
M A N N I N G

Carlos Sessa

FOREWORD BY Jake Wharton

www.allitebooks.com

http://www.allitebooks.org

50 Android Hacks

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

50 Android Hacks
CARLOS SESSA

M A N N I N G

SHELTER ISLAND

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964.

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Technical proofreader: Cyril Mottier
PO Box 261 Copyeditor: Benjamin Berg
Shelter Island, NY 11964 Proofreader: Katie Tennant
 Typesetter: Dottie Marsico

Cover designer: Marija Tudor

ISBN 9781617290565
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 18 17 16 15 14 13

www.allitebooks.com

www.manning.com
http://www.allitebooks.org

 Al milagro que hizo esto posible

 (To the miracle that made this possible)

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

brief contents

1 ■ Working your way around layouts 1

2 ■ Creating cool animations 19

3 ■ View tips and tricks 29

4 ■ Tools 47

5 ■ Patterns 53

6 ■ Working with lists and adapters 77

7 ■ Useful libraries 97

8 ■ Interacting with other languages 107

9 ■ Ready-to-use snippets 117

10 ■ Beyond database basics 133

11 ■ Avoiding fragmentation 157

12 ■ Building tools 171

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ix

contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiii
about the cover illustration xxvii

1 Working your way around layouts 1

HACK 1 CENTERING VIEWS USING WEIGHTS 1

1.1 Combining weightSum and layout_weight 2

1.2 The bottom line 3

1.3 External links 3

HACK 2 USING LAZY LOADING AND AVOIDING REPLICATION 3

1.4 Avoid replication using the <include /> tag 4

1.5 Lazy loading views with the ViewStub class 5

1.6 The bottom line 7

1.7 External links 7

HACK 3 CREATING A CUSTOM VIEWGROUP 8

1.8 Understanding how Android draws views 9

1.9 Creating the CascadeLayout 9

1.10 Adding custom attributes to the children 12

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

1.11 The bottom line 13

1.12 External links 14

HACK 4 PREFERENCES HACKS 14

1.13 The bottom line 17

1.14 External links 17

2 Creating cool animations 19

HACK 5 SNAPPY TRANSITIONS WITH TEXTSWITCHER AND
IMAGESWITCHER 19

2.1 The bottom line 21

2.2 External links 21

HACK 6 ADDING EYE CANDY TO YOUR VIEWGROUP’S
CHILDREN 21

2.3 The bottom line 23

2.4 External links 23

HACK 7 DOING ANIMATIONS OVER THE CANVAS 23

2.5 The bottom line 25

2.6 External links 25

HACK 8 SLIDESHOW USING THE KEN BURNS EFFECT 25

2.7 The bottom line 27

2.8 External links 28

3 View tips and tricks 29

HACK 9 AVOIDING DATE VALIDATIONS WITH AN EDITTEXT FOR
DATES 29

3.1 The bottom line 30

3.2 External links 30

HACK 10 FORMATTING A TEXTVIEW’S TEXT 30

3.3 The bottom line 31

3.4 External links 31

HACK 11 ADDING TEXT GLOWING EFFECTS 32

3.5 The bottom line 33

3.6 External links 33

CONTENTS xi

HACK 12 ROUNDED BORDERS FOR BACKGROUNDS 33

3.7 The bottom line 34

3.8 External links 34

HACK 13 GETTING THE VIEW’S WIDTH AND HEIGHT IN THE
ONCREATE() METHOD 34

3.9 The bottom line 36

3.10 External links 36

HACK 14 VIDEOVIEWS AND ORIENTATION CHANGES 36

3.11 The bottom line 38

3.12 External links 39

HACK 15 REMOVING THE BACKGROUND TO IMPROVE YOUR
ACTIVITY STARTUP TIME 39

3.13 The bottom line 40

3.14 External links 41

HACK 16 TOAST’S POSITION HACK 41

3.15 The bottom line 42

3.16 External links 42

HACK 17 CREATING A WIZARD FORM USING A GALLERY 42

3.17 The bottom line 46

3.18 External links 46

4 Tools 47

HACK 18 REMOVING LOG STATEMENTS BEFORE RELEASING 47

4.1 The bottom line 48

4.2 External links 48

HACK 19 USING THE HIERARCHY VIEWER TOOL TO REMOVE
UNNECESSARY VIEWS 49

4.3 The bottom line 52

4.4 External links 52

5 Patterns 53

HACK 20 THE MODEL-VIEW-PRESENTER PATTERN 53

5.1 The bottom line 55
5.2 External links 56

CONTENTSxii

HACK 21 BROADCASTRECEIVER FOLLOWING ACTIVITY’S
LIFECYCLE 56

5.3 The bottom line 57

5.4 External links 58

HACK 22 ARCHITECTURE PATTERN USING ANDROID LIBRARIES 58

5.5 Back-end logic and model 58

5.6 Android library 59

5.7 Android application 59

5.8 The bottom line 60

5.9 External links 60

HACK 23 THE SYNCADAPTER PATTERN 60

5.10 Common approaches 60

5.11 What we’ll create 62

5.12 The bottom line 75

5.13 External links 75

6 Working with lists and adapters 77

HACK 24 HANDLING EMPTY LISTS 77

6.1 The bottom line 78

6.2 External links 78

HACK 25 CREATING FAST ADAPTERS WITH A VIEWHOLDER 78

6.3 The bottom line 80

6.4 External links 81

HACK 26 ADDING SECTION HEADERS TO A LISTVIEW 81

6.5 Creating list layouts 82

6.6 Providing visible section headers 83

6.7 Wrapping up 84

6.8 The bottom line 84

6.9 External links 84

HACK 27 COMMUNICATING WITH AN ADAPTER USING AN ACTIVITY
AND A DELEGATE 85

6.10 The bottom line 87

6.11 External links 87

CONTENTS xiii

HACK 28 TAKING ADVANTAGE OF LISTVIEW’S HEADER 87

6.12 The bottom line 89

6.13 External links 89

HACK 29 HANDLING ORIENTATION CHANGES INSIDE A
VIEWPAGER 89

6.14 The bottom line 90

6.15 External links 91

HACK 30 LISTVIEW’S CHOICEMODE 91

6.16 The bottom line 94

6.17 External links 95

7 Useful libraries 97

HACK 31 ASPECT-ORIENTED PROGRAMMING IN ANDROID 97

7.1 The bottom line 100

7.2 External links 100

HACK 32 EMPOWERING YOUR APPLICATION USING
COCOS2D-X 101

7.3 What is Cocos2d-x? 101

7.4 Using Cocos2d-x 101

7.5 The bottom line 104

7.6 External links 105

8 Interacting with other languages 107

HACK 33 RUNNING OBJECTIVE-C IN ANDROID 107

8.1 Downloading and compiling Itoa 108

8.2 Creating the modules 108

8.3 Setting up the Java part 112

8.4 The bottom line 113

8.5 External links 113

HACK 34 USING SCALA INSIDE ANDROID 113

8.6 The bottom line 116

8.7 External links 116

CONTENTSxiv

9 Ready-to-use snippets 117

HACK 35 FIRING UP MULTIPLE INTENTS 117

9.1 Taking a picture 118

9.2 Picking a picture from the gallery 118

9.3 Mixing both intents 118

9.4 The bottom line 118

9.5 External links 119

HACK 36 GETTING USER INFORMATION WHEN RECEIVING
FEEDBACK 119

9.6 The bottom line 121

9.7 External links 121

HACK 37 ADDING AN MP3 TO THE MEDIA CONTENT-
PROVIDER 121

9.8 Adding the MP3 using content values 121

9.9 Adding the MP3 using the media scanner 122

9.10 The bottom line 122

9.11 External links 122

HACK 38 ADDING A REFRESH ACTION TO THE ACTION BAR 122

9.12 The bottom line 125

9.13 External links 125

HACK 39 GETTING DEPENDENCIES FROM THE MARKET 126

9.14 The bottom line 127

9.15 External links 128

HACK 40 LAST-IN-FIRST-OUT IMAGE LOADING 128

9.16 Starting point: Android sample application 128

9.17 Introducing executors 129

9.18 UI thread—leaving and returning seamlessly 130

9.19 Considerations 131

9.20 The bottom line 131

9.21 External links 131

CONTENTS xv

10 Beyond database basics 133

HACK 41 BUILDING DATABASES WITH ORMLITE 133

10.1 A simple data model 134

10.2 Getting started 135

10.3 Rock-solid database schema 136

10.4 SQLiteOpenHelper—your gateway to the
database 138

10.5 Singleton pattern for database access 139

10.6 CRUD operations made easy 140

10.7 Query builders 141

10.8 Data types and tricky foreign types 143

10.9 Raw SQL queries 145

10.10 Transactions 146

10.11 The bottom line 147

10.12 External links 147

HACK 42 CREATING CUSTOM FUNCTIONS IN SQLITE 148

10.13 Java code 148

10.14 Native code 149

10.15 The bottom line 151

10.16 External links 151

HACK 43 BATCHING DATABASE OPERATIONS 152

10.17 No batch 152

10.18 Using batch operations 153

10.19 Applying batch using SQLiteContentProvider 154

10.20 The bottom line 156

10.21 External links 156

11 Avoiding fragmentation 157

HACK 44 HANDLING LIGHTS-OUT MODE 157

11.1 Android 2.x 158

11.2 Android 3.x 158

11.3 Merging both worlds in a single Activity 160

11.4 The bottom line 160

11.5 External links 160

CONTENTSxvi

HACK 45 USING NEW APIS IN OLDER DEVICES 160

11.6 Using apply() instead of commit() 161

11.7 Storing the app on the SD card 163

11.8 The bottom line 164

11.9 External links 164

HACK 46 BACKWARD-COMPATIBLE NOTIFICATIONS 164

11.10 The bottom line 168

11.11 External links 168

HACK 47 CREATING TABS WITH FRAGMENTS 168

11.12 Creating our tab UI 169

11.13 Placing the tabs in an Activity 169

11.14 The bottom line 170

11.15 External links 170

12 Building tools 171

HACK 48 HANDLING DEPENDENCIES WITH
APACHE MAVEN 171

12.1 The bottom line 174

12.2 External links 174

HACK 49 INSTALLING DEPENDENCIES IN A ROOTED DEVICE 175

12.3 Predexing 176

12.4 Creating the permissions XML 176

12.5 Modifying AndroidManifest.xml 177

12.6 The bottom line 177

12.7 External links 177

HACK 50 USING JENKINS TO DEAL WITH DEVICE DIVERSITY 178

12.8 Creating a Jenkins job 179

12.9 Running the job 181

12.10 The bottom line 182

12.11 External links 182

index 183

xvii

foreword
Android as an ecosystem is expanding rapidly in all directions. Every day manufactur-

ers introduce new devices and form factors, consumers purchase and activate over

one million devices, and users download and try new apps. It’s the job of developers

(yourself included, hopefully) to fill this ecosystem with beautiful, engaging, and

deeply fulfilling applications through which users can better interpret and interact

with their world.

 As a platform, Android was birthed in late 2003 by former employees of Danger

(the company behind the popular Sidekick phones). In 2005 the company driving

Android was acquired by Google, and three years later the HTC Dream (G1) was

released as the first consumer device running Android. Over the next three years the

hardware and platform were heavily iterated, but Android remained solely a phone

operating system.

 In 2011 Google introduced two new form factors for the Android: tablets and TV.

This represented the first official deviation from phones as the device of choice and

sparked manufacturer interest in other devices. Android now runs on laptops, wrist-

watches, video game consoles, and car stereos. It can only be expected that in the

future the number of devices supporting Android will continue to grow.

 As application developers, it’s extremely important that you understand the diver-

sity of the platform and the direction in which it’s heading. Creating content on

Android is no longer as simple as designing for a phone-sized screen held in portrait

orientation. While this does mean more work for the developer creating apps, the end

result is a vastly more pleasant experience for the user, regardless of which device your

content is consumed on.

FOREWORDxviii

 In developing applications there are three major things that you’ll need aside from

your own creativity and desire to develop: the platform documentation, the open

source community, and glue to hold everything together. The platform documenta-

tion is easy, since the latest version is always hosted at http://developer.android.com.

The open source community is spread across GitHub, Google Code, Stack Overflow,

and the like, providing libraries, code snippets, and design patterns for simplifying

development. You still need something to tie these disjointed pieces together as one

cohesive app. If it were as simple as arranging a few building blocks, everyone would

be developing applications. This book is that glue.

 Contained in the book are examples of how to solve common problems that arise

in Android development. Some are relatively trivial and some quite complex. What

they share, however, is being loosely or sparsely documented facets of app develop-

ment which often cause developers pain. 50 Android Hacks is not meant as a sole

resource for learning or mastering Android development, but rather exists to fill in

the cracks.

 It’s a great task to craft an app that’s dynamic enough to support Android’s grow-

ing device diversity. With the knowledge provided by this book, accompanied by that

of similar print and online sources, it’s my hope that you’re more empowered to

develop and publish apps. Beyond this, while I am a developer just like you, I am also

an avid Android user and patiently await that next great application. Perhaps you will

be the one to write it.

 JAKE WHARTON

 ANDROID ENGINEER

http://d.android.com/

xix

preface
I started learning about Android back in 2009. Android version 1.5 had just been

released, and it showed a lot of potential.

 In July 2009, thanks to a friend living in Australia, I got my first Android-powered

device, an HTC Magic with Android version 1.5. To be honest, it processed more

slowly than I expected, but I started testing the APIs and creating apps that I wanted to

have on my cell phone. I sensed that Android would get a lot of attention and I knew

that if I managed to create an application, it would be available to a lot of people.

 I was proved right—not long afterward, there was a kick-off for Android develop-

ment, which soon grew bigger and bigger. Suddenly a lot of tools and third-party

libraries supporting the Android platform emerged—everything from game frame-

works, like cocos2d-x, to build systems, like Apache Maven.

 In November 2010 I was asked to review a book from Manning Publications called

Android in Practice (www.manning.com/collins/). Delving deep into Manning’s work,

it occurred to me that I could write a book about Android development using a differ-

ent approach. I wanted to imitate Joshua Bloch’s Effective Java (www.amazon.com/

Effective-Java-2nd-Joshua-Bloch/dp/0321356683), providing tips and patterns I had

learned over all my years of developing for the Android platform.

Essentially, I wanted to gather together in one book every Android tip I have

learned and provide some degree of documentation for it. That’s what 50 Android

Hacks is all about: a collection of tips gathered in the process of developing different

Android applications.

 Something I enjoyed about Effective Java was that the book doesn’t have any partic-

ular order and I could read various sections, learning something different from each

www.allitebooks.com

http://www.manning.com/collins/
http://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683)
http://www.amazon.com/Effective-Java-2nd-Joshua-Bloch/dp/0321356683)
http://www.allitebooks.org

PREFACExx

of them. After some time, I would go back to the book and find a different application

for the project I was working on. I kept that in mind while writing this book. I imagine

the reader investigating a hack while going to work or before going to sleep, getting

new ideas for the project they’re working on.

 I’m already using this book on my new projects, copying the sample code for cer-

tain tasks and using its examples to explain to my coworkers certain patterns. It’s

proven to be useful for myself, and I hope it will be useful for you as well.

 While writing the book and samples, I set the minimum SDK to 1.6. Most of the

hacks in the book work in Android version 1.6 onward unless mentioned. You’ll

notice that there are hacks specific to the newest Android versions, but most of them

are recommendations or ideas that would work for every version. Every hack has an

icon identifying the minimum SDK it will work with.

 So pick a hack of interest to you from the table of contents and start reading. I

hope you learn as much reading this book as I learned writing it.

xxi

acknowledgments
When reading acknowledgments in other books, I’m always surprised by the number

of people the author thanks. I now understand how big the list can be, and as I write

these words I’m nervous that I may be forgetting someone.

 First of all, I want to thank Cynthia Kane, my development editor. She helped me

manage the book. She pointed out every single thing that needed a change, dealt with

my inadequacies in English, and helped me understand the key parts of creating a

book. Almost every single line I wrote needed a fix, and while it was sometimes frustrat-

ing for Cynthia, the result of these repeated iterations is a book of which I am proud.

 Another key player was Nicholas Chase. Nick is in charge of support for the Man-

ning XML schema and the authoring tool. Fortunately, Nick was online on Skype every

time I had an question for him.

 The rest of the Manning team also played a big part. Some of the people who

worked with me are Ozren Harlovic, Kevin Sullivan, Tara McGoldrick Walsh, Benja-

min Berg, Katie Tennant, Candace Gillhoolley, Martin Murtonen, Michael Stephens,

and Maureen Spencer.

 Thanks to the collaborators: William Sanville (Hack 40: Last-in-first-out image

loading; and Hack 41: Building databases with ORMLite); Chris King (Hack 26: Add-

ing section headers to a ListView); and Christopher Orr (Hack 50: Using Jenkins to

deal with device diversity). They lent their expertise to complete these areas.

 Thanks to Cyril Mottier, who took an in-depth look at the book and didn’t hesitate

to tell me which parts he hated and wanted to change. He kept the bar very high and

I enjoyed working with him. Merci beaucoup!

ACKNOWLEDGMENTSxxii

 Thanks to my partners at NASA Trained Monkeys, who helped me out by reading a

lot and making recommendations. Most of the cool hack titles came from their wild

imaginations.

 Thanks to the Android community itself, and a special thanks to the people who

contribute to open source libraries (just to mention a few names: Michael Burton,

Manfred Moser, Matthias Käppler, Jake Wharton, Jeremy Feinstein, the cocos2d-x

team, Jan Berkel, Jeff Gilgelt, Xavi Rigau, Chris Banes, James Brechtel, and Dmitry

Skiba).

 Thanks to everyone who reviewed the book. The reviews helped me identify what

was missing and what topics needed more attention. Getting positive reviews from

people I admire was very rewarding. Thanks to the following reviewers for finding the

time to read the book; I hope you learned something from it: Adam Koch, Alberto

Pose, Bill Cruise, Christian Badenas, Frank Ableson, Ignacio Luciani, Jeff Goldschrafe,

Joshua Skinner, Matthias Käppler, Maximiliano Gomez Vidal, “Ming,” Octavian

Damiean, Paul Butcher, Robi Sen, Roger Binns, Shan Coster, Suzanne Alexandra, and

Will Turnage.

 Thanks to my family and friends—you did a great job supporting me!

 And last but not least, thank you, Mili, for being there every time I needed you. I

love you.

xxiii

about this book
Android is a project with a lot of momentum. The first Android release happened on

September 23, 2008, and by the end of 2010 it had become the leading smartphone

platform.

 Every time there’s a new release, a new set of APIs and possibilities show up. While

Android version 1.5 (Donut) only worked in the HTC Dream, right now Android runs

in many devices from cellphone to TVs, and on different sizes of tablets and laptops.

 This causes two big problems when developing for Android. First, you have to deal

with different types of supported devices. While there are lots of ways of dealing with

different screen sizes and screen density, you need to create an app that works, and

looks great, in every device. Also, targeting every possible Android-powered device

might result in different user experiences. The user won’t interact in the same way

with a cellphone as with a TV.

 The second problem is how long the Android versions stay alive. The story is always

the same: with a new Android version, we get new APIs. A new API would be an excel-

lent addition to your app, but as a developer you still need to support older versions,

because not everyone will get the update and also because it may take a lot of time to

reach your main target audience.

 You’ll need to choose if you want to add the new API functionality and release an

app just for people using the newest Android version, or go with a hybrid approach

where some functionalities are only available in newer versions.

 I’ve created this book to help you out, because when you’re developing for

Android, all the decisions are in your hands. 50 Android Hacks offers a problem/solu-

tion approach to tasks you might encounter while developing, but also ways to

enhance what’s already there.

ABOUT THIS BOOKxxiv

What is Android?

Android is an open source operating system based on Linux. In the beginning, it was

just for cell phones, but now it works on tablets, TVs, computers, and even car stereos.

It has been gaining a lot of momentum in the mobile scene and is now used in more

than 50% of mobile devices.

 The apps that run on an Android-powered device are usually coded in Java and it

has a powerful SDK that allows the developer to create different types of applications.

Android allows developers to customize almost everything. For example, you can cre-

ate custom wallpapers, custom keyboards, and custom home screens, things you

wouldn’t imagine doing in other platforms.

Who should read this book?

This book is intended for people who are already developing with Android. I assume

you know how to program in Java and the basic concepts of the Android platform.

 There are hacks intended for people taking their first steps with the Android plat-

form, and there are hacks for advanced developers. If you’re developing an Android

app, skim through the book; I’m sure you’ll find something that will help you.

 To find out if this book is for you, consider these questions:

■ Are you developing for Android?

■ Have you found yourself scratching your head, trying to think of better solu-

tions to your problems?

■ Are you looking for new ways of addressing your programming issues?

■ Do you want to find out how other people are handling similar problems?

How to use this book

My recommendation is that, before you read about a hack, you first compile and run

the sample code. That will give you a better understanding of what we’ll do in each

example. Apart from that, the book doesn’t need to be read in any particular order.

Feel free to start reading any section that interests you.

Roadmap

While the book is flexible enough to let you go forward and backward between hacks

without an issue, you can also read it sequentially.

■ Chapter 1, “Working your way around layouts,” has four hacks that offer you dif-

ferent layout tips.

■ The four hacks in chapter 2, “Creating cool animations,” describe different tips

for dealing with animations.

■ Chapter 3, “View tips and tricks,” has nine hacks covering every tip related to

views.

■ The two hacks in chapter 4, “Tools,” give you an overview of available tools apart

from the IDE.

ABOUT THIS BOOK xxv

■ Chapter 5, “Patterns,” offers pattern examples in its four hacks that are applica-

ble for Android.

■ Chapter 6, “Working with lists and adapters,” groups tips about the ListView

and Adapter classes in its seven hacks.

■ Two hacks in chapter 7, “Useful libraries,” explain how to use third-party librar-

ies in your apps.

■ Chapter 8, “Interacting with other languages,” shows some examples of coding

for Android in programming languages other than Java in one hack focused on

Objective-C and one hack discussing Scala.

■ Chapter 9, “Ready-to-use snippets,” offers six hacks that provide copy-and-paste

code snippets.

■ The three hacks in chapter 10, “Beyond database basics,” state some advanced

tips about database usage.

■ Chapter 11, “Avoiding fragmentation,” includes four hacks that show how to

make your app work in different Android versions.

■ The final three hacks presented in chapter 12, “Building tools,” include tips on

how to build your app.

Code conventions and downloads

All the code in the examples used in this book is presented in a monospace font like

this. Annotations accompany many of the code listings and numbered cueballs are

used if longer explanations are needed.

 The source code for all of the examples in the book is available for download from

the publisher’s website at www.manning.com/50AndroidHacks. You can also down-

load the source code from the Google code project. How to get the latest code is

explained in the appendix. The sample code is hosted at GitHub. You can download

the code here: https://github.com/Macarse/50AH-code.

 To run the book samples, you’ll need to install

■ Eclipse

■ Android SDK

■ Eclipse Android plugin

If you don’t know where to start, I recommend visiting http://developer

.android.com/sdk/installing/index.html, where there’s an easy step-by-step guide to

configuration.

Author Online

The purchase of 50 Android Hacks includes free access to a private web forum run by

Manning Publications, where you can make comments about the book, ask technical

questions, and receive help from the author and from other users. To access the forum

and subscribe to it, point your web browser to www.manning.com/50AnroidHacks.

www.manning.com/50AndroidHacks
http://developer.android.com/sdk/installing/index.html
http://developer.android.com/sdk/installing/index.html
www.manning.com/50AnroidHacks
https://github.com/Macarse/50AH-code

ABOUT THIS BOOKxxvi

This page provides information on how to get on the forum once you are registered,

what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful

dialogue between individual readers and between readers and the author can take

place. It is not a commitment to any specific amount of participation on the part of

the author, whose contribution to the forum remains voluntary (and unpaid). We sug-

gest you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-

ble from the publisher’s website as long as the book is in print.

About the author

Carlos Sessa is a passionate full-time Android developer. He is the cofounder of a

mobile development company based in Buenos Aires, Argentina, called NASA Trained

Monkeys. His company focuses on mobile development for both Android and iOS

platforms.

xxvii

about the cover illustration
The figure on the cover of 50 Android Hacks is captioned “A Woodsman.” The illustra-

tion is taken from a nineteenth-century edition of Sylvain Maréchal’s four-volume

compendium of regional dress customs published in France. Each illustration is finely

drawn and colored by hand. The rich variety of Maréchal’s collection reminds us viv-

idly of how culturally apart the world’s towns and regions were just 200 years ago. Iso-

lated from each other, people spoke different dialects and languages. On the streets

or in the countryside, it was easy to identify where they lived and what their trade or

station in life was just by their dress.

 Dress codes have changed since then and the diversity by region, so rich at the

time, has faded away. It is now hard to tell apart the inhabitants of different conti-

nents, let alone different towns or regions. Perhaps we have traded cultural diversity

for a more varied personal life—certainly for a more varied and fast-paced technolog-

ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-

brates the inventiveness and initiative of the computer business with book covers

based on the rich diversity of regional life of two centuries ago, brought back to life by

Maréchal’s pictures.

1

Working your way
around layouts

In this chapter, we’ll cover tips and recommendations for Android layouts. You’ll

learn how to create certain types of layouts from scratch as well as how to improve

upon existing ones.

Hack 1 Centering views using weights
Android v1.6+

At an Android talk I gave to a group of developers, when I was explaining how to

create a view using an XML file, someone asked, “What should I write if I want a but-

ton to be centered and 50% of its parent width?” At first I didn’t understand what

he was asking, but after he drew it on the board, I understood. His idea is shown in

figures 1.1 and 1.2.

 It looks simple, right? Now take five minutes to try to achieve it. In this hack, we’ll

look at how to solve this problem using the LinearLayout’s android:weightSum

attribute in conjunction with the LinearLayout’s child android:layout_weight

attribute. This might sound like a simple task, but it’s something I always ask

about in interviews with developers because a lot of them don’t know the best way

to do this.

www.allitebooks.com

http://www.allitebooks.org

Figure 1.1 Button with 50% of

its parent width (portrait)

Figure 1.2 Button with 50% of its parent width (landscape)

2 CHAPTER 1 Working your way around layouts

1.1 Combining weightSum and layout_weight

Android devices have different sizes, and as developers we need to create XML in a

way that works for different screen sizes. Hard-coding sizes isn’t an option, so we’ll

need something else to organize our views.

 We’ll use the layout_weight and weightSum attributes to fill up any remaining

space inside our layout. The documentation for android:weightSum (see section 1.3)

describes a scenario similar to what we’re trying to achieve:

Defines the maximum weight sum. If unspecified, the sum is computed by
adding the layout_weight of all of the children. This can be used for instance
to give a single child 50% of the total available space by giving it a
layout_weight of 0.5 and setting the weightSum to 1.0.

Imagine we need to place stuff inside a box. The percentage of available space would

be the weightSum and the layout_weight would be the percentage available for each

item inside the box. For example, let’s say the box has a weightSum of 1 and we have

two items, A and B. A has a layout_weight of 0.25 and B has a layout_weight of 0.75.

So item A will have 25% of the box space, while B will get the remaining 75%.

 The solution to the situation we covered at the beginning of this chapter is similar.

We give the parent a certain weightSum and give the button half of that value as

android:layout_weight. The resulting XML follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

3Using lazy loading and avoiding replication

android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:background="#FFFFFF"

android:gravity="center"
android:orientation="horizontal"

android:weightSum="1">
B Reads the

android:weightSum attribute

<Button
android:layout_width="0dp"

C Decides the
button’s width

android:layout_height="wrap_content"

android:layout_weight="0.5"

D
Makes sure it uses exactly
50% of available spaceandroid:text="Click me"/>

</LinearLayout>

The LinearLayout reads the android:weightSum attribute B and learns that the sum

of the weights of its children needs to be 1. Its first and only child is the Button and

because the button has its android:layout_width set to 0dp C, the LinearLayout

knows that it must decide the button’s width by the available space given by the

android:weightSum. Because the Button has the android:layout_weight set to 0.5

D, it will use exactly 50% of the available space.

 A possible example would be a 200dp wide LinearLayout with its

android:weightSum set to 1. The width of the Button would be calculated as follows:

Button's width + Button's weight * 200 / sum(weight)

Because the Button’s width is 0dp, the Button’s weight is 0.5. With the sum(weight)

set to 1, the result would be the following:
0 + 0.5 * 200 / 1 = 100

1.2 The bottom line

Using LinearLayout’s weight is important when you want to distribute the available

space based on a percentage rather than using hard-coded sizes. If you’re targeting

Honeycomb and using Fragments, you’ll notice that most of the examples place the

different Fragments in a layout using weights. Understanding how to use weights will

add an important tool to your toolbox.

1.3 External links

http://developer.android.com/reference/android/widget/LinearLayout.html

Hack 2 Using lazy loading and avoiding replication
Android v1.6+

When you’re creating complex layouts, you may find yourself adding a lot of View-

Groups and Views. But making your view hierarchy tree taller will also make it slower.

http://developer.android.com/reference/android/widget/LinearLayout.html

4 CHAPTER 1 Working your way around layouts

Creating optimized layouts is fundamental to building an application that runs fast

and is responsive to the user.

 In this hack, you’ll learn how to use the <include /> tag in your XML to avoid rep-

lication, and how to use the ViewStub class to lazy load views.

2.1 Avoid replication using the <include /> tag

Let’s imagine we want to add a footer to every view in our application—something

simple, such as a TextView with our application’s name. If we have more than one

Activity, we might have more than one XML file. Would we copy this TextView to

every XML file? What happens if we need to edit it in the future? Copying and pasting

would solve the problem, but it doesn’t sound efficient. The easiest way to add a footer

to our application is to use the <include /> tag. Let’s look at how it can help us out.

 We use the <include /> tag in XML to add another layout from another XML file.

In our example, we’ll create our complete view, and at the bottom we’ll add the

<include /> tag pointing to our footer’s layout. One of our Activity’s XML files

would look like the following:

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:layout_centerInParent="true"

android:gravity="center_horizontal"

android:text="@string/hello"/>

<include layout="@layout/footer_with_layout_properties"/>

</RelativeLayout/>

And the footer_with_layout_properties would look like the following:

<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:layout_alignParentBottom="true"

android:layout_marginBottom="30dp"

android:gravity="center_horizontal"
android:text="@string/footer_text"/>

In this first example, we’ve used the <include /> tag with the only required layout.

You might be thinking, “OK, this works because we’re using a RelativeLayout for our

main XML. What’ll happen if one of the XML files is a LinearLayout? android

:layout_alignParentBottom="true" wouldn’t work because it’s a RelativeLayout

attribute.” That’s true. Let’s look at the second way to use includes, where we’ll place

android:layout_* attributes in the <include /> itself.

5Using lazy loading and avoiding replication

 The following modified main.xml uses the <include /> tag with android:layout_*

attributes:

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView
android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_centerInParent="true"
android:gravity="center_horizontal"

android:text="@string/hello"/>

<include
layout="@layout/footer"

android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:layout_alignParentBottom="true"

android:layout_marginBottom="30dp"/>

</RelativeLayout/>

The following shows the modified footer.xml:

<TextView xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="0dp"

android:layout_height="0dp"
android:gravity="center"

android:text="@string/footer_text"/>

In this second example, we’ve let the container of the included footer decide where to

place it. Android’s issue tracker has reported an issue, which says that the <include />

tag is broken (overriding layout params never works). This is partially true. The prob-

lem is that the <include /> tag must specify both android:layout_width and

android:layout_height if we want to override any android:layout_* attributes.

 Note a small detail about what we’ve done in this hack. As you can see in the sec-

ond example, we moved every android:layout_* attribute to the <include /> tag.

Take a look at the width and height we placed in the footer.xml file: they’re both 0dp.

We did this to make users specify a width and height when used together with the

<include /> tag. If users don’t add them, they won’t see the footer because the width

and height are zero.

2.2 Lazy loading views with the ViewStub class

When designing your layouts, you may have thought about showing a view depending

on the context or the user interactions. If you’ve ever found yourself making a view

invisible and then making it visible afterward, you should keep on reading—you’ll

want to use the ViewStub class.

 As an introduction to the ViewStub class, let’s take a look at the Android documen-

tation (see section 2.4):

6 CHAPTER 1 Working your way around layouts

A ViewStub is an invisible, zero-sized View that can be used to lazily inflate
layout resources at runtime. When a ViewStub is made visible, or when
inflate() is invoked, the layout resource is inflated. The ViewStub then
replaces itself in its parent with the inflated View or Views.

You already know what a ViewStub is, so let’s see what you can do with it. In the follow-

ing example you’ll use a ViewStub to lazy load a MapView. Imagine creating a view with

the details about a place. Let’s look at two possible scenarios:

 Some venues don’t have GPS information

 The user might not need the map

If the venue doesn’t have GPS information, you can’t place a marker on the map, and

if the user doesn’t need the map, why load it? Let’s place the MapView inside a View-

Stub and let the user decide whether to load the map.

 To achieve this, you’ll use the following layout:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent">

<Button

android:layout_width="fill_parent"
android:layout_height="wrap_content"

android:text="@string/show_map"

android:onClick="onShowMap"/>

<ViewStub

android:id="@+id/map_stub"

android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:layout="@layout/map"

android:inflatedId="@+id/map_view"/>
</RelativeLayout>

It might be obvious, but we’ll use the map_stub ID to get the ViewStub from the

Activity, and the layout attribute tells the ViewStub which layout should inflate. For

this example, we’ll use the following layout for the map:

<?xml version="1.0" encoding="utf-8"?>

<com.google.android.maps.MapView
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"
android:clickable="true"

android:apiKey="my_api_key"/>

The last attribute we need to discuss is inflatedId. The inflatedId is the ID that the

inflated view will have after we call inflate() or setVisibility() in the ViewStub

class. In this example, we’ll use setVisibility(View.VISIBLE) because we won’t do

7Using lazy loading and avoiding replication

anything else with the MapView. If we want to get a reference to the view inflated, the

inflate() method returns the view to avoid a second call to findViewById().

 The code for the Activity is simple:

public class MainActivity extends MapActivity {

private View mViewStub;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mViewStub = findViewById(R.id.map_stub);
}

public void onShowMap(View v) {

mViewStub.setVisibility(View.VISIBLE);
}

...

}

As you can see, we only need to change the ViewStub visibility when we want to show

the map.

2.3 The bottom line

The <include /> tag is a useful tool to order your layout. If you already created some-

thing with the Fragment class, you’ll notice that using includes is almost the same

thing. As you need to do with fragments, your complete view can be a set of includes.

 The <include /> tag offers a nice way to organize the content of your XML files. If

you’re making a complex layout and the XML gets too big, try creating different parts

using includes. The XML becomes easier to read and more organized.

ViewStub is an excellent class to lazy load your views. Whenever you’re hiding a

view and making it visible, depending on the context, try using a ViewStub. Perhaps

you won’t notice the performance boost with only one view, but you will if the view has

a large view hierarchy.

2.4 External links

http://code.google.com/p/android/issues/detail?id=2863

http://android-developers.blogspot.com.ar/2009/03/

android-layout-tricks-3-optimize-with.html

http://developer.android.com/reference/android/view/ViewStub.html

http://code.google.com/p/android/issues/detail?id=2863
http://android-developers.blogspot.com.ar/2009/03/android-layout-tricks-3-optimize-with.html
http://developer.android.com/reference/android/view/ViewStub.html

8 CHAPTER 1 Working your way around layouts

Hack 3 Creating a custom ViewGroup
Android v1.6+

When you’re designing your application, you might have com-

plex views that will show up in different activities. Imagine that

you’re creating a card game and you want to show the user’s

hand in a layout similar to figure 3.1. How would you create a

layout like that?

 You might say that playing with margins will be enough for

that type of layout. That’s true. You can do something similar

to the previous figure with a RelativeLayout and add margins

to its children. The XML looks like the following:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<View

android:layout_width="100dp"
android:layout_height="150dp"

android:background="#FF0000" />

<View
android:layout_width="100dp"

android:layout_height="150dp"

android:layout_marginLeft="30dp"
android:layout_marginTop="20dp"

android:background="#00FF00" />

<View
android:layout_width="100dp"

android:layout_height="150dp"

android:layout_marginLeft="60dp"
android:layout_marginTop="40dp"

android:background="#0000FF" />

</RelativeLayout>
</FrameLayout>

The result of the previous XML can be seen in

figure 3.2.

 In this hack, we’ll look at another way of creating

the same type of layout—we’ll create a custom View-

Group. The benefits of using a custom ViewGroup

instead of adding margins by hand in an XML file are

these:

 It’s easier to maintain if you’re using it in differ-

ent activities.

3
♣ 2

♥

♠

A
♠

A
♠

Figure 3.1 User’s

hand in a card game

Figure 3.2 Card layout created

using the default Android widgets

9Creating a custom ViewGroup

 You can use custom attributes to customize the position of the ViewGroup chil-

dren.

 The XML will be easier to understand because it’ll be more concise.

 If you need to change the margins, you won’t need to recalculate by hand every

child’s margin.

Let’s take a look at how Android draws views.

3.1 Understanding how Android draws views

To create a custom ViewGroup, you’ll need to understand how Android draws views. I

won’t go into the details, but you’ll need to understand the following paragraph from

the documentation (see section 3.5), because it explains how you can draw a layout:

Drawing the layout is a two-pass process: a measure pass and a layout pass. The
measuring pass is implemented in measure(int, int) and is a top-down
traversal of the View tree. Each View pushes dimension specifications down
the tree during the recursion. At the end of the measure pass, every View has
stored its measurements. The second pass happens in layout(int, int, int,
int) and is also top-down. During this pass each parent is responsible for
positioning all of its children using the sizes computed in the measure pass.

To understand the concept, let’s analyze the way to draw a ViewGroup. The first step is

to measure its width and height, and we do this in the onMeasure() method. Inside

that method, the ViewGroup will calculate its size by going through its children. We’ll

make the final pass in the onLayout() method. Inside this second method, the View-

Group will lay out its children using the information gathered in the onMeasure()

pass.

3.2 Creating the CascadeLayout

In this section, we’ll code the custom ViewGroup. We’ll achieve the same result as fig-

ure 3.2. Call the custom ViewGroup: CascadeLayout. The XML using the Cascade-

Layout follows:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:cascade=
"http://schemas.android.com/apk/res/com.manning.androidhacks.hack003"

android:layout_width="fill_parent" Custom
namespace to
use custom
attributes in
the XML

android:layout_height="fill_parent" >

<com.manning.androidhacks.hack003.view.CascadeLayout

CascadeLayout used
from the XML using
its fully qualified name

android:layout_width="fill_parent"

android:layout_height="fill_parent"

cascade:horizontal_spacing="30dp"

With cascade
namespace

you can use
custom

attributes
cascade:vertical_spacing="20dp" >

<View
android:layout_width="100dp"

10 CHAPTER 1 Working your way around layouts

android:layout_height="150dp"
android:background="#FF0000" />

<View

android:layout_width="100dp"
android:layout_height="150dp"

android:background="#00FF00" />

<View
android:layout_width="100dp"

android:layout_height="150dp"

android:background="#0000FF" />
</com.manning.androidhacks.hack003.view.CascadeLayout>

</FrameLayout>

Now that you know what you need to build, let’s get started. The first thing we’ll do is

define those custom attributes. To do this, we need to create a file called attrs.xml

inside the res/values folder, with the following code:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<declare-styleable name="CascadeLayout">

<attr name="horizontal_spacing" format="dimension" />

<attr name="vertical_spacing" format="dimension" />
</declare-styleable>

</resources>

We’ll also use default values for the horizontal and vertical spacing for those times

when the user doesn’t specify them. We’ll place the default values inside a dimens.xml

file inside the res/values folder. The contents of the dimens.xml file are as follows:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<dimen name="cascade_horizontal_spacing">10dp</dimen>

<dimen name="cascade_vertical_spacing">10dp</dimen>
</resources>

After understanding how Android draws views, you might imagine that you need to

write a class called CascadeLayout that extends ViewGroup and overrides the

onMeasure() and onLayout() methods. Because the code’s a bit long, let’s analyze it

in three separate parts: the constructor, the onMeasure() method, and the

onLayout() method. The following code is for the constructor:

public class CascadeLayout extends ViewGroup {

private int mHorizontalSpacing;

private int mVerticalSpacing;

public CascadeLayout(Context context, AttributeSet attrs) {
Constructor
called when

view instance is
created from an

XML file.

super(context, attrs);

TypedArray a = context.obtainStyledAttributes(attrs,
R.styleable.CascadeLayout);

try {

mHorizontalSpacing = a.getDimensionPixelSize(

mHorizontalSpacing
and mVerticalSpacing
are read from
custom attributes. If
they’re not present,
use default values.

11Creating a custom ViewGroup

R.styleable.CascadeLayout_horizontal_spacing,
getResources().getDimensionPixelSize(

R.dimen.cascade_horizontal_spacing));

mVerticalSpacing = a.getDimensionPixelSize(
R.styleable.CascadeLayout_vertical_spacing,

getResources()

.getDimensionPixelSize(
R.dimen.cascade_vertical_spacing));

} finally {

a.recycle();
}

}

...

Before coding the onMeasure() method, we’ll create a custom LayoutParams. This

class will hold the x,y position values of each child. We’ll have the LayoutParams class

as a CascadeLayout inner class. The class definition is as follows:

public static class LayoutParams extends ViewGroup.LayoutParams {

int x;

int y;

public LayoutParams(Context context, AttributeSet attrs) {
super(context, attrs);

}

public LayoutParams(int w, int h) {
super(w, h);

}

}

To use our new CascadeLayout.LayoutParams class, we’ll need to override some

additional methods in the CascadeLayout class. These are checkLayoutParams(),

generateDefaultLayoutParams(), generateLayoutParams(AttributeSet attrs),

and generateLayoutParams(ViewGroup.LayoutParams p). The code for these meth-

ods is almost always the same between ViewGroups. If you’re interested in its content,

you’ll find it in the sample code.

 The next step is to code the onMeasure() method. This is the key part of the class.

The code follows:

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {

int width = 0;

Use width and height to
calculate layout’s final
size and children’s x and
y positions.

int height = getPaddingTop();

final int count = getChildCount();

for (int i = 0; i < count; i++) {

View child = getChildAt(i);

measureChild(child, widthMeasureSpec, heightMeasureSpec);

Make
every
child

measure
itself.

LayoutParams lp = (LayoutParams) child.getLayoutParams();

width = getPaddingLeft() + mHorizontalSpacing * i;

www.allitebooks.com

http://www.allitebooks.org

12 CHAPTER 1 Working your way around layouts

lp.x = width;
Inside the LayoutParams,
hold x and y positions for
each child.

lp.y = height;

width += child.getMeasuredWidth();

height += mVerticalSpacing;
}

width += getPaddingRight();

height += getChildAt(getChildCount() - 1).getMeasuredHeight()
+ getPaddingBottom();

setMeasuredDimension(resolveSize(width, widthMeasureSpec),

Uses calculated
width and

height to set
measured

dimensions of
whole layout.

resolveSize(height, heightMeasureSpec));

}

The last step is to create the onLayout() method. Let’s look at the code:

@Override
protected void onLayout(boolean changed, int l, int t, int r, int b) {

final int count = getChildCount();

for (int i = 0; i < count; i++) {

View child = getChildAt(i);
LayoutParams lp = (LayoutParams) child.getLayoutParams();

child.layout(lp.x, lp.y, lp.x + child.getMeasuredWidth(), lp.y

+ child.getMeasuredHeight());
}

}

As you can see, the code is dead simple. It calls each child layout() method using the

values calculated inside the onMeasure() method.

3.3 Adding custom attributes to the children

In this last section, you’ll learn how to add custom attributes to the children views. As

an example, we’ll add a way to override the vertical spacing for a particular child. You

can see a result of this in figure 3.3.

 The first thing we’ll need to do is add a new attribute to the attrs.xml file:

<declare-styleable name="CascadeLayout_LayoutParams">

<attr name="layout_vertical_spacing" format="dimension" />
</declare-styleable>

Because the attribute name starts with layout_ instead of containing a View attribute,

it’s added to the LayoutParams attributes. We’ll read this new attribute inside the

LayoutParams constructor as we did with the ones from CascadeLayout. The code is

the following:

public LayoutParams(Context context, AttributeSet attrs) {
super(context, attrs);

TypedArray a = context.obtainStyledAttributes(attrs,

R.styleable.CascadeLayout_LayoutParams);
try {

verticalSpacing = a.getDimensionPixelSize(

Figure 3.3 First child with

different vertical spacing

13Creating a custom ViewGroup

R.styleable.CascadeLayout_LayoutParams_layout_vertical_spacing,
-1);

} finally {

a.recycle();
}

}

The verticalSpacing is a public field. We’ll use it inside the CascadeLayout’s

onMeasure() method. If the child’s LayoutParams contains the verticalSpacing, we

can use it. The source code looks like the following:

verticalSpacing = mVerticalSpacing;

...

LayoutParams lp = (LayoutParams) child.getLayoutParams();

if (lp.verticalSpacing >= 0) {
verticalSpacing = lp.verticalSpacing;

}

...

width += child.getMeasuredWidth();
height += verticalSpacing;

3.4 The bottom line

Using custom Views and ViewGroups is an excellent way to organize your application

layouts. Customizing components will also allow you to provide custom behaviors. The

next time you need to create a complex layout, decide whether or not it’d be better to

use a custom ViewGroup. It might be more work at the outset, but the end result is

worth it.

14 CHAPTER 1 Working your way around layouts

3.5 External links

http://developer.android.com/guide/topics/ui/how-android-draws.html

http://developer.android.com/reference/android/view/ViewGroup.html

http://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html

Hack 4 Preferences hacks
Android v1.6+

One of the features I like about the Android SDK is

the preferences framework. I prefer it to the iOS SDK

because it makes it easier to create layouts. When

you edit a simple XML file, you get an easy-to-use

preferences screen.

 Although Android provides many settings wid-

gets for you to use, sometimes you may need to cus-

tomize the view. In this hack, you’ll find a couple of

examples in which the settings framework has been

customized. The finished preferences screen is

shown in figure 4.1.

Let’s first take a look at the XML:

<?xml version="1.0" encoding="utf-8"?>

<PreferenceScreen
xmlns:android="http://schemas.android.com/apk/res/android"

android:key="pref_first_preferencescreen_key"
 It’s good

practice to give
preferences an

android:key.
With that key
we’re able to
retrieve the
preferences

object.

android:title="Preferences">

<PreferenceCategory

android:title="User">

We can use a PreferenceCategory to
separate preferences by certain
group names.

<EditTextPreference

android:key="pref_username"

android:summary="Username"
To pick a username, we’ll
use an EditTextPreference.
A summary is set, but
we’ll replace it with the
username the user picked.

android:title="Username"/>

</PreferenceCategory>

<PreferenceCategory
android:title="Application">

<Preference

android:key="pref_rate"
android:summary="Rate the app in the store!"

We’ll use a Preference
for options that will

launch an Intent.

android:title="Rate the app"/>

Figure 4.1 Preferences screen

http://developer.android.com/guide/topics/ui/how-android-draws.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/view/ViewGroup.LayoutParams.html

15Preferences hacks

<Preference
android:key="pref_share"

android:summary="Share the app with your friends"

android:title="Share it"/>

<com.manning.androidhacks.hack004.preference.EmailDialog

android:dialogIcon="@drawable/ic_launcher"

android:dialogTitle="Send Feedback"
android:dialogMessage="Do you want to send an email?"

android:key="pref_sendemail_key"

android:negativeButtonText="Cancel"
android:positiveButtonText="OK"

android:summary="Send your feedback by e-mail"

android:title="Send Feedback"/>

<com.manning.androidhacks.hack004.preference.AboutDialog

 Inside preferences, we
can also create custom

preferences to extend one
of the existing widgets.

android:dialogIcon="@drawable/ic_launcher"

android:dialogTitle="About"
android:key="pref_about_key"

android:negativeButtonText="@null"

android:title="About"/>

</PreferenceCategory>

</PreferenceScreen>

The XML we’ve created will take care of the UI. Now it’s time to add all of the logic. To

do this, we’ll create an Activity, but instead of extending android.app.Activity,

we’ll extend android.preference.PreferenceActivity. The code follows:

public class MainActivity extends PreferenceActivity implements

OnSharedPreferenceChangeListener {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
addPreferencesFromResource(R.xml.prefs);

Instead of calling
setContentView(), we need
to call addPreferences-
FromResource with XML
we created previously.

...

Preference ratePref = findPreference("pref_rate");

In onCreate() method, we can start
getting preferences without actions

and start setting their Intents. In
this case, rate preference will use

Intent.ACTION_VIEW.

Uri uri = Uri.parse("market://details?id=" + getPackageName());

Intent goToMarket = new Intent(Intent.ACTION_VIEW, uri);

ratePref.setIntent(goToMarket);
}

@Override

protected void onResume() {
super.onResume();

getPreferenceScreen().getSharedPreferences()
.registerOnSharedPreferenceChangeListener(this);

Register to be
notified of
preferences
changes.

}

@Override
protected void onPause() {

super.onPause();

16 CHAPTER 1 Working your way around layouts

getPreferenceScreen().getSharedPreferences()
.unregisterOnSharedPreferenceChangeListener(this);

Unregister to
preferences
changes.

}

@Override
public void onSharedPreferenceChanged(

SharedPreferences sharedPreferences, String key) {

if (key.equals("pref_username")) {
When there’s a change in
username preference, we
need to update preference
summary.

updateUserText();

}

}

private void updateUserText() {

EditTextPreference pref;

pref = (EditTextPreference) findPreference("pref_username");

To update summary, we need to get
preference and update summary using
EditTextPreference’s getText() method.

String user = pref.getText();

if (user == null) {

user = "?";
}

pref.setSummary(String.format("Username: %s", user));

}

}

The code we want to create shows how to create custom preferences. It works as if we

were creating a custom view. To understand it, let’s look at the following, where we

create the code for the EmailDialog class:

public class EmailDialog extends DialogPreference {
Custom class should
extend some of existing
preferences widgets. In
this case, we’ll use
DialogPreference.

Context mContext;

public EmailDialog(Context context) {
this(context, null);

}

public EmailDialog(Context context, AttributeSet attrs) {
this(context, attrs, 0);

}

public EmailDialog(Context context, AttributeSet attrs,
int defStyle) {

Constructors are the same
as those used to create a
custom view extending the
View class.

super(context, attrs, defStyle);

mContext = context;
}

@Override

public void onClick(DialogInterface dialog, int which) {
onClick() is
overridden. If
users press OK
button, then we’ll
launch email Intent
with helper class.

super.onClick(dialog, which);

if (DialogInterface.BUTTON_POSITIVE == which) {

LaunchEmailUtil.launchEmailToIntent(mContext);

}
}

}

17Preferences hacks

4.1 The bottom line

Although the settings framework allows you to add some custom behavior, you need to

remember that its purpose is to create simple preferences screens. If you’re thinking

of adding more complex user interfaces or flows, I’d recommend you create a sepa-

rate Activity, theming it as a Dialog, and launching it from a preferences widget.

4.2 External links

http://developer.android.com/reference/android/preference/PreferenceActivity.html

http://developer.android.com/reference/android/preference/PreferenceActivity.html

19

Creating cool animations

In this chapter, you’ll learn about animations. You’ll find different examples that

use a variety of APIs to add animations to your application widgets.

Hack 5 Snappy transitions with TextSwitcher and
ImageSwitcher
Android v1.6+

Imagine you need to cycle through information in a TextView or in an ImageView.

Some examples of this would be

 Navigating through a list of dates with Left and Right buttons

 Changing numbers in a date picker

 Countdown clock

 News headlines

Changing the contents of a view is a basic function of most applications, but it

doesn’t have to be boring. If we use the default TextView, you’ll notice there’s no

eye candy when we swap its content. It’d be nice to have a way to apply different

animations to content being swapped. So to make our transitions more visually

appealing, Android provides two classes called TextSwitcher and ImageSwitcher.

TextSwitcher replaces a TextView and ImageSwitcher replaces an ImageView.

20 CHAPTER 2 Creating cool animations

TextView and TextSwitcher work in a similar way. Suppose we’re navigating

through a list of dates, as mentioned earlier. Every time the user clicks a button, we

need to change a TextView’s content with each date. If we use a TextView, we’re swap-

ping out some text in a view using mTextView.setText("something"). Our code

should look something like the following:

private TextView mTextView;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

mTextView = (TextView) findViewById(R.id.your_textview);

...

mTextView.setText(“something”);
}

As you might’ve noticed, if we change the content of a TextView, it’ll change instantly;

TextSwitcher is what we need if we want to add an animation to avoid the hard swap.

A TextSwitcher is useful to animate a label onscreen. Whenever it’s called,

TextSwitcher animates the current text out and animates the new text in. We can get

a more pleasant transition by following these easy steps:

1 Get the view using findViewById(), or construct it in your code like any normal

Android view.

2 Set a factory using switcher.setFactory().

3 Set an in-animation using switcher.setInAnimation().

4 Set an out-animation using switcher.setOutAnimation().

Here’s how TextSwitcher works: it uses the factory to create new views, and whenever

we use setText(), it first removes the old view using an animation set with the set-

OutAnimation() method, and then places the new one using the animation set by the

setInAnimation() method. So let’s see how to use it:

private TextSwitcher mTextSwitcher;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

Animation in = AnimationUtils.loadAnimation(this,

android.R.anim.fade_in);
Animation out = AnimationUtils.loadAnimation(this,

android.R.anim.fade_out);

mTextSwitcher = (TextSwitcher) findViewById(R.id.your_textview);
mTextSwitcher.setFactory(new ViewFactory() {

@Override

public View makeView() {
TextView t = new TextView(YourActivity.this);

t.setGravity(Gravity.CENTER);

21Adding eye candy to your ViewGroup’s children

return t;
}

});

mTextSwitcher.setInAnimation(in);
mTextSwitcher.setOutAnimation(out);

}

That’s it. The user gets the new text, and we get some cool animations for free. The

new transition fades out the original text while the new text fades in to replace it.

Because we used android.R.anim.fade_in in our example, the effect was a fade-in.

This technique works equally well with other effects. Providing your own animation or

using one from android.R.anim. ImageSwitcher works in the same way, except with

images instead of text.

5.1 The bottom line

The TextSwitcher and ImageSwitcher methods give you a simple way to add ani-

mated transitions. Their role is to make these transitions less dull and more vibrant.

Don’t abuse them; you don’t want your application to look like a Christmas tree!

5.2 External links

http://developer.android.com/reference/android/widget/TextSwitcher.html

http://developer.android.com/guide/topics/graphics/view-animation.html

Hack 6 Adding eye candy to your
ViewGroup’s children
Android v1.6+

By default, when you add views to a ViewGroup, they’re instantly added and displayed,

but there’s an easier way to animate that action. In this hack, I’ll show you how to

apply an animation to children views being added to their parent ViewGroup. I’ll show

you how to add eye candy to your application in a few lines.

 Android provides a class called LayoutAnimationController. This class is useful to

animate a layout’s or a ViewGroup’s children. It’s important to mention that you won’t

be able to provide different animations for each child, but the LayoutAnimation-

Controller can help you decide when the animation should apply to each child.

 The best way to understand how to use LayoutAnimationController is through an

example. We’ll animate ListView’s children with a mix of two animations, alpha and

translate. You can use the LayoutAnimationController in two ways: from the code

www.allitebooks.com

http://developer.android.com/reference/android/widget/TextSwitcher.html
http://developer.android.com/guide/topics/graphics/view-animation.html
http://www.allitebooks.org

22 CHAPTER 2 Creating cool animations

and from the XML. I’ll show how to do it from code and you can try converting it to

XML as an exercise. Let’s look at the code used to apply the animation:

mListView = (ListView) findViewById(R.id.my_listview_id);

B
Get
ListView ref.AnimationSet set = new AnimationSet(true);Create set

and use
default. C

Animation animation = new AlphaAnimation(0.0f, 1.0f);

D
Create alpha
animation.animation.setDuration(50);

set.addAnimation(animation);

animation = new TranslateAnimation(Animation.RELATIVE_TO_SELF, 0.0f,

Animation.RELATIVE_TO_SELF, 0.0f, Animation.RELATIVE_TO_SELF,

-1.0f, Animation.RELATIVE_TO_SELF, 0.0f);

E
Create translate
animation.animation.setDuration(100);

set.addAnimation(animation);

LayoutAnimationController controller = new LayoutAnimationController(
set, 0.5f);

F
Create LayoutAnimationController
and delay between animations.mListView.setLayoutAnimation(controller);

GApply
Layout-

Animation-
Controller.

First, you need to get the ListView reference B. Because we want to add more than

one animation, we’ll need to use a set C. The Boolean variable will determine

whether every animation will use the same interpolator. In this example, we’ll use the

default interpolator, and then create the alpha animation D and the translate anima-

tion E, and add them to the set. We create the LayoutAnimationController with

the set and the delay between child animations F. Finally, we apply the Layout-

AnimationController to the ListView G.

 Most of the animations provided by the framework look like TranslateAnimation,

so let’s take a closer look at that particular code. The constructor is defined as follows:

public TranslateAnimation(int fromXType, float fromXValue, int toXType,

float toXValue, int fromYType, float fromYValue, int toYType,
float toYValue) {

The idea is simple: we need to provide initial and final x,y coordinates. Android pro-

vides a way to specify where it should calculate the position from, with three options:

 Animation.ABSOLUTE

 Animation.RELATIVE_TO_SELF

 Animation.RELATIVE_TO_PARENT

If we go back to our example, we can explain every child position with words like this:

 Initial X: Position provided by its parent

 Initial Y: -1 from the position provided by its parent

 Final X: Position provided by its parent

 Final Y: Position provided by its parent

The end result will be every child “falling” through the y axis to its position. Because

we have a delay between children, it’ll look like a cascade.

23Doing animations over the Canvas

6.1 The bottom line

Adding animations to ViewGroups is easy, and they make your application look profes-

sional and polished. This hack only covered a small portion of what you can do, but, for

example, you can try changing the default interpolator to the BounceInterpolator.

This will make your views bounce when they reach their final position. You can also

change the order in which to animate the children.

 Use your imagination to create something cool, but don’t overdo it—you should

avoid using too many animations.

6.2 External links

http://developer.android.com/reference/android/view/animation/

LayoutAnimationController.html

Hack 7 Doing animations over the Canvas
Android v1.6+

If you’re animating your own widgets, you might find the animation APIs a bit limited.

Is there an Android API to draw things directly to the screen? The answer is yes.

Android offers a class called Canvas.

 In this hack, I’ll show you how to use the Canvas

class to draw elements and animate them by creating

a box that will bounce around the screen. You can

see the finished application in figure 7.1.

 Before we create this application, let’s make sure

you understand what the Canvas class is—the follow-

ing is from the documentation (see section 7.2):

A Canvas works for you as a pretense, or
interface, to the actual surface upon which your
graphics will be drawn—it holds all of your
“draw” calls. Via the Canvas, your drawing is
performed upon an underlying Bitmap, which is
placed into the window.

Based on that definition, the Canvas class holds all

of the draw calls. We can create a View, override the

onDraw() method, and start drawing primitives

there.

 To make everything more clear, we’ll create a

DrawView class that will take care of drawing the box
Figure 7.1 Box bouncing around

the screen

http://developer.android.com/reference/android/view/animation/LayoutAnimationController.html

24 CHAPTER 2 Creating cool animations

and updating its position. Because we don’t have anything else onscreen, we’ll make it

the Activity’s content view. The following is the code for the Activity:

public class MainActivity extends Activity {

private DrawView mDrawView;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Display display = getWindowManager().getDefaultDisplay();

B Get the
screen width
and height.

mDrawView = new DrawView(this);

mDrawView.height = display.getHeight();
mDrawView.width = display.getWidth();

setContentView(mDrawView);
C DrawView takes all

the available space.

}
}

We’ll use the WindowManager to get the screen width and height B. These values will

be used inside the DrawView to limit where to draw. Afterward, we’ll set the DrawView

as the Activity’s contentView C. This means that the DrawView will take all of the

available space.

 Let’s take a look at what’s happening inside the DrawView class:

public class DrawView extends View {
private Rectangle mRectangle;

public int width;

public int height;

public DrawView(Context context) {

super(context);

mRectangle = new Rectangle(context, this);
B Plays the role

of the box.
mRectangle.setARGB(255, 255, 0, 0);

mRectangle.setSpeedX(3);

mRectangle.setSpeedY(3);
}

@Override

protected void onDraw(Canvas canvas) {
mRectangle.move();

C Change the
rectangle’s
position.

mRectangle.onDraw(canvas);

D
Draw the rectangle
to the canvas.invalidate();

E
Forces a view
to draw.}

}

We’ll first create a Rectangle instance that will play the role of the box B. The

Rectangle class also knows how to draw itself to a canvas and contains all of the bor-

ing logic regarding how to update its position to be drawn in the correct place. When

the onDraw() method gets called, we’ll change the rectangle’s position C and draw it

to the canvas D. The invalidate() call E is the hack itself. The invalidate() call is

a View’s method to force a view to draw. Placing it inside the onDraw() method means

25Slideshow using the Ken Burns effect

that onDraw() will be called as soon as the view finishes drawing itself. To put it differ-

ently, we’re looping over the Rectangle’s move() and onDraw() calls to create a nice

animation.

7.1 The bottom line

Updating view positions in the onDraw() method through the invalidate() call is an

easy way to provide custom animations. If you’re planning to make a small game,

using this trick is a simple way to handle your game’s main loop.

7.2 External links

http://developer.android.com/reference/android/graphics/Canvas.html

http://developer.android.com/guide/topics/graphics/2d-graphics.html

Hack 8 Slideshow using the Ken Burns effect
Android v1.6+

One of the first products my company created is called

FeedTV. The idea behind FeedTV is to change the way we

read RSS feeds. Instead of showing them in a long list, we cre-

ated something like a photo frame application that shows

the feed’s headline and its main image. FeedTV for the iPad

can be seen in figure 8.1.

 To make it even cooler, instead of placing a still image,

we’ll analyze the image and, using it’s size and aspect ratio,

apply something called the Ken Burns effect. The Ken Burns

effect is nothing more than a type of panning and zooming effect used in video pro-

duction from still imagery. The best way to understand the Ken Burns effect is to

watch a video, but figure 8.2 can also give you an idea of how it works.

Figure 8.2 Ken Burns effect example taken from Wikipedia

Figure 8.1 FeedTV

running in an iPad

http://developer.android.com/reference/android/graphics/Canvas.html
http://developer.android.com/guide/topics/graphics/2d-graphics.html

26 CHAPTER 2 Creating cool animations

In this hack, I’ll show you how to mimic the Ken Burns effect in an image slideshow.

To do this, we’ll use a library created by Jake Wharton called Nine Old Androids. The

Nine Old Androids library lets you use the new Android 3.0 animation API in older

versions.

 To create the Ken Burns effect, we’ll have a number of preset animations. These

animations will be applied randomly to an ImageView and, when the animation is fin-

ished, we’ll start another animation with the next photo. The main layout will be a

FrameLayout, and we’ll place ImageViews inside it. The layout is created with the fol-

lowing code:

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

mContainer = new FrameLayout(this);
mContainer.setLayoutParams(new LayoutParams(Create container.

LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT));

mView = createNewView();

mContainer.addView(mView); Create and add ImageView.

setContentView(mContainer);

}

private ImageView createNewView() {
ImageView ret = new ImageView(this);

ret.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.FILL_PARENT));
ret.setScaleType(ScaleType.FIT_XY);

ret.setImageResource(PHOTOS[mIndex]);

Set image to show
and increment index.

mIndex = (mIndex + 1 < PHOTOS.length) ? mIndex + 1 : 0;

return ret;

}

So far, so good. We’ll use the createNewView() to create new ImageViews and keep

track of the image we’re showing next. The next step is to create a method called

nextAnimation(). This method will take care of setting the animation and start it.

The code follows:

private void nextAnimation() {

AnimatorSet anim = new AnimatorSet();

final int index = mRandom.nextInt(ANIM_COUNT); Pick animation randomly.

switch (index) {

case 0:

anim.playTogether(
ObjectAnimator.ofFloat(mView, "scaleX", 1.5f, 1f),

Scaling
animation.

ObjectAnimator.ofFloat(mView, "scaleY", 1.5f, 1f));

break;

...

27Slideshow using the Ken Burns effect

case 3:
default:

AnimatorProxy.wrap(mView).setScaleX(1.5f); Translation
animation.BAnimatorProxy.wrap(mView).setScaleY(1.5f);

anim.playTogether(ObjectAnimator.ofFloat(mView,

"translationX", 0f, 40f));

break;
}

anim.setDuration(3000);

Set the duration, set
Activity as listener,
and start it.

C

anim.addListener(this);

anim.start();

}

The AnimatorProxy B is a class available in the Nine Old Androids library to modify

View’s properties. The new animation framework is based on the possibility of modify-

ing View’s properties over time. The AnimatorProxy is used because on Android ver-

sions lower than 3.0 some properties had no getters/setters.

 The remaining code is calling the nextAnimation() method when the animation

is finished. Remember, we set the Activity as the animation listener C? Let’s look at

the overridden method:

@Override

public void onAnimationEnd(Animator animator) {

mContainer.removeView(mView);

Remove old view from
container and add new one.

mView = createNewView();

mContainer.addView(mView);

nextAnimation(); Start new animation.
}

That’s it. We have our Ken Burns effect running on every photo. You can try improv-

ing the sample by doing two things: adding an alpha animation when switching views

and adding an AnimationSet that pans and zooms at the same time. You can get addi-

tional ideas from the Nine Old Androids sample code.

8.1 The bottom line

The new animation API has better potential than the previous one. Following is a

short list of improvements:

 Previous version supported animations only on View objects

 Previous version limited to move, rotate, scale, and fade

 Previous version changed the visual appearance, not the real position, in the

case of a move

The fact that a library like Nine Old Androids exists means there’s no excuse for not

trying it out on the new API.

28 CHAPTER 2 Creating cool animations

8.2 External links

www.nasatrainedmonkeys.com/portfolio/feedtv/

https://github.com/JakeWharton/NineOldAndroids

http://en.wikipedia.org/wiki/Ken_Burns_effect

http://android-developers.blogspot.com.ar/2011/02/animation-in-honeycomb.html

http://android-developers.blogspot.com.ar/2011/05/

introducing-viewpropertyanimator.html

www.nasatrainedmonkeys.com/portfolio/feedtv/
https://github.com/JakeWharton/NineOldAndroids
http://en.wikipedia.org/wiki/Ken_Burns_effect
http://android-developers.blogspot.com.ar/2011/02/animation-in-honeycomb.html
http://android-developers.blogspot.com.ar/2011/05/introducing-viewpropertyanimator.html
http://android-developers.blogspot.com.ar/2011/05/introducing-viewpropertyanimator.html

29

View tips and tricks

In this chapter, you’ll read about different hacks that use views. Most of them show

how to customize and/or tweak widgets to perform certain functionalities.

Hack 9 Avoiding date validations with an
EditText for dates
Android v1.6+

We all know that validating data in forms is boring as well as error-prone. I worked

on an Android application that used a lot of forms and had a couple of date inputs.

I didn’t want to validate the date fields, so I found an elegant way to avoid it. The

idea is to make users think they have an EditText when it’s in fact a button that will

show a DatePicker when clicked.

 To make this happen, we’ll change the default background of an Android

Button to the EditText’s background. We can do this easily from the XML:

<Button android:id="@+id/details_date"

android:layout_width="wrap_content"
android:layout_height="wrap_content"

android:gravity="center_vertical"

android:background="@android:drawable/edit_text" />

30 CHAPTER 3 View tips and tricks

Note how we used @android:drawable instead of a drawable of our own. Using

Android’s resources inside your application has its pros and cons. It makes your appli-

cation fit in the device, but it’ll look different on different devices. Some developers

prefer using their own resources, drawables, and themes to have their own look.

 If you’ve been testing your application in different devices, you’ll notice that wid-

gets might not have the same styles. Using Android’s resources will make your applica-

tion maintain Android’s styles.

 After creating the button, we need to set its click listener. It should look something

like the following:

mDate = (Button) findViewById(R.id.details_date);
mDate.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {
showDialog(DATE_DIALOG_ID);

}

});

The rest of the code sets up the DatePicker and sets the text into the Button after the

user has picked a date.

9.1 The bottom line

You might be asking yourself why we didn’t set a click listener to the EditText instead

of using a Button. Using a Button is safer because the user won’t be able to modify the

text. If you used an EditText and only set the click listener, the user could gain focus

by using the arrow and modifying the text without going through your picker.

 You can always use a TextWatcher with your EditText to validate user input, but

it’s boring and it takes a lot of time. Using this hack means less coding and avoiding

user input errors. Remember that using Android’s resources is a good way to use the

device’s styles inside your application.

9.2 External links

http://developer.android.com/reference/android/widget/DatePicker.html

http://developer.android.com/reference/android/widget/EditText.html

Hack 10 Formatting a TextView’s text
Android v1.6+

Imagine a Twitter application showing a tweet (see figure 10.1). Note the different

text styles within it. You might think that Twitter created a new custom view, but the

widget used is a TextView.

http://developer.android.com/reference/android/widget/DatePicker.html
http://developer.android.com/reference/android/widget/EditText.html

31Formatting a TextView’s text

 Sometimes you’ll want to add text with different

styles to show emphasis or provide visual feedback on

links and make your application more user friendly.

Other examples of where it’s useful to use text styles

include these:

 Showing links for the telephone field

 Using a different background color for different parts of the text

In this hack, I’ll show how the TextView helps us add styled text and links.

 The first thing we’ll add is the hyperlink. We can set a TextView’s text using

Html.fromHtml(). The idea is simple: we’ll use HTML for the TextView’s text. Here’s

the code:

mTextView1 = (TextView) findViewById(R.id.my_text_view_html);

String text =

"Visit Manning home page";
mTextView1.setText(Html.fromHtml(text));

mTextView1.setMovementMethod(LinkMovementMethod.getInstance());

Using HTML to set styles in a TextView is fine, but what does the Html.fromHtml()

method do? What does it return? It converts HTML into a Spanned object to use with a

TextView’s setText() method.

 Now we’ll try something different. Instead of using HTML to format the text, we’ll

create a Spanned object using the SpannableString class. Here’s the source code:

mTextView2 = (TextView) findViewById(R.id.my_text_view_spannable);
Spannable sText = new SpannableString(mTextView2.getText());

sText.setSpan(new BackgroundColorSpan(Color.RED), 1, 4, 0);

sText.setSpan(new ForegroundColorSpan(Color.BLUE), 5, 9, 0);
mTextView2.setText(sText);

We can see the visual output of both examples in figure 10.2. The idea is simple: we

add different spans using different indexes inside the text. Using a SpannableString,

we can place different styles in different parts of the text.

10.1 The bottom line

Android’s TextView is a simple but powerful widget.

You can use styled texts in different ways inside your

application. Although TextView doesn’t support all

the HTML tags, they’re enough to format the text

nicely. Try it out.

10.2 External links

http://developer.android.com/reference/android/widget/TextView.html

Figure 10.1 Twitter example

Figure 10.2 TextView using

spannables

www.allitebooks.com

http://developer.android.com/reference/android/widget/TextView.html
http://www.allitebooks.org

32 CHAPTER 3 View tips and tricks

Hack 11 Adding text glowing effects
Android v1.6+

Imagine you need to create an application that shows the time.

Do you remember those digital clocks that displayed a super-

bright green light? In this hack, I’ll show you how to tweak

Android’s TextView to generate that exact effect. The final

image we’re after can be seen in figure 11.1.

 The first thing we’ll do is create an LedTextView class that extends TextView. This

class will be used to set a specific font, which makes the text look like it was written in

LEDs (light-emitting diodes). Let’s look at the code:

public class LedTextView extends TextView {

public LedTextView(Context context, AttributeSet attrs) {
super(context, attrs);

AssetManager assets = context.getAssets();

final Typeface font = Typeface.createFromAsset(assets,
B Sets the

typeface

FONT_DIGITAL_7);

setTypeface(font);

}
}

When the object is created, we get the font from the assets folder and set it as the type-

face B. Now that we have a widget capable of showing text with a custom font, we’ll

take care of how the numbers will be drawn. If you check figure 11.1 you’ll notice it

can be done with two TextViews. The first one is a shadow in the back that draws

88:88:88, and the second one draws the current time.

 To add the glowing effect, the TextView provides a method with the following sig-

nature:

public void setShadowLayer (float radius, float dx, float dy, int color)

This can also be accessed from the XML with the following properties: android

:shadowColor, android:shadowDx, android:shadowDy, and android:shadowRadius.

 Let’s take a look on how we can apply it:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<com.manning.androidhacks.hack011.view.LedTextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:layout_centerInParent="true"

android:text="88:88:88"

android:textSize="80sp"

Figure 11.1 Digital

clock demo

33Rounded borders for backgrounds

android:textColor="#3300FF00"/>

B
Sets color to be
transparent<com.manning.androidhacks.hack011.view.LedTextView

android:id="@+id/main_clock_time"

android:layout_width="wrap_content"
android:layout_height="wrap_content"

android:layout_centerInParent="true"

android:text="08:43:02"
android:textSize="80sp"

android:textColor="#00FF00"

android:shadowColor="#00FF00"

C Text color, shadow
color are same

android:shadowDx="0"

android:shadowDy="0"

android:shadowRadius="10"/>

D
Modifies shadow radius
to look brighter</RelativeLayout>

The first LedTextView draws the 88:88:88 in the back. The purpose of this view is

mocking the ghosting effect in old digital clocks. We’ve achieved that look by setting

the text color to be a bit transparent B. The second LedTextView shows the current

time. Note that the text color and the shadow color are the same C. We could’ve

played with the alpha as well.

 Modifying the android:shadowDx and android:shadowDy values differentiates

the shadow position from the text position. The shadow radius will give the sensation

of the text being brighter. To create the glowing effect, we didn’t use the

android:shadowDx or android:shadowDy properties, but we modified the shadow

radius to make it look brighter D.

11.1 The bottom line

Making your application look great is the best way to get good reviews in the market.

Sometimes, polishing your widgets takes a few more lines of code, but they’re worth it.

In addition, using shadows in texts is simple and will make your views look profes-

sional. Try it out. You won’t regret it.

11.2 External links

http://www.styleseven.com/php/get_product.php?product=Digital-7

http://developer.android.com/reference/android/widget/TextView.html

Hack 12 Rounded borders for backgrounds
Android v1.6+

When you pick a background for your application’s widgets, you typically use images.

In general, you want to avoid the default styles, adding your own colors and shapes.

http://www.styleseven.com/php/get_product.php?product=Digital-7
http://developer.android.com/reference/android/widget/TextView.html

34 CHAPTER 3 View tips and tricks

Rounded borders are a feature you can add to your applica-

tion that looks nice, using only a few lines of code.

 As an example, let’s add a gray Button with rounded cor-

ners to the Hello World demonstration. What we’ll create is

shown in figure 12.1.

 For this, we’ll add a Button to the layout using the following XML:

<Button android:layout_width="wrap_content"
android:layout_height="wrap_content"

android:text="@string/hello"

android:textColor="#000000"
android:padding="10dp"

android:background="@drawable/button_rounded_background"/>

As you can see, we didn’t add any strange properties. A drawable is assigned as a back-

ground, but it’s not an image, it’s an XML file. In the drawable’s XML resides a Shape-

Drawable object. A ShapeDrawable is a drawable object that creates primitive shapes

such as rectangles. Here’s the XML for the ShapeDrawable:

<shape xmlns:android="http://schemas.android.com/apk/res/android"
android:shape="rectangle">

<solid android:color="#AAAAAA"/>

<corners android:radius="15dp"/>
</shape>

Apart from the radius, we defined a shape and solid color. These aren’t the only avail-

able properties; you can read the documentation (section 12.2) and see what else is

available for ShapeDrawables.

12.1 The bottom line

The ShapeDrawable is a nice tool to add effects to your widgets. This trick works for

every widget that can have a background. You can also try using it with ListViews to

make your applications look more professional.

12.2 External links

http://developer.android.com/guide/topics/resources/drawable-resource.html#Shape

Hack 13 Getting the view’s width and height in the
onCreate() method
Android v1.6+

When you want to do something that depends on a widget’s width and height, you

might want to use View’s getHeight() and getWidth() methods. A common pitfall

Figure 12.1 Button with

rounded corners

http://developer.android.com/guide/topics/resources/drawable-resource.html#Shape

35Getting the view’s width and height in the onCreate() method

for new Android developers is trying to get a widget’s width and height inside the

Activity’s onCreate() method. Unfortunately, those methods will return 0 if you call

them from there, but I’ll show you an easy way around this.

 Let’s first see why we get a 0 when we ask for the view’s sizes inside the Activity’s

onCreate() method. When the onCreate() method is called, the content view is set

inflating the layout XML with a LayoutInflater. The process of inflation involves cre-

ating the views but not setting their sizes. So when does the view get assigned its size?

Let’s review what the Android documentation (see section 13.2) says:

Drawing the layout is a two pass process: a measure pass and a
layout pass. The measuring pass is implemented in measure(int,
int) and is a top-down traversal of the View tree. Each View
pushes dimension specifications down the tree during the
recursion. At the end of the measure pass, every View has stored its
measurements. The second pass happens in layout(int, int,
int, int) and is also top-down. During this pass each parent is
responsible for positioning all of its children using the sizes
computed in the measure pass.

The conclusion is the following: Views get their height and width when the layout hap-

pens. Layout happens after the onCreate() method is called, so we get a 0 when we

call getHeight() or getWidth() from it.

 Imagine the XML layout as a cake recipe: the LayoutInflater would be the person

in charge of buying all of the items; the bakers would do the measuring and layout of

passes; and the view would be the cake itself. During the onCreate() method, the

ingredients will be purchases, but knowing what ingredients make up the cake isn’t

enough information to know how big the cake will end up being.

 To solve this issue, we can use the View’s post() method. This method receives a

Runnable and adds it to the message queue. An interesting thing is that the Runnable

will be executed on the user interface thread. The code to use the post() call should

look like the following:

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

View view = findViewById(R.id.main_my_view);

view.post(new Runnable() {

Get size of view
after layout

@Override

public void run() {

Log.d(TAG, "view has width: "+view.getWidth() +

Correct width
and height

" and height: "+view.getHeight());

}

});
}

36 CHAPTER 3 View tips and tricks

13.1 The bottom line

The post() method is used in several parts inside Android itself, and isn’t only for get-

ting the width and height of a view. Look at the View class source code and search for

the post keyword. You’ll be surprised how many times it gets called. Understanding

how the framework works is important in avoiding these kinds of pitfalls. As I always

say, understand what it’s for and don’t abuse it.

13.2 External links

http://source.android.com/source/downloading.html

http://developer.android.com/guide/topics/ui/how-android-draws.html

Hack 14 VideoViews and orientation changes
Android v1.6+

Adding video to an application is a great way to

create a rich user experience. I’ve seen applica-

tions that provide company information using

fancy graphs containing videos. Sometimes vid-

eos are an easy way to present information in

complex views without the need for coding the

animation logic.

 I noticed that when a video is available, users

tend to turn the device to landscape to enjoy it,

so in this hack I’ll show you how to make the

video full-screen when the device is rotated.

 To create this, we’ll tell the system that we’ll

handle the orientation changes ourselves. When

the device is rotated, we’ll change the size and

position of the videoView.

 The first thing to do is create the layout we

want for our Activity. For this hack, I created a

layout divided in two by a small line. The upper

part will have a small bit of text on the left with a

video on the right, and the bottom part will have

a long description. When I created the XML for

this view, instead of adding a videoView, I added

a View with a white background. This view will be used to copy its size and position to

place the videoView correctly. You can see the finished layout in figure 14.1.

Figure 14.1 Finished layout

http://source.android.com/source/downloading.html
http://developer.android.com/guide/topics/ui/how-android-draws.html

37VideoViews and orientation changes

In figure 14.2 you can see how the view tree is created. The videoView hangs from the

root view at the same level as the portrait content. Placing the videoView there will

allows us to change its size and position without needing to use two different layouts

or changing the videoView’s parent when rotation occurs. On the other hand, the

white background view, called the portrait position, is placed deeper in the tree.

0
0

R
e
la

ti
v
e
L
a
y
o
u
t

@
4
3
7
7
2
b
8
8

1
0
 V

ie
w

s
M

e
a
s
u
re

:
n
/a

L
a
y
o
u
t:
 n

/a
D

ra
w

:
n
/a

L
in

e
a
rL

a
y
o
u
t

@
4
3
7
7
3
2
6
0

id
/m

a
in

_
p
o
rt

ra
it
_
c
o
n
te

n
t 1

210
10

0

0

V
id

e
o
V

ie
w

@
4
3
7
7
8
4
2
8

id
/m

a
in

_
v
id

e
o
v
ie

w

L
in

e
a
rL

a
y
o
u
t

@
4
3
7
7
3
5
8
0

id
/m

a
in

_
p
o
rt

ra
it
_
c
o
n
te

n
t

V
ie

w
@

4
3
7
7
6
fc

0

S
c
ro

llV
ie

w
@

4
3
7
7
7
1
1
0

T
e
x
tV

ie
w

@
4
3
7
7
7
5
c
8

V
ie

w
@

4
3
7
7
6
e
5
0

id
/m

a
in

_
p
o
rt

ra
it
_
p
o
s
it
io

n

S
c
ro

llV
ie

w
@

4
3
7
7
3
a
7
0

T
e
x
tV

ie
w

@
4
3
7
7
4
3
2
0

F
ig

u
re

 1
4

.2

V
ie

w
 t

re
e

38 CHAPTER 3 View tips and tricks

Now that we have the layout, we can take care of the Activity’s code. The first thing

to do is to enable handling the orientation changes. To do this, we need to add

android:configChanges="orientation" to the proper <Activity> element inside

AndroidManifest.xml. Adding that attribute will cause the onConfiguration-

Changed() method to be called instead of restarting the Activity when the device is

rotated.

 When the orientation is changed, we need to change the video’s size and position.

For this we’ll call a private method called setVideoViewPosition(). Here’s is the con-

tent of this method:

private void setVideoViewPosition() {

if (getResources().getConfiguration().orientation ==

ActivityInfo.SCREEN_ORIENTATION_PORTRAIT) {

B Portrait and
landscape
configurations

mPortraitContent.setVisibility(View.VISIBLE);

C

Makes
content

visible
int[] locationArray = new int[2];

mPortraitPosition.getLocationOnScreen(locationArray);
D videoView

position

RelativeLayout.LayoutParams params =

new RelativeLayout.LayoutParams(mPortraitPosition.getWidth(),
mPortraitPosition.getHeight());

params.leftMargin = locationArray[0];

params.topMargin = locationArray[1];

mVideoView.setLayoutParams(params);
E Sets videoView’s

layout parameters

} else {

mPortraitContent.setVisibility(View.GONE);
F Hides portrait

content

RelativeLayout.LayoutParams params =

new RelativeLayout.LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.FILL_PARENT);

params.addRule(RelativeLayout.CENTER_IN_PARENT);

mVideoView.setLayoutParams(params);

G Shows layout
parameters we
created in videoView

}
}

The setVideoViewPosition() method is separated into two parts: the portrait and

the landscape configurations B. First, we’ll make the portrait content visible C.

Because the videoView will have the same position and size as the white view, we want

its position D to be set as the videoView’s layout parameters E.

 Something similar is done in the second part, for the landscape orientation. In this

case, we first hide the portrait content F, and afterward we create the layout parame-

ters to make the videoView use the whole screen. Finally, we set the layout parameters

we’ve created to the videoView G.

14.1 The bottom line

As I mentioned at the beginning of this hack, videos can be useful for improving your

application content. You should know that the default videoView class will respect the

39Removing the background to improve your Activity startup time

aspect ratio when resizing, and if you wish to make it fill the space available, you’ll

need to override the onMeasure() method in your own custom view.

14.2 External links

http://developer.android.com/guide/topics/resources/runtime-changes.html

Hack 15 Removing the background to improve your
Activity startup time
Android v1.6+

Inside the Android SDK, you’ll find a tool

called Hierarchy Viewer. You can use this

tool to detect unused views and lower the

view tree height. If you open a view tree

inside the tool, you’ll see some nodes over

which you don’t have control. In this hack,

we’ll look at what these nodes are and see

how we can tweak them to improve our

Activity startup time.

 If we create the default new Android

application and run it, we’ll see something

similar to figure 15.1. When we run the Hier-

archy Viewer with this Activity, we’ll see

something like figure 15.2. We need to

diminish the height of the tree.

0

PhoneWindow$DecorView
@43773260

0

LinearLayout
@43771498

1

0

FrameLayout
@43771dd0

FrameLayout
@43773758

id/content
0

0

TextView
@43772510

id/????

LinearLayout
@43773c18

id/content
0

LinearLayout
@43773e70

Figure 15.2 Hierarchy Viewer showing the view tree

Figure 15.1 The default Android application

http://developer.android.com/guide/topics/resources/runtime-changes.html

40 CHAPTER 3 View tips and tricks

First, let’s remove some of the nodes by removing the title. The title is the gray bar on

top with the text that reads BackgroundTest, which is formed by a FrameLayout and a

TextView. We can delete these nodes by creating a theme.xml file under the res/

values directory with the following content:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<style name="Theme.NoBackground" parent="android:Theme">
<item name="android:windowNoTitle">true</item>

</style>

</resources>

We can apply this theme in our Android manifest by modifying the <application>

tag and adding android:theme="@style/Theme.NoBackground" as an attribute. If we

run the application again, the title will disappear and the view tree will look like

figure 15.3.

0

PhoneWindow$DecorView
@43770cc0

0

FrameLayout
@43771560

id/content

0

LinearLayout
@43772218

0

TextView
@43772700

Figure 15.3 Hierarchy Viewer showing the view tree without title

 You already know what LinearLayout and TextView are, but what about Phone-

Window$DecorView and FrameLayout?

FrameLayout is created when we execute the setContentView() method, and the

DecorView is the root of the tree. By default, the framework fills our window with a

default background color and the DecorView is the view that holds the window’s back-

ground drawable. So if we have an opaque UI or a custom background, our device is

wasting time drawing the default background color.

 If we’re sure that we’ll use opaque user interfaces in our activity, we can remove

the default background to boost our startup time. To do this, we need to add a line to

the theme mentioned previously, as shown next:

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="Theme.NoBackground" parent="android:Theme">

<item name="android:windowNoTitle">true</item>
<item name="android:windowBackground">@null</item>

</style>

</resources>

15.1 The bottom line

Removing the window background is a simple trick to gain some speed. The rule is

simple: if the UI of your application is drawing 100% of the window contents, you

41Toast’s position hack

should always set windowBackground to null. Remember that the theme can be set in

an <application> or an <activity> tag.

15.2 External links

http://developer.android.com/guide/developing/debugging/
debugging-ui.html#HierarchyViewer

http://stackoverflow.com/questions/6499004/
androidwindowbackground-null-to-improve-app-speed

Hack 16 Toast’s position hack
Android v1.6+

In Android, whenever you need to notify the user

that something happened you can use a class called

Toast. A Toast is a pop-up notification that usually

shows a text, and it’s placed in the bottom middle

of the screen. If you’ve never seen a Toast, take a

look at figure 16.1. The Toast is the black box that

says, “This alarm is set for 17 hours and 57 minutes

from now.”

The API to launch a Toast is super simple. For example, to

launch a Toast that says, “Hi!” we only need to write the fol-

lowing code:

Toast.makeText(this, "Hi!", Toast.LENGTH_SHORT).show();

The Toast class isn’t flexible at all. For example, for the dura-

tion parameter we can only pick between Toast.LENGTH

_SHORT and Toast.LENGTH_LONG. Although there aren’t many

things we can change about Toast, what we can change is

where the pop-up is placed.

 Depending on our application layout, we might want to

position the Toast somewhere else, for instance, on top of

certain views. Let’s see how to create a Toast so that it’s

shown in a different position than the default one. A working

example can be seen in figure 16.2. In the sample applica-

tion, we have four bottoms, one on each corner. When a but-

ton is clicked, a Toast is created and positioned over the

corner where the button is located.

Figure 16.1 A Toast example from

the Alarm application

Figure 16.2 Toast with different

position

www.allitebooks.com

http://developer.android.com/guide/developing/debugging/debugging-ui.html#HierarchyViewer
http://stackoverflow.com/questions/6499004/androidwindowbackground-null-to-improve-app-speed
http://www.allitebooks.org

42 CHAPTER 3 View tips and tricks

To move the Toast around the screen, we need to create it a bit differently. It has a

public method inside the class with the following signature:
public void setGravity(int gravity, int xOffset, int yOffset);

To reproduce the Toast shown in figure 16.2 we’d need to use the following:

Toast toast = Toast.makeText(this, "Bottom Right!", Create Toast
Toast.LENGTH_SHORT);

toast.setGravity(Gravity.BOTTOM | Gravity.RIGHT, 0, 0); Set gravity to avoid
default positiontoast.show();

16.1 The bottom line

Although this hack might look simple, many Android developer aren’t aware of this

solution. You might find changing the position useful when your screen is split into

different Fragments and you want the Toast to show in a specific place.

16.2 External links

http://developer.android.com/guide/topics/ui/notifiers/toasts.html

Hack 17 Creating a wizard form using a Gallery
Android v2.1+

You may find circumstances will arise when you need your users to fill out a long form.

Maybe you need to create a registration form, or your application needs some form to

upload content. In other platforms, you can create something called a wizard form,

which is a form separated in different views. But in Android, this type of widget

doesn’t exist. In this hack, we’ll use the Gallery widget to create a registration form

with many fields. The result we’re after is shown in figure 17.1.

Figure 17.1 Wizard form using a Gallery

http://developer.android.com/guide/topics/ui/notifiers/toasts.html

43Creating a wizard form using a Gallery

For the sake of this example, we’ll create a registration form where the user will need

to fill in the following information:

 Full name

 Email

 Password

 Gender

 City

 Country

 Postal code

We’ll have two fields per page, so in total we’ll have four pages. To create the wizard

form, we need to create an Activity called CreateAccountActivity. This Activity

will use a Theme.Dialog style to give the form the look and feel of a pop-up. Inside it

we’ll place a Gallery, which will be populated with an Adapter. The Adapter will need

to communicate with the Activity, and for that we’ll use a Delegate interface.

 Let’s first create the generic view for each page. The XML follows:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="270dp"

android:layout_height="350dp">

<LinearLayout android:id="@+id/create_account_form"

android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:layout_alignParentTop="true"

Inside
LinearLayout
you place
all fields.

android:orientation="vertical"

android:paddingLeft="10dp"
android:paddingTop="10dp"

android:paddingRight="10dp"

android:background="#AAAAAA">

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

At first item of
LinearLayout you
place form title.

android:text="Account creation"

android:textColor="#000000"

android:textStyle="bold"
android:textSize="20sp"/>

</LinearLayout>

<Button
android:id="@+id/create_account_next"

android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:layout_alignParentTop="true"

Next button will
be used to move
forward through
wizard pages.

android:layout_alignParentRight="true"

android:textSize="12sp"
android:gravity="center"

android:layout_marginTop="10dp"

44 CHAPTER 3 View tips and tricks

android:layout_marginRight="10dp"
android:text="Next"/>

<Button

android:id="@+id/create_account_create"
android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_below="@id/create_account_form"

This button will
be only visible in
last page; it will be
in charge of
submitting form.

android:gravity="center"

android:paddingRight="45dp"

android:text="Create Account"
android:textSize="12sp"/>

</RelativeLayout>

As you can see, we placed a LinearLayout as a placeholder to every field. You’ll see

later how to populate it from the Gallery’s Adapter code.

 Now that we have the XML for the generic view, we should create the Adapter’s

code. We’ll call our AdapterCreateAccountAdapter and extend from BaseAdapter.

Because the Adapter’s code is quite long, we’ll discuss only the important methods.

The first thing to write is the interface we’ll use to communicate with the Activity.

Use the following:

public static interface CreateAccountDelegate {
int FORWARD = 1;

int BACKWARD = -1;

void scroll(int type);

void processForm(Account account);

}

We’ll use the scroll() method when the user presses the next button and the proc-

cessForm() method when the user submits the form. We’ll need to call the delegate

when these buttons are pressed, so we’ll want to set the click listeners in the get-

View() method, which is shown here:

public View getView(int position, View convertView, ViewGroup parent) {

convertView = mInflator.inflate(

R.layout.create_account_generic_row, parent, false); Inflate
custom
view.

LinearLayout formLayout = (LinearLayout) convertView

.findViewById(R.id.create_account_form); Get
LinearLayout
where we’ll
place all form
widgets.

View nextButton = convertView
.findViewById(R.id.create_account_next);

if (position == FORMS_QTY - 1) {

nextButton.setVisibility(View.GONE);
} else {

nextButton.setVisibility(View.VISIBLE);

}

if (mDelegate != null) {

nextButton.setOnClickListener(new OnClickListener() {

Next button
should be visible
in every page
but last one.

@Override
public void onClick(View v) {

45Creating a wizard form using a Gallery

mDelegate.scroll(CreateAccountDelegate.FORWARD);
}

});

}

Button createButton = (Button) convertView

.findViewById(R.id.create_account_create);

if (position == FORMS_QTY - 1) {
createButton.setOnClickListener(new OnClickListener() {

Create button
should be visible
only in last page.

@Override

public void onClick(View v) {
processForm();

}

});

createButton.setVisibility(View.VISIBLE);

} else {

createButton.setVisibility(View.GONE);
}

switch (position) { In last step, switch
over the position
and populate
LinearLayout
accordingly.

case 0:

populateFirstForm(formLayout);
break;

...

}

return convertView;

}

The code inside the populateFirstForm() is the creation of fields and titles, which

will end inside the LinearLayout. In the sample code, I decided to do everything by

code, but we could easily create the views by inflating XMLs.

 The missing piece of the puzzle is the one in charge of implementing the Create-

AccountDelegate. In this case, it will be our CreateAccountActivity.

CreateAccountActivity will track the page that the user is in and it will be in

charge of the page turn logic. The code is the following:

public class CreateAccountActivity extends Activity implements

CreateAccountDelegate {

private Gallery mGallery;
private CreateAccountAdapter mAdapter;

private int mGalleryPosition;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.create_account);
mGallery = (Gallery) findViewById(R.id.create_account_gallery);

mAdapter = new CreateAccountAdapter(this);

mGallery.setAdapter(mAdapter); Inside onCreate()
method, create Adapter
and set it to the Gallery.

mGalleryPosition = 0;

}

46 CHAPTER 3 View tips and tricks

@Override
protected void onResume() { Set Activity as Adapter’s

delegate in onResume()
method and set it to null
when onPause() is called.

super.onResume();
mAdapter.setDelegate(this);

}

@Override
protected void onPause() {

super.onPause();
mAdapter.setDelegate(null);

}

@Override
public void onBackPressed() {

Override Activity’s
onBackPressed() method
so there’s a way to go back
to a previous page.

if (mGalleryPosition > 0) {
scroll(BACKWARD);

} else {
super.onBackPressed();

}
}

@Override
public void scroll(int type) {

switch (type) {

Inside scroll() method,
Activity moves Gallery to next
or previous page depending
on the parameter.

case FORWARD:
if (mGalleryPosition < mGallery.getCount() - 1) {

mGallery.onKeyDown(KeyEvent.KEYCODE_DPAD_RIGHT,
new KeyEvent(0, 0));

mGalleryPosition++;
}
break;

...

}

...

}

Unfortunately, we can’t animate the page turn in Android’s Gallery widget. The only

way I found is to send a KeyEvent.KEYCODE_DPAD_RIGHT event. It’s hacky but it works.

 The remaining code of the CreateAccountActivity takes care of validations and

error handling. It contains nothing out of the ordinary, so I’ll leave it for you to read

from the sample code.

17.1 The bottom line

Using the Gallery widget to create wizard forms makes it easy for the user to fill out a

long form. Having different pages and using the Gallery’s default animation adds

nice eye candy to make the process of filling the form less frustrating.

 Depending on your needs, you can also try doing the same thing with the View-

Pager class. Your Adapter would return Fragments instead of views.

17.2 External links

http://developer.android.com/reference/android/widget/Gallery.html

http://developer.android.com/reference/android/widget/Gallery.html

47

Tools

In this chapter, we’ll look at two interesting tools you can use to create an Android

application.

Hack 18 Removing log statements before releasing
Android v1.6+

If your application is making requests to a server, you might be using some type of

log to check whether or not your requests are successful. Unfortunately, those logs

don’t get removed when you build the final APK (Android application package

file). Removing logs is important to keep the logcat output as clean as possible.

Leaving log statements in could also expose you to unintentional disclosure of sen-

sitive information. In this hack, I’ll show you how easy it is to remove logs for your

market release.

 Developers have their own technique preferences for removing logs from the

final release. Some prefer doing something like the following:

if (BuildConfig.DEBUG) LOG.d(TAG, "The log msg");

From my point of view, the best way to remove logs is to use the ProGuard tool. If

you’ve never used ProGuard, let me introduce it with the following quote from the

Android documentation (see section 18.2):

48 CHAPTER 4 Tools

The ProGuard tool shrinks, optimizes, and obfuscates your code
by removing unused code and renaming classes, fields, and
methods with semantically obscure names. The result is a smaller
sized .apk file that is more difficult to reverse engineer.

If you haven’t noticed yet, when we build an Android application we’ll find a pro-

guard.cfg file in our project root directory. Its presence there doesn’t mean it’s on by

default; we need to enable it. Fortunately, it’s simple: we need to add the following

line in the default.properties file located in our project root directory:

proguard.config=proguard.cfg

Now ProGuard is enabled, but it’ll only be used when exporting a signed APK. We

need to add the necessary lines to the proguard.cfg to get rid of those logs. Append

the following lines to proguard.cfg:

-assumenosideeffects class android.util.Log {
public static *** d(...);

}

What we’re telling ProGuard is this: remove every use of a d() method with any

amount of parameters that returns something and belongs to the android.util.Log

class. This will match with Log’s d() method and every debug log will be removed.

18.1 The bottom line

The ProGuard tool offers another way of polishing a release. Make sure you read the

ProGuard manual and create a correct configuration for your project because Pro-

Guard might remove essential code, thinking it’s not necessary for the application to

work. If this happens, be sure to check that you’re telling ProGuard to keep every-

thing you need.

 Notice that ProGuard isn’t only used to remove log statements. As I’m testing, I

usually create methods in my Activity to populate forms. These methods are also

something I use ProGuard to remove.

18.2 External links

http://proguard.sourceforge.net/

http://developer.android.com/tools/help/proguard.html

http://mng.bz/ZR3t

http://proguard.sourceforge.net/
http://developer.android.com/tools/help/proguard.html
http://mng.bz/ZR3t

49Using the Hierarchy Viewer tool to remove unnecessary views

Hack 19 Using the Hierarchy Viewer tool to remove
unnecessary views
Android v1.6+

The Android SDK comes with a lot of tools; one

of them is the Hierarchy Viewer. This tool lets

you see the view tree and analyze how long it

took to measure, lay out, and draw the views in

your view. With the information this tool pro-

vides, you’ll be able to detect unneeded views in

the tree and bottlenecks. In this hack, we’ll look

at how to find these issues and solve them.

NOTE I won’t explain how to use the
Hierarchy Viewer itself, so you might
want to read Android’s documentation
at http://mng.bz/7ZXl for more infor-
mation before proceeding.

For this hack, I’ve created a toy application with

slow views that we’ll try to fix using the Hierarchy

Viewer. The application has a unique Activity,

which you can see in figure 19.1, and it has the

following XML:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:layout_alignParentTop="true"

android:text="@string/hello"/>

<RelativeLayout
android:id="@+id/slow_container"

android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:layout_alignParentBottom="true">

<com.test.SlowDrawView

android:id="@+id/slow_draw"
android:layout_width="fill_parent"

android:layout_height="30dp"

android:layout_alignParentTop="true"
android:background="#FF0000"

android:text="Slow Draw"/>

Figure 19.1 Subject application

http://mng.bz/7ZXl

50 CHAPTER 4 Tools

<com.test.SlowLayoutView
android:id="@+id/slow_layout"

android:layout_width="fill_parent"

android:layout_height="30dp"
android:layout_below="@id/slow_draw"

android:background="#00FF00"

android:text="Slow Layout"/>

<com.test.SlowMeasureView

android:id="@+id/slow_measure"

android:layout_width="fill_parent"
android:layout_height="30dp"

android:layout_below="@id/slow_layout"

android:background="#0000FF"
android:text="Slow Measure"/>

</RelativeLayout>

</RelativeLayout>

This application is the default one, with some minor modifications. I’ve added three

custom views in the button and removed the title bar. Let’s load the Hierarchy Viewer

with this application. You can see the results in figure 19.2.

Figure 19.2 Hierarchy Viewer showing the application

NOTE For now, forget the definitions for the PhoneWindow$DecorView and
the FrameLayout. Let’s say they’re nodes placed by the framework and
unmodifiable. We talked about them in hack 15.

The first things to look for are ViewGroups inside ViewGroups. In this case, we have a

TextView that has the android:layout_alignParentTop attribute and a second

RelativeLayout holding all of the custom views, with android:layout_align-

ParentBottom. You can also see that the second RelativeLayout has its three

51Using the Hierarchy Viewer tool to remove unnecessary views

performance indicators in red. This means that it’s the slowest view in the tree. Let’s

try removing it by changing the other view’s attributes. The modified XML looks like

the following:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"
android:layout_height="fill_parent">

<TextView

android:layout_width="fill_parent"
android:layout_height="wrap_content"

android:layout_alignParentTop="true"

android:text="@string/hello"/>

<com.test.SlowMeasureView

android:id="@+id/slow_measure"

android:layout_width="fill_parent"
android:layout_height="30dp"

android:layout_alignParentBottom="true"

android:background="#0000FF"

android:text="Slow Measure"/>

<com.test.SlowLayoutView

android:id="@+id/slow_layout"

android:layout_width="fill_parent"
android:layout_height="30dp"

android:layout_above="@id/slow_measure"

android:background="#00FF00"
android:text="Slow Layout"/>

<com.test.SlowDrawView

android:id="@+id/slow_draw"
android:layout_width="fill_parent"

android:layout_height="30dp"

android:layout_above="@id/slow_layout"
android:background="#FF0000"

android:text="Slow Draw"/>

</RelativeLayout>

The last fix reduced the view tree height by one. When creating views, it’s always better

to avoid tall view trees. Android draws the layout in a two-pass process: a measure pass

and a layout pass. If you have a lot of nodes, it’ll take longer to do the tree traversal.

 After you’ve modified the XML to generate the shallowest tree, start looking at the

performance indicators. Note that this indicator is relative to other view objects in the

tree, so don’t be fooled by this. Most of the nodes might be green, but that doesn’t

mean they’re OK. Check how long it takes for them to draw and make sure everything

is working well.

52 CHAPTER 4 Tools

19.1 The bottom line

The Hierarchy Viewer is a great tool to see your view tree. As you’re developing your

application, try to keep track of how your view trees evolve to make sure your layouts

are as responsive as they should be and that you’re using the shallowest tree possible.

19.2 External links

http://developer.android.com/guide/developing/debugging/debugging-ui.html

http://developer.android.com/guide/developing/debugging/debugging-ui.html

53

Patterns

In this chapter, you’ll read about different development patterns you can use inside

Android.

Hack 20 The Model-View-Presenter pattern
Android v1.6+

You’ve most likely heard of the MVC (Model-View-Controller) pattern, and you’ve

probably used it in different frameworks. When I was trying to find a better way to

test my Android code, I learned about the MVP (Model-View-Presenter) pattern. The

basic difference between MVP and MVC is that in MVP, the presenter contains the UI

business logic for the view and communicates with it through an interface.

 In this hack, I’ll show you how to use MVP inside Android and how it improves

the testability of the code. To see how it works, we’ll build a splash screen. A splash

screen is a common place to put initialization code and verifications, before the

application starts running. In this case, inside the splash screen we’ll provide a

progress bar while we’re checking whether or not we have internet access. If we do,

we continue to another activity, but if we don’t, we’ll show the user an error mes-

sage to prevent them from moving forward.

 To create the splash screen, we’ll have a presenter that will take care of the com-

munication between the model and the view. In this particular case, the presenter

54 CHAPTER 5 Patterns

will have two functions: one that knows when we’re online and another to take care of

controlling the view. You can see the project structure in figure 20.1.

Figure 20.1 MVP project structure

 The presenter will use a model class called ConnectionStatus that will implement

the IConnectionStatus interface. This interface will answer whether we have internet

access with a single method:

public interface IConnectionStatus {

boolean isOnline();
}

As you might be thinking, the code in charge of controlling the view will be an

Activity that implements the ISplashView interface. The interface will be used by

the presenter to control the flow of the application. Let’s look at the code for the

ISplashView interface:

public interface ISplashView {
void showProgress();

void hideProgress();

55The Model-View-Presenter pattern

void showNoInetErrorMsg();
void moveToMainView();

}

Because we’re coding in Android, the view will be the first to be created and afterward

we’ll give the control to the presenter. Let’s see how we do that:

public class SplashActivity extends Activity implements ISplashView {

private SplashPresenter mPresenter;

@Override

public void onCreate(Bundle savedInstanceState) {

...

B Activity
initialization
code

mPresenter = new SplashPresenter();

C
Instantiate presenter
for this Activity

mPresenter.setView(this);

}

@Override

protected void onResume() {

super.onResume();
mPresenter.didFinishLoading();

D Start presenter code
when we reach
onResume() method

}

}

We’ll first need to initialize the Activity B. Afterward, we create the presenter C
that will take care of getting everything done and we set the Activity instance to the

presenter. We can override the onResume() method D to let the presenter know the

view is ready to give control to it.

 The presenter code is simple. Following is the presenter’s didFinishLoading()

method:

public void didFinishLoading() {
ISplashView view = getView();

B
Getting view, in this
case the Activityif (mConnectionStatus.isOnline()) {

view.moveToMainView();
} else {

C
Logic to decide if we
can move on

view.hideProgress();

view.showNoInetErrorMsg();
}

}

We’ll get a reference to the ISplashView implementation using a presenter’s getter B.

We’ll use the model’s IConnectionStatus implementation to verify whether we’re

online C. Depending on that, we’ll do different things with the view. As you can see,

the view is used through an interface without knowing it’s implemented by an Android

Activity. This will end up in a view that’s easy to mock in a unit test.

20.1 The bottom line

Using the MVP pattern will make your code more organized and easier to test. In

the sample code, you’ll notice a test folder. The test needs to instantiate the presenter

and mock the interfaces. Because you’re not using any Android-specific code in the

56 CHAPTER 5 Patterns

presenter, you don’t need to run in an Android-powered device and instead can run it

in the JVM. In this case, you’ve used Mockito to mock the interfaces.

 Because you’ve been working with Android, you’ll notice that a lot of code ends up

in the Activity. Unfortunately, testing activities is painful. Using the MVP pattern will

help you create tests and apply TDD (test-driven development) in an easy way.

20.2 External links

http://en.wikipedia.org/wiki/Model_View_Presenter

Hack 21 BroadcastReceiver following Activity’s lifecycle
Android v1.6+

Android uses different kinds of messages to notify applications when something hap-

pens. For example, if you want to know whether or not a device has connected to the

internet, you have to listen to an Intent whose action is android.net.conn

.CONNECTIVITY_CHANGE. This Intent can be heard using a BroadcastReceiver.

 Although using a BroadcastReceiver to listen to different notifications from the

OS works well, you can’t access an Activity from the receiver.

 Imagine trying to update the UI depending on the connectivity status. How would

you do it? What would you do if you wanted to get the receiver’s information inside

one of your activities? In this hack, I’ll show you how to use a BroadcastReceiver as

an Activity’s inner class to get broadcast Intents.

 Setting up a BroadcastReceiver as an Activity’s inner class lets us do two impor-

tant things:

 Call the Activity’s methods from inside the receiver

 Enable and disable the receiver depending on the Activity’s status

For this hack, we’ll create a Service that, when activated, waits for 5 seconds and then

broadcasts a message. For this toy application, the message we’ll send is a string with

a date. The implementation of the service isn’t that important, but you should

know that it’ll broadcast an Intent with an action—com.manning.androidhacks

.hack021.SERVICE_MSG—and the date travels as an extra.

 Because we want to use the date information the service sends in order to update

the UI, we’ll want to listen to this message only when the Activity’s screen is shown.

Let’s see how to achieve that using the following code:

public class MainActivity extends Activity {

private ProgressDialog mProgressDialog;
private TextView mTextView;

http://en.wikipedia.org/wiki/Model_View_Presenter

57BroadcastReceiver following Activity’s lifecycle

private BroadcastReceiver mReceiver;
private IntentFilter mIntentFilter;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mReceiver = new MyServiceReceiver();

B Creates new instance
of BroadcastReceiver

mIntentFilter = new IntentFilter(MyService.ACTION);

C

Creates and
defines which
type of Intent
the receiver gets

startService(new Intent(this, MyService.class));

}

@Override

protected void onResume() {

super.onResume();
registerReceiver(mReceiver, mIntentFilter);

D

Registers receiver
in onResume()
method

}

@Override
public void onPause() {

super.onPause();

unregisterReceiver(mReceiver);

E

Unregisters
receiver inside
onPause() method

}

private void update(String msg) {

/* Do something with the msg */

}

class MyServiceReceiver extends BroadcastReceiver {

F

Invokes
Activity’s
update()
method

@Override

public void onReceive(Context context, Intent intent) {
update(intent.getExtras().getString(MyService.MSG_KEY));

}

}
}

We’ll create a new instance of the BroadcastReceiver B and create an Intent-

Filter C that we’ll use to define which type of Intent the receiver should get.

Because the receiver is only used inside the Activity, we’ll need to register it in the

onResume() method D and unregister it inside the onPause() method E. When the

receiver is called F, it’ll invoke the Activity’s update() method with the Intent’s

extra information as a parameter.

 That’s it—we now have a receiver that only updates the UI when the Activity is

shown.

21.1 The bottom line

The whole Android ecosystem uses Intents to communicate. You’ll need to use them

sooner or later. By placing a receiver as an inner class in your Activity, you can give

visual feedback using the information inside an Intent. Unregistering the receiver is a

good way to avoid unnecessary calls to modify the UI when it’s not needed.

58 CHAPTER 5 Patterns

21.2 External links

http://developer.android.com/reference/android/content/Intent.html

http://developer.android.com/reference/android/content/BroadcastReceiver.html

Hack 22 Architecture pattern using Android libraries
Android v1.6+

Before Android library projects were released, sharing code between Android projects

was hard or even impossible. You could use a JAR to share Java code, but you couldn’t

share code that needed resources. Sharing an Activity or a custom view was impossi-

ble because you can’t add resources to JARs and use them later in an Android applica-

tion. Android library projects were created as a way to share Android code. In this

hack, we’ll look at a way to use them.

 As an example, we’ll create a small application with a login screen. The application

is divided into three layers:

 Back-end logic and model (JAR file)

 Android library

 Android application

22.1 Back-end logic and model

This layer is a simple JAR file that can hold logic and doesn’t involve or use Android-

specific code. It’s here that we place the server calls and business objects and logic. In

our example, we’ll have a project that creates a JAR file to handle login-specific func-

tionality.

 As you can see in figure 22.1, Login doesn’t need to have Android as a dependency.

The output of this project will be a JAR file to be included in our Android application.

Figure 22.1 Login project loaded in Eclipse

Having the business logic in a Java project means we can test everything with JUnit

without setting up an Android test, which is painful. Also, separating code allows

developers with different skills to work on the appropriate layer.

http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html

59Architecture pattern using Android libraries

22.2 Android library

As I mentioned earlier, an Android library is like a JAR file but with the possibility of

using Android resources. When we add an Android library as a dependency of our

application, we get a second R class with the library’s IDs and we’ll be able to use the

library’s resources from our code. This layer will have Android-specific activities, a cus-

tom view, or services that Android applications will be able to reuse.

 In figure 22.2, you can see the Android library androidlib. Here you can see

Android as a dependency, which means that you can use every Android class and

resource. Every Android library will have its own R class.

Figure 22.2 The Android

library loaded in Eclipse

 Note that this library can use the JAR mentioned earlier as a dependency. In this

example, we placed the JAR as a dependency for the Android library. This way, we have

a modular and maintainable library to use in any Android project.

22.3 Android application

The resulting Android application depends on the back-end JAR to handle business

logic and the Android library to handle Android-related stuff. You can see in

figure 22.3 how the Android library is included in the project.

60 CHAPTER 5 Patterns

In this layer, we’ll be able to use code

from the JAR and from the Android

library. We now can start developing

our application, taking care of the

distribution of code between layers.

22.4 The bottom line

This was a short introduction to a

possible architecture design using

Android libraries. Reusable code and

maintainability is hard to achieve,

but now that you have Android

libraries, it’s possible.

22.5 External links

http://developer.android.com/tools/projects/index.html#LibraryProjects

http://developer.android.com/tools/projects/

projects-eclipse.html#SettingUpLibraryProject

Hack 23 The SyncAdapter pattern
Android v2.2+

Almost every Android application uses the internet to fetch information or to sync

data. If you’ve already created a couple of applications, you’ll be able to describe

many different ways to create a connection and show a progress animation while

fetching results.

23.1 Common approaches

I’ve been working as a contractor for different companies, and in my experiences I’ve

seen developers handle data fetching in a variety of ways. Most of the code I’ve seen

falls into one of the approaches that I’ll cover next.

23.1.1 Using the AsyncTask class

AsyncTask is an Android class that handles threads for you, making it easy to move

logic to another thread. If you’ve used it in previous projects, the following story

might ring a bell.

Figure 22.3 Android application folder structure

http://developer.android.com/tools/projects/index.html#LibraryProjects
http://developer.android.com/tools/projects/projects-eclipse.html#SettingUpLibraryProject

61The SyncAdapter pattern

 Some time ago, you started developing for Android. You learned that you

shouldn’t place background logic in the main thread. You searched the web for an

explanation of how to do it and you found a nice Android developer’s article entitled

“Painless Threading.” Near the end of the article (see section 23.4), it states this:

Always remember these two rules about the single thread model.
Do not block the UI thread, and make sure that you access the
Android UI toolkit only on the UI thread.

AsyncTask just makes it easier to do both of these things.

 So you learned how to use the AsyncTask class and you started using it everywhere.

No matter how complex your UI was, or how long it took to parse those big chunks of

data, the AsyncTask was always there for you. You left work early pointing and laugh-

ing at the iOS developers from your company, saying “Android is easier than iOS; I fin-

ished earlier than you. Enjoy your night coding, Apple fan boys!”

 Unfortunately, this didn’t last long. You noticed that if you rotated the device while

an AsyncTask was running, your application crashed. It was hard to fix, but an ugly

hack did the trick. Later you noticed that your application also crashed after some

time due to a limitation in the amount of concurrent tasks the AsyncTask supported.

When you tried to fix this second issue, you noticed that your Activity’s code was pol-

luted with a lot of inner classes extending AsyncTask. After a long day, you started

questioning where you went wrong.

 If you’re planning to use an AsyncTask, think it over. The only reason to use it is

when the background task is simple or you don’t depend on the result. Let’s look at

another approach.

23.1.2 Using a Service

The second approach is to use a Service. Using a Service solves a lot of issues but

comes with some difficulties. Following is a list of concerns that always caused me to

wonder whether or not I was making the correct choice:

 Communicating with an Activity

 Deciding when and how to start the Service

 Detecting connectivity status while working

 Persisting data

The issue with this approach is the system’s flexibility. For example, you have many

ways to communicate with an Activity. Should the Activity bind to the Service?

Should it use a Handler? Should it communicate via Intents? Should it communicate

through a database? Many possibilities exist and the answer to the question of which

you should use is always “it depends.”

 The question I started asking myself was, how does the Gmail application work?

How does it sync and work offline without an issue? Google uses something called

SyncAdapter. Unfortunately, this is one of Android’s best but least documented

62 CHAPTER 5 Patterns

features. If you ask Android developers if they know what it is, they’ll say yes, but

they’ve never used it.

 In this hack, we’ll see how to use a SyncAdapter to organize an internet-dependent

application, making our development life easier.

23.2 What we’ll create

For this example, we’ll create a TODO list. We’ll use a server that will have a front end

to add items from the browser. You can see how it looks in figure 23.1. The server will

also have an API so we can have the same functionality in an Android device. The run-

ning Android application can be seen in figure 23.2.

Figure 23.1 Server’s front end Figure 23.2 Android application’s front end

23.2.1 What’s a SyncAdapter?

A SyncAdapter is an Android Service that’s started by the platform. There we’ll place

all of our sync logic. Before you get lost, go watch Virgil Dobjanschi’s Google I/O 2010

Android REST (see section 23.4)client application presentation. This is without a

doubt the best Google I/O presentation ever and the only good documentation on

SyncAdapters.

 The benefits of using SyncAdapters include

 Automatically syncs in the background (even when our application isn’t open)

 Handles authentication against the server

 Handles retries

 Respects user’s preferences regarding background syncs

63The SyncAdapter pattern

23.2.2 Hitting a database instead of the server

The first thing to do is to forget about syncing. We’ll create the application to only work

locally and save information inside a database. To do this, we’ll need a DatabaseHelper,

a TodoContentProvider, and a TodoDAO. Let’s first understand the DatabaseHelper:

public class DatabaseHelper extends SQLiteOpenHelper {

B
Extends
SQLiteOpenHelper

public static final String DATABASE_NAME = "todo.db";
private static final int DATABASE_VERSION = 1;

public DatabaseHelper(Context context) {

super(context, DATABASE_NAME, null, DATABASE_VERSION);

C

Specifies
database
name and
version

}

@Override

public void onCreate(SQLiteDatabase db) {

D

Decides if
tables

need to
be created

db.execSQL("CREATE TABLE "

+ TodoContentProvider.TODO_TABLE_NAME + " ("

+ TodoContentProvider.COLUMN_ID
+ " INTEGER PRIMARY KEY AUTOINCREMENT,"

+ TodoContentProvider.COLUMN_SERVER_ID + " INTEGER,"

+ TodoContentProvider.COLUMN_TITLE + " LONGTEXT,"

+ TodoContentProvider.COLUMN_STATUS_FLAG + " INTEGER"
+ ");");

}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {

E

Upgrades
from an old
schema

db.execSQL("DROP TABLE IF EXISTS " +
TodoContentProvider.TODO_TABLE_NAME);

onCreate(db);

}
}

The DatabaseHelper extends SQLiteOpenHelper B. When the class is created, we

specify the database name and its version C. The SQLiteOpenHelper will use that to

decide whether some tables need to be created D or upgraded from an old schema E.

Don’t worry about the schema for now. You’ll understand all its rows in short order.

 Now that we have the DatabaseHelper in place, we’ll need to set up our Content-

Provider. Note that if you’ve never used a ContentProvider, you should try doing a

fast web search before you continue reading. The TodoContentProvider class for this

hack has nothing out of the ordinary. Let’s look at how the query method is created:

public class TodoContentProvider extends ContentProvider {

B
Extends
ContentProvider

public static final String TODO_TABLE_NAME = "todos";

public static final String AUTHORITY = TodoContentProvider.class
.getCanonicalName();

public static final String COLUMN_ID = "_id";

public static final String COLUMN_SERVER_ID = "server_id";
public static final String COLUMN_TITLE = "title";

public static final String COLUMN_STATUS_FLAG = "status_flag";

private static final int TODO = 1;

64 CHAPTER 5 Patterns

private static final int TODO_ID = 2;

private static HashMap<String, String> projectionMap;

private static final UriMatcher sUriMatcher;

public static final String CONTENT_TYPE =
"vnd.android.cursor.dir/vnd.androidhacks.todo";

public static final String CONTENT_TYPE_ID =

"vnd.android.cursor.item/vnd.androidhacks.todo";

public static final Uri CONTENT_URI = Uri.parse("content://"

+ AUTHORITY + "/" + TODO_TABLE_NAME);

private DatabaseHelper dbHelper;

static {

sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);

C Decides which
action to take
for an incoming
content URI

sUriMatcher.addURI(AUTHORITY, TODO_TABLE_NAME, TODO);
sUriMatcher.addURI(AUTHORITY, TODO_TABLE_NAME + "/#", TODO_ID);

projectionMap = new HashMap<String, String>();

D
Changes
match

projectionMap.put(COLUMN_ID, COLUMN_ID);
projectionMap.put(COLUMN_SERVER_ID, COLUMN_SERVER_ID);

projectionMap.put(COLUMN_TITLE, COLUMN_TITLE);

projectionMap.put(COLUMN_STATUS_FLAG, COLUMN_STATUS_FLAG);

}

@Override

public boolean onCreate() {
E Creates

ContentProvider

dbHelper = new DatabaseHelper(getContext());
return true;

}

@Override
public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
switch (sUriMatcher.match(uri)) {

F

Switches over
a URI and sets
query builder

case TODO:

qb.setTables(TODO_TABLE_NAME);
qb.setProjectionMap(projectionMap);

break;

case TODO_ID:
qb.setTables(TODO_TABLE_NAME);

qb.setProjectionMap(projectionMap);

qb.appendWhere(COLUMN_ID + "=" + uri.getPathSegments().get(1));
break;

default:

throw new RuntimeException("Unknown URI");
}

SQLiteDatabase db = dbHelper.getReadableDatabase();

Cursor c = qb.query(db, projection, selection,

G Gets a Cursor
from the
database

selectionArgs, null, null, sortOrder);

c.setNotificationUri(getContext().getContentResolver(),

HSets
notification
URI; Cursor
watches for
URI content

changes

uri);

65The SyncAdapter pattern

return c;
}

...

}

The TodoContentProvider extends ContentProvider B. Inside it we define a

UriMatcher that will help us decide which action to take for an incoming content URI

C. In this case, the content values to use with the ContentProvider have a one-to-one

match with the database columns. If we want to change that, we can use a projection

map D. When the ContentProvider is created E, we get an instance of the

DatabaseHelper, which will be useful for querying the database. For the sake of brev-

ity I only show the query() method. The rest of the ContentProvider methods look

alike. Inside the query() method, we can see how to switch over a URI and set the

query builder correctly F. After that we use the query builder to get a Cursor from

the database that will be returned to the user G. Pay attention to the last line H.

Before returning the Cursor, we set the notification URI. This will make the Cursor

watch for URI content changes. This means that every time something gets modified,

the Cursor will update automagically.

 Finally, the TodoDAO will be in charge of calling the ContentProvider through a

ContentResolver. This is the layer where conversions from Java objects to database

values and from database values to Java objects occur, as follows:

public class TodoDAO {

private static final TodoDAO instance = new TodoDAO();

private TodoDAO() {}

public static TodoDAO getInstance() {
B Implements

singleton

return instance;

}

public void addNewTodo(ContentResolver contentResolver,
C Places

calls

Todo list, int flag) {

ContentValues contentValue = getTodoContentValues(list, flag);
contentResolver.insert(TodoContentProvider.CONTENT_URI,

contentValue);

}

private ContentValues getTodoContentValues(Todo todo,

D Converts
to content
values

int flag) {

ContentValues cv = new ContentValues();
cv.put(TodoContentProvider.COLUMN_SERVER_ID, todo.getId());

cv.put(TodoContentProvider.COLUMN_TITLE, todo.getTitle());

cv.put(TodoContentProvider.COLUMN_STATUS_FLAG, flag);

return cv;

}

...
}

66 CHAPTER 5 Patterns

As you can see, the TodoDAO is implemented with a singleton B. There, we placed calls

such as addNewTodo()C which, after a proper conversion to content values D, will

end in a database insert.

23.2.3 Populating the database

In this section, you’ll see how to deal with the database from the application. We’ll use

two activities:

 MainActivity—Will show the list of TODOs

 AddNewActivity—Will present a form to add a new TODO

Both activities function in a similar way. When they need to modify some data, they’ll

do it through the TodoDAO. Let’s take a look at the code for the MainActivity:

public class MainActivity extends Activity {

private ListView mListView;

private TodoAdapter mAdapter;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mListView = (ListView) findViewById(R.id.main_activity_listview);

mAdapter = new TodoAdapter(this);

B
Creates
ListView

mListView.setAdapter(mAdapter);

}

public void addNew(View v) {

startActivity(new Intent(this, AddNewActivity.class));

C Starts
AddNewActivity
activity

}

Nothing out of the ordinary here. We created a ListView that will use a TodoAdapter

B, and every time the user clicks on the Add New button, we’ll start the AddNew-

Activity activity C.

 The TodoAdapter holds more interesting code. Let’s see how it’s done:

public class TodoAdapter extends CursorAdapter {

...

private static final String[] PROJECTION_IDS_TITLE_AND_STATUS =

new String[] {

TodoContentProvider.COLUMN_ID,
TodoContentProvider.COLUMN_TITLE,

TodoContentProvider.COLUMN_STATUS_FLAG };

public TodoAdapter(Activity activity) {
super(activity, getManagedCursor(activity), true);

mActivity = activity;

...
}

private static Cursor getManagedCursor(Activity activity) {

B Gets a
Cursor

return activity.managedQuery(TodoContentProvider.CONTENT_URI,

67The SyncAdapter pattern

PROJECTION_IDS_TITLE_AND_STATUS,
TodoContentProvider.COLUMN_STATUS_FLAG + " != "

C

Checks use of
TodoContentProvider’s
URI and a projection

+ StatusFlag.DELETE, null,

TodoContentProvider.DEFAULT_SORT_ORDER);
}

@Override

public void bindView(View view, Context context, Cursor c) {
final ViewHolder holder = (ViewHolder) view.getTag();

holder.id.setText(c.getString(mInternalIdIndex));

holder.title.setText(c.getString(mTitleIndex));

final int status = c.getInt(mInternalStatusIndex);

if (StatusFlag.CLEAN != status) {

D Changes
background
of text

holder.title.setBackgroundColor(Color.RED);
} else {

holder.title.setBackgroundColor(Color.GREEN);

}

final Long id = Long.valueOf(holder.id.getText().toString());

holder.deleteButton.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {
TodoDAO.getInstance().deleteTodo(

E

Removes
TODO from
the list

mActivity.getContentResolver(), id);

}
});

}

...
}

When the TodoAdapter is created, we get a Cursor B using Activity’s managed-

Query() method. Check how we used the TodoContentProvider’s URI and a projec-

tion C. Finally, we have the bindView() method. With it we change the background

of the text depending on the status flag (I’ll discuss that later) D and set a click lis-

tener for the Delete button. Inside the listener, we use the TodoDAO to remove the

TODO from the list E.

 Where’s the notifyDataSetChanged()? There’s no need for it. Do you remember

the setNotificationUri() call we used inside the TodoContentProvider? The

Cursor returned by the TodoContentProvider will get updated when changes are

made to the database through the ContentProvider.

 Up to this point, we have a working application that saves data to a database. Now

we need to take the authentication step and sync with the server.

23.2.4 Adding login functionality

Before adding the SyncAdapter to our code, let’s first see how to deal with the

authentication with the server. Instead of saving the login details inside a database or

a shared preference, we’ll save them in an Android Account. To handle accounts,

we’ll use an Android class called AccountManager. The AccountManager is in charge

of managing user credentials inside Accounts. The basic idea is that users enter their

68 CHAPTER 5 Patterns

credentials once, and they’re saved inside an Account. All of the applications that

have the USE_CREDENTIALS permission can query the manager to obtain an account

where an authentication token or whatever is necessary to authenticate against a

server is saved.

 Before coding this part, you need to understand that the login functionality will be

used in these situations:

 When the application starts and no account has been created

 When the user goes to Accounts & Sync and clicks on New Account

 When the SyncAdapter tries to sync and the authentication fails

Let’s look at the first two situations in this section and the last one after we have the

SyncAdapter working. For the first one, we’ll create a BootstrapActivity:

public class BootstrapActivity extends Activity {

private static final int NEW_ACCOUNT = 0;

private static final int EXISTING_ACCOUNT = 1;
private AccountManager mAccountManager;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.bootstrap);

mAccountManager = AccountManager.get(this);

Account[] accounts = mAccountManager

B Gets list of
accounts of
our type

.getAccountsByType(AuthenticatorActivity.PARAM_ACCOUNT_TYPE);

if (accounts.length == 0) {

CCreates
a new

account
final Intent i = new Intent(this, AuthenticatorActivity.class);
i.setFlags(Intent.FLAG_ACTIVITY_CLEAR_WHEN_TASK_RESET);

startActivityForResult(i, NEW_ACCOUNT);

} else {
String password = mAccountManager.getPassword(accounts[0]);

if (password == null) {

DAsks user for
password

final Intent i = new Intent(this, AuthenticatorActivity.class);
i.putExtra(AuthenticatorActivity.PARAM_USER, accounts[0].name);

startActivityForResult(i, EXISTING_ACCOUNT);

} else {
startActivity(new Intent(this, MainActivity.class));

E
Continues to
MainActivity

finish();

}
}

}

...

}

Inside the onCreate() method, we get a list of accounts of our type B. If we have no

account, we launch the AuthenticatorActivity to help create a new account C. If the

account exists but the AccountManager doesn’t have a password for it, we need to ask

the user for the password D. This can happen when the password gets invalidated. The

last case is when everything is in place, so we can continue to the MainActivity E.

69The SyncAdapter pattern

 The second situation is more complicated but will leave everything in place for the

last situation. To create a new account through the Accounts & Sync settings, we’ll

need to extend AbstractAccountAuthenticator.

 The AbstractAccountAuthenticator is a base class for creating account authenti-

cators. In order to provide an authenticator, we must extend this class, provide imple-

mentations for the abstract methods, and write a service that returns the result of

getIBinder() in the service’s onBind(android.content.Intent) method when

invoked with an Intent with action AccountManager.ACTION_AUTHENTICATOR_INTENT.

 We’ll extend the AbstractAccountAuthenticator with a class called Authentica-

tor. It’s OK to return null values from the methods we’re not going to use. The impor-

tant ones are addAcount() and getAuthToken(). The code follows:

public class Authenticator extends AbstractAccountAuthenticator {

private final Context mContext;

public Authenticator(Context context) {

super(context);

mContext = context;

}

@Override

public Bundle addAccount(AccountAuthenticatorResponse response,

String accountType, String authTokenType,
String[] requiredFeatures, Bundle options)

throws NetworkErrorException {

final Intent intent = new Intent(mContext,
AuthenticatorActivity.class);

intent.putExtra(AuthenticatorActivity.PARAM_AUTHTOKEN_TYPE,

authTokenType);
intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,

response);

final Bundle bundle = new Bundle();
bundle.putParcelable(AccountManager.KEY_INTENT, intent);

return bundle;

}

..

@Override

public Bundle getAuthToken(AccountAuthenticatorResponse response,
Account account, String authTokenType, Bundle options)

throws NetworkErrorException {

if (!authTokenType
.equals(AuthenticatorActivity.PARAM_AUTHTOKEN_TYPE)) {

B

Checks if
required
token is
the same

final Bundle result = new Bundle();

result.putString(AccountManager.KEY_ERROR_MESSAGE,
"invalid authTokenType");

return result;

}

final AccountManager am = AccountManager.get(mContext);

final String password = am.getPassword(account);

70 CHAPTER 5 Patterns

if (password != null) {

C
Gets a
password

boolean verified = false;

String loginResponse = null;

try {
loginResponse = LoginServiceImpl.sendCredentials(

account.name, password);

verified = LoginServiceImpl.hasLoggedIn(loginResponse);
} catch (AndroidHacksException e) {

verified = false;

}

if (verified) {
D Returns

the result

final Bundle result = new Bundle();

result.putString(AccountManager.KEY_ACCOUNT_NAME, account.name);
result.putString(AccountManager.KEY_ACCOUNT_TYPE,

AuthenticatorActivity.PARAM_ACCOUNT_TYPE);

return result;
}

}

final Intent intent = new Intent(mContext,

E Lets caller know
which activity to call
for user to sign in

AuthenticatorActivity.class);
intent.putExtra(AuthenticatorActivity.PARAM_USER, account.name);

intent.putExtra(AuthenticatorActivity.PARAM_AUTHTOKEN_TYPE,

authTokenType);
intent.putExtra(AccountManager.KEY_ACCOUNT_AUTHENTICATOR_RESPONSE,

response);

final Bundle bundle = new Bundle();
bundle.putParcelable(AccountManager.KEY_INTENT, intent);

return bundle;

}

The addAccount() method is straightforward. There

we prepare the Intent that the AccountManager will

use to create a new account. Let’s now investigate the

getAuthToken() method. This method will be called

when we need to log in to the server using the cre-

dentials inside the Account. We’ll first check if the

required token is the same as the one we handle B.

Afterward, we use the AccountManager to get a pass-

word. If there’s a password stored C, we sign in

against the server, and if it’s OK D, we return the

result. If we can’t sign in, we’ll return an Intent to let

the caller know which activity to call to let the user

sign in E. This happens when the password changes

or the credentials were revoked.

 The next class to create is AuthenticatorActivity.

This activity will be used to show the login form. You

can see how it looks in figure 23.3. Figure 23.3 Login form from

AuthenticatorActivity

71The SyncAdapter pattern

 The code is the following:

public class AuthenticatorActivity extends

AccountAuthenticatorActivity {

public static final String PARAM_ACCOUNT_TYPE =
"com.manning.androidhacks.hack023";

public static final String PARAM_AUTHTOKEN_TYPE = "authtokenType";

public static final String PARAM_USER = "user";
public static final String PARAM_CONFIRMCREDENTIALS =

"confirmCredentials";

private AccountManager mAccountManager;
private Thread mAuthThread;

private String mAuthToken;

private String mAuthTokenType;
private Boolean mConfirmCredentials = false;

private final Handler mHandler = new Handler();

protected boolean mRequestNewAccount = false;
private String mUser;

...

private void handleLogin(View view) {

if (mRequestNewAccount) {
mUsername = mUsernameEdit.getText().toString();

}

mPassword = mPasswordEdit.getText().toString();

if (TextUtils.isEmpty(mUsername) || TextUtils.isEmpty(mPassword)) {

mMessage.setText(getMessage());

}

showProgress();

mAuthThread = NetworkUtilities.attemptAuth(mUsername,

B Launches
thread that
will hit server

mPassword, mHandler, AuthenticatorActivity.this);
}

public void onAuthenticationResult(Boolean result) {

C
Returns result to
AuthenticatiorActivity

hideProgress();

if (result) {

if (!mConfirmCredentials) {

finishLogin();
}

} else {

mMessage.setText("User and/or password are incorrect");
}

}

private void finishLogin() {

D Calls
finishLogin()

final Account account = new Account(mUsername, PARAM_ACCOUNT_TYPE);

if (mRequestNewAccount) {

E
Sets a new
password

mAccountManager.addAccountExplicitly(account, mPassword, null);
} else {

mAccountManager.setPassword(account, mPassword);

}

final Intent intent = new Intent();

intent.putExtra(AccountManager.KEY_ACCOUNT_NAME, mUsername);

72 CHAPTER 5 Patterns

intent.putExtra(AccountManager.KEY_ACCOUNT_TYPE,
PARAM_ACCOUNT_TYPE);

if (mAuthTokenType != null

&& mAuthTokenType.equals(PARAM_AUTHTOKEN_TYPE)) {
intent.putExtra(AccountManager.KEY_AUTHTOKEN, mAuthToken);

}

setAccountAuthenticatorResult(intent.getExtras());

F
Sets the
result

setResult(RESULT_OK, intent);

finish();

}

...

}

When the user enters the login details and clicks OK, handleLogin() gets executed.

There we launch a thread that will hit the server B and return the result to the

AuthenticatorActivity in the onAuthenticationResult() method C. If the service

can authenticate correctly, we’ll call finishLogin() D, and if not we’ll show an error

and let the user try again. Inside finishLogin(), if the Request New Account flag is

set, we use the AccountManager to create an account. If the account exists, we’ll set a

new password E. Finally, we set the result that’s to be sent as the result of the request

that caused this activity to be launched F.

 The last step is modifying the AndroidManifest.xml to register the Service. We do

that by adding the following:

<service android:name=".authenticator.AuthenticationService"
android:exported="true">

<intent-filter>
B Returns an

Authenticator

<action android:name="android.accounts.AccountAuthenticator" />
</intent-filter>

<meta-data android:name="android.accounts.AccountAuthenticator"

android:resource="@xml/authenticator" />
C Additional information</service>

The android.accounts.AccountAuthenticator Intent filter will make the system

notice that this particular Service returns an Authenticator B. We’ll also need to give

additional information using a separate XML file C. In this example, the

authenticator XML contains the following:

<account-authenticator
xmlns:android="http://schemas.android.com/apk/res/android"

android:accountType="com.manning.androidhacks.hack023"

android:icon="@drawable/ic_launcher"
android:smallIcon="@drawable/ic_launcher"

android:label="@string/app_name"/>

The most important piece of information is the android:accountType. That means

that the Service will return an Authenticator to authenticate only accounts of type

73The SyncAdapter pattern

com.manning.androidhacks.hack023. The rest of the information we can place there

determines how the Accounts & Sync row will look.

23.2.5 Adding the SyncAdapter

The last step is to add a SyncAdapter. After so many pages, we still don’t know what it’s

for, so let’s try to understand how the SyncAdapter will add a happy ending to every-

thing we wrote so far.

 The SyncAdapter is a Service handled by Android that will use an Account to

authenticate to the server and a ContentProvider to sync data. When we finish cod-

ing it, the application will sync with the server without us telling it anything. The OS

will register it with every other SyncAdapter inside the device. The SyncAdapters run

one at a time to avoid making our internet connection choke. Isn’t it the best Android

feature you’ve used so far? Let’s learn how to code it.

 We first need to declare it in the AndroidManifest.xml:

<service android:name=".service.TodoSyncService"

android:exported="true">

<intent-filter>
<action android:name="android.content.SyncAdapter" />

B Defines the
android.content
.SyncAdapter

</intent-filter>

<meta-data android:name="android.content.SyncAdapter"
android:resource="@xml/todo_sync_adapter" /> Additional XMLC

</service>

Similar to the AuthenticationService, we define the android.content.SyncAdapter

action to let Android know that TodoSyncService is a SyncAdapter B. It also has

some additional XML C with the following information:

<sync-adapter xmlns:android="http://schemas.android.com/apk/res/android"
android:contentAuthority=

"com.manning.androidhacks.hack023.provider.TodoContentProvider"

android:accountType=
"com.manning.androidhacks.hack023" />

This means that the TodoSyncService will use the TodoContentProvider’s authority

and will need a com.manning.androidhacks.hack023 account type.

 The next step is to extend AbstractThreadedSyncAdapter. Following is the code:

public class TodoSyncAdapter extends AbstractThreadedSyncAdapter {

private final ContentResolver mContentResolver;
private AccountManager mAccountManager;

private final static TodoDAO mTodoDAO = TodoDAO.getInstance();

@Override
public void onPerformSync(Account account, Bundle extras,

String authority, ContentProviderClient provider,

SyncResult syncResult) {

try {

List<Todo> data = fetchData();

Gets every
TODO from
the server

B

syncRemoteDeleted(data);

Removes the
TODOs from the
local database

C

74 CHAPTER 5 Patterns

syncFromServerToLocalStorage(data);

D

Calls
syncFromServer-

ToLocalStorage

syncDirtyToServer(

mTodoDAO.getDirtyList(mContentResolver));

Gets every TODO from
database; either push a
new TODO to server
and update or delete

E

} catch (Exception e) {

handleException(e, syncResult);

}

}

...

private void handleException(Exception e,
SyncResult syncResult) {

F
How exceptions
are handledif (e instanceof AuthenticatorException) {

syncResult.stats.numParseExceptions++;
} else if (e instanceof IOException) {

syncResult.stats.numIoExceptions++;

...

}

}

When the onPerformSync() method gets called, we’re already in a background

thread. Here’s where we add the logic to sync with the server. In the next few lines, I’ll

explain a sync approach that works for me; it doesn’t mean you’re obliged to do it this

way.

 Do you remember what a row in the TODO table looked like? The TODO table has

the following columns:

 _id—Local ID.

 server_id—After syncing, every row will get the server’s ID.

 status_flag —The status can be CLEAN, MOD, ADD, DELETE.

 title —The text of the TODO.

When the sync starts, we first get every TODO from the server B. Note that if we have

lots of TODOs, we might need to use some sort of pagination. The next step is remov-

ing from the local database TODOs that are no longer in the server C. We do this by

getting a list of TODOs from our local database with the CLEAN flag set, and checking

whether a TODO is in the server’s list. If it’s not there, we can delete it from our local

database. After that, syncFromServerToLocalStorage is called D. There we’ll iterate

over the server’s TODOs. We can use the server_id to check whether it exists locally.

If it exists, we update it with the information from the server. If not, we create a new

one. The last step is syncDirtyToServer() E. In this case, we get every TODO from

the local database that’s dirty (not clean). There, depending on the status flag, we

push a new TODO to the server and update or delete.

 Note how the exceptions are handled F. Depending on the exception, we modify

the syncResult object. We do this to help the SyncManager decide when to call the

SyncAdapter again.

75The SyncAdapter pattern

 The final step is to wrap the SyncAdapter inside the TodoSyncService, which we

can do using the following code:

public class TodoSyncService extends Service {

private static final Object sSyncAdapterLock = new Object();
private static TodoSyncAdapter sSyncAdapter = null;

@Override

public void onCreate() {
synchronized (sSyncAdapterLock) {

if (sSyncAdapter == null) {

sSyncAdapter = new TodoSyncAdapter(
getApplicationContext(), true);

}

}
}

@Override

public IBinder onBind(Intent intent) {
return sSyncAdapter.getSyncAdapterBinder();

}

}

23.3 The bottom line

You might be thinking that using a SyncAdapter is a lot of work, but note how after

creating the model and the ContentProvider, everything got easier. Users can use the

application offline or online; they won’t notice the difference.

 Note that I didn’t explain anything about the server. For this example, I’ve coded a

small Python server using web.py. If you’re giving SyncAdapters a try, I recommend

you use something like StackMob. You’ll avoid wasting time coding the back end.

23.4 External links

http://developer.android.com/reference/android/os/AsyncTask.html

http://www.youtube.com/watch?feature=player_embedded&v=xHXn3Kg2IQE

http://android-developers.blogspot.com.ar/2009/05/painless-threading.html

http://logc.at/2011/11/08/the-hidden-pitfalls-of-asynctask/

http://developer.android.com/reference/android/content/

AbstractThreadedSyncAdapter.html

http://www.youtube.com/watch?v=xHXn3Kg2IQE&feature=youtu.be

http://developer.android.com/guide/topics/providers/content-provider-creating.html

http://naked-code.blogspot.com/2011/05/revenge-of-syncadapter-synchronizing.html

http://developer.android.com/reference/android/content/

AbstractThreadedSyncAdapter.html

https://www.stackmob.com/

http://developer.android.com/reference/android/os/AsyncTask.html
http://www.youtube.com/watch?feature=player_embedded&v=xHXn3Kg2IQE
http://android-developers.blogspot.com.ar/2009/05/painless-threading.html
http://logc.at/2011/11/08/the-hidden-pitfalls-of-asynctask/
http://developer.android.com/reference/android/content/AbstractThreadedSyncAdapter.html
http://www.youtube.com/watch?v=xHXn3Kg2IQE&feature=youtu.be
http://developer.android.com/guide/topics/providers/content-provider-creating.html
http://naked-code.blogspot.com/2011/05/revenge-of-syncadapter-synchronizing.html
http://developer.android.com/reference/android/content/AbstractThreadedSyncAdapter.html
https://www.stackmob.com/

77

Working with lists
and adapters

Lists and adapters are two of the main concepts to master in Android development.

In this chapter, you’ll learn several tips and tricks you can use with lists and adapters.

Hack 24 Handling empty lists
Android v1.6+

A common way to show data to the user in mobile platforms is to place it inside a list.

When you do this, you need to handle two cases: the ordinary list full of items and

an empty state. For the list, you’ll use a ListView, but how do you handle the empty

state? Fortunately, there’s an easy way to achieve this. Let’s look at how to do it.

ListView and other classes that extend AdapterView easily handle emptiness

through a method called setEmptyView(View). When the AdapterView needs to

draw, it’ll draw the empty view if its Adapter is null, or the adapter’s isEmpty()

method returns true.

 Let’s try an example. Imagine we want to create an application to handle our

TODO list. Our main screen will be a ListView with all our TODO items, but when

we launch it for the first time, it’ll be empty. For our empty state, we’ll draw a nice

image. Following is the XML layout:

78 CHAPTER 6 Working with lists and adapters

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<ListView android:id="@+id/list_view"

android:layout_width="fill_parent"

android:layout_height="fill_parent"/>

<ImageView android:id="@+id/empty_view"

android:layout_width="fill_parent"

android:layout_height="fill_parent"
android:src="@drawable/empty_view"/>

</FrameLayout>

The only thing missing is the onCreate() code, where we fetch the ListView and

place the ImageView as the empty view. The code to use is the following:

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);

ListView mListView = (ListView) findViewById(R.id.list_view);

mListView.setEmptyView(findViewById(R.id.empty_view));
}

Because we’re not setting an adapter to the ListView when we run this code, it’ll show

the ImageView.

24.1 The bottom line

I must admit that I was late to learn about this trick. I kept hiding my ListViews when

the adapter was empty. When you use the setEmpty(View) method, your code will be

more compact and easier to read.

 You can also try using a ViewStub as an empty view. Using a ViewStub as an empty

view will guarantee that the empty view isn’t inflated when it’s not needed.

24.2 External links

http://developer.android.com/reference/android/widget/ListView.html

Hack 25 Creating fast adapters with a ViewHolder
Android v1.6+

If you’ve already been programming in Android, you’ve probably used the Adapter

class. But for those of you who haven’t used the Adapter, it’s described in the Android

documentation (see section 25.2) as follows:

http://developer.android.com/reference/android/widget/ListView.html

79Creating fast adapters with a ViewHolder

An Adapter object acts as a bridge between an AdapterView and
the underlying data for that view. The Adapter provides access to
the data items. The Adapter is also responsible for making a View
for each item in the data set.

In this hack, I’ll provide a short introduction on how the Adapter works so you can

learn how to construct one quickly, making your application as responsive as possible.

 The AdapterView is the abstract class for views that use an Adapter to fill them-

selves. A common subclass is the ListView. Both classes work together in a simple way.

When the AdapterView is shown, it calls the Adapter’s getView() method to create

and add the views as children. The Adapter will take care of creating the views in its

getView() method. As you can imagine, instead of returning new views per row,

Android offers a way to recycle them. Let’s first look at how this works and then how to

take advantage of the recycling.

 In figure 25.1, we see a recycling example in action. In A we see the list loaded for

the first time. In B the user scrolls down and the view for Item 1 disappears—instead of

freeing the memory, it’s sent to the recycler. When the AdapterView asks the Adapter

for the next view, the getView() method is called and we get a recycled view in the

convertView parameter. This way if Item 5’s view is the same as Item 1’s view, we can

change the text and return it. The populated row will end in the empty space in C.

A. B. C.

Item1

Item2

Item3

Item4

Item5

Item6

Item7

Item2

Item1

Item1

Item8

Item3

Item4

Item5

Item6

Item7

Item2

Item3

Item4

Item5

Item6

Item8

View getView(int position,

View convertView,

ViewGroup parent)

Item7

Figure 25.1 Views being recycled by the Adapter

 To explain this in a few words, when getView() is called, if convertView isn’t null,

then we use convertView instead of creating a new view. We need to fetch each wid-

get’s reference using convertView.findViewById() and populate it with the informa-

tion from the model corresponding to the position.

80 CHAPTER 6 Working with lists and adapters

 Although this will work, we can tweak it further. To do so, we’ll use the ViewHolder

pattern. The ViewHolder is a static class where we can save the row’s widgets to avoid

the findViewById() calls every time getView() is called.

 Let’s see an example of how it’s used. In the example, we’ll create an Adapter that

inflates a view that has an ImageView and two TextViews. The code follows:

public View getView(int position, View convertView, ViewGroup parent) {

final ViewHolder viewHolder;

if (convertView == null) {

B

If convertView
is null,

inflate view

convertView = mInflater.inflate(R.layout.row_layout, parent, false);

viewHolder = new ViewHolder();

viewHolder.imageView = (ImageView)

convertView.findViewById(R.id.image);
C Fetch references

to widgets

viewHolder.text1 =
(TextView) convertView.findViewById(R.id.text1);

viewHolder.text2 =

(TextView) convertView.findViewById(R.id.text2);

convertView.setTag(viewHolder);

D
ViewHolder

saved as tag } else {

viewHolder = (ViewHolder) convertView.getTag();

E If convertView
isn’t null,
recycle it

}

Model model = getItem(position);

F

Get
model
object

viewHolder.imageView.setImageResource(model.getImage());

G
Populate
view

viewHolder.text1.setText(model.getText1());
viewHolder.text2.setText(model.getText2());

return convertView;

}

static class ViewHolder {

H
ViewHolder
class

public ImageView imageView;

public TextView text1;
public TextView text2;

}

If the convertView is null, then inflate the view B. When we create the view, we need

to fetch the references to the widgets and save them inside the ViewHolder C. The

ViewHolder gets saved as a tag D. If the convertView isn’t null, that means we can

recycle it. We can get the ViewHolder from the convertView’s tag E. Then we get the

model object, depending on the position F, and populate the view with information

from the model G. The ViewHolder class contains all of the widgets as public fields H.

25.1 The bottom line

Almost every Android application uses some sort of list or gallery to present data.

Because these kinds of widgets are subclasses of AdapterView, understanding how

AdapterView works and how it interacts with an adapter is critical to making your appli-

cation faster. The ViewHolder hack is an excellent way to achieve speed within lists.

81Adding section headers to a ListView

25.2 External links

http://developer.android.com/reference/android/widget/Adapter.html

http://developer.android.com/training/improving-layouts/smooth-scrolling.html

Hack 26 Adding section headers to a ListView
Android v1.6+
Contributed by Chris King

Imagine that you want to create a vacation-planning application that allows users to

browse a list of popular destinations organized by country. To present a long list of

data, you’ll want to include section information to help orient people within the list.

For example, contacts applications will often group users by the first letter of their last

name, and scheduling applications will group appointments by dates. You can accom-

plish this with a design similar to that used in the iPhone contacts screen, where a sec-

tion header scrolls with the list, with the current section’s header always visible at the

top of the screen. In figure 26.1, the highlighted letters are the section headers, and

the lists below them contain the countries whose name begins with those letters. What

you see in the figure is difficult to create in Android because ListView doesn’t have a

concept of a section or a section header, only of items

within the list.

 Android developers often try to solve this problem

by creating two types of list items: a regular item for

data, and a separate item for section headers. We can

do this by overriding the getViewTypeCount()

method to return 2, and modifying our getView()

method to create and return the appropriate type of

item. In practice, however, this will lead to messy

code. If our underlying list of data contains 20 items,

our adapter will need to contain anywhere from 21 to

40 items, depending on how many sections it con-

tains. This can lead to complicated code: the List-

View might want to show the 15th visible item, which

might be the 9th item in the underlying list.

 A much simpler approach is to embed the section

header within the list item, and then make it visible

or invisible as needed. This greatly simplifies the

logic for building the list and looking up items when
Figure 26.1 A sectioned list of

country names

http://developer.android.com/reference/android/widget/Adapter.html
http://developer.android.com/training/improving-layouts/smooth-scrolling.html

82 CHAPTER 6 Working with lists and adapters

the user makes a selection. We can create a special TextView that overlaps the top of

the list, and update it when the list scrolls a new section into view.

26.1 Creating list layouts

To create an experience like that shown in the previous figure, start by writing the fol-

lowing XML for the section header R, the third header shown in the previous image.

We’ll create this in a separate layout file so we can reuse it for headers that scroll with

the list and the stationary header at the top:

<?xml version="1.0" encoding="utf-8"?>

<TextView xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/header"

style="@android:style/TextAppearance.Small"

android:layout_width="fill_parent"
android:layout_height="wrap_content"

android:background="#0000ff" />

B Custom
background
color

The text has a custom background color B to distinguish it from regular text in the

list. Now, write the following XML for the screen, including the stationary section

header:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"

android:layout_height="fill_parent">

<ListView
android:id="@android:id/list"

B Uses standard
Android list ID

android:layout_width="fill_parent"

android:layout_height="fill_parent"/>

<include layout="@layout/header"/>

</FrameLayout>

The list B uses the standard Android list ID so we can use it in our subclass of List-

Activity. Include the header in this frame, so it will overlap the list and show the cur-

rent section.

 The last XML to create is the list item, which follows, and includes both the data

field and the section header:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="wrap_content">

<include layout="@layout/header"/>
B Visible sections

headers

<TextView

android:id="@+id/label"
style="@android:style/TextAppearance.Large"

android:layout_width="fill_parent"

android:layout_height="wrap_content"/>
C Shows data

for the slot

</LinearLayout>

83Adding section headers to a ListView

Our section header B will be visible for items that start a

new section, and are hidden otherwise. The label C will

always show the data for this slot. The relationships

between item, header, and label are shown in figure 26.2.

26.2 Providing visible section headers

Next, create an Adapter subclass that will configure the list items. Unlike other

approaches to creating a sectioned list, only getView() needs to be overridden; we

don’t need to return multiple types of views or convert between positions in the visible

list and positions in the underlying data list:

public class SectionAdapter extends ArrayAdapter<String> {

private Activity activity;

public SectionAdapter(Activity activity, String[] objects) {

super(activity, R.layout.list_item, R.id.label, bjects);

B

Provides
XML for
custom
views

this.activity = activity;

}

@Override

public View getView(int position, View view, ViewGroup parent) {

if (view == null) {
view = activity.getLayoutInflater().inflate(

R.layout.list_item, parent, false);

}
TextView header = (TextView) view.findViewById(R.id.header);

String label = getItem(position);

if (position == 0

Checks if item
starts with a
different letter
than preceding
item

C

|| getItem(position - 1).charAt(0) != label.charAt(0)) {

header.setVisibility(View.VISIBLE);

D

Labels
section
header

header.setText(label.substring(0, 1));
} else {

header.setVisibility(View.GONE);
E Hides section

header

}
return super.getView(position, view, parent);

}

}

The ArrayAdapter parent class can do most of the work if we provide B the XML for

its custom views. After creating a list item, check to see whether it starts with a differ-

ent letter than the preceding item C. If it does, then it’s the first item in this section,

and so we label the section header and make it visible D. Otherwise, we hide it E.

 Now that the section headers within the list are properly set, write a helper method

that will configure the floating section header at the top of the screen:

private TextView topHeader; B Accesses section header

...

private void setTopHeader(int pos) {
final String text = Countries.COUNTRIES[pos].substring(0, 1);

Figure 26.2 List items with

label and optional header

84 CHAPTER 6 Working with lists and adapters

topHeader.setText(text); C Updates text
}

The instance variable B lets us access the section header at the top of the screen.

When we initially create or scroll the list, we’ll call this helper method, which finds the

appropriate letter to use for this section and updates the text C.

26.3 Wrapping up

Finally, bring it all together in the Activity’s onCreate() method. Configure the list

and attach a new listener that updates the header when the list scrolls:

private int topVisiblePosition;
...

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.list);

B Attaches a
scroll listener

topHeader = (TextView) findViewById(R.id.top);

setListAdapter(new SectionAdapter(this, Countries.COUNTRIES));
getListView().setOnScrollListener(new AbsListView.OnScrollListener() {

@Override

public void onScrollStateChanged(AbsListView view,

int scrollState) {
// Empty.

}

@Override
public void onScroll(AbsListView view, int firstVisibleItem,

int visibleItemCount, int totalItemCount) {

if (firstVisibleItem != topVisiblePosition) {
topVisiblePosition = firstVisibleItem;

setTopHeader(firstVisibleItem);
C Invokes the

helper method

}
}

});

setTopHeader(0);

D Initializes first
header to the
first item

}

After configuring the UI B, attach a scroll listener. When users scroll the list, check to

see whether they’ve changed position, and if so, invoke the helper method C to

update the floating header. Make sure to initialize the header to the first item D when

the list first appears.

26.4 The bottom line

Even though ListView doesn’t automatically support section headers, you can easily

add them by embedding the headers within your list items and making them visible or

hidden as appropriate. Although this hack’s example applies to an alphabetized list,

the same approach can work for any type of sectioned grouping you’d like to create.

26.5 External links

http://developer.android.com/reference/android/widget/ListView.html

http://developer.android.com/reference/android/widget/BaseAdapter.html

http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/BaseAdapter.html

85Communicating with an Adapter using an Activity and a delegate

Hack 27 Communicating with an Adapter using
an Activity and a delegate
Android v1.6+

A lot of Android widgets use an Adapter to populate themselves. Every Android wid-

get that uses an undefined list of views will have an Adapter to fetch them. This means

that after you learn how to use one, you’ll be able to operate a wide range of widgets

easily. One benefit of this approach is that you can place all of the code related to the

visual logic inside the Adapter. Why is this important? Because you can apply the con-

cept of separation of concerns (SoC). Imagine that you need to show a list of tele-

phone numbers with two different clickable widgets inside each row—the first one to

remove the telephone number from the list, and the second one to make the call.

Where would you place all of those click handlers?

 In this hack, we’ll look at how to solve this problem using the Delegation pattern.

This pattern will help us to move all of the business logic away from the Adapter and

place it inside the Activity. We’ll create a simple application that adds numbers to a

list and each row will have a Remove button to remove the phone number.

 The idea is simple: we’ll add the Remove button click handler in the Adapter, but

instead of removing the object there, we’ll call an Activity’s method through the del-

egate interface. The first thing we’ll create is the Adapter’s code:

public class NumbersAdapter extends ArrayAdapter<Integer> {

public static interface NumbersAdapterDelegate {

B

Defines
delegate
interface

void removeItem(Integer value);
}

private LayoutInflater mInflator;

private NumbersAdapterDelegate mDelegate;

public NumbersAdapter(Context context, List<Integer> objects) {

super(context, 0, objects);

mInflator = LayoutInflater.from(context);
}

@Override

public View getView(int position, View cv, ViewGroup parent) {

if (null == cv) {

cv = mInflator.inflate(R.layout.number_row, parent, false);

}

final Integer value = getItem(position);

TextView tv = (TextView) cv.findViewById(R.id.numbers_row_text);

tv.setText(value.toString());

View button = cv.findViewById(R.id.numbers_row_button);

button.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

86 CHAPTER 6 Working with lists and adapters

if (null != mDelegate) {

C
Removes
objects

mDelegate.removeItem(value);
}

}
});

return cv;
}

public void setDelegate(NumbersAdapterDelegate delegate) {

D

Sets as the
Adapter
delegate

mDelegate = delegate;
}

}

We define the delegate interface B that will be used to handle removing the object

C. The Activity will need a way to set itself as the Adapter delegate, and for that we

have a setter D.

 Now that we have the Adapter in place, let’s take a look at the Activity code:

public class MainActivity extends Activity implements
NumbersAdapterDelegate {

B

Implements
NumberAdapterDelegate
interface

private ListView mListView;
private ArrayList<Integer> mNumbers;
private NumbersAdapter mAdapter;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mListView = (ListView) findViewById(R.id.main_listview);
mNumbers = new ArrayList<Integer>();
mAdapter = new NumbersAdapter(this, mNumbers);
mListView.setAdapter(mAdapter);

}

@Override
protected void onResume() {

super.onResume();
mAdapter.setDelegate(this);

C

Registers on the
onResume()
method

}

@Override
protected void onPause() {

super.onPause();
mAdapter.setDelegate(null);

D

Unregisters in
the onPause()
method

}

@Override
public void removeItem(Integer value) {

E

Removes element from
list and notifies Adapter
of the change

mNumbers.remove(value);
mAdapter.notifyDataSetChanged();

}
}

As you can see, the Activity implements the NumbersAdapterDelegate interface B.

Instead of setting the Activity as the Adapter’s delegate inside the onCreate()

87Taking advantage of ListView’s header

method, we register it in the onResume() method C and unregister it in the

onPause() method D. We do this to be sure that the Activity is used as delegate

when it’s shown in the screen. You can look at the delegate method E, which removes

the element from the list and notifies the Adapter of the change.

27.1 The bottom line

The Delegation pattern is used a lot in iOS development. For instance, when you cre-

ate an HTTP request, you can set a delegate to determine what to do when the request

is finished. While coding for an iPhone application, I noticed that using the delegate

organized my code.

 This example is only the tip of the iceberg. The Delegation pattern can be used in

lots of places in Android development. For example, you can also use Delegation to

take actions depending on an HTTP request. Keep in mind that it exists and use it

when it makes sense.

27.2 External links

http://en.wikipedia.org/wiki/Separation_of_concerns

http://en.wikipedia.org/wiki/Delegation_pattern

Hack 28 Taking advantage of ListView’s header
Android v1.6+

Sometimes as developers we need to achieve weird

layouts based on a designer’s wireframes. Some

months ago, I was involved with a project where the

wireframes had an image gallery on top and a list of

items on the bottom. It sounds simple—I placed an

Android Gallery and a ListView below it—but when

the designer saw the application running he came to

me and said, “I’d like to be able to scroll down to the

point where the gallery disappears.”

 In this hack, I’ll show how I created what the

designer wanted: a gallery of images and a list of num-

bers where you can scroll down until the gallery dis-

appears. The finished application can be seen in

figure 28.1.

 To do this kind of layout, you might be tempted to

place the Gallery and ListView inside a ScrollView, Figure 28.1 Demo application

http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Delegation_pattern

88 CHAPTER 6 Working with lists and adapters

but this wouldn’t work because a ListView is already a ScrollView. You can try it out,

but you’ll run into issues because the ListView already handles scrolling.

 Fortunately, the ListView provides methods to add custom headers and footers to

it. Let’s look at the following code to see how to use those methods to place the

Gallery as a ListView’s header:

public class MainActivity extends Activity {

private static final String[] NUMBERS = {"1", "2", "3", "4",
"5", "6", "7", "8"};

private Gallery mGallery;

private View mHeader;
private ListView mListView;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mListView = (ListView) findViewById(R.id.main_listview);
B References

the ListView

LayoutInflater inflator = LayoutInflater.from(this);

C

Creates
different XML

file that needs
to be inflated

mHeader = inflator.inflate(R.layout.header, mListView, false);

mGallery = (Gallery) mHeader.findViewById(R.id.gallery);

mGallery.setAdapter(new ImageAdapter(this));

ListView.LayoutParams params =

D

Replaces
original

LayoutParams
from header

new ListView.LayoutParams(ListView.LayoutParams.FILL_PARENT,

ListView.LayoutParams.WRAP_CONTENT);
mHeader.setLayoutParams(params);

mListView.addHeaderView(mHeader, null, false);
E Adds the whole header

view to ListView

ArrayAdapter<String> adapter =

F

Sets the
adapter to

ListView

new ArrayAdapter<String>(this, R.layout.list_item, NUMBERS);

mListView.setAdapter(adapter);

mListView.setOnItemClickListener(
new OnItemClickListener() {

G Adds an
onItemClick listener

@Override

public void onItemClick(AdapterView<?> parent, View view,
int position, long id) {

mGallery.setSelection(position-1);

}
});

}

}

The code provides a reference to the ListView B. This ListView will take the whole

screen. For the header, we created a different XML file that needs to get inflated C.

You can see that we make a second call to findViewById() inside the header view

because we created a LinearLayout with the Gallery inside. It’s not needed, but we

might add something else in the future. We replace the original LayoutParams from

the header with the ListView version D and then add the whole header view to the

ListView E. After setting the header, we set the adapter to the ListView F and,

89Handling orientation changes inside a ViewPager

finally, we add an onItemClick listener G that will take care of scrolling the images

inside the gallery every time we hover over a number.

28.1 The bottom line

Translating wireframes to real applications is hard—even more so when designers

don’t know about the platform limitations or its possibilities. The developer might

end up hacking Android’s code to make it as similar as possible. My best advice for

this kind of situation is to try to get a good understanding of the framework and take

it to the limit.

28.2 External links

http://developer.android.com/reference/android/widget/ListView.html

http://groups.google.com/group/android-beginners/browse_thread/thread/
2d1a4b8063b2d8f7

Hack 29 Handling orientation changes inside
a ViewPager
Android v1.6+

With the release of Compatibility Package revision 3, the ViewPager class was made

available. If you’ve never used the ViewPager class, you should know it’s an implemen-

tation of a horizontal view swiper. What’s possible with the ViewPager class? You can

create any kind of application that requires paginated views. The best part is that it

works like an AdapterView, meaning that you use it as you’d use a ListView —simple.

 Imagine you want to create a magazine-like application. Although the ViewPager

class is an excellent ally to help you achieve this, it’s hard to handle different orienta-

tion changes depending on the page. In this hack I’ll show you how to use the View-

Pager class and configure everything to make it work correctly.

 For this hack, we’ll create a color viewer application. We’ll be able to swipe

through colors and every page where (index % 2) == 0 will have a landscape version

available. To create this we’ll need the following:

 An Activity that will hold the ViewPager and control the orientation changes

 A ColorFragment class that will show a color and some text in the middle of the

screen

 A ColorAdapter class that will be in charge of creating the fragments and

telling the Activity which fragment will be able to change the orientation

configuration

 A ViewPager that will use the ColorAdapter to display our fragments

http://developer.android.com/reference/android/widget/ListView.html
http://groups.google.com/group/android-beginners/browse_thread/thread/2d1a4b8063b2d8f7

90 CHAPTER 6 Working with lists and adapters

Let’s look at the Activity code to see how to do this:

public class MainActivity extends FragmentActivity {

private ViewPager mViewPager;

private ColorAdapter mAdapter;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setRequestedOrientation(

ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
B Sets the default

orientation

setContentView(R.layout.main);

mViewPager = (ViewPager) findViewById(R.id.pager);

C
Reference to
the ViewPager

mAdapter = new ColorAdapter(getSupportFragmentManager());

mViewPager.setAdapter(mAdapter);

mViewPager.setOnPageChangeListener(new OnPageChangeListener() {

@Override

public void onPageSelected(int position) {

D
Adds a
listener

if (mAdapter.usesLandscape(position)) {
allowOrientationChanges();

} else {

enforcePortrait();
}

}

...
});

}

public void allowOrientationChanges() {
E Makes the

methods

setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_SENSOR);

}

public void enforcePortrait() {
setRequestedOrientation(ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);

}

}

The first thing to do is set the default orientation to portrait B. This means that if the

view doesn’t specify whether it allows orientation changes, it’ll stay portrait. The code

provides a reference to the ViewPager C, and we’ll set the ColorAdapter to it. Add a

listener D when the page is changed, and inside it ask the Adapter whether to allow

orientation changes. Finally, make the methods E that take care of enabling or dis-

abling the orientation changes using the setRequestedOrientation() method that

comes from the Activity.

29.1 The bottom line

The ViewPager class brought a standardized implementation of a horizontal view

swiper to Android, and the best thing is that it’s backward compatible to API level 4,

which is Android 1.6. If you’ve never used it, try it out; it’s a nice tool to have.

91ListView’s choiceMode

 On the other hand, in this hack you saw how to limit orientation changes in your

views. Remember that it’s always better to support both orientations for every view.

Your users will appreciate it if you allow them to position the device in different ways

when using your application.

29.2 External links

http://android-developers.blogspot.com/2011/08/horizontal-view-swiping-with-view-
pager.html

http://developer.android.com/sdk/compatibility-library.html

Hack 30 ListView’s choiceMode
Android v1.6+

Android’s ListView is one of the most important classes in the SDK. Apart from show-

ing items in a scrollable list, it can also be used to pick stuff from that list. Imagine you

need to create an Activity to let your user pick a country from a list. How would you

do it? Would you handle the selection yourself? You could create a ListView and han-

dle the selection yourself using click handlers, but in this hack I’ll provide a better way

to do it.

 In this hack, you’ll learn how to use a ListView to

create a country picker. An example of this picker is

shown in figure 30.1. When a country row is selected

and you click on the Pick Country button, a Toast

will be shown with the country name.

 The ListView has something called choiceMode.

In the documentation (see section 30.2), you’ll see

the following explanation:

Defines the choice behavior for the view. By
default, lists do not have any choice behavior.
By setting the choiceMode to singleChoice, the
list allows up to one item to be in a chosen state.
By setting the choiceMode to multipleChoice,
the list allows any number of items to be
chosen.

In this case, we’ll use singleChoice as the choice-

Mode, but if we wanted to pick several items from the

list we’d use multipleChoice.
Figure 30.1 Country picker

http://android-developers.blogspot.com/2011/08/horizontal-view-swiping-with-viewpager.html
http://developer.android.com/sdk/compatibility-library.html

92 CHAPTER 6 Working with lists and adapters

 Another interesting feature of the ListView widget is that whether we use single-

Choice or multipleChoice, they automatically save the selected position(s). You

already know that the ListView will help us create the picker by setting the choice-

Mode to singleChoice. Let’s create the Activity’s layout:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:orientation="vertical" >

<Button
android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:onClick="onPickCountryClick"
android:text="@string/activity_main_add_selection" />

B Uses a
Button to
execute the
method

<ListView

android:id="@+id/activity_main_list"
android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:choiceMode="singleChoice" />
C Shows the

country list

</LinearLayout>

The layout is simple. We’ll use a Button B to execute the method that handles the

logic of retrieving the selected country, and a ListView with singleChoice C to show

the country list.

 Now let’s create the custom row layout and the Activity source code. The row lay-

out will use the following code:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"

android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:orientation="horizontal" >

<TextView

android:id="@+id/country_view_title"
android:layout_width="0dp"

android:layout_height="wrap_content"

android:layout_weight="0.9"
android:padding="10dp" />

<CheckBox

android:id="@+id/country_view_checkbox"
android:layout_width="0dp"

android:layout_height="wrap_content"

android:layout_weight="0.1"
android:gravity="center_vertical"

android:padding="10dp" />

</LinearLayout>

The Activity will have the following code:

93ListView’s choiceMode

public class MainActivity extends Activity {
private ListView mListView;

private CountryAdapter mAdapter;

private List<Country> mCountries;
private String mToastFmt;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

createCountriesList();

Helper method
to populate list
of countries

mToastFmt = getString(R.string.activity_main_toast_fmt);

mAdapter = new CountryAdapter(this, -1, mCountries);

mListView = (ListView)
findViewById(R.id.activity_main_list);

Create an
Adapter and set
it to ListView

mListView.setAdapter(mAdapter);

}

public void onPickCountryClick(View v) {

int pos = mListView.getCheckedItemPosition();

if (ListView.INVALID_POSITION != pos) {

If something is selected,
show a Toast with
country name

String msg = String.format(mToastFmt, mCountries.get(pos)
.getName());

Toast.makeText(this, msg, Toast.LENGTH_SHORT).show();

}
}

}

Sounds simple so far, right? It is, but there’s a trick to using it. We need to understand

how the ListView sets a position to be checked or not to use it correctly.

 If you stop reading this and search the web looking for code samples about the

ListView’s choiceMode, you’ll notice that most of the results use a class called

CheckedTextView for the row view, instead of a custom view as we did. If you look for

the source code of that class, you’ll notice that it’s an extension of the TextView class,

which implements the Checkable interface.

 So the ListView is somehow using the Checkable interface to handle the view

state. If you browse the ListView source code, you’ll find the following:

if (mChoiceMode != CHOICE_MODE_NONE && mCheckStates != null) {
if (child instanceof Checkable) {

((Checkable) child).setChecked(mCheckStates.get(position));

}
}

We need to make our custom row implement the Checkable interface if we want the

ListView to handle the selection. Unfortunately, this is only possible when creating a

custom view. Let’s create a class called CountryView. The code is the following:

public class CountryView extends LinearLayout

implements Checkable {

private TextView mTitle;

94 CHAPTER 6 Working with lists and adapters

private CheckBox mCheckBox;

public CountryView(Context context, AttributeSet attrs) {

super(context, attrs);

LayoutInflater inflater = LayoutInflater.from(context);
Inflate

the
layout

View v = inflater.inflate(R.layout.country_view, this, true);

mTitle = (TextView) v.findViewById(R.id.country_view_title);

mCheckBox = (CheckBox) v.findViewById(R.id.country_view_checkbox);
}

public void setTitle(String title) {

mTitle.setText(title);
}

@Override

public boolean isChecked() {

Override all the
Checkable
methods

return mCheckBox.isChecked();

}

@Override
public void setChecked(boolean checked) {

mCheckBox.setChecked(checked);

}

@Override
public void toggle() {

mCheckBox.toggle();

}
}

Notice how the Checkable interface methods are implemented. Every method calls

the mCheckBox implementation. This means that when the ListView wants to select a

row it will call the CountryView’s setChecked() method.

 Everything is set. We can now run the application. You’ll notice that when you click

on a row, the CheckBox won’t be ticked, but if you click over the CheckBox it is. You

might also be able to check a row and when you scroll, you might see rows getting

selected. What’s wrong?

 The issue is that we’re adding a focusable widget, the CheckBox. The best way to solve

this is to disallow the CheckBox to gain focus. And, because the ListView is the one that

decides what should and shouldn’t be checked, we’ll also remove the CheckBox possi-

bility of getting clicks. We do this by adding the following attributes to the XML:

android:clickable="false"

android:focusable="false"

android:focusableInTouchMode="false"

If we run the application now with this modification, everything will work as we’d

expect.

30.1 The bottom line

This hack solves another issue brought on by the lack of Android documentation.

Using the ListView’s choiceMode correctly requires reading the SDK source code, but

95ListView’s choiceMode

when you understand how it works, it’s a great feature to use when you need to pick

one or several items from a list.

30.2 External links

http://developer.android.com/reference/android/widget/

AbsListView.html#attr_android:choiceMode

http://stackoverflow.com/questions/5612600/

listview-with-choice-mode-multiple-using-checkedtext-in-a-custom-view

http://developer.android.com/reference/android/widget/AbsListView.html#attr_android:choiceMode

97

Useful libraries

In this chapter, we’ll cover two third-party libraries. The first one lets you use aspect-

oriented programming inside an Android application. The second is a game frame-

work. We’ll walk through what’s possible when you add them to your application.

Hack 31 Aspect-oriented programming in Android
Android v1.6+

Have you ever tried to add analytics, ads, and logs to an Android Activity? If you

have, you know that your class can get polluted with a lot of code that has nothing

to do with your Activity’s logic. In this hack, you’ll see how to solve this issue

using aspect-oriented programming (AOP). As an example, we’ll add a log state-

ment to the Activity’s onCreate() method using AOP to make sure that the

Activity doesn’t get polluted.

 Aspect-oriented programming is a programming paradigm that aims to increase

modularity by allowing the separation of cross-cutting concerns. Here’s a basic idea

of how all of this works: we specify our cross-cutting concerns in a separated mod-

ule (aspect), and we place the code that we want to be executed (either before or

after our cross-cutting concern) in the separate module or modules. Figure 31.1

illustrates this concept.

OOP

Logic

Logic

Logging

Logic

Security

Logic

Logging

Logic

Logic

OOP + AOP

Logic Logging Security

Activity Aspects

+

Activity

Figure 31.1 AOP modularity

98 CHAPTER 7 Useful libraries

Inside Android, AOP can be implemented using a library called AspectJ. Since

Android doesn’t support bytecode generation, we can’t use all the AspectJ features.

One AspectJ feature that works in Android is called compile-time weaving. To under-

stand how this works, you first need to understand when it happens. AspectJ will mod-

ify our code after it’s compiled to bytecode and before it’s converted to dex. There it’ll

take care of adding the additional code to our cross-cutting concerns. See figure 31.2.

Activity

Compiler

Activity Aspect

Figure 31.2 Building with AOP

99Aspect-oriented programming in Android

To make AOP work, we’ll need to modify the build procedure. In this case, we’ll use

Apache Maven because then we only need to add some dependencies to a pom.xml,

and a build plugin makes everything extremely simple.

 The Apache Maven plugin we’ll use is called aspectj-maven-plugin.

 Let’s take a look at the aspectj-maven-plugin configuration inside the pom.xml

build section:

<plugin>
<groupId>org.codehaus.mojo</groupId>

<artifactId>aspectj-maven-plugin</artifactId>

<version>1.4</version>
<configuration>

<source>1.5</source>

<complianceLevel>1.5</complianceLevel>
<showWeaveInfo>true</showWeaveInfo> B showWeaveInfo on
<verbose>true</verbose> C verbose on

</configuration>
<executions>

<execution>

<goals>

<goal>compile</goal> D goal is set to compile
</goals>

</execution>

</executions>
</plugin>

While developing aspects, turn the showWeaveInfo B and verbose C flags on. This will

log information about the weaving process, helping us understand how everything gets

applied. Using compile D as goal tells the plugin to weave all the main classes. If we

need to weave our test classes as well, we’ll need to add <goal>test-compile</goal>.

 Because we didn’t specify a path for the code, the AspectJ plugin will look for files

inside the src/main/ directory. There we’ll create a java directory for the Java source

code and an aspect folder for the aspects.

 We’ve configured everything to start using AspectJ in our project. Because we want

to clean our Activity from logs, we’ll now create a log aspect. We have two possibili-

ties for creating an aspect: the AspectJ language syntax and the @AspectJ annotation

style. The big difference is that the language syntax should be easier to write aspects

in, since it was purposefully designed for that, whereas the annotation style follows

regular Java compilation. Because we’re not doing something huge and our aspect is

simple, we’ll use the annotation style.

 Inside the aspect folder is a file, LogAspect.java, that describes the aspect:

@Aspect B AspectJ annotation
public class LogAspect {

@Pointcut("within(com.manning.androidhacks.hack031.MainActivity)")

private void mainActivity() {

C Pointcut for our Activity}

@Pointcut("execution(* onCreate(..))")

D
Pointcut for the
onCreate() method

100 CHAPTER 7 Useful libraries

private void onCreate() {
}

@AfterReturning(pointcut = "mainActivity() && onCreate()")

E
Pointcuts
get mixed

public void logAfterOnCreateOnMainActivity() {
Log.d("TAG", "OnCreate() has been called!"); F Advice to run

}

}

If you haven’t used AspectJ, here’s a small reference for understanding the code:

 A join point is a well-defined point in the program flow.

 A pointcut picks out certain join points and values at those points.

 A piece of advice is code that’s executed when a join point is reached.

Because we chose to use the annotation style, we’ll need to annotate the class with

@Aspect B. The first two methods from the class are annotated with @Pointcut. In

this example, the first one creates a pointcut for our MainActivity C class and the

second one for any method that is called onCreate() D. The third method is an

advice. Because we’ve annotated it with @AfterReturning, the advice runs when the

matched method execution returns normally. Note how the mainActivity() and

onCreate pointcuts are mixed with an && E. When you reach that join point, the

advice code will get executed F.

 There’s more than one way to describe a join point. In the example, we mix two

pointcuts, but you can easily find other ways of doing the same thing. Depending on

what you want to achieve, you’ll need to start playing with pointcuts and advices.

31.1 The bottom line

In this example, you saw how to use AspectJ’s compile-time weaving to add logs to a

method call inside an Activity, but imagine what’s possible. Don’t limit yourself to

thinking that AOP is a way of moving lines of code to a different class. Go though

your application design and analyze how this approach could improve your code

modularity.

31.2 External links

http://en.wikipedia.org/wiki/Aspect-oriented_programming

http://eclipse.org/aspectj/doc/released/faq.php

http://mojo.codehaus.org/aspectj-maven-plugin/

http://williamd1618.blogspot.com/2011/04/

android-and-aspect-oriented-programming.html

www.eclipse.org/aspectj/doc/next/progguide/starting-aspectj.html

http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://eclipse.org/aspectj/doc/released/faq.php
http://mojo.codehaus.org/aspectj-maven-plugin/
http://williamd1618.blogspot.com/2011/04/android-and-aspect-oriented-programming.html
www.eclipse.org/aspectj/doc/next/progguide/starting-aspectj.html

101Empowering your application using Cocos2d-x

Hack 32 Empowering your application
using Cocos2d-x
Android v2.2+

Android provides different ways to present your application information to the user,

but sometimes these might be insufficient. Imagine you want to add a graph view or a

3D animation to your application. How would you do that? Some developers might try

using OpenGL for their views, but this means adding a layer of complexity, and not

everyone knows how to code OpenGL.

 In this hack, I’ll show you to how use the game framework called Cocos2d-x to add

an edge to your applications.

32.1 What is Cocos2d-x?

Cocos2d started as a Python game framework to be used in a competition called

PyWeek. The name comes from a city in Córdoba, Argentina, called Los Cocos. Later

on, Ricardo Quesada, one of the creators of Cocos2d, ported it to Objective-C and

Cocos2d for iPhone was born. Cocos2d for iPhone is better known that the Python ver-

sion and is used in a bunch of games in the Apple App Store. Did you ever play Zom-

bie Smash! or Feed me Oil? These are examples of Cocos2d for iPhone games that

reached number one in the top paid iPhone apps chart.

 Cocos2d-x is a C++ port of the Cocos2d for iPhone

game engine. It’s a multiplatform, lightweight, devel-

oper-friendly, free, open source project and—guess

what—it works in Android using the Android NDK.

32.2 Using Cocos2d-x

To show you what Cocos2d-x is capable of, we’ll cre-

ate a normal Android application and we’ll make it

snow. Using a particle system, we’ll add a chilling

visual effect to our view. The finished work can be

seen in figure 32.1.

 For starters, you should understand that Cocos2d-x

uses OpenGL to draw everything. In Android, to draw

OpenGL, the developer will need to use a Surface-

View. Let’s see how the SurfaceView works to under-

stand how Cocos2d-x will get mixed into our

application.

 In the SurfaceView documentation (see section

32.4) we can read the following:
Figure 32.1 Application with a

make-it-snow effect

102 CHAPTER 7 Useful libraries

The SurfaceView is a special subclass of View that offers a dedicated
drawing surface within the View hierarchy. The aim is to offer this
drawing surface to an application’s secondary thread, so that the
application isn’t required to wait until the system’s View hierarchy is
ready to draw. Instead, a secondary thread that has reference to a
SurfaceView can draw to its own Canvas at its own pace.

The last paragraph holds a lots of important information, so let me try to explain it in

an easier way. Every time we add a widget or a custom view to our application, it gets

added to the view hierarchy. Our complete tree of views (which forms our Activity)

gets drawn in what’s called the UI thread. On the other hand, the SurfaceView gets its

own thread to draw and it won’t use the UI thread. If the SurfaceView doesn’t use the

UI thread to draw itself, how does Android deal with the mixture of the view hierarchy

and surface views? To understand this, we must analyze the following paragraph (see

section 32.4):

The surface is Z ordered so that it is behind the window holding its
SurfaceView; the SurfaceView punches a hole in its window to
allow its surface to be displayed. The view hierarchy will take care
of correctly compositing with the Surface any siblings of the
SurfaceView that would normally appear on top of it. This can be
used to place overlays such as buttons on top of the Surface,
though note however that it can have an impact on performance
since a full alpha-blended composite will be performed each time
the Surface changes.

The big conclusion we can get from this last paragraph is that we can mix both worlds

but with certain restrictions. The SurfaceView will be placed in front of or in back of

our view hierarchy. In our example, we’ll have our view hierarchy in the back and will

place the SurfaceView in front of it. So let’s get started creating our view hierarchy first.

 We’ll first create the XML for our Activity. Here’s the code:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent" >

<TextView android:id="@+id/winter_text"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_alignParentTop="true"
android:layout_marginTop="5dp"
android:gravity="center"
android:text="Hello Winter!"
android:textSize="30sp" />

<View android:id="@+id/separator"
android:layout_width="fill_parent"
android:layout_height="5dp"
android:layout_below="@id/winter_text"

103Empowering your application using Cocos2d-x

android:background="#FFFFFF" />

<TextView android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:layout_centerInParent="true"
android:layout_marginTop="5dp"
android:gravity="center"
android:text="It's snowing!"
android:textSize="30sp" />

<FrameLayout android:layout_width="fill_parent" B FrameLayout
android:layout_height="fill_parent"
android:layout_below="@id/separator">

<org.cocos2dx.lib.Cocos2dxEditText
android:id="@+id/game_edittext"

C Creates an
org.coco2dx.lib
.Cocos2dxEditText

android:layout_height="wrap_content"
android:layout_width="fill_parent"
android:background="@null"/>

<org.cocos2dx.lib.Cocos2dxGLSurfaceView

D Places
SurfaceView
inside the XML

android:id="@+id/game_gl_surfaceview"
android:layout_width="fill_parent"
android:layout_height="fill_parent"/>

</FrameLayout>
</RelativeLayout>

The layout has nothing special in it. I’ve organized the different views using a Rela-

tiveLayout. The interesting stuff is inside the FrameLayout B. We can first see how

an org.cocos2dx.lib.Cocos2dxEditText is created C. The Cocos2dxEditText is

needed by Cocos2d-x to show the keyboard when the game demands text input from

the user. It’s not something that we’ll use, but it’s required. The other important ele-

ment is the SurfaceView D. Placing the SurfaceView inside the XML offers an

unique way of positioning and providing a width and height to our Cocos2d-x’s view.

We could’ve used the whole screen, but I wanted to show you how we can use Android

resources to place the SurfaceView on the screen without worrying about device sizes,

pixel density, and so on.

 Let’s continue with the Activity’s code. It’s just copied and pasted from the

Cocos2d-x Hello World sample application. Here’s what it does:

public class MainActivity extends Cocos2dxActivity {

B
Extends
Cocos2dxActivity

private Cocos2dxGLSurfaceView mGLView;

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

if (detectOpenGLES20()) {
String packageName = getApplication().getPackageName();

C Tells Cocos2d-x
our application
package

super.setPackageName(packageName);

setContentView(R.layout.game_demo);
mGLView = (Cocos2dxGLSurfaceView)

findViewById(R.id.game_gl_surfaceview);

D Informs
Cocos2d-x where
Cocos2dxEditText is

Cocos2dxEditText edittext = (Cocos2dxEditText)
findViewById(R.id.game_edittext);

mGLView.setEGLContextClientVersion(2);

104 CHAPTER 7 Useful libraries

mGLView.setCocos2dxRenderer(new Cocos2dxRenderer());
mGLView.setTextField(edittext);

} else {
Log.d("activity", "do not support gles2.0");

finish(); B Closes the app
}

}

}

To use Cocos2d-x features in our Activity, we need to extend Cocos2dxActivity B.

We tell Cocos2d-x our application package C. Cocos2d-x will use that package to read

assets from the Assets folder. We also inform Cocos2d-x where the Cocos2dxEditText

is D. If the device we’re running doesn’t support OpenGL 2.0, then we need to close

the app E.

 We’ll also take the liberty of modifying Cocos2d-x’s Java code to place the

SurfaceView on top of the view hierarchy and make its background translucent. To

do so, we add the following lines in the initView() method of the Cocos2dxGL-

SurfaceView class:

setEGLConfigChooser(8, 8, 8, 8, 16, 0);
getHolder().setFormat(PixelFormat.TRANSLUCENT);
setZOrderOnTop(true);

Also add the following line in the onSurfaceCreated() method of the

Cocos2dxRenderer class:

gl.glClearColor(0, 0, 0, 0);

We have all the Java code in place; we just need to write the C++ code to take care of

the snow. Since this is just an example of what’s possible, I copied and pasted one of

Cocos2d-x’s particle system tests that involves snow falling down. The code is all inside

the HelloWorldScene.cpp file that comes with the sample code for this book.

 If you’ve never used C++ in Android before, you should know that you need to use

the Android NDK.

32.3 The bottom line

Using Cocos2d-x is a great way to improve how your application looks and an excel-

lent way to avoid dealing with OpenGL directly. Unfortunately you’ll need to deal with

its limitations and its complexity. You’ll need to write C++ code, deal with the NDK,

and set up your views to place a SurfaceView correctly, among other things. In the

end, it’s totally worth the effort.

105Empowering your application using Cocos2d-x

32.4 External links

http://developer.android.com/sdk/ndk/index.html

http://www.cocos2d-x.org/

http://developer.android.com/guide/topics/graphics/index.html#on-surfaceview

http://www.cocos2d-iphone.org/archives/888

http://www.cocos2d-iphone.org/archives/1496

http://developer.android.com/guide/topics/graphics/2d-graphics.html

http://developer.android.com/reference/android/view/SurfaceView.html

http://developer.android.com/sdk/ndk/index.html
http://www.cocos2d-x.org/
http://developer.android.com/guide/topics/graphics/index.html#on-surfaceview
http://www.cocos2d-iphone.org/archives/888
http://www.cocos2d-iphone.org/archives/1496
http://developer.android.com/guide/topics/graphics/2d-graphics.html
http://developer.android.com/reference/android/view/SurfaceView.html

107

Interacting with
other languages

Android applications are coded mainly in Java. Officially, Android also supports C/

C++ using the Android NDK (Native Development Kit). But is it possible to develop

applications using other programming languages? In this chapter, we’ll analyze the

other possibilities.

Hack 33 Running Objective-C in Android
Android v1.6+

During the summer of 2011, my company released an iOS game called Shaman

Doctor. The game was developed using cocos2d-iphone, an iOS library. The

cocos2d-iphone library is coded in Objective-C, but there are a lot of forks that

offer the same API in other programming languages. One of the most active forks is

cocos2d-x. Instead of using Objective-C, cocos2d-x uses C++, and the most interest-

ing thing about this project is that the API looks like Objective-C. To get an idea of

what the Cocos2d-x team has created, take a look at the following code:

[[SimpleAudioEngine sharedEngine] playEffect:@"sfx.file"];
cocos2d-

iphone
version

SimpleAudioEngine::sharedEngine()->playEffect("sfx.file"); cocos2d-x
version

108 CHAPTER 8 Interacting with other languages

As you might have noticed, the API is exactly the same, but to port a game from

cocos2d-iphone to cocos2d-x you would need to port all your Objective-C code to C++,

which is a boring task.

 When I started looking for alternatives, I found a library called Itoa created by

Dmitry Skiba. To understand what Itoa is capable of, let me quote its documentation

(see section 33.5):

[Itoa] is a cluster of open-source projects hosted on GitHub that
implement compiler, build scripts and various libraries to allow
building Android’s apk from Objective-C source files.

Itoa’s main purpose is more than just running Objective-C in Android; it’s to magi-

cally convert an iOS application to an Android one. While its main feature is far from

complete, the fact that it allows running Objective-C in Android is real.

 What we’ll do in this hack is port a simple Objective-C library called Text-

Formatter. This means that we’ll run the Objective-C code in Android without need-

ing to modify it.

FOUNDATION: THE NDK AND OBJECTIVE-C Itoa makes heavy use of the Android
NDK. You’ll need to understand how the NDK works to understand what
comes next. If you have never used the Android NDK, you can read about it in
Android in Action, Third Edition (W. Frank Ableson et al., Manning Publica-
tions, 2011). You’ll also need to have a basic understanding of Objective-C.

33.1 Downloading and compiling Itoa

Compiling the Itoa library is quite easy. Just run the following from the command

line:

wget https://github.com/downloads/DmitrySkiba/itoa/build-ndk.sh
chmod +X build-ndk.sh

./build-ndk.sh

This script will create a folder named itoa, fetch all

subprojects, and build the NDK inside itoa/ndk. The

resulting folder structure can be seen in figure 33.1.

In other words, the script will first set up the tool

chain and it’ll use it to compile all the subprojects,

leaving the .so files inside a folder at /itoa/ndk/itoa/

platform/arch-arm/usr/lib.

33.2 Creating the modules

As in any ordinary NDK application, we’ll separate the

code in modules. We’ll create a module called text-

formatter containing the library we want to port, and a second one called main, which

will be in charge of the communication between Java and the TextFormatter class.

Figure 33.1 Itoa folder structure

109Running Objective-C in Android

33.2.1 The ItoaApp.mk and the ItoaModule.mk files

In a way similar to how the Android NDK uses the

Application.mk and the Android.mk make files, Itoa

has the ItoaApp.mk and the ItoaModule.mk files.

 Inside our Android project directory, we’ll create a

folder called jni. This jni folder will contain two make

files, ItoaApp.mk and ItoaModule.mk, and two folders

to hold the modules—one folder for the

textformatter module and a second one for the main module. Inside each module

folder, we’ll create an ItoaModule.mk file. The resulting directory structure can be

seen in figure 33.2.

 Let’s take a look at what we’ll place inside the ItoaApp.mk and ItoaModule.mk

files. In the ItoaModule.mk make file, we’ll point to the module’s ItoaModule.mk files

relative to the jni folder. The content is the following:

THIS_PATH := $(call my-dir)

include $(THIS_PATH)/main/ItoaModule.mk
include $(THIS_PATH)/TextFormatter/ItoaModule.mk

The ItoaApp.mk file contains more interesting information. The content is the

following:

APP_IS_LIBRARY := true
B Turn on library mode

APP_LIBRARY_BIN_PATH = ../libs/$(TARGET_ABI) C Set path for .so files

The default settings for the ItoaApp.mk file are enough for what we want to create.

Since we don’t want to create an Android APK from the Objective-C code, we need to

turn on the library mode B. The second setting is to set the path where the .so files

will be saved C.

33.2.2 The textformatter module

The library to port is very simple. It only has a class method that returns an NSString *.

The Objective-C code for this library is comprised of a .h file and a .m file. Here’s the

code:

#import <Foundation/Foundation.h>

TextFormatter.h file@interface TextFormatter: NSObject

+ (NSString *)format:(NSString *)text;

@end

...

#import "TextFormatter.h"

TextFormatter.m file
@implementation TextFormatter

+ (NSString *)format:(NSString *)text {

NSString *objc = @"Text from Objective-c";

NSString *string = [NSString stringWithFormat:@"%@ with %@",

Figure 33.2 Jni folder structure

110 CHAPTER 8 Interacting with other languages

objc, text];

TextFormatter.m filereturn string;

}

@end

As you can see, the library doesn’t need any modification. It’s just a .h and .m like you

would use in an Objective-C application. Now let’s see how to configure the

ItoaModule.mk file to compile this. Itoa NDK build scripts were derived from Android

NDK, but they were refactored. For example, the ItoaModule.mk file renames all the

LOCAL_* variables to MODULE_*. The content of the make file is the following:

MODULE_PATH := $(call my-dir)
include $(CLEAR_VARS)

MODULE_NAME := textformatter Module name

MODULE_SRC_FILES := \
TextFormatter.m Source files to compile

MODULE_C_INCLUDES += \

$(MODULE_PATH) \ Path to the include files

include $(BUILD_SHARED_LIBRARY)

Very similar to Android NDK make files, right?

33.2.3 The main module

The main module holds two source files:

 JNIOnLoad.cpp, where we’ll use the JNI_OnLoad method

 main.mm, where we’ll link JNI calls with the TextFormatter implementation

Let’s create the JNIOnLoad.cpp file first:

#include <CoreFoundation/CFRuntime.h>

#include <jni.h>

extern "C"
{

jint JNI_OnLoad(JavaVM *vm, void *reserved) {

_CFInitialize(); Initialize CoreFoundation

extern void call_dyld_handlers(); Load Objective-C classes
call_dyld_handlers();

return JNI_VERSION_1_6;
}

}

Because the virtual machine calls the JNI_OnLoad method when the native library is

loaded, it’s a great place to make the initialization needed by Itoa.

 Now let’s complete the main.mm implementation, which is the following:

111Running Objective-C in Android

#include <jni.h>
#import <Foundation/Foundation.h>

#import <objc/runtime.h>

#import <TextFormatter.h>

extern "C"

{

jstring
Java_com_manning_androidhacks_hack033_TextFormatter_formatString(

JNIEnv* env, jobject thiz, jstring text)

B
TextFormatter
JNI call

{
jstring result = NULL;

NSAutoreleasePool *pool = [NSAutoreleasePool new];

const char *nativeText = env->GetStringUTFChars(text, 0);

C

Convert
jstring to
NSString *

NSString *objcText =

[NSString stringWithUTF8String:nativeText];

env->ReleaseStringUTFChars(text, nativeText);

NSString *formattedText = [TextFormatter format: objcText];

result = env->NewStringUTF([formattedText UTF8String]);

D

Return a
jstring with
result

[pool drain];

return result;
 }

}

In the previous example, we have a mixture of C, C++, and Objective-C in the same

file. From the method signature, we can learn that the TextFormatter Java native call

will get a String as a parameter and will return a String B. Another interesting con-

cept to learn here is that we can’t send the jstring we get as a parameter to the

TextFormatter implementation directly. We need to convert the jstring to a char *

and then convert that char * to an NSString * C. After calling the TextFormatter

implementation, we’ll get an NSString * that will need to be converted to a jstring.

This is done by converting it to char * first, and using the env to be able to return a

jstring D.

 The ItoaModule.mk file for main is the following:

MODULE_PATH := $(call my-dir)

include $(CLEAR_VARS)

MODULE_NAME := main Module’s name

MODULE_SRC_FILES := \

JNIOnLoad.cpp \ Source files to compile
main.mm \

MODULE_C_INCLUDES += \ Include TextFormatter.h path
$(MODULE_PATH)/../textformatter \

MODULE_SHARED_LIBRARIES += textformatter textformatter dependency

include $(BUILD_SHARED_LIBRARY)

APP_SHARED_LIBRARIES += $(TARGET_ITOA_LIBRARIES) B Add Itoa .so files

112 CHAPTER 8 Interacting with other languages

Let’s talk about what the APP_SHARED_LIBRARIES is for B. For that variable, we used

the macro $(TARGET_ITOA_LIBRARIES), which means that the .so files located at

$ITOA_NDK/itoa/platform/arch-arm/usr/lib will be included in the libs directory. If

you check what’s inside that directory, you’ll notice there are more .so files than we

actually need. Before building it, you’ll need to delete (or move) the following librar-

ies from $ITOA_NDK/itoa/platform/arch-arm/usr/lib:

 libcg.so

 libcore.so

 libjnipp.so

 libuikit.so

33.2.4 Compiling

Now that we have all the native code in place, we need to compile all the .so files. Run

this code

$ITOA_NDK/itoa-build

from the jni folder.

ITOA-BUILD -C You can also use $ITOA_NDK/itoa-build -C /path/to/jni to
avoid having to move to the jni folder.

After the compilation procedure finishes, we’ll get every .so file needed to run our

Objective-C code in Android. In the next section, we’ll see how to call it from the Java

layer.

33.3 Setting up the Java part

The Java part will hold an Activity class and a TextFormatter class with the native

method. The Activity is the following:

public class MainActivity extends Activity {
private TextView mTextView;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);

mTextView = (TextView) findViewById(R.id.text);

Set a text to
TextView using
TextFormatter’s
formatString
method

String text = TextFormatter.formatString("Text from Java");

mTextView.setText(text);

}
}

The following is the TextFormatter Java code:

public class TextFormatter {
public static native String formatString(String text);

Native call
declaration

static {

System.loadLibrary("macemu"); B Load all needed libraries

113Using Scala inside Android

System.loadLibrary("objc");
System.loadLibrary("cf");

System.loadLibrary("foundation");

System.loadLibrary("textformatter");
System.loadLibrary("main");

}

}

The most important part of this piece of code is understanding what libraries will get

loaded inside the static block B. They include the following:

 macemu: Contains emulation of some APIs used by objc4 and CoreFoundation

libraries

 objc: objc4 runtime

 cf: CoreFoundation classes

 foundation: The Foundation library

 textformatter: Our TextFormatter library

 main: Our main library

When you run the application, you’ll see a TextView populated with a mixture of texts

from the Java and Objective-C worlds.

33.4 The bottom line

Using Itoa to port Objective-C applications to Android might be a good idea, depend-

ing on the type of code you need to port. I’ve used it to port business logic from iOS to

Android and also to port cocos2d-iphone games to Android. My recommendation is

that you give it a try and decide if it would work for you.

33.5 External links

www.nasatrainedmonkeys.com/portfolio/shaman-doctor/

www.cocos2d-iphone.org/

www.cocos2d-x.org/

www.itoaproject.com/

https://github.com/DmitrySkiba/itoa-ndk/wiki/Variables

Hack 34 Using Scala inside Android
Android v1.6+

If you’ve never heard of Scala, it’s a multiparadigm programming language designed to

integrate features of object-oriented programming and functional programming. Let’s

look at some of the benefits of using Scala, instead of Java, in Android to create a project:

www.nasatrainedmonkeys.com/portfolio/shaman-doctor/
www.cocos2d-iphone.org/
www.cocos2d-x.org/
www.itoaproject.com/
https://github.com/DmitrySkiba/itoa-ndk/wiki/Variables

114 CHAPTER 8 Interacting with other languages

 Less verbose than Java.

 It can use existing Java code.

 Closures.

 Dealing with threads is easier than in Java.

Discussing the benefits of Scala over Java is beyond the scope of this book, but let’s

look at what’s possible with Scala. In this hack, we’ll create a two-Activity application.

One will be coded in Java and the other in Scala. This is a basic example we’ll use to

understand how to compile an Android application with Scala code.

 As you might know, Android builds code by compiling your Java classes to byte-

code, and afterward that bytecode is converted to dex. To make Scala code work

inside Android, we need a tool that does all of this:

 Converts Scala code to bytecode

 Processes the Scala standard library to minimize the app size

 Processes Java code

 Creates an APK

Believe it or not, there are a lot of ways of getting this done. From my personal point

of view, the best tool is SBT with its Android plugin.

 What is SBT? SBT stands for Simple Build Tool. It’s an open source build tool for

Scala. Among its benefits:

 The project structure is similar to Maven.

 It manages dependencies using existing Maven and/or Ivy package

repositories.

 It allows you to mix Scala and Java

code.

What does the SBT Android plugin pro-

vide? The Android plugin is a script for

creating a new Android project that SBT

can compile. It also has several handy SBT

targets for doing things such as packaging

your app for the market and deploying to

your device.

 If we create a new Android applica-

tion using the SBT Android plugin, we’ll

get a project directory structure similar

to figure 34.1.

 Since SBT allows Java code as well,

we’ll add our Java code inside src/main/

java. Remember that, though Scala

doesn’t need to place files on a certain

folder depending of the defined pack-

age, Java does. In this hack, we’ll use Figure 34.1 SBT Android plugin project structure

115Using Scala inside Android

com.manning .androidhacks.hack034 as our package, so we need to create a directory

structure that respects that. The correct project structure for adding a second Java

Activity can be seen in figure 34.2.

Figure 34.2 Project

structure with Java code

 Let’s look at the Activity done in Java and how it connects to the Scala Activity.

Here’s the code:

public class MainActivityJava extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

}

public void buttonClick(View v) {
startActivity(new Intent(this, ScalaActivity.class));

B Start Activity
coded in
Scala

}

}

Do we need to do anything different to call the Activity done in Scala? No, there

isn’t anything special. We start the Scala Activity as any ordinary Activity B.

 Now let’s take a look at the Scala Activity code to see what’s there:

116 CHAPTER 8 Interacting with other languages

class ScalaActivity extends Activity {
override def onCreate(savedInstanceState: Bundle) {

super.onCreate(savedInstanceState)

setContentView(new TextView(this) {

B Anonymous subclass
of TextView is set as
content view

setText("Activity coded in Scala ")

})

}
}

You can see that the Scala Activity’s code is 100% Scala. The Scala coded there

comes from the demo application created by the SBT Android plugin. Take a closer

look at how the content view is set B. That line creates an anonymous subclass of the

TextView, and with the help of an initializer block it calls the setText() method.

 To run the application, we can launch SBT and execute the following:

 android:package-debug

 android:start-device

Unfortunately, creating an APK takes a while. This two-Activity application takes me

about one full minute to compile. You should know that this isn’t Scala’s fault. What

takes so long is the ProGuard pass that goes through the Scala library and removes any

unused part of it. To solve this issue, some developers add the Scala libraries to their

developing device. There’s even an Android application that installs Scala on your

device if it’s rooted.

34.1 The bottom line

Scala is gaining a lot of momentum in the Java world, and it’s also attracting interest in

the community of Android developers. Learning a new language might feel time-

consuming, but Scala is something that every Java developer should try.

34.2 External links

http://www.scala-lang.org/

http://en.wikipedia.org/wiki/Simple_Build_Tool

https://github.com/jberkel/android-plugin

http://nevercertain.com/2011/02/03/scala-android-intellij-win-part-1-prerequisites.html

https://github.com/scala-android-libs/scala-android-libs

http://www.scala-lang.org/
http://en.wikipedia.org/wiki/Simple_Build_Tool
https://github.com/jberkel/android-plugin
http://nevercertain.com/2011/02/03/scala-android-intellij-win-part-1-prerequisites.html
https://github.com/scala-android-libs/scala-android-libs

117

Ready-to-use snippets

Do you sometimes use the same code in different applications? If so, this chapter is

for you. We’ll go through some code snippets that you can copy and paste into any

Android application.

Hack 35 Firing up multiple intents
Android v2.1+

One of the nicest features about Android is the intent system. If you want to share

something with another application, you can use an intent to do so. If you want to

open a link, you have an intent for that. In

Android, almost everything can be done with

an intent.

 If you use the mobile messenger app,

WhatsApp, you might know that you can

share images with your contacts from an

image in the gallery or by taking a photo.

The dialog presented to the user to pick an

image from the gallery or to take a picture is

shown in figure 35.1. Obviously, this was cre-

ated with intents but, unfortunately, it can’t

be done with only one.
Figure 35.1 Dialog to choose how to

handle an action

118 CHAPTER 9 Ready-to-use snippets

 In this hack, we’ll analyze how this can be done. We’ll see which is the intent to

take a photo, which is the intent to pick a picture from the gallery, and how to com-

bine both.

35.1 Taking a picture

The intent to take a photo using the camera app is the following:

Intent takePhotoIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);
Intent chooserIntent = Intent.createChooser(takePhotoIntent,

getString(R.string.activity_main_pick_picture));

startActivityForResult(chooserIntent, TAKE_PICTURE);

35.2 Picking a picture from the gallery

To pick an image from the gallery, we do this:

Intent pickIntent = new Intent(Intent.ACTION_GET_CONTENT);

pickIntent.setType("image/*");

Intent chooserIntent = Intent.createChooser(pickIntent,
getString(R.string.activity_main_take_picture));

startActivityForResult(chooserIntent, PICK_PICTURE);

35.3 Mixing both intents

Since Android API level 5, we can create a chooser and add extra initial intents. This

means that instead of using just one type of intent, we can use several. An example of

usage:

Intent pickIntent = new Intent(Intent.ACTION_GET_CONTENT);
Create pick
image intentpickIntent.setType("image/*");

Intent takePhotoIntent;
takePhotoIntent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);Create

take
photo
intent

Intent chooserIntent = Intent.createChooser(pickIntent,

getString(R.string.activity_main_pick_both));
chooserIntent.putExtra(Intent.EXTRA_INITIAL_INTENTS,

Add take photo
intent as an extra
initial intent

new Intent[]{takePhotoIntent});

startActivityForResult(chooserIntent, PICK_OR_TAKE_PICTURE);

Using the previous code will show all applications that handle both intents, taking a

photo and picking a picture. Remember that we need to override the onActivity-

Result() method inside our Activity to do something with the image picked/taken

by the user.

35.4 The bottom line

It’s important that you understand how intents work. It’s a key part of the Android

environment and using them correctly will make your app work well with other apps.

For example, if your app uses the code shown here and inside the device there’s a file

browser application, it’s likely that the apps will work together to provide the best

experience for the user.

119Getting user information when receiving feedback

35.5 External links

www.whatsapp.com/

http://stackoverflow.com/questions/11021021/

how-to-make-an-intent-with-multiple-actions

http://stackoverflow.com/questions/2708128/

single-intent-to-let-user-take-picture-or-pick-image-from-gallery-in-android

Hack 36 Getting user information when
receiving feedback
Android v1.6+

Listening to your users’ feedback is one of many ways

to help make your application successful. User feed-

back can highlight which sections they enjoy the

most, and they’ll likely ask for new features that help

to improve your application. During my years as a

developer in the Android market, I’ve noticed that

every time I fix a bug or add a feature requested by a

user, more people start downloading my application.

What’s at play here is word of mouth. The preceding

is a good scenario—users let the developer know

what problem they’re having, though sometimes

users don’t provide enough explanation, which

makes it difficult to identify the problem.

 In this hack, I’ll show you how to append users’

device information to their feedback emails. This

means it’ll be easier to learn important details from

your users and get their problems fixed as soon as

possible.

 You can see the finished feature in figure 36.1.

From the information provided, you can glean that I’m running the application ver-

sion 1.0 from a Nexus One and that I’m in Argentina using an English locale.

 To create this, we’ll use two classes—one that takes care of collecting all of the

information, and one that takes care of preparing the intent to send the email with

feedback. Let’s first look at EnvironmentInfoUtil.java:

public class EnvironmentInfoUtil {

public static String getApplicationInfo(Context context) {

Convenience method
to get all available
information

return String.format("%s\n%s\n%s\n%s\n%s\n%s\n",

Figure 36.1 Feedback email

www.whatsapp.com/
http://stackoverflow.com/questions/11021021/how-to-make-an-intent-with-multiple-actions
http://stackoverflow.com/questions/2708128/single-intent-to-let-user-take-picture-or-pick-image-from-gallery-in-android

120 CHAPTER 9 Ready-to-use snippets

getCountry(context), getBrandInfo(), getModelInfo(),
getDeviceInfo(), getVersionInfo(context),

getLocale(context));

}

public static String getCountry(Context context) {

TelephonyManager
is used to identify
country user is in

TelephonyManager mTelephonyMgr = (TelephonyManager) context

.getSystemService(Context.TELEPHONY_SERVICE);
return String.format("Country: %s", mTelephonyMgr

.getNetworkCountryIso());

}

public static String getModelInfo() {

Getting info
from Build class

return String.format("Model: %s", Build.MODEL);

}

...

public static String getLocale(Context context) {

Context is
used to get
user’s locale

return String.format("Locale: %s", context.getResources()
.getConfiguration().locale.getDisplayName());

}

...

}

We already have a class that takes care of getting the information, but how do we send

that through an email? We use the LaunchEmailUtil class:

public class LaunchEmailUtil {

public static void launchEmailToIntent(Context context) {

B

Method to
be called
from the

Activity

Intent msg = new Intent(Intent.ACTION_SEND);

StringBuilder body = new StringBuilder("\n\n----------\n");
body.append(EnvironmentInfoUtil.getApplicationInfo(context));

msg.putExtra(Intent.EXTRA_EMAIL, Setting recipientC
context.getString(R.string.mail_support_feedback_to)

.split(", "));

msg.putExtra(Intent.EXTRA_SUBJECT,

context.getString(R.string.mail_support_feedback_subject));
msg.putExtra(Intent.EXTRA_TEXT, body.toString());

D

Setting body text
using Environment-
InfoUtil’s information

msg.setType("message/rfc822");

context.startActivity(Intent.createChooser(msg,
context.getString(R.string.pref_sendemail_title)));

ESetting
title for

the picker

}

}

We can use this class from an Activity using the launchEmailToIntent() method B.

The logic is simple: we identify to whom we should send the email from

strings.xml C, and we provide a subject D. Just in case the user has more than one

application that takes care of sending emails, we’ll create a picker with a custom title E.

121Adding an MP3 to the media ContentProvider

36.1 The bottom line

Being responsive to user feedback is a good way to improve your application’s popular-

ity. Always remember to tell your users when you’re going to send private information.

36.2 External links

http://developer.android.com/reference/android/os/Build.html

http://developer.android.com/reference/android/telephony/TelephonyManager.html

Hack 37 Adding an MP3 to the
media ContentProvider
Android v1.6+

If you’re an Android user, you should know that whenever you want to listen to new

music on your device, the only thing you need to do is copy those files onto the exter-

nal storage (usually an SD card). After the files are copied, you can open your music

player and the files will be there. How does this work?

 Inside Android is something called a ContentProvider. A ContentProvider is the

correct way to offer data to external applications. For example, Android has a contacts

ContentProvider. This means that inside your device is an application (Contacts) that

offers a ContentProvider to handle contacts. As you can imagine, you’ll also find a

media ContentProvider.

 When you copy your media files to the external storage, there’s a process that will

browse all the folders looking for media, and it will add it to the media Content-

Provider. After media’s added to the ContentProvider, everyone can use it.

 Imagine you’re creating an application that downloads music. It’s important that

every media file you download gets added to the media ContentProvider. Otherwise,

the user will not be able to use that media from another application.

 In this hack, we’ll look at two possible ways to add an MP3 file to the media Content-

Provider. The demo application will hold two MP3 files in the res/raw folder and we’ll

copy them to the external storage. After they’re copied, we can let the Content-

Provider know that we’ve added new media.

37.1 Adding the MP3 using content values

As with any other ContentProvider, we can add items to it using ContentValues. The

code is the following:

MediaUtils.saveRaw(this, R.raw.loop1, LOOP1_PATH);
File is first saved in
external storageContentValues values = new ContentValues(5);

http://developer.android.com/reference/android/os/Build.html
http://developer.android.com/reference/android/telephony/TelephonyManager.html

122 CHAPTER 9 Ready-to-use snippets

values.put(Media.ARTIST, "Android");
values.put(Media.ALBUM, "60AH");

Complete all necessary
fields to insert media

values.put(Media.TITLE, "hack037");

values.put(Media.MIME_TYPE, "audio/mp3");
values.put(Media.DATA, LOOP1_PATH);

getContentResolver().insert(

Insert values to Content-
Provider using its URI

Media.EXTERNAL_CONTENT_URI, values);

37.2 Adding the MP3 using the media scanner

The code included in the last section works fine, but it has a big problem. Some values

were set by hand and perhaps it would be better to read them from the file. For exam-

ple, the real author of loop1.mp3 is “calpomatt” and not “Android.” We’d know that

by reading the MP3’s metadata.

 Fortunately, there’s a way to avoid having to add those values by hand. The code is

the following:

MediaUtils.saveRaw(this, R.raw.loop2, LOOP2_PATH); File is first saved in
external storage

Uri uri = Uri.parse("file://" + LOOP2_PATH);
Intent i = new Intent(Intent.ACTION_MEDIA_SCANNER_SCAN_FILE, uri);

sendBroadcast(i);
Send a broadcast asking
for a particular file to be
scanned and added

37.3 The bottom line

If you’re creating an application that handles media, you should pay attention to the

media ContentProvider. Try understanding and using it correctly. It might be essen-

tial to your users.

37.4 External links

http://developer.android.com/guide/topics/providers/content-providers.html

http://stackoverflow.com/questions/3735771/adding-mp3-to-the-contentresolver

www.flashkit.com/loops/Pop-Rock/Rock/Get_P-calpomat-4517/index.php

www.flashkit.com/loops/Pop-Rock/Rock/_Hard-XtremeWe-6500/index.php

Hack 38 Adding a refresh action to the action bar
Android v2.1+

The ActionBar API was added to Android version 3.0 (Honeycomb). The idea behind

the ActionBar pattern is to have a place where you locate the user inside your applica-

tion and offer contextual actions.

http://developer.android.com/guide/topics/providers/content-providers.html
http://stackoverflow.com/questions/3735771/adding-mp3-to-the-contentresolver
www.flashkit.com/loops/Pop-Rock/Rock/Get_P-calpomat-4517/index.php
www.flashkit.com/loops/Pop-Rock/Rock/_Hard-XtremeWe-6500/index.php

123Adding a refresh action to the action bar

 You might have noticed that some applications

have a refresh action in their ActionBars. You see a

Refresh icon and when you press it, a refresh process

runs while a ProgressBar spins. Unfortunately, the

platform doesn’t contain a widget—it needs to be cre-

ated by hand. In this hack, I’ll show you how to do it.

 For the sake of compatibility we’ll use Jake Whar-

ton’s ActionBarSherlock library. ActionBarSherlock

offers the ActionBar API, but it can be used in older

Android versions.

ABOUT ACTIONBARSHERLOCK You’ll need to
know how to configure your application to
use ActionBarSherlock to move on. You can
learn how by visiting the library’s web page:
http://actionbarsherlock.com/.

To add an ActionBar to an Activity, the first step is

to make our application use the ActionBarSherlock

theme. We can do this by using the following lines in

the AndroidManifest.xml file:

<application

android:icon="@drawable/ic_launcher"
android:label="@string/app_name"

android:theme="@style/Theme.Sherlock">

The second step is to create an activity, but instead of extending Activity, we need to

extend SherlockActivity. The code to show a progress icon in the action bar is the

following:

public class MainActivity extends SherlockActivity {
private static final int MENU_REFRESH = 10;

private MenuItem mRefreshMenu;

...

@Override

public boolean onCreateOptionsMenu(Menu menu) {

mRefreshMenu = menu.add(MENU_REFRESH, MENU_REFRESH,

Create
refresh
menu

MENU_REFRESH, "Refresh");

mRefreshMenu.setIcon(R.drawable.menu_reload);

mRefreshMenu.setShowAsAction(MenuItem.SHOW_AS_ACTION_ALWAYS);

return true;

}

The result can be seen in figure 38.1.

Figure 38.1 Basic ActionBar

http://actionbarsherlock.com/

124 CHAPTER 9 Ready-to-use snippets

The next step is to handle what to do when a user presses the Refresh button in the

action bar or the button in the middle of the screen. Both items should launch a back-

ground task. To simulate the background task, we’ll create an AsyncTask with the fol-

lowing code:

private class LoadingAsyncTask extends AsyncTask<Void, Void, Void> {

@Override
protected void onPreExecute() {

super.onPreExecute();
startLoading();

Handle UI changes
when the task is
about to start

}

@Override
protected Void doInBackground(Void... params) {

SystemClock.sleep(5000L);

Sleep for
5 seconds

return null;
}

@Override
protected void onPostExecute(Void result) {

super.onPostExecute(result);
stopLoading();

Handle UI changes
when the task is
about to finish

}
}

The execution of the AsyncTask is accomplished by a single method:

public void handleRefresh(View v) {
new LoadingAsyncTask().execute();

}

This method is called from the centered button from the Activity’s layout using the

android:onClick property and from the action bar in the onOptionsItemSelected()

method.

 We have almost everything in place. The only missing part is how to handle UI

changes when the background process starts and finishes. For the centered button,

the logic is simple. We want to disable the button while the background task is work-

ing and enable it when finished. We can do this by using the setEnabled(boolean

enabled) method. The big question here is how to replace the progress menu item

with something spinning. To do that, we’ll use an ActionView.

 The ActionView is explained in the documentation (see section 38.2):

An action view is a widget that appears in
the action bar as a substitute for an action
item’s button. For example, if you have an
item in the options menu for “Search,” you
can add an action view that replaces the
button with a SearchView widget, as shown
in figure [38.2].

Because we’ll add the spinning widget through an

ActionView, let’s create the view with XML:

Figure 38.2 An action bar with a

collapsed ActionView for Search

(top) and an expanded ActionView

with the SearchView widget (bottom)

125Adding a refresh action to the action bar

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

style="?attr/actionButtonStyle"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:addStatesFromChildren="true"
android:focusable="true"
android:gravity="center"
android:paddingLeft="4dp"
android:paddingRight="4dp" >

<ProgressBar
android:layout_width="30dp"
android:layout_height="30dp"
android:focusable="true" />

</LinearLayout>

Now that we have the XML, the rest is quite simple. This is how the startLoading()

and stopLoading() methods handle the refresh menu item’s action view:

private void startLoading() {
mRefreshMenu.setActionView(R.layout.menu_item_refresh);
mButton.setEnabled(false);

}

private void stopLoading() {
mRefreshMenu.setActionView(null);
mButton.setEnabled(true);

}

38.1 The bottom line

This hack is an example of how to customize the action bar’s items. Nowadays, using

an action bar is almost a must for every Android application, and thanks to Jake Whar-

ton we have an Android library that backports the action bar to older platforms. It’s

important to learn what’s possible and understand how it can fulfill your application

use cases.

38.2 External links

http://developer.android.com/guide/topics/ui/actionbar.html

http://actionbarsherlock.com/

http://developer.android.com/guide/topics/ui/actionbar.html
http://actionbarsherlock.com/

126 CHAPTER 9 Ready-to-use snippets

Hack 39 Getting dependencies from the market
Android v1.6+

It’s common in Android to find applications that use other applications to help per-

form tasks. Thanks to Android’s Intent system, you can ask other applications to help

you finish a task. For example, instead of adding the logic to take a photo using the

camera, you can ask the photo application to do it for you and return the result.

Because you can create a program that offers its functionalities through an intent

call, the market has lots of applications your application can use.

 In this hack, we’ll see how to check if an application is installed before trying to

launch an intent call. If it’s not installed, we’ll ask the user to get it from the market.

For this example, we’ll use Layar. Layar is an application that offers a mobile browser

that allows users to find various items based upon augmented reality technology.

Developers can create something called a layer, which shows points of interest inside

Layar’s browser. We’ll create an ordinary Android program that will have a link to a

Layar’s layer. To create our application we’ll need the following:

 A way to know if Layar is installed

 Code to open the market to download Layar

 The intent call to open a specific layer

To check if Layar is installed, we’ll use the PackageManager class. The code to make

this check is the following:

public static boolean isLayarAvailable(Context ctx) {

PackageManager pm = ctx.getPackageManager();

try {

pm.getApplicationInfo("com.layar", 0);

PackageManager’s
getApplicationInfo()
method

return true;

} catch (PackageManager.NameNotFoundException e) {

return false;

Indicates
application
isn’t available

}

}

The easiest way to check if an application is available is to use PackageManager’s

getApplicationInfo() method, using the application’s package name. If it exists, it’ll

return an instance of ApplicationInfo populated with information collected from

the AndroidManifest.xml’s <application> tag. If, while trying to get the application

information, we get a NameNotFoundException, we can be sure that the application

isn’t available.

 Now let’s run the code to open the market:

public static AlertDialog showDownloadDialog(final Context ctx) {

AlertDialog.Builder downloadDialog = new AlertDialog.Builder(ctx);

127Getting dependencies from the market

downloadDialog.setTitle("Layar is not available");
Create an
AlertDialog to
let users decide
if they want to
download
Layar from the
market.

downloadDialog

.setMessage("Do you want to download it from the market?");

downloadDialog.setPositiveButton("Yes",
new DialogInterface.OnClickListener() {

@Override

public void onClick(DialogInterface dialogInterface, int i) {
Uri uri = Uri.parse("market://details?id=com.layar");

To launch the
market, we can

use the uri
scheme in

conjunction
with Intent’s

ACTION_VIEW
action.

Intent intent = new Intent(Intent.ACTION_VIEW, uri);

try {
ctx.startActivity(intent);

} catch (ActivityNotFoundException e) { Some Android-
powered devices
might not have the
market application.
This try-catch will
ensure the
application won’t
crash.

Toast.makeText(ctx, "Market not installed",
Toast.LENGTH_SHORT).show();

}

}

});

downloadDialog.setNegativeButton("No",

new DialogInterface.OnClickListener() {

@Override
public void onClick(DialogInterface dialogInterface, int i) {

}

});

return downloadDialog.show();

After creating
the AlertDialog,
we can show it.

}

The final step is to add the login so we can decide if we should download Layar or

launch our layer through an intent. This is the logic executed when a button is

clicked:

public void onLayarClick(View v) {
if (!ActivityHelper.isLayarAvailable(this)) {

ActivityHelper.showDownloadDialog(this);

Logic to show the
download dialog.

} else {

Intent intent = new Intent();
If Layar is
available, use its
uri scheme to
show the teather
layer inside the
Layar application.

intent.setAction(Intent.ACTION_VIEW);

Uri uri = Uri.parse("layar://teather/?action=refresh");
intent.setData(uri);

startActivity(intent);

}

}

39.1 The bottom line

A lot of applications are available that offer these kinds of intent APIs. Using them

provides two important benefits. The first one is obvious: you’ll code less. The second

is that your users might already be using the second application. This means they

won’t need to learn a second way of doing things. For example, if you want your

128 CHAPTER 9 Ready-to-use snippets

program to grab snapshots, instead of providing a new way to do it, you can ask it to

use the photo application, which is well known by every Android user.

39.2 External links

http://layar.com/

http://developer.android.com/reference/android/content/pm/PackageManager.html

http://developer.android.com/reference/android/app/AlertDialog.html

Hack 40 Last-in-first-out image loading
Android v2.1+
Contributed by William Sanville

One challenge that developers commonly face is displaying images from a network

location. This challenge often comes in different forms, such as displaying many

images in a list. An ideal solution for this type of challenge will include

 Maintaining a responsive UI

 Performing network and disk I/O outside the application’s UI thread

 Support for view recycling, as in the case of a ListView

 A caching mechanism for quickly displaying images

Many solutions to this problem use an in-memory cache for holding previously loaded

images and a thread pool for queuing up images to load. But an often-overlooked fea-

ture is the order in which images are requested.

 Consider the case of a ListView where each row contains an image. If a user

“flings” the list in the downward direction, most image-loading solutions will request

each image in the order its parent View is displayed on the screen. As a result, when

the user stops scrolling, the rows currently on the screen, which are the most impor-

tant rows at the current point in time, will load last. What you want is for the last-

requested rows to “jump the queue” and be processed first.

40.1 Starting point: Android sample application

The Android Training section of the official documentation includes the article (see

section 40.6) “Displaying Bitmaps Efficiently,” which we’ll use as our starting point.

The article covers core concepts such as downsampling images to the proper size,

using the LruCache class for in-memory caching (available in the Support Library, ver-

sion 4), and a basic mechanism for performing work off the UI thread.

 We’ll expand on this example application to meet the goal of loading the most

recently requested images first. We’ll also make performance improvements over the

http://layar.com/
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/app/AlertDialog.html

129Last-in-first-out image loading

original version by removing the problematic use of one AsyncTask instance per get-

View() call by the application’s adapter. The sample implementation makes it possi-

ble to cause a runtime exception when scrolling up and down several times, resulting

in a RejectedExecutionException caused by too many AsyncTask instances, so that’s

fixed in the final example.

40.2 Introducing executors

The AsyncTask solution isn’t suitable for large number of images, nor will it give us

control over the priority of our tasks. Instead, we’ll use an executor service from the

java.util.concurrent package and a priority queue to specify the order in which

we request images. With the new implementation, we can maintain methods similar

to AsyncTask, namely, cancelling tasks which have been pushed offscreen. Our

last-in-first-out (LIFO) implementation will involve two classes, LIFOTask and LIFO-

ThreadPoolProcessor.

 Our new task object will maintain a static variable indicating the number of

instances created. This will serve as the priority for the task, because a newly created

task will have a higher counter. We use this counter to implement a compareTo()

method, for sorting purposes later:

public class LIFOTask extends FutureTask<Object>

implements Comparable<LIFOTask> {

private static long counter = 0;

private final long priority;

public LIFOTask(Runnable runnable) {
super(runnable, new Object());

priority = counter++;
Tasks in this example
are all created on the
same thread.

}

public long getPriority() {

return priority;

}

@Override

public int compareTo(LIFOTask other) {

return priority > other.getPriority() ? -1 : 1;
}

}

Our choice of base class here is important. We extend FutureTask, a class accepted by

the executor classes because it exposes a cancel method, much like the old implemen-

tation using AsyncTask.

 Building off the LIFOTask class, we’ll use its compareTo() method and the Thread-

PoolExecutor class:

public class LIFOThreadPoolProcessor {

private BlockingQueue<Runnable> opsToRun =
new PriorityBlockingQueue<Runnable>(64, new Comparator<Runnable>() {

@Override

public int compare(Runnable r0, Runnable r1) {

130 CHAPTER 9 Ready-to-use snippets

if (r0 instanceof LIFOTask && r1 instanceof LIFOTask) {
LIFOTask l0 = (LIFOTask)r0;

LIFOTask l1 = (LIFOTask)r1;

return l0.compareTo(l1);
}

return 0;

}
});

private ThreadPoolExecutor executor;

public LIFOThreadPoolProcessor(int threadCount) {
executor = new ThreadPoolExecutor(threadCount, threadCount, 0,

TimeUnit.SECONDS, opsToRun);

}

public Future<?> submitTask(LIFOTask task) {

return executor.submit(task);

}

public void clear() {

executor.purge();

}

}

The noteworthy part of the class is the parameters passed to the ThreadPoolExecutor

constructor. We let the client application choose the exact thread pool size, and

choose a PriorityBlockingQueue to hold the incoming tasks that the client applica-

tion submits. We then use the compareTo() method of the LIFOTask object to get our

desired ordering. Note that in this case, the keepAlive parameter is not applicable

given the core and max thread pool sizes used.

40.3 UI thread—leaving and returning seamlessly

As Android developers, we know the importance of maintaining a responsive UI, so we

offload time-consuming tasks, like I/O, to a background thread. Often, when this

work is done, we want to update the UI. Android, much like other UI systems you may

be familiar with, isn’t thread-safe. We must return to the main application thread

before modifying any ImageViews. Attempting to modify the UI from outside the main

thread will cause an exception.

 The original implementation used the onPostExecute() method of AsyncTask.

Because we’re replacing the use of AsyncTask with an executor, we’ll instead give a

Runnable to our host activity. We’ll use the runOnUiThread() method of the Activity

class, which will use a Handler under the hood to get our work added to the UI’s mes-

sage queue.

 Slipping something into the UI thread doesn’t come free of consideration. We

have to be mindful of the following:

 ImageView instances may be recycled if a user scrolls in a ListView.

 The host activity may be destroyed before a task finishes.

131Last-in-first-out image loading

As a result, every step of the Runnable used to process images checks if it should stop

performing work. A stop condition is detected if the host activity sets a flag with

ImageWorker’s setExitTasksEarly() method, which should be called from

onPause(). Additionally, a stop condition is detected if the cancel() method of

FutureTask is called.

40.4 Considerations

For use in a production application, the Android Training article suggests using a bet-

ter disk-caching solution. The implementation provided in the original article is lack-

ing in a few key areas. To provide a more complete example here, the disk cache

implementation was modified to support rebuilding the disk cache upon application

restarts, and no longer maintains two copies of downloaded files.

40.5 The bottom line

Time-consuming work, such as loading images, needs to be performed outside the UI

thread. This will allow built-in components, such as ListView, to operate smoothly.

You can give users a better experience by fine-tuning the order in which you load

images using a LIFO queue.

 Using a potentially unbounded number of AsyncTask instances is problematic,

and the job can be better fulfilled by using executors. Additionally, Android provides

a solid implementation of LruCache in the support library for implementing efficient

caching solutions.

40.6 External links

http://developer.android.com/training/displaying-bitmaps/index.html

http://developer.android.com/tools/extras/support-library.html#Using

http://developer.android.com/reference/java/util/concurrent/ExecutorService.html

http://developer.android.com/reference/java/util/concurrent/FutureTask.html

http://developer.android.com/training/displaying-bitmaps/index.html
http://developer.android.com/tools/extras/support-library.html#Using
http://developer.android.com/reference/java/util/concurrent/ExecutorService.html
http://developer.android.com/reference/java/util/concurrent/FutureTask.html

133

Beyond database basics

If you’ve been developing Android applications, you may have used a database to

persist information. In this chapter, we’ll cover some advanced tips for developers

who are familiar with using databases in Android.

Hack 41 Building databases with
ORMLite
Android v2.2+
Contributed by William Sanville

Android applications usually have a requirement

for some form of persistent storage, meaning data

that’s saved between each time a user runs the

application. To facilitate this need, Android ships

with a relational database called SQLite. This hack

covers creating an entire database instance using a

tool called ORMLite, an Object-Relational Mapping

(ORM) tool, as well as reading and writing data.

 Our end goal is to create an application that

displays articles broken down in categories and

allows users to comment on each article. The fin-

ished application can be seen in figure 41.1. Figure 41.1 Finished application

134 CHAPTER 10 Beyond database basics

 All database operations in this application are performed using ORMLite, rather

than writing any SQL statements by hand. This approach can save time by reducing

the amount of code needed to create the database schema.

41.1 A simple data model

The end result will have a list of categories and subcategories, with article titles. Click-

ing an article will bring the user to a new activity, which will display more article infor-

mation, as well as allow the user to create comments. Graphically, our application will

use the data model illustrated in figure 41.2.

Figure 41.2 Model

 The diagram describes a database that allows the following:

 A Category has an ID and a title. It can also have one parent Category, but that

isn’t required, because topmost categories won’t have a parent.

 An Article has an ID, title, body text, and a date indicating when it was

created.

 An Author has an ID, name, and email address.

 Articles can belong to many different categories, and categories can have many

articles.

 Articles can be written by multiple authors, and authors can write many articles.

 A Comment is about a single article and contains an ID, the name of the user who

added the comment, some text, and a date indicating when it was created.

 Articles can have many comments.

135Building databases with ORMLite

When designing an application that needs a relational database, it’s useful to first start

with a diagram of the data model like this one. This is known as an entity-relationship

diagram (ER diagram). ER diagrams are used during the design stage of development

to identify different entities and the relationships between them.

41.2 Getting started

ORMLite requires two JAR files from the releases section: core and android. This appli-

cation uses version 4.41. After obtaining the dependencies, we’ll start creating our

database schema.

 The first step to using ORMLite is to implement the actual Java classes we’ll work

with in our application. During this process, we’ll take special care to include annota-

tions on our classes that will allow ORMLite to create the needed tables. This will also

provide the ORM tool with information about how it should behave when querying the

database for our objects, in the case of complex relations. Note that the annotations

approach is one of several ways to specify the database schema generated by ORMLite.

 The two most common annotations we’ll use with ORMLite are DatabaseTable and

DatabaseField. These annotations will target classes and member variables respec-

tively and will allow us to craft our resulting database tables. A simple implementation

of the Article class might look like the following using annotations:

@DatabaseTable
public class Article {

@DatabaseField(generatedId = true)

public int id;

@DatabaseField

public String title, text;

@DatabaseField
public Date publishedDate;

public Article() {

ORMLite requires
parameterless
constructor

}
}

This class, when part of a full implementation, would result in the following CREATE

TABLE SQL statement:

CREATE TABLE 'article'

('title' VARCHAR, 'publishedDate' VARCHAR, 'text' VARCHAR,

'id' INTEGER PRIMARY KEY AUTOINCREMENT);

Note the annotation on the field id. We specify the parameter generatedId = true to

signify that this field is our primary key, and it should be automatically assigned by

SQLite. Also note that, by default, ORMLite uses our class name as the SQL table and

the names of the member variables as the columns of the table.

 Last, observe that ORMLite requires a zero-parameter constructor on the classes it

operates on. When ORMLite creates an instance of this class, in the case of a query

which returns articles, it will use the parameterless constructor and set member vari-

ables using reflection (ORMLite can also use setters for member variables if preferred).

136 CHAPTER 10 Beyond database basics

41.3 Rock-solid database schema

Building upon the first and simplest example of crafting a table from a Java class, we’ll

demonstrate the following:

 Custom names for tables and columns

 Handling relationships between classes

 Referential integrity for relationships (API Level 8 and above)

 Cascading deletes (API Level 8 and above)

 Uniqueness constraints for cross references

Most real-world database instances will use these concepts and others. Even though

we’re using an ORM tool to build our tables, we still have the expressive power to

achieve a solid schema to enforce data consistency. For example, we might want to

require that an article’s title and text must not be null. We also can ensure that if a cat-

egory has a parent category, the parent must actually exist. Furthermore, we can spec-

ify that if an article is deleted, then all of its comments and mappings to categories will

be deleted automatically by SQLite.

 The first recommendation when defining our schema is to use final variables to

define names for tables and columns. This, in practice, will make maintaining our

code much easier in the scenario where a member variable is refactored or removed.

Doing so will help cause compile-time errors, rather than tricky-to-spot runtime mis-

takes hidden away in SQL strings. Let’s define the Category class using this technique.

We’ll declare public static final variables for the table and columns:

@DatabaseTable(tableName = Category.TABLE_NAME) Specifies name
of our tableBpublic class Category {

public static final String TABLE_NAME = "categories",
ID_COLUMN = "_id",

NAME_COLUMN = "name",

PARENT_COLUMN = "parent";

@DatabaseField(generatedId = true, columnName = ID_COLUMN)

C

Specifies
names of

columns in the
DatabaseField

private int id;

@DatabaseField(canBeNull = false, columnName = NAME_COLUMN)

Name
member
must not
be null

D

private String name;

@DatabaseField(foreign = true, columnName = PARENT_COLUMN)

E
Marked as
foreign

private Category parent;

public Category() {

}

}

The additions here are many, and we’re not done yet. We now specify the name of our

table in the DatabaseTable B annotation and names of columns in the Database-

Field C annotations. We can use these public variables elsewhere in the host applica-

tion for querying purposes.

 Additionally, we require that the name member must not be null (columns can be

null by default) D. Finally, consider the annotation on the parent member. Any

137Building databases with ORMLite

member variable which is defined as a table in our relation must be marked as for-

eign, using foreign = true E. This instructs ORMLite to only store the ID of the for-

eign object in the current table. Taking this class one step further, we can ensure that

a parent category must exist. The final member declaration of the parent looks like

the following:

@DatabaseField(foreign = true, foreignAutoRefresh = true,

columnName = PARENT_COLUMN, columnDefinition = "integer references " +
TABLE_NAME + "(" + ID_COLUMN + ") on delete cascade")

private Category parent;

We can fine-tune the exact SQL used to define this column using columnDefinition.

Here we have specified that the parent column has a foreign key to the categories

table (the same table on which it is defined). This states that values in the parent col-

umn must either be null or exist in the categories table in the _id column. We also

specify that records that refer to a parent category get deleted when the parent cate-

gory is deleted. This is known as a cascading delete. This last technique is not required

in a database, but for demonstration purposes we’ll include it. Our finished table for

the Category class looks like the following:

CREATE TABLE 'categories' ('parent' integer references categories(_id)

on delete cascade, 'name' VARCHAR NOT NULL ,

'_id' INTEGER PRIMARY KEY AUTOINCREMENT)

The last concept in this section is specifying uniqueness in a column or combination

of columns. Implementing the many-to-many relationship between articles and cate-

gories requires a cross-reference table. Put simply, a cross-reference table is used to

match up entries from one table with entries from another. Therefore, we’ll define a

two-column table to match IDs from articles to IDs from categories, logically storing

which articles are in which categories. As an added sanity check, cross-reference tables

usually include a constraint saying that the same combination of IDs can only appear

in the table once. To express uniqueness, ORMLite uses two Boolean elements, unique

and uniqueCombo. We’ll set uniqueCombo = true on the two member variables in the

following class, ArticleCategory, which maps articles to categories:

@DatabaseTable(tableName = ArticleCategory.TABLE_NAME)

public class ArticleCategory {
public static final String TABLE_NAME = "articlecategories",

Final
variables
for table
and column
names

B
ARTICLE_ID_COLUMN = "article_id",

CATEGORY_ID_COLUMN = "category_id";

@DatabaseField(foreign = true, canBeNull = false, uniqueCombo = true,

columnName = ARTICLE_ID_COLUMN,

columnDefinition = "integer references " +

C

Using the
columnDefinition
element

Article.TABLE_NAME +

"(" + Article.ID_COLUMN + ") on delete cascade")

private Article article;

@DatabaseField(foreign = true, canBeNull = false,

uniqueCombo = true,

D
Setting foreign = true for
storing complex objects

columnName = CATEGORY_ID_COLUMN,

138 CHAPTER 10 Beyond database basics

columnDefinition = "integer references " +
Category.TABLE_NAME +

"(" + Category.ID_COLUMN + ") on delete cascade")

private Category category;

public ArticleCategory() {

}

}

Notice the use of techniques described earlier, such as final variables for table and col-

umn names B, referential integrity using the columnDefinition element C, and the

requirement of setting foreign = true D when storing complex objects. The result-

ing table is as follows:

CREATE TABLE 'articlecategories'

('article_id' integer references articles(_id) on delete cascade,
'category_id' integer references categories(_id) on delete cascade,

UNIQUE ('article_id','category_id'));

Note the UNIQUE statement in the generated SQL.

41.4 SQLiteOpenHelper—your gateway to the database

SQLiteOpenHelper is an abstract class provided with Android that’s used to manage

the interaction between the developer and the database file stored on a device. Devel-

opers are tasked with subclassing SQLiteOpenHelper and implementing two methods:

onCreate() and onUpgrade(). The onCreate() method is where a developer specifies

the exact schema of the database, and onUpgrade() is used in subsequent releases if a

schema change is needed.

 When using ORMLite, instead of extending SQLiteOpenHelper, we’ll instead

extend OrmLiteSqliteOpenHelper to gain the benefits of using an ORM tool. We still,

however, are tasked with implementing the onCreate() and onUpgrade() methods.

Fortunately, all of the work done when carefully declaring the annotations on our

classes makes this extremely easy. We’ll use static methods on the TableUtils class to

create all of our needed tables. Under the hood, ORMLite will use Java’s reflection

APIs to read our annotations and build the create table SQL statements we saw earlier.

 Now that the hard work is already done, our implementation of the onCreate()

method is the following:

@Override

public void onCreate(SQLiteDatabase sqLiteDatabase,
ConnectionSource connectionSource) {

try {

TableUtils.createTable(connectionSource, Category.class);
TableUtils.createTable(connectionSource, Article.class);

TableUtils.createTable(connectionSource, ArticleCategory.class);

TableUtils.createTable(connectionSource, Author.class);
TableUtils.createTable(connectionSource, ArticleAuthor.class);

TableUtils.createTable(connectionSource, Comment.class);

} catch (SQLException e) {
Log.e(TAG, "Unable to create tables.", e);

139Building databases with ORMLite

throw new RuntimeException(e);
}

}

Note that when using foreign keys, the ordering of these statements is critical. Since

ArticleCategory’s table references the corresponding tables of Article and Category,

it must be created after the tables it depends on.

 At runtime, when ORMLite is first used to operate on the database, the onCreate()

method will be called. At that time, looking at the logcat output will show us the

exact statements used in the create process, for example:

INFO/TableUtils(2075): executed create table statement changed 1 rows:
CREATE TABLE 'categories'

('parent' integer references categories(_id) on delete cascade,

'name' VARCHAR NOT NULL , '_id' INTEGER PRIMARY KEY AUTOINCREMENT)

Implementing the onUpgrade() method will vary per application per upgrade. The

simplest implementation involves dropping each table with TableUtils.dropTable()

and then calling onCreate(). While perfectly suitable for development time, please

be careful to ensure users do not incur data loss in a production environment. A solid

implementation would likely transform data to the new schema, execute alter table

statements if needed, and only drop a table if it’s no longer required.

 Finally, because we’re targeting API Level 8 and up with this application, we can

use foreign keys. However, foreign keys are not enabled by default. Doing so requires

executing one line of SQL, which we can do when the database is opened by overrid-

ing onOpen(), as follows:

@Override

public void onOpen(SQLiteDatabase db) {

super.onOpen(db);
db.execSQL("PRAGMA foreign_keys=ON;");

}

41.5 Singleton pattern for database access

We’ll use our completed subclass of OrmLiteSqliteOpenHelper as a singleton in our

host application. By maintaining a single instance of the helper class, our application

will have a single connection to its SQLite database. In practice, this will eliminate the

dangers of having multiple connections writing at the same time, which can result in

failures at runtime.

 Our model here includes one process, which has exactly one instance of our sub-

class, called DatabaseHelper. This instance can be used safely from multiple threads

due to Java locking that Android does under the hood. Our implementation of the

singleton pattern will look like this (with the nonsingleton parts omitted for brevity):

public class DatabaseHelper extends OrmLiteSqliteOpenHelper {

public static final String DATABASE_NAME = "demo.db";
private static final int DATABASE_VERSION = 1;

private static DatabaseHelper instance;

140 CHAPTER 10 Beyond database basics

public static synchronized DatabaseHelper getInstance(Context c) {
if (instance == null)

instance = new DatabaseHelper(c);

return instance;
}

private DatabaseHelper(Context context) {

super(context, DATABASE_NAME, null, DATABASE_VERSION);

Specifies
filename and
its version
number

}

}

In the private constructor, we specify the filename of the database and its version num-

ber. The version number passed in the constructor works in conjunction with the

onUpgrade() method mentioned in the earlier section.

41.6 CRUD operations made easy

Database developers will commonly refer to the abbreviation CRUD (create, read,

update, and delete) when talking about requirements for an application. We’ll

explore how to do these operations for the Java classes we implemented as part of this

application.

 Accessing our objects from the database will be done through an ORMLite class

called a DAO (data access object). A DAO is a generic class with the type of the per-

sisted class, and the type of its ID field. In the case of our cross-reference objects that

don’t have an ID, such as ArticleCategory, we’ll use Void for this type. On our

DatabaseHelper singleton, we can obtain a DAO for each class using the getDao()

method, passing in the appropriate class. For convenience, you may find it helpful to

cast the result to use your actual generics, as in the following example. We’ll use that

convention extensively in the demo application:

public class DatabaseHelper extends OrmLiteSqliteOpenHelper {

/* Remainder omitted */

public Dao<Article, Integer> getArticleDao() throws SQLException {
return getDao(Article.class);

}

After a DAO is obtained, it exposes a number of methods for creating, updating, delet-

ing, and querying for objects. To create a Category record in the database, for exam-

ple, we simply create a Category instance, fill out the information we want persisted,

and call the create() method on the DAO. ORMLite will then set the ID field of our

object that was assigned by the database. Suppose we wanted to create two categories,

one nested in the other. We can do so like this:

Category tutorials = new Category(); Create our object
tutorials.setName("Tutorials");

DatabaseHelper helper = DatabaseHelper.getInstance(context);

Get an
instance of
DatabaseHelper
singleton

Dao<Category, Integer> categoryDao = helper.getCategoryDao();

categoryDao.create(tutorials); Actual create call

141Building databases with ORMLite

Category programmingTutorials;

String title = "Programming Tutorials";

programmingTutorials = new Category(title, tutorials);

Tutorials object
has its ID set, so
it’s used as parent
in new category

categoryDao.create(programmingTutorials);

Reading a single object given its ID field is as simple as calling the queryForId()

method on the DAO. The DAO objects also expose updates and deletes to single

objects just as easily. By passing in an instance with its ID field already set, these opera-

tions are just as easy. Suppose we know the ID of the first item created in the previous

snippet. We can rename it as follows:

Category renamed = new Category(1, "Android Tutorials", null);

categoryDao.update(renamed);

We can also delete objects similarly:

Category toDelete = new Category();

toDelete.setId(2);

categoryDao.delete(toDelete);

When updating, it’s important that the source object has all appropriate member vari-

ables filled out. When deleting, all that’s required is the ID. In the above example, we

could, of course, have passed in the original instances tutorials and programming-

Tutorials to the update and delete methods respectively.

41.7 Query builders

Operating on a single record in a database is as simple as it gets, and we can express

more complicated queries that return multiple records and update and delete many

records, as well, using the QueryBuilder, UpdateBuilder, and DeleteBuilder classes,

all available from a DAO object by calling queryBuilder(), updateBuilder(), and

deleteBuilder(), respectively.

 First, let’s write a query that will return the names of all to- level categories in the

database. We’ll use the same DAO object as before, of type Dao<Category, Integer>:

PreparedQuery<Category> query = categoryDao.queryBuilder()

.selectColumns(Category.NAME_COLUMN)

.where()

.isNull(Category.PARENT_COLUMN)

.prepare();

List<Category> topLevelNames = categoryDao.query(query);

The methods on the QueryBuilder class can be used to form a query using the typical

SQL operators. You can use combinations of and(), or(), eq() for equals, not(), ge()

for greater than or equals, and so on to form your where clause. The QueryBuilder

and its update and delete counterparts use a fluent interface, meaning each method

returns a reference to the same object, so developers will typically “chain” calls

together for readability purposes.

142 CHAPTER 10 Beyond database basics

 In this example, we also do a projection by calling selectColumns() and specify-

ing only the columns we want filled in on our resulting objects (just the name). After

expressing our query, we call prepare() on the QueryBuilder, resulting in a typed

PreparedQuery instance. Passing the result to the query() method will return our top-

level categories.

 Continuing with builders, let’s look at some more examples. Suppose we want to

count the number of child categories given an ID of the parent, which we denote as a

variable, parentId. We can use another method exposed by the QueryBuilder to sig-

nal that we’re performing a count operation, setCountOf(). Then we use the

countOf() method on our DAO:

PreparedQuery<Category> countQuery = categoryDao.queryBuilder()

.setCountOf(true)

.where()

.eq(Category.PARENT_COLUMN, parentId)

.prepare();

long children = categoryDao.countOf(countQuery);

Delete operations are very similar. Suppose we want to run a delete statement to

remove any articles that are older than 30 days. We can do that using the Delete-

Builder class, as in the following example:

Calendar cutoff = Calendar.getInstance();
cutoff.add(Calendar.DATE, -30); Calculates the date B
PreparedDelete<Article> deleteStatement;

deleteStatement = (PreparedDelete<Article>)articleDao
.deleteBuilder()

.where()

.lt(Article.PUBLISHED_DATE_COLUMN, cutoff.getTime())

CBuilds
where
clause

.prepare();

Calls
prepare()
method

D

articleDao.delete(deleteStatement);

Let’s dissect the example. We first calculate the date that is 30 days prior B. We use

the lt() function to build our where clause C, specifying that we should delete val-

ues that are less than the given date. Finally, after calling the prepare() method D,

we must typecast this to a PreparedDelete. The reason for this is that the delete()

method on our DAO doesn’t accept a PreparedQuery, which is the type that pre-

pare() will return. We know ahead of time that this cast is correct. Note that in com-

parison operations, such as less-than, we must be careful to pass to the ORM the same

type as we defined in our class. Here we pass in a Date, which corresponds to the

member variable on the Article class:

private Date publishedDate;

Now, when an article is deleted, we must ensure that our data integrity is maintained.

In this case, that means the IDs we delete with this statement should no longer appear

in the Article to Category cross-reference table, and similarly, the IDs shouldn’t

appear in the Comment class’s table. Fortunately for us, our delete statement also has a

hidden feature. Because we took care when designing our database schema earlier, we

143Building databases with ORMLite

specified a cascading delete on the ArticleCategory class to take care of this for us.

We can also use the same strategy when implementing the Comment class. Thus, the

above delete query is all that’s needed to delete articles including any comments and

their mappings to categories.

 These examples are just some of the types of statements we can form using the

builder objects. A full application will likely contain many more combinations of

selecting data and performing inserts, updates, and deletes. Furthermore, we have yet

to touch on the tricky subject of handling foreign object references and the options

available when querying for data stored in different tables.

41.8 Data types and tricky foreign types

Up until this point, we’ve let ORMLite handle mapping our Java types to SQLite stor-

age classes. We also haven’t shown complex queries that include data from more than

one table. Fortunately, ORMLite allows us to tune its behavior using the same annota-

tions we used when setting up our database schema.

 The simplest change we can make is changing the storage class of a member vari-

able, such as a date. By default, ORMLite will map the type java.util.Date to VAR-

CHAR and store dates in the yyyy-MM-dd HH:mm:ss.SSSSSS format. If, for example, we

wish to store dates as a number (as in number of milliseconds since the epoch), we

can use the following modified annotation from the Article class:

@DatabaseField(canBeNull = false, dataType = DataType.DATE_LONG,

columnName = PUBLISHED_DATE_COLUMN)

private Date publishedDate;

This will result in a create table statement that uses the BIGINT storage class.

 Now, let’s handle the case of a foreign object. We know that a Category can have a

parent, but how should the ORM behave when we retrieve a Category that has one?

Should the parent in its entirety be returned? What about the parent’s parent? ORM-

Lite introduces foreign auto refresh to specify this behavior and foreign refresh

level to configure it. In the default scenario, querying for a category will result in the

parent being set, with only the ID field populated. The default behavior here will be

the most efficient in terms of the SQL queries performed by the ORM. When enabling

the auto-refresh features, developers should be aware of a potentially large amount of

statements being executed, since the version at the time of writing (4.41) doesn’t per-

form joins, but instead, executes additional statements.

 Here’s a concrete example for a one-to-one relation. Suppose we always want a

Category’s parent refreshed. We can set foreignAutoRefresh = true on the annota-

tion of the parent member variable, such as this:

@DatabaseField(foreign = true, foreignAutoRefresh = true,
canBeNull = true, columnName = PARENT_COLUMN,

columnDefinition = "integer references " + TABLE_NAME +

"(" + ID_COLUMN + ") on delete cascade")
private Category parent;

144 CHAPTER 10 Beyond database basics

When enabling this feature, ORMLite will by default perform two levels of refresh.

With the above definition of the annotation, ORMLite will populate a Category, its

parent, and its grandparent (if available). The default of 2 can be changed using the

maxForeignAutoRefreshLevel element of the annotation. If anything, changing this

value to 1 would be the most likely change (again, increasing this value will result in

more SQL queries being executed).

 Now, suppose we’re interested in a relation that is one-to-many, as in the case of

one Article with potentially many comments. We can introduce a member variable

on the Article class and annotate it as a ForeignCollectionField. We can use this

field to either selectively refresh all the comments, or have it automatically happen

when an article is loaded, as specified by the eager element. Here’s an example:

@DatabaseTable(tableName = Article.TABLE_NAME)

public class Article {

...

@ForeignCollectionField(eager = true)

private ForeignCollection<Comment> comments;

}

With this definition, ORMLite won’t add any extra columns to the generated table for

the Article class. Instead, it will spin up a DAO and query for all the comments associ-

ated with each article. As you can imagine, this may be costly when querying for many

articles if each article has many comments. Thus, we’ll see how to work with a non-

eager collection, which can be tricky. Let’s remove the eager = true element from our

annotation (false is the default):

@ForeignCollectionField

private ForeignCollection<Comment> comments;

Now, ORMLite won’t query for the associated comments by default. However, we must

be careful when dealing with the comments variable, since its type is ForeignCollec-

tion. When the collection is non-eager, invoking any method on the collection will

cause I/O, such as size() and iterator(). Also, our debugger may be calling

iterator() for us, resulting in unexpected I/O and a strangely populated collection

when we didn’t expect it. The ORMLite documentation recommends populating a col-

lection of this form by using the toArray() method on the collection. Here’s one

example of loading a single article, and then all of its comments:

DatabaseHelper helper = DatabaseHelper.getInstance(context);

Dao<Article, Integer> articleDao = helper.getArticleDao();

Article article;

article = articleDao.queryForId(1); Load single article

Comment[] comments;
comments = article.getComments().toArray(new Comment[0]); Load all comments

Last, please consult the documentation (http://mng.bz/84k8) on properly calling

close() on an iterator, such as one obtained from a ForeignCollection.

http://mng.bz/84k8

145Building databases with ORMLite

41.9 Raw SQL queries

Writing out a SQL query can often be much more efficient than relying on the ORM to

build and execute the needed queries. This comes into play when dealing with data

stored in multiple tables, as in the case with foreign objects discussed earlier. In per-

formance-critical areas, it’s more efficient to write a SQL join rather than relying on

the DAO methods to automatically or selectively refresh objects.

 Performing a raw SQL query involves first obtaining a DAO, and then using one

overload of the queryRaw() method. Each signature of the queryRaw() method

expects a variable number of strings as the last parameter. This is to allow developers

to parameterize queries and have the ORM handle escaping the values. This is

extremely important when performing queries based on user input; otherwise, your

database will be open to SQL injection attacks.

 The overloads of queryRaw() allow us to fine-tune exactly what we receive as the

result for our queries. Our choices are

 A list of string arrays, one array per result, in which each array holds the raw

string values of the columns selected

 A list of object arrays, one array per result, which are typed based on our input

 A list of fully baked class instances, given a parameterized RawRowMapper

We’ll demo the RawRowMapper case, because it involves the most explanation, yet often

results in code that is easiest to reuse. Suppose we want a list of all the articles in the

database along with their category names (along with IDs). Using the ORM to perform

this operation would result in an amount of queries that is proportional to the num-

ber of entries in the database. We can do better by using one query that joins three

tables, namely, the tables for Article, Category, and the cross-reference class

ArticleCategory. Our query will be this:

select a.title, a._id, c.name, c._id from articles a, categories c,

articlecategories ac
where ac.article_id = a._id and ac.category_id = c._id;

First, let’s define a class to hold our results:

class ArticleCategoryName {

public String articleTitle, categoryName;

public Integer articleId, categoryId;
}

Next, we implement the RawRowMapper, which will be invoked on each record

returned by our query. Its job is to turn the raw string array representing the columns

returned by the database into an instance of our desired type, which is Article-

CategoryName in this case (note the use of generics):

class ArticleWithCategoryMapper
implements RawRowMapper<ArticleCategoryName> {

@Override

public ArticleCategoryName mapRow(String[] columnNames,
String[] resultColumns) throws SQLException {

146 CHAPTER 10 Beyond database basics

ArticleCategoryName result = new ArticleCategoryName();
result.articleTitle = resultColumns[0];

result.articleId = Integer.parseInt(resultColumns[1]);

result.categoryName = resultColumns[2];
result.categoryId = Integer.parseInt(resultColumns[3]);

return result;

}
}

When parsing results in the mapRow() method, it’s important to check for data consis-

tency. Putting all the components together, we can get a list of all the article names

and their categories using this:

GenericRawResults<ArticleCategoryName> rawResults;
String query = "select a.title, a._id, c.name, c._id from articles a,

categories c, articlecategories ac
where ac.article_id = a._id and ac.category_id = c._id";

ArticleWithCategoryMapper mapper = new ArticleWithCategoryMapper();
rawResults = articleDao.queryRaw(query, mapper);
List<ArticleCategoryName> results = rawResults.getResults();

41.10 Transactions

Transactions are a key component in database operations, because they allow multiple

statements to be treated as a single atomic unit. A transaction guarantees that one of

two possibilities will happen:

 All statements will be executed and committed if no errors are encountered.

 If an error is encountered at any point in a transaction, the entire transaction is

rolled back.

As a convenience, ORMLite provides a class called TransactionManager that wraps the

details of beginning a transaction, marking one as successful, and ending a transac-

tion. A TransactionManager exposes just one interesting method, which is call-

InTransaction(). This method accepts a Callable, which is just like a Runnable,

except Callable has a return value.

 To run a transaction, we choose to expose this feature as a method of our Orm-

LiteSqliteOpenHelper subclass, DatabaseHelper:

public class DatabaseHelper extends OrmLiteSqliteOpenHelper {

public <T> T callInTransaction(Callable<T> callback) {
try {

TransactionManager manager;

manager = new TransactionManager(getConnectionSource());

return manager.callInTransaction(callback);

} catch (SQLException e) {

Log.e(TAG, "Exception occurred in transaction.", e);

throw new RuntimeException(e);
}

}

}

147Building databases with ORMLite

Running a transaction is as simple as putting our database operations inside a Call-

able. Here’s an example method that performs two writes inside a transaction and

returns the resulting Article:

public Article createArticleInCategory(Context context,
final String title, final String text, final Category category) {

final DatabaseHelper helper = DatabaseHelper.getInstance(context);

return helper.callInTransaction(new Callable<Article>() {
@Override

public Article call() throws SQLException {

Article article = new Article(new Date(), text, title);

Make new
instance of
Article

Dao<Article, Integer> articleDao;

articleDao = helper.getArticleDao();

Add it to
database

using
a DAO

articleDao.create(article);

Dao<ArticleCategory, Void> articleCategoryDao;

Add cross-
reference
entry

articleCategoryDao = helper.getArticleCategoryDao();

articleCategoryDao.create(new ArticleCategory(article, category));

return article;
}

});

}

We chose to use a transaction in this case because we want both write operations to

succeed, or in the case of failure, to have no writes committed. This approach is rec-

ommended when performing multiple writes, for data consistency. Additionally, trans-

actions can in some cases increase the performance of a combination of statements,

especially a mix of reads and writes.

41.11 The bottom line

ORMLite can greatly simplify database development in an Android application. It can

be used to create an entire database instance just by properly annotating your Java

classes. It also handles mapping database queries to instances of your classes, remov-

ing the need for boilerplate code.

 For performance-critical operations that involve multiple tables, consider writing

join statements by hand, and use the queryRaw() method on a DAO. This, in practice,

will be much more efficient than querying additional tables one by one, as in the case

of ORM-generated statements. Furthermore, consider using transactions to batch

together several writes to ensure data consistency. Last, a singleton pattern is encour-

aged for your subclass of SQLiteOpenHelper to eliminate problems when writing from

multiple threads.

41.12 External links

http://ormlite.com/javadoc/ormlite-core/doc-files/ormlite_1.html

http://ormlite.com/javadoc/ormlite-core/doc-files/ormlite_2.html#IDX195

http://touchlabblog.tumblr.com/post/24474750219/single-sqlite-connection

http://ormlite.com/javadoc/ormlite-core/doc-files/ormlite_1.html
http://ormlite.com/javadoc/ormlite-core/doc-files/ormlite_2.html#IDX195
http://touchlabblog.tumblr.com/post/24474750219/single-sqlite-connection

148 CHAPTER 10 Beyond database basics

Hack 42 Creating custom functions in SQLite
Android v1.6+

Android uses SQLite for its databases. Although it

offers a good API, you’ll sometimes feel a bit limited.

What would you do if you want to sort results using a

comparator? Did you ever try to implement a query

that returns the distance between two GPS coordi-

nates? One of SQLite’s biggest limitations is its lack

of math functions, making some queries impossible

to achieve.

 In this hack, I’ll show you how to use the Android

NDK to provide custom functions to your SQLite que-

ries. We’ll create an application that uses a custom

SQLite function to calculate distances from different

POIs (points of interest) in a database. This function

will use the GPS coordinates of the POIs and the hav-

ersine formula to return the distance in kilometers.

 We can see the application running in figure 42.1.

In this figure, we see that different POIs from France

were added. Later, the user searches using the Notre

Dame de Paris’ GPS coordinates and the distance to

the different POIs is shown.

 To make this work, we’ll use the Android NDK. We’ll use Java to create POIs and

insert them in the database using the ordinary SQLiteOpenHelper class, but when the

user searches the database we’ll use an NDK call. We’ll first see how to handle the Java

part, and afterward we’ll see the NDK code.

42.1 Java code

The idea to make this work correctly is to keep doing the simple database queries using

the Java API and only use the NDK when we need to use a custom function. The inter-

esting code in the Java part is the DatabaseHelper class. This class will be in charge of

calling the NDK code when necessary.

 Let’s check the DatabaseHelper’s code:

public class DatabaseHelper extends SQLiteOpenHelper {

public static final String DATABASE_NAME = "pois.db";

private static final int DATABASE_VERSION = 1;
private Context mContext;

static {

System.loadLibrary("hack042-native"); Load native libraryB
}

public DatabaseHelper(Context context) {

Figure 42.1 Distance from Notre

Dame to different POIs in France

149Creating custom functions in SQLite

super(context, DATABASE_NAME, null, DATABASE_VERSION);
mContext = context;

}

@Override
public void onCreate(SQLiteDatabase db) {

db.execSQL("CREATE TABLE " +

"pois (" + POIs table schemaC
"_id INTEGER PRIMARY KEY AUTOINCREMENT," +

"title TEXT," +

"longitude FLOAT," +
"latitude FLOAT);");

}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion,

int newVersion) {

db.execSQL("DROP TABLE IF EXISTS pois;");

}

public List<Poi>getNear(float latitude, float longitude) {
D getNear() Java

implementation

File file = mContext.getDatabasePath(DATABASE_NAME);
return getNear(file.getAbsolutePath(), latitude, longitude);

}

private native List<Poi> getNear(String dbPath, float latitude,
float longitude);

E
getNear() native
implementation signature}

The fist important line is loading the native library B. System.loadLibrary() is usu-

ally called from a static block. This means that when the class is loaded, it will also

load the native library called hack042-native. In the onCreate() method C, we can

learn what the database schema looks like. Our DatabaseHelper class contains a get-

Near()D method that will be called when the user clicks on the Search button. This

method is just a wrapper for its native version E. The Java version is the public one

because the native implementation needs the database path, and only the Database-

Helper class knows where it is.

42.2 Native code

We’ll use the NDK to query our database when we need to use custom functions. To do

so, we’ll need to be able to operate with SQLite from the NDK, and that means we’ll

need to compile it. Fortunately, it’s easier than you would expect. We simply add .c

and .h file extensions. Adding sqlite3.c to the LOCAL_SRC_FILES inside the

Android.mk file is enough to use it.

 Inside main.cpp we have all the NDK code. We’ll need to do the following:

 Use JNI to create Java objects.

 Use the SQLite’s C/C++ API to query our database.

 Return a List<Poi> as a jobject.

150 CHAPTER 10 Beyond database basics

Let’s take a look at the implementation of getNear():

jobject Java_com_manning_androidhacks_hack042_db_DatabaseHelper_getNear(

JNIEnv *env, jobject thiz, jstring dbPath,

B

getNear()
native
method

jfloat lat, jfloat lon) {

sqlite3 *db;

sqlite3_stmt *stmt;

const char *path = env->GetStringUTFChars(dbPath, 0);

jclass arrayClass = env->FindClass("java/util/ArrayList");

jmethodID mid_init = env->GetMethodID(arrayClass, "<init>", "()V");

jobject objArr = env->NewObject(arrayClass, mid_init);

C
ArrayList
creation

jmethodID mid_add = env->GetMethodID(arrayClass, "add", "(Ljava/lang/

Object;)Z");

jclass poiClass = env->FindClass(
"com.manning.androidhacks.hack042.model.Poi");

jmethodID poi_mid_init = env->GetMethodID(poiClass, "<init>",

"(Ljava/lang/String;FFF)V");

sqlite3_open(path, &db);
D Open database with

a certain path

env->ReleaseStringUTFChars(dbPath, path);

sqlite3_create_function(db, "distance", 4, SQLITE_UTF8,

E

Create
custom
function

NULL, &distanceFunc, NULL, NULL);

if (sqlite3_prepare(db,

"SELECT title, latitude, longitude,

distance(latitude, longitude, ?, ?) as kms Create
query F FROM pois ORDER BY kms",

-1, &stmt, NULL) == SQLITE_OK) {

int err;
sqlite3_bind_double(stmt, 1, lat);

sqlite3_bind_double(stmt, 2, lon);

while ((err = sqlite3_step(stmt)) == SQLITE_ROW) {

G Iterate
through
results

const char *name = (char const *)

sqlite3_column_text(stmt, 0);

jfloat latitude = sqlite3_column_double(stmt, 1);
jfloat longitude = sqlite3_column_double(stmt, 2);

jfloat distance = sqlite3_column_double(stmt, 3);

jobject poiObj = env->NewObject(poiClass,
poi_mid_init,

H

Create
new Poi
object

env->NewStringUTF(name),

latitude,
longitude,

distance);

env->CallBooleanMethod(objArr, mid_add, poiObj);
}

if (err != SQLITE_DONE) {

LOGI("Query execution failed: %s\n", sqlite3_errmsg(db));
}

sqlite3_finalize(stmt);

} else {

151Creating custom functions in SQLite

LOGI("Can't execute query: %s\n", sqlite3_errmsg(db));
}

return objArr;

}

The first thing to notice is the difference between the Java and NDK signatures B.

Since we need to return a List<Poi>, we create a new ArrayList using JNI C. After

that, we can open the database using the path provided D and create a custom func-

tion passing a function pointer E. The distance() function is defined inside the

main.cpp file. After the custom function is created, we can write our query using the

distance() function F. The final step is iterating through the results G, create a Poi

object using the row data H, and add it to the list.

 Now that we have all the native code in place, whenever we call the Database-

Helper’s getNear() method, it will use the custom function created in this section.

42.3 The bottom line

Using the NDK might sound like a lot of work, but doing so will give you more flexibil-

ity. You might be thinking that instead of returning an array from native code, you

could query the database through Java, calculate the distance and sort after doing the

query. This is true, but if the database is big enough, using an array wouldn’t work.

The best way to solve this is returning a Cursor from the native code. The implemen-

tation to return a Cursor would be much harder to code, but someone already did it.

You can check the android-database-sqlcipher source code; it’s already implemented

there. When you have a Cursor, you’ll be able to use a CursorAdapter as an adapter

for your ListView, making everything extremely easy.

 You should also know that there’s a way to avoid creating custom functions. You

can precalculate values and insert them into the row. This might be sufficient,

depending on the type of queries your application does.

42.4 External links

http://en.wikipedia.org/wiki/Haversine_formula

http://developer.android.com/reference/android/database/sqlite/

package-summary.html

www.sqlite.org/capi3.html

www.movable-type.co.uk/scripts/latlong.html

www.thismuchiknow.co.uk/?p=71

https://github.com/sqlcipher/android-database-sqlcipher

http://en.wikipedia.org/wiki/Haversine_formula
http://developer.android.com/reference/android/database/sqlite/package-summary.html
www.sqlite.org/capi3.html
www.movable-type.co.uk/scripts/latlong.html
www.thismuchiknow.co.uk/?p=71
https://github.com/sqlcipher/android-database-sqlcipher

152 CHAPTER 10 Beyond database basics

Hack 43 Batching database operations
Android v2.1+

A good pattern inside Android applications is to save your data inside a database and

show it in a ListView using a CursorAdapter. If you use a ContentProvider to handle

the database operations, you can return a Cursor that will be updated whenever the

data changes. This means that if you do everything correctly, you can work on the

logic to modify the information inside a table from a background thread and the UI

will update automagically. The problem with this approach is that when you do a large

number of operations to the database, your Cursor will get updated frequently, mak-

ing your UI flicker.

 In this hack, we’ll see how to use batch operations to avoid this flickering, creating

three possible implementations to understand the problem and find a solution:

 Without batching

 With batching

 With batching and using the SQLiteContentProvider class

The demo application is simple. It shows a list of numbers from 1 to 100. When the

user clicks on the Refresh button, the old numbers are deleted and new ones are cre-

ated. To accomplish this, we’ll code three different

implementations of the following:

 An Activity to display the numbers

 An Adapter to create and populate the views

for the ListView

 A ContentProvider to handle queries to the

database

 A Service that will update the table through

the ContentProvider

You can see the finished application in figure 43.1.

Each row shows the database ID on the left and the

generated number on the right.

 As you an imagine, most of the code for the three

solutions is similar. Every implementation will have

its own Activity, Adapter, Service, and Content-

Provider. Since you can go through the sample

code, here we’ll only discuss the differences, which

reside in the Service and in the ContentProvider.

43.1 No batch

This is the simplest example. Inside the Service, we just hit the ContentProvider

whenever we want to do an operation to the table. Here’s the Service code:

Figure 43.1 List with numbers

153Batching database operations

public class NoBatchService extends IntentService {

...

@Override

protected void onHandleIntent(Intent intent) {

ContentResolver contentResolver = getContentResolver();

contentResolver.delete(

Before
inserting new
numbers,
delete all old
ones.

NoBatchNumbersContentProvider.CONTENT_URI,
null, null);

for (int i = 1; i <= 100; i++) {

ContentValues cv = new ContentValues();
cv.put(

Inside the for loop
create ContentValue
and insert number
using ContentResolver.

NoBatchNumbersContentProvider.COLUMN_TEXT, "" + i);

contentResolver.insert(
NoBatchNumbersContentProvider.CONTENT_URI, cv);

}

}
}

Try running the application and test this implementation. The best way of noticing

the flickering is clicking on the Refresh button and trying to scroll over the list of

numbers. You’ll find out that it’s very difficult to scroll.

 This happens because every time we do an insert or a delete using the NoBatch-

NumbersContentProvider, it does this:

getContext().getContentResolver().notifyChange(uri, null);

This means that every Cursor retrieved from NoBatchNumbersContentProvider's

query() method will be updated and the Adapter will make the ListView refresh

itself.

43.2 Using batch operations

The second approach is using batch operations. Inside the ContentProvider class, we

have the following method:

public ContentProviderResult[] applyBatch(

ArrayList<ContentProviderOperation> operations);

The idea is to create a list of ContentProviderOperations and apply them all

together. In this case, the Service looks like this:

public class BatchService extends IntentService {
private static final String TAG =

BatchService.class.getCanonicalName();

...

@Override

protected void onHandleIntent(Intent intent) {

Builder builder = null;
ContentResolver contentResolver = getContentResolver();

ArrayList<ContentProviderOperation> operations =

Create list of
ContentProvider-
Operations.

new ArrayList<ContentProviderOperation>();

154 CHAPTER 10 Beyond database basics

builder = ContentProviderOperation
Create delete

operation using
ContentProvider-

Operation’s
Builder and add

it to list of
operations

to apply.

.newDelete(BatchNumbersContentProvider.CONTENT_URI);

operations.add(builder.build());

for (int i = 1; i <= 100; i++) {
ContentValues cv = new ContentValues();

cv.put(NoBatchNumbersContentProvider.COLUMN_TEXT, "" + i);

builder = ContentProviderOperation
.newInsert(BatchNumbersContentProvider.CONTENT_URI);

Create an
insert
operation
per number.

builder.withValues(cv);

operations.add(builder.build());
}

try {

contentResolver.applyBatch(

With list of operations
created, call
applyBatch() method.

BatchNumbersContentProvider.AUTHORITY, operations);

} catch (RemoteException e) {

Log.e(TAG, "Couldn't apply batch: " + e.getMessage());
} catch (OperationApplicationException e) {

Log.e(TAG, "Couldn't apply batch: " + e.getMessage());

}

}
}

If you test this approach, you won’t notice any difference: the flickering is still there.

Why?

 If you go to Android’s ContentProvider implementation, you’ll notice that

the applyBatch() method doesn’t do anything in particular. It just iterates through

the operations and calls the apply() method, which will end up calling our insert()

/ delete() methods inside the BatchNumbersContentProvider class.

 All this might sound awkward, but it’s exactly what the applyBatch() method doc-

umentation says (see section 43.5):

Override this to handle requests to perform a batch of operations,
or the default implementation will iterate over the operations and
call apply(ContentProvider, ContentProviderResult[], int) on
each of them. If all calls to apply(ContentProvider, Content-
Provider-Result[], int) succeed then a ContentProvider-

Result array with as many elements as there were operations will
be returned. If any of the calls fail, it is up to the implementation
how many of the others take effect.

43.3 Applying batch using SQLiteContentProvider

We already know that applying the changes in batch is the solution for our problem

and we also know that we need to somehow modify the applyBatch() method inside

our ContentProvider implementation to make this work. Fortunately, someone

already did it.

155Batching database operations

 There’s a class inside the Android Open Source Project (AOSP) called SQLite-

ContentProvider that doesn’t belong to the SDK. It’s inside com.android.providers

.calendar. For this case, instead of extending ContentProvider, we’ll extend from

SQLiteContentProvider.

 The Service code is exactly the same as the second approach, so let’s look inside

the SQLiteContentProvider’s applyBatch() method:

@Override
public ContentProviderResult[] applyBatch(

ArrayList<ContentProviderOperation> operations)

throws OperationApplicationException {
mDb = mOpenHelper.getWritableDatabase();

mDb.beginTransactionWithListener(this);

All operations are
applied inside database
transaction.

try {
mApplyingBatch.set(true);

final int numOperations = operations.size();

final ContentProviderResult[] results =
new ContentProviderResult[numOperations];

for (int i = 0; i < numOperations; i++) {

final ContentProviderOperation operation = operations.get(i);

results[i] = operation.apply(this, results, i);
Implementation
also calls apply().

}

mDb.setTransactionSuccessful();
Finish database
transaction.

return results;

} finally {

mApplyingBatch.set(false);

mDb.endTransaction();
onEndTransaction();

onEndTransaction takes care
of notifying changes after all
operations applied.

}

}

So far, we know that every operation is applied inside a database transaction, but this

implementation still calls the apply() method for every operation. Why wouldn’t we

get a notification for every insert() / delete()?

 To understand why this works correctly, we need to read the SQLiteContent-

Provider’s insert() method:

@Override
public Uri insert(Uri uri, ContentValues values) {

Uri result = null;

boolean applyingBatch = applyingBatch();

Check if we’re
applying a batch.

if (!applyingBatch) {

mDb = mOpenHelper.getWritableDatabase();

mDb.beginTransactionWithListener(this);
try {

result = insertInTransaction(uri, values);

if (result != null) {
mNotifyChange = true;

}

mDb.setTransactionSuccessful();

156 CHAPTER 10 Beyond database basics

} finally {
mDb.endTransaction();

}

onEndTransaction();
} else {

If we’re inside batch
operation, call
insertInTransaction().

result = insertInTransaction(uri, values);

if (result != null) {
mNotifyChange = true;

If something was inserted,
turn mNotifyChange flag
on so onEndTransaction()
method knows if it needs
to omit notification.

}

}

return result;

}

The logic for insertInTransaction() is inside our implementation. It’s the same as

the others, but it lacks the notification logic.

 If you run this implementation, you’ll see how the flicker disappeared because the

UI will only be refreshed when all the operations get applied.

43.4 The bottom line

It’s a shame that the SQLiteContentProvider class doesn’t belong to the SDK. If your

ContentProvider is using a SQLite database to store data, give it a try. Your UI will

look more responsive and applying operations inside a single transaction will make

everything run faster.

43.5 External links

http://developer.android.com/reference/android/content/ContentProvider.html

http://stackoverflow.com/questions/9801304/

android-contentprovider-calls-bursts-of-setnotificationuri-to-cursoradapter-wh

http://developer.android.com/reference/android/content/ContentProvider.html
http://stackoverflow.com/questions/9801304/android-contentprovider-calls-bursts-of-setnotificationuri-to-cursoradapter-wh
http://stackoverflow.com/questions/9801304/android-contentprovider-calls-bursts-of-setnotificationuri-to-cursoradapter-wh

157

Avoiding fragmentation

Fragmentation is a serious issue for Android developers. In this chapter, we’ll look

at some tips on how to achieve certain tasks and still be backward compatible with

older versions.

Hack 44 Handling lights-out mode
Android v1.6+

Since the early beginnings of Android, the whole system has had a status bar at the

top of the screen. In Android Honeycomb, the status bar was moved to the bottom

of the screen.

 Applications such as games or image viewers need the full attention of the user,

and most of them take the whole screen to display themselves. For instance, in the

default Gallery application, when you click on an image, it’s shown full-screen with-

out any other content.

 Imagine you need to provide this feature in your application, and it needs to be

compatible with every Android version. In this hack, we’ll build a simple toy appli-

cation that will have a red background and, when we press it, the application will

enter lights-out mode. We’ll take care of Android 2.x and 3.x separately, but then

we’ll merge them into a single implementation.

158 CHAPTER 11 Avoiding fragmentation

44.1 Android 2.x

Let’s build the application with Android 2.x code first. In Android 2.x, we have the

concept of full-screen mode. The idea behind full-screen mode is to allow the applica-

tion’s window to use the entire display space.

 We’re also interested in another concept: the application’s title. The application’s

title is the gray bar we get on the upper part of the screen.

 Let’s look at the code that creates the effect:

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

requestWindowFeature(Window.FEATURE_NO_TITLE); Removes the title barB

setContentView(R.layout.main);

mContentView = findViewById(R.id.content);

C
Calls and asks
for a referencemContentView.setOnClickListener(new OnClickListener() {

@Override

public void onClick(View v) {

Window w = getWindow();
if(mUseFullscreen) {

D How field
variable toggles
the status

w.addFlags(

WindowManager.LayoutParams.FLAG_FULLSCREEN);
w.clearFlags(

WindowManager.LayoutParams.FLAG_FORCE_NOT_FULLSCREEN);

} else {
w.addFlags(

WindowManager.LayoutParams.FLAG_FORCE_NOT_FULLSCREEN);

w.clearFlags(
WindowManager.LayoutParams.FLAG_FULLSCREEN);

}

mUseFullscreen = !mUseFullscreen;

}

});
}

The code is self-explanatory. We first remove the title bar B. This needs to be done

before the setContentView() call is made. Afterward, we make an ordinary set-

ContentView() call and ask for a reference to the root element of our view C. This

element will work as an on/off switch for the full-screen mode.

 The last part of the code states how the full-screen mode should work. You can see

in D how a field variable is used to toggle the status.

44.2 Android 3.x

In Android 3.x, the concepts explained for Android 2.x vary a little. The title bar

ended up being the action bar on the upper part of the screen, and the status bar

went to the bottom of the screen.

159Handling lights-out mode

 An important change in Android 3.x is that there are no physical buttons; they’re

all placed in the status bar. Because of that, the status bar can’t be dismissed, but it can

be dimmed.

 Here’s the code:

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

mContentView = findViewById(R.id.content);
B Reference to

root element

mContentView.setOnSystemUiVisibilityChangeListener(

C

Hides
or shows
action bar

new OnSystemUiVisibilityChangeListener() {

public void onSystemUiVisibilityChange(int visibility) {

ActionBar actionBar = getActionBar();

if (actionBar != null) {

mContentView.setSystemUiVisibility(visibility);

if (visibility == View.STATUS_BAR_VISIBLE) {
D Visibility

parameter

actionBar.show();

} else {

actionBar.hide();

}
}

}

});

mContentView.setOnClickListener(new OnClickListener() {
E Sets a click

listener

public void onClick(View v) {

if (mContentView.getSystemUiVisibility() ==
View.STATUS_BAR_VISIBLE) {

mContentView.setSystemUiVisibility(View.STATUS_BAR_HIDDEN);

} else {
mContentView.setSystemUiVisibility(View.STATUS_BAR_VISIBLE);

}

}
});

}

In a similar way to what we did before, we get a reference to the root element of our

view B. In Honeycomb, views have a new method called setOnSystemUiVisibility-

ChangeListener(). This was created to have a place to receive callbacks when the visi-

bility of the system bar changes. We’ll use this method to hide or show the action bar,

depending on the visibility parameter C, as you can see in D. In E, we set a click lis-

tener to the root view where we toggle the system UI visibility, which basically means

turning on and off the lights-out mode.

160 CHAPTER 11 Avoiding fragmentation

44.3 Merging both worlds in a single Activity

We showed how to handle both scenarios in the different Android versions, but it’d be

nice if it were cross-compatible. We can create an Activity that checks which Android

version the device has and runs the corresponding activity. The code to handle this is

the following:

Class>?> activity = null;
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {

B

Checks the
Android
version

activity = MainActivity2X.class;

} else {
activity = MainActivity3X.class;

}

startActivity(new Intent(this, activity));

C Start
different
Activitys

finish();

We used the Build class to check the Android version. The Build class has a

VERSION_CODES B inner class that can be used to check which version the device is

running. Based on that, we start different Activitys C.

44.4 The bottom line

You’ll find out that everything we did here can be done using styles. Doing it with

styles is OK if you’re not willing to support this feature dynamically.

 You should be aware that hiding the status bar prevents the user from seeing noti-

fications and might cause the user to close your app just to see what’s going on. On

the other hand, using lights-out mode in Android is a cool way of immersing the user

in your application experience.

44.5 External links

http://developer.android.com/reference/android/view/WindowManager.html

http://developer.android.com/reference/android/app/ActionBar.html

Hack 45 Using new APIs in older devices
Android v1.6+

With every Android release, a new set of APIs is made available. Most of the time, this

means that developers will have new ways of showing their content or improving the

device’s functionality. Commonly, when users acquire a new Android version on their

device, they’ll want to take advantage of all the benefits that come with the new API,

but you may still want users with older versions to be able to continue using your appli-

cation. Is there a way to start using new APIs and still be backward compatible?

http://developer.android.com/reference/android/view/WindowManager.html
http://developer.android.com/reference/android/app/ActionBar.html

161Using new APIs in older devices

 In this hack, we’ll see how to use new Android APIs and still be able to run on older

devices. We’ll create a demo application that shows the number of times it was

opened. That information will be persisted with the help of the SharedPreferences

class. In the sample, we’ll use two APIs that are available in newer Android versions.

The first one is a method that became available in Android v9. An apply() method

was added to the SharedPreferences.Editor class. The second one is an API that

became available in Android API Level 8. It allows us to declare inside the manifest

whether we’ll allow our application to be installed on the SD card. Users with API

Level 8 and up will be able to install the application on the SD card, while others will

need to install on the device’s internal storage.

45.1 Using apply() instead of commit()

To edit a SharedPreferences class, we need to get an Editor and use its different

methods to modify the SharedPreferences values. When we finish with all the perti-

nent modifications, we need to call commit().

 Since Android version 9, the SharedPreferences.Editor has an apply() method

to be used instead of commit(). What’s the difference between those two? Here’s the

documentation explanation (see section 45.4):

Unlike commit(), which writes its preferences out to persistent storage
synchronously, apply() commits its changes to the in-memory
SharedPreferences immediately but starts an asynchronous commit
to disk and you won’t be notified of any failures.

In short, the apply() method should be used instead of commit() if we don’t need the

return value of the operation.

 Since we want our demo application to be super-responsive, we want to use the

apply() method to avoid slow commits to the disk in the UI thread. To accomplish

that, we’ll borrow Brad Fitzpatrick’s code to use the apply() method when it’s avail-

able and fall back to commit() if it’s not. Brad Fitzpatrick is a developer working inside

the Android team.

 Let’s first take a look at our Activity’s code:

public class MainActivity extends Activity {
private static final String PREFS_NAME = "main_activity_prefs";
private static final String TIMES_OPENED_KEY = "times_opened_key";
private static final String TIMES_OPENED_FMT = "Times opened: %d";

private TextView mTextView;
private int mTimesOpened;

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

B Sets content
view and gets
a reference to
TextView

mTextView = (TextView) findViewById(R.id.times_opened);
}

162 CHAPTER 11 Avoiding fragmentation

@Override
protected void onResume() {

super.onResume();

SharedPreferences prefs = getSharedPreferences(PREFS_NAME, 0);
mTimesOpened = prefs.getInt(TIMES_OPENED_KEY, 1);

C
Populates

the TextView
mTextView.setText(String.format(TIMES_OPENED_FMT, mTimesOpened));

}

@Override

protected void onPause() {

super.onPause();

Editor editor = getSharedPreferences(PREFS_NAME, 0).edit();

editor.putInt(TIMES_OPENED_KEY, mTimesOpened + 1);

D Increments
the times
opened
variableSharedPreferencesCompat.apply(editor);

Calls apply()
through the

Shared-
Preferences-

Compat class

E

}

}

We first set the content view and get a reference to the TextView that will hold the

information about how many times the app has been opened B. In the onResume()

method, we get the persisted information from the SharedPreferences and we popu-

late the TextView C. Finally, in the onPause() method, we get an Editor from the

SharedPreferences and we increment the times opened variable D. Note that instead

of calling apply() directly, we call it through the SharedPreferencesCompat class E.

 Let’s take a look inside the SharedPreferencesCompat class to learn how it makes

everything work:

public class SharedPreferencesCompat {

private static final Method sApplyMethod = findApplyMethod();

private static Method findApplyMethod() {

B

Checks
availability of
apply() method

try {

Class cls = SharedPreferences.Editor.class;

return cls.getMethod("apply");
} catch (NoSuchMethodException unused) {

// fall through

}
return null;

}

public static void apply(SharedPreferences.Editor editor) {
if (sApplyMethod != null) {

try {

sApplyMethod.invoke(editor);

C

Tries to invoke the
real apply() method
on Editor

return;

} catch (InvocationTargetException unused) {

// fall through
} catch (IllegalAccessException unused) {

// fall through

}
}

editor.commit(); D Falls back to commit()
}

}

163Using new APIs in older devices

SharedPreferencesCompat uses Java’s reflection APIs to check the availability of the

apply() method inside the SharedPreferences.Editor class B. If it exists, the

method is saved as a static variable. When the apply() method is called, it tries to

invoke the real apply() method on the Editor passed as a parameter C. If this call

fails, it falls back to commit()D.

45.2 Storing the app on the SD card

After the previous section, we got a working application that shows how many times it

was opened. Now we’ll add everything needed to make it install on the SD card instead

of the internal storage.

 Since Android version 8, you can add an attribute to your AndroidManifest by the

name of android:installLocation. To understand what this does, let’s look at the

documentation (see section 45.5):

It’s an optional feature you can declare for your application with the
android:installLocation manifest attribute. If you do not declare
this attribute, your application will be installed on the internal storage
only and it cannot be moved to the external storage.

To make it work, we’ll need to modify AndroidManifest.xml with the following lines:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.manning.androidhacks.hack045"
android:versionCode="1"

android:versionName="1.0"

android:installLocation="preferExternal">

B Sets
android:installLocation
to preferExternal

<uses-sdk android:minSdkVersion="8"/> C Sets minSdkVersion to 8

We set android:installLocation to preferExternal B so our application gets

installed on the SD card if possible. To be able to use this feature, we would need to set

the minSdkVersion to 8 C. If we leave the code like that, users won’t be able to install

it on devices with an API level less than 8. To fix this, we can modify the last line with

the following:

<uses-sdk android:minSdkVersion="4" android:targetSdkVersion="8" />

What we’re saying with that line is something like this: “Compile with API Level 8 JARs

and use the new APIs, but let the application be installed on devices with API Level 4

onward.” Although this works, there are some caveats. Compiling against higher API

levels will make available backward-incompatible classes and methods. To give you an

example of this, if you call a method that’s not available in the running version, you’ll

get a java.lang.VerifyError exception.

164 CHAPTER 11 Avoiding fragmentation

45.3 The bottom line

Using a compatibility class like SharedPreferencesCompat is common practice among

Android developers. I recommend using the oldest supported device while develop-

ing to avoid this pitfall. When you find a newer API that won’t work in that device, cre-

ate this type of compatibility class and choose what to do when it’s not available.

 Also remember that the targetSdkVersion is an excellent way of using new

Android features without leaving out users with older versions.

45.4 External links

http://android-developers.blogspot.com/2010/07/
how-to-have-your-cupcake-and-eat-it-too.html

http://code.google.com/p/zippy-android/source/browse/trunk/examples/

SharedPreferencesCompat.java

http://developer.android.com/reference/android/content/

SharedPreferences.Editor.html#apply()

http://developer.android.com/guide/appendix/install-location.html

http://developer.android.com/reference/android/accounts/AccountManager.html

http://developer.android.com/training/search/backward-compat.html

Hack 46 Backward-compatible notifications
Android v1.6+

With the release of the Android version

Jelly Bean, a new notification API became

available. With this new API, the notifica-

tions now have actions. Actions allow the

user to react to a notification without need-

ing to enter an application. You can see an

example of this in figure 46.1. The missed

call notification offers the user two possi-

ble actions: call back or send a message to

the caller.

 If your application uses notifications, it

would be a great addition to support actions

to improve the user experience. How can we

use this new set of APIs but still be backward

compatible? In this hack, we’ll see how to

achieve this using Android’s support library. Figure 46.1 Notifications in Jelly Bean

http://android-developers.blogspot.com/2010/07/how-to-have-your-cupcake-and-eat-it-too.html
http://code.google.com/p/zippy-android/source/browse/trunk/examples/SharedPreferencesCompat.java
http://developer.android.com/reference/android/content/SharedPreferences.Editor.html#apply()
http://developer.android.com/guide/appendix/install-location.html
http://developer.android.com/reference/android/accounts/AccountManager.html
http://developer.android.com/training/search/backward-compat.html

165Backward-compatible notifications

To see how it works, we’ll create a demo application that will mock a message applica-

tion. Because the application will be backward compatible, it will have two possible

flows—one using the notifications actions and one without them. To visualize this, you

can see the possible flows using a device with Android v2.3.7 (see figure 46.2) without

the new notification API, and one with Android v4.1.2 (see figure 46.3).

Figure 46.2 Android version 2.3.7

Figure 46.3 Android version 4.1.2

 You’ll notice that without the new API, the user is obliged to enter the application.

With the new API, users can delete a message without entering the application and they

can reply directly without needing to go through the Activity holding the message.

166 CHAPTER 11 Avoiding fragmentation

Let’s now discuss how to create the application. We’ll need three Activitys:

 MainActivity—This will hold a button to launch the notification.

 MsgActivity—The message itself with Reply and Delete buttons.

 ReplyActivity—The Activity holding the reply EditText and the Discard

and Send buttons.

There’s nothing out of the ordinary in those Activitys. You can read their code in

this book’s sample code.

 To handle all of the notification’s clicks, we need to use PendingIntents. The big

difference between the PendingIntent and the Intent classes is that the former is

used for later execution. From the documentation (see section 46.2):

By giving a PendingIntent to another application, you are
granting it the right to perform the operation you have specified as
if the other application was yourself (with the same permissions
and identity). As such, you should be careful about how you build
the PendingIntent: often, for example, the base Intent you supply
will have the component name explicitly set to one of your own
components, to ensure it is ultimately sent there and nowhere else.

The limitation to using PendingIntents is that we can’t do something like “Run this

piece of code.” We can only launch an Activity, a Service or a BroadcastReceiver.

 We’ll need to cover two types of operations in the application—the ones that don’t

require a UI (delete, discard, send message) and those that do (read, reply to a mes-

sage). Operations that don’t require a UI would ideally require back-end logic, so we’ll

create a Service called MsgService.

 We’ll also create a static class called NotificationHelper that will be in charge

of all the notification logic and the creation of the PendingIntents. It’s code is the

following:

public class NotificationHelper {

public static void showMsgNotification(Context ctx) {
Called by
MainActivity to
show notification

final NotificationManager mgr;
mgr = (NotificationManager) ctx

.getSystemService(Context.NOTIFICATION_SERVICE);

NotificationCompat.Builder builder =
new NotificationCompat.Builder(
ctx).setSmallIcon(android.R.drawable.sym_def_app_icon)
.setTicker("New msg!").setContentTitle("This is the msg title")
.setContentText("content...")
.setContentIntent(getPendingIntent(ctx));

builder.addAction(android.R.drawable.ic_menu_send,
ctx.getString(R.string.activity_msg_button_reply),

Reply
action is
added

getReplyPendingIntent(ctx));

builder.addAction(android.R.drawable.ic_menu_delete,
ctx.getString(R.string.activity_msg_button_delete),
getDeletePendingIntent(ctx));

167Backward-compatible notifications

mgr.notify(R.id.activity_main_receive_msg, builder.build());
}

private static PendingIntent getDeletePendingIntent(Context ctx) {

Intent intent = new Intent(ctx, MsgService.class);
Delete
PendingIntent will
use MsgService

intent.setAction(MsgService.MSG_DELETE);

intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

return PendingIntent.getService(ctx, 0, intent, 0);
}

private static PendingIntent getReplyPendingIntent(Context ctx) {

Intent intent = new Intent(ctx, ReplyActivity.class);
Reply
PendingIntent will
use ReplyActivity

intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

return PendingIntent.getActivity(ctx, 0, intent, 0);

}

private static PendingIntent getPendingIntent(Context ctx) {

Intent intent = new Intent(ctx, MsgActivity.class);
When notification
is clicked, it will
use MsgActivity to
show message

intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
return PendingIntent.getActivity(ctx, 0, intent, 0);

}

public static void dismissMsgNotification(Context ctx) {

final NotificationManager mgr;
Helper method
to dismiss
notification

mgr = (NotificationManager) ctx

.getSystemService(Context.NOTIFICATION_SERVICE);

mgr.cancel(R.id.activity_main_receive_msg);
}

}

With the NotificationHelper class, we have everything we need to handle the notifi-

cations. We’ll now analyze part of the MsgService code. Because MsgService extends

IntentService, this is the onHandleIntent() method:

@Override
protected void onHandleIntent(Intent intent) {

if (MSG_RECEIVE.equals(intent.getAction())) {

handleMsgReceive();
} else if (MSG_DELETE.equals(intent.getAction())) {

handleMsgDelete();

} else if (MSG_REPLY.equals(intent.getAction())) {
handleMsgReply(intent.getStringExtra(MSG_REPLY_KEY));

}

}

We’ll have one method per possible action. For the sake of brevity, let’s take a look at

handleMsgDelete():

private void handleMsgDelete() {
Log.d(TAG, "Removing msg...");

Removes a message
instead of creates a log

B

NotificationHelper.dismissMsgNotification(this);

C
Dismisses
notification

}

In a complete implementation, we’d place some back-end logic to remove a message

instead of creating a log B. After the message is deleted, we can dismiss the notifica-

tion with the help of the NotificationHelper class C.

168 CHAPTER 11 Avoiding fragmentation

 We learned how to create a backward-compatible notification and how to handle

the different clicks using PendingIntents. How can we avoid replication of logic when

the MsgActivity’s Delete button is pressed? The secret is to let the MsgService take

care of everything. For example, let’s see what the Delete button click handler inside

the MsgActivity does:

public void onDeleteClick(View v) {
Intent intent = new Intent(this, MsgService.class);
intent.setAction(MsgService.MSG_DELETE);
startService(intent);
finish();

}

As you can see, all of the logic is handled inside the Service.

46.1 The bottom line

The new notifications API is great. The possibility of performing certain actions from

a notification creates new use cases, and with the help of the support library we can

make sure we don’t leave behind users who run older versions.

46.2 External links

http://developer.android.com/tools/extras/support-library.html

http://developer.android.com/reference/android/app/PendingIntent.html

http://developer.android.com/reference/android/app/IntentService.html

Hack 47 Creating tabs with fragments
Android v1.6+

If you’ve been developing with Android for a while,

you’ve most likely used the TabActivity class. This class

allows developers to create tabs inside their applications

so that users can switch between Activitys by pressing

the Tab button. The big issue with the TabActivity class

is that its developer ran into a lot of issues while trying to

customize its look, and the class was deprecated with the

release of fragments.

 Although the Android SDK comes with classes such

as TabHost and TabWidget to handle tabs, creating your

own implementation gives you more control over your

application. In this hack, I’ll show you how to avoid

using the TabActivity class and instead use fragments

to create a tab application. We’ll create a toy applica-

tion that shows a different color in each tab. You can

see the finished work in figure 47.1.
Figure 47.1 Custom tabs

http://developer.android.com/tools/extras/support-library.html
http://developer.android.com/reference/android/app/PendingIntent.html
http://developer.android.com/reference/android/app/IntentService.html

169Creating tabs with fragments

47.1 Creating our tab UI

The first thing we’ll take care of is creating the UI for the tabs. For this task, we’ll cre-

ate our own XML layout for the tabs. Using XML to design our tabs gives us the oppor-

tunity to place and size widgets as we like. In this case, we create a LinearLayout with

buttons inside it. Here’s the XML:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"
android:orientation="horizontal"

android:background="@null">

<Button android:id="@+id/tab_red"
android:layout_height="wrap_content"

android:layout_width="0dp"

android:layout_weight="1"
android:text="Red" />

<Button android:id="@+id/tab_green"

android:layout_height="wrap_content"

android:layout_width="0dp"
android:layout_weight="1"

android:text="Green" />

<Button android:id="@+id/tab_blue"
android:layout_height="wrap_content"

android:layout_width="0dp"

android:layout_weight="1"
android:text="Blue" />

</LinearLayout>

47.2 Placing the tabs in an Activity

To avoid copying and pasting the tab layout around every Activity, we’ll use the

include tag. Here’s MainActivity’s XML layout:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"

android:layout_height="fill_parent">

<FrameLayout android:id="@+id/main_fragment_container"

Fragment
container

B

android:layout_width="fill_parent"

android:layout_height="fill_parent"/>

<include layout="@layout/tabs"
android:layout_width="fill_parent"

android:layout_height="wrap_content"/>

Adds the tabs
layout to
Activity’s view

C

</FrameLayout>

The FrameLayout in B will be the fragment container. Every time the user presses on

a tab, the Activity will take care of placing the corresponding fragment there. In C

170 CHAPTER 11 Avoiding fragmentation

we use the include tag to add the tab’s layout to the Activity’s view. Note that we

place the include in the bottom for it to be drawn on top of the fragment container.

 We already have all the UI in place. Let’s see how we handle the logic from the

Activity:

public class MainActivity extends FragmentActivity {

B
Enable use of
fragments@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.main);

findViewById(R.id.tab_red).setOnClickListener(
new OnClickListener() {

Button sets click listener
that calls switchFragment()
with new instance of a
fragment

C

@Override

public void onClick(View v) {
switchFragment(ColorFragment.newInstance(Color.RED, "Red"));

}

});

...
}

private void switchFragment(Fragment fragment) {

Reads the
implementation

D

FragmentTransaction ft;
ft = getSupportFragmentManager().beginTransaction();

ft.replace(R.id.main_fragment_container, fragment);

ft.commit();
}

}

As you can see, our MainActivity class needs to extend FragmentActivity B to be

able to use fragments. One of the buttons is fetched and sets a click listener, which will

call switchFragment() with a new instance of a fragment C. Finally, we can read the

implementation of the switchFragment() method D, which performs the logic to

place the fragment inside the container.

47.3 The bottom line

Creating your own implementation to handle tabs might sound like overkill, but for

instance, if your tabs will need fancy animations, I recommend you use an approach

similar to what we built in this hack. In the end, it’ll be easier to customize it if you

have full control over your widgets.

47.4 External links

http://developer.android.com/reference/android/app/ActivityGroup.html

http://developer.android.com/reference/android/app/TabActivity.html

http://developer.android.com/reference/android/app/ActivityGroup.html
http://developer.android.com/reference/android/app/TabActivity.html

171

Building tools

Building software applications often requires custom processes such as adding

dependencies, running tests, and deploying in a server. If building from Eclipse

feels a bit limiting, you’ll find this chapter interesting. We’ll cover tips that provide

some alternatives for building your applications.

Hack 48 Handling dependencies with
Apache Maven
Android v1.6+

The Android SDK comes with a lot of classes and code that help you create your

applications, but sometimes even this isn’t enough. For example, if you want to add

Google Analytics or you want to add a JSON parser, you’ll have to add some kind of

dependencies. The Android SDK doesn’t provide a way to handle dependencies,

other than placing JAR files in the /libs folder. Fortunately, it has other building

tools. Even if you don’t use third-party dependencies, you might want to separate

your application in different modules and add dependencies between them in

order to organize your code or create reusable components. What you can do to

get around this issue is to use Apache Maven. In this hack you’ll see how to use

Apache Maven to build your application and run tests.

172 CHAPTER 12 Building tools

 If you’ve used Maven for Java application dependencies, you’ll agree that it’s a

powerful tool, but it takes some time to get used to it. In this case, we’ll take a look at

Manfred Moser’s roboguice-calculator demo. In this project, Manfred used different

dependencies, making it an excellent example to demonstrate how Maven works.

 To understand how Maven works, we’ll go through the different pom.xml sections.

The pom.xml is the only Maven-related file your project will have. In it you’ll tell

Maven your application name, the build dependencies, the test dependencies, and

how to create your APK. Maven first checks if you have the dependencies in the local

repository, which is located at ~/.m2/repository by default. If they’re not there, it will

take care of downloading them from a central repository.

 The first part has the following code:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://Maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" As with every

XML file,
start with

schemas and
namespaces

xsi:schemaLocation="http://Maven.apache.org/POM/4.0.0

http://Maven.apache.org/Maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>org.roboguice</groupId>

groupId, artifactId,
version, and
packaging establish
unique identifier for
artifact in repository,
and in general (like
coordinates)

<artifactId>calculator</artifactId>

<version>1.0-SNAPSHOT</version>
<packaging>apk</packaging>

<name>calculator</name>

The final build will end up in $MVN_REPO/groupId/artifactId/version. The common

example is to use the groupId as your project name and the artifactId as your mod-

ule name. In this particular case, Manfred had used org.roboguice as groupId

because it’s an example for the roboguice project. The artifactId, calculator, iden-

tifies this example inside the project.

 The last two attributes from this section are the packaging and the name. The

packaging tells Maven the final output. Although the default is jar, Manfred had

picked apk because he needs an Android application. The name in conjunction with

the version will determine the output filename.

 The second section to analyze is dependencies. Because the dependencies list is

long, we’ll analyze only a few of them. The dependencies section is the following:

<dependencies>

<dependency>
<groupId>org.roboguice</groupId>

<artifactId>roboguice</artifactId>
B Roboguice

dependency

<version>2.0-SNAPSHOT</version>
</dependency>

...

<dependency>
<groupId>com.google.android</groupId>

C Android
dependency

<artifactId>android</artifactId>

<version>2.3.3</version>
<scope>provided</scope>

</dependency>

173Handling dependencies with Apache Maven

...

<dependency>

<groupId>com.pivotallabs</groupId>

<artifactId>robolectric</artifactId>
D Robolectric

dependency

<version>1.0</version>

<scope>test</scope>

</dependency>
</dependencies>

Every dependency has four important attributes, groupId, artifactId, version, and

scope. The first dependency is roboguice B. It has a groupId, artifactId, and

version, which corresponds to a released version in some Maven repository. Remem-

ber what we learned in the first section? That information is required if someone

needs to use your artifact as a dependency.

 Although the roboguice dependency doesn’t contain the scope attribute, you

should know that compile is the default value. Compile dependencies are available in

all classpaths of a project because they get included in the APK.

 The next dependency is Android itself C. When you use Maven to build Android

applications, you must always have Android as a dependency, but its scope is

provided. provided is much like compile, but it indicates that you expect the JDK or a

container to provide the dependency at runtime—in our case, the device running

Android.

 The last dependency is robolectric D. Robolectric is a test framework, so we only

need that dependency when we’re compiling/running the tests. That’s what the test

scope is for. This scope indicates that the dependency is not required for normal use

of the application, and is only available for the test compilation and execution phases.

 After the dependencies section in the pom.xml file, we have the build section,

which has the plugins section inside. This is where you’ll configure the Android

Maven plugin. Let’s take a look at the following code to see how it’s done:

<build>
<plugins>

<plugin>

<groupId>
com.jayway.Maven.plugins.android.generation2

</groupId>

<artifactId>
android-Maven-plugin

B
groupId, artifactId, and version
for android-Maven-plugin

</artifactId>

<version>
3.0.0-SNAPSHOT

</version>

<configuration>

C
android-Maven-
plugin configuration<androidManifestFile>

${project.basedir}/AndroidManifest.xml

</androidManifestFile>
<assetsDirectory>

${project.basedir}/assets

</assetsDirectory>
<resourceDirectory>

174 CHAPTER 12 Building tools

${project.basedir}/res
</resourceDirectory>

<sdk>

<platform>10</platform>
</sdk>

<undeployBeforeDeploy>

true
</undeployBeforeDeploy>

</configuration>

<extensions>true</extensions>
</plugin>

...

</plugins>
</build>

Build plugins works in a way similar to dependencies. The previous code shows how

the android-Maven-plugin gets configured B. If we were configuring a dependency,

we’d need to provide a groupId, an artifactId, and a version.

 You’ll notice that Apache Maven follows the convention-over-configuration para-

digm, which results in decreasing the number of decisions that developers need to

make, gaining simplicity, but not necessarily losing flexibility. A great example of this

approach can be seen where the android-Maven-plugin gets configured C. You might

want to place the AndroidManifest.xml somewhere else so you have an attribute to

modify the default location.

 When the pom.xml is ready, you can treat your Android application as a Maven

artifact. If you run the mvn package, you’ll get a target directory with the APK inside. If

you want to get the application installed in all attached devices, you can run mvn

android:deploy.

48.1 The bottom line

Apache Maven is a great build tool. It’s true that it’s somewhat complicated the first

time you use it, but after you understand how it works, you’ll start to create a project

by generating the pom.xml file.

 The best way to learn about it is to read how someone else is using it. For example,

you can examine the roboguice’s pom.xml. You’ll notice it’s not hard at all.

48.2 External links

http://maven.apache.org/

https://github.com/mosabua/roboguice-calculator

http://code.google.com/p/maven-android-plugin/

https://github.com/roboguice/roboguice

www.robolectric.org

http://en.wikipedia.org/wiki/Convention_over_Configuration

www.simpligility.com

http://maven.apache.org/
https://github.com/mosabua/roboguice-calculator
http://code.google.com/p/maven-android-plugin/
https://github.com/roboguice/roboguice
www.robolectric.org
http://en.wikipedia.org/wiki/Convention_over_Configuration
www.simpligility.com

175Installing dependencies in a rooted device

Hack 49 Installing dependencies in a rooted device
Android v1.6+

Android applications are commonly written in a dialect of Java and compiled to

byte-code. Then they’re converted from Java Virtual Machine–compatible .class files

to Dalvik-compatible .dex files before installation on a device. Figure 49.1 (see

section 49.5) illustrates the building process.

Figure 49.1 Building process taken

from the Android documentation

176 CHAPTER 12 Building tools

Apart from the Android SDK, many third-

party libraries are available that we can

use as dependencies. These dependen-

cies can be useful for improving your

application functionality, code organiza-

tion, customs views, and so on. As we add

dependencies to our application, we

might notice the build time increases.

Android supports adding JAR dependen-

cies, but it first needs to convert the JAR

file’s .class files to .dex every time we

want to build, and this takes time. From

our earlier figure, we narrow our focus to

this sequence in figure 49.2.

 To give you an idea of how you can

solve this, have you ever used Google’s

map library in Android? Remember how you added that dependency? The map

library can be used from your application, but you never lose time indexing it. That’s

because the library is already installed on your device/emulator.

 In this hack, we’ll use the same approach, but with other libraries. We’ll see how to

install those dependencies in our developing device to make our build times faster,

avoiding the dexing phase of the dependencies.

 The first thing to understand from this hack is that we’re installing dependencies

on a rooted device. This means that this approach won’t work for production. We’re

doing it to make our developing build times faster.

49.1 Predexing

The first step is predexing the dependencies. This means converting the JARs to dex.

It can be done with the dx application inside the ANDROID_SDK/tools folder. For

example, if our dependency is called dep.jar, we’ll need to use the following line:

dx -JXmx1024M -JXms1024M -JXss4M

--no-optimize --debug --dex
--output=./dep_dex.jar dep.jar

The dep_dex.jar is the file that we’ll upload to the device.

49.2 Creating the permissions XML

The second step is to create XML for each dependency with the permission to the

library. If we think back to the Google maps dependency, when we want to use it we

need to add a use-library tag in our AndroidManifest.xml file. The XML we’ll create

will be used for that specific line. Let’s see an example:

Figure 49.2 Compilation procedure

177Installing dependencies in a rooted device

<permissions>
<library name="dep" B Specifies library name

file="/data/data/com.dep.package/files/dep_dex.jar"/>

C
Writes path for
predexed file

</permissions>

We first need to specify the library name B. This library name is the string that we

should place in the use-library tag. We also need to write down the path for the pre-

dexed file inside the device C. We can upload the predexed file using adb or using an

Android application. An example of an application doing the installation is placed in

the sample code. The application is a modification of Johannes Rudolph’s scala-

android-libs source code.

49.3 Modifying AndroidManifest.xml

The last step is to modify the AndroidManifest.xml file to use the dependencies

installed in the device. The example for the dep mentioned previously would be like

the following:

<uses-library name="dep"/>

That’s it. We’re now using dependencies from the device instead of compiling them

every time we want to run the application. Remember to change the build tool to

avoid compiling the dependencies. For instance, in Apache Maven we can set the

scope to provided.

49.4 The bottom line

Installing dependencies is a great way to improve your application build time. I’ve

been using it for some applications and I’m getting them built twice as fast.

 Although this hack is useful, two things might bother you. First, you need a rooted

device. Unfortunately, not all the Android devices are rootable. You’ll also need to

modify your build script to avoid this behavior when you’re targeting production.

Apache Maven would be a useful tool to handle different types of builds.

49.5 External links

http://developer.android.com/tools/building/index.html

https://github.com/scala-android-libs/scala-android-libs

http://android-argentina.blogspot.com/2011/11/roboinstaller-install-roboguice.html

http://developer.android.com/tools/building/index.html
https://github.com/scala-android-libs/scala-android-libs
http://android-argentina.blogspot.com/2011/11/roboinstaller-install-roboguice.html

178 CHAPTER 12 Building tools

Hack 50 Using Jenkins to deal with device diversity
Android v1.6+
Contributed by Christopher Orr

Testing Android applications can be tough. With hundreds of manufacturers produc-

ing thousands of unique Android models, a device is available to suit nearly every

need. But for software developers, this ubiquity represents a challenge: how to ensure

your application works well on all of these devices, and across a variety of screen sizes,

hardware configurations, and Android OS versions.

 Buying hundreds of devices to develop and test isn’t feasible. Thankfully, Android

provides a great resource system that enables you to support a diversity of devices and

OS versions with a single application package. But verifying that you’ve used this sys-

tem correctly requires a lot of testing: Did you mistype a view ID in your layout XML

for layout-xhdpi-land? Are you missing a string parameter in one of the Japanese

translations? With the bundled SQLite version often changing between Android

releases, have you written a SQL query that works only on certain versions?

 Testing your application on a few chosen devices—whether manually or using your

automated test suite—is a possibility, but it’s time-consuming and quickly becomes

impractical as your application grows, adding more features plus support for further

screen densities, device classes, and languages.

 To reduce this burden, in this hack you’ll automatically generate multiple Android

emulators with various software and hardware properties and run your automated test

suite on a number of them, allowing you to pinpoint potential problems on certain

device configurations.

 Although emulators can’t fully replace testing on real hardware, they’re a fast and

flexible way to test how your application copes with a variety of hardware properties,

such as whether the device has a front camera, is missing an SD card, has a hardware

keyboard, is equipped with limited RAM, and so on.

 You’ll use a piece of software called Jenkins—a popular, open source continuous

integration server, along with its Android Emulator plugin. The web-based dashboard

of Jenkins can be seen in figure 50.1.

 The strategy for this hack is to create a Jenkins “matrix” job and, for every check-in

of your source code, you’ll let Jenkins build your application, automatically generate

some emulators, run your automated test suite on each of them, and then report on

the results.

 If you don’t have an automated test suite already, you can create one relatively

quickly using a library like Robotium —even starting with a few rudimentary smoke

tests is helpful, such as ensuring that a few key activities open and that the expected UI

elements are shown.

 Assuming you have Jenkins running with the Android Emulator plugin installed,

with a code repository containing both your application and test code that can be

Figure 50.1 Jenkins dashboard UI

179Using Jenkins to deal with device diversity

accessed by Jenkins (all of which is available in the sample code for this hack), the first

thing to do is to choose the set of emulated devices you want to test with. As a mini-

mum, you should test on each major Android OS version between your minSdk-

Version and the latest version available. Other factors to think about are screen

density, supported locales, and any hardware properties that are important to your

application (e.g., camera, accelerometer).

50.1 Creating a Jenkins job

In Jenkins, click New Job, enter a job name, and select Build Multi-configuration Proj-

ect” (also known as a “matrix” job) and click OK. Matrix jobs allow you to run the

same set of steps—in your case, starting an Android emulator, building an application,

and testing it—but with slight differences in configuration each time, such as chang-

ing the OS version used by the emulator.

 In the job configuration, first enter the Source Code Management information to

let Jenkins check out your application and test the code repository. Depending on the

source control system you use, this may require you to install an extra plugin, such as

the Git or Subversion plugin, via Jenkins’ built-in plugin manager.

 So that Jenkins monitors your repository for changes, enable the Build Periodically

option and enter a cron-style syntax; for example, to poll for changes every two min-

utes on weekdays enter this:

*/2 * * * 1-5

Under the Configuration Matrix heading, click Add Axis, choose User-defined Axis,

and in the Name field enter os. As the values, enter the following:

2.2 2.3.3 4.0.3 4.1

180 CHAPTER 12 Building tools

As you might be thinking, each value represents an Android version to test on. You

could later add further axes for screen density, locales, and so on, but for now let’s

stick with just one. By entering four distinct values here, Jenkins will run four individ-

ual builds each time you start this job, with each build seeing a different value in the

os environment variable.

 Next, click Run an Android Emulator During Build, and enter the following values

under Run Emulator with Properties:

 Android OS version: ${os}

 Screen density: 240

 Screen resolution: WVGA

You can leave the other fields unchanged, but you should uncheck the Show Emulator

Window option. By setting the value ${os} as the Android version, this ensures a dif-

ferent Android emulator will be created in each of the four builds that will occur. The

complete configuration can be seen in figure 50.2.

Figure 50.2 Configuring the axes and the emulator to create

181Using Jenkins to deal with device diversity

In the Build section, add the build steps Install Android Project Prerequisites and

Invoke Ant, assuming that you have used the android tool to generate Ant build

scripts for your application and test projects. As the targets, enter clean debug

install test. Click Advanced, and for the build file enter tests/build.xml (assum-

ing tests is the directory name you’ve used for your test suite). Add a property:

sdk.dir=$ANDROID_HOME.

 If you have your Android test suite configured to output results in JUnit XML for-

mat (e.g., using the android-junit-report project), you can also check the Publish

JUnit Test Result Report option under the Post-build Actions section.

 Press Save to finalize the job configuration. You now have a Jenkins job that will

run multiple times, each time checking out your source code, starting a different

Android emulator, and then building your application and running its test suite. The

job page should look like figure 50.3, with each ball representing one configuration

(that is, OS version). They’re gray to indicate that a build hasn’t yet occurred.

Figure 50.3 Project page showing the configurations and a build in progress

50.2 Running the job

Click Build Now on the left side of the job page and, after a few seconds, you’ll see a

couple of the balls start to flash to indicate that a couple of the configurations are

building.

 Meanwhile, you can observe the build in progress by clicking on one of the flash-

ing balls, and then clicking the blue progress bar on the left. This shows the Console

Output, revealing that the source code has been checked out, an emulator has been

automatically generated, and that Jenkins is waiting for the emulator to boot up.

182 CHAPTER 12 Building tools

 By default, Jenkins runs two builds in parallel, so you’ll have to wait a few minutes

before everything completes. In any case, the first builds will take a little longer as the

emulators have to be generated and booted for the first time. Furthermore, if you

don’t have the Android SDK installed on the machine where Jenkins is running, it will

be automatically installed for you, which will add to the initial build time.

 When the progress bars disappear from the Jenkins sidebar, the build is complete.

 So within a few minutes you’ve automatically tested your software on four different

versions of Android—and Jenkins will continue to do this automatically each time it

finds a new commit in your code repository.

 After you have the basics running, you can refine your Jenkins job configuration by

adding further axes. For example, add an axis for different screen resolutions, allow-

ing you to automatically create emulators to test layouts designed for different phone

or tablet devices.

 The Android Emulator plugin also lets you run the Android monkey tool to stress-

test your UI. You could set up a Jenkins job that runs nightly, rather than for every

commit, and that builds your APK, installs it onto an emulator, and then runs monkey

against your application to check for instabilities.

50.3 The bottom line

Running your Android tests automatically means you can spend a lot less time manu-

ally testing your applications and lets you have greater confidence in the quality of

your applications.

 The samples for this hack include a basic Android application, test suite, and pre-

configured Jenkins installation with which you can experiment.

 Because Jenkins isn’t only for automated testing, you can go beyond the basics of

this hack and do things like integrating monkey testing into your workflow, check and

monitor Android lint issues over time, automatically sign your APK, publish beta

builds to a web server for testers, and much more.

50.4 External links

http://opensignalmaps.com/reports/fragmentation.php

http://jenkins-ci.org/

https://wiki.jenkins-ci.org/display/JENKINS/Android+Emulator+Plugin

https://wiki.jenkins-ci.org/display/JENKINS/Android+Lint+Plugin

https://github.com/jsankey/android-junit-report

http://opensignalmaps.com/reports/fragmentation.php
http://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/Android+Emulator+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Android+Lint+Plugin
https://github.com/jsankey/android-junit-report

183

Symbols

@android, drawable 30
&& (double ampersand) 100

Numerics

3D animation 101

A

Ableson, W. Frank 108
AbstractAccountAuthentica-

tor class 69
AbstractThreadedSync-

Adapter 73
AccountAuthenticator

class 72
AccountManager class 67–68,

70, 72
accountType attribute 72
ACTION_AUTHENTICATOR

_INTENT action 69
ActionBar API 125
ActionBarSherlock 123–125
actions in notifications 164
activities, improving startup

time of 40–41
Activity class 4, 15, 36, 43, 87,

97, 112, 152
<activity> element 38, 41
Adapter class 43–44, 77, 80,

83, 87, 90, 152
AdapterView class 77, 79, 89
adb tool 177
addAcount() method, viewing

when device is rotated 69

addPreferencesFrom-
Resource() method 15

advice 100
@AfterReturning

annotation 100
and() method 141
Android 1.6 90
Android 2.x 158
Android 3.0 122
Android 3.x 158–159
Android application package

file. See APK
Android in Action, Third

Edition 108
Android libraries 59
Android NDK 108, 148
Android, views in 9
Android.mk file 149
androidlib 59
AndroidManifest.xml file 163,

177
animations

applying to children
views 23

using Canvas class 25
AnimationSet class 27
AnimatorProxy class 27
AOP (aspect-oriented

programming) 100
Apache Maven 99, 174, 177
APK (Android application

package file) 47, 172
<application> element 40
ApplicationInfo class 126
apply() method 154, 161–163
applyBatch() method

154–155

APP_SHARED_LIBRARIES
variable 112

architecture design using
Android libraries 58–60

ArrayAdapter class 83
artifactId attribute 172–174
@Aspect annotation 100
@AspectJ annotation 99
AspectJ library 98–100
aspectj-maven-plugin 99
aspect-oriented program-

ming. See AOP
AsyncTask class 60–61, 124,

129–131
attributes, custom 12–13
attrs.xml file 10
AuthenticationService 73
AuthenticatorActivity 68, 70, 72

B

background color for text,
customizing 82

backgrounds
removing to improve

startup time 40–41
rounded corners for 34

backward compatibility
notifications 168
storing app on SD card 163
using apply() method

instead of commit()
method 161–163

BaseAdapter class 44
batching operations for data-

bases
implementing 153–154

index

184 INDEX

batching operations for data-
bases (continued)

using SQLiteContent-
Provider class 154–156

vs. non-batched
operations 152–153

BatchNumbersContent-
Provider class 154

BIGINT type 143
Bitmap class 23
borders, rounded 34
BounceInterpolator class 23
BroadcastReceiver class 57, 166
Build class 160
build section (pom.xml

file) 173
Button class 3, 29, 34, 92
bytecode 98, 114

C

calendar provider 155
Callable class 146
callInTransaction()

method 146
cancel() method 131
Canvas class 23, 25, 102
CascadeLayout view 9–12
cascading delete 137
centering objects in views 2–3
Checkable interface 93–94
CheckBox class 94
CheckedTextView class 93
checkLayoutParams()

method 11
choiceMode for ListView

94–95
CLEAN flag 74
close() method 144
cocos2d-iphone library 107
Cocos2d-x framework

implementing 101–104
overview 101

ColorAdapter class 89–90
ColorFragment class 89
columnDefinition

attribute 137–138
commit() method 161–163
compareTo() method 129–130
Compatibility Package

revision 3 89
compile-time weaving 98
compiling

in goal element 99, 173
Itoa library 108

using Objective-C in
Android 112

ConnectionStatus class 54
CONNECTIVITY_CHANGE

property 56
constructors 16
ContentProvider class 63, 65,

67, 73, 152–154
adding MP3 to 121–122

ContentProviderResult
class 154

ContentResolver class 65, 153
ContentValue class 121, 153
convertView parameter 24,

79–80
countOf() method 142
CountryView class 93
CRUD (create, read, update,

and delete)
operations 140–141

Cursor 65, 67, 151–152
CursorAdapter class 151–152
custom functions for SQLite

Java code 148–149
native code 149–151

D

DAO (data access object) 140
data models for databases

134–135
data types using ORMLite

tool 143–144
DatabaseField class 135–136
DatabaseHelper class 63, 65,

139, 148–149
databases

batching operations for
implementing 153–154
using SQLiteContent-

Provider class
154–156

vs. non-batched
operations 152–153

ORMLite tool
building queries 141–143
CRUD operations

140–141
data models 134–135
data types in 143–144
defining database

schema 136–138
foreign types in 143–144
raw SQL queries 145–146
requirements for 135

singleton pattern for data-
base access 139–140

SQLiteOpenHelper
class 138–139

transactions in 146–147
DatabaseTable class 135–136
DatePicker class 30
dates, avoiding validation of 30
debug statements,

removing 47–48
DecorView class 40
Delegate interface 43
delegates 87
Delegation pattern 85, 87
delete() method 142, 154
DeleteBuilder class 141–142
deleteBuilder() method 141
dependencies 59–60

getting from market

127–128
handling with Apache

Maven 174
installing in rooted device

creating permissions
XML 176–177

modifying
AndroidManifest.xml
177

predexing 176
device info, gathering when

feedback is submitted 121
Dialog style 43
didFinishLoading()

method 55
dimens.xml file 10
distance() function 151
Dobjanschi, Virgil 62
downloading Itoa library 108
draw methods 23
drawable 34
DrawView class 23–24
dropTable() method 139
duration parameter, Toast

class 41
dx application 176

E

EditText class 30
EmailDialog class 16
empty lists, handling 78
entity-relationship diagram.

See ER diagram
env 111
eq() method 141

185INDEX

ER (entity-relationship)
diagram 135

executors for last-in-first-out
image loading 129–130

F

Feed me Oil 101
feedback, gathering user infor-

mation when
submitted 121

FeedTV 25
findViewById() method 7, 79,

88
Fitzpatrick, Brad 161
foreign types using ORMLite

tool 143–144
ForeignCollection class 144
ForeignCollectionField

class 144
formatting TextView 31
Fragment class 7, 42
FragmentActivity class 170
fragments, in tabs

creating tab UI 169
placing tabs in activity

169–170
FrameLayout class 26, 40, 50,

103, 169
fromHtml() method 31
full-screen mode

cross-compatible
method 160

in Android 2.x 158
in Android 3.x 158–159

full-screen video, viewing as
when device is rotated

38–39
FutureTask class 129, 131

G

Gallery application 157
Gallery class 46, 87–88
gaming. See Cocos2d-x frame-

work
ge() method 141
generateDefaultLayout-

Params() method 11
generateLayoutParams()

method 11
getApplicationInfo()

method 126
getAuthToken() method 69–70
getDao() method 140

getHeight() method 34–35
getIBinder() method 69
getNear() method 149, 151
getText() method 16
getView() method 44, 79, 81,

83, 129
getViewTypeCount()

method 81
getWidth() method 34–35
ghosting effect 33
Global Positioning System.

See GPS
glowing effect 33
goal element 99
Google Analytics 171
Google I/O 2010 Android

REST client application
presentation 62

GPS (Global Positioning
System) 148

groupId attribute 172–174

H

header for ListView 89
HelloWorldScene.cpp file 104
Hierarchy Viewer tool

overview 39, 49
removing unnecessary views

with 49–52
using 50–52

horizontal view swiper 89

I

IConnectionStatus
interface 54–55

images, last-in-first-out loading
of

executors for 129–130
sample application for

128–129
UI thread

considerations 130–131
ImageSwitcher class, transi-

tions with 21
ImageView class 19, 26, 78, 130
<include /> tag 4–5
include tag 169–170
initView() method 104
injection attacks, SQL 145
insert() method 154–155
insertInTransaction()

method 156
installLocation attribute 163

Intent class 56–57
Intent system 126, 166
IntentFilter class 57
intents

calling application layer if
installed 126–127

firing multiple 118
getting using

BroadcastReceiver 57
sending feedback email 119

IntentService 167
invalidate() method 24
isEmpty() method 77
ISplashView interface 54–55
iterator() method 144
Itoa library 108–113
ItoaApp.mk file 109
ItoaModule.mk file 109–111

J

JAR files 58, 171–172
java.lang.VerifyError 163
java.util.concurrent 129
java.util.Date 143
Jenkins

creating job 179–181
running job 181–182

JNI_OnLoad() method 110
JNIOnLoad.cpp file 110
join point 100
jstring 111
JUnit 58

K

keepAlive parameter 130
Ken Burns effect

defined 25
slideshow using 27

key attribute 14
KEYCODE_DPAD_RIGHT

event 46

L

landscape orientation, viewing
videos in 36–39

last-in-first-out image loading
executors for 129–130
sample application for

128–129
UI thread

considerations 130–131

186 INDEX

launchEmailToIntent()
method 120

LaunchEmailUtil class 120
Layar application 126–127
layers 126
layout() method 12
layout_* attributes 4–5, 12
layout_alignParentBottom

attribute 50
layout_alignParentTop

attribute 50
layout_height attribute 5
LayoutInflater class 35
LayoutParams class 11–13, 88
layout_weight attribute 2–3
layout_width attribute 3, 5
lazy loading of views 5–7
LEDs (light-emitting

diodes) 32
LayoutAnimationController

class 21–22
LedTextView class 32–33
LENGTH_LONG property 41
LENGTH_SHORT property 41
LIFOTask class 129–130
LIFOThreadPoolProcessor

class 129
light-emitting diodes. See LEDs
lights-out mode 158–159
LinearLayout class 3, 40, 44,

88, 169
lint issues 182
ListActivity class 82
ListView class 21, 34, 79, 89,

128, 130–131, 152
achieving custom layout

using 89
choiceMode for 94–95
handling empty lists 78
header for 89
section headers for

adding 83–84
creating layout for 82–83

LOCAL_* variables 110
Log class 48
log statements, removing 48
logcat output 47, 139
long forms, creating using

Gallery 46
Los Cocos 101
LruCache class 128, 131
lt() method 142

M

magazine-like application

89–91
main module 110–112
MainActivity class 68, 100
mapRow() method 146
MapView 6
market, getting dependencies

from 127–128
Maven, Apache 174
maxForeignAutoRefreshLevel

144
media scanner 122
minSdkVersion 163, 179
mNotifyChange 156
Model-View-Controller pat-

tern. See MVC
Model-View-Presenter pattern.

See MVP
MODULE_* variables 110
monkey tool 182
Moser, Manfred 172
move() method 25
MP3 files, adding to

ContentProvider 121–122
MsgActivity 168
MsgService 166, 168
multipleChoice setting 91–92
MVC (Model-View-Controller)

pattern 53
MVP (Model-View-Presenter)

pattern 55–56

N

name attribute 172
NameNotFoundException 126
Nine Old Androids library 26
NoBatchNumbersContent-

Provider 153
not() method 141
NotificationHelper class

166–167
notifications

actions in 164
backward compatibility

for 168
null 137
NumbersAdapterDelegate

interface 86

O

Objective-C in Android
downloading and compiling

Itoa library 108
Java portion 112–113
separating code in

modules 108–112
compiling 112
ItoaApp.mk file 109
ItoaModule.mk file 109
main module 110–112
textformatter

module 109–110
Object-Relational Mapping.

See ORM
onActivityResult() method 118
onAuthenticationResult()

method 72
onBind() method 69
onClick property 124
onConfigurationChanged()

method 38
onCreate() method 15, 36, 68,

97, 100, 138–139, 149
onDraw() method 23–25
onEndTransaction()

method 156
onHandleIntent() method 167
onItemClick listener 89
onLayout() method 9–10, 12
onMeasure() method 9–13, 39
onOpen() method 139
onOptionsItemSelected()

method 124
onPause() method 57, 87, 131
onPostExecute() method 130
onResume() method 55, 57,

87, 162
onSurfaceCreated()

method 104
onUpgrade() method 138–140
OpenGL 101
or() method 141
orientation

handling changes in
ViewPager 90–91

viewing video full-screen
when rotated 38–39

ORM (Object-Relational
Mapping) 133

ORMLite tool
building queries 141–143

187INDEX

ORMLite tool (continued)
CRUD operations 140–141
data models 134–135
data types in 143–144
defining database

schema 136–138
foreign types in 143–144
raw SQL queries 145–146
requirements for 135
singleton pattern for data-

base access 139–140
SQLiteOpenHelper

class 138–139
transactions in 146–147

OrmLiteSqliteOpenHelper

138–139
os environment variable 180

P

PackageManger class 126
packaging attribute 172
paginated views 89–91
PendingIntent class 166, 168
percentages, layout based

upon 1–3
performance indicators 51
permissions XML 176–177
PhoneWindow$DecorView 40,

50
picker, creating using

ListView 91–94
plugins section (pom.xml

file) 173
pointcut 100
@Pointcut annotation 100
POIs (points of interest) 148
post() method 35–36
predexing dependencies 176
PreferenceActivity class 15
PreferenceCategory class 14
preferExternal setting 163
prepare() method 142
PreparedDelete class 142
PreparedQuery class 142
PriorityBlockingQueue

class 130
proccessForm() method 44
ProgressBar class 123
ProGuard tool 47–48, 116
provided setting 173, 177
PyWeek 101

Q

queries
building with ORMLite

tool 141–143
raw SQL queries 145–146

query() method 63, 65, 142,

153
QueryBuilder class 141–142
queryBuilder() method 141
queryForId() method 141
queryRaw() method 145, 147
Quesada, Ricardo 101

R

raw SQL queries 145–146
RawRowMapper 145
Rectangle class 24
refresh action, adding to

ActionBar API 125
registration forms,

multipage 42–46
RejectedExecutionException

129
RelativeLayout class 4, 8, 50,

103
replication of code,

avoiding 4–5
requirements for ORMLite

tool 135
responsiveness of UI 130–131,

156
Robotium 178
rooted devices, installing

dependencies in
creating permissions

XML 176–177
modifying

AndroidManifest.xml 177
predexing 176

rotating screen, viewing video
full-screen 38–39

rounded corners for
backgrounds 34

RSS feeds 25
Rudolph, Johannes 177
Runnable 35, 130–131
runOnUiThread()

method 130

S

SBT (Simple Build Tool)

114–115
Scala, using in Android 116
schema, database 136–138
scope attribute 173, 177
scroll() method 44
ScrollView class 87–88
SD card, storing app on 163
section headers for ListView

class
adding 83–84
creating layout for 82–83

selectColumns() method 142
separation of concerns con-

cept. See SoC
Service 56, 61–62, 152–153
setChecked() method 94
setContentView() method 40,

158
setCountOf() method 142
setEmptyView() method 77
setExitTasksEarly()

method 131
setFactory() method 20
setInAnimation() method 20
setOnSystemUiVisibility-

ChangeListener()
method 159

setOutAnimation() method 20
setRequestedOrientation()

method 90
setText() method 31, 116
settings screens, creating

custom 17
setVisibility() method 6
shadowColor attribute 32
shadowDx attribute 32–33
shadowDy attribute 32–33
shadowRadius attribute 32
Shaman Doctor 107
ShapeDrawable class 34
SharedPreferences class

161–162
SharedPreferences-

Compat class 162, 164
sharing code between

projects 58–60
SherlockActivity 123
showWeaveInfo 99
Simple Build Tool. See SBT

188 INDEX

singleChoice setting 91–92
size() method 144
Skiba, Dmitry 108
slideshow using Ken Burns

effect 27
.so files 109, 112
SoC (separation of concerns)

concept 85
SpannableString class 31
Spanned class 31
splash screens 53
SQL

injection attacks 145
raw queries 145–146

SQLite 133
custom functions for

Java code 148–149
native code 149–151

other 133
SQLiteContentProvider

class 154–156
SQLiteOpenHelper class 63,

138–139, 148
startLoading() method 125
startup time, improving 40–41
static block 149
stopLoading() method 125
String type 111
strings.xml file 120
SurfaceView class 101
switchFragment() method 170
SyncAdapter class

adding login
functionality 67–73

adding SyncAdapter 73–75
creating database for 63–66
overview 62
populating database 66–67

syncing data
using AsyncTask class 60–61
using service 61–62

System.loadLibrary()
method 149

T

TabActivity class 168
TabHost class 168
TableUtils class 138
tabs, using fragments in

creating tab UI 169

placing tabs in activity

169–170
TabWidget class 168
targetSdkVersion attribute 164
test scope 173
testability of code,

improving 53–56
testing using Jenkins

creating job 179–181
running job 181–182

text, glowing effect for 33
TextFormatter class 108,

111–112
textformatter module 109–110
TextSwitcher, transitions

with 21
TextView class 4, 19–20, 32, 40,

50, 82, 93
TextWatcher class 30
ThreadPoolExecutor 129
toArray() method 144
Toast class 42, 91
TransactionManager class 146
transactions using ORMLite

tool 146–147
transitions, with TextSwitcher

and ImageSwitcher 21
TranslateAnimation class 22
Twitter 30

U

UI thread 102, 130–131
unique element 137
UNIQUE statement 138
uniqueCombo element 137
update() method 57
UpdateBuilder class 141
updateBuilder() method 141
UriMatcher class 65
USE_CREDENTIALS

permission 68
use-library tag 176–177

V

validating input, avoiding 30
VARCHAR type 143
verbose flag 99
version attribute 172–174
verticalSpacing attribute 13

videos, viewing full-screen when
rotated 38–39

videoView class 36–38
View class 3, 6, 9, 23, 34–36,

102
ViewGroup class 3, 50

applying animation to chil-
dren views 23

creating custom
adding custom attributes

to children views
12–13

CascadeLayout view 9–12
ViewHolder class, creating fast

adapters with 80
ViewPager class 46, 90–91
views

adding custom attributes to
children 12–13

applying animation to
children 23

centering objects in 2–3
getting height and width

of 36
in Android 9
lazy loading of 5–7
removing unnecessary 49–52

ViewStub class 5–7, 78
visual feedback 31
Void type 140

W

weightSum attribute 2–3
Wharton, Jake 26, 125
WhatsApp 117
windowBackground

attribute 41
WindowManager class 24
wireframes, transferring to

layouts 87, 89
wizard forms 46

X

XML files 4

Z

Zombie Smash! 101

Carlos Sessa

H
acks. Clever programming techniques to solve thorny little
problems. Ten lines of code that save you two days of work.
h e little gems you learn from the old guy in the next cube

or from the geniuses on Stack Overl ow. h at’s just what you’ll
i nd in this compact and ini nitely useful book.

h e name 50 Android Hacks says it all. Ranging from the mun-
dane to the spectacular, each self-contained, fully illustrated
hack is just a couple pages long and includes annotated source
code. h ese practical techniques are organized into twelve
collections covering layout, animations, patterns, and more.

What’s Inside

● Hack 3 Creating a custom ViewGroup
● Hack 8 Slideshow using the Ken Burns ef ect
● Hack 20 h e Model-View-Presenter pattern
● Hack 23 h e SyncAdapter pattern
● Hack 31 Aspect-oriented programming in Android
● Hack 34 Using Scala inside Android
● Hack 43 Batching database operations
● Plus 43 more!

Most hacks work with Android 2.x and greater. Version-specii c
hacks are clearly marked.

Carlos Sessa is a passionate professional Android developer.
He’s active on Stack Overl ow and is an avid hack collector.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit manning.com/50AndroidHacks

$34.99 / Can $36.99 [INCLUDING eBOOK]

50 Android Hacks

ANDROID/MOBILE

M A N N I N G

“How to solve common
problems that arise in

 Android development.”
—From the Foreword by Jake
Wharton, Android Engineer

“One of the best how-
 to books I’ve read!”—Christian Badenas

Android and .NET Developer

“Packed with useful
Android development tidbits

not found in the o� cial
 documentation.”—Matthias Käppler, SoundCloud

“A great resource for creating
nontrivial user experiences for

the Android platform.”—Frank Ableson
Coauthor of Android in Action

SEE INSERT

	50 Android Hacks
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	What is Android?
	Who should read this book?
	How to use this book
	Roadmap
	Code conventions and downloads
	Author Online
	About the author

	about the cover illustration
	1 Working your way around layouts
	Hack 1 Centering views using weights
	1.1 Combining weightSum and layout_weight
	1.2 The bottom line
	1.3 External links

	Hack 2 Using lazy loading and avoiding replication
	2.1 Avoid replication using the <include /> tag
	2.2 Lazy loading views with the ViewStub class
	2.3 The bottom line
	2.4 External links

	Hack 3 Creating a custom ViewGroup
	3.1 Understanding how Android draws views
	3.2 Creating the CascadeLayout
	3.3 Adding custom attributes to the children
	3.4 The bottom line
	3.5 External links

	Hack 4 Preferences hacks
	4.1 The bottom line
	4.2 External links

	2 Creating cool animations
	Hack 5 Snappy transitions with TextSwitcher and ImageSwitcher
	5.1 The bottom line
	5.2 External links

	Hack 6 Adding eye candy to your ViewGroup’s children
	6.1 The bottom line
	6.2 External links

	Hack 7 Doing animations over the Canvas
	7.1 The bottom line
	7.2 External links

	Hack 8 Slideshow using the Ken Burns effect
	8.1 The bottom line
	8.2 External links

	3 View tips and tricks
	Hack 9 Avoiding date validations with an EditText for dates
	9.1 The bottom line
	9.2 External links

	Hack 10 Formatting a TextView’s text
	10.1 The bottom line
	10.2 External links

	Hack 11 Adding text glowing effects
	11.1 The bottom line
	11.2 External links

	Hack 12 Rounded borders for backgrounds
	12.1 The bottom line
	12.2 External links

	Hack 13 Getting the view’s width and height in the onCreate() method
	13.1 The bottom line
	13.2 External links

	Hack 14 VideoViews and orientation changes
	14.1 The bottom line
	14.2 External links

	Hack 15 Removing the background to improve your Activity startup time
	15.1 The bottom line
	15.2 External links

	Hack 16 Toast’s position hack
	16.1 The bottom line
	16.2 External links

	Hack 17 Creating a wizard form using a Gallery
	17.1 The bottom line
	17.2 External links

	4 Tools
	Hack 18 Removing log statements before releasing
	18.1 The bottom line
	18.2 External links

	Hack 19 Using the Hierarchy Viewer tool to remove unnecessary views
	19.1 The bottom line
	19.2 External links

	5 Patterns
	Hack 20 The Model-View-Presenter pattern
	20.1 The bottom line
	20.2 External links

	Hack 21 BroadcastReceiver following Activity’s lifecycle
	21.1 The bottom line
	21.2 External links

	Hack 22 Architecture pattern using Android libraries
	22.1 Back-end logic and model
	22.2 Android library
	22.3 Android application
	22.4 The bottom line
	22.5 External links

	Hack 23 The SyncAdapter pattern
	23.1 Common approaches
	23.1.1 Using the AsyncTask class
	23.1.2 Using a Service

	23.2 What we’ll create
	23.2.1 What’s a SyncAdapter?
	23.2.2 Hitting a database instead of the server
	23.2.3 Populating the database
	23.2.4 Adding login functionality
	23.2.5 Adding the SyncAdapter

	23.3 The bottom line
	23.4 External links

	6 Working with lists and adapters
	Hack 24 Handling empty lists
	24.1 The bottom line
	24.2 External links

	Hack 25 Creating fast adapters with a ViewHolder
	25.1 The bottom line
	25.2 External links

	Hack 26 Adding section headers to a ListView
	26.1 Creating list layouts
	26.2 Providing visible section headers
	26.3 Wrapping up
	26.4 The bottom line
	26.5 External links

	Hack 27 Communicating with an Adapter using an Activity and a delegate
	27.1 The bottom line
	27.2 External links

	Hack 28 Taking advantage of ListView’s header
	28.1 The bottom line
	28.2 External links

	Hack 29 Handling orientation changes inside a ViewPager
	29.1 The bottom line
	29.2 External links

	Hack 30 ListView’s choiceMode
	30.1 The bottom line
	30.2 External links

	7 Useful libraries
	Hack 31 Aspect-oriented programming in Android
	31.1 The bottom line
	31.2 External links

	Hack 32 Empowering your application using Cocos2d-x
	32.1 What is Cocos2d-x?
	32.2 Using Cocos2d-x
	32.3 The bottom line
	32.4 External links

	8 Interacting with other languages
	Hack 33 Running Objective-C in Android
	33.1 Downloading and compiling Itoa
	33.2 Creating the modules
	33.2.1 The ItoaApp.mk and the ItoaModule.mk files
	33.2.2 The textformatter module
	33.2.3 The main module
	33.2.4 Compiling

	33.3 Setting up the Java part
	33.4 The bottom line
	33.5 External links

	Hack 34 Using Scala inside Android
	34.1 The bottom line
	34.2 External links

	9 Ready-to-use snippets
	Hack 35 Firing up multiple intents
	35.1 Taking a picture
	35.2 Picking a picture from the gallery
	35.3 Mixing both intents
	35.4 The bottom line
	35.5 External links

	Hack 36 Getting user information when receiving feedback
	36.1 The bottom line
	36.2 External links

	Hack 37 Adding an MP3 to the media ContentProvider
	37.1 Adding the MP3 using content values
	37.2 Adding the MP3 using the media scanner
	37.3 The bottom line
	37.4 External links

	Hack 38 Adding a refresh action to the action bar
	38.1 The bottom line
	38.2 External links

	Hack 39 Getting dependencies from the market
	39.1 The bottom line
	39.2 External links

	Hack 40 Last-in-first-out image loading
	40.1 Starting point: Android sample application
	40.2 Introducing executors
	40.3 UI thread—leaving and returning seamlessly
	40.4 Considerations
	40.5 The bottom line
	40.6 External links

	10 Beyond database basics
	Hack 41 Building databases with ORMLite
	41.1 A simple data model
	41.2 Getting started
	41.3 Rock-solid database schema
	41.4 SQLiteOpenHelper—your gateway to the database
	41.5 Singleton pattern for database access
	41.6 CRUD operations made easy
	41.7 Query builders
	41.8 Data types and tricky foreign types
	41.9 Raw SQL queries
	41.10 Transactions
	41.11 The bottom line
	41.12 External links

	Hack 42 Creating custom functions in SQLite
	42.1 Java code
	42.2 Native code
	42.3 The bottom line
	42.4 External links

	Hack 43 Batching database operations
	43.1 No batch
	43.2 Using batch operations
	43.3 Applying batch using SQLiteContentProvider
	43.4 The bottom line
	43.5 External links

	11 Avoiding fragmentation
	Hack 44 Handling lights-out mode
	44.1 Android 2.x
	44.2 Android 3.x
	44.3 Merging both worlds in a single Activity
	44.4 The bottom line
	44.5 External links

	Hack 45 Using new APIs in older devices
	45.1 Using apply() instead of commit()
	45.2 Storing the app on the SD card
	45.3 The bottom line
	45.4 External links

	Hack 46 Backward-compatible notifications
	46.1 The bottom line
	46.2 External links

	Hack 47 Creating tabs with fragments
	47.1 Creating our tab UI
	47.2 Placing the tabs in an Activity
	47.3 The bottom line
	47.4 External links

	12 Building tools
	Hack 48 Handling dependencies with Apache Maven
	48.1 The bottom line
	48.2 External links

	Hack 49 Installing dependencies in a rooted device
	49.1 Predexing
	49.2 Creating the permissions XML
	49.3 Modifying AndroidManifest.xml
	49.4 The bottom line
	49.5 External links

	Hack 50 Using Jenkins to deal with device diversity
	50.1 Creating a Jenkins job
	50.2 Running the job
	50.3 The bottom line
	50.4 External links

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

