Hands-on
Azure Repos

Understanding Centralized and
Distributed Version Control in
Azure DevOps Services

Chaminda Chandrasekara
Pushpa Herath

ApPress

ww.allitebooks.co

http://www.allitebooks.org

Hands-on Azure Repos

Understanding Centralized
and Distributed Version Control
in Azure DevOps Services

Chaminda Chandrasekara
Pushpa Herath

Apress’

vww allitebooks.cond

http://www.allitebooks.org

Hands-on Azure Repos: Understanding Centralized and Distributed Version Control
in Azure DevOps Services

Chaminda Chandrasekara Pushpa Herath
Colombo, Sri Lanka Hanguranketha, Sri Lanka
ISBN-13 (pbk): 978-1-4842-5424-0 ISBN-13 (electronic): 978-1-4842-5425-7

https://doi.org/10.1007/978-1-4842-5425-7

Copyright © 2020 by Chaminda Chandrasekara and Pushpa Herath

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava

Development Editor: Siddhi Chavan

Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5424-0. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

vww allitebooks.conl

https://doi.org/10.1007/978-1-4842-5425-7
http://www.allitebooks.org

Let this book be a daily reference guide for all the
developers who use Azure Repos.

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

About the AUtROIS.........cccemmssemmmmsnsmssnssssnsssssas s sas s san s s san s s san s nssann s s snnnnssnnnnnnns xi
About the Technical ReVIEWETccssesssnssssssssassssnsssanssssssssnsssansssassssssssansssansssanssas Xiii
AcknOoWIedgmENtSuuueimmmsssssmsnnnmmmsmsssssssssssssssssssssssssssnsnsssssssssssnnnnnnsssssssssssnnnnnnnnnss XV
INtroductioncccsiiimmmnsmsmnses s Xvii
Chapter 1: Getting Started with Azure Team Foundation Version Control................ 1
Lesson 1-1: Creating a Team Project with TFVC and Adding a TFVC Repo to the
EXisting TEAm PrOJECL........ccoceiiircrcrer st s r s e s e e s 2
Lesson 1-2: Using Visual Studio Team EXPIOTerccovverenerensernnesereseses s sessesesssnens 5
Lesson 1-3: Adding New/Existing Solutions 10 TFVC........ccocoorncvnennssenssessesesesese e 8
Lesson 1-4: Changing Settings for TFVC in Visual StUdi0ccvcvverevrnnieniennsensese e sessensennns 16
FIl TYPES e vieireerrrrese s et b e e R e e e e R nr s 16
WOrkSPaCe SEHNGS......cveerreeirierirese s nne e 17
Source Control SELHNGS........ccvvererinerire s e 19
CheCK-0Ut SEHINGS.....ccicerrierinerire e sr e 19
CHECK=IN POICIESvveeerreerrsessssesesese s e e sn s s sn s sr s ses s 20
Lesson 1-5: Connecting 10 TFVC in VS COUEccccveereverierienennsensere e sessessessessssessessessesessessesnes 22
£ 111 4= 7R 26
Chapter 2: Working with Team Foundation Version Control: Part1...........ccocecennens 27
Lesson 2-1: Exploring the Source Control EXPIOrer..........cccvirnininennnnsnsese s sessessesnas 27
Lesson 2-2: Setting Workspace Mode to Local and SErver............ceevveenerenerssesensesesesesensesenns 33
Local WOrkspace MOE..........ccuerivnnnicnene s s ss s s st sae st ssesnens 36
Server Workspace MOGE. ... s s 36
Lesson 2-3: Looking at Source Control Explorer Menu RemS.........cccccovvvrvnininnsnsnenesensenennns 37
Lesson 2-4: Editing and Checking In Your CRangesccoovevernnernnessnessssesessssessssessssssessssesenns 38
Lesson 2-5: Resolving Conflicts During Code ChecK-iNc..ccovvrvriernnensensesiesssenseseseesessensenes 45
v

vww allitebooks.conl

http://www.allitebooks.org

TABLE OF CONTENTS

Lesson 2-6: Viewing the History and Comparing the Changesccccevvrrrerersnenserseresessensenaes 47
Lesson 2-7: Setting Source Control Tool OptionsS........cccovvvniennnnnnsnnesin e 50
Lesson 2-8: Deleting and Restoring Files ... sessesnes 52
SUMIMAIY ...ttt e e e Re e e e e e e Re e e e e e e e e nRe e e sa e nenannnnnnnens 54
Chapter 3: Working with TFVC: Part 2cccunneemmmmmmmmmmmssssssssnssmsssssssssssssssssssnnns 55
Lesson 3-1: USiNG SHEIVESEISucviiriieiree s 55
Lesson 3-2: Suspending and ReSuming WOrK........cccvovvvrrverernnensensesesessessessessssessessessessssessesses 64
Lesson 3-3: Doing Code Reviews With TFVC.........cccevivvernrreresssensesessssessessessesssssssessessessssessenses 68
Lesson 3-4: Using Lock and UNIOCKccccueriinnnicnisnsnscse s sss s e ssessssessesnes 76
Lesson 3-5: Applying Check-in POIICIESc..cccvvrvrieninnsinrcne s snes 78
SUMIMAIY....e e e e e Re e e e e e e e Re e s e e e e e e e Re e e re e ne e e e nrnnens 83
Chapter 4: Team Foundation Version Control Branchingccuccunmnssssennsssssssnnsasns 85
Lesson 4-1: Creating @ BrancCh...........ccccovevrinnncsnessssse s ss s s sens 85
Lesson 4-2: Converting a Folder 10 @ Branch.........c.ccoovvvvnvenennsinsene s sessesesesessessessessesessessesees 89
Lesson 4-3: Merging and ResolVing CONTlICESccvvereverrrieriesnsensene s sessesessesessessessessesessensesaes 91
Lesson 4-4: Tracking Changesets ..o s sens 100
Lesson 4-5: Cherry-Picking Changesets ... sesese s sessessens 103
Lesson 4-6: Exploring TFVC Branching Strategiesccoveervrrnnesennesesiesesessesesesesesesesesenns 106
12T 0] TS 106
Development ISOIAtION...........ccoveeerererr e 106
LT 0 =T o] U0 T 107
RelEASE ISOIALIONceeeeecr e 107
Servicing and Release ISOIAtionc.cccvveerrenrnnennesese e 108

£ 10T 7 TS 108
Chapter 5: Team Foundation Version Control: Command Line.........cccussssssnennnnnneas 109
Lesson 5-1: Getting Started with the Team Foundation Command Line..........cccvccveererenieriennens 109
Developer Command Prompt for Visual Studio..........ccccveeveverrnienennrniene e e sessenns 109
Team Explorer Everywhere Command-Line Client ... 111

TABLE OF CONTENTS

Lesson 5-2: Using Workspace COMMANGSccvvererrererserseressssessesesssssssessesssssssessessessssessessens 113
WOrKSPACES COMMAN......ccceruerreririererrerseserseressesessersessessesessessessessssessessessssessessesssssssensessens 113
WOrKSPACE COMMANG........cceeeruerrererererrersesenesessesessersessessesessessesaesassessessessssessessesasssnsensessens 114

Lesson 5-3: Running Various COMMANUS..........ccccrnierrneninnnennsesissesess s ssssessssssessssesessesenns 117
0= S 118
o o TP TP SSRSRN 120
CRBCKIN .. 120
(o 1Tt (0L (0 < o 121
=] T2 1T 122
130N 122

£ 111117 OO 122

Chapter 6: Team Foundation Version Control: Securityccccusaemsrsssssnnssssssnnnnss 123

Lesson 6-1: Setting Up TFVC Security at the Team Project LeVel.........ccccvivevnvnieneninsensennens 123

Lesson 6-2: Applying Permissions at the Branch/Folder or File Level.........ccccoovvvinevniniennens 129

Lesson 6-3: Auditing Changes and Finding Out Who Did Whatcccccvvninennininennsenienens 134

£ 11134 7R 137

Chapter 7: Getting Started with Azure Git RepoS........cccrnssnmnmrnssssnnnssssssnsssssssnnnns 139

Lesson 7-1: Creating an Azure Git REPO0........ccccerecerrrreririerere s ses e sens 139
Creating a Team Project with Azure Git REPOScccvererrrerriercrrcc e 140
Creating Additional Git Repos in @ Team Project..........cccvvvnennnnrnnesnns s s 142

Lesson 7-2: Cloning an Azure Git REPOcccccvvvivrernsnsn s sessesnens 144
VS COUR ...urueueueursesssssssssssssssss s e e e e e bbb b e e e e st 144
LT LIS (8o TSR 145

Lesson 7-3: Creating and Pushing Code to Azure Git RepoS........c.ccecevvvnvriernnnnnsenenssensenaens 148

Lesson 7-4: Getting Changes from Others and Sharing Code.........cccoevvnvninnnnnniniennsenienens 156

Lesson 7-5: ReS0IVING CONTlICESc.ccvvvirieriererinirsere s sss e s sse e s s snesessessesaens 161

Lesson 7-6: Stashing the ChaNQesS........cuccverevnrenienenn s ses s ssssessessesssssssessessessssessesaens 166

£ 1134 7 170

vii

TABLE OF CONTENTS

Chapter 8: Branching with Azure Git RepP0Sccivsssemmrrsssssnnnmsssssssnsssssssssssssssnnnss 171
Lesson 8-1: Creating BranChes........cc.cccovererricern et ses e 171
Lesson 8-2: Working with Branches in Visual Studio and VS Code..........ccccvvererververrenrerierienns 174

LT LIS (1o PP RTR 175
VS COUE ...t e e e s e e se s e e Re e nee e e nmernnennas 183
Lesson 8-3: Merging Changes and Resolving ConflictS..........covvvnvennnenennnennsesessesesee s 185
Lesson 8-4: Using Pull Requests and Code REVIEWScccoevrvrierenninsnnenesessesessessssesesaens 195
Lesson 8-5: Rebasing While Completing a Pull REQUEST.........ccvcvveriernnnsenienesensessessesessesenaens 204
£ 11134 R 206

Chapter 9: Using the Command Line with Azure Git Repos.........cccerrrsssnnnsrssssnnnnns 207
Lesson 9-1: Getting Started with the Command Lineccccovevniennienriescrnscneseses s 207
Lesson 9-2: Cloning an Azure Git Repository and Pushing Code Using the Command Line 210
Lesson 9-3: Creating a Git Repository Locally and Pushing It to Azure Git Reposcccocenene 218
Lesson 9-4: Creating Azure Git Repo Branches Using the Command Line.........c.ccevvevvieniennens 222
BT 11134 RS 224

Chapter 10: Azure Git Repos: SECUrity.......ccssummsmmmsansssnmssnsssassssnssssssssassssnsssansssass 225
Lesson 10-1: Setting Azure Git Rep0oS PEIMISSIONScveeverererserseressssessessessessssessessessssessessens 225
Lesson 10-2: Setting Up Azure Git Repos Branch POIICIESc.ccccvverreserinscrnsesnesen s 234
SUMIMANY ..ttt e e e s b e e e e e b e e e e e e R e R e b e e e Re e Re R e e e e e Re e b e e e e naenns 240

Chapter 11: Azure Git Repos EXIras.......ccccccummnsssssmsmmmmmmsmsssssssssssnssssssssssssssssssssnnes 241
LesSON 11-1: USING Git TAGSvvverrererrenerrnsesensesesrssesrssesessesessssessssssesssssssssessssssssssssssssssssssssssssenns 241

Creating Tags with the Azure DevOps Web Portal..........c.ccocvvrinninininnnnsnseness e 241
Creating Tags With Visual STUCI0ccveerererrnrerres e 246
Creating Tags with the CommaNnd LiNe.........ccocuerrienerenmrnsesenesese s seneens 251
Lesson 11-2: FOrKiNg @ REPOccueeerreeerinesinesesiese e sss s s ssssssessssesessssenns 255
Lesson 11-3: Importing from an External REPOSItOrYc.ccoovrvrierennsnsensesssessesesesessesenaens 257
Lesson 11-4: Setting Up Azure Git Repos Markdown Files as @ WiKi........ccocevrerersersererensensenens 260
£ 1] 1134 7 265

viil

TABLE OF CONTENTS

Chapter 12: REST APIs for Azure Git and TFVC RepPOSccccurrrsssnnnssssssssnsssssssnnnss 267
Lesson 12-1: Using Repo REST APIs from a Browser to Retrieve Data.........c.ccocvverrererensenienens 267
Lesson 12-2: Creating a PAT to Use with REST APIS for RepoS.......cccocvvnvrierennnensenesnnsensenaens 269
Lesson 12-3: Using the Repo REST APIs from Postman..........c.ccccovvenniennesennsesesnesesesesesenenns 271
Lesson 12-4: Using the Repo REST APIs from PowerShell...........c.ccoovvvnvninnnnnnienennsenienens 273
L1134 RS 276

Y & |

ix

About the Authors

Chaminda Chandrasekara is a Microsoft Most Valuable
Professional (MVP) for Visual Studio ALM and a Scrum
Alliance Certified ScrumMaster, who focuses on continuous
improvement of the software development lifecycle. He
works as a lead engineer in DevOps at Xameriners (Pvt) Ltd,
Singapore. Chaminda is an active Microsoft Community
Contributor (MCC) who is well recognized for his
contributions in Microsoft forums, TechNet galleries, wikis,
and Stack Overflow, and he contributes extensions to Azure
DevOps Server and Services (formerly VSTS/TFS) in the
Microsoft Visual Studio Marketplace. He also contributes to

other open source projects in GitHub. Chaminda has published four books with Apress,
and he blogs at https://chamindac.blogspot.com/.

Pushpa Herath is an author, blogger, and speaker at
technical community events and works as a DevOps
engineer at Xamariners (Pvt) Ltd.

She has years of experience in DevOps with Azure
DevOps, Octopus, JIRA, and many other DevOps tools.

She is an expert on functional test automation using
Selenium and BDD. Pushpa blogs about technology at
https://devopsadventure.blogspot.com/. She has
published two books with Apress.

https://chamindac.blogspot.com/
https://devopsadventure.blogspot.com/

About the Technical Reviewer

Mittal Mehta has 15 years of IT experience and currently is
working as a configuration manager. He also has eight years
of experience working in TFS, C#, Navision, build-release,
Azure DevOps, automation, and configuration in Microsoft

technologies.

xiii

Acknowledgments

We are thankful for all the mentors who have encouraged and helped us during our
careers and who have provided us with so many opportunities to gain the maturity and
the courage we needed to write this book.

We would also like to thank our friends and colleagues who have helped and
encouraged us in so many ways.

Last, but in no way least, we owe a huge debt to our families, not only because they
have put up with late-night typing, research, and our permanent air of distraction,
but also because they have had the grace to read what we have written. Our heartfelt
gratitude is offered to them for helping us make this dream come true.

Introduction

Collaboration among developers is a vital aspect in software development. Sharing code
while working in teams to achieve software delivery goals increases end-user satisfaction.
Hence, source code control tools are essential for software development teams.

Azure Repos offers you both a centralized version control system and a distributed

version control system.

e Team Foundation Version Control (TFVC) is the centralized version
control system that comes with Azure Repos.

e Azure Git repos provide you with distributed version control and
support all the popular Git repo concepts.

Hands-on Azure Repos gives you step-by-step guidance on working with TFVC and
Git, while exploring best practices in each step. You will discover branching and merging
techniques to resolve conflicts while sharing code with teams as well as how to track the
changes you make to the code using repos. You will explore the essential command-line
options, REST API usage, and security options with hands-on lessons to give you the
ability to manage TFVC and Git effectively to support your teams. Additionally, code
review procedures for repos and integration of a repo with other Azure DevOps features
such as boards, pipelines, etc., are discussed in detail.

The hands-on steps in the book will provide you with a comprehensive
understanding, from the basics to advanced topics, as you go through each chapter.
Lessons comprise secrets to getting started quickly with Azure Repos in the right way
and integrating it with popular development tools such as Visual Studio, VS Code, etc.
The tips and tricks in the book will make you a productive developer and prevent you
from taking the wrong steps while using Azure Repos.

We hope Hands-on Azure Repos will be your go-to resource for delivering value to
your end users with software, using any platform and any language you prefer to use.

xvii

CHAPTER 1

Getting Started with
Azure Team Foundation
Version Control

Team Foundation Version Control (TFVC) is a centralized version control system for
your source code management. Generally, a team member will have one version of each
source code file on their machine while using TFVC. Branches of source code are based
on paths and get created on the server. A history of version control is maintained on

the source control server, not on the local developer machine. In TFVC you can apply
permissions at a granular level, and restrictions can be applied at the file level, which we
will discuss in Chapter 6.

In this chapter, we will explore the steps required to get started with TFVC in Azure
DevOps using Visual Studio. You will be able to understand how to set up a team project
to use TFVC or add a TFVC repo to an existing team project that is currently using Git
repos. The steps required to set up your machine to develop with TFVC using Visual
Studio will be described, and you will learn how to add new or existing solutions to TFVC
in Visual Studio. Further, this chapter will discuss the different workspaces available in
TFVC and the options to define and use code check-in (commit) policies. In addition,
using TFVC with other developer tools such as VS Code and Eclipse will be described for
you to get started even faster.

© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_1

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Lesson 1-1: Creating a Team Project with TFVC and
Adding a TFVC Repo to the Existing Team Project

We discussed how to create a new team project in Chapter 1 of the first book, Hands-
on Azure Boards, of this book series. However, let’s take a quick look at creating a team
project with TFVC in this lesson to keep your experience seamless.

Prerequisites: You have an Azure DevOps organization created, and you have some
experience working with Azure DevOps to create team projects, or you have followed the
lessons in Chapter 1 of the book Hands-on Azure Boards.

Navigate to your Azure DevOps organization’s home page and click the “Create
project” button in the top-right corner. See Figure 1-1.

I‘"J Azure DevOps 0O Search & .
sldevop -+ Create project

a fdevep Projects My workitems My pull requests v Filter projects

n chamindac

& chamindacdemo TheDarkKnight TheEndGame
n Book01Boards

Figure 1-1. Creating project

In the team project creation pane, provide a name and select TFVC as the version
control system. You can set “Work item process” to whatever you'd like, as discussed in
detail in the Hands-On Azure Boards book. See Figure 1-2.

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Create new project X

Froject name *

| TheAvenge rsl

Description

Visibility
@

Public

. Advanced

Version control & Work item process (&

Team Foundation Version Control - Agile

Cancal m

Figure 1-2. Creating a team project with TFVC

The created team project has TFVC set as the repo by default, and you can view it by
clicking the Repos menu option in the left menu. See Figure 1-3.

f:j Azure DevOps sideve TheAvengers Files & 5/TheAvengers v
' TheAvengers ar 5/TheAvengers /

Overview " (. : Uolo) w—_— i
ﬂ 22 §/TheAvengers Contents History MNew Upload file(s) < Download as Zip

% Boards BuildProcessTemplates

Last changs

Rapos BuildProcessTemplates Just now 3
B Files
ﬂ Changesets

2, Shelvesets

Figure 1-3. TFVC repo

Now, let’s look at how we can add a TFVC repo to an existing team project. Unlike Git
where multiple Git repos can be added to a single team project, you can have only one
TFVC repo per team project in Azure DevOps. Create a new team project with Git as the
version control system. Then navigate to Repos in the left menu. On the Repos tab, click
the drop-down next to the Git repo name and click “New repository.” See Figure 1-4.

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

f:] Azure DevOps

TheDarkKnight

n Overview
% Boards

20 Repos

B3 Files

-

Commits
2, Pushes
§-9 Branches
2 Tags

44 Pull requests

f Pipelines
A Test Plans

0' t v /.;:; g

+ . /O Filter repositorie
TheDarkKnight 5!

© TheDarkKnight

“ New repository
#~ Clone to your com =

-

Import repository
S5H | htty €58 Manage repositories ight/_git/TheDarkK.. 1) OR

Generate Git credentials

3 Clone in VS Code v

git remote add ongin https://sldevop@dev.azure.com/sldevop/TheDarkKnight/_git/TheDarkKnight

git push -u origin —-all

Figure 1-4. Creating a new repo in an existing project

In the dialog that appears, select TFVC as the repo type and click Create to create a
new TFVC repo in a team project that already has Git repos. See Figure 1-5.

& TFVC »
Repository name

$/TheDarkKnight

Reminder: Visual Studio users will need Visual Studio 2015 Update 1 or
later to view TFVC and Git repositories in team projects that include
both types.

Learn more

Figure 1-5. Creating a TFVC repo

In this lesson, we explored how to create a TFVC repo in an existing team project or

create a new team project with TFVC as the source control system.

4

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Lesson 1-2: Using Visual Studio Team Explorer

We created a new team project in the previous lesson with TFVC as the source control
system. As a next step, we need to connect it to Visual Studio to get started with the
source code development. In this lesson, let’s discuss the steps required to get Visual
Studio connected to your newly created team project in the TFVC repository, using the
Team Explorer window in Visual Studio.

Prerequisites: You have Visual Studio 2019 installed on your machine and are
familiar with working with Visual Studio. You have followed the steps in Lesson 1-1 of
this chapter and have a team project created with TFVC as the source control system.

In Visual Studio, to open Team Explorer, you can click View » Team Explorer in the
menu or press Ctrl+\ and then Ctrl+M. The Team Explorer window lets you connect to
Azure DevOps. You can click the Manage Connection toolbar icon to go to the Manage
Connections page of the Team Explorer window. See Figure 1-6.

Team Explorer - Connect
PN
@ ¥ o

Connect | Offline -

Manage Connections ~

4 Hosted Service Providers

G Azure DevOps

Microsoft Corporation

Services to help you ship high quality software. On time,
every time. Focus on your code. We'll simplify the rest.

Connect... Get started for free @

4 Local Git Repositories
New v | Add | Clone + | View Options «

Add or clone a Git repository to get started.

STGLESTIGICE Team Explorer

Figure 1-6. Managing connections in Team Explorer

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Click the Connect link or click the drop-down next to the Manage Connections link
(see Figure 1-6) and then click “Connect to a project.” In Team Explorer, the Manage
Connection page will open as a pop-up window. In the Connect to a Project dialog, you
can see the Azure DevOps organizations you have access to if you have already logged
in to Visual Studio with a Microsoft account or your organization’s account. You can
click “Add an account” or select a different account if you have connected more than
one account. See Figure 1-7. If you click “Add an account,” you will be prompted for
your credentials, and you can provide them to connect your Microsoft account or your
organization’s account to Visual Studio.

Connect to a Project

Showing hosted repositories for:

=. chaminda_chandrasekara@yahoo.com (Microsoft account)

Datavail Corporation
Pushpa.Herath@p i.com

BN Microsoft account
W™ chaming Irasekara@yahoo.com

_char

| Add an account...
Type here to filter the Tist >

P O chamindac.visualstudio.com

b & chamindacbooks.visualstudio.com
& chamindacfree.visualstudio.com

b & codemarines.visualstudio.com

P O dev.azurecom

P nilminih.visualstudio.com

P & phoenixind visualstudio.com

P O spiritslvisualstudio.com

Figure 1-7. Adding or selecting an account

Log on from the account you used to create a team project in the previous lesson
and expand the Azure DevOps services organization to view your team projects
and repositories. If you are using an on-premises Azure DevOps server, you have
the option to provide an Azure DevOps server URL and connect it. In the expanded
view, select the TFVC repo you want to connect and click the Connect button. See
Figure 1-8.

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

X
Connect to a Project
Showing hosted repositories for:
" chaminda_chandrasekara@yahoo.com (Microsoft account) i

Add Azure DevOps Server « | Refresh

Enter server URL

Cancel
Preview URL for this connection (based on your input)
Type here to filter the list P
4 O dev.azure.com B

P {2 BookO1Boards
b {3 chamindacdemo
b 3 cmbaks
b {7 DeltaSample
P {2 DevOpsLaunch01
P {1 pnherath0311
4 [sldevop
P &% AgileTarget
P §% DemoGAB2019
P &% Serum target
4us TheAvengers
£ §/TheAvengers
4 §% TheDarkKnight
£ §/TheDarkKnight
4 TheDarkKnight

Figure 1-8. Connecting a TFVC repo

Once the team project TFVC repo is connected, Team Explorer will allow you to map
the TFVC path of the project to a local folder and create a workspace. There are two types
of workspaces, and we will discuss them in Lesson 1-4. Provide a desired local path and
click the Map & Get button. See Figure 1-9.

CHAPTER 1

GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Team Explorer - Home v aXx

Q@ © & ¥ | & Search Work ltems (Ctrl+") P~
Home | TheAvengers t
4 Azure DevOps

‘& TheAvengers
https://dev.azure.com/sldevop/TheAvengers
4 Configure Workspace
§/TheAvengers

C:\U5ers\chamindac\Scurce\Workspaces\TheAvengersl

(VPR Cancel | Advanced...

4 Project
Configure Workspace | Web Portal | Task Board

|-.‘ My Work |® Pending Changes

— Source Control
| Explorer | & Work Items

IL::" Builds |{§} Settings

4 Solutions
You must configure your workspace mappings to open
solutions for this project.

Team Explorer

Figure 1-9. Map & Get button

In this lesson, we discussed the steps required to connect and map a local path for a

TFVC repository using Visual Studio.

Lesson 1-3: Adding New/Existing Solutions to TFVC

Once we map the TFVC repository in Visual Studio, we are allowed to add new solutions

to version control using the Solution Explorer window of Visual Studio. Let’s look at the

steps to add a new solution to TFVC and how you can add an existing solution to TFVC

using the Solution Explorer window of Visual Studio.

Prerequisites: You performed the steps described in the first two lessons in this

chapter.

8

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

In Team Explorer, you will see the New link, which allows you to create a new
solution. Click it. See Figure 1-10.

Team Explorer - Home v |

o0 ¥ | % | Search Work Items (Ctrl+") P~

Home | TheAvengers e
4 Azure DevOps

‘» TheAvengers
https://dev.azure.com/sldevop/TheAvengers

4 Project
Web Portal | Task Board
| & MyWork I@ Pending Changes
| gxo:l:'ee'Control | @, Work ltems
| gy Builds | $i} Settings
4 Solutions o N

Workspace: vs2019dev -J:| New,\'l Open... | Show Folder View

There were no solutions found.

SN SGIGIECE Team Explorer

Figure 1-10. Creating a new solution

Then in the “Create a new project” dialog, search for console application, select the
.NET Framework console application, and click Next. See Figure 1-11.

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Create a new project

Recent project templates

A list of your recently accessed templates will be
displayed here.

cons

V)

L E Language ~ Platform ~ Project type ~

Console App (NET Core)

A project for creating a command-line application that can run on .NET Cere on
Windows, Linux and MacOS5.

ce Linux macOs Windows Conscle

Console App (.NET Framework)

A project for creating a command-line application

s Windows Conscle

Ex

Ee)

ce

Console App (.NET Framework)
A project for creating a command-line application

Visual Basic Windows Console

Console App (NET Core)

A project for creating a command-line application that can run on .NET Core on
Windows, Linux and MacO5.

Visual Basic Windows Linux macOs Conscle

Console App (NET Core)

A project for creating a command-line application that can run on .NET Core on
Windows, Linux and MacO5.

F= Windows Linux mac0s Consgle

Console Ap,

Figure 1-11. Creating a console application

In the next step, provide a name for the project. Do not change the Location path as

the new solution is already being created in the mapped path of TFVC. Click Create to

create the new application. See Figure 1-12.

10

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Configure your new project

Console App (.NET Framework) ¢® Windows Console

Project name

Location

C\Users\chamindac\source\Workspaces\TheAvengers

Solution name

ConsoleApp
:l Place solution and project in the same directory
Framework

NET Framework 4.7.2

Back Create

Figure 1-12. Creating the console application in the mapped source path

Once the new solution is created, view it in the Solution Explorer window of Visual
Studio. You can open Solution Explorer by pressing Ctrl+Alt+L or by clicking View »
Solution Explorer in the Visual Studio menu. If you have an existing solution that you
need to add to TFVC, copy all the content of the solution to the mapped local drive path
of TFVC and then open that solution in Visual Studio. Once you create/open a solution
in Visual Studio, go to the Solution Explorer window and right-click the solution you
want to add to TFVC. Then click Add Solution to Source Control in the context menu.
See Figure 1-13.

11

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Solution Explorer

fbﬁla' 'G)"-?Clﬁ‘@ (>p'-
Search Solution Explorer (Ctrl+;) P~

2] Solution 'ConsoleApp1’ (1 project) &

4 ConsoleApp1
b M Properties
b =m References

* 0 x

Build Solution
Rebuild Solution

Clean Solution

) App.config Analyze

b c* Program.cs

Solution Explorer

Figure 1-13. Adding the solution to source control

Batch Build...

Configuration Manager...
i Manage NuGet Packages for Solution...
(% Restore NuGet Packages

Live Unit Testing

New Solution Explorer View

Calculate Code Metrics

Add

£} Set StartUp Projects...

+

Paste

Rename

€ Open Folder in File Explorer

Add Solution to Source Control...

Ctrl+Shift+B

Ctrl+V

You will notice that all the files in the solution are marked with a +, indicating that
they are ready to be checked in (committed) to TFVC. See Figure 1-14.

Solution Explorer

@8-o-5¢ 8B &=

earch Solution Explorer (Ctrl+:)
S h Solut Exp Ctrl+:)

+fa] Solution 'ConsoleApp1' (1 project)
4 +[cs] ConsoleApp1

b + M Properties
b =m References
b i bin
P iliob

+4) App.config

i ConsoleApp1.csproj.vspscc

b +c* Program.cs

Figure 1-14. Solution ready to be checked in

12

« 0 X

P~

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Next open the Team Explorer window and click Pending Changes. In the Pending
Changes window of Team Explorer, you will be able to see the new solution files are ready
to be checked in. You can provide a comment and check in your code to TFVC. Further,
you can see the Related Work Items options allowing you to add a work item, which we
will discuss in Chapter 2. Note that there are some local file changes detected (this is
because of the default local workspace; we will discuss the difference between the server
and local workspaces that are available for TFVC in Lesson 1-4). See Figure 1-15.

Team Explorer - Pending Changes v aXx
© © @& ¥ | ¢ SearchWork items (Ctrl+') P~
Pending Changes | TheAvengers ~ [7

vs2019dev ~

CheckIn | Shelve v | Actions

4 Comment

Enter a check-in comment

4 Related Work Items
Queries v | Add Work Item by ID «

Drag work items here to link them to the check-in.

4 Included Changes (5)
Exclude All | View Options +
4 G C\Users\chamindac\source\Workspaces\TheAveng...
4 ConsoleApp1
4 Properties
* Assemblylnfo.cs [add]
\‘j App.config [add]
ConsoleApp]1.csproj [add]
€* Program.cs [add]
m ConsoleApp1.sin [add]

4 Excluded Changes
Include All | View Options « | Detected: 4 add(s)

Drag changes here to exclude from the check-in.

Figure 1-15. Pending changes

Click the detected changes in the Excluded Changes section. A dialog will appear,
and you will be able to see the local files that should be ignored by source control. Select
all the files and right-click to open a context menu. In this window, you are allowed to

13

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

promote files, which will be included as changes. Or you can ignore local-only files.
Since the files detected in this instance are local files, click “Ignore these local items.”
Note that several ignore options are available when you have selected a single file, the
same file extension, etc. See Figure 1-16.

Promote Candidate Changes ? X

Pending change candidates have been detected on your local disk. Select local items to
promote to full pending changes. You can combine an add and delete candidate into a
rename by selecting them and choosing rename from the context menu.

M Name Change Folder ~
£ O db.lock add C:\Users\chamindac\Source\Works...
£ D) storage.ide add C:\Users\chamindac\Source\Works...
M D storage.ide-shm add C:\Users\chamindac\Source\Works...
M D storace.ide-wal add . C:\Users\chamindac\Source\Works...

Copy

Select All

Browse in File Explorer

2 Ignore these local items

—_— Ignore by extension

Ignore by file name Promote Cancel

Ignore by folder

X Delete from disk

Figure 1-16. Local changes

You will notice a new file is added to the included changes named . tfignore in the
pending changes. See Figure 1-17.

14

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Team Explorer - Pending Changes > 1 x

[(> ﬁ ? | G Search Work Items (Ctrl+") P~
Pending Changes | TheAvengers Y | 7
vs2019dev «

Check In Shelve « | Actions

4 Comment

Adding a new console app]|

4 Related Work Items
Queries v | Add Work Item by ID

Drag work items here to link them to the check-in.

4 Included Changes (6)
Exclude All | View Options «
“ C:\Users\chamindac\Source\Workspaces\TheAveng...
4 &l ConsoleApp1
4 ConsoleApp1
B Properties
C* Assemblylnfo.cs [add]
| App.config [add]
ConsoleApp1.csproj [add]
C* Program.cs [add]
___Ra] ConsoleApp1.sin [add]
Fn tignore Iadd-]'.-""l
4 Excluded Cﬁanges g
Include All | View Options
Drag changes here to exclude from the check-in.

Figure 1-17. The .tfignore file added

Double-click the .tfignore file and inspect its content. The .tfignore file is used
to specify which files/paths should be ignored from TFVC. You can define the ignore
file patterns using wildcards. The . tfignore file contains a documentation header that
itself is a good explanation of how to use the file. Provide a comment in the Pending
Changes window and click the “Check in” button to commit the code to TFVC. In
the Solution Explorer, the files are now marked with a lock icon indicating they are
checked in to TFVC.

15

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

In this lesson, we discussed how to get a solution added to TFVC using Visual
Studio’s Solution Explorer. Further, we looked at how to ignore local files from getting
checked in to TFVC using a . tfignore file.

Lesson 1-4: Changing Settings for TFVC in
Visual Studio

There are a couple of settings you can set in Visual Studio to manage the behavior of
TFVC. They are divided into two levels: project collection settings that are applicable to
an Azure DevOps organization or a project collection in Azure DevOps Server and team
project settings that applicable in a team project scope.

You can access the project collection TFVC settings by clicking Team » Team Project
Collection Settings » Source Control. See Figure 1-18.

Team | Test Analyze Tools Extensions Window Help Search Vs,
Go to Work Items Hub...
W GotoWork Item...

@ New Query
W Project Alerts...

Team Project Settings »
Team Project Collection Settings v Security...

¥ Manage Connections... Group Membership...
Disconnect from Server Source Control...

Process Template Manager..

Figure 1-18. TFVC team project collection settings

File Types

The File Types settings let you define the enabled file types that can be added to
source control and the types that are prevented from being added to source control in
TFVC. See Figure 1-19.

16

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Source Control Settings - dev.azure.com/sldevop ? X

File Types Workspace Settings

Name File Extensions File Merging A Add...
Archive Files bak; cab; gz; hqx... Disabled
ASP.NET Files asax; ascx ashx ... Enabled
Audio/Video Files aif; aifc; aiff; asf; ... Disabled Rerar
Common Web Fil... asp; css; htm; ht... Enabled
Configuration Files config; settings Enabled
C++ Files asm; ¢; cpp; ©o¢ ... Enabled
Crystal Report Files rpt Disabled
C# Files cs Enabled
Database Files ach; accdb; aced... Disabled
Distributed Syste... ad; dd; Idd; sd; 5... Disabled
Executable Files com; dil; exe; ocx Disabled
Image Files ani; bmp; dib; ep... Disabled
Intermediate Co... class; obj Disabled
Miscellaneous So... cd; sql Enabled
Microsoft Office ... doc; docm; docx... Disabled
Other Common ... pdf; xps Disabled
Renart Filse relle Nicahlad e
OK Cancel

Figure 1-19. TFVC File Types settings

Workspace Settings

The default settings for workspaces can be set on the Workspace Settings tab of the
project collection’s source control settings for TFVC. See Figure 1-20.

17

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

ource Control Settings - dev.azure.com/sldevop ? X

File Types Workspace Settings

Choose a default workspace type:
@® Local (recommended)
Local workspaces allow users to work locally even if the server is unavailable.
O Server

Server workspaces require server connectivity for users to work locally. To enable features such as exclusive
check-out and get latest on check-out, server workspaces must be used.

[] Enable asynchronous checkout in server workspaces

Enabling this option will let solution explorer perform asynchronous checkouts. However, it will prevent users from
taking checkout locks and the PendChange permission will no longer be enforced for checkouts.

Figure 1-20. Default workspace settings

Team Foundation Version Control comes with two modes of workspaces, namely,
local and server workspaces. By default, a local workspace is set up in Visual Studio
when you connect with TFVC. Let’s try to understand the difference between the local
and server workspaces in this lesson.

o Server workspace: In a server workspace, you can handle millions
of files per branch and even large binary files. The facility is there
to apply locks, which we will discuss in Chapter 3. Most of the
operations in the server workspace require the developer to be
connected to the TFVC server. The server workspace lets you set
“Enable get latest when checkout,” which will download the latest
version of a file when you start editing it. You should consider using
the server workspace when you have more than 100,000 items in your
workspace.

18

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

o Local workspace: A copy of the latest version of code is available
on the developer’s machine so the developer can work offline with
the files. To check in code, the developer has to connect to the TFVC
server. You should consider using the local workspace when you
want to work offline often and easily restore locally deleted files. You
can compare, undo, check out and edit, rename, add, and delete files
easily in the local workspace mode.

We will discuss how to set the workspace mode for your development in Chapter 2.

Source Control Settings

To access the team project’s source control settings, you can click Team » Team Project
Settings » Source Control. See Figure 1-21.

| Team | Test Analyze Tools Exensions Window Help Search Visual S’
Go to Work Iltems Hub...
[7% GotoWork ltem...

8 New Query
W Project Alerts...
| Team Project Settings B s
Team Project Collection Settings » Group Membership...
¥ Manage Connections... Source Control...
Disconnect from Server Work ltem Areas...

. Work Item Iterations...
Portal Settings...
Figure 1-21. Team project’s Source Control settings

Check-0Out Settings

When you click Team » Team Project Settings » Source Control, the Source Control
Settings dialog will open. The check-out settings let you define whether to enable
multiple check-outs of files for server workspace mode as well. By default, multiple
check-out is enabled for local workspace mode. Additionally, you can set the server
workspace mode to get the latest version of a file for a local machine when a file is
checked out. See Figure 1-22.

19

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Source Control Settings - TheAvengers ? X

Check-out Settings Check-in Policy Check-in Notes

Multiple check-out allows more than one person to edit a file at the same time. Conflicting changes are reconciled
before check-in. This option is always enabled in local workspaces.

[] Enable multiple check-out

Get latest on check-out downloads the copy of an item from the Azure DevOps Server to the client computer. This
Azure DevOps Server setting applies to all items in this team project, except of items in local workspaces.

[] Enable get latest on check-out

Figure 1-22. Check-out settings

Check-in Policies

Check-in policies help you to add conditions to check in code so that you are able

to make the development team follow a given set of rules when submitting code

to TFVC. There are different types of check-in policies such as making a comment
mandatory, making the association of a work item to a given query mandatory, etc. We
will discuss how the check-in policies work in Lesson 3-5.

Check-in Notes

Check-in notes allow you to define a note requirement for each check-in. Notes can be
set as optional or required. You can specify a note title and add a note as required or not
in team project’s Source Control settings. See Figure 1-23.

20

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Check-out Settings Check-in Policy Check-in Notes

Title Required Add...
Sample Required Note]

Remove
Add Check-in Note ? X

Title:
lSample Optional Note] v
[[] Required on check-ins

)

L7

OK Cancel

Figure 1-23. Check-in notes

Ifyou try to edit a file and check in the code, you will be prompted to provide a
required note. See Figure 1-24.

21

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Pending Changes | TheAvengers = | 7l

€ Check-in validation failed. A policy warning override X
reason and/or a check-in note is required.

vs2019dev ~

Check In Shelve « | Actions

4 Comment

Enter a check-in comment

4 Related Work Items
Queries v | Add Work Item by ID

Drag work items here to link them to the check-in.
4 Included Changes (1)
Exclude All | View Options +

4 C:\Users\chamindac\source\Workspaces\TheAveng...

C* Program.cs

4 Excluded Changes
Include All | View Options +

Drag changes here to exclude from the check-in.

4 Notes (2)
Sample Required Note
Enter a value for this note <Required>

Sample Optional Note

Enter a value for this note

SCINELESGIGIC S Team Explorer

Figure 1-24. Check-in notes in Pending Changes

In this lesson, we discussed project collection and team project TFVC settings that
can be used to control the behavior of how you work with TFVC.

Lesson 1-5: Connecting to TFVC in VS Code

Visual Studio Code is the lightweight cross-platform editor in the Visual Studio family. In
this lesson, let’s see how we can get VS Code connected to TFVC.

22

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Prerequisites: You have installed VS Code and are familiar with working with VS
Code. You must have a local workspace created for TFVC using Visual Studio or Eclipse
available on your machine. If you have followed the steps in Lesson 1-2, you should have
it already.

Open VS Code and press Ctrl+Shift+X, or click the cogwheel at the bottom-left
corner. Then click Extensions in the context menu to open the Extensions tab in VS
Code. See Figure 1-25.

Command Palette.

User Snippets

Color Theme Ctri+K Ctri+T

Figure 1-25. Extensions

Search for Azure Repos to get the Azure Repos extension installed. Next locate the
tf.exe location of your machine. You can get tf.exe installed by installing Visual Studio
or by installing Team Explorer Everywhere from https://github.com/microsoft/team-
explorer-everywhere/releases. Team Explorer Everywhere supports macOS and Linux
as well, and you can install the command-line client to get tf.exe. https://github.
com/microsoft/team-explorer-everywhere contains the documentation on Team
Explorer Everywhere. If you have VS 2019 installed, you typically have tf.exe in the path
shown here:

C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\IDE\
CommonExtensions\Microsoft\TeamFoundation\Team Explorer

23

https://github.com/microsoft/team-explorer-everywhere/releases
https://github.com/microsoft/team-explorer-everywhere/releases
https://github.com/microsoft/team-explorer-everywhere
https://github.com/microsoft/team-explorer-everywhere

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

You have to go to VS Code File » Preferences » Setting and add a user setting as
specified here with your tf.exe path:

{ "tfvc.location": "C:\\Program Files (x86)\\Microsoft Visual
Studio\\2019\\Enterprise\\Common7\\IDE\\CommonExtensions\\Microsoft\\
TeamFoundation\\Team Explorer\\tf.exe", "tfvc.restrictWorkspace": true }

Open the Settings Editor for the Azure Repos extension, as shown in Figure 1-26.

Azure Repos extension options

App Insights: Enabled

v Enables Application Insights telemetry collection for the A

Build Definition ID

Logging: Level

gging level for the extension (error, wamn, info, verb

Pinned Queries

Specify the account and either the queryText o eryPath of t' ¥ preferred over

Figure 1-26. Azure Repos extension settings

Then update the settings file with the user settings and the tf.exe path mentioned
earlier and save the settings file. Next open the local workspace folder containing the
TFVC repository in VS Code. Click View » Command Palette and type team signin in
the command palette. See Figure 1-27.

24

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

Welcome - TheAvengers - Visual Studio Code [Administrator]

>team signin

Figure 1-27. Team sign-in

In the next two options provided, you can enter a personal access token (PAT) if you
have one. How to create a PAT was explained in Hands-On Azure Boards book. Let’s select
the option to authenticate and get an access token method, as shown in Figure 1-28.

Settings - TheAvengers - Visual Studio Code [Administrator]

Provide an access token manually (current experience)

Authenticate and get an access token automatically (new experience)

Figure 1-28. Authenticating TFVC in VS Code
Next copy the code provided and press Enter to authenticate. See Figure 1-29.

Settings - TheAvengers - Visual Studio Code [Administrator]

AKQ8AG63NY

Copy this code and then press Enter to start the authentication process
(https://microsoft.com/devicelogin) (Press "Enter’ to confirm or "Escape’ to cancel)

Figure 1-29. Starting the authentication

Provide the code and click Next in the opened browser prompt. See Figure 1-30.

25

CHAPTER 1 GETTING STARTED WITH AZURE TEAM FOUNDATION VERSION CONTROL

BT Microsoft
Enter code

Enter the code displayed on your app or device.

AQESFQYRX X

Figure 1-30. Entering code

Then provide your credentials and sign into the Azure DevOps organization when
prompted and close the browser after signing in. You will be able to see the connected
repo in the VS Code, and you can perform check-in and check-out operations with VS
Code. See Figure 1-31.

Pmaster £ VSOnline N1 Mv #2776 <k 0AD ©

Figure 1-31. VS Code connected to TFVC

In this lesson, we explored the steps required to connect VS Code to the TFVC
repository.

Summary

This chapter took you through getting started with Team Foundation Version Control.
We discussed setting up Visual Studio and VS Code to use with TFVC and explored a
few useful settings. Additionally, we identified how to add a solution via the Solution
Explorer window in Visual Studio to TFVC.

In the next chapter, we will discuss in detail how to use Visual Studio Source Control
Explorer to work with TFVC.

26

CHAPTER 2

Working with Team
Foundation Version
Control: Part1

We discussed how to create an Azure DevOps project and access the source code using
Visual Studio Team Explorer and Solution Explorer in the previous chapter. Now we have
an overall idea of how to create an Azure DevOps project with TFVC as the source control
system and how to connect to the project through Visual Studio Team Explorer. Hence,
we can discuss more about each important section of Team Explorer to get a clearer
idea of how to work with Team Explorer. One of the main windows of Visual Studio is
the Source Control Explorer window, which can be launched using Team Explorer. The
Source Control Explorer helps users to view and manage the source code of the project.
In this chapter, we will explore the Source Control Explorer in detail, and you will
learn about many features available in the Visual Studio Source Control Explorer.
Further, we will discuss how to check in your code changes, resolve code conflicts, and
set different source control tool options.

Lesson 2-1: Exploring the Source Control Explorer

The Source Control Explorer is used to view and manage the source code-related files
and settings of the project when you are using Team Foundation Version Control (TFVC).
Prerequisites: You followed the steps in Chapter 1. You have a solution and project
available in TFVC.
Go to Team Explorer of Visual Studio and connect to the Azure DevOps project, as
explained in Chapter 1. Select the Source Control Explorer. See Figure 2-1.

27
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_2

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Team Explorer - Home * I

- Jl m ? G Search Work ltems (Ctrl 02 ~
Home | TheDarkKnight %

4 Azure DevOps

‘& TheDarkKnight
https://dev.azure.com/sldevop/TheDar...

4 Project
Web Portal | Task Board

I.‘. My Work

| (© Pending Changes

I& Work Items
[I:;I Builds

|ﬁ Settings

4 Solutions
Workspace: DESKTOP-BUGDEDL | New... |
Open... | Show Folder View

There were no solutions found.

Team Explorer

Figure 2-1. Selecting the Source Control Explorer in Team Explorer

We will discuss all the important sections of the source control window in this
chapter. The main sections are the menu items, the folders, and the local path. See

Figure 2-2.

Source location: &% TheDarkKnight

Source Contrl Eplorer = % [
WG| DX § TE|D -aD®| V- | Workspace DESKTOP-BUSDEDL

-

Folders

% || Local Path: C: r5\Pushpa Herath ree\Work

rkKnigh

4 2% dev.azure.com/sldevop
b &% TheAvengers
b 83 TheDarkKnight

Figure 2-2. Source Control Explorer

28

Name & Pending Change User

Latest Last Check-in

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Go to the Folders section of the Source Control Explorer window. You will be able
to see that all the projects available in the Azure DevOps organization are listed in the
Folders section. As discussed in Chapter 1, you can map the entire organization or the

selected project with the local location. Right-click the mapped project. You will be able

to see the context menu with the various source control options. See Figure 2-3.

Source location:

¥& TheDarkKnight

e

Qxelaax|s|Ta|92 @-8a9

Folders

Local Path:

£ £

Show outp-\

heAvengers

4 %8 dev.azure.com/sldevop
P
b

T
ThaDarkkKninht

Open in File Explorer
Get Latest Version

Check Qut for Edit...
Delete

X el e

Rename
Move...
Rollback...
“2 Undo Pending Changes... [:
&
+

Check In Pending Changes [°)
iz Shelve Pending Changes
0 View History
Q Compare...
| New Folder
) Add Items to Folder...

Branching and Merging
Find
Advanced

Name &

Figure 2-3. Source control options

29

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

30

Let’s identify what we can do with each option in the context menu.

1.

Open in File Explorer

We can navigate to the local source control folder where we
have mapped the source code. The workspace will open in the
Windows File Explorer after clicking this Open in File Explorer
menu item.

Get Latest Version

While we are working in our local source control, there can be
several changesets added to the source control in the Azure
DevOps server. So, we need to have a way to get the latest code
version on the server to our local source control folder.

Check Out for Edit

If we need to make any changes to the existing file of the project,
we need to check out the file first. You can open the selected file
for editing by using this option.

Delete

We can delete the selected file or the folder from the local source
control. We have an option to undo a delete as well.

Rename

We can rename the selected file or folder in the local source
control folder.

Move
We can move the selected file or folder.
Rollback

We can remove the changes in the selected changesets from the
local source control folder code and check in the pending changes
to apply the rollback.

Undo Pending Changes

We can undo the pending changes of the selected project files or
folders from here.

10.

11.

12.

13.

14.

15.

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Check in Pending Changes

We can make several changes in the local source control folder.
If the local changes are ready to go to the server, we can check in
the pending changes. Then all the pending changes will go to the
server.

Shelve Pending Changes

There may be situations where we are in the middle of an
implementation that is not completed. Hence, we can’t check

in those changes to the server. But we all know that if something
happens to our development machine, we will lose all the
pending work we have done. As a solution to this, we can keep our
incomplete code on the server using shelve sets. We will discuss
more about shelve sets in Chapter 3.

View History

We can open the history window where we can find all the
changeset details of the project.

Compare

We can compare the local work source control folder version
to the server version using this option. This allows you to select

which local version you want to compare to the server version.
New Folder

We can add a new folder to the selected project.

Add Items to Folder

We can add files to the selected folder using this option. After
selecting this option, a window will open where you can browse
and select the files to add to the project.

Branching and Merging

Development teams follow different branching strategies to
make their development work more organized. So, they are using
separate branches for feature development, as well as some
branches for testing purposes. At one point in development,

31

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

teams merge these branches. Hence, we can create new branches
and merge the branches using this option when we use TFVC

as the source control system. Also, we can convert folders to the
branches with this option. We will discuss more about branching
with TFVC in Chapter 4.

16. Find

This is a search option available in source control. We can search
for labels, changesets, and shelvesets with this tool.

17. Advanced shows more advanced options. See Figure 2-4.

Folders b 4 Local Path: C:\Users\Pushpa Herath'\Source\Workspaces\TheDarkKnight

4 ¥8 dev.azure.com/sldevop Name = Pending Change User

p w8 TheAvengers
w& TheDarkl™ =+
Open in File Explorer

Get Latest Version

Check Qut for Edit...
Delete

X el @

Rename

Move...

Rollback...
¥? Undo Pending Changes...
=& CheckIn Pending Changes

. Shelve Pending Changes _)
0 View History 5 Get Specific Version... &
Q. Compare... Lock...
* Unlock C

New Folder nloc e
%) Add ltems to Folder... Apply Label...

Branching and Mergin ’ Security... £-)

9 ging rity. 87

Find » | M Properties... :
Advanced » | to RemoveMapping.. 7
Figure 2-4. Source control advanced options

a. We can select the specific version and overwrite the local files.

b. We can lock the selected file and restrict the file editing by
another user.

32

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

c. We can unlock the selected file and allow editing by other users.
d. We can apply labels for the code versions.

e. We can navigate to the Azure DevOps project security section using
this option.

f. We can navigate to the Project Properties window from this option.

g. We can remove the source code from the local workspace using
this option.

In this lesson, we discussed some of the features available in the Source Control
Explorer. We were able to get a basic idea of Source Control Explorer concepts such as
check-in, rollback, shelve set, branches, and check-out.

Lesson 2-2: Setting Workspace Mode to Local
and Server

Team Foundation Version Control is a centralized version control system, which allows
users to have one version of the source code in the local working machine. This local
workspace can have two modes that we will learn about in this lesson.

There can be two modes of the workspace: local mode and server mode. We will
discuss the similarities and differences of these two modes in this lesson.

Go to the Source Control Explorer window and you will be able to find the
Workspace option at the top of the window. See Figure 2-5.

Source Control Explorer = |

1% & | a™D - = - | Workspace: DESKTOP-BUGDEDL .
DESKTOP-BUGDEDL

Source location: &8 TheDarkKnight
Workspaces...

Figure 2-5. Workspace option

You can see the currently selected workspace. Expand the drop-down and select
Workspaces to add or edit workspaces. After clicking Workspaces, the Manage
Workspaces window will open, which allows us to see all the workspaces we have access
to. Also, there are buttons to add, edit, or remove workspaces. Here we have another

33

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

interesting option to access the remote workspaces of the current user. If the same user
has created workspaces on different machines for this project, the user can list all those
workspaces here by checking the “Show remote workspace” box. See Figure 2-6.

Manage Workspaces ? X

Showing owned workspaces everywhere, and workspaces on this computer to which you have access.

Workspaces:
Name = Computer Owner Comment
DESKTOP-BUGDEDL DESKTOP-BU6... nilmini herath

[] Show remote workspaces

Add... Remove Close

Figure 2-6. Managing a workspace

Select the workspace in the list and click the Edit button. This will open a window
where you can see the server path and local path of the workspace. You will be able to
find the Advanced button at the bottom of the window. Click that button to learn more
about the workspace. See Figure 2-7.

34

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Edit Workspace DESKTOP-BUSDEDL ? X
Name: [DEskTop-BusDEDL] |
Working folders:

Status Source Control Folder =~ Local Folder
Active §/TheDarkKnight C:\Users\Pushpa Herath\Source\Workspaces\Thel

Click here to enter a new working folder

Remove Advanced >>] “ [Cancel |

Figure 2-7. Editing the workspace

After clicking the Advanced button, another window will open with more details of
the workspace. See Figure 2-8.

Edit Workspace DESKTOP-BUGDEDL ? X
Name: |DESKTOP— BUGDEDL l
Server: |dev.arzure.com} sldevop ’
Owner: |nilmini herath l

Computer: | DESKTOP-BUEDEDL |

Location: _I.ml ~ |

File Time: Current v ‘

Permissions: -Pti\rate workspace w |
A private workspace can be used only by its owner.

Comment:

Working folders:

Status Source Control Folder « Local Folder

Active $/TheDarkKnight C:\Users\Pushpa Herath\Source\Workspaces\Thel

Click here to enter a new working folder

R [<<Advanced | ok || cancel |

Figure 2-8. Editing the workspace window with more details
35

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

We can find the name of the workspace listed here. Also, we can edit the name of
the workspace from this window. Next in the list, we can find the server, owner, and
computer name of the selected workspace.

We can select the location of the workspace from this window. We can specify the
location as local or server. The next item in the list is File Time. We can give two values
as the file time: current and check-in. We can control the permission of this workspace
using the Permissions section. Here we have three permission types available. They are
private, where only the workspace owner can access the workspace; public (limited),
which allows valid users to access the workspace, but they don’t have any administration
permission for the workspace; and, which means any valid user has admin and
contribution permission for the workspace.

So far, we have discussed the options available in workspaces. Now we will discuss
the local and server workspace modes.

Local Workspace Mode

If we work in the local workspace mode, we can perform most of the source control
operations without connecting to the Azure DevOps server.
The following are the source control operations you can perform in local mode:

e Checking out a file for edit
e Pending add, delete, rename, or edit new files and folders
e Undoing pending changes

If we need to perform a check-in, shelve, view history of items, merge, or branch, we
need to go online. These actions don’t work in offline mode.

Server Workspace Mode

For almost all the actions, the server workspace needs to be connected with the server.
Otherwise, you have to take the codebase offline and later edit the existing files without
having the capability to undo or add new files, projects, etc. When the connectivity is
available, you can get the solution back to online mode.

In this lesson, we learned how to create multiple workspaces with different modes.
Also, we discussed workspace permission control capabilities. Further, we discussed the
capabilities and limitations of the server workspace mode and local workspace mode.

36

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Lesson 2-3: Looking at Source Control Explorer
Menu Items

So far, we were able to identify Source Control Explorer operations and local and
server workspaces. In this lesson, we will discuss more about Source Control Explorer
operations. We can find the menu items at the top of the Source Control Explorer
window. We will discuss those menu items in this lesson. See Figure 2-9.

Source Control Explorer = X [
A% G|l HDX & vA|? ~-QON| V-

Figure 2-9. Source control menu items

1. We can hide or show the folder section by clicking this folder icon.
2. We can show or hide deleted items in the source.
3. We can refresh the source by clicking this menu icon.

4. Select a folder in the Folders section and click this folder icon in
the menu. The new folder will be added to the selected folder.

5. Add existing items in the selected local folder to version control.
6. Delete the selected file or folder.
7. Getthe latest version of the source in the server.
8. Check out the selected file for edit.
9. Checkin any pending changes to the server.
10. Undo any pending changes.
11. Compare the source with the local version.
12. Compare the folder content with the server version.

13. See the history of the selected files.

37

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

14. Search for the changesets.
15. Create branches.

In this lesson, we were able to identify the source control menu items. All these
menu items act as quick access to the Source Control Explorer operations.

Lesson 2-4: Editing and Checking In Your Changes

So far, we discussed different operations available in the Source Control Explorer. So,
let’s try to learn how to use those operations while working with the code.
Prerequisites: You followed the steps in Chapter 1. You have a solution and project
available in TFVC.
Go to the Source Control Explorer and open the solution file. See Figure 2-10.

XeGlubhXx|s|Ta|9 - D& N - Workspace: DESKTOP-BUGDEDL :
Source location: §/TheDarkKnight/main/WebApp
Folders X || Local Path: C:\Users\Pushpa Herath\Source\Workspaces\TheDarkKnight\main\WebApp
45 :"':--:':'J'E-'-"—m sldevop Name = Pending Change User Latest Last Check-in
nefivengers
-2 b L et

b WebApp

Figure 2-10. Moving to a solution using the Source Control Explorer

Go to the Solution Explorer. We can see the source code open in the Solution
Explorer. Let’s select a file and make a small change to it. If any change has been made to
a file, it will be indicated with the red check mark. Right-click the changed file to identify
the different actions we can do with this file. See Figure 2-11.

38

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Solution Explorer §
CORE- o-5CaB| F - g
Search Solution Explorer (Ctrl+;) s,,
k] Solution 'WebApp' (1 project)
4) WebApp
& Connected Services
b & M Properties
b =m References '
App_Data e Open
b App_staft Open With...
b Content View Markup
P Controllers — -
b forks &) View in Browser (Google Chrome) Ctrl+Shift+W
Models Browse With...
4 Scripts Set As Start Page
“ e Scope to This
4 Home =))
/(@) About.cshtml | New Solution Explor?:V|ew
al@] Contact.cshtml é Get Latest Version '_:,’
Solution Explorer EETRESTIlIE] 2 Checkin.. G
Properties ®. Shelve Pending Changes
About.cshtml File Properties Q@ Compare... G
oE Oy » Source Control \":"’l »
Browse to URL ~/V Exclude From Project
X Cut Ctrl+X
m)] Copy Ctrl+C
] Rename
v y 2 Properties Alt+Enter

Figure 2-11. Source control actions on change file

1. Compare

We can compare the file versions using the compare option in this
pane. After selecting the Compare option, the Compare window
will open. See Figure 2-12.

39

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Compare

Source Path:

§/TheDarkKnight/main/WebApp/WebApp/Views/Home/About.cshtml Browse...

Source Version:

Type:

Workspace Version

b

Target Pz

Changeset
Date
Label

Workspace: | DESKTOP-BUGDEDL ™

C:\Users\Latest Version brkspaces\TheDarkKnight\main\WebApp\WebApp\Vie
B oo ght mi\Webpp WebAp Vi | v

Latest Version

Figure 2-12. Comparing the source and local versions

40

In the Compare window, we can select the type of source version.

Here we can compare the different source versions with the latest

version of the local changes we have done to the project source.

o Workspace Version: We can compare the pending changes to the

source version in the selected workspace.

o Latest Version: We can compare the pending changes to the

latest source version.

o Label: We can give an existing label for the source and compare

that labeled version to the pending changes.

o Date: We can compare the source changes done on a specific day

to the pending changes.

o Changeset: We can select the changeset and compare the

pending changes to the selected changeset version.

After we select any of these comparison option, we will be able

to see the comparison between the pending changes and the

selected source version. See Figure 2-13.

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Diff - About.cshtml = X

Server: §/TheDarkKnight/main/WebApp/WebApp/Views/Home/About.cshtml;” | Local: C:\Users\Pushpa Herath\Source\Workspaces\TheDarkKnight\main\WebApp\WebApf

1 - 1 e{

2 ViewBag.Title = "About”; - 2 | ViewBag.Title = "Abouy] This is test changel; 4
3 3 }

4 <h2>@ViewBag.Title.</h2> 4 <h2>@ViewBag.Title.</h2>

5 <h3>@ViewBag.Message</h3> 5 <h3>@VienBag.Message</h3>

6 &

7 <p>Use this area to provide additional informatic 7 <p>Use this area to provide additional information.</p>

8 8

Figure 2-13. Code comparison

2. Source Control

Move the mouse on to the source control; a pane will open with
the four source control options. See Figure 2-14.

Get Specific Version... @
Undo PendingEhanges... Lr,
View History \1;’

'U@Qm

Annotate £}

Figure 2-14. Source control pane options

a. The Get window will open after selecting the Get Specific Version item from
the pane. You will find some change overwrite options in the Get window,
which allows us to overwrite the selected file content with the selected
source version. See Figure 2-15.

41

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Get

Files:

Name
(4 [About.cshtml

Folder

C:\Users\Pushpa Herath\Source\Workspaces\TheDarkKnight\main\WebApp\...

Version

Type: . Latest Version vl

[[] Overwrite writeable files that are not checked out

[] Overwrite all files even if the local version matches the specified version

Cancel

Figure 2-15. Get version window

b. You can select Undo Pending Changes to remove the pending changes.
After we select the Undo Pending Changes option, the window will open
where we can select the file and undo the change. See Figure 2-16.

Undo Pending Changes ? X

This operation will undo all pending source control changes for the files checked below and will revert those files to
their prior states.

Files:

[] Name Change Folder =

[J 9 New Folder add C:\Users\Pushpa Herath\Source\Workspaces\TheDarkKnight\...
M [About.cshtml edit

C:\Users\Pushpa Herath\Source\Workspaces\TheDarkKnight\...

Cancel

Undo Changes

Figure 2-16. Undoing the pending changes

42

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

c. The View History option allows you to access the changeset details.

d. We can use Annotate to identify who has done the changes in the selected
file. See Figure 2-17.

About.cshtml:C6 (Annotated) + X RlSCLYUERN L&)
[Cramings Cranaraseiare 5372019 IR
Local 2 VviewBag.Title = "About This is test changel”;
6 Chaminda Chandrasekara 8/3/201

w

<h2>@viewBag.Title.</h2>
<h3>@viewBag.Message</h3>

<p>Use this area to provide additional information.</p>

(= I N I I T, R -

Figure 2-17. Annotate

3. Get Latest Version

We can get the latest version of the selected file from the server.
If there are any changes that have been done to the same file
by another team member, we will get change conflicts. You can
resolve the conflicts using the Resolve Conflicts window, which
we will discuss more specifically in the next chapter.

4. Checkin

We can check in the pending changes using this menu option. But
there is a check-in best practice we have to follow.

Before checking in the code, get the latest version from the server
and resolve any conflicts. Then build the solution to verify that

no build issues occurred while resolving the conflicts and test

the application. Again, get the latest version from the server to
verify there are no new changes; after that, check in the code.
After clicking the check-in icon in the menu, the Pending Changes
window will open. See Figure 2-18.

43

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Team Explorer - Pending Changes
e & ¥ \ ¢ | Search Work Items (Ctrl+")

Pending Changes | TheDarkKnight >

DESKTOP-BUGDEDL ~
Check In eSheh.re v | Actions
4 Policy Warnings (2)
Override Warnings
The following check-in policies were not satisfied
1. Provide a comment for the check-in. Help

1. The Work Item Query Policy failed because no work
items were associated with this check-in. Help

4 Comment o

Enter a check-in comment

4 Related Work Items
Queries v | Add Work Item by ID w e

Drag work items here to link them to the check-in.
4 Included Changes (2)
Exclude All | View Options w

4 Gl C:\Users\Pushpa Herath\Source\Workspaces\TheDa..
w. New Folder [add]
4 wl Views\Home
About.cshtml

4 Excluded Changes
Include All | View Options + | Detected: 134 add(s)

Drag changes here to exclude from the check-in.

Figure 2-18. Pending Changes window

44

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

1. Add the comment to the changeset to identify what the change
is about.

2. Add the work item for the changeset to track the user story

completion.

3. All the changes will be listed in the include section. We can
exclude the files from this section if we don’t want to send the
changes to the server.

4. All the excluded files will be listed here.

5. After adding the work item and the comment, we can check in
the code. The override warning policy will bypass all policies and
allow the user to check in the code.

In this lesson, we made a simple change to a file in the project to identify the
version comparison capabilities in the Source Control Explorer. Further, we discussed
different source version filtering options. Finally, we saw how to check in the changes
to the server.

Lesson 2-5: Resolving Conflicts During Code
Check-in

We know as a best practice we need to get the latest code from the server before we
check in any pending changes to the server. But if the same file has changes on the
server, we may get change conflicts.

Prerequisites: You followed the steps in Chapter 1. You have a solution and project
available in TFVC.

Let’s try to identify the options available in the Source Control Explorer to resolve
these conflicts. See Figure 2-19.

45

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

AutoResolve All - | [F] Get All Conflicts ¢ Refresh | D + @ - 3 +
Path Filter applied - 1 Conflict: 1 Version

- Name Type Path « | Conflict Type Description
B About.cshtmi §/TheDarkKnight/main/WebApp/WebApp/Views/Home Version The item content has changed
Wk AutoMerge W} Merge Changes In Merge Tool 5 Take Server Version [Keep Local Version
The item content has changed |/ © e

Content Changes: There are conflicting content changes in the local and the server versions
Your Local Version is: 6 The Server Versionis: &

Changes are: local (edit), server (edit)

Server edits: 8

Figure 2-19. Conflicts window

Let’s identify main three options available in the change conflict window.
1. Merge changes in Merge tool
We can open the Merge tool to do the code merge. See Figure 2-20.

$AcceptMerge €1 > DM H- D-A@-0D- M-
ICnnﬂi(@ Remaining) @ @ @ 8 g % 0

Server: About.cshtml;C8 Locak About.cshtml;C6
zEIf....‘!29.@.&5;!.1}'-.15.:.."&laeal.t..t.'aé.s,.i.a.ssrye.r_.sb.-.ﬂ.se..';........-5 2[00 ViewSag.Title = 7About This is test changell; .
3: "} 3
4 <h2>@viewBag.Title.</h2> 4 <h2>@viewBag.Title.</h2>
5 <h3>@ViewBag.Message</h3> 5 <h3»@viewBag.Message</h3>
6 6
7 <p>Use this area to provide additional information.</p> 7 <p>Use this area to provide additional information.</p>
8 a
100% - @ No issues found 4 F|100% ~ @ No issues found 4@ nilmini herath, 9 minutes ago | 2au
Result: About.cshtml
gViMagTitle-'ﬂbﬂut';

}
<h2>@viewBag.Title.</h2>
<h3>@VviewBag.Message</h3>

<p>Use this area to provide additional information.</p>

[N T T TR N

Figure 2-20. Merge tool

a. We can select the changes from both the server version and the
local version and see the final version using the result section.
To keep the selected changes, we can click the “Accept merge”
button.

b. We can use this to move to previous differences and conflicts.
Also, we can use this to move to next differences and conflicts.

46

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

c. We can pick the change to the left (server) or right (local) as the
change to be used in merged.

d. We can change the view of the Merge Tool window. We have

vertical view, horizontal view, and mixed view.
e. The changeset list will open.

f. We can see the comparison of the server version and the local

version.
g. We can use an annotation to see the owner of each change.

h. We can change the focus between the server version window,

local version window, and result window.
2. Take Server Version

We can directly specify to get the version on the server. Then we
can select the local folder file content to replace with the server

content.
3. Keep Local Version
We can keep the local version instead of the server version.

In this lesson, we explained the change conflict resolve options available with the
Source Control Explorer. We discussed the three options available to resolve conflicts.

Lesson 2-6: Viewing the History and Comparing
the Changes

While we work with TFVC, we can check in the code changes to the server. Each and
every check-in is saved as a changeset. We can track all the changes made to the source
code by every member of the team using changesets. So far, we have discussed several
ways of accessing the changeset details in the source control system.

Prerequisites: You followed the steps in Chapter 1. You have a solution and project
available in TFVC.

We can find all the changes made by team members using this list. See Figure 2-21.

47

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Source location: C:\Users\Pushpa Herath\Source\Workspaces\TheDarkKnight\main\WebApp\WebApp\Views\Home\About.cshtml

= Changesets W Labels

WO R DR

Cha@e&@ @l’laf’& User Date Path Comment
9 edit nilmini herath 8/3/2019 8:48:45PM §/TheDark... Updated About.cshtml
8 edit nilmini herath 8/3/2019 7:45:18 PM §/TheDark... Updated About.cshtml
6 add Chaminda Chandrasekara 8/3/2019 12:35:18 PM §/TheDark... Add solution

Figure 2-21. Changeset details

1. Change Set Details

Select the changeset from the list and click the Changeset Details
icon. This will open the Changeset Details page in Team Explorer
where we can find all the details of the changeset. See Figure 2-22.

Team Explorer - Changeset Details v 3 X

© O G ¥ | G Search Work ltems (Ctrl+") R~
Changeset Details | TheDarkKnight -~ |2l
Changeset 9

nilmini herath - 8/3/2019 8:48:45 PM
Save | Rollback | Track | Actions w
4 Comment
Updated About.cshtml
4 Changes (1)
View Options «

4 $/TheDarkKnight/main/WebApp/WebApp/Views/Home
About.cshtml

Figure 2-22. Changeset Details window

48

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

2. Compare

We can select the two changesets from the list and compare the
two selected changesets using this option.

3. Track changeset
We can track the changeset.
4. Getversion
We can get the selected changeset version.

In the Changeset Details window, we can see two tabs available. One is for
changesets, and the other is for the labels. Similar to the changesets, we can use labels to
compare and get the labeled version code to the local workspace.

In addition to this window, we can do the same changeset comparison in the Azure
DevOps server web portal.

Go to Azure DevOps and move to the Changesets section under Repos. See Figure 2-23.

f:J Azure DevOps sldevoy TheDarkKnight Repos Ehangesets ¢ /TheDarkKnight v

BB Theparknight + | $/TheDarkKnight /

ﬂ Overview ‘1| Author v || Created date : From date =@
& §/TheDarkKnight -

% Boards main Saturday, August 3, 2019 4 changesets

Repos 0 Updated About.cshtmi

B Files 0 Updated About.cshtml

update
2, Shelvesets ~haminda Chandrasekara created #7. 8/3/201

f Pipelines . Add solution

A Test Plans Sunday, July 14, 2019 1 changeset
CreateProjectFolderComment
Time

€83 Project settings «

Figure 2-23. Changesets section

49

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

In the Changesets section, you will be able to see the list of changesets. We can filter
the changesets list using the filters available. We can filter by author, created date, and
date duration. Select one of the changesets from the list to open it. You will be able to
see the comparison between the changeset version with the latest source version. See
Figure 2-24.

Changeset 9 Updated About.cshtml [y

° nilmini herath 8/3/2019 3:18 PM (U

= A

2] Browse files

o B8 Side-by-side diff i | Ve
Find a file or folder

$/TheDarkKnight/main/W...

D About.cshtml +1 -

@ About.cshtml

i

T, T T e e e

VienBag.Title =

*
o

server change”; = "About this is server change 2%;

<h2>@\8 le.</h2»
age</h3>

}
<h2>@vienBag.Title.</h
<h3>@VienBag.Message<

w

Figure 2-24. Changeset comparison

In this lesson, we discussed changesets. We identified the basic menu items
in the changeset window and the use of it. Also, we discussed how to access the
changeset details on the Azure DevOps server. Further, we learned how to search
and compare changeset versions with the latest source code in the Azure DevOps
server web portal.

Lesson 2-7: Setting Source Control Tool Options

In the Visual Studio Options window, you can set certain options for TFVC source
control. Let’s look at the options available.
Click Tools » Options in the Visual Studio menu. See Figure 2-25.

50

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Tools | Extensions Window Help Search Visual Studio (Ctrl+Q) a

Get Tools and Features...

Android >
i0S L4

Connect to Database...
""E Connect to Server...
SQL Server »
Data Lake >
1 Code Snippets Manager... Ctrl+K, Ctrl+B
Choose Toolbox Items...
NuGet Package Manager »
Python r
Create GUID
External Command 2
External Tools...
Import and Export Settings...
Customize...

pn't show this message

Archive Manager...

Figure 2-25. Open Visual Studio Options menu item

The Options window will open where we can find the source control tools. Go to
Source Control and select Visual Studio Team Foundation Server. See Figure 2-26.

51

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Options ? X
Search Options (Ctrl+E) P :
[JiUse proxy server for file downloads]
Environment ~
Projects and Solutions

ource Control
Plug-in Selection
Environment

_ [Get latest version of item on check-out in a server workspace

Work ltems [] Show deleted items in the Source Control Explorer
Text Editor [Open Source Control Explorer to the most recent folder
Debugging

[4] Solution Explorer Refresh refreshes source control status

IntelliTrace & P bef heckein f Péndina Ch ind
R rompt before check-in from Pending Changes window

Azure Data Lake [Attempt to automatically resolve conflicts when they are generated
Azure Dev Spaces Tools [Resolve associated work items on check-in

Azure Service Authentication
Container Tools
Cookiecutter Configure User Tools...

4 Apply .tfignore when adding files to projects

< >

Figure 2-26. TFVC options

You can define your preferred options to work with TFVC in this Options window.
For example, you can set the option to show deleted files in the Source Control Explorer
window. Try setting your preferences and enhance your experience as per your needs.

In this lesson, we discussed how to change preferences for TFVC behavior in your
Visual Studio instance.

Lesson 2-8: Deleting and Restoring Files

TFVC allows you to delete files, folders, or branches and restore them. Let’s look at how
you can perform a restore of a deleted file or folder.

Prerequisites: You followed the steps in Chapter 1. You have a solution and project
available in TFVC.

In the Source Control Explorer, delete a file by selecting it and clicking the Delete
toolbar button. Then check in your pending changes, confirming the delete.

52

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

The deleted file is not by default visible in the Source Control Explorer. You can
use the Visual Studio options for Team Foundation Version Control as explained
in the previous lesson and enable “Show deleted items” in the Source Control
Explorer. Or you can just click the show/hide deleted items toolbar option in the
Source Control Explorer to achieve this. Then right-click the deleted item and click
Undelete. See Figure 2-27.

Source Control Explorer + X -— _
“@G o 7| W space: vs2019dev
Source location: 11 $/TheDark ngj V/WebApp/Views/Home [
Folders J X | Local Path: C:\Uscrs'\ci}! rindac\source\Workspaces\TheDarkKnight\main\WebApp\WebApp\Views\Home
438 dev.azure.com/sidevop J |Neme- 7 S Pending Change User Latest Last Check-in
PSRN 1= ey | @ Abouteshtml _ J [[Beleted Ja/4r2019 &:142...
4 TheDalrkKnlghl J [Contact.cshtml ; View Yes 8/3/2019 T:05:1...
S Index.cshtml View With... Yes 8/3/2019 1237w
4 &) WebApp | / =
4 WebApp J ! Open in File Explorer
b W App_Start | / & Get Latest Version
b Content
» Contaallars ‘ f Check Out for Edit.
fonts 4 l
b Properties l / Rename
: ‘S:Iipts J f Move.
1ews
pes / Rollback..
b Shared J { Undo Pending Changes..
: i, Check In Pending Changes
Shelve Pending Changes
| / 9 9
i } | D ViewHistory
j / Compare...
| /] | ©J Annotate
i / Branching and Merging L4
/

Figure 2-27. Undeleting a file

The file, folder, or branch will be restored with the contents it had when it was
deleted and become a pending change. You can check in the pending changes to fully
restore the file, folder, or branch.

In this lesson, we explored the capability to restore a file, folder, or branch in TFVC
using the Source Control Explorer.

53

CHAPTER 2 WORKING WITH TEAM FOUNDATION VERSION CONTROL: PART1

Summary

In this chapter, we discussed actions you can perform while using Team Foundation
Version Control and the Source Control Explorer. Further, we explored how to check
in files, resolve merge conflicts, and view the history of changes made to the source
code. Additionally, we discussed the options you can set in Visual Studio to control the
behavior of TFVC and how to restore deleted files, folders, or branches.

In the next chapter, we will explore how to use shelvesets, suspend and resume work,
apply locks, use check-in policies, and do code reviews with TFVC.

54

CHAPTER 3

Working with TFVC: Part 2

Team Foundation Version Control (TFVC) is highly integrated with Visual Studio. In
this chapter, we’ll cover how to use Visual Studio Team Explorer and Source Explorer,
or Team Explorer and Solution Explorer, to do TFVC operations such as adding
projects and solutions, checking in and out, deleting files, restoring files, undoing
changes, and more.

Specifically, we will explore how to use shelvesets. You'll also learn how to suspend
and resume work with Visual Studio using Team Explorer, how to do code reviews with
TFVC, how to set up version control locks, and how to create check-in policies.

Lesson 3-1: Using Shelvesets

Shelvesets are somewhat similar to changesets, which we discussed in the previous
chapter. However, a shelveset is not merged or committed to your code branch, and
when the other team members get the latest version of code, they will not get any
shelvesets, like they would changesets. Shelvesets are added to the TFVC server and
kept safe but not merged with your codebase. You can think of them as changesets that
are on an isolated shelf outside of your codebase. Shelvesets are useful to make sure
your in-progress work is saved in TFVC centrally without adding it to the codebase
because it is halfway-done work that should not disturb other team members’ work. For
example, at the end of a day’s work, if your work is only partially completed, you should
not check it in as a changeset. Instead, you can save it as a shelveset so that it is securely
stored in TFVC centrally and will be available to you in case something happens to your
development machine. Let’s look at how to create and use shelvesets.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project
available in TFVC.

55
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_3

CHAPTER 3 WORKING WITH TFVC: PART 2

Shelvesets will not get lost if something happens to the development machine as
they are available in TFVC, and you can obtain them by finding them in Visual Studio
Team Explorer.

Open a solution that is checked in to TFVC. Start making some modifications to the
code such as declaring a new variable, as shown in Figure 3-1.

Homecontrllercs = X |

EWebApp v I * WebApp.Controllers.HomeController
1 SHusing System;
2 using System.Collections.Generic;
3 using System.Ling;
4 using System.Web;
5 using System.Web.Mvc;
6
7 - namespace WebApp.Controllers
8 {
9 public class HomeController : Controller
10 {
11 - public ActionResult Index()
12 | {
13 | string sampleCodeVariable = "Sample";
14 ; return View();
15 }

12

Figure 3-1. Sample code modification

Open the Team Explorer window in Visual Studio and go to Pending Changes. In
the Pending Changes window, you will be able to provide a comment and check in the
source code. However, instead of checking in, click the Shelve link to get started creating
a shelveset with your pending changes. See Figure 3-2.

56

CHAPTER 3 WORKING WITH TFVC: PART 2

Team Explorer - Pending Changes v 1X

(> A N | C, Search Work Items (Ctrl+') P~

Pending Changes | TheDarkKnight v | 7|
Check In Shelve « | Actions

4 Comment

Enter a check-in comment

4 Related Work Items
Queries v | Add Work Item by ID +

Drag work items here to link them to the check-in.

4 Included Changes (1)
Exclude All | View Options
B C:\Users\chamindac\source\Workspaces\TheDarkKn...

C* HomeController.cs

4 Excluded Changes
Include All I View Options w | Detected: 127 add(s)

Drag changes here to exclude from the check-in.

Figure 3-2. Pending Changes window

Once you click Shelve, a pane will appear, and you will be able to provide a name
for the shelveset. The “Preserve pending changes locally” check box is by default
selected, and as the label states, when this option is selected, the pending changes will
be available for you to work on further after you create the shelveset. Let’s uncheck the

57

CHAPTER 3 WORKING WITH TFVC: PART 2

“Preserve pending changes locally” option to see what happens to the pending changes.
The other option, “Evaluates policies and notes before saving,” will demand for check-
in policies and note policies to be applied for the shelveset as well. We will discuss the
check-in policies later in this chapter; we discussed notes in Chapter 1. You can click
the Cancel button to cancel the shelve operation. Click the Shelve button to create the
shelveset. See Figure 3-3.

Team Explorer - Pending Changes v X
QO G ¥ C, Search Work Items (Ctrl+') P~

Pending Changes | TheDarkKnight M | 7

Check In Shelve | Actions

Demo Shelveset

[preserve pending changes locally

[Evaluate policies and notes before shelving

Shelve Cancel

Figure 3-3. Creating a shelveset

Once the shelveset is created, you can see that the pending changes are also
undone. This is because we have unchecked the “Preserve pending changes locally”
option. If you kept it checked, your pending changes may still be visible to you after
creating the shelveset. In that case, make sure to undo pending changes before
continuing with this lesson.

Once you shelve your changes, they are securely stored in TFVC as a shelveset. In a
situation where you want to stop your current work and make a quick fix to the existing
codebase, you can use a shelveset without preserving the pending changes. Then you
can perform any quick fix on your codebase and check it in. Next, you can unshelve the

58

CHAPTER 3 WORKING WITH TFVC: PART 2

shelveset and get your pending changes into your local codebase to continue working.
This is actually manually suspending and resuming work with the help of shelvesets. We
will discuss the options for suspending and resuming work in Visual Studio with TFVC
later in this chapter.

To confirm that a shelveset is available in TFVC centrally, you can go to the web
portal of Azure DevOps Services/Server and open the Shelvesets tab. On this tab you will

be able to search the shelvesets by name of the shelveset or by name of the creator of the
shelveset. See Figure 3-4.

f:J Azure DevOps : ke o Darkk _— O sea

n TheDarkKnight iy Shelvesets for owner: Chaminda Chandrasekara

) . - (@1
i ﬂ Overview .Cham nda Cha... X L 0

Saturday. August 3, 2019 1 shelveset
a Boards

. Demo Shelveset
{ B Repos

Y Fites
Changesets

2, Shelvesets

Figure 3-4. Shelvesets in the Azure DevOps web portal

Clicking the shelveset name will take you to the details of the shelveset, and you can
inspect each code file change in the browser. See Figure 3-5.

f:anureDevOps T kKnight g & $/TheDarkKnight ¥ L se

TheDarkKnight + Demo Shelveset iy

ﬂ Overviaw . Chaminda Chandrasekara &
=2 Al
% Boards m— = B nlinedi#f 1
2 Find a file or folder
Repos $/TheDarkKnight/main/WebApp/WebA...
Cc# HomeControllercs +1
B Files c» HomeController.cs $/T ik '
Changesets {
G X public ActionResult Index()
7, Shelvesets string sampleCodeVariable = ~Sample”;
return View();
q Pipelines }

Figure 3-5.

Shelveset details
59

CHAPTER 3 WORKING WITH TFVC: PART 2

Now that we do not have the code changes we have done locally, let’s check how we
can find the shelveset and get the changes back into pending changes mode so that we
can continue the work on our codebase. This operation is called unshelving.

In the Pending Changes window, you can click the Actions down arrow to open the
Actions context menu. In the context menu, click Find Shelvesets. See Figure 3-6.

Team Explorer - Pending Changes + X
(€] @& ¥ | & | Search Work Items (Ctrl+") Pl
Pending Changes | TheDarkKnight > | 2l

Shelvel v | Actions

4 Comment Find Shelvesets

. Resolve Conflicts
Enter a check

Undo All
4 Related Work | Request Review
Queries v | Ad| Manage Workspaces...
Drag work iten Open Source Control Explorer

4 Included Changes
Exclude All | View Options «

There are no pending changes.

Figure 3-6. Find Shelvesets option in Pending Changes

In the Find Shelvesets window, you can provide the name of the shelveset or the
name of the creator of the shelveset to search for a shelveset. In the found shelveset, you
can right-click and open the context menu. In the context menu, you have options to
view the details of the shelveset, unshelve the shelveset, delete the shelveset, and request
a code review on a shelveset. See Figure 3-7. We will discuss code reviews with TFVC
later in this chapter. Click View Shelveset Details.

60

CHAPTER 3 WORKING WITH TFVC: PART 2

Team Explorer - Find Shelvesets

e @ ¥ ‘ @ Search Work Items (Ctrl+') P~

Find Shelvesets | TheDarkKnight

P chaminda chandrasekara

4 Results (1)

Type here to filter the list

Demo Shelveset

Figure 3-7. Viewing a shelveset

vf.lx

32 minutes a

X

View Shelveset

Unshelve

Details

Delete Shelveset

Request Review

In the shelveset details, you have the option to unshelve changes in a shelveset

partially by excluding files from unshelving. You can request a code review or open the
shelveset in the browser. The Delete Shelveset option is also available in the shelveset

details. See Figure 3-8. Click Unshelve Changes.

61

CHAPTER 3 WORKING WITH TFVC: PART 2

Team Explorer - Shelveset Details v 1X
e O Gt ¥ l ¢ | Search Work Items (Ctrl+") P~
Shelveset Details | TheDarkKnight ¥ | 7

Demo Shelveset
Chaminda Chandrasekara - 8/3/2019 7:37:40 AM

Unshelve Changes v| Delete Shelveset | Actions v

4 Comment Request Review

Open In Browser

4 Changes to Unshelve (1)
Exclude All | View Options

- $/TheDarkKnight/main/WebApp/WebApp/Controlle...

C* HomeController.cs

4 Excluded from Unshelve
Include All | View Options

Drag changes here to exclude from the unshelve.

Figure 3-8. Shelveset details

Once you click Unshelve Changes, you will be able to see two options. One is to
preserve the shelveset on the TFVC server after the unshelving is done. The other option
lets you restore the check-in notes and the work items associated with the pending
changes. Click the Unshelve button. See Figure 3-9.

62

CHAPTER 3 WORKING WITH TFVC: PART 2

Team Explorer - Shelveset Details v 31X
O ¥ ‘ ¢, Search Work Items (Ctrl+') P~
Shelveset Details | TheDarkKnight > | 7

Demo Shelveset

Chaminda Chandrasekara - 8/3/2019 7:37:40 AM
Unshelve Changes | Delete Shelveset | Actions

Restore work items and check-in notes

Preserve shelveset on the server

4 Comment

4 Changes to Unshelve (1)
Exclude All | View Options

4 $/TheDarkKnight/main/WebApp/WebApp/Controlle...
&* HomeController.cs

Figure 3-9. Unshelving

Once the shelveset is unshelved, you will be able to see that the previous pending

changes reappear in your code files. There could be merge conflicts while unshelving,
but they can be resolved the same way as described in Chapter 2.

In this lesson, we discussed the steps of shelving and unshelving and the usage and

benefits of shelvesets.

63

CHAPTER 3 WORKING WITH TFVC: PART 2

Lesson 3-2: Suspending and Resuming Work

The suspend and resume work is an option available in Visual Studio while using TFVC
as the version control system. You can stop your current work while preserving all your
changes in suspend mode and automatically undo all your pending work with suspend.
It even captures bookmarks or any breakpoints made in Visual Studio and keeps track of
the opened code windows and other windows in Visual Studio.

Suspending work is useful when you need to stop your current code changes to
switch to other higher-priority work. Once you perform the high-priority work and check
the changes in, then you can resume your work using the resume work feature in Visual
Studio. Let’s look at the steps to suspend and resume work.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project
available in TFVC.

Make some code changes and save. Then in Team Explorer, click My Work. See
Figure 3-10.

Team Explorer - Home

& ¥ | & |Search Work Items (Ctrl+") P~

Home | TheDarkKnight g

4 Azure DevOps

r‘| TheDarkKnight

https://dev.azure.com/sldevop/TheDarkKnight

4 Project
Web Portal | Task Board

| -‘. My Work |® Pending Changes

| Source Control | @' Work Hers
Explorer

| L-i'-‘ Builds | '& Settings
Figure 3-10. My Work window

In the My Work window, you will be able to see the in-progress work as edits. If you
click View Changes, you will be taken to the Pending Changes window. You can click
the Actions menu and add a work item by ID to the in-progress work or drag and drop a
work item from the available work items. With or without adding a work item, click the

64

CHAPTER 3 WORKING WITH TFVC: PART 2

Suspend button. See Figure 3-11. The added work item can be removed from in-progress
work by right-clicking the added work item and clicking Remove from In Progress in the

context menu.
Team Explorer - My Work v I X
e © Gﬁ ? ‘ O Search Work Items (Ctrl+") P~
My Work | TheDarkKnight ¥
w3 Streaming Video: How to multi-task with My Work v

4 |n Progress Work

Suspend ¥ | Request Review | Check In | Actions

& 13 - Create customer table to store customer informat...

& 1 edit(s) | View Changes

4 Suspended Work
Resume | Merge with In Progress

No suspended work.

4 Available Work Items
Start| New v| Open Query | All lterations «

&1 7 - As a banking officer, | need to open a savings acco...
&3 11 - As a banking officer, | need to perform final cash...
&1 8 - As a banking officer, | need to perform initial cash...

View All

Figure 3-11. Suspending work

65

CHAPTER 3 WORKING WITH TFVC: PART 2

The suspend work description will be autofilled with the work item title, if you
have added a work item. You can add your own description by updating the autofilled
description. Then click the Suspend button. See Figure 3-12.

Team Explorer - My Work v 1 X
QO N ¥ ‘ ¢ | Search Work ltems (Ctrl+") P~
My Work | TheDarkKnight p

L3 Streaming Video: How to multi-task with My Work ¥
4 |n Progress Work

Suspend ¥ | Request Review| Finish] Actions

@ Create customer table to store customer
information

Suspend = Cancel

& 13 - Create customer table to store customer infor...

& 1 edit(s) | View Chanc

®

Figure 3-12. Suspending the work

Once you suspend the work, if you inspect the shelvesets, you will be able to see that
a new shelveset has been created. The suspend-resume actually works with the help of
shelvesets behind the scenes. See Figure 3-13.

66

CHAPTER 3 WORKING WITH TFVC: PART 2

I':J Azure DevOps devop TheDarkKnight Shelvesets & $/TheDarkKnight v
B theparinight T Shelvesets for owner: Chaminda Chandrasekara
n Overview
Saturday, August 3, 2019 2 shelvesets
% Boards
. Create customer table to store customer information
Repos) : 2

Demo Shelveset
[Files . :

ﬂ Changesets

‘ 2, Shelvesets

Figure 3-13. Shelveset created by suspending work

In Visual Studio you will be able to see that the pending changes are undone
once you suspend the work. Now you can do any other code changes on your original
codebase before you started the suspended changes. You can check in those changes
and later resume the work that you were doing.

To resume work, you can go to My Work in the Team Explorer window of Visual
Studio. You can click Resume, and the previously suspended work will be available in
your solution as pending changes. You can even resume suspended work while you
are already have pending changes by clicking Merge within Progress Changes. See
Figure 3-14. If there are any conflicts while you are resuming work due to pending
changes or changesets you created after suspending work, you can resolve the merge
conflicts in the same way as explained in Chapter 2.

67

CHAPTER 3 WORKING WITH TFVC: PART 2

Team Explorer - My Work v 3 X
QOnR ¥ ‘ ¢, | Search Work Items (Ctrl+') P~
My Work | TheDarkKnight >
w3 Streaming Video: How to multi-task with My Work v

4 |n Progress Work
Suspend ¥ | Request Review| Finish | Actions

Drag a work item here to get started.

4 Suspended Work
Resume| Merge with In Progress

4) Create customer table to store customer information
& 13 - Create customer table to store customer inf...

@& 1 edit(s) | View Changes

Figure 3-14. Resuming work

Once the work is resumed, the shelveset created behind the scenes is also deleted
automatically.

In this lesson, we explored how we can suspend and resume work, which works with
the shelvesets concept of TFVC.

Lesson 3-3: Doing Code Reviews with TFVC

Code reviews are important to maintain good-quality code in your projects. TFVC offers
a code review integrated with Visual Studio Team Explorer. Let’s look at the steps to do a
code review.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project
available in TFVC.

68

CHAPTER 3 WORKING WITH TFVC: PART 2

Make some code changes in your project by opening it in Visual Studio. Then go
to My Work in the Team Explorer of Visual Studio. You can drag and drop a work item
or add a work item by ID to the in-progress work using the Actions menu. You can do
this before requesting a code review to notify the reviewer of the work item that you are
working on. However, work items are not mandatory for you to request a code review.
Click the Request Review button to start a code review request. See Figure 3-15.

Team Explorer - My Work v o1 X
Q O ¥ ‘ @ | Search Work Items (Ctrl+") R~
My Work | TheDarkKnight =
5 Streaming Video: How to multi-task with My Work >

4 In Progress Work
Suspend ¥ | Request Review] Check In I Actions
&] 13 - Create customer table to store customer informat...

& 1 edit(s) | View Changes

4 Suspended Work
Resume | Merge with In Progress

No suspended work.
4 Available Work Items
Start | New | Open Query | All lterations «
&1 7 - As a banking officer, | need to open a savings acco...
&1 11 - As a banking officer, | need to perform final cash...

&1 8 - As a banking officer, | need to perform initial cash...

Figure 3-15. Initiating a code review request

69

CHAPTER 3 WORKING WITH TFVC: PART 2

A new code review request subject will be automatically filled in with a selected work
item title if you have added a work item to the in-progress work. You can edit the subject
and provide a description as well with the request. The team project name will be
tagged, and you can select one or more reviewers for the core review request by clicking
Add Reviewer. After selecting the reviewer, click Submit Request. See Figure 3-16.

Team Explorer - New Code Review v I X
QO R ¥ ‘ @ | Search Work Items (Ctrl+') R~
New Code Review | TheDarkKnight >

&3 Streaming Video: Using Code Review to improve quality ~

1 edit(s) | View Changes

Select one or more reviewers to review your changes and
enter a comment for them if appropriate

l.l nilmini herath >

Add Reviewer| Press Enter to add this reviewer

M- Code Review for Task 13: Create customer table to sto:

@ TheDarkKnight b

D Enter a description (optional)

Submit Request = Cancel

Figure 3-16. Submitting a code review request

70

CHAPTER 3 WORKING WITH TFVC: PART 2

After submitting code review request, it will appear under My Code Reviews &
Requests in your My Work. See Figure 3-17. You can suspend the work as we discussed
in the previous lesson and work on something else until you receive feedback from the

reviewer.
Team Explorer - My Work v I X
© © &) ¥ | & Search Work ltems (Ctrl+") P~

My Work | TheDarkKnight

&3 Streaming Video: How to multi-task with My Work

4 |n Progress Work
Suspend ¥ Request Review | Check In | Actions =

<] 13 - Create customer table to store customer informat...

& 1 edit(s) | View Changes

4 Suspended Work
Resume | Merge with In Progress

No suspended work.

4 Available Work Items

Start| New w | Open Query | All Iterations «
&3 7 - As a banking officer, | need to open a savings acco...
&3 11 - As a banking officer, | need to perform final cash...

&3 8 - As a banking officer, | need to perform initial cash...
View All

4 Code Reviews (1)
My Code Reviews & Requests v | Open Query
&= 61 - Code Review for Task 13: Create customer table...
|..| nilmini herath - Requested

Figure 3-17. Code review requests listed

71

CHAPTER 3 WORKING WITH TFVC: PART 2

In the My Code Reviews & Requests drop-down, you can filter the requests for
recently closed, recently finished, incoming requests, and your code review requests. See
Figure 3-18.

4 Code Reviews (1)
My Code Reviews & Requests v] Open Query

My Code Reviews -eate customer table...
Incoming Requests
Recently Finished

Recently Closed

Figure 3-18. Filtering code reviews

If you inspect the shelvesets, you will find a shelveset for code review is created
automatically. See Figure 3-19.

0 Azure DevOps devoj TheDarkKnight Repos Shelveset & $/TheDarkKnight v
: : L
. TheDarkKnight T Shelvesets for owner: Chaminda Chandrasekara
ﬂ Overview
Saturday, August 3, 2019 2 shelvesets
% Boards

. CodeReview_2019-08-03_11.00.24.8632

Repos

Demo Shelveset
[Files . ia Chandraseka

3 Changesets

\ 2, Shelvesets

Figure 3-19. Shelveset created for code review

72

CHAPTER 3 WORKING WITH TFVC: PART 2

The reviewer receives the code review request in their My Work in Team Explorer.
The user can accept to do a code review or decline it. See Figure 3-20.

Team Explorer - Code Review * @ X
QO ¥ ' ¢ | Search Work Items (Ctrl+") Pl

Code Review | TheDarkKnight
Code Review for Task 13: Create customer table to store
customer information

Requested by Chaminda Chandrasekara.

Send &t Finish = | View Shelveset | Actions
You can Accept or Decline to let the requestor know whether you
will do the code review.

4 Reviewers (1)
Add Reviewer v

a4 nilmini herath - Requested

4 Related Work Items (2)
& 13 - Create customer table to store customer informa...

£= 61 - Code Review for Task 13: Create customer table t...

4 Comments
4 Qverall
Add Overall Comment

4 Files
4 8 5/TheDarkKnight/main/WebApp/WebApp/Controllers

c* HomeController.cs =]

Figure 3-20. Accepting or declining

The reviewer can click files to view the code changes and add file comments for the

review. See Figure 3-21.

73

CHAPTER 3 WORKING WITH TFVC: PART 2

[. - creconocirc & B T i Code e

WAL
Read-onby You 33 v 9 on, nght chtlong and choosng Add Comment, XBO O @Y |G iesch o nems Cirie y-B
K File = %2, - -|=: F <% 3 . .
K Macellunecs e +| % WebppControber <[@ Indest Moceluneon Fles - | % Webdpp Controtlrstior +|@ indes) Code Review | Thedabinight .
1 - L using Systes; .
wiing Systes.Collections. Ganerics 2 wsing Systesm.Collections, Generic; Code Review for Taak 13 Creste curtomer table 1o feee
: using System.Ling; custernas wdormation
wiing Syites, Wb 4 using Systes.ied; -
using Systes. eb.mec; Y using Systes.eb.ve b S can by 5 =
Serd & Pk w | Verw Shebvmnt | Actions »
namespace Webapp.Controllers —_ namespace Webiop.Controllers =
{ { # Raviewens (1)
public class MomeController 1 Comtroller] public class vomeController 1 Controller AddReviewss »
{ L 13
publlic ActionResult Index() 11 public Actlontesult Index() 1 e harth - Accepted
{ 1 { Work I
1 string sapleCodevarishle = “Sample™; 8 Rt @
return View(); 1 return View(); 113 - Create cuntemar table 1 Wore customes informa...
1 i 1 5F 61 - Code Rieveew fex Task 13 Creste customer table to 1.
public ActionResult about() 17 public ActioaBesult sbout() 4 Comments
1 {
Viewbag.Message = “Your application 1 Viewbag.Message = “vour application descripti e
o Add Orverall Commpnt
return View(); 2 return View();
1 ¥ P
2 public ActicaResult Comtact() public ActisaBesult Contact() * I..EJ
24 { q oereCont
2 ViewBag Message = “Your oo 2 ViewSag.Message = “Your contact page.”; ('4 l‘" "“"d e
: e = B Local Fe
100% = € No e found o= 4 » D Ng st feund of = Add Fibe Comment

Figure 3-21. Reviewing the files

The Action menu lets the reviewer open the related work item. The reviewer can add
an overall comment and send and finish the code review with Looks Good for approval
or ask to do more changes. See Figure 3-22.

Team Explorer - Code Review v x
COo@ ¥ | € Search Work Items (Ctrl+") P~

Code Review | TheDarkKnight ¥
Code Review for Task 13: Create customer table to store
customer information
You accepted this code review requested by Chaminda Chandras¢

nts | Send & Finish « | View Shelveset | Actions «

4 Reviewers (1) Looks Good
Add Reviewer = With Comments

& nilmini herath e MCic |

4 Related Work Items (2)
£ 13 - Create customer table to store customer informa...
&= 61- Code Review for Task 13: Create customer table to st...

4 Comments

4 Overall

Add Overall Comment

4 Files

4 B 5/TheDarkKnight/main/WebApp/WebApp/Controllers
c= HomeController.cs O

Figure 3-22. Approving the code review
74

CHAPTER 3 WORKING WITH TFVC: PART 2

Once the code review is approved, the initiator of the code review can see it in their
My Work. See Figure 3-23.

¥ I ¥V 7oA

4 Code Reviews (1)
My Code Reviews w | Open Query

®= 61 - Code Review for Task 13: Create customer ta...

l.O nilmini herath - Finished (looks good)

Figure 3-23. Code review approved

In addition to requesting a code review on pending changes, you can request code
reviews on changesets or shelvesets. See Figure 3-7 for how to request a code review for
a shelveset using Find Shelvesets in Team Explorer. You can request a code review for a
changeset in the Source Control history view by right-clicking the relevant changeset.
See Figure 3-24.

History - Web.config LI @ HomeController.cs Source Control Explorer

Source location: C:\Users\chamindac\source\Workspaces\TheDarkKnight\main\WebApp\WebApp\Web.config
Changesets B Labels
R I-E ==
Changeset Cha... User Date Path Comment
6 add [Chaminda Chandrasekara |8/3/2019 7:05:18 AM_$/T... Add solution
View

Changeset Details

Compare...

Annotate

0% @

Track Changeset
Request Review

ﬁ Get This Version
Rollback Entire Changeset

[} Copy Ctrl+C

Figure 3-24. Code review for a changeset

75

CHAPTER 3 WORKING WITH TFVC: PART 2

In this lesson, we discussed the code review procedure with TFVC, which is an
essential activity for any development team to ensure high-quality and maintainable
code.

Lesson 3-4: Using Lock and Unlock

Locking/unlocking files is a useful feature in TFVC because it allows you to temporarily
apply alock on a file or folder in the TFVC server. The locked file will be prevented
from check-out by other users, and you can prevent merge conflicts by applying a
lock. This should be used with caution, though, as you should not block other team
members from doing their work on the code. You might want to apply a lock on a code
file or a folder in a situation where you will be doing a major and impactful change,
which absolutely requires avoiding merge conflicts, so that the critical change in the
code can be checked in to TFVC after you have completed it without any conflicts.
Let’s look at how you can lock and unlock a file or folder in Visual Studio Source
Control Explorer.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project
available in TFVC.

Open the solution in Visual Studio and open the Source Control Explorer. Then you
right-click the required file or folder and click Advanced » Lock in the context menu to
lock the file or folder. See Figure 3-25.

76

CHAPTER 3 WORKING WITH TFVC: PART 2

SRR so.rce Control Expiorer -+ % |

@ G DX 3 T 0 -d0D8 Y Workspace: vs2019dev .
Source location: I $/TheDarkKnight/main/WebApp/WebApp/Views/Home
Folders X | Local Path: C:\Users\chamindac\source\Workspaces\TheDarkKnightymain\WebApp\WebApp\,
4 %% dev.azure.com/sldevop Name - Pending Change User Latest Last Che
b &5 TheAvengers B About.cshtml Yes 8737201
« &3 'lhem.rkl(mght [A Contact.eshtml Yes 8/3/201¢
Tt ool [Pindexehtml Yes 8/3/201¢
LS V/abApp | & view
4 . WebApp : :
b App._Start View With...
Content Open in File Explorer
: Controllers 3 GetLatest Version
b M fonts
I B Properties T Check Out for Edit...
b= 5*_:'1'915 X Delete
- Views e
Home
Shared Move...
Rollback...

Undo Pending Changes
Check In Pending Changes

Shelve Pending Changes

D) View History
) Compare..
C3 Annotate
Branching and Merging »
Find »
Advanced * & GetSpecific Version..
Lock...
Apply Label..
Security...
1 < Properties.. v

Figure 3-25. Locking a file

A dialog will pop up, and you can click Lock to lock the file for you exclusively. See
Figure 3-26.

Lock ? X

Files:

Name Folder
[[] Ind... $/TheDarkKnight/main/WebApp/WebApp/Views/Home

Lock Cancel

Figure 3-26. Lock file dialog
77

CHAPTER 3 WORKING WITH TFVC: PART 2

The file will be checked out and will be locked for others so that only you will be able
to edit the file. See Figure 3-27. Until you remove the lock, no one will be able to check in
any changes to the file/folder.

e ol v T i R

Local Path: C:\Users\chamindac\source\Workspaces\TheDarkKnight\main\WebApp\WebApp\

Name = Pending Change User Latest Last Che
About.cshtm| Yes 8/3/201¢
[Contact.cshtml _ p— _ Yes 8/3/201
v é_index.cshtml lock, edit Chaminda Chan... Yes 8/3/201¢

Figure 3-27. Locked file

You can right-click the file/folder in the Source Control Explorer and click Advanced »
Unlock to unlock the file. Or once you check in the file, the lock will be removed.

In this lesson, we explored the file/folder lock/unlock option in TFVC to identify
the capability to edit a file/folder in isolation, while preventing others from making
changes to it.

Lesson 3-5: Applying Check-in Policies

Check-in policies are useful for setting up control over how the changes are checked in
to the source control system. You can ensure the team is adhering to the procedures so
that the quality of changesets will be higher and more meaningful. Let’s look at creating
check-in policies in Visual Studio and how they get applied to the check-in attempts.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project
available in TFVC. You have a few user stories, and you have a shared query with the
active user stories. We covered how to create work items and write queries for work items
in the Hands-on Azure Boards book of the series.

Open the solution in Visual Studio and make some code changes. In the Visual
Studio menu, click Team » Team Project Settings and go to the Source Control tab
to open the Source Control options for the team project. Then in the dialog, go to the
Check-In Policy tab and click the Add button. There are several check-in policy options
available. See Figure 3-28.

78

CHAPTER 3 WORKING WITH TFVC: PART 2

Check-out Settings Check-in Policy Check-in Notes
i Policy Type Description

Add Check-in Policy 7 X Edit..

Check-in policy:
Builds PN

Code Analysis

Custom Path Policy
Forbidden Patterns Policy
Work Item Query Policy

Description

This policy will require users to provide check-in comments.

OK Cancel

Figure 3-28. Adding a check-in policy

Build policies will be discussed in the Hands-On Azure Pipelines book. Let’s select
the changeset comment policy and add it. This will make a comment for a check-in
mandatory when trying to check in pending changes. See Figure 3-29.

79

CHAPTER 3 WORKING WITH TFVC: PART 2

Team Explorer - Pending Changes AT

COf ¥ ’ ¢, Search Work Items (Ctrl+') P~

Pending Changes | TheDarkKnight Y | 7
Check In Shelve « | Actions =

4 Policy Warnings (1)

Override Warnings
The following check-in policies were not satisfied

! Provide a comment for the check-in. Help

4 Comment

Enter a check-in comment

4 Related Work Items
Queries v | Add Work Item by ID «

Drag work items here to link them to the check-in.

Figure 3-29. Comment policy applied

We can try adding a work item query policy as well. Select a work item query in the
dialog box that appears when you select the Work Item Query Policy. See Figure 3-30.

80

Check-out Settings Check-in Policy Check-in Notes

Policy Type Description

Changeset Com... Reminds users to add meaningful comments to their check-ins

CHAPTER 3 WORKING WITH TFVC: PART 2

Select Query

My Queries
» Shared Queries
H Direct Links1
=} GroupDemo1
8 Query1
% Tree demo
E Users Stories in current Iteration

v ¥% TheDarkKnight
>
v

Figure 3-30. Work item query policy

OK

Cancel

Cancel

This will make associating a work item from the given query mandatory when

checking in a pending change. See Figure 3-31.

81

CHAPTER 3 WORKING WITH TFVC: PART 2

Team Explorer - Pending Changes v I X

e & Gﬁ ? ‘ c, Search Work Items (Ctrl+") P~

Pending Changes | TheDarkKnight = | d
Check In Shelve = I Actions =

4 Policy Warnings (2)

Override Warnings
The following check-in policies were not satisfied
! Provide a comment for the check-in. Help

I The Work Item Query Policy failed because no work
items were associated with this check-in. Help

4 Comment

Enter a check-in comment

4 Related Work Items
Queries = | Add Work Item by ID =

Drag work items here to link them to the check-in.

Figure 3-31. Work item query policy applied

You can try other policies and apply them and see how they affect your team’s check-
in experience.

In this lesson, we explored check-in policies, which are useful to maintain standards
and proper collaboration and communication when working with codebases.

82

CHAPTER 3 WORKING WITH TFVC: PART 2

Summary

In this chapter, we discussed how to use shelvesets and how the shelvesets help to do
code reviews as well as suspend and resume work in this chapter. How to use locks and
the checking policies were also described. With this chapter and the previous chapter,
you have gained a comprehensive idea of how to work with Team Foundation Version
Control.

In the next chapter, we will discuss the branching feature of TFVC, which will give
you an in-depth idea of how to create and work with branches as well as some useful
branching strategies with TFVC.

83

CHAPTER 4

Team Foundation Version
Control Branching

After going through the previous chapters of this book, you now have a good
understanding of the source control capabilities of Team Foundation Version Control
(TFVC). Branching is the most important capability of any source control system
because it helps the development team to manage their source code in isolation while
creating new features and hotfixes. You will learn about the branching capabilities of
Team Foundation Version Control throughout this chapter.

Lesson 4-1: Creating a Branch

In development, you might want isolation when trying to add new features to the
project or doing a hotfix. In some scenarios, the entire team can work in one branch, but
sometimes it is better to have separate branches for each feature development or hotfix.
This lesson will explain how to create a branch in TFVC using the Visual Studio Source
Control Explorer.

Prerequisites:

e Azure DevOps project with TFVC as the source control system
e Mapped local workspace of the project on the working machine

Go to the Source Control Explorer. Select the folder or branch you want to create a
branch with. You can move the mouse over the folder or branch and right-click and select
Branch, or you can use source control menu items to create a branch. See Figure 4-1.

85
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_4

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

DG WX & TAI2 0 -dDE V- Workspace DESKTOP-BUSDEDL -

Source location: =g S/TheDarkKnight/Work1 [m{

Folders X | Local Path: Q‘Ujj; T izt £\ TheDarkKnight\Work1

4 82 dev.azure.com/sldevop || Mame = 23 e Hieaechy User Latest Last Check-in
p &% TheAvengers 24 Convert to Folder
4 82 TheDarkKnight €8 Reparent...

bl main____
= Workl |

Figure 4-1. Selecting the Branch option to create a branch of main

Alternatively, you can create a branch by right-clicking a selected branch and then

selecting the Branching and Merging » Branch option, as shown in Figure 4-2.

8
T
X

FhOB S

Get Latest Version

Check Out for Edit...
Delete

Rename

Move...

Rollback...

Undo Pending Changes...
Check In Pending Changes
Shelve Pending Changes
View History

Compare...

New Folder

Add Items to Felder...
Branching and Merging
Find

Advanced

Figure 4-2. Creating a branch

* %' Branch..
r % Merge..

* Lo Coenvertto Branch...

The Branch window will open. You will be able to define the new branch name and

decide on a source version to create a new branch. See Figure 4-3.

86

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Branch from Work1 ? X

Source Branch Name:

|S/TheDarkKnight/Work1

Branch from Version:

By: Latest Version ~

Target Branch Name:

|S,"T RPN YW ork1-branch

Description:

Branched from §/TheDarkKnight/Work1

@ The new branch will be created and committed as a single operation on the server. Pending changes will not be created. This
operation is also not cancelable once it is sent to the server.

Figure 4-3. Branch window

For the source version, you have following options in the Branch from Version

drop-down:

Latest Version: Latest version in the source
Changeset: Select a version using changesets
Date: Select a version with a specific date
Label: Select a labeled version

Workspace: Select a version of the selected workspace

After selecting the source version, click the OK button to create a new branch. You

might get a pop-up that allows you to accept or deny the branch creation. See Figure 4-4.

87

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Microsoft Visual Studio

o Branch from Work1

The new branch will be created and committed as a single
operation on the server. Pending changes will not be created.
This operation is also not cancelable once it is sent to the
server,

Continue to branch?

Yes No | Help

Figure 4-4. Branch creation verify pop-up

Now the new branch creation is completed. Go to the Source Control Explorer. You
will be able to see the new branch. See Figure 4-5.

Folders x

w2 TheAvengers
v TheDarkKnight
[main
== Work1
- =3 Workl-branch’ |

4 98 dev.azure.com/sldevop
P
4

Figure 4-5. Newly added branch in the Source Control Explorer

In this lesson, you learned how to create a new branch using the Source Control
Explorer. Also, we discussed the ability to create a branch with different source
versions.

88

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Lesson 4-2: Converting a Folder to a Branch

In TFVC we can have both folders and branches in the source control system. Sometimes
we need to work on code that is not related to any of the branches. For that type of
situation, we can create a folder inside the source control system and maintain the
source code inside the folder. While you maintain your code inside a folder, you might
later need to add the source code inside the folder to a branch. In TFVC we have an
easy option to do this: converting a folder into a branch. This lesson will explain how to
convert a folder into a branch.

Prerequisites:

e Azure DevOps project with TFVC as the source control system
e Mapped local workspace of the project on the working machine
e Mapped project with a folder in the source control system

Go to the Source Control Explorer. Select the folder that you need to convert to a
branch. Select the branch drop-down among the source control menu items and select
the Convert to Branch option. See Figure 4-6.

J& G| EaDX| &[T 4|9 - .a D & | % - Workspace: DESKTOP-BUSDEDL -
Source location: $/TheDarkKnight/Work1 % Branch...
Folders X || Local Path: C:\User} T Merge..
4 83 dev.azure.com/sidevop Name = er Latest Last Check-in

b &% TheAvengers
4 82 TheDarkKnight
b main

Figure 4-6. Selecting Convert to Branch from the source control menu

89

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

After selecting Convert to Branch, you will be able to see the window where you can
find basic details about the new branch being created using the folder. See Figure 4-7.

Convert Folder to Branch - Work1 ? X

Branch Name:

[S!TheDarkKnight/Work‘i |

Owner: | nilmini herath |

Description:

l

[Recursively perform this conversion on all folders previously branched from this folder

Figure 4-7. Converting the folder to a branch

You can give the branch a name or keep the default branch name. Also, you will be
able to see the owner of the branch. You can also give a description to the branch. When
you are ready to convert the folder to a branch, click the Convert button.

You will be able to see that the folder has been converted to a branch. See Figure 4-8.

90

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Folders x

w& TheAvengers
v TheDarkKnight
b main
= Work1

4 98 dev.azure.com/sldevop
P
4

Figure 4-8. Branch created using a folder

In this lesson, we discussed how to convert folders to branches easily with the Source
Control Explorer.

Lesson 4-3: Merging and Resolving Conflicts

Development teams can decide to use certain branch structures according to their
project requirements. Each team needs to decide the best branching structure suitable
for their project requirements or they will face more complex problems when trying to
merge the branches. No matter how many branches a team has, the team needs to be
able to merge these branches correctly. This lesson will explain how to merge branches
and resolve any conflicts that occur while merging.

Prerequisites:

e Azure DevOps project with TFVC as the source control system
e Mapped local workspace of the project on the working machine
e Multiple branches with the same source version

We have the master branch, the Develop branch, and two Feature branches in the

source control with the same source version. See Figure 4-9.

91

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

4 98 dev.azure.com/sldevop
b w8 TheAvengers
4

ve TheDarkKnight
p &3 Develop
b &3 Featurel
[&3 Feature
[main

b I 3 Master

Figure 4-9. Branches with the same version of source code

We have a master branch where we maintain the code ready to deploy to production.
We have a development branch where we merge all the feature changes to. We are
developing two features. So, we have two Feature branches in the source control system.
This is the sample branch structure we are going to use with this lesson. Figure 4-10
shows the branching hierarchy of our sample branching structure.

Master
Develop

Featurel Feature2

Figure 4-10. Branch structure

Multiple team members are developing Featurel. So, they create a local workspace
for the Featurel branch. After their implementation is completed, they check in the code
changes to the server. After the Featurel implementation is completed, the Featurel
branch is merged with the developer branch.

Go to the Source Control Explorer. Select the Featurel branch and then click the
branch icon in the source control menu. Then in the menu Click on Merge. See Figure 4-11.

92

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

A%G|mnX| &7 a9 0D V- Worksace DESKIOP-BUSDEDL -
Source location: 2 $/TheDarkKnight/Featurel Y Branch... -
Folders x || Local Path: C:Z-.Us:r;‘ﬂ Mm _].lght'_TthgtigKn|gh2'-._F_eatul_e'._
: L View Hierarch
4 88 dev.azure.com/sldevop Name = : = 4 User Latest Last Check-in
b A& Thefuengers WebApplicati = ConverttoFolder Yes 8/5/2019 8:40:,
. . = k...
’ fg?::?;gm &I WebApplicaty 0 _Reparent.. Yes 8/5/20198:404..
b I WebApplication2
4 3 Featurel
“p ™ WebApplication2
b =g Feature2
3 main
b f Master

Figure 4-11. Merging the changes

The Source Control Merge Wizard will open. We are going to merge the Featurel
changes with the Develop branch. So, our source branch is Featurel, and the target
branch is the Develop branch. You have two merge options available in the wizard. You

can merge all the changes up to a specific version, or you can merge changes in specific
changesets. See Figure 4-12.

93

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

- ‘) Select the source and target branches for the merge operation

Select the branch that contains the changes you would like to merge.

Source branch:

IS/T heDarkKnight/Featurel Browse...

Select the source branch changes you would like to merge:
(® All changes up to a specific version

(O Selected changesets

Select the target branch for the merge operation. The drop-down list contains all target branches applicable to
the selected source branch.

Target branch:

‘ $/TheDarkKnight/Develop v Browse...

Next > Finish Cancel

|
Figure 4-12. Source Control Merge Wizard, step 1

After deciding which changesets to merge, you can click Next to move to the next
step of the wizard. This sample merge takes place with all the changes up to a specific
version.

In step 2 of the wizard, select the source branch version. See Figure 4-13.

94

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Source Control Merge Wizard (Workspace: DESKTOP-BUGDEDL) T X

——
‘) Select the versions of the source items

Specify the version up to which source branch changes should be merged. In most cases, changes merged
previously will not be merged again.

Version type: |Latest Version ~

Changeset
Date
Label

Latest Version
Workspace Version

< Previous Next > Finish Cancel

Figure 4-13. Selecting a source version

After selecting the source version, click the Next button to move to the next step of
the wizard. You will be able to see the final step of the wizard. Click the Finish button to

finish the wizard. See Figure 4-14.

95

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

:_
[‘) Perform the merge operation

All necessary information for the merge operation has been collected.

The merge operation will take place when you select the "Finish" button below. The merge will be staged in your
workspace - you must perform a check-in operation to commit the changes to the server.

If merge conflicts are encountered, you will be given an opportunity to resolve them.

< Previous N > Cancel

Figure 4-14. Source Control Merge Wizard, final step

After clicking the Finish button, you will be able to see that the merge process starts.
If you don’t have any merge conflicts, you will be able to complete the process without
any warnings. If the merge succeeds, the Featurel branch on the server and the local
development branch should have similar content. If you compare these two branches,
there should not be any differences in the files.

Go to the Source Control Explorer. Select the Featurel branch. Click the Compare
icon in the source control menu. See Figure 4-15.

96

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

dlgle | mnx| &l a2 0 L&D & % -| Workspace: DESKTOP-BUSDEDL -
Source location: 3 §/TheDarkKnight/Featurel -
Folders x [Local Path: C:\Users\Pyshpa Herath\Documents\DarkKnight\ TheDarkKnight\Featyrel |
4 &5 dev.azure.com/sldevop Name Pending Change User Latest Last Check-in
b f’f _}:;‘ ;:z:f‘m WebApplication2 Yes 8/5/2019 8:40:4...
4 uf TheDarkKnig e
W I sl Y 1 4.,
4 3 Develop [a] WebApplicationZ.sin e 8/5/2019 8:40:
b i WebApplication2
a2 Featurel'
77 ¥ WebApplication2
b g Feature2
b main
b T Master

Figure 4-15. Open compare for Featurel branch

After clicking the Compare icon, a window will open. You can select the source
branch and target branch to compare. Also, you can select the view option to display the
comparison result. After selecting the branches and view options, click OK to start the
comparison. See Figure 4-16.

97

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Compare ? X
Source Path:
$/TheDarkKnight/Feature1 Browse.. ¥

Source Version:

Type: :Latest Version v

Target Path:

C:\Users\Pushpa Herath\Documents\DarkKnight\TheDarkKnight\Develop ” Browse... ‘v |
Type: | Latest Version

Filter: (Example: *.cs; !my*.bmp; !obj\; lobjd\)
|!bin\;!bld\;!ClientBin\,'!Debug\;!obj\;!AppPackages\;!ReIease\:!TestResults\;!‘."~!".appx!’.appxrecipe;!'.cache!’ v

[Filter local paths only
View Options:

[4] Show items that exist only in source path
[4] Show items that exist only in target path
[~ Show items that are different

[[] Show items that are the same

ok || Concel

Figure 4-16. Comparing Featurel and Develop branches

If the branch merging succeeded for this merge, you will get the comparison result
with zero differences. This might change according to the situation. See Figure 4-17.

Folder Difference (..kknight\Develop) = [

Ol X|[&|T|2]|R QD] A
50 files compared: 0 different, 0 only on server, 0 only on local disk Medify Filter
Server ltems Local ltems Different

Figure 4-17. Merge branch comparison
98

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Since there are no issues, you can check in the local Develop branch changes to the
server.

So far, we have discussed the basic merge concepts. Now we will discuss how to solve
merge conflicts.

Let’s consider following scenario. We have the Develop branch. Also, there are
Featurel and Feature2 branches. Parallelly, two different teams develop Featurel and
Feature2. At the beginning, both branches have a similar version to the Develop branch.
Then the Featurel changes are merged with the Develop branch. Now the Feature 2
changes are going to be merged with the Develop branch. But on the server, the Develop
branch has a new version of the About.cshtml file. Also, we have changed that same file
in the Feature2 branch.

So, select the Feature2 branch as the source and the Develop branch as the target.
Merge the changes using the merge wizard. At the end of the merge, you will be

navigated to a conflict page. See Figure 4-18.

AutoResolve All = | [#] Get All Conflicts (s Refresh | V-@~-0~

Path Filter applied - 1 Conflict: 1 Version (merge)
- Name Type Path a | Conflict Type Description
o About.cshtml $/TheDarkKnight/Develop/WebApplication2/Views/Home Version (Merge) The itemn content has changed

ik Autollerge - <} Merge Changes In Merge Tool by Keep Target Branch Version i Take Source Branch Version
The item content has changed

Content Changes: There are conflicting content changes in the source and the target versions

Source nameis: §/TheDarkKnight/Feature2/WebApplication2/Views/Home/About.cshtml (38~38)

Target name is: $/TheDarkKnight/Develop/WebApplication2/Views/Home/About.cshtml (37)

Target edits are: 37

Figure 4-18. Merging the conflicts

Select Merge Changes in the merge tool and select the changes you want to keep.
Finally, click the Accept Merge button to merge the changes. See Figure 4-19.

99

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

F AcceptMerge | € €212 D B- ©-@-0- M-
1 Conflicts (0 Remaining)

Source: ../Feature2/WebApplication2/Views/Home/About.cshtml;C38 Target: ../Develop/WebApplication2/Views/Home/About.cshtml C37
BN IS [T -
.': ViewBag.Title = "About this is feature 2%; ' @: —_—
ABAALLLELLLLLELELLLLA R AL SR AR R SRR LSRR S 27T _Viewdag.Title = “About This is feature 17; !
3 }
<h2>@viewBag.Title.</h2> 4 <h2>@viewBag.Title.</h2>

5 <h3>@viewBag.Message</h3> 5 <h3>@ViewBag.Message</h3>

<p>Use this area to provide additional informaticn.</p> <p>Use this area to provide additional information.</p»

100% = @ Noissues found 1 b 100% = @ Noissues found L »
Result: C:\Users\Pushpa Herath\Documents'\DarkKnight\TheDarkKnight\Develop\WebApplication2\Views\Home\About.cshtml

' ViewBag.Title About this is feature 2%; —
enViewbag Tht e dm Ao T s s e el '

<h2>@viewBag.Title.</h2>
<h3>@viewBag.Message</h3>

<p>Use this area to provide additional information.</p>

Figure 4-19. Comparing the changes

After resolving all the conflicts, the branch merge can be completed. You can
compare the branches. Then you will be able to see all the files with the differences listed
in the comparison area. You can verify that you have merged the branches correctly
by comparing these files. After the merge is completed, you can check in the Develop
branch changes to the server.

This lesson explained how to merge branches. Also, you learned that you have two
options to select the merge. One is to merge all the changes up to the current one; the
other option is to merge only the selected changesets. Further, we discussed how to
resolve merge conflicts.

Lesson 4-4: Tracking Changesets

Now we are familiar with main source control operations such as creating branches,
converting folders to branches, merging branches, and resolving merge conflicts. After
every merge, it is better if we have a way to track the changes done to each branch. This
lesson explains how we can track the changes done to each branch.

Prerequisites:

e Azure DevOps project with TFVC as the source control system
e Mapped local workspace of the project on the working machine

100

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

e Multiple branches with the same source version
e Multiple check-in and branch merges

Go to the Source Control Explorer. Select the project. Then click the History icon on
the Source Control Explorer menu. See Figure 4-20.

dElc | mDX|&|Ta]? - &0 & | ¥ - | Workspace: DESKTOP-BUSDEDL .
Source location: &8 TheDarkKnight -
Folders X || Local Path: C:\Users\Pushpa Herath\Doguments\DarkKnight\TheDarkKnight
| 4 %8 dev.azure.com/sldevop | Name « Pending Change User Latest Last Check-in
. =3 Develop Yes 8/5/2019 8:37:3...
] - W 3 Featurel Yes 8/5/2019 8:40:4..,
b Ueveiop : :
b &2 Featurel %Fea_turez Yes 8/5/2019 8:42:0...
b 2 Feature2 main Yes 8/3/2019 12:35....
b @8 main =3 Master Yes 8/5/2019 6:39:1...
b =g Master

Figure 4-20. Clicking the History icon

The changeset list will open. You can see all the changes made to the project using
this list. If you want to see the changes made to a specific branch only, select the branch
in the Source Control Explorer.

Now we have the changeset list of the entire project. See Figure 4-21.

We can track the changes from this page. Select one changeset and click the Track
Changeset icon in the menu. See Figure 4-21.

Source location: C:\Users\Pushpa Herath\Documents\DarkKnight\TheDarkKnight - G X
& Changesets W Labels
@ a2l
Changeset 1 User Date Comment

39 8/6/2019 9:22:18PM Merge feature with develop

"5 /57201994812 M Crate A1 Festure 2 complde

37 9041 Merge feature 1 to develop
36 nilmini herath 8/5/2019 8:52:17 PM As 2 banking officer, | need to open a savings account for a customer- Feature complete
35 nilmini herath 8/5/2019 8:42:00PM Branched from $/TheDarkKnight/Develop
M nilmini herath 8/5/2019 8:40:47PM Branched from $/TheDarkKnight/Develop
33 nilmini herath 8/5/2019 &:37:37 PM Branched from $/TheDarkKnight/Master
32 nilmini herath 8/5/2019 8:32:10 PM add master slotution
20 nilmini herath 8/5/20196:3%12PM Add solution to main
n Chaminda Chandrasekara 8/4/2019 1:51:28 PM rescre
10 Chaminda Chandrasekara 8/4/2019 1:44:23 PM delete file
9 nilmini herath 8/3/2019 8:48:45 PM Updated About.cshtml
8 nilmini herath 8/3/2019 T:45:16 PM Updated About.cshtml
7 Chaminda Chandrasekara 8/3/2019 6:07:13 PM update
6 Chaminda Chandrasekara 8/3/201912:35:18PM Add selution
4 Chaminda Chandrasekara 7/14/2019 11:33:34 AM CreateProjectFolderCorment

Figure 4-21. Clicking the Track Changeset icon

101

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

The Tracking Changeset window will open. You will be able to select the branches in

the Branches section. After selecting the branches, click Visualize to track the changes.
See Figure 4-22.

Tracking Changeset 38

Select Branches

Select the branches to be tracked and click Visualize to begin tracking. You can later click Rerun on the visualizaticn toolbar to refine your selection.
Starting branch: Feature2

Branches (3 checked)
[m] Check all visible = EIEIEEES
4 [] Master
4 [/] Develop
Featurel

+| Feature2

Show Filter

Figure 4-22. Tracking the changeset

The Tracking Changeset hierarchy view will open. See Figure 4-23.

Tracking Changeset 38

IE 5 !p Rerun ‘z | :!5 Timeline Tracking I.;": Hierarchy Tracking IQ ‘ G | a ’ ! ﬁerge .__a Compare I

e

Figure 4-23. Tracking Changeset hierarchy

Let’s try to identify the menu items in the Tracking Changeset window. You can see
we have highlighted two areas in Figure 4-23. In the toolbar on the right are these icons

(from right to left): Compare icon, Merge icon, Settings icon to move to the settings
102

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

window, Source Control icon to move to the Source Control Explorer, Changeset icon to
navigate to the Changeset Details page, and Tracked Changes icon to display only the
branches with the changes in the selected changeset.

In the toolbar on the left of Figure 4-23 (from left to right), we can save the
visualization, copy the visualization, rerun the tracking, go to the visualization hierarchy
view, and do timeline tracking.

Timeline tracking is an interesting feature where we can track the changes by
changed dates. See Figure 4-24. If you hover the mouse over the feature changeset
number, you can see all the relevant details of the changeset.

Tracking Changeset 38
8/5/2019 9:44:42 PM
Aug 5 AUgE

Feature2

Figure 4-24. Timeline tracking

We can use these features to identify our application development process behavior.
In this lesson, you learned how to do changeset tracking. Further, we discussed how
to use the hierarchical view of the changeset time tracking to clearly display the behavior

of our application development progress.

Lesson 4-5: Cherry-Picking Changesets

We discussed how to create branches and how to merge them in the previous lesson.
We know how to merge all the changesets in a branch with another branch. Also, we saw
that there is an option in the Source Control Merge Wizard where we can select only one
changeset or multiple changesets to merge. This option is called cherry-picking. You will
learn more about cherry-picking in this lesson.

Prerequisites:

e Azure DevOps project with TFVC as the source control system

e Mapped local workspace of the project on the working machine

103

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

e Multiple branches
e Multiple check-ins and branch merges

Go to the Source Control Explorer. Select a branch with changesets. We selected the
Featurel branch. Then click Merge to start the merge wizard.
Select “Selected changesets” in the Source Control Merge Wizard. See Figure 4-25.

Source Control Merge Wizard (Workspace: DESKTOP-BUGDEDL) T X

. ‘ a Select the source and target branches for the merge operation

Select the branch that contains the changes you would like to merge.

Source branch:

[S/T heDarkKnight/Featurel Browse...

Select the source branch changes you would like to merge:
(O All changes up to a specific version

(@ Selected changesets

Select the target branch for the merge operation. The drop-down list contains all target branches applicable to
the selected source branch.

Target branch:

‘ $/TheDarkKnight/Develop v Browse...

Next > Finisk Cancel

Figure 4-25. Selecting a changeset option

Click the Next button to move to the next step of the wizard. You will be able to see
the changesets here. You can select the changesets you need to merge from the list and
click Next to move to the next step of the wizard. See Figure 4-26.

104

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Source Control Merge Wizard (Workspace: DESKTOP-BUGDEDL) T X

. ‘) Select changesets to merge into the target branch

The list below contains specific changesets that have been checked in to the source branch but not merged into
the target branch. You can select a contiguous set of changes to move in this merge operation.

Select the changes you want to merge:

Changeset User Date Comment
41 nilmini her... 8/7/2019 8:.... index feature 1

nilmini her... 8/7/2019 8.... Add contact page content

< Previous Next > Finish Cancel

Figure 4-26. Selecting a changeset

After clicking the Next button, you will navigate to the final step of the wizard.
Click Finish to end the wizard. This merges the Featurel changes with the Develop
branch.

Now go to the Source Control Explorer and check in the changes to the server. You
will be able to see the merged changes in the Develop branch.

105

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Lesson 4-6: Exploring TFVC Branching Strategies

Selecting a suitable branching strategy for a team is an important part of the automation
process. Branching strategies can vary depending on the needs of a team, and teams

are free to create their own branching strategies according to their requirements. Let’s
identify some commonly used TFVC branching strategies in this lesson.

Main Only

This is a basic branching strategy with one branch. If we are using this branching
strategy, we need a way to identify development changesets and the changesets go to
production in a given release. A main-only branching strategy is controlled using labels
to identify releases or any other important milestones. Once a release is made, the
branch is labeled on the changeset that the release is taken. See Figure 4-27. However,
this strategy may create clutter in the source control system as changesets from multiple
features may get added randomly to the main branch, which makes it really difficult to
isolate a feature change if a need arises.

Label Label
Main i)) y 1) >
c C c c c

Figure 4-27. Main only

Development Isolation

The main purpose of this branching strategy is always maintaining a stable main
branch. So, create dev branches from the main branch and do the development in the
dev branch. When merging the dev branch with the main branch, first merge the main
branch to the dev branch with forward integration (FI) to make sure any changes in the
main branch are applied to dev and resolve conflicts if any. Then integrate changes from
the dev branch to the main branch using reverse integration (RI). See Figure 4-28.

De
———— »
F1 R\
Ma:n) G >
¢ c m

B c

Figure 4-28. Development isolation
106

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Feature Isolation

The concept of this branching strategy is to create separate branches from the main
branch or from the dev branch for each feature. Frequently merge the parent branch
to the feature branch. But the feature branch merge to the stable parent branch time
is decided by the team upon completion of the feature. Some teams decide to merge
the feature branch to the dev or main branch when the definition of done is met. This
gives feature isolation in the stable branches, which might be useful in managing the
codebase. See Figure 4-29.

JCB“U#. .

< .c LAl <
) R\
Mainy et % >4
B < c m

c

Dev

Figure 4-29. Feature isolation

Release Isolation

Create release branches from main. Always merge the changes from the release branch
to main when a hot fix is made. But never merge the main branch changes back to the
release branch because it is maintained as the production-deployed code. You can use
different permission restrictions to prevent unwanted branch merges, which we will
discuss in Chapter 6. See Figure 4-30.

Figure 4-30. Release isolation

107

CHAPTER 4 TEAM FOUNDATION VERSION CONTROL BRANCHING

Servicing and Release Isolation

The servicing branch model is useful when you need to release service packs to

your customers until the next major release is made. There should never be forward
integrations happening from main to service or from service to release branches in this
strategy. For subsequent releases, you can create new servicing branches and release
branches. See Figure 4-31.

c} c < c c
Main 3 : ' A L \ 5

.Szf\,-'.(e_ se ; >

Ry A hok-§ix

Relecse vi 4 g >

Figure 4-31. Service and release isolation

You can further introduce hotfix branches to the service and release isolation
strategy, but it is not a recommended approach.

In this lesson, we discussed a few common branching patterns used with TFVC. You
may use these patterns in combination to achieve a branching strategy suited to your
project’s needs.

Summary

In this chapter, we explored the branching and merging abilities of TFVC. We discussed
how to resolve merge conflicts and the available options for branching and merging.
Further, we explored the commonly used branching patterns to understand the possible
strategies for implementing a branching structure for a given project’s needs.

In the next chapter, we will discuss the command-line options available
for TFVC. These command-line options will be especially useful in performing
administrative tasks with TFVC.

108

CHAPTER 5

Team Foundation Version
Control: Command Line

The command line in Team Foundation Version Control (TFVC) allows you to perform
almost any action that you can do with Visual Studio; in fact, there are additional
actions that can be performed in TFVC using only the command line. In this chapter,
let’s explore the command-line capabilities of TFVC so you can perform additional
administrative and general actions, including and beyond the actions you can perform
with Visual Studio. The purpose of this chapter is to get you started with TFVC
commands so that you are familiar with how to use them. Once you know how to use
the commands described in this chapter, you will be able to use many other TFVC

commands in the same way.

Lesson 5-1: Getting Started with the Team
Foundation Command Line

The Team Foundation Version Control command line comes as tf.exe. This command-
line tool enables you to perform several command-line actions in TFVC. Let’s look at
how we can enable the usage of the tf command line on a computer.

Developer Command Prompt for Visual Studio

If you have Visual Studio installed on your computer, you have the developer command
prompt for Visual Studio. When you open the developer command prompt, you can type
tf vc help tolist the TFVC commands available. See Figure 5-1.

109
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_5

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

BN Administrator: Developer Command Prompt for VS 2019

e ok 3k ke 3 ok ok ok ok ok ok ke ke ok ke ok ok ok ok ok ok ok ol ok e o ok ok ok ok ok ok ok ke ke e ok ke ok ke ok ok ok ke ke ol ok o o sk ok ok ok ol ke ke o ol ke o ok ok ok ok ok ok ok ok ok ke

** Visual Studio 2019 Developer Command Prompt v16.0.1

** Copyright (c) 2019 Microsoft Corporation
e ol o ok ol ok ok ol ke ok ok ke ok ke ok ke ok ke ok ol e ol ok ok e e ke ol ke ok ok ok e e ke ok ol e e ol ok e ok ok ol ol ke ok ok e e ok ok ol e ke ol ol e ok ok ol e e ok o ok ok ok ok

C:\Program Files (x86)\Microsoft Visual Studio\2@19\Enterprise>tf vc help
Microsoft (R) TF - Team Foundation Version Control Tool, Version 16.133.28804.1
ICopyright (c) Microsoft Corporation. All rights reserved.

Type tf vc help <command name> for command line description.
Type tf msdn <command name> for full documentation in Microsoft Document
Explorer.

ICommands :

tf vc add Adds new files and folders from a local file system
location to Team Foundation version control.

tf vc branch Copies an item or set of items, including metadata and
version control history, from one location to another on
the Team Foundation version control server and in the
workspace.

tf vc branches Displays the history of a branch for a specified file
or folder.

tf vc changeset Displays information about a changeset and lets you
change the associated attributes, such as comments and
check-in notes.

Figure 5-1. Developer command prompt

To get detailed help for the commands, you can type tf msdn commandname.
For example, if you type tf msdn add, a browser window will open with Microsoft
documentation for the add command. See Figure 5-2.

110

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise>tf msdn add
icrosoft (R) TF - Team Foundation Version Control Toeol, Version 16.133.28804.1
opyright (c) Microsoft Corporation. All rights reserved.

lease wait ... launching help viewer for topic add

O o ttps://docs.microsoft.com/en-u

Azure DevOps Services ~

Add command

Azure Repos Documentation

» Start Using Azure Repos
Azure Repos | Azure DevOps Server 2019 | TES 2018 | TFS 2017 | TFS 2015 | VS

> Git VS 2015 | VS 2013

~ Team Foundation version

Adds files and folders to version control.
control

Tip:
. Download PDF P . i .
Before you add files to version control, you should first set up the workspace .

»

Figure 5-2. Running the tf msdn add command

Team Explorer Everywhere Command-Line Client

The tf command-line client can be downloaded from https://github.com/Microsoft/
team-explorer-everywhere/releases. You should download the TEE-CLC ZIP file

and extract it to use the tf command line. As a prerequisite, you need to have the Java
runtime installed and JAVA_HOME set in your environment path variables for Windows
systems. See Figure 5-3.

111

https://github.com/Microsoft/team-explorer-everywhere/releases
https://github.com/Microsoft/team-explorer-everywhere/releases

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

User variables for chamindac

Variable Value

JRE_HOME C:\Progra~1\Java\jre1.8.0 211

PATH C:\Users\chamindac\AppData\Roaming\npm

TEMP %USERPROFILE%\AppData\Local\Temp

TMP %USERPROFILE%\AppData\Local\Temp
New.. || Edit. || Delete

System variables

Variable Value A~

ComSpec C:\windows\system32\cmd.exe E

-FR_NQ_HOST CH... NO

[JAVA_HOME C:\Progra~1\Java\jre1.8.0_211

NUMBER_OF_PRU.. &

0s Windows_NT h
New.. || Edit. || Delete |

. oK | Cancel |

Figure 5-3. Setting JAVA_HOME

Then you can open a command prompt, navigate to the folder where you have
extracted the tf command-line client, and execute the tf eula command to accept the
end-user license agreement (EULA). You have to press the Enter key a couple of times
to get to the end of the agreement, where you will be prompted to accept the license

agreement. See Figure 5-4.

e pr8sent contrat dBcrit certains droits juridiques.
bourriez avoir dfautres droits prBuus par les lois de votre pays. Le prBsent
ontrat ne modifie pas les droits que vous conferent les lois de votre pays
<1 celles-ci ne le permettent pas.

Do you accept the terms of this End User License Agreement? [y/N1: o

Figure 5-4. EULA for TF CLC

112

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

Note that there are slight differences when using the developer command prompt
for Visual Studio versus when using the command-line client. For example, tf vc
help and tf msdn commandname are not valid commands in the command-line
client. However, most of the Team Foundation Version Control commands work with
both options.

In this lesson, we discussed how to get started with the command line for Team
Foundation Version Control.

Lesson 5-2: Using Workspace Commands

There are two commands related to TFVC workspaces. In this lesson, we’'ll look at them
to understand the usage.

workspaces Command

The workspaces command allows you to view information about the workspaces on
the system. For example, you can execute the workspaces command with the following
syntax to obtain any workspace on any computer you have for your username (see
Figure 5-5):

tf workspaces /collection:https://dev.azure.com/chamindac /computer:*
Collection: https://dev.azure.com/chamindac

IC: \Program Files (x86)\Microsoft Visual Studj[se>tf workspaces fcollection:https://dev.azure.com/chamindac /computer:*
iICollection: https://dev.azure.com/chamindac

Workspace Ouner Computer Comment
ALM2812 Chaminda Chandrasekara ALM2812
BRANDIXI3 Chaminda Chandrasekara BRANDIXI3
ICHAMINDAC Chaminda Chandrasekara CHAMINDAC
ICHAMINDAC 1 Chaminda Chandrasekara CHAMINDAC
{CHAMINDAC - PC Chaminda Chandrasekara CHAMINDAC -PC
ICHAMINDA - PC Chaminda Chandrasekara CHAMINDA-PC
ICH-DEMO-VS Chaminda Chandrasekara CH-DEMO-VS
ICH-DEMO-VS_1 Chaminda Chandrasekara CH-DEMO-VS
ch-jblwork Chaminda Chandrasekara ch-jblwerk
(CH-V52817 Chaminda Chandrasekara CH-VS2817
ICH-V52017_1 Chaminda Chandrasekara CH-V52017
ICHXAMARINE Chaminda Chandrasekara CHXAMARINE
ICHXAMARINE _1 Chaminda Chandrasekara CHXAMARINE
[CRM- CHAMINDA Chaminda Chandrasekara CRM-CHAMINDA

Figure 5-5. Getting all the workspaces for the current user

113

https://dev.azure.com/chamindac
https://dev.azure.com/chamindac

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

You can pass /owner : * in addition to the previous command to get all the workspaces
of all the users, or you can specify a username to retrieve workspace information for a
given user on all computers for the team project collection (Azure DevOps organization).
The /remove: workspace names command allows you to remove one or more workspaces.
If you're listing more than one workspace, then separate the names with a comma. There
are a few other arguments and options you can pass to the workspaces command to
perform different actions. Type tf msdn workspaces at the developer command prompt
to see the full list of arguments and options in the Microsoft documentation.

workspace Command

Using the workspace command, you can view, modify, create, or delete a workspace.
Let’s try a few commands.

Create a folder named betal and open the developer command prompt for Visual
Studio. Change the directory to the beta1l folder. Then execute tf workspace /
new betal /collection:azuredevopsaccounturl. This will open a dialog asking for
confirmation to map the beta1 folder to the new workspace. Click OK to create the
workspace. See Figure 5-6. You may be prompted to get the latest version of code, but
you can skip that by clicking No.

c:\temp\betal>tf workspace /new betal /collection:https://dev.azure.com/chamindac

fJ Add Workspace - a X
Name: betal
Working folders:
Sta.. Source Control Folder Local Folder

Act... $/ c\temp\beta1

Click here to enter a new worki

1 Remove Advanced >> Cancel

Figure 5-6. Creating a new workspace

114

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

The workspace is created for the current user. Now, if you run the command tf
workspaces, you will see the new workspace called beta1. See Figure 5-7.

c:\temp\betal>tf workspaces
Collection: https://dev.azure.com/chamindac

Workspace Owner Computer Comment
betal Chaminda Chandrasekara VSCookBook
c:\temp\betal>_

Figure 5-7. New workspace betal

Create another folder named beta2 and execute tf workspace /new
beta2;usernameofanotheruser /collection:azuredevopsaccounturl to create a
workspace for a given user. Then click OK at the prompt. See Figure 5-8.

3] Add Workspace - a o

Name: beta2
Working folders:

Sta.. Source Control Folder - Local Folder
Act_ 8§/ c\temp\beta2

Click here to enter a new worki

k:\temp>cd beta2

:\temp\beta2>tf workspace /new beta2;"nilmini herath"™ /collection:https://dev.azure.com/chamindac

Figure 5-8. New workspace for another user

115

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

Execute the tf workspaces command to see the two new workspaces available on
the machine with two owners. See Figure 5-9.

c:\temp\beta2>tf workspaces
Collection: https://dev.azure.com/chamindac

Workspace Owner Computer Comment
betal Chaminda Chandrasekara VSCookBook
beta2 nilmini herath VSCookBook

Figure 5-9. Workspaces

From the mapped local folder, you can just execute tf workspace to open the
workspace property editor. In the pop-up window, you can click the Advanced button to
view and edit the workspace properties. See Figure 5-10.

k:\temp\beta2>tf workspace

@ Edit Workspace beta? | - O X
Name: ==
Working folders:
Sta.. Source Control Folder - Local Folder
Act.. $/ c\temp\beta2

Click here to enter a new worki..

Remove Advanced >> Cancel

Figure 5-10. Editing a workspace

You can delete a workspace using tf workspace /delete workspacename;
ownername, as shown in Figure 5-11.

116

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

c:\temp\beta2>tf workspace /delete beta2;"nilmini herath"

W deleted workspace cannot be recovered.

MWorkspace 'beta2;nilmini herath' on server 'https://dev.azure.com/chamindac’ has ® pending change(s).
lAre you sure you want to delete the workspace? (Yes/No) Yes

c:\temp\beta2>tf workspaces
Collection: https://dev.azure.com/chamindac
Workspace Owner Computer Comment

c:\temp\beta2>_

Figure 5-11. Deleting a workspace

You can execute tf msdn workspace at the developer command prompt for Visual
Studio to open the documentation for the command.

In this lesson, we looked at a few actions we can perform with the workspace and
workspaces commands. You will find these commands useful for doing administrative
tasks in TFVC.

Lesson 5-3: Running Various Commands

You learned how to add files, check in files, check out files, rename files, etc., using Visual
Studio with TFVC. You can perform these actions using the command line as well. Let’s
try them in this lesson using the workspace we created in the previous lesson.

Prerequisites: You followed the previous lesson and created a workspace.

Open the betal workspace folder created in the previous lesson or create a new
workspace that is mapped to the Azure DevOps organization. Then create a new
team project named LearnTFVC with Team Foundation Version Control. Creating a
team project was explained in the Hands-On Azure Boards book of this book series.

See Figure 5-12.

117

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

Create new project X

Project name *

LearnTFVC W
Description
Visibility

Public Private

Anyone on the internet can Only people you give

view the project. Certain access to will be able to

features like TFVC are not view this project.

supported.

/N Advanced

Version control @ Work item process @

Team Foundation Version Control v Agile v

Figure 5-12. Creating a team project

get

Open the developer command prompt for Visual Studio and change the directory to the
workspace folder of the Azure DevOps organization. We can use the get command to
get the latest version of $/LearnTFVC. Execute tf get $/LearnTFVC from the workspace
folder. See Figure 5-13.

118

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

c:\temp\betal>tf get $/LearnTFVC
c:\temp\betal:
etting LearnTFVC

c:\temp\betal>_

Figure 5-13. Getting the latest version

You can use the -version parameter to specify a version to get. To access the
documentation to learn more about the tf get command, execute tf msdn get from
the Visual Studio command prompt. Since we have gotten the latest version for the path
$/LearnTFVC, you will find that a LearnTFVC folder is created within your workspace
folder. See Figure 5-14.

Ic:\temp\beta1>dir'
Volume in drive C is Windows
] Volume Serial Number is C247-3C56

y Directory of c:\temp\betal

8/20/2019 11:29 PM <DIR>
8/20/2019 11:29 PM <DIR> 5
8/20/2019 11:29 PM <DIR> LearnTFVC

0 File(s) @ bytes

3 Dir(s) 76,096,212,992 bytes free

Figure 5-14. LearnTFVC folder in workspace

119

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

add

Create a folder named main inside the LearnTFVC folder. Then, using Visual Studio or
Visual Studio Code, create a simple Console Application project in the main folder. Now
from the LearnTFVC folder, you can execute tf add *.* /recursive to add all the files
in the project to source control to make the files pending changes. The bin and obj
folders will be ignored by default. See Figure 5-15.

c:\temp\betal>cd learntfvc

c:\temp\betal\LearnTFVC>tf add *.* /recursive
main

main:
ConsoleAppl

main\ConsoleAppl:
ConsoleAppl
ConsoleAppl.sln

main\ConsoleAppl\ConsoleAppl:

ConsoleAppl.csproj

Program.cs

Items matching the following exclusions were ignored: bin;obj

c: \temp\betal\LearnTFVC>_

Figure 5-15. Running the tf add command

You can use tf msdn add to open the documentation at the developer command
prompt for Visual Studio to learn more.

checkin

From the LearnTFVC folder, execute tf checkin /comment:"Add New Console App"
/recursive to check in all the files added. You will get a pop-up window that lets you
associate work items, select files, deselect files to check in, and so on. Click the Check In
button. See Figure 5-16.

120

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

| m Check In - Source Files - Workspace: betal;Chaminda Chandrasekara = (m] X te

B ojeEEaa2e¢ i

Source Files
Comment:
& Add W CO |
Work Items ing new console app|
th Name Cha.. Folder
Check-in main add c\temp\betal\LearnTFVC
SO [A¥iconsoleA.. add c\temp\betal\LearnTFVC\main

{_J [M™iconsoleA.. add c\temp\betal\LearnTFVC\main\ConsoleApp1
k"l'_‘:" MB)consoleA.. add citem p\betal\LearnTFVC\main\ConsoleApp1
A 0s [ACiconsoleA.. add c\temp\betal\LearnTFVC\main\CenscleApp1\CenscleApp1

L) EAE Programcs add c\temp\beta1\LearnTFVC\main\ConsoleApp1\ConsoleApp1
Conflicts

:\temp\betal\LearnTFVC>tf checkin /comment:"Adding new console app”™ /recursive

Figure 5-16. Running the tf checkin command

Once you click the Check In button, the files will be checked in. To learn more about
the checkin command, execute tf msdn checkin at the developer command prompt of
Visual Studio.

checkout (or edit)

To check out a file, you can execute tf checkout filename or tf edit filename.
Then you can make changes to the file and check in the file. It is possible to recursively
check out files in the folder of a given path or check out all the files recursively from the
workspace using /recursive. For more information about the checkout command,
execute tf msdn checkout or tf msdn edit from the developer command prompt for
Visual Studio.

121

CHAPTER5 TEAM FOUNDATION VERSION CONTROL: COMMAND LINE

rename

To rename files, you can use tf rename oldite newitem. For example, tf rename
classx.cs classy.cs will rename classx.cs to classy.cs. You can use /lock to

lock a file exclusively to prevent other users from checking it in or out. To open the
documentation for more information about rename command, execute tf msdn rename at
the developer command prompt for Visual Studio.

undo

The undo command is a really useful command allowing users to discard pending
changes. You can use tf undo filename to undo a pending change in a given file. The
/workspace:workspacename command can be used with tf undo to discard changes in a
remote workspace. If the workspace not specified, the workspace of the current folder is
considered for the command. /workspace:workspacename;workspaceowner can be used
with tf undo to discard changes of other users’ workspaces. However, when you undo
changes in a remote workspace, before working in that remote workspace, a get all
command should be performed in the remote workspace. tf undo will discard any locks
applied on files in that workspace.

In this lesson, we explored the command-line options to add files to TFVC, check
files in and out, and rename files. tf undo is a really useful tool we learned about in
this lesson; it can undo changes in missing workspaces (due to the unavailability of the
remote machine) or workspaces owned by users who are no longer available, discarding
the pending changes and removing the locks on files in remote workspaces and
workspaces owned by other users.

Summary

In this chapter, we explored several commands available in TFVC. Now you have a
good understanding of how to use TFVC commands. There are many other commands
available in TFVC such as tf lock, tf branch, tf merge, etc. You can execute
tf vc help to get alist of the tfvc commands available. Then you can execute the
tf msdn command at the developer command prompt for Visual Studio to open the
documentation for a given command.

In the next chapter, we will explore the security and permissions management
features of Team Foundation Version Control.

122

CHAPTER 6

Team Foundation Version
Control: Security

Security is a crucial part of any source control server. The Team Foundation Version
Control (TFVC) server offers various security methods to improve the safety of the team’s
source code content. In this chapter, let’s look at how to control the access of TFVC and
maintain a secure codebase.

Lesson 6-1: Setting Up TFVC Security at the Team
Project Level

We can control access to the project source code in several ways. One mechanism is to
control access is from the team project level. This lesson will give you an idea about the
available security options in an Azure DevOps team project for TFVC.

Prerequisites:

e Azure DevOps project with TFVC as the source control system
o The ability to log in to Azure DevOps as the administrator

Go to the project settings of the Azure DevOps project. Select Repositories in the
Repo section. You will see the repository security control options available in Azure
DevOps. See Figure 6-1.

123
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_6

CHAPTER6 TEAM FOUNDATION VERSION CONTROL: SECURITY

f:} Azure DevOps sidevop TheDarkKnigr Settings Repositories P Search
= <
BB theoarkknight + Exchboaids Rapositories Security for $/TheDarkKnight
Boards o Security Options
ﬂ Overview s
Project configuration + Add. Inheritance ¥
% & §/TheDarkKnight
Boards Team configuration —
9 ¥ Develop Searct 2
GitHub connections ; £ I
Repos ¥ Featurel B Project Collection Administrators
Pipelines ¥ Feature2 B Project Collection Build Service Accounts
Pipelines : ;
* ipell main B Project Collection Service Accounts
Agent pools
- P master Build Administrators
A Test Plans Parallel jobs 8
: © Git repositories 8 Contributors
, Settings
. Artifacts € TheDarkKnight 8- Project Administrators
Test management
i ‘B‘ Reacers
i Time Release retention

Service connections

Repos
. Repositories |

Policies

Test

S Project settings &«

Retention >

Figure 6-1. Moving to the repository’s security controls

Also, you can move to the security control page through the repository page. Go
to the Azure DevOps repository. Select the Files section. At the top of the repository,
you will see a drop-down icon in front of the repository name. Click the drop-down
and select “Manage repositories” to move to the security controls of the repository. See
Figure 6-2.

124

CHAPTER 6 TEAM FOUNDATION VERSION CONTROL: SECURITY

C’ Azure DevOps TheDarkKnight /Repos/ File 90 S/TheDarkKnight v

. ,O Filter repositories
TheDarkKnight |+ ¢/TheDarkKnight / .

& §/TheDarkKnight

Overview . ;
- £ $/TheDarkKnight ... 49 TheDarkKnight oad file(s)
% Boards ¥ Develop -+ New repository E.
¥ Featurel T Import repository A
4l Repos : i 1
i % Feature2 & Manage repositories
E 19
| [3 Files main
¥ Feature2 8/5/2019
8 Changesets ¥ Master
main 8/3/2019
?; Shelvesets
I Master 8/5/2019

* Pipelines
& TestPlans

Figure 6-2. Selecting the “Manage security” drop-down item to move to the
security controls

Now we are on the repository security control page. You can see the Azure DevOps
groups listed on the permission control page. Each group has been set up with different
permissions for the repo. In addition to these default security groups, you can add
individual users or groups and control the access to the repository. See Figure 6-3.

125

CHAPTER6 TEAM FOUNDATION VERSION CONTROL: SECURITY

Security for $/TheDarkKnight

Security Options
. ACCESS CONTROL SUMMARY
+ Add.. Inheritance ¥ Shows information about the permissions being granted to this identity
Search i Administer labels Not set
Check in
« Azure DevOps Groups Lneck Not set
: ;s Check in other users' changes Not set
-B Project Collection Administrators " 9
) .) . Labe Not set
£ Project Collection Build Service Accounts
Lock Not set
& Project Collection Service Accounts 2 ;
vianage branch Not set
& suild Administrators Manage permissions Not set
& Contributors Merge Not set
.8. Project Administrators Pend a change in a server workspace Not set
B Readers Read Allow
Revise other users' changes Not set
v Users
Undo other users’' changes Not set
ushpa.herath8s
° b Unlock other users’ changes Not set

Clear explicit permissions

Remove Save changes Undo changes

Figure 6-3. Azure DevOps groups and individual users

Azure DevOps allows you to control the repository access using the following options:
¢ Administer Labels

The user with this permission can edit or delete the labels added
by other users.

e Checkin

The user with this permission can check in the changes. Also, the
user with this permission can revise any committed changes.

o Check in other users’ changes

When multiple users work in the same workspace, the users with
this permission can check in the changes made by other users.

126

CHAPTER 6 TEAM FOUNDATION VERSION CONTROL: SECURITY

Label
A user with this permission can label the changesets.
Lock

Users with this permission can lock the folders and files,
preventing other users from checking out the file or the folder.

Manage branch

Users with this permission can convert folders to branches, edit
properties, reparent branches, and convert branches back to
folders.

Manage permissions

Users with this permission can control other users’ permissions
for folders and files.

Merge

Users with this permission can merge changes into the given
path/branch.

Pend and change in a server workspace

Users with this permission can add a pending changeset to the
server workspace by doing actions such as checking out, adding/
editing files, etc.

Read

Users with this permission can read the content of files and
folders.

Revise other users’ change

Users with this permission can change the comments of checked-
in files not only made by themselves but also by others.

Undo other users’ change

Users with this permission can undo the changes made by
another user.

127

CHAPTER6 TEAM FOUNDATION VERSION CONTROL: SECURITY

e Unlock the other users’ changes

Users with this permission can unlock files and folders locked by
another user.

In front of each of these permissions, you will see the value as Not Set, Allow, or
Deny. Project administrators can change these permissions by clicking these values.

So far, we have discussed all the crucial parts of the security controls. Further, you
will see an Options link next to the Security link. Click the Options link. You will see a
toggle that allows you to enable or disable web editing of the repository. See Figure 6-4.

Options for $/TheDarkKnight

Repositories

New repository R o

& $/TheDarkKnight Options

P Develop

P Featuret @ o0 Web editing
Enable web-editing for this TFVC repository.

P Feature2
main
P Master
@ Git repositories

¢ TheDarkKnight

Figure 6-4. Enabling or disabling web editing

Let’s see how this option works by disabling web editing. After disabling web editing,
go to the repository and select a file. Click the Edit button. You will see a message that
explains that web editing has been disabled. See Figure 6-5.

128

CHAPTER 6 TEAM FOUNDATION VERSION CONTROL: SECURITY

TheDark ' baTLire Wat Appheat trollers | HomeController.cs

[|
s

-

Figure 6-5. Web editing disable message

This lesson explained the Azure DevOps security permissions of the repositories.
We were able to learn about different TFVC repository permissions available in Azure
DevOps.

Lesson 6-2: Applying Permissions at the
Branch/Folder or File Level

We discussed how to do access control for an Azure DevOps TFVC repository in the
previous lesson. Now you have the idea about the access control options available in
Azure DevOps. Let’s discuss further the repository access control within this lesson. We
will discuss how to control the permission of a branch, folder, or file.

Prerequisites:

e Azure DevOps project with TFVC as the source control system

Open Visual Studio and connect to the Azure DevOps project using Team Explorer.
Move to the Source Control Explorer of the project. Here you can see the branches,
folders, and files of the selected project.

Let’s discuss how we can control the access of a branch of the project.

Right-click a branch and select the Advanced option from the pane. Then you will
see another pane with a few options. Select Security from the pane. See Figure 6-6.

129

CHAPTER6 TEAM FOUNDATION VERSION CONTROL: SECURITY

Source location:

Folders

g3 $/TheDarkKnight/Develop

% || Local Path: C:\Users\Pushpa Herath\Documents\DarkKnight\TheDarkKnight\Develop

4 85 dev.azure.com/sldevop

b w& TheAvengers

4 &8 TheDarkKnight
D E Dmll =
b g Featu

Open in File Explorer

b g Featui & Get Latest Version

b main |
b 8 Maste

Check Out for Edit...
Delete

b |

Rename

Move...

Rollback...

Undo Pending Changes...
Check In Pending Changes
Shelve Pending Changes
View History

Compare...

RO DB S

New Folder
3 Add ltems to Folder...

Branching and Merging

Name =

WebApplication2

faWebAp plication2.sln

& Get Specific Version...

Lock...
Unlock

Apply Label...

P ropeflies. -

Show outputrom: | [P Raneed ™ > Cloak

Figure 6-6. Selecting the Security option of the branch

Pending Change User

Latest

Yes
Yes

Last Check-in

8/5/2019 8:37:3...
8/5/2019 8:37:3...

You might be asked to enter the Azure DevOps credentials before navigating to

the Azure DevOps security section where you can control the access permission to

the specific branch. In this example, we can control the access permission of the

Develop branch. These changes will not affect the other branch permissions. See

Figure 6-7.

130

CHAPTER 6 TEAM FOUNDATION VERSION CONTROL: SECURITY

‘:l sidevop TheDarkKnight Settings Security L Search = G o
1
| $/TheDarkKnight/Develop
1 . ACCESS CONTROL SUMMARY
L Add..~ Inheritance ~ Shows Information about the permissions being granted to this identity
Search Lis Allow (inherited)
=) Project Collection Administrators Al Ginherited)
. 2 » . Check in other users’ changes All heri
-) & eroject Collection 8uild Service Accounts e g i)
Labe Allow (inherited)
8- Project Collection Service Accounts
- Lock Allow (inherited)
-B- Build Administrators Allow (inherited)
) 1
q B contributors Allow (inherited)
:: 8 Project Administrators Allew (inherited)
A B Readers \ge in & server workspace Allow (inherited)
Allow (inhernted)
. Allow (inhernted)
Allow (inherited)
B Allow (inherited)
r explici FINiSSion:
» Remove Save changes Undo changes Close

Figure 6-7. Permission of the branch

You have seen how to control the permission of the branch. Let’s see how to control
the permission of a folder.

Go to the Source Control Explorer. Select a folder and right-click it. A pane will open.
Select the Advanced option and then Security. See Figure 6-8.

131

CHAPTER6 TEAM FOUNDATION VERSION CONTROL: SECURITY

Source location: | $/TheDarkKnight/Feature1/WebApplication2/Controllers

Folders

XK || Local Path: C:\

4 28 dev.azure.com/sldevop
b &8 TheAvengers
4 &% TheDarkKnight
b =3 Develop
4 3 Featurel
4 ©.] WebApplication2
App_Start
Content
Controller %
fonts
Properties
Scripts
. Views
12 Home
2 Sharec
b =3 Feature2
B B main
b 3 Master

smojdxg palgp eaes 105

AT T T TTT

Qutput

Name =

" HomeController.cs

Open in File Explorer

Get Latest Version

Check Out for Edit...
Delete

Rename

Move...

Rollback...

Undo Pending Changes...
Check In Pending Changes
Shelve Pending Changes
View History

Compare...

New Folder

Add Items to Folder...
Branching and Merging
Find

L

Pending Change User

% Get Specific Version...

Lock...
Unlock

Apply Label...

E_E'roperties...

w~ Cloak...

Figure 6-8. Security option for a folder

Last Check-in
8/5/2019 8:40:4...

After selecting Security, you will navigate to the folder security page where you can
control the security of the selected folder. See Figure 6-9.

132

CHAPTER 6 TEAM FOUNDATION VERSION CONTROL: SECURITY

G sl TheDarkKnight Settings Security L Search = & o
= I S - .
n $/TheDarkKnight/Featurel/WebApplication2/Controllers
” ACCESS CONTROL SUMMARY
4 Add..> Inheritance ~ Shows information about the permissions being granted to this identity
Search P Administer labels Allow (inherited)
= £ Project Collection Administrators Check in Allow (inherited)
: Check in other users’ changes Al it
% ﬂ Project Collection Build Service Accounts g o loheritec)
Labe Allow (inherited)
48» Project Collection Service Accounts
Allow (inherited)
. B Build Administrators Allow (inherited)
q G contributers Allow (inherited)
= 8 Project Administrators Allow (inherited)
A 8 Readers n a server workspace Allow (inherited)
Allow (inherited)
! Allow (inherited)
Allow (inherited)
Unlock other users’ changes Allew (inherited)
lear i Tigsi
» S e i Indo changes Close

Figure 6-9. Security control of the folder

Let’s see how we can control the security of the file. Go to the Source Control
Explorer and select the file for which you want to change the permission. Right-click
the file, select the Advanced option, and then select Security, as explained earlier. You
will be navigated to the Azure DevOps security control page where you can control the
permission of the selected file only. See Figure 6-10.

133

CHAPTER6 TEAM FOUNDATION VERSION CONTROL: SECURITY

J sidevop TheDarkKnight Settings Security 2 search = G o
BB | i/TheDarkknight/Featurel/WebApplication2/Views/Home/About.cshtml
” ACCESS CONTROL SUMMARY
+ Add... Inheritance ~ Shows information about the permissions being granted to this identity
Search £ Administer labels Allow (inherited)
ﬂ 8 Project Collection Administrators Check in Allow (inherited)
Check in other users’ changes Allow (inherited
E 8- Project Collection Build Service Accounts g h hented]
Allow (inherited)
8 Project Collection Service Accounts
Allow (inherited)
L i ministr:
-B- Build Administrators Allow (inherited)
q B contributors Allow (inherited)
‘B‘ Project Administrators Allow (inherited)
A 8 Readers a server workspace Allow (inherited)
Allow (inherited)
B Rev Allow (inherited)
U Allow (inherited)
A U Allow (inherited)
lear ligi rmisgsi
» Y }] Close

Figure 6-10. Security control of the file

This lesson explained security control at the branch level, folder level, and file level.
You can set different access permissions for each file in the repository. By using these
options, you can maintain a stable codebase securely in a TFVC repository.

Lesson 6-3: Auditing Changes and Finding Out Who
Did What

While working as a team with a common codebase, sometimes we need to track who has
made changes in each part of the code. So, let’s discuss how we can track the changes
easily with Visual Studio.

Prerequisites:

e Azure DevOps project with Team Foundation Version Control as the

source control system

134

CHAPTER 6 TEAM FOUNDATION VERSION CONTROL: SECURITY

Go to Visual Studio’s Source Control Explorer. Select the file with the change. Right-
click the file and select the Compare option in the menu. See Figure 6-11.

...!:3& (&) DX 8 T AP @ D&Y -| Workspace DESKTOP-BUSDEDL -
Source locat §/TheD. ight/Featurel/WebApplication2/Views/Home =
Folders x || Local Path: C\Users\Pushpa Herath\Documents\DarkKnight\ TheDarkKnight\Feature \WebApplicationZ\Views\Home
4 &2 dev.azure.com/sidevop Name = Pending Change User Latest Last Check-in
b i .}:’g:ﬂf:sm + B[About.csh—— s Aiihersth Yes /5/20198521..|
’ ﬁ: E!Dwdu;g [Contactcs = View Yes 8/7/2019 8:404...
View With... .41
43 Featurel [3 Index.cshs o - Yes 8/7/2019 B4LA..
4 . WebApplication2 Open in File Bxplores
b 15 App_Start & GetLatest Version
¥ Content Check Out for Edit...
b 14 Controllers
p Hll forts X Delete
I Properties Rename
(3 Scripts Move...
4 "r"": Rollback...
ome :
b Shared *2 Undo Pending Changes...
b &3 Feature2 & CheckIn Pending Changes
b il main * Shelve Pending Changes
b g Master ® View History
0 Annctate
Branching and Merging 3 I

Figure 6-11. Selecting Compare

The Compare window will open. You can select the source file and target file from
this window. Also, you can select the file source version to compare and the workspace.
In this example, we are comparing the workspace version of the file with the source

version. You can see the comparison between the two versions of the file in Figure 6-12.

htm Contact.cshtml

Diff - About.cshtml = X
sers\Pushpa Herath\Decuments\DarkKnight\TheDarkKnight\Featurel\WebApplica

Server: $/TheDarkKnight/Featurel/WebApplication2/Views/Home/About.cshtn | Locak C:

1 @ - 1

2 ViewBag.Title = "About This is feature 1%; _| I | ViewBag.Title = “"About This is feature ; —
3 } 3 } 1

4 <h2»@ViewBag.Title.</h2> 4 <h2>@ViewBag.Title.</h2> .
5 <h3>@ViewBag.Message</h3> 5 <h3>@ViewBag.Message</h3>

6 6

7 <p>Use this area to provide additional informatic 7 <p>Use this area to provide additional information.</p>

8 8

Figure 6-12. File version comparison

135

CHAPTER6 TEAM FOUNDATION VERSION CONTROL: SECURITY

With this comparison option, we can compare the changes made in each file.

Visual Studio Team Explorer has another option where we can track the person who
made each change in a file.

Go to the Source Control Explorer. Select the file and right-click it. A pane will open.
Select Annotate from the pane. See Figure 6-13.

-.!:Bi (&) DX 8 T AP @ D&Y -| Workspace DESKTOP-BUSDEDL -
Source locat; 5/TheD. ght/Featurel/WebApplication2/Views/Home =
Folders x [Local Path: C\Users\Pyshpa Herath\Documents\DarkKnight\ TheDarkKnight\Feature1\WebApplicationd\Views\Home
4 &2 dev.azure.com/sidevop Name Pending Change User Latest Last Check-in
p &2 TheAvengers . P]
4 8 TheDarkKnight @About.cshtml | Ve 85201985210
b 3 Develo [Contact.cshtml Yes 8/7/2019 8:404...
et [index.cshtm! Vi With.- Ves 8/7/2019841A..
4= : QOpen in File Explorer
4 . WebApplication2 .
b W App_Start & GetLatest Version
b i Content Check Out for Edit...
b Controllers X Delete
13 fonts 5
I Properties ename
3 Scripts Move...
4 Views Rollback...
Boime) Undo Pending Changes...
3 Shared
b 3 Feature2 & CheckIn Pending Changes
p B main 2 Shelve Pending Changes
b T8 Master \r\) View History
[Compare...
| i
Branching and Merging 4 [

Figure 6-13. Selecting Annotate

After selecting Annotate from the pane, you will navigate to the page where you can
see the changes made by each user. See Figure 6-14.

Aboutcshimts (encttes) = I

nilmini herath 8/5/2019 1
36 nilmini herath 8/5/2019
32 nilmini herath 8/5/2019

ViewBag.Title = "About This is feature 17;

2
3}

4 <h2>@viewBag.Title.</h2>
5 <h3>@viewBag.Message</h3>
6

/ <p>Use this area to provide additional information.</p>

Figure 6-14. Annotating a file with usernames

This lesson explained how we can track the changes made by each user in the source
files. This is a helpful feature while working in a team.

136

CHAPTER 6 TEAM FOUNDATION VERSION CONTROL: SECURITY

Summary

In this chapter, we discussed the available security control options of a TFVC repository
in the Azure DevOps. Also, we discussed the ability to have different permissions for
each file and folder in the source code. Finally, we discussed the ability to track the
changes in the source code and identify who made each change in the source code by
using annotations.

In the next chapter, we will get started with Azure Git Repos, which is the distributed
version control system supported by Azure DevOps.

137

CHAPTER 7

Getting Started with
Azure Git Repos

Git is a popular version control system with many developers. The ability of Git to be
used on any platform and with almost any development tool makes it a great version
control system. Azure DevOps Services comes with Azure Git Repos, which you can use
with a development tool of your preference. Azure Git Repos also provides you with
tight integration to Azure Boards and Azure Pipelines. You can leverage Azure Boards
capabilities and track requirements alongside its implementation as well as automate
builds and deployment easily with your code in Azure Git Repos.

In this chapter, let’s explore how to get started with Azure Git Repos and use it to
develop your code with Visual Studio and Visual Studio Code. It is expected that you are
already familiar with general Git concepts, because this chapter introduces how to work
with Azure Git Repos.

Lesson 7-1: Creating an Azure Git Repo

As discussed in the Hands-on Azure Boards book of this series, you can create a team
project with Azure Git Repos or with Team Foundation Version Control (TFVC).
Regardless of the way the team project is created, you can add one more Azure Git
repositories to your team project in Azure DevOps. In this lesson, let’s focus on creating
a team project with Azure Git Repos and adding Azure Git repositories to a team project
that is created with TFVC.

139
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_7

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Creating a Team Project with Azure Git Repos

In Azure DevOps Services, you can create a team project and select the default version
control type you want to set up for the team project. Creating a team project is explained
in detail in the Hands-on Azure Boards book of this series. Select Git as the version
control system and create a team project named LearnGit. See Figure 7-1.

Create new project X

Project name *

LearnGit

Description
Visibility
#~ Advanced
Version control G Work item process (&
Git ~ Agile ~

Figure 7-1. Creating a team project with Git

After the project is created, go to Repos in the left menu. An empty Git repo is
created. See Figure 7-2.

140

f:.l Azure DevOps

LearnGit

ﬂ Overview
Q Boards
Repos

[y Files L
¢ Commits &
¥, Pushes &
x’ Branches "
@ Tags)

i1 Pull requests (o)

f Pipelines
A Test Plans
,l Artifacts

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS
¢ - el
LearnGit is empty. Add some code!

~ Clone to your computer

m SSH https://chamindac@dev.azure.com/chamindac/LearnGit/ qit/LearmnGit [E OR

Generate Git credentials

3 Clone in VS Code

“ or push an existing repository from command line

HTTPS

git remote add origin httpsy//chamindac@dev.azure.com/chamindac/LearnGit/_git/LearnGit E

git push -u origin --all

#~ or import a repository

Import

~ or initialize with a README or gitignore

Add a README Add a .gitignore: None v Initialize

Figure 7-2. Empty Git repo

Let’s get an overview of the functionality shown in Figure 7-2. We will be discussing

some of these options in detail throughout the next few chapters.

1. You can click the Files submenu item to view the files of the repo.

2. Commits of the repo are listed on this page.

3. This page lets you view the code pushes.

4. Branches can be managed on this page.

5. You can manage pull requests from this page.

6. You can copy the clone URL to clone the repo using a

development tool or the Git command line.

141

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

7. “Generate Git credentials” lets you define credentials to access the
Gitrepo. Or you can click the link to create a personal access token
(PAT) scoped to the code. See Figure 7-3. PAT creation is explained
in detail in the Hands-on Azure Boards book of this series.

User name prnmary)

chaminda_chandrasekara@yahoo.com 0y]
Alias (optional)

chamindac Iy]
Password *
Confirm Password *

s

Save Git Credentials

Figure 7-3. Git credentials

8. This button and drop-down lets you select your preferred
development tool and clone the repository in that tool.

9. You can use these commands to push a local repository using the
command line.

10. You can import a remote Git repository or a TFVC repository in
the current Azure DevOps organization using this option.

11. You can initialize your repository with a . gitignore file.

Creating Additional Git Repos in a Team Project

You can create multiple Git repos in one team project unlike one TFVC repo per project.
To create additional Git repos, you can use the small drop-down option near the name of
the Git or TFVC repo in the breadcrumb. Then click “New repository.” See Figure 7-4.

142

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

r:.l Azure DevOps haminda LearnGit Rep Files © LeamGit v
,D i’iHe' repositones
LearnGit S r T
& LearnGit is empty. Add sor
© LeamGit
Overvie
ﬂ . -+ New repository
~ Clone to your computer H
% Boards T Import repository
- SSH https//chamindac@dev.a: {58 Manage repositories 1,
Repos

Figure 7-4. New repository

Then you can provide a name for the new Git repo, select Git as type of the repo,
and create the new repo by clicking the Create button. You are allowed to create a
.gitignore file while creating the repo to initialize it. See Figure 7-5.

Create a new repository

Type
® Git v

Repository name *

SecondRepo|

() Add a README to describe your repository
Add a .gitignore:

None v

Figure 7-5. Creating a Git repo

143

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

In this lesson, you learned how to create an Azure Git repo and how to create a new
team project with a Git repo. Additionally, we looked at the options available on the
empty repo page of a new Git repo.

Lesson 7-2: Cloning an Azure Git Repo

We are going to use Azure Git Repos with Visual Studio and Visual Studio Code in this
book using a Windows environment. However, you can use Azure Git Repos with other
development tools and on Linux and macOS environments.

Prerequisites: To use Git, you need to install Git for your operating system; you can
download it from https://git-scm.com/downloads. You have created an Azure Git repo
following the steps in the previous lesson.

VS Code

To clone the Azure Git repo, copy the clone URL from the empty Azure Git repo
page, which was explained in the previous lesson. Open Visual Studio Code (you can
download and install Visual Studio Code from https://code.visualstudio.com/).
In the menu of VS Code, click View » Command Palette or press Ctrl+Shift+P. In the
command palette, type Git:Clone. See Figure 7-6.

Welcome - Core3 - Visual Studio Code [Administrator]

>Git:Clone

Figure 7-6. Running the Git:Clone command

Then paste the cloned URL into the command palette and press Enter. See Figure 7-7.

Welcome - Core3 - Visual Studio Code [Administrator]

https://chamindac@dev.azu re.com/chamEndac/LearnGit{_git{LearnGit{

Repository URL (Press 'Enter' to confirm or 'Escape’ to cancel)

Figure 7-7. Pasting the Git repo clone URL in VS Code
144

https://git-scm.com/downloads
https://code.visualstudio.com/

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

A pop-up dialog will appear asking for the clone’s local folder path. Navigate to and
select a folder to clone the repo and click the Select Repository Location button in the
pop-up window. After cloning the repo, VS code will prompt you to open the repository.
See Figure 7-8.

P Would you like to open the cloned repository, or add it to the ¢ X

current workspace?

Source: Git (Extension) Open Repository Add to Workspace

Figure 7-8. Opening the repository

If you do not open the repository with the previous option, you can go to the menu of
VS Code, select File » Open Folder, and select and open the repository folder from the
pop-up window that appears.

Visual Studio

In Visual Studio, to clone and use an Azure Git repo, you have to connect to the
team project. In the Team Explorer window of Visual Studio, click the Manage
Connections toolbar icon and then click Manage Connections and Connect to a
Project. See Figure 7-9.

145

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Team Explorer - Connect v I X
<ICRAR MV

Connect | Offline v

Manage Connections

i Connect to a Project.. Hosted Service Providers

Azure DevOps
Microsoft Corporation

Services to help you ship high quality software.
On time, every time. Focus on your code. We'll
simplify the rest.

Connect... Get started for free @
Figure 7-9. Connecting to a team project

A dialog window will appear, and you can select or add a Microsoft account or
organization account that has access to the Azure DevOps organization. Then you can
expand the Azure DevOps organization and see the team projects. Expand the LearnGit
team project and select the Git repo. Provide a local path to clone the repository and
click the Clone button. See Figure 7-10.

146

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Connect to a Project

Showing hosted repositories for:

=. chaminda_chandrasekara@yahoo.com (Microsoft account)

Add Azure DevOps Server v | Refresh

Type here to filter the list P
D v LearnASPNet5 A
4 §% LearnGit
0 LearnGit -

D w& LearnTFVC

b %% Microimage
b
p

& Microimage-Demo

v MigTest

Path:
C:\Users\chamindac\Source\Repos\LearnGit

Figure 7-10. Cloning the repository

After you click the Clone button, you will see that the repository is successfully
cloned in Visual Studio Team Explorer. See Figure 7-11.

147

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Team Explorer - Home s

€] Gﬁ ¥ | o Search Work Items (Ctrl+") o~

Home | LearnGit)

O The repository was cloned successfully. Create a new project or solution in this X
repository.

4 Azure DevOps

fl LearnGit/LearnGit

https://chamindac.visualstudio.com/LearnGit/_git/LearnGit

4 Project
Web Portal | Task Board

@ Changes V Branches |E| Pull Requests
'N, Sync B Tags |§ Work Items

L';!’:'J Builds {a' Settings

4 Solutions
New... | Open... | Show Folder View

There were no solutions found.

Figure 7-11. Azure Git repo cloned in VS

In this lesson, we discussed how to clone an Azure Git repository using Visual Studio
Code or Visual Studio.

Lesson 7-3: Creating and Pushing Code to
Azure Git Repos

Now that you have opened a repository folder in VS Code per the instructions in the
previous lesson, you can start adding code files to it. Then you can take a look at how to
add code using Visual Studio to Azure Git Repos in this lesson.

148

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Prerequisites: You followed the previous lesson and have cloned an Azure Git repo
using VS Code and VS.

Add a sample code file in the opened repository folder in Visual Studio Code. Once
you add code, you will see the pending changes appear in VS Code. See Figure 7-12.

File Edit Selection View Go Debug Terminal Help SampleCode.cs

EXPLORER Wel SampleCode.cs X

4 OPEN EDITORS

4 LEARNGIT

Figure 7-12. Sample code

Then you can provide a comment and use the Source Control menu in VS Code to
stage, commit, and push changes. A commit will commit the changes in the local Git
repo, and the changes will be pushed to the remote Azure Git repository once pushed.
See Figure 7-13.

149

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

SampleCode.cs X

Adding sample code file Pull

CHANGES Pull (Rebase)
SampleCode.cs Pull from...
Push
Push to...

Sync
Publish Branch

Commit All

Commit All (Amend)
Commit All (Signed Off)
Commit Staged

Commit Staged (Amend)
Commit Staged (Signed Off)

Undo Last Commit

Stage All Changes

Unstage All Changes

Apply Latest Stash
Apply Stash...

Pop Latest Stash
Pop Stash...

Stash

Stash (Include Untracked)

Show Git Output

Figure 7-13. Source Control menu options for Git

If you view the repo in the Azure DevOps web portal, you will now see the sample
code file in the master branch of the Azure Git repository. See Figure 7-14.

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Azure DevOps chamindac LearnGit Repos Files ‘) LearnGit v

8o

LearnGit + 3.9 master v | LearnGit / Type to find a file or folder...

- <
ﬂ QusDew © LearnGit Contents History + New v
E Boards c# SampleCode.cs Name *
Repos ¢# SampleCode.cs
[3) Files

Figure 7-14. Code in the master branch

To get the changes in the master branch to Visual Studio in Team Explorer, click

Branches. See Figure 7-15.

Team Explorer - Home v X
® © (al ¥ | G Search Work Items (Ctrl+) e
Home | LearnGit N

4 Azure DevOps
LearnGit/LearnGit
https://chamindac.visualstudio.com/LearnGit/_git/LearnGit

4 Project
Web Portal [Task Board

G) Changes V Branches |&| Pull Requests
T,L Sync B Tags | & Work Items

L-i;-J Builds Q Settings

Figure 7-15. Sync menu item

151

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Then expand the remote branches, right-click the master branch, and click Checkout
in the context menu. See Figure 7-16.

Team Explorer - Branches

o © ﬁ ? | o Search Work Items (Ctrl+")
Branches | LearnGit

New Branch | Merge | Rebase | Actions

4 Active Git Repositories

Type here to filter the list

4 0 LearnGit (master)

4 ' remotes/origin

&2 master

Checkout

%’ New Local Branch From...
2 Merge From..

Figure 7-16. Checkout menu item

If you open the Solution Explorer in the folder view, you will able to see that the file
that was pushed from VS Code is available in your local repo and checked out to the
master branch. See Figure 7-17.

152

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Solution Explorer - Folder View
GE-cCaB| -
Search Solution Explorer - Folder View (Ctrl+;)
(1. Click on Solutions and Folders above to view a list of Solutions.

4 LearnGit (C:\Users\chamindac\Source\Repos\LearnGit)
a C* SampleCode.cs

Figure 7-17. Changes appearingin VS

Now let’s try to add project from VS to the repo. You can click New in the Team
Explorer under Solutions to add a new solution. See Figure 7-18.

Team Explorer - Home v I
® © G ¥ | & Search Work Items (Ctrl+")
Home | LearGit
4 Azure DevOps
‘» LearnGit/LearnGit
J https://chamindac.visualstudio.com/LearnGit/_git/LearnGit
4 Project
Web Portal I Task Board
@ Changes V Branches ||£| Pull Requests
TJ, Sync B Tags | & Work Items
L'iﬂ Builds ﬁ Settings
4 Solutions

| Open... | Show Folder View

There were no solutions found.

Figure 7-18. New solution

153

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Then add an ASP.NET Core project. (Make sure you have the required .NET Core
SDK available on your machine. Download the .NET Core SDKs from https://dotnet.
microsoft.com/download.) The new solution path will be automatically set to the repo
folder when you use the New solution button, as shown in Figure 7-18, to start creating
the new solution. Once the solution is added, build the solution. Then in Team Explorer,
click Changes. On the Changes page of Team Explorer, you can right-click the local items
that should not be committed and ignore them, which will add a .gitignore file. Click +
on the Changes page to stage the changes. See Figure 7-19.

Team Explorer - Changes v 1>
(IS I & | Search Work Items (Ctrl+) Jo
Changes | LearnGit v |3

Branch: master

Enter a commit message (required) or stash message (optional).

Commit All | ¥| Stash v Actions =

4 Related Work Items +

There are no work items linked to the commit.

4 Changes (39) =+ -
4§l C\Users\chamindac\Source\Repos\LearnGit =
A Vs
4 &) LearnGit\v16 CRel
&1 .suo [add] D View History...
g ProjectSettings.jso Compare with Unmodified...
O sinx.sqlite [add] Blame (Annotate)
&T VSWorkspaceState Seage
4 ! WebApplication1 v
X Delete Del
4 Stashes (0) Ignore these local items
Drop All ~ Ignore this extension

There are no stashed changes.

Solution Explorer Il R=Ye]ls1{0s

Figure 7-19. Ignoring the local items

154

https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

You can provide a comment and then commit the staged changes. You can associate
work items as we have done with TFVC when doing a commit in Azure Git Repos. There
is an option to stash them, which can be used for the same purpose that we used a
shelveset in TFVC, which we will discuss later in this chapter. See Figure 7-20.

Team Explorer - Changes v 0 x
€ Gﬁ ? C; Search Work Items (Ctrl+") P -
Changes | LearnGit . |3]

Branch: master

Adding Asp.NET Core project

Commit Staged ¥ Stash » Actions =

4 Related Work Items +

There are no work items linked to the commit.

4 Staged Changes (8) —e

4 .| C\Users\chamindac\Source\Repos\LearnGit -
4 WebApplication1
4 & WebApplication1
B Properties
5‘ launchSettings.json [add]
&T appsettings.Development.json [add]
&T appsettings.json [add]
C* Program.cs [add] -

Figure 7-20. Commit staged

Then you can sync to share the changes, which will pull and push the changes. Click
Sync in Team Explorer and on the Synchronization page of the Team Explorer sync.
This will pull the master branch and then push your commit so that it is available in the
remote repo. See Figure 7-21.

155

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS
Azure DevOps chamindac

LearnGit 1= ¥ master v LearnGit / WebApplication1

J
B Overview <
&

© LearnGit Contents History T New ™
Boards v I WebApplicat... === | . o 1
WebApplicatio... _
Repos WebApplication1
X1 WebApplicatio...

) «g] WebApplication1.sIn
[Files [.gitignore
® Commits c# SampleCode.cs

Figure 7-21. Changes available in the Azure Git repo

In this lesson, we discussed how to create code and push the changes to Azure Git
Repos using Visual Studio and Visual Studio Code.

Lesson 7-4: Getting Changes from Others
and Sharing Code

Now that we have an ASP.NET Core project in the Azure Git repository, we can try
working with it using Visual Studio and Visual Studio Code. Let’s look at how to get code
changes and understand the difference between fetch and pull. Then we’ll explore how
to commit changes and share them by syncing.

Prerequisites: You followed the previous lesson.

Open VS Code and open the previously cloned repository folder in VS Code. In VS
Code you can pull the changes using the Source Control menu options. See Figure 7-22.

156

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

File Edit Selection View Go Debug Terminal Help

SOURCE CONTROL: GIT v & e Welcome %

Messa oress Ctrl+Enter to commit) Pull

CHANGES Pull (Rebase)

Pull from...

Push

Figure 7-22. Pulling in changes in VS Code

You can see that the changes you made in Visual Studio and pushed to the Azure Git
repository are now pulled to the VS Code local repository. See Figure 7-23.

File Edit Selection View

@ EXPLORER

4 OPEN EDITORS

p P 4 Welcome

4 LEARNGIT

4 WebApplication
? » WebApplication1

= WebApplication1.sIn

@ .gitignore

SampleCode.cs
1.
CH

Figure 7-23. Code pulled to VS Code

Now make a small change in the code; for example, you can change the message at
startup. See Figure 7-24.

157

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

22 public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
23 E {

24 if (env.IsDevelopment())

25 {

26 app.UseDeveloperExceptionPage();

27 }

28

29 app.UseRouting(routes =>

39 |- {

31 routes.MapGet("/", async context =>

32 E {

33: await context.Response.WriteAsync("Hello World! Today is gr‘eat!![l");
34 1)

35 s

36 }

7 }

8}

Figure 7-24. Changing the code

Then commit and push this change from VS Code to Azure Git Repos. Open Visual
Studio, and in Team Explorer click Sync. On the synchronization page, click Fetch. You
will see that the incoming changes are listed once fetched. The changes have not yet
been merged to your local repo. Fetch in VS allows you to inspect the changes before
getting them pulled to your local repo from the Azure Git repository. See Figure 7-25.

Team Explorer - Synchronization v X
(€] @ ¥ | & |Search Work Items (Ctrl+') P~
Synchronization | LearnGit ¥

Branch: master

Sync | Fetch | Pull | Push | Actions

4 Incoming Commits (1)
Fetch | Pull

Updated greeting
chamindac a minute ago

4 Qutgoing Commits
Push | View Summary

There are no outgoing commits.

Figure 7-25. Fetched changesin VS

158

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Double-click the incoming changes to view the details. You can see the commit
details, and you will view the history, compare changes, and annotate changes. You can

also create a Git tag for the commit or revert the changes. See Figure 7-26.

Team Explorer - Commit Details
e © ¥

Commit Details | LearnGit

0 Search Work Items (Ctrl+")

Commit 6afe32f6

chamindac <chaminda_chandrasekara@yahoo.com>
8/28/2019 10:42:57 PM

Parent: 3fd215be

Updated greeting
Revert | Reset = | Create Tag = | Actions «
4 Changes (1)

4 WebApplication1\WebApplication1

C# Startup.cs
B e Open

@ View History...

[.,__] Blame (Annotate)

|'_,C'5\j Compare with Previous...

Figure 7-26. Inspecting the incoming changes

v.l;lx

-|5|

To get the changes to your local repo, do a pull on the Visual Studio Team Explorer

synchronization page. Make another change in Visual Studio and commit the

change. Click Sync in Team Explorer, and you will see the outgoing changes on the

Synchronization page of Team Explorer. See Figure 7-27.

159

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Team Explorer - Synchronization

(€) ¥ ‘ @) Search Work Items (Ctrl+)
Synchronization | LearnGit

Branch: master

Sync | Fetch I Pull [Push | Actions

4 Incoming Commits
Fetch | Pull

There are no incoming commits.

4 QOutgoing Commits (1)
Push | View Summary

Greeting changed from VS

chamindac

Figure 7-27. Outgoing changes

You can click Sync to pull and push changes or click Push to push the changes to
Azure Git Repos.

In Visual Studio Code, by default automatic fetching happens before a pull. However,
if you want to do a fetch in VS Code, you can open the command palette and type
Git:Fetch. Make sure not to pull changes to VS Code.

In this lesson, we discussed fetching, pulling, and syncing changes with Visual Studio
and Visual Studio Code in Azure Git Repos.

160

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Lesson 7-5: Resolving Conflicts

When multiple team members work on a project, they may push changes to the same
branch (we will discuss branch and merge conflicts in Chapter 8 of this book) and the
same code file. Let’s look at the conflict resolve options when using Azure Git Repos with
VS Code and in Visual Studio.

Prerequisites: You followed the previous lesson.

Open VS Code, and in the web app make a code change in the same line that you
made the change with Visual Studio in the previous lesson. For example, change the
greeting message again, without doing a pull for the remote changes so that the change
you made with VS in the previous lessen is not available in your local repo. Commit your
change in VS Code, but do not push it. Instead, open the command palette after the
commit and type Git:Pull, or click Pull in the Source Control menu in VS Code. You will
see a message showing there are conflicts and can resolve them before committing. See
Figure 7-28.

A There are merge conflicts. Resolve them before committing. X

Source: Git (Extension) Open Git Log

Figure 7-28. Conflicts message

You will see the incoming and current change conflicts in the file. See Figure 7-29.

161

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Startup.cs X

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
24 if (env.IsDevelopment())
25 {
26 app.UseDeveloperExceptionPage();
27 }
28
29 app.UseRouting(routes =>
3@ {
31 routes.MapGet("/", async context =>
2 {
Accept Current Change | Accept Incoming Change | Accept Both Changes | Compare Changes
31 <<<<<<< HEAD (Current Change)
34 await context.Response.WriteAsync("Hello World! Today is great in vs code!!!");
15 EEEEEER
3¢ await context.Response.WriteAsync("Hello World! Today is great isn't it!!!");
7 »»>>>>> de3ccb2c20329bb@33520e07cb2542c90354F9cf (Incoming Change)
38 1 H
39 s
1@ }
41 }
1 }

Figure 7-29. Code conflicts

You have the option to compare changes, which will open a side-by-side
compare view. Accepting the incoming or current change or accepting both is
possible for a conflict. Or you can manually resolve the conflict. Resolve the conflict
to keep the change done in VS Code and commit the change and sync with the
remote Azure Git repository.

Open Visual Studio, and without doing a pull, make a change to the same code line.
Then commit the change in Visual Studio to the local repo. Now when you do a fetch
in Visual Studio, you can see that the incoming and outgoing changes are there. See
Figure 7-30.

162

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Team Explorer - Synchronization v 3 X
(€] R ¥ ¢, | Search Work Items (Ctrl+') P~
Synchronization | LearnGit v

Branch: master

Sync | Fetch i Pull | Push | Actions «

4 Incoming Commits (2)
Fetch | Pull

Resolved conflict to use VS code change
chamindac 4 minutes ago

Changed in vs code
chamindac 19 minutes ago

4 QOutgoing Commits (1)
Push | View Summary

Changed greeting to VS
chamindac just now

Figure 7-30. Incoming and outgoing changes

Now click Pull, and you will see that there is a conflict as you have changes in the
same line of code. Click Conflicts to see the conflict details. See Figure 7-31.

163

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Team Explorer - Synchronization v I X

€] m ? ¢, | Search Work Items (Ctrl+") P~

© Pull completed with conflicts in the ‘LearnGit' repository. Resolve the conflicts and X
commit the results.

Branch: master

Sync | Fetch | Pull [Push | Actions =

4 Merge In Progress
i I merge operation is in progress in the 'LearnGit' repository. Resolve the conflicts and
commit the results.

A\ Conflicts: 1 |Ab0r’t

4 Incoming Commits (2)
Fetch | Pull

Resolved conflict to use VS code change
chamindac 10 minutes ago

Changed in vs code
chamindac 24 minutes ago

4 Qutgoing Commits (1)
Push | View Summary

Changed greeting to VS
chamindac 6 minutes ago

Figure 7-31. Conflict shown in VS

When you click Conflict, you will see the conflict files. When you click a conflicted
file, you will compare the changes. You can keep the local changes or take the remote
version. Click Merge to view in Compare mode and then merge. See Figure 7-32.

164

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Team Explorer - Resolve Conflicts v 1 X :
© © & ¥ | & Search Work Items (Ctrl+') el ©
Resolve Conflicts | LearnGit M

Commit Merge | Abort

4 Conflicts (1)
Name Path
C# Startup.cs [both modi... WebApplication1\WebApplication1

Merge

Conflicting content changes have been made. Compare Files

Edited on Remote | Diff | Take Remote
Edited on Local | Diff | Keep Local

Figure 7-32. Conflict file

In the merge compare view, you can opt to select the remote or local change or both
or manually edit and then accept the merge. See Figure 7-33.

Merge - WebApplica..al (both modified)” = x [N A
F AcceptMerge | €3> DM B- &-/ 8-
1 Conflicts (1 Remaining)

Source: WebApplication1/WebApplication1/Startup.cs:Remote Target: WebApplication1/WebApplication1/Startup.cs.Local

26 26 =

27 27

28 28

29 29

30 30

31 31

32 32

33 (] #iio] World} Today is great in vs codeffi™); """t 23O)flle Worlal Today is great in Visual Studiofi®);

34 34

35 35

36

37 37

38 38 5
100% ~+ O Noissues found P » 10% ~ © Noissues found L 4 »
Result: WebA ion1/WebAppl 1/Startup.cs

26 p.UseDeveloperExceptionPage();

27

28

29 seRouting(routes =>

El:

31 wutes.MapGet(”/", async context =>
32

33
34

35

Figure 7-33. Resolving a conflict

165

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Click Accept Merge after resolving conflicts with the preferred change and commit
the merge when all the conflicts are resolved. See Figure 7-34.

Team Explorer - Resolve Conflicts

(€] ¥ | ¢ | Search Work Ite

Resolve Conflicts | LearnGit

Commit Merge Abort

4 Conflicts
There are no remaining conflicts

Figure 7-34. Committing the merge

You have to provide a comment to the merge commit and commit the changes
to the local repository. Now you can sync to push the changes to the remote repo. If
someone else added more changes, you may have to go through the resolve conflict
procedure again.

In this lesson, we discussed how to resolve conflicts with Azure Git Repos using
Visual Studio and Visual Studio Code.

Lesson 7-6: Stashing the Changes

Stashing helps you to save uncompleted work so that you can reapply it to your local
repo when needed. Stash works the same way a shelveset in TFVC works. Let’s look at
how to use a stash in this lesson.

Prerequisites: You have completed all the lessons in this chapter and have the code
available in the Azure Git repository and opened a local repo in VS Code and in Visual
Studio.

In Visual Studio, open the solution from the local repo and make a code change.
Then click the changes in Team Explorer; you will see the stash options on the commit
changes page. See Figure 7-35.

166

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Team Explorer - Changes
-MSRAR § ‘ @ Search Work Items (Ctrl+')

Changes | LearnGit

Branch: master

Enter a commit message (required) or stash message (c

tAll | ¥ Stash v Actions =
Stash All
Stash All and Keep Staged (--keep-index)

ms

ik items linked to the commit.

4 Changes (1)

4 &l C\Users\chamindac\Source\Repos\LearnGit\Wel
C* Startup.cs

4 Stashes (0)
Drop All

Figure 7-35. Stash options

Click Stash all if you want to do is create the stash and remove all the changes from
the current branch. If you want to create the stash and still keep the changes, you can
click Stash All and keep them staged. Once a stash is created, you can apply it to the
branch again or pop it and apply. Pop will remove the stash, but Apply will keep the
stash intact. See Figure 7-36.

167

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Team Explorer - Changes
Qe @ ¥ | & Search Work Items (Ctrl+')

Changes | LearnGit

Branch: master

Enter a commit message (required) or stash message (optional).

v Stash + Actions =«

P Related Work Items
4 Changes

There are no unstaged changes in the working directory.

4 Stashes (1)
Drop All

|=] {0} WIP on master: 78ba677 resolved conflicts on Visual Studio

View Changes
Apply and Restore Staged (--index) Apply 4
Apply All as Unstaged Pop .

Figure 7-36. Pop and Apply options for a stash

In VS Code, as well, you can create a stash. When you make a change to the code,
you can create a stash by typing Git:Stash in command palette or by using the Source
Control menu stash. You will be prompted to provide a message for the stash and press
Enter to create the stash. See Figure 7-37.

Startup.cs - LearnGit - Visual Studio Code [Administrator]

v

Optionally provide a stash message (Press 'Enter' to confirm or 'Escape’ to cancel)

Figure 7-37. Stash in VS Code

168

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

You can apply or pop a stash in VS Code by clicking the relevant menu item in the
Source Control menu or typing Git: Apply Stash or Git: Pop Stash. See Figure 7-38.

Startup.cs - LearnGit - Visual Studio Code [Administrator]

>Git:4

tash

Apply Latest Stash

Apply Stash...

Commit Staged

Commit Staged (Amend)
Commit Staged (Signed Off)
Pop Latest Stash

Pop Stash...

Figure 7-38. Git stash commands

The available stash will be listed, and you can pick one to pop or apply. See Figure 7-39.

Startup.cs - LearnGit - Visual Studio Code [Administrator]

Pick a stash to apply

#0: On master: -- vs code 2

#1: On master: -- this is vs code stash

Figure 7-39. Available stash

We have explored stashes in this lesson, which are useful for keeping incomplete
work saved in a Git repo using VS and VS Code.

169

CHAPTER 7 GETTING STARTED WITH AZURE GIT REPOS

Summary

In this chapter, we discussed how to get started with Azure Git Repos by creating a team
project with an Azure Git repository in Azure DevOps. We used Visual Studio and Visual
Studio Code to perform a few simple operations with Azure Git Repos in this chapter.
The following is a list of common Git commands and their meaning for your reference.

o git config: Sets the username and e-mail for Git commits

e git init:Initializes a folder as a Git repo

o git clone: Clones a remote Git repo

o git add: Adds files to the staging area

e git commit: Commits changes to the repo

o git diff:Views differences not yet staged

o git reset: Unstages the files

o git status: Lists all files to be committed

o git rm:Deletes a file and stages it

o git log: Lists the version history of the current branch

o git show: Shows metadata and content changes of a commit
o git tag:Creates a tag for specific commit

o git branch: Creates a branch

o git checkout: Checks out a branch

o git merge: Merges a branch with another

o git remote: Connects the local repo to the remote server

o git push: Pushes changes of the current branch to the remote branch

o git pull:Fetches and merges changes from the remote server to the
local repo

o git stash: Temporarily stores all tracked files

In the next chapter, we will be exploring the branching capabilities of Azure Git
Repos, including the code review and pull request and branch policies application to
protect branches.

170

CHAPTER 8

Branching with Azure
Git Repos

Azure Git Repos is a distributed version control system that offers a great deal of
flexibility to developers in how they use version control and share and manage code.
Teams can use the tool to come up with consistent strategies to collaborate. Azure Git
Repos branches help to isolate, review, share, and publish code when working with
team members. You can adopt a branching strategy that suits your team’s needs so that
your team can collaborate in a consistent manner, spending less time on version control
management and more on code development.

In this chapter, let’s identify the available features in Azure Git Repos for branching,
pull request management, and so, that will enable your team to efficiently collaborate,
share code, and develop with the needed code isolation.

Lesson 8-1: Creating Branches

When we develop applications, we need to select the proper branching structure for
the project. Branches allow team members to develop project features in a manageable
way in isolation. You will learn about the Git branching features in Azure DevOps in
this lesson.

Prerequisites:

e Azure DevOps project with Git version control as the source
control system

o Azure DevOps project repo cloned and created with a sample
MVC project

o The ability to log in to Azure DevOps as the administrator

171
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_8

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Go to your Azure DevOps repository. Click the down arrow in front of the master
branch. Select “New branch” in the pane. See Figure 8-1.

i

m
(o8
L)

(1]
3
i
0
i
Q
™
i
I
b]
[
m
J
C
G
w
4
i
L4

§* master v | TheEndGame / Type to find a file or folder...

< tents History

Branches Tags

J
+ je Filter branches
1=
=)

e
?° master Defautt
‘ndGame
+ New branch
: ry-gitignore

[«]

¢

Figure 8-1. Selecting a new branch

Q1 EndGame.sin

The “Create a branch” window will pop up. You can give the branch a name such
as feature41, select the based-on branch, and link up a work item. Finally, click “Create
branch” to create the new branch. See Figure 8-2.

172

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

. X
. Create a branch

Name

feature/featuredi

Based on

£ develop v

Work items to link
41 v
Qs Develop Ul

m

Figure 8-2. Creating a feature branch

When we use a feature/branch name, we can create a feature branch inside a feature
folder. Also, this feature branch is linked with the provided work item.

If you move to the Branches section under Repos, you will see the feature41 branch
inside the feature folder. See Figure 8-3.

173

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Branches
Mine A 2
v feature

§ featured1
g develop
¥ master Default Compare

Figure 8-3. The feature4l branch inside the feature folder

This lesson explained how to create a Git branch using the Azure DevOps server.
Also, you were able to get an idea of how to link the features with the work items while
creating a new branch.

Lesson 8-2: Working with Branches in Visual Studio
and VS Code

We discussed how to create Git branches with the Azure DevOps server. This lesson will
explain how to work with branches in Visual Studio and VS Code. You will learn about
the branch creation and checkout processes.

Prerequisites:

e Azure DevOps project with Git version control as the source control
system

o Azure DevOps project repo cloned and created with a sample MVC
project

e Cloned local workspace in the solution using Visual Studio
e Cloned local workspace in the solution using VS Code

In the first half of this lesson, we will discuss how to work with Azure Git Repos using
the Visual Studio IDE.

174

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Visual Studio

Go to Visual Studio. Move to the Team Explorer home. You will see the Branches link.
Click the Branches link to move to the Branches section. See Figure 8-4.

Team Explorer - Home v h
OCOonm ¥ | ¢ Search Work Items (Ctrl+") £

Home | TheEndGame

4 Azure DevOps

r- TheEndGame/TheEndGame
https://dev.azure.com/sldevop/TheEndGame/_git/TheEndGame

4 Project
Web Portal | Task Board
G—) Changes V Branches
LE.I Pull Requests T¢ Sync
B Tags & Work Items
LYy Builds |ﬁ. Settings

Figure 8-4. Team Explorer branches

The Branches page will display the active Git repositories available. See Figure 8-5.

175

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Branches + 0 X
() 2 ¥ | (& | Search Work Items (Ctrl+") pe i
Branches | ThetndGame v |2

New Branch v | Merge v | Rebase + | Actions «
4 Active Git Repositories
Type here to filter the list P

4 € TheEndGame (master)
%2 master
4 ' remotes/origin

%3 master

Figure 8-5. Team Explorer’s Branches page
Let’s identify the features available on the Branches page of Team Explorer.

Creating and Merging Branches

We can create new branches from here. To do that, click the New Branch link.
Give the new branch a name, and select the parent branch a name. Click the “Create
a new branch” button to create a branch. See Figure 8-6.

176

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Branches
C U@ ¥ | ¢ Search Work Items (Ctrl+")

Branches | TheEndGame

New Branch v | Merge v | Rebase v | Actions

feature/featurel o
master e
Checkout branch

Create Branch Cancel

g

Figure 8-6. Creating a new branch

vqx

A new branch has been created in the local repo. We need to push the new branch
to the remote repo. So, right-click the newly created branch to push the changes to the

remote repository. See Figure 8-7.

177

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Branches w
© © & ¥ | ¢ Search Work Items (Ctrl+") P~
Branches | TheEndGame - |7l

New Branch v | Merge + | Rebase v | Actions
4 Active Git Repositories
Type here to filter the list P
4 € TheEndGame (feature/featurel)
4 | feature
% featurel
N4 master

b 1) remotes/origin

Checkout

New Local Branch From...

Y
2 Merge From...
g%

Rebase Onto...
Reset ’
Cherry-Pick

] Rename F2
Delete Del

Push Branch
Properties ¥ Create Pull Request

ST ST Team Explore

Figure 8-7. Pushing a new branch

If you go to Azure DevOps Repos, you will see the newly created branch is added to
the remote repo.

Next we will discuss the merge options available. Click the Merge link on the
Branches page. You will see the drop-down where you can set the “Merge from branch”
option. By default, a merge is done to the current branch. See Figure 8-8.

178

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Branches wR T
€] G} ¥ O Search Work Items (Ctrl+") P~
Branches | TheEndGame v |7l

s

New Branch v | Merge « | Rebase « | Actions

Merge from branch:

master v

Into current branch:
feature/featurel

Commit changes after merging

Merge Cancel

Figure 8-8. Merging branches

Rebase

We have discussed how to create a new branch and how to merge two branches. Now let’s
see another feature available in the Branches section of Team Explorer. That is Rebase.

Let’s assume that while we are working with branches, we have created a featurel
branch from the master branch and done some development there. Let’s say we have
created another branch called feature2 and implemented another feature there. But
after we merge the changes in the branches using a pull request, we can see the commits
ordered by the commit date. Then we see that the commits done by each branch have
overlapped. To keep this from happening, we can use the Rebase option. If we use
Rebase, we can order the commits. We can add feature branch commits after the master
branch commits. See Figure 8-9.

179

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Branches v aXx
QOB ¥ | ¢ Search Work Items (Ctrl+") P~
Branches | TheEndGame v | 2
© Already up to date. X
New Branch v | Merge v | Rebase ~ | Actions =

Rebase from the current branch:
feature/featurel

Onto branch:

master
Replay all commits

Rebase Cancel

Figure 8-9. Rebase option

Using the Actions link in the Branches section, you can open File Explorer, open a
command prompt, or view the history. See Figure 8-10.

180

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Branches v+ o X
[I Gﬁ ? [o Search Work ltems (Ctrl+") P~
Branches | TheEndGame v | 7

rFs

New Branch | Merge « | Rebase « | Actions v

Open in File Explorer

from th h:
Rebase from the current branc Open Command Prompt

U View History...

feature/featurel

Onto branch:

Rebase onto branch v
Replay all commits

Cancel

Figure 8-10. Available actions

So far, we have discussed the available features in Team Explorer’s Branches section.

Checkout

Further, when we have multiple branches, we need to select the relevant branch
from the list of the branches. To do that, you can right-click the local repo branch
that you want to work on. A pane will open; click Checkout to move to the local
branch. See Figure 8-11.

181

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Branches
© © & ¥ | ¢ Search Work Items (Ctrl+")

Branches | TheEndGame

New Branch v | Merge v | Rebase v | Actions
4 Active Git Repositories

Type here to filter the list

4 € TheEndGame (feature/featurel)

4 .| feature
'\4.' featurel

vqx

V2 maste- pm—
4 i) remo Checkout

®3m ¥ New Local Branch From...

4 .o fei £ Merge From...

"3 £ Rebase Onto...
Reset
Cherry-Pick
Unset Upstream Branch
EJ Rename
Solution Explorer X Delete
Properties XU View History...
Fetch
5|2 | S Pull
Push
“} Create Pull Request

F2
Del

Figure 8-11. Checking out the local repo

182

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

VS Code

We have learned how to create new branches using Visual Studio. Let’s see how to do this
with VS Code.

Creating a New Branch

Open the command palette of VS Code. See Figure 8-12.

] File Edit Selection View Go Debug

SOURCE CONTROL: GIT vi O

STAGED CHANGES 1

> funcps1 CU

CHANGES 0
Command Palette... Ctrl+Shift+P
Settings Ctrl+,

Online Services Settings

Extensions Ctrl+Shift+X
Keyboard Shortcuts Ctrl+K Ctrl+S
Keymaps Ctrl+K Ctrl+M

User Snippets

Color Theme Ctrl+K Ctrl+T

File Icon Theme

Check for Updates...

Figure 8-12. Opening the command palette

183

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Type the command Git: Create Branch From. Then press Enter to move to the next
step. See Figure 8-13.

] File Edit Selection View Go Debug Terminal Help Wakanda - Visual Studio Code
POWERSHELL COMMAND EXPLORER.. 1T » Gitd
A Git: Create Branch From. recently used
Add-AppvClientConnectionGroup Git: Checkout to..

Add-AppvClientP

kage Git: Create Branch..

Add-AppvPublishingServer Generate .gitignore File

Add-AppxPackage Git: Add File to .gitignore

Figure 8-13. Selecting Git to create a branch from

Give the new branch a name. Press Enter. See Figure 8-14.

»] File Edit Selection View Go Debug Terminal Help Wakanda - Visual Studio Code
1L COMMAND EXPLORER.. {0} feature,feature 2
Al Please provide a branch name (Press ‘Enter’ to confirm or ‘Escape’ to cancel)

Add-AppvClientConnectionGroup

Add-AppvClientPackage

Figure 8-14. Branch name

In the next step, it will allow you to select the parent branch. Go ahead and select the
parent branch to create the new branch. See Figure 8-15.

»] rile Edit Selection View Go Debug Terminal Help Wakanda - Visual Studic Code

HEAD 0b8d3s19

master

feature2 Ob&d3
Add-Ap

orngin/master Remat

Add-AppxPackage origin/feature2 Remote

Add-AppxProvisicnedPackage

Add-Appxvolume

Figure 8-15. Selecting a parent branch

So far, we have seen how we can create a new branch from an existing branch. Now
let’s see how we can check out the branches in VS Code.

Checkout

Open the command palette. Enter the command Git: Checkout to. See Figure 8-16.

184

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

] File Edit Selection View Go Debug Terminal Help Wakanda - Visual Studio Code
OURCECONTROL:GT + 10 -
Git Checkout to.. recently used

CHANGES 0

other commands

Git: Commit All
Figure 8-16. Running the Git: Checkout to command

The branch list will open. Select the relevant branch from the list. See Figure 8-17.

»] File Edit Selection View Go Debug Terminal Help Wakanda - Visual Studio Code
POWERSHELL COMMAND EXPLORER c

A + Create new branch...

appvClientConnectionGroup + Create new branch from...

Figure 8-17. Selecting the relevant branch

In this lesson, we discussed how to create a new branch with Visual Studio and
VS Code. Also, we discussed how to check out the branches using Visual Studio and
VS Code.

Lesson 8-3: Merging Changes and Resolving
Conflicts

We have discussed how to create branches with the Azure DevOps server, Visual Studio,
and VS Code. This lesson will explain how to work with multiple branches using the

Git source control system. We discussed TFVC in one of the previous chapters in this
book. So, you will see the differences between Git and TFVC branches while reading this
lesson. Now let’s see how we can work with Git branches.

185

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Prerequisites:

e Azure DevOps project with Git version control as the source
control system

e Azure DevOps project repo cloned and created with a sample
MVC project

o The ability to log in to Azure DevOps as the administrator

Open Visual Studio and check out the feature branch. Open the project file and
modify the file. See Figure 8-18.

n File Edit View Project Build Debug Team Test LoadTest Analyze
PO -0 | B3-2 W 9D - Debug - AnyCPU « D IS Express

You can improve 'Startup' performance by auto hiding or collapsing 'Test Results' window.

2l About.cshtml + X
g O
2 | ViewBag.Title = "About this is| feature branch”;

5 .
o 4 <h2>@viewBag.Title.</h2>
2 5 <h3>@viewBag.Message</h3>
m
= 6
3 7 <p>Use this area to provide additional information.</p>
m o
[} 8
2
-
o
8
—|
;
o
=
o
s

100% ~ @ No issues found € nilmini herath, 3 days ago | 1author, 1 change

Figure 8-18. Opening the About page and editing it
186

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

After making modifications, we need to commit these changes to the local
repository. To do that, open Team Explorer. Go to Changes. See Figure 8-19.

Team Explorer - Home v+ 0 X
C O ¥ ‘ ¢ Search Work ltems (Ctrl+") P~
Home | TheEndGame ¥
4 Azure DevOps N

ﬁ TheEndGame/TheEndGame
https://dev.azure.com/sldevop/TheEndGame/_git/T...

4 Project

Web Portal | Task Board
@ Changes V Branches
&l Pull Requests T¢ Sync
B Tags @', Work Items
LYy Builds $F Settings

Figure 8-19. Team Explorer’s Changes link

Clicking the Changes link will open the Changes page. On the Changes page, you will
see the modified files. You can commit the changes to a local repo. See Figure 8-20.

187

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Changes v X
COM ¥ | ¢ | Search Work Items (Ctrl+") P~
Changes | TheEndGame - |7l
Branch: feature/featurel =

Add new branch feature 1 e

!ommitAll v Stash + Actions =

4 Related Work Items +
There are no work items linked to the commit.
4 Changes (1) o S

4 | C:\Users\Pushpa Herath\Source\Repos\TheEndGame\...
About.cshtml

Figure 8-20. Changes page

1. You can stage the changes by clicking this plus icon.
2. Here you provide the commit comment.

3. Commit the changes to a local repo. After staging the changes, this
button name will change to Commit Staged. If you click the arrow

icon on the commit button, you will see other commit options
available.

If you want to merge your changes to a remote repository, you can use the Commit
and Sync option or Commit and Push option. If you only commit the changes, the
changed files will display on the Sync page.

188

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Now go to Team Explorer’s Sync page. See Figure 8-21.

Team Explorer - Home =7
e - Gﬁ $ | o Search Work ltems (Ctrl+") o
Home | TheEndGame .
4 Azure DevOps .

p TheEndGame/TheEndGame
https://dev.azure.com/sldevop/TheEndGame/_git/T...

4 Project

Web Portal | Task Board
(9 Changes V Branches
|£| Pull Requests TJ, Sync
B Tags (¥, Work items
LYy Builds {:} Settings

Figure 8-21. Selecting Sync

The Sync page will open. You will see the Outgoing commits section. Click Push to
push changes to the remote branch. If you go to the Azure DevOps server, you will see
the latest version of the code in the remote branch now. See Figure 8-22.

189

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

= o
. b feature/featurel TheEndGame / EndGame / Views / Home / About.cshtmil
t: & kit You updated P feature/featurel just now — Create a pull request
ﬂ EndGame Contents History Compare Blame ¢ Edt =k Rerame [8] Delete L Download
App_Start
)
Content
a Controllers
fonts
Q fce =
Propertes
A Scripts
Views
A Home
a D) About.cshtmi
[Contacteshtmi
[indexcshtmi
Shared
@ o Web.config

Figure 8-22. Remote featurel repo

While working on the development project, team members often work on
different features in parallel. So, a team will create a few feature branches for
development. After completing the feature, each team will commit their changes to
the remote development branch. So, when you commit the changes to the remote
repo, it is required to get the latest version from the remote repo to the local repo
before committing the changes. To do that, we can merge the changes from the
remote repo. See Figure 8-23.

190

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Branches v 0 X

[G} ¥ | G Search Work Items (Ctrl+") P~
- |ﬁ|

Branches | TheEndGame

© Repository is already up to date. No changes to pull. X

New Branch v | Merge v | Rebase v | Actions =

Merge from branch:
origin/develop

Into current branch:
feature/featurel

Commit changes after merging

Merge Cancel
Figure 8-23. Merging

If there are any changes in the same file, it will mention the conflicts here. See

Figure 8-24.

191

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Branches v aXx
OO ¥ | ¢ Search Work Items (Ctrl+") po
Branches | TheEndGame - |7l

New Branch v | Merge v | Rebase v | Actions

4 Merge In Progress

© A merge operation is in progress in the 'TheEndGame'
repository. Resolve the conflicts and commit the results.

A Conflicts: 1 lAbort

4 Active Git Repositories

Type here to filter the list P
4 0 TheEndGame (feature/featurel) a
4 ., feature
%2 featurel
"2 master
4 ' remotes/origin
%3 develop
%3 master =

Figure 8-24. Merge conflicts listed

Click the Conflicts link to go to the Resolve Conflicts page. Click the file name on the

Resolve Conflicts page. This will open the pane where you can find the link to compare

the changes between the versions. See Figure 8-25.

192

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Team Explorer - Resolve Conflicts v X
© © & ¥ | & | Search Work ltems (Ctrl+") Jo i
Resolve Conflicts | TheEndGame v

Commit Merge | Abort

4 Conflicts (1)
Name Path
About.cshtml [both... EndGame\Views\Home

Merge

"I(' Conflicting content changes have been made.
Compare Files

Edited on Source | Diff | Take Source
Edited on Target | Diff | Keep Target

Figure 8-25. Comparing the conflicts

Click the Compare Files link to compare the files. See Figure 8-26.

193

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

mi

EnGamHornefAbou‘L(sh‘lml;Source
2 ViewBag.Title = "About this is hra-u..:.. 2
:. zhbgvieueag.utle.dhb i
5 <h3>@viewBag.Message</h3> 5
t <p>Use this area to provide additional informati i
8 8
100% = @ MNoissuesfound 1 » «

EndGame/Views/Home/About.cshtm; Target
18

Diff - EndGame/Vie.boutcshtmiTarget & = X I

ViewBag.Title = "About this is branch”;
}
¢h2>@viewBag.Title.</h2>
<h3>@ViewBag.Message</h3>

-
—
u
L

<p>Use this area to provide additional information.</p>

Figure 8-26. Comparing the files

You will see a Merge button on the Resolve Conflicts page. Click the Merge button

to merge the files. You can decide on the version you need to keep in the branch. Click

Accept Merge to merge the changes. See Figure 8-27.

] o e e e |

S hcpiMege #-us DD B- B- 8- BOQ V|G sewcrwot roms (1 P-

1 Confcts 10 Remaning)

Resobve Confllcts | ThefndGame -

Source: Erdeme Views Home/ About csbtmi Sousce

Target: EndGame Vews Home/ About cabtrmt Target

[..

¥

(AL Vimebag. Title s kot #h i3 develep Branch with 14

‘o

TR « Contiens ()
Hara

hIspVimdag. TIt 2 <h2sfvioebag. Title. < /hls Pathy

ndiviewdiag. Message</hlx <hIxgViewBag. Mestage< nls B) about EndG

cprise this sres to provide sdditionsl isformation.c/ps <prUse this ares to provide sdditionsl information.</p Merge

- CORICtng Contant CRaRge v been made.
100% = O Mo hmen found ‘ be% - O Nemswe found ‘ * Comparaities
Resudt: Endame Vpwn Home/About cshtml Edaed on Sowrce | Do | Taka Sownce
A - T S A= - R Edted on Target | 01 | Ko Target
Vieetiag. Title - lbour thix de develop Branch wlth Latest verslen®y 1 -

hIvieBag. tessage/h}

prise this area to provide sdditional inforsation.</p»
0% - 1 Mo invues lound

Figure 8-27. Merging the changes

While we work in multiple branches, we need to have a good idea of how to
perform the merge correctly. Otherwise, the entire project is in trouble. If you
haven’t done the merge correctly, some versions and some code segments will
disappear from the source. In this lesson, you learned the basics of Git branch
merging and conflict resolving.

194

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Lesson 8-4: Using Pull Requests and Code Reviews

As we all know, branch merging is an important action while working with any type
of source control system. In the previous lesson, we discussed how to merge the
changes between branches. But if every member of the team tried to do the merging,
this process won’t go smoothly. As a solution, we can control the merging permission
for the team members as every member of the team shouldn’t be able to merge to
every branch. If the team members need to merge changes to the master or other
important branches such as development, or merge a version branch from a feature
branch, they can create a pull request to ask the responsible member to review
and accept the modification. Let’s discuss how we can do that with Azure DevOps
Services in this lesson.

Prerequisites:

e Azure DevOps project with Git version control as the source
control system

e Azure DevOps project repo cloned and created with a sample
MVC project

e The ability to log in to Azure DevOps as the administrator

Go to the Azure DevOps Branches section. Click the three dots in front of the branch
name. Select “New pull request” in the menu. See Figure 8-28.

195

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

[:J sidevop TheEndGame Repo Branche @’_ ame v
B coenches
+ Mine A4
Branc Co Au
v B feature
% 3* feature1 |~ 9ad@befs ° nilmini herath
I* featuredi 2} + New branch Imini herath
q ¥ develop 1 19 New pull request Imini herath
B P master Default Compare 3¢ Remove from my ravorites dmini herath
A E Delete branch
. O View files
. D View history
B
B8 Compare branches
11 Setas compare branch
8 Lock
8 @ Branch policies
W Branch security
»

Figure 8-28. “New pull request” menu item

You will see the pull request creation page. You can select the branches to merge and
set a reviewer on this page. See Figure 8-29.

196

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

© o
1% New Pull Request
b featurefeaturel into | 3 develop o |
Ad sranch fea - :
*
Add new branch beature 1
4B I @ o = @ # I
Add new branch feature 1
Reagwers
.C’\I"‘ nda Chandrasekara X Search users and groups 1o add as reviewers \.../
Work htems *
' A5y
L]
3
Files (1 7 j
-
v D A_bo_ut.csh.tml A
¥ 1 M
Wiewlag.Title = “Mbout®; 1. viesSag.Title = “Asout this s feature bra

n2gVieatlag. TE
i eaag. e tEage i nY

Figure 8-29. Pull request creation

1. Select branches to create the pull request.
2. Specify the title to request.

3. Enter a description for the request.

4. Select the reviewer.

5. Select a work item.

6. Click the Create button to create a request.

7. Do acode change comparison between the branches.

B Scle-by-sce &t

If you click the arrow in front of the Create button, you will see the “Create draft”

option. See Figure 8-30.

197

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Create | v

Create

[Create as draft

Figure 8-30. “Create as draft” menu item

This allows you to create a draft request to highlight to other collaborators that your
code is ready to integrate with another branch. After clicking “Create as draft,” you will
see a page with a Publish button. Collaborators can give their comments on the changes
going to be merged. See Figure 8-31.

) :)
B 504 (0w Featured
nilmini herath 37 feature/featured nito 7 master B publish |+ [
. © [> e |]
Overview 2 2
5 —
Wok ftems ¥ 4
Descripti
n ription o
| a e [- 4+
<€ i o
. Created -_,-. nulmini herath
e

Figure 8-31. Draft pull request publish

After creating a pull request, in some situations we get the conflict message shown in
Figure 8-32.

198

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

sidevop TheEndGame Repos Pull requests @ TheEndGame v
3% 1 Add new branch feature 1
° nilmini herath *feature/featurel into ¥ develop °

Overview Files Updates Commits

o conflict prevents automatic merging

% About.cshtml Edited in both

Next steps: Manually resolve these conflicts and push new changes to the source branch.

Description A

Add new branch feature 1

O mb>4DAED + B0

Show everything ~

= o Add a comment...

Created by ° nilmini herath just now

&
»

Figure 8-32. Pull request conflict

This happens when the development branch has some changes that the feature
branch does not have. So, we need to resolve this before continuing.

To do that, go to Visual Studio. Go to the Branches section of Team Explorer.

Pull the development branch and feature branch. Merge the development branch
changes with the feature branch. Now the feature branch has the latest changes from
the developer branch (you might have to resolve any conflicts). Now, push the feature
branch version to the remote repo.

Then go back to the Azure DevOps server. Navigate to the pull request section. You
will see that the conflict in the pull request list disappears and the Approve button and
the Complete button are enabled.

199

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

After creating a pull request, the approver gets a mail notification. See Figure 8-33.

PR - Updated About.cshtml -
TheEndGame 3 (nilmini herath)

Azure DevOps
@ to chaminda_chandrasekara@yah...

B Microsoft Azure DevOps

Updated About.cshtml
nilmini herath pushed
new changes

Reviewers

Chaminda Optional
Chandrasekara

O 3 B <« -

Figure 8-33. Approver mail

The approver can go to Azure DevOps and see the requested merge. They can
decide whether this is ready to merge. If the changes are not ready, the approver can add
comments by indicating the required updates. See Figure 8-34.

200

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

$33 Updated About.cshtml
° nilmini herath * feature/featured1 into ¥* develop & 0/1 resolved . ‘

Overview Files Updates Commits

Description e
Updated About.cshtml
Show everything *~
a . Add a comment...
= Chaminda Chandrasekara just now Active v

Title should include word branch

9 Write a reply...

Resolve

Figure 8-34. Approver’s comment

Then the requester can read the comments and make any necessary changes.
Finally, the approver will approve the request. See Figure 8-35.

n o nilmini herath pushed 1 commit creating update 3
1683965 update title of about page ° nilmini herath Just now

! . Chaminda Chandrasekara 91

Resolved ¥
Title should include word branch

° nilmini herath just now ®
This suggested modification has done

. Chaminda Chandrasekara
cool approving

9 Write a reply...

Reactivate

Figure 8-35. Approving the request

201

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

Click the arrow icon in front of the Approve button. You will see the other options
available.

o Approve: Approve the pull request.

o Approve with the suggestions: Give some suggestions while
approving.

e Wait for author: Do not approve the pull request and wait for the pull
request author to address the comments. Once the comments are
addressed, the author should inform the reviewer the pull request is
ready for review again.

o Reject: Reject the request.

After approval, click the Complete button to finish the pull request. See Figure 8-36.

ke
D
i
b

—

00 Approve |\ fo Complete | v JEEE

® Approve
@ Approve with suggestions A
X +
Wait for author
_ p Ul
& Reject
®© Reset feedback M +

Figure 8-36. Approving and completing the request

After clicking the Complete button, you will see the “Complete pull request” pane.
You can add a description and select the merge type from here. See Figure 8-37.

202

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

—_—

Complete pull request X

Merge commit comment

Merged PR 1: Add new branch feature 1

Add new branch feature 1

Related work items: #41

Merge type

Merge (no fast-forward) v

g i—

Post-completion options
Complete associated work items after merging (O

Delete feature/feature1 after merging

Complete merge Cancel

Figure 8-37. Completing the pull request

203

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

After completing the pull request, you will see the merge success message. See
Figure 8-38.

° ' : ©
i1 | Add new branch feature 1
.'\i'ﬂ'ﬁ hersth feature/Teature! inwo & develop %
Overview Files Updates Commits
Work Rerms. X +
nilmini herath completed the pull request on 972172019 3:16 PM (2 minutes ago). Cherry-pick Revert @ 41 Deves
¢ @ Merged PR 1: Add new beanch feature 1
Reviewers -
o b rath
Description]

Add new branch feature 1 . e
Figure 8-38. Pull request completed

Note that the requester can approve their own request. But in a real scenario, this
process is not a best practice. So, you can control the approval by using branch policies.
You will learn more about branch policies in Chapter 10.

This lesson explained how to create a pull request to request the merging between
the branches. We discussed how to add reviewers to the request and how the reviewer
responds to the request.

Lesson 8-5: Rebasing While Completing a Pull
Request

We discussed Git branch creation, merge, and pull requests in this chapter. However,
when you work with multiple branches, you might have modifications done parallelly
in each branch. If you merge these changes, they will sort based on the date, and it is
difficult to identify which change was done in which branch. To avoid this, there is a
merge type called rebase that allows you to order the commits according to the branch.
Let’s learn how this rebase works.

Prerequisites:

e Azure DevOps project with Git version control as the source control
system

e Azure DevOps project repo cloned and created with a sample MVC
project
204

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

o The ability to log in to Azure DevOps as the administrator
e Apull request created, reviewed, and completed

While merging the changes between branches, there are several options available
in Azure DevOps. We will discuss the rebase option in this lesson. As discussed in the
previous lesson, when completing a pull request, the pull request completion pane
opens. In that pane, you can select the merge type. See Figure 8-39.

Merge type

Merge (no fast-forward) v

v/ Merge (no fast-forward)

a .

M mnaar hictAary mracarvinm = e

NONnca ISTOry preserving aill comn
/ =

Squash commit

masr mieEear sk e = simmla cramermiE Am e

Rebase and fast-forward

]!
o)
'l

Semi-linear merge

[l
(1]
!

Figure 8-39. Merge types

Rebase is the merge type that adds all the feature branch changes/commits to the end
of the developer branch changes/commits so the merge looks linear. See Figure 8-40.

Merge type
Rebase and fast-forward v
o) @ @)

Figure 8-40. Rebase option

205

CHAPTER 8 BRANCHING WITH AZURE GIT REPOS

In this lesson, we looked at the rebase option while completing a pull request.

Summary

This chapter explained how to work with Azure Git Repos branches using both Visual
Studio and VS Code as well as the Azure DevOps Portal. We discussed how to create
branches, merge changes, and resolve conflicts. Then we explored pull requests and the
code review process as well as using the rebase option for a liner merge. The content of
this chapter will help you to adopt a suitable branching strategy for your team since you
have gained a good understanding of the available features in Azure Git Repos.

In the next chapter, we will discuss how to use the command-line options to work
with Azure Git Repos.

206

CHAPTER 9

Using the Command Line
with Azure Git Repos

Developers who use Git for source control mostly use the command line to perform
actions, such as cloning repositories and pulling/pushing code. Many editors such as
Visual Studio or Visual Studio Code support performing actions with Azure Git Repos
using menu items. However, developers who are used to using Git as their version
control system may prefer using the command line to work with Git Repos.

In this chapter, let’s look at some examples of using the Azure Git Repos command
line to clone repositories, push code, pull others’ changes, etc. If you are beginner with
Git Repos, this chapter will help you to get the basic understanding of how to use the
command line with Azure Git Repos.

Lesson 9-1: Getting Started with the Command Line

As the first lesson, we need to get our development machines ready to use Azure
Git Repos with the Git command line. Let’s look at how to set up a machine to use a
command line for Git.

Let’s install Visual Studio Code as the preferred editor for the code editing in this
chapter. Since the chapter uses Windows 10 as the OS, we can download VS Code for
Windows from https://code.visualstudio.com/#alt-downloads and install it on the
machine. You have the option to set up VS Code for the current user by installing the user
setup, or you can download the system setup to install it for all users. Install the DotNet
Core SDK on your machine. You can download it from https://dotnet.microsoft.
com/download.

207
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_9

https://code.visualstudio.com/#alt-downloads
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

You have to install Git for your operating system to allow you to create local Git
repositories and use Git commands. Go to https://git-scm.com/downloads and
download Git for your operating system. In this chapter, you'll use Windows as the
operating system. So, let’s download Windows for Git and install it on the machine if it
is not already installed. While installing, select VS Code as the default editor for Git. See
Figure 9-1.

Git 2.23.0 Setup - X

Choosing the default editor used by Git
Which editor would you like Git to use?

Use Visual Studio Code as Git's default editor v

(NEW!) Visual Studio Code is an Open Source, lightweight and powerful editor
running as a desktop application. It comes with built-in support for JavaScript,
TypeScript and Node.js and has a rich ecosystem of extensions for other
languages (such as C++, C#, Java, Python, PHP, Go) and runtimes (such as
.NET and Unity).

Use this option to let Git use Visual Studio Code as its default editor.

cors

Figure 9-1. Setting VS Code as the default editor for Git

Let’s get Azure CLI and add the Azure DevOps extension to Azure CLI so we can
work with Azure Git Repos with a command line. You can set up Azure CLI following
the instructions at https://docs.microsoft.com/en-us/cli/azure/install-azure-
cli?view=azure-cli-latest. Once Azure CLI is installed, open a PowerShell window
in administrator mode. The execute az --version to check the version installed. See
Figure 9-2.

208

https://git-scm.com/downloads
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

EX Administrator: Windows PowerShell

indows PowerShell
opyright (C) Microsoft Corporation. All rights reserved.

S C:\Users\chamindac> az --version

zure-cli 2.0.73
command-modules-nspkg 2.0.3
core 2.0.73
nspkg 3.0.4
telemetry 1.e.3

Python location 'C:\Program Files (x86)\Microsoft SDKs\Azure\CLI2\python.exe'
Extensions directory 'C:\Users\chamindac\.azure\cliextensions'

Python (Windows) 3.6.6 (v3.6.6:4cf1f54eb7, Jun 27 2018, ©2:47:15) [MSC v.198@ 32 bit (Intel)]
Legal docs and information: aka.ms/AzureClilLegal

Your CLI is up-to-date.
PS C:\Users\chamindac>

Figure 9-2. Azure CLI

To add the Azure DevOps extension to Azure CLI, execute az extension add
--name azure-devops. Then you can execute az -version to check that the Azure
DevOps extension for Azure CLI is installed. See Figure 9-3.

WPS C:\Users\chamindac> az extension add --name azure-devops
PS C:\Users\chamindac> az --version

Jazure-cli 2.0.73
command-modules-nspkg 2.0.3

core 2.0.73

nspkg 3.0.4

telemetry =03

Extensions:

azure-devops 0.12.0

Figure 9-3. Azure DevOps extension

209

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

In this lesson, we set up VS Code as the code editor and Git for Windows to support
Git operations on a Windows 10 machine. Then we set up Azure CLI and the Azure
DevOps extension to support the command line for Azure Git Repos. You can use the
same tools in a Linux or macOS environment and perform the lessons in this chapter in

a similar way.

Lesson 9-2: Cloning an Azure Git Repository
and Pushing Code Using the Command Line

Let’s discuss how to clone and push code to a newly created Azure Git repository using
the command line in this lesson.

Create a new team project in Azure. We described how to set up a new team project
in Azure DevOps in the Hands-On Azure Boards book of this series. To create the new
Azure Git repository in the team project, you first need to log in to Azure DevOps. You
can do this by executing az login if you are using an Azure Active Directory account or
Microsoft account. If you want to use a personal access token (PAT) in Azure DevOps,
you can execute az devops login.In a PowerShell window, type az login, and you will
be prompted to log in to your account. See Figure 9-4.

e

PS C:\Users\chamindac> az login
Mote, we have launched a browser for you to login. For old experience with device code, use "az login --use-device-code”

® & 3 signinto your account X |+ ~ -

0O m & | https://login.microsoftonline.com/common/oauth?/authorize fresponse_type b4 = I

Microsoft Azure

B Microsoft
Sign in
Email, phone, or Skype

No account? Create one
Can't access your account?

Sign-in options

Figure 9-4. Logging in to Azure DevOps
210

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

Once you log in successfully, you can execute az repos create --name GitCmdo1l
--organization https://dev.azure.com/yourorg --project yourteamproject to
create a new Azure Git repository in your team project. See Figure 9-5.

ps C:\Users\chamindac> az repos create --name GitCmd@l --organization https://dev.azure.com/chamindac --project LearnGit
{
"defaultBranch™: null,
"id": “c74f95ce-83b9-4fce-9333-7856bd4@786d",
"isFork": null,
“name”: "GitCmde1",
"parentRepository”: null,
"project”: {
“abbreviation": null,
"defaultTeamImageUrl®: null,
"description”: null,
“id“: "87187580-b4@8-43a8-8c39-78726c@e9b36",
"lastUpdateTime": "2019-09-08715:18:05.8172",
"name”: "LearnGit®,
"revision™: 459109619,
"state": "wellFormed”,
"url": "https://chamindac.visualstudio.com/_apis/projects/871875808-b4e8-43a8-8c39-7@726¢c0e9b36",
"visibility": "private"
’
3r'ell:vtel.lr'!.": “https://chamindac.visualstudio.com/DefaultCollection/LearnGit/_git/GitCmdol",
“size™: 0,
"sshurl®: "chamindac@vs-ssh.visualstudio.com:v3/chamindac/LearnGit/GitCmdO1",
“validRemoteUrls": null,
"webUrl®: “"https://chamindac.visualstudio.com/DefaultCollection/LearnGit/ _git/GitCmde1™

}
PS C:\Users\chamindac> _

Figure 9-5. Creating a new Azure Git repository

In the Azure DevOps web portal, you can see the new Azure Git repo created. Copy
the clone URL of the new Azure Git repo. See Figure 9-6.

I':J Azure DevOps chamindac Repo e @ GitCmdo1 ~
LearnGit S F : :
8 e GitCmd01 is empty. Add some code!
ﬂ Overview
~~ Clone to your computer
% Boards
- S5H | https://chamindac@dev.azure.com/chamindac/LearnGit/_git/GitCmd01 (1)
Repos

Figure 9-6. Copying the clone URL

Create a folder on your development machine named Repos. Open Git bash installed
with Git as per the instructions in Lesson 9-1. Change the directory to the Repos folder in
Git bash and then execute a Git clone with the URL of Azure DevOps Git repository. You
will be prompted to log in to your Azure Git repository. Provide credentials and log in.

See Figure 9-7.
211

https://dev.azure.com/yourorg

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

v -
Home Share View

« v 4 > This PC > Windows (C:) > Repos »

chamindac@gitcommandtemp ! ~
$ cd "c:\Repos"

chamindac@gitcommandtemp MIN /c/Repos
§ git clone https://chamindac@dev.azure.com/chamindac/LearnGit/_git/Gitcmd0l
Cloning into 'GitCmdOl'...

Sign in to your account

pg Visual Studio

¥ Microsoft

Sign in

tmail, phone, or Skype

No account? Create one!
Can't access your account?

Sign-in options

1 item Back Next

Figure 9-7. Cloning the repo
Launch Visual Studio Code and open the Repos/GitCmd01 folder in VS Code. Then
press Ctrl+Shift+" or use the menu to open the terminal of VS Code. In the terminal, type

dotnet new webapp to create a .NET Core web app in the folder. See Figure 9-8.

212

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

File Edit Selection View Go Debug Terminal Help
RER

“ OPEN EDITORS

v GITCMDO1

TERMINAL
PS C:\Repos\GitCmd@l> dotnet new webapp

Welcome to .NET Core!

Figure 9-8. Creating a new .NET Core web app

You can add an extension to VS Code by pressing Ctrl+Shift+X. Search for gitignore
generator. The install the .gitignore Generator, as shown in Figure 9-9.

ninal Help

Extension: .gitignore Generator >

' .gitignore Generator

Lo g o g

Figure 9-9. Installing the .gitignore Generator for VS Code

213

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

Press Ctrl+Shift+P to launch a command palette in VS code. Type generate
.gitignore in the command palette and press Enter. See Figure 9-10.

GitCmdO01 - Visual Studio Code [Administrator]

>generate .g

itignore File

Figure 9-10. Generating a .gitignore file

In the next step, in the command palette, select visualstudiocode, windows,
aspnetcore, and csharp, and click OK. See Figure 9-11 (the figure shows only two options
selected, but you have to select all four).

GitCmdO01 - Visual Studio Code [Administrator]

B Select using Space or by clicking 4 Selected OK

visualstudiocode
| JF

B actionscript

Figure 9-11. Selecting the app type for .gitignore

A .gitignore file will be added to the code folder. Now we have to commit and
push the code to Azure Git Repos. We can easily do this with VS Code. However, let’s try
to commit and push the code using a command line as in this lesson our purpose is to
learn the command line with Azure Git Repos.

Open up the Git bash and change the directory to Repos/GitCmdo1. You will see the
branch name is master. See Figure 9-12.

214

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

chamindac@gitcommandtemp MINGW64 /c/Repos
$ cd gitcmdOl

chamindac@gitcommandtemp MINGW64 /c/Repos/gitcmd0l (master)
$ |

Figure 9-12. Master branch

Then execute agit add . to add the changes to Git as staged. You can commit the
changes to an Azure Git repository locally by executing git commit -m "the commit
message". But since you have not provided the user information to Git, you might get an
error message. See Figure 9-13.

hamindac@gitcommandtemp MIN /c/Repos/gitcmd0l (master)
§ git add .
chamindac@gitcommandtemp MI} /c/Repos/gitcmd0l (master)

$ git commit -m "adding sample code via command line"
#*%*%* please tell me who you are.
un

git config --global user.email "you@example.com"
git config --global user.name "Your Name"

o set your account's default identity.) _
it --global to set the identity only in this repository.

atal: unable to auto-detect email address (got 'chamindac@gitcommandtemp.(none)

")

hamindac@gitcommandtemp . /c/Repos/gitcmd01l (master)
i3 -

Figure 9-13. Attempting the git commit command

As instructed in the message, you can execute a git config -global user.email
command with your Azure DevOps account’s login e-mail address to get the user
information defined for Git. If you just want to set the identity to this repository, you can
omit using -global in the command. Then you can attempt the commit again, which
will succeed. See Figure 9-14.

215

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

¢ MINGW64:/c/Repos/gitcmd01

create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode
create mode

100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644
100644

chamindac@gitcommandtemp MINGW6E4 /c/Repos/gitcmd0l (master)
$ git config user.email "chaminda_chandrasekara@yahoo.com"

chamindac@gitcommandtemp MINGW64 /c/Repos/gitcmd0l (master)

$ git commit -m "adding sample code via command Tine"

[master (root-commit) 6488818] adding sample code via command Tline
54 files changed, 40194 insertions(+)

.gitignore

G1tCmd01.csproj
pages/Error.cshtml
Pages/Error.cshtml.cs
Pages/Index.cshtml
Pages/Index.cshtml.cs
Pages/Privacy.cshtml
Pages/Privacy.cshtml.cs
Pages/shared/_cookiecConsentpPartial.cshtml
Pages/Shared/_Layout.cshtml
Pages/Shared/_validationScriptspPartial.cshtml
Pages/_viewImports.cshtml
Pages/_viewstart.cshtml
Program.cs
Properties/launchsettings.json
startup.cs
appsettings.Development.json
appsettings.json
wwwroot/css/site.css
wwwroot/favicon.ico
wwwroot/js/site.js
wwwroot/1ib/bootstrap/LICENSE

Figure 9-14. Setting the repository user and committing

Now that we have the code committed to the local Azure Git repo, we can push it to
the remote Azure Git repository by executing a git push. See Figure 9-15.

216

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

chamindac@gitcommandtemp MINGW64 /c/Repos/gitcmd0l (master)
$ git push

Enumerating objects: 72, done.

Counting objects: 100% (72/72), done.

Delta compression using up to 4 threads

Ccompressing objects: 100% (68/68), done.

writing objects: 100% (72/72), 726.67 KiB | 3.38 MiB/s, done.
Total 72 (delta 11), reused 0 (delta 0)

remote: Analyzing objects... (72/72) (50 ms)

remote: storing packfile... done (232 ms)

remote: Storing index... done (83 ms)

To https://dev.azure.com/chamindac/LearnGit/_git/Gitcmd0Ol

* [new branch] master -> master

chamindac@gitcommandtemp MINGWE4 /c/Repos/gitcmd0l (master)
$

Figure 9-15. Pushing to a remote Azure Git repository

Go to Azure DevOps in a browser and check the GitCmdo01 repository. You will be
able to see that the new code pushed is available in the master branch. See Figure 9-16.

f'_'J Azure DevOps chaminda eamGit Repos File © GitCmdo1 ~
. LearnGit ar ¥ master v GitCmd01 / T
ﬂ Overview) Contents Histo + Ne T Upload file(s)
0 GIICITIdO'I story W 2] * 15)
% Boards Pages Name T Last change
Properties P
Repos ages 31 minutes ago
wwwroot
4 Properties 31 minutes ago
[Files [gitignore
wwwroot 31 minutes ago
® Commits {} appsettings.Development.json
™
{) appsettingsjson) .gitignore 31 minutes ago
2, Pushes
€ GitCmdO01.csproj {} appsettings.Developmentjson 31 minutes ago
#* Branches
¢ Program.cs {} appsettingsjson 31 minutes ago
@ Tags c# Startup.cs & GitCmdo01.csproj 31 minutes ago

Figure 9-16. Azure Git repository with code

In this lesson, we discussed how to create an Azure Git repository, and then we
cloned it using the command line to the local machine. Then we added some code and
explored how to commit and push the code to Azure Git Repos with the command line.

217

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

Lesson 9-3: Creating a Git Repository Locally
and Pushing It to Azure Git Repos

Let’s see how we can create a local repository first and then push that to Azure Git Repos.
This will help you to understand how you can use your existing local Git repositories and
create Azure Git Repos repositories with them.

Create a directory in your machine named GItCmd02. Then change the directory to
the newly created folder. See Figure 9-17.

chamindac@gitcommandtemp MINGW64 /c/repos
$ mkdir Gitcmd02

chamindac@gitcommandtemp 164 /c/repos
$ cd Gitcmd02

chamindac@gitcommandtemp GWw64 /c/repos/GitcCmd02
$

Figure 9-17. Creating a directory

Execute git init to convert the folder into a Git repository. See Figure 9-18.

dchamindac@gitcommandtemp /c/repos/Gitcmd02
S git init
Initialized empty Git repository in C:/Repos/GitCmd02/.git/

chamindac@gitcommandtemp - /c/repos/Gitcmd02 (master)
$

Figure 9-18. Initializing a Git repository

Open the GitCmdo2 folder in VS Code, and in the VS Code terminal execute dotnet
new webapp to create a .NET Core web application. See Figure 9-19.

218

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

TERMINAL 1: powershell

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS C:\Repos\GitCmd@2> dotnet new webapp

The template “ASP.NET Core Web App” was created successfully.

This template contains technologies from parties other than Microsoft, see https://aka.ms/
aspnetcore-template-3pn-21@ for details.

Processing post-creation actions...
Running ‘dotnet restore' on C:\Repos\GitCmd@2\GitCmde2.csproj...
Restore completed in 4.27 sec for C:\Repos\GitCmd@2\GitCmde2.csproj.

Restore succeeded.

PS C:\Repos\GitCmde2> []

Figure 9-19. Creating a web app

Thendoagit add . and add the user’s e-mail to the repository. Execute git
commit with a commit message to commit the code to the local Git Repos master branch
in the GitCmdoz2 folder. See Figure 9-20.

ichamindac@gitcommandtemp /c/repos/Gitcmd02 (master)

5 git add .

warning: LF will be replaced by CRLF in .gitignore.

The file will have its original 1line endings in your working directory

khamindac@gitcommandtemp /c/repos/Gitcmd02 (master)
5 git config user.email "chaminda_chandrasekara@yahoo.com"

ichamindac@gitcommandtemp i /c/repos/Gitcmd02 (master)
5 git commit -m "Add code to local Gitcmd02 repo master branch”

[master (root-commit) c8490b3] Add code to local Gitcmd02 repo master branch
54 files changed, 40194 1insertions(+)

create mode 100644 .gitignore

create mode 100644 GitCmd02.csproj

create mode 100644 Pages/Error.cshtml

create mode 100644 Pages/Error.cshtml.cs

create mode 100644 Pages/Index.cshtm]l

create mode 100644 Pages/Index.cshtml.cs

create mode 100644 Pages/Privacy.cshtml

create mode 100644 Pages/Privacy.cshtml.cs ~

Figure 9-20. Committing the code

219

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

Now that we have the code committed to the local repository, we have to create
a new repository in Azure DevOps to push the local repo to Azure DevOps. Open a
PowerShell window and use az login oraz devops login (if you are using a PAT) to log
in to Azure DevOps. Then execute az repos create --name GitCmd02 --organization
https://dev.azure.com/your/orgname --project teamproject to create an Azure Git
repo named GitCmdo02. See Figure 9-21.

PS C:\Users\chamindac> az repos create --name GitCmd@2 --organization https://dev.azure.com/chamindac --project LearnGit
i
"defaultBranch”: null,
*id": “Se6677a9-a929-493b-a2ba-30fa3cba2264”,
"isFork": null,
“name”: "GitCmde2",
"parentRepository”: null,
“project”: {
"abbreviation": null,
"defaultTeamImageUrl”: null,
"description”: null,
"id": "871875808-b408-43a8-8c39-70726c0e9b36",
"lastUpdateTime": "2019-29-15T@8:00:05.5672",
"name”: "LearnGit”,
"revision™: 459109620,
"state": "wellFormed”,
"url®: "https://chamindac.visualstudio.com/_apis/projects/87187580-bd@8-43a8-8c39-70726c0e9b36",
"visibility": “private®
})
"remoteUrl”: “"https://chamindac.visualstudio.com/DefaultCollection/LearnGit/_git/GitCmd@2",
"size": @,
"sshurl”: "chamindacgvs-ssh.visualstudio.com:v3/chamindac/LearnGit/GitCmde2",
"validRemoteUrls™: null,
"webUrl™: "https://chamindac.visualstudio.com/DefaultCollection/LearnGit/_git/GitCmde2"

PS C:\Users\chamindac> _

Figure 9-21. Creating an Azure Git repository

Copy the remote URL in the output of the command az repo create. Then open the
Git bash and navigate to the local repository folder called GitCmd02. Execute git remote
add origin "remote/clone url".See Figure 9-22.

chamindac@gitcommandtemp /c/repos/gitcmd02 (master)

§ git remote add origin "https://chamindac.visualstudio.com/Defaultcollection/L¢
larnGgit/_git/Gitcmd0o2"

chamindac@gitcommandtemp /c/repos/gitemd02 (master)
S | v

Figure 9-22. Connecting the local repository to the Azure Git repository

Run the command git push origin master to push the changes to the remote
Azure Git repository. You will be prompted for credentials; log in with your Azure

DevOps account. See Figure 9-23.

220

https://dev.azure.com/your/orgname

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

§ git push origin master

/c/repos/gitemd02 (master)

Sign in to your account

pq Visual Studio

B¥ Microsoft
Sign in
Email, phone, or Skype

No account? Create one!
Can't access your account?

Sign-in options

Figure 9-23. Pushing changes to the Azure Git repository

You can see that the code is available in the Azure Git repository after being pushed.

See Figure 9-24.

Azure DevOps

LearnGit

8 C

Overview

Boards

& I

B

Repos

Files

<o B

Commits

@) Pushes

+

: © GitCmdo2 v
¥ master v | GitCmd02 / Type t
<
© Gitcmdo2 Contents History
obj Name 1
Pages
obj
Properties
Pages
wwwroot
- - Properties
{} appsettings.Development.json
wwwroot

{} appsettings.json

Figure 9-24. Code pushed to the Azure Git repository

221

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

In this lesson, you learned how to use a local available Git repository and push the
code in that repository to an Azure Git repository.

Lesson 9-4: Creating Azure Git Repo Branches
Using the Command Line

Now that we have the code in remote Azure Git repo, we can create branches using the
Azure DevOps web interface, as discussed in Chapter 8. However, in this lesson, let’s see
how we can create a branch locally and push it to the remote Azure Git repository.
Prerequisites: You followed the previous lessons of this chapter.
Open Git and change directories to the cloned repository of Lesson 9-2. You should be
in the master branch of the repository. If you execute the git branch --list command,
you will be able to see that only the master branch is available. See Figure 9-25.

chamindac@gitcommandtemp /c/Repos/gitcmd0l (master)
$ git branch --Tist

* master

chamindac@gitcommandtemp MINGW64 /c/Repos/gitcmd0l (master)
$ |

Figure 9-25. Listing branches

Let’s try to create a branch in the local Git repository and push it to the remote Azure
Git repository. Execute git branch develop to create a branch called Develop from the
master. Then you can switch to the Develop branch by executing git switch develop or
git checkout develop. See Figure 9-26.

chamindac@gitcommandtemp MINGW64 /c/Repos/gitcmd0l (master)
$ git branch develop

chamindac@gitcommandtemp w64 /c/Repos/gitcmd0l (master)
$ git switch develop
switched to branch 'develop'

chamindac@gitcommandtemp W W64 /c/Repos/gitcmd0l (develop)

Figure 9-26. Creating and switching to a new branch

222

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

To push this new branch to the remote Azure Git repository, we cannot just use
git push as there is no such remote branch available. We should execute git push --
set-upstream origin develop to set the remote Develop branch and push the locally
created Develop branch to the remote Azure Git repository. See Figure 9-27.

chamindac@gitcommandtemp /64 /c/Repos/gitcmd0l (develop)

$ git push --set-upstream origin develop

Total 0 (delta 0), reused 0 (delta 0)

To https://dev.azure.com/chamindac/LearnGit/_git/Gitcmd0l

* [new branch] develop -> develop

Branch 'develop' set up to track remote branch 'develop' from 'origin'.

chamindac@gitcommandtemp . /c/Repos/gitemd0l (develop)
$

Figure 9-27. Pushing the new branch Develop to the remote Azure Git repository

You can see that the new branch is available now in the Azure Git repository by going
to the web interface of Azure DevOps. See Figure 9-28.

f:] Azure DevOps hamind: Repos Files @ GitCmdo1 v
LearnGit = §° develop v |Gittmd01 / Type to find a file or f
ﬂ Overview s
© GitCmdo1 ... Contents History - New
% Boards Pages Name *
" Properties
Repos Pages
wwwroot
) Properties
2 Files D) .gitignore
wwwroot
$ Commits {} appsettings.Development json
. [gitignore
{} appsettings.json
%, Pushes ol
€3 GitCmd01.csproj (} appsettings.Development.json
3—’ Branches
c# Program.cs {} appsettings.json

Figure 9-28. Develop branch pushed

223

CHAPTER9 USING THE COMMAND LINE WITH AZURE GIT REPOS

You can check out a branch with git checkout branchname and then edit the code
in the branch. Then you can commit the changes with git add . and git commit. To
merge a branch to a given branch, you have to first check out the target branch and then
execute git merge sourcebranchname. You can find a detailed command-line reference
in the documentation at https://docs.microsoft.com/en-us/azure/devops/repos/
git/command-prompt?view=azure-devops.

Summary

In this chapter, we explored managing Azure Git Repos repository with the command
line. We looked at how to clone a repo and add code to it. Additionally, we discussed
how to use a local Git repository to create an Azure Git repository. Then we explored
the branching and discussed a few more commands. This chapter can be considered a
good start to working with Azure Git Repos using the command line, and you can use
the command-line reference available at https://docs.microsoft.com/en-us/azure/
devops/repos/git/command-prompt?view=azure-devops to learn more.

In the next chapter, let’s discuss the security and permissions related to Azure Git Repos.

224

https://docs.microsoft.com/en-us/azure/devops/repos/git/command-prompt?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/command-prompt?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/command-prompt?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/command-prompt?view=azure-devops

CHAPTER 10

Azure Git Repos: Security

Security is an important aspect of any source control system. Permissions involve
rights to create branches, commit code, check out branches, create pull requests, set
permissions to merge changes into a given branch, etc.

In Azure Git Repos, you might want to protect your stable branches and apply
additional security on given branches for specific teams. You might want to keep
multiple repositories in a team project and apply permissions to individuals or teams in
the team project.

In this chapter, you'll get a quick overview of all the permissions and permission
levels available for Azure Git Repos and the options available for branch policies to
protect Azure Git Repos branches.

Lesson 10-1: Setting Azure Git Repos Permissions

In Azure Git Repos, permissions can be applied for all repositories, individual repos, and
their branches. Let’s explore each of these permission levels.

Prerequisites: You have a team project with Azure Git Repos with branches and have
code available in the repositories.

First navigate to a team project where you have multiple Git repositories with
branches. Then click the “Project settings” tab and click Repositories in the Repos
section. You will see a list of Azure Git repositories. See Figure 10-1.

225
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_10

CHAPTER 10 AZURE GIT REPOS: SECURITY

Azure DevOps

-~ A

LearnGit

Overview

Boards

Repos

Pipelines

Test Plans

Artifacts

B4 P ED

% Project settings

Figure 10-1. Repositories tab

«

chamindac LearnGit

rroject conmngurauon

Team configuration

GitHub connections

Pipelines

Agent pools
Parallel jobs
Settings

Test management
Release retention

Service connections

Repos

Repositories

Policies

Repositories

Repositories

New repository

@ Git repositories
€ GitCmdo1
&> GitCmd01.chaminda_chandrase.
© GitCtmd02
¢ ImportedFromGitHub
¢ LearnGit

© WikisRepo

In all the repositories, you can see there are several permissions available for each
Azure DevOps security group. (We discussed these security groups in detail in the

Hands-on Azure Boards book of this series.) See Figure 10-2.

226

CHAPTER 10 AZURE GIT REPOS: SECURITY

New repository Sooaity
+ ACCESS CONTROL SUMMARY
Add [l t $Shows Miormaton about the permasons e
€ Git repositories
© Gittmad1 Not set
GitCmd01.chaminda_chandrase Not set
All (inherited)
€ Gittmad02 b
Allow (inherited)
© ImportedFromGitHub
Allow (inherited)
© LeamGit Allow (inherited) Why
© WikisRepo Allow (inherited)
Allow (inherited)
Allow (inherited)

Not set

Allow (inherited)
Allow (inherited)
Allow (inherited)
Allow (inherited)

Allow (inherited)

Figure 10-2. All repositories permissions

Some permissions are marked as Allow (inherited), which shows that the permission
to a selected user or group is inherited from its membership in other groups or teams.
You can click Why, which appears when you move your mouse over these permissions,
to check how the permission is inherited. When a permission is denied, it gets priority
always. If Denied is not set, the inheritance gets applied for the permission. Or you can
explicitly allow a permission. Clicking a permission value changes the value from Not Set
to Allow and from Deny to Not Set. All Git repositories permissions shown in Figure 10-2
are explained here:

o Bypass policies when completing pull requests: Branch policies
can be ignored, and the user with this permission can complete and
merge a pull request to any branch of any repository.

o Bypass policies when pushing: The user can push a change to any
repo in any branch regardless of the branch policies.

o Contribute: The user can contribute (commit code) to any branch of
any repo.

o Contribute to pull requests: The user can create pull requests
targeting any branch in any repo.

227

CHAPTER 10 AZURE GIT REPOS: SECURITY

Create branch: The user can create a branch in any repo.

Create repository: The user can create repositories in the team
project.

Create tag: The user can create tags in any branch of any repo.

Delete repository: The user can delete an Azure Git repo from the
team project.

Edit policies: The user can edit branch policies in any branch of any
repo.

Force push (rewrite history, delete branches and tags): The user
can delete any branch of any repo and force push changes with
history rewrite to any branch of any repo.

Manage notes: The user can manage notes in any branch of any repo.

Manage permissions: The user can manage the permissions of any
repository and any branch.

Read: The user can read code in any branch of any repo.

Remove others’ locks: The user can remove locks in any branch in
any repo.

Rename repository: The user can rename any repository.

You can use the Add button to add groups, teams, or users to grant them permissions

explicitly. See Figure 10-3.

228

CHAPTER 10 AZURE GIT REPOS: SECURITY

Add a user or a group for permissions

To add explicit permissions for a user or a group, just type their sign-in address or group alias

User or group dun‘

(=)

Showing 1 result

Figure 10-3. Adding users, groups, or teams

You can switch on/off inheritance for all repos in the Inheritance drop-down. See
Figure 10-4.

Security for all Git repositories

Security Options Policies

4+ Add.. Inheritance ¥
Search v On
o Project | off
o Project C ounts

Figure 10-4. Inheritance for permissions

229

CHAPTER 10 AZURE GIT REPOS: SECURITY

On the Options tab, you can allow Gravatars images from outside the enterprise. See
Figure 10-5.

<

Repositories Options for all Git repositories
New repository Security Options Policies

& $/LearnGit Options

No items in this folder.

@ o Gravatar images

Show Gravatar images for users
¥ GitCmdo1 outside of your enterprise. This
setting applies to all
repositories in this project
© GitCmdo2 collection. Learn more

@ Git repositories

& GitCmd01.chaminda_chandrase...

Figure 10-5. Options

You can set policies such as file size limits, path validations, etc., for all repositories
using this tab. See Figure 10-6.

Policies for all Git repositories

Repositories
New repository R,
! $/LeamGit Policies

No items in this folder.
e (®) off File path validation

oz Block pushes from intreducing file paths that match the following patterns.
© GitCmdo1
& GitCmd01.chaminda_chandrase. .
: SRR @ o Case enforcement
© GitCmdoz Avoid case-sensitivity conflicts by blocking pushes that change name casing on files, folders,

) branches, and tags. Learn more
© ImportedFromGitHub
€ LeamGit
®) off Reserved names
Block pushes that introduce files, folders, or branch names that include platform reserved names
or incompatible characters. Learn more

© WikisRepo

@) off Maximum path length
Block pushes that introduce paths that exceed the specified length. Learn more

@) off Maximum file size
Block pushes that contain new or updated files larger than this imit.

Figure 10-6. Policies
230

CHAPTER 10 AZURE GIT REPOS: SECURITY

Click a repo to see the permissions of a given repo. Se Figure 10-7.

Repositories Security for GitCmd01 repository
New repository Scuy
ACCESS CONTROL SUMMARY
o - + Add Inheritance Shows information about the permationt being granted 1o this identiy
~ 8 $AeamGit
No items in this folder. arch it Bypass policies when completing pull request Not set
© Git repositories « Azure DevOps Groups Bypass pohaes when pushing Not set
» @ GitCmdo] £} Project Collection Administrators Allow (inherited)
ite 1o pull request Allow (inherited)
» O GItCmd01.chaminda_chandrase.. 8- Project Collection Build Service Accounts
Create brar Allow (inherited)
P t Collection Service Account: = & -
» § GitCmd02 8 roject Collection Service Accounts raaita fa Allow (inhesited)
3 9 importedFromGitHub 'B- Build Administrators Seleti cectaiicing Allow (inherited)
» @ LeamGit 8 Contributors Editf @ Allow (inherited)
> 4 WikisRepo B Project Administrators Force push (rewrite history, delete branches and tag Not set
£ readers Manage note Allow (inherited)
Allow (inherited)

~ Users
Allow (inherited)

. Chaminda Chandrasekara . s
Allow (inherited)

Rename repository Allow (inherited)

Clear explicit permissions

Figure 10-7. Repo permissions

Similar to the permissions applied for all repositories, users, teams, and groups can
be assigned with individual repo-scoped permissions.

In the options for an individual repo, you can set options allowing users to create
forks, commit mention links, etc. See Figure 10-8.

231

CHAPTER 10 AZURE GIT REPOS: SECURITY

Options for GitCmd01

Repositories
New repository Optione
£ §/LearnGit Options

No items in this folder,

@ o Forks

© Git repositories : ;
P Allow users to create forks from this repository.

© GitCmdo1
& Alltags & G i T
. @ o Commit mention linking
¥ Branches Automatically create links for work items mentioned in a commit comment.

& GitCmd01.chaminda_chandrase...

© Gitcmdo2 @ o~ Work item transition preferences
@ ImportedFromGitub Remember user preferences for completing work items with pull requests.

© LearnGit
i @ o Commit mention work item resolution
P Allow mentions in commit comments to close work items (e.g. “Fixes #1237,

Configure branches for code search

4+ Include branch

3’ master Default

Figure 10-8. Options of a repository

The Policies tab allows you to set the same policies as in all the repositories in the
scope of a selected repo. Forked repositories also have the same permissions, options,

and policies.
In a repo for “All tags,” you can set “Force push” permissions. See Figure 10-9.

232

Repositories All tags
New repository Secuty
+ Add Inheritance
~ 8 SfleamGit

" e Search
No items in this folder.

€ Git repositories v Azure DevOps Groups

v GitCmdo! B Project Collection Administrators
& mn tags ‘ e Project Collection Build Service Accounts
» | Branches e Project Collection Service Accounts

» &b GitCmd01.chaminda_chandrase.. e Build Administrators
» 4 GirCmdo02 8 Contributors
> € ImportedFromGitHub 'B' Project Administrators
» 9 LeamGit 8 Readers

» 9 WikisRepo v Users

. Chaminda Chandrasekara

Figure 10-9. “All tags” permissions

CHAPTER 10 AZURE GIT REPOS: SECURITY

ACCESS CONTROL SUMMARY
Shows informaton about the permasions being granted 1o the identity

e history, delete branches and tags) Not set
Allow (inherited)

Clear explicit permissions

You can set permissions for all branches in a selected repositories. The permission

set for all branches is a subset of the repositories permissions scoped into a selected repo

of all branches. See Figure 10-10.

Repositories Branches
New repository Security
+ Add Inheritance *
v & S/leamGit

No items in this folder. Search

@ Git repositories ~ Azure DevOps Groups

v @ GItCmd01 £} Project Collection Administrators
& al tags 8 Project Collection Build Service Accounts
» ¥ Branches | B Project Collection Service Accounts

> & GItCmd01.chaminda_chandrase, e Build Administrators
y @ GItCmd02 8 Contributors
> @ ImportedFromGitHub B Project Administrators
> @ LeamGit B Readers

> 4 WikisRepo ~ Users

. Chaminda Chandrasekara

Figure 10-10. All branch permissions

ACCESS CONTROL SUMMARY

Shows information about the permissions being granted to this sdentity

Bypass] pleting pull requests Not set
Bypass policies when pushing Mot set
Allow (inherited]

Allow (inherited]

Allow (inherited]
ry, delete branches and tags Not set

Allow (inherited]

Allow (inherited]

Clear explicit permissions

Remove Save changes Undo changes

For an individual branch, you can apply permissions. These are a subset of

permissions from the all branch permissions, which are scoped to a selected branch. See

Figure 10-11.

233

CHAPTER 10 AZURE GIT REPOS: SECURITY

Security for develop branch in GitCmd01
. e ACCESS CONTROL SUMMARY
& 2 + Add Inheritance Shows nformation about the permesiont beng granted to this identity
o+ $/LearnGit
No items in this folder Sea ’ pa vhe plet request Not set
@ Git repositories ~ Azure DevOps Groups Not set
Allow (inherited)
v € GiaCmdo1 £} Project Collection Administrators ow (inherited
Allow (inherited)
@ Al tags 8 Project Collection Build Service Accounts
Not set
vk rd Project Collection Service Accounts
P Branches 'B‘ ecl L = Allow (inherited)
¥ develop Build Administrator PRy
¥ develop e 8 Build Administrators g e ot b Allow (inherited)
¥ master -B Cor
lear ¢
» (¥ GtCmd01.chaminda_chandrase ‘8‘ Pro
> € GitCmd02 B readers
> € ImportedFromGitHub v Users
> @ LeamGit . Chaminda Chandrasekara

> € WikisRepo

Figure 10-11. Branch permissions

When you click the Policies tab of a given branch, you will be taken to the branch’s
policy setup page, which we will discuss in the next lesson.

In this lesson, we explored the security permissions, options, and policies
available in Azure Git Repos, which will help you to secure your code as per your team

requirements.

Lesson 10-2: Setting Up Azure Git Repos Branch
Policies

In addition to the Azure Git Repos permissions, each branch in a repo can be protected
with policies. Let’s look at the branch policies that are available in Azure Git Repos.

Prerequisites: You have a team project in Azure Git Repos with branches and have
code available in the repositories.

As explained in the previous lesson, you can select a branch and click Policies on the
Repositories page of the Repos section to access the branch policies page (see Figure 10-11).
Or from Repos, you can go to Branches, and on the Branches page, you can use the Branch
context menu to access the branch policies. See Figure 10-12.

234

LearnGit - Branches

Overview Mine All

Boards
¥ develop

Rapos ¥ master

Files

- DADBNBCC

Commits

Pushes

Branches

© % [k

Tags

o0
o=t

Pull requests

* Pipelines
A Test Plans
. Artifacts

Figure 10-12. Branch policies menu item

Azure DevOps chamindac LearnGit

Default

t

Repos

i

3]

CHAPTER 10 AZURE GIT REPOS: SECURITY

Branches 1} GitCmdO01 v

New branch

New pull request

Delete branch

View files
View history
Compare branches

Set as compare branch

Lock

Branch policies

Branch security

e44bf273

704745e6

On the policies page, you can protect a branch with several policy settings. See

Figure 10-13.

235

CHAPTER 10 AZURE GIT REPOS: SECURITY

hamindac LearnGit tings Policies

Project Settings Policies for: LearnGit > GitCmdO1 > develop

LearnGit

General
Protect this branch

Overview ® Setting a Required policy will enforce the use of pull requests when updating the branch
* Setting a Required policy will prevent branch deletion

Teams * Manage permissions for this branch on the Security page

Permissions ["] Require a minimum number of reviewers

Notifications Require approval from a specified number of reviewers on pull requests.

Service hooks (") Check for linked work items

Encourage traceability by checking for linked work items on pull requests.
Dashboards
(7] Check for comment resolution

Check to see that all comments have been resolved on pull requests.

Boards

Project configuration () Limit merge types

Team conﬁguration Control branch history by limiting the available types of merge when pull requests are completed.
GitHub connections Build validation
Validate code by pre-merging and building pull request changes

Pipelines

Add build policy
Agent pools
Parallel jobs @ No build pipelines were found
Settings

Require approval from additional services

Test management Require other services to post successful status to complete pull requests. Learn more

Release retention - Add status policy
Service connections

Automatically include code reviewers

Repos
P Include specific users or groups in the code review based on which files changed.
Repositories
-+ Add automatic reviewers
Policies

Figure 10-13. Branch policies

You can set the required number of reviews for incoming pull requests so that
reviewers have to approve a pull request before merging to the branch. A few additional
options for the number of reviewers can be set up, as shown in Figure 10-14.

236

CHAPTER 10 AZURE GIT REPOS: SECURITY

Require a minimum number of reviewers

Require approval from a specified number of reviewers on pull requests.

Minimum number of reviewers | 2

() Requestors can approve their own changes
() Allow completion even if some reviewers vote to wait or reject
() Reset code reviewer votes when there are new changes

Figure 10-14. Requires reviewers policy

The work item link policy enforces the requirement of a work item to be associated
to the pull request. You can make this required or optional check with a warning. See
Figure 10-15.

Check for linked work items
Encourage traceability by checking for linked work items on pull requests.

Policy requirement
@ Required

Block pull requests from being completed unless they have at least one linked work item.
(_) Optional

Warn if there are no linked work items, but allow pull requests to be completed.

Figure 10-15. Work item link policy

Comments are made on a pull request by reviewers, and a policy can be set so that
all the comments must be resolved before merging them to the branch. This policy again
can be optional with a warning. See Figure 10-16.

237

CHAPTER 10 AZURE GIT REPOS: SECURITY

Check for comment resolution
Check to see that all comments have been resolved on pull requests.

Policy requirement

@ Required

Block pull requests from being completed while any comments are active.

i:/ Optional

Warn if any comments are active, but allow pull requests to be completed.

Figure 10-16. Comment resolution policy

Merge types can be set as a branch policy so that only allowed merge types of pull
requests are possible to the branch. See Figure 10-17.

Limit merge types
Control branch history by limiting the available types of merge when pull requests are completed.

Allowed merge types:

Basic merge (no fast-forward)
Preserves nonlinear history exactly as it happened during development.

Squash merge

Creates a linear history by condensing the source branch commits into a single new commit on the target branch.

Rebase and fast-forward
Creates a linear history by replaying the source branch commits onto the target without a merge commit.

Rebase with merge commit
Creates a semi-linear history by replaying the source branch commits onto the target and then creating a merge commit.

Figure 10-17. Merge types policy

One you click add “Build policy,” you can select an available Azure pipeline build
and set a policy so that it requires the build to be successful to merge the pull request.
See Figure 10-18. You can add more than one build as the build policy. We discuss builds
in more detail in the Hands-on Azure Pipelines book of this series.

238

CHAPTER 10

Add build policy

Build pipeline *
GitCmd01

AZURE GIT REPOS: SECURITY

X

Path filter (optional) ®

No filter set

Trigger
@ Automatic (whenever the source branch is updated

Manual

Policy requirement

Optional

d failure will not block completion of pull requests

Build expiration
Immediately when }’develop is updated
@ After 12 hours if develop has been updated

MNever

Display name

Figure 10-18. Build policy

automatically to the PR when created. See Figure 10-19.

The status policy lets you check the status applied to a pull request by an external
service using the REST (Representational State Transfer) API. How to use REST APIs
is explained in Chapter 12. The automatic reviews policy lets you add reviewers

239

CHAPTER 10 AZURE GIT REPOS: SECURITY

Automatically include reviewers X

Include the following reviewer(s) *

Search users and groups

Policy requirement
O Optional
@ Required

For pull requests affecting these folders (O
No filter set

Leave blank to include the specified reviewers on all new pull requests

Completion options

Requestors can approve their own changes

Activity feed message

Message will appear in the activity feed of pull requests with automatically added

Figure 10-19. Automatic reviewers

In this lesson, we explored the policies that can be used to protect a branch, in
addition to the permissions available in Azure Git Repos.

Summary

We discussed the permissions, options, and policies in Azure Git Repos. In addition, we
discussed how to protect branches with branch policies.

In the next chapter, we will discuss features such as creating forks, tagging importing
external repos, and creating wikis with Git Repos markdown files.

240

CHAPTER 11

Azure Git Repos Extras

We have discussed many Azure Git Repos operations that you can perform. There are
a couple of additional common Git operations such as creating Git tags and forking
that we will be exploring in this chapter. Further, we will talk about importing other
repositories to Azure Git Repos and creating wikis in Azure DevOps via markdown files
stored in Azure Git.

Lesson 11-1: Using Git Tags

A tag is helpful to mark a specific point in the commit history of a Git repo. Azure Git
Repos supports two types of tags, lightweight tags and annotated tags. A lightweight tag
is a tag for the commit, while an annotated tag marks a commit and includes a tagger,
which is a message for the tag with the date.

Prerequisites: You followed Chapters 6, 7, and 8 and have created an Azure Git
repository with a few commits in it.

Creating Tags with the Azure DevOps Web Portal

The tags you create using the Azure DevOps Portal will be always annotated tags. You
can open an Azure Git repository in the Azure DevOps Portal and on the History tab use
the context menu of a given commit to create a tag. See Figure 11-1.

241
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_11

CHAPTER 11 AZURE GIT REPOS EXTRAS

g Azure DevOps chamindac LearnGit Repos Files @ GitCmd01 ~
- LearnGit iz 1° develop ~ GitCmdD1 / Type to find a file or foldes
ol <
i Overvew T g Gootens
q Boards B Pages
B Properties . Simple history (... Author v From date
A Repos .
B wwwroot Cornmat Message
eddbf273 Some change 2
4 Commits {) appsettings.Cevelopmentjson 9454b26b Sorne change
@ Pushes L1 sppsewingsjion ‘ 7@4745e¢6 -+ adding sample code via command line
E=2 GitCmd01.csproj
¥# Branches D™ Copy full SHA
c» Program.cs
) Browse files
Q Tags o Startup.cs
Il Pull requests ¥ New branch...

* Pipelines

Figure 11-1. Selecting to create a tag for a commit

In the pop-up window, provide a tag name and a description and create the tag for
the commit. See Figure 11-2.

Create a tag e

Name *

0.0.1

Tag from

¢ 7047456 v

Description *

Inertial commit tag

Figure 11-2. Creating the first tag
242

CHAPTER 11 AZURE GIT REPOS EXTRAS

The tag will be visible in the commit. See Figure 11-3.

Contents History

Simple history (...

e44bf273
1 9454b26b
1 7847456

Figure 11-3. The tag visible in the commit

Some change 2
Some change

adding sample code via command line

. Chaminda Chandra... 10 minutes ago
. Chaminda Chandra
2001 . unknown 9/15/2019 221 PM
Tag Details

0.0.1 Initial commit tag

You can create and view tags on the Tags page of the Azure DevOps Portal. See

Figure 11-4.

f:J Azure DevOps

B it

B overview
& soars
Repos
E3 Files
? Commits
Pushes

Branches

8 v [P

Tags

Figure 11-4. Tags page

D s S -]

78474506 . Chaminda Chandras 5 minutes ago|

When you click Create Tag, the “Create a tag” pop-up window will open. In the drop-

down of the tag creation pop-up, you can select a branch for which to create a tag. See

Figure 11-5.

243

CHAPTER 11 AZURE GIT REPOS EXTRAS

Create a tag

Name *

Tag from

$ master
,O Filter branches

Branches Tags Commits

I° master Default
Mine

29 develop

Figure 11-5. Branch for a tag

You can select a specific commit by searching for it using the first four characters of

the commit ID. See Figure 11-6.

244

CHAPTER 11 AZURE GIT REPOS EXTRAS
Create a tag 2

Name *

Tag from

7° master
£ 7047

Branches Tags Commits

¢ 704745e6 adding sample code via command line

Create Cancel

Figure 11-6. Selecting a commit for the tag

You can create multiple tags for a single commit if required. See Figure 11-7.

¥ develop ~ GItCmd01 / Type to fir

Simple history (...

e44bf273 Some change 2 . Chaminda Chandrasekara 22 minutes ago
I 9454b26b Some change . Chaminda Chandrasekara 22 minutes ago
S 70474506 - adding sample code via command line 001 Cevtranch.. (@) unknown 9/15/2019 2:21 PM

Tag Details

DevBranchStart Dev Branch Start

Figure 11-7. Multiple tags for a commit

245

CHAPTER 11 AZURE GIT REPOS EXTRAS

The tag context menu allows you to create a branch, download the tagged commit
version’s source code as a zip file, view files in a tagged commit version, view history
from the tagged commit, and delete the tag. See Figure 11-8. In addition, you can set the
tag as a compare tag to compare the files of two commits for changes.

Tags
Tag

{ 0.0.1 Initial commit tag

{ DevBranchStart Compare + New branch...

¥ Download as Zip
[} View files

O View history

[l Delete tag

©3 Set as compare tag

B8 Compare Tags

Figure 11-8. Tag context menu

Creating Tags with Visual Studio

You can clone an Azure Git repository using Visual Studio, as we discussed in Chapter 7.
In Visual Studio Team Explorer, you can click Tags. See Figure 11-9.

246

CHAPTER 11 AZURE GIT REPOS EXTRAS

Team Explorer - Home v X
(> Gj '1" l O Search Work Items (Ctrl+") P~

Home | LearnGit

4 Azure DevOps =
“ LearnGit/GitCmd01
J https://chamindac.visualstudio.com/LearnGit/_git/GitCmd01
4 Project
Web Portal | Task Board
I @ Changes v Branches
||£| Pull Requests TJ, Sync
|‘ Tags & Work Items
| k;!':ﬂ Builds ﬁ Settings
4 Solutions
New... | Open... | Show Folder View
There were no solutions found.
v

Figure 11-9. Tagsin VS Team Explorer

The tag context menu in Visual Studio lets you perform several actions. You can
check out a branch of the tag, view the history, view the details of the tagged commit,
delete the tag locally in the repository, and push a local tag to a remote repository. The
links on the Team Explorer tags page allow you to create new tags, push all tags to a
remote repository, or create a local branch from a given tag. See Figure 11-10.

247

CHAPTER 11 AZURE GIT REPOS EXTRAS

Team Explorer - Tags v @ Xx
(< I G} ? O Search Work Items (Ctrl+") P~
Tags | LearnGit |7

New Tag [Push All | Create Branch From Tag
4 Tags
Type here to filter the list P

4 € GitCmdo1

B 001

I DevBranchStart

Checkout

®] View Commit Details
%Y’ New Local Branch From...
X Delete Locally Del
@ View History...
Push

Figure 11-10. Tag context menu in VS
From Visual Studio, you can view a branch’s history, as explained in Chapter 8. In the

commit history, you can get the context menu for a commit by right-clicking a commit
and using Create Tag to create a new tag for the commit. See Figure 11-11.

248

CHAPTER 11 AZURE GIT REPOS EXTRAS

History - devetop = |
%S Ve Filter History £
Grapt D A Date essage
4 Local History
e44bf273 Chaminda Chandrasekara 9/20/2019 11:46:59 AM Some change 2 L develd
* 9454b26b Chaminda Chandrasekara 9/20/2019 11:46:40 AM _ Some change
70474566 unknown| @) View Commit Deteds 5 sample code via command ine naster 001 L Deviranchs
Open in Browser

Compare Commits.

%' New Branch..

Cherry-Pick

Squash Commits.

Go to Child Alt+PgUp
Go to Parent Alt+PgDn

Switch to Simple View
Refresh

Q il +°1°

Figure 11-11. Creating a tag from the commit history in VS

In the Commit Details page opened in Team Explorer, you can specify the tag and a
message and then create the tag. See Figure 11-12.

249

CHAPTER 11 AZURE GIT REPOS EXTRAS

Team Explorer - Commit Details v 3 x
QOnQ ¥ | C, | Search Work Items (Ctrl+') po i
Commit Details | LearnGit v |2
Commit 9454b26b

Chaminda Chandrasekara <chaminda_chandrasekara@yahoo.com>

9/20/2019 11:46:40 AM

Parent: 704745e6

Some change

Revert | Reset = | Create Tag + | Actions =

0.0.2

first change in develop

Create Tag = Cancel

4 Changes (1)

C# Startup.cs

Figure 11-12. Creating a tagin VS

One the tag is pushed, it is available in the remote Azure Git repo. See Figure 11-13.

250

CHAPTER 11 AZURE GIT REPOS EXTRAS

CJ Azure DevOps hamind LeamGit Ret Ta ©Gittmdol» | O Search
n LearnGit -4 Tr_l(;:f's L Search tag name
n Overview
¢ 001 nit mit tag 784745e6 .Chammda
% Boards & 002 et ge in deve 9454b26b .Chamunda
Repos & DevBranchStart Compare Dev Brar tart 7847456 .Chamunda
Files
9 Commits
®: Pushes
§# Branches
‘ D Tags

Figure 11-13. Tag in Azure Git repo after push

Creating Tags with the Command Line

You can list the tags available in a branch by executing git tagorgit tag -1orgit
tag --list from the branch at the command line in Git bash. See Figure 11-14.

X MINGW®64:/c/Users/chamindac/source/repos/GitCmd01

chamindac@vs2019dev MINGW64 ~
$ cd "c:\users\chamindac\source\repos\Gitcmd0ol1"

chamindac@vs2019dev MINGWE4 ~/source/repos/Gitcmd0l (develop)
$ git tag

0.0.1

0.0.2

DevBranchstart

Figure 11-14. Listing tags

You can filter the tags by using wildcards. For example, git tag -1 "0.0*" will list
the tags starting with 0.0. It is a must to use -1 or --1ist when you are using a filter. See
Figure 11-15.

251

CHAPTER 11 AZURE GIT REPOS EXTRAS

chamindac@vs2019dev MINGW64 ~/source/repos/Gitcmd01l (develop)
$ git tag -1 "0.0*"

0.0.1

0.0.2

chamindac@vs2019dev MINGW64 ~/source/repos/GitCmd0l (develop)
$ |

Figure 11-15. Listing tags with a filter

To create a tag, you can use git tag tagyouwanttocreate. A tag will be created for
the latest commit. See Figure 11-16.

chamindac@vs2019dev MINGW64 ~/source/repos/GitCmd0l (develop)
$ git tag "0.0.3"

chamindac@vs2019dev MINGW64 ~/source/repos/Gitcmd0l (develop)
$ git tag -1 "0.0*"

0.0.1

0.0.2

0.0.3

Figure 11-16. Creating a tag

To create an annotated tag, use -a with the command. Using -m, you can provide a
descriptive message for the annotated tag. See Figure 11-17.

chamindac@vs2019dev MINGW64 ~/source/repos/Gitcmd0l (develop)
$ git tag -a "anotatedtag0l"” -m "tag message 01"

chamindac@vs2019dev MINGW64 ~/source/repos/Gitcmd0l (develop)
$ |

Figure 11-17. Creating an annotated tag

You can use git show tagname to view a tag. If the tag is not an annotated tag, tag
and commit the details shown. See Figure 11-18.

252

CHAPTER 11 AZURE GIT REPOS EXTRAS

chamindac@vs2019dev MINGW64 ~/source/repos/GitCmd0l (develop)

§ git show 0.0.3

commit e44bf2734bebd5d9b1a5f588f7570b19384d9673 (HEAD -> develop, tag: anotatedt
ag0l, tag: 0.0.3, origin/develop)

Author: chaminda chandrasekara <chaminda_chandrasekara@yahoo.com>

Date: Fri Sep 20 11:46:59 2019 +0000

some change 2

diff --git a/startup.cs b/startup.cs
index 60bb776..26al9a2 100644

--- a/startup.cs

+++ b/Startup.cs

@@ -21,7 +21,7 @@ namespace GitCmd0l

public Iconfiguration configuration { get; }

+ !/ This_method gets called by the runtime. Use this method to add servi
ces to the container. some change2
public void configureservices(ISservicecollection services)

{

services.cConfigure<cookiePolicyoptions>(options =>

chamindac@vs2019dev MINGW64 ~/source/repos/GitCmd0l (develop)

Figure 11-18. Viewing a tag that is not annotated

For an annotated tag, the creator of the tag, the message for the tag, and the date of
the tag creation is shown in addition to the commit details. See Figure 11-19.

253

CHAPTER 11 AZURE GIT REPOS EXTRAS

LR R e e e R e s e S A LI LTI — L

hamindac@vs2019dev MINGWG64 ~/source/repos/GitCmd0l (develop)

8 git show anotatedtag0l

rag anotatedtagOl

ragger: chaminda chandrasekara <chaminda_chandrasekara@yahoo.com>
Date: Fri Sep 20 14:20:31 2019 +0000

fag message 01

commit e44bf2734bebd5d9b1a5f588f7570b19384d9673 (HEAD -> develop, tag: anotatedt]
hg0l, tag: 0.0.3, origin/develop)

nuthor: Chaminda cChandrasekara <chaminda_chandrasekara@yahoo.com>
Date: Fri Sep 20 11:46:59 2019 +0000

some change 2

diff --git a/startup.cs b/startup.cs
index 60bb776..26a19a2 100644

--- a/startup.cs

+++ b/Startup.cs

0@ -21,7 +21,7 @@ namespace GitCmd0Ol

public Iconfiguration configuration { get; }

+ // This method gets called by the runtime. Use this method to add servi
Fes to the container. Some change2

public void configureservices(IServiceCollection services)

services.cConfigure<CookiePolicyoptions>(options =>

Figure 11-19. Showing an annotated tag

To delete a tag, you should execute git tag -d tagname. You can push the tags by
using git push tagname. If you have multiple tags to push, you should execute git push
--tags. See Figure 11-20.

chamindac@vs2019dev MINGW64 ~/source/repos/GitCmd01 (develop)
$ git push --tags

Enumerating objects: 1, done.

Counting objects: 100% (1/1), done.

fWriting objects: 100% (1/1), 177 bytes | 88.00 KiB/s, done.
Total 1 (delta 0), reused 0 (delta 0)

remote: Analyzing objects... (1/1) (66 ms)

remote: Storing packfile... done (200 ms)

remote: Storing index... done (84 ms)

To https://chamindac.visualstudio.com/Defaultcollection/LearnGit/_git/Gitcmd0l
* [new tag] 0.0.3 -> 0.0.3

* [new tag] anotatedtag0l -> anotatedtag0l

chamindac@vs2019dev MINGW64 ~/source/repos/GitCmd0l (develop)
g

Figure 11-20. Pushing tags
254

CHAPTER 11 AZURE GIT REPOS EXTRAS

In this lesson, we looked at various ways to create Git tags to mark a specific
commit.

Lesson 11-2: Forking a Repo

Forking a repo allows you to make an entire copy of an Azure Git repo. Then you can
work on the fork without affecting the original repo. If required, you can make a pull
request to merge the changes from a fork to the original Azure Git repository. Forking
repos is useful when you want to create a fully isolated copy of a Git repository. Let’s look
at how to fork an Azure Git repository in this lesson.

Prerequisites: You followed Chapters 6, 7, and 8 and have created an Azure Git
repository with a few commits in it.

Click the Fork button in the Azure Git repository to create a fork. See Figure 11-21.

f:_' Azure DevOps j it ef L] L £] .
. LearnGit L i master ~ GitCmd01 / to find a f f s Set up build | % Fork | 1 Clone
Oves ‘ --
n SXHEE © GitCmdo1 Contents History T New Upload file(s)
a Boards Pages Name 1 Last change
Properties
Repos Pages Sunday 78474506
WWWIOOt
: Properties Sunday 78474506
B2 Files O .gitignore
wwwroot Sunday 78474506
? Commits [} appsettings.Development json
D) .gitignore Sunday 7847456

[} appsettings.json

&, Pushes

E2 GItCmd01.csproj {1 appsettings.Developmentjson Sunday 70474506
¥ Branches

c» Program.cs {) appsettings json Sunday 78474506
@ Tags C# Startup.cs €8 GitCmd01.csproj Sunday 7047456
I1 Pull requests c* Program.cs Sunday 704745¢6
f Pipelines C# Startup.cs Sunday 7847456

Figure 11-21. Forking a repo

In the pop-up, you are allowed to decide whether to create the fork with all branches
or with the default branch only. Additionally, you can fork a repository into another team
project of the Azure DevOps organization. This is useful when you want to start a new
project with the same codebase. Let’s fork all the branches to the same team project. See
Figure 11-22.

255

CHAPTER 11 AZURE GIT REPOS EXTRAS

Fork GitCmdO1 to...

Repository name *

GitCmdO01.chaminda_chandrasekara

Project

B3 LearnGit b
Branches to include:
'/j) Only the default branch (master)

@ All branches

Now go ahead and make a change in the newly forked repository in a branch. Then
when you try to create a pull request, you are given an option to make the pull request
to the original Azure Git repo’s desired target branch. Of course, you can create a pull
request within the forked repo. See Figure 11-23.

Figure 11-22. Creating a fork

256

CJ Azure DevOps
' LearnGit T I% New Pull Request

n Overview
n Boards

GIICmd01.chaminda_chandrasekara

CHAPTER 11 AZURE GIT REPOS EXTRAS

Repos

EY Files

¢ Commits
Pushes
Branches
Tags

&
4
7]
1% Pull requests
. 1

Pipelines

Figure 11-23. Pull request from a fork

P develop ~ into @ GItCmd01 ~ | I master
¥ GitCmad01 —
3 GitCmd01.chaminda_chandrasek

We explored fork creation in the Azure Git repositories in this lesson.

Lesson 11-3: Importing from an External Repository

You can easily import external Git repos or TFVC repos into an Azure DevOps organization

as Git repos. Let’s look at the steps required to import a repo in Azure Git Repos.

Prerequisites: Create a repository in GitHub and add some code to it. Then copy the

clone URL of the GitHub repository.

Click the drop-down near the Azure Git repository name to view the options to

import a repository. See Figure 11-24.

r_:’ Azure DevOps

LearnGit -
ﬂ Overview
¢ GitCmd01
% Boards Pages
- Properties
Repos
wwwroot
| [Files [.gitignore
9 Commits

Figure 11-24. Importing a repository

{} appsettings.Development.json

© GitCmdo1
O % A

§e master | GitCmd01 / Type to find a file

¥ GitCmd01.chaminda_chandrasek..

¢ GitCmd02
Content

© LearnGit

Name |

-+ New repository

Pagt '-|’.‘ Import repository

Prog &3 Manage repositories

257

CHAPTER 11 AZURE GIT REPOS EXTRAS

In the drop-down you can select Git or TFVC. You can import TFCV repos in the
current Azure DevOps organization as Git repositories. See Figure 11-25.

Import from TFVC a

Source type

TFVC b

Migrating from TFVC to Git can be disruptive. Before starting the
import, we suggest reading our documentation

Path *

e.g. $/Contoso/HelloWorld

() Migrate History

Name *

Name your new Git repository.

Import Close

Figure 11-25. Option to importa TFVC repo

Copy a clone URL from the GitHub repo that was created, as mentioned in the
prerequisites. Select Git as the import type and paste the clone URL. Provide a username
and password for the GitHub account. See Figure 11-26.

258

CHAPTER 11

Import a Git repository

Source type
Git b

Clone URL *

AZURE GIT REPOS EXTRAS

X

https://github.com/chamindac/VSCodePipelineDemo.git

Requires authorization

Username

chamindac

Password / PAT *

Name *

ImportedFromGitHub]

Figure 11-26. Importing a repo from GitHub

Once the import operation completes, refresh, and you will be able to see that

the GitHub repository is imported to the Azure Git repository with the history. See

Figure 11-27.

259

CHAPTER 11 AZURE GIT REPOS EXTRAS

r:l Azure DevOps

LearnGit

ﬂ Overview
a Boards
Repos

‘ EY Files
¢ Commits

oy Pushes

<

Branches
@ Tags

11 Pull requests

e

8 master v

© ImportedFromGitHub

»

»

>

Pages
Properties
wwwroot
[.gitignore
{} appsettings.Development.json
[} appsettings.json
[azure-pipelines.yml
c* Program.cs
c» Startup.cs

K& VSCodePipelineDemo.csproj

Figure 11-27. Imported repository from GitHub

ImportedFromGitHub / Ty

Contents History

Simple history (..
L 246abd3b
] S5d3cdasb

Add pipline yams

Add sample code

In this lesson, we discussed how to import a repository to Azure Git Repos.

Lesson 11-4: Setting Up Azure Git Repos Markdown
Files as a Wiki

Azure DevOps allows you to use Azure Git Repos markdown files to set up wikis. Wikis

are useful to communicate valuable instructions and information to your teams. In

this lesson, let’s look at the steps to create a wiki using markdown files in an Azure Git

repository.

Prerequisites: You are familiar with markdown files.

As the first step, create a new Azure Git repository named WikisRepo in a team

project. Make sure to select the option to add a readme file to initialize the repo. See

Figure 11-28.

260

CHAPTER 11 AZURE GIT REPOS EXTRAS

: X
Create a new repository
Type
® Git v
Repository name *
WikisRepd|
Add a README to describe your repository
Add a .gitignore:
None v
Figure 11-28. Creating WikisRepo
In the repository, click the menu icon and create a new folder. See Figure 11-29.
G Azure DevOps chaminda LearnGit Repos Files @ WikisRepo v
. LearnGit T § master ~ | WikisRepo / Type to find a file or folder
& overview © WikisRepo EI Contents History README + New
% Boards ms README.md 5 B e 30
e T Upload file(s)
% Files 4 Download as Zip
M@ Create a new folder
¢ Commits

Figure 11-29. Creating a new folder

261

CHAPTER 11 AZURE GIT REPOS EXTRAS

Then create a folder named Deviikis in the repo and add a markdown file. See
Figure 11-30.

New folder

New folder name *

/ DevWikis

Use slashes to create multiple subfolders like “sub/folder".

New file name *

DevHomePage.md|

Git folders cannot be empty, so a placeholder file will be added. Its content can be edited before

commit.

Figure 11-30. Adding a folder and a markdown file

Add some simple markdown content and commit the changes to the repo. See
Figure 11-31.

262

CHAPTER 11 AZURE GIT REPOS EXTRAS

£ master v WikisRepo / DevWikis / DevHomePage.md *

<

© WikisRepo Contents Preview Highlight changes Commit...
DevWikis 1 # Dev Wiki Home
Me DevHQmePage_md vee 2 Some dev wiki contenti

ms README.md

Figure 11-31. Adding markdown content

Then go to Overview » Wikis and click “Publish code as wiki.” See Figure 11-32.

) Azure DevOps haminda Overview L Searct

n LearnGit +

& overview ‘r

= Summary \ -4

BB Dashboards — j, / "\l

@ Analytics views*

o Get everyone on the same page

Create wiki pages to enable your team members collaborate
% Boards

Publish code as wiki
Repos

Learn more

Figure 11-32. Publishing the code as a wiki

In the side pane that opens, select the WikisRepo branch and folder that contains the
markdown files. Then provide a name for the wiki and click Publish. See Figure 11-33.

263

CHAPTER 11 AZURE GIT REPOS EXTRAS

Publish code as wiki

Markdown pages frt

J

Repository

© WikisRepo

Branch

Xj master

Folder

/DevWikis

Wiki name

I DE\.’WIk‘

Figure 11-33. Publishing the wiki

The wiki will be published, and you can keep adding markdown files to the

repository to add more wiki pages. See Figure 11-34.

‘:l Azure DevOps

- LearnGit

& overview

@ Summary

@ Dashboards
E& Analytics views*
B wik

% Boards

DevWiki v
¥ master
S Filter pages by title

) DevHomePage

Figure 11-34. Wiki published

DevHomePage
®
Dev Wiki Home

Some dev wiki content

In this lesson, we explored the options to create a wiki in Azure DevOps using

markdown files available in an Azure Git repository.

264

CHAPTER 11 AZURE GIT REPOS EXTRAS

Summary

In this chapter, we discussed a few operations that we can perform with Azure Git Repos
such as creating tags, forking repos, importing external repos to Azure Git Repos, and
setting up wikis using markdown files in an Azure Git repository. These lessons have
provided you with starting guidelines and steps so that you can leverage the capabilities
to build great solutions with your teams using Azure Git Repos.

In the next lesson, let’s discuss the REST API of Azure DevOps in relation to TFVC
and Azure Git Repos, which will allow you to build additional reporting capabilities as
well as operational automation capabilities with scripting languages such as PowerShell.

265

CHAPTER 12

REST APIs for Azure Git
and TFVC Repos

The Representational State Transfer (REST) APIs in Azure DevOps are service endpoints
supporting HTTP operations. They allow you to retrieve, create, and update resources
in Azure DevOps, including Azure Git and TFVC repositories. The REST APIs facilitate
the development of extensions to Azure DevOps and help to integrate Azure DevOps
with third-party tools. There are many extensions for Azure DevOps developed based on
the REST APIs in the Visual Studio marketplace (https://marketplace.visualstudio.
com/), and they can be used to add features and enhancements to Azure DevOps.

In this chapter, let’s look at how we can use REST APIs with Azure Git Repos and
TFVC, which will allow you to build useful reports based on version control data and

perform actions on the version control to automate any desired actions.

Lesson 12-1: Using Repo REST APIs from a Browser
to Retrieve Data

Using a browser is the simplest way to access a REST API to retrieve data in Azure
DevOps. Let’s look at a few simple REST API calls against Azure Git Repos and TFVC
repos using a browser.

Prerequisites: You have team projects in Azure DevOps and have Git and TFVC
repos with code.

A REST API GET URL generally has the following format for Git repositories. This
GET request retrieves all the repositories in a team project. (We discussed the REST API
URL components in detail in the Hand-on Azure Boards book of this series.)

https://dev.azure.com/{organization}/{project}/ apis/git/
repositories?api-version=5.1

267
© Chaminda Chandrasekara and Pushpa Herath 2020

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_12

https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://dev.azure.com/{organization}/{project}/_apis/git/repositories?api-version=5.1
https://dev.azure.com/{organization}/{project}/_apis/git/repositories?api-version=5.1

CHAPTER 12 REST APIS FOR AZURE GIT AND TFVC REPOS

Firstlog in to your Azure DevOps organization using a browser. Then execute the
previous URL with the correct organization and team project name. See Figure 12-1.

“ C @ devazure.com/chamindac/leamngit/_apis/git/repositories?api-version=5.1 ¥r .g 0 0OE bhyvor @ :
% Apps % Bookmarks General] TFSvNent LosdTest [ApressMedia MVP @ ApressBook3 @ New Tab
{ Raw Parsed
"value™: [
{

“§d": “Se6677a9-a929-493b-a2ba-3@falcba22ed”,

“name”: "GitCmd@2",

"url™: “https://dev.azure.com/chamindac/87187580-b408-43a8-8¢39-70726c0e9b36/ _apis/git/repositories/5e6677a9-2929-493b

azba-3@falcbaz2ed”,

"project™: {.}.

"defaultBranch™: “"refs/heads/master”,
“size”: 795946,

"remoteUrl”: "https://chamindaciidev.azure.com/chamindac/LearnGit/ git/GitCmd02",
"sshUrl”: "git@ssh.dev.azure.com:v3/chamindac/LearnGit/Git(md02",
“webUrl®: “https://dev.azure.com/chamindac/LearnGit/_git/GitCmde2"

b

{

"id": "Bceifeds-dfe5-428b-bdc3-3a7dadcdafla”,

"name”: "LearnGit”,

"url®: “https://dev.azure.com/chamindac/87187580-b408-43a8-8c39-70726c@edb36/ _apis/git/repositories/8c02f0d8-dfeS-428b-
béc3-3a7d44dcdafla”,

"project™: { .},

“defaultBranch™: “"refs/heads/master”,

Figure 12-1. Getting all the repositories using REST APIs

You can pass additional URL parameters such as includelinks. You can find
documentation about Git repositories at https://docs.microsoft.com/en-us/rest/
api/azure/devops/git/?view=azure-devops-rest-5.1.

Similar to retrieving Git repos in a team project, you can get all the changesets in a
team project’s TFVC repo using a REST API.

https://dev.azure.com/{organization}/{project}/ apis/tfvc/
changesets?api-version=5.1

You should use the Azure DevOps organization name and your team project name to

retrieve the changeset information. See Figure 12-2.

268

https://docs.microsoft.com/en-us/rest/api/azure/devops/git/?view=azure-devops-rest-5.1
https://docs.microsoft.com/en-us/rest/api/azure/devops/git/?view=azure-devops-rest-5.1
https://dev.azure.com/{organization}/{project}/_apis/tfvc/changesets?api-version=5.1
https://dev.azure.com/{organization}/{project}/_apis/tfvc/changesets?api-version=5.1

CHAPTER 12 REST APIS FOR AZURE GIT AND TFVC REPOS

€ 9 C @ devazurecom/chamindac/Leamtfve/ apis/tve/changesets?api-version=5.1 * 0 OB L v O R @
12 Apps W Bookmarks Genersl] TFsvNext LosdTest [ApressMedia MVP @ ApressBook3 @ NewTsb [Adventures in Dev @ pilines
“count”: 2,
"value": [
{

"changesetlId": 773,
"url": "https://dev.azure.com/chamindac/Learntfvc/_apis/tfvc/changesets/773'
"author": {
"displayName"”: "Chaminda Chandrasekara",
"url”: "https://spsprodeus22.vssps.visualstudio.com/Abee6738c-dee5-443d-
bbff-69f0dce0aan2"”,
"id": "84f2a6cb-7327-4dca-bbff-69f@dco0aan2”,
"uniqueName": "chaminda_chandrasekara@yahoo.com",
"imageUrl": "https://dev.azure.com/chamindac/_api/_common/identityImage?
})
"checkedInBy": {
"displayName": "Chaminda Chandrasekara",
"url”: “"https://spsprodeus22.vssps.visualstudio.com/Abee6738¢-dee5-443d-
bbff-69f0dce0aan2”,
"id": "84f2a6cb-7327-4dca-bbff-69f0dce@aan2”,
"uniqueName": "chaminda_chandrasekara@yahoo.com",
"imageUrl": "https://dev.azure.com/chamindac/_api/_common/identityImage?
})
"createdDate”: "2019-08-20T17:15:51.432",
“comment”: "Adding new console app"”
}J
{ .

Figure 12-2. Getting TFVC changesets using a REST API

You can refer to the TFVC REST API reference at https://docs.microsoft.com/en-
us/rest/api/azure/devops/tfvc/?view=azure-devops-rest-5.1 to learn more about
REST API methods available for TFVC.

In this lesson, we explored the simplest way to call the Azure DevOps REST API to
retrieve information for Azure Git Repos and TFVC.

Lesson 12-2: Creating a PAT to Use with REST APIs
for Repos

Personal access tokens (PATs) in Azure DevOps allow you to authenticate and authorize
third-party applications, scripts, or tools to access Azure DevOps REST APIs. We
discussed how to create a PAT in detail in the Hands-on Azure Boards book of this series.
Let’s create a PAT to allow access to Azure Git Repos and TFVC in this lesson.

269

https://docs.microsoft.com/en-us/rest/api/azure/devops/tfvc/?view=azure-devops-rest-5.1
https://docs.microsoft.com/en-us/rest/api/azure/devops/tfvc/?view=azure-devops-rest-5.1

CHAPTER 12 REST APIS FOR AZURE GIT AND TFVC REPOS

Click your user profile in Azure DevOps and click Security in the context menu. See
Figure 12-3.

Search = i .
Chaminda Chandrasekara
chaminda_chandrasekara@yahoo.com

My profile
Q Security
] Usage

Figure 12-3. Security for a user

On the Personal Access Tokens page, click New Token. A side pane will open; select
Full and Status for the scope to create a new PAT. See Figure 12-4.

0 Azure DevOps
Create a new personal access token
User settings Personal Ac .
Chaminda Chandrasekara These can be usi
access REST APl CodeFullToken
O
+ New T rganization
About] chamindac 3o
Token name
Time and Locale == Expiration (UTC)
Notifications f::“i“d" 30 days : MonOct212019 [0
Theme
U Chaminda{ Scopes
S0 Code (Resd W Authorize the scope of access associated with this token
S(UDES'._'_ Full access
Security Git: https:/) @ Custom defined
Code (Read
Alternate credentials Git:
Code (Read Source code, repositories, pull requests, and notifications
SSH public keys
L Chaminda 8 rul B status
Authorizations Code (Resd]
Git:

Figure 12-4. Creating a PAT for code repositories
270

CHAPTER 12 REST APIS FOR AZURE GIT AND TFVC REPOS

Once you click the Create button, a PAT will be generated. Make sure to copy and
save it in a secure location as you will not be able to see the token value again once you
close the side pane. See Figure 12-5.

Success! X

You have successfully added a new personal access token. Copy the token now!

CodeFullToken token

2n|h

Warning - Make sure you copy the above token now. We
don't store it and you will not be able to see it again.

Figure 12-5. Generated PAT

In this lesson, we created and saved a PAT to use with the REST API for Azure Git
Repos and TFVC.

Lesson 12-3: Using the Repo REST APIs
from Postman

Postman is a popular tool used by developers to test REST APIs and more. There is a free
version you can download from https://www.getpostman.com/downloads/. Let’s look at
how to use Postman to work with Azure Git Repos and TFVC REST APIs.

Prerequisites: Download and install Postman.

Open Postman. You may have to sign in or sign up. Once Postman is opened, go to
the Authorization tab. Select Basic Auth. Then for the password, provide the token we
generated in Lesson 12-2. For the username, type any text. Provide the TFVC changeset
and get REST APIURL, https://dev.azure.com/{organization}/{project}/ apis/
tfvc/changesets?api-version=5.1. Then click Send. See Figure 12-6.

271

https://www.getpostman.com/downloads/
https://dev.azure.com/{organization}/{project}/_apis/tfvc/changesets?api-version=5.1
https://dev.azure.com/{organization}/{project}/_apis/tfvc/changesets?api-version=5.1

CHAPTER 12 REST APIS FOR AZURE GIT AND TFVC REPOS

& Postman - O x
File Edit View Help

as My Workspace ¥ &, Invite

No Environment
GET https://dev.azure.com/chamind...® + | oo

Untitled Request

GET ¥ httpsi//dev.azure.com/chamindac/learntfvc/_apis/tfvc/changesets?api-version=5.1 m

L] Authorization @

Username PAT

Password

Show Password
Preview Request

Figure 12-6. Postman to execute REST API GET

The REST API returned value is displayed in the Postman app. See Figure 12-7.

272

CHAPTER 12 REST APIS FOR AZURE GIT AND TFVC REPOS

Bod L

Pretty BETA SON v =

.

"count™: 2,
“value": [
{
s “changesetId”: 773,
5 "url®™: "https://dev.azure.com/chamindac/learntfvc/ apis/tfvc/changesets/773",
“author”: {
8 "displayName”: "Chaminda Chandrasekara®,
] “"url®: "https://spsprodeus22.vssps.visualstudio.com/Abee6738c-dee5-443d-94a4-2951dc4c@co8/ _a
Identities/84f2a6chb-7327-4dca-bbff-69fodcovaan2”,

1@ "id": "84f2aécb-7327-4dca-bbff-e9fedconaanz”,

11 "uniqueName”: “"chaminda_chandrasekaragyahoo.com”,

12 "imageUrl™: “https://dev.azure.com/chamindac/ api/ common/identityImage?

id=84f2aécb-7327-4dca-bbff-69fedcovaae2”

13 1

14 "checkedInBy": {

15 “displayName”: "Chaminda Chandrasekara”,

7 Bootcamp Browse

Figure 12-7. REST API returning changesets

In this lesson, we explored how to set up Postman to use a REST API for Azure TFVC
repos. In the same way, you can call the Azure Git Repos REST APIs in Postman.

Lesson 12-4: Using the Repo REST APIs
from PowerShell

PowerShell is now supported on all platforms in addition to just the Windows platform.
PowerShell can be used to call REST APIs for Azure Git Repos and TFVC. Let’s discuss
the steps to call Azure Git Repos REST APIs so that you can retrieve data from Azure Git
Repos and use the same steps to get data from TFVC repos via REST APIs.

Prerequisites: You have team projects with Azure Git Repos and TFVC repositories.

You need to create an authorization header as the first step to call a REST APIin
Azure DevOps. The following code can be used in PowerShell to create an authorization
header:

param(
[Parameter(Mandatory=$true)]
[string] $token,
[Parameter(Mandatory=$true)]

273

CHAPTER 12 REST APIS FOR AZURE GIT AND TFVC REPOS

[string] $collectionUri,
[Parameter(Mandatory=$true)]
[string] $teamProjectName,
[string] $restAPIversion = '5.1'

)

$US€I= nn

Baseb4-encodes the Personal Access Token (PAT) appropriately
$base64AuthInfo = [Convert]::ToBase64String([Text.Encoding]::ASCII.
GetBytes(("{0}:{1}" -f $User,$token)));

$header = @{Authorization=("Basic {0}" -f $base64AuthInfo)};

Additional parameters other than the $token in the code can be discussed later in
the chapter. The token is used with the username (which can be an empty string) to
generate the Base64-encoded Authorization token. Then it is added to a variable named
$header in order to pass it as the header of the REST API call.

As the next step, we can add code to call the REST API to retrieve all Azure Git Repos

repositories in a team project.

$Uri = $collectionUri + '/' + $teamProjectName + '/ apis/git/
repositories?api-version=" + $restAPIversion

$repositories = Invoke-RestMethod -Method Get -ContentType application/json
-Uri $Uri -Headers $header

Then we can loop though the repositories to print each repo’s name.

foreach($repo in $repositories.value)

{

Write-Host ("Repository name: {0}" -f $repo.name)
}

The complete PowerShell code is as follows:
param(

[Parameter(Mandatory=$true)]
[string] $token,
[Parameter(Mandatory=$true)]

274

CHAPTER 12 REST APIS FOR AZURE GIT AND TFVC REPOS

[string] $collectionUri,
[Parameter(Mandatory=$true)]
[string] $teamProjectName,
[string] $restAPIversion = '5.1'

)

$US€I= nn

Baseb4-encodes the Personal Access Token (PAT) appropriately
$baseb64AuthInfo = [Convert]::ToBase64String([Text.Encoding]::ASCII.
GetBytes(("{0}:{1}" -f $User,$token)));

$header = @{Authorization=("Basic {0}" -f $base64AuthInfo)};

$Uri = $collectionUri + '/' + $teamProjectName + '/_apis/git/
repositories?api-version=" + $restAPIversion

$repositories = Invoke-RestMethod -Method Get -ContentType application/json
-Uri $Uri -Headers $header

foreach($repo in $repositories.value)

{

Write-Host ("Repository name: {0}" -f $repo.name)

You can call this script with the following syntax and print the repo names. See
Figure 12-8.

.\GetAzureGitRepos.ps1 -token patvalue' -collectionUri 'https://dev.azure.
com/orgname’ -teamProjectName 'teamprojectname’

275

CHAPTER 12 REST APIS FOR AZURE GIT AND TFVC REPOS

E¥ Administrator: Windows PowerShell - Od X

indows PowersShell
opyright (C) Microsoft Corporation. All rights reserved.

S C:\WINDOWS\system32> cd c:\temp

S C:\temp> .\GetAzureGitRepos.psl -token -collectionuri
-teamProjectName

epository name: GitCmde2

epository name: LearnGit

epository name: GitCmdel

epository name: GitCmdel.chaminda_chandrasekara

epository name: WikisRepo

epository name: ImportedFromGitHub

S C:\temp>

Figure 12-8. Retrieving repository data with PowerShell from the REST API

In this lesson, we discussed how to use PowerShell to connect to the Azure Git Repos
REST API to retrieve data. In the same way, you can call TFVC REST APIs to retrieve data.

Summary

In this chapter, we discussed how to use Azure DevOps REST APIs to retrieve data from
Azure Git Repos and TFVC repos. You can use this knowledge to create useful reports or
work with REST APIs to perform actions on repositories.

In this book, we discussed how to use repositories to support your version control
needs in Azure DevOps. We looked at setting up TFVC and Azure Git Repos in team
projects and the options to create branches, do pull requests, and review code. Further
we explored security, REST APIs, command-line options, and many other features
available in Azure DevOps repositories to give you a comprehensive overview.

In the next book of the series, Hands-on Azure Pipelines, we will be discussing the CI/
CD capabilities of Azure DevOps in detail.

276

Index

A

Azure DevOps organization, 2
Azure Git Repos
branching structure, 171-174
branch permissions, 225-234
command line (see Command
line)
import external Git repos, 257-260
pull request, 195-205
push local repo, 218-222
rebase option, 204
resolve conflict, 185-194
setting up wikis, 260
add markdown
content, 263
add markdown file, 262
creation, 261
Publish code, 263, 264
wiki pages, 264
tags
branch, 244
commit ID, 245
context menu, 246
creation, 242
multiple tags, 245
name and description, 242
page, 243
visible commit, 243

© Chaminda Chandrasekara and Pushpa Herath 2020

B

Branching strategy
development isolation, 106
feature isolation, 107
main only, 106
release isolation, 107
service and release

isolation, 108

Branch policy, 234
automatic reviewers, 240
build policy, 239
comment resolution

policy, 238
menu item, 235
merge policy, 238
reviewers policy, 237

C,D

Command line
az devops login, 210
Azure CLI, 209
Azure DevOps extension, 209
branch creation, 222-224
command palette, 214
copying clone URL, 211
git commit command, 215
.gitignore Generator, 213, 214

C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7

277

https://doi.org/10.1007/978-1-4842-5425-7

INDEX

Command line (cont.)
git push, 217, 218
master branch, 215
NET Core web app, 213
repository user setting, 216
VS code setting, 208

E

End-user license agreement (EULA), 112

F.GHILJ,KLMN,O

Forking repo, 255-257

P,Q

Personal access token (PAT), 142

R

REST API
PAT creation, 269-271
Postman app, 271-273
PowerShell code, 273-276
retrieve data, 267-269

S

Shelvesets, 55
Azure DevOps Services/
Server, 59
context menu, 60
My Work window, 64
resume work, 68
sample code, 56
Shelve button, 58

278

Suspend button, 65
Team Explorer window, 57
unshelve changes, 62
unshelving, 60

Source Control Explorer, TFVC
add/edit workspace, 34
change file, 39
changeset details window, 48
changesets comparison, 50
compare window, 40
conflicts window, 46
local mode, 33
local workspace mode, 36
menu items, 37
merge tool, 46
pending changes window, 44
server mode, 33
server workspace mode, 36
source control pane option, 41
undeleting file, 53
Visual Studio menu, 51
workspace option, 33

Source Control Merge wizard, 94

T, U
Team Foundation Version
Control (TFVC)
auditing changes
compare option, 135
select Annotate, 136
Azure Git Repos (see Azure Git Repos)
button creation, 143
conflict file, 161-167
create team project, 140
empty Gitrepo, 141

new Git repo, 142
pull changes, 156-160
pushing code, 148-156
stash commands, 166-169
Visual Studio, 145-148
VS code, 144
branch creation, 85-88
branch/folder file level, 129
access control, 129
branch permission, 131
security control, 133, 134
security option, 130
branching (see Branching strategy)
branch structure, 92
Check-In Policy tab, 79
cherry-picking option, 103-105
code review, 68-76
command-line client, 111
comment policy, 80
Compare icon, 98
convert branch option, 89-91
developer command prompt, 109
enable/disable web editing, 128
Featurel branch, 97
Lock file dialog, 77
Locking/unlocking file, 76
merge branch comparison, 98
merge conflicts, 99
merging and resolving conflicts, 91
Repos menu, 3
security controls, 125, 126
source branch version, 95
Source Control Explorer (see Source
Control Explorer, TFVC)
team project (see Team project,
creation)
Track Changeseticon, 100-103

INDEX

Visual studio (see Visual Studio Team

Explorer)
VS code
access token method, 25
Azure Repos extension, 24
connect repo, 26
enter code, 26
extensions tab, 23
team sign-in, 25
work item query policy, 81
workspace command, 113-117
Team project, creation, 118
add command, 120
checkin command, 121
checkout command, 121
get command, 119
rename command, 122
undo command, 122

VW, X, Y, Z

Visual Studio, 175
branch creation, 177
checkout option, 182
merge branch, 179
rebase option, 179, 180

Visual Studio team explorer, 5
add account, 6
check-in note, 21
check-in policy, 20
check-out settings, 20
connect URL, 7
file types, 16
local workspace, 19
Map & Get button, 8
pending changes, 22
server workspace, 18

279

INDEX

Visual Studio team explorer (cont.) VS tags
solution explorer window, 8-16 command line, 251-255
source control settings, 19 commit history, 249

VS code context menu, 248
branch creation, 183, 184 creation, 250
checkout command, 185 team explorer, 247

280

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Azure Team Foundation Version Control
	Lesson 1-1: Creating a Team Project with TFVC and Adding a TFVC Repo to the Existing Team Project
	Lesson 1-2: Using Visual Studio Team Explorer
	Lesson 1-3: Adding New/Existing Solutions to TFVC
	Lesson 1-4: Changing Settings for TFVC in Visual Studio
	File Types
	Workspace Settings
	Source Control Settings
	Check-Out Settings
	Check-in Policies
	Check-in Notes

	Lesson 1-5: Connecting to TFVC in VS Code
	Summary

	Chapter 2: Working with Team Foundation Version Control: Part1
	Lesson 2-1: Exploring the Source Control Explorer
	Lesson 2-2: Setting Workspace Mode to Local and Server
	Local Workspace Mode
	Server Workspace Mode

	Lesson 2-3: Looking at Source Control Explorer Menu Items
	Lesson 2-4: Editing and Checking In Your Changes
	Lesson 2-5: Resolving Conflicts During Code Check-in
	Lesson 2-6: Viewing the History and Comparing the Changes
	Lesson 2-7: Setting Source Control Tool Options
	Lesson 2-8: Deleting and Restoring Files
	Summary

	Chapter 3: Working with TFVC: Part 2
	Lesson 3-1: Using Shelvesets
	Lesson 3-2: Suspending and Resuming Work
	Lesson 3-3: Doing Code Reviews with TFVC
	Lesson 3-4: Using Lock and Unlock
	Lesson 3-5: Applying Check-in Policies
	Summary

	Chapter 4: Team Foundation Version Control Branching
	Lesson 4-1: Creating a Branch
	Lesson 4-2: Converting a Folder to a Branch
	Lesson 4-3: Merging and Resolving Conflicts
	Lesson 4-4: Tracking Changesets
	Lesson 4-5: Cherry-Picking Changesets
	Lesson 4-6: Exploring TFVC Branching Strategies
	Main Only
	Development Isolation
	Feature Isolation
	Release Isolation
	Servicing and Release Isolation

	Summary

	Chapter 5: Team Foundation Version Control: Command Line
	Lesson 5-1: Getting Started with the Team Foundation Command Line
	Developer Command Prompt for Visual Studio
	Team Explorer Everywhere Command-Line Client

	Lesson 5-2: Using Workspace Commands
	workspaces Command
	workspace Command

	Lesson 5-3: Running Various Commands
	get
	add
	checkin
	checkout (or edit)
	rename
	undo

	Summary

	Chapter 6: Team Foundation Version Control: Security
	Lesson 6-1: Setting Up TFVC Security at the Team Project Level
	Lesson 6-2: Applying Permissions at the Branch/Folder or File Level
	Lesson 6-3: Auditing Changes and Finding Out Who Did What
	Summary

	Chapter 7: Getting Started with Azure Git Repos
	Lesson 7-1: Creating an Azure Git Repo
	Creating a Team Project with Azure Git Repos
	Creating Additional Git Repos in a Team Project

	Lesson 7-2: Cloning an Azure Git Repo
	VS Code
	Visual Studio

	Lesson 7-3: Creating and Pushing Code to Azure Git Repos
	Lesson 7-4: Getting Changes from Others and Sharing Code
	Lesson 7-5: Resolving Conflicts
	Lesson 7-6: Stashing the Changes
	Summary

	Chapter 8: Branching with Azure Git Repos
	Lesson 8-1: Creating Branches
	Lesson 8-2: Working with Branches in Visual Studio and VS Code
	Visual Studio
	Creating and Merging Branches
	Rebase
	Checkout

	VS Code
	Creating a New Branch
	Checkout

	Lesson 8-3: Merging Changes and Resolving Conflicts
	Lesson 8-4: Using Pull Requests and Code Reviews
	Lesson 8-5: Rebasing While Completing a Pull Request
	Summary

	Chapter 9: Using the Command Line with Azure Git Repos
	Lesson 9-1: Getting Started with the Command Line
	Lesson 9-2: Cloning an Azure Git Repository and Pushing Code Using the Command Line
	Lesson 9-3: Creating a Git Repository Locally and Pushing It to Azure Git Repos
	Lesson 9-4: Creating Azure Git Repo Branches Using the Command Line
	Summary

	Chapter 10: Azure Git Repos: Security
	Lesson 10-1: Setting Azure Git Repos Permissions
	Lesson 10-2: Setting Up Azure Git Repos Branch Policies
	Summary

	Chapter 11: Azure Git Repos Extras
	Lesson 11-1: Using Git Tags
	Creating Tags with the Azure DevOps Web Portal
	Creating Tags with Visual Studio
	Creating Tags with the Command Line

	Lesson 11-2: Forking a Repo
	Lesson 11-3: Importing from an External Repository
	Lesson 11-4: Setting Up Azure Git Repos Markdown Files as a Wiki
	Summary

	Chapter 12: REST APIs for Azure Git and TFVC Repos
	Lesson 12-1: Using Repo REST APIs from a Browser to Retrieve Data
	Lesson 12-2: Creating a PAT to Use with REST APIs for Repos
	Lesson 12-3: Using the Repo REST APIs from Postman
	Lesson 12-4: Using the Repo REST APIs from PowerShell
	Summary

	Index

