
Hands-on
Azure Repos

Understanding Centralized and
Distributed Version Control in
Azure DevOps Services
—
Chaminda Chandrasekara
Pushpa Herath

www.allitebooks.com

http://www.allitebooks.org

Hands-on Azure Repos
Understanding Centralized

and Distributed Version Control
in Azure DevOps Services

Chaminda Chandrasekara
Pushpa Herath

www.allitebooks.com

http://www.allitebooks.org

Chaminda Chandrasekara
Colombo, Sri Lanka

Pushpa Herath
Hanguranketha, Sri Lanka

Hands-on Azure Repos: Understanding Centralized and Distributed Version Control
in Azure DevOps Services

ISBN-13 (pbk): 978-1-4842-5424-0			 ISBN-13 (electronic): 978-1-4842-5425-7
https://doi.org/10.1007/978-1-4842-5425-7

Copyright © 2020 by Chaminda Chandrasekara and Pushpa Herath

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Siddhi Chavan
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5424-0. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5425-7
http://www.allitebooks.org

Let this book be a daily reference guide for all the
developers who use Azure Repos.

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: Getting Started with Azure Team Foundation Version Control����������������� 1

Lesson 1-1: Creating a Team Project with TFVC and Adding a TFVC Repo to the
Existing Team Project��� 2

Lesson 1-2: Using Visual Studio Team Explorer��� 5

Lesson 1-3: Adding New/Existing Solutions to TFVC�� 8

Lesson 1-4: Changing Settings for TFVC in Visual Studio��� 16

File Types�� 16

Workspace Settings�� 17

Source Control Settings�� 19

Check-Out Settings�� 19

Check-in Policies�� 20

Lesson 1-5: Connecting to TFVC in VS Code�� 22

Summary��� 26

Chapter 2: Working with Team Foundation Version Control: Part1������������������������� �27

Lesson 2-1: Exploring the Source Control Explorer�� 27

Lesson 2-2: Setting Workspace Mode to Local and Server�� 33

Local Workspace Mode��� 36

Server Workspace Mode��� 36

Lesson 2-3: Looking at Source Control Explorer Menu Items�� 37

Lesson 2-4: Editing and Checking In Your Changes��� 38

Lesson 2-5: Resolving Conflicts During Code Check-in��� 45

Table of Contents

About the Authors��� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

www.allitebooks.com

http://www.allitebooks.org

vi

Lesson 2-6: Viewing the History and Comparing the Changes�� 47

Lesson 2-7: Setting Source Control Tool Options��� 50

Lesson 2-8: Deleting and Restoring Files�� 52

Summary��� 54

Chapter 3: Working with TFVC: Part 2��� �55

Lesson 3-1: Using Shelvesets�� 55

Lesson 3-2: Suspending and Resuming Work�� 64

Lesson 3-3: Doing Code Reviews with TFVC�� 68

Lesson 3-4: Using Lock and Unlock��� 76

Lesson 3-5: Applying Check-in Policies��� 78

Summary��� 83

Chapter 4: Team Foundation Version Control Branching��� 85

Lesson 4-1: Creating a Branch��� 85

Lesson 4-2: Converting a Folder to a Branch��� 89

Lesson 4-3: Merging and Resolving Conflicts�� 91

Lesson 4-4: Tracking Changesets�� 100

Lesson 4-5: Cherry-Picking Changesets�� 103

Lesson 4-6: Exploring TFVC Branching Strategies��� 106

Main Only�� 106

Development Isolation�� 106

Feature Isolation��� 107

Release Isolation�� 107

Servicing and Release Isolation��� 108

Summary��� 108

Chapter 5: Team Foundation Version Control: Command Line������������������������������� 109

Lesson 5-1: Getting Started with the Team Foundation Command Line������������������������������������ 109

Developer Command Prompt for Visual Studio��� 109

Team Explorer Everywhere Command-Line Client��� 111

Table of Contents

vii

Lesson 5-2: Using Workspace Commands��� 113

workspaces Command��� 113

workspace Command��� 114

Lesson 5-3: Running Various Commands��� 117

get�� 118

add��� 120

checkin��� 120

checkout (or edit)��� 121

rename��� 122

undo��� 122

Summary��� 122

Chapter 6: Team Foundation Version Control: Security��� 123

Lesson 6-1: Setting Up TFVC Security at the Team Project Level��� 123

Lesson 6-2: Applying Permissions at the Branch/Folder or File Level�������������������������������������� 129

Lesson 6-3: Auditing Changes and Finding Out Who Did What�� 134

Summary��� 137

Chapter 7: Getting Started with Azure Git Repos��� 139

Lesson 7-1: Creating an Azure Git Repo��� 139

Creating a Team Project with Azure Git Repos��� 140

Creating Additional Git Repos in a Team Project��� 142

Lesson 7-2: Cloning an Azure Git Repo�� 144

VS Code�� 144

Visual Studio��� 145

Lesson 7-3: Creating and Pushing Code to Azure Git Repos��� 148

Lesson 7-4: Getting Changes from Others and Sharing Code�� 156

Lesson 7-5: Resolving Conflicts��� 161

Lesson 7-6: Stashing the Changes�� 166

Summary��� 170

Table of Contents

viii

Chapter 8: Branching with Azure Git Repos�� 171

Lesson 8-1: Creating Branches�� 171

Lesson 8-2: Working with Branches in Visual Studio and VS Code�� 174

Visual Studio��� 175

VS Code�� 183

Lesson 8-3: Merging Changes and Resolving Conflicts��� 185

Lesson 8-4: Using Pull Requests and Code Reviews��� 195

Lesson 8-5: Rebasing While Completing a Pull Request�� 204

Summary��� 206

Chapter 9: Using the Command Line with Azure Git Repos����������������������������������� 207

Lesson 9-1: Getting Started with the Command Line�� 207

Lesson 9-2: Cloning an Azure Git Repository and Pushing Code Using the Command Line������ 210

Lesson 9-3: Creating a Git Repository Locally and Pushing It to Azure Git Repos��������������������� 218

Lesson 9-4: Creating Azure Git Repo Branches Using the Command Line��������������������������������� 222

Summary��� 224

Chapter 10: Azure Git Repos: Security�� 225

Lesson 10-1: Setting Azure Git Repos Permissions��� 225

Lesson 10-2: Setting Up Azure Git Repos Branch Policies��� 234

Summary��� 240

Chapter 11: Azure Git Repos Extras��� 241

Lesson 11-1: Using Git Tags��� 241

Creating Tags with the Azure DevOps Web Portal��� 241

Creating Tags with Visual Studio�� 246

Creating Tags with the Command Line��� 251

Lesson 11-2: Forking a Repo��� 255

Lesson 11-3: Importing from an External Repository�� 257

Lesson 11-4: Setting Up Azure Git Repos Markdown Files as a Wiki��� 260

Summary��� 265

Table of Contents

ix

Chapter 12: REST APIs for Azure Git and TFVC Repos��� 267

Lesson 12-1: Using Repo REST APIs from a Browser to Retrieve Data�������������������������������������� 267

Lesson 12-2: Creating a PAT to Use with REST APIs for Repos�� 269

Lesson 12-3: Using the Repo REST APIs from Postman��� 271

Lesson 12-4: Using the Repo REST APIs from PowerShell��� 273

Summary��� 276

Index�� 277

Table of Contents

xi

About the Authors

Chaminda Chandrasekara is a Microsoft Most Valuable

Professional (MVP) for Visual Studio ALM and a Scrum

Alliance Certified ScrumMaster, who focuses on continuous

improvement of the software development lifecycle. He

works as a lead engineer in DevOps at Xameriners (Pvt) Ltd,

Singapore. Chaminda is an active Microsoft Community

Contributor (MCC) who is well recognized for his

contributions in Microsoft forums, TechNet galleries, wikis,

and Stack Overflow, and he contributes extensions to Azure

DevOps Server and Services (formerly VSTS/TFS) in the

Microsoft Visual Studio Marketplace. He also contributes to

other open source projects in GitHub. Chaminda has published four books with Apress,

and he blogs at https://chamindac.blogspot.com/. 

Pushpa Herath is an author, blogger, and speaker at

technical community events and works as a DevOps

engineer at Xamariners (Pvt) Ltd.

She has years of experience in DevOps with Azure

DevOps, Octopus, JIRA, and many other DevOps tools.

She is an expert on functional test automation using

Selenium and BDD. Pushpa blogs about technology at

https://devopsadventure.blogspot.com/. She has

published two books with Apress.

https://chamindac.blogspot.com/
https://devopsadventure.blogspot.com/

xiii

About the Technical Reviewer

Mittal Mehta has 15 years of IT experience and currently is

working as a configuration manager. He also has eight years

of experience working in TFS, C#, Navision, build-release,

Azure DevOps, automation, and configuration in Microsoft

technologies.  

xv

Acknowledgments

We are thankful for all the mentors who have encouraged and helped us during our

careers and who have provided us with so many opportunities to gain the maturity and

the courage we needed to write this book.

We would also like to thank our friends and colleagues who have helped and

encouraged us in so many ways.

Last, but in no way least, we owe a huge debt to our families, not only because they

have put up with late-night typing, research, and our permanent air of distraction,

but also because they have had the grace to read what we have written. Our heartfelt

gratitude is offered to them for helping us make this dream come true.

xvii

Introduction

Collaboration among developers is a vital aspect in software development. Sharing code

while working in teams to achieve software delivery goals increases end-user satisfaction.

Hence, source code control tools are essential for software development teams.

Azure Repos offers you both a centralized version control system and a distributed

version control system.

•	 Team Foundation Version Control (TFVC) is the centralized version

control system that comes with Azure Repos.

•	 Azure Git repos provide you with distributed version control and

support all the popular Git repo concepts.

Hands-on Azure Repos gives you step-by-step guidance on working with TFVC and

Git, while exploring best practices in each step. You will discover branching and merging

techniques to resolve conflicts while sharing code with teams as well as how to track the

changes you make to the code using repos. You will explore the essential command-line

options, REST API usage, and security options with hands-on lessons to give you the

ability to manage TFVC and Git effectively to support your teams. Additionally, code

review procedures for repos and integration of a repo with other Azure DevOps features

such as boards, pipelines, etc., are discussed in detail.

The hands-on steps in the book will provide you with a comprehensive

understanding, from the basics to advanced topics, as you go through each chapter.

Lessons comprise secrets to getting started quickly with Azure Repos in the right way

and integrating it with popular development tools such as Visual Studio, VS Code, etc.

The tips and tricks in the book will make you a productive developer and prevent you

from taking the wrong steps while using Azure Repos.

We hope Hands-on Azure Repos will be your go-to resource for delivering value to

your end users with software, using any platform and any language you prefer to use.

1
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_1

CHAPTER 1

Getting Started with
Azure Team Foundation
Version Control
Team Foundation Version Control (TFVC) is a centralized version control system for

your source code management. Generally, a team member will have one version of each

source code file on their machine while using TFVC. Branches of source code are based

on paths and get created on the server. A history of version control is maintained on

the source control server, not on the local developer machine. In TFVC you can apply

permissions at a granular level, and restrictions can be applied at the file level, which we

will discuss in Chapter 6.

In this chapter, we will explore the steps required to get started with TFVC in Azure

DevOps using Visual Studio. You will be able to understand how to set up a team project

to use TFVC or add a TFVC repo to an existing team project that is currently using Git

repos. The steps required to set up your machine to develop with TFVC using Visual

Studio will be described, and you will learn how to add new or existing solutions to TFVC

in Visual Studio. Further, this chapter will discuss the different workspaces available in

TFVC and the options to define and use code check-in (commit) policies. In addition,

using TFVC with other developer tools such as VS Code and Eclipse will be described for

you to get started even faster.

2

�Lesson 1-1: Creating a Team Project with TFVC and
Adding a TFVC Repo to the Existing Team Project
We discussed how to create a new team project in Chapter 1 of the first book, Hands-

on Azure Boards, of this book series. However, let’s take a quick look at creating a team

project with TFVC in this lesson to keep your experience seamless.

Prerequisites: You have an Azure DevOps organization created, and you have some

experience working with Azure DevOps to create team projects, or you have followed the

lessons in Chapter 1 of the book Hands-on Azure Boards.

Navigate to your Azure DevOps organization’s home page and click the “Create

project” button in the top-right corner. See Figure 1-1.

In the team project creation pane, provide a name and select TFVC as the version

control system. You can set “Work item process” to whatever you’d like, as discussed in

detail in the Hands-On Azure Boards book. See Figure 1-2.

Figure 1-1.  Creating project

Chapter 1 Getting Started with Azure Team Foundation Version Control

3

The created team project has TFVC set as the repo by default, and you can view it by

clicking the Repos menu option in the left menu. See Figure 1-3.

Now, let’s look at how we can add a TFVC repo to an existing team project. Unlike Git

where multiple Git repos can be added to a single team project, you can have only one

TFVC repo per team project in Azure DevOps. Create a new team project with Git as the

version control system. Then navigate to Repos in the left menu. On the Repos tab, click

the drop-down next to the Git repo name and click “New repository.” See Figure 1-4.

Figure 1-2.  Creating a team project with TFVC

Figure 1-3.  TFVC repo

Chapter 1 Getting Started with Azure Team Foundation Version Control

4

In the dialog that appears, select TFVC as the repo type and click Create to create a

new TFVC repo in a team project that already has Git repos. See Figure 1-5.

In this lesson, we explored how to create a TFVC repo in an existing team project or

create a new team project with TFVC as the source control system.

Figure 1-4.  Creating a new repo in an existing project

Figure 1-5.  Creating a TFVC repo

Chapter 1 Getting Started with Azure Team Foundation Version Control

5

�Lesson 1-2: Using Visual Studio Team Explorer
We created a new team project in the previous lesson with TFVC as the source control

system. As a next step, we need to connect it to Visual Studio to get started with the

source code development. In this lesson, let’s discuss the steps required to get Visual

Studio connected to your newly created team project in the TFVC repository, using the

Team Explorer window in Visual Studio.

Prerequisites: You have Visual Studio 2019 installed on your machine and are

familiar with working with Visual Studio. You have followed the steps in Lesson 1-1 of

this chapter and have a team project created with TFVC as the source control system.

In Visual Studio, to open Team Explorer, you can click View ➤ Team Explorer in the

menu or press Ctrl+\ and then Ctrl+M. The Team Explorer window lets you connect to

Azure DevOps. You can click the Manage Connection toolbar icon to go to the Manage

Connections page of the Team Explorer window. See Figure 1-6.

Figure 1-6.  Managing connections in Team Explorer

Chapter 1 Getting Started with Azure Team Foundation Version Control

6

Click the Connect link or click the drop-down next to the Manage Connections link

(see Figure 1-6) and then click “Connect to a project.” In Team Explorer, the Manage

Connection page will open as a pop-up window. In the Connect to a Project dialog, you

can see the Azure DevOps organizations you have access to if you have already logged

in to Visual Studio with a Microsoft account or your organization’s account. You can

click “Add an account” or select a different account if you have connected more than

one account. See Figure 1-7. If you click “Add an account,” you will be prompted for

your credentials, and you can provide them to connect your Microsoft account or your

organization’s account to Visual Studio.

Figure 1-7.  Adding or selecting an account

Log on from the account you used to create a team project in the previous lesson

and expand the Azure DevOps services organization to view your team projects

and repositories. If you are using an on-premises Azure DevOps server, you have

the option to provide an Azure DevOps server URL and connect it. In the expanded

view, select the TFVC repo you want to connect and click the Connect button. See

Figure 1-8.

Chapter 1 Getting Started with Azure Team Foundation Version Control

7

Once the team project TFVC repo is connected, Team Explorer will allow you to map

the TFVC path of the project to a local folder and create a workspace. There are two types

of workspaces, and we will discuss them in Lesson 1-4. Provide a desired local path and

click the Map & Get button. See Figure 1-9.

Figure 1-8.  Connecting a TFVC repo

Chapter 1 Getting Started with Azure Team Foundation Version Control

8

In this lesson, we discussed the steps required to connect and map a local path for a

TFVC repository using Visual Studio.

�Lesson 1-3: Adding New/Existing Solutions to TFVC
Once we map the TFVC repository in Visual Studio, we are allowed to add new solutions

to version control using the Solution Explorer window of Visual Studio. Let’s look at the

steps to add a new solution to TFVC and how you can add an existing solution to TFVC

using the Solution Explorer window of Visual Studio.

Prerequisites: You performed the steps described in the first two lessons in this

chapter.

Figure 1-9.  Map & Get button

Chapter 1 Getting Started with Azure Team Foundation Version Control

9

In Team Explorer, you will see the New link, which allows you to create a new

solution. Click it. See Figure 1-10.

Then in the “Create a new project” dialog, search for console application, select the

.NET Framework console application, and click Next. See Figure 1-11.

Figure 1-10.  Creating a new solution

Chapter 1 Getting Started with Azure Team Foundation Version Control

10

In the next step, provide a name for the project. Do not change the Location path as

the new solution is already being created in the mapped path of TFVC. Click Create to

create the new application. See Figure 1-12.

Figure 1-11.  Creating a console application

Chapter 1 Getting Started with Azure Team Foundation Version Control

11

Once the new solution is created, view it in the Solution Explorer window of Visual

Studio. You can open Solution Explorer by pressing Ctrl+Alt+L or by clicking View ➤

Solution Explorer in the Visual Studio menu. If you have an existing solution that you

need to add to TFVC, copy all the content of the solution to the mapped local drive path

of TFVC and then open that solution in Visual Studio. Once you create/open a solution

in Visual Studio, go to the Solution Explorer window and right-click the solution you

want to add to TFVC. Then click Add Solution to Source Control in the context menu.

See Figure 1-13.

Figure 1-12.  Creating the console application in the mapped source path

Chapter 1 Getting Started with Azure Team Foundation Version Control

12

You will notice that all the files in the solution are marked with a +, indicating that

they are ready to be checked in (committed) to TFVC. See Figure 1-14.

Figure 1-13.  Adding the solution to source control

Figure 1-14.  Solution ready to be checked in

Chapter 1 Getting Started with Azure Team Foundation Version Control

13

Next open the Team Explorer window and click Pending Changes. In the Pending

Changes window of Team Explorer, you will be able to see the new solution files are ready

to be checked in. You can provide a comment and check in your code to TFVC. Further,

you can see the Related Work Items options allowing you to add a work item, which we

will discuss in Chapter 2. Note that there are some local file changes detected (this is

because of the default local workspace; we will discuss the difference between the server

and local workspaces that are available for TFVC in Lesson 1-4). See Figure 1-15.

Click the detected changes in the Excluded Changes section. A dialog will appear,

and you will be able to see the local files that should be ignored by source control. Select

all the files and right-click to open a context menu. In this window, you are allowed to

Figure 1-15.  Pending changes

Chapter 1 Getting Started with Azure Team Foundation Version Control

14

promote files, which will be included as changes. Or you can ignore local-only files.

Since the files detected in this instance are local files, click “Ignore these local items.”

Note that several ignore options are available when you have selected a single file, the

same file extension, etc. See Figure 1-16.

You will notice a new file is added to the included changes named .tfignore in the

pending changes. See Figure 1-17.

Figure 1-16.  Local changes

Chapter 1 Getting Started with Azure Team Foundation Version Control

15

Double-click the .tfignore file and inspect its content. The .tfignore file is used

to specify which files/paths should be ignored from TFVC. You can define the ignore

file patterns using wildcards. The .tfignore file contains a documentation header that

itself is a good explanation of how to use the file. Provide a comment in the Pending

Changes window and click the “Check in” button to commit the code to TFVC. In

the Solution Explorer, the files are now marked with a lock icon indicating they are

checked in to TFVC.

Figure 1-17.  The .tfignore file added

Chapter 1 Getting Started with Azure Team Foundation Version Control

16

In this lesson, we discussed how to get a solution added to TFVC using Visual

Studio’s Solution Explorer. Further, we looked at how to ignore local files from getting

checked in to TFVC using a .tfignore file.

�Lesson 1-4: Changing Settings for TFVC in
Visual Studio
There are a couple of settings you can set in Visual Studio to manage the behavior of

TFVC. They are divided into two levels: project collection settings that are applicable to

an Azure DevOps organization or a project collection in Azure DevOps Server and team

project settings that applicable in a team project scope.

You can access the project collection TFVC settings by clicking Team ➤ Team Project

Collection Settings ➤ Source Control. See Figure 1-18.

�File Types
The File Types settings let you define the enabled file types that can be added to

source control and the types that are prevented from being added to source control in

TFVC. See Figure 1-19.

Figure 1-18.  TFVC team project collection settings

Chapter 1 Getting Started with Azure Team Foundation Version Control

17

�Workspace Settings
The default settings for workspaces can be set on the Workspace Settings tab of the

project collection’s source control settings for TFVC. See Figure 1-20.

Figure 1-19.  TFVC File Types settings

Chapter 1 Getting Started with Azure Team Foundation Version Control

18

Team Foundation Version Control comes with two modes of workspaces, namely,

local and server workspaces. By default, a local workspace is set up in Visual Studio

when you connect with TFVC. Let’s try to understand the difference between the local

and server workspaces in this lesson.

•	 Server workspace: In a server workspace, you can handle millions

of files per branch and even large binary files. The facility is there

to apply locks, which we will discuss in Chapter 3. Most of the

operations in the server workspace require the developer to be

connected to the TFVC server. The server workspace lets you set

“Enable get latest when checkout,” which will download the latest

version of a file when you start editing it. You should consider using

the server workspace when you have more than 100,000 items in your

workspace.

Figure 1-20.  Default workspace settings

Chapter 1 Getting Started with Azure Team Foundation Version Control

19

•	 Local workspace: A copy of the latest version of code is available

on the developer’s machine so the developer can work offline with

the files. To check in code, the developer has to connect to the TFVC

server. You should consider using the local workspace when you

want to work offline often and easily restore locally deleted files. You

can compare, undo, check out and edit, rename, add, and delete files

easily in the local workspace mode.

We will discuss how to set the workspace mode for your development in Chapter 2.

�Source Control Settings
To access the team project’s source control settings, you can click Team ➤ Team Project

Settings ➤ Source Control. See Figure 1-21.

Figure 1-21.  Team project’s Source Control settings

�Check-Out Settings
When you click Team ➤ Team Project Settings ➤ Source Control, the Source Control

Settings dialog will open. The check-out settings let you define whether to enable

multiple check-outs of files for server workspace mode as well. By default, multiple

check-out is enabled for local workspace mode. Additionally, you can set the server

workspace mode to get the latest version of a file for a local machine when a file is

checked out. See Figure 1-22.

Chapter 1 Getting Started with Azure Team Foundation Version Control

20

�Check-in Policies
Check-in policies help you to add conditions to check in code so that you are able

to make the development team follow a given set of rules when submitting code

to TFVC. There are different types of check-in policies such as making a comment

mandatory, making the association of a work item to a given query mandatory, etc. We

will discuss how the check-in policies work in Lesson 3-5.

�Check-in Notes

Check-in notes allow you to define a note requirement for each check-in. Notes can be

set as optional or required. You can specify a note title and add a note as required or not

in team project’s Source Control settings. See Figure 1-23.

Figure 1-22.  Check-out settings

Chapter 1 Getting Started with Azure Team Foundation Version Control

21

If you try to edit a file and check in the code, you will be prompted to provide a

required note. See Figure 1-24.

Figure 1-23.  Check-in notes

Chapter 1 Getting Started with Azure Team Foundation Version Control

22

In this lesson, we discussed project collection and team project TFVC settings that

can be used to control the behavior of how you work with TFVC.

�Lesson 1-5: Connecting to TFVC in VS Code
Visual Studio Code is the lightweight cross-platform editor in the Visual Studio family. In

this lesson, let’s see how we can get VS Code connected to TFVC.

Figure 1-24.  Check-in notes in Pending Changes

Chapter 1 Getting Started with Azure Team Foundation Version Control

23

Prerequisites: You have installed VS Code and are familiar with working with VS

Code. You must have a local workspace created for TFVC using Visual Studio or Eclipse

available on your machine. If you have followed the steps in Lesson 1-2, you should have

it already.

Open VS Code and press Ctrl+Shift+X, or click the cogwheel at the bottom-left

corner. Then click Extensions in the context menu to open the Extensions tab in VS

Code. See Figure 1-25.

Search for Azure Repos to get the Azure Repos extension installed. Next locate the

tf.exe location of your machine. You can get tf.exe installed by installing Visual Studio

or by installing Team Explorer Everywhere from https://github.com/microsoft/team-

explorer-everywhere/releases. Team Explorer Everywhere supports macOS and Linux

as well, and you can install the command-line client to get tf.exe. https://github.

com/microsoft/team-explorer-everywhere contains the documentation on Team

Explorer Everywhere. If you have VS 2019 installed, you typically have tf.exe in the path

shown here:

C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\Common7\IDE\

CommonExtensions\Microsoft\TeamFoundation\Team Explorer

Figure 1-25.  Extensions

Chapter 1 Getting Started with Azure Team Foundation Version Control

https://github.com/microsoft/team-explorer-everywhere/releases
https://github.com/microsoft/team-explorer-everywhere/releases
https://github.com/microsoft/team-explorer-everywhere
https://github.com/microsoft/team-explorer-everywhere

24

You have to go to VS Code File ➤ Preferences ➤ Setting and add a user setting as

specified here with your tf.exe path:

{ "tfvc.location": "C:\\Program Files (x86)\\Microsoft Visual

Studio\\2019\\Enterprise\\Common7\\IDE\\CommonExtensions\\Microsoft\\

TeamFoundation\\Team Explorer\\tf.exe", "tfvc.restrictWorkspace": true }

Open the Settings Editor for the Azure Repos extension, as shown in Figure 1-26.

Then update the settings file with the user settings and the tf.exe path mentioned

earlier and save the settings file. Next open the local workspace folder containing the

TFVC repository in VS Code. Click View ➤ Command Palette and type team signin in

the command palette. See Figure 1-27.

Figure 1-26.  Azure Repos extension settings

Chapter 1 Getting Started with Azure Team Foundation Version Control

25

In the next two options provided, you can enter a personal access token (PAT) if you

have one. How to create a PAT was explained in Hands-On Azure Boards book. Let’s select

the option to authenticate and get an access token method, as shown in Figure 1-28.

Next copy the code provided and press Enter to authenticate. See Figure 1-29.

Provide the code and click Next in the opened browser prompt. See Figure 1-30.

Figure 1-27.  Team sign-in

Figure 1-28.  Authenticating TFVC in VS Code

Figure 1-29.  Starting the authentication

Chapter 1 Getting Started with Azure Team Foundation Version Control

26

Then provide your credentials and sign into the Azure DevOps organization when

prompted and close the browser after signing in. You will be able to see the connected

repo in the VS Code, and you can perform check-in and check-out operations with VS

Code. See Figure 1-31.

In this lesson, we explored the steps required to connect VS Code to the TFVC

repository.

�Summary
This chapter took you through getting started with Team Foundation Version Control.

We discussed setting up Visual Studio and VS Code to use with TFVC and explored a

few useful settings. Additionally, we identified how to add a solution via the Solution

Explorer window in Visual Studio to TFVC.

In the next chapter, we will discuss in detail how to use Visual Studio Source Control

Explorer to work with TFVC.

Figure 1-30.  Entering code

Figure 1-31.  VS Code connected to TFVC

Chapter 1 Getting Started with Azure Team Foundation Version Control

27
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_2

CHAPTER 2

Working with Team
Foundation Version
Control: Part1
We discussed how to create an Azure DevOps project and access the source code using

Visual Studio Team Explorer and Solution Explorer in the previous chapter. Now we have

an overall idea of how to create an Azure DevOps project with TFVC as the source control

system and how to connect to the project through Visual Studio Team Explorer. Hence,

we can discuss more about each important section of Team Explorer to get a clearer

idea of how to work with Team Explorer. One of the main windows of Visual Studio is

the Source Control Explorer window, which can be launched using Team Explorer. The

Source Control Explorer helps users to view and manage the source code of the project.

In this chapter, we will explore the Source Control Explorer in detail, and you will

learn about many features available in the Visual Studio Source Control Explorer.

Further, we will discuss how to check in your code changes, resolve code conflicts, and

set different source control tool options.

�Lesson 2-1: Exploring the Source Control Explorer
The Source Control Explorer is used to view and manage the source code–related files

and settings of the project when you are using Team Foundation Version Control (TFVC).

Prerequisites: You followed the steps in Chapter 1. You have a solution and project

available in TFVC.

Go to Team Explorer of Visual Studio and connect to the Azure DevOps project, as

explained in Chapter 1. Select the Source Control Explorer. See Figure 2-1.

28

We will discuss all the important sections of the source control window in this

chapter. The main sections are the menu items, the folders, and the local path. See

Figure 2-2.

Figure 2-1.  Selecting the Source Control Explorer in Team Explorer

Figure 2-2.  Source Control Explorer

Chapter 2 Working with Team Foundation Version Control: Part1

29

Go to the Folders section of the Source Control Explorer window. You will be able

to see that all the projects available in the Azure DevOps organization are listed in the

Folders section. As discussed in Chapter 1, you can map the entire organization or the

selected project with the local location. Right-click the mapped project. You will be able

to see the context menu with the various source control options. See Figure 2-3.

Figure 2-3.  Source control options

Chapter 2 Working with Team Foundation Version Control: Part1

30

Let’s identify what we can do with each option in the context menu.

	 1.	 Open in File Explorer

We can navigate to the local source control folder where we

have mapped the source code. The workspace will open in the

Windows File Explorer after clicking this Open in File Explorer

menu item.

	 2.	 Get Latest Version

While we are working in our local source control, there can be

several changesets added to the source control in the Azure

DevOps server. So, we need to have a way to get the latest code

version on the server to our local source control folder.

	 3.	 Check Out for Edit

If we need to make any changes to the existing file of the project,

we need to check out the file first. You can open the selected file

for editing by using this option.

	 4.	 Delete

We can delete the selected file or the folder from the local source

control. We have an option to undo a delete as well.

	 5.	 Rename

We can rename the selected file or folder in the local source

control folder.

	 6.	 Move

We can move the selected file or folder.

	 7.	 Rollback

We can remove the changes in the selected changesets from the

local source control folder code and check in the pending changes

to apply the rollback.

	 8.	 Undo Pending Changes

We can undo the pending changes of the selected project files or

folders from here.

Chapter 2 Working with Team Foundation Version Control: Part1

31

	 9.	 Check in Pending Changes

We can make several changes in the local source control folder.

If the local changes are ready to go to the server, we can check in

the pending changes. Then all the pending changes will go to the

server.

	 10.	 Shelve Pending Changes

There may be situations where we are in the middle of an

implementation that is not completed. Hence, we can’t check

in those changes to the server. But we all know that if something

happens to our development machine, we will lose all the

pending work we have done. As a solution to this, we can keep our

incomplete code on the server using shelve sets. We will discuss

more about shelve sets in Chapter 3.

	 11.	 View History

We can open the history window where we can find all the

changeset details of the project.

	 12.	 Compare

We can compare the local work source control folder version

to the server version using this option. This allows you to select

which local version you want to compare to the server version.

	 13.	 New Folder

We can add a new folder to the selected project.

	 14.	 Add Items to Folder

We can add files to the selected folder using this option. After

selecting this option, a window will open where you can browse

and select the files to add to the project.

	 15.	 Branching and Merging

Development teams follow different branching strategies to

make their development work more organized. So, they are using

separate branches for feature development, as well as some

branches for testing purposes. At one point in development,

Chapter 2 Working with Team Foundation Version Control: Part1

32

teams merge these branches. Hence, we can create new branches

and merge the branches using this option when we use TFVC

as the source control system. Also, we can convert folders to the

branches with this option. We will discuss more about branching

with TFVC in Chapter 4.

	 16.	 Find

This is a search option available in source control. We can search

for labels, changesets, and shelvesets with this tool.

	 17.	 Advanced shows more advanced options. See Figure 2-4.

Figure 2-4.  Source control advanced options

	 a.	 We can select the specific version and overwrite the local files.

	 b.	 We can lock the selected file and restrict the file editing by

another user.

Chapter 2 Working with Team Foundation Version Control: Part1

33

	 c.	 We can unlock the selected file and allow editing by other users.

	 d.	 We can apply labels for the code versions.

	 e.	 We can navigate to the Azure DevOps project security section using

this option.

	 f.	 We can navigate to the Project Properties window from this option.

	 g.	 We can remove the source code from the local workspace using

this option.

In this lesson, we discussed some of the features available in the Source Control

Explorer. We were able to get a basic idea of Source Control Explorer concepts such as

check-in, rollback, shelve set, branches, and check-out.

�Lesson 2-2: Setting Workspace Mode to Local
and Server
Team Foundation Version Control is a centralized version control system, which allows

users to have one version of the source code in the local working machine. This local

workspace can have two modes that we will learn about in this lesson.

There can be two modes of the workspace: local mode and server mode. We will

discuss the similarities and differences of these two modes in this lesson.

Go to the Source Control Explorer window and you will be able to find the

Workspace option at the top of the window. See Figure 2-5.

Figure 2-5.  Workspace option

You can see the currently selected workspace. Expand the drop-down and select

Workspaces to add or edit workspaces. After clicking Workspaces, the Manage

Workspaces window will open, which allows us to see all the workspaces we have access

to. Also, there are buttons to add, edit, or remove workspaces. Here we have another

Chapter 2 Working with Team Foundation Version Control: Part1

34

interesting option to access the remote workspaces of the current user. If the same user

has created workspaces on different machines for this project, the user can list all those

workspaces here by checking the “Show remote workspace” box. See Figure 2-6.

Select the workspace in the list and click the Edit button. This will open a window

where you can see the server path and local path of the workspace. You will be able to

find the Advanced button at the bottom of the window. Click that button to learn more

about the workspace. See Figure 2-7.

Figure 2-6.  Managing a workspace

Chapter 2 Working with Team Foundation Version Control: Part1

35

After clicking the Advanced button, another window will open with more details of

the workspace. See Figure 2-8.

Figure 2-7.  Editing the workspace

Figure 2-8.  Editing the workspace window with more details

Chapter 2 Working with Team Foundation Version Control: Part1

36

We can find the name of the workspace listed here. Also, we can edit the name of

the workspace from this window. Next in the list, we can find the server, owner, and

computer name of the selected workspace.

We can select the location of the workspace from this window. We can specify the

location as local or server. The next item in the list is File Time. We can give two values

as the file time: current and check-in. We can control the permission of this workspace

using the Permissions section. Here we have three permission types available. They are

private, where only the workspace owner can access the workspace; public (limited),

which allows valid users to access the workspace, but they don’t have any administration

permission for the workspace; and, which means any valid user has admin and

contribution permission for the workspace.

So far, we have discussed the options available in workspaces. Now we will discuss

the local and server workspace modes.

�Local Workspace Mode
If we work in the local workspace mode, we can perform most of the source control

operations without connecting to the Azure DevOps server.

The following are the source control operations you can perform in local mode:

•	 Checking out a file for edit

•	 Pending add, delete, rename, or edit new files and folders

•	 Undoing pending changes

If we need to perform a check-in, shelve, view history of items, merge, or branch, we

need to go online. These actions don’t work in offline mode.

�Server Workspace Mode
For almost all the actions, the server workspace needs to be connected with the server.

Otherwise, you have to take the codebase offline and later edit the existing files without

having the capability to undo or add new files, projects, etc. When the connectivity is

available, you can get the solution back to online mode.

In this lesson, we learned how to create multiple workspaces with different modes.

Also, we discussed workspace permission control capabilities. Further, we discussed the

capabilities and limitations of the server workspace mode and local workspace mode.

Chapter 2 Working with Team Foundation Version Control: Part1

37

�Lesson 2-3: Looking at Source Control Explorer
Menu Items
So far, we were able to identify Source Control Explorer operations and local and

server workspaces. In this lesson, we will discuss more about Source Control Explorer

operations. We can find the menu items at the top of the Source Control Explorer

window. We will discuss those menu items in this lesson. See Figure 2-9.

	 1.	 We can hide or show the folder section by clicking this folder icon.

	 2.	 We can show or hide deleted items in the source.

	 3.	 We can refresh the source by clicking this menu icon.

	 4.	 Select a folder in the Folders section and click this folder icon in

the menu. The new folder will be added to the selected folder.

	 5.	 Add existing items in the selected local folder to version control.

	 6.	 Delete the selected file or folder.

	 7.	 Get the latest version of the source in the server.

	 8.	 Check out the selected file for edit.

	 9.	 Check in any pending changes to the server.

	 10.	 Undo any pending changes.

	 11.	 Compare the source with the local version.

	 12.	 Compare the folder content with the server version.

	 13.	 See the history of the selected files.

Figure 2-9.  Source control menu items

Chapter 2 Working with Team Foundation Version Control: Part1

38

	 14.	 Search for the changesets.

	 15.	 Create branches.

In this lesson, we were able to identify the source control menu items. All these

menu items act as quick access to the Source Control Explorer operations.

�Lesson 2-4: Editing and Checking In Your Changes
So far, we discussed different operations available in the Source Control Explorer. So,

let’s try to learn how to use those operations while working with the code.

Prerequisites: You followed the steps in Chapter 1. You have a solution and project

available in TFVC.

Go to the Source Control Explorer and open the solution file. See Figure 2-10.

Go to the Solution Explorer. We can see the source code open in the Solution

Explorer. Let’s select a file and make a small change to it. If any change has been made to

a file, it will be indicated with the red check mark. Right-click the changed file to identify

the different actions we can do with this file. See Figure 2-11.

Figure 2-10.  Moving to a solution using the Source Control Explorer

Chapter 2 Working with Team Foundation Version Control: Part1

39

	 1.	 Compare

We can compare the file versions using the compare option in this

pane. After selecting the Compare option, the Compare window

will open. See Figure 2-12.

Figure 2-11.  Source control actions on change file

Chapter 2 Working with Team Foundation Version Control: Part1

40

In the Compare window, we can select the type of source version.

Here we can compare the different source versions with the latest

version of the local changes we have done to the project source.

•	 Workspace Version: We can compare the pending changes to the

source version in the selected workspace.

•	 Latest Version: We can compare the pending changes to the

latest source version.

•	 Label: We can give an existing label for the source and compare

that labeled version to the pending changes.

•	 Date: We can compare the source changes done on a specific day

to the pending changes.

•	 Changeset: We can select the changeset and compare the

pending changes to the selected changeset version.

After we select any of these comparison option, we will be able

to see the comparison between the pending changes and the

selected source version. See Figure 2-13.

Figure 2-12.  Comparing the source and local versions

Chapter 2 Working with Team Foundation Version Control: Part1

41

	 2.	 Source Control

Move the mouse on to the source control; a pane will open with

the four source control options. See Figure 2-14.

	 a.	 The Get window will open after selecting the Get Specific Version item from

the pane. You will find some change overwrite options in the Get window,

which allows us to overwrite the selected file content with the selected

source version. See Figure 2-15.

Figure 2-13.  Code comparison

Figure 2-14.  Source control pane options

Chapter 2 Working with Team Foundation Version Control: Part1

42

	 b.	 You can select Undo Pending Changes to remove the pending changes.

After we select the Undo Pending Changes option, the window will open

where we can select the file and undo the change. See Figure 2-16.

Figure 2-15.  Get version window

Figure 2-16.  Undoing the pending changes

Chapter 2 Working with Team Foundation Version Control: Part1

43

	 c.	 The View History option allows you to access the changeset details.

	 d.	 We can use Annotate to identify who has done the changes in the selected

file. See Figure 2-17.

	 3.	 Get Latest Version

We can get the latest version of the selected file from the server.

If there are any changes that have been done to the same file

by another team member, we will get change conflicts. You can

resolve the conflicts using the Resolve Conflicts window, which

we will discuss more specifically in the next chapter.

	 4.	 Check in

We can check in the pending changes using this menu option. But

there is a check-in best practice we have to follow.

Before checking in the code, get the latest version from the server

and resolve any conflicts. Then build the solution to verify that

no build issues occurred while resolving the conflicts and test

the application. Again, get the latest version from the server to

verify there are no new changes; after that, check in the code.

After clicking the check-in icon in the menu, the Pending Changes

window will open. See Figure 2-18.

Figure 2-17.  Annotate

Chapter 2 Working with Team Foundation Version Control: Part1

44

Figure 2-18.  Pending Changes window

Chapter 2 Working with Team Foundation Version Control: Part1

45

	 1.	 Add the comment to the changeset to identify what the change

is about.

	 2.	 Add the work item for the changeset to track the user story

completion.

	 3.	 All the changes will be listed in the include section. We can

exclude the files from this section if we don’t want to send the

changes to the server.

	 4.	 All the excluded files will be listed here.

	 5.	 After adding the work item and the comment, we can check in

the code. The override warning policy will bypass all policies and

allow the user to check in the code.

In this lesson, we made a simple change to a file in the project to identify the

version comparison capabilities in the Source Control Explorer. Further, we discussed

different source version filtering options. Finally, we saw how to check in the changes

to the server.

�Lesson 2-5: Resolving Conflicts During Code
Check-in
We know as a best practice we need to get the latest code from the server before we

check in any pending changes to the server. But if the same file has changes on the

server, we may get change conflicts.

Prerequisites: You followed the steps in Chapter 1. You have a solution and project

available in TFVC.

Let’s try to identify the options available in the Source Control Explorer to resolve

these conflicts. See Figure 2-19.

Chapter 2 Working with Team Foundation Version Control: Part1

46

Let’s identify main three options available in the change conflict window.

	 1.	 Merge changes in Merge tool

We can open the Merge tool to do the code merge. See Figure 2-20.

	 a.	 We can select the changes from both the server version and the

local version and see the final version using the result section.

To keep the selected changes, we can click the “Accept merge”

button.

	 b.	 We can use this to move to previous differences and conflicts.

Also, we can use this to move to next differences and conflicts.

Figure 2-19.  Conflicts window

Figure 2-20.  Merge tool

Chapter 2 Working with Team Foundation Version Control: Part1

47

	 c.	 We can pick the change to the left (server) or right (local) as the

change to be used in merged.

	 d.	 We can change the view of the Merge Tool window. We have

vertical view, horizontal view, and mixed view.

	 e.	 The changeset list will open.

	 f.	 We can see the comparison of the server version and the local

version.

	 g.	 We can use an annotation to see the owner of each change.

	 h.	 We can change the focus between the server version window,

local version window, and result window.

	 2.	 Take Server Version

We can directly specify to get the version on the server. Then we

can select the local folder file content to replace with the server

content.

	 3.	 Keep Local Version

We can keep the local version instead of the server version.

In this lesson, we explained the change conflict resolve options available with the

Source Control Explorer. We discussed the three options available to resolve conflicts.

�Lesson 2-6: Viewing the History and Comparing
the Changes
While we work with TFVC, we can check in the code changes to the server. Each and

every check-in is saved as a changeset. We can track all the changes made to the source

code by every member of the team using changesets. So far, we have discussed several

ways of accessing the changeset details in the source control system.

Prerequisites: You followed the steps in Chapter 1. You have a solution and project

available in TFVC.

We can find all the changes made by team members using this list. See Figure 2-21.

Chapter 2 Working with Team Foundation Version Control: Part1

48

	 1.	 Change Set Details

Select the changeset from the list and click the Changeset Details

icon. This will open the Changeset Details page in Team Explorer

where we can find all the details of the changeset. See Figure 2-22.

Figure 2-21.  Changeset details

Figure 2-22.  Changeset Details window

Chapter 2 Working with Team Foundation Version Control: Part1

49

	 2.	 Compare

We can select the two changesets from the list and compare the

two selected changesets using this option.

	 3.	 Track changeset

We can track the changeset.

	 4.	 Get version

We can get the selected changeset version.

In the Changeset Details window, we can see two tabs available. One is for

changesets, and the other is for the labels. Similar to the changesets, we can use labels to

compare and get the labeled version code to the local workspace.

In addition to this window, we can do the same changeset comparison in the Azure

DevOps server web portal.

Go to Azure DevOps and move to the Changesets section under Repos. See Figure 2-23.

Figure 2-23.  Changesets section

Chapter 2 Working with Team Foundation Version Control: Part1

50

In the Changesets section, you will be able to see the list of changesets. We can filter

the changesets list using the filters available. We can filter by author, created date, and

date duration. Select one of the changesets from the list to open it. You will be able to

see the comparison between the changeset version with the latest source version. See

Figure 2-24.

In this lesson, we discussed changesets. We identified the basic menu items

in the changeset window and the use of it. Also, we discussed how to access the

changeset details on the Azure DevOps server. Further, we learned how to search

and compare changeset versions with the latest source code in the Azure DevOps

server web portal.

�Lesson 2-7: Setting Source Control Tool Options
In the Visual Studio Options window, you can set certain options for TFVC source

control. Let’s look at the options available.

Click Tools ➤ Options in the Visual Studio menu. See Figure 2-25.

Figure 2-24.  Changeset comparison

Chapter 2 Working with Team Foundation Version Control: Part1

51

The Options window will open where we can find the source control tools. Go to

Source Control and select Visual Studio Team Foundation Server. See Figure 2-26.

Figure 2-25.  Open Visual Studio Options menu item

Chapter 2 Working with Team Foundation Version Control: Part1

52

You can define your preferred options to work with TFVC in this Options window.

For example, you can set the option to show deleted files in the Source Control Explorer

window. Try setting your preferences and enhance your experience as per your needs.

In this lesson, we discussed how to change preferences for TFVC behavior in your

Visual Studio instance.

�Lesson 2-8: Deleting and Restoring Files
TFVC allows you to delete files, folders, or branches and restore them. Let’s look at how

you can perform a restore of a deleted file or folder.

Prerequisites: You followed the steps in Chapter 1. You have a solution and project

available in TFVC.

In the Source Control Explorer, delete a file by selecting it and clicking the Delete

toolbar button. Then check in your pending changes, confirming the delete.

Figure 2-26.  TFVC options

Chapter 2 Working with Team Foundation Version Control: Part1

53

The deleted file is not by default visible in the Source Control Explorer. You can

use the Visual Studio options for Team Foundation Version Control as explained

in the previous lesson and enable “Show deleted items” in the Source Control

Explorer. Or you can just click the show/hide deleted items toolbar option in the

Source Control Explorer to achieve this. Then right-click the deleted item and click

Undelete. See Figure 2-27.

The file, folder, or branch will be restored with the contents it had when it was

deleted and become a pending change. You can check in the pending changes to fully

restore the file, folder, or branch.

In this lesson, we explored the capability to restore a file, folder, or branch in TFVC

using the Source Control Explorer.

Figure 2-27.  Undeleting a file

Chapter 2 Working with Team Foundation Version Control: Part1

54

�Summary
In this chapter, we discussed actions you can perform while using Team Foundation

Version Control and the Source Control Explorer. Further, we explored how to check

in files, resolve merge conflicts, and view the history of changes made to the source

code. Additionally, we discussed the options you can set in Visual Studio to control the

behavior of TFVC and how to restore deleted files, folders, or branches.

In the next chapter, we will explore how to use shelvesets, suspend and resume work,

apply locks, use check-in policies, and do code reviews with TFVC.

Chapter 2 Working with Team Foundation Version Control: Part1

55
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_3

CHAPTER 3

Working with TFVC: Part 2
Team Foundation Version Control (TFVC) is highly integrated with Visual Studio. In

this chapter, we’ll cover how to use Visual Studio Team Explorer and Source Explorer,

or Team Explorer and Solution Explorer, to do TFVC operations such as adding

projects and solutions, checking in and out, deleting files, restoring files, undoing

changes, and more.

Specifically, we will explore how to use shelvesets. You’ll also learn how to suspend

and resume work with Visual Studio using Team Explorer, how to do code reviews with

TFVC, how to set up version control locks, and how to create check-in policies.

�Lesson 3-1: Using Shelvesets
Shelvesets are somewhat similar to changesets, which we discussed in the previous

chapter. However, a shelveset is not merged or committed to your code branch, and

when the other team members get the latest version of code, they will not get any

shelvesets, like they would changesets. Shelvesets are added to the TFVC server and

kept safe but not merged with your codebase. You can think of them as changesets that

are on an isolated shelf outside of your codebase. Shelvesets are useful to make sure

your in-progress work is saved in TFVC centrally without adding it to the codebase

because it is halfway-done work that should not disturb other team members’ work. For

example, at the end of a day’s work, if your work is only partially completed, you should

not check it in as a changeset. Instead, you can save it as a shelveset so that it is securely

stored in TFVC centrally and will be available to you in case something happens to your

development machine. Let’s look at how to create and use shelvesets.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project

available in TFVC.

56

Shelvesets will not get lost if something happens to the development machine as

they are available in TFVC, and you can obtain them by finding them in Visual Studio

Team Explorer.

Open a solution that is checked in to TFVC. Start making some modifications to the

code such as declaring a new variable, as shown in Figure 3-1.

Open the Team Explorer window in Visual Studio and go to Pending Changes. In

the Pending Changes window, you will be able to provide a comment and check in the

source code. However, instead of checking in, click the Shelve link to get started creating

a shelveset with your pending changes. See Figure 3-2.

Figure 3-1.  Sample code modification

Chapter 3 Working with TFVC: Part 2

57

Once you click Shelve, a pane will appear, and you will be able to provide a name

for the shelveset. The “Preserve pending changes locally” check box is by default

selected, and as the label states, when this option is selected, the pending changes will

be available for you to work on further after you create the shelveset. Let’s uncheck the

Figure 3-2.  Pending Changes window

Chapter 3 Working with TFVC: Part 2

58

“Preserve pending changes locally” option to see what happens to the pending changes.

The other option, “Evaluates policies and notes before saving,” will demand for check-

in policies and note policies to be applied for the shelveset as well. We will discuss the

check-in policies later in this chapter; we discussed notes in Chapter 1. You can click

the Cancel button to cancel the shelve operation. Click the Shelve button to create the

shelveset. See Figure 3-3.

Once the shelveset is created, you can see that the pending changes are also

undone. This is because we have unchecked the “Preserve pending changes locally”

option. If you kept it checked, your pending changes may still be visible to you after

creating the shelveset. In that case, make sure to undo pending changes before

continuing with this lesson.

Once you shelve your changes, they are securely stored in TFVC as a shelveset. In a

situation where you want to stop your current work and make a quick fix to the existing

codebase, you can use a shelveset without preserving the pending changes. Then you

can perform any quick fix on your codebase and check it in. Next, you can unshelve the

Figure 3-3.  Creating a shelveset

Chapter 3 Working with TFVC: Part 2

59

shelveset and get your pending changes into your local codebase to continue working.

This is actually manually suspending and resuming work with the help of shelvesets. We

will discuss the options for suspending and resuming work in Visual Studio with TFVC

later in this chapter.

To confirm that a shelveset is available in TFVC centrally, you can go to the web

portal of Azure DevOps Services/Server and open the Shelvesets tab. On this tab you will

be able to search the shelvesets by name of the shelveset or by name of the creator of the

shelveset. See Figure 3-4.

Clicking the shelveset name will take you to the details of the shelveset, and you can

inspect each code file change in the browser. See Figure 3-5.

Figure 3-4.  Shelvesets in the Azure DevOps web portal

Figure 3-5.  Shelveset details

Chapter 3 Working with TFVC: Part 2

60

Now that we do not have the code changes we have done locally, let’s check how we

can find the shelveset and get the changes back into pending changes mode so that we

can continue the work on our codebase. This operation is called unshelving.

In the Pending Changes window, you can click the Actions down arrow to open the

Actions context menu. In the context menu, click Find Shelvesets. See Figure 3-6.

In the Find Shelvesets window, you can provide the name of the shelveset or the

name of the creator of the shelveset to search for a shelveset. In the found shelveset, you

can right-click and open the context menu. In the context menu, you have options to

view the details of the shelveset, unshelve the shelveset, delete the shelveset, and request

a code review on a shelveset. See Figure 3-7. We will discuss code reviews with TFVC

later in this chapter. Click View Shelveset Details.

Figure 3-6.  Find Shelvesets option in Pending Changes

Chapter 3 Working with TFVC: Part 2

61

In the shelveset details, you have the option to unshelve changes in a shelveset

partially by excluding files from unshelving. You can request a code review or open the

shelveset in the browser. The Delete Shelveset option is also available in the shelveset

details. See Figure 3-8. Click Unshelve Changes.

Figure 3-7.  Viewing a shelveset

Chapter 3 Working with TFVC: Part 2

62

Once you click Unshelve Changes, you will be able to see two options. One is to

preserve the shelveset on the TFVC server after the unshelving is done. The other option

lets you restore the check-in notes and the work items associated with the pending

changes. Click the Unshelve button. See Figure 3-9.

Figure 3-8.  Shelveset details

Chapter 3 Working with TFVC: Part 2

63

Once the shelveset is unshelved, you will be able to see that the previous pending

changes reappear in your code files. There could be merge conflicts while unshelving,

but they can be resolved the same way as described in Chapter 2.

In this lesson, we discussed the steps of shelving and unshelving and the usage and

benefits of shelvesets.

Figure 3-9.  Unshelving

Chapter 3 Working with TFVC: Part 2

64

�Lesson 3-2: Suspending and Resuming Work
The suspend and resume work is an option available in Visual Studio while using TFVC

as the version control system. You can stop your current work while preserving all your

changes in suspend mode and automatically undo all your pending work with suspend.

It even captures bookmarks or any breakpoints made in Visual Studio and keeps track of

the opened code windows and other windows in Visual Studio.

Suspending work is useful when you need to stop your current code changes to

switch to other higher-priority work. Once you perform the high-priority work and check

the changes in, then you can resume your work using the resume work feature in Visual

Studio. Let’s look at the steps to suspend and resume work.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project

available in TFVC.

Make some code changes and save. Then in Team Explorer, click My Work. See

Figure 3-10.

In the My Work window, you will be able to see the in-progress work as edits. If you

click View Changes, you will be taken to the Pending Changes window. You can click

the Actions menu and add a work item by ID to the in-progress work or drag and drop a

work item from the available work items. With or without adding a work item, click the

Figure 3-10.  My Work window

Chapter 3 Working with TFVC: Part 2

65

Suspend button. See Figure 3-11. The added work item can be removed from in-progress

work by right-clicking the added work item and clicking Remove from In Progress in the

context menu.

Figure 3-11.  Suspending work

Chapter 3 Working with TFVC: Part 2

66

The suspend work description will be autofilled with the work item title, if you

have added a work item. You can add your own description by updating the autofilled

description. Then click the Suspend button. See Figure 3-12.

Once you suspend the work, if you inspect the shelvesets, you will be able to see that

a new shelveset has been created. The suspend-resume actually works with the help of

shelvesets behind the scenes. See Figure 3-13.

Figure 3-12.  Suspending the work

Chapter 3 Working with TFVC: Part 2

67

In Visual Studio you will be able to see that the pending changes are undone

once you suspend the work. Now you can do any other code changes on your original

codebase before you started the suspended changes. You can check in those changes

and later resume the work that you were doing.

To resume work, you can go to My Work in the Team Explorer window of Visual

Studio. You can click Resume, and the previously suspended work will be available in

your solution as pending changes. You can even resume suspended work while you

are already have pending changes by clicking Merge within Progress Changes. See

Figure 3-14. If there are any conflicts while you are resuming work due to pending

changes or changesets you created after suspending work, you can resolve the merge

conflicts in the same way as explained in Chapter 2.

Figure 3-13.  Shelveset created by suspending work

Chapter 3 Working with TFVC: Part 2

68

Once the work is resumed, the shelveset created behind the scenes is also deleted

automatically.

In this lesson, we explored how we can suspend and resume work, which works with

the shelvesets concept of TFVC.

�Lesson 3-3: Doing Code Reviews with TFVC
Code reviews are important to maintain good-quality code in your projects. TFVC offers

a code review integrated with Visual Studio Team Explorer. Let’s look at the steps to do a

code review.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project

available in TFVC.

Figure 3-14.  Resuming work

Chapter 3 Working with TFVC: Part 2

69

Make some code changes in your project by opening it in Visual Studio. Then go

to My Work in the Team Explorer of Visual Studio. You can drag and drop a work item

or add a work item by ID to the in-progress work using the Actions menu. You can do

this before requesting a code review to notify the reviewer of the work item that you are

working on. However, work items are not mandatory for you to request a code review.

Click the Request Review button to start a code review request. See Figure 3-15.

Figure 3-15.  Initiating a code review request

Chapter 3 Working with TFVC: Part 2

70

A new code review request subject will be automatically filled in with a selected work

item title if you have added a work item to the in-progress work. You can edit the subject

and provide a description as well with the request. The team project name will be

tagged, and you can select one or more reviewers for the core review request by clicking

Add Reviewer. After selecting the reviewer, click Submit Request. See Figure 3-16.

Figure 3-16.  Submitting a code review request

Chapter 3 Working with TFVC: Part 2

71

After submitting code review request, it will appear under My Code Reviews &

Requests in your My Work. See Figure 3-17. You can suspend the work as we discussed

in the previous lesson and work on something else until you receive feedback from the

reviewer.

Figure 3-17.  Code review requests listed

Chapter 3 Working with TFVC: Part 2

72

In the My Code Reviews & Requests drop-down, you can filter the requests for

recently closed, recently finished, incoming requests, and your code review requests. See

Figure 3-18.

If you inspect the shelvesets, you will find a shelveset for code review is created

automatically. See Figure 3-19.

Figure 3-18.  Filtering code reviews

Figure 3-19.  Shelveset created for code review

Chapter 3 Working with TFVC: Part 2

73

The reviewer receives the code review request in their My Work in Team Explorer.

The user can accept to do a code review or decline it. See Figure 3-20.

The reviewer can click files to view the code changes and add file comments for the

review. See Figure 3-21.

Figure 3-20.  Accepting or declining

Chapter 3 Working with TFVC: Part 2

74

The Action menu lets the reviewer open the related work item. The reviewer can add

an overall comment and send and finish the code review with Looks Good for approval

or ask to do more changes. See Figure 3-22.

Figure 3-21.  Reviewing the files

Figure 3-22.  Approving the code review

Chapter 3 Working with TFVC: Part 2

75

Once the code review is approved, the initiator of the code review can see it in their

My Work. See Figure 3-23.

In addition to requesting a code review on pending changes, you can request code

reviews on changesets or shelvesets. See Figure 3-7 for how to request a code review for

a shelveset using Find Shelvesets in Team Explorer. You can request a code review for a

changeset in the Source Control history view by right-clicking the relevant changeset.

See Figure 3-24.

Figure 3-23.  Code review approved

Figure 3-24.  Code review for a changeset

Chapter 3 Working with TFVC: Part 2

76

In this lesson, we discussed the code review procedure with TFVC, which is an

essential activity for any development team to ensure high-quality and maintainable

code.

�Lesson 3-4: Using Lock and Unlock
Locking/unlocking files is a useful feature in TFVC because it allows you to temporarily

apply a lock on a file or folder in the TFVC server. The locked file will be prevented

from check-out by other users, and you can prevent merge conflicts by applying a

lock. This should be used with caution, though, as you should not block other team

members from doing their work on the code. You might want to apply a lock on a code

file or a folder in a situation where you will be doing a major and impactful change,

which absolutely requires avoiding merge conflicts, so that the critical change in the

code can be checked in to TFVC after you have completed it without any conflicts.

Let’s look at how you can lock and unlock a file or folder in Visual Studio Source

Control Explorer.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project

available in TFVC.

Open the solution in Visual Studio and open the Source Control Explorer. Then you

right-click the required file or folder and click Advanced ➤ Lock in the context menu to

lock the file or folder. See Figure 3-25.

Chapter 3 Working with TFVC: Part 2

77

A dialog will pop up, and you can click Lock to lock the file for you exclusively. See

Figure 3-26.

Figure 3-25.  Locking a file

Figure 3-26.  Lock file dialog

Chapter 3 Working with TFVC: Part 2

78

The file will be checked out and will be locked for others so that only you will be able

to edit the file. See Figure 3-27. Until you remove the lock, no one will be able to check in

any changes to the file/folder.

You can right-click the file/folder in the Source Control Explorer and click Advanced ➤

Unlock to unlock the file. Or once you check in the file, the lock will be removed.

In this lesson, we explored the file/folder lock/unlock option in TFVC to identify

the capability to edit a file/folder in isolation, while preventing others from making

changes to it.

�Lesson 3-5: Applying Check-in Policies
Check-in policies are useful for setting up control over how the changes are checked in

to the source control system. You can ensure the team is adhering to the procedures so

that the quality of changesets will be higher and more meaningful. Let’s look at creating

check-in policies in Visual Studio and how they get applied to the check-in attempts.

Prerequisites: You followed Chapters 1 and 2. You have a solution and project

available in TFVC. You have a few user stories, and you have a shared query with the

active user stories. We covered how to create work items and write queries for work items

in the Hands-on Azure Boards book of the series.

Open the solution in Visual Studio and make some code changes. In the Visual

Studio menu, click Team ➤ Team Project Settings and go to the Source Control tab

to open the Source Control options for the team project. Then in the dialog, go to the

Check-In Policy tab and click the Add button. There are several check-in policy options

available. See Figure 3-28.

Figure 3-27.  Locked file

Chapter 3 Working with TFVC: Part 2

79

Build policies will be discussed in the Hands-On Azure Pipelines book. Let’s select

the changeset comment policy and add it. This will make a comment for a check-in

mandatory when trying to check in pending changes. See Figure 3-29.

Figure 3-28.  Adding a check-in policy

Chapter 3 Working with TFVC: Part 2

80

We can try adding a work item query policy as well. Select a work item query in the

dialog box that appears when you select the Work Item Query Policy. See Figure 3-30.

Figure 3-29.  Comment policy applied

Chapter 3 Working with TFVC: Part 2

81

This will make associating a work item from the given query mandatory when

checking in a pending change. See Figure 3-31.

Figure 3-30.  Work item query policy

Chapter 3 Working with TFVC: Part 2

82

You can try other policies and apply them and see how they affect your team’s check-

in experience.

In this lesson, we explored check-in policies, which are useful to maintain standards

and proper collaboration and communication when working with codebases.

Figure 3-31.  Work item query policy applied

Chapter 3 Working with TFVC: Part 2

83

�Summary
In this chapter, we discussed how to use shelvesets and how the shelvesets help to do

code reviews as well as suspend and resume work in this chapter. How to use locks and

the checking policies were also described. With this chapter and the previous chapter,

you have gained a comprehensive idea of how to work with Team Foundation Version

Control.

In the next chapter, we will discuss the branching feature of TFVC, which will give

you an in-depth idea of how to create and work with branches as well as some useful

branching strategies with TFVC.

Chapter 3 Working with TFVC: Part 2

85
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_4

CHAPTER 4

Team Foundation Version
Control Branching
After going through the previous chapters of this book, you now have a good

understanding of the source control capabilities of Team Foundation Version Control

(TFVC). Branching is the most important capability of any source control system

because it helps the development team to manage their source code in isolation while

creating new features and hotfixes. You will learn about the branching capabilities of

Team Foundation Version Control throughout this chapter.

�Lesson 4-1: Creating a Branch
In development, you might want isolation when trying to add new features to the

project or doing a hotfix. In some scenarios, the entire team can work in one branch, but

sometimes it is better to have separate branches for each feature development or hotfix.

This lesson will explain how to create a branch in TFVC using the Visual Studio Source

Control Explorer.

Prerequisites:

•	 Azure DevOps project with TFVC as the source control system

•	 Mapped local workspace of the project on the working machine

Go to the Source Control Explorer. Select the folder or branch you want to create a

branch with. You can move the mouse over the folder or branch and right-click and select

Branch, or you can use source control menu items to create a branch. See Figure 4-1.

86

Alternatively, you can create a branch by right-clicking a selected branch and then

selecting the Branching and Merging ➤ Branch option, as shown in Figure 4-2.

The Branch window will open. You will be able to define the new branch name and

decide on a source version to create a new branch. See Figure 4-3.

Figure 4-1.  Selecting the Branch option to create a branch of main

Figure 4-2.  Creating a branch

Chapter 4 Team Foundation Version Control Branching

87

For the source version, you have following options in the Branch from Version

drop-down:

•	 Latest Version: Latest version in the source

•	 Changeset: Select a version using changesets

•	 Date: Select a version with a specific date

•	 Label: Select a labeled version

•	 Workspace: Select a version of the selected workspace

After selecting the source version, click the OK button to create a new branch. You

might get a pop-up that allows you to accept or deny the branch creation. See Figure 4-4.

Figure 4-3.  Branch window

Chapter 4 Team Foundation Version Control Branching

88

Now the new branch creation is completed. Go to the Source Control Explorer. You

will be able to see the new branch. See Figure 4-5.

In this lesson, you learned how to create a new branch using the Source Control

Explorer. Also, we discussed the ability to create a branch with different source

versions.

Figure 4-4.  Branch creation verify pop-up

Figure 4-5.  Newly added branch in the Source Control Explorer

Chapter 4 Team Foundation Version Control Branching

89

�Lesson 4-2: Converting a Folder to a Branch
In TFVC we can have both folders and branches in the source control system. Sometimes

we need to work on code that is not related to any of the branches. For that type of

situation, we can create a folder inside the source control system and maintain the

source code inside the folder. While you maintain your code inside a folder, you might

later need to add the source code inside the folder to a branch. In TFVC we have an

easy option to do this: converting a folder into a branch. This lesson will explain how to

convert a folder into a branch.

Prerequisites:

•	 Azure DevOps project with TFVC as the source control system

•	 Mapped local workspace of the project on the working machine

•	 Mapped project with a folder in the source control system

Go to the Source Control Explorer. Select the folder that you need to convert to a

branch. Select the branch drop-down among the source control menu items and select

the Convert to Branch option. See Figure 4-6.

Figure 4-6.  Selecting Convert to Branch from the source control menu

Chapter 4 Team Foundation Version Control Branching

90

After selecting Convert to Branch, you will be able to see the window where you can

find basic details about the new branch being created using the folder. See Figure 4-7.

You can give the branch a name or keep the default branch name. Also, you will be

able to see the owner of the branch. You can also give a description to the branch. When

you are ready to convert the folder to a branch, click the Convert button.

You will be able to see that the folder has been converted to a branch. See Figure 4-8.

Figure 4-7.  Converting the folder to a branch

Chapter 4 Team Foundation Version Control Branching

91

In this lesson, we discussed how to convert folders to branches easily with the Source

Control Explorer.

�Lesson 4-3: Merging and Resolving Conflicts
Development teams can decide to use certain branch structures according to their

project requirements. Each team needs to decide the best branching structure suitable

for their project requirements or they will face more complex problems when trying to

merge the branches. No matter how many branches a team has, the team needs to be

able to merge these branches correctly. This lesson will explain how to merge branches

and resolve any conflicts that occur while merging.

Prerequisites:

•	 Azure DevOps project with TFVC as the source control system

•	 Mapped local workspace of the project on the working machine

•	 Multiple branches with the same source version

We have the master branch, the Develop branch, and two Feature branches in the

source control with the same source version. See Figure 4-9.

Figure 4-8.  Branch created using a folder

Chapter 4 Team Foundation Version Control Branching

92

We have a master branch where we maintain the code ready to deploy to production.

We have a development branch where we merge all the feature changes to. We are

developing two features. So, we have two Feature branches in the source control system.

This is the sample branch structure we are going to use with this lesson. Figure 4-10

shows the branching hierarchy of our sample branching structure.

Multiple team members are developing Feature1. So, they create a local workspace

for the Feature1 branch. After their implementation is completed, they check in the code

changes to the server. After the Feature1 implementation is completed, the Feature1

branch is merged with the developer branch.

Go to the Source Control Explorer. Select the Feature1 branch and then click the

branch icon in the source control menu. Then in the menu Click on Merge. See Figure 4-11.

Figure 4-9.  Branches with the same version of source code

Figure 4-10.  Branch structure

Chapter 4 Team Foundation Version Control Branching

93

The Source Control Merge Wizard will open. We are going to merge the Feature1

changes with the Develop branch. So, our source branch is Feature1, and the target

branch is the Develop branch. You have two merge options available in the wizard. You

can merge all the changes up to a specific version, or you can merge changes in specific

changesets. See Figure 4-12.

Figure 4-11.  Merging the changes

Chapter 4 Team Foundation Version Control Branching

94

After deciding which changesets to merge, you can click Next to move to the next

step of the wizard. This sample merge takes place with all the changes up to a specific

version.

In step 2 of the wizard, select the source branch version. See Figure 4-13.

Figure 4-12.  Source Control Merge Wizard, step 1

Chapter 4 Team Foundation Version Control Branching

95

After selecting the source version, click the Next button to move to the next step of

the wizard. You will be able to see the final step of the wizard. Click the Finish button to

finish the wizard. See Figure 4-14.

Figure 4-13.  Selecting a source version

Chapter 4 Team Foundation Version Control Branching

96

After clicking the Finish button, you will be able to see that the merge process starts.

If you don’t have any merge conflicts, you will be able to complete the process without

any warnings. If the merge succeeds, the Feature1 branch on the server and the local

development branch should have similar content. If you compare these two branches,

there should not be any differences in the files.

Go to the Source Control Explorer. Select the Feature1 branch. Click the Compare

icon in the source control menu. See Figure 4-15.

Figure 4-14.  Source Control Merge Wizard, final step

Chapter 4 Team Foundation Version Control Branching

97

After clicking the Compare icon, a window will open. You can select the source

branch and target branch to compare. Also, you can select the view option to display the

comparison result. After selecting the branches and view options, click OK to start the

comparison. See Figure 4-16.

Figure 4-15.  Open compare for Feature1 branch

Chapter 4 Team Foundation Version Control Branching

98

If the branch merging succeeded for this merge, you will get the comparison result

with zero differences. This might change according to the situation. See Figure 4-17.

Figure 4-16.  Comparing Feature1 and Develop branches

Figure 4-17.  Merge branch comparison

Chapter 4 Team Foundation Version Control Branching

99

Since there are no issues, you can check in the local Develop branch changes to the

server.

So far, we have discussed the basic merge concepts. Now we will discuss how to solve

merge conflicts.

Let’s consider following scenario. We have the Develop branch. Also, there are

Feature1 and Feature2 branches. Parallelly, two different teams develop Feature1 and

Feature2. At the beginning, both branches have a similar version to the Develop branch.

Then the Feature1 changes are merged with the Develop branch. Now the Feature 2

changes are going to be merged with the Develop branch. But on the server, the Develop

branch has a new version of the About.cshtml file. Also, we have changed that same file

in the Feature2 branch.

So, select the Feature2 branch as the source and the Develop branch as the target.

Merge the changes using the merge wizard. At the end of the merge, you will be

navigated to a conflict page. See Figure 4-18.

Figure 4-18.  Merging the conflicts

Select Merge Changes in the merge tool and select the changes you want to keep.

Finally, click the Accept Merge button to merge the changes. See Figure 4-19.

Chapter 4 Team Foundation Version Control Branching

100

After resolving all the conflicts, the branch merge can be completed. You can

compare the branches. Then you will be able to see all the files with the differences listed

in the comparison area. You can verify that you have merged the branches correctly

by comparing these files. After the merge is completed, you can check in the Develop

branch changes to the server.

This lesson explained how to merge branches. Also, you learned that you have two

options to select the merge. One is to merge all the changes up to the current one; the

other option is to merge only the selected changesets. Further, we discussed how to

resolve merge conflicts.

�Lesson 4-4: Tracking Changesets
Now we are familiar with main source control operations such as creating branches,

converting folders to branches, merging branches, and resolving merge conflicts. After

every merge, it is better if we have a way to track the changes done to each branch. This

lesson explains how we can track the changes done to each branch.

Prerequisites:

•	 Azure DevOps project with TFVC as the source control system

•	 Mapped local workspace of the project on the working machine

Figure 4-19.  Comparing the changes

Chapter 4 Team Foundation Version Control Branching

101

•	 Multiple branches with the same source version

•	 Multiple check-in and branch merges

Go to the Source Control Explorer. Select the project. Then click the History icon on

the Source Control Explorer menu. See Figure 4-20.

The changeset list will open. You can see all the changes made to the project using

this list. If you want to see the changes made to a specific branch only, select the branch

in the Source Control Explorer.

Now we have the changeset list of the entire project. See Figure 4-21.

We can track the changes from this page. Select one changeset and click the Track

Changeset icon in the menu. See Figure 4-21.

Figure 4-20.  Clicking the History icon

Figure 4-21.  Clicking the Track Changeset icon

Chapter 4 Team Foundation Version Control Branching

102

The Tracking Changeset window will open. You will be able to select the branches in

the Branches section. After selecting the branches, click Visualize to track the changes.

See Figure 4-22.

The Tracking Changeset hierarchy view will open. See Figure 4-23.

Figure 4-22.  Tracking the changeset

Figure 4-23.  Tracking Changeset hierarchy

Let’s try to identify the menu items in the Tracking Changeset window. You can see

we have highlighted two areas in Figure 4-23. In the toolbar on the right are these icons

(from right to left): Compare icon, Merge icon, Settings icon to move to the settings

Chapter 4 Team Foundation Version Control Branching

103

window, Source Control icon to move to the Source Control Explorer, Changeset icon to

navigate to the Changeset Details page, and Tracked Changes icon to display only the

branches with the changes in the selected changeset.

In the toolbar on the left of Figure 4-23 (from left to right), we can save the

visualization, copy the visualization, rerun the tracking, go to the visualization hierarchy

view, and do timeline tracking.

Timeline tracking is an interesting feature where we can track the changes by

changed dates. See Figure 4-24. If you hover the mouse over the feature changeset

number, you can see all the relevant details of the changeset.

We can use these features to identify our application development process behavior.

In this lesson, you learned how to do changeset tracking. Further, we discussed how

to use the hierarchical view of the changeset time tracking to clearly display the behavior

of our application development progress.

�Lesson 4-5: Cherry-Picking Changesets
We discussed how to create branches and how to merge them in the previous lesson.

We know how to merge all the changesets in a branch with another branch. Also, we saw

that there is an option in the Source Control Merge Wizard where we can select only one

changeset or multiple changesets to merge. This option is called cherry-picking. You will

learn more about cherry-picking in this lesson.

Prerequisites:

•	 Azure DevOps project with TFVC as the source control system

•	 Mapped local workspace of the project on the working machine

Figure 4-24.  Timeline tracking

Chapter 4 Team Foundation Version Control Branching

104

•	 Multiple branches

•	 Multiple check-ins and branch merges

Go to the Source Control Explorer. Select a branch with changesets. We selected the

Feature1 branch. Then click Merge to start the merge wizard.

Select “Selected changesets” in the Source Control Merge Wizard. See Figure 4-25.

Click the Next button to move to the next step of the wizard. You will be able to see

the changesets here. You can select the changesets you need to merge from the list and

click Next to move to the next step of the wizard. See Figure 4-26.

Figure 4-25.  Selecting a changeset option

Chapter 4 Team Foundation Version Control Branching

105

After clicking the Next button, you will navigate to the final step of the wizard.

Click Finish to end the wizard. This merges the Feature1 changes with the Develop

branch.

Now go to the Source Control Explorer and check in the changes to the server. You

will be able to see the merged changes in the Develop branch.

Figure 4-26.  Selecting a changeset

Chapter 4 Team Foundation Version Control Branching

106

�Lesson 4-6: Exploring TFVC Branching Strategies
Selecting a suitable branching strategy for a team is an important part of the automation

process. Branching strategies can vary depending on the needs of a team, and teams

are free to create their own branching strategies according to their requirements. Let’s

identify some commonly used TFVC branching strategies in this lesson.

�Main Only
This is a basic branching strategy with one branch. If we are using this branching

strategy, we need a way to identify development changesets and the changesets go to

production in a given release. A main-only branching strategy is controlled using labels

to identify releases or any other important milestones. Once a release is made, the

branch is labeled on the changeset that the release is taken. See Figure 4-27. However,

this strategy may create clutter in the source control system as changesets from multiple

features may get added randomly to the main branch, which makes it really difficult to

isolate a feature change if a need arises.

�Development Isolation
The main purpose of this branching strategy is always maintaining a stable main

branch. So, create dev branches from the main branch and do the development in the

dev branch. When merging the dev branch with the main branch, first merge the main

branch to the dev branch with forward integration (FI) to make sure any changes in the

main branch are applied to dev and resolve conflicts if any. Then integrate changes from

the dev branch to the main branch using reverse integration (RI). See Figure 4-28.

Figure 4-27.  Main only

Figure 4-28.  Development isolation

Chapter 4 Team Foundation Version Control Branching

107

�Feature Isolation
The concept of this branching strategy is to create separate branches from the main

branch or from the dev branch for each feature. Frequently merge the parent branch

to the feature branch. But the feature branch merge to the stable parent branch time

is decided by the team upon completion of the feature. Some teams decide to merge

the feature branch to the dev or main branch when the definition of done is met. This

gives feature isolation in the stable branches, which might be useful in managing the

codebase. See Figure 4-29.

�Release Isolation
Create release branches from main. Always merge the changes from the release branch

to main when a hot fix is made. But never merge the main branch changes back to the

release branch because it is maintained as the production-deployed code. You can use

different permission restrictions to prevent unwanted branch merges, which we will

discuss in Chapter 6. See Figure 4-30.

Figure 4-29.  Feature isolation

Figure 4-30.  Release isolation

Chapter 4 Team Foundation Version Control Branching

108

�Servicing and Release Isolation
The servicing branch model is useful when you need to release service packs to

your customers until the next major release is made. There should never be forward

integrations happening from main to service or from service to release branches in this

strategy. For subsequent releases, you can create new servicing branches and release

branches. See Figure 4-31.

You can further introduce hotfix branches to the service and release isolation

strategy, but it is not a recommended approach.

In this lesson, we discussed a few common branching patterns used with TFVC. You

may use these patterns in combination to achieve a branching strategy suited to your

project’s needs.

�Summary
In this chapter, we explored the branching and merging abilities of TFVC. We discussed

how to resolve merge conflicts and the available options for branching and merging.

Further, we explored the commonly used branching patterns to understand the possible

strategies for implementing a branching structure for a given project’s needs.

In the next chapter, we will discuss the command-line options available

for TFVC. These command-line options will be especially useful in performing

administrative tasks with TFVC.

Figure 4-31.  Service and release isolation

Chapter 4 Team Foundation Version Control Branching

109
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_5

CHAPTER 5

Team Foundation Version
Control: Command Line
The command line in Team Foundation Version Control (TFVC) allows you to perform

almost any action that you can do with Visual Studio; in fact, there are additional

actions that can be performed in TFVC using only the command line. In this chapter,

let’s explore the command-line capabilities of TFVC so you can perform additional

administrative and general actions, including and beyond the actions you can perform

with Visual Studio. The purpose of this chapter is to get you started with TFVC

commands so that you are familiar with how to use them. Once you know how to use

the commands described in this chapter, you will be able to use many other TFVC

commands in the same way.

�Lesson 5-1: Getting Started with the Team
Foundation Command Line
The Team Foundation Version Control command line comes as tf.exe. This command-

line tool enables you to perform several command-line actions in TFVC. Let’s look at

how we can enable the usage of the tf command line on a computer.

�Developer Command Prompt for Visual Studio
If you have Visual Studio installed on your computer, you have the developer command

prompt for Visual Studio. When you open the developer command prompt, you can type

tf vc help to list the TFVC commands available. See Figure 5-1.

110

To get detailed help for the commands, you can type tf msdn commandname.

For example, if you type tf msdn add, a browser window will open with Microsoft

documentation for the add command. See Figure 5-2.

Figure 5-1.  Developer command prompt

Chapter 5 Team Foundation Version Control: Command Line

111

�Team Explorer Everywhere Command-Line Client
The tf command-line client can be downloaded from https://github.com/Microsoft/

team-explorer-everywhere/releases. You should download the TEE-CLC ZIP file

and extract it to use the tf command line. As a prerequisite, you need to have the Java

runtime installed and JAVA_HOME set in your environment path variables for Windows

systems. See Figure 5-3.

Figure 5-2.  Running the tf msdn add command

Chapter 5 Team Foundation Version Control: Command Line

https://github.com/Microsoft/team-explorer-everywhere/releases
https://github.com/Microsoft/team-explorer-everywhere/releases

112

Then you can open a command prompt, navigate to the folder where you have

extracted the tf command-line client, and execute the tf eula command to accept the

end-user license agreement (EULA). You have to press the Enter key a couple of times

to get to the end of the agreement, where you will be prompted to accept the license

agreement. See Figure 5-4.

Figure 5-3.  Setting JAVA_HOME

Figure 5-4.  EULA for TF CLC

Chapter 5 Team Foundation Version Control: Command Line

113

Note that there are slight differences when using the developer command prompt
for Visual Studio versus when using the command-line client. For example, tf vc
help and tf msdn commandname are not valid commands in the command-line
client. However, most of the Team Foundation Version Control commands work with
both options.

In this lesson, we discussed how to get started with the command line for Team

Foundation Version Control.

�Lesson 5-2: Using Workspace Commands
There are two commands related to TFVC workspaces. In this lesson, we’ll look at them

to understand the usage.

�workspaces Command
The workspaces command allows you to view information about the workspaces on

the system. For example, you can execute the workspaces command with the following

syntax to obtain any workspace on any computer you have for your username (see

Figure 5-5):

tf workspaces /collection:https://dev.azure.com/chamindac /computer:*

Collection: https://dev.azure.com/chamindac

Figure 5-5.  Getting all the workspaces for the current user

Chapter 5 Team Foundation Version Control: Command Line

https://dev.azure.com/chamindac
https://dev.azure.com/chamindac

114

You can pass /owner:* in addition to the previous command to get all the workspaces

of all the users, or you can specify a username to retrieve workspace information for a

given user on all computers for the team project collection (Azure DevOps organization).

The /remove: workspace names command allows you to remove one or more workspaces.

If you’re listing more than one workspace, then separate the names with a comma. There

are a few other arguments and options you can pass to the workspaces command to

perform different actions. Type tf msdn workspaces at the developer command prompt

to see the full list of arguments and options in the Microsoft documentation.

�workspace Command
Using the workspace command, you can view, modify, create, or delete a workspace.

Let’s try a few commands.

Create a folder named beta1 and open the developer command prompt for Visual

Studio. Change the directory to the beta1 folder. Then execute tf workspace /

new beta1 /collection:azuredevopsaccounturl. This will open a dialog asking for

confirmation to map the beta1 folder to the new workspace. Click OK to create the

workspace. See Figure 5-6. You may be prompted to get the latest version of code, but

you can skip that by clicking No.

Figure 5-6.  Creating a new workspace

Chapter 5 Team Foundation Version Control: Command Line

115

The workspace is created for the current user. Now, if you run the command tf

workspaces, you will see the new workspace called beta1. See Figure 5-7.

Create another folder named beta2 and execute tf workspace /new

beta2;usernameofanotheruser /collection:azuredevopsaccounturl to create a

workspace for a given user. Then click OK at the prompt. See Figure 5-8.

Figure 5-7.  New workspace beta1

Figure 5-8.  New workspace for another user

Chapter 5 Team Foundation Version Control: Command Line

116

Execute the tf workspaces command to see the two new workspaces available on

the machine with two owners. See Figure 5-9.

From the mapped local folder, you can just execute tf workspace to open the

workspace property editor. In the pop-up window, you can click the Advanced button to

view and edit the workspace properties. See Figure 5-10.

You can delete a workspace using tf workspace /delete workspacename;

ownername, as shown in Figure 5-11.

Figure 5-9.  Workspaces

Figure 5-10.  Editing a workspace

Chapter 5 Team Foundation Version Control: Command Line

117

You can execute tf msdn workspace at the developer command prompt for Visual

Studio to open the documentation for the command.

In this lesson, we looked at a few actions we can perform with the workspace and

workspaces commands. You will find these commands useful for doing administrative

tasks in TFVC.

�Lesson 5-3: Running Various Commands
You learned how to add files, check in files, check out files, rename files, etc., using Visual

Studio with TFVC. You can perform these actions using the command line as well. Let’s

try them in this lesson using the workspace we created in the previous lesson.

Prerequisites: You followed the previous lesson and created a workspace.

Open the beta1 workspace folder created in the previous lesson or create a new

workspace that is mapped to the Azure DevOps organization. Then create a new

team project named LearnTFVC with Team Foundation Version Control. Creating a

team project was explained in the Hands-On Azure Boards book of this book series.

See Figure 5-12.

Figure 5-11.  Deleting a workspace

Chapter 5 Team Foundation Version Control: Command Line

118

�get
Open the developer command prompt for Visual Studio and change the directory to the

workspace folder of the Azure DevOps organization. We can use the get command to

get the latest version of $/LearnTFVC. Execute tf get $/LearnTFVC from the workspace

folder. See Figure 5-13.

Figure 5-12.  Creating a team project

Chapter 5 Team Foundation Version Control: Command Line

119

You can use the -version parameter to specify a version to get. To access the

documentation to learn more about the tf get command, execute tf msdn get from

the Visual Studio command prompt. Since we have gotten the latest version for the path

$/LearnTFVC, you will find that a LearnTFVC folder is created within your workspace

folder. See Figure 5-14.

Figure 5-13.  Getting the latest version

Figure 5-14.  LearnTFVC folder in workspace

Chapter 5 Team Foundation Version Control: Command Line

120

�add
Create a folder named main inside the LearnTFVC folder. Then, using Visual Studio or

Visual Studio Code, create a simple Console Application project in the main folder. Now

from the LearnTFVC folder, you can execute tf add *.* /recursive to add all the files

in the project to source control to make the files pending changes. The bin and obj

folders will be ignored by default. See Figure 5-15.

You can use tf msdn add to open the documentation at the developer command

prompt for Visual Studio to learn more.

�checkin
From the LearnTFVC folder, execute tf checkin /comment:"Add New Console App"

/recursive to check in all the files added. You will get a pop-up window that lets you

associate work items, select files, deselect files to check in, and so on. Click the Check In

button. See Figure 5-16.

Figure 5-15.  Running the tf add command

Chapter 5 Team Foundation Version Control: Command Line

121

Once you click the Check In button, the files will be checked in. To learn more about

the checkin command, execute tf msdn checkin at the developer command prompt of

Visual Studio.

�checkout (or edit)
To check out a file, you can execute tf checkout filename or tf edit filename.

Then you can make changes to the file and check in the file. It is possible to recursively

check out files in the folder of a given path or check out all the files recursively from the

workspace using /recursive. For more information about the checkout command,

execute tf msdn checkout or tf msdn edit from the developer command prompt for

Visual Studio.

Figure 5-16.  Running the tf checkin command

Chapter 5 Team Foundation Version Control: Command Line

122

�rename
To rename files, you can use tf rename oldite newitem. For example, tf rename

classx.cs classy.cs will rename classx.cs to classy.cs. You can use /lock to

lock a file exclusively to prevent other users from checking it in or out. To open the

documentation for more information about rename command, execute tf msdn rename at

the developer command prompt for Visual Studio.

�undo
The undo command is a really useful command allowing users to discard pending

changes. You can use tf undo filename to undo a pending change in a given file. The

/workspace:workspacename command can be used with tf undo to discard changes in a

remote workspace. If the workspace not specified, the workspace of the current folder is

considered for the command. /workspace:workspacename;workspaceowner can be used

with tf undo to discard changes of other users’ workspaces. However, when you undo

changes in a remote workspace, before working in that remote workspace, a get all

command should be performed in the remote workspace. tf undo will discard any locks

applied on files in that workspace.

In this lesson, we explored the command-line options to add files to TFVC, check

files in and out, and rename files. tf undo is a really useful tool we learned about in

this lesson; it can undo changes in missing workspaces (due to the unavailability of the

remote machine) or workspaces owned by users who are no longer available, discarding

the pending changes and removing the locks on files in remote workspaces and

workspaces owned by other users.

�Summary
In this chapter, we explored several commands available in TFVC. Now you have a

good understanding of how to use TFVC commands. There are many other commands

available in TFVC such as tf lock, tf branch, tf merge, etc. You can execute

tf vc help to get a list of the tfvc commands available. Then you can execute the

tf msdn command at the developer command prompt for Visual Studio to open the

documentation for a given command.

In the next chapter, we will explore the security and permissions management

features of Team Foundation Version Control.

Chapter 5 Team Foundation Version Control: Command Line

123
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_6

CHAPTER 6

Team Foundation Version
Control: Security
Security is a crucial part of any source control server. The Team Foundation Version

Control (TFVC) server offers various security methods to improve the safety of the team’s

source code content. In this chapter, let’s look at how to control the access of TFVC and

maintain a secure codebase.

�Lesson 6-1: Setting Up TFVC Security at the Team
Project Level
We can control access to the project source code in several ways. One mechanism is to

control access is from the team project level. This lesson will give you an idea about the

available security options in an Azure DevOps team project for TFVC.

Prerequisites:

•	 Azure DevOps project with TFVC as the source control system

•	 The ability to log in to Azure DevOps as the administrator

Go to the project settings of the Azure DevOps project. Select Repositories in the

Repo section. You will see the repository security control options available in Azure

DevOps. See Figure 6-1.

124

Also, you can move to the security control page through the repository page. Go

to the Azure DevOps repository. Select the Files section. At the top of the repository,

you will see a drop-down icon in front of the repository name. Click the drop-down

and select “Manage repositories” to move to the security controls of the repository. See

Figure 6-2.

Figure 6-1.  Moving to the repository’s security controls

Chapter 6 Team Foundation Version Control: Security

125

Now we are on the repository security control page. You can see the Azure DevOps

groups listed on the permission control page. Each group has been set up with different

permissions for the repo. In addition to these default security groups, you can add

individual users or groups and control the access to the repository. See Figure 6-3.

Figure 6-2.  Selecting the “Manage security” drop-down item to move to the
security controls

Chapter 6 Team Foundation Version Control: Security

126

Azure DevOps allows you to control the repository access using the following options:

•	 Administer Labels

The user with this permission can edit or delete the labels added

by other users.

•	 Check in

The user with this permission can check in the changes. Also, the

user with this permission can revise any committed changes.

•	 Check in other users’ changes

When multiple users work in the same workspace, the users with

this permission can check in the changes made by other users.

Figure 6-3.  Azure DevOps groups and individual users

Chapter 6 Team Foundation Version Control: Security

127

•	 Label

A user with this permission can label the changesets.

•	 Lock

Users with this permission can lock the folders and files,

preventing other users from checking out the file or the folder.

•	 Manage branch

Users with this permission can convert folders to branches, edit

properties, reparent branches, and convert branches back to

folders.

•	 Manage permissions

Users with this permission can control other users’ permissions

for folders and files.

•	 Merge

Users with this permission can merge changes into the given

path/branch.

•	 Pend and change in a server workspace

Users with this permission can add a pending changeset to the

server workspace by doing actions such as checking out, adding/

editing files, etc.

•	 Read

Users with this permission can read the content of files and

folders.

•	 Revise other users’ change

Users with this permission can change the comments of checked-

in files not only made by themselves but also by others.

•	 Undo other users’ change

Users with this permission can undo the changes made by

another user.

Chapter 6 Team Foundation Version Control: Security

128

•	 Unlock the other users’ changes

Users with this permission can unlock files and folders locked by

another user.

In front of each of these permissions, you will see the value as Not Set, Allow, or

Deny. Project administrators can change these permissions by clicking these values.

So far, we have discussed all the crucial parts of the security controls. Further, you

will see an Options link next to the Security link. Click the Options link. You will see a

toggle that allows you to enable or disable web editing of the repository. See Figure 6-4.

Let’s see how this option works by disabling web editing. After disabling web editing,

go to the repository and select a file. Click the Edit button. You will see a message that

explains that web editing has been disabled. See Figure 6-5.

Figure 6-4.  Enabling or disabling web editing

Chapter 6 Team Foundation Version Control: Security

129

This lesson explained the Azure DevOps security permissions of the repositories.

We were able to learn about different TFVC repository permissions available in Azure

DevOps.

�Lesson 6-2: Applying Permissions at the
Branch/Folder or File Level
We discussed how to do access control for an Azure DevOps TFVC repository in the

previous lesson. Now you have the idea about the access control options available in

Azure DevOps. Let’s discuss further the repository access control within this lesson. We

will discuss how to control the permission of a branch, folder, or file.

Prerequisites:

•	 Azure DevOps project with TFVC as the source control system

Open Visual Studio and connect to the Azure DevOps project using Team Explorer.

Move to the Source Control Explorer of the project. Here you can see the branches,

folders, and files of the selected project.

Let’s discuss how we can control the access of a branch of the project.

Right-click a branch and select the Advanced option from the pane. Then you will

see another pane with a few options. Select Security from the pane. See Figure 6-6.

Figure 6-5.  Web editing disable message

Chapter 6 Team Foundation Version Control: Security

130

You might be asked to enter the Azure DevOps credentials before navigating to

the Azure DevOps security section where you can control the access permission to

the specific branch. In this example, we can control the access permission of the

Develop branch. These changes will not affect the other branch permissions. See

Figure 6-7.

Figure 6-6.  Selecting the Security option of the branch

Chapter 6 Team Foundation Version Control: Security

131

You have seen how to control the permission of the branch. Let’s see how to control

the permission of a folder.

Go to the Source Control Explorer. Select a folder and right-click it. A pane will open.

Select the Advanced option and then Security. See Figure 6-8.

Figure 6-7.  Permission of the branch

Chapter 6 Team Foundation Version Control: Security

132

After selecting Security, you will navigate to the folder security page where you can

control the security of the selected folder. See Figure 6-9.

Figure 6-8.  Security option for a folder

Chapter 6 Team Foundation Version Control: Security

133

Let’s see how we can control the security of the file. Go to the Source Control

Explorer and select the file for which you want to change the permission. Right-click

the file, select the Advanced option, and then select Security, as explained earlier. You

will be navigated to the Azure DevOps security control page where you can control the

permission of the selected file only. See Figure 6-10.

Figure 6-9.  Security control of the folder

Chapter 6 Team Foundation Version Control: Security

134

This lesson explained security control at the branch level, folder level, and file level.

You can set different access permissions for each file in the repository. By using these

options, you can maintain a stable codebase securely in a TFVC repository.

�Lesson 6-3: Auditing Changes and Finding Out Who
Did What
While working as a team with a common codebase, sometimes we need to track who has

made changes in each part of the code. So, let’s discuss how we can track the changes

easily with Visual Studio.

Prerequisites:

•	 Azure DevOps project with Team Foundation Version Control as the

source control system

Figure 6-10.  Security control of the file

Chapter 6 Team Foundation Version Control: Security

135

Go to Visual Studio’s Source Control Explorer. Select the file with the change. Right-

click the file and select the Compare option in the menu. See Figure 6-11.

The Compare window will open. You can select the source file and target file from

this window. Also, you can select the file source version to compare and the workspace.

In this example, we are comparing the workspace version of the file with the source

version. You can see the comparison between the two versions of the file in Figure 6-12.

Figure 6-11.  Selecting Compare

Figure 6-12.  File version comparison

Chapter 6 Team Foundation Version Control: Security

136

With this comparison option, we can compare the changes made in each file.

Visual Studio Team Explorer has another option where we can track the person who

made each change in a file.

Go to the Source Control Explorer. Select the file and right-click it. A pane will open.

Select Annotate from the pane. See Figure 6-13.

After selecting Annotate from the pane, you will navigate to the page where you can

see the changes made by each user. See Figure 6-14.

This lesson explained how we can track the changes made by each user in the source

files. This is a helpful feature while working in a team.

Figure 6-14.  Annotating a file with usernames

Figure 6-13.  Selecting Annotate

Chapter 6 Team Foundation Version Control: Security

137

�Summary
In this chapter, we discussed the available security control options of a TFVC repository

in the Azure DevOps. Also, we discussed the ability to have different permissions for

each file and folder in the source code. Finally, we discussed the ability to track the

changes in the source code and identify who made each change in the source code by

using annotations.

In the next chapter, we will get started with Azure Git Repos, which is the distributed

version control system supported by Azure DevOps.

Chapter 6 Team Foundation Version Control: Security

139
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_7

CHAPTER 7

Getting Started with
Azure Git Repos
Git is a popular version control system with many developers. The ability of Git to be

used on any platform and with almost any development tool makes it a great version

control system. Azure DevOps Services comes with Azure Git Repos, which you can use

with a development tool of your preference. Azure Git Repos also provides you with

tight integration to Azure Boards and Azure Pipelines. You can leverage Azure Boards

capabilities and track requirements alongside its implementation as well as automate

builds and deployment easily with your code in Azure Git Repos.

In this chapter, let’s explore how to get started with Azure Git Repos and use it to

develop your code with Visual Studio and Visual Studio Code. It is expected that you are

already familiar with general Git concepts, because this chapter introduces how to work

with Azure Git Repos.

�Lesson 7-1: Creating an Azure Git Repo
As discussed in the Hands-on Azure Boards book of this series, you can create a team

project with Azure Git Repos or with Team Foundation Version Control (TFVC).

Regardless of the way the team project is created, you can add one more Azure Git

repositories to your team project in Azure DevOps. In this lesson, let’s focus on creating

a team project with Azure Git Repos and adding Azure Git repositories to a team project

that is created with TFVC.

140

�Creating a Team Project with Azure Git Repos
In Azure DevOps Services, you can create a team project and select the default version

control type you want to set up for the team project. Creating a team project is explained

in detail in the Hands-on Azure Boards book of this series. Select Git as the version

control system and create a team project named LearnGit. See Figure 7-1.

After the project is created, go to Repos in the left menu. An empty Git repo is

created. See Figure 7-2.

Figure 7-1.  Creating a team project with Git

Chapter 7 Getting Started with Azure Git Repos

141

Let’s get an overview of the functionality shown in Figure 7-2. We will be discussing

some of these options in detail throughout the next few chapters.

	 1.	 You can click the Files submenu item to view the files of the repo.

	 2.	 Commits of the repo are listed on this page.

	 3.	 This page lets you view the code pushes.

	 4.	 Branches can be managed on this page.

	 5.	 You can manage pull requests from this page.

	 6.	 You can copy the clone URL to clone the repo using a

development tool or the Git command line.

Figure 7-2.  Empty Git repo

Chapter 7 Getting Started with Azure Git Repos

142

	 7.	 “Generate Git credentials” lets you define credentials to access the

Git repo. Or you can click the link to create a personal access token

(PAT) scoped to the code. See Figure 7-3. PAT creation is explained

in detail in the Hands-on Azure Boards book of this series.

	 8.	 This button and drop-down lets you select your preferred

development tool and clone the repository in that tool.

	 9.	 You can use these commands to push a local repository using the

command line.

	 10.	 You can import a remote Git repository or a TFVC repository in

the current Azure DevOps organization using this option.

	 11.	 You can initialize your repository with a .gitignore file.

�Creating Additional Git Repos in a Team Project
You can create multiple Git repos in one team project unlike one TFVC repo per project.

To create additional Git repos, you can use the small drop-down option near the name of

the Git or TFVC repo in the breadcrumb. Then click “New repository.” See Figure 7-4.

Figure 7-3.  Git credentials

Chapter 7 Getting Started with Azure Git Repos

143

Then you can provide a name for the new Git repo, select Git as type of the repo,

and create the new repo by clicking the Create button. You are allowed to create a

.gitignore file while creating the repo to initialize it. See Figure 7-5.

Figure 7-4.  New repository

Figure 7-5.  Creating a Git repo

Chapter 7 Getting Started with Azure Git Repos

144

In this lesson, you learned how to create an Azure Git repo and how to create a new

team project with a Git repo. Additionally, we looked at the options available on the

empty repo page of a new Git repo.

�Lesson 7-2: Cloning an Azure Git Repo
We are going to use Azure Git Repos with Visual Studio and Visual Studio Code in this

book using a Windows environment. However, you can use Azure Git Repos with other

development tools and on Linux and macOS environments.

Prerequisites: To use Git, you need to install Git for your operating system; you can

download it from https://git-scm.com/downloads. You have created an Azure Git repo

following the steps in the previous lesson.

�VS Code
To clone the Azure Git repo, copy the clone URL from the empty Azure Git repo

page, which was explained in the previous lesson. Open Visual Studio Code (you can

download and install Visual Studio Code from https://code.visualstudio.com/).

In the menu of VS Code, click View ➤ Command Palette or press Ctrl+Shift+P. In the

command palette, type Git:Clone. See Figure 7-6.

Figure 7-6.  Running the Git:Clone command

Then paste the cloned URL into the command palette and press Enter. See Figure 7-7.

Figure 7-7.  Pasting the Git repo clone URL in VS Code

Chapter 7 Getting Started with Azure Git Repos

https://git-scm.com/downloads
https://code.visualstudio.com/

145

A pop-up dialog will appear asking for the clone’s local folder path. Navigate to and

select a folder to clone the repo and click the Select Repository Location button in the

pop-up window. After cloning the repo, VS code will prompt you to open the repository.

See Figure 7-8.

If you do not open the repository with the previous option, you can go to the menu of

VS Code, select File ➤ Open Folder, and select and open the repository folder from the

pop-up window that appears.

�Visual Studio
In Visual Studio, to clone and use an Azure Git repo, you have to connect to the

team project. In the Team Explorer window of Visual Studio, click the Manage

Connections toolbar icon and then click Manage Connections and Connect to a

Project. See Figure 7-9.

Figure 7-8.  Opening the repository

Chapter 7 Getting Started with Azure Git Repos

146

A dialog window will appear, and you can select or add a Microsoft account or

organization account that has access to the Azure DevOps organization. Then you can

expand the Azure DevOps organization and see the team projects. Expand the LearnGit

team project and select the Git repo. Provide a local path to clone the repository and

click the Clone button. See Figure 7-10.

Figure 7-9.  Connecting to a team project

Chapter 7 Getting Started with Azure Git Repos

147

After you click the Clone button, you will see that the repository is successfully

cloned in Visual Studio Team Explorer. See Figure 7-11.

Figure 7-10.  Cloning the repository

Chapter 7 Getting Started with Azure Git Repos

148

In this lesson, we discussed how to clone an Azure Git repository using Visual Studio

Code or Visual Studio.

�Lesson 7-3: Creating and Pushing Code to
Azure Git Repos
Now that you have opened a repository folder in VS Code per the instructions in the

previous lesson, you can start adding code files to it. Then you can take a look at how to

add code using Visual Studio to Azure Git Repos in this lesson.

Figure 7-11.  Azure Git repo cloned in VS

Chapter 7 Getting Started with Azure Git Repos

149

Prerequisites: You followed the previous lesson and have cloned an Azure Git repo

using VS Code and VS.

Add a sample code file in the opened repository folder in Visual Studio Code. Once

you add code, you will see the pending changes appear in VS Code. See Figure 7-12.

Then you can provide a comment and use the Source Control menu in VS Code to

stage, commit, and push changes. A commit will commit the changes in the local Git

repo, and the changes will be pushed to the remote Azure Git repository once pushed.

See Figure 7-13.

Figure 7-12.  Sample code

Chapter 7 Getting Started with Azure Git Repos

150

If you view the repo in the Azure DevOps web portal, you will now see the sample

code file in the master branch of the Azure Git repository. See Figure 7-14.

Figure 7-13.  Source Control menu options for Git

Chapter 7 Getting Started with Azure Git Repos

151

To get the changes in the master branch to Visual Studio in Team Explorer, click

Branches. See Figure 7-15.

Figure 7-14.  Code in the master branch

Figure 7-15.  Sync menu item

Chapter 7 Getting Started with Azure Git Repos

152

Then expand the remote branches, right-click the master branch, and click Checkout

in the context menu. See Figure 7-16.

If you open the Solution Explorer in the folder view, you will able to see that the file

that was pushed from VS Code is available in your local repo and checked out to the

master branch. See Figure 7-17.

Figure 7-16.  Checkout menu item

Chapter 7 Getting Started with Azure Git Repos

153

Now let’s try to add project from VS to the repo. You can click New in the Team

Explorer under Solutions to add a new solution. See Figure 7-18.

Figure 7-17.  Changes appearing in VS

Figure 7-18.  New solution

Chapter 7 Getting Started with Azure Git Repos

154

Then add an ASP.NET Core project. (Make sure you have the required .NET Core

SDK available on your machine. Download the .NET Core SDKs from https://dotnet.

microsoft.com/download.) The new solution path will be automatically set to the repo

folder when you use the New solution button, as shown in Figure 7-18, to start creating

the new solution. Once the solution is added, build the solution. Then in Team Explorer,

click Changes. On the Changes page of Team Explorer, you can right-click the local items

that should not be committed and ignore them, which will add a .gitignore file. Click +

on the Changes page to stage the changes. See Figure 7-19.

Figure 7-19.  Ignoring the local items

Chapter 7 Getting Started with Azure Git Repos

https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

155

You can provide a comment and then commit the staged changes. You can associate

work items as we have done with TFVC when doing a commit in Azure Git Repos. There

is an option to stash them, which can be used for the same purpose that we used a

shelveset in TFVC, which we will discuss later in this chapter. See Figure 7-20.

Then you can sync to share the changes, which will pull and push the changes. Click

Sync in Team Explorer and on the Synchronization page of the Team Explorer sync.

This will pull the master branch and then push your commit so that it is available in the

remote repo. See Figure 7-21.

Figure 7-20.  Commit staged

Chapter 7 Getting Started with Azure Git Repos

156

In this lesson, we discussed how to create code and push the changes to Azure Git

Repos using Visual Studio and Visual Studio Code.

�Lesson 7-4: Getting Changes from Others
and Sharing Code
Now that we have an ASP.NET Core project in the Azure Git repository, we can try

working with it using Visual Studio and Visual Studio Code. Let’s look at how to get code

changes and understand the difference between fetch and pull. Then we’ll explore how

to commit changes and share them by syncing.

Prerequisites: You followed the previous lesson.

Open VS Code and open the previously cloned repository folder in VS Code. In VS

Code you can pull the changes using the Source Control menu options. See Figure 7-22.

Figure 7-21.  Changes available in the Azure Git repo

Chapter 7 Getting Started with Azure Git Repos

157

You can see that the changes you made in Visual Studio and pushed to the Azure Git

repository are now pulled to the VS Code local repository. See Figure 7-23.

Now make a small change in the code; for example, you can change the message at

startup. See Figure 7-24.

Figure 7-22.  Pulling in changes in VS Code

Figure 7-23.  Code pulled to VS Code

Chapter 7 Getting Started with Azure Git Repos

158

Then commit and push this change from VS Code to Azure Git Repos. Open Visual

Studio, and in Team Explorer click Sync. On the synchronization page, click Fetch. You

will see that the incoming changes are listed once fetched. The changes have not yet

been merged to your local repo. Fetch in VS allows you to inspect the changes before

getting them pulled to your local repo from the Azure Git repository. See Figure 7-25.

Figure 7-24.  Changing the code

Figure 7-25.  Fetched changes in VS

Chapter 7 Getting Started with Azure Git Repos

159

Double-click the incoming changes to view the details. You can see the commit

details, and you will view the history, compare changes, and annotate changes. You can

also create a Git tag for the commit or revert the changes. See Figure 7-26.

To get the changes to your local repo, do a pull on the Visual Studio Team Explorer

synchronization page. Make another change in Visual Studio and commit the

change. Click Sync in Team Explorer, and you will see the outgoing changes on the

Synchronization page of Team Explorer. See Figure 7-27.

Figure 7-26.  Inspecting the incoming changes

Chapter 7 Getting Started with Azure Git Repos

160

You can click Sync to pull and push changes or click Push to push the changes to

Azure Git Repos.

In Visual Studio Code, by default automatic fetching happens before a pull. However,

if you want to do a fetch in VS Code, you can open the command palette and type

Git:Fetch. Make sure not to pull changes to VS Code.

In this lesson, we discussed fetching, pulling, and syncing changes with Visual Studio

and Visual Studio Code in Azure Git Repos.

Figure 7-27.  Outgoing changes

Chapter 7 Getting Started with Azure Git Repos

161

�Lesson 7-5: Resolving Conflicts
When multiple team members work on a project, they may push changes to the same

branch (we will discuss branch and merge conflicts in Chapter 8 of this book) and the

same code file. Let’s look at the conflict resolve options when using Azure Git Repos with

VS Code and in Visual Studio.

Prerequisites: You followed the previous lesson.

Open VS Code, and in the web app make a code change in the same line that you

made the change with Visual Studio in the previous lesson. For example, change the

greeting message again, without doing a pull for the remote changes so that the change

you made with VS in the previous lessen is not available in your local repo. Commit your

change in VS Code, but do not push it. Instead, open the command palette after the

commit and type Git:Pull, or click Pull in the Source Control menu in VS Code. You will

see a message showing there are conflicts and can resolve them before committing. See

Figure 7-28.

You will see the incoming and current change conflicts in the file. See Figure 7-29.

Figure 7-28.  Conflicts message

Chapter 7 Getting Started with Azure Git Repos

162

You have the option to compare changes, which will open a side-by-side

compare view. Accepting the incoming or current change or accepting both is

possible for a conflict. Or you can manually resolve the conflict. Resolve the conflict

to keep the change done in VS Code and commit the change and sync with the

remote Azure Git repository.

Open Visual Studio, and without doing a pull, make a change to the same code line.

Then commit the change in Visual Studio to the local repo. Now when you do a fetch

in Visual Studio, you can see that the incoming and outgoing changes are there. See

Figure 7-30.

Figure 7-29.  Code conflicts

Chapter 7 Getting Started with Azure Git Repos

163

Now click Pull, and you will see that there is a conflict as you have changes in the

same line of code. Click Conflicts to see the conflict details. See Figure 7-31.

Figure 7-30.  Incoming and outgoing changes

Chapter 7 Getting Started with Azure Git Repos

164

When you click Conflict, you will see the conflict files. When you click a conflicted

file, you will compare the changes. You can keep the local changes or take the remote

version. Click Merge to view in Compare mode and then merge. See Figure 7-32.

Figure 7-31.  Conflict shown in VS

Chapter 7 Getting Started with Azure Git Repos

165

In the merge compare view, you can opt to select the remote or local change or both

or manually edit and then accept the merge. See Figure 7-33.

Figure 7-32.  Conflict file

Figure 7-33.  Resolving a conflict

Chapter 7 Getting Started with Azure Git Repos

166

Click Accept Merge after resolving conflicts with the preferred change and commit

the merge when all the conflicts are resolved. See Figure 7-34.

You have to provide a comment to the merge commit and commit the changes

to the local repository. Now you can sync to push the changes to the remote repo. If

someone else added more changes, you may have to go through the resolve conflict

procedure again.

In this lesson, we discussed how to resolve conflicts with Azure Git Repos using

Visual Studio and Visual Studio Code.

�Lesson 7-6: Stashing the Changes
Stashing helps you to save uncompleted work so that you can reapply it to your local

repo when needed. Stash works the same way a shelveset in TFVC works. Let’s look at

how to use a stash in this lesson.

Prerequisites: You have completed all the lessons in this chapter and have the code

available in the Azure Git repository and opened a local repo in VS Code and in Visual

Studio.

In Visual Studio, open the solution from the local repo and make a code change.

Then click the changes in Team Explorer; you will see the stash options on the commit

changes page. See Figure 7-35.

Figure 7-34.  Committing the merge

Chapter 7 Getting Started with Azure Git Repos

167

Click Stash all if you want to do is create the stash and remove all the changes from

the current branch. If you want to create the stash and still keep the changes, you can

click Stash All and keep them staged. Once a stash is created, you can apply it to the

branch again or pop it and apply. Pop will remove the stash, but Apply will keep the

stash intact. See Figure 7-36.

Figure 7-35.  Stash options

Chapter 7 Getting Started with Azure Git Repos

168

In VS Code, as well, you can create a stash. When you make a change to the code,

you can create a stash by typing Git:Stash in command palette or by using the Source

Control menu stash. You will be prompted to provide a message for the stash and press

Enter to create the stash. See Figure 7-37.

Figure 7-36.  Pop and Apply options for a stash

Figure 7-37.  Stash in VS Code

Chapter 7 Getting Started with Azure Git Repos

169

You can apply or pop a stash in VS Code by clicking the relevant menu item in the

Source Control menu or typing Git: Apply Stash or Git: Pop Stash. See Figure 7-38.

The available stash will be listed, and you can pick one to pop or apply. See Figure 7-39.

Figure 7-39.  Available stash

Figure 7-38.  Git stash commands

We have explored stashes in this lesson, which are useful for keeping incomplete

work saved in a Git repo using VS and VS Code.

Chapter 7 Getting Started with Azure Git Repos

170

�Summary
In this chapter, we discussed how to get started with Azure Git Repos by creating a team

project with an Azure Git repository in Azure DevOps. We used Visual Studio and Visual

Studio Code to perform a few simple operations with Azure Git Repos in this chapter.

The following is a list of common Git commands and their meaning for your reference.

•	 git config: Sets the username and e-mail for Git commits

•	 git init: Initializes a folder as a Git repo

•	 git clone: Clones a remote Git repo

•	 git add: Adds files to the staging area

•	 git commit: Commits changes to the repo

•	 git diff: Views differences not yet staged

•	 git reset: Unstages the files

•	 git status: Lists all files to be committed

•	 git rm: Deletes a file and stages it

•	 git log: Lists the version history of the current branch

•	 git show: Shows metadata and content changes of a commit

•	 git tag: Creates a tag for specific commit

•	 git branch: Creates a branch

•	 git checkout: Checks out a branch

•	 git merge: Merges a branch with another

•	 git remote: Connects the local repo to the remote server

•	 git push: Pushes changes of the current branch to the remote branch

•	 git pull: Fetches and merges changes from the remote server to the

local repo

•	 git stash: Temporarily stores all tracked files

In the next chapter, we will be exploring the branching capabilities of Azure Git

Repos, including the code review and pull request and branch policies application to

protect branches.

Chapter 7 Getting Started with Azure Git Repos

171
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_8

CHAPTER 8

Branching with Azure
Git Repos
Azure Git Repos is a distributed version control system that offers a great deal of

flexibility to developers in how they use version control and share and manage code.

Teams can use the tool to come up with consistent strategies to collaborate. Azure Git

Repos branches help to isolate, review, share, and publish code when working with

team members. You can adopt a branching strategy that suits your team’s needs so that

your team can collaborate in a consistent manner, spending less time on version control

management and more on code development.

In this chapter, let’s identify the available features in Azure Git Repos for branching,

pull request management, and so, that will enable your team to efficiently collaborate,

share code, and develop with the needed code isolation.

�Lesson 8-1: Creating Branches
When we develop applications, we need to select the proper branching structure for

the project. Branches allow team members to develop project features in a manageable

way in isolation. You will learn about the Git branching features in Azure DevOps in

this lesson.

Prerequisites:

•	 Azure DevOps project with Git version control as the source

control system

•	 Azure DevOps project repo cloned and created with a sample

MVC project

•	 The ability to log in to Azure DevOps as the administrator

172

Go to your Azure DevOps repository. Click the down arrow in front of the master

branch. Select “New branch” in the pane. See Figure 8-1.

The “Create a branch” window will pop up. You can give the branch a name such

as feature41, select the based-on branch, and link up a work item. Finally, click “Create

branch” to create the new branch. See Figure 8-2.

Figure 8-1.  Selecting a new branch

Chapter 8 Branching with Azure Git Repos

173

When we use a feature/branch name, we can create a feature branch inside a feature

folder. Also, this feature branch is linked with the provided work item.

If you move to the Branches section under Repos, you will see the feature41 branch

inside the feature folder. See Figure 8-3.

Figure 8-2.  Creating a feature branch

Chapter 8 Branching with Azure Git Repos

174

This lesson explained how to create a Git branch using the Azure DevOps server.

Also, you were able to get an idea of how to link the features with the work items while

creating a new branch.

�Lesson 8-2: Working with Branches in Visual Studio
and VS Code
We discussed how to create Git branches with the Azure DevOps server. This lesson will

explain how to work with branches in Visual Studio and VS Code. You will learn about

the branch creation and checkout processes.

Prerequisites:

•	 Azure DevOps project with Git version control as the source control

system

•	 Azure DevOps project repo cloned and created with a sample MVC

project

•	 Cloned local workspace in the solution using Visual Studio

•	 Cloned local workspace in the solution using VS Code

In the first half of this lesson, we will discuss how to work with Azure Git Repos using

the Visual Studio IDE.

Figure 8-3.  The feature41 branch inside the feature folder

Chapter 8 Branching with Azure Git Repos

175

�Visual Studio
Go to Visual Studio. Move to the Team Explorer home. You will see the Branches link.

Click the Branches link to move to the Branches section. See Figure 8-4.

The Branches page will display the active Git repositories available. See Figure 8-5.

Figure 8-4.  Team Explorer branches

Chapter 8 Branching with Azure Git Repos

176

Let’s identify the features available on the Branches page of Team Explorer.

�Creating and Merging Branches

We can create new branches from here. To do that, click the New Branch link.

Give the new branch a name, and select the parent branch a name. Click the “Create

a new branch” button to create a branch. See Figure 8-6.

Figure 8-5.  Team Explorer’s Branches page

Chapter 8 Branching with Azure Git Repos

177

A new branch has been created in the local repo. We need to push the new branch

to the remote repo. So, right-click the newly created branch to push the changes to the

remote repository. See Figure 8-7.

Figure 8-6.  Creating a new branch

Chapter 8 Branching with Azure Git Repos

178

If you go to Azure DevOps Repos, you will see the newly created branch is added to

the remote repo.

Next we will discuss the merge options available. Click the Merge link on the

Branches page. You will see the drop-down where you can set the “Merge from branch”

option. By default, a merge is done to the current branch. See Figure 8-8.

Figure 8-7.  Pushing a new branch

Chapter 8 Branching with Azure Git Repos

179

�Rebase

We have discussed how to create a new branch and how to merge two branches. Now let’s

see another feature available in the Branches section of Team Explorer. That is Rebase.

Let’s assume that while we are working with branches, we have created a feature1

branch from the master branch and done some development there. Let’s say we have

created another branch called feature2 and implemented another feature there. But

after we merge the changes in the branches using a pull request, we can see the commits

ordered by the commit date. Then we see that the commits done by each branch have

overlapped. To keep this from happening, we can use the Rebase option. If we use

Rebase, we can order the commits. We can add feature branch commits after the master

branch commits. See Figure 8-9.

Figure 8-8.  Merging branches

Chapter 8 Branching with Azure Git Repos

180

Using the Actions link in the Branches section, you can open File Explorer, open a

command prompt, or view the history. See Figure 8-10.

Figure 8-9.  Rebase option

Chapter 8 Branching with Azure Git Repos

181

So far, we have discussed the available features in Team Explorer’s Branches section.

�Checkout

Further, when we have multiple branches, we need to select the relevant branch

from the list of the branches. To do that, you can right-click the local repo branch

that you want to work on. A pane will open; click Checkout to move to the local

branch. See Figure 8-11.

Figure 8-10.  Available actions

Chapter 8 Branching with Azure Git Repos

182

Figure 8-11.  Checking out the local repo

Chapter 8 Branching with Azure Git Repos

183

�VS Code
We have learned how to create new branches using Visual Studio. Let’s see how to do this

with VS Code.

�Creating a New Branch

Open the command palette of VS Code. See Figure 8-12.

Figure 8-12.  Opening the command palette

Chapter 8 Branching with Azure Git Repos

184

Type the command Git: Create Branch From. Then press Enter to move to the next

step. See Figure 8-13.

Give the new branch a name. Press Enter. See Figure 8-14.

In the next step, it will allow you to select the parent branch. Go ahead and select the

parent branch to create the new branch. See Figure 8-15.

Figure 8-13.  Selecting Git to create a branch from

Figure 8-14.  Branch name

Figure 8-15.  Selecting a parent branch

So far, we have seen how we can create a new branch from an existing branch. Now

let’s see how we can check out the branches in VS Code.

�Checkout

Open the command palette. Enter the command Git: Checkout to. See Figure 8-16.

Chapter 8 Branching with Azure Git Repos

185

The branch list will open. Select the relevant branch from the list. See Figure 8-17.

In this lesson, we discussed how to create a new branch with Visual Studio and

VS Code. Also, we discussed how to check out the branches using Visual Studio and

VS Code.

�Lesson 8-3: Merging Changes and Resolving
Conflicts
We have discussed how to create branches with the Azure DevOps server, Visual Studio,

and VS Code. This lesson will explain how to work with multiple branches using the

Git source control system. We discussed TFVC in one of the previous chapters in this

book. So, you will see the differences between Git and TFVC branches while reading this

lesson. Now let’s see how we can work with Git branches.

Figure 8-16.  Running the Git: Checkout to command

Figure 8-17.  Selecting the relevant branch

Chapter 8 Branching with Azure Git Repos

186

Prerequisites:

•	 Azure DevOps project with Git version control as the source

control system

•	 Azure DevOps project repo cloned and created with a sample

MVC project

•	 The ability to log in to Azure DevOps as the administrator

Open Visual Studio and check out the feature branch. Open the project file and

modify the file. See Figure 8-18.

Figure 8-18.  Opening the About page and editing it

Chapter 8 Branching with Azure Git Repos

187

After making modifications, we need to commit these changes to the local

repository. To do that, open Team Explorer. Go to Changes. See Figure 8-19.

Clicking the Changes link will open the Changes page. On the Changes page, you will

see the modified files. You can commit the changes to a local repo. See Figure 8-20.

Figure 8-19.  Team Explorer’s Changes link

Chapter 8 Branching with Azure Git Repos

188

	 1.	 You can stage the changes by clicking this plus icon.

	 2.	 Here you provide the commit comment.

	 3.	 Commit the changes to a local repo. After staging the changes, this

button name will change to Commit Staged. If you click the arrow

icon on the commit button, you will see other commit options

available.

If you want to merge your changes to a remote repository, you can use the Commit

and Sync option or Commit and Push option. If you only commit the changes, the

changed files will display on the Sync page.

Figure 8-20.  Changes page

Chapter 8 Branching with Azure Git Repos

189

Now go to Team Explorer’s Sync page. See Figure 8-21.

The Sync page will open. You will see the Outgoing commits section. Click Push to

push changes to the remote branch. If you go to the Azure DevOps server, you will see

the latest version of the code in the remote branch now. See Figure 8-22.

Figure 8-21.  Selecting Sync

Chapter 8 Branching with Azure Git Repos

190

While working on the development project, team members often work on

different features in parallel. So, a team will create a few feature branches for

development. After completing the feature, each team will commit their changes to

the remote development branch. So, when you commit the changes to the remote

repo, it is required to get the latest version from the remote repo to the local repo

before committing the changes. To do that, we can merge the changes from the

remote repo. See Figure 8-23.

Figure 8-22.  Remote feature1 repo

Chapter 8 Branching with Azure Git Repos

191

If there are any changes in the same file, it will mention the conflicts here. See

Figure 8-24.

Figure 8-23.  Merging

Chapter 8 Branching with Azure Git Repos

192

Click the Conflicts link to go to the Resolve Conflicts page. Click the file name on the

Resolve Conflicts page. This will open the pane where you can find the link to compare

the changes between the versions. See Figure 8-25.

Figure 8-24.  Merge conflicts listed

Chapter 8 Branching with Azure Git Repos

193

Click the Compare Files link to compare the files. See Figure 8-26.

Figure 8-25.  Comparing the conflicts

Chapter 8 Branching with Azure Git Repos

194

You will see a Merge button on the Resolve Conflicts page. Click the Merge button

to merge the files. You can decide on the version you need to keep in the branch. Click

Accept Merge to merge the changes. See Figure 8-27.

While we work in multiple branches, we need to have a good idea of how to

perform the merge correctly. Otherwise, the entire project is in trouble. If you

haven’t done the merge correctly, some versions and some code segments will

disappear from the source. In this lesson, you learned the basics of Git branch

merging and conflict resolving.

Figure 8-26.  Comparing the files

Figure 8-27.  Merging the changes

Chapter 8 Branching with Azure Git Repos

195

�Lesson 8-4: Using Pull Requests and Code Reviews
As we all know, branch merging is an important action while working with any type

of source control system. In the previous lesson, we discussed how to merge the

changes between branches. But if every member of the team tried to do the merging,

this process won’t go smoothly. As a solution, we can control the merging permission

for the team members as every member of the team shouldn’t be able to merge to

every branch. If the team members need to merge changes to the master or other

important branches such as development, or merge a version branch from a feature

branch, they can create a pull request to ask the responsible member to review

and accept the modification. Let’s discuss how we can do that with Azure DevOps

Services in this lesson.

Prerequisites:

•	 Azure DevOps project with Git version control as the source

control system

•	 Azure DevOps project repo cloned and created with a sample

MVC project

•	 The ability to log in to Azure DevOps as the administrator

Go to the Azure DevOps Branches section. Click the three dots in front of the branch

name. Select “New pull request” in the menu. See Figure 8-28.

Chapter 8 Branching with Azure Git Repos

196

You will see the pull request creation page. You can select the branches to merge and

set a reviewer on this page. See Figure 8-29.

Figure 8-28.  “New pull request” menu item

Chapter 8 Branching with Azure Git Repos

197

	 1.	 Select branches to create the pull request.

	 2.	 Specify the title to request.

	 3.	 Enter a description for the request.

	 4.	 Select the reviewer.

	 5.	 Select a work item.

	 6.	 Click the Create button to create a request.

	 7.	 Do a code change comparison between the branches.

If you click the arrow in front of the Create button, you will see the “Create draft”

option. See Figure 8-30.

Figure 8-29.  Pull request creation

Chapter 8 Branching with Azure Git Repos

198

This allows you to create a draft request to highlight to other collaborators that your

code is ready to integrate with another branch. After clicking “Create as draft,” you will

see a page with a Publish button. Collaborators can give their comments on the changes

going to be merged. See Figure 8-31.

After creating a pull request, in some situations we get the conflict message shown in

Figure 8-32.

Figure 8-30.  “Create as draft” menu item

Figure 8-31.  Draft pull request publish

Chapter 8 Branching with Azure Git Repos

199

This happens when the development branch has some changes that the feature

branch does not have. So, we need to resolve this before continuing.

To do that, go to Visual Studio. Go to the Branches section of Team Explorer.

Pull the development branch and feature branch. Merge the development branch

changes with the feature branch. Now the feature branch has the latest changes from

the developer branch (you might have to resolve any conflicts). Now, push the feature

branch version to the remote repo.

Then go back to the Azure DevOps server. Navigate to the pull request section. You

will see that the conflict in the pull request list disappears and the Approve button and

the Complete button are enabled.

Figure 8-32.  Pull request conflict

Chapter 8 Branching with Azure Git Repos

200

After creating a pull request, the approver gets a mail notification. See Figure 8-33.

The approver can go to Azure DevOps and see the requested merge. They can

decide whether this is ready to merge. If the changes are not ready, the approver can add

comments by indicating the required updates. See Figure 8-34.

Figure 8-33.  Approver mail

Chapter 8 Branching with Azure Git Repos

201

Then the requester can read the comments and make any necessary changes.

Finally, the approver will approve the request. See Figure 8-35.

Figure 8-34.  Approver’s comment

Figure 8-35.  Approving the request

Chapter 8 Branching with Azure Git Repos

202

Click the arrow icon in front of the Approve button. You will see the other options

available.

•	 Approve: Approve the pull request.

•	 Approve with the suggestions: Give some suggestions while

approving.

•	 Wait for author: Do not approve the pull request and wait for the pull

request author to address the comments. Once the comments are

addressed, the author should inform the reviewer the pull request is

ready for review again.

•	 Reject: Reject the request.

After approval, click the Complete button to finish the pull request. See Figure 8-36.

After clicking the Complete button, you will see the “Complete pull request” pane.

You can add a description and select the merge type from here. See Figure 8-37.

Figure 8-36.  Approving and completing the request

Chapter 8 Branching with Azure Git Repos

203

Figure 8-37.  Completing the pull request

Chapter 8 Branching with Azure Git Repos

204

After completing the pull request, you will see the merge success message. See

Figure 8-38.

Note that the requester can approve their own request. But in a real scenario, this

process is not a best practice. So, you can control the approval by using branch policies.

You will learn more about branch policies in Chapter 10.

This lesson explained how to create a pull request to request the merging between

the branches. We discussed how to add reviewers to the request and how the reviewer

responds to the request.

�Lesson 8-5: Rebasing While Completing a Pull
Request
We discussed Git branch creation, merge, and pull requests in this chapter. However,

when you work with multiple branches, you might have modifications done parallelly

in each branch. If you merge these changes, they will sort based on the date, and it is

difficult to identify which change was done in which branch. To avoid this, there is a

merge type called rebase that allows you to order the commits according to the branch.

Let’s learn how this rebase works.

Prerequisites:

•	 Azure DevOps project with Git version control as the source control

system

•	 Azure DevOps project repo cloned and created with a sample MVC

project

Figure 8-38.  Pull request completed

Chapter 8 Branching with Azure Git Repos

205

•	 The ability to log in to Azure DevOps as the administrator

•	 A pull request created, reviewed, and completed

While merging the changes between branches, there are several options available

in Azure DevOps. We will discuss the rebase option in this lesson. As discussed in the

previous lesson, when completing a pull request, the pull request completion pane

opens. In that pane, you can select the merge type. See Figure 8-39.

Rebase is the merge type that adds all the feature branch changes/commits to the end

of the developer branch changes/commits so the merge looks linear. See Figure 8-40.

Figure 8-39.  Merge types

Figure 8-40.  Rebase option

Chapter 8 Branching with Azure Git Repos

206

In this lesson, we looked at the rebase option while completing a pull request.

�Summary
This chapter explained how to work with Azure Git Repos branches using both Visual

Studio and VS Code as well as the Azure DevOps Portal. We discussed how to create

branches, merge changes, and resolve conflicts. Then we explored pull requests and the

code review process as well as using the rebase option for a liner merge. The content of

this chapter will help you to adopt a suitable branching strategy for your team since you

have gained a good understanding of the available features in Azure Git Repos.

In the next chapter, we will discuss how to use the command-line options to work

with Azure Git Repos.

Chapter 8 Branching with Azure Git Repos

207
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_9

CHAPTER 9

Using the Command Line
with Azure Git Repos
Developers who use Git for source control mostly use the command line to perform

actions, such as cloning repositories and pulling/pushing code. Many editors such as

Visual Studio or Visual Studio Code support performing actions with Azure Git Repos

using menu items. However, developers who are used to using Git as their version

control system may prefer using the command line to work with Git Repos.

In this chapter, let’s look at some examples of using the Azure Git Repos command

line to clone repositories, push code, pull others’ changes, etc. If you are beginner with

Git Repos, this chapter will help you to get the basic understanding of how to use the

command line with Azure Git Repos.

�Lesson 9-1: Getting Started with the Command Line
As the first lesson, we need to get our development machines ready to use Azure

Git Repos with the Git command line. Let’s look at how to set up a machine to use a

command line for Git.

Let’s install Visual Studio Code as the preferred editor for the code editing in this

chapter. Since the chapter uses Windows 10 as the OS, we can download VS Code for

Windows from https://code.visualstudio.com/#alt-downloads and install it on the

machine. You have the option to set up VS Code for the current user by installing the user

setup, or you can download the system setup to install it for all users. Install the DotNet

Core SDK on your machine. You can download it from https://dotnet.microsoft.

com/download.

https://code.visualstudio.com/#alt-downloads
https://dotnet.microsoft.com/download
https://dotnet.microsoft.com/download

208

You have to install Git for your operating system to allow you to create local Git

repositories and use Git commands. Go to https://git-scm.com/downloads and

download Git for your operating system. In this chapter, you’ll use Windows as the

operating system. So, let’s download Windows for Git and install it on the machine if it

is not already installed. While installing, select VS Code as the default editor for Git. See

Figure 9-1.

Let’s get Azure CLI and add the Azure DevOps extension to Azure CLI so we can

work with Azure Git Repos with a command line. You can set up Azure CLI following

the instructions at https://docs.microsoft.com/en-us/cli/azure/install-azure-

cli?view=azure-cli-latest. Once Azure CLI is installed, open a PowerShell window

in administrator mode. The execute az --version to check the version installed. See

Figure 9-2.

Figure 9-1.  Setting VS Code as the default editor for Git

Chapter 9 Using the Command Line with Azure Git Repos

https://git-scm.com/downloads
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

209

To add the Azure DevOps extension to Azure CLI, execute az extension add

--name azure-devops. Then you can execute az –version to check that the Azure

DevOps extension for Azure CLI is installed. See Figure 9-3.

Figure 9-2.  Azure CLI

Figure 9-3.  Azure DevOps extension

Chapter 9 Using the Command Line with Azure Git Repos

210

In this lesson, we set up VS Code as the code editor and Git for Windows to support

Git operations on a Windows 10 machine. Then we set up Azure CLI and the Azure

DevOps extension to support the command line for Azure Git Repos. You can use the

same tools in a Linux or macOS environment and perform the lessons in this chapter in

a similar way.

�Lesson 9-2: Cloning an Azure Git Repository
and Pushing Code Using the Command Line
Let’s discuss how to clone and push code to a newly created Azure Git repository using

the command line in this lesson.

Create a new team project in Azure. We described how to set up a new team project

in Azure DevOps in the Hands-On Azure Boards book of this series. To create the new

Azure Git repository in the team project, you first need to log in to Azure DevOps. You

can do this by executing az login if you are using an Azure Active Directory account or

Microsoft account. If you want to use a personal access token (PAT) in Azure DevOps,

you can execute az devops login. In a PowerShell window, type az login, and you will

be prompted to log in to your account. See Figure 9-4.

Figure 9-4.  Logging in to Azure DevOps

Chapter 9 Using the Command Line with Azure Git Repos

211

Once you log in successfully, you can execute az repos create --name GitCmd01

--organization https://dev.azure.com/yourorg --project yourteamproject to

create a new Azure Git repository in your team project. See Figure 9-5.

Figure 9-5.  Creating a new Azure Git repository

In the Azure DevOps web portal, you can see the new Azure Git repo created. Copy

the clone URL of the new Azure Git repo. See Figure 9-6.

Create a folder on your development machine named Repos. Open Git bash installed

with Git as per the instructions in Lesson 9-1. Change the directory to the Repos folder in

Git bash and then execute a Git clone with the URL of Azure DevOps Git repository. You

will be prompted to log in to your Azure Git repository. Provide credentials and log in.

See Figure 9-7.

Figure 9-6.  Copying the clone URL

Chapter 9 Using the Command Line with Azure Git Repos

https://dev.azure.com/yourorg

212

Launch Visual Studio Code and open the Repos/GitCmd01 folder in VS Code. Then

press Ctrl+Shift+` or use the menu to open the terminal of VS Code. In the terminal, type

dotnet new webapp to create a .NET Core web app in the folder. See Figure 9-8.

Figure 9-7.  Cloning the repo

Chapter 9 Using the Command Line with Azure Git Repos

213

You can add an extension to VS Code by pressing Ctrl+Shift+X. Search for gitignore

generator. The install the .gitignore Generator, as shown in Figure 9-9.

Figure 9-8.  Creating a new .NET Core web app

Figure 9-9.  Installing the .gitignore Generator for VS Code

Chapter 9 Using the Command Line with Azure Git Repos

214

Press Ctrl+Shift+P to launch a command palette in VS code. Type generate

.gitignore in the command palette and press Enter. See Figure 9-10.

In the next step, in the command palette, select visualstudiocode, windows,

aspnetcore, and csharp, and click OK. See Figure 9-11 (the figure shows only two options

selected, but you have to select all four).

A .gitignore file will be added to the code folder. Now we have to commit and

push the code to Azure Git Repos. We can easily do this with VS Code. However, let’s try

to commit and push the code using a command line as in this lesson our purpose is to

learn the command line with Azure Git Repos.

Open up the Git bash and change the directory to Repos/GitCmd01. You will see the

branch name is master. See Figure 9-12.

Figure 9-10.  Generating a .gitignore file

Figure 9-11.  Selecting the app type for .gitignore

Chapter 9 Using the Command Line with Azure Git Repos

215

Then execute a git add . to add the changes to Git as staged. You can commit the

changes to an Azure Git repository locally by executing git commit -m "the commit

message". But since you have not provided the user information to Git, you might get an

error message. See Figure 9-13.

As instructed in the message, you can execute a git config –global user.email

command with your Azure DevOps account’s login e-mail address to get the user

information defined for Git. If you just want to set the identity to this repository, you can

omit using –global in the command. Then you can attempt the commit again, which

will succeed. See Figure 9-14.

Figure 9-12.  Master branch

Figure 9-13.  Attempting the git commit command

Chapter 9 Using the Command Line with Azure Git Repos

216

Now that we have the code committed to the local Azure Git repo, we can push it to

the remote Azure Git repository by executing a git push. See Figure 9-15.

Figure 9-14.  Setting the repository user and committing

Chapter 9 Using the Command Line with Azure Git Repos

217

Go to Azure DevOps in a browser and check the GitCmd01 repository. You will be

able to see that the new code pushed is available in the master branch. See Figure 9-16.

In this lesson, we discussed how to create an Azure Git repository, and then we

cloned it using the command line to the local machine. Then we added some code and

explored how to commit and push the code to Azure Git Repos with the command line.

Figure 9-15.  Pushing to a remote Azure Git repository

Figure 9-16.  Azure Git repository with code

Chapter 9 Using the Command Line with Azure Git Repos

218

�Lesson 9-3: Creating a Git Repository Locally
and Pushing It to Azure Git Repos
Let’s see how we can create a local repository first and then push that to Azure Git Repos.

This will help you to understand how you can use your existing local Git repositories and

create Azure Git Repos repositories with them.

Create a directory in your machine named GItCmd02. Then change the directory to

the newly created folder. See Figure 9-17.

Execute git init to convert the folder into a Git repository. See Figure 9-18.

Open the GitCmd02 folder in VS Code, and in the VS Code terminal execute dotnet

new webapp to create a .NET Core web application. See Figure 9-19.

Figure 9-17.  Creating a directory

Figure 9-18.  Initializing a Git repository

Chapter 9 Using the Command Line with Azure Git Repos

219

Then do a git add . and add the user’s e-mail to the repository. Execute git

commit with a commit message to commit the code to the local Git Repos master branch

in the GitCmd02 folder. See Figure 9-20.

Figure 9-19.  Creating a web app

Figure 9-20.  Committing the code

Chapter 9 Using the Command Line with Azure Git Repos

220

Now that we have the code committed to the local repository, we have to create

a new repository in Azure DevOps to push the local repo to Azure DevOps. Open a

PowerShell window and use az login or az devops login (if you are using a PAT) to log

in to Azure DevOps. Then execute az repos create --name GitCmd02 --organization

https://dev.azure.com/your/orgname --project teamproject to create an Azure Git

repo named GitCmd02. See Figure 9-21.

Copy the remote URL in the output of the command az repo create. Then open the

Git bash and navigate to the local repository folder called GitCmd02. Execute git remote

add origin "remote/clone url". See Figure 9-22.

Figure 9-21.  Creating an Azure Git repository

Figure 9-22.  Connecting the local repository to the Azure Git repository

Run the command git push origin master to push the changes to the remote

Azure Git repository. You will be prompted for credentials; log in with your Azure

DevOps account. See Figure 9-23.

Chapter 9 Using the Command Line with Azure Git Repos

https://dev.azure.com/your/orgname

221

You can see that the code is available in the Azure Git repository after being pushed.

See Figure 9-24.

Figure 9-23.  Pushing changes to the Azure Git repository

Figure 9-24.  Code pushed to the Azure Git repository

Chapter 9 Using the Command Line with Azure Git Repos

222

In this lesson, you learned how to use a local available Git repository and push the

code in that repository to an Azure Git repository.

�Lesson 9-4: Creating Azure Git Repo Branches
Using the Command Line
Now that we have the code in remote Azure Git repo, we can create branches using the

Azure DevOps web interface, as discussed in Chapter 8. However, in this lesson, let’s see

how we can create a branch locally and push it to the remote Azure Git repository.

Prerequisites: You followed the previous lessons of this chapter.

Open Git and change directories to the cloned repository of Lesson 9-2. You should be

in the master branch of the repository. If you execute the git branch --list command,

you will be able to see that only the master branch is available. See Figure 9-25.

Let’s try to create a branch in the local Git repository and push it to the remote Azure

Git repository. Execute git branch develop to create a branch called Develop from the

master. Then you can switch to the Develop branch by executing git switch develop or

git checkout develop. See Figure 9-26.

Figure 9-25.  Listing branches

Figure 9-26.  Creating and switching to a new branch

Chapter 9 Using the Command Line with Azure Git Repos

223

To push this new branch to the remote Azure Git repository, we cannot just use

git push as there is no such remote branch available. We should execute git push --

set-upstream origin develop to set the remote Develop branch and push the locally

created Develop branch to the remote Azure Git repository. See Figure 9-27.

You can see that the new branch is available now in the Azure Git repository by going

to the web interface of Azure DevOps. See Figure 9-28.

Figure 9-27.  Pushing the new branch Develop to the remote Azure Git repository

Figure 9-28.  Develop branch pushed

Chapter 9 Using the Command Line with Azure Git Repos

224

You can check out a branch with git checkout branchname and then edit the code

in the branch. Then you can commit the changes with git add . and git commit. To

merge a branch to a given branch, you have to first check out the target branch and then

execute git merge sourcebranchname. You can find a detailed command-line reference

in the documentation at https://docs.microsoft.com/en-us/azure/devops/repos/

git/command-prompt?view=azure-devops.

�Summary
In this chapter, we explored managing Azure Git Repos repository with the command

line. We looked at how to clone a repo and add code to it. Additionally, we discussed

how to use a local Git repository to create an Azure Git repository. Then we explored

the branching and discussed a few more commands. This chapter can be considered a

good start to working with Azure Git Repos using the command line, and you can use

the command-line reference available at https://docs.microsoft.com/en-us/azure/

devops/repos/git/command-prompt?view=azure-devops to learn more.

In the next chapter, let’s discuss the security and permissions related to Azure Git Repos.

Chapter 9 Using the Command Line with Azure Git Repos

https://docs.microsoft.com/en-us/azure/devops/repos/git/command-prompt?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/command-prompt?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/command-prompt?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/repos/git/command-prompt?view=azure-devops

225
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_10

CHAPTER 10

Azure Git Repos: Security
Security is an important aspect of any source control system. Permissions involve

rights to create branches, commit code, check out branches, create pull requests, set

permissions to merge changes into a given branch, etc.

In Azure Git Repos, you might want to protect your stable branches and apply

additional security on given branches for specific teams. You might want to keep

multiple repositories in a team project and apply permissions to individuals or teams in

the team project.

In this chapter, you’ll get a quick overview of all the permissions and permission

levels available for Azure Git Repos and the options available for branch policies to

protect Azure Git Repos branches.

�Lesson 10-1: Setting Azure Git Repos Permissions
In Azure Git Repos, permissions can be applied for all repositories, individual repos, and

their branches. Let’s explore each of these permission levels.

Prerequisites: You have a team project with Azure Git Repos with branches and have

code available in the repositories.

First navigate to a team project where you have multiple Git repositories with

branches. Then click the “Project settings” tab and click Repositories in the Repos

section. You will see a list of Azure Git repositories. See Figure 10-1.

226

In all the repositories, you can see there are several permissions available for each

Azure DevOps security group. (We discussed these security groups in detail in the

Hands-on Azure Boards book of this series.) See Figure 10-2.

Figure 10-1.  Repositories tab

Chapter 10 Azure Git Repos: Security

227

Some permissions are marked as Allow (inherited), which shows that the permission

to a selected user or group is inherited from its membership in other groups or teams.

You can click Why, which appears when you move your mouse over these permissions,

to check how the permission is inherited. When a permission is denied, it gets priority

always. If Denied is not set, the inheritance gets applied for the permission. Or you can

explicitly allow a permission. Clicking a permission value changes the value from Not Set

to Allow and from Deny to Not Set. All Git repositories permissions shown in Figure 10-2

are explained here:

•	 Bypass policies when completing pull requests: Branch policies

can be ignored, and the user with this permission can complete and

merge a pull request to any branch of any repository.

•	 Bypass policies when pushing: The user can push a change to any

repo in any branch regardless of the branch policies.

•	 Contribute: The user can contribute (commit code) to any branch of

any repo.

•	 Contribute to pull requests: The user can create pull requests

targeting any branch in any repo.

Figure 10-2.  All repositories permissions

Chapter 10 Azure Git Repos: Security

228

•	 Create branch: The user can create a branch in any repo.

•	 Create repository: The user can create repositories in the team

project.

•	 Create tag: The user can create tags in any branch of any repo.

•	 Delete repository: The user can delete an Azure Git repo from the

team project.

•	 Edit policies: The user can edit branch policies in any branch of any

repo.

•	 Force push (rewrite history, delete branches and tags): The user

can delete any branch of any repo and force push changes with

history rewrite to any branch of any repo.

•	 Manage notes: The user can manage notes in any branch of any repo.

•	 Manage permissions: The user can manage the permissions of any

repository and any branch.

•	 Read: The user can read code in any branch of any repo.

•	 Remove others’ locks: The user can remove locks in any branch in

any repo.

•	 Rename repository: The user can rename any repository.

You can use the Add button to add groups, teams, or users to grant them permissions

explicitly. See Figure 10-3.

Chapter 10 Azure Git Repos: Security

229

You can switch on/off inheritance for all repos in the Inheritance drop-down. See

Figure 10-4.

Figure 10-3.  Adding users, groups, or teams

Figure 10-4.  Inheritance for permissions

Chapter 10 Azure Git Repos: Security

230

On the Options tab, you can allow Gravatars images from outside the enterprise. See

Figure 10-5.

You can set policies such as file size limits, path validations, etc., for all repositories

using this tab. See Figure 10-6.

Figure 10-5.  Options

Figure 10-6.  Policies

Chapter 10 Azure Git Repos: Security

231

Click a repo to see the permissions of a given repo. Se Figure 10-7.

Similar to the permissions applied for all repositories, users, teams, and groups can

be assigned with individual repo-scoped permissions.

In the options for an individual repo, you can set options allowing users to create

forks, commit mention links, etc. See Figure 10-8.

Figure 10-7.  Repo permissions

Chapter 10 Azure Git Repos: Security

232

The Policies tab allows you to set the same policies as in all the repositories in the

scope of a selected repo. Forked repositories also have the same permissions, options,

and policies.

In a repo for “All tags,” you can set “Force push” permissions. See Figure 10-9.

Figure 10-8.  Options of a repository

Chapter 10 Azure Git Repos: Security

233

You can set permissions for all branches in a selected repositories. The permission

set for all branches is a subset of the repositories permissions scoped into a selected repo

of all branches. See Figure 10-10.

For an individual branch, you can apply permissions. These are a subset of

permissions from the all branch permissions, which are scoped to a selected branch. See

Figure 10-11.

Figure 10-9.  “All tags” permissions

Figure 10-10.  All branch permissions

Chapter 10 Azure Git Repos: Security

234

When you click the Policies tab of a given branch, you will be taken to the branch’s

policy setup page, which we will discuss in the next lesson.

In this lesson, we explored the security permissions, options, and policies

available in Azure Git Repos, which will help you to secure your code as per your team

requirements.

�Lesson 10-2: Setting Up Azure Git Repos Branch
Policies
In addition to the Azure Git Repos permissions, each branch in a repo can be protected

with policies. Let’s look at the branch policies that are available in Azure Git Repos.

Prerequisites: You have a team project in Azure Git Repos with branches and have

code available in the repositories.

As explained in the previous lesson, you can select a branch and click Policies on the

Repositories page of the Repos section to access the branch policies page (see Figure 10-11).

Or from Repos, you can go to Branches, and on the Branches page, you can use the Branch

context menu to access the branch policies. See Figure 10-12.

Figure 10-11.  Branch permissions

Chapter 10 Azure Git Repos: Security

235

On the policies page, you can protect a branch with several policy settings. See

Figure 10-13.

Figure 10-12.  Branch policies menu item

Chapter 10 Azure Git Repos: Security

236

You can set the required number of reviews for incoming pull requests so that

reviewers have to approve a pull request before merging to the branch. A few additional

options for the number of reviewers can be set up, as shown in Figure 10-14.

Figure 10-13.  Branch policies

Chapter 10 Azure Git Repos: Security

237

The work item link policy enforces the requirement of a work item to be associated

to the pull request. You can make this required or optional check with a warning. See

Figure 10-15.

Comments are made on a pull request by reviewers, and a policy can be set so that

all the comments must be resolved before merging them to the branch. This policy again

can be optional with a warning. See Figure 10-16.

Figure 10-14.  Requires reviewers policy

Figure 10-15.  Work item link policy

Chapter 10 Azure Git Repos: Security

238

Merge types can be set as a branch policy so that only allowed merge types of pull

requests are possible to the branch. See Figure 10-17.

One you click add “Build policy,” you can select an available Azure pipeline build

and set a policy so that it requires the build to be successful to merge the pull request.

See Figure 10-18. You can add more than one build as the build policy. We discuss builds

in more detail in the Hands-on Azure Pipelines book of this series.

Figure 10-16.  Comment resolution policy

Figure 10-17.  Merge types policy

Chapter 10 Azure Git Repos: Security

239

The status policy lets you check the status applied to a pull request by an external

service using the REST (Representational State Transfer) API. How to use REST APIs

is explained in Chapter 12. The automatic reviews policy lets you add reviewers

automatically to the PR when created. See Figure 10-19.

Figure 10-18.  Build policy

Chapter 10 Azure Git Repos: Security

240

In this lesson, we explored the policies that can be used to protect a branch, in

addition to the permissions available in Azure Git Repos.

�Summary
We discussed the permissions, options, and policies in Azure Git Repos. In addition, we

discussed how to protect branches with branch policies.

In the next chapter, we will discuss features such as creating forks, tagging importing

external repos, and creating wikis with Git Repos markdown files.

Figure 10-19.  Automatic reviewers

Chapter 10 Azure Git Repos: Security

241
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_11

CHAPTER 11

Azure Git Repos Extras
We have discussed many Azure Git Repos operations that you can perform. There are

a couple of additional common Git operations such as creating Git tags and forking

that we will be exploring in this chapter. Further, we will talk about importing other

repositories to Azure Git Repos and creating wikis in Azure DevOps via markdown files

stored in Azure Git.

�Lesson 11-1: Using Git Tags
A tag is helpful to mark a specific point in the commit history of a Git repo. Azure Git

Repos supports two types of tags, lightweight tags and annotated tags. A lightweight tag

is a tag for the commit, while an annotated tag marks a commit and includes a tagger,

which is a message for the tag with the date.

Prerequisites: You followed Chapters 6, 7, and 8 and have created an Azure Git

repository with a few commits in it.

�Creating Tags with the Azure DevOps Web Portal
The tags you create using the Azure DevOps Portal will be always annotated tags. You

can open an Azure Git repository in the Azure DevOps Portal and on the History tab use

the context menu of a given commit to create a tag. See Figure 11-1.

242

In the pop-up window, provide a tag name and a description and create the tag for

the commit. See Figure 11-2.

Figure 11-1.  Selecting to create a tag for a commit

Figure 11-2.  Creating the first tag

Chapter 11 Azure Git Repos Extras

243

The tag will be visible in the commit. See Figure 11-3.

You can create and view tags on the Tags page of the Azure DevOps Portal. See

Figure 11-4.

When you click Create Tag, the “Create a tag” pop-up window will open. In the drop-

down of the tag creation pop-up, you can select a branch for which to create a tag. See

Figure 11-5.

Figure 11-3.  The tag visible in the commit

Figure 11-4.  Tags page

Chapter 11 Azure Git Repos Extras

244

You can select a specific commit by searching for it using the first four characters of

the commit ID. See Figure 11-6.

Figure 11-5.  Branch for a tag

Chapter 11 Azure Git Repos Extras

245

You can create multiple tags for a single commit if required. See Figure 11-7.

Figure 11-6.  Selecting a commit for the tag

Figure 11-7.  Multiple tags for a commit

Chapter 11 Azure Git Repos Extras

246

The tag context menu allows you to create a branch, download the tagged commit

version’s source code as a zip file, view files in a tagged commit version, view history

from the tagged commit, and delete the tag. See Figure 11-8. In addition, you can set the

tag as a compare tag to compare the files of two commits for changes.

�Creating Tags with Visual Studio
You can clone an Azure Git repository using Visual Studio, as we discussed in Chapter 7.

In Visual Studio Team Explorer, you can click Tags. See Figure 11-9.

Figure 11-8.  Tag context menu

Chapter 11 Azure Git Repos Extras

247

Figure 11-9.  Tags in VS Team Explorer

The tag context menu in Visual Studio lets you perform several actions. You can

check out a branch of the tag, view the history, view the details of the tagged commit,

delete the tag locally in the repository, and push a local tag to a remote repository. The

links on the Team Explorer tags page allow you to create new tags, push all tags to a

remote repository, or create a local branch from a given tag. See Figure 11-10.

Chapter 11 Azure Git Repos Extras

248

From Visual Studio, you can view a branch’s history, as explained in Chapter 8. In the

commit history, you can get the context menu for a commit by right-clicking a commit

and using Create Tag to create a new tag for the commit. See Figure 11-11.

Figure 11-10.  Tag context menu in VS

Chapter 11 Azure Git Repos Extras

249

In the Commit Details page opened in Team Explorer, you can specify the tag and a

message and then create the tag. See Figure 11-12.

Figure 11-11.  Creating a tag from the commit history in VS

Chapter 11 Azure Git Repos Extras

250

One the tag is pushed, it is available in the remote Azure Git repo. See Figure 11-13.

Figure 11-12.  Creating a tag in VS

Chapter 11 Azure Git Repos Extras

251

�Creating Tags with the Command Line
You can list the tags available in a branch by executing git tag or git tag -l or git

tag --list from the branch at the command line in Git bash. See Figure 11-14.

You can filter the tags by using wildcards. For example, git tag -l "0.0*" will list

the tags starting with 0.0. It is a must to use -l or --list when you are using a filter. See

Figure 11-15.

Figure 11-13.  Tag in Azure Git repo after push

Figure 11-14.  Listing tags

Chapter 11 Azure Git Repos Extras

252

To create a tag, you can use git tag tagyouwanttocreate. A tag will be created for

the latest commit. See Figure 11-16.

To create an annotated tag, use -a with the command. Using -m, you can provide a

descriptive message for the annotated tag. See Figure 11-17.

Figure 11-15.  Listing tags with a filter

Figure 11-16.  Creating a tag

Figure 11-17.  Creating an annotated tag

You can use git show tagname to view a tag. If the tag is not an annotated tag, tag

and commit the details shown. See Figure 11-18.

Chapter 11 Azure Git Repos Extras

253

For an annotated tag, the creator of the tag, the message for the tag, and the date of

the tag creation is shown in addition to the commit details. See Figure 11-19.

Figure 11-18.  Viewing a tag that is not annotated

Chapter 11 Azure Git Repos Extras

254

To delete a tag, you should execute git tag -d tagname. You can push the tags by

using git push tagname. If you have multiple tags to push, you should execute git push

--tags. See Figure 11-20.

Figure 11-19.  Showing an annotated tag

Figure 11-20.  Pushing tags

Chapter 11 Azure Git Repos Extras

255

In this lesson, we looked at various ways to create Git tags to mark a specific

commit.

�Lesson 11-2: Forking a Repo
Forking a repo allows you to make an entire copy of an Azure Git repo. Then you can

work on the fork without affecting the original repo. If required, you can make a pull

request to merge the changes from a fork to the original Azure Git repository. Forking

repos is useful when you want to create a fully isolated copy of a Git repository. Let’s look

at how to fork an Azure Git repository in this lesson.

Prerequisites: You followed Chapters 6, 7, and 8 and have created an Azure Git

repository with a few commits in it.

Click the Fork button in the Azure Git repository to create a fork. See Figure 11-21.

In the pop-up, you are allowed to decide whether to create the fork with all branches

or with the default branch only. Additionally, you can fork a repository into another team

project of the Azure DevOps organization. This is useful when you want to start a new

project with the same codebase. Let’s fork all the branches to the same team project. See

Figure 11-22.

Figure 11-21.  Forking a repo

Chapter 11 Azure Git Repos Extras

256

Now go ahead and make a change in the newly forked repository in a branch. Then

when you try to create a pull request, you are given an option to make the pull request

to the original Azure Git repo’s desired target branch. Of course, you can create a pull

request within the forked repo. See Figure 11-23.

Figure 11-22.  Creating a fork

Chapter 11 Azure Git Repos Extras

257

We explored fork creation in the Azure Git repositories in this lesson.

�Lesson 11-3: Importing from an External Repository
You can easily import external Git repos or TFVC repos into an Azure DevOps organization

as Git repos. Let’s look at the steps required to import a repo in Azure Git Repos.

Prerequisites: Create a repository in GitHub and add some code to it. Then copy the

clone URL of the GitHub repository.

Click the drop-down near the Azure Git repository name to view the options to

import a repository. See Figure 11-24.

Figure 11-23.  Pull request from a fork

Figure 11-24.  Importing a repository

Chapter 11 Azure Git Repos Extras

258

In the drop-down you can select Git or TFVC. You can import TFCV repos in the

current Azure DevOps organization as Git repositories. See Figure 11-25.

Figure 11-25.  Option to import a TFVC repo

Copy a clone URL from the GitHub repo that was created, as mentioned in the

prerequisites. Select Git as the import type and paste the clone URL. Provide a username

and password for the GitHub account. See Figure 11-26.

Chapter 11 Azure Git Repos Extras

259

Once the import operation completes, refresh, and you will be able to see that

the GitHub repository is imported to the Azure Git repository with the history. See

Figure 11-27.

Figure 11-26.  Importing a repo from GitHub

Chapter 11 Azure Git Repos Extras

260

In this lesson, we discussed how to import a repository to Azure Git Repos.

�Lesson 11-4: Setting Up Azure Git Repos Markdown
Files as a Wiki
Azure DevOps allows you to use Azure Git Repos markdown files to set up wikis. Wikis

are useful to communicate valuable instructions and information to your teams. In

this lesson, let’s look at the steps to create a wiki using markdown files in an Azure Git

repository.

Prerequisites: You are familiar with markdown files.

As the first step, create a new Azure Git repository named WikisRepo in a team

project. Make sure to select the option to add a readme file to initialize the repo. See

Figure 11-28.

Figure 11-27.  Imported repository from GitHub

Chapter 11 Azure Git Repos Extras

261

In the repository, click the menu icon and create a new folder. See Figure 11-29.

Figure 11-28.  Creating WikisRepo

Figure 11-29.  Creating a new folder

Chapter 11 Azure Git Repos Extras

262

Then create a folder named DevWikis in the repo and add a markdown file. See

Figure 11-30.

Add some simple markdown content and commit the changes to the repo. See

Figure 11-31.

Figure 11-30.  Adding a folder and a markdown file

Chapter 11 Azure Git Repos Extras

263

Then go to Overview ➤ Wikis and click “Publish code as wiki.” See Figure 11-32.

In the side pane that opens, select the WikisRepo branch and folder that contains the

markdown files. Then provide a name for the wiki and click Publish. See Figure 11-33.

Figure 11-31.  Adding markdown content

Figure 11-32.  Publishing the code as a wiki

Chapter 11 Azure Git Repos Extras

264

The wiki will be published, and you can keep adding markdown files to the

repository to add more wiki pages. See Figure 11-34.

In this lesson, we explored the options to create a wiki in Azure DevOps using

markdown files available in an Azure Git repository.

Figure 11-33.  Publishing the wiki

Figure 11-34.  Wiki published

Chapter 11 Azure Git Repos Extras

265

�Summary
In this chapter, we discussed a few operations that we can perform with Azure Git Repos

such as creating tags, forking repos, importing external repos to Azure Git Repos, and

setting up wikis using markdown files in an Azure Git repository. These lessons have

provided you with starting guidelines and steps so that you can leverage the capabilities

to build great solutions with your teams using Azure Git Repos.

In the next lesson, let’s discuss the REST API of Azure DevOps in relation to TFVC

and Azure Git Repos, which will allow you to build additional reporting capabilities as

well as operational automation capabilities with scripting languages such as PowerShell.

Chapter 11 Azure Git Repos Extras

267
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7_12

CHAPTER 12

REST APIs for Azure Git
and TFVC Repos
The Representational State Transfer (REST) APIs in Azure DevOps are service endpoints

supporting HTTP operations. They allow you to retrieve, create, and update resources

in Azure DevOps, including Azure Git and TFVC repositories. The REST APIs facilitate

the development of extensions to Azure DevOps and help to integrate Azure DevOps

with third-party tools. There are many extensions for Azure DevOps developed based on

the REST APIs in the Visual Studio marketplace (https://marketplace.visualstudio.

com/), and they can be used to add features and enhancements to Azure DevOps.

In this chapter, let’s look at how we can use REST APIs with Azure Git Repos and

TFVC, which will allow you to build useful reports based on version control data and

perform actions on the version control to automate any desired actions.

�Lesson 12-1: Using Repo REST APIs from a Browser
to Retrieve Data
Using a browser is the simplest way to access a REST API to retrieve data in Azure

DevOps. Let’s look at a few simple REST API calls against Azure Git Repos and TFVC

repos using a browser.

Prerequisites: You have team projects in Azure DevOps and have Git and TFVC

repos with code.

A REST API GET URL generally has the following format for Git repositories. This

GET request retrieves all the repositories in a team project. (We discussed the REST API

URL components in detail in the Hand-on Azure Boards book of this series.)

https://dev.azure.com/{organization}/{project}/_apis/git/

repositories?api-version=5.1

https://marketplace.visualstudio.com/
https://marketplace.visualstudio.com/
https://dev.azure.com/{organization}/{project}/_apis/git/repositories?api-version=5.1
https://dev.azure.com/{organization}/{project}/_apis/git/repositories?api-version=5.1

268

First log in to your Azure DevOps organization using a browser. Then execute the

previous URL with the correct organization and team project name. See Figure 12-1.

You can pass additional URL parameters such as includeLinks. You can find

documentation about Git repositories at https://docs.microsoft.com/en-us/rest/

api/azure/devops/git/?view=azure-devops-rest-5.1.

Similar to retrieving Git repos in a team project, you can get all the changesets in a

team project’s TFVC repo using a REST API.

https://dev.azure.com/{organization}/{project}/_apis/tfvc/

changesets?api-version=5.1

You should use the Azure DevOps organization name and your team project name to

retrieve the changeset information. See Figure 12-2.

Figure 12-1.  Getting all the repositories using REST APIs

Chapter 12 REST APIs for Azure Git and TFVC Repos

https://docs.microsoft.com/en-us/rest/api/azure/devops/git/?view=azure-devops-rest-5.1
https://docs.microsoft.com/en-us/rest/api/azure/devops/git/?view=azure-devops-rest-5.1
https://dev.azure.com/{organization}/{project}/_apis/tfvc/changesets?api-version=5.1
https://dev.azure.com/{organization}/{project}/_apis/tfvc/changesets?api-version=5.1

269

You can refer to the TFVC REST API reference at https://docs.microsoft.com/en-

us/rest/api/azure/devops/tfvc/?view=azure-devops-rest-5.1 to learn more about

REST API methods available for TFVC.

In this lesson, we explored the simplest way to call the Azure DevOps REST API to

retrieve information for Azure Git Repos and TFVC.

�Lesson 12-2: Creating a PAT to Use with REST APIs
for Repos
Personal access tokens (PATs) in Azure DevOps allow you to authenticate and authorize

third-party applications, scripts, or tools to access Azure DevOps REST APIs. We

discussed how to create a PAT in detail in the Hands-on Azure Boards book of this series.

Let’s create a PAT to allow access to Azure Git Repos and TFVC in this lesson.

Figure 12-2.  Getting TFVC changesets using a REST API

Chapter 12 REST APIs for Azure Git and TFVC Repos

https://docs.microsoft.com/en-us/rest/api/azure/devops/tfvc/?view=azure-devops-rest-5.1
https://docs.microsoft.com/en-us/rest/api/azure/devops/tfvc/?view=azure-devops-rest-5.1

270

Click your user profile in Azure DevOps and click Security in the context menu. See

Figure 12-3.

On the Personal Access Tokens page, click New Token. A side pane will open; select

Full and Status for the scope to create a new PAT. See Figure 12-4.

Figure 12-3.  Security for a user

Figure 12-4.  Creating a PAT for code repositories

Chapter 12 REST APIs for Azure Git and TFVC Repos

271

Once you click the Create button, a PAT will be generated. Make sure to copy and

save it in a secure location as you will not be able to see the token value again once you

close the side pane. See Figure 12-5.

In this lesson, we created and saved a PAT to use with the REST API for Azure Git

Repos and TFVC.

�Lesson 12-3: Using the Repo REST APIs
from Postman
Postman is a popular tool used by developers to test REST APIs and more. There is a free

version you can download from https://www.getpostman.com/downloads/. Let’s look at

how to use Postman to work with Azure Git Repos and TFVC REST APIs.

Prerequisites: Download and install Postman.

Open Postman. You may have to sign in or sign up. Once Postman is opened, go to

the Authorization tab. Select Basic Auth. Then for the password, provide the token we

generated in Lesson 12-2. For the username, type any text. Provide the TFVC changeset

and get REST API URL, https://dev.azure.com/{organization}/{project}/_apis/

tfvc/changesets?api-version=5.1. Then click Send. See Figure 12-6.

Figure 12-5.  Generated PAT

Chapter 12 REST APIs for Azure Git and TFVC Repos

https://www.getpostman.com/downloads/
https://dev.azure.com/{organization}/{project}/_apis/tfvc/changesets?api-version=5.1
https://dev.azure.com/{organization}/{project}/_apis/tfvc/changesets?api-version=5.1

272

The REST API returned value is displayed in the Postman app. See Figure 12-7.

Figure 12-6.  Postman to execute REST API GET

Chapter 12 REST APIs for Azure Git and TFVC Repos

273

In this lesson, we explored how to set up Postman to use a REST API for Azure TFVC

repos. In the same way, you can call the Azure Git Repos REST APIs in Postman.

�Lesson 12-4: Using the Repo REST APIs
from PowerShell
PowerShell is now supported on all platforms in addition to just the Windows platform.

PowerShell can be used to call REST APIs for Azure Git Repos and TFVC. Let’s discuss

the steps to call Azure Git Repos REST APIs so that you can retrieve data from Azure Git

Repos and use the same steps to get data from TFVC repos via REST APIs.

Prerequisites: You have team projects with Azure Git Repos and TFVC repositories.

You need to create an authorization header as the first step to call a REST API in

Azure DevOps. The following code can be used in PowerShell to create an authorization

header:

param(

 [Parameter(Mandatory=$true)]

 [string] $token,

 [Parameter(Mandatory=$true)]

Figure 12-7.  REST API returning changesets

Chapter 12 REST APIs for Azure Git and TFVC Repos

274

 [string] $collectionUri,

 [Parameter(Mandatory=$true)]

 [string] $teamProjectName,

 [string] $restAPIversion = '5.1'

)

$User=""

Base64-encodes the Personal Access Token (PAT) appropriately

$base64AuthInfo = [Convert]::ToBase64String([Text.Encoding]::ASCII.

GetBytes(("{0}:{1}" -f $User,$token)));

$header = @{Authorization=("Basic {0}" -f $base64AuthInfo)};

Additional parameters other than the $token in the code can be discussed later in

the chapter. The token is used with the username (which can be an empty string) to

generate the Base64-encoded Authorization token. Then it is added to a variable named

$header in order to pass it as the header of the REST API call.

As the next step, we can add code to call the REST API to retrieve all Azure Git Repos

repositories in a team project.

$Uri = $collectionUri + '/' + $teamProjectName + '/_apis/git/

repositories?api-version=' + $restAPIversion

$repositories = Invoke-RestMethod -Method Get -ContentType application/json

-Uri $Uri -Headers $header

Then we can loop though the repositories to print each repo’s name.

foreach($repo in $repositories.value)

{

 Write-Host ("Repository name: {0}" -f $repo.name)

}

The complete PowerShell code is as follows:

param(

 [Parameter(Mandatory=$true)]

 [string] $token,

 [Parameter(Mandatory=$true)]

Chapter 12 REST APIs for Azure Git and TFVC Repos

275

 [string] $collectionUri,

 [Parameter(Mandatory=$true)]

 [string] $teamProjectName,

 [string] $restAPIversion = '5.1'

)

$User=""

Base64-encodes the Personal Access Token (PAT) appropriately

$base64AuthInfo = [Convert]::ToBase64String([Text.Encoding]::ASCII.

GetBytes(("{0}:{1}" -f $User,$token)));

$header = @{Authorization=("Basic {0}" -f $base64AuthInfo)};

$Uri = $collectionUri + '/' + $teamProjectName + '/_apis/git/

repositories?api-version=' + $restAPIversion

$repositories = Invoke-RestMethod -Method Get -ContentType application/json

-Uri $Uri -Headers $header

foreach($repo in $repositories.value)

{

 Write-Host ("Repository name: {0}" -f $repo.name)

}

You can call this script with the following syntax and print the repo names. See

Figure 12-8.

.\GetAzureGitRepos.ps1 -token patvalue' -collectionUri 'https://dev.azure.

com/orgname' -teamProjectName 'teamprojectname'

Chapter 12 REST APIs for Azure Git and TFVC Repos

276

In this lesson, we discussed how to use PowerShell to connect to the Azure Git Repos

REST API to retrieve data. In the same way, you can call TFVC REST APIs to retrieve data.

�Summary
In this chapter, we discussed how to use Azure DevOps REST APIs to retrieve data from

Azure Git Repos and TFVC repos. You can use this knowledge to create useful reports or

work with REST APIs to perform actions on repositories.

In this book, we discussed how to use repositories to support your version control

needs in Azure DevOps. We looked at setting up TFVC and Azure Git Repos in team

projects and the options to create branches, do pull requests, and review code. Further

we explored security, REST APIs, command-line options, and many other features

available in Azure DevOps repositories to give you a comprehensive overview.

In the next book of the series, Hands-on Azure Pipelines, we will be discussing the CI/

CD capabilities of Azure DevOps in detail.

Figure 12-8.  Retrieving repository data with PowerShell from the REST API

Chapter 12 REST APIs for Azure Git and TFVC Repos

277
© Chaminda Chandrasekara and Pushpa Herath 2020
C. Chandrasekara and P. Herath, Hands-on Azure Repos, https://doi.org/10.1007/978-1-4842-5425-7

Index

A
Azure DevOps organization, 2
Azure Git Repos

branching structure, 171–174
branch permissions, 225–234
command line (see Command

line)
import external Git repos, 257–260
pull request, 195–205
push local repo, 218–222
rebase option, 204
resolve conflict, 185–194
setting up wikis, 260

add markdown
content, 263

add markdown file, 262
creation, 261
Publish code, 263, 264
wiki pages, 264

tags
branch, 244
commit ID, 245
context menu, 246
creation, 242
multiple tags, 245
name and description, 242
page, 243
visible commit, 243

B
Branching strategy

development isolation, 106
feature isolation, 107
main only, 106
release isolation, 107
service and release

isolation, 108
Branch policy, 234

automatic reviewers, 240
build policy, 239
comment resolution

policy, 238
menu item, 235
merge policy, 238
reviewers policy, 237

C, D
Command line

az devops login, 210
Azure CLI, 209
Azure DevOps extension, 209
branch creation, 222–224
command palette, 214
copying clone URL, 211
git commit command, 215
.gitignore Generator, 213, 214

https://doi.org/10.1007/978-1-4842-5425-7

278

git push, 217, 218
master branch, 215
NET Core web app, 213
repository user setting, 216
VS code setting, 208

E
End-user license agreement (EULA), 112

F, G, H, I, J, K, L, M, N, O
Forking repo, 255–257

P, Q
Personal access token (PAT), 142

R
REST API

PAT creation, 269–271
Postman app, 271–273
PowerShell code, 273–276
retrieve data, 267–269

S
Shelvesets, 55

Azure DevOps Services/
Server, 59

context menu, 60
My Work window, 64
resume work, 68
sample code, 56
Shelve button, 58

Suspend button, 65
Team Explorer window, 57
unshelve changes, 62
unshelving, 60

Source Control Explorer, TFVC
add/edit workspace, 34
change file, 39
changeset details window, 48
changesets comparison, 50
compare window, 40
conflicts window, 46
local mode, 33
local workspace mode, 36
menu items, 37
merge tool, 46
pending changes window, 44
server mode, 33
server workspace mode, 36
source control pane option, 41
undeleting file, 53
Visual Studio menu, 51
workspace option, 33

Source Control Merge wizard, 94

T, U
Team Foundation Version

Control (TFVC)
auditing changes

compare option, 135
select Annotate, 136

Azure Git Repos (see Azure Git Repos)
button creation, 143
conflict file, 161–167
create team project, 140
empty Git repo, 141

Command line (cont.)

Index

279

new Git repo, 142
pull changes, 156–160
pushing code, 148–156
stash commands, 166–169
Visual Studio, 145–148
VS code, 144

branch creation, 85–88
branch/folder file level, 129

access control, 129
branch permission, 131
security control, 133, 134
security option, 130

branching (see Branching strategy)
branch structure, 92
Check-In Policy tab, 79
cherry-picking option, 103–105
code review, 68–76
command-line client, 111
comment policy, 80
Compare icon, 98
convert branch option, 89–91
developer command prompt, 109
enable/disable web editing, 128
Feature1 branch, 97
Lock file dialog, 77
Locking/unlocking file, 76
merge branch comparison, 98
merge conflicts, 99
merging and resolving conflicts, 91
Repos menu, 3
security controls, 125, 126
source branch version, 95
Source Control Explorer (see Source

Control Explorer, TFVC)
team project (see Team project,

creation)
Track Changeset icon, 100–103

Visual studio (see Visual Studio Team
Explorer)

VS code
access token method, 25
Azure Repos extension, 24
connect repo, 26
enter code, 26
extensions tab, 23
team sign-in, 25

work item query policy, 81
workspace command, 113–117

Team project, creation, 118
add command, 120
checkin command, 121
checkout command, 121
get command, 119
rename command, 122
undo command, 122

V, W, X, Y, Z
Visual Studio, 175

branch creation, 177
checkout option, 182
merge branch, 179
rebase option, 179, 180

Visual Studio team explorer, 5
add account, 6
check-in note, 21
check-in policy, 20
check-out settings, 20
connect URL, 7
file types, 16
local workspace, 19
Map & Get button, 8
pending changes, 22
server workspace, 18

Index

280

solution explorer window, 8–16
source control settings, 19

VS code
branch creation, 183, 184
checkout command, 185

VS tags
command line, 251–255
commit history, 249
context menu, 248
creation, 250
team explorer, 247

Visual Studio team explorer (cont.)

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started with Azure Team Foundation Version Control
	Lesson 1-1: Creating a Team Project with TFVC and Adding a TFVC Repo to the Existing Team Project
	Lesson 1-2: Using Visual Studio Team Explorer
	Lesson 1-3: Adding New/Existing Solutions to TFVC
	Lesson 1-4: Changing Settings for TFVC in Visual Studio
	File Types
	Workspace Settings
	Source Control Settings
	Check-Out Settings
	Check-in Policies
	Check-in Notes

	Lesson 1-5: Connecting to TFVC in VS Code
	Summary

	Chapter 2: Working with Team Foundation Version Control: Part1
	Lesson 2-1: Exploring the Source Control Explorer
	Lesson 2-2: Setting Workspace Mode to Local and Server
	Local Workspace Mode
	Server Workspace Mode

	Lesson 2-3: Looking at Source Control Explorer Menu Items
	Lesson 2-4: Editing and Checking In Your Changes
	Lesson 2-5: Resolving Conflicts During Code Check-in
	Lesson 2-6: Viewing the History and Comparing the Changes
	Lesson 2-7: Setting Source Control Tool Options
	Lesson 2-8: Deleting and Restoring Files
	Summary

	Chapter 3: Working with TFVC: Part 2
	Lesson 3-1: Using Shelvesets
	Lesson 3-2: Suspending and Resuming Work
	Lesson 3-3: Doing Code Reviews with TFVC
	Lesson 3-4: Using Lock and Unlock
	Lesson 3-5: Applying Check-in Policies
	Summary

	Chapter 4: Team Foundation Version Control Branching
	Lesson 4-1: Creating a Branch
	Lesson 4-2: Converting a Folder to a Branch
	Lesson 4-3: Merging and Resolving Conflicts
	Lesson 4-4: Tracking Changesets
	Lesson 4-5: Cherry-Picking Changesets
	Lesson 4-6: Exploring TFVC Branching Strategies
	Main Only
	Development Isolation
	Feature Isolation
	Release Isolation
	Servicing and Release Isolation

	Summary

	Chapter 5: Team Foundation Version Control: Command Line
	Lesson 5-1: Getting Started with the Team Foundation Command Line
	Developer Command Prompt for Visual Studio
	Team Explorer Everywhere Command-Line Client

	Lesson 5-2: Using Workspace Commands
	workspaces Command
	workspace Command

	Lesson 5-3: Running Various Commands
	get
	add
	checkin
	checkout (or edit)
	rename
	undo

	Summary

	Chapter 6: Team Foundation Version Control: Security
	Lesson 6-1: Setting Up TFVC Security at the Team Project Level
	Lesson 6-2: Applying Permissions at the Branch/Folder or File Level
	Lesson 6-3: Auditing Changes and Finding Out Who Did What
	Summary

	Chapter 7: Getting Started with Azure Git Repos
	Lesson 7-1: Creating an Azure Git Repo
	Creating a Team Project with Azure Git Repos
	Creating Additional Git Repos in a Team Project

	Lesson 7-2: Cloning an Azure Git Repo
	VS Code
	Visual Studio

	Lesson 7-3: Creating and Pushing Code to Azure Git Repos
	Lesson 7-4: Getting Changes from Others and Sharing Code
	Lesson 7-5: Resolving Conflicts
	Lesson 7-6: Stashing the Changes
	Summary

	Chapter 8: Branching with Azure Git Repos
	Lesson 8-1: Creating Branches
	Lesson 8-2: Working with Branches in Visual Studio and VS Code
	Visual Studio
	Creating and Merging Branches
	Rebase
	Checkout

	VS Code
	Creating a New Branch
	Checkout

	Lesson 8-3: Merging Changes and Resolving Conflicts
	Lesson 8-4: Using Pull Requests and Code Reviews
	Lesson 8-5: Rebasing While Completing a Pull Request
	Summary

	Chapter 9: Using the Command Line with Azure Git Repos
	Lesson 9-1: Getting Started with the Command Line
	Lesson 9-2: Cloning an Azure Git Repository and Pushing Code Using the Command Line
	Lesson 9-3: Creating a Git Repository Locally and Pushing It to Azure Git Repos
	Lesson 9-4: Creating Azure Git Repo Branches Using the Command Line
	Summary

	Chapter 10: Azure Git Repos: Security
	Lesson 10-1: Setting Azure Git Repos Permissions
	Lesson 10-2: Setting Up Azure Git Repos Branch Policies
	Summary

	Chapter 11: Azure Git Repos Extras
	Lesson 11-1: Using Git Tags
	Creating Tags with the Azure DevOps Web Portal
	Creating Tags with Visual Studio
	Creating Tags with the Command Line

	Lesson 11-2: Forking a Repo
	Lesson 11-3: Importing from an External Repository
	Lesson 11-4: Setting Up Azure Git Repos Markdown Files as a Wiki
	Summary

	Chapter 12: REST APIs for Azure Git and TFVC Repos
	Lesson 12-1: Using Repo REST APIs from a Browser to Retrieve Data
	Lesson 12-2: Creating a PAT to Use with REST APIs for Repos
	Lesson 12-3: Using the Repo REST APIs from Postman
	Lesson 12-4: Using the Repo REST APIs from PowerShell
	Summary

	Index

