
www.allitebooks.com

http://www.allitebooks.org

Haskell Financial Data Modeling
and Predictive Analytics

Get an in-depth analysis of financial time series from
the perspective of a functional programmer

Pavel Ryzhov

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Haskell Financial Data Modeling and Predictive Analytics

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1221013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-78216-943-7

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Pavel Ryzhov

Reviewers
Gregory Collins

Ivan Perez

Acquisition Editor
Sam Birch

Commissioning Editor
Harsha Bharwani

Technical Editors
Krishnaveni Haridas

Chandni Maishery

Project Coordinator
Joel Goveya

Proofreader
Clyde Jenkns

Indexer
Tejal Soni

Graphics
Ronak Dhruv

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Pavel Ryzhov has graduated from the Lomonosov Moscow State University
in Russia in the field of mathematical physics, Toda equations and Lie algebras.
In the past 10 years, he has worked as a Technical Lead and Senior Software
Engineer. In the last three years, Pavel lead a startup company that mainly provided
mathematical and web software development in Haskell. Also, he works on port of
Quantlib, an HQuantLib project in his spare time.

I would like personally to thank my wife Marina and daughter
Marta for supporting my beginnings, my parents for encouraging
me, and the enormously helpful Haskell community for providing
the best tools in the world.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Gregory Collins is a software engineer at Google Zürich, where he works on web
search indexing. He has done M.Sc. in Computer Science from the Yale University,
and has been programming in Haskell for over a decade.

Ivan Perez has been passionate about programming and mathematics since he was
seven years old. He first learned Basic and Logo, which allowed him to experiment
with basic programs and computer graphics. After using Visual Basic for several
years, he went to a university, where he started programming in many other
languages, including Ada, Prolog, and Haskell. This changed his view of software
development forever, and he decided to focus on functional and logic programming
in his career.

He obtained the degree of engineering in Computer Science from the Technical
University of Madrid (UPM) in 2008, and a master's degree in Computational
Logic in 2009 from the same university. He collaborated and worked with the
Babel Research Group at UPM from 2003 to 2010, and worked for IMDEA Software
from 2007 to 2009. In 2012, he also worked for the High Performance Computing
Center (HLRS) at the University of Stuttgart, as part of a research project involving
functional programming and supercomputing.

www.allitebooks.com

http://www.allitebooks.org

He is the founder of Keera Studios (now Keera Studios Ltd.), a UK-based company
that uses Haskell, Scala, and other cool languages to create desktop, mobile, and web
applications, and games.

I would like to thank the author, the editors, and the people at Packt
for making this book possible. I would like to thank my wife, Natalia
for her constant support and love, and my family and friends for
always being there. I would also like to thank my associates and
colleagues, who had the patience to listen to my crazy ideas and to
embark with me on some of them. And last, but not the least, I would
like to thank all the clients and companies who took a leap of faith
with functional programming, and the whole Haskell community
who made working with this language the most joyful experience.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with the Haskell Platform 5

The Haskell platform 6
Quick tour of Haskell 10

Laziness 10
Functions as first-class citizens 11
Datatypes 12
Type classes 13
Pattern matching 14
Monads 15
The IO monad 16

Summary 17
Chapter 2: Getting Your Hands Dirty 19

The domain model 19
The Attoparsec library 20
Parsing plain text files 21
Parsing files in applicative style 22
Outlier detection 23

Essential mathematical packages 23
Grubb's test for outliers 25

Template Haskell, quasiquotes, type families, and GADTs 26
Persistent ORM framework 27

Declaring entities 28
Inserting and updating data 28
Fetching data 30

Summary 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Measuring Tick Intervals 31
Point process 31
Counting process 31
Durations 32

Experimental durations 32
Maximum likelihood estimation 34
Generic MLE implementation 35

Poisson process calibration 35
MLE estimation 36
Akaike information criterion 37
Haskell implementation 38

Renewal process calibration 38
MLE estimation 38

Cox process calibration 39
MLE estimation 41

Model selection 41
The secant root-finding algorithm 42

The QuickCheck test framework 43
QuickCheck test data modifiers 45

Summary 47
Chapter 4: Going Autoregressive 49

The ARMA model definition 49
The Kalman filter 50
Matrix manipulation libraries in Haskell 52

HMatrix basics 52
The Kalman filter in Haskell 54
The state-space model for ARMA 55
ARMA in Haskell 55
ACD model extension 56
Experimental conditional durations 57

The Autocorrelation function 58
Stream fusion 59
The Autocorrelation plot 61
QML estimation 61
State-space model for ACD 63

Summary 63
Chapter 5: Volatility 65

Historic volatility estimators 65
Volatility estimator framework 66

Table of Contents

[iii]

Alternative volatility estimators 67
The Parkinson's number 68
The Garman-Klass estimator 69
The Rogers-Satchel estimator 69
The Yang-Zhang estimator 69
Choosing a volatility estimator 70
The variation ratio method 70

Forecasting volatility 71
The GARCH (1,1) model 72
Maximum likelihood estimation of parameters 73
Implementation details 74
Parallel computations 75

Code benchmarking 75
Haskell Run-Time System 77

The divide-and-conquer approach 78
GARCH code in parallel 81

Evaluation strategy 81
Summary 83

Chapter 6: Advanced Cabal 85
Common usage 86
Packaging with Cabal 86
Cabal in sandbox 87
Summary 89

Appendix: References 91
Index 93

Preface
Welcome to Haskell Financial Data Modeling and Predictive Analytics. You will
start with the most distinctive features of the language, then go through the data
collection process with parsing, cleansing and archiving, and then come directly to
data analysis and manipulation. You will learn a set of basic financial models that are
commonly used in the industry and how they can be implemented in Haskell. At the
end of the book you will learn deterministic parallelism and compiler-driven stream
fusion optimization.

What this book covers
Chapter 1, Getting Started with the Haskell Platform, discusses a little bit of Haskell
history, how to get the Haskell platform installed, and walks through a quick tour
of the main features of the language.

Chapter 2, Getting your Hands Dirty, covers the first step of any data analytics project;
that is, getting an input data into an appropriate database. You will learn how to
write parsers in combinator style, how to work with databases by means of Persistent
ORM, and how to establish outlier detection procedures to cut off erroneous data.

Chapter 3, Measuring Tick Intervals, is the most mathematical chapter, as you will learn
point processes that are models of orders arriving from exchanges. It also covers the
property-based test framework, QuickCheck.

Chapter 4, Going Autoregressive, covers a classical autoregressive model of
intertick duration, and finds out how to use Haskell stream fusion to achieve
near-C performance of the calibration code.

Chapter 5, Volatility, covers one of the most successful volatility model of financial
mathematics–Generalized Autoregressive Conditional Heteroskedasticity.
Haskell's approach to parallel computations is explained, and a divide-and-conquer
metaalgorithm is shown in practice.

Preface

[2]

Chapter 6, Advanced Cabal, explains the main approach to packaging, building, and
maintaining dependencies of Haskell projects.

Appendix, References, contains references for the topics in the book, and explains them
in greater details.

What you need for this book
In order to run most of the examples in this book you will need only Windows,
Linux, or Mac OS X installed. All the needed software will be installed with the
Haskell platform installer.

For Chapter 2, Getting your Hands Dirty, you will need an installation of one of the
RDBMS: Sqlite, MySql, PostgreSQL, MongoDB, or CouchDB.

Who this book is for
Developers who are working in finance and would like to know how functional
programming might be applied in the area will find this book of great use.
Preliminary knowledge of Haskell is welcomed but is not required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The trace of the program is written into
the .tix files."

A block of code is set as follows:

parProduct :: Num a => [a] -> a
parProduct [] = 1
parProduct [x] = x
parProduct xs = (right `using` rpar) * left
 where
 n = length xs `div` 2
 (leftL, rightL) = splitAt n xs
 left = product leftL
 right = product rightL

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

$./QuickTestsFull

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
on the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with
the Haskell Platform

The first version of Haskell was standardized in 1990. After a series of intermediate
standards, the minimal, stable, and portable version of the language was published
as "The Haskell 98 Report" in February 1999. This successful standard was revised
in 2003 and published as "Haskell 98 Language and Libraries: The Revised Report".
This is the most supported version of the language and it is implemented in many
compilers and interpreters of Haskell. The latest specification, Haskell 2010, adds
Foreign Function Interface (FFI) for binding to other programming languages,
fixes some syntax issues, and introduces several pluggable language extensions.
Throughout this book, we will use Haskell 2010.

So what is Haskell? It is a fast, type-safe, purely functional programming language
with a powerful type inference. Having said that, let us try to understand what it
gives us.

First, a purely functional programming language means that, in general, functions
in Haskell don't have side effects. There is a special type for impure functions, or
functions with side effects.

Then, Haskell has a strong, static type system with an automatic and robust type
inference. This, in practice, means that you do not usually need to specify types of
functions and also the type checker does not allow passing incompatible types. In
strongly typed languages, types are considered to be a specification, due to the
Curry-Howard correspondence, the direct relationship between programs and
mathematical proofs. Under this great simplification, the theorem states that if a value
of the type exists (or is inhabited), then the corresponding mathematical proof is
correct. Or jokingly saying, if a program compiles, then there is 99 percent probability
that it works according to specification. Though the question if the types conform, the
specification in natural language is still open; Haskell won't help you with it.

Getting Started with the Haskell Platform

[6]

The Haskell platform
The glorious Glasgow Haskell Compilation System, or simply Glasgow Haskell
Compiler (GHC), is the most widely used Haskell compiler. It is the current de
facto standard. The compiler is packaged into the Haskell platform that follows
Python's principle, "Batteries included". The platform is updated twice a year
with new compilers and libraries. It usually includes a compiler, an interactive
Read-Evaluate-Print Loop (REPL) interpreter, Haskell 98/2010 libraries (so-called
Prelude) that includes most of the common definitions and functions, and a set
of commonly used libraries. If you are on Windows or Mac OS X, it is strongly
recommended to use prepackaged installers of the Haskell platform at
http://www.haskell.org/platform/.

Many Linux distributions include the Haskell platform in their repositories.
Though it becomes less maintained, as more and more developers tend to stay on
the bleeding edge, it is better to just install the core. For instance, on Debian-based
systems, you can get started by running the following command:

sudo apt-get install ghc cabal-install

cabal update

Even though Windows support is quite impressive, Linux/Mac OS X installation
usually has a broader support because they include the free and complete C/C++
compiler tool chain, GCC. Although MinGW32 for Windows tries to provide
such toolkit, it usually lacks a few GNU libraries to be completely compatible
with the Linux environment. The missing 64-bit support on Windows might be
crucial for data intensive applications. So for advanced development, you require
a Unix-based machine.

For example, installation on Mac OS X 10.8 is quite straightforward and can be done
as follows:

1. Install the Command Line Tools for Xcode package from
http://developer.apple.com to get GNU Compiler Chain (GCC).
It is required for Haskell compiler to work.

2. Download a 64-bit package of Haskell platform from http://haskell.org.
3. Double-click on the package and the installer appears. It warns you that

the Haskell platform requires GCC. Click on Continue, as shown in the
following screenshot:

Chapter 1

[7]

4. The platform can be installed only for all users, so just click on Continue:

www.allitebooks.com

http://www.allitebooks.org

Getting Started with the Haskell Platform

[8]

5. Now, you can modify the location of installation. However, it is
recommended to leave it to default:

6. The installer asks for elevated credentials and you need to enter
a correct password:

Chapter 1

[9]

7. The platform writes a lot of files and sets up the environment:

8. The installation is now complete!

Getting Started with the Haskell Platform

[10]

9. Now, you can try to run the Haskell interpreter by running GHCi. And
if you can see something similar to the following screenshot, this installation
was successful:

After installing it, the following tools will be available:

• The GHC compiler
• An interactive GHCi interpreter
• The packaging tool Cabal

But also you'll need a text editor. If you prefer a full-pledged IDE, then Leksah
(http://leksah.org) might be a good choice. Otherwise, both Emacs and VIM
have excellent support of Haskell including, but not limited to, syntax highlighting,
code formatting, integrating with GHCi and type and tag browsers; even though,
examples in this chapter require only a working interpreter.

Quick tour of Haskell
To start with development, first we should be familiar with a few basic features of
Haskell. We really need to know about laziness, datatypes, pattern matching, type
classes, and basic notion of monads to start with Haskell.

Laziness
Haskell is a language with lazy evaluation. From a programmer's point of view
that means that the value is evaluated if and only if it is really needed. Imperative
languages usually have a strict evaluation, that is, function arguments are evaluated
before function application. To see the difference, let's take a look at a simple
expression in Haskell:

let x = 2 + 3

Chapter 1

[11]

In a strict or eager language, the 2 + 3 expression would be immediately evaluated to
5, whereas in Haskell, only a promise to do this evaluation will be created and the value
will be evaluated only when it is needed. In other words, this statement just introduces
definition of x which might be used afterwards, unlike in strict language where it is
an operator that assigns the computed value, 5 to a memory cell named x. Also, this
strategy allows sharing of evaluations, because laziness assumes that computations can
be executed whenever it is needed and therefore, the result can be memorized. It might
reduce the running time by exponential factor over strict evaluation.

Laziness also allows to manipulate with infinite data structures. For instance, we can
construct an infinite list of natural numbers as follows:

let ns = [1..]

And moreover, we can manipulate it as if it is a normal list, even though some
caution is needed, as you can get an infinite loop. We can take the first five elements
of this infinite list by means of the built-in function, take as follows:

take 5 ns

By running this example in GHCi you will get [1,2,3,4,5].

Functions as first-class citizens
The notion of function is one of the core ideas in functional languages and Haskell is
not an exception at all. The definition of a function includes a body of function and
an optional type declaration. For instance, the take function is defined in Prelude
as follows:

take :: Int -> [a] -> [a]
take = ...

Here, the type declaration says that the function takes an integer as the argument
and a list of objects of the a type, and returns a new list of the same type. Also
Haskell allows partial application of a function. For example, you can construct a
function that takes first five elements of the list as follows:

take5 :: [a] -> [a]
take5 = take 5

Also functions are themselves objects, that is, you may pass a function as an argument
to another function. Prelude defines map function as a function of a function:

map :: (a -> b) -> [a] -> [b]

map takes a function and applies it to each element of the list. Thus functions are
first-class citizens in the language and it is possible to manipulate with them as if
they were normal objects.

Getting Started with the Haskell Platform

[12]

Datatypes
Datatype is the core of a strongly-typed language as Haskell. The distinctive
feature of Haskell datatypes is that they all are immutable; that is, after an object
is constructed it cannot be changed. It might be weird for the first sight, but in
the long run, it has several positive consequences. First, it enables computation
parallelization. Second, all data is referentially transparent; that is, there is no
difference between the reference to an object and the object itself. These two
properties allow the compiler to reason about code optimization at a higher level
than what the C/C++ compiler can.

Now, let's turn to our domain model to show how datatypes are defined in Haskell.
Consider data model in a quote-driven market. The market maker posts bid and ask
quotes. We can express these facts in Quote.hs.

The following are the three common ways to define datatypes in Haskell:

• The first declaration just creates a synonym for an existing datatype and type
checker won't prevent you from using Integer instead of TimeStamp. Also,
you can use a value of the TimeStamp type with any function that expects to
work with an Integer datatype.

• The second declaration creates a new type for prices and you are not allowed
to use Double instead of Price. The compiler will raise an error in such cases
and thus it will enforce the correct usage.

• The last declaration introduces Algebraic Data Type (ADT) and says that the
Quote type might be constructed either by the AskQuote data constructor, or
by BidQuote with timestamp and price as its parameters. The Quote itself is
called as a type constructor.

Type constructor might be parameterized by type variables. For example, the Maybe and
Either types quite oftenly used standard types, and are defined in the Quotes2.hs file.
Here, a and b are type variables; that is, any type can be placed instead of them there.
The Maybe type is often used to represent calculation that might have ended without
results. If the logarithm is defined only on the positive half of the real line, we can define
a type-safe version of the logarithm function in Log.hs. This version will always remind
you to handle the NaN operation in your code. What is more, the compiler will make
an exhaustive check to see if all paths are covered, and it will warn you if not. Please,
also note that we used a new syntactic construction, a guard, to define conditions of
function application. You can use any expression evaluating to Bool in guards. Also, the
compiler checks to see if all the right-hand definitions have the same type, even if the
type is not declared explicitly. It ensures that the function type is unambiguous.

The Either type is commonly used for functions that can result either with an error, or
with a value, and the Right constructor used to hold "right" values in LogEither.hs.

Chapter 1

[13]

In fact, data constructors are normal functions in Haskell that return or construct a
new object. If you query GHCi about type of the Left or Right constructor, it will
print out the following types:

Prelude> :t Left

Left :: a -> Either a b

Prelude> :t Right

Right :: b -> Either a b

This fact allows us to pass a data constructor as the function argument, create a
partially "constructed" datatype, and everything else that is possible to do with
common functions in Haskell.

Type classes
Type classes in Haskell are not classes as in object-oriented languages. It is more
similar to the interfaces with optional implementation. You can find them in other
languages as traits, mixins, and so on but unlike in them, this feature in Haskell
enables ad-hoc polymorphism; that is, a function can be applied to arguments of
different types. It is also known as function overloading, or operator overloading.
A polymorphic function can specify different implementation for different types.

By principle, the type class consists of function declarations over some objects. The
Eq type class is a standard type class that specifies how to compare two objects of the
same type as given in Eq.hs.

Here, Eq is the name of the type class, a is a type variable and == and /= are the
operations defined in the type class. This definition means that some type, a is of
Eq class if it has defined the == and /= operation. Moreover, the definition provides
default implementation of the /= operation. And if you decide to implement this
class for a datatype, then you need to provide single operation implementation.
For example, we might make Price as an instance of the Eq type class as given in
EqPrice.hs.

We have just defined a quite naïve implementation of the Eq type class. With such
definition, we can start to use functions that work over any type that implements the
Eq type class. For instance, Prelude has the following functions for searching in lists
that rely on the implementation of Eq:

elem :: (Eq a) => a -> [a] -> Bool
notElem :: (Eq a) => a -> [a] -> Bool
lookup :: (Eq a) => a -> [(a,b)] -> Maybe b

Getting Started with the Haskell Platform

[14]

The constraint (Eq a) => requires the a type to have the Eq type class implemented.
The first function checks if the element is in the list. The second one is a negation
of an element. And the last one looks up for a key in the list of tuples. But it is
important to note that type classes help to write very generic functions that work
across many types just by putting a minimal required constraint on them. In object-
oriented languages, it is usually implemented by interfaces, though Haskell allows
you to extend library-defined datatype by implementing any type class.

There are a large number of useful type classes defined in Prelude. For example, Eq
is used to define equality between two objects, Ord is used to specify total ordering,
Show and Read are used to introduce a string representation of the object, and
the Enum type class is used to describe enumerations, that is, datatypes with null
constructors. It might be quite boring to implement this quite trivial but useful type
classes for each datatype, so Haskell supports automatic derivation of most of the
standard type classes. This is given in Price.hs.

Now, objects of the Price type can be converted from/to string by means of
read/show functions and compared with themselves using equality operators.
We will not cover all the details of the derivation. Those who want to know all the
details can look them up in the Haskell language report.

Pattern matching
Pattern matching is a core feature that makes Haskell so concise and readable. In
simple words, you should specify a pattern to which some input should conform
and then provide implementation. Consider the classic example of factorial as given
in Pattern1.hs.

We can see that the factorial function accepts objects that can be compared for
equality, specified by the Eq type class, and are of type class Num, or numbers. Then,
if the input is zero, the output is one. And after that for all the other inputs, the
function is defined recursively, which means by itself. Recursion is an important
construct in Haskell, because the language supports declarative description of
computations; that is, you need to specify what should be computed but not how
it should be done. That is why there is no for and while loops; you should use
recursion instead of them. The compiler has optimization techniques for recursion,
and it doesn't introduce a penalty that is usual for imperative languages in the form
of stack overflows. Although imperative languages usually have a tail recursion
optimization built into compilers, GHC supports a generalized tail recursion that
covers a lot of cases. So it is usually better to pay more attention to readability and
correctness of the recursion code than to achieve pure tail recursion.

Chapter 1

[15]

The order of pattern matching is quite important; here we will explicitly state that
the first rule should be used before the second. If you swap these two declarations,
the compiler will display the following warning:

 Warning: Pattern match(es) are overlapped

 In an equation for `factorial': factorial 0 = ...

The compiler warns you that the last pattern has been already matched by the
previous declaration as given in Pattern2.hs.

Also the datatype structure needs to be matched. Here, we will provide a "special"
treatment of zero prices and only then a standard implementation, Pattern3.hs.

It is also permitted to omit some parts that are not important for pattern matching,
as it is done with TimeStamp, and it is used in nested matching for deconstructing
inner datatypes.

Monads
The term monad comes from the category theory, which is a branch of mathematics
that formalizes mathematics itself, and its concepts as a collection of objects and
arrows. But from the point of view of a Haskell programmer, it is better to think of a
monad as an abstract datatype that represents computation and supports common
semantics. Monad defines how to chain computations of this type together. Thus, it
allows a programmer to build computation pipelines to process data in steps. You can
find monadic characteristics in many programming languages. Sometimes they are
named as "programmable semicolons" by analogy from imperative languages, where
semicolons are used to chain individual statements. The practical side of monads is
that they allow to hide state. In fact, they are required only for I/O code but usage of
monads simplifies a code that passes the state around. Thus, we don't need to write
functions that takes input and state and returns output and, probably, the new state.

A monad contains a type constructor and two operations, return and bind (>>=).
The return operation injects a plain value into the monad. The bind operation does
the reverse process, that is, it extracts the value and passes it to the next function in
the pipeline. But, it is worth mentioning that monads don't need to provide a way to
get values outside them. The real-world definition of monad is extended by the fail
operation and some shortcuts of the bind operation.

MonadPrelude.hs

Getting Started with the Haskell Platform

[16]

The Prelude lists and Maybe are also monads. We can use the Maybe type as a
primitive type of checked exception; that is, at any point if the computation fails,
then the rest of computation should be skipped and return Nothing, otherwise, if all
steps are successful, then the final result should be Just x for some value x.

Consider a simple example of summation of two Maybe values. Let's try to write an
explicit version of such function:

SumExplicit.hs

Here we define an explicit type of function; this function takes two numbers of type
Num class wrapped into the Maybe monad and returns their sum in case of success.
As you can see, it is a quite lengthy and ugly definition of such sum. We have to
duplicate the same case logic twice for each argument.

Let's take a look at how Maybe implements a monad type class in the Prelude list:

MaybePrelude.hs

If the value is Just x for some x, bind is defined as f applied to x. If the value is
Nothing, then nothing can be passed on to f, and hence Nothing is returned. This
means that once a function in a chain of monadic Maybe operations returns Nothing,
the whole chain will return Nothing. The Just data constructor is a return operation.
So let's rewrite summation using bind and return operations:

SumMonad.hs

It becomes more cryptic, but it is definitely a shorter version of the same function.
To avoid such secret messages, Haskell has a do syntactic sugar for monads:

SumClear.hs

Now it is significantly better. The rule of thumb is that you should remember that
implicit bind operations are inserted between lines.

The IO monad
Being a pure functional language, Haskell requires a marker of impure functions
and IO monad is that marker. The Main function is an entry point for any Haskell
program. It cannot be a pure function because it changes state of the "World", at least
by creating a new process in OS. Let us take a look at its type:

Main.hs

Chapter 1

[17]

The IO () type signifies that there is a computation that performs an I/O operation
and returns an empty result. There is really only one way to perform I/O in Haskell:
Use it in the main procedure of your program. GHCi allows direct execution of any
I/O code. It does so only because all the execution is already carried inside the IO
monad of GHCi. Also it is not possible to execute an I/O action from an arbitrary
function, unless that function is in the IO monad and called from main, directly or
indirectly. Since IO is a monad that doesn't provide a way to extract a "real-world"
component, once you get into the IO monad, you will be stuck with it. A pure function
can be and will be always called from the I/O monad as program without inputs and
outputs doesn't make any sense. But a pure function cannot call impure code. The do
notation is used in the main function, just as it is used for any other monad.

I/O functions for standard input/output device are always useful:

StdIO.hs

You can use putStr/putStrLn to output a string to the standard output and
getLine to read a line from the standard input.

Summary
In this chapter, we learned a bit of Haskell history, made a quick overview of language
basics, and figured out how to install the Haskell platform. In the next chapter, we will
continue getting into more advanced Haskell features, such as template Haskell and
quasiquotes, along with building a tick database from CSV sources.

www.allitebooks.com

http://www.allitebooks.org

Getting your Hands Dirty
Market microstructure studies usually means messing a lot of data. One day of trade
can easily generate more than 50 thousands of records for single liquid security. And
we usually want a lot of securities and a lot of days, so security history databases
might grow to enormous sizes. Therefore, we are going to explore three main stages
of data preparation: data acquisition, data description, and data quality assessment.

Data acquisition is about getting raw data from exchange, ECN or ATS and putting
them into a less common format. You might get inputs in a variety of data formats.
Comma Separated Values (CSV), XML, FIX – just to name a few of them. So the
first step is to parse data and load them into a database in a format closely
resembling the source.

Data description is a data enrichment process. Raw ticks from the previous stage get
their descriptive values, for example, each tick can be marked after it happens at its
opening or closing hours, day of the week, or if there was some significant news that
day. Such data enrichment helps a lot to fetch the required data if a specific influence
of events or circumstances are studied.

The domain model
These are the following main types of markets which exist:

• Order-driven
• Quote-driven

Getting your Hands Dirty

[20]

They differ in the way they quote and what kind of information is usually available
from them. The common examples of order-driven markets are classical stock markets,
such as London Stock Exchange (LSE) or New York Stock Exchange (NYSE). Those
stock markets usually publish information about all trades that happened during the
day and if you're listed on the exchange then order stream is also available. Quote-
driven markets are usually Over-The-Counter markets; that is, when a broker provides
a stream of buy and sell prices, completed trades, and sometimes active limit orders.
Thus, in fact we have three base entities in our domain model: trades, orders, and
quotes. All of them are found in their first approximation in Domain.hs.

Here we can see a record syntax of datatype declaration. By Haskell specification, for
instance, tTime getter is a function of the Trade -> LocalTime type, that is, it takes
a trade and extracts time field from it. There are no setters in Haskell because of data
object immutability.

We don't mention security ticker or code in those datatypes because it is usually
advisable to partition data by ticker from scalability and performance point of view.

The Attoparsec library
A CSV file is the most portable and widely used format for data transfer. In fact
almost every data provider can provide CSV files. So we should be able to parse
them in a fast and a type-safe manner.

Attoparsec is an amazing parser library written by Brian O'Sullivan. It is loosely
based on the standard library Parsec but allows parsing of binary formats and also
is useful for FIX parsers. It is written with performance and efficiency in mind.

To install the library you should use the packaging tool Cabal. For the first-time
usage, Cabal should build index of packages available at the Haskell package
repository Hackage (http://hackage.haskell.org) and then you should run
an update process as follows:

cabal update

It might take some time depending on your network connectivity. It is advisable to
make updates from time to time. After the update you should install the Attoparsec
library by running the Cabal's install command:

cabal install attoparsec

Cabal will download all dependencies, build them, and finally compile and install
the Attoparsec library.

Chapter 2

[21]

Parsing plain text files
Consider parsing of a CSV file with quotes that can be obtained from a broker in the
following format:

Time,Ask,Bid,AskVolume,BidVolume

01.10.2012 00:00:00.741,1.28082,1.28077,1500000.00,1500000.00

And our task is to parse such a file into data objects for further processing. A bit
longer source code listing is found in CsvParser.hs, but we are going to walk
through it and discuss every detail.

In the first line we define the OverloadedStrings language extension in a language
pragma. The built-in String type is defined in Haskell as type String = [Char].
This may be inefficient in some contexts and we need to use more suitable string
representation that could be, for instance, easier to manipulate, better performing or
consuming less memory. This language extension instructs the compiler that strings
in code could be of custom type and refer to our own representation. When enabled,
strings no longer get the String type, but IsString a => a, where IsString is
defined in IsString.hs.

There are a lot of IsString instances available for different types. In particular, the
Text type, an efficiently packed String type, also have instance implementation. And,
we are going to use this type extensively in parsing.

Next we declare the CsvParser module that exports two functions csvFile and
quote, and the Quote datatype with all internals as two dots in brackets specify it.
Then the bunch of imports of required modules goes. For the sake of simplicity, we
have included the Quote type into this module.

Now the parser part starts defining the csvFile function. This function defines
Parser [Quotes]. The many1Parser combinator applies the quote parser one or
more times and returns a list of parsing results. Then the endOfInput parser matches
only if all the input has been consumed. Idiomatically, one might read it as there are
many quotes in input and then at the end of the input, parse strings to quotes and
put them to the list. The quote parser is read in the same manner as the csvFile
parser. It expects time and four doubles separated by commas and then ends the line
and constructs the Quote object.

The qcomma parser uses the built-in char parser to match comma and discards the
result of parsing. Also the Attoparsec library provides string parsers, string and
stringCI (for case-insensitive match).

Getting your Hands Dirty

[22]

Of course, we can write our own time parser, but it is a bit more difficult and there
already exists a library function, parseTime in the Data.Time module that can parse
the time. Therefore, we take all letters till the comma is found, and then unpack the
Text string into string and parse it using parseTime.

Parsing files in applicative style
To describe the applicative style, first we need to understand functors, or instances
of the Functor type class. Typically, they are the structures that can be mapped over.
The Functor type class defined in Functor.hs.

Thus fmap defines how to map a function to another function defined on the instances
of this type class. It is illustrated with the Maybe functor in MaybeFunctor.hs.

Here we defined that if Maybe has a value, then the function must be applied to that
value, otherwise Nothing should be returned. Thus we can promote a function over
primitive types to another function between the two Maybe values.

Applicative functor is a functor with additional property: you can apply function
inside a functor to values that can be either outside or inside the functor. This is
defined in Applicative.hs.

So this definition introduces a class constraint. It says that each instance of the
Applicative type class must also be an instance of Functor. Thus it has the fmap
function for "outside" mapping. The pure function provides a method to inject value
into the functor, or in other words it wraps a value into some default context. The
<*> function has a type closely resembling the fmap type but it takes a functor with
a function inside and applies it to the next functor and that is the fmap function for
"inside". The real power of applicative functors lies in the ability to combine different
computations such as I/O computations, non-deterministic computations, and so on.

The parser is rewritten in applicative style in CsvParserApplicative.hs.

What do we see here? The Control.Applicative import is added to support
applicative functors. The csvFile function has become a one-liner. The <* operator
has the Applicative f => f a -> f b -> f a type and it combines two actions
discarding the value of the second operator.

The quote parser also shrunk to a few words. It uses the <$> operator that is defined
in the Data.Functor module as Functor f => (a -> b) -> f a -> f b and it
provides a convenient way to apply a function over an applicative functor. Please,
also note that data constructor is also a function in Haskell and that is why we can
combine a constructor and data with this operator.

Chapter 2

[23]

The qcomma parser also became a one-liner. The qtime function has been restructured
but it did not become simpler as it relies mainly on the time parsing function, rather
than on Attoparsec. So the type-safe parser is just 15 lines long.

Outlier detection
Market data are not always clean, and in most cases one should verify the correctness
and validity of the data. Though many obvious checks (such as positive price) can be
easily implemented, some advanced algorithm should be used to identify an outlier.
For our purposes, outlier is a price that appears to deviate significantly from other
prices. It might be quite hard to quantify what "significant deviation" means. Here
we take the simplest of statistical approaches and assume that prices are normally
distributed, though it is not a correct assumption. Under this assumption it is
possible to establish a quite simple test based on mean and standard deviation.

Essential mathematical packages
Though the basics of mathematics and statistics are easy to implement, in most cases,
it is better to put this work off to already implemented and tested packages rather
than manually reimplement all the required algorithms. Any algorithm requires
data structures and functions over them. And the best implementation requires
faster data structures and parallelizable algorithms. The package vector by Roman
Leshchinskiy provides fast and efficient implementation of arrays. The installation
process is very simple:

cabal install vector

This will download and compile package's sources. Then you can import it using the
following code:

import qualified Data.Vector as V

The library must be imported with the qualified keyword because the module
has a lot of functions with the same names as in the standard Prelude list. And the
qualified import allows to avoid naming clashes. If there is no alias, V, the whole
module name Data.Vector should be specified before each function from this
module. The alias, V helps to reduce such burden and thus we should only specify
the alias instead of the whole module name. After the import you can try several
different methods as follows to create arrays:

Prelude> import qualified Data.Vector as V

Prelude V> :set +t

Prelude V> let x = V.fromList [1,2,3]

Getting your Hands Dirty

[24]

Loading package array-0.4.0.0 ... linking ... done.

Loading package deepseq-1.3.0.0 ... linking ... done.

Loading package primitive-0.5.0.1 ... linking ... done.

Loading package vector-0.10.0.1 ... linking ... done.

x :: V.Vector Integer

Prelude V> x

fromList [1,2,3]

it :: V.Vector Integer

Prelude V> V.singleton 5

fromList [5]

it :: V.Vector Integer

Prelude V> V.replicate 3 5.0

fromList [5.0,5.0,5.0]

it :: V.Vector Double

After the first line :set +t GHCi starts printing type after the evaluation. It might be
also useful to switch on timing and memory statistics by using the +s flag.

The fromList function is quite common constructing objects from lists. You may
encounter it in many libraries. The singleton and replicate functions are similar
to the ones for lists from Prelude. Also vector might be constructed by applying a
function to the index of each element in the list. The following call generates a vector
of 10 elements in which each one of them is its index in the fourth power:

Prelude V> V.generate 10 (^4)

fromList [0,1,16,81,256,625,1296,2401,4096,6561]

it :: V.Vector Int

If you are planning to use only primitive types such as Bool, Int, Double, and
Complex or tuples of them, then unboxed arrays are preferred, as they don't have
runtime overhead. They have the same interface as the previously mentioned arrays,
though they are imported using the following code:

import qualified Data.Vector.Unboxed as U

For working with unboxed arrays we require to remember a few of their
particularities. At first, they are strict, so if you evaluate one element of the vector,
all its elements will also be forced to evaluate. They might be more memory efficient
as they pack all values into the linear piece of memory as it is usual for C/C++, for
example; whereas the standard (or boxed) implementation stores only pointer either
to a data structure, or to function that evaluates to the value of the cell. Also, such
structure of unboxed vectors implies that they exists only for types with fixed sizes,
otherwise, it is hard and inefficient to implement dynamic indexing of the array.

Chapter 2

[25]

The next package that is essential for statistical computations is the statistics
package again by Brian O'Sullivan. Its installation goes the same way as usual:

cabal install statistics

It includes a lot of standard statistical functions for descriptive statistics such
as mean, variance, and other moments, thus providing a solid foundation for
developing further algorithms.

Grubb's test for outliers
Grubb's test is a statistical test that is used to detect outliers in a data set coming from
a normally distributed population. The test detects one outlier at a time. When this
outlier is detected, it is removed from data set and the test is iterated until no outliers
are detected.

The two-sided version of test, that is, test if the most distant point, maximum, or
minimum of the data set is an outlier, calculates the following statistics:

1.. ii N
max y m

G
s

=
−

=

Here m and s are sample mean and standard deviation respectively. The hypothesis
of no outliers is rejected at significance level α if:

2

2

1
2

N tG
N tN

−
>

− +

Here t is the upper critical value of the t-distribution with 2N − degrees of freedom
and a significance level, 2N

α . As we usually manipulate with more than 10 thousands
records at once, we can simplify the test by noting that the upper critical value grows
faster than N with N going to infinity. Therefore, the correct square root is close to
one, and the test statistics is as follows:

1NG
N
−

>

Getting your Hands Dirty

[26]

Market prices are usually approximated by log normal distribution. So to satisfy
normality precondition of the test, the input data set of ticks must be transformed
as follows:

1
1

i
i i i

i

xy log logx logx
x
+

+= = −

Or otherwise in Haskell in Normalize.hs.

Here if the sorting trades by time using LocalTime is of type Ord class, then the
sorted list of prices is fed to the normalize function that implements the whole logic.
Note that we used a new syntactic construction, a point to join two functions. This
point represents the function composition. It is implemented as a normal operator
in Haskell and it has type: (.) :: (b -> c) -> (a -> b) -> a -> c. Therefore,
the normalize function takes all trades, then applies sortedPrices, and at the end
applies normalize, thus creating a pipeline.

Now we are ready to implement Grubb's outlier detection mechanism. This
mechanism is found in Grubbs.hs.

As Haskell doesn't have loops, the algorithm should be presented in terms of the
filter and map functions. At first, we define in the getGtuple function how to
calculate G-score for each point, then map over input to get tuples of value and its
score, then filter out to the outlier only vector and finally we are looking for the
one item with the highest score.

Though the previous function provides the outlier value, the target function should
return both an outlier value and new vector of prices.

Template Haskell, quasiquotes, type
families, and GADTs
Object-Relational Mapping (ORM) is quite commonly used in web and enterprise
development. The goal of ORM is to lower SQL boilerplate code and to simplify
accessing data from multiple/different databases. There are many ORMs already
implemented in each virtual programming language. The basic functionality of
ORM is to represent database tables as objects in the language of choice with
corresponding Create-Read-Update-Delete (CRUD) methods.

ORM implementation usually requires some tricky machinery to make them user
friendly. Haskell is not an exception. One of the most robust ORM requires all those
extensions from the chapter title. We won't cover all of them, as they are not usually
visible in the client code but only in Template Haskell and quasiquotes.

Chapter 2

[27]

Template Haskell is a GHC extension that allows you to generate Haskell code at
compile time; that means, it is Haskell that generates Haskell. Though we will use
some features of Template Haskell, we are not going to cover this topic in detail. All
that need to know about is how to call Template Haskell (Th) functions as given in:

Th.hs
models

A nice feature of Th is that it can inject additional files during compilation; that is,
all Th functions are executed inside an IO monad. Here we can see that syntactic
construction $(persistWithFile models) instructs the Template Haskell compiler
to execute the persistWithFile method that reads file models and constructs a
new Haskell source code in place of the call. There is an option for GHC and GHCi:
-ddump-splices that shows all the generated code. It might be quite useful for
debugging heavily "templated" code.

The quasiquotes are minor extensions of Haskell and they allow embedding of
arbitrary content into Haskell sources. During compilation, that content is parsed
and transformed into Haskell code by the quasiquoter function. This is an effective
way to embed any language into Haskell and it is quite often used to embed some
variants of HTML, CSS, or Javascript. Also it gives a nice way to build sophisticated
and embedded domain-specific languages. The previous piece of code can be
rewritten with quasiquotes as as given in Quasi.hs.

Here, we just replaced persistWithFile with the persistLowerCase quasiquoter
and embedded the models file content. The key point we should understand is that
both the techniques allow automation of code generation.

Persistent ORM framework
There are a number of various Haskell bindings to the database interface, though
most of them operate in the world of RDBMS and don't cooperate properly with
the language itself. This means that all parsing and type-safety enforcements are
up to the developer's will. This approach is not mistake-proof and requires a lot of
boilerplate code that is hard to write and to maintain.

The ORM framework Persistent takes a different approach and tries to maintain
type-safety and declarative syntax as much as possible. Also Persistent has other nice
features. For instance, it easily adopts such NoSQL data stores such as MongoDB
and CouchDB, because it is not focused on relational data models, and it makes the
database framework agnostic.

Getting your Hands Dirty

[28]

Declaring entities
To start with any ORM framework we need to understand how to declare entities
and how they are mapped to database structures. Let's recall our quote definition
and try to map it in Persistent in Quote.hs.

You can see that we use the persist quasiquoter to define entities using Persistent's
embedded language. Its output is a list of entity definitions. The mkPersist function
takes this list and declares one datatype for each entity and an instance of the
PersistentEntity type class that roughly corresponds to the database table. If we
run GHCi with the -ddump-splices option, it prints out generated code, the essence
of it is given in QuoteOutput.hs.

The framework assigns key field automatically, though for other type of database
this key field would be defined differently. Also it translates those fields into
corresponding Haskell fields and generates instance implementation. We will need
a more sophisticated version of quote definition, which is present in Quote2.hs.

The share function will apply a list of functions to the same entity definitions. It
will at first save definitions under the name quoteDef, and then create persistent
definitions as in the previous example and finally make a migration function with
name migrateAll. This migration function examines the current state of database,
figures out differences in the model and the tables, and tries to apply changes; thus
the database corresponds to model. The Persistent framework follows quite rigid
rules for migrations and refuses to migrate if there is no safe way to do that. So you
might quite rely on it.

Inserting and updating data
After we define the Quote entity, we should be able to create a new one using the
code in InsertUpdate.hs.

So, here we run migration to ensure that our in-memory sqlite database has a
table. In that table, we will insert one quote and update it after insertion. Let's try
to compile and run it to see the following output:

$ ghc InsertUpdate.hs

[1 of 2] Compiling Quote2 (Quote2.hs, Quote2.o)

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

..............

Chapter 2

[29]

Loading package persistent-1.1.3.2 ... linking ... done.

Loading package persistent-template-1.1.2.1 ... linking ... done.

[2 of 2] Compiling Main (InsertUpdate.hs, InsertUpdate.o)

Linking InsertUpdate ...

$./InsertUpdate

2013-01-04 15:12:45.308818 UTC

Migrating: CREATE TABLE "Quote"("id" INTEGER PRIMARY KEY,"time" TIMESTAMP
NOT NULL,"ask" REAL NOT NULL,"bid" REAL NOT NULL,"askVolume" REAL NOT
NULL,"bidVolume" REAL NOT NULL)

Key {unKey = PersistInt64 1}

Quote {quoteTime = 2013-01-06 15:12:45.308818 UTC, quoteAsk = 1.2345,
quoteBid = 1.2355, quoteAskVolume = 100.0, quoteBidVolume = 230.0}

"End of program"

During the compilation phase you'll see a long list of modules as Persistent depends
on a large set of Haskell modules and finally GHC produces a binary. When we run
the binary, it prints out the time. Then the migrateAll function prints which SQL
commands it issues to the database. In our case it creates the Quote table.

Then we come to the insert command. We just create a plain Quote object and give
it to insert a function that returns a QuoteId object. This is a quite interesting and a
differentiating point of Persistent: object and its identifier are separate entities. In most
of the object-oriented and/or imperative languages, it is nearly impossible to remove
the ID from an object, but in Haskell, the type system not only allows to separate, but
also to enforce the Quote-QuoteId correspondence, that is, it is not possible to get
anything but QuoteId in Quote inserts and vice versa for selects and updates.

The update function takes QuoteId and a list of updates to be applied on the entity.
Apart from the assign operator, Persistent also has the following operators:

• Add (+.)
• Subtract (-.)
• Multiply (*.)
• Divide (/.)

Please note that, these update operators have a period at the end.

Getting your Hands Dirty

[30]

Fetching data
As we've got some data in the database we should now learn how to fetch it.
The simplest query is to get the data by ID. Since the value might not exist in the
database, it will return an object wrapped in Maybe using the following code:

quote <- get quoteId

The next possibility is to use selectList. It takes the following arguments:

• A list of filters
• A list of SelectOps

Let's start with filters and see how it works. These filters are found in SelectList.hs.

So far we have selected all quotes having bid price in the range from 1.0 up to 1.2
inclusively. Thus comma separator in the list means an AND operation. But also, we
need an OR operation which is slightly more complicated as given in SelectOr.hs.

The disjunction represented by ||. operator, that is, with a period at the end. And
this means that we need both quotes with bid price from 1.0 up to 1.2 or with ask
price from 0.8 up to 0.9.

There are four types of SelectOps defined in Persistent: Asc, Desc, LimitTo and
OffsetBy, which is found in the SelectOps.hs file.

Asc QuoteTime sorts the output by using the time field in ascending order. LimitTo
1000 limits the output to a thousand objects. And finally OffsetBy 500 skips the
first 500 objects.

Summary
In this chapter we have gone through the entire process of acquiring data, from
getting the plain files up to loading the data. Using Attoparsec with BinaryString
might help to us build a library to parse an FIX message, one of the heavily used
financial protocol. Also we are prepared to further manipulate with data by
introducing a persistent ORM library.

Thus we are able to build our own tick database either by free sources such as Yahoo!
Finance, or by paid resource such as Reuters or Bloomberg. In the next chapter, we
are going to use this data to build the first model of tick arrivals and try to calibrate
the model against the real-word data.

Measuring Tick Intervals
In the previous chapter we have built a tick database. So we can start crunching our
data to find some regularities and irregularities. This chapter contains much more
math than previous as the topic becomes more analytical than the programmers'
one. Market microstructure research usually goes into measurement of bid/ask price
movements, spreads, volumes, and time intervals in between trades. Here we start
with the simplest form of point processes applied to time intervals. But first, let us
introduce main definitions that we are going to use throughout this chapter.

Point process
Let t denote time and let the random sequence 1,2,...it ∈ of increasing event arrival
times 10 i it t +≤ ≤ be called a point process on the line. We restrict ourselves to
point processes on a timeline only. Moreover, we will consider only simple point
processes, that is, without simultaneous occurrence of events, which effectively
means that for all 1i iit t +< is true. In simple words, a point process is just a sequence
of events marked by time of happening.

Counting process
If you try to count the number of events that happened in a point process from
the start of the observation, you get a counting process. The strict definition is
the process ()N t with ()

it ti
N t I ≤=∑ is called a right continuous counting process

associated with { }it , where I is a counting function. Thus, ()N t is a right continuous
step function with upward jumps at it of magnitude one. Moreover, the process ()M t
with ()

it ti
M t I <=∑ is called a left continuous counting process and it counts the

number of events that occurred before t.

Measuring Tick Intervals

[32]

Durations
Let's define the duration process, ix associated with { }it , as a sequence of waiting
times between two successive points, defined as follows:

1, 2,...,
, 1

i i
i

i

t t i n
x

t i
−− =

= =

Furthermore, the ()x t process with () ()M tx t t t= − is called the backward recurrence
time. It is a time elapsed from the previous point and is a left continuous function
that grows linearly with discrete jumps back to zero after each arrival time.

Experimental durations
Before starting with further study of the counting process let us take a look at the
experimental data of inter-tick durations and try to collect some statistical data based
on empirical data.

As I had to use a legacy database table, appropriate mappings should be provided to
Persistent for getting the right column names. Moreover, it is usually better to move
entity definitions into a separate module. The definitions are usually reused in all the
modules and separating them helps to avoid circular dependencies; otherwise, you
might get the following error during compilation:

Module imports form a cycle:

 module `PullAndCollect' (PullAndCollect.hs)

 imports `CollectStats' (./CollectStats.hs)

 which imports `PullAndCollect' (PullAndCollect.hs)

This approach also helps to avoid Template Haskell requirement that the generated
code should be put before the code it uses as in LegacyTable.hs.

In the legacy table description the sql option allows us to define a native SQL
table and/or column to be use in generated SQL statements. There should be no
whitespace between the equality sign and definitions; otherwise, quasiquoter will
ignore the options and EntityDefs would be wrong. The ticks table has been stored
in a MySQL database, so the Persistent initialization sequence will slightly differ as
given in PullAndCollect.hs.

Chapter 3

[33]

Here you can see that we use runStderrLoggingT to collect debugging information
of the execution of SQL statement into the stderr output. For this case Persistent
generates an obvious SQL equivalent of the query and prints the following output:

[Debug#SQL] "SELECT `id`,`dt`,`tt`,`ms`,`Ask`,`Bid`,`AskVolume`,`BidVolu
me` FROM `ticks_tmp` WHERE (`dt`=?) ORDER BY `tt`,`ms`"

The logic of statistics collection is in another module, CollectStat, and is a pure
function over tick's list as it is usually better to split to pure and impure code.
The function reuses the statistics library mentioned in the previous chapter
in CollectStats.hs

Here we fixed the histogram function slightly to accept stricter intervals of bins.
There is also a bunch of boilerplate functions such as daytime conversion and
zipping. At the end, we are getting a CSV output that can be visualized in any
plotting software. For instance, on a Mac one can use a built-in Grapher.app or
an open source gnuplot (http://gnuplot.org).

The following graph is an example of the output of the program for EUR/USD pair
for one trading day. It is in a logarithmic scale on the ordinate. We can see that the
waiting time distribution quite loosely resembles the exponential one. If the model is
precise, then the distribution should be a straight line, though, we see that times in
range 0-2 seconds occur more often. Therefore, we should look for more general class
of distributions to fit the model.

Lin-log histogram plot of inter-tick durations

Measuring Tick Intervals

[34]

Maximum likelihood estimation
Maximum likelihood estimation (MLE) is a statistical method of estimating the
parameters of a statistical model. The essence of the method is to select a set of values
of the model parameters that maximizes the likelihood function. Or in other words,
this maximizes the probability that the data are described by that model with such
parameter values.

To use the MLE method we should specify the joint density function for all
observations from the data set. In the simple case of an independent and identically
distributed sample, this function is as follows:

() () () ()1 2 1 2, ,..., | | | ... |n nf x x x f x f x f xθ θ θ θ= × × ×

Now let us look at this from a different perspective. Consider that the observed data
are fixed parameters, whereas θ will be the function's variable and is allowed to vary
freely; this function will be called the likelihood:

() () ()1 2 1 2
1

| , ,..., , ,..., | |
n

n n i
i

L x x x f x x x f xθ θ θ
=

= =∏

In practice it is often convenient to work with the logarithm of the likelihood
function, called the log-likelihood, which is as follows:

() ()1 2
1

| , ,..., |
n

n i
i

L x x x ln f xθ θ
=

=∑

Or as an average log-likelihood that might be more numerically stable:

1l̂ L
n

=

The method of maximum likelihood estimates ()|L xθ by finding a value θ that
is maximized:

()1 2max | , ,...,mle narg L x x x
θ ο

θ θ
∈

=

One might also use log-likelihood or the average one, since the logarithm is a
monotonically increasing function and therefore it doesn't affect the MLE estimate.

Chapter 3

[35]

Generic MLE implementation
Such generic concepts implementation is the area where the Haskell support is
brilliant. We consider one-dimensional observations. Let us start with the definition
of the likelihood function in Likelihood.hs.

The likelihood function just maps the theta parameter and inputs a list of
observations to the double value. The log-likelihood function is defined for this
type class in a generic way, as it is defined in the previous chapter. It is not a good
definition, and we need an additional constraint to make it better. Therefore, we
introduce IidPdf, the probability density function of an independent and identically
distributed sample. And that gives us an optimization opportunity and we can
implement the instance of the class. But such flexibility requires two GHC extensions
to be enabled, which are as follows:

• Flexible instances
• Undecidable instances

Finally we define a type class for a generic MLE estimation function assuming that
the argmax function exists. The function is marked as undefined in the code. This is
a universal definition of any function that breaks in runtime but provides a handy
way to postpone implementation until the types are evolving and are not fixed.
Though it is quite hard to define a generic version of the function, we will consider
point processes with one parameter and then build a secant root finding algorithm.

Poisson process calibration
The simplest type of point processes is given by the Poisson process. It is a stochastic
process that counts the number of events in a given time interval. The time between
each pair of consecutive events has an exponential (Poisson) distribution and
these inter-arrival times are mutually independent. The process is a good model of
radioactive decay, it requests for a particular document on a web server, telephone
calls, and many others. In the queuing theory job arrivals are usually assumed to be a
Poisson process.

The following are the two principal conditions for counting the process as a
Poisson process:

• Events don't occur simultaneously.
• Number of arrivals after t is independent of the previous number of arrivals

(also called forgetfulness).

Measuring Tick Intervals

[36]

These two conditions in fact define the whole structure of the process. For
example, they imply that the time between consecutive events are independent
random variables.

First we start with the homogenous version of Poisson process, as it is one of
the most well-known point processes. It is characterized by a rate parameter, λ
(intensity), such that the number of events in the time interval, (),t t τ+ follows a
Poisson distribution. The relation gives the following probability:

() () ()
!

k

P N t N t k e
k

λτλτ
τ −+ − = =

Here () ()N t N t kτ+ − = is the number of events in time interval, (),t t τ+ .
Whereas for one event per interval the formula is as follows:

[]P e λττ λτ −=

MLE estimation
If we have a set of tick intervals it let's try to infer the rate parameter of the
Poisson process. According to the MLE procedure, the likelihood function should
be constructed. The time intervals are independent of the process definition and
probability of observing such time intervals is given as follows:

it
i iP t e λλ −=

Therefore, we can write the following likelihood function as a joint probability
density function:

1 1

i

n n
t n T

i i
i i

L t e e tλ λλ λ− −

= =

= =∏ ∏

Here 1

n
ii

T t
=

=∑ is the total time interval. That is the case where log-likelihood is
better for analytic solution, and by using the logarithm it becomes:

1

n

i
i

logL nlog T log tλ λ
=

= − +∑

Chapter 3

[37]

Now we should fix n and T and derivate by λ and equate it to zero:

0logL n T
λ λ

∂
= − =

∂

Thus it yields to:

n
T

λ =

And as we can see, the rate parameter now defines the number of events in
a time unit.

Akaike information criterion
The Akaike information criterion (AIC) is a measure of goodness of fit of a
statistical model. Being derived from the concept of information entropy, it provides
a relative measure of information lost by model description in reality. The general
definition of AIC is as follows:

2 2AIC k logL− −

Here k is the number of model parameters and L is the maximized value of the
likelihood function.

For the Poisson process the maximized log-likelihood value is as follows:

1T
log n log
n n n
T
L nlog
log

−
−

− =

=

As the process has only one parameter, AIC becomes:

1

2 2

T
log n log
AIC n

−
−

= −

www.allitebooks.com

http://www.allitebooks.org

Measuring Tick Intervals

[38]

Haskell implementation
Let's try to implement all the previous formulae in the microframework we've
already started at the beginning of this chapter in Poisson.hs.

First, we add a definition of the Aic type class in terms of the Likelihood class.
We define parameters as Double to avoid conversion because it is usually a constant
value for the model. It should be moved to the Likelihood module though.

Then we introduce the Poisson type to keep the lambda value. Also we need a
helper function, sumAndLen. Then we define all type classes: Likelihood, IidPdf,
MLE, and Aic.

Renewal process calibration
One of the ways to generalize the Poisson process is to allow inter-arrival times
to follow any probability distribution defined on a non-negative, real line. Such
extension is called a renewal process. The inter-arrival time's independence and
identical distribution are preserved.

In this chapter, we will go through the process with inter-arrival times drawn from
the Levy distribution that has the following probability density function:

()
()

()

2

3
2

; ,
2

x
c

c ef x c
x

µ
µ

π µ

−

−

=
−

Here c is a scale parameter and µ is the location parameter. This is a special case of
an inverse-gamma distribution and it is from stable distribution family that is quite
often employed to describe fat-tailed data.

Levy distribution is defined on [];µ ∞ . But trades can be placed as near as possible,
therefore we assume that the location parameter is zero.

MLE estimation
In this case we will go directly with log-likelihood function, therefore, let's calculate
the log probability density function:

() 1; 3 2
2

clog f x c log c log x log
x

π = − − −

Chapter 3

[39]

Though the constant parts of the equation are not significant for finding maximum,
but due to Akaike information criterion we should keep them all. Now we can write
down the log-likelihood function for the renewal process as follows:

1

1 1 12 3
2 2 2

n

i
i i

clogL= nlog nlogc - logt
t

π
=

 −
+ +

∑

To find the maxima of the function we should calculate partial derivatives and
equate them to zero:

1

1 1 0
2 2

n

i i

log L n
c c t=

 ∂
= − = ∂

∑

And we can define the scale parameter as follows:

1

1 1 1n

i ic n t n
τ

=

= =∑

Here τ is a shortcut for the sum of inverse intervals. As you can see the scale
parameter is a harmonic mean of observations.

The AIC for this type of process can be easily obtained by using the
following formula:

1
2 3

n

i
i i

n nAIC nlog2 nlog logt
t

π
τ τ=

= − + − +

∑

Cox process calibration
Cox process, also known as doubly stochastic Poisson process or mixed Poisson
process, is a generalization of Poisson process where calculating the rate parameter is
a stochastic process itself. To enforce positivity of the rate parameter we assume that
it follows geometric Brownian process:

t t td dWσΛ = Λ

Measuring Tick Intervals

[40]

Here, tΛ is a rate process, σ is a rate process parameter, and tdW is a Wiener
process. The geometric Brownian motion is a model process for many "toy" models
and it has quite simple formulas for calculating central moments:

t 0()E Λ = Λ

()2

t 0() 1tVar eσΛ = Λ −

The probability density of the rate process starting at 0x is given by log
normal distribution:

2 2

0
2

1(t)
21()

2

xn
xf x,t, e
zx t

ι σ
σ

σσ π

− +
=

This non-homogenous case is constructed by using the generalized rate function, as
the expected number of events between time iT and jT as follows:

() () (),

j

i

T

i j j i
T

t dt T T E tλ λ λ= = − ∫

Plugging in the stochastic process formula we obtained for ,i i jt T T ∈ :

[] 1 0 0
1

i

i i t i i j i
j

t E t tλ λ λ λ ξ−
=

= Λ = = =∏

As discussed previously, time intervals are inter-independent and the probability is
described by the following formula:

0
o i

i iP e λ ξλ ξ −=

Chapter 3

[41]

MLE estimation
Now we are able to construct joint probability density:

0 0
1 1

o i o i

n n
n

i i
i i

L e eλ ξ λ ξλ ξ λ ξ −

= =

= =∏ ∏

We use the logarithm now to simplify the maximum likelihood function:

0
1

0
1

n

i i
i

n

i

log

logL nlog

λ ξ ξ

λ

=

=

+

= −

∑

∑

Now fixing n and iξ we should calculate the derivative and assume it to be zero:

10 0

log 0
n

i
i

L n ξ
λ λ =

∂
= − =

∂ ∑

Thus the maximum likelihood estimate is as follows:

0

1

n
ii

nλ
ξ

=

=
∑

Model selection
Now we have three models of tick intervals based on the Poisson process. But how
should we choose the proper one? There are really a few so-called information
criteria used in practice. They are Bayesian Information Criterion (BIC), likelihood
ratio test, and Akaike information criterion. We will choose the last one for our use
because it is relatively unrestricting on model assumptions and easy to follow in the
context of an MLE procedure. For instance, the likelihood ratio test requires nested
models, that is, you should use one general model and some specific case of the
model to compare, and AIC doesn't have such a restriction. With BIC it is not that
easy, but the following are the three main points for AIC:

• AIC is derived from principles of information

Measuring Tick Intervals

[42]

• BIC has a prior of 1N (where N is the number of models in consideration) but
our intuition says that the prior one also must depend on the number of free
parameters to avoid overfit

• AIC is asymptotically optimal in case of regression if the "true" model is not
in the given set of models

The rule for AIC model selection is simple – choose one with a minimal AIC. Let's
denote those AIC values of models as { }iAIC and the minimal value as minAIC . The

min iAIC AICe − value is the relative likelihood of model i , or alternatively the relative
probability that the i th model minimizes the estimated information loss in Aic.hs.

The bestModel method uses a new function, minimumBy from the Data.List module
that consumes a comparator function and a list of objects. And as the output we get a
model and its corresponding AIC value.

The secant root-finding algorithm
All of the previous methods require a root finding function. We're going to
implement a secant method for MLE purposes. This method is quite universal in
the sense that it doesn't require anything more than a function. Other methods
might require existence and analytic form of the first derivative or might put some
restrictions on the function class. As most of the root finding methods, the secant
method is a recurrent method, that is, the one which should repeat a step until some
convergence criteria is met.

This recurrence relation defines the secant method:

() () ()
1 2

1 1
1 2

n n
n n n

n n

x xx x f x
f x f x

− −
− −

− −

−
= −

−

As you can see the method requires two initial values 0x and 1x that should ideally
lie close to the root. The implementation of this root finding method is pretty
straightforward as in Secant.hs.

Here we define a data structure, Secant that might be either a converged version
(ConvergedSecant) or an in-progress structure (Secant). At first, we define two utility
methods, isZero and invDerivative. The isZero function tests if the value is close
enough to zero. It is always good to remember that the Double type has problems with
comparison as 1.999… and 2.0 are the same numbers essentially. The invDerivative
function is an inverse of a finite difference version of function derivative.

Chapter 3

[43]

Then we defined a step function that implements the functionality of the secant
method. Please, notice the usage of the ConvergedSecant data constructor. It is used
as a marker of a completed root finding process. Thus the main function, root is
a quite simple recursive function that applies the step function until it converges.
In fact, dividing in to two classes, converged and in-progress, specifies the exit
condition in recursion of root finding.

The QuickCheck test framework
Haskell has a quite unique test framework that is ported to few other languages
that support functional features such as ML, F#, and Scala. QuickCheck allows you
to define a set of properties that must be held for the function to be valid. Then the
framework generates a random data to test those properties. This technique is also
named fuzzy testing.

The major restriction of the framework is that it can test only pure methods, that is,
the one without any side effects. And this is quite reasonable because side effects
can usually make irreproducible test cases. This restriction usually leads to complete
separation of pure and I/O code. In fact, this separation helps a lot in automatic
parallelization of computations because the compiler can reason about pure code and
rearrange it to squeeze the maximum of CPU.

Let's see how QuickCheck can be used to verify correctness of mathematical code.
We'll take our secant method for testing in QuickTests.hs.

In the first step we verify whether the value of the isZero function is in the
neighborhood of zero. Therefore, we put the x ε≤ test condition. Later in the main
function we call quickCheck with propZero to verify it. Let's try for now to see how
it works in the GHCi command prompt:

$ ghciQuickTests.hs

GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help

Loading package ghc-prim ... linking ... done.

Loading package integer-gmp ... linking ... done.

Loading package base ... linking ... done.

[1 of 2] Compiling Secant (Secant.hs, interpreted)

[2 of 2] Compiling QuickTests (QuickTests.hs, interpreted)

Ok, modules loaded: QuickTests, Secant.

*QuickTests>quickCheckpropZero

Loading package array-0.4.0.0 ... linking ... done.

Loading package deepseq-1.3.0.0 ... linking ... done.

Measuring Tick Intervals

[44]

Loading package old-locale-1.0.0.4 ... linking ... done.

Loading package time-1.4 ... linking ... done.

Loading package random-1.0.1.1 ... linking ... done.

Loading package containers-0.4.2.1 ... linking ... done.

Loading package pretty-1.1.1.0 ... linking ... done.

Loading package template-haskell ... linking ... done.

Loading package QuickCheck-2.5.1.1 ... linking ... done.

+++ OK, passed 100 tests.

As we can see it passes the tests and QuickCheck reports that it has generated a
hundred of test inputs to verify the property.

Then we define two simple mathematical functions, linear and square. These are
used in tests of inverse derivative and the secant method itself. For invDerivative
we check if it calculates properly the first derivative of linear function. The ==>
operator provides a convenient way to construct implications on generated inputs.
The left side should resolve to True for inputs to be accepted for property testing.
The function of numerical derivation must get two different points and that is
the condition of the property. The two next properties propLinearSolve and
propSquareSolve test root-finding algorithm on well-known functions. Let's try
to run it and see if the implementation is correct:

*QuickTests> main

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

(0 tests; 10 discarded)

The last test seems to be hanging. There is definitely something wrong with the
current implementation of the secant method. We see that QuickCheck has discarded
10 inputs and none of the tests have been completed. Therefore, it hangs in the secant
method. One might recall that the square function might have 0, 1, or 2 roots on
real line. If you break the execution of the test by pressing Ctrl + C, you will see the
inputs of currently running test:

^C*** Failed! Exception: 'user interrupt' (after 1 test):

-0.4822295608868578

1.8680344475488024

-2.61509940637565

0.6592565080155612

Chapter 3

[45]

And we see that 0a < and 0b > and the equation 2 0ax b− = don't have a solution
on real line. The secant method doesn't detect such condition and it might be a
further improvement in the method itself. But now we will only pose a restriction,

0a > . After this fix, it is a bit better, though it is still hanging sometimes, as seen in
the following output:

*QuickTests> main

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

^C*** Failed! Exception: 'user interrupt' (after 63 tests):

25.102056112736896

156.69814915695184

165.40429713832876

-2403.0767634065437

Now the reason seems to be an incorrect choice of starting points. We might improve
it by putting one point to zero and the other 0 bx

a
< ≤ . Now the final code looks

similar to the one in QuickTests2.hs.

The result of this work is still not good enough:

*QuickTests> main

*** Gave up! Passed only 18 tests.

It means that the conditions are too restrictive and it cannot effectively generate
input data. There are test data modifiers to solve such problems.

QuickCheck test data modifiers
The framework comes with a bunch of predefined test modifiers such as Positive
and NonZero. By using these modifiers the test code becomes more idiomatic. Take
a look at the property in the QuickTestsMod.hs file.

The module imports Test.QuickCheck.Modifiers to access modifiers. The
modifiers have pretty obvious names. Now the number of tests run is more than
what it was previously but still it discards a lot:

*QuickTests2> main

*** Gave up! Passed only 72 tests.

Measuring Tick Intervals

[46]

Now one of the ways to handle such a situation is to increase the discard ration in
the configuration of the quickCheck method:

*QuickTests2> let args = Args Nothing 100 100 100 True

*QuickTests2>quickCheckWithargspropSquareSolve

+++ OK, passed 100 tests.

Now it passes OK. The next question is code coverage. Does this cover a lot of original
source code? Did we check all possible paths in the algorithm? Let's make a final
test suiteas given in QuickTestsFull.hs.

Now we should compile it using HPC (Haskell Program Coverage) support:

$ ghc -fhpcQuickTestsFull.hs

Then run tests as normal executables:

$./QuickTestsFull

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

+++ OK, passed 100 tests.

The trace of the program is written into the .tix files and into the .mix files in the
.hpc directory. The hpc reporting tool uses these files. It is capable of generating text
and HTML reports. The basic report is textual. It is usually a good idea to exclude
quickCheck and test script from the report; therefore, we will use the --exclude flag:

$ hpc report QuickTestsFull --exclude=Main --exclude=QC

 97% expressions used (45/46)

 50% boolean coverage (1/2)

 50% guards (1/2), 1 always True

 100% 'if' conditions (0/0)

 100% qualifiers (0/0)

 80% alternatives used (4/5)

100% local declarations used (2/2)

100% top-level declarations used (4/4)

Chapter 3

[47]

We see that the script tests consist of 100 percent of top-level and local declarations,
though one guard condition has not been tested. The HTML report can help us to
find this out as it contains a detailed, line-by-line report.

$ hpc markup QuickTestsFull --exclude=Main --exclude=QC

Writing: Secant.hs.html

Writing: hpc_index.html

Writing: hpc_index_fun.html

Writing: hpc_index_alt.html

Writing: hpc_index_exp.html

Now we can open hpc_index.html. By clicking on the name of the module Secant
we can see its source with executed lines in bold and non-tested lines in yellow. Also
it always shows true conditions in green.

Summary
In this chapter we came across mathematical and engineering tasks. We have learned
a bit of point processes by means of a simple Poisson process. Maximum likelihood
estimation is a powerful method for point process estimations.

On the engineering side we've started the implementation of generic MLE
framework and come through possible pitfalls with a secant root-finding algorithm.
Now we can employ the QuickCheck property-based testing to ensure that the
mathematical code is correct under any condition. Also, a coverage tool is presented
as a helper for finding non-tested spots in the source code.

In the next chapter, we will explore autoregressive models for counting processes.
Quite usually model calibration and prediction should be nearly a real-time process,
so we will take a look at GHC internals to use its optimizer properly.

Going Autoregressive
In this chapter we are going to introduce a model that is of the class of Multiplicative
Error Models (MEM). It is a general class of time series models. A random variable
is decomposed into the product of conditional mean and error term. Alternatively
such models might be classified as autoregressive conditional mean models (ACM),
where conditional mean follows a stochastic process with respect to filtration. In
high frequency finance, Engle and Russel introduced an MEM to model behavior
of inter-trade times and named it as autoregressive conditional duration model
(ACD). The model itself is a special version of MEM applied to inter-trade durations.

Through the chapter we will start with a simple Autoregressive-moving-average
model (ARMA) to see how Maximum Likelihood Estimation (MLE) works here and
then extrapolate it to the ACD model.

The ARMA model definition
As we are working with positive-valued data, it is natural to convert them to log
domain to enforce positive constraint. Thus, in further equations the restriction
of positive price is removed. In log domain, traditional time series models can
be easily applied. A simple autoregressive model ARMA(P,Q), where P refers
the autoregressive terms and Q refers the moving average terms is given by the
following equation:

1 1

QP

ii j i j j i j
j j

x b x c ε ε− −
= =

= + +∑ ∑

Going Autoregressive

[50]

In the preceding equation, ε is a white noise variable. A quite common assumption
is that the noise is an independent, identically distributed random variable sampled
from normal distribution with zero mean, though the direct maximum likelihood
method could be applied to estimate parameters of this linear model. In my opinion
the most elegant method is the Kalman filter. It is a recursive algorithm that consumes
noisy input data to produce a statistically sound estimate of the system state.

The Kalman filter
The Kalman filter uses a system's model and multiple measurements over time to
estimate the system's variables with less noise than what could be obtained from a
single measurement. In fact each measurement might be seen as an estimate. The
filter averages such estimates and comes up with a better system state.

The Kalman filter assumes that the system model is a linear stochastic model of the
following form:

1i i i i i ix F x Bu w−= + +

In the preceding equation, F is a state transition model applied to the previous state
1ix − , B is a control-input model applied to control vector iu , and iw is a white noise

with covariance Q . As there is no control input for time series, the system model
simplifies as follows:

1i i i ix F x w−= +

The next model required by filter is an observation model; that is an assumption on
how noisy observations of true state are. This is shown by the following equation:

1i i i iz H x v−= +

In the preceding equation, H is an observation model and v is a zero mean
Gaussian white noise with covariance R , which is represented as follows:

()~ 0,i iv N R

The Kalman filter is a recursive filter; that is, a new measurement and estimated state
is required to compute the current state. The filter's state consists of a state estimate
ix and an error covariance matrix iP .

Chapter 4

[51]

The filter has two steps:

• Predict: This step takes the estimated state from the previous time step and
produces an estimate for the current time step. The predicted state is usually
called a priori estimate.

• Update: In this step the predicted step is updated by the new observation to
refine the estimated state and to produce a posteriori estimate.

In the predict phase, a priori estimates (with hat) are obtained by the
following equations:

1ˆi i ix F x −=

1
ˆ T
i i i i iP FP F Q−= +

Thus, the Kalman filter makes two assertions. First, the system state evolves as if
there is no noise. Second, the system and measurement noises are incorporated
into the error covariance matrix. Then a new measurement arrives and the filter's
state should be updated by innovation y (measurement residual) and innovation
covariance S :

ˆi i i iy z H x= −

ˆ T
i i i i iS H PH R= +

The update phase is quite dependent on what the close estimate means, but for
common minimum mean square error the equations are as follows:

1ˆ T
i i i iK PH S −=

ˆi i i ix x K y= +

() ˆi i i iP I K H P= −

In the preceding equation, iK is an optimal Kalman gain and I is an identity matrix.

Going Autoregressive

[52]

Matrix manipulation libraries in Haskell
For the Kalman filter, we would require the matrix manipulation library. At the time
of writing there were a few libraries to choose from, which are as follows:

• Matrix (http://hackage.haskell.org/package/matrix): Matrix is
a Haskell native implementation of basic matrix operations and few
algorithms. It is in early development stage and not in production right now
but it might be good for prototyping without a lot of dependencies.

• Repa (http://hackage.haskell.org/package/repa): The Repa library
provides high performance, regular, multi-dimensional, and parallel arrays.
The nice feature of Repa is that it automatically parallelizes all computations
over arrays. Though the library targets mainly image processing, it misses
some quite common algorithms such as matrix decompositions and matrix-
vector multiplication.

• Accelerate (http://hackage.haskell.org/package/accelerate): Accelerate is a
quite unique project that targets GPGPU computations. It is quite fascinating
to be able to write the code that might be executed either on CPU or on GPU.
Though it requires some shift in coding style, it might be worth doing it, if
massive parallel computations are required. Currently it supports NVIDIA's
CUDA, Opens and Repa backends.

• HMatrix (http://hackage.haskell.org/package/hmatrix): The HMatrix
library provides access to open-source libraries such as GNU Scientific
Library (GSL), Basic Linear Algebra Subprograms (BLAS), and Linear
Algebra Package (LAPACK). It has some issues with compilation of those
libraries under Windows but there is some work around for making it work.
However, under Linux and Mac OS, its installation is quite smooth. The
library provides quite reasonable performance and usability. Also there exist
a few spin-offs that provide interoperability with Repa and GSL Statistics.

HMatrix basics
The basic matrix is represented by the Data.Packed.Matrix datatype, though vector
is a special case of matrix, it is represented by a different datatype, Data.Packed.
Vector. Both datatypes implement Num, Fractional, and Floating type classes.
Therefore they support such common operations as addition, multiplication, and so
on. But you should be careful as they are element-wise operations. Let's take a look
at the example in MatrixBasics.hs.

In this example we collected the most common matrix operations. First, we created
two 2 x 2 matrices using the >< operator that takes dimensions and list of values as
shown in the following example:

(><) :: Int -> Int -> [a] -> Matrix a

Chapter 4

[53]

Matrices and vectors support the standard classes Show and Read, so it is quite easy
to print them out. As floating-point operations often yield ugly numbers, the disp
function might be used to print out matrices in rounded format. Try to run the script
and the output should be as follows:

"Matrix A"
(2><2)
 [1.0, 2.0
 , -2.0, 1.0]
"Matrix B"
(2><2)
 [0.0, 1.0
 , 1.0, 0.0]

Also it is possible to add and multiply matrices. Note the difference between the
element-wise star (*) operator and the classic matrix multiplication operator <>.

"A + B"
(2><2)
 [1.0, 3.0
 , -1.0, 1.0]
"A x B"
(2><2)
 [2.0, 1.0
 , 1.0, -2.0]
"A * B"
(2><2)
 [0.0, 2.0
 , -2.0, 0.0]
"B x A"
(2><2)
 [-2.0, 1.0
 , 1.0, 2.0]

The library not only provides primitive operations but also some more complicated
ones like least-squares solver based on singular value decomposition. The output in
our examples should be as follows:

"A \\ B"
(2><2)
 [-0.3999999999999999, 0.19999999999999996
 , 0.2000000000000001, 0.39999999999999997]
2x2
-0.40 0.20
 0.20 0.40

"Check A x C = B"
2x2
0.00 1.00
1.00 0.00

Going Autoregressive

[54]

The Kalman filter in Haskell
As described earlier in the chapter, the Kalman filter has the following
independent parts:

• System model (we will remove control-input model from system model as
we cannot control the market)

• Observation model
• Kalman gain

It would be quite logical to split the filter into such parts. Let's try to model it in
KalmanFilter.hs.

First, we need to specify a system model that includes transition matrix and noise
covariance. This is represented by SystemModel datatype. Quite similarly the
observation model is defined. Those two models are combined into a single type
system that specifies the whole model.

Then, we introduce system state and system observations as newtype declarations.
They are essentially the same as vector double type though introduction of different
types ensures that they won't be mixed somewhere in client code.

Finally, we define the Kalman filter's state and two functions: predict and update
that implement the filter's algorithm. Now we are going to combine them into a
single processing function that takes a stream of observations as input and modifies
filter state accordingly, as in KalmanChain.hs.

This function definition might be rewritten in eta reduction style. Technically
speaking, eta reduction is a dropping of abstraction over a function, or simply
dropping parameters of function. For example, \x -> abs x is reduced to abs under
eta conversion. In estimate function, we can easily drop kalman and observations.
And in singlestep function only obs is dropped as shown in KalmanEta.hs.

Eta reductions quite often lead to the so called point-free programming style. It
is quite natural for a functional programmer to think about programs in terms of
function composition without mentioning actual parameters. Moreover, Haskell
supports such style by providing the dot operator. Thus two definitions below are
equivalent in Zeta.hs.

The latter expression is clearer and more high level as it describes functions as
composition, and not as a sequential application. Though point-free style extensively
uses points in function composition, the term came from topology, the branch of
mathematics studying spaces with points and functions over those spaces. And
point-free function definition doesn't mention the point of space it acts upon. In
Haskell, that space is type and points are values of those types. But abuse of
point-free style might lead to obfuscation and pointless style. So be careful.

Chapter 4

[55]

The state-space model for ARMA
Now going back to math to combine both pieces into single estimation techniques,
the Kalman filter operates over the state and requires a model of system dynamics.
Essentially this state is a vector that totally specifies the system behavior at a
given time.

Let's downscale our discussion to the ARMA(1,1) model to simplify the whole thing;
the model as follows:

1 1i i i ix bx cε ε− −= + +

With a naive approach we can rewrite it in matrix form as follows:

1
1

1 1
0 0 0

i
i i i i

b x
X FX w w

c
−

−

= + = +

The observation model just picks the first element of the vector in this case without
observation noise as shown in the following equation:

()1 0
0
i

i i i

x
Z H X
= =

Now given the model estimated we can forecast the future values of both time series
and error term.

ARMA in Haskell
It is not hard to represent the ARMA model in Haskell, though it would be great
to make an extension point, so we could potentially give any model to the Kalman
filter. Thus, we can make a ToSystem type class that would be responsible for the
conversion in ToSystem.hs.

Here we define three functions that convert from abstract model to system model
specified previously for the Kalman filter. Also we make an instance for System type
as well to avoid conversion costs in the following modification of the predict and
update functions in predict.hs.

Let's use the prototype ARMA model from Arma.hs.

The implementation of toSystemModel and toObservationModel is quite trivial
re-writing of previous state model equations.

Going Autoregressive

[56]

ACD model extension
The basic idea of the autoregressive conditional duration model is to parameterize
conditional mean function as follows:

() [];i i ixϕ ϕ θ θ= = Ε

In the preceding equation, θ is a model parameter vector. Then it is assumed that the
standardized durations i

i
i

xε ϕ= follow an independent and identically
distributed (i.i.d) process with [] 1iεΕ = . Complete specification of ACD model
requires either choice of conditional mean function form or choice of standardized
durations distribution.

The basic ACD specification is a linear decomposition of the conditional
mean function

1 1

QP

i j i j j i j
j j

a b x cϕ ϕ− −
= =

= + +∑ ∑ with non-negativity sufficient conditions 0a >
and 0, 0b c> > . For the sake of simplicity we will consider a model with

1, 1P Q= = and 1 1i i ia bx cϕ ϕ− −= + + .

For this model, the unconditional mean is easily computed as the mean of
durations is 1.

[] [] [] []i i i ix ε ϕ ϕΕ = Ε Ε = Ε

Let's compute a mean of the model equation as follows:

[] [] []1 1i i ia b x cϕ ϕ− −Ε = + Ε + Ε

Now assuming some stationary process and conditional mean; that is, [] []1i ix x −Ε = Ε
and [] []1i iϕ ϕ −Ε = Ε , we obtain the equation for unconditional mean as follows:

[] [] []i i ix a b x c xΕ = + Ε + Ε

And by solving it:

[]
1i
ax
b c

Ε =
− −

Chapter 4

[57]

The unconditional variance computation is a bit more involved but derived in the
same way as follows:

[] []
() []

2
2

2 2

1 2Var[] Var
1 Vari i i

i

c bcx x
c b c

ε
ε

− −
= Ε

− + −

The autocorrelation function is derived as follows:

() ()2

1 1 2

1
Cov ,

1 2i i

b c bc
x x

c bc
ρ −

− −
= =

− −

() 1n nb cρ ρ −= +

Covariance stationarity conditions are satisfied by the following function:

() []2 2Var 1ib c b ε+ − <

And it is quite similar to GARCH stationarity conditions.

Experimental conditional durations
Before starting with the model application, let us take a look at how those durations
behave in time scale and how they depend on previous one. In fact we can consider
few plots to estimate as follows:

• Autocorrelation function
• Lagged plots

Based on these two charts we will estimate and model a behavior of the durations.

Going Autoregressive

[58]

The Autocorrelation function
The Autocorrelation function is often used in signal processing and is a correlation of
time series against itself lagged by a few steps. Usually for discrete observations the
estimate of autocorrelation function is obtained as follows:

() ()()2
1

1 1 n k

t t k
t

R k x x
n k

µ µ
σ

−

+
=

= − −
− ∑

In the preceding equation, k is a lag and is less than n, tx is an observation at
moment t ; µ is the mean and 2σ is the variance. The biasness of this estimate
depends on how mean and variance are obtained. In an ideal case, it would be
unbiased if mean and variance are true. In practical cases, it would be biased
and it is just a matter of minimization of a mean square error.

The brute force algorithm of autocorrelation computation has complexity of 2n
. Therefore, it is useful only in a limited number of cases. The statistics package
provides such implementation, though optimized for stream fusion. It is an
automatic optimization technique that removes intermediate data structures to
lower the pressure on memory allocation and to produce a performant code. Also
it motivates us to use a high-level coding style, thus avoiding tricky optimizing
code manipulations that make your code unreadable.

The optimized version of autocorrelation algorithm uses Wiener-Khinchin theorem.
It states that the autocorrelation function of a stationary random process has a
spectral decomposition given by the power spectrum of that process. Thus we can
use Fast Fourier Transform (FFT) to reduce complexity to logn n . The algorithm
itself has three steps:

() ()tF t FFT x=

() () () ()*S f F f F f F f= =

() ()R IFFT S fτ =

In the preceding equation, IFFT is an inverse FFT and the asterisk is a
complex conjugate in Autoregression.hs.

Chapter 4

[59]

The statistics library provides both transformations. Though its main goal was a
correct and provide easy to read implementation, it is not the most performant
implementation of Fourier transform. If performance is the must, then it is better
to re-use bindings to C-library FFTW. Also we can see that Haskell has a built-in
support of complex numbers with parameterized inner type, but only Double and
Float make sense to be used. Complex numbers have an unusual form of data
constructor. Though it is completely fine from the language point of view and it is
not an exception, the fact is that data constructors are just functions that return the
new object. In GHCi we can test it as follows:

Prelude> import Data.Complex
Prelude Data.Complex> :t (:+)
(:+) :: a -> a -> Complex a
Prelude Data.Complex>

The t command allows inspection of types of any function or object. By type
signature we can say that :+ just takes two arguments of the same type a and
returns Complex a.

Stream fusion
As we've already mentioned, stream fusion is the compiler optimizations technique
that removes intermediate data structures to lower the pressure on memory
allocation and to produce performant code. Also it motivates us to use a high-level
coding style, thus avoiding tricky optimizing code manipulations that make your
code unreadable.

Lists and arrays, or any other traversable data structure, can be represented as a
continuous stream of values of the same type. Stream fusion framework provides
two datatypes to cope with such representation.

data Stream a = forall s. Stream (s -> Step s a) s

The forall keyword allows us to bring a new type variable into scope. It is
not needed in function definitions as it is assumed by default, but for datatype
constructors it might be useful to hide internal types. This keyword is a part of GHC
extension ExistentialQuantification and such datatypes are called existentially
quantified types.

Going Autoregressive

[60]

So, the stream consists of step function and initial seed. The step function produces
a next element and a new state from the current state of stream as in Stepper.hs.

As we see at the definition of step, the results of the step function can be as follows:

• Yield a s contains an element and the next seed
• Skip s says that current step doesn't contain an element
• Done flags the end of a stream

It is relatively easy to write a straightforward conversion function from list to stream
in ListToStream.hs.

In this example we used the list as initial seed and passed list tail further to keep
the state of the stream. Though any data structure can be used as seed, it should be
carefully selected to be lazy, thus avoiding both excessive optimizations (as it might
run the same computation in parallel) and eager computation of the seed. Also the
reverse function could be defined with type streamToList :: Stream a -> [a].

In the next step all list and array operations can be expressed in terms of stream
manipulation as follows:

func = streamToList . transformation . listToStream

For instance, the filter implementation uses Skip data constructor to mark
nonmatched entries of the input list.

GHC also contains the rule that allows us to remove any occurrence of list
construction followed by its consumption; that is, the following property is
true for streams:

forall s. listToStream (streamToList s) = s

By stream fusion techinch GHC collects an individual operation over elements of
traversable data structure into a single tight loop.

Chapter 4

[61]

The Autocorrelation plot
And returning back to durations, we can see on the autocorrelation plot that there
are significant nonzero autocorrelations on lagged durations. If they were random,
autocorrelations would be near zero for any and all lagged durations. Therefore, we
can conclude that there is some autocorrelated process of durations.

QML estimation
The exponential distribution is a quite natural choice for the distribution of
intergrade durations. So we will take an exponential ACD (E-ACD) model as a
starting point for studying this model class. Though this model might be a quite
restrictive, it allows us to build a relatively simple framework for quasi-maximum
likelihood estimations of ACD.

The likelihood contribution of a single observation is given by the
following distribution:

() 1 i

i

x

i
i

f x e ϕ

ϕ

−

=

Going Autoregressive

[62]

And log likelihood is given by the following equation:

() ()log logi
i i i

i

xl x f x ϕ
ϕ

= = − −

Therefore, if ix are observations, then quasi-log likelihood function is as follows:

1
log log

n
i

i
i i

xL ϕ
ϕ=

= − +∑

Assuming that ()iϕ θ is a function of parameters θ , the quasi-log likelihood has its
extrema where partial derivatives are zero:

1

1 1
n

i i

i i i

xL ϕ
θ θ ϕ ϕ=

 ∂∂
= − ∂ ∂
∑

Let's try to simplify the expression under the sum sign by noticing the following:

log log log1 1i i i i i

i i

xϕ ϕ ε ε
θ ϕ θ θ θ ε θ

∂ ∂ ∂ ∂ ∂
= = − = −

∂ ∂ ∂ ∂ ∂

We can express partial derivative without the conditional mean function as follows:

[]
1

11
n

i
i

i i

L εε
θ ε θ=

∂∂
= −

∂ ∂∑

Now if standardized duration is drawn from exponential distribution with [] 1iεΕ = ,
its distribution should look as follows:

()f e εε −=

Downloading the example code
You can download the example code files for all
Packt books you have purchased from your account
at http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

Chapter 4

[63]

State-space model for ACD
ACD model might be represented as state space model as well. Let's reconsider the
original model as follows:

1 1i i ia bx cϕ ϕ− −= + +

()1 1 1 1 1i i i i i ia b c a b cϕ ϕ ε ϕ ε ϕ− − − − −= + + = + +

1

1

1 0 0

1 0 0 1 1

i i

i i

x x
b c aϕ ϕ

−

−

 =

Summary
In this chapter we walked through the autoregressive models. The ARMA model
has been revised in conjunction with the Kalman filter and its possibility to estimate
hidden model state.

The autoregressive conditional duration model is a broad class of inter-tick time
interval model. The further extensions are possible in formulation of probability.

On the technical side, we learned a set of matrix manipulation libraries in Haskell
and took a closer look at HMatrix. We also looked at the stream fusion mechanism
that has a great influence on the coding style in Haskell.

In the next chapter, we will learn another important financial concept—volatility.
Also we will go through Haskell's approach to computation parallelization.

Volatility
Volatility is a specific measure of price variation of a financial instrument over
time. There are two definitions of volatility that are used in finance. The most
trivial one is a historic volatility that is usually calculated directly from past time
series. An implied volatility is calculated from the observation of price of derivative
instruments. Quite often option chain prices are used.

Historic volatility estimators
The standard definition of volatility is the square root of variance and it is usually
defined as:

()22

1

1 N

i
i

VarX x x
N

σ
=

= = −∑

Here ix is the logarithmic return, x is the sample mean return, and N is the sample
size. Volatility is usually expressed in annualized terms. For those purposes, it
should be multiplied by the square root of trading periods in a year. If the daily
volatility is calculated, then the coefficient 252 is used, because there are 252
trading days in a year.

Sample mean return is very hard to estimate because it is pretty noisy and it is
quite unstable if the time interval changes. Therefore, the mean return is usually
considered to be zero. Moreover, this trick has some theoretical grounds in risk-free
measure pricing algorithms and it will be considered later in this book. Thus the
volatility simplifies to:

2 2

1

1 N

i
i
x

N
σ

=

= ∑

Volatility

[66]

This definition doesn't make any assumptions about price process distribution.
Therefore, it is generally applicable. Variance in general has the following properties:

• Non-negativity: 0VarX ≥
• Variance of constant: 0Varc =
• Scaling by constant: 2VaraX a Var X=
• Sum of random: [] ()2 2 2 ,Var aX bY a Var X b Var X abCov X Y+ = + +

This is what we should know about volatility basics.

Volatility estimator framework
So, let's define the estimation task in terms of type classes and datatypes. At first,
in this chapter we are going to work with bars. They have open, low, high, and
close prices. We should define timestamps and time intervals. A conversion to day
duration is quite useful for further volatility annualizing, that is, casting to volatility
in one year interval. This is found in BarTypes.hs.

Also we add the derivations of common instances Eq, Show, and Enum. Please note
that we did not define duration _, because if function is not defined on some of
BarType, the compiler running with the -Wall option will produce the warning. For
example, if the line with Bar4Hours is commented, then the compiler will warn you:

$ ghc BarTypes.hs -Wall
[1 of 1] Compiling BarType (BarTypes.hs, BarTypes.o)

BarTypes.hs:16:1: Warning:
 Pattern match(es) are non-exhaustive
 In an equation for `duration': Patterns not matched: Bar4Hours

This allows us to be sure that all the possible values of bar type and corresponding
execution paths are considered in the definition of the duration function.

The trivial definition of bar type can be found in Bar.hs.

As we would like to write high performance code, we should understand that
as most of garbage-collecting language runtimes, Haskell Runtime System (RTS)
provides boxing of primitive types, that is, an integer becomes an object inside the
runtime thus enabling reference counting and freeing, though, for high performance
calculation it is better to avoid such situations. Unfortunately, the compiler is not that
smart to automatically avoid boxing, even if it tries in many scenarios. Usually it is
better to provide an UNPACK hint to the compiler as given in BarOptimized.hs.

Chapter 5

[67]

Also we should recall that Haskell is a language with lazy computations, that is,
it tries to defer computations as much as possible. In case of time series process
this might make a huge overhead by creating a lot of deferred computations until
the final result is retrieved. To avoid such cases, strictness annotation, exclamation
mark ! exists in the language. It forces the compiler to ensure that the field is fully
evaluated before passing the value to the constructor. However, one should know
that it might make the performance worse because if it turns out that the field has
already been evaluated, then all those evaluations will be just wasted. Of course, the
compiler might guess and remove such wasted computations but currently GHC
does a poor job and it cannot guess if the functions used for field computations are
the same or not, even if they are pure. Therefore, it just relies on the proper naming
of function results. To clarify the difference let's take a look at the example, TT.hs.

The first function evaluates x + 1 twice, one for each field of TT but the second
function does this evaluation only once.

Next we should define an estimator interface as the following type class. In fact,
input is just a list of bars and output is volatility of Estimators.hs.

The algorithm type class parameter defines the algorithm used for estimation. Now
we are ready to make a first step and implement the simple volatility estimator in
Simple.hs.

Here we reuse the statistics package to compute the standard deviation of the
sample with mean.

Alternative volatility estimators
Though the volatility definition is pretty simple, it has a major drawback. It is a very
poor estimate for small sample sizes. If the underlying process is log normal, then
variance of the estimated variance is given approximately as follows:

2

2
VarVarX

N
σ

≈

So using more data we would get a closer estimate of the true process. Even if it
is completely fine for stationary, unchanging processes, it is quite problematic for
financial markets. If we use very less data, then our estimate is quite noisy. Using
too much data gives an estimate irrelevant to the current market state. Choosing the
right balance is quite an art and it is hard to formalize it to an algorithm.

Volatility

[68]

There are two basic ways to address the large sampling error problem. We can use
higher-frequency data or we can construct another estimator that either uses all
available observations or uses derivative prices. We always can feed the algorithm
with more fine data and possibly get the better results but this is valid only till some
point, so let us first study alternative algorithms that use more advanced approaches
and yield better volatility estimates.

The Parkinson's number
The first estimator was developed by Parkinson in 1980 to estimate the volatility
of returns for Geometric Brownian Motion using the high and low prices at any
particular period:

2

1

1
4 2

N
i

p
i i

hlog
Nlog l

σ
=

=

∑

Here ()i ih l is a high (low) price in the time interval. Such an estimator is only
applicable to the aggregated time interval, that is, when the range exists. Otherwise,
for points we get i ih l= and therefore, 0σ = . Also it highlights one of its biggest
drawbacks – systematic underestimation of volatility. Moreover, it cannot deal
with jumps and trends and this estimator is really appropriate only for measuring
volatility of the Geometric Brownian Motion. The Parkinson number is about five
time more efficient in comparison with the simple estimator. Thus you will need
approximately five time less data points to achieve the same variance of the estimate.
Also it makes perfect sense that the range of a trading interval defines volatility of
that interval.

Haskell implementation is pretty trivial but there is a trick to enforce strictness as
in Parkinson.hs.

Here we define an internal datatype T with enforced strictness and unpacking just
to be sure that the inner loop of estimator calculation will be executed in place and
without boxing. In general, it makes sense to mark accumulator as strict in the list
folds as its values will be needed at the end of computation.

Chapter 5

[69]

The Garman-Klass estimator
The other type of estimator is a family of Garman-Klass estimators. They are all
well described in a paper by Mark B. Garman and Michael J. Klass (http://www.fea.
com/resources/pdf/a_estimation_of_security_price.pdf). Their practical
recommendation is to use the "fifth" estimator as follows:

2 2

1 1

1 2 2 1
2

N N
i i

i ii i

h cloglog log
N l N o

σ
= =

 −
= −

∑ ∑

It is the most effective estimator of this family and is up to eight times better than
close-to-close one, and this estimator uses nearly all the information available from
the market. If we compare it with the Parkinson estimator, we will find that it is even
more biased towards volatility underestimation.

The implementation of GarmanKlass.hs is pretty straightforward and just follows
the formula with addition of strictness annotations to TT just like we did with T.

The Rogers-Satchel estimator
The major assumption of the estimators already discussed is that market follows
drift-less Geometric Brownian Motion (GBM) and it doesn't apply to markets all
the time. An estimator, that outperforms the others in the presence of drift has been
developed by Rogers, Satchel, and Yoon and is as follows:

1

1 N
i i i i

i i i i i

h h l llog log log log
N c o c o

σ
=

= +

∑

It cannot deal with jumps as all previous estimators. Haskell implementation just
follows the formula by implementing the estimator instance in Rogers.hs.

The Yang-Zhang estimator
This estimator tries to solve the problem of trends and jumps. In fact, the Yang-Zhang
estimator is a weighed average of unbiased variances of open and close log prices and
the Rogers-Satchels estimator:

()2 2 2
0 1c rsk kσ σ σ σ= + + −

Volatility

[70]

Here

()22
0

1

1
1

N

i
i

Varlogo logo logo
N

σ
=

′= = −
− ∑

()22

1

1
1

N

c i
i

Varlogc logc logc
N

σ
=

′= = −
− ∑

2

1

1 N
i i i i

rs
i i i i i

h h l llog log log log
N c o c o

σ
=

= +

∑

0.34
11.34
1

k N
N

=
+

+
−

The performance of this estimator significantly degrades if the process is close to
pure jumps.

Choosing a volatility estimator
Now we have six estimators in hand and the question is how to choose the proper
estimator. Unfortunately this question doesn't have a simple answer. Each estimator
gives some piece of valuable information. For instance, if Parkinson volatility is twice
as much as close-to-close volatility, then, most probably, the true volatility is driven by
large intraday movements and those closing prices will just cover them. But in general,
it is a kind of art to choose an appropriate estimator for given market conditions.

The variation ratio method
Variance ratio is computed by dividing the variance of returns estimated from longer
intervals by the variance of returns estimated from shorter intervals (for the same
measurement period), and then normalizing this value to one by dividing it by the
ratio of the longer interval to the shorter interval. A variance ratio that is greater than
one suggests that the returns series is serially correlated positively or that the shorter
interval returns a trend within the duration of the longer interval. A variance ratio
that is less than one suggests that the return series is serially correlated negatively
or that the shorter interval returns and tends towards the mean reversion within the
duration of the longer interval as shown in the following table:

Chapter 5

[71]

Annualized volatilities of year 2010

Currency pair By minute By hour By 4 hours By day
EUR/USD 12.28% 11.71% 12.02% 12.14%
USD/CHF 12.87% 11.64% 11.61% 10.75%
EUR/CHF 10.25% 9.06% 8.86% 9.23%
GBP/USD 11.87% 11.03% 11.11% 10.08%
EUR/GBP 11.03% 9.54% 9.80% 9.52%

So, we might conclude that USD/CHF and GBP/USD have some mean-reverting
property during the day, others are mean-reverting only in an hour time frame.

Parkinson number of year 2010

Currency pair By minute By hours By 4 hours By day
EUR/USD 8.72% 11.36% 11.63% 11.72%
USD/CHF 9.05% 11.56% 11.72% 11.30%
EUR/CHF 7.04% 8.95% 8.99% 8.96%
GBP/USD 8.52% 10.89% 10.99% 10.08%
EUR/GBP 7.93% 9.46% 9.63% 9.83%

For Geometric Brownian Motion, we can define the Parkinson-to-volatility ratio:

1.67pσ
σ

≈

Deviation from this value shows how much the process deviates from GBM. As we
can see in our results, currency pairs deviate significantly from GBM.

Forecasting volatility
Besides estimation, volatility forecasting is the next big task in trading. It is obviously
a hard task that nobody has solved and won't be able to solve but we can make some
estimates and bets in future. So, in fact, we might predict an approximate form of
volatility distribution.

Volatility

[72]

One such method lies in the observation that prices exhibit time volatility clustering.
There are periods of high volatility, swings followed by calm times. In other words,
time series has a memory effect in volatility, therefore, the first approach is to split
return residuals into a stochastic piece tz and a time-dependent deviation tσ :

t t tr r zσ′− =

The random variable tz is white noise. And the volatility series tσ is modeled as:

()22

1

q

t i t i
i

r rσ ω α −
=

′= + −∑

This model is called the Autoregressive Conditional Heteroskedasticity model of
rank q , ()ARCH q . As we are working with log returns, we can omit r′ because it
is usually about zero and thus simplifies formulas and reasoning about the model.

In fact, we can also include an autoregressive moving average model for variances
into ARCH and get a generalized autoregressive conditional heteroskedasticity
model, GARCH. If p is the order of the variance term and q is the order of the ARCH
terms, then the model is given as follows:

2 2 2

1 1

q p

t i t i i t i
i i

σ ω α γ β σ− −
= =

= + +∑ ∑

Here and further we will study GARCH(1,1) for the sake of simplicity.

The GARCH (1,1) model
There is another way to express the model by splitting the constant term ω into a
long-term variance V and a scaling constant γ as follows:

2 2 2
1 1t t tV rσ γ α βσ− −= + +

Given the amount of information about the GARCH model we might capture it in
Haskell types as in Garch.hs.

Here we introduce a MarketState function to capture the current state of the market
that is in fact a pair of return tr and variance 2

tσ . The Garch11 datatype just keeps
all the parameters of the GARCH(1,1) model.

Chapter 5

[73]

Now we can construct a single-step prediction by using the forecast function.
Also we provided a function, buildVariance that builds variance series by starting
volatility and return series for the given model. The scanl function is quite useful and
its informal definition is quite simple (in pseudo-Haskell) and is found in Scanl.hs.

This function is a variation of fold that records all the intermediate values into the
output array.

Maximum likelihood estimation of parameters
As discussed in the previous chapter, to estimate parameters by MLE, we form a
joint probability density function as a function of parameters, given the data and
maximize the likelihood function with respect to the parameters.

If the returns were independently distributed from each other, we could write the
function as the product of marginal densities, but in the GARCH model they are not
independent. However, it is possible to write it as the following product:

() () ()
() () ()

() () ()

1 2 1 2 1 1 2 1

1 2 1 1 2 2 1 2 2

1 2 1 1 2 2 1

, ,..., | , , , , , ,

| , , , | , , , , , ,

| , , , | , , ,

N N N N

N N N N N

N N N N

f r r r f r r r r f r r r

f r r r r f r r r r f r r r

f r r r r f r r r r f r

− −

− − −

− −

=

=

=

K K

K K K

K K L

Obviously an additional assumption should be put on the conditional distribution
of returns to calibrate the model. Let's start with the usual assumption of normal
returns. Thus the likelihood function becomes as follows:

()2
22

1

1
22

N
i

i ii

r
L exp

µ
σπσ=

 − −
=

∏

So far we can maximize a log-likelihood function as L is a monotonically
increasing function:

()22
2

1 1

1 12
2 2 2

N N
i

i
i i i

rNlogL log
µ

π σ
σ= =

−−
= − −∑ ∑

And for GARCH we should substitute 2 2 2
1 1t t tV rσ γ α βσ− −= + + into the preceding

equation and the log-likelihood becomes a function of the returns and the
parameters. Notice that we should also estimate V and 1σ .

Volatility

[74]

Implementation details
Let's summarize how the log-likelihood function should be calculated:

1. Take a logarithm of returns:
1

i
i

i

xr log
x −

= .
2. Calculate the mean (µ) of log-returns.
3. For the given , , ,Vα β γ and 2

1σ construct a series of GARCH 2
tσ .

4. Using all the preceding values calculate the log-likelihood

The first two steps are good candidates for precalculation and we give them as input
parameters into the logLikelihood function, whereas the third and fourth steps
require a more elaborate approach as given in LogGarch.hs.

In the LogGarch.hs file, you can see that we used the INLINE pragma. Though that
might be quite useful optimization, it should be applied carefully. By default, GHC
tries to inline or to "unfold" functions and values that are small enough to avoid call
overhead and possibly to expose to more sophisticated optimization of inlined code.
The pragma says that this function is cheap enough to be inlined. But GHC will
inline only "fully applied" functions, that is, taking as many arguments that appear
on the left-hand side of the function's definition. Therefore, if we like to use the
logLikelihood function in a partially applied form, that is, when input prices are
known and we are optimizing the parameters of cost function as follows:

costFunction :: Double -> Garch11 -> Double
costFunction = logLikelihood rs

In this case, GHC won't inline the function definition here and produce the
ordinary call. To make it inlineable we make the following transformations
without semantic changes:

logLikelihood :: U.Vector Double -> Double -> Garch11 -> Double
logLikelihood rs = \s0 g ->
 let
 n = fromIntegral $ U.length rs
 mu = mean rs
 variances = buildVolatilities g s0 rs
 sumOfVariance = U.sum variances
 sumOfResidues = U.foldl' (residue mu) 0.0 $ U.zip rs
variances
 residue m a (r, s) = a + (r - m) ** 2 / s
 in
 - 0.5*(n*log2pi + sumOfVariance + sumOfResidues)
{-# INLINE logLikelihood #-}

Chapter 5

[75]

So now the method returns the lambda function and thus the compiler can embed it
into the usage point. Though the HLint might complain by throwing the "Redundant
lambda" error, this is a necessary complication of the function.

Parallel computations
Till now we did not mention any parallelization of Haskell program. Fortunately
this is something that goes along with data immutability and pure functions. As
parallelism and concurrency are usually misused for not-the-same things, let's define
parallelism as a set of techniques to run a program faster by performing several
computations in parallel. This usually requires additional hardware units (multi-core
CPUs). Concurrency, on the other hand, is a set of techniques to make the program
more useable, for example, to spin off a thread to accomplish the background query
to a web service or something similar to this.

If we consider an imperative language in parallel computations, the usual types of
bugs are concurrent, non-synchronized, and writes to memory. Haskell immutable
data might be accessed from any thread without even the theoretical possibility of
memory corruption or access to stale data. Immutability provides quite a nice feature
of referential transparency, that is, an expression can be replaced with its value
without changing the program behavior. This helps in algorithm simplification,
correctness proofs, and optimizations by means of memorization and common
subexpression elimination.

Parallelization also benefits from referential transparency. GHC can reason about
the program flow and reason about computation parallelization if it is required
or needed. Though, it would be a killer feature if GHC could do parallelization
automatically; it is a very hard task and has not been solved yet. So the compiler
still requires explicit hints for parallelization.

Code benchmarking
Before getting into optimization it would be great to have a reliable measurement
of performance. As Donald Knuth said:

Premature optimization is the root of all evil.

Therefore, we should be confident that the program gets benefits from parallelization
and optimization.

Volatility

[76]

There is a sophisticated benchmarking library, criterion, which can be installed as
usually by cabal:

$ cabal install criterion

The library defines a convenient, default main function that does all the
benchmarking. Let's take a look at a simple example in Criterion.hs.

Once it is compiled with ghc -O --make Criterion.hs, we can run it and get
a report similar to the following one:

> ./Criterion

warming up

estimating clock resolution...

mean is 3.535129 us (160001 iterations)

found 1410 outliers among 159999 samples (0.9%)

 1302 (0.8%) high severe

estimating cost of a clock call...

mean is 118.1560 ns (35 iterations)

found 7 outliers among 35 samples (20.0%)

 1 (2.9%) high mild

 6 (17.1%) high severe

benchmarking factorial 100

mean: 12.63666 us, lb 12.55126 us, ub 12.86132 us, ci 0.950

std dev: 662.3861 ns, lb 316.8517 ns, ub 1.399939 us, ci 0.950

found 7 outliers among 100 samples (7.0%)

 5 (5.0%) high mild

 2 (2.0%) high severe

variance introduced by outliers: 50.462%

variance is severely inflated by outliers

We can see that the library takes a lot of efforts to provide consistent and significant
results of benchmarking. It provides a bootstrapping technique to estimate the
accuracy of the benchmark and makes clock accuracy correction.

The library defines the defaultMain function that drives all the benchmarking
process. The bench function creates a benchmark object that provides a specification
of future measurements that might be either a pure computation represented by the
Pure datatype, or the typical IO monad for an impure one.

Chapter 5

[77]

The function name, whnf stands for Weak Head Normal Form (WHNF), which is
approximately a synonym for Haskell lazy computation. As we already mentioned
in the previous chapters, Haskell doesn't evaluate expressions until it is really
needed. Evaluation to WHNF computes only to the most outermost constructor,
that is, it just creates a value but put inside only a promise to compute the value at
the moment when it is retrieved. Such promise is usually called a thunk, a special
object with input arguments and a function to be computed. Thus if the constructor
is not strict in its arguments, evaluation to WHNF returns just an empty object with a
thunk inside it. Therefore one should be quite careful not to measure object creation.

In fact, criterion library can force a value and reduce the benchmarking function to
the normal form using the nf function.

Haskell Run-Time System
Before starting with parallel code in Haskell, we should understand the core of
Haskell execution, Haskell Run-Time System (RTS). GHC provides the core RTS
that includes everything required to execute the Haskell code:

• Storage manager with multi-generational garbage collector
• Byte code interpreter for GHCi
• Heap and time-profiler with code coverage support
• Software transaction memory support
• User-space scheduler of Haskell threads

Haskell threads are a sort of lightweight threads that are placed on top of the
OS-supported threads. And there are two different approaches to manage them:
either schedule all of them on a single OS thread, or split to several OS threads.
These two approaches differ drastically in complexity and overheads. The second
approach might introduce quite a significant overhead into a simple program but
the parallel and/or concurrent program can benefit significantly from it. This is the
reason for having two types of RTS: simple or non-threaded, and threaded.

By default, GHC generates a single-threaded code, even if it is written with parallel
markers. To enable a multi-threaded RTS it should be explicitly chosen at link time
by the –threaded option.

www.allitebooks.com

http://www.allitebooks.org

Volatility

[78]

The divide-and-conquer approach
The factorial function, which we will see, is not written for parallelization. It uses a
tail recursion and therefore, each step of the algorithm depends on the previous one,
but for effective parallelization, the algorithm should allow two or more parallel
streams. There is an important algorithm design paradigm – the divide and conquer
approach. Such an algorithm should work by recursively breaking down a problem
into two subproblems of the same type and the solutions to the subproblems are
combined to get a solution to the original problem. Mathematically we can express it
in the following form:

()f a b g(a) g(b)∪ = ⊗

Factorial can be rewritten in a non-recursive way as follows:

factorial :: Integer -> Integer
factorial 0 = 1
factorial 1 = 1
factorial n = product [1..n]

Measurement of performance of such definitions gives us slightly worse numbers
than a recursive version.

warming up

estimating clock resolution...

mean is 2.512470 us (320001 iterations)

found 3223 outliers among 319999 samples (1.0%)

 2904 (0.9%) high severe

estimating cost of a clock call...

mean is 98.36037 ns (17 iterations)

found 1 outliers among 17 samples (5.9%)

 1 (5.9%) high mild

benchmarking factorial 100

mean: 13.99081 us, lb 13.71873 us, ub 14.71319 us, ci 0.950

std dev: 2.121902 us, lb 984.2068 ns, ub 4.483487 us, ci 0.950

found 8 outliers among 100 samples (8.0%)

 4 (4.0%) high mild

 4 (4.0%) high severe

variance introduced by outliers: 90.437%

variance is severely inflated by outliers

Chapter 5

[79]

As far as multiplication of integers is commutative and transitive, we can rewrite the
built-in product function with multi-branched recursion. We will split the array in
the middle all the time until it is not empty:

parProduct :: Num a => [a] -> a
parProduct [] = 1
parProduct [x] = x
parProduct xs = left*right
 where
 n = length xs `div` 2
 (leftL, rightL) = splitAt n xs
 left = parProduct leftL
 right = parProduct rightL

Here we can see that an empty list is a group unit in the list datatype. And the
following results are not even close to the best one:

benchmarking factorial 100

mean: 33.00396 us, lb 32.43377 us, ub 33.75064 us, ci 0.950

std dev: 3.341864 us, lb 2.714208 us, ub 4.204187 us, ci 0.950

Next, we are going to see what will happen if we create too many sublists. Start by
compiling the program with the -rtsopts option that enables a lot of debugging
options for the program and then by running with the +RTS -s option. These options
print out the garbage collector statistics as follows:

 2,629,606,024 bytes allocated in the heap

 5,558,712 bytes copied during GC

 5,228,944 bytes maximum residency (109 sample(s))

 1,725,760 bytes maximum slop

 11 MB total memory in use (1 MB lost due to fragmentation)

 Tot time (elapsed) Avg pause Max
pause

 Gen 0 4963 colls, 0 par 0.04s 0.05s 0.0000s
0.0006s

 Gen 1 109 colls, 0 par 0.04s 0.04s 0.0004s
0.0016s

 INIT time 0.00s (0.00s elapsed)

 MUT time 3.61s (4.04s elapsed)

 GC time 0.07s (0.09s elapsed)

 EXIT time 0.00s (0.00s elapsed)

 Total time 3.68s (4.13s elapsed)

Volatility

[80]

 %GC time 2.0% (2.2% elapsed)

 Alloc rate 728,913,779 bytes per MUT second

 Productivity 98.0% of total user, 87.4% of total elapsed

Garbage collection doesn't seem to be a problem in this algorithm as it takes only
2 percent of the whole running time. But the total allocation is about 2.5 GB and it
allocates about 700 MB per MUT second. GHC measures different times of program
run. INIT is the runtime system initialization, MUT is the "mutator time", that is, the
time of actual code run. GC is the garbage collector time. EXIT is the runtime system
shutdown time. The only reasonable way to minimize allocation rate is to limit a
recursion depth.

Now we annotate the multi-branched code of factorial with parallelism functions par
and pseq as follows:

parProduct :: Num a => [a] -> a
parProduct [] = 1
parProduct [x] = x
parProduct xs = left `par` (right `pseq` (right * left))
 where
 n = length xs `div` 2
 (leftL, rightL) = splitAt n xs
 left = parProduct leftL
 right = parProduct rightL

The main function definition says that it might be good to compute the left variable
in parallel. The second part says that at first, strictly, we need the right variable and
then it should return multiplication of left and right. As we said earlier, the code
should be compiled with the -threaded option and run with +RTS -N. The output
should be as follows:

benchmarking factorial 100

mean: 20.23398 us, lb 19.22427 us, ub 21.75845 us, ci 0.950

std dev: 6.298791 us, lb 4.462945 us, ub 8.295099 us, ci 0.950

Thus we get from 33 ms to 20 ms, that is, it runs 1.65 times faster which is not bad
but the ideal speed up should be two times faster. In this simple example the cost of
sparking parallel computations seems to be pretty high.

Chapter 5

[81]

The par function doesn't really guarantee that the expression will be evaluated
in parallel with another. It is just a hint for RTS to decide to spark a parallel
computation. The circumstances affecting the decision might include current load
and "heaviness" of the computation. For instance, if all CPU cores are busy, then RTS
might go with sequential execution to avoid a new thread creation. This flexibility
affects the way parallel code can be written. In fact, if RTS is quite intelligent, we
might put the par annotation anywhere.

GARCH code in parallel
Having taken a look at the logLikelihood function in the LogGarch module we
might notice that sumOfVariance and sumOfResidues can be computed in parallel.

logLikelihood :: U.Vector Double -> Double -> Garch11 -> Double
logLikelihood rs s0 g =
 let
 n = fromIntegral $ U.length rs
 mu = mean rs
 variances = buildVolatilities g s0 rs
 sumOfVariance = U.sum variances
 sumOfResidues = U.foldl' (residue mu) 0.0 $ U.zip rs
variances
 residue m a (r, s) = a + (r - m) ** 2 / s
 in
 variances `pseq` (sumOfVariance `par` (sumOfResidues `pseq`
 (- 0.5*(n*log2pi + sumOfVariance + sumOfResidues))))

We should annotate variances with sequential execution to avoid double
computation of the same variable.

Evaluation strategy
The par and pseq functions can introduce the same level of clutter as does thread
communication in imperative programming. Therefore, it would be great to separate
algorithm and evaluation. First, we need to deal with Haskell's laziness and be able
to force argument evaluation up to normal form. A class of types NFData has been
added to cope with the fully evaluated data. NFData stands for normal form data. Its
definition includes only the rnf function, that is, reduce to NF.

class NFData a where
 rnf :: a -> ()

This type class is defined for all main Haskell types, including lists and tuples.
For user-defined types we might need to define it.

Volatility

[82]

Generalization of this approach is an evaluation strategy that doesn't perform any
computation on a value but just ensures that a value is evaluated to some extent. And
the Control.Parallel.Strategies module defines the Strategy type as follows:

type Strategy a = a -> Eval a

By convention the Strategy function may do an arbitrary amount of evaluation of
its argument but will not return a value different from the one it was passed with.

The module defines the following basic strategies:

• r0 performs no evaluation
• rseq evaluates to WHNF
• rdeepseq evaluates to NF
• rpar sparks its argument for evaluation in parallel

Combination of these four basic strategies generates all other possible evaluation
strategies. The most useful ones, such as parallel map (parMap), parallel traverse
(parTraverse), and parallel list (parList), are defined in Control.Parallel.
Strategies.

In this approach we might specify parProduct by just marking what we want to be
evaluated in parallel right now:

parProduct :: Num a => [a] -> a
parProduct [] = 1
parProduct [x] = x
parProduct xs = (right `using` rpar) * left
 where
 n = length xs `div` 2
 (leftL, rightL) = splitAt n xs
 left = product leftL
 right = product rightL

For associative operators, for example, multiplication, it is possible to write a parallel
fold as follows:

parFold :: Strategy a -> (a -> a -> a) -> a -> [a] -> a
parFold strat f = foldl (\ z x -> f z x `using` strat)

And using this function, parProduct simplifies to parFold r0 (*) 1.

Chapter 5

[83]

Summary
In this chapter, we discussed the volatility prediction model GARCH. As we saw, the
GARCH model doesn't pose any kind of restrictions on the underlying distributions,
thus giving the first point of extension. The normal distribution used before doesn't
describe heavy tails of returns' distribution. The next obvious extension point is a
form of polynomial. This point generates an infinite family of models.

Also in the chapter we discussed a deterministic parallelism in Haskell. We built a
parallel factorial toy function and got a glimpse of parallel GARCH implementation.

Advanced Cabal
Any project having more than a couple of files requires a build system, unit testing,
dependency management, and documentation, otherwise it cracks under its own
heaviness. The rule of thumb that was brought by the test-driven development
approach is that the build and test cycle should be easy and run fast, otherwise nobody
will use intermediate builds and tests. Ideally all these processes should be automated.

Haskell addresses these problems by providing the Common Architecture for
Building Applications and Libraries (CABAL). The tool is used to:

• Build the project
• Manage dependencies of the project
• Run tests and benchmarks
• Generate documentation
• Work with common repository of packages (Hackage)

The tool is in continuous development and the latest release 1.18.0 brought hermetic
builds with sandbox and support for GHCi REPL inside sandbox.

Cabal can install packages into one of the following predefined places:

• Global repository that is available for all users. This happens if you use an OS
package manager, or if you install it with Cabal either as root/administrator
or with the --global option.

• User's repository in the user's home directory. Such packages are available
only for that user and it is a default behavior of Cabal.

• Sandboxed in a project specific directory. It makes packages available only
within the scope of the project.

Advanced Cabal

[86]

Common usage
As we mentioned already the common usage of Cabal is package installation using
the following command:

cabal install <pkg-name>

Successful execution of this command installs the package into the user's repository
of Haskell packages. Right after that, the package can be linked to and used by any
Haskell program. The package discovery relies on Hackage (http://hackage.
haskell.org), the common repository of packages. For proper functioning before
the first run of Cabal we require to run an update command that downloads the list
of all available packages with their respective metadata:

cabal update

It is recommended to run update periodically to get a fresh list of packages from
Hackage. On a Unix-like system it might be a good idea to set up a cron to run such
update automatically.

Packaging with Cabal
To start with creating a new package in Cabal, you should run an interactive wizard
using the following command:

cabal init

Cabal will ask you the package name, version, license, author name, author's e-mail
ID, package synopsis, category, library or executable build target, and other minor
parameters. By using these inputs, the tool will create a Cabal file and the Setup.hs
file. The approximate content of an automatically generated Cabal file is is shown in
the test.cabal file.

You should set up hs-source-dirs to point to the directory with Haskell
sources and because this package provides a library, the list of exposed modules
(exposed-modules) are also required. Internal modules should be specified in
the other-modules section. To make a first build of the library you should run,
configure, and build steps using the following commands:

cabal configure

cabal build

Chapter 6

[87]

At the configure step, Cabal checks if all the project dependencies are satisfied.
Then at the build step it will produce required artifacts (libraries or executables).
The Setup.hs file allows customization of build process that might be required in
case of complex libraries and executables with requirements to build third-party
libraries written in other languages. The Simple build is more than enough for usual
Haskell development. According to the build description, it is not called Simple
because it is simple, but "because it does complicated things to a simple software".
The autogenerated Setup.hs file is very short:

import Distribution.Simple
main = defaultMain

This default main function provides all the functionalities of Cabal. To add the test
suite into the project, the following lines should be appended to the Cabal project:

test-suite basic
 type: exitcode-stdio-1.0
 main-is: tests/basic-test.hs
 build-depends: base >=4.6 && <4.7

Here we specified the type of test suite, exitcode-stdio-1.0. Such test suites rely
on the exit code of execution of the script from main-is. To run the test suite, the
project must be configured with the tests enabled as follows:

cabal configure --enable-tests

cabal build

cabal test

It will run all the test suites defined in the Cabal file and print their output on to
the standard output. There is also an other type of test suite, detailed-1.0, but it
doesn't seem to be very well supported. Cabal also provides the clean command
that removes all artifacts generated by the build system.

Cabal in sandbox
Cabal, by default, installs all packages to the user package repository. Though it
keeps track of the package version, this does not eliminate a Cabal dependency hell.
Let's say if an application A requires a library B of Version 2.0 and reuses a library
C that requires the library B of Version 1.0. This immediately violates a GHC rule of
single package version per build as B should be comprised of both the versions and
the build fails with the "Could not resolve dependencies" error. And over the time,
with installation of new packages and upgradation of the old ones, this situation
becomes more and more likely.

Advanced Cabal

[88]

One of the easiest and fastest solutions is to reset all the packages on the system by
deleting all the cabal and ghc-pkg caches. For instance, on a Unix-like system one
can run the following cleanup:

rm –rf ~/.ghc ~/.cabal/lib ~/.cabal/share ~/.cabal/packages

It is an easy fix, but still two projects may interfere with each other's dependencies,
and we will be back into Cabal dependency hell.

Another approach is to build and manage dependencies separately for each project,
in other words, it creates a sandbox for a project. There were a lot of attempts made to
provide a toolset for it, and most prominent tools are cabal-dev, virtualhenv, and
hsenv. The first tool provides a sandboxed Cabal that installs dependencies into the
project's local directory and, thus, does not pollute the user package repository. The
Hsenv and virtualhenv projects have got their inspiration from Python's virtualenv
project and they allow to "sandbox" a whole tool chain, from compiler to packages.

Starting from version 1.18.0, Cabal supports sandboxing without additional tools.
The usage of sandbox is quite simple: once you initialize a fresh sandbox, all further
Cabal commands will be executed inside the box. The typical usage is as follows:

cabal sandbox init

cabal install --only-dependencies

cabal build

This set of commands initializes a new sandbox, installs dependencies, and makes
a full build of the project. It will create a configuration file, cabal.sandbox.config
and a cache directory, .cabal-sandbox to keep the already built packages.

Another frequent version of dependency hell is when a package depends on different
versions of the same package. To resolve such problems, you should modify Cabal
files and/or the code of some of the intermediate packages. In such cases you can
reference the source code of those packages inside your project. Also it might be
useful if you need to build with another project in development. In that case, the
following add-source command will help:

cabal sandbox add-source <path to library>

cabal install --dependencies-only

cabal build

Now Cabal will track changes of the library in the path and in case of changes the
dependency will also be rebuilt.

Chapter 6

[89]

Cabal also provides a way to start GHCi within the sandbox by using the
following command:

cabal repl

This command will use the first component in the package. If you require to run
GHCi REPL command within another component of the package, you can run with
its name as follows:

cabal repl basic

This loads a basic test suite into GHCi with its dependencies.

Summary
In this chapter we went through the Haskell package management system, Cabal,
and took a look at its main features such as building, testing, and sandboxing.

References
For further language and platform reference, you can use the following resources:

• Haskell 2010 Language Report: http://www.haskell.org/onlinereport/
haskell2010/

• Real World Haskell by Bryan O'Sullivan, Don Stewart, and John Goerzen:
http://book.realworldhaskell.org/

• Learn You a Haskell for Great Good! by Miran Lipovača
(http://learnyouahaskell.com/)

• Introduction to Functional Programming using Haskell by Richard Bird
• Pearls of Functional Algorithm Design by Richard Bird
• School of Expression by Paul Hudak
• The Craft of Haskell by Graham Hutton
• Homotopy Type Theory: Univalent Foundations of Mathematics:

http://homotopytypetheory.org/book/

• Cabal User Guide: http://www.haskell.org/cabal/users-guide/
• Cabal sandbox: http://coldwa.st/e/blog/2013-08-20-Cabal-sandbox.

html

The financial and mathematical part of this book is mostly inspired by the
following works:

• Dynamic Hedging: Managing Vanilla and Exotic Options by Nassim
Nicholas Taleb

• Monte Carlo Methods in Finance by Peter Jaeckel
• Handbook of Statistical Analysis and Data Mining Application by Robert

Nisbet, John Elder IV, and Gary Miner
• Econometrics of Financial High-Frequency Data by Nikolaus Hautsch

References

[92]

• Handbook of Modeling High-Frequency Data in Finance, edited by Viens,
Mariani, and Florescu

• Monte Carlo Methods in Financial Engineering (Stochastic Modelling and
Applied Probability) by Paul Glasserman

• Algorithmic Trading and DMA, an introduction to direct access strategies by
Barry Johnson

• Volatility Trading by Euan Sinclair
• The Evaluation and Optimization of Trading Strategies by Robert Pardo
• The Encyclopedia of Trading Strategies by Jeffrey Owen Katz, Ph.D. and

Donna L. McCormik

Index
Symbols
--global option 85
||. operator 30

A
Accelerate

about 52
URL 52

ACD 49
ACD model extension 56, 57
ACM 49
Akaike information criterion (AIC), Poisson

process calibration 37
Algebraic Data Type (ADT) 12
alternative volatility estimators

about 67
Garman-Klass estimator 69
Parkinson's number 68
Rogers-Satchel estimator 69
Yang-Zhang estimator 69

applicative style
files, parsing in 22

ARMA
in Haskell 55
State Space Model 55

ARMA model definition 49, 50
Attoparsec library

about 20
installing 20

Autocorrelation Function 58, 59
autocorrelation plot 61
autoregressive conditional duration

model. See ACD

Autoregressive Conditional
Heteroskedasticity model 72

autoregressive conditional mean models.
See ACM

Autoregressive-moving-average model.
See ARMA

B
basic features, Haskell

datatypes 12
functions 11
IO monad 16
laziness 10
monads 15, 16
pattern matching 14
type classes 13

Basic Linear Algebra Subprograms
(BLAS) 52

basics, HMatrix 52, 53
Bayesian Information Criterion (BIC) 41

C
Cabal

about 10, 20, 85
benefits 85
common usage 86
in sandbox 87-89
package, creating 86, 87

Comma Separated Values (CSV) 19
Common Architecture for Building

Applications and Libraries.
See Cabal

counting process 31

[94]

Cox process calibration
about 39, 40
MLE estimation 41

Create-Read-Update-Delete (CRUD) 26

D
data acquistion 19
data description 19
data quality assessment 19
datatypes

about 12
defining 12

divide and conquer approach 78-80
domain model 19
duration process

about 32
experimental durations 32, 33
Generic MLE implementation 35
Maximum likelihood estimation (MLE) 34

E
Emacs 10
essential mathematical packages, for Outlier

detection 23-25
evaluation strategy 81, 82
experimental conditional durations

about 57
autocorrelation function 58, 59
autocorrelation plot 61
QML estimation 61, 62
state space model, for ACD 63
stream fusion 59, 60

experimental durations 32, 33

F
F# 43
Fast Fourier Transform (FFT) 58
files

parsing, in applicative style 22
FIX 19
Foreign Function Interface (FFI) 5
functions 11

G
GARCH (1,1) model 72
GARCH code

in parallel 81
Garman-Klass estimator 69
Generic MLE implementation, duration

process 35
Geometric Brownian Motion (GBM) 68-71
GHC compiler 10
GHCi REPL 85
Glasgow Haskell Compiler (GHC) 6
GNU Compiler Chain (GCC) 6
GNU Scientific Library (GSL) 52
Grubb's test, for Outlier detection 25, 26

H
Hackage

about 86
URL 20

Haskell
about 5
basic features 10
installing, on Mac OS X 10.8 6-10
Kalman Filter 54
matrix manipulation libraries 52
resources, for language reference 91
resources, for platform reference 91
URL 6

Haskell 2010 5
Haskell implementation, Poisson process

calibration 38
Haskell platform 6
Haskell Run-Time System 66, 77

divide and conquer approach 78-80
GARCH code, in parallel 81

historic volatility estimators 65
HMatrix

about 52
basics 52, 53
URL 52

HPC (Haskell Program Coverage) 46

[95]

I
installation, Attoparsec library 20
installation, Haskell

on Mac OS X 10.8 6-10
interactive GHCi interpreter 10
IO monad 16, 27

K
Kalman filter

about 50, 51
in Haskell 54
predict step 51
update step 51

L
Leksah

URL 10
Linear Algebra Package (LAPACK) 52
LogGarch module 81
London Stock Exchange (LSE) 20

M
Mac OS X 10.8

Haskell, installing on 6-10
market microstructure studies 19
markets types

order-driven 20
quote-driven 20

Matrix
about 52
URL 52

matrix manipulation libraries, Haskell
Accelerate 52
HMatrix 52
Matrix 52
Repa 52

Maximum Likelihood Estimation (MLE) 49
Maximum likelihood estimation (MLE),

duration process 34
MEM 49
migrateAll function 28
ML 43
MLE estimation, Cox process calibration 41

MLE estimation, Poisson process
calibration 36, 37

MLE estimation, Renewal process
calibration 39

model selection 41
monads 15, 16
Multiplicative Error Models. See MEM

N
New York Stock Exchange (NYSE) 20

O
Object-Relational Mapping. See ORM
order-driven markets

examples 20
ORM 26
Outlier detection

about 23
essential mathematical packages 23-25
Grubb's test, for outliers 25, 26

P
package

creating, with Cabal 86, 87
parallel computations

about 75
code benchmarking 75, 76

par function 81
Parkinson's number 68
pattern matching 14
persistent ORM framework

about 27
data, fetching 30
data, inserting 28, 29
data, updating 28, 29
entities, declaring 28

plain text files
parsing 21

point process 31
Poisson process calibration

about 35
Akaike information criterion (AIC) 37
Haskell implementation 38
MLE estimation 36, 37
principal conditions 35

[96]

predict step, Kalman filter 51
pseq function 81

Q
QML estimation 61, 62
quasiquotes 27
QuickCheck test data modifiers, secant root

finding algorithm 45, 47
QuickCheck test framework, secant root

finding algorithm 43-45
quote-driven markets 20

R
Read-Evaluate-Print Loop (REPL) 6
Renewal process calibration

about 38
MLE estimation 39

Repa
about 52
URL 52

Rogers-Satchel estimator 69

S
Scala 43
secant root finding algorithm

about 42, 43
QuickCheck test data modifiers 45, 47
secant root finding algorithm 43-45

share function 28
state space model, for ACD 63
State Space Model, for ARMA 55
stream fusion 59, 60

T
Template Haskell 27
type classes 13

U
update function 29, 86
update step, Kalman filter 51

V
variance

properties 66
variation ratio method 70, 71
VIM 10
volatility 65
volatility estimator

selecting 70
volatility estimator framework 66, 67
volatility forecasting

about 71, 72
evaluation strategy 81, 82
GARCH (1,1) model 72
Haskell Run-Time System 77
log-likelihood function, calculating 74, 75
maximum likelihood estimation, of

parameters 73
parallel computations 75

W
Weak Head Normal Form (WHNF) 77

X
XML 19

Y
Yang-Zhang estimator 69

Thank you for buying
Haskell Financial Data Modeling and Predictive Analytics

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Oracle PeopleSoft Enterprise
Financial Management 9.1
Implementation
ISBN: 978-1-84968-146-9 Paperback: 412 pages

An exhaustive resource for PeopleSoft Financials
application practitioners to understand core concepts,
confi gurations, and business processes

1. A single concise book and eBook reference to
guide you from PeopleSoft foundation concepts
through to crucial configuration activities
required for a successful implementation

2. Real-life implementation scenarios to
demonstrate practical implementations
of PeopleSoft features along with theoretical
concepts

3. Expert tips for the reader based on wide
implementation experience

Clojure Data Analysis Cookbook
ISBN: 978-1-78216-264-3 Paperback: 342 pages

Over 110 recipes to help you dive into the world of
practical data analysis using Clojure

1. Get a handle on the torr ent of data the modern
Internet has created

2. Recipes for every stage from collection
to analysis

3. A practical approach to analyzing data to help
you make informed decisions

Please check www.PacktPub.com for information on our titles

Statistical Analysis with R
Beginner's Guide
ISBN: 978-1-84951-208-4 Paperback: 300 pages

Take control of your data and produce superior
statistical analyses with R

1. An easy introduction for people who are new
to R, with plenty of strong examples for you to
work through

2. This book will take you on a journey to learn
R as the strategist for an ancient Chinese
kingdom!

3. An easy introduction for people who are new
to R, with plenty of strong examples for you to
work through

BIRT 2.6 Data Analysis and
Reporting
ISBN: 978-1-84951-166-7 Paperback: 360 pages

Create, design, format, and deploy reports with
the world's most popular Eclipse-based Business
Intelligence and Reporting Tool

1. Design, manage, format, and deploy
high-quality reports

2. Crosstab reports using the new BIRT
cube designer

3. Transform raw data into visual and
interactive reports

4. Includes a case study (Building Reports for
Bugzilla) at the end along with a real-world
example that runs throughout the book

Please check www.PacktPub.com for information on our titles

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Haskell Platform
	The Haskell platform
	Quick tour of Haskell
	Laziness
	Functions as first-class citizens
	Datatypes
	Type classes
	Pattern matching
	Monads
	The IO monad

	Summary

	Chapter 2: Getting Your Hands Dirty
	The domain model
	The Attoparsec library
	Parsing plain text files
	Parsing files in applicative style
	Outlier detection
	Essential mathematical packages
	Grubb's test for outliers

	Template Haskell, quasiquotes, type families and GADTs
	Persistent ORM framework
	Declaring entities
	Inserting and updating data
	Fetching data

	Summary

	Chapter 3: Measuring Tick Intervals
	Point process
	Counting process
	Durations
	Experimental durations
	Maximum likelihood estimation
	Generic MLE implementation

	Poisson process calibration
	MLE estimation
	Akaike information criterion
	Haskell implementation

	Renewal process calibration
	MLE estimation

	Cox process calibration
	MLE estimation

	Model selection
	The secant root finding algorithm
	The QuickCheck test framework
	QuickCheck test data modifiers

	Summary

	Chapter 4: Going Autoregressive
	The ARMA model definition
	The Kalman filter
	Matrix manipulation libraries in Haskell
	HMatrix basics

	The Kalman filter in Haskell
	The state space model for ARMA
	ARMA in Haskell
	ACD model extension
	Experimental conditional durations
	The Autocorrelation function
	Stream fusion
	Autocorrelation plot
	QML estimation
	State space model for ACD

	Summary

	Chapter 5: Volatility
	Historic volatility estimators
	Volatility estimator framework
	Alternative volatility estimators
	The Parkinson's number
	The Garman-Klass estimator
	The Rogers-Satchel estimator
	The Yang-Zhang estimator
	Choosing a volatility estimator
	The variation ratio method

	Forecasting volatility
	The GARCH (1,1) model
	Maximum likelihood estimation of parameters
	Implementation details
	Parallel computations
	Code benchmarking

	Haskell Run-Time System
	The divide and conquer approach
	GARCH code in parallel

	Evaluation strategy

	Summary

	Chapter 6: Advanced Cabal
	Common usage
	Packaging with Cabal
	Cabal in sandbox
	Summary

	Appendix: References
	Index

