
www.allitebooks.com

http://www.allitebooks.org

IBM SPSS Modeler
Cookbook

Over 60 practical recipes to achieve better results using
the experts' methods for data mining

Keith McCormick

Dean Abbott

Meta S. Brown

Tom Khabaza

Scott R. Mutchler

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

IBM SPSS Modeler Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-546-7

www.packtpub.com

Cover Image by Colin Shearer (shearer@uk.ibm.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Keith McCormick

Dean Abbott

Meta S. Brown

Tom Khabaza

Scott R. Mutchler

Reviewers
Matthew Brooks

Fabrice Leroy

Robert Nisbet

David Young Oh

Jesus Salcedo

Terry Taerum

Acquisition Editor
Edward Gordon

Lead Technical Editor
Arun Nadar

Copy Editor
Gladson Monteiro

Technical Editors
Tanvi Bhatt

Jalasha D'costa

Mrunmayee Patil

Shiny Poojary

Siddhi Rane

Project Coordinator
Shiksha Chaturvedi

Proofreader
Stephen Copestake

Indexer
Priya Subramani

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

Our company, ISL was a provider of Artificial Intelligence tools and technology to organizations
developing advanced software solutions. By 1992, what had started as a casual interest from
our clients in applying some of our tools—the machine learning modules—to their historic data
had evolved into a promising practice in what was to become known as data mining. This was
developing into a nice line of business for us, but was frustrating in a couple of ways:

First, we'd always intended that ISL should be a software supplier. Yet here we were,
because of the complexity of the technologies involved, providing data mining on a
consulting services basis.

Secondly, we were finding that data mining projects involved a lot of hard work, and that most
of that work was boring. Unearthing significant patterns and delivering accurate predictions…
that part was fun. But most of our effort went on mundane tasks such as manipulating data
into the formats required by the various modules and algorithms we applied.

So we built Clementine—to make our job easier and allow us to focus on the interesting parts
of projects, and to give us a tool we could provide to our clients. When the first prototypes
were ready, we tested them by using them to re-run projects we'd previously executed
manually. We found work that had previously taken several weeks was now reduced to under
an hour; we'd obviously got something right.

As the embryonic data mining market grew, so did our business. We saw other vendors, with
deeper pockets and vastly more resources than little ISL, introduce data mining tools, some
of which tried to emulate the visual style of the Clementine's user interface. We were relieved
when, as the inevitable shoot-outs took place, we found time and time again evaluators
reporting that our product had a clear edge, both in terms of productivity and the problem-
solving power it gave to analysts.

On reflection, the main reasons for our success were that we got a number of crucial
things right:

Clementine's design and implementation, from the ground up, was object-oriented. Our
visual programming model was consistent and "pure"; learn the basics, and everything is done
in the same way.

We stuck to a guiding principle of, wherever possible, insulating the user from technology
details. This didn't mean we made it for dummies; rather, we ensured that default
configurations were as sensible as possible (and in places, truly smart—we weren't AI
specialists for nothing), and that expert options such as advanced parameter settings were
accessible without having to drop below the visual programming level.

We made an important design decision that predictive models should have the same status
within the visual workflow as other tools, and that their outputs should be treated as first-order
data. This sounds like a simple point, but the repercussions are enormous. Want more than the
basic analysis of your model's performance? No problem—run its output through any of the tools
in the workbench. Curious to know what might be going on inside your neural network? Use rule
induction to tell you how combinations of inputs map onto output values. Want to have multiple
models vote? Easy. Want to combine them in more complex ways? Just feed their inputs, along
with any data you like, into a supermodel that can decide how best to combine their predictions.

The first two give productivity, plus the ability to raise your eyes from the technical details,
think about the process of analysis at a higher level, and stay focused on each project's
business objectives. Add the third, and you can experiment with novel and creative
approaches that previously just weren't feasible to attempt.

So, 20 years on, what do I feel about Clementine/Modeler? A certain pride, of course, that
the product our small team built remains a market leader. But mainly, over the years, awe
at what I've seen people achieve with it: not just organizations who have made millions
(sometimes, even billions) in returns from their data mining projects, but those who've done
things that genuinely make the world a better place; from hospitals and medical researchers
discovering new ways to diagnose and treat pediatric cancer, to police forces dynamically
anticipating levels of crime risk around their cities and deploying their forces accordingly,
with the deterrent effect reducing rates of murder and violent crime by tens of percent. And
also, a humble appreciation for what I've learned over the years from users who took what
we'd created—a workbench and set of tools—and developed, refined, and applied powerful
approaches and techniques we'd never thought of.

The authors of this book are among the very best of these exponents, gurus who, in their
brilliant and imaginative use of the tool, have pushed back the boundaries of applied
analytics. By reading this book, you are learning from practitioners who have helped define
the state of the art.

When Keith McCormick approached me about writing this foreword, he suggested I might like
to take a "then" and "now" perspective. This is certainly an interesting "now" in our industry.
The advent of Big Data—huge volumes of data, of many varieties and varying veracity,
available to support decision making at high velocity—presents unprecedented opportunities
for organizations to use predictive analytics to gain value. There is a danger, though, that
some of the hype around this will confuse potential adopters and confound their efforts
to derive value for their business. One common misconception is that you just get all data
you can together, and then poke around in the hope of finding something valuable. This
approach—tell me something interesting in this data—was what we always considered "the
data mining question from hell", and is very unlikely to result in real, quantifiable benefit. Data
mining is first and foremost a business activity, and needs to be focused on clear business
objectives and goals, hence the crucial business understanding phase in CRISP-DM that
starts every data mining project.

Yet more disturbing is the positioning of Big Data analytics as something that can only be
done by a new breed of specialist: the "data scientist". Having dedicated experts drive projects
isn't in itself problematic—it has always been the case that the majority of predictive analytics
projects are led by skilled analytical specialists—but what is worrying is the set of skills being
portrayed as core to Big Data projects. There is a common misapprehension that analytics
projects can only be executed by geeks who are expert in the technical details of algorithms
and who do their job by writing screeds of R code (with this rare expertise, of course, justifying
immense salaries).

By analogy, imagine you're looking to have a new opera house built for your city. Certainly, you
have to be sure that it won't collapse, but does that mean you hand the project to whoever has
the greatest knowledge of the mathematics and algorithms around material stress and load
bearing? Of course not. You want an architect who will consider the project holistically, and
deliver a building that is aesthetically stunning, has acoustic properties that fit its purpose,
is built in an environmentally sound manner, and so on. Of course, you want it to stay up, but
applying the specialist algorithms to establish its structural rigor is something you can assume
will be done by the tools (or perhaps, specialist sub-contractors) the architect employs.

Back to analytics: 20 years ago, we moved on from manually, programmatically applying the
technology, to using tools that boosted the analyst's productivity and kept their focus on how
best to achieve the desired business results. With the technology to support Big Data now
able to fit behind a workbench like Modeler, you can deliver first class results without having
to revert to the analytical equivalent of chipping tools from lumps of flint. From this book, you
can learn to be the right sort of data scientist!

Finally, for lovers of trivia: "Clementine" is not an acronym; it's the name of the miner's
daughter with big feet immortalized in the eponymous American folk song. (It was my boss
and mentor, Alan Montgomery, who started singing that one evening as we worked on the
proposal for a yet-to-be-named data mining tool, and we decided it would do for the name
of the prototype until we came up with something more sensible!) The first lines of code for
Clementine were written on New Year's Eve 1992, at my parents' house, on a DECSstation
3100 I'd taken home for the holidays. (They were for the tabular display that originally
provided the output for the Table node and Distribution node, as well as the editing dialogs for
the Filter and Type nodes.) And yes, I was paged immediately before the press launch in June
1994 to be told my wife had just gone into labor, but she had already checked with the doctor
that there was time for me to see the event through before hurrying to the hospital! (But the
story that I then suggested the name "Clementine" for my daughter is a myth.)

Colin Shearer

Co-founder of Integral Solutions Ltd.,
Creator of Clementine/Modeler

About the Authors

Keith McCormick is the Vice President and General Manager of QueBIT Consulting's
Advanced Analytics team. He brings a wealth of consulting/training experience in statistics,
predictive modeling and analytics, and data mining. For many years, he has worked in the
SPSS community, first as an External Trainer and Consultant for SPSS Inc., then in a similar
role with IBM, and now in his role with an award winning IBM partner. He possesses a BS in
Computer Science and Psychology from Worcester Polytechnic Institute.

He has been using Stats software tools since the early 90s, and has been training since
1997. He has been doing data mining and using IBM SPSS Modeler since its arrival in North
America in the late 90s. He is an expert in IBM's SPSS software suite including IBM SPSS
Statistics, IBM SPSS Modeler (formally Clementine), AMOS, Text Mining, and Classification
Trees. He is active as a moderator and participant in statistics groups online including
LinkedIn's Statistics and Analytics Consultants Group. He also blogs and reviews related
books at KeithMcCormick.com. He enjoys hiking in out of the way places, finding unusual
souvenirs while traveling overseas, exotic foods, and old books.

I would like to thank my coauthors for stealing time from their busy careers
to meet a need that the SPSS community had for some time. It wouldn't
have been the same without all five of us and our diverse experiences.

Thanks to Colin for his humor, unique perspective, and generous comments.
Thanks also for our cover photo!

Thanks to Jesus and Terry for going above and beyond in their role as
reviewers. Both were guest chefs, contributing last minute recipes after the
initial reviews came back. Without Jesus' considerable editing skills this
would not have been a 2013 release.

Thanks finally to David Oh, whose prior publication experience, persistence,
and energy kept the project going even when no one else was able to keep
other responsibilities at bay.

Dean Abbott is the President of Abbott Analytics, Inc. in San Diego, California. He has
over two decades experience in applying advanced data mining, data preparation, and
data visualization methods in real-world data intensive problems, including fraud detection,
customer acquisition and retention, digital behavior for web applications and mobile,
customer lifetime value, survey analysis, donation solicitation and planned giving. He has
developed, coded, and evaluated algorithms for use in commercial data mining and pattern
recognition products, including polynomial networks, neural networks, radial basis functions,
and clustering algorithms for multiple software vendors.

He is a seasoned instructor, having taught a wide range of data mining tutorials and
seminars to thousands of attendees, including PAW, KDD, INFORMS, DAMA, AAAI, and IEEE
conferences. He is the instructor of well-regarded data mining courses, explaining concepts
in language readily understood by a wide range of audiences, including analytics novices,
data analysts, statisticians, and business professionals. He also has taught both applied
and hands-on data mining courses for major software vendors, including IBM SPSS Modeler,
Statsoft STATISTICA, Salford System SPM, SAS Enterprise Miner, IBM PredictiveInsight, Tibco
Spotfire Miner, KNIME, RapidMiner, and Megaputer Polyanalyst.

Meta S. Brown helps organizations use practical data analysis to solve everyday business
problems. A hands-on analyst who has tackled projects with up to $900 million at stake, she
is a recognized expert in cutting-edge business analytics.

She is devoted to educating the business community on effective use of statistics, data
mining, and text mining. A sought-after analytics speaker, she has conducted over 4000 hours
of seminars, attracting audiences across North America, Europe, and South America. Her
articles appear frequently on All Analytics, Smart Data Collective, and other publications. She
is also co-author of Big Data, Mining and Analytics: Key Components for Strategic Decisions
(forthcoming from CRC Press, Editor: Stephan Kudyba).

She holds a Master of Science in Nuclear Engineering from the Massachusetts Institute of
Technology, a Bachelor of Science in Mathematics from Rutgers University, and professional
certifications from the American Society for Quality and National Association for Healthcare
Quality. She has served on the faculties of Roosevelt University and National-Louis University.

Many thanks to my patient and supportive family.

Tom Khabaza is an independent consultant in predictive analytics and data mining, and
the Founding Chairman of the Society of Data Miners. He is a data mining veteran of over 20
years and many industries and applications. He has helped to create the IBM SPSS Modeler
(Clementine) data mining workbench and the industry standard CRISP-DM methodology,
and led the first integrations of data mining and text mining. His recent thought leadership
includes the 9 Laws of Data Mining.

I would like to thank Colin Shearer, David Watkins, Alan Montgomery, and
Aaron Sloman, without all of whom there would have been nothing to write
about.

Scott R. Mutchler is the Vice President of Advanced Analytics Services at QueBIT
Consulting LLC. He had spent the first 17 years of his career building enterprise solutions as
a DBA, software developer, and enterprise architect. When Scott discovered his true passion
was for advanced analytics, he moved into advanced analytics leadership roles where he
was able to drive millions of dollars in incremental revenues and cost savings through the
application of advanced analytics to most challenging business problems. His strong IT
background turned out to be a huge asset in building integrated advanced analytics solutions.

Recently, he was the Predictive Analytics Worldwide Industrial Sector Lead for IBM. In this role,
he worked with IBM SPSS clients worldwide. He architected advanced analytic solutions for
clients in some of the world's largest retailers and manufacturers.

He received his Masters from Virginia Tech in Geology. He stays in Colorado and enjoys an
outdoor lifestyle, playing guitar, and travelling.

About the Reviewers

Matthew Brooks has spent 11 years in the Navy during which he became a SEAL. He left
the Navy in 2003 and began working in the IT industry. He worked with the Center for SEAL and
SWCC as the Operations Research Assistant, where he provided analytical support for many
different career related issues for active duty SEALs and Special Warfare Combatant Crewmen
(SWCC). He worked on different problems that range from simulating effects of policy on
manpower distribution, assessment and selection of SEAL candidates, analyzing contributors to
pressure on the force, and enlisted advancement by developing and maintaining the Alternative
Final Multiple Score (AFMS) for SEALs and SWCCs.

Fabrice Leroy is a Principal Consultant in IBM Business Analytics Software Group. He has
over 15 years of international experience applying advanced analytics to help organizations to
solve their business problems.

He is a specialist in designing and implementing large scale data mining applications; he is
also recognized as a world leading expert with IBM SPSS Modeler.

Robert Nisbet has a Ph.D. and is a consulting data scientist to IBM and Aviana Global,
where he focuses on CRM modeling solution development. He recently built a churn model
for a major bank in Texas, using the IBM Modeler package. He was trained initially in Ecology
and Ecosystems Analysis. He has over 30 years of experience in analysis and modeling of
complex ecosystems in Academia (UC, Santa Barbara) and in many large companies. He led
the team at NCR Corporation in the development of the first commercial data mining solutions
for telecommunications (Churn and Propensity to Buy). Currently, he is an instructor in the UC
Irvine Predictive Analytics Certification Program.

He is the lead author of Handbook of Statistical Analysis and Data Mining Applications
(Academic Press, 2009), and a co-author of Practical Text Mining (Academic Press, 2012). He
serves as a general editor for a new book, Predictive Analytics in Medicine and Healthcare,
under contract with Academic Press (Elsevier Publ.) for publication in 2014. His next book will
cover the subject of Effective Data Preparation, coauthored with Keith McCormick.

David Young Oh is a practicing clinical mental health counselor with a continued interest
in psychological research and statistics. His previous research on moral engagement and
international perspectives on peace and war has resulted in several books and journal
publications. Most recently, he has worked on International Handbook of War, Torture and
Terrorism and State Violence and the Right to Peace: An International Survey of the Views of
Ordinary People. He has completed his clinical internship and MS in Mental Health Counseling
with the Johns Hopkins University and his BA and MA at Boston University. He currently lives
and practices in Raleigh-Durham, North Carolina with his partner, dog, and chickens.

Jesus Salcedo is the QueBIT's Director of Advanced Analytics Training. Previously, he worked
for IBM SPSS as the SPSS Curriculum Team Lead and as a Senior Education Specialist. Jesus
was a college professor and worked at Montefiore Medical Center within the department of
psychology. He has been using SPSS products for two decades. He has written numerous SPSS
training courses and has trained thousands of users in both SPSS Statistics and SPSS Modeler.
He received a Ph.D. in Psychometrics from Fordham University.

Terry Taerum is an analyst who has been fortunate to be in the Intel's data mining
business for more than 25 years. The focus has to be on growing a profitable and sustainable
network of information and idea exchange. To do this, we need good data, great analytical
tools, a deep understanding of the subject matter, and a long-term commitment to
continuously improve. No one can do this all on their own and it requires team effort and a
partnership between all vested parties.

His college years at the University of Calgary, where he earned a doctorate, were spent
primarily working on a timeshare PDP/8 and earning money as a Statistical Consultant.
Inspite of changes in the speed of technology, the problems remain much the same except
on a much grander scale. The problem continues to be finding better ways to maximize profit,
whether measured as dollars, bushels of wheat, or happiness. The solutions are, however,
much more interesting these days—pulling in resources from all around the world, using
recording and digitizing processes rarely imagined in the past, and creating new and exciting
means to increase all kinds of return on investment.

More recently, he has been part of larger teams prescribing actions intended to increase sales,
identifying people most likely involved in fraud or transporting illegal property, providing post hoc
analysis of merchandising efforts, and modeling early detection of faults in the manufacturing
of electronic goods and other processes. He was one of the first users of IBM/SPSS Modeler
in North America (13 years ago, previously called Clementine), when it was best known for
its use of neural net. In all of these endeavors, the focus has been on growing the network of
information in order to make the business processes sustainable and more profitable.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print, and bookmark content
ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface	 1
Chapter 1: Data Understanding	 13

Introduction	 13
Using an empty aggregate to evaluate sample size 	 16
Evaluating the need to sample from the initial data	 21
Using CHAID stumps when interviewing an SME	 26
Using a single cluster K-means as an alternative to anomaly detection	 34
Using an @NULL multiple Derive to explore missing data	 38
Creating an Outlier report to give to SMEs	 41
Detecting potential model instability early using the Partition node
and Feature Selection node	 46

Chapter 2: Data Preparation – Select	 51
Introduction	 51
Using the Feature Selection node creatively to remove
or decapitate perfect predictors	 54
Running a Statistics node on anti-join to evaluate the potential missing data	 59
Evaluating the use of sampling for speed	 62
Removing redundant variables using correlation matrices	 68
Selecting variables using the CHAID Modeling node	 72
Selecting variables using the Means node	 76
Selecting variables using single-antecedent Association Rules	 80

Chapter 3: Data Preparation – Clean	 85
Introduction	 85
Binning scale variables to address missing data	 86
Using a full data model/partial data model approach to address missing data	 94
Imputing in-stream mean or median	 98
Imputing missing values randomly from uniform or normal distributions	 102

ii

Table of Contents

Using random imputation to match a variable's distribution	 105
Searching for similar records using a Neural Network for inexact matching	 109
Using neuro-fuzzy searching to find similar names	 113
Producing longer Soundex codes	 117

Chapter 4: Data Preparation – Construct	 125
Introduction	 125
Building transformations with multiple Derive nodes	 127
Calculating and comparing conversion rates	 131
Grouping categorical values	 136
Transforming high skew and kurtosis variables with a multiple Derive node	 141
Creating flag variables for aggregation	 146
Using Association Rules for interaction detection/feature creation	 148
Creating time-aligned cohorts	 154

Chapter 5: Data Preparation – Integrate and Format	 159
Introduction	 159
Speeding up merge with caching and optimization settings	 160
Merging a lookup table	 163
Shuffle-down (nonstandard aggregation)	 167
Cartesian product merge using key-less merge by key	 171
Multiplying out using Cartesian product merge, user source,
and derive dummy	 174
Changing large numbers of variable names without scripting	 176
Parsing nonstandard dates	 180
Parsing and performing a conversion on a complex stream	 184
Sequence processing	 193

Chapter 6: Selecting and Building a Model	 203
Introduction	 203
Evaluating balancing with Auto Classifier	 205
Building models with and without outliers	 208
Using Neural Network for Feature Selection	 212
Creating a bootstrap sample	 216
Creating bagged logistic regression models	 222
Using KNN to match similar cases	 229
Using Auto Classifier to tune models	 233
Next-Best-Offer for large datasets	 238

iii

Table of Contents

Chapter 7: Modeling – Assessment, Evaluation, Deployment,
and Monitoring	 243

Introduction	 243
How (and why) to validate as well as test	 246
Using classification trees to explore the predictions of a Neural Network	 251
Correcting a confusion matrix for an imbalanced target variable
by incorporating priors	 255
Using aggregate to write cluster centers to Excel for conditional formatting	 262
Creating a classification tree financial summary using aggregate
and an Excel Export node	 266
Reformatting data for reporting with a Transpose node	 269
Changing formatting of fields in a Table node	 274
Combining generated filters	 276

Chapter 8: CLEM Scripting	 283
Introduction	 283
Building iterative Neural Network forecasts	 285
Quantifying variable importance with Monte Carlo simulation	 292
Implementing champion/challenger model management	 299
Detecting Outliers with the jackknife method	 304
Optimizing K-means cluster solutions	 310
Automating time series forecasts	 316
Automating HTML reports and graphs	 322
Rolling your own modeling algorithm – Weibull analysis	 327

Appendix: Business Understanding	 333
Introduction	 333
Define business objectives by Tom Khabaza	 334
Assessing the situation by Meta Brown	 337
Translating your business objective into a data mining
objective by Dean Abbott	 341
Produce a project plan – ensuring a realistic timeline by Keith McCormick	 345

Index	 355

Preface
IBM SPSS Modeler is the most comprehensive workbench-style data mining software package.
Many of its individual modeling algorithms are available elsewhere, but Modeler has features
that are helpful throughout all the phases of the independent, influential Cross Industry
Standard Practice for Data Mining (CRISP-DM). Considered the de facto standard, it provides a
skeleton structure for the IBM SPSS Modeler Cookbook and the recipes in this book will help you
maximize your use of Modeler's tools for ETL, data preparation, modeling, and deployment.

In this book, we will emphasize the CRISP-DM phases that you are likely to address working
with Modeler. Other phases, while mentioned, will not be the focus. For instance, the critical
business understanding phase is primarily not a software phase. A rich discussion of this
phase is included in the Appendix, Business Understanding. Also, the deployment and
monitoring phases get a fraction of the attention that data preparation and modeling get
because the former are phases whereas Modeler is the critical component.

These recipes will address:

ff Nonobvious applications of the basics

ff Tricky operations, work-arounds, and nondocumented shortcuts

ff Best practices for key operations as done by power users

ff Operations that are not available through standard approaches, using scripting, in a
chapter dedicated to Modeler scripting recipes

While it assumes it will provide you with the level of knowledge one would gain from an
introductory course or by working with user's guides, it will take you well beyond that. It will
be valuable from the first time you are the lead on a Modeler project but will offer much
wisdom even if you are a veteran user. Each of the authors has a decade (or two, or more)
of experience; collectively they cover the gamut of data mining practice in general, and
specifically knowledge of Modeler.

Preface

2

What is CRISP-DM?
CRISP-DM is a tool that is a neutral and industry-nonspecific process model for navigating a data
mining project life cycle. It consists of six phases, and within those phases, a total of 24 generic
tasks. In the given table, one can see the phases as column headings, and the generic tasks
in bold. It is the most widely used process model of its kind. This is especially true of users of
Modeler since the software has historically made explicit references to CRISP-DM in the default
structure of the project files, but the polls have shown that its popularity extends to many data
miners. It was written in the 90s by a consortium of data miners from numerous companies. Its
lead authors were from NCR, Daimler Chrysler, and ISL (later bought by SPSS).

This book uses this process model to structure the book but does not address the CRISP-DM
content directly. Since the CRISP-DM consortium is nonprofit, the original documents are
widely available on the Web, and it would be helpful to read it entirely as part of one's data
mining professional development. Naturally, as a cookbook written for users of Modeler, our
focus will be on hands-on tasks.

Business understanding, while critical, is not conducive to a recipe-based format. It is such
an important topic, which is why it is covered in Appendix, Business Understanding, in prose.
Data preparation receives the most of our attention with four chapters. Modeling is covered, in
depth, in its own chapter. Since evaluation and deployment often use Modeler in combination
with other tools, we have included them in somewhat fewer recipes, but that does not
diminish its importance. The final chapter, Modeler Scripting, is not named after a CRISP-DM
phase or a task but is included at the end because it has the most advanced recipes.

Preface

3

Data mining is a business process
Data mining by discovery and interpretation of patterns in data is:

ff The use of business knowledge

ff To create new knowledge

ff In natural or artificial form

The most important thing for you to know about data mining is that it is a way of using
business knowledge.

The process of data mining uses business knowledge to create new knowledge, and this new
knowledge may be in one of the two forms. The first form of new knowledge that data mining
can create is "natural knowledge", that is, knowledge sometimes referred to as insight. The
second form of new knowledge that data mining can create is "artificial knowledge", that is,
knowledge in the form of a computer program, sometimes called a predictive model. It is widely
recognized that data mining produces two kinds of results: insight and predictive models.

Both forms of new knowledge are created through a process of discovering and interpreting
patterns in data. The most well-known type of data mining technology is called a data mining
algorithm. This is a computer program that finds patterns in data and creates a generalized
form of those patterns called a "predictive model". What makes these algorithms (and the
models they create) useful is their interpretation in the light of business knowledge. The
patterns that have been discovered may lead to new human knowledge, or insight, or they
may be used to generate new information by using them as computer programs to make
predictions. The new knowledge only makes sense in the context of business knowledge, and
the predictions are only of value if they can be used (through business knowledge) to improve
a business process.

Data mining is a business process, not a technical one. All data mining solutions start from
business goals, find relevant data, and then proceed to find patterns in the data that can help
to achieve the business goals. The data mining process is described well by the aforementioned
CRISP-DM industry standard data mining methodology, but its character as a business process
has been shaped by the data mining tools available. Specifically, the existence of data mining
workbenches that can be used by business analysts means that data mining can be performed
by someone with a great deal of business knowledge, rather than someone whose knowledge
is mainly technical. This in turn means that the data mining process can take place within
the context of ongoing business processes and need not be regarded as a separate technical
development. This leads to a high degree of availability of business knowledge within the data
mining process and magnifies the likely benefits to the business.

Preface

4

The IBM SPSS Modeler workbench
This book is about the data mining workbench variously known as Clementine, IBM SPSS
Modeler. This and the other workbench-style data mining tools have played a crucial role in
making data mining what it now is, that is, a business process (rather than a technical one).
The importance of the workbench is twofold.

Firstly, the workbench plays down the technical side of data mining. It simplifies the use of
technology through a user interface that allows the user almost always to ignore the deep
technical details, whether this means the method of data access, the design of a graph, or the
mechanism and tuning of data mining algorithms. Technical details are simplified, and where
possible, universal default settings are used so that the users often need not see any options
that reveal the underlying technology, let alone understand what they mean.

This is important because it allows business analysts to perform data mining—a business
analyst is someone with expert business knowledge and general-purpose analytical
knowledge. A business analyst need not have deep knowledge of data mining algorithms or
mathematics, and it can even be a disadvantage to have this knowledge because technical
details can distract from focusing on the business problem.

Secondly, the workbench records and highlights the way in which business knowledge has
been used to analyze the data. This is why most data mining workbenches use a "visual
workflow" approach; the workflow constitutes a record of the route from raw data to analysis,
and it also makes it extremely easy to change this processing and re-use it in part or in full.
Data mining is an interactive process of applying business and analytical knowledge to data,
and the data mining workbench is designed to make this easy.

A brief history of the Clementine workbench
During the 1980s, the School of Cognitive and Computing Studies at the University of Sussex
developed an Artificial Intelligence programming environment called Poplog. Used for teaching
and research, Poplog was characterized by containing several different AI programming
languages and many other AI-related packages, including machine-learning modules. From
1983, Poplog was marketed commercially by Systems Designers Limited (later SD-Scicon),
and in 1989, a management buyout created a spin-off company called Integral Solutions
Ltd (ISL) to market Poplog and related products. A stream of businesses developed within
ISL, applying the machine-learning packages in Poplog to organizations' data, in order to
understand and predict customer behavior.

In 1993, Colin Shearer (the then Development and Research Director at ISL) invented the
Clementine data mining workbench, basing his designs around the data mining projects
recently executed by the company and creating the first workbench modules using Poplog.
ISL created a data mining division, led by Colin Shearer, to develop, productize, and
market Clementine and its associated services; the initial members were Colin Shearer,
Tom Khabaza, and David Watkins. This team used Poplog to develop the first version of
Clementine, which was launched in June 1994.

Preface

5

Clementine Version 1 would be considered limited by today's standards; the only algorithms
provided were decision trees and neural networks, and it had very limited access to
databases. However, the fundamental design features of low technical burden on the user
and a flexible visual record of the analysis were as much as they are today, and Clementine
immediately attracted substantial commercial interest. New versions followed, approximately
one major version per year, as shown in the table below. ISL was acquired by SPSS Inc. in
December 1998, and SPSS Inc. was acquired by IBM in 2009.

Version Major new features

1 Decision tree and neural network algorithms, limited database
access, and Unix platforms only

2 New Kohonen network and linear regression algorithms, new
web graph, improved data manipulation, and supernodes

3 ODBC database access, Unix, and Windows platforms

4 Association Rules and K-means clustering algorithms

5 Scripting, batch execution, external module interface, client-
server architecture (Poplog client and C++ server), and the
CRISP-DM project tool

6 Logistic regression algorithm, database pushback, and
Clementine application templates

7 Java client including many new features, TwoStep clustering,
and PCA/Factor analysis algorithms

8 Cluster browser and data audit

9 CHAID and Quest algorithms and interactive decision tree
building

10 Anomaly detection and feature selection algorithms

11 Automated modeling, times series and decision list algorithms,
and partial automation of data preparation

12 SVM, Bayesian and Cox regression algorithms, RFM, and
variable importance charts

13 Automated clustering and data preparation, nearest neighbor
algorithm, interactive rule building

Preface

6

Version Major new features

14 Boosting and bagging, ensemble browsing, XML data

15 Entity analytics social network analysis, GLMM algorithm

Version 13 was renamed as PASW Modeler, and Version 14 as IBM SPSS Modeler. The
selection of major new features described earlier is very subjective; every new version of
Clementine included a large number of enhancements and new features. In particular, data
manipulation, data access and export, visualization, and the user interface received a great
deal of attention throughout. Perhaps the most significant new release was Version 7, where
the Clementine client was completely rewritten in Java; this was designed by Sheri Gilley and
Julian Clinton, and contained a large number of new features while retaining the essential
character of the software. Another very important feature of Clementine from Version 6
onwards was database pushback, the ability to translate Clementine operations into SQL so
that they could be executed directly by a database engine without extracting the data first; this
was primarily the work of Niall McCarroll and Rob Duncan, and it gave Clementine an unusual
degree of scalability compared to other data mining software.

In 1996, ISL collaborated with Daimler-Benz, NCR Teradata, and OHRA to form the "CRISP-
DM" consortium, partly funded by a European Union R&D grant in order to create a new data
mining methodology, CRISP-DM. The consortium consulted many organizations through its
Special Interest Group and released CRISP-DM Version 1.0 in 1999. CRISP-DM has been
integrated into the workbench since that time and has been very widely used, sufficiently to
justify calling it the industry standard.

The core Clementine analytics are designed to handle structured data—numeric, coded, and
string data of the sort typically found in relational databases. However, in Clementine Version
4, a prototype text mining module was produced in collaboration with Brighton University,
although not released as a commercial product. In 2002, SPSS acquired LexiQuest, a text
mining company, and integrated the LexiQuest text mining technology into a product called
Text Mining for Clementine, an add-on module for Version 7. Text mining is accomplished in
the workbench by extracting structured data from unstructured (free text) data, and then
using the standard features of the workbench to analyze this.

Preface

7

Historical introduction to scripting
By the time Clementine Version 4 was released in 1997, the workbench had gained
substantial market traction. Its revolutionary visual programming interface had enabled a
more business-focused approach to analytics than ever before—all the major families of
algorithms were represented in an easy-to-use form, ODBC had enabled integration with a
comprehensive range of data, and commercial partners were busy rebadging Clementine to
reach a wider audience through new market channels.

The workbench lacked one major kind of functionality, that of automation, to enable the
embedding of data mining within other applications. It was therefore decided that automation
would form the centre piece of Version 5, and it would be provided by two major features:
batch mode and scripting. Batch mode enabled running the workbench without the user
interface so that streams could be run in the background, could be scheduled to run at a
given time or at regular intervals, and could be run as part of a larger application. Scripting
enabled the user to gain automated control of stream execution, even without the user being
present; this was also a prerequisite for any complex operation executed in batch mode.

The motivation behind scripting was to provide a number of capabilities:

ff Gain control of the order of stream execution where this matters, that is, when using
the Set Globals node

ff Automate repetitive processes, for example, cross-validation or the exploration of
many different sets of fields or options

ff Remove the need for user intervention so that streams could run in the background

ff Manipulate complex streams, for example, if the need arose to create 1000 different
Derive nodes

These motives led to an underlying philosophy of scripting, that is, scripts replace the user,
not the stream. This means that the operations of scripting should be at the same level as
the actions of the user, that is, they would create nodes and link them, control their settings,
execute streams, and save streams and models. Scripts would not be used to implement
data manipulation or algorithms directly; these would remain in the domain of the stream
itself. This reflects a fundamental fact about technologies—they are defined by what they
cannot do as by what they can. These principles are not inflexible, for example, cross-
validation might be considered as part of an algorithm but was one of the first scripts to be
written; however, they guided the design of the scripting language. A consequence of this
philosophy was that there could be no interaction between script and data; the restriction was
lifted only later with the introduction of access to output objects.

Preface

8

A number of factors influenced the design of the scripting language in addition to the
above philosophy:

ff In line with the orientation towards nontechnical users, the language should be simple

ff The timescale for implementation was short, so the language should be easy
to implement

ff The language should be familiar, and so should use existing programming concepts
and constructs, and not attempt to introduce new ones

These philosophical and practical constraints led to a programming language influenced by
BASIC, with structured features taken from POP-11 and an object-oriented approach to nodes
taken from Smalltalk and its descendants.

What this book covers
Chapter 1, Data Understanding, provides recipes related to the second phase of CRISP-DM
with a focus on exploring the data and data quality. These are recipes that you can apply to
data as soon as you acquire the data. Naturally, some of these recipes are also among the
more basic, but as always, we seek out the nonobvious tips and tricks that will make this
initial assessment of your data efficient.

Chapter 2, Data Preparation – Select, covers just the first task of the data preparation phase.
Data preparation is notoriously time-consuming and is incredibly rich in its potential for time-
saving recipes. The cookbook will have a total of four chapters on data preparation. The
selection of which data rows and which data columns to analyze can be tricky, but it sets the
stage for everything that follows.

Chapter 3, Data Preparation – Clean, covers the challenges the data miners face and is
dedicated to just the second generic task of the data preparation phase. Sometimes new data
miners assume that if a data warehouse is being used, data cleaning has been largely done
up front. Veteran data miners know that there is usually a great deal left to do since data has
to be prepared for a particular use to answer a specific business question. A couple of the
recipes will be basic, but the rest will be quite complex, designed to tackle some of the data
miners' more difficult cleaning challenges.

Chapter 4, Data Preparation – Construct, covers the third generic task of the data preparation
phase. Many data miners find that there are many more constructed variables in the final
model than variables that were used in their original form, as found in the original data
source. Common methods can be as straightforward as ratios of part to whole, or deltas
of last month from average month, and so on. However, the chapter won't stop there. It will
provide examples performing larger scale variable construction.

Preface

9

Chapter 5, Data Preparation – Integrate and Format, covers the fourth and fifth generic tasks
of the data preparation phase. Integrating includes actions in Modeler, which further include
the Merge, Append, and Aggregate nodes. Formatting is often simply defined as reconfiguring
data to meet software needs, in this instance, Modeler.

Chapter 6, Selecting and Building a Model, explains what many novice data miners see as
their greatest challenge, that is, mastering data mining algorithms. Data mining, however,
is neither really all about that, nor is this chapter. A discussion of algorithms can easily fill
a book, and a quick search will reveal that it has done so many times. Here we'll address
nonobvious tricks to make your modeling time more effective and efficient.

Chapter 7, Modeling – Assessment, Evaluation, Deployment, and Monitoring, covers the
terribly important topics, especially deployment, because they don't get as much attention as
they deserve. Here too, deployment deserves more attention, but this cookbook's attention
is clearly and fully focused on IBM SPSS Modeler and not on its sibling products such as IBM
Decision Management or IBM Collaboration and Deployment Services. Their proper use, or
some alternative, is part of the complete narrative but beyond the scope of this book. So,
ultimately two CRISP-DM phases and a portion of a third phase are addressed in one chapter,
albeit with a large number of powerful recipes.

Chapter 8, CLEM Scripting, departs from the CRISP-DM format and focuses instead on a
particular aspect of the interface, scripting. This chapter is the final chapter with advanced
concepts, but it is still written with the intermediate user in mind.

Appendix, Business Understanding, covers a special section and is an essay-format
discussion of the first phase and arguably the most critical phrase of CRISP-DM. Tom
Khabaza, Meta Brown, Dean Abbott, and Keith McCormick each contribute an essay,
collectively discussing all four subtasks.

Who this book is for
This book envisions that you are a regular user of IBM SPSS Modeler, albeit perhaps on your
first serious project. It assumes that you have taken an introductory course or have equivalent
preparation. IBM's Modeler certification would be some indication of this, but the certification
focuses on software operations alone and does not address the general data mining theory.
Some familiarity with that would be of considerable assistance in putting these recipes into
context. All the readers would benefit from a careful review of the CRISP-DM document, which
is readily available on the Internet.

This book also assumes that you are using IBM SPSS Modeler for data mining and are
interested in all of the software-related phases of CRISP-DM. This premise might seem strange,
but since Modeler combines powerful ETL capability with advanced modeling algorithms, it is
true that some Modeler uses the software primarily for ETL capabilities alone. This book roughly
spends equal time on both. One of the advantages of the cookbook format, however, is that the
reader is invited to skip around, reading out of order, reading some chapters and not others,
reading only some of the recipes within chapters, gleaning only what is needed at the moment.

Preface

10

It does not assume that the reader possesses knowledge of SQL. Such knowledge will not
be emphasized as Modeler considerably reduces the need for knowing SQL, although many
data miners have this skill. This book does not assume knowledge of statistical theory. Such
knowledge is always useful to the data miner, but the recipes in this book neither require this
knowledge nor does the book assume prior knowledge of data mining algorithms. The recipes
simply do not dive deep enough into this aspect of the topic to require it.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: " This recipe
uses the cup98lrn reduced vars2.txt data set."

A block of code is set as follows:

if length(s) < 3 then '0'
elseif member(s(3),[B P F V]) and c2 /= '1' then '1'
elseif member(s(3),[C S K G J Q X Z]) and c2 /= '2' then '2'
elseif member(s(3),[D T]) and c2 /= '3' then '3'
elseif s(3) = 'L' and c2 /= '4' then '4'
elseif member(s(3),[M N]) and c2 /= '5' then '5'
elseif s(3) = 'R' and c2 /= '6' then '6'
else '' endif

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

11

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Data Understanding

In this chapter, we will cover:

ff Using an empty aggregate to evaluate sample size

ff Evaluating the need to sample from the initial data

ff Using CHAID stumps when interviewing an SME

ff Using a single cluster K-means as an alternative to anomaly detection

ff Using an @NULL multiple Derive to explore missing data

ff Creating an Outliers report to give to SMEs

ff Detecting potential model instability early using the Partition node and Feature
Selection node

Introduction
This opening chapter is regarding data understanding, but this phase is not the first phase
of CRISP-DM. Business understanding is a critical phase. Some would argue, including
the authors of this book, that business understanding is the phase in most need of more
attention by new data miners. It is certainly a candidate for the phase that is most rushed,
albeit rushed at the peril of the data mining project. However, since this book is focused on
specific software tasks and recipes, and since business understanding is conducted in the
meeting room, not alone at one's laptop, our discussion of this phase is placed in a special
section of the book. If you are new to data mining please do read the business understanding
section first (refer Appendix, Business Understanding), and consider reading the CRISP-DM
document in its entirety as it will place our recipes in a broader context.

Data Understanding

14

The CRISP-DM document covers the initial data collection and proceeds with activities in order
to get familiar with the data, to identify data quality problems, to discover first insights into the
data, or to detect interesting subsets to form hypotheses for hidden information.

CRISP-DM lists the following tasks as a part of the data understanding phase:

ff Collect the data

ff Describe the data

ff Explore the data

ff Data quality

In this chapter we will introduce some of the IBM SPSS Modeler nodes associated with these
tasks as well as nodes that one might associate with other phases, but that can prove useful
during data understanding. Since the recipes are orientated around software tasks, there
is a particular focus on exploring and data quality. Many of these recipes could be done
immediately after accessing your data for the first time. Some of the hard work that follows
will be inspired by what you uncover using these recipes.

The very first task you will need to do when data mining is to determine the size and nature
of the data subset that you will be working with. This might involve sampling or balancing (a
special kind of sampling) or both, but should always be thoughtful. Why sample? When you
have plentiful data, a powerful computer and equally powerful software, why not use every bit
of that?

There was a time when one of the most popular concepts in data mining was to put an end
to sampling. And this was not without reason. If the objective of data mining was to give
business people the power to make discoveries from data independently, then it made sense
to reduce the number of steps in any way possible. As computers and computer memory
became less expensive, it seemed that sampling was a waste of time. And then, there was
the idea of finding a valuable and elusive bit of information in a mass of data. This image was
so powerful that it inspired the name for a whole field of study—data mining. To eliminate any
data from the working dataset was to risk losing treasured insights.

Chapter 1

15

Times change, and so have the attitudes of the data mining community. For one thing, many of
today's data miners began in more traditional data analyst roles, and were familiar with classical
statistics before they entered data mining. These data miners don't want to be without the full
set of methods that they have used earlier in their careers. They expect their data mining tools
to include statistical analysis capability, and sampling is central to classical statistical analysis.
Business users may not have driven the shift toward sampling in data mining, but they have
not stood in the way. Perhaps this is because many business people had some exposure to
statistical analysis in school, or because the idea of sampling simply appeals to their common
sense. Today, in stark contrast to some discussions of Big Data, sampling is a routine part of
data mining. We will address related issues in our first two recipes.

Data understanding often involves close collaboration with others. This point might be forgotten
in skimming this list of recipes since most of them could be done by a solitary analyst. The Using
CHAID stumps when interviewing an SME recipe, underscores the importance of collaboration.
Note that CHAID is used here to serve data exploration, not modeling. A primary goal of this
phase is to uncover facts that need to be discussed with others, whether they be analyst
colleagues, Subject Matter Experts (SMEs), IT support, or management.

There is always the possibility (some veterans might suggest that it is a near certainty) that
you will have to circle back to business understanding to address new discoveries that you
make when you actively start looking at data. Many of the other recipes in this chapter might
also yield discoveries of this kind. Some time ago, Dean Abbott wrote a blog post on this
subject entitled Doing Data Mining Out of Order:

Data mining often requires more creativity and "art" to re-work the data than we
would like, ... but unfortunately data doesn't always cooperate in this way, and we
therefore need to adapt to the specific data problems so that the data is better
prepared.

In this project, we jumped from Business Understanding and the beginnings
of Data Understanding straight to Modeling. I think in this case, I would call it
"modeling" (small 'm') because we weren't building models to predict risk, but
rather to understand the target variable better. We were not sure exactly how
clean the data was to begin with, especially the definition of the target variable,
because no one had ever looked at the data in aggregate before, only on a single
customer -by-customer basis. By building models, and seeing some fields that
predict the target variable 'too well', we have been able to identify historic data
inconsistencies and miscoding.

Data Understanding

16

One could argue this modeling with a small "m" should always be part of data understanding.
The Using CHAID stumps when interviewing an SME recipe, explores how to model efficiently.
CHAID is a good method to explore data. It builds wide trees that are easy for most to read,
and they treat missing data as a separate category that invites a lot of discussion about the
missing values. The idea of a stump is simply a tree that has been grown only to the first
branch. As we shall see, it is a good idea to grow a decision stump for the top 10 inputs as
well as any SME variables of interest. It is a structured, powerful, and even enjoyable way to
work through data understanding.

Dean also wrote:

Now that we have the target variable better defined, I'm going back to the data
understanding and data prep stages to complete those stages properly, and this is
changing how the data will be prepped in addition to modifying the definition of the
target variable. It's also much more enjoyable to build models than do data prep.

It is always wise to consider writing an interim report when you near completion of a phase.
A data understanding report can be a great way to protect yourself against accusations that
you failed to include variables of interest in a Model. It is in this phase that you will start to
determine what we actually have at your disposal, and what information you might not be able
to get. The Outliers (quirk) report, and the exact logic you used to choose your subset, are
precisely the kind of information that you would want to include in such a report.

Using an empty aggregate to evaluate
sample size

Having all the data made available is usually not a challenge to the data miner—the challenge
is having enough of the right data. The data needs to be relevant to the business question,
and be from an appropriate time period. Many users of Modeler might not realize that an
Aggregate node can be useful even when all you have done is drag it into place, but have
given no further instruction to Modeler.

At times data preparation requires the number of records in a dataset to be a data item that
is to be used in further calculations. This recipe shows how to use the Aggregate node with no
aggregation key and no aggregation operations to produce this count, and how to merge this
count into every record using a Cartesian product so that it is available for further calculations.

Chapter 1

17

Getting ready
This recipe uses the cup98lrn reduced vars2 empty.txt data set. Since this recipe
produces a fairly simple stream, we will build the stream from scratch.

How to do it...
To use an empty Aggregate node to evaluate sample size:

1.	 Place a new Var. File source node on the canvas of a new stream. The file name is
cup98lrn reduced vars2.txt. Confirm that the data is being accessed properly.

2.	 Add both an Aggregate node and a Table node downstream of the source. You do not
need to edit either of the nodes.

3.	 Run the stream and confirm the result. Total sample size is 95412.

4.	 Now, add a Type node and a Distinct node in between the Source and Aggregate
node. Move the variable CUST_ID into the Key fields for grouping box.

Data Understanding

18

5.	 Select Discard only the first record in each group.

6.	 Run it and confirm that the result is 0. You have learned that there are no duplicates
at the customer level.

7.	 Place a Merge node so that it is combining the original source with the output of an
empty Aggregate.

8.	 Within the Merge node choose Full Outer Join.

9.	 You have just successfully added the total sample size to the data set where it can be
used for further calculation, as needed.

Chapter 1

19

How it works...
What an Aggregate node typically does is use a categorical variable to define a new row—
always a reduction in the number of rows. Scale variables can be in the Aggregate field's area
and summary statistics are calculated. Average sales in columns arranged with regions in
rows would be a typical example. Having given none of these instructions, the Aggregate node
boils our data down to a single row. Having given it no summary statistics to report all, what it
does is the default instructions, namely Include record count in field, which is checked off at
the bottom of the Aggregate node's menu. While this recipe is quite easy, this default behavior
is sometimes surprising to new users.

There's more...
Now let's talk about some other options, or possibly some pieces of general information that
are relevant to this task.

If you are merging many sources of data, as will often be the case, you should check sample
size for each source, and for the combined sources as well. If you obtained the data from a
colleague, you should be able to confirm that the sample size and the absence (or presence)
of duplicate IDs was consistent with expectations.

When duplicates are present, and you therefore get a non-zero count, you can remove the
aggregate and export the duplicates. You will get the second row (or third, or even more) of
each duplicate. You can look up those IDs and verify that they should (or should not) be in the
data set.

Data Understanding

20

A modified version
A modified version of this technique can be helpful when you have a nominal variable with lots
of categories such as STATE. Simply make the variable your key field.

Additionally, it is wise to sort on Record_Count with a Sort node (not shown). The results
show us that California has enough donors that we might be able to compare California to
other states, but the data in New England is thin. Perhaps we need to group those states into
a broader region variable.

Chapter 1

21

The same issue can arise in other data sets with any variable of this kind, such as product
category, or sales district, etc. In some cases, you may conclude that certain categories are
out of the scope of the analysis. That is not likely in this instance, but there are times when
you conclude that certain categories are so poorly represented that they warrant a separate
analysis. Only the business problem can guide you; this is merely a method for determining
what raw material you have to work with.

See also
ff Chapter 4, Data Preparation – Construct

Evaluating the need to sample from the
initial data

One of the most compelling reasons to sample is that many data sources were never created
with data analysis in mind. Many operational systems would suffer serious functional
problems if a data miner extracted every bit of data from the system. Business intelligence
systems are built for reporting purposes—typically a week's worth or a month's worth at a
time. When a year's worth is requested, it is in summary form. When the data miner requests
a year's worth (or more) of line item level transactions it is often unexpected, and can be
disastrous if the IT unit is not forewarned.

Real life data mining rarely begins with perfectly clean data. It's not uncommon for 90 percent
of a data miner's time to go to data preparation. This is a strong motivation to work with just
enough data to fill a need and no more, because more data to analyze means more data to
clean, more time spent cleaning data, and very little time left available for data exploration,
modeling and other responsibilities. The question often is how large a time period to examine.
Do we need 4 years to examine this? The answer would be yes if we are predicting university
completion, but the answer would be no if we are predicting the next best offer for an online
bookseller.

In this recipe we will run a series of calculations that will help us determine if we have: just
enough data, too much data that we might want to consider random sampling, or so little data
that we might have to go further back in our historical data to get enough.

Getting ready
We will be using the EvaluateSampleNeed.str file.

Data Understanding

22

How to do it...
To evaluate the need to sample from the initial data, perform the following steps:

1.	 Force TARGET_B to be flag in the Type node.

2.	 Run a Distribution node for TARGET_B. Verify that there are 4,883 donors and
90,569 non-donors.

3.	 Run a Distribution node on the new derive field, RFA3_FirstLetter.

4.	 Examine the Select node and run a new Distribution node on TARGET_B downstream
of the Select node. Confirm the numbers 88,290 and 4694 for the results.

5.	 Generate using Balance Node (reduce).

Chapter 1

23

Insert it in sequence before the Distribution node and then run it.

Confirm that the two groups are now roughly equal. This is a random process; your
numbers will not match the screen exactly.

6.	 Add a Partition node after the Type node. Purely for illustration, add a Select node
that allows only data from Train data set to flow to the Distribution node. We want to
assess our sample size, but the Select node would be removed before modeling.

Data Understanding

24

7.	 Do we have enough data if we remove Inactive or Lapsing donors? Add a Select
node that removes the categories I or L from the field RFA_3FirstLetter. The
downstream Distribution node of TARGET_B should result in approximately 2,300 in
each group.

How it works...
Early in the process we determined that we have 4833 cases of the rarer of our two groups.
It would seem, at first, that we have enough data and possibly we do. A good rule of thumb is
that we would want at least 1,000 cases of the rarer group in our Train data set, and ideally
the same amount in our Test data set. When you don't meet these requirements there are
ways around it, but when you can meet them it is one less thing to worry about.

Train Test
Rare (donor) Common (non-donor) Rare (donor) Common (non-donor)
1000+ 1000+ 1000+ 1000+

When we explore the balanced results we meet the 1000+ rule of thumb, but are we out of
the woods? There are numerous issues left to consider. Two are especially important: is all of
the data relevant and is our time period appropriate?

Note that when we rerun the Distribution node downstream of the Partition node, at first it
seems to give us odd results. Partition nodes tells Modeling nodes to ignore Test data, but
Distribution nodes show all the data. In addition, Balance nodes only balance data in the
Training data set, not the Testing data set. In this recipe, we add the select node to make
this clear. In a real project one could just cut the number of cases into half to determine the
number in the Train half.

The exercise in removing 1995 donors or lapsed donors cannot be taken as guidance in all
cases. There are numerous reasons to restrict data. We might be interested in only major
donors (as defined in the data set). We might be interested only in new donors. The point is to
always return to your business case and ensure that you are determining sample size for the
same group that will be your deployment population for the given business question.

In this example, we ultimately can conclude we have enough data to meet the rule of thumb,
but we certainly don't have the amount of data that we appeared to have at the start.

Chapter 1

25

Codes for RFA3_FirstLetter
F First time donor: Anyone who has made their first donation in the last

6 months and has made just one donation.
N New donor: Anyone who has made their first donation in the last 12

months and is not a First time donor. This is everyone who made their first
donation 7-12 months ago, or people who made their first donation between
0-6 months ago and have made two or more donations.

A Active donor: Anyone who made their first donation more than 12
months ago and has made a donation in the last 12 months.

L Lapsing donor: A previous donor who made their last donation between
13-24 months ago.

I Inactive donor: A previous donor who has not made a donation in the
last 24 months. People who made a donation more than 25 months ago.

S Star donor: Star donors are individuals who have given to 3 consecutive
card mailings.

There's more...
What do you do when you don't have enough data? One option is to go further back in time,
but that option might not be available to you on all projects. Another option is to change the
percentages in the Partition node. The Train data set needs its 1000s of records more than
the Test data. If you are experiencing scarcity, increase the percentage of records going to the
Train data.

You could also manipulate the Balance node. One need not fully boost or fully reduce. For
example, if you are low on data, but have almost enough data, try doubling the numbers in the
balance node. This way you are partially boosting the rare group (by a factor of 2), and you are
only partially reducing the common group.

What do you do if you have too much data? As long as there is no seasonality you might
look at only one campaign, or one month. If you had a lot of data, but you had seasonality,
then having only one month's worth of data would not be a good idea. Better to do a random
sample from each of 12 months, and then combine the data. Don't be too quick to embrace
too much uncritically and simply analyze all of it. The proof will be in the ability to validate
against new unbalanced data. A clever sampler will often produce the better model because
they are not drowning the algorithm with noise.

Data Understanding

26

See also
ff The Using an empty aggregate to evaluate sample size recipe in this chapter

Using CHAID stumps when interviewing an
SME

In this recipe we will learn how to use the interactive mode of the CHAID Modeling node to
explore data. The name stump comes from the idea that we grow just one branch and stop.
The exploration will have the goal of answering five questions:

1.	 What variables seem predictive of the target?

2.	 Do the most predictive variables make sense?

3.	 What questions are most useful to pose to the Subject Matter Experts (SMEs) about
data quality?

4.	 What is the potential value of the favorite variables of the SMEs?

5.	 What missing data challenges are present in the data?

Getting ready
We will start with a blank stream.

How to do it...
To use CHAID stumps:

1.	 Add a Source node to the stream for the cup98lrn reduced vars2.txt file.
Ensure that the field delimiter is Tab and that the Strip lead and trail spaces option
is set to Both.

2.	 Add a Type node and declare TARGET_B as flag and as the target. Set TARGET_D,
RFA_2, RFA_2A, and RFA_2F, RFA_2R to None.

Chapter 1

27

3.	 Add a CHAID Modeling node and make sure that it is in interactive mode.

Data Understanding

28

4.	 Click on the Run button. From the menus choose Tree | Grow Branch with Custom
Split. Then click on the Predictors button.

5.	 Allow the top variable, LASTGIFT, to form a branch. Note that LASTGIFT does not
seem to have missing values.

Chapter 1

29

6.	 Further down the list, the RAMNT_ series variables do have missing values. Placing
the mouse on the root node (Node 0) choose Tree | Grow Branch with Custom Split
again.

Data Understanding

30

7.	 The figure shows RAMNT_8, but your results may differ somewhat as CHAID
takes an internal partition and therefore does not use all of the data. The slight
differences can change the ranking of similar variables. Allow the branch to grow
on your selected variable.

Chapter 1

31

8.	 Now we will break away the missing data into its own category. Repeat the steps
leading up to this branch, but before clicking on the Grow button, select Custom and
at the bottom, set Missing values into as Separate Node.

Data Understanding

32

9.	 Sometimes SMEs will have a particular interest in a variable because it has been
known to be valuable in the past, or they are invested in the variable in some way.
Even though it is well down the list, choose the variable Wealth2 and force it to
branch while ensuring that missing values are placed into a Separate node.

How it works...
There are several advantages to exploring data in this way with CHAID. If you have accidentally
included perfect predictors it will become obvious in a hurry. This recipe is dedicated to this
phenomenon. Another advantage is that most SMEs find CHAID rather intuitive. It is easy to
see what the relationships are without extensive exposure to the technique. Meanwhile, as an
added benefit, the SMEs are becoming acquainted with a technique that might also be used
during the modeling phase. As we have seen, CHAID can show missing data as a Separate
node. This feature is shown to be useful in the Binning scale variables to address missing
data recipe in Chapter 3, Data Preparation – Clean. By staying in interactive mode, the trees
are kept simple; also, we can force any variable to branch even if it is not near the top of the
list. Often SMEs can be quite adamant that a variable is important, while the data shows them
otherwise. There are countless reasons why this might be the case, and the conversation
should be allowed to unfold. One is likely to learn a great deal trying to figure out why a
variable that seemed promising is not performing well in the CHAID model.

Chapter 1

33

Let's examine the CHAID tree a bit more closely. The root node shows the total sample size
and the percentage in each of the two categories. In the figures in this recipe, the red group is
the donors group. Notice that the more recent their LASTGIFT was, the more likely that they
donated. Starting with 8.286 percent for the less than or equal to 9 group, dropping down to
3.476 percent for the less than 19 group. Note that when you add up the child nodes, you get
the same number as the number in the root node.

It is recommended that you take a screenshot of at least the top 10 or so variables of interest
to management or SMEs. It is a good precaution to place the images on slides, since you will
be able to review and discuss without waiting for Modeler to process. Having said that, it is an
excellent idea to be ready to further explore the data using this technique on live data during
the meeting.

See also
ff The Using the Feature Selection node creatively to remove or decapitate perfect

predictors recipe in Chapter 2, Data Preparation – Select

ff The Binning scale variables to address missing data recipe in Chapter 3, Data
Preparation – Clean

Data Understanding

34

Using a single cluster K-means as an
alternative to anomaly detection

Cleaning data includes detecting and eliminating outliers. When outliers are viewed as a
property of individual variables, it is easy to examine a data set, one variable at a time, and
identify which records fall outside the usual range for a given variable. However, from a
multivariate point of view, the concept of an outlier is less obvious; individual values may fall
within accepted bounds but a combination of values may still be unusual.

The concept of multivariate outliers is used a great deal in anomaly detection, and this can
be used both for data cleaning and more directly for applications such as fraud detection.
Clustering techniques are often used for this purpose; in effect a clustering model defines
different kinds of normal (the different clusters) and items falling outside these definitions
may be considered anomalous. Techniques of anomaly detection using clustering vary from
sophisticated, perhaps using multiple clustering models and comparing the results, through
single-model examples such as the use of TwoStep in Modeler's Anomaly algorithm, to the
very simple.

The simplest kind of anomaly detection with clustering is to create a cluster model with only one
cluster. The distance of a record from the cluster center can then be treated as a measure of
anomaly, unusualness or outlierhood. This recipe shows how to use a single-cluster K-means
model in this way, and how to analyze the reasons why certain records are outliers.

Getting ready
This recipe uses the following files:

ff Data file: cup98LRN.txt

ff Stream file: Single_Cluster_Kmeans.str

ff Clementine output file: Histogram.cou

How to do it...
To use a single cluster K-means as an alternative to anomaly detection:

1.	 Open the stream Single_Cluster_Kmeans.str by clicking on File | Open Stream.

2.	 Edit the Type node near the top-left of the stream; note that the customer ID and zip
code have been excluded from the model, and the other 5 fields have been included
as inputs.

3.	 Run the Histogram node $KMD-K-Means to show the distribution of distances
from the cluster center. Note that a few records are grouped towards the upper
end of the range.

Chapter 1

35

4.	 Open the output file Histogram.cou by selecting the Outputs tab at the top-right
of the user interface, right-click in this pane to see the pop-up menu, select Open
Output from this menu, then browse and select the file Histogram.cou. You will
see the graph in the following figure, including a boundary (the red line) that was
placed manually to identify the area of the graph that, visually, appears to contain
outliers. The band to the right of this line was used to generate the Select node and
Derive node included in the stream, both labeled band2.

Data Understanding

36

5.	 Run the Table node outliers; this displays the 8 records we have identified as outliers
from the histogram, including their distance from the cluster center, as shown in the
following screenshot. Note that they are all from the same cluster because there is
only one cluster.

So far we have used the single-cluster K-means model to identify outliers, but why are they
outliers? We can create a profile of these outliers to explain why they are outliers, by creating
a rule-set model using the C5.0 algorithm to distinguish items that are in band2 from those
that are not. This is a common technique used in Modeler to find explanations for the behavior
of clustering models that are difficult to interrogate directly. The following steps show how:

1.	 Edit the Type node near the lower-right of the stream, as shown in the following
screenshot. This is used to create the C5.0 rule-set model; note that the inputs
are the same as for the initial cluster model, both outputs of the cluster model
have been excluded, and the target is the derived field band2, a Boolean that
identifies the outliers.

Chapter 1

37

2.	 Browse the C5.0 model, band2 and then use the Model pane to see all the rules and
their statistics, as shown in the following screenshot. All the rules are highly accurate;
even though they are not perfect, this is a successful profiling model in that it can
distinguish reliably between outliers and others. This model shows how the cluster
model has defined outliers: those records that have the rare values U and J for the
GENDER field. The even more rare value C has not been identified, because its single
occurrence was insufficient to have an impact on the model.

Data Understanding

38

How it works...
Imagine a five-dimensional scatter-plot showing the 5 variables used for the cluster model
and normalized. The records from the data set appear as a clump, and somewhere within that
clump is its center of gravity. Some items fall at the edges of this clump; some may be visually
outside it. The clump is the cluster discovered by K-means, and the items falling visually
outside the clump are outliers.

Assuming the clump to be roughly spherical, the items outside the clump will be those at the
greatest distance from its center, and have a gap between them and the edges of the clump.
This corresponds to the gap in the histogram where we create a band of outliers from the
histogram, which we have used manually to identify the band of outliers. The C5.0 rule-set is
a convenient way to see a description of these outliers, more specifically how they differ from
items inside the clump.

There's more...
The final step mentions that the unique value C in the GENDER field has not been discovered
in this instance because it is too rare to have an impact on the model. In fact, it is only too
rare to have an impact on the relatively simplistic single-cluster model. It is possible for a
K-means model to discover this outlier, and it will do so if used with its default setting of
5 clusters. This illustrates that the technique of using the distance from the cluster center
to find outliers is more general than the single-cluster technique and can be used with any
K-means model, or any clustering model that can output this distance.

Using an @NULL multiple Derive to explore
missing data

With great regularity the mere presence or absence of data in the input variable tells you a
great deal. Dates are a classic example. Suppose LastDateRented_HorrorCategory
is NULL. Does that mean that the value is unknown? Perhaps we should replace it with the
average date of the horror movie renters? Please don't! Obviously, if the data is complete, the
failure to find Jane Renter in the horror movie rental transactions much more likely means
that she did not rent a horror movie. This is such a classic scenario you will want a series of
simple tricks to deal with this type of missing data efficiently so that when the situation calls
for it you can easily create NULL flag variables for dozens (or even all) of your variables.

Getting ready
We will start with the NULL Flags.str stream.

Chapter 1

39

How to do it...
To use an @NULL multiple Derive node to explore missing data, perform the following steps:

1.	 Run the Data Audit and examine the resulting Quality tab. Note that a number of
variables are complete but many have more than 5 percent NULL. The Filter node on
the stream allows only the variables with a substantial number of NULL values to flow
downstream.

2.	 Add a Derive node, and edit it, by selecting the Multiple option. Include all of the
scale variables that are downstream of the Filter node. Use the suffix _null, and
select Flag from the Derive as drop-down menu.

3.	 Add another Filter node and set it to allow only the new variables plus TARGET_B to
flow downstream.

4.	 Add a Type node forcing TARGET_B to be the target. Ensure that it is a flag
measurement type.

5.	 Add a Data Audit node. Note that some of the new NULL flag variables may be related
to the target, but it is not easy to see which variables are the most related.

Data Understanding

40

6.	 Add a Feature Selection Modeling node and run it. Edit the resulting generated
model. Note that a number of variables are predictive of the target.

How it works...
There is no substitute for lots of hard work during Data Understanding. Some of the patterns
here could be capitalized upon, and others could indicate the need for data cleaning. The
Using the Feature Selection node creatively to remove or decapitate perfect predictors recipe
in Chapter 2, Data Preparation – Select, shows how circular logic can creep into our analysis.

Note the large number of data and amount-related variables in the Generated model. These
variables indicate that the potential donor did not give in those time periods. Failing to give in
one time period is predicted with failing to give in another; it makes sense. Is this the best way
to get at this? Perhaps a simple count would do the trick, or perhaps the number of recent
donations versus total donations.

Chapter 1

41

Also note the TIMELAG_null variable. It is the distance between the first and second
donation. What would be a common reason that it would be NULL? Obviously the lack of a
second donation could cause that problem. Perhaps analyzing new donors and established
donors separately could be a good way of tackling this. The Using a full data model/partial
data model approach to address missing data recipe in Chapter 3, Data Preparation – Clean,
is built around this very idea. Note that neither imputing with the mean, nor filling with zero
would be a good idea at all. We have no reason to think that one time and two time donors
are similar. We also know for a fact that the time distance is never zero.

Note the Wealth2_null variable. What might cause this variable to be missing, and for the
missing status alone to be predictive? Perhaps we need a new donor to be on the mailing list
for a substantial time before our list vendor can provide us that information. This too might be
tackled with a new donor/established donor approach.

See also
ff The Using the Feature Selection node creatively to remove or decapitate perfect

predictors recipe in Chapter 2, Data Preparation – Select

ff The Using CHAID stumps when interviewing an SME recipe in this chapter

ff The Binning scale variables to address missing data recipe in Chapter 3, Data
Preparation – Clean

ff The Using a full data model/partial data model approach to address missing data
recipe in Chapter 3, Data Preparation – Clean

Creating an Outlier report to give to SMEs
It is quite common that the data miner has to rely on others to either provide data or
interpret data, or both. Even when the data miner is working with data from their own
organization there will be input variables that they don't have direct access to, or that are
outside their day-to-day experience.

Are zero values normal? What about negative values? Null values? Are 1500 balance inquiries
in a month even possible? How could a wallet cost $19,500? The concept of outliers is
something that all analysts are familiar with. Even novice users of Modeler could easily find
a dozen ways of identifying some. This recipe is about identifying outliers systematically and
quickly so that you can produce a report designed to inspire curiosity.

There is no presumption that the data is in error, or that they should be removed. It is simply
an attempt to put the information in the hands of Subject Matter Experts, so quirky values
can be discussed in the earliest phases of the projects. It is important to provide whichever
primary keys are necessary for the SMEs to look up the records. On one of the author's recent
projects, the team started calling these reports quirk reports.

Data Understanding

42

Getting ready
We will start with the Outlier Report.str stream that uses the TELE_CHURN_preprep
data set.

How to do it...
To create an Outlier report:

1.	 Open the stream Outlier Report.str.

2.	 Add a Data Audit node and examine the results.

3.	 Adjust the stream options to allow for 25 rows to be shown in a data preview. We will
be using the preview feature later in the recipe.

Chapter 1

43

4.	 Add a Statistics node. Choose Mean, Min, Max, and Median for the variables
DATA_gb, PEAK_mins, and TEXT_count. These three have either unusually high
maximums or surprising negative values as shown in the Data Audit node.

5.	 Consider taking a screenshot of the Statistics node for later use.

6.	 Add a Sort node. Starting with the first variable, DATA_gb, sort in ascending order.

Data Understanding

44

7.	 Add a Filter node downstream of the Sort node dropping CHURN, DROPPED_CALLS,
and LATE_PAYMENTS. It is important to work with your SME to know which variables
put quirky values into context.

8.	 Preview the Filter node. Consider the following screenshot:

9.	 Reverse the sort, now choosing descending order, and preview the Filter node.
Consider the following screenshot for later use:

10.	 Sort in descending order on the next variable, PEAK_mins. Preview the Filter node.

Chapter 1

45

11.	 Finally sort the variable, TEXT_count, in descending order and preview the Filter node.

12.	 Examine Outliers.docx to see an example of what this might look like in Word.

How it works...
There is no deep theoretical foundation to this recipe; it is as straightforward as it seems. It
is simply a way of quickly getting information to an SME. They will not be frequent Modeler
users. Also summary statistics only give them a part of the story. Providing the min, max,
mean and median alone will not allow an SME to give you the information that you need. If
there is a usual min such as a negative value, you need to know how many negatives there
are, and need at least a handful of actual examples with IDs. An SME might look up to values
in their own resources and the net result could be the addition of more variables to the
analysis. Alternatively, negative values might be turned into nulls or zeros. Negative values
might be deemed out of scope and removed from the analysis. There is no way to know until
you assess why they are negative. Sometimes values that are exactly zero are of interest. High
values, NULL values, and rare categories are all of potential interest. The most important thing
is to be curious (and pleasantly persistent) and to inspire collaborators to be curious as well.

See also
ff The Selecting variables using the CHAID Modeling node recipe in Chapter 2, Data

Preparation – Select

ff The Removing redundant variables using correlation matrices recipe in Chapter 2,
Data Preparation – Select

Data Understanding

46

Detecting potential model instability early
using the Partition node and Feature
Selection node

Model instability would typically be described as an issue most noticeably during the
evaluation phase. Model instability usually manifests itself as a substantially stronger
performance on the Train data set than on the Test data set. This bodes ill for the
performance of the model on new data; in other words, it bodes ill for the practical application
of the model to any business problem. Veteran data miners see this coming well before the
evaluation phase, however, or at least they hope they do. The trick is to spot one of the most
common causes; model instability is much more likely to occur when the same inputs are
competing for the same variance in the model. In other words, when the inputs are correlated
with each other to a large degree, it can cause problems. The data miner can also get
themselves into hot water with their own behavior or imprudence. Overfitting, discussed in the
Introduction of Chapter 7, Modeling – Assessment, Evaluation, Deployment, and Monitoring,
can also cause model instability. The trick is to spot potential problems early. If the issue is
in the set of inputs, this recipe can help to identify which inputs are at issue. The correlation
matrix recipe and other data reduction recipes can assist in corrective action.

This recipe also serves as a cautionary tale about giving the Feature Selection node a heavier
burden than it is capable of carrying. This node looks at the bivariate relationships of inputs
with the target. Bivariate simply means two variables and it means that Feature Selection is
blind to what might happen when lots of inputs attempt to collaborate together to predict the
target. Bivariate analyses are not without value, they are critical to the Data Understanding
phase, but the goal of the data miner is to recruit a team of variables. The team's
performance is based upon a number of factors, only one of which is the ability of each input
to predict the target variable.

Getting ready
We will start with the Stability.str stream.

How to do it...
To detect potential model instability using the Partition and Feature Selection nodes, perform
the following steps:

1.	 Open the stream, Stability.str.

Chapter 1

47

2.	 Edit the Partition node, click on the Generate seed button, and run it. (Since you
will not get the same seed as the figure shown, your results will differ. This is not a
concern. In fact, it helps illustrate the point behind the recipe.)

3.	 Run the Feature Selection Modeling node and then edit the resulting generated
model. Note the ranking of potential inputs may differ if the seed is different.

4.	 Edit the Partition node, generate a new seed, and then run the Feature Selection again.

Data Understanding

48

5.	 Edit the Feature Selection generated model.

6.	 For a third and final time, edit the Partition node, generate a new seed, and then run
the Feature Selection. Edit the generated model.

How it works...
At first glance, one might anticipate no major problems ahead. RFA_6, which is the donor
status calculated six campaigns ago, is in first place twice and is in third place once. Clearly
it provides some value, so what is the danger in proceeding to the next phase? The change in
ranking from seed to seed is revealing something important about this set of variables. These
variables are behaving like variables that are similar to each other. They are all descriptions
of past donation behavior at different times. The larger the number after the underscore,
the further back in time they represent. Why isn't the most recent variable, RFA_2, shown as
the most predictive? Frankly, there is a good chance that it is the most predictive, but these
variables are fighting over top status in the small decimal places of this analysis. We can
trust Feature Selection to alert us that they are potentially important, but it is dangerous to
trust the ranking under these circumstances, and it certainly doesn't mean than if we were to
restrict our inputs to the top ten that we would get a good model.

Chapter 1

49

The behavior revealed here is not a good indication of how these variables will behave in a
model, a classification tree, or any other multiple input techniques. In a tree, once a branch is
formed using RFA_6, the tendency would be for the model to seek a variable that sheds light
on some other aspect of the data. The variable used to form the second branch would likely
not be the second variable on the list because the first and second variables are similar to
each other. The implication of this is that, if RFA_4 were chosen as the first branch, RFA_6
might not be chosen at all.

Each situation is different, but perhaps the best option here is to identify what these related
variables have in common and distill it into a smaller set of variables. To the extent that these
variables have a unique contribution to make—perhaps in the magnitude of their distance in
the past—that too could be brought into higher relief during data preparation.

See also
ff The Selecting variables using the CHAID Modeling node recipe in Chapter 2, Data

Preparation – Select

ff The Removing redundant variables using correlation matrices recipe in Chapter 2,
Data Preparation – Select

2
Data Preparation –

Select

In this chapter, we will cover:

ff Using the Feature Selection node creatively to remove or decapitate perfect predictors

ff Running a Statistics node on an anti-join to evaluate the potential missing data

ff Evaluating the use of sampling for speed

ff Removing redundant variables using correlation matrices

ff Selecting variables using the CHAID Modeling node

ff Selecting variables using the Means node

ff Selecting variables using single-antecedent Association Rules

Introduction
This chapter focuses on just the first task, Select, of the data preparation phase:

Decide on the data to be used for analysis. Criteria include relevance to the data mining
goals, quality, and technical constraints such as limits on data volume or data types. Note
that data selection covers selection of attributes (columns) as well as selection of records
(rows) in a table.

Ideally, data mining empowers business people to discover valuable patterns in large
quantities of data, to develop useful models and integrate them into the business quickly and
easily. The name data mining suggests that large quantities of data will be involved, that the
object is to extract rare and elusive bits of the data, and that data mining calls for working
with data in bulk—no sampling.

Data Preparation – Select

52

New data miners are often struck by how much selection and sampling is actually done. For
some, the stereotypical data miner dives in and looks at everything. It is unclear how such an
unfocused search would yield any deployable results. Years ago, some Modeler documentation
told the tale of the vanishing terabyte—the name alone communicates the basic idea. The data
miner in the story, terrified that their systems can't handle the volume, begins the actual act of
choosing the relevant data only to discover that they only have a few hundred instances of fraud.

One could argue that the fear of Big Data stems from a misunderstanding of selection
and sampling. Large data warehouses filled to the brim with data are a reality, but one
doesn't data-mine the undifferentiated whole. Some of the discussion about large data files
assumes that all questions require all rows of data as far back in time as they are stored.
This is certainly not true. One might use only a small fraction of one's data, that fraction that
allows you to accurately and efficiently answer the problem as defined during the business
understanding phase.

Also, a data miner does not select data in the way that a statistician does. Statisticians do
much more heavy lifting during their variable selection phase. They emerge from that phase
with perhaps just a handful of variables, possibly a dozen or two at the absolute most, but
never hundreds. The data miner might very well start with a presumption that there will be
dozens of inputs, with hundreds being common, and thousands not unheard of. In statistics,
hypotheses determine the independent variables from the offset. That is not the nature
of the selection discussed here. If you are selecting a subset of rows, it is for relevance,
balancing, speed, or a combination of them. Another way to summarize this difference is, if
the statistician favors parsimony at this stage, the data miner favors comprehensiveness.
A statistician might lean towards variables that have proven to be valuable; the data miner
excludes only those variables that are going to cause problems. (The recipe on decapitation is
a prime example of avoiding problems.)

Despite the advantage of favoring comprehensiveness, in practice, it is difficult to make
discoveries and build models quickly when working with massive quantities of data. Although
data mining tools may be designed to streamline the process, it still takes longer for each
operation to complete on a large amount of data than it would with a smaller quantity. In
the course of a day, the data miner will run many operations, importing, graphing, cleaning,
restructuring, and so on. If each one takes an extra minute or two due to the quantity of data
involved, the extra minutes add up to a large portion of the day. As the data set grows larger,
the time required to run each step also increases, and the data miner spends more time
waiting, leaving less time for critical thinking.

So, what's more important, working quickly or working with all the available data? The answer
is not the same in every case. Some analyses really do focus on rare and elusive elements
of the data. An example can be found in the network security field, where the object is to
discover the tracks of a lone intruder among a sea of legitimate system users. In that case,
handling a large mass of data is a practical necessity. Yet most data mining applications do
not focus on such rare events. Buyers among prospects are a minority, but they are not rare.
The same can be said for many other applications. Data miners are most often asked to focus
on behavior that is relatively common.

Chapter 2

53

If the pattern of interest happens frequently, perhaps once in a hundred cases, rather than
once in a million, it is not necessary to use large masses of data at every step in order to
uncover the pattern. Since that is a common situation, most data miners have the opportunity
to improve their own productivity by using smaller quantities of data whenever possible.
Judicious use of sampling allows the data miner to work with just enough data for any given
purpose, reducing the time required to run each of many operations throughout the day.

Having said all that, it is a terribly important set of decisions. Data miners, in principle,
want all the data to have an opportunity to speak. However, variables included have to have
some possibility of relevance and can't interfere with other variables. One tries to keep the
subjectivity at bay, but it is a challenging phase. All of these recipes deal with deciding which
rows to keep, and deciding which variables to keep; as one begins to prepare a modeling
data set. Modeling will likely be weeks away at this point, but this is the start of that ongoing
process. In the end, the goal would be to have every relevant phenomenon measured in some
form, preferably in exactly one variable. Redundancy, while perhaps not causing the same
problems that it causes in statistical techniques, does nonetheless cause problems. The
correlation matrix recipe, among others, addresses this issue.

Although selection includes selecting rows (cases), some of the toughest choices involve
Variables. Variable selection is a key step in the data mining process. Several reasons for
variable filtering or removal include:

ff Removing redundant variables; redundant variables waste time and computational
bandwidth needlessly. Moreover, they can introduce instabilities in some modeling
algorithms, such as linear regression.

ff Removing variables without any information (constants or near constants).

ff Reducing the number of variables in the analysis because there are too many for
efficient model building.

ff Reducing the cost of deploying models. When variables are expensive to collect,
assessing if the added benefit justifies its inclusion, or if other, less expensive
variables can provide the same or nearly the same accuracy.

The first and the second reasons should be done during the select data step of the data
preparation stage. Sometimes it is obvious which variables are essentially identical, though
often highly correlated variables or near-zero variance variables are only discovered through
explicit testing.

The third reason can be done during data preparation or modeling. Some modeling
algorithms have variable selection built-in, such as decision trees or stepwise regression.
Other algorithms do not have variable selection built-in, such as nearest neighbor and Neural
Networks. However, even if an algorithm has some form of variable selection built-in, variable
selection prior to modeling can still be advantageous for efficiency so the same poor or
redundant predictors aren't considered over and over again.

Data Preparation – Select

54

The fourth reason is usually done after models are built when one can assess directly the
value of variables in the final models.

Five of the chapter's recipes focus on selecting variables prior to modeling, making modeling
more efficient. The most common approach to removing variables is to perform single-variable
selection based upon the relationship of the variable with the target variable. The logic behind
this kind of variable selection is that variables that don't have a strong relationship with
the target variable by themselves are unlikely to combine well with other variables in a final
model. This is certainly the case with forward selection algorithms (decision trees, forward
selection in regression models, to name two examples), but of course isn't always the case.

The Feature Selection node in Modeler is effective in removing variables with no or little
variance as well as variables with a weak relationship to the target variable. However, the
feature selection node does not identify redundant variables. In addition, despite its ability
to select variables with significant association to the target variable, the degree of the
association between the input variable and the target variable is not transparent from the
Feature Selection node. It focuses, instead, on the statistical significance of the relationship.
The Feature Selection node can also remove too aggressively if you have not addressed
issues with the missing data.

Four of the variable recipes here (selecting variables using correlations, CHAID, the Means
node, and Association Rules) rely on exporting reports from Modeler into Microsoft Excel to
facilitate the selection process.

Using the Feature Selection node creatively
to remove or decapitate perfect predictors

In this recipe, we will identify perfect or near perfect predictors in order to insure that they do
not contaminate our model. Perfect predictors earn their name by being correct 100 percent
of the time, usually indicating circular logic and not a prediction of value. It is a common and
serious problem.

When this occurs we have accidentally allowed information into the model that could not
possibly be known at the time of the prediction. Everyone 30 days late on their mortgage
receives a late letter, but receiving a late letter is not a good predictor of lateness because
their lateness caused the letter, not the other way around.

The rather colorful term decapitate is borrowed from the data miner Dorian Pyle. It is a
reference to the fact that perfect predictors will be found at the top of any list of key drivers
("caput" means head in Latin). Therefore, to decapitate is to remove the variable at the top.
Their status at the top of the list will be capitalized upon in this recipe.

Chapter 2

55

The following table shows the three time periods; the past, the present, and the future. It is
important to remember that, when we are making predictions, we can use information from the
past to predict the present or the future but we cannot use information from the future to predict
the future. This seems obvious, but it is common to see analysts use information that was
gathered after the date for which predictions are made. As an example, if a company sends out
a notice after a customer has churned, you cannot say that the notice is predictive of churning.

Past Now Future
Contract Start Expiration Outcome Renewal

Date
Joe January 1, 2010 January 1, 2012 Renewed January 2,

2012
Ann February 15,

2010
February 15,
2012

Out of Contract Null

Bill March 21, 2010 March 21, 2012 Churn NA
Jack April 5, 2010 April 5, 2012 Renewed April 9,

2012
New Customer 24 Months Ago Today ??? ???

Getting ready
We will start with a blank stream, and will be using the cup98lrn reduced vars2.txt
data set.

How to do it...
To identify perfect or near-perfect predictors in order to insure that they do not contaminate
our model:

1.	 Build a stream with a Source node, a Type node, and a Table then force instantiation
by running the Table node.

2.	 Force TARGET_B to be flag and make it the target.

Data Preparation – Select

56

3.	 Add a Feature Selection Modeling node and run it.

4.	 Edit the resulting generated model and examine the results. In particular, focus on
the top of the list.

5.	 Review what you know about the top variables, and check to see if any could be
related to the target by definition or could possibly be based on information that
actually postdates the information in the target.

Chapter 2

57

6.	 Add a CHAID Modeling node, set it to run in Interactive mode, and run it.

7.	 Examine the first branch, looking for any child node that might be perfectly predicted;
that is, look for child nodes whose members are all found in one category.

8.	 Continue steps 6 and 7 for the first several variables.

9.	 Variables that are problematic (steps 5 and/or 7) need to be set to None in the
Type node.

Data Preparation – Select

58

How it works...
Which variables need decapitation? The problem is information that, although it was known
at the time that you extracted it, was not known at the time of decision. In this case, the
time of decision is the decision that the potential donor made to donate or not to donate.
Was the amount, Target_D known before the decision was made to donate? Clearly not.
No information that dates after the information in the target variable can ever be used in a
predictive model.

This recipe is built of the following foundation—variables with this problem will float up to the
top of the Feature Selection results.

They may not always be perfect predictors, but perfect predictors always must go. For
example, you might find that, if a customer initially rejects or postpones a purchase, there
should be a follow up sales call in 90 days. They are recorded as rejected offer in the
campaign, and as a result most of them had a follow up call in 90 days after the campaign.
Since a couple of the follow up calls might not have happened, it won't be a perfect predictor,
but it still must go.

Note that variables such as RFA_2 and RFA_2A are both very recent information and highly
predictive. Are they a problem? You can't be absolutely certain without knowing the data. Here
the information recorded in these variables is calculated just prior to the campaign. If the
calculation was made just after, they would have to go. The CHAID tree almost certainly would
have shown evidence of perfect prediction in this case.

There's more...
Sometimes a model has to have a lot of lead time; predicting today's weather is a different
challenge than next year's prediction in the farmer's almanac. When more lead time is desired
you could consider dropping all of the _2 series variables. What would the advantage be?
What if you were buying advertising space and there was a 45 day delay for the advertisement
to appear? If the _2 variables occur between your advertising deadline and your campaign
you might have to use information attained in the _3 campaign.

See also
ff The Using an @NULL multiple Derive to explore missing data recipe in Chapter 1,

Data Understanding

ff The Using CHAID stumps when interviewing an SME recipe in Chapter 1, Data
Understanding

Chapter 2

59

Running a Statistics node on anti-join to
evaluate the potential missing data

There is typically some data loss when various data tables are integrated. Although we won't
discuss data integration until a later chapter, it is important to gauge what (and how much)
is lost at this stage. Financial variables are usually aggregated in very different ways for the
financial planner and the data miner. It is critical that the data miner periodically translate the
data of the data miner back into the form that middle and senior management will recognize
so that they can better communicate.

The data miner deals with transactions and individual customer data, the language of
individual rows of data. The manager speaks, generally, the language of spreadsheets:
regions, product lines, months rolled up into aggregated cells in Excel.

On a project, we once discovered that a small percentage of missing rows represented a
larger fraction of revenue than average—much larger actually. We suddenly revisited our
decision to drop those rows. Dropping them seemed the right decision—they were just bad IDs
weren't they? Well, it is never that simple. There are few accidents in data. That experience
produced a lesson:

Always include a revenue assessment in your decisions even when revenue is neither your
input nor your target.

In this recipe we will learn a simple trick for assessing these variables at times when there is
the potential for data loss.

Getting ready
We will start with a blank stream, and will be using the retail Transactions file and the
Products_Missing file.

Data Preparation – Select

60

How to do it...
To evaluate potential missing data when integrating data:

1.	 Build a stream with both of the Source nodes, two Type nodes, and a Merge node.

2.	 Perform an anti-join and make a note of the record count.

3.	 Run a Statistics node and request: Count, Sum, Mean, and Median.

Chapter 2

61

4.	 Set Products_Missing to be the first input, and run the Merge node making a note of
the record count. Since there is only one record we will not run a Stats node.

5.	 Reverse the inputs and repeat the merge, again making note of the record count.

6.	 Re-run the Statistics node.

Data Preparation – Select

62

How it works...
Years ago on a project we discovered that 5 percent of the data—data that happened to be
missing—represented more than 20 percent of the revenue. We expect, or perhaps more
likely, we hope, that missing data will not derail us, but sometimes it certainly threatens the
whole project. This recipe is about choosing your battles, identifying when missing data is a
particularly serious problem and when we can move on to other aspects of the project.

Here, the bad news is that there is a substantial amount of missing data in the products file.
How could this ever occur? The novice might be surprised. It occurs frequently. Perhaps the
company just acquired a smaller retailer and there are issues in the old transactional data
of the old vendor not matching up properly. There is good news, however. The average and
median of the inner join and the anti-join suggest that we appear to have missing data that
is missing at random and not systematically. It would be a much bigger problem if the usual
customers (maybe even our best customers) were the ones that were missing. This is not
usually the case although sometimes it takes detective work to figure out why. There is one
additional bit of bad news, however; the total amount of the missing data points is not trivial.
While it is dwarfed by the nearly 90 million that we can analyze, the missing 8 million might
be large enough to warrant extensive data cleaning. One would now move to diagnose the
problem, and if it seems achievable, and at a reasonable cost, address the problem.

See also
ff The Using an @NULL multiple Derive to explore missing data recipe in Chapter 1,

Data Understanding

ff The Creating an Outlier report to give to SMEs recipe in Chapter 1, Data
Understanding

ff The Using a full data model/partial data model approach to address missing data
recipe in Chapter 3, Data Preparation – Clean

Evaluating the use of sampling for speed
Modern data mining practice is somewhat different from the ideal. Data miners certainly do
develop valuable models that are used in the business and many have massive resources of
data to mine, even more data than might have been foreseen a generation ago. But not all
data miners meet the profile of a business user, someone whose primary work responsibility
is not data analysis and who is not trained in, or concerned with, statistical methods. Nor does
the modern data miner shy away from sampling.

In practice, it has been difficult to make discoveries and build models quickly when working
with massive quantities of data. Although data mining tools may be designed to streamline
the process, it still takes longer for each operation to complete on a large amount of data than
it would with a smaller quantity. This sampling can be extremely useful.

Chapter 2

63

Getting ready
We will start with a blank stream, and will be using the cup98lrn reduced vars2.txt
data set.

How to do it...
To evaluate the need for sampling:

1.	 Build a stream with a Source node, a Type node, and a Table node then force
instantiation by running the Table node.

2.	 Force TARGET_B to be flag and make it the target. Set TARGET_D to None.

3.	 Add a Partition node downstream of the Type node.

4.	 Add a Feature Selection Modeling node and run it. (It will act like a filter, but it is
critical not to trust it unless the data is clean.)

5.	 Add an Auto Classifier node and edit it. Choose to use 9 Models (the default is 3).

6.	 If you run the stream at this stage be prepared for a potentially long wait. The results
of the stream at this stage are shown in the How it works section of this recipe.

7.	 Add a Sample node set to 10 percent in between the Source node and the Type node.

Data Preparation – Select

64

8.	 Cache the Sample node and force execution by running a table off the Sample node.

9.	 Run the Auto Classifier, and make note of the duration. (A test run on a newer
machine took about 1 minute for the sampled data versus 13 minutes on the
complete data.)

10.	 Add in SVM and KNN in the Auto Classifier and re-run. Note the duration. (A test
run on complete data using all 11 classifiers was manually halted after running 3.5
hours.)

11.	 Take action to save your cache for future sessions:

�� Either right-click on the Sample node and save the cache

�� Or write the Sample node out to an external file

Chapter 2

65

How it works...
This recipe is a demonstration of sorts. These steps are indeed the steps in sampling for speed.
However, eventually your instincts will tell you that a model (or set of models) is going to be
time-consuming. One does not need to run the stream in step 6 because we know, in advance,
that it will take a long time. It is critical to remember that you are not in the modeling phase at
this stage. You are merely planning. Notice that the Auto Classifier deselects SVMs and KNN
as they are computationally expensive. It would be imprudent to be so skittish about sampling
that you actually reduced the number of classifier models that you considered. (A test run on
complete data using all 11 classifiers was manually halted after running 3.5 hours, but even a
run on the sample failed. Unclean data is rougher on some algorithms than others.)

It is also critical to not trust the Feature Selection node to choose the best variables. We are
simply using its ability to temporarily filter out variables that need cleaning to such an extent
that they would cause the classifiers to fail. You won't get an early assessment of your data if
the Auto Classifier turns red and fails to run.

Why not just select the most recent data or the current month? This actually can be quite
effective, but it has risks as well. If the Target variable is affected by seasonality it probably is
better to take a random sample of a year than to select a month.

This recipe will not be effective unless you pay careful attention to the caching of the Sample
node. When you turn this feature on, the node will have an icon with the appearance of a
white piece of paper. Once the cache turns green, the data has been stored. If you don't force
it to cache before you model, it is performing the randomization and the modeling in the same
step, and you won't notice an increase in speed until the second time that you run the model.

The bottom line is that, when you are doing initial exploration of the data, it is often appropriate
to do bivariate and univariate analyses on all of your data; that is, use Distribution nodes
and Data Audit nodes, because they run quickly on large files. Also, you generally use all of
your data when you merge your data. But, it doesn't always make sense to run experimental,
exploratory multivariate models on the entire data set when a random sample will give similar
results. Running all the data will tend to change your behavior in a negative way, you will avoid
computationally expensive algorithms, and/or you will avoid tuning the model properly.

Data Preparation – Select

66

Note that the results on the sampled data (shown in the following screenshot) and the result of
the complete data (shown in the previous screenshot) are similar. At first glance, they may not
look similar, but if you scratch the surface, you would learn what you need at this stage from the
sample. The CHAID model on complete data uses more variables, but that is a consequence
of CHAID's stopping rules. It is noteworthy that the accuracy of using 13 variables is nearly the
same as using only four. What have you learned? Merely that those four variables are probably
worth a closer look, and that it might be a good idea to run CHAID interactively to better
understand what is going on. It would also be a useful exercise to compare the top variables
in each of these models. In short, you've learned which clean variables have promise, but the
potential of the variables that need cleaning is still a complete mystery.

It is critical to always test and validate against unbalanced data. Modeler automatically uses
unbalanced data for the test. However, if you have taken a simple random sample you have
effectively removed that data from the available data processed in the stream. Validation,
unlike modeling, is fast so you almost always want complete data when you validate. Typically
the most recent month is a great dress rehearsal. On most projects, the most recent month
did not exist when the project began so it makes a perfect test. Run all of that most recent
month—unbalanced and complete—as a validation.

There's more...
Remember that sampling must not always be simple random sampling (the kind that we
demonstrate here). Balancing is a kind of sampling. Building models with and without new
donors is a variation on the theme. The Sampling node also supports complex sampling.
While not covered here, it is a topic in its own right.

Chapter 2

67

It is also important to not get too excited that there are a handful of variables that seem to
show promise. It is only a handful, and there is a long road ahead at this stage. The emphasis
would immediately turn to cleaning the data and saving some of the variables filtered out by
the Feature Selection node. Many variables were dropped because they need attention, not
because they hold no value.

Why bother with all of this when we won't use these models as the final model?

ff It is disheartening to spend weeks cleaning data with little sense of where you stand.

ff It is not a bad idea to spend more time on the top three classifiers models and less
time on the bottom three classifiers. While this is common sense, be forewarned that
when you rerun on clean data the ranking may change dramatically.

ff As you add more and more clean variables to the models it can be useful (and
rewarding) to find that new variables are continuously joining the top ten. During this
lengthy process it would be pointless to run algorithms that are taking hours; after all,
you are still shoulder-deep in data prep at that point.

After the lengthy process of data prep draws to a close and you enter into the modeling
phase, you may possibly decide to increase the percentage of your sample and/or eliminate
it altogether. After all, at that stage you will have clean data and will have narrowed your
modeling approach to your "semi-finalists". Why not just let it run overnight?

Data Preparation – Select

68

See also
ff The Using an empty aggregate to evaluate sample size recipe in Chapter 1,

Data Understanding
ff The Evaluating the need to sample from the initial data recipe in Chapter 1,

Data Understanding
ff The Using a full data model/partial data model approach to address missing

data recipe in Chapter 3, Data Preparation – Clean
ff The Speeding up merge with caching and optimization settings recipe in

Chapter 5, Data Preparation – Integrate and Format
ff The How (and why) to validate as well as test recipe in Chapter 7,

Modeling – Assessment, Evaluation, Deployment, and Monitoring

Removing redundant variables using
correlation matrices

In this recipe we will remove redundant variables by building a correlation matrix that
identifies highly correlated variables.

Getting ready
This recipe uses the datafile, nasadata.txt and the stream file, recipe_
variableselection_correlations.str.

You will need a copy of Microsoft Excel to visualize the correlation matrix.

How to do it...
To remove redundant variables using correlation matrices:

1.	 Open the stream, recipe_variableselection_correlations.str by
navigating to File | Open Stream.

2.	 Make sure the datafile points to the correct path to the file nasadata.txt.
3.	 Open the Type node named Correlation Types. Notice that there are several

variables of type continuous whose direction values have been set to Input, and a single
continuous variable has its direction set to Target. The variable set to Target can be any
variable that won't be an input to the model. If you don't have a good candidate, you can
create a random variable and set that one to be the Target, as is done in this stream.

Chapter 2

69

4.	 Open the generated model, random_target, and click on the Advanced options.
Note that Descriptives is selected. This is the option that creates the correlation
matrix for you. Note that this Linear Regression node is the old Modeler regression
node. The new Regression node no longer provides a correlation matrix.

5.	 Build the linear regression model. Open the resulting generated model and click
on the Advanced tab. You will see the advanced report that includes a Pearson
correlation matrix similar to what appears in the following screenshot. However, with
many variables, this report is difficult to browse to identify the correlations. Navigate
to File | Export | Advanced and save the advanced report as an html file. Any name
will work but save it as Correlations.html for this recipe.

6.	 Open Microsoft Excel and open the file you just created called Correlations.html.
Note that, if you are using a version of Excel prior to Excel 2007, you can only import up
to 255 variables. If you are using Excel 2007 or later, you can import 16,384 variables,
but it may take some time for the file to load. Save the file Correlations.xls or
Correlations.xlsx if you would like to save the work done in Excel.

Data Preparation – Select

70

7.	 The only part of the table we need is the correlation matrix itself, labeled Pearson
Correlation. It is helpful to delete non-correlation matrix rows and columns, but one
can still proceed without editing the Excel document. The correlation matrix generated
from the nasadata.txt data set begins at row 17. If you wish, color-code the values of
the cells using conditional formatting so it is easier to see correlation values that have a
large magnitude (close to 1 or -1). If you are using Excel 2007, one suggestion is to use
the conditional formatting Format option as shown in the following screenshot.

This will result in a correlation matrix that looks like the one shown in the
following screenshot.

Chapter 2

71

If you are using Excel 2003 or older, you can use the conditional formatting
options shown in the following screenshot.

This will result in a correlation matrix such as the one shown in the
following screenshot:

8.	 When you see two variables that are highly correlated with each other, make a
determination which variable you would like to keep and which one you would like to
remove. If more than two variables are highly correlated with each other, select only
one representative of the idea. In the nasadata example, the variables Band4 and
Band5 are correlated at greater than 0.9 with Band3, and therefore can be safely
removed from analysis. One can also argue that Band9, Band10 and Band 12 can
be removed.

9.	 In the Modeler stream, connect a Type node to the right of the correlations Type
node. Double-click on the Type node, and set the direction of the variables that were
discarded based on the correlation matrix shown in Excel to None. One can also use
a Filter node to remove Band4, Band5, Band9, Band10, and Band12.

Data Preparation – Select

72

How it works...
When you desire to identify variables that are highly correlated with each other so that you
can remove redundant variables, there is no single node that will perform the task. Only the
Regression node and the Discriminant nodes create a correlation matrix, with only the former
allowing one to export the resulting matrix. This recipe provides a method to identify the
redundant variables so they can be removed.

The first five steps load the data and build the regression model so that the correlation matrix
can be exported and operated on in Excel. Steps 6 to 8 show how to identify highly correlated
variables in Excel so that a list of redundant variables can be created. Step 9 shows how to
apply that list to a Type node or Filter node to remove the redundant fields from further analysis.

There's more...
If there are more than a dozen variables removed from analysis, it can become quite tedious
to set each of these individually in a Type node or Filter node. Running a script to set the
remove variables to None in a Type node or de-selecting variables in a Filter node can speed
up the process significantly and reduce the likelihood of errors made in the selection process.

See also
ff The Using Neural Network for Feature Selection recipe in Chapter 6, Selecting and

Building a Model

ff Selecting variables using the CHAID Modeling node in this chapter

Selecting variables using the CHAID
Modeling node

In this recipe we will identify and select variables to include as model inputs using the
CHAID node.

You will need a copy of Microsoft Excel to visualize and select the chi-square values for
each variable.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream recipe_
variableselection_chaid.str.

Chapter 2

73

How to do it...
To identify and select variables to include as model inputs using the CHAID node:

1.	 Open the stream variableselection_chaid.str by navigating to File | Open
Stream and selecting the stream.

2.	 Make sure the datafile points to the correct path for the file cup98lrn_reduced_
vars3.sav.

3.	 Open the Type node named CHAID Types. Notice that there are several variables
of type continuous whose direction values have been set to Input, and a single
continuous variable has its direction set to Target. The variable set to Target should
be the target variable TARGET_B.

4.	 Open the node TARGET_B and select the Interactive Model option.

5.	 Begin to build the CHAID model by clicking on the Run button. When the interactive
model split appears, click on the Predictors… button to reveal the chi-square statistic
for all fields in order from the highest to lowest value.

Data Preparation – Select

74

To find the Predictors… button click on the Grow Branch with Custom Split button (Illustrated in
the following screenshot).

6.	 Click on the Predictors… button.

This reveals the list of predictors and their associated probabilities.

Chapter 2

75

7.	 Click on any field in the list and press Ctrl + A to select all the variables in the list.
Copy the selected variables with Ctrl + C. Open Microsoft Excel and create a new
Workbook. Paste the buffer into Excel. This provides an easier way to identify which
fields to keep.

8.	 Identify all fields whose chi-square statistic values have a p-value greater than 0.05.
These are good candidates to remove.

9.	 In the Modeler stream, connect a Type node to the right of the CHAID Type node.
Double-click on the Type node, and set variables that were selected in step 7 to
None. As an alternative, one may use a Filter node to remove fields selected in step 7.

How it works...
In decision trees, the root (first or top) split identifies the variable that best separates the data
into two or more subgroups that maximize a criterion of interest. A CHAID decision tree finds
the single variable that has the largest chi-square statistic. However, to find this maximum,
every variable must be examined and its chi-square statistic computed. The interactive mode
reveals all of these values. The number of variables being tested doesn't affect this method
significantly because computation for CHAID increases only linearly with the number of fields.

Once we have the chi-square statistic values and corresponding p values for every variable,
we then can use this value to select which variables are good predictors on their own (that is,
produce significant differences in the target variable values after the split). This variable list
can then be used as a simple variable selection method.

There's more...
One doesn't need to use the 0.05 value to select variables; many reasonable metrics can be
used to select fields. For example, once can choose the top 10 or 25 variables regardless of
p-value. Or one can relax the p-value selection criterion from 0.05 to 0.1 or 0.15 to allow more
variables to be included in the analysis. If large numbers of rows exist in the data, the p-values
may be very small even for splits that don't appear to be very useful. In these cases, the
splits may be statistically significant but not operationally significant. Feel free to adjust the
threshold of p-values to one that reflects the operational significance of your problem.

As with the correlation matrix variable selection, selecting or removing a large number of
variables may be tedious and prone to error, so writing a CLEM script to customize the Type
node or Filter node can help.

Data Preparation – Select

76

Within the generated model, you have the option to create a Filter node that removes
predictors or inputs that have not been used by the model or you can remove fields based on
predictor importance:

If you select to generate a Filter node based on predictor importance, you then have additional
options to include or exclude a certain number of fields or to include or exclude fields based
on a specified level of importance:

See also
ff The Selecting variables using the Means node and Selecting variables using

single-antecedent Association Rules recipes in this chapter

Selecting variables using the Means node
In this recipe we will identify and select variables to include as model inputs using the
Means node.

Chapter 2

77

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream recipe_
variableselection_means.str.

You will need a copy of Microsoft Excel to visualize the list of rules (optional).

How to do it...
To identify and select variables to include as model inputs using the Means node:

1.	 Open the stream variableselection_means.str by navigating
File | Open Stream.

2.	 Make sure the datafile points to the correct path to the file cup98lrn_reduced_
vars3.sav.

3.	 Open the Means node to look at the options. Note that the grouping variable is our
target variable TARGET_B, and the test fields are all the continuous variables of
interest as shown in the following figure.

4.	 Run the Means node by clicking on Run.

Data Preparation – Select

78

5.	 Inside the output window, click on the Importance column twice so that
the variables are sorted in descending order of Importance as shown in the
following screenshot.

6.	 Identify variables whose importance score is greater than 0.9. These are good
candidates to retain as inputs for your models.

7.	 Open the Type node, MEANS types. Press Ctrl + A to select all fields, left-click on any
variable's Role value, and select None. For TARGET_B, change the Role to Target,
and for every variable identified in step 7, select Input as the role. Note that you can
keep both the Means node output and Type node open at the same time.

How it works...
The Means node is an excellent way to examine the differences on average between groups
for a Nominal, Ordinal, or Flag target variable. When examining the difference of means
based on a grouping variable in the Means node, Modeler generates an F Statistic value for
each continuous (or Flag) variable and computes the associated significance value. This value is
called Importance in Modeler, where a value of 1.0 represents highly significant differences in
the mean values and values of 0.0 represent no difference in the mean values between groups.

Chapter 2

79

The mean values for each input are shown in the columns, one value for each target variable
value. For a Flag variable, there will be two values. For TARGET_B, the way to interpret
the results is: for the TARGET_B having value 1, the average CARDPROM value is 19.64,
whereas when TARGET_B with value 0, the average CARDPROM value is 18.371.

There is no right value to use as a cutoff indicating which variables are good or not. A value of
0.9 is a conservative cutoff. Note that the more records one has, the higher the Importance
score tends to become. As a result, large datasets can show high Importance scores even
when the difference in mean values is quite small. If this is the case, one can increase the
Importance cut-off to 0.95 or even 0.99.

There's more...
More information about the F-test can be seen by navigating to the View | Advance report
setting. In this report, the four values for each variable are the mean value, the standard
deviation, the standard error (for the mean value), and the record count. In addition, the
F-Test's F Statistic is revealed in addition to the Importance score shown in the simple report.

The F-statistic value itself can be revealed by navigating to the View | Advanced option (refer
to the following screenshot). Unfortunately, as shown in the screenshot, sorting by the F-Test
value does not sort numerically in all versions of Clementine and Modeler. Some versions sort
by ASCII character set value so all leading 9 values will be at the top. To see a true numerically
sorted list, one can export the report by navigating to File | Export HTML and load the report
into Excel and sort it there.

Data Preparation – Select

80

As with the correlation matrix variable selection, selecting or removing a large number
of variables may be tedious and prone to error, so writing a CLEM script to customize the
Type node or Filter node can help.

See also
ff The Selecting variables using the CHAID Modeling Node and Selecting variables

using single-antecedent Association Rules recipes in this chapter

Selecting variables using single-antecedent
Association Rules

In this recipe we will identify and select variables to include as model inputs using the Apriori
Association Rules node. We will select the top 24 predictors based on Association Rules
variable selection. We will use the same KDD Cup 1998 data set, but this version of the data
was prepared with the stream Recipe - variable selection apriori data prep.
str to create quintile versions of continuous variables. The target variable is the top quintile
in donation amounts, TARGET_D between $20 and $200.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3_apriori.sav and the stream
Recipe - variable selection apriori.str.

You will need a copy of Microsoft Excel to visualize the list of rules.

How to do it...
To identify and select variables to include as model inputs using the Apriori Association
Rules node:

1.	 Open the stream Recipe - variable selection apriori.str by navigating
to File | Open Stream.

2.	 Make sure the datafile points to the correct path to the file cup98lrn_reduced_
vars3_apriori.sav.

3.	 Open the Type node named APRIORI Types. Notice that only Nominal and
Flag variables are used. The variable set to Target should be the target variable
TARGET_D_TILE5_1.

4.	 Open the Apriori node and look at the options. Note that the Minimum antecedent
support is set to 10 percent, Confidence percent is set to 1 percent and the number
of antecedents to 1.

Chapter 2

81

5.	 Build the Association Rules model by clicking on Run.

6.	 Open the generated model. In the show/hide criteria drop-down menu, add Instances
and Lift to the report as shown in following screenshot. If the list is not sorted by
Confidence or Lift any longer, click on the sort by arrow to the right of the Confidence
% text until the sort order is descending.

Data Preparation – Select

82

7.	 Export the rules by navigating to File | Export HTML | Model and save the file as
associationrules.html.

8.	 Identify rules of interest, such as the 12 rules with the highest confidence and the 12
rules with the lowest confidence. A sample list is shown in the following screenshot.
Make a note of these rules so you can include these as inputs.

Chapter 2

83

9.	 In the Modeler stream, connect a Type node to the right of the APRIORI Type node.
Double-click on the Type node, and set variables that were selected in step 8 to
Input, and all other variables that were formerly inputs to None.

How it works...
The Association Rules model with only one antecedent is merely a convenient way to show
the relationship between every categorical variable identified as Input and the Target
variables. The figure of merit for this relationship is Confidence % which is the percentage of
records matching the input variable value True with the Target variable value True.

Association rules require input and target variables to be categorical; in Modeler, these are
the Nominal, Ordinal, or Flag variables. The data set analyzed in this recipe contained
binned versions of continuous variables so that they could be assessed in addition to the
variables that are nominal in their original state.

Once the association between the input variables and the target is listed along with the
relationship to the target, one can choose to remove those fields with little relationship to the
target, namely those whose lift is close to 1. Those with lift values larger or smaller than 1 have
some relationship to the target, either the high-valued donors (donated $20-$200) or those who
are not high-valued donors. The Select label in the previous screenshot was applied when the
lift value was greater than 1.125 or less than 0.7. This selection criterion is subjective.

As a side note, the outcome of the last four recipes could be combined to determine which
fields are consistently relevant across all methods.

There's more...
Note that the list in the previous screenshot only includes those variables or categories with
greater than 10 percent support; this in itself reduces the number of variables. Try reducing
the Support percent filter in the Apriori node from 10 percent to 1 percent and see how many
more variables show up in the list.

The Association Rules do not provide a significance test to help assess the relationship
between each input and the target variable. A chi-square test can be computed in Excel or one
can use the CHAID modeling node to provide the chi-square statistic.

One can also expand the search for variables by adjusting the number of antecedents to two,
thereby finding all pairwise combinations of inputs. This can sometimes be valuable because
variables that are not good predictors on their own can sometimes be good predictors in
combination with other variables.

Data Preparation – Select

84

As with the correlation matrix variable selection, selecting or removing a large number of
variables may be tedious and prone to error, so writing a CLEM script to customize the Type
node or Filter node can help.

See also
ff The Selecting variables using the CHAID Modeling node and Selecting variables using

the Means node recipes in this chapter

3
Data Preparation –

Clean

In this chapter, we will cover:

ff Binning scale variables to address missing data

ff Using a full data model/partial data model approach to address missing data

ff Imputing in-stream mean or median

ff Imputing missing values randomly from uniform or normal distributions

ff Using random imputation to match a variable's distribution

ff Searching for similar records using a Neural Network for inexact matching

ff Using neuro-fuzzy searching to find similar names

ff Producing longer Soundex codes

Introduction
This chapter addresses the clean subtask of the data preparation phase. CRISP-DM describes
this subtask in the following way:

Raise the data quality to the level required by the selected analysis techniques. This
may involve selection of clean subsets of the data, the insertion of suitable defaults,
or more ambitious techniques such as the estimation of missing data by modeling.

Data Preparation – Clean

86

While this chapter can't tackle the entire subject of cleaning data, it addresses three themes,
and all three themes involve working with data that is incomplete in some way:

ff Avoiding the missing data

ff Imputing the missing data

ff Fuzzy matching

The first two recipes address the first theme, that is, how to deal with missing data.
Sometimes a null value indicates that a value is unknown, but very frequently a null value
is the only appropriate value because for the particular case (customer) the value is non-
applicable. In these instances imputation is usually not the best choice.

However, when the missing data truly is missing, that is, a certain value is to be expected, but
that value is unknown, imputation can be an important tool to the data miner. For instance, in
one of the following recipes we perform a random imputation, where the missing value is age.
Certainly, there is no question of age being applicable.

The phrase in the CRISP-DM definition, "to the level required", is helpful here. For many
techniques including Neural Nets, if any data is missing the entire case (row) is ignored. This
makes some solution of missing data critical, and this can be accomplished by imputation,
when appropriate, but it is also the idea behind an approach such as the example used in the
Using a full data model/partial data model approach to address missing data recipe.

The last three recipes address the last theme. Perhaps the most difficult variable to have
with missing data is a proper key; a way of easily matching records. Data miners would much
prefer to have an accurate row ID in order to match by name, but sometimes it is unavoidable.
How do we deal with names that are similar, but not identical? What if it is similarity, rather
than identity, that we are after—similar crime reports are an example.

Binning scale variables to address
missing data

This recipe will tackle the issue of null values that are non-applicable rather than values that
are unknown. When transactions are processed for modeling, invariably there will be certain
transactions that are missing for a given case. In this recipe our cases will be customers.
Imagine the straightforward instance that a customer, Bill Johnson, did not rent a horror movie
within the last 12 months. The Using an @NULL multiple Derive to explore missing data recipe
in Chapter 1, Data Understanding, helps determine if the presence or absence of such a value
is predictive of the target. This recipe prepares the original variable for modeling. The issue
addressed in this recipe is virtually guaranteed to occur when preparing dates of transactions
and that is the nature of this particular recipe. However, its application is not limited to date
arithmetic on transactions. It can be used on any scale variable that has the possibility of
a true null value. If the scale variable is always applicable, and the value is unknown, then
imputation might be considered.

Chapter 3

87

Getting ready
We will start with the existing stream called Binning Null Scales.str.

How to do it...
In order to determine if you need to bin scale variables to address missing data, perform the
following steps:

1.	 Edit the Type node, verify that Promo_3_Response is the target variable, and ensure
that only the seven days since variables are chosen as inputs.

2.	 Add a CHAID Modeling node and run it.

3.	 Examine the resulting model, and confirm that all of the cases were used. This can
be confirmed by examining the root node. (The following figure only shows a small
portion of the tree.)

Data Preparation – Clean

88

4.	 Add a Neural Net node and run it.

5.	 Examine the summary information of the resulting model and confirm that many
cases were not used.

Chapter 3

89

6.	 Before we take action to resolve the problem we need a better diagnosis. Add a
Multiple Derive node that produces a null/not null flag for each day since the variable.

Data Preparation – Clean

90

7.	 Insert the node in between the _days_since Derive node and the Type node.

8.	 Once again run the CHAID node but, this time, do so interactively and with the _null
variables being added as additional inputs.

9.	 Allow the default first branch to form. Note that propensity generally drops from left to
right and then we also have a separate node for nulls.

10.	 Return to the root node. Since video games are the best predictor of our target, force
the Video Games' _null variable to be the first split.

Chapter 3

91

11.	 Now allow the Video Games' _days_since variable to branch beneath it.

12.	 Eight child nodes are formed, but use the custom settings to form only three. The
resulting pattern remains similar, but is arguably clearer.

13.	 The four categories: Node 17, Node 18, Node 19, and Node 2 (as shown in the
previous figure) seem useful in that they clearly show different propensities. Add a
new derive node that echoes this pattern for all of the _days_since variables.

Data Preparation – Clean

92

14.	 Run the Neural Net once again, using only these new variables.

15.	 Examine the summary and confirm that the complete data set was used.

Chapter 3

93

How it works...
The opening stream is interesting in that it takes three different retail data sets and
determines the most recent date that a particular product category was purchased by the
customer. The result is a series of date arithmetic calculations; those calculations, in days, are
at the heart of this recipe.

By running CHAID and Neural Net we learn the following straightforward lesson: CHAID isn't
tripped up by lots of null values, but Neural Net produces a disastrous result. We don't want to
assume, however, that Neural Net (or any other technique that treats missing data this way)
is ruled out. This is terribly important because the majority of modeling techniques in Modeler
treat missing data the way that Neural Nets do, and we don't want to eliminate a potential
algorithm over a concern that is easily addressed. We simply need to prepare the variable in a
way that is more conducive to modeling.

We can rule out a couple of options starting with imputing. There are simply too many missing
cases to impute. Also, do we have any reason to assume that the cases that are missing
would have values that we can base on the customers that are not missing? They are certainly
not missing randomly so this would be unwise. Also, as the Neural Net experiment makes
clear, eliminating missing cases would be a disaster. Everyone is missing something, as few
(or no) customers have bought something in every category.

The exercise of using interactive CHAID shows the effectiveness of this technique in deciding
how to handle the missing data. It would be wise to look at a few variables, not only one in
order to decide where the cut points should be. Here categories such as "under 30 days", "30-
90 days", and "more than 90 days" seemed to make sense. In an actual project, you would
want to base cut offs on more exploration.

The binned variables are easy to make, and easy to explain. It is always a shame to lose the
variance in a true scale variable but it is better than losing the variable. Often variables such
as these are prematurely screened. The Feature Selection node will invariably throw them out
because of the high percentage of missing data, but there is no reason to throw them out.
Date information is terribly important to data mining, but not in the form of dates themselves.
Data arithmetic invariably produces nulls. The new variables (columns) have a good probability
of being useful to the Neural Net (or other methods) and prevent the massive loss of rows.

See also
ff The Using CHAID stumps when interviewing an SME recipe in Chapter 1, Data

Understanding

ff The Using an @NULL multiple Derive to explore missing data recipe in Chapter 1,
Data Understanding

Data Preparation – Clean

94

Using a full data model/partial data model
approach to address missing data

It is common in data mining to have one category of customers more prone to having missing
data. In fact, there may be a category of customers that are assured to have certain data
missing. For instance, let's say that you have found in running your cell phone business that
calculating the distance in time between phone upgrades is useful in estimating when the
customer's next phone upgrade will be. A newly acquired customer will not have any prior
phone history in the data set, but it would be risky to assume that your established customers
are the same as your new customers.

How then to estimate the value of average months between new phones? One approach is
to simply avoid the problem, and build a different model for your new customers and your
established customers. In this recipe, we will learn how to diagnose the pattern of missing
data and determine if this technique applies.

Getting ready
We will start with a blank stream.

How to do it...
In order to determine if you need to use the full data model/partial data model approach to
address missing data, perform the following steps:

1.	 Build a stream with a Source node, a Type node, and a Table node, then
force instantiation by running the Table node. Use the data cup98lrn_reduced_
vars2.txt.

2.	 Create a Derive node that extracts the first letter of RFA_3.

Chapter 3

95

3.	 Go to the Type node and force TARGET_B to be flag and make it the target. Some
variables, including TARGET_D, are perfect predictors and should be set to none
before Modeling, but the recipe can proceed without this step.

4.	 Add a Select node that includes on the group N on the variable RFA_3_
FirstLetter. The N group is the new donors.

The following table shows the codes for RFA3_FirstLetter:

Codes for RFA3_FirstLetter
F First time donor: Anyone who has made their first donation in the last 6

months and has made just one donation.
N New donor: Anyone who has made their first donation in the last 12 months

and is not a first time donor. This is everyone who made their first donation 7-12
months ago, or people who made their first donation between 0-6 months ago and
have made 2 or more donations.

A Active donor: Anyone who made their first donation more than 12 months ago
and has made a donation in the last 12 months.

L Lapsing donor: A previous donor who made their last donation between 13-24
months ago.

I Inactive donor: A previous donor who has not made a donation in the last 24
months. People who made a donation more than 25 months ago.

S Star donor: Star donors are individuals who have given to 3 consecutive card
mailings.

Data Preparation – Clean

96

5.	 Run a Feature Selection node downstream of the Select node. Notice that some
potentially interesting variables have been automatically filtered because they are
frequently missing.

6.	 Repeat step 4 for the groups that are not N. Add another Select node to do this and
run an additional Feature Selection node.

7.	 Edit both the Feature Selection generated models looking for differences between
the two.

Chapter 3

97

8.	 Look, in particular, for variables that have been filtered from the N group, but that
have not been filtered from the non N group.

9.	 You would then proceed with building a different model for the two groups, and then
appending the results into one data set.

How it works...
Certain information is collected for established customers (donors) but is not available when
the customer is first acquired (at the time of first donation). For instance, Wealth2 is not
available for the new donors. Average gift doesn't look very useful for new donors, but that
is only natural. There is no established pattern. Would we want to miss out on the modeling
possibilities of either of these variables because they are not available for new donors?

How about imputing? Only 5 percent of donors are new donors. Should we guess (albeit
an informed guess) how many times they will donate, and what their average will be? The
idea of this recipe is that we use the information when it is available, and simply use other
information when it is not available. This trick is extremely different from imputing, and is also
unlike the idea of surrogates in C&RT. It can be quite effective.

How do you know when this trick is useful? Sometimes when modelers learn of this trick they
are tempted to build different models for every category. That is not recommended. This is
useful when:

ff One data category is missing useful information systematically and for easily
determined reasons; that is, they are brand-new donors

ff The missing information is both present and useful in the other segment

Be careful not to trust Feature Selection to do all of your data exploration. It was expedient
in this case, and revealed the necessary pattern. However, it can never replace the time
and attention of a human data miner. Some of the variables that Feature Selection nodes
keep might be redundant (best revealed in a correlation matrix) and some of the screened
variables could be saved by proper data preparation. There is no substitute for the hard work
of data exploration. When branching the data in the way that this recipe describes, it is usually
revealed after many hours of exploration.

There's more...
This trick can be especially useful when the prior history is explicitly lacking. For instance,
in cell phone churn data, new customers cannot possibly have information about their prior
phone or their prior contract.

Data Preparation – Clean

98

See also
ff The Removing redundant variables using correlation matrices recipe in Chapter 2,

Data Preparation – Select

ff The Using the Feature Selection node creatively to remove or decapitate perfect
predictors recipe in Chapter 2, Data Preparation – Select

Imputing in-stream mean or median
Filling missing values with the mean or median is a common approach to removing missing
values. Modeler has mechanisms for computing and filling missing values using either the
Set Globals node or the Data Audit node. Unfortunately, both of these are terminal nodes and
therefore require the user to run them as a separate step or as a script. Moreover, the options
for which values to impute with are limited to the mean, mid-point, or (in the case of the Data
Audit node) a constant.

In this recipe we will impute missing values with the median of a variable in-stream, without
the use of @GLOBAL variables.

Getting ready
This recipe uses the following files:

ff Datafile: cup98lrn_reduced_vars3.sav

ff Stream file: Recipe - impute missing with fixed value.str

How to do it...
To impute missing values with the median of a variable:

1.	 Open the stream (Recipe - impute missing with fixed value.str) by
going to File | Open Stream.

2.	 Make sure the datafile points to the correct path to the datafile (cup98lrn_
reduced_vars3.sav).

3.	 Run the Stats Before Data Audit node. Note that the variable AGE has only
71,707 valid values, fewer than the 95,412 records in the data set. Note also that the
minimum AGE value is 1.

Chapter 3

99

4.	 Open the Type Node named set blanks. For the variable AGE, left-click on the
blank cell in the Missing column and select the Specify option, as shown in the
following figure. Now click on the OK button.

5.	 Select the Define blanks checkbox. Also, in the Range option, type 0 in the left box
and 17 in the right box, as shown in the following figure. Click on the OK button to
close this window, then again click on OK.

Data Preparation – Clean

100

6.	 Add an Aggregate node to the stream. In the Aggregate node, do not add any key
fields, but add AGE to the Aggregate fields as shown in the following screenshot.
Only check the Median checkbox and then click on OK.

7.	 Add a Merge node to the stream, and connect both the set blanks, that is the Type
node and the Aggregate node, to the Merge node. Inside the Merge node, select the
Keys radio button for the Merge Method option. Now click on OK.

8.	 Add a Filler node to the stream connected to the Merge node. Open the Filler node,
and select AGE as a fill in field. For the Replace option, select Blank and null values.
Finally, in the Replace with box, type in to_integer(AGE_Median) and click on
the OK button.

9.	 Attach a Data Audit node to the Filler node and run the node. Note that the number of
valid values for AGE is now 95,412. Also note that the histogram for AGE has a spike
near the center of its distribution. This is due to filling in the blank and null values
with the median.

How it works...
In this recipe, missing values are imputed with the median, the value preferred by many
practitioners because the median is a more robust statistic (the median is less sensitive to
outliers) than the mean. But in addition to replacing only NULL values with the mean, the
recipe also replaces values that are considered invalid with the median as well. In step 4,
the range of ages between 0 and 17 is specified as blank, meaning they are considered as
if they are missing. The Filler node described in step 8 operates on NULL values and BLANK,
meaning that AGE values that are NULL or are specified as BLANK (i.e., AGE values between 0
to 17) are filled in.

The Aggregate node computed the summary statistics for all 95,412 records by not specifying
any variable as Key fields. The Merge node set up in step 7 performs a full combinatoric join
by specifying joining by a key, but without actually specifying any variable as the key to join on.
Since the Aggregate node produced only one record, the effect of the join is to just add the
median values (and Record_Count) as additional columns after the merge.

Chapter 3

101

There's more...
One can fill the missing values with the mean by selecting the Mean button in the Aggregate
node and using AGE_Mean in the Filler node. If one would rather compute a mid-point, one
could compute both the min and max statistics in the Aggregate node, compute the mid-point,
that is, (AGE_Max – AGE_Min)/2, and merge these values with the original data.

Note that, in step 9, the histogram for AGE has the spike in the middle as shown in the
following figure. Imputing with a fixed value, either mean, median, or mid-point, fills all missing
values with a single value, thereby distorting the distribution's standard deviation.

One simple alternative is to use another variable to adjust the imputed value. In this data set,
there is a variable called FISTDATE, which is the date of the very first donation. Presumably,
a first donation made 30 years ago must have been made by an older donor (at least 48 years
old). If the Aggregate node is modified to have FISTDATE as the key field, and then one sets
FISTDATE as the Key field in the subsequent Merge node, the resulting distribution has the
chance of being smoother. In fact, it is, as is shown in the following figure:

If one doesn't know which variable to use in conjunction with the Aggregate node, one can
use the imputation available in the Data Audit node's Quality tab, selecting the Algorithm
method to build a predictive model to impute the missing values.

Data Preparation – Clean

102

See also
ff The Imputing missing values randomly from uniform or normal distributions recipe in

this chapter

ff The Using random imputation to match a variable's distribution recipe in this chapter

Imputing missing values randomly from
uniform or normal distributions

Filling missing values with a random number is often preferable to filling with a constant, such
as the mean or median. If the distribution of a variable matches or nearly matches a known
distribution, such as a uniform or normal distribution, one can use the functions in Modeler to
generate random numbers, given the parameters needed to generate the random numbers.

In this recipe we will impute missing values with random distributions: uniform and normal.

Getting ready
This recipe uses the following files:

1.	 Datafile: cup98lrn_variable cleaning random impute recipe.sav

2.	 Stream file: Recipe - impute random with known random
distribution.str

How to do it...
To impute missing values randomly with uniform or normal distributions:

1.	 Open the Recipe - impute random with known random distribution.
str file by navigating to File | Open Stream.

2.	 Make sure the datafile points to the correct path to the file cup98lrn_variable
cleaning random impute recipe.sav.

3.	 Open the set blanks Type node and specify blanks for AGE, just as with steps 4
and 5 in the Imputing in-stream mean or median recipe in this chapter.

4.	 Insert a Filler node and connect it to the set blanks Type node. Open the node
and, from the drop-down variable list in the Fill in fields area, select AGE. In the
Replace drop-down menu select Blank and null values. In the Replace with area,
type undef as shown in the following screenshot. Click on the Annotations tab and
rename the node as replace 0-17 with NULL. Now click on OK.

Chapter 3

103

5.	 Insert an Aggregate node, place it above the replace 0-17 with NULL Filler
node and connect it to the Filler node. Inside the Aggregate node, in the Aggregate
fields section, select fields AGE and AVGGIFT_log10. For AGE, check the Min and
Max checkboxes only. For AVGGIFT_log10, check the Mean and SDev checkboxes.
Uncheck the Include record count in field checkbox. These options are shown in the
following screenshot. Now click on the OK button.

6.	 Insert a Merge node and connect to it first the replace 0-17 with NULL Filler
node as discussed in step 4, then the Aggregate node as discussed in step 5. Now
select the Keys radio button and click on OK.

Data Preparation – Clean

104

7.	 Insert a Filler node and connect it to the Merge node. Open the Filler node and in
the Fill in fields area select the variable AGE. From the Replace drop-down list,
choose Blank and null values. In the Replace with box type in to_integer(
round(random0(AGE_Max-AGE_Min)+AGE_Min)) as shown in the following
figure. Click on the Annotations tab and change the name of the node to Fill Age
Uniform now click on OK.

8.	 Insert a Filler node and connect it to the Filler node Fill Age Uniform. Open the
Filler node and in the Fill in fields box, select the variable AVGGIFT_log10. From
the Replace drop-down list, choose Blank and null values. and in the Replace with
box, type in norm_random(AVGGIFT_log10_Mean, AVGGIFT_log10_SDev) as
shown in the following figure. Click on the Annotations tab, change the name of the
node to Fill AVGIFT_log10 normal, and then click on OK.

Chapter 3

105

9.	 Insert a Type node and connect it to the Fill Age Uniform node. Then insert
a Data Audit node and connect it to the Type node. Run the Data Audit node and
examine the distributions for AGE and AVGGift_log10.

How it works...
For a uniform distribution, the minimum and maximum values are sufficient to specify the
range of values to generate with the uniform random number function in Modeler: random().
For normal distributions, one needs the mean and the standard deviation of the distribution.
These can be calculated in-stream with an Aggregate node (as mentioned in step 5).

Once the summary statistics have been calculated, the imputation itself is straightforward,
using Filler nodes and Modeler functions for calculating random values for uniform and
normal distributions.

There's more...
One can fine-tune the statistics used to generate the uniform and normal random numbers
by adding a Key field to the Aggregate node. For example, one could compute the minimum
and maximum AGE for each value of another field such as FISTDATE by using the Aggregate
node, as done in the Imputing in-stream mean or median recipe in this chapter.

See also
ff The Imputing in-stream mean or median recipe in this chapter

ff The Using random imputation to match a variable's distribution recipe in this chapter

Using random imputation to match a
variable's distribution

This recipe imputes missing values with actual values (selected at random) from the variable
with missing values needing to be imputed. It is valuable when one does not want to impute
with a constant but the variable has a distribution that isn't replicated well by a normal or
uniform random imputation method.

In this recipe we will impute values for a missing or blank variable with a random value from
the variable's own known values. This random imputation will therefore match the actual
distribution of the variable itself.

Data Preparation – Clean

106

Getting ready
This recipe uses the following files:

ff Datafile: cup98lrn_variable cleaning random impute recipe.sav

ff Stream file: Recipe – impute missing with actual values.str

How to do it...
1.	 Open the stream (Recipe – impute missing with actual values.str) by

navigating to File | Open Stream.

2.	 Make sure the datafile points to the correct path and to the datafile (cup98lrn_
variable cleaning random impute recipe.sav).

3.	 Open the set blanks Type node and specify blanks for AGE, just like step 4 and
step 5 in the Imputing in-stream mean or median recipe in this chapter.

4.	 To the right of the set blanks Type node, insert a Derive node. Select the Multiple
mode option and select the variable AGE. Add the field name extension _orig as a
suffix and, in the formula area, type @FIELD.

5.	 To the right of the Derive node now named _orig, insert a Select node, select
the Discard mode, and type @BLANK(AGE) into the condition area. Go to the
Annotations tab and rename the node discard BLANK AGE.

6.	 Beneath the Select node specified in step 5, add a Filter node connected to the
Select node. Open the Filter node and remove all fields except for AGE. In the 3rd
column, change the name of this field to fillAGE. Go to the Annotations tab and
change the name of the node to just AGE.

7.	 Insert a Derive node and connect it to just AGE. Rename this Derive field as
randorder, and in the formula area type random(1.0).

8.	 Insert a Sort node and connect it to the Derive node, randorder. Add the
randorder field to the sort list, and sort it ascending (it doesn't matter which order
one sorts, ascending or descending). Go to the Annotations tab and rename the
node as scramble AGE column.

9.	 Copy the Select node, discard BLANK AGE and paste it in the stream. Move the
pasted Select node to just below the set blanks Type node. Open the Select node
and select the mode Include (changing it from Discard). Then go to the Annotations
tab and change the name of the node to include BLANK AGE.

10.	 Insert a Merge node in the stream and connect the scramble Age column Sort
node and the include BLANK AGE Select nodes to it. Open the Merge node and
choose the Order radio button for the Merge method. Leave the merge as an inner
join and then click on OK.

Chapter 3

107

11.	 Insert a Filler node and in the Fill in fields area select the field AGE. In the Replace
with box type fillAGE, and then click on OK.

12.	 Insert a Filter node and connect it to the Filler node from step 11. Open the Filter
node and remove fields fillAGE, and randorder. Now click on the OK button.

13.	 Insert an Append node and place it above the Filter node from step 12. First connect
the discard BLANK AGE Select node to the Append node, then connect the Filter
node from step 13 to the Append node. Open the Append node and make sure the
output field column contains all the variables of interest. Check the Tag records by
including source dataset in field checkbox and type Ageimputed in the text box to
its right.

14.	 While still in the Append node, click on the Inputs tab. Type the word No in the Tag
column for the row containing the main data (it should have as the connected node
discard BLANK AGE). Type the word Yes in the Tag column with the connected
node, that is, Filter. Now click on OK.

15.	 Insert a Type node and connect it to the Append node.

16.	 Insert a Data Audit node and connect it to the Type node from step 15. Move it above
the Type node.

17.	 Run the Data Audit node to examine the resulting AGE values, including its mean,
standard deviation, and number valid.

How it works...
The top path of the stream discards the values of AGE leaving only the BLANK values,
namely the NULL values and those values less than or equal to 17. These records will be
retained as it is.

The downward path that goes through the include BLANK AGE Select node contains all the
records with BLANK AGE values. The AGE values will be replaced, but the remaining fields will
be retained as is.

The values to impute are created in the middle path of the stream, below the discard
BLANK AGE Select node. First, we remove all other fields; only AGE matters in this path. A
random number is generated to rearrange (randomly) the order of the AGE values. The Sort
node scrambles the AGE values in the order of the random numbers. The AGE field is renamed
to fillAGE and contains the randomized AGE values that will replace the BLANK values.

The Merge node combines the middle and bottom paths by order. The number of records that
are retained after the merge is the smaller of the number of records for the two paths.

Data Preparation – Clean

108

The final stream should look something like the one shown as follows:

There's more...
Random imputation is a common method for missing value imputation because it is an
unbiased method to fill in the missing values. However, whenever a random number is
created, it is different from the last time. Every time one runs this Modeler stream, the
imputed values will be different, and can become problematic when one is trying to replicate
an analysis or particular results.

If one only needs a temporary freeze on these random values, one can cache the randorder
Derive node to keep the same random numbers as long as the cache is retained. It will be
flushed if anything in the stream before the randorder node has changed, or upon re-
opening the stream.

An alternative is to save the random values by exporting the random values as a .sav file.
This list of random numbers can be brought back into the stream and added to the data using
a Merge node. Another way to save the random numbers is by creating and filling a cache
for the randorder node and then exporting that cache to a file. The next time one runs the
stream, one can load the cache from the saved file.

If the field being filled is more than 50 percent missing, one will have to replicate the
populated values 2 or more times to ensure there are enough values to fill in. For example,
if 75 percent of the values are missing (leaving only 25 percent populated), the 25 percent
populated records will have to be replicated three times.

See also
ff The Imputing in-stream mean or median recipe in this chapter

ff The Imputing missing values randomly from uniform or normal distributions recipe in
this chapter

Chapter 3

109

Searching for similar records using a Neural
Network for inexact matching

Many applications require the matching of names, and although exact matching is often
used, inexact matching is useful when we want to take into account the possibility of spelling
errors. Soundex codes can provide a form of inexact matching but even exact matching of
Soundex codes can miss obvious matches like fog and phogg. Neuro-fuzzy Soundex combines
the extended Soundex codes provided by the Soundex supernode with neuro-fuzzy (inexact)
matching to provide a very flexible name and word matching technique.

Getting ready
This recipe uses the following files:

ff Datafile: names.txt

ff Stream file: Neuro_Fuzzy_Soundex.str

ff Supernode library file: Soundex_Digits.slb

How to do it...
To search for similar records using a neural network for inexact matching, perform the
following steps:

1.	 Open the stream file (Neuro_Fuzzy_Soundex.str) by going to File | Open
Stream.

2.	 Zoom in to the supernode Target. This selects a specific target record from the
datafile names.txt.

Data Preparation – Clean

110

3.	 Zoom in to the supernode Names. This selects all except the target record from the
datafile names.txt.

4.	 Double-click on one of the Soundex6 supernodes to show its parameters as shown in
the following screenshot. The settings produce a Soundex code with 6 numeric digits
from the field Name into a new field called Soundex6.

5.	 Double-click on one of the Soundex Digits supernodes to show its parameters as
shown in the following figure:

Chapter 3

111

This supernode (also available from the supernode library file, Soundex_Digits.
slb) decomposes a Soundex code into several fields, one for each character of the
Soundex code. These fields are called SoundexLetter for the initial letter, SoundexD1
for the initial digit, SoundexD2 for the second digit, and so on. The parameters are
the name of the field holding the Soundex code, the number of numeric digits from
this code to be processed, and then a flag for each character to determine whether it
should be output (this allows you to select a subset of the digits in the Soundex code
if you do not need all of them).

6.	 The rest of the stream replicates the neuro-fuzzy searching recipe. Open the Type node
to see the roles of fields in the neural network model as shown in the following figure:

Data Preparation – Clean

112

7.	 Run the Table node Top 10. The result is shown in the following figure:

The table shows the words or names, their Soundex6 codes, the decomposition of
these codes, and the score from the neural network model. Words with a Soundex6
code identical to Simmons (S552000) get a score of 1.0; words with other Soundex6
codes get lower scores, but a degree of similarity is being detected and has been
used to rank all the words in names.txt to find those most similar to simmons.

How it works...
The neuro-fuzzy Soundex stream works in the following way:

1.	 Creating extended Soundex codes for names using the Soundex supernode.

2.	 Decomposing the Soundex codes into their individual characters in separate fields
using the Soundex Digits supernode.

3.	 Using the separate characters from the Soundex code as the attributes of each
example, use the neuro-fuzzy searching technique to locate words that sound like
the target.

There's more...
Decomposing Soundex codes into their component characters opens up a world of
possibilities. For example, here's a stream that takes a list of names and produces groups of
those that sound alike using clustering:

Chapter 3

113

See also
ff The Using neuro-fuzzy searching to find similar names recipe in this chapter

ff The Producing longer Soundex codes recipe in this chapter

Using neuro-fuzzy searching to find similar
names

Searching for a record in a data set is a commonplace operation in data processing and
analysis. When the match to the target is exact, the operation is straightforward, but many
searches must be inexact, for example, searching for similar faces, or searching for similar
crimes. We call this kind of search fuzzy, not in the mathematical sense as it is used in fuzzy
logic, but in the everyday sense of inexact. When this kind of fuzzy searching is performed
using a neural network, we call it neuro-fuzzy searching.

Neuro-fuzzy searching is accomplished by training a neural network model to recognize the
target, the object of the search, and produce a score that rates the similarity of an example
to the target. This model is then used to score the database to be searched, and we can then
select the example or examples that are most similar to the target.

Getting ready
This recipe uses the following files:

ff Datafile: cup98LRN.txt

ff Stream file: Neuro_Fuzzy_Searching.str

Data Preparation – Clean

114

How to do it...
To use neuro-fuzzy searching to find similar names:

1.	 Open the stream file (Neuro_Fuzzy_Searching.str) by going to
File | Open Stream.

2.	 Zoom in to the supernode Customers. This supernode reads the datafile
cup98LRN.txt and performs minor cleaning operations to remove missing data;
the aim is to produce a data set that is fully populated, but of a substantial size, and
excludes the target record.

3.	 Zoom in to the supernode Sample of 50. This supernode uses 2 sample nodes to
produce a small sample from the much larger data set.

4.	 Zoom in to the supernode Target. This supernode selects the target record; the
stream searches for other records that are similar to the target.

5.	 Edit the Balance node 50 copies. This node produces 50 copies of the target record.

6.	 Open the Derive node Target 1.0. This node creates the field Target with the
value 1.0, which indicates that this is the target record. A similar Derive node creates
the same field with the value 0.0 for the records that are not the target.

7.	 Edit the Type node; note that Target is set to be the target for training, and that the
ID field is set to direction NONE (not to be used in training).

8.	 The Neural Net node, Target, uses the default settings for this node and, when
run, produces the model Target. Run the Table node, Table, to see the output of
the model.

Chapter 3

115

The preceding figure is arranged to show the key feature of this output; on the training
data, target records produce a predicted value of 1.0. Non-target records produce much
smaller values, mostly less than 0.2, indicating dissimilarity from the target record.

9.	 Run the Histogram node $N-Target on the far right of the stream.

Data Preparation – Clean

116

You can see from the preceding screenshot that the separation of the target records
from others is perfect for the training data.

10.	 Run the Histogram node $N-Target on the far left of the stream.

You can see from the preceding screenshot that, for the full data set, the model
produces a much wider range of values. Some of these are greater than 0.5,
indicating similarity to the target record.

11.	 Run the Table node 100 most similar. The Sort node and Sample node that feed
this table simply select the 100 records with the highest $N-Target scores, that is
the 100 records that, according to the model, are most similar to the target variable.
The most similar record overall will be at the top of this list.

How it works...
Neuro-fuzzy searching means using a neural network, which has been trained to recognize
a target instance, to search a database for similar instances. The beauty of this technique
is that the model is trained on a very small data set, in this example only 100 records,
composed of 50 copies of the target and 50 other records.

Chapter 3

117

The indicator in the training set that shows whether a record is the target or not (the derived
field Target) is a real-valued number and not an integer or a Boolean. This is important,
because the neural network is a scoring model, producing a real-valued output, so that
different degrees of similarity to the target can be indicated.

It is possible for the modeling step in this recipe to fail. If the non-target examples chosen
for training included, by chance, a record very similar to the target, then the model would
not produce good separation and this would be reflected in the preceding histogram figure
showing model output $N-Target for the training data. If this happens, the solution is to pick
a different random sample of non-target variables and try again.

There's more...
All data mining algorithms operate by creating a definition of similarity based on the training
data, and neural networks perform a search among different definitions of similarity; this
makes them particularly powerful when the problem is explicitly about similarity. Neuro-
fuzzy searching is one domain in which exploring different neural network topologies can be
advantageous. For example, for some data sets, this technique has been found effective when
using a neural network with two hidden layers instead of the default single hidden layer.

This technique has been used to find similar faces and similar crime reports.

See also
ff The Searching for similar records using a Neural Network for inexact matching recipe

in this chapter

ff The Producing longer Soundex codes recipe in this chapter

Producing longer Soundex codes
Soundex coding is an abstract way to represent the sound of a word; it was invented to help
identify when the same name might be spelt differently over a period of time, but is used
more generally to help identify variant spellings of the same name or word. For example
spelled and spelt would have the same Soundex code.

Normally, a Soundex code represents a word by its initial letter capitalized, followed by three
numeric digits (0-6) representing groups of letters that might be substituted for one another.
The numeric digit codes correspond to letters of the alphabet as follows:

Numeric Digit Group Code Letters
1 B P F V
2 C S K G J Q X Z

Data Preparation – Clean

118

Numeric Digit Group Code Letters
3 D T
4 L
5 M N
6 R

All other letters (vowels plus Y, H & W) are ignored, as are adjacent repetitions of the same
code. If the result contains fewer than 3 numeric digits, the length is padded with zeros.

Modeler includes a built-in function to generate Soundex codes, but this will produce only codes
with 3 numeric digits. If a longer code is required, the Soundex supernode can produce a code
of up to 19 numeric digits, but the maximum code is shorter when repetitions must be skipped.

This recipe illustrates the function of the Soundex supernode and when longer Soundex codes
can be useful.

Getting ready
This recipe uses the following files:

ff Datafile: names.txt

ff Stream file: Soundex_Supernode.str

ff Supernode library file: Soundex_Supernode.slb

How to do it...
1.	 Open the stream (Soundex_Supernode.str) by going to File | Open Stream.

2.	 Make sure that the Var. file node points to the datafile names.txt.

3.	 Double-click on the supernode Soundex3; the parameters of the supernode have
been set to process the field Name and produce a 3-digit Soundex code in a new field
called Soundex3.

Chapter 3

119

4.	 Run the Table node Soundex3, producing the following output; note that the Name
field contains many values that are not names, and the second field Soundex3 is
the Soundex code created by the Soundex supernode. This code is the same as
Modeler's Soundex built-in function one would create.

5.	 Double-click on the supernode Soundex6; the parameters of the supernode have
been set to process the field Name and produce a 6-digit Soundex code in the new
field Soundex6.

Data Preparation – Clean

120

6.	 Run the Table node Soundex6, producing the following output. Note that the codes
in the field Soundex6 have 6 numeric digits instead of 3 and that in many but not all
cases the last 3 numeric digits are zeros.

7.	 Open the Derive nodes NameLength and UsesMoreThan3. NameLength is simply the
length of the Name string. UsesMoreThan3 is a Boolean indicating whether more than
three digits of the Soundex6 code are actually being used, based on the expression:

Soundex6 /= Soundex3 >< "000"

In other words this Boolean is false when Soundex6 and Soundex3 are the same
except for 3 trailing zeros, otherwise true.

8.	 Run the Histogram node NameLength; this is overlaid with UsesMoreThan3 to
produce the following graph. Note that longer names have a higher chance of using
more than 3 Soundex digits, and that a substantial proportion of data overall use
more than 3.

Chapter 3

121

9.	 Run the final table node UsesMoreThan3, showing only the strings which have this
property; note that surprisingly common names such as Watkins and Jenkins make
use of more than 3 digits.

How it works...
The Soundex supernode takes three parameters, the name of the field for that the code
should be generated, the number of numeric digits in the desired code, and the name of the
field in which to produce the Soundex code. The supernode works by creating successive
characters of the Soundex code with a series of derive nodes, then filling or stripping the
result to the correct length.

The following expression is used in most of the derive nodes, and implements the key
translation of letters to codes. This instance examines the third letter in the word and derives
a new field called c3.

if length(s) < 3 then '0'
elseif member(s(3),[B P F V]) and c2 /= '1' then '1'
elseif member(s(3),[C S K G J Q X Z]) and c2 /= '2' then '2'
elseif member(s(3),[D T]) and c2 /= '3' then '3'
elseif s(3) = 'L' and c2 /= '4' then '4'
elseif member(s(3),[M N]) and c2 /= '5' then '5'
elseif s(3) = 'R' and c2 /= '6' then '6'
else '' endif

Data Preparation – Clean

122

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed directly to you.

Several features of this expression are notable:

ff The initial if branch implements filling the code with zeros if the word is too short to
contain the character being examined

ff The elseif branches implement letter groupings, and also eliminate repeated
letters and codes by looking at the previous code

ff The else branch returns an empty string so that a character can simply be skipped if
it is to be ignored

The supernode parameters are defined as follows:

Note that the final parameter is a slot parameter, referring to a parameter called newname,
which is modified in the Derive node named NEWNAME. This Derive node creates the new field
containing the results of the Soundex supernode.

Chapter 3

123

Zoomed in, the Soundex supernode looks like this:

ff The derived field s is calculated using the built-in function lowertoupper, so that
letters extracted from the string will always be uppercase. This function is applied to
the parameter $P-f, that is the first parameter of the supernode.

ff The derived field c1 is the initial letter of the string, and the derived fields c2 to
c20 are the numeric digits of the Soundex code, calculated using the preceding
expression except that c2 is simpler because it does not have to check the value of
the previous digit.

ff The derive node NEWNAME simply appends c1 to c20 together with trailing zeros and
then truncates the string to the length requested by the second supernode parameter.
The new field it creates has the name supplied by the third supernode parameter.

ff The final filter node removes all the derived fields except for that created by NEWNAME.

There's more...
This recipe explores the properties of Soundex codes, particularly those with more digits
than the standard 3. In addition, it illustrates how supernode parameters can be used to
make them reusable. It also illustrates the advanced feature of structured parameters, which
can be used to control the setting of nodes within a supernode when the required control is
beyond the scope of an ordinary parameter.

Data Preparation – Clean

124

The Soundex supernode itself is supplied in the file Soundex Supernode.slb; this can be
inserted for use in any stream when Soundex coding is required.

See also
ff The Searching for similar records using a Neural Network for inexact matching recipe

in this chapter

ff The Using neuro-fuzzy searching to find similar names recipe in this chapter

4
Data Preparation –

Construct

In this chapter, we will cover:

ff Building transformations with multiple Derive nodes

ff Calculating and comparing conversion rates

ff Grouping categorical values

ff Transforming high skew or kurtosis variables using a multiple Derive mode

ff Creating flag variables for aggregation

ff Using Association Rules for interaction detection/feature creation

ff Creating time-aligned cohorts

Introduction
This chapter will focus on the Construct subtask of CRISP-DM's data preparation phase. The
CRISP-DM document describes it as follows:

This task includes constructive data preparation operations such as the production of
derived attributes, entire new records, or transformed values for existing attributes.

Data Preparation– Construct

126

Of all the subtasks in CRISP-DM, the Construct subtask is a good candidate for the one that
many novices fail to plan enough time for. Everyone knows that the data must be cleaned
and braced for that task to take a long time. "What needs to be constructed?", one might ask.
The example that frequently inspires the Aha! experience is dates. Dates—quite simply—are
nearly useless in the modeling phase. They are stored as merely points in time. The modeling
algorithms have to work awfully hard to spot an interesting date—perhaps spotting a difference
between big dates and little dates. One needs to give the algorithms a major helping hand. But,
what is interesting are the distances between dates, or the number of events between dates.
No one stores their dates in this way. Absolute dates are the best way to store date information,
but relative date information is the best way to model this information. The Creating time-aligned
cohorts recipe of this chapter, one of the longest recipes, addresses this and other related
issues of time. For certain projects, this critical issue may cost projects several days.

Stepping back for the broader view, often what we are constructing is a customer-level view
of our data. Of course, "customer" could be a patient, or a traveler, an insurance claimant, or
even something like a machine engine, but it differs from data that is explored at the group
level. It also differs from data at the transactional level. Predictive methods that treat the
customer base as one large unit are limiting in many ways. They offer little explanatory power,
so the organization may have a departmental forecast, but without much understanding
of how, on a per-person basis, to alter the outcome. Decision makers may end up with a
prediction without guidance for taking action.

A better advantage is to examine individual behavior, as seen through the lens of the individual's
transactions. Models built only on the individual's characteristics, such as demographics, are
not rich, and often fail to illuminate beyond what "everybody knows" about the data. Working
at the individual level provides information that forms a strong basis for decision making.
These new variables that we construct are summaries of past behavior and as such are a great
source of insight about future behavior. There is more than a dose of psychology often present
in such analyses. Although there is but one recipe on aggregation, Creating flag variables for
aggregation, aggregation is at the core of this activity. Reducing many rows of data, usually
transactional in nature, into a single row summary, often with hundreds of columns of data, that
is how aggregation describes a single actor and its behavior.

Along the way, many other issues on the subject of construction or "Data Augmentation" will
be addressed. In the first recipe, we learn a basic, but important trick: how to use the Derive
node to produce, not just one variable, but instead a related set of variables. In the second
recipe, pursuing a similar theme we calculate a large number of ratios. These ratios will
resemble our target, but for a different time period. By arraying them over time we can get a
sense of whether we are trending in a particular direction. There is also a recipe, Transforming
high skew or kurtosis variables using a multiple Derive node, that, in a sense, cleans the data,
correcting for a skew, but does so by creating alternate versions of the original variables.

Chapter 4

127

Set variables with a very large number of categories are found in nearly every project. As with
date manipulation, it is a skill that one cannot succeed without. However, it is usually done
manually or based on business knowledge. In other words, one uses ones knowledge to craft
a taxonomy, and uses it to reduce the number of categories, boiling down the subtleties until
one has fewer categories. This is often not as easy as it sounds. What if you have product
SKU, but no product category? It happens more often than you might think. The Grouping
categorical variables recipe takes a stab at tackling this issue from the data only when
external group information is not available.

Building transformations with multiple
Derive nodes

In this recipe we will create several new variables with a single Derive node by invoking the
multiple radio button.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream Recipe -
variable construct multiple derive.str.

How to do it...
1.	 Open the stream Recipe - variable construct multiple derive.str by

clicking on File | Open Stream.

2.	 Make sure the datafile points to the correct path to the datafile cup98lrn_
reduced_vars3.sav.

3.	 Add a Derive node to the stream and connect it to the Type node called First Type.

4.	 Open the Derive node, click on the Multiple radio button. In the Derive from region,
select all of the RFA variables, from RFA_2 to RFA_24. You can select multiple
variables by clicking on RFA_2, scrolling down to RFA_24 and Shift-clicking on
RFA_24. Then click on OK.

5.	 In the Field name extension box, change the text _Derive to R.

Data Preparation– Construct

128

6.	 In the Field Type drop-down list, select Nominal. This is shown in the
following screenshot:

7.	 Inside the Formula box, type the formula startstring(1, @FIELD).

8.	 Click on OK to exit the Derive node.

How it works...
The Multiple option in a Derive node is a very powerful way to apply the same transformation
to as many variables as one needs. Any transformation that can be created for a single
variable can also be created for multiple variables.

The key syntax element for the multiple mode is the @FIELD function. @FIELD serves as a
placeholder that represents each variable listed in the Derive from box above in the order
they are listed.

Chapter 4

129

This particular transformation is applied to all of the RFA variables, where RFA stands for
Recency, Frequency, and Monetary. Each of these variable values is three characters,
containing a Recency character (the first), a Frequency character (the second), and a
Monetary character (third). The transformation desired here is to split out each of the three
characters into their own variables. The first of the three is the Recency character, hence the
field name extension R. Using startstring(1, @FIELD) takes the first character at the
beginning of each variable as the derived value.

The result of this Derive node will be new variables named RFA_2R, RFA_3R, through
RFA_24R. If one connects the Derive node now called R (for the extension typed into the Field
name extension field) to a Distribution node, one will see for RFA_3R, the distribution shown
in the following screenshot:

There's more...
For the first transformation, the R node, the CLEM syntax was supplied. However, one can
always use the Expression Builder to build out a formula.

A second transformation can be built to return the middle character of the RFA string. Use
the field name extension F for this node. While there are many ways one can do this, one way
is to create a substring between the second character and the second character, inclusive,
which is shown in the Expression Builder screenshot at the end of this recipe with the function
substring_between(2, 2) or @FIELD(2). This will return a string with values 1, 2, 3,
or 4. If one would like to have this string returned as an integer instead, one can convert the
string to an integer by transforming the result with the to_integer() function.

Data Preparation– Construct

130

So far we have only been using formulas to build multiple new variables in a single Derive
node. However, any variable type can be created in this way. Try changing the Derive as drop-
down box to Flag. Now, instead of a formula, one enters into the textbox a condition that can
be True or False, such as if the first character is an "S", return the value True else False as
shown in the following screenshot:

If one would like to also build derived variables to create variables containing other bytes of
the RFM rollup, such as exposing the F (frequency) byte, one would use a string operator to
return the second character of the three. The substring_between() function is one way to
accomplish this, as is shown in the following screenshot:

Chapter 4

131

Calculating and comparing conversion rates
There are times when you need to transform a variable to be able to better answer a question
or to gain additional insight. In this recipe we will calculate the ratio of donors to total
prospective donors. The data set already has a donate/not donate variable in the form of
TARGET_B. We will calculate something similar for all of the campaigns, allowing us to present
results on a line chart and look at trends.

Getting ready
We will start with the Conversion Rates.str stream.

How to do it...
1.	 Open the stream and edit the Derive node. Note that it is a multiple derive and it is

producing several new variables:

Data Preparation– Construct

132

2.	 Edit the Statistics node, verify that it is requesting Mean only and run:

3.	 Add an Aggregate node with no key variables, but with all of the new campaign date
variables from RDATE_7_CRate through RDATE_24_CRate:

Chapter 4

133

4.	 Add a Transpose node. We will use the prefix CRate and we only need one
new variable:

5.	 Add a Derive node with @INDEX as the formula. We will call the new variable
CampaignID.

6.	 Add a Multiplot node with our new variable CampaignID as the X field, and CRate1
as the Y field. Make sure to select Use all data as shown in the following screenshot:

Data Preparation– Construct

134

7.	 You should have added four new nodes to the stream. Run the Multiplot:

How it works...
The calculation uses the Multiple derive feature of the Derive node. RDate_3 through
RDate_6 have very low rates because the purpose of the analysis was to look for lapsed
donors. Therefore, those dates are left out. Simply, if there is a date then they donated, and
if there is no date, they did not donate. Assigning a 1 for the False value produces a more
intuitive result in that they get a 1 if they donated, and 0 if they didn't. This is better than T
and F because we can perform arithmetic on 1s and 0s:

Chapter 4

135

The Statistics node, in theory, gives us the result that we want, but with some manipulation
we can make it much easier to look at the trend over time.

The Aggregate node produces the mean for each campaign, which importantly is the same as
the percentage. This is a valuable trick. However, it produces a wide data set with only one row.
The values are the ones that we need, but it is not a convenient shape for producing a plot.

The Derive node simply allows us to force the proper order. We will use the resulting variable
as the X axis in our plot forcing the campaigns to run from the most recent on the left-
hand side and the most distant in time to the right-hand side, which can be displayed in
the Multiplot. The rates seem to fluctuate considerably. We would want to investigate this.
Perhaps it is the type of campaign, or time of year, or other factors:

There's more...
What if we want to repeat the same process for two groups?

Data Preparation– Construct

136

The More stream adds two features. It screens out genders that are not M or F. Other
"genders" include Unknown and Joint Account. Now the Means node can compare the two
groups. Also, the Aggregate now produces the conversion rates for both groups, which then
can be displayed side by side in the Multiplot as shown in the following screenshot:

See also
ff The Building transformations with multiple Derive nodes recipe in this chapter

Grouping categorical values
In the data used for modeling, we frequently find attributes with a large number of
different categorical values. A typical example is product codes, identifying a product
purchased by a customer.

A data attribute with many different values can cause problems for data mining algorithms;
complex data can make the algorithms run slowly, and may make it more difficult to find the
patterns in the data, leading to less accurate models. A useful step in data preparation is
to simplify this kind of complex data by grouping the values of a categorical variable into a
smaller range of values, where the grouping has a relationship to the problem to be solved.

Chapter 4

137

This recipe shows how to group product codes by their relation to a target response variable.
It produces product groups, which are groupings of product codes, based on deciles of the
response rates for each product code.

Getting ready
This recipe uses the following files:

ff Datafile: Transactions_File.txt

ff Datafile: Promotions_File.txt

ff Stream file: Categorical_Grouping.str

How to do it...
1.	 Open the stream Categorical_Grouping.str by clicking on File | Open Stream.

2.	 Edit the Type node to the left of the stream; this provides the types and modeling
roles of the data fields created by the source supernode Response, as shown in the
following screenshot. The data represents the most expensive item purchased by
each customer, including the cost (Sales_Amount), method of payment and product
code, and also the predictive target response used for modeling:

Data Preparation– Construct

138

3.	 Run the Distribution node Product_Code; this displays the product codes with their
associated response propensity, as shown in the following screenshot. Only a few
customers, usually fewer than 100, are connected with each product code, and there
are several hundred product codes.

4.	 Edit the Aggregate node Response Rate; this calculates the average response rate
for each product code, which is the key step in generating product groupings. This
branch of the stream works only from the training data, since response rates would
be unknown when customer records are being scored by a deployed model. Once the
product code response rates have been calculated, response rates are deciled and
product codes are labeled with the relevant decile label (1 to 10). The decile label is
then used as a product group, and the merge node adds the product group to each
customer record.

5.	 Run the Distribution node Product_Group; this displays the product groups with
their associated response propensity, as shown in the following screenshot. Because
of the way they were created, these product groups have an orderly relation to
response rates.

Chapter 4

139

6.	 Browse the C5.0 decision tree model Response NG; this was produced without
the product groups but with the product codes. The following screenshot shows a
fragment of this complex decision tree; the model makes heavy use of product codes
and its complexity is related to the large number of different codes.

Data Preparation– Construct

140

7.	 Browse the C5.0 decision tree model Response WG; this was produced with the
product groups but without the product codes. The following screenshot shows
the much simpler decision tree; the model makes use of product groups and their
relation to response rates.

8.	 Run the Analysis node; the output shows that, on the test data, the model using
product groups instead of product codes is comparable (only very slightly more
accurate). The main advantage of product groups in this case is the simplicity of the
model; this difference in complexity is so strong that it could make the difference
between a model that can be deployed and one that cannot.

How it works...
This recipe shows a simple way to group categorical values and the stream is easy to
construct. The groups are the deciles of response rates associated with individual values;
this guarantees that the groups provide information about the predictive target (in this case
response). The response rates are calculated by aggregation.

The branch of the stream that calculates the product groupings produces a mapping of
product code to product group, and this is used as a lookup table by the Merge node, to
augment the customer records with the product group as an additional variable.

This process augments the data mining algorithm by finding general-purpose information
about the target and its association with a categorical variable before the algorithm is applied.
Because it is effectively an addition to the algorithm, the groups must be generated from the
training data and not the test data.

This technique provides a simple equivalent to Modeler's "optimal binning", but for categorical
instead of numeric attributes.

Chapter 4

141

There's more...
This technique can be adapted in three ways:

ff First, the granularity of the grouping can be modified by using different N-tiles, such
as quartiles (4), quintiles (5), or vigntiles (20) in the Binning node. The only additional
modification required would be in the filter node to rename a different tile field to be
Product_Group.

ff Secondly, the technique could be applied to several different categorical variables
in the same data set. Each variable to be grouped requires a separate sequence
of Aggregate, Binning, Filter, and Merge nodes; each sequence could be brought
together in a Merge node to simplify the stream.

ff Finally, the mappings of categorical variables to groups could be stored as separate
tables of data; each mapping would be a table with two columns. This is useful
if a mapping is to be used several times, for example, in several different data
preparation and modeling streams.

Transforming high skew and kurtosis
variables with a multiple Derive node

In this recipe we will create transformations of numeric variables with high skew or kurtosis
that makes them more normally distributed with a single Derive node by invoking the Multiple
radio button. For many algorithms, normal distributions are assumed and therefore one often
transforms variables so that this assumption is more nearly met.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream Recipe -
variable construct multipleskew.str.

How to do it...
1.	 Open the stream Recipe - variable construct multipleskew.str by

clicking on File | Open Stream.

2.	 Make sure the datafile points to the correct path to the datafile cup98lrn_
reduced_vars3.sav.

3.	 Add a Derive node to the stream and connect it to the Type node called First Type.

Data Preparation– Construct

142

4.	 Open the Derive node and click on the Multiple radio button. In the Derive from
region, select all monetary variables, including RAMNTALL_2 through TARGET_D. You
can select multiple variables by clicking on RAMNT_2, scrolling down to TARGET_D,
and Shift-clicking on TARGET_D. Then click on OK. Another way to select all of the
variables is to click on the variable of interest and then click on Apply. Repeat this for
every variable to be included in the list to be transformed.

5.	 In the Field name extension box, change the text _Derive to log10.

6.	 In the Field type drop-down box, select Continuous.

7.	 Inside the Formula box, type the formula sign(@FIELD)*log10(1+abs(@FIELD)).

8.	 Click on OK to exit the Derive node.

Chapter 4

143

How it works...
This recipe is a variation of the Building transformations with multiple Derive nodes recipe
that described how to take advantage of the Multiple option in a Derive node. In this case,
however, a numeric transformation is applied rather than a categorical. For many algorithms,
normal distributions are assumed and therefore one often transforms the variable so that
this assumption is more nearly met. The most common transformation to apply when one
observes a positive skew in a distribution is a log transform, with log10 being one of most
common transforms to apply. The CLEM syntax for a log transform in a Derive node with the
Multiple option selected is log10(@FIELD).

Severe negative skew causes the same problems for some algorithms. However, the log
transform is undefined for negative values and will return a NULL value for any values of a
variable that is negative. Moreover, a log transform of the number 0 is also undefined.

A solution to these problems is to modify the argument of the log transform so that it is never
negative or zero. One can achieve this by adding 1 to the value (so that one never takes the
log transform of the number 0) and by taking the absolute value of the variable (so that it is
never negative). The CLEM syntax for these operations is log10(1 + abs(@FIELD)).

We have introduced a new problem, however, which is that any negative numbers are now
positive in the data, and the log transforms will reflect a positive value for those variables. We
can however reintroduce the negative sign of the log transformed version of the variable by
multiplying the log transformed variable by its original sign: positive numbers remain positive
after the log transform, and negative numbers now are given a negative log transformed
value. The CLEM syntax for this complete expression, the one referred to in the recipe, is
sign(@FIELD)*log10(1 + abs(@FIELD)).

High kurtosis in a variable can be seen in a histogram as a spike in the middle of the
distribution, and long tails on both sides of the spike. Sometimes variables with that
represent profit and loss that will have skewed profit values and skewed loss values (those
are negative). This recipe will transform these profit/loss variables into new ones that are
more normally distributed.

Data Preparation– Construct

144

A result of transformations is shown in the preceding and following screenshots. In the
preceding screenshot, we see a Histogram node output with the natural distribution of AVG_
GIFT. After the log transformation, the following screenshot shows the transformed variable
with a normal distribution overlay, clearly a more normal distribution. The normal curve overlay
can be turned on in the Histogram Node Options tab.

There's more...
This recipe works for positively skewed variables whose skew is not too severe. If the skew is
very severe, one may have to transform the variable twice to achieve a transformed variable
that is closer to a normal distribution.

For a negative skew, this recipe only works when the negative skew is a result of negative values
of the variable. If there is negative skew but the variable is always positive, consider applying a
power transform (squaring or cubing the variable) to achieve a distribution closer to normal.

As an alternative to experimenting through the use of a Derive variable, one may prefer to
use the Transform node, a very convenient node for this purpose. The Transform node shows
a sequence of transformations that can be applied to a variable and demonstrates what the
resulting variable looks like after the transformation:

Chapter 4

145

The preceding screenshot shows the output of a Transform node after applying a log10
transform to each of the continuous variables except for CARDGIFT where an inverse
transform was applied.

One can then generate a supernode from the Transform node through the menu option
Generate | Derive Node and then select the scaling you would like to apply to the
transformation (check the preceding screenshot). This creates a supernode containing a
separate Derive node for every variable that has been transformed. However, even if one
applies the exact same transformation to every variable in the supernode, there is a still a
separate Derive node for every variable (check the following screenshot). This recipe collects
all of the transformed variables using the same transformation in the same Derive node.
Moreover, the Transform node cannot de-skew a negative number with the log transform as
was done in this recipe.

However, the Transform node can be used to identify a good transformation prior to executing
this recipe. If one first identifies the transformation of interest and the variables one would
like to apply the transformation to, one can then create a Derive node for all of those variables
in the same manner as was done in this recipe.

Data Preparation– Construct

146

Creating flag variables for aggregation
The SetToFlag node is a very convenient node that converts a single nominal variable into as
many binary columns as desired, one column for each nominal variable value. However, the
default values for the node are T and F, which unfortunately cannot be used for any nodes
that require numeric values. In this recipe we will create flag variables that can be used in
Aggregate nodes, Means nodes, and other numeric operations. Using numeric values (1 and 0
in this recipe) will work with any nodes that require flag or nominal values such as Association
Rules and the grouping variable for the Means node (as T and F will), but will also work as
numeric values in nodes such as the Aggregate node.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream recipe_
variableconstruct_flags.str.

How to do it...
1.	 Open the stream recipe_variableconstruct_flags.str by clicking on File |

Open Stream.

2.	 Make sure the datafile points to the correct path to the file cup98lrn_reduced_
vars3.sav.

3.	 Open the Type node named Types. Notice that the Filter node preceding this type
removed most of the fields so that only a few remained. The variable set to Target
should be the variable TARGET_B.

4.	 Open the node SetToFlag and select the variable RFA_2A. The values of that
variable should appear in the Available set values region as shown in the following
screenshot. Click on the yellow arrow so these values will be in the Create flag fields
region. Click on OK to close the window:

Chapter 4

147

5.	 Open the Set Inputs Type node and scroll to the bottom to see these four new
flag variables.

6.	 Open the Aggregate node. Notice that the four flag variables are included in the
Aggregate fields region with mean values to be calculated.

7.	 Click on the Table node and run the selection.

How it works...
Two examples of nodes that may be used with the SetToFlag node in this stream are the
Aggregate node and the Means node. In the Means node, since the flag variables are
numeric, they can be used as test fields. The example in the stream shows the relationship
between the target variable (TARGET_B) and each of the values of the variable RFA_2A; this
variable could not be included as a test field if it were nominal.

Data Preparation– Construct

148

There's more...
The SetToFlag node is a very convenient way to include flag versions of many nominal
variables in one node; there is no limit to the number of variables that can be expanded into
flag variables.

Sometimes it is convenient to check the Aggregate keys checkbox to collapse the flag
variables by the grouping variable. For example, one may have multiple transactions for each
customer ID and want to identify if he or she has ever purchased amounts of different bins:
$0-$50, $51-$100, $100-200, or $200 and above. If each of these bins is converted to a
flag in the SetToFlag node, the Aggregate key can be set to the customer ID, and each field
will then indicate if a customer has ever had a transaction in that bin. It works the same as
running an Aggregate node with the Max option checkbox selected for each flag variable
without adding the _Max extension to the variables.

Using Association Rules for interaction
detection/feature creation

Interactions allow one to see the combined effect of more than one variable. Unfortunately,
interactions are not automatically calculated by many algorithms. The Association Rules
created here are intended to find interactions between nominal, ordinal, and flag variables in
the data. In this recipe we will create 10 new interactions to use as model inputs using the
A Priori Association Rules node. This recipe builds from the Selecting variables using single-
antecedent Association Rules recipe from Chapter 2, Data Preparation – Select, including
using the same target variable: the TARGET_D quintile between $20 and $200.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3_apriori.sav and the stream
Recipe - variable construction apriori.str.

You will need a copy of Microsoft Excel to visualize the list of rules.

How to do it...
1.	 Open the stream Recipe - variable construction apriori.str by clicking

on File | Open Stream.

2.	 Make sure the datafile points to the correct path to the file cup98lrn_reduced_
vars3_apriori.sav.

3.	 Open the Type node named APRIORI Types. Notice that only Nominal and Flag
variables are present. The variable set to Target should be the target variable
TARGET_D_TILE5_1.

Chapter 4

149

4.	 Open the Apriori node and look at the options. Note that the minimum antecedent
support is set to 5 percent, the confidence percentage is set to 1 percent and the
number of antecedents to 2:

5.	 Build the Association Rules model by clicking on Run.

6.	 Open the generated model. In the show/hide criteria drop-down menu, add Instances
and Lift to the report as shown in the following screenshot. If the list is not sorted by
confidence or lift any longer, click on the "sort by" arrow to the right of the Confidence
% text twice or until the sort order is descending:

Data Preparation– Construct

150

7.	 Export the rules by selecting File | Export HTML | Model… and save the file as
associationrules 2 antecedents.html.

8.	 Identify rules of interest, such as the 10 rules with the highest confidence and the 10
rules with the lowest confidence. Make a note of these rules so you can include these
as inputs.

9.	 In the Modeler stream, connect a Derive node to the stream, creating a new flag
variable for the top interaction, RFA_2A = G + AVGGIFT_bin_5 [15, 450],
as shown in following screenshot:

10.	 Repeat step 9 for each additional interaction variable found through the 2-antecedent
Association Rules model.

Chapter 4

151

How it works...
The Association Rules created here are intended to find interactions between nominal,
ordinal, and flag variables in the data. Interactions are particularly useful for algorithms
that only consider main effects such as linear and logistic regression. While decision trees
can be used to find interactions between variables—continuous and categorical—they have
two deficiencies for variable selection. First, trees are greedy search algorithms, finding the
best split at each level. Trees therefore can miss the best interactions if they are fooled into
keeping a suboptimal split. Second, trees return the best model only; one would need to
rebuild trees, forcing different root-node splits to find a wide range of interactions.

Association Rules, on the other hands, identify all combinations of variables. In this recipe, all
2-antecedent Association Rules with support greater than 5 percent are discovered, sorted by
Confidence % or Lift to make more clear which interactions have the strongest relationship to
the target.

One may want to identify 10 interactions that have a very high or very low association with the
target variable. For example, note that the top rule has support greater than 10 percent so it
matches a large segment of the population and has nearly 90 percent association with the
top quintile of donors. AVGGIFT and RFA_2A = G are both measures of how much a donor
has given historically, but this rule indicates that their gift size in the past year is high and
their average donation amount over their lifetime is high. The interaction gives the model an
additional bump in performance.

Unfortunately, this process does not automate the selection and building of interactions;
they must be added manually to the stream. Note that one limitation is that continuous fields
cannot be used to identify interactions unless they have been binned.

Data Preparation– Construct

152

There's more...
After loading the Association Rules into Excel, one can examine not only the strongest
interactions but also the relative improvement in predicting the target variable when
considering the interaction over and above the single variables. If one opens the file
associationrules 2-antecendents final.xlsx, the list of interactions is shown with
additional columns that identify rules with some key variables in them.

In the spreadsheet associationrules 2-antecedents.xlsx, also shown in the
following screenshot, rules with AVGGIFT_bin_5 are selected by filtering the rules. One can
see that AVGGIFT_bin_5 on its own has a 75 percent association with the target, but the
interaction has an 89-percent association with the target. Formulas for identifying the number
of antecedents and the variables themselves are included in the spreadsheet:

There is one way to automate the use of interactions in Modeler. One can connect the
generated model to the stream, open the generated model, modify the Settings tab to include
only one prediction, and ignore the basket predictions (see the following screenshot). Attach
a Type node to the generated model, and change the type of $A-Rule_ID-1 to Nominal. Now
every rule can be included as an input to models, though the number of rules can be quite
large, and the actual variables that are included in the rule are not self-evident.

Chapter 4

153

There is one last item of note in this recipe. There are several fields in the Association Rules
that are bins with values for that bin contained within brackets. This can be done quite simply
in Modeler. In this recipe, these bins were all quintiles created with the Binning node. Make
sure you select Tiles for the Binning method and Quintile (5) for the number of tiles. In the
example shown in the following screenshot, three fields are included in the Binning node. The
explanation here however will focus on the field TARGET_D:

Insert an Aggregate node, group by TARGET_D_TILE5, and in the Aggregate fields section,
compute the minimum and maximum values of TARGET_D. You can deselect computing
Record_Count as this won't be needed. Next, add a Derive node, call the new field TARGET_D_
Bin, set the Field type option to Nominal, and use the following CLEM code to construct the
bin label: "TARGET_D_[" >< TARGET_D_Min >< ", " >< TARGET_D_Max >< "]".
This uses the concatenate operator to build up the string with the left square bracket indicating
"greater than or equal to" and the right square bracket indicating "less than or equal to".

Data Preparation– Construct

154

The result of this Derive node is shown in the following table. All that is left to do now is
remove the Min and Max values using a Filter node, and then fold the new field TARGET_D_
Bin into the stream using a Merge node with the key TARGET_D_TILE5.

TARGET_D_
Min

TARGET_D_
Max

TARGET_D_
TILE5 TARGET_D_Bin

1 7 1 TARGET_D_[1, 7]

8 9 2 TARGET_D_[8, 9]

10 14 3 TARGET_D_[10, 14]

15 19 4 TARGET_D_[15, 19]

20 200 5 TARGET_D_[20, 200]

Creating time-aligned cohorts
In this recipe we will create a table that combines customer information, monthly statements,
and churner identifiers conditioned by cohort information.

Why we would do this is best explained by means of an example. Suppose we wish to identify
the best predictors of whether a customer is going to churn. To do this we might be tempted
to throw everyone into a pot of data and see what algorithm best predicts who are churners
and who are not churners. There are two immediate problems with this: one, the results
would be skewed where we would have many more non-churners than churners going into the
analysis, and two, the process used would be insensitive to everything going on within similar
customer traits. After all, while John churned in January 2012, Sally (who came from the same
region) has not churned. Wouldn't it make more sense to fine-tune the analysis so that we are
comparing customers with similar experiences but different outcomes? That way we get the
same number of churners and non-churners. And also, they are matched up, at least from a
sampling perspective, on the basis of common characteristics.

Getting ready
This recipe uses three kinds of datafiles to represent three kinds of information: customer
monthly statement information (TELE_MONTHLY_STATEMENTS.sav), customer personal
information including features selected (TELE_CUSTOMER.sav), and customer churn
information including cohort identification (TELE_CHURN.sav).

Chapter 4

155

One of the additional calculations we're going to perform is to create variables that, by means
of ratios, give us some indication of a customer's change in behavior prior to churning. It is
frequently noted by people who have considerable experience with churn behavior that there
are typically clues in the last couple of months, "red flags" indicating they're about to switch.
While it is possible the company might not be able to do anything about it, knowing it is about
to happen can be helpful. The company can either make an offer to the customer or they can
note that material will have to be returned by the customer when they stop subscribing.

How to do it...
1.	 Open the stream Recipe – customer churn.str by clicking on File | Open

Stream.

2.	 Make sure the datafiles point to the correct path for each of the three tables.

3.	 Add Merge nodes to the stream. Connect the datafiles to the Merge nodes as shown
in the following screenshot. Connect the final Merge node to the Type node:

4.	 Open each Merge node. You will notice a grayed out ACCOUNT on the left-hand side.
Click on the Keys radio button (it will become ungrayed). Click on ACCOUNT. Click on
the right arrow to move ACCOUNT under Keys for merge:. Click on OK:

5.	 Open the second Merge node and do exactly the same in the second Merge node as
you did in the first Merge node.

Data Preparation– Construct

156

6.	 Right-click on the node labeled CHURN on the right and click on Run. You will get the
following results:

7.	 You are encouraged to double-click on the CHURN-generated model and investigate
what is in the model.

How it works...
This recipe described how to join multiple tables together in order to produce a data set, that
can be analyzed for the predict CHURN. What we need to do is combine information about
customers, information about monthly statements, and information about who churned and
the matching non-churning customer. It increased the sensitivity of the analysis and balanced
their contributions by pulling only cohorts from the pool of customers who did not churn. It
also created ratios that give us indications of change in behavior of any customers over the
last months before the churn.

The manner in which datafiles are combined is by means of the Merge node. We used an
inner join in the first merge in order to select out only those customers who churned and the
cohorts of the churned customers. In our example, we used the Merge node to combine data
on the basis of ACCOUNT.

In the second merge, we attached the personal customer information such as the features
they had selected for their phones. In this manner we had combined personal customer
information, summary transaction data, and churn/cohort data in order to give us a balanced
and sensitive analysis of churn.

We also created ratios of behavior just prior to the churn over long term behavior. To see how
this is done, we need to drill into the COHORT supernode (right-click on the supernode and
click on Zoom in).

Chapter 4

157

Often, as in our example, it is necessary to normalize data. Since we are merging on
ACCOUNT, we need one observation per account. The manner in which this is typically done is
by means of the Aggregate node and the Select node.

We have the following three conditions we need to consider:

ff The most recent behaviors (last 2 months)

ff Earlier behavior (prior to 2 months ago)

ff All behaviors

In the case of All behaviors, we are interested in the number of missing payments. In the case
of international calls and all activities, we want to find the ratio of the number of calls of the
most recent months over all months prior to that.

If you open the Aggregate nodes (illustrated in the following screenshot), we see that the
data is aggregated on ACCOUNT. We also see that CHURN information is passed along and
we calculate the mean for the number of calls dropped, number of international calls, total
activity on the part of the customer, and the number of late payments, as shown in the
following screenshot:

There's more...
There is a lot of preparation that goes into properly analyzing a churn. Of particular
importance is the information found in the TELE_CHURN file. This file contains ACCOUNT,
CHURN, DATE_START, DATE_END, and ACCOUNTX. This is the table that identifies those
accounts that are churning and those accounts that are cohorts. We use the information we
have about those who churn in order to censor non-churn behavior:

Data Preparation– Construct

158

Finally, we can run the CHURN model and then investigate the relationships by going into the
CHURN generated model.

If we double-click on the resulting neural network model, we get the following results:

We can see that the strongest predictors of churn are: LATE_PAYMENTS (the number of late
payments), Intl_calls_ratio (the drop in the number of international calls), ACTIVITY_
CALLS_RATIO (the drop in overall activity related to the account), and DROPPED_CALLS (the
number of dropped calls).

5
Data Preparation –

Integrate and Format

In this chapter, we will cover:

ff Speeding up a merge with caching and optimization settings

ff Merging a lookup table

ff Shuffle-down (nonstandard aggregation)

ff Cartesian product merge using key-less merge by key

ff Multiplying out using Cartesian product merge, user source, and derive dummy

ff Changing large numbers of variable names without scripting

ff Parsing nonstandard dates

ff Parsing and performing a conversion on a complex stream

ff Sequence processing

Introduction
This set of recipes contains tricks and shortcuts for tasks that most analysts would anticipate
as central to data preparation. Two subtasks are addressed, integrate and format. The first
four recipes involve aspects of integration and the last two involve aspects of format.

Data Preparation – Integrate and Format

160

The first recipe makes use of the optimization settings in the Merge node. By combining this
feature with some preparation steps in the stream, one can handle data sets of considerable
size. The next recipe takes as its starting point the flexibility that can come from using the
core features of Modeler that date back to the earliest versions. Many recently added nodes
automate routine tasks, such as SetToFlag. However, many of these same tasks were possible
in Modeler in earlier versions. With convenience sometimes come limitations. Shuffle Down
uses this approach to produce a nonstandard aggregation. The next two recipes address
typical merge conditions. Finally, the issue of formatting is addressed with a trick for renaming
variables and an example of the somewhat laborious process of dealing with nonstandard
(unsupported) dates.

Speeding up merge with caching and
optimization settings

In this recipe, we will start with a simple stream involving two Merge nodes. Although the
sample size in the example is not extremely large, we will explore how you could speed up
this stream if you were experiencing performance issues. In effect, we are performing a trade,
trading available hard drive space to make it easier on the processor. One should be able to
process millions of rows even if you are restricted to a client copy of Modeler. Note that, if you
are experiencing these kinds of problems during Deployment, you should probably pursue a
more complete solution. If, however, it is a data prep challenge, this should be helpful in getting
you past the problem, and then during modeling you should consider a random sample.

Getting ready
We will start with the stream SpeedUpMerge.str.

How to do it...
To speed up a Merge node by using a cache and optimization settings:

1.	 Open the stream SpeedUpMerge.str. To run the entire stream on very large data
sets might take a while. While the number of rows is not trivial, it is far from being Big
Data so there is no harm in running it in its current form.

Chapter 5

161

2.	 Add a Sort node to the Transactions file, enable cache, and run an empty Aggregate
and Table (see the Using an empty aggregate to evaluate sample size recipe in
Chapter 1, Data Understanding, for more on this.)

Data Preparation – Integrate and Format

162

3.	 Add a Sort node to the Products_File source node, enable cache, and run an
empty Aggregate and Table.

4.	 Since it is now true that our data from both sources is sorted, we will inform the
Merge node of that fact. In the optimization settings select One input dataset is
relatively large and All inputs are already sorted by key fields.

5.	 Enable cache for the Merge node and force it to run. Here we will run an Aggregate
node and Table node.

How it works...
When you have a very large amount of data, perhaps 10s of millions of rows, Modeler may bog
down if you ask it to do too many things at once. Assuming that you have plenty of hard drive
space, you can make a trade. You can effectively trade your hard drive space in exchange for
a reduced demand on your processor. By caching the results of the sort, you are ensuring
that the sort is no longer an issue when the merge is attempted. The optimization settings
can then be used, and by caching the Merge node itself you store a copy of the results and
prevent having to do it again. One can extend this one step further by creeping along, one
node at a time in a computationally expensive merge. Further, as is demonstrated in the next
section, you can send the results out to an external file. It is important to note that this is not a
deployment stream, nor is this something that you would want to repeat in multiple modeling
sessions. The idea is to push the limits of what your processor can do.

Chapter 5

163

SQL pushback note: These recommendations for optimal aggregation
and merging do not apply when using SQL pushback. Doing sorts prior to
merges will in most cases result in degradation of performance. Its precise
effect depends on the implementation of the database and is rooted in the
fact that order does not exist in a true relational database. As such, sorting
(one common form of order) will, in most relational databases, result in a
forced termination of pushback. Furthermore, many modern databases
take advantage of the non-ordered nature of relational databases by using
massively parallel systems when creating aggregates or running merges.

See also
ff The Using an empty aggregate to evaluate sample size and Evaluating the

need to sample from the initial data recipe in Chapter 1, Data Understanding

ff The Evaluating the use of sampling for speed recipe in Chapter 2, Data
Preparation – Select

Merging a lookup table
Nominal variables with more than several categories pose a potential problem. First, fields
with a large number of categories can significantly increase processing time. Second, these
fields can potentially have categories with very few cases, which can become problematic
(for example, they might be outliers or just difficult to understand). Third, these fields might
not even be used by certain models (see the following screenshot). Finally, fields with a large
number of categories might not really get at the crux of the real characteristics of interest.
Many new users of Modeler don't realize that many algorithms are automatically transforming
nominal variables behind the scenes. Within the General Setting in Stream Properties, there
are two options designed to prevent this problem from getting out of hand.

As mentioned earlier, many times fields with a large number of categories might not really get
at the real characteristics of interest and therefore sometimes it is much better to leave them
out. If this is done, it is wise to associate information stored in other fields with the qualities that
describe the categories. So, for example, instead of using a field such as Phone_ID, we can use
a lookup table to match the phone IDs with phone characteristics. What qualities do we want
the variables to have. Quite simply, they should be scales, flags, or sets with just a handful of
categories. Variables such as storage capacity, or camera_flag, or smart phone/flip phone.

Data Preparation – Integrate and Format

164

Getting ready
This recipe uses the CHURN_with_MODELS data set and well as the PHONE MODELS.xlsx
spreadsheet. We will begin with an empty stream.

How to do it...
To create a lookup table:

1.	 Place a new source node to read in the CHURN_with_MODELS data set. Add a Type
node, verifying that our Target, Churn, has been declared and that ACCOUNT is
typeless. Add and run a Data Audit node.

2.	 Edit the resulting Data Audit, and pay particular attention to Phone_ID. In the
screenshot we have double-clicked on Phone_ID to take a closer look. What if we
determined that B50 has high churn? It looks like it does, but it would be hard to take
action on it because we wouldn't know what aspect of the phone was driving churn.
We will now take steps to rectify this.

Chapter 5

165

3.	 Add a source node for our lookup table, the PHONE MODELS.xlsx spreadsheet, and
connect both sources to a Merge node.

4.	 Adjust the settings in the Merge node to reflect that we are performing a partial outer
join.

Data Preparation – Integrate and Format

166

5.	 Click on the Select button and edit the check boxes to reflect our larger data set.
CHURN_with_MODELS is to have Outer Join checked so that all of its cases are
merged, and our lookup table should have no check, so only cases that match the
CHURN_with_MODELS data set are merged.

6.	 Add a Type node and Data Audit downstream of the Merge node.

7.	 Edit the Type node so that Phone_ID is set to None. Since we now have the phone
characteristics it would be redundant to include Phone_ID. Also, the new variables
should be declared as Flag.

Chapter 5

167

8.	 Run the Data Audit node. Some of the characteristics look as if they might be related
to the target CHURN. In particular, Touch looks as if it has a different relationship
from the other variables. More red (churn) on the smaller group on the left (no touch
command), and less red on the right (touch command).

How it works...
As mentioned previously, fields with a large number of categories can be problematic. The
key to this recipe is to replace fields with a large numbers of categories with fields that better
represent the underlying characteristics of the field to be discarded. If this can be done, this
can benefit the analyst in several ways. First this helps by addressing the issues that were
mentioned previously, that is, speeding up processing, not having to worry about categories
with a few cases, and actually using the fields. Second, the analyst can greatly benefit from
representing the underlying characteristics of a field by not just making predictions of how a
specific category (that is, product) might be related to churn, but instead being able to predict
how an underlying characteristic is related to churn so that we can have some information
about how new products might fare once do they become available.

See also
ff The Running a Statistics node on an anti-join to evaluate the potential missing data

recipe in Chapter 2, Data Preparation – Select

ff The Speeding up merge with caching and optimization settings recipe in
this chapter

Shuffle-down (nonstandard aggregation)
Some applications require a form of aggregation not directly supported in Modeler, for
example, aggregating a set of Booleans or Flags with a logical or Boolean operator such as OR.
This recipe shows how to combine sorting with sequence functions in filler nodes to perform
nonstandard aggregations.

Data Preparation – Integrate and Format

168

This technique originates with basket analysis using versions of Modeler that pre-date the
inclusion of the SetToflag node. Without the Set-to-flag node, when an analysis required
aggregating a set of Booleans, it was necessary to construct the required technique out of
the then-existing nodes. Typically, this processing step started with multiple records for each
customer, with several fields representing the presence of different products in the basket,
one basket per record. It is then required to perform an aggregation using a Boolean OR
operation to produce one record per customer showing the products in all the baskets (that is,
whether the customer has ever had each product).

The shuffle-down technique makes heavy use of Modeler's sequence functions, which is the
ability for a CLEM expression to refer to values in other records than the one currently being
processed. The presence of these functions makes Modeler's data manipulation more powerful
than standard SQL, because it enables operations that make use of the order of records in the
data set. This makes Modeler particularly useful for processing time-series data.

Getting ready
This recipe requires no data file because the example data is generated by a User Input
source node and other operations inside a supernode, and the required stream file is
Shuffle_Down.str.

How to do it...
To combine sorting with sequence functions in filler nodes to perform non-standard
aggregations:

1.	 Open the stream Shuffle_Down.str by navigating to File | Open Stream.

2.	 Run the Table node Baskets; this displays the input data for the shuffle-down
operation. Each record represents one basket, and four baskets are included for
each customer (identified by the ID). Note that the records for a given ID are all
adjacent in the data; this is necessary for the shuffle-down operation, and is
achieved by the sort operation.

Chapter 5

169

3.	 The source supernode in this stream produces a random set of data that is then
cached; this means that, when you run the stream, you will probably see different
data from that shown here.

4.	 Edit the Filler node; this performs the main shuffle-down operation. Note that all the
Boolean fields are selected for processing. Each field is set to T if the current record
is not the first for its ID (its ID is the same as the previous record), the previous value
for the same field is T, and the value is not already T.

Data Preparation – Integrate and Format

170

5.	 Run the Table node, Processed; this displays the intermediate form of shuffled-down
data. Each basket for a given ID has been combined, using a logical OR, with the
previous record; this has the effect of shuffling true values down the page, so that the
final record of each ID contains a T where any basket contained a T, otherwise not.

6.	 Edit the Select node, Last of each, this selects the last record for each ID, that is
those records whose ID is different from the ID of the next record.

7.	 Run the Table node, Merged Baskets. This displays one record per ID, where all of
the original records for the ID have been combined, or aggregated, with a logical OR
operation, so that a field is T if it was T in any of the records of the same ID.

How it works...
The shuffle-down technique works like this:

1.	 The records are sorted so that all the records with the same ID will be adjacent
in the data.

2.	 The Filler node processes all of the required flag fields.

3.	 The Filler node's condition processes all except the first record for each customer,
that is only records where the last ID is the same as the current one, expressed by
the condition: ID = @OFFSET(ID,1).

4.	 The function @OFFSET is used to retrieve values, in a given field, in previous or
following records.

5.	 For the flags to be processed, true is represented by T and false by the empty string "".

6.	 The Filler node's condition processes only those values where the previous value of
the same field is T. The condition becomes: ID = @OFFSET(ID,1) and @OFFSET
(@FIELD,1) = "T"

Chapter 5

171

7.	 The Filler node only needs to modify false values, so the condition becomes: ID = @
OFFSET(ID,1), @OFFSET(@FIELD,1) = "T", and @FIELD=""

8.	 If the condition is true, the value is replaced with "T".

9.	 The Filler node therefore has the effect of shuffling true values "down" the sequence
of records, so that the final record for each ID contains a "T" in each field that had a
"T" in any previous record for the same ID.

10.	 The final step is to select only the last record for each ID, using a Select node with the
condition: ID /= @OFFSET(ID,-1).

There's more...
This technique is not restricted to aggregation using a logical OR operation; any aggregation
can be performed in this way, so shuffle-down is useful when data preparation requires any
kind of aggregation that is not supported directly by Modeler.

For example, aggregation to count the T values for a given ID would have the same structure,
except that the filler node would provide numeric values and perform arithmetic on them.

See also
ff The Creating flag variables for aggregation recipe in Chapter 4, Data

Preparation – Construct

ff The Sequence processing recipe in this chapter

Cartesian product merge using key-less
merge by key

Preparing data for analysis requires a wide range of different operations, because each
different kind of analysis requires the data to be in the appropriate form for that analysis.
In some examples, two or more lists of items must be joined together in such a way that
the result is every possible combination of items, one from each of the lists. This is called a
Cartesian product, and in Modeler this is performed using a merge by key operations where
no key is specified.

Getting ready
This recipe requires no datafile because the example data is generated by user input source
nodes and the stream file required is Cartesian_Product.str

Data Preparation – Integrate and Format

172

How to do it...
To perform a Cartesian product merge where no key is specified:

1.	 Open the stream Cartesian_Product.str by navigating to File | Open Stream.

2.	 Run the four Table nodes to the left, ABC, PQR, XYZ, and 123. This will display
the four data sets, generated by the user input source nodes, that will be used to
illustrate the technique.

3.	 Run the Table node, Results 3. This shows the results of applying Modeler's default
"merge by order" to these data sets; 3 records are produced, each one combining
four data items from the example data, based on the order of records in the input
data sets.

4.	 Edit the Merge node, Cartesian. Note that the node is set to merge by key, but no
key is selected; these settings produce a Cartesian product of all the inputs to the
Merge node.

Chapter 5

173

5.	 Run the Table node, Results 81; this displays the result of the Cartesian product
merge operation. Note that 81 records are produced, one for each possible
combination of one record from each of the input data sets; each data set contains
three records, and there are four data sets, so the number of records in the resultant
data set is three to the power of four, that is, 81 cases.

How it works...
This recipe shows the key-less merge technique for generating a Cartesian product in Modeler.
Prior to the introduction of a key-less merge, the same effect was accomplished by deriving a
key for each input to the merge, where both the name and the value of the key were identical
in each branch (sometimes called a dummy key). A merge using this key would then produce
a Cartesian product because every record from every branch would match all the records from
the other branches, so every combination of records represents a match. The key-less merge
does the same thing, but without the overhead of creating and later removing the dummy key.

Data Preparation – Integrate and Format

174

There's more...
Note that a Cartesian product potentially produces a very large amount of data. For example,
if each data set input to the merge consisted of 1000 records, then the Cartesian product
would contain one trillion (10 to the power of 12) records. Cartesian products are therefore
normally only used when all, or all but one, of the data sets contains only a few records.

See also
ff The Multiplying out using Cartesian product merge, user source, and derive dummy

recipes in this chapter

Multiplying out using Cartesian product
merge, user source, and derive dummy

To produce every combination from two or more sets of records requires a Cartesian product
operation. The recipe Cartesian product merge using key-less merge by key shows the
simplest way of doing this in Modeler, by using a key-less merge. The current recipe shows
a different method of generating a Cartesian product that uses dummy keys; this method
dates from before the key-less merge operation was included in the software. This recipe also
illustrates a slightly different data preparation situation; that is, in this case a set of 1000
customer records is multiplied out with a set of codes, the result being each customer record
is duplicated and appended to each available code.

Getting ready
This recipe uses the datafile, cup98LRN.txt and the stream file, Multiply_Out.str

How to do it...
To perform a Cartesian product merge by using dummy keys:

1.	 Open the stream Multiply_Out.str by navigating to File | Open Stream.

2.	 Run the Table node, 1000 Customers. This displays the main input to the multiply-
out operation, that is, a set of 1000 customer records.

Chapter 5

175

3.	 Run the Table node ABCDEF. This displays the set of codes with which the customer
records will be combined.

4.	 Edit one of the DUMMY Derive nodes. Note that the value for this variable will be the
same in all of the derive nodes for this variable, and for every record.

5.	 Edit the Merge node. The derived field DUMMY has been chosen as the merge key.

6.	 Run the Table node, Results 6000. This displays the 6000 records produced by the
Cartesian product operation in the merge node. Each customer record is duplicated
six times, each copy with one of the possible codes appended to it. The key field
DUMMY has been removed by the filter node.

Data Preparation – Integrate and Format

176

How it works...
The Cartesian product operation is exactly the same as it would be produced by a key-less
merge. This recipe shows an alternative method. The use of dummy keys is no longer required
for built-in merge or aggregation operations in Modeler, because a key-less operation does
the same thing and is supported by these nodes; however, this technique can be required in
less common situations where other built-in operations or non-standard processing does not
support a key-less operation.

There's more...
The creation of dummy variables that always have the same value illustrates a more
general point about using a visual programming interface for data preparation. Rather than
providing a wizard interface, with interactive dialogs to guide the user through standard data
preparation steps, Modeler provides something closer to a general programming interface.
This means that the user of Modeler can construct operations that were not predicted by the
designers, in order to overcome what would otherwise be built-in limitations in the design.

See also
ff The Cartesian product merge using key-less merge by key recipe in this chapter

Changing large numbers of variable names
without scripting

In this recipe we learn how to change variable names by adding suffixes or prefixes using
a Derive node. The data sources for this recipe were developed by computing the average
value of several key fields after aggregating by the variable STATE and then by DOMAIN. The
Aggregate node, as a default, appends the string _Mean (when obtaining a mean) to each of
the variables so that the variable names come from both.

Getting ready
This recipe uses the datafiles cup98lrn_reduced_vars3_varchange state.sav
and up98lrn_reduced_vars3_varchange domain.sav, and the stream Recipe –
change variable names.str.

Chapter 5

177

How to do it...
To change variable names by adding suffixes or prefixes using a Derive node:

1.	 Open the stream Recipe – change variable names.str by navigating to File
| Open Stream.

2.	 Make sure the datafile points to the correct path to the cup98lrn_reduced_
vars3_varchange state.sav and cup98lrn_reduced_vars3_varchange
domain.sav.

3.	 Open the Type node, STATE Feed Types. Note the variable names with the suffix
_Mean. Now open the Type node DOMAIN Feed Types and note that this stream
branch has the same variable names.

4.	 Add a Derive node to the top stream branch and connect it to the STATE Feed
Types node.

5.	 Open the Derive node, click on the Multiple radio button, and select the five variables
RAMNTALL_Mean, NGIFTALL_Mean, LASTGIFT_Mean, FISTDATE_Mean, and
RFA_2F_Mean. In the field name extension box, replace the string with State_ and
click on the radio button, Prefix, next to the text Add as:. In the Formula region, type @
FIELD. These options are shown in following screenshot. Click on OK.

Data Preparation – Integrate and Format

178

6.	 Copy the node that was configured in step 5, now labeled State_, and paste it
to the stream. Move the pasted node to the right of the Type node, DOMAIN Feed
Type, and connect it.

7.	 Open the node created in step 6 and change the string State_ to Domain_. Click
on OK. In the stream, this node should now be labeled as Domain_.

8.	 Add a Filter node to the stream and connect it to node, State_.

9.	 Open the Filter node. Click on the field name, RAMNTALL_Mean in the first column
and press Shift + click (left-click on he mouse) on the row, RFA_2F_Mean, to select
the five fields with suffix _Mean. Click on an arrow (second column) for any of the five
selected fields. This will change the arrows to the symbol, x. Click on OK.

Chapter 5

179

10.	 Repeat steps 8 and 9, but connect the Filter node to the node Domain_.

11.	 Add a Merge node to the stream and connect the two Filter nodes to the Merge node.

12.	 Open the Merge node. Click on the Keys radio button. Next, in the Possible Keys
list, click on CONTROLN, and, using the right-arrow, add CONTROLN to the Keys for
merge list. Click on OK.

13.	 Add a Table node to the stream and connect it to the Merge node.

How it works...
Predictive analytics applications often combine data from multiple sources into the same
stream. This stream uses a simple example where five fields with the same names are
combined into a single stream with a field prefix indicating the source of the field. In other
examples, one may have dozens or hundreds of fields from different sources, even without
the problem of them having the same names. In these cases, it can be very useful to label the
fields with an indicator of the source of the data, such as coming from the customer table,
the product table, or from an external demographic data source.

The most straightforward way to change field names in Modeler is by manually changing
the name of each field in a Filter node. However, this is very tedious when there are several,
dozens, or even hundreds of fields one would like to change.

Data Preparation – Integrate and Format

180

In situations where it suffices to merely add a suffix or prefix to the field name. The two key
steps in this recipe take advantage of the multiple options in the Derive node and the ease of
multiple field selection in a Filter node.

In the Derive node, the CLEM language keyword @FIELD is used as a placeholder in the
formula box to indicate that we desire to create a new variable that is merely a copy of every
variable in the list specified in the Derive from: list. The field name extension text string can
be a prefix or a suffix (a prefix was chosen for this recipe).

The Filter node then can be used to remove the original copy of each field that was renamed
by a simple contiguous selection of the variables, and then clicking on the arrow to remove
the fields from the stream.

There's more...
Usually, it is advantageous to rename the fields prior to a merge to combine fields from
multiple data sources to make the selection of the fields to rename simpler. This is not
always possible, however. If the fields that were duplicated are not in sequence, selecting the
fields in the Derive node and de-selecting the fields in the Filter node can be very tedious as
well. In this case one may use a Field Reorder node to put all of the fields to be renamed in
consecutive columns, such as at the end of the field list. Now, one can use simple Shift + click
operations to select the variables to rename easily.

See also
ff The Building transformations with multiple Derive nodes recipe in Chapter 4, Data

Preparation – Construct

ff The Changing formatting of fields in a Table node recipe in Chapter 7, Modeling –
Assessment, Evaluation, Deployment, and Monitoring

Parsing nonstandard dates
The KDD98 data set uses a YYMM date format, which is not one of the supported date formats
in Modeler. In this recipe we will use Derive nodes to parse the existing date information and
reassemble it into a supported format. In this recipe we will extract the month portion of
information contained in a variable that combines the month and year in a string. The starting
stream has already addressed the year information. We will modify the stream so that it also
addresses the month information.

Getting ready
We will start with the Parsing Nonstandard Dates.str stream, which uses the
cup98lrn reduced vars2.txt data set.

Chapter 5

181

How to do it...
1.	 Open the Parsing Nonstandard Dates.str stream.

2.	 Run a preview of the Derive node. Scroll to the far right of the table to see the new
variable, and then edit the Derive node. The variable is the Year_str variable. Note
that the original variable, DOB, has the two-digit year on the left, and the two digits for
the month on the right of a four character string.

3.	 Copy and paste the Derive node and modify it for the month information. The Derive
field will be Month_str. The IF and Then: condition will be the same, but the Else:
condition will be different. The new Else: condition is substring(3,2, to_string(DOB)).

4.	 Add an additional Derive to assemble the year and month pieces into a new
DOB variable named DOB_date. The formula will be datetime_date(to_
integer(Year_str),to_integer(Month_str),15). Note that we have
arbitrarily chosen the 15th as the day of the month.

5.	 To make use of our new variable, we will calculate the potential donors' age at the
time of the campaign. We will use February, 15th, 1997 as the campaign date. The
formula for the new Derive node, Age_at_Campaign, will be intof(date_years_
difference(DOB_date, datetime_date(1997,2,15))).

6.	 Add a Table node, run it, and then examine the results.

Data Preparation – Integrate and Format

182

How it works...
Nonstandard or unsupported dates are generally no fun. As we have seen, it often requires
converting back and forth between strings and numeric. It gets more complicated that the
string length is not constant. Here the constant 4 digits length was helpful. The zero for
missing dates was a bit odd in this data set, but was easily resolved with the if…then…else
grammar of the Derive node.

Functions in the CLEM expression language used in the recipe included:

ff to_string() and to_integer() for conversion

ff substring() for dividing the 4-character dates into year and month

ff datetime_date() for reassembling the pieces into a supported date

ff intof() for dropping the decimal places in our calculated age

ff >< for concatenation (string addition) of the '19' and the two digit year

There's more...
Now let's talk about some other options. We chose the route that was the easiest to follow the
first time through, but there are more elegant ways of performing this calculation.

Nesting functions into one Derive node
Many veteran coders would prefer using nested functions instead of the three-step process
that we outlined to calculate DOB_date. However when we combine multiple functions in
a single step, it can be harder to write and/or to read. There is really no wrong way, but the
following formula is an alternate way that many more experience coders might choose:

datetime_date(to_integer('19' >< substring(1,2, to_string(DOB))),to_
integer(substring(3,2, to_string(DOB))), 15)

Note that the three lines are the three components: year, month, and day. All the pieces were
present before, but this new else condition combines three derives into one.

Chapter 5

183

Performing clean downstream of a calculation using a Filter node
Having created DOB_date we don't need the original ingredients anymore. Although Modeler
forces us to create a new name for new variables, we can use a Filter node to revert back to
the original name. (In other words, Modeler's grammar does not allow C=C+1.) Note that in
the Filter node we have given our new variable DOB_date the old, and original, name of DOB.
We have also dropped the variables DOB, Year_str, and Month_str.

Using parameters instead of constants in calculations
This recipe's solution calculates the age of the potential donor at the launch of the most
recent campaign. What if we were interested in another campaign? What if we wanted to
update the stream for next month's campaign? We could make changes to the CLEM code in
the Derive node, but a better option is a parameter. Examine the following modification.

intof(date_years_difference(DOB_date,'$P-parameter0'))

Data Preparation – Integrate and Format

184

One can set the parameters in the designated areas of the menus under Tools | Stream
Properties. By using this feature we can update the date without having to change the code.
Changing working code can be risky; one can introduce errors. Note that you can use this
feature for more than one parameter. The menu is straightforward. We have used the default
name parameter, but have labeled the long name, Campaign_Date, and provided the date
1997-02-15.

See also
ff The Parsing and performing a conversion on a complex stream recipe in this chapter

Parsing and performing a conversion on a
complex stream

In this example we have data from a call center in the Philippines. The managers at the call
center want to determine the call volume between midnight and 8 AM so they can staff the
call center accordingly. To get this information, there is a timestamp variable that indicates
the time when the customer called and the time zone where the customer was located (in this
case all customers are in the Pacific time zone). Now there are two wrinkles in this timestamp
variable. First, the timestamp variable does not have a constant string length. This variation in
position makes it more difficult to extract the actual times because we cannot just specify to
extract all characters between position x and position y. Second, even though all customers
called from the Pacific time zone, some called during Pacific Standard Time and others during
Pacific Daylight Time, and in the Philippines this time change does not occur, so we'll need to
add an hour to the call times for those customers that called during Pacific Standard Time. In
this recipe we will use a series of Derive nodes to parse a timestamp variable. In addition, we
will show how to perform date arithmetic on a timestamp variable.

Chapter 5

185

Getting ready
We will start with the Parsing Example Stream.str that uses datafile Parsing
Example.txt.

How to do it...
To parse a timestamp variable and perform date arithmetic:

1.	 Open the stream Parsing Example Stream.str.

2.	 Make sure the source node points to the correct path to the datafile Parsing
Example.txt.

3.	 Run the Table node to view the data. Note that there are 10,000 cases and that the
starting position of the actual call time varies within each row.

4.	 Connect a Derive node to the Source node.

5.	 Edit the Derive node and name it Find:.

Data Preparation – Integrate and Format

186

6.	 In the formula box specify the following expression, locchar (`:`, 1,
TimeStamp). The locchar function, locchar(CHAR, N, STRING), searches
the string (the variable Timestamp) for the character CHAR (: in single back quotes)
starting at position N (1) and returns the position where the CHAR (:) was found.

This creates a new variable, Find:, that then identifies the number of characters to
the starting position of the colon within the actual call time.

7.	 Now we can remove the day and date information. Connect a new Derive node to the
Find: Derive node.

8.	 Edit the Derive node and name it RemoveDate.

Chapter 5

187

9.	 In the formula box specify the following expression, allbutfirst ("Find:" -3,
TimeStamp). The allbutfirst function, allbutfirst(N, STRING), returns a
string consisting of all characters within string (the variable Timestamp) except for
the first N characters ("Find:"-3—the length specified by the field Find: minus 3
characters is used since the field Find: specifies the position of the colon and we
want the position of the actual call time); that is, it removes the first N characters of
the string.

Now that we have a cleaner field, we can easily remove the actual call time.

10.	 Connect a new Derive node to the RemoveDate Derive node.

11.	 Edit the Derive node and name it Time.

Data Preparation – Integrate and Format

188

12.	 In the formula box specify the following expression, datetime_
time(substring(1,8, RemoveDate)). The substring function, substring(N,
LEN, STRING), returns a string consisting of LEN characters (8) within STRING (the
variable RemoveDate) starting from the character at position N (1). The datetime_
time function, datetime_time(ITEM), returns the time value of a given item (the
newly extracted information based on the substring function).

You can see that we correctly extracted the actual call time.

Now that we have parsed a timestamp variable, we need to perform date arithmetic.
The first thing we need to do is identify which callers were on daylight saving time
versus those that were on standard time.

Chapter 5

189

13.	 Connect a Derive node to the Time Derive node.

14.	 Edit the Derive node and name it Find.

15.	 In the formula box specify the following expression, locchar (`(`, 1,
RemoveDate). The locchar function will now search, starting at position 1, for the
open parenthesis in the field RemoveDate, and return with the position of where the
open parenthesis was found.

Now that we have identified the location of the open parenthesis, we can extract the
time zone information.

16.	 Connect a new Derive node to the Find Derive node.

17.	 Edit the Derive node and name it TimeZone.

18.	 In the formula box specify the following expression, allbutfirst ("Find(",
RemoveDate). The allbutfirst function will now remove the first Find (characters
from the field RemoveDate and return the remainder, that is, the time zone.

Data Preparation – Integrate and Format

190

You can see that we correctly extracted the time zone.

Now we have to instantiate the data so that it is read correctly by Modeler.

1.	 Connect a new Type node to the TimeZone Derive node.

2.	 Edit the Type node and click on the Read Values button. Now that the data has been
instantiated, we are ready to perform date arithmetic.

3.	 Connect a new Derive node to the Type node.

4.	 Edit the Derive node and name it Time Corrected.

5.	 Change the Derive As drop-down menu from Formula to Conditional.

6.	 In the If box specify the following expression, TimeZone = "Pacific Standard
Time)". This is saying that if on the field TimeZone you have a value of Pacific
Standard Time, then the expression in the Then box applies; or else if you have any
other value on the field TimeZone, then the expression in the Else box applies.

Chapter 5

191

7.	 In the Then box specify the following expression, datetime_time(datetime_
in_seconds(Time) + 1 * 60 * 60). In this case, this means that for those
people that are on Pacific Standard Time we have to add one hour to their actual
call time on the time field. The datetime_in_seconds function, datetime_in_
seconds(DATETIME), returns the value in seconds of a DATETIME field (Time).
Here we want to add one hour to those people that were on Pacific Standard Time, so
we need to add (1) to increase the actual call time hour by one hour; we need to add
(60) to have no effect on the actual call time minutes, because adding 60 minutes to
:05 for example still gives us :05—this is just affecting minutes and nothing else. We
need to add (60) to have no effect on the actual call time seconds, because adding
sixty seconds to :05 for example still gives us :05—this is just affecting seconds and
nothing else. The datetime_time function just returns the time value of the newly
calculated information.

8.	 In the Else box specify the following expression, Time. In this case this means that
those people that are on Pacific Daylight Time just keep their value on the time field.

Data Preparation – Integrate and Format

192

You can see that we correctly performed the date arithmetic.

Finally we can select the calls that occurred between midnight and 8 AM.

1.	 Connect a new Select node to the Time Corrected Derive node.

2.	 Edit the Select node.

3.	 In the Condition box specify the following expression, 'Time Corrected' >
"00:00:00" and 'Time Corrected' < "08:00:00". This is selecting those
calls that occurred between midnight and 8 AM.

Chapter 5

193

Running a Table node indicates that 3293 calls occurred during the hours of interest. Now the
managers at the call center can staff the call center appropriately given the call volume during
these hours.

How it works...
This recipe had two goals:

1.	 To show how to parse a field where we did not have a constant string length.

2.	 To show how to perform date arithmetic.

Regarding the first goal, the real trick in parsing any field that does not have a constant string
length is to identify a character of interest and then use the locchar function to identify
the number of characters needed to reach the character of interest. Once this is done, and
in some instances you may have to do this several times, there are many functions that can
allow you to obtain the information you need.

Regarding the second goal, the key to performing date arithmetic in Modeler is to remember
that, when you want to add or subtract a constant, you need to transform the field and the
constant into seconds using the datetime_in_seconds function. There are a lot of other
functions that can be used to perform arithmetic with dates, for example, calculating the time
between two dates, but in our experience adding or subtracting a constant can prove to be
tricky in Modeler.

See also
ff The Parsing nonstandard dates recipe in this chapter

Sequence processing
Many applications require the discovery of patterns in data representing a sequence of
events; examples include quality control and fault diagnosis and prevention in industrial and
mechanical processes. Data in these applications typically takes the form of logs; that is
time-stamped sets of measurements that form a sequence. The measurements may be very
simple, even a single variable, but the patterns are found in how these measurements vary
over time. Modeler includes a variety of features for processing sequential data of this sort.
This recipe illustrates some of these sequence processing operations and how they are used
to build up a set of variables describing the changes in measurement over time.

Data Preparation – Integrate and Format

194

Getting ready
This recipe requires no datafile because the example data is generated by a user input source
node and other operations inside a source supernode. The stream file required is Sequence_
Processing.str.

How to do it...
1.	 Open the stream file (Sequence_Processing.str) by navigating to

File | Open Stream.

2.	 Run the Table node, Log data; this displays the raw log data that will be used to
demonstrate sequence processing, shown in the following screenshot. The log data
contains a series of 100 logs, identified by the field LogID, each with up to 100
entries identified by the field LogEntry. The field Timestamp shows seconds from the
start of the log, and the field Temp contains a temperature measurement.

Note that this output (and subsequent outputs in this recipe) will not be exactly
the same when you run the stream; although always in the same form, the data is
synthesized by the supernode, and therefore will be different in detail each time the
stream is used. The data is cached so that further results in the same session will
remain consistent.

Chapter 5

195

3.	 Run the Table node, Log sizes; this displays the number of entries in each log,
shown in the following screenshot.

4.	 Edit the Derive node, TempAcc. In this example we wish to monitor the temperature
acceleration, that is, the rate at which the temperature changes. This will be zero at
the beginning of a log (because there has been no change) and each subsequent log
entry will calculate this as the change in temperature since the last log entry divided
by time since the last log entry.

Data Preparation – Integrate and Format

196

Modeler provides a built-in sequence function for calculating change in a sequence
of records. The expression @DIFF1(Temp) gives the difference between Temp in the
current record and Temp in the previous record, and @DIFF1(Timestamp) does the
same for Timestamp. The ratio of these is the rate of change in temperature.

5.	 Run the Histogram node, TempAcc; this displays a graph of the temperature
acceleration calculated in step 4, which ranges from just below -0.1 to just over 0.2.

In this example, the temperatures relate to a measurement taken from a piece
of equipment during a process, and equipment failure is believed to be related to
temperature acceleration. It is rare for temperature acceleration to reach 0.2, but
the risk of failure is high when it does; the risk becomes low again after acceleration
drops below 0.15.

Chapter 5

197

6.	 Edit the Derive node, TempRisk.

This is a special kind of Derive node called a Derive State; it creates a state variable,
a flag in sequential data whose value remains the same unless changed by specific
conditions. This kind of Derive node allows us to model a state variable whose value
depends on the previous state as well as the details of the current record.

The new state variable TempRisk begins with the off value Low, meaning low risk,
switches to the on value High if TempAcc exceeds 0.2, and switches back to Low
when TempAcc drops below 0.15.

Data Preparation – Integrate and Format

198

7.	 Run the Table node, Log Risk Counts. This displays the number of low-risk and
high-risk entries for each log. Most, but not all, logs have at least one high-risk entry.

8.	 A further area to be explored concerns occasions when the risk remains high over
several consecutive log entries. Edit the Derive node, CountHigh.

Chapter 5

199

This is a special kind of Derive node called a Derive Count; it implements a counter
to indicate how many times a specific condition has been true, with a specified initial
value, increment amount, and reset condition.

The new counter CountHigh counts the number of consecutive times that the
temperature acceleration risk has been high.

9.	 Run the Table node N counts high; this displays the number of instances for each
level of the consecutive high-risk counter.

In this example, the highest level is 4 consecutive high-risk log entries, which only
occurs once. (It is possible for the stream to show higher levels than this; see the
note on step 2.)

Data Preparation – Integrate and Format

200

10.	 Edit the Derive node, MaxTimeHigh. This explores the amount of time spent in a
high-risk state rather than the number of log entries. Because it is unknown exactly
when a high-risk state began, what is calculated is not the time spent at high risk, but
the maximum time that could have been spent.

This node calculates the difference between timestamps from the current record and
a previous record. This is not necessarily the immediately previous record; rather it
is the last record in which the risk was low. Two of Modeler's sequence functions
are used: @SINCE, which returns the offset from the current record of the last record
where a condition was true, and @OFFSET, which returns the value of a variable at a
given offset from the current record. These two functions are often used together to
access a targeted piece of data from previous records in a sequence.

The expression @OFFSET(Timestamp,@SINCE(TempRisk="Low")) returns the
timestamp from the most recent record with a low temperature acceleration risk.

Chapter 5

201

11.	 Run the Plot node, CountHigh v. MaxTimeHigh. This displays a scatter-plot of the
number of consecutive entries at high risk against the time spent at high risk.

This shows a property that is the consequence of log entries having irregular timing—
the greater the number of high-risk log entries, the wider the spread of possible times
spent at high risk.

How it works...
This recipe illustrates a typical sequence of data preparation steps for sequential data. In
certain kinds of applications, rather than simple trends over time, we are interested in rates
of change, states, counts, and other descriptions of sequential phenomena. This recipe
illustrates 5 specific features in Modeler that are used for this kind of data preparation:

ff Derive State nodes: These create a variable whose value remains the same over
time unless changed by specific conditions

ff Derive Count nodes: These create a counter that is incremented and resets under
specific conditions

Data Preparation – Integrate and Format

202

ff Sequence function @DIFF1: It calculates the difference between the current value
and the immediately previous value of the same variable

ff Sequence function @OFFSET: It accesses previous values of a variable

ff Sequence function @SINCE: It returns the offset from the current record when a
specific condition was true and is often used to identify a target record for @OFFSET

There's more...
Modeler contains additional features for sequential processing not shown in this recipe; these
include the History node, further sequence functions including moving averages, maxima
and minima, additional functions similar to @DIFF1, and the @THIS function sometimes used
within @SINCE. All are described in the Modeler user documentation.

See also
ff The Shuffle-down (non-standard aggregation) recipe in this chapter

ff The Reformatting data for reporting with a Transpose node recipe in Chapter 7,
Modeling – Assessment, Evaluation, Deployment, and Monitoring

6
Selecting and Building

a Model

In this chapter, we will cover:

ff Evaluating balancing with Auto Classifier

ff Building models with and without outliers

ff Using Neural Network for Feature Selection

ff Creating a bootstrap sample

ff Creating bagged logistic regression models

ff Using KNN to match similar cases

ff Using Auto Classifier to tune models

ff Next-Best-Offer for large data sets

Introduction
Given the obvious importance of Modeling, why only one Chapter? Certainly, one could easily
write 1000 pages on the various algorithms and the proof is in the large number of books that
have done just that. The goal of this Cookbook, however, is to direct the reader to areas that they
might otherwise spend too little time on, or to suggest approaches that are non-obvious.

Selecting and Building a Model

204

There is much about the many algorithms that is non-obvious. They demand study. Thankfully,
they also reward that study but in ways that can be frustrating to the intermediate-level
data miner. It is often said, and can actually be shown, that detailed study of a handful of
algorithms might be superior than spreading one's professional development time across all
of them. It is worth noting that those that have the time and attention to learn R, which would
also reward study, could learn hundreds of classifiers, and many hundreds of algorithms.
The problem is that while mastering algorithms comes slowly, one lesson comes quickly; it is
not about algorithms. Certainly, the career data miner needs to learn many algorithms, and
Modeler's workbench style rewards the career data miner with lots of room to grow. Between
the beginning and mastery, however, this process takes years. The big gains in a model's
effectiveness come primarily from good data preparation, followed secondarily by carefully
applying the right technique, and followed finally by tuning.

CRISP-DM describes this chapter's topic in the following way:

Modeling

"In this phase, various modeling techniques are selected and applied, and their parameters
are calibrated to optimal values. Typically, there are several techniques for the same data
mining problem type. Some techniques have specific requirements on the form of data.
Therefore, stepping back to the data preparation phase is often needed."

ff Selecting a modeling technique

ff Testing

ff Building a model

We begin the chapter focusing on the selection aspect, finalizing issues of whether to
balance and whether to include extreme cases. Hopefully, this process began in the very
beginning, but it is at this phase that one must commit to a model, or more likely try two or
three variations' and let the data itself steer the way. We continue with the critical issue of
data reduction. This is a potentially huge topic, deserving of an entire short course. Here,
as always, we focus on the unusual and the non-obvious. We move on to topics related to
a particular kind of ensembles made of multiple subsets of our data. Two recipes cover
bootstrap samples and custom bagged models. Also, in one of the shorter recipes we show
an easy-to-use application of KNN to not classify, but merely measure distances. Finally, we
discover two ways of saving time. One recipe for saving our time, Using auto classifier to tune
models, and one for saving our processor's time, Next-best-offer for large data sets.

Chapter 6

205

Evaluating balancing with Auto Classifier
Two traps to avoid in data mining are that one should always balance, or that there is only
one way to balance. Like most questions asked during a data mining project, the question of
whether to balance or not should be answered empirically. The purpose of this recipe is to
show how three common kinds of balancing can be compared easily using the Auto Classifier
node. This is not to suggest that the resulting models are final models. Rather, this is an
early test that can be conducted to evaluate whether or not to balance. One of the kinds
of balancing suggested here is to not balance at all. Another suggestion is to double the
numbers in a fully reduced balance node.

Getting ready
We will start with the Choose Balance.str stream.

How to do it...
To show how three common kinds of balancing can be compared easily using the Auto
Classifier Node:

1.	 Open the starting stream.

2.	 Edit the Balance node labeled Fully Reduce. This node was automatically
generated by Distribution node on the stream.

Selecting and Building a Model

206

3.	 Edit the second Balance node. Note that this node, which was created manually, has
had the numbers doubled. In effect, the donors have been slightly boosted.

4.	 Add an Auto Classifier node directly to the Partition node and run. Note that two
existing generated models are already on the stream. The new one is the third.

5.	 Copy the two previous generated models and place all three in a row downstream of
the Partition node and connected to an Analysis node.

6.	 Run the Analysis node.

Chapter 6

207

How it works...
The basic idea of this recipe is simple: if you are not sure whether or not to balance then
try both. The fully-reduced Balance node was made with the Generate feature of the
Distribution node.

As we've seen, the second Balance node used a straightforward trick, double the numbers
from the first node. This can be helpful because fully reducing discards a lot of cases.
However, fully boosting, or making copies of rare cases, can be problematic. In this data set,
each donor would be copied 20 times on average, some more and some less. The doubling
trick is simply a compromise. It discards less data, leaving a bigger sample size, while only
boosting a small amount. Finally, we try doing no balancing at all. It would be extremely useful
to compare and contrast balancing to the approach in another recipe, Correcting a confusion
matrix for an imbalanced target variable by incorporating priors recipe in Chapter 7,
Modeling – Assessment, Evaluation, Deployment, and Monitoring.In that recipe an alternative
is offered to balancing.

Selecting and Building a Model

208

What do we learn from the Analysis node? As is common in these situations, the first model's
95 percent accuracy reveals that everyone has been predicted to be a non-donor. This will not
be useful, so it is out of the running. Of the two other choices, the doubling trick seems to be a
bit better. The data miner might then proceed to build a variety of models downstream to this
Balance node to confirm their choice.

See also
ff The Evaluating the need to sample from the initial data recipe in Chapter 1, Data

Understanding

ff The Correcting a confusion matrix for an imbalanced target variable by incorporating
priors recipe in Chapter 7, Modeling – Assessment, Evaluation, Deployment, and
Monitoring

Building models with and without outliers
The Anomaly Modeling node can automatically identify and remove outliers. Why not always
remove outliers? Even when the data is examined closely, it can be difficult to decide whether
any cases should be regarded as outliers and, if so, which. Even when the data miner feels
confident about this, the internal or external client may not agree.

Some types of analysis are not affected much by outliers, for example, the calculation of a
median. But many widely used modeling methods can be strongly influenced by the presence
of outliers. A linear regression model can be shifted significantly by a single outlier in the data.

What are the risks? A model that is affected by an outlier may frequently predict values that
are too high, or too low. The level of uncertainty in estimated values will be increased. When
the predicted values are plotted against actual outcomes, viewers will likely sense that the
graph looks or feels wrong, and the model does not fit.

That is not to say that there is anything wrong with the outlier or the data as a whole. On the
contrary, this is a limitation of most modeling techniques: they don't handle unusual cases
very well. A more common approach is to focus on the bulk of the data and simply remove
the outlier before analysis. Deleting outliers before building models is very common, and the
resulting models fit the data better for most cases. But this approach has its drawbacks.

Chapter 6

209

Remember that the outlier is a legitimate data point. There is no universal agreement that
removing outliers is an appropriate way to deal with modeling challenges, let alone on which
cases should be viewed as outliers. Data miners, on the whole, are not sticklers on such
issues. Like most decisions in data mining, it should be determined empirically, which is the
premise of this recipe. In the recipe we will build and model with and without outliers, and
then we will score and evaluate the model with and without outliers. At Deployment, the data
miner always has the option of screening for outliers before scoring, leaving outliers unscored.
The premise is that, by attempting a number of variations, we will attempt four, that a strategy
can be determined that is based on the data and the potential accuracy of the resulting
models. One must never forget that there may be business reasons to include or exclude
outliers, but any choice should begin with a proper evaluation, which this approach provides.

Getting ready
We will start with the With and Without Outliers.str stream.

How to do it...
To build and model with and without outliers and then score and evaluate the model with and
without outliers:

1.	 Open the stream.

Selecting and Building a Model

210

2.	 Edit the Anomaly generated model. The algorithm has identified two clusters.

3.	 Run the Distribution node. Note that 435 cases are potential outliers, about 1
percent of the sample.

4.	 The four generated models represent four different outlier handling scenarios:

�� Model built on all data, but scored without outliers

�� Model built without outliers and scored without outliers

Chapter 6

211

�� Built and scored on all data

�� Built without outliers, but scored on all data

5.	 Edit the two Analysis nodes. The table below consolidates the four results:

Built On Scored On Test Accuracy
All Without outliers 57.35 percent
Without outliers Without outliers 60.77 percent
All All 57.29 percent
Without outliers All 60.92 percent

How it works...
In this recipe we empirically determine the potential accuracy of four different scenarios.
Does that imply that we should always go with the most accurate? In short, we should not.
It is certainly intriguing that the Neural Net built without outliers still performed the best
while scoring everyone. However, the model built without outliers that did not score outliers
was also a good performer in the rankings. (Note that much work would have to be done to
improve these models.) Would the model variants that did not score outliers be acceptable
to the person or team using the model? If the outliers were not the intended target of a
campaign, the answer might be yes. If they were the most interesting customers of the lot,
then the answer would certainly be no. This recipe shows Modeler's workbench strength.
The results of generated models can be manipulated easily, so experiments such as the one
conducted here are the best way to generate evidence to weigh the pros and cons of any
model in solving the business problem.

Selecting and Building a Model

212

See also
ff The Evaluating the need to sample from the initial data recipe in Chapter 1, Data

Understanding
ff The Correcting a confusion matrix for an imbalanced target variable by incorporating

priors recipe in Chapter 7, Modeling – Assessment, Evaluation, Deployment, and
Monitoring

Using Neural Network for Feature Selection
When building a predictive model, there may be a large number of data fields available for use
as inputs to the model. Selecting only those fields most useful to the model has a variety of
advantages; it simplifies the model-building process, leading to better and simpler models, and
it simplifies the resulting models, leading to more effective insight and easier Deployment.

This Feature Selection can be achieved through a variety of techniques, business and data
knowledge can be applied to select the fields likely to be relevant, and univariate techniques
can be used to select individual fields that have a relation to the predictive target. It is also
a common practice to use other models to help select features whose relevance is more
multivariate in nature. Decision trees are often used for this purpose, because building a
decision tree model implicitly selects relevant variables; each variable is either used in the
model, therefore indicated as relevant, or not used, in which case no relevance is indicated.
Decision trees are often used to select the input variables for other models, because of the
principle that combining different kinds of modeling techniques produces better models.

This recipe shows Feature Selection by modeling, but the algorithms are used the other way
around from that described previously; it shows how to simplify a decision tree model by
reducing the number of input variables using a Neural Network for a Feature Selection.

Getting ready
This recipe uses cup98LRN.txt data set and Neural_Network_Feature_Selection.
str stream file.

How to do it...
To do a Neural Network Feature Selection:

1.	 Open the stream Neural_Network_Feature_Selection.str by navigating to
File | Open Stream.

Chapter 6

213

2.	 Edit the Type node; you can see the shape of the data by clicking on Preview in the
edit dialog. The Type node specifies 324 input fields and one target field for modeling.
These modeling roles specified by the Type node will be used for all model building in
this stream, but in some cases the input variables will be reduced by a Filter node.

3.	 Run the Distribution node Target_B. In the raw data, the target field is mostly zeros,
so a Balance node has been used to select a more balanced sample for Modeling
(shown in the following screenshot). This step also fills the cache on the Balance
node so that the same sample will be used for all the models.

4.	 Browse the CHAID model TARGET_B and explore the decision tree. A graphical
representation of the decision tree is shown in the following screenshot; the tree
is complex:

Selecting and Building a Model

214

5.	 Browse the Neural Network model TARGET_B; this was built with the same fields
as the initial CHAID model. From the Generate menu in the browser, select Field
Selection (predictor importance); the field selection dialog is shown below. The
number of fields to be selected has been set to 20 (the default is 10).

6.	 Edit the Filter node TARGET_B; it selects 21 fields from the initial 325, including the
target field. (When using a Filter node generated from a Neural Network model it is
necessary to switch on the target field manually.)

7.	 Browse the CHAID model TARGET_B 2 and explore the decision tree; this model was
built from the 21 fields selected by the Filter node. A graphical representation of the
decision tree is shown in following screenshot; this tree is much simpler than the one
shown in step 4.

Chapter 6

215

8.	 Run the Analysis node; each of the three models has a similar predictive accuracy to
the others. In particular, the accuracy of the second CHAID model is not significantly
lower than that of the first, showing that the Neural Network has done a good job of
selecting relevant input variables.

How it works...
Neural Networks have several advantages as predictive models: they are powerful, so
that they can find patterns that other algorithms cannot, they do not suffer ill-effects when
presented with collinear input variables, and they do not suffer from the masking effects
whereby a highly relevant variable eliminates a slightly less relevant variable from the model.
All of these qualities make Neural Networks highly suitable for Feature Selection.

Using a Neural Network to simplify a decision tree is also appropriate because the algorithms
producing the two models are very different; this means that they are likely to make mistakes
in different places, or miss different patterns, so that it is beneficial to use them together.

It is normal that a decision tree built from many variables will use many variables, and will
therefore be more complex than one built from fewer variables. Complex models are not
always produced when many variables are available; the better the algorithm, the more it will
generalize and simplify the model. However, complex decision trees are a common problem,
and this recipe provides a straightforward technique to simplify them.

There's more...
Neural Networks are not the only modeling technique that can be used in this way. For
example, regression models and support vector machines can also be used to select input
variables for another model or algorithm. When a large number of input variables are
available, it is recommended that several different Feature Selection techniques be used;
sometimes it is useful to combine sets of selected features from several sources.

See also
ff The Using the Feature Selection node creatively to remove or decapitate perfect

predictors recipe in Chapter 2, Data Preparation – Select

ff The Selecting variables using the CHAID Modeling node recipe in Chapter 2, Data
Preparation – Select

Selecting and Building a Model

216

Creating a bootstrap sample
A bootstrap sample is a random sample with replacement, meaning that each record has an
equal chance of being selected; after it has been selected, that record has an equal chance
of being selected again. Usually, when we select records for training and testing, we sample
without replacement, so that each record will appear in only the training or the testing data set.

In this recipe we learn how to build bootstrap samples, a feature not included in Modeler.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream Recipe –
bootstrap one sample.str.

How to do it...
To create a bootstrap sample:

1.	 Open the stream Recipe – bootstrap one sample.str by navigating to File |
Open Stream.

2.	 Make sure the datafile points to the correct path to the datafile cup98lrn_
reduced_vars3.sav.

3.	 Open the Derive node ,recordID. The formula for the node is just the @INDEX
function that returns an integer number indicating the record number. Click on OK.

4.	 Open the supernode, find max recID. The steps are similar to those described in
the Using an empty aggregate to evaluate sample size recipe in Chapter 1, Data
Understanding. Close the supernode.

5.	 Open the supernode, one bootstrap sample and note that it contains four nodes.
Open the Derive node, _rnd and note that it creates a random integer with values
less than or equal to the recordID_Max created in step 4. Close the node by
clicking on OK.

Chapter 6

217

6.	 Open the Filter node, rnd names. Note that the node renames the new variable just
created, recordID_rnd, to recordID, and removes the other fields. Close the node
by clicking on OK and exit the supernode.

Selecting and Building a Model

218

7.	 Open the Merge node, Bootstrap Sample, click on the Merge tab and note that
the node is performing an inner join (the Include only matching records radio
button) on key recordID. Close the node by clicking on OK.

8.	 Open the Merge node, Bootstrap Outofsample, click on the Merge tab, and note
that the node is performing an Anti-Join (the Include records in first dataset not
matching any others radio button) on key recordID.

9.	 Insert an Append node and place it inline with the Filter node named Training.
Connect the Filter node named Training and the Filter node named Testing to the
Append node.

10.	 Open the Append node. Check the checkbox next to Tag records by including source
dataset in feed and change the text Input in the text box to Partition. Leave the
Append node open.

11.	 Click on the Inputs tab of the Append node and click on the Tag column text box with
value 1. If the Connected node value for this entry is Testing, change the value
of the tab to 2_Testing. If the Connected node value for this entry is Training,
change the value to 1_Training. Now click on the tab column text box with value 2.
Replace the text with the label not used already, 1_Training if the Connected node
entry is Training, and 2_Testing if the Connected node value is Testing. The
Append node input tab should look like the next screenshot. Close the Append node
by clicking OK.

Chapter 6

219

12.	 Insert a Type node in the stream and connect it to the Append node. Change the
Role of the field named Partition to Partition as shown in the following
screenshot. Dismiss the Type node by clicking on OK.

13.	 Turn caching on for the Type node by right-clicking on it, mouse over the Cache
option, and select Enable. You will see a white piece of paper icon appear at the
upper-right of the Type node.

Selecting and Building a Model

220

14.	 Rename the Type node to Define partition field by right-clicking on the node
and this time selecting the Rename and Annotate option. Replace the text Type in
the text box with Define partition field. Dismiss the node by clicking on OK.

15.	 Select the Filter node, start supernode, hold the Shift key and click on the Type
node, Define partition field. If all the nodes do not highlight, hold the Ctrl key and
click on the remaining nodes, one at a time, until all the nodes shown in the previous
screenshot are highlighted. Click on the toolbar icon with the star. This icon has a
tooltip Encapsulate selected nodes into a supernode. Now all of the nodes that
build the bootstrap sample will be encapsulated into a single supernode. Rename the
supernode Bootstrap Sample.

16.	 Connect a Distribution node and insert it into the stream, connecting it to the
supernode. Open the Distribution node and select Partition and the field to plot. Click
on Run. The resulting plot should show 95,412 records for Partition value 1_Training,
and approximately 35,000 records for the Partition value 2_Testing. The number of
records with the label 2_Testing will vary because of the random selection of records.
Close the Distribution node by clicking on OK.

Chapter 6

221

How it works...
Usually, a bootstrap sample of a data set is created to have the same size as the original data.
In the KDD Cup 1998 LRN set, there are 95,412 records. Therefore, we bootstrap a sample
of the data set to this size. Since this is a random sample, some of the random integers will
occur more than once and some not at all. In fact, with the standard bootstrap sample, only
63 percent of the records will be included in the sample itself and 37 percent will be omitted.
In other words, 37 percent of the random integers will not match a record ID. In a sample of
95,412 records, this means, of course, that many records will end up in the bootstrap sample
more than once.

The procedure for bootstrap sampling outlined here uses the built-in uniform random sampling
function, random(). The implementation of random() in Modeler is very well done; you can
specify the maximum value of the uniform random sample. Moreover, Modeler creates the
random sample of the same type as the variable argument to random(), real or integer. Since
the variable recordID_Max is an integer, random(recordID_Max) will create a random
integer value with maximum value recordID_Max, perfect for sampling with replacement.

The key to creating our bootstrap sample is the join operation created by the Merge node. In
step 3, we created a unique, sequential integer for each record. The random integer can be
repeated and often will have repeated values in the data. In fact, as shown in the following
table, there are 5 records that appear 7 times in this particular bootstrap sample (the actual
number of replicates and which records have replicates will vary from sample to sample).
Most often, however, a record will appear only once in the bootstrap sample.

The number of replicates in the bootstrap sample is shown:

Times
in

Bootstrap
Sample

Records
with Count

Count of All
Records

Cumulative
Record Count

Count of
Record

Counts_pct

Cumulative
Record

Count_pct

7 5 95,412 5 0.0% 0.0%
6 34 95,412 39 0.0% 0.0%
5 345 95,412 384 0.4% 0.4%
4 1,460 95,412 1,844 1.5% 1.9%
3 5,804 95,412 7,648 6.1% 8.0%
2 17,603 95,412 25,251 18.4% 26.5%
1 34,990 95,412 60,241 36.7% 63.1%

Selecting and Building a Model

222

There's more...
Bootstrap sampling can be used for many more purposes than just building predictive models.
One example is computing measures such as 95 percent confidence intervals for coefficients
or predictions for algorithms that don't provide these measures. Consider a 90 percent
confidence interval for predicted accuracy from a Neural Network. One can build the Neural
Network and obtain a classification accuracy measure such as Percent Correct Classification
(PCC) for the test set. This gives you one value as a measurement.

However, this is only one number. To get an expected range of values, one can generate 200
bootstrap samples, run each sample through the Neural Network, compute PCC for that
sample, and save the result. After testing the model on the 200 bootstrap samples, one
sorts the list and identifies the value at 10th and 190th rows (the 5 percent and 95 percent
percentiles, so that 90 percent of the PCC values fall within these bounds). These values form
the 90 percent confidence interval.

Caching is a good idea when creating any random sample if reproducibility is desired. The
random()function will create a different random sample each time one runs the stream, so
if one would like the sample to remain the same, caching any node after the random sample
will keep the same sample for subsequent processing. After exiting Modeler, that cache is
flushed, however, and a new random sample will be selected the next time the stream is run.
If one wants to keep that same random sample even after exiting, one must save the cache to
a file and use that saved cache file in the future. One can either save the cache to a disk and
load the cache the next time the stream is opened; or, since the cache files are merely SPSS
Statistics.sav files, one can also load them with a Statistics Source node.

See also
ff The Detecting potential model instability early using the Partition node and Feature

Selection node recipe in Chapter 1, Data Understanding

ff The Creating bagged logistic regression models recipe in this chapter

Creating bagged logistic regression models
Many modeling algorithms in Modeler have Bagging and Boosting options already built-in.
However, some models do not, including Logistic Regression. Even for these algorithms that
do not have Bagging and Boosting, these model ensembles can help predictive accuracy
significantly. In this recipe we learn how to build a bagged ensemble of logistic regression
models from 10 bootstrap samples.

Chapter 6

223

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream Recipe –
bootstrap ensemble.str.

How to do it...
To create bagged logistic regression models:

1.	 Open the stream Recipe – bootstrap ensemble.str by navigating to File |
Open Stream.

2.	 Make sure the datafile points to the correct path to cup98lrn_reduced_vars3.
sav.

3.	 Locate the supernode, Bootstrap Sample, select it with a left-click, and copy it by
using Edit | Copy or by typing the shortcut Ctrl + C.

4.	 Paste the supernode to the stream by using Edit | Paste or by typing the shortcut
Ctrl + V. Do this eight more times so that you have a total of 10 Bootstrap Sample
supernodes.

5.	 Connect each of these 10 Bootstrap Sample supernodes to the Type node,
Classification Types. Space the supernodes out on the canvas, as shown in the
following screenshot:

Selecting and Building a Model

224

6.	 Insert a Type node and connect it to the Bootstrap Sample supernode. Open the
Type node and make sure fields recordID and CONTROLN are set to measurement
Typeless, field TARGET_B has Role value Target, and Field named Partition is set
to Role value Partition. Click on OK.

7.	 Insert a Logistic Regression node and connect it to the Type node set up in step 6.

8.	 Open the Logistic Regression node. Change the Procedure setting to Binomial and
change the Method to Forwards.

Chapter 6

225

9.	 Highlight the Type node and Logistic Regression nodes, copy them (right-click Edit
| Copy) and paste them nine times. Connect each of these nine additional Logistic
Regression nodes to the remaining nine Bootstrap Sample supernodes.

Selecting and Building a Model

226

10.	 Highlight the ten Logistic Regression nodes, right-click, and select Run Selection. Ten
Logistic Regression models will be built and the resulting Generated Model nodes will
appear on the canvas. (Be patient. This may take several minutes, or even a half an
hour or more.) Each bootstrap sample will be connected to the Type node and each
Type node will be connected to its respective generated model.

11.	 Connect the top-most generated model nodes to the All Data Filter node
immediately above it. Then connect the remaining nine generated models to each
other, forming a single data flow of ten consecutive models.

12.	 Insert an Ensemble node from the Fields palette and connect it to the last of the ten
Logistic Regression generated nodes.

Chapter 6

227

13.	 Open the Ensemble node. For the option Target Field for ensemble, pick TARGET_B,
de-select Filter out fields generated by ensemble models, and change the
Ensemble method to Average raw propensity. Click on OK.

14.	 Insert an Evaluation node and connect it to the Ensemble node. Open the Ensemble
node and select Lift for the Chart type, de-select Cumulative Plot, and at the
bottom, for the Plot option, change it from Percentiles to Deciles. Click on OK.

Selecting and Building a Model

228

After completing step 14, the stream should look like the one shown in the following screenshot:

How it works...
Bagging is an acronym for bootstrap aggregating and refers to a model ensemble technique
that reduces the model error variance by smoothing the predictions of several models.
The Ensemble node is a very flexible node in Modeler, and provides a simple way to build
ensembles from multiple models. When one connects the generated models in sequence,
each model's predictions are added to the data and can be picked up by the Ensemble
node to combine in a number of ways. Simple averaging is the usual aggregating method for
Bagging, but any of the Ensemble node methods can be used.

In addition, rather than averaging the probabilities, one can instead vote, with the target
category receiving the most votes resulting in the winning predicted category value. To avoid
ties, it is best to have an odd number of models for binary classification.

This manual approach to building ensembles can be somewhat tedious the first time but,
once it is built, the models can be rebuilt with different inputs without changing the modeling
nodes and the Ensemble node. One way to speed up the connections of the generated
models is to drag each generated model to the location desired (each one to the right of the
prior one). Then, one can drag the connection arrow on top of the prior generated model.
Make sure you don't drag the dotted connector (that connects the generated model to the
Logistic node).

Chapter 6

229

There's more...
Each model is built from a separate bootstrap sample. In the original algorithm, each model
was overfit purposely so that it would have high accuracy (low error) on the training set.
However, overfitting on training data usually results in worse accuracy on held-out data. The
averaging step in Bagging smooths the predictions so the final ensemble model is unlikely
to be overfit if enough models are included in the ensemble. Ten models is a typically low-
end number of predictive models to combine, though one can combine between 10 and 50
models depending on the complexity of the data and the amount of overfit.

This recipe shows how to build ensembles from bootstrap samples, but one can also build
multiple models from simple random selection as well. This can be accomplished simply by
replacing the Bootstrap Sample supernode with a Partition node. Each Partition node must
have a different random seed to ensure each sample will be different. Bootstrap sampling is
more likely to produce greater model variety but the simple random sample using the Partition
node can work as well.

Ensembles work best when they disagree. If the correlation coefficients between all pairs of
models are high, greater than 0.95, combining the models has little value; they will merely
reinforce each other. This will likely be the case with the default settings in this recipe. One
can test for this by inserting a Statistics node and computing all pairwise correlations between
model predictions.

In the Logistic Regression node advanced options, for the Forward Selection model, one can
allow for more overfit by changing the Entry and Removal values from the default (0.05 and
0.1, respectively) to higher values, such as 0.1 and 0.2 respectively. To set these values go
to the Expert tab, click on Stepping…, and change the values to 0.1 and 0.2.

See also
ff The Detecting potential model instability early using the Partition node and Feature

Selection node recipes in Chapter 1, Data Understanding

ff The Creating a bootstrap sample recipe in this chapter

Using KNN to match similar cases
K-Nearest Neighbors (KNN) is found in the Classification tab of the Modeling palette, but
it is actually two different applications in one node. Methodologically they are similar, but
different in their application. In addition to classification, the KNN Modeling node can be used
to calculate differences and find those cases in a Deployment data set that have the smallest
distances. Online dating services use this approach. Men can be scored to find women that
they resemble, and women can be scored to find men that they resemble. In the case of a
dating service, the answers to survey questions define similarity.

Selecting and Building a Model

230

In this recipe, we will focus on patterns of purchase. The goal will be to have online sales
reps assigned to assist customers via online support chat to be those reps with the most
experience in those products lines that the customer has shown interest in. The whole idea
of the Cookbook is to introduce non-obvious applications of techniques; at first glance, this
seems a simple application of the technique. Two aspects of this recipe are interesting,
however. Many users discover KNN only in the classification context, and miss out on the
distance feature. Second, the role of a modeling data set and a deployment data set is rather
different in this technique, and many new users of KNN find themselves calculating the
distance of records to themselves. The results can be confusing. This recipe will show how to
use two data sets – one with which to create the generated model, and another to score.

Getting ready
We will start with the KNN.str stream. The stream starts with the Sales Rep Proportions
data set for Modeling, but also uses the Customer Proportions data set for scoring.

How to do it...
To use KNN to match similar cases:

1.	 Open the stream.

2.	 Add a KNN Modeling node and edit it.

Chapter 6

231

3.	 Choose Only identify the nearest neighbors. Click on Run. (You may need to broaden
your idea of what a generated model in Modeler is. In this case, it is really just the
locations of the sales reps in the space defined by the product categories.)

4.	 Add a Source node for the datafile Customer Proportions.

5.	 Set up the stream to have data from the new source flow through the generated
model and to a table.

6.	 Run the Table node. The results for the first five customers are shown. For the first
customer, the sales rep that is closest is 32, and that rep must have an identical
pattern because the distance is zero.

Selecting and Building a Model

232

How it works...
Let's examine the first two customers and the sales rep that most of them resemble on the
variables, their nearest neighbor. We see that the first pair are a perfect match. Their amount
spent is entirely in one category, Video Games.

Customer_ID Entertainment Game
Consoles

Hardware Movies Software Streaming Video
Games

100004832 0.000 0.000 0.000 0.000 0.000 0.000 1.000

RepID Entertainment Game
Consoles

Hardware Movies Software Streaming Video
Games

32 0.000 0.000 0.000 0.000 0.000 0.000 1.000

The second customer does not have a perfect match among the reps but, perhaps, that
makes the idea behind the technique even more clear. They are indeed a close match, except
that the rep has a few Movies transaction, while the customer does not.

Customer_ID Entertainment Game
Consoles

Hardware Movies Software Streaming Video
Games

100004870 0.621 0.000 0.000 0.000 0.000 0.000 0.379

RepID Entertainment Game
Consoles

Hardware Movies Software Streaming Video
Games

31 0.659 0.000 0.000 0.079 0.000 0.000 0.262

The theory behind the technique is as simple as that. Distance is literally the Euclidian
distance between the reps and the Customers based on these seven proportions. If you are
rusty on your Euclidian distances, perhaps you would recall calculating the length of the
hypotenuse of a triangle. If there were only two proportions the calculation would be identical
to that, with seven proportions there is a little bit more math, but the concept is the same.
Recommendation engines such as those on LinkedIn, or Facebook's next friend concept,
utilize this approach, often in combination with other approaches. Here is the utility, in our
imaginary company, in assigning an online chat resource that would be likely to understand
the customer and the customer's past purchase history.

Chapter 6

233

See also
ff The Using aggregate to write cluster centers to Excel for conditional

formatting recipe in Chapter 7, Modeling – Assessment, Evaluation,
Deployment, and Monitoring

Using Auto Classifier to tune models
At first glance, the role of the Auto Classifier node seems to be limited to choosing an
algorithm. In fact, it arguably allows one to avoid the choice of algorithm altogether in
that it automatically chooses the top three and then creates an ensemble. However, model
accuracy owes more to good data prep than algorithm choice. So what is one to make
of Auto Classifier?

It is certainly true that, lacking the time or training for a proper modeling phase, the Auto
Classifier would possibly do a better job than a data miner selecting a single method at
random. It is worth noting, however, that some data mining experts have suggested that
mastering a single method and its settings is often superior to attempting to use a host
of algorithms without that mastery. Readers of an intermediate guide such as this one
presumably have both the allocated time and the training to do a more complete job than just
using the Auto Classifier on default settings. So how do we leverage this tool?

This recipe capitalizes on an extremely easy, but underutilized feature of the Auto Classifier, its
ability to run dozens of models with slightly different settings. A proper modeling phase takes
about one to two weeks. Also, by the time you reach the modeling phase you will certainly have
exposed the data to some modeling algorithms during data exploration. We will not try to show
all of the ways that this time management tool can be used during the entire project. Instead,
the recipe will assume that Support Vector Machines (SVMs) has been identified as a potential
algorithm, and will show how to build 40 different SVMs with varying settings. 40, in fact, is
not sufficient to show all possible combinations of settings, but it will illustrate the technique
and prove that the settings can make a difference. Remember, however, to be brilliant in the
basics, tuning is done near the end of modeling and is a way to squeeze another half percent of
accuracy out of a model. Rushing to tune a model when you have done a mediocre job on the
previous phases will not save the model from poor or incomplete data preparation.

Getting ready
We will start with tuning the Auto Classifier.str stream. The stream uses the TELE_
CHURN_MERGED.sav data set.

Selecting and Building a Model

234

How to do it...
To use the Auto Classifier node to tune models:

1.	 Open the stream. Add an Auto Classifier node to the stream.

2.	 Edit the Auto Classifier node. Under the Expert tab, indicate that you want to specify
model parameters:

3.	 In the specification menu indicate Expert options.

Chapter 6

235

4.	 There are numerous technical parameters. We will choose one that often has
an impact, the Regularization Parameter. Values ranging from 1 to 10 are
recommended and we will test all of them.

5.	 Of the numerous remaining parameters, we will adjust just one more. Select all four
Kernel types.

Selecting and Building a Model

236

6.	 Run the Auto Classifier and examine the results. SVM17 appears to be the
number-one ranked model, but even with three decimal places displayed there
appears to be very tough competition. Double-click on the generated model symbol
in the table.

7.	 Using the Generate menu, select Model to Palette.

Chapter 6

237

8.	 Attach the generated model, add an Analysis node, and click on Run.

How it works...
A lot of work precedes the need for this recipe. The data has been merged and prepped. The
data has been explored. New variables have likely been created. In this data set, the ratios are
a great example. SVMs have been indicated as a possible solution. Perhaps an Auto Classifier
was used, on the defaults, in an earlier phase and SVM showed some early promise. Perhaps,
we have the time and training to consider several different algorithms at this level of details.

Having accomplished all of those prerequisite steps, we need to apply our expert knowledge
of SVMs to tune the model, that is, to choose the optimal settings for this particular model.
The recipe probably piques our curiosity about what C is? Although a detailed discussion
is not possible here, it is a tradeoff between accuracy and generality. Even the kernel, the
names of which partly reveal their nature, is addressing this issue. Do we go for accuracy and
risk overfitting, or go for a more generalizable model, or a compromise in between? There are
other parameters as well that were not considered to limit the number of recipe models to 40.

The Auto Classifier is perfect for this task. The recipe showed that, in just a couple of minutes
of work, and a substantial bit of waiting, we could have the results of 40 models. Obviously,
without knowledge of SVMs, the choosing of parameters can be difficult. However, it is
easier to learn the range, and let the Auto Classifier run and then try to choose individual
combinations. In effect, we have done a grid search, a systematic search of parameter
combinations. It is terribly important to stay focused on the business problem and the
preparation of the data set for modeling. This is critical because one is not going to see
accuracy climb 5 percent or 10 percent from tuning. Tuning is for final, incremental gains,
built on a strong foundation, or perhaps increases the effectiveness of two or three algorithms
that have survived a weeding out process. Once a strong modeling approach is chosen,
however, this recipe will allow you to get the optimal performance out of a chosen algorithm.

Selecting and Building a Model

238

See also
ff The Using aggregate to write cluster centers to Excel for conditional

formatting recipe in Chapter 7, Modeling – Assessment, Evaluation,
Deployment, and Monitoring

Next-Best-Offer for large datasets
Association models have been the basis for next-best-offer recommendation engines for a
long time. Recommendation engines are widely used for presenting customers with cross-sell
offers. For example, if a customer purchases a shirt, pants, and a belt; which shoes would he
also likely buy? This type of analysis is often called market-basket analysis as we are trying to
understand which items customers purchase in the same basket/transaction.

Recommendations must be very granular (for example, at the product level) to be usable
at the check-out register, website, and so on. For example, knowing that female customers
purchase a wallet 63.9 percent of the time when they buy a purse is not directly actionable.
However, knowing that customers that purchase a specific purse (for example, SKU 25343)
also purchase a specific wallet (for example, SKU 98343) 51.8 percent of the time, can be the
basis for future recommendations.

Product level recommendations require the analysis of massive data sets (that is, millions of
rows). Usually, this data is in the form of sales transactions where each line item (that is, row of
data) represents a single product. The line items are tied together by a single transaction ID.

IBM SPSS Modeler association models support both tabular and transactional data. The
tabular format requires each product to be represented as column. As most product level
recommendations would contain thousands of products, this format is not practical. The
transactional format uses the transactional data directly and requires only two inputs, the
transaction ID and the product/item.

Getting ready
This example uses the file stransactions.sav and scoring.csv.

How to do it...
To recommend the next best offer for large datasets:

1.	 Start with a new stream by navigating to File | New Stream.

2.	 Go to File | Stream Properties from the IBM SPSS Modeler menu bar. On the Options
tab change the Maximum members for nominal fields to 50000. Click on OK.

Chapter 6

239

3.	 Add a Statistics File source node to the upper left of the stream. Set the file field by
navigating to transactions.sav. On the Types tab, change the Product_Code
field to Nominal and click on the Read Values button. Click on OK.

4.	 Add a CARMA Modeling node connected to the Statistics File source node in step 3.
On the Fields tab, click on the Use custom settings and check the Use transactional
format check box. Select Transaction_ID as the ID field and Product_Code as the
Content field.

5.	 On the Model tab of the CARMA Modeling node, change the Minimum rule support
(%) to 0.0 and the Minimum rule confidence (%) to 5.0. Click on the Run button
to build the model. Double-click the generated model to ensure that you have
approximately 40,000 rules.

Selecting and Building a Model

240

6.	 Add a Var File source node to the middle left of the stream. Set the file field by
navigating to scoring.csv. On the Types tab, click on the Read Values button. Click
on the Preview button to preview the data. Click on OK to dismiss all dialogs.

7.	 Add a Sort node connected to the Var File node in step 6. Choose Transaction_ID
and Line_Number (with Ascending sort) by clicking the down arrow on the right of the
dialog. Click on OK.

8.	 Connect the Sort node in step 7 to the generated model (replacing the current link).

9.	 Add an Aggregate node connected to the generated model.

10.	 Add a Merge node connected to the generated model. Connect the Aggregate node
in step 9 to the Merge node. On the Merge tab, choose Keys as the Merge Method,
select Transaction_ID, and click on the right arrow. Click on OK.

11.	 Add a Select node connected to the Merge node in step 10. Set the condition to
Record_Count = Line_Number. Click on OK. At this point, the stream should look
as follows:

Chapter 6

241

12.	 Add a Table node connected to the Select node in step 11. Right-click on the Table
node and click on Run to see the next-best-offer for the input data.

How it works...
In steps 1-5, we set up the CARMA model to use the transactional data (without needing to
restructure the data). CARMA was selected over A Priori for its improved performance and
stability with large data sets. For recommendation engines, the settings for the Model tab
are somewhat arbitrary and are driven by the practical limitations of the number of rules
generated. Lowering the thresholds for confidence and rule support generates more rules.
Having more rules can have a negative impact on scoring performance but will result in more
(albeit weaker) recommendations.

Rule Support How many transactions contain the entire rule (that is, both
antecedents ("if" products) and consequents ("then" products))?

Confidence If a transaction contains all the antecedents ("if" products), what
percentage of the time does it contain the consequents ("then"
products)?

In step 5, when we examine the model we see the generated Association Rules with the
corresponding rules support and confidences.

In the remaining steps (7-12), we score a new transaction and generate 3 next-best-offers based
on the model containing the Association Rules. Since the model was built with transactional
data, the scoring data must also be transactional. This means that each row is scored using
the current row and the prior rows with the same transaction ID. The only row we generally
care about is the last row for each transaction where all the data has been presented to the
model. To accomplish this, we count the number of rows for each transaction and select the line
number that equals the total row count (that is, the last row for each transaction).

Notice that the model returns 3 recommended products, each with a confidence, in order of
decreasing confidence. A next-best-offer engine would present the customer with the best
option first (or potentially all three options ordered by decreasing confidence). Note that, if
there is no rule that applies to the transaction, nulls will be returned in some or all of the
corresponding columns.

Selecting and Building a Model

242

There's more...
In this recipe, you'll notice that we generate recommendations across the entire
transactional data set. By using all transactions, we are creating generalized next-best-offer
recommendations; however, we know that we can probably segment (that is, cluster) our
customers into different behavioral groups (for example, fashion conscience, value shoppers,
and so on.). Partitioning the transactions by behavioral segment and generating separate
models for each segment will result in rules that are more accurate and actionable for each
group. The biggest challenge with this approach is that you will have to identify the customer
segment for each customer before making recommendations (that is, scoring). A unified
approach would be to use the general recommendations for a customer until a customer
segment can be assigned then use segmented models.

See also
ff The Using KNN to match similar cases recipe

7
Modeling – Assessment,
Evaluation, Deployment,

and Monitoring

In this chapter, we will cover:

ff How (and why) to validate as well as test

ff Using classification trees to explore the predictions of a Neural Network

ff Correcting a confusion matrix for an imbalanced target variable by incorporating priors

ff Using aggregate to write cluster centers to Excel for conditional formatting

ff Creating a classification tree financial summary using aggregate and an Excel
Export node

ff Reformatting data for reporting with a Transpose node

ff Changing formatting of fields in a Table node

ff Combining generated filters

Introduction
The objective of data mining is to understand and predict behavior. A retailer wants to know
why people buy, and how to sell more. An educator wants to know what factors influence
educational and professional success and how to help students learn and prepare for a career.
A criminologist wants to understand the factors that lead to crime, and how to prevent crime.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

244

Data miners often speak of valuable patterns in data, and powerful models. What makes
a pattern valuable? It's valuable if it adds to our understanding of behavior. What makes a
model useful? It's useful if it is effective at predicting behavior.

Data miners aim to identify influential factors that drive behavior. When we identify those
driving factors, through exploration of patterns in the data, we can understand behavior. If we
can describe, with a quantitative model, the relationship between driving factors and behavior,
then we can predict behavior.

It's easy for a data miner to make a model; that takes little more than a few mouse
clicks. Assuring that the model reflects the true mechanism that drives behavior requires
more thought. As can be seen, particularly in the Churn example from Chapter 4, Data
Preparation – Construct, that clever manipulation of the data is often required to allow
behavior to be visible in our data.

There are many ways for data miners to test the validity of a model. Use of Test Partition data
sets is one of the most common approaches. Another is field testing—collecting new data and
comparing model results to actual performance. Each of these approaches provides good
feedback to the data miner, helping him/her to identify which models are (and which models
are not) effective for predicting behavior. In particular, a dress rehearsal using data that did
not exist when the project began can have a powerful psychological effect on colleagues that
have been watching from the sidelines. It sometimes seems a more compelling validation
than a third data sample.

Why is it necessary to do these things? Why is it that one model provides accurate predictions,
while another, created in much the same way, does not?

An automatically-generated model is an equation, of a specified form (the model type), that
describes a particular set of data. Classical statisticians invest up-front effort considering
relevant theory, selecting a model type, and investigating data for problematic patterns, to
develop models that suit their intended purpose. In contrast, data miners take a much less
formal approach, generating models quickly, without fussing over theory. This saves time, yet
increases the risk that the model won't work well when applied to new data. So data miners
must test their models.

When a model does not work well with new data, what's causing the problem? The broad term
for this situation is overfitting, meaning that the equation is so strongly tailored to the data
set for which it was created that it won't work with anything else. The computer knows nothing
more about the data than the numbers in its memory; when you generate a model, it is based
solely on those numbers and the model type you select. The computer does not have the
human ability to reason about what variables would make sense in a model. It can only use
math, and sometimes the result is a great fit to one set of data, and not another.

Chapter 7

245

A common overfitting problem is instability. A model is said to be unstable when the predictor
variables selected by fitting the model to one set of data are very different from those selected
when the same model type is derived from another data set. The chance of creating an
unstable model varies from one model type to another. The data mining practices of using many
candidate predictors and sidestepping the preparation steps used by classical statisticians
adds considerably to the risk of producing an unstable model. Although they appeared in earlier
chapters, there are two recipes in particular that touch this theme:

ff The Detecting potential model instability early using the Partition node and Feature
Selection node recipe in Chapter 1, Data Understanding

ff The Removing redundant variables using correlation matrices recipe in Chapter 2,
Data Preparation – Select

What's the remedy for an unstable model? First, you must detect the problem. If the model
does not perform well when applied to test and validation data sets, the problem may be
an unstable model. Explore further by fitting the same model type, using the same set of
predictors, to another sample of data, or to several others. If the model type is a neural
network, you might also try using the same data sample and changing the random seed. If the
resulting models have significantly different predictor variables, you have an unstable model.
You may obtain better results with another model type, or by limiting the predictors that you
input to a few that you have selected based on your own business knowledge.

Despite the obvious value of some accuracy, and the established importance of stability, we still
don't have enough. We need more. We need business relevance and the ability to take action.

The Value Law, The Nine Laws of Data Mining, Tom Khabaza (http://khabaza.
codimension.net/index_files/Page346.htm):

The value of data mining results is not determined by the accuracy or stability of
predictive models

"The disconnect between accuracy and value … can be highlighted by the question
"Is the model predicting the right thing, and for the right reasons?" In other words,
the value of a model derives as much from of its fit to the business problem as it
does from its predictive accuracy. For example, a customer attrition model might
make highly accurate predictions, yet make its predictions too late for the business
to act on them effectively. Alternatively an accurate customer attrition model might
drive effective action to retain customers, but only for the least profitable subset of
customers. A high degree of accuracy does not enhance the value of these models
when they have a poor fit to the business problem.

The same is true of model stability; although an interesting measure for
predictive models, stability cannot be substituted for the ability of a model to
provide business insight, or for its fit to the business problem. Neither can any
other technical measure."

Modeling – Assessment, Evaluation, Deployment, and Monitoring

246

In this chapter, a number of recipes attempt to broaden our evaluation beyond the Analysis
node—to go beyond technical measures based on statistical criteria and into the realm of
business measures. The recipes on exporting summaries of results to Excel for distribution to
management are among them.

One topic that deserves much attention in one's data mining education, but is addressed in
relatively few recipes, is Deployment. Deployment is a challenging subject to address in a book
dedicated to one software package because Deployment almost by definition means leaving
Modeler and sending the results elsewhere. Modeler is quite capable of a number of forms of
Deployment, but the results must reach a member of the data miner's organization in a form that
can be put immediately to use, often automatically. There is so much diversity in the needs of
different organizations, and the logistics of those organizations, that Deployment truly deserves
its own book. Nonetheless there are some important tricks to know. The Combining generated
filters recipe in this chapter includes such valuable Deployment phase tricks of the trade.

How (and why) to validate as well as test
In this recipe we explore the importance of validation. The test data set sometimes carries
a great burden. During the modeling phase it is not unusual to produce dozens of models.
During that process, for some data miners, accuracy of the model on the test data set
becomes the sole criterion for the ranking of the modeling attempts. That would certainly
seem to be a violation of the Value Law quoted in the chapter introduction.

One can argue that this issue—the issue of value—and the issue of validation are not identical,
but they are related. Even if one applies the recommended broader definition of value, if
the actual behavior in choosing the semi-finalist models during the modeling phase is to
check for stability and accuracy in the Analysis node, then one runs the risk of putting too
much emphasis on a single source of information. After all, even if one wisely chooses the
best model on a variety of criteria, the selection of the top 3 or top 5 might be based on test
accuracy in part because that is what Modeler makes it easiest to evaluate.

If one were to choose a different test data set at random and to compare the performance
of 100 models, it is a near certainty that the ranking of many of those models would change.
The accuracy might move only a fraction of a point up or down, but nonetheless the ranking
would be affected nearly every time. Even if we embrace what we know about the behavior of
random variables, recognizing that the ranking won't change all that much, and if we choose
our strong models with care, we are still making the decision of what to examine closely
largely on their performance (accuracy) on the test data set and its stability (similarity of train
and test performance).

It is better to make two changes when it comes time to validate:

ff Validate on a third data set

ff Validate on a number of business criteria and not just on the criteria available in the
Analysis node

Chapter 7

247

This recipe shows how to validate on a third data set. The Creating a classification tree
financial summary using aggregate and an Excel Export node recipe explores how to
incorporate other business criteria, usually more financial and less statistical in nature.

Getting ready
We will start with the Train Test Validate.str stream.

How to do it...
To explore the importance of validation follow these steps:

1.	 Edit the Partition node and examine the settings. Click on Train and test, and note
how validation is grayed out and not available for editing.

2.	 Zoom into the supernode named 9 models—examine some of the model features
of the 9 models. They represent some of the choices that might emerge for the
Modeling phase—some strong choices and some weak ones.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

248

3.	 Run the Analysis node and note that train and test results can be easily compared.
The strongest performers are the two SVMs and the C5.0 models on general settings.

4.	 Sometimes with balanced data it is difficult to assess stability (the similarity of
accuracy between the two samples). In the Partition node, deselect balance only
Train data, rerun the Analysis node, and then reselect balance only Train data. All of
the first five models have similar training and testing accuracy.

Chapter 7

249

5.	 Make a copy of the more promising nodes and paste them onto the canvas. We will
pick the two SVMs and the first C5.0.

6.	 Edit the Partition node and activate Validation.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

250

7.	 Add an Analysis node after the copied models and Run. Note that we now have
Validation results in addition to our train and test results.

8.	 The validation results are quite consistent. If accuracy was the most important
criterion, the more accurate of the two SVMs might be chosen, if the implications of
having a less detailed description were an issue C5.0 might win the day. The weeding
out process would last throughout the modeling phase. Other recipes will consider
other factors such as financial variables to weigh along with accuracy and stability.

Chapter 7

251

How it works...
It is important to place these steps in the proper context. The train and test setting in the
Partition node would stay selected for virtually the entire modeling phase, during which many,
many models would be considered. The models that survive that process, and they might not
all be evaluated at the same time as we have done here, would be tracked and cataloged. An
Excel spreadsheet with one row per model is not a bad idea.

There is nothing magic about three models to make semifinalist status. Here, one model has
the high accuracy, a second SVM actual has a higher lift (although we didn't explore output that
showed that), and the third choice is a different algorithm. In particular C5.0 is not a black box;
that is, it provides detailed description of the model, so it is a nice contrast to the SVMs.

See also
ff The Creating a classification tree financial summary using aggregate and an Excel

Export node recipies in this chapter

Using classification trees to explore the
predictions of a Neural Network

Neural Nets have the reputation of being a black box technique; that is, that they are not
highly revelatory of the reasoning behind their predictions. Compared to other techniques,
information regarding what variables played the most important role in the model is fairly thin.
It would be an exaggeration to say, however, that the Neural Net algorithm in Modeler provides
no information; it does. Neural Nets are sometimes strong performers, and when they are the
top performer they might be (and should be) a tempting option for Deployment. Is it possible
to use other techniques to get a deeper insight into what the Neural Net has done behind the
scenes? It is possible and one method for doing so is the subject of this recipe. We will be
using CHAID to explore Neural Net predictions.

Getting ready
We will start with the Look Inside NN.str stream that uses the TELE CHURN MERGED
data set.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

252

How to do it...
To use classification trees to explore neural net predictions:

1.	 Open the Look Inside NN.str stream.

2.	 Edit the Neural Net's generated model. Note that, although Predictor Importance is
available, there is nothing quite like the tree diagram of classification tree methods,
nor a detailed statistical output as one would find in a technique such as Logistic
Regression.

3.	 Add a Type node downstream of the generated model.

Chapter 7

253

4.	 Change the Role of our current target to None. Set the role of the Neural Net's
prediction to be our new target. Also, set the Neural Net's prediction confidence
to None.

5.	 Connect a tree-based modeling algorithm to the Type node. We will choose CHAID.
Run the CHAID node.

6.	 Edit the generated model and examine the top branch. (Only partially shown in the
following screenshot.)

Modeling – Assessment, Evaluation, Deployment, and Monitoring

254

7.	 Further explore the results.

8.	 Add an Analysis node and run it. (You might, at first, be surprised by the level of
accuracy because the Neural Net has removed much of the noise in the original data).

How it works...
There is a simple threefold premise to this recipe:

1.	 Compared to other techniques, the information that Neural Net produces regarding
the inner workings of the model is a bit sparse.

2.	 CHAID, in contrast, is a relatively straightforward, easy to understand technique that
produces a tree diagram that more readily reveals the logic of the model.

3.	 It is an easy matter to change our target from the actual business target to the Neural
Net prediction in order to produce a CHAID style summary for a Neural Net.

It is important to note the resulting tree is only an estimate of what is going on in the Neural
Net. While it is usually possible to get a highly accurate CHAID tree using this approach, it is
never 100 percent accurate, as there are countless methodological differences between the
two techniques that would prevent one from being a true copy of the other. However, if our
goal is simply what was important? then this approach reveals a substantial portion of the
particular Neural Net's logic.

If you are familiar with CHAID's advanced settings, you could consider adjusting them to lean
towards a somewhat more accurate (less generalizable) tree. The easiest example would
be either turning off the Bonferroni adjustment or setting the confidence level to a lower
confidence value. The danger of doing so is minimal since you will not be deploying the CHAID
tree. You will still be deploying the Neural Net, so getting a somewhat more detailed tree
might be desirable. The screenshot shows the defaults, but a more aggressive tree could be
built with settings of 0.10 instead of 0.05 and by removing the check box for the Bonferroni
method.

Chapter 7

255

See also
ff The Creating a classification tree financial summary using aggregate and an Excel

Export node recipies in this chapter

Correcting a confusion matrix for an
imbalanced target variable by incorporating
priors

Classification models generate probabilities and a classification predicted class value.
When there is a significant imbalance in the proportion of True values in the target variable,
the confusion matrix as seen in the Analysis node output will show that the model has all
predicted class values equal to the False value, leading an analyst to conclude the model
is not effective and needs to be retrained. Most often, the conventional wisdom is to use a
Balance node to balance the proportion of True and False values in the target variable, thus
eliminating the problem in the confusion matrix.

However, in many cases, the classifier is working fine without the Balance node; it is the
interpretation of the model that is biased. Each model generates a probability that the record
belongs to the True class and the predicted class is derived from this value by applying a
threshold of 0.5. Often, no record has a propensity that high, resulting in every predicted class
value being assigned False.

In this recipe we learn how to adjust the predicted class for classification problems with
imbalanced data by incorporating the prior probability of the target variable.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream Recipe –
correct with priors.str.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

256

How to do it...
To incorporate prior probabilities when there is an imbalanced target variable:

1.	 Open the stream Recipe – correct with priors.str by navigating to File |
Open Stream.

2.	 Make sure the datafile points to the correct path to the datafile cup98lrn_
reduced_vars3.sav.

3.	 Open the generated model TARGET_B, and open the Settings tab. Note that compute
Raw Propensity is checked. Close the generated model.

4.	 Duplicate the generated model by copying and pasting the node in the stream.
Connect the duplicated model to the original generated model.

5.	 Add a Type node to the stream and connect it to the generated model. Open the Type
node and scroll to the bottom of the list. Note that the fields related to the two models
have not yet been instantiated. Click on Read Values so that they are fully instantiated.

6.	 Insert a Filler node and connect it to the Type node.

Chapter 7

257

7.	 Open the Filler node and, in the variable list, select $N1-TARGET_B. Inside the
Condition section, type $RP1-TARGET_B' >= TARGET_B_Mean, Click on OK to
dismiss the Filler node (after exiting the Expression Builder).

8.	 Insert an Analysis node to the stream. Open the Analysis node and click on the check
box for Coincidence Matrices. Click on OK.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

258

9.	 Run the stream to the Analysis node. Notice that the coincidence matrix (confusion
matrix) for $N-TARGET_B has no predictions with value = 1, but the coincidence
matrix for the second model, the one adjusted by step 7 ($N1-TARGET_B), has more
than 30 percent of the records labeled as value = 1.

How it works...
Classification algorithms do not generate categorical predictions; they generate probabilities,
likelihoods, or confidences. For this data set, the target variable, TARGET_B, has two values: 1
and 0. The classifier output from any classification algorithm will be a number between 0 and
1. To convert the probability to a 1 or 0 label, the probability is thresholded, and the default
in Modeler (and all predictive analytics software) is the threshold at 0.5. This recipe changes
that default threshold to the prior probability.

Chapter 7

259

The proportion of TARGET_B = 1 values in the data is 5.1 percent, and therefore this is the
classic imbalanced target variable problem. One solution to this problem is to resample
the data so that the proportion of 1s and 0s are equal, normally achieved through use of
the Balance node in Modeler. Moreover, one can create the Balance node from running a
Distribution node for TARGET_B, and using the Generate | Balance node (reduce) option.
The justification for balancing the sample is that, if one doesn't do it, all the records will be
classified with value = 0.

The reason for all the classification decisions having value 0 is not because the Neural
Network isn't working properly. Consider the histogram of predictions from the Neural Network
shown in the following screenshot. Notice that the maximum value of the predictions is less
than 0.4, but the center of density is about 0.05. The actual shape of the histogram and the
maximum predicted value depend on the Neural Network; some may have maximum values
slightly above 0.5.

If the threshold for the classification decision is set to 0.5, since no neural network predicted
confidence is greater than 0.5, all of the classification labels will be 0. However, if one sets
the threshold to the TARGET_B prior probability, 0.051, many of the predictions will exceed
that value and be labeled as 1. We can see the result of the new threshold by color-coding the
histogram of the previous figure with the new class label, in the following screenshot.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

260

This recipe used a Filler node to modify the existing predicted target value. The categorical
prediction from the Neural Network whose prediction is being changed is $N1-TARGET_B.
The $ variables are special field names that are used automatically in the Analysis node and
Evaluation node. It's possible to construct one's own $ fields with a Derive node, but it is safer
to modify the one that's already in the data.

There's more...
This same procedure defined in this recipe works for other modeling algorithms as well,
including logistic regression. Decision trees are a different matter. Consider the following
screenshot. This result, stating that the C5 tree didn't split at all, is the result of the
imbalanced target variable.

Chapter 7

261

Rather than balancing the sample, there are other ways to get a tree built. For C&RT or Quest
trees, go to the Build Options, select the Costs & Priors item, and select Equal for all classes
for priors: equal priors. This option forces C&RT to treat the two classes mathematically as if
their counts were equal. It is equivalent to running the Balance node to boost samples so that
there are equal numbers of 0s and 1s. However, it's done without adding additional records to
the data, slowing down training; equal priors is purely a mathematical reweighting.

The C5 tree doesn't have the option of setting priors. An alternative, one that will work not only
with C5 but also with C&RT, CHAID, and Quest trees, is to change the Misclassification Costs
so that the cost of classifying a one as a zero is 20, approximately the ratio of the 95 percent
0s to 5 percent 1s.

See also
ff The Evaluating the need to sample from the initial data recipe in Chapter 1, Data

Understanding

ff The Evaluating balancing with Auto Classifier recipe in Chapter 6, Selecting and
Building a Model

Modeling – Assessment, Evaluation, Deployment, and Monitoring

262

Using aggregate to write cluster centers to
Excel for conditional formatting

In nearly all organizations, the Modeler practitioners and model builders are reporting to a
management team that either does not have day to day access to Modeler or is unfamiliar
with the tool. Therefore, during the evaluation phase, if the analyst is to break away from the
constraints of a purely technical judging of models, then he or she needs to give management
the ability to join into the evaluation of models. One rarely exports raw data to Excel. The
size limitation would almost always be a factor, and there is rarely any good reason to do it.
However, Excel is a great way to send, discuss, and report on summary information.

In this recipe, we will take the summary information about a handful of clusters and
prepare it in a form that a modeler can easily share with their colleagues. The idea of a
cluster center is simple; it is the average value on a series of fields that were used when the
clusters were formed. By conditionally coloring those values we can see where the clusters
have high, medium, and low values. In this example, those high and low averages reflect their
purchasing behavior.

Getting ready
We will start with the Cluster to Excel.str stream, which uses a modified subset of the
retail data. The file that the stream needs is called Cluster Data.

How to do it...
To write cluster centers to Excel for conditional formatting:

1.	 Open the Cluster to Excel.str stream.

Chapter 7

263

2.	 Edit the TwoStep generated model. Notice that seven clusters have been found.

3.	 Run the Table node. The data is a series of proportions showing the categories within
which the customer has been spending. The clusters are groups of customers with
similar spending patterns. The cluster variable is at the far right.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

264

4.	 Add an Aggregate node downstream of the generated model. Make the cluster
membership variable, $T-TwoStep, the Key field, and allow all of the proportions
to be Aggregate fields with a Mean calculated. Finally, make Total_Purchases an
Aggregate field with both Sum and Mean selected.

5.	 Add a Type node downstream of the Aggregate node. The default settings will be fine.

6.	 Add an Excel Export node, and give the file a path on your computer.

Chapter 7

265

7.	 Open the resulting Excel file in Excel. (Some minor formatting has been applied such
as currency and percentages.)

8.	 Highlight just the proportions and apply three-color conditional formatting in Excel.

9.	 The final result makes it easy to see that the cluster in the first row spends a large
proportion on Entertainment. Other clusters spend in other areas.

How it works...
The results directly out of the cluster analysis are not as helpful to colleagues because it has
a row for each customer. The generated model offers lots of interesting analyses, some of
which might make for good PowerPoint slides, but colleagues without Modeler need some way
of examining the cluster results in more detail.

By making the cluster membership a Key Field in an Aggregate node, all of the important
information is summarized. The conditional formatting makes it even easier to read, and
colleagues can not only see, but also manipulate the result.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

266

See also
Creating a classification tree financial summary using aggregate and an Excel Export node
recipe in this chapter

Creating a classification tree financial
summary using aggregate and an Excel
Export node

In nearly all organizations, the Modeler user collaborates with colleagues that do not have
Modeler. If one is to honor the Value Law quoted in the chapter introduction, criteria must
be considered other than accuracy and stability. Since ROI is on the mind of the data miner,
those additional criteria always include some of a financial nature. Whether it be potential
cost savings or potential revenue increases, the relevant fields will be ones that management
will be very familiar with and very interested in. This is not to say that these variables must be
model inputs—quite often they are not—but they should be part of the evaluation process. In
this recipe, we will process an Excel file that organizes these kinds of variables in the context
of a tree segmentation. It combines variables exported from the tree model, including Rule
Identifier and the Model's prediction, with financial variables in summary, from the data set.

Getting ready
We will start with CHAID Financial Summary.str stream.

How to do it...
To process an Excel file that organizes these kinds of variables in the context of a
tree segmentation:

1.	 Open the CHAID Financial Summary.str stream.

Chapter 7

267

2.	 Edit the CHAID's generated model. In Settings, verify that Rule identifier is selected.

3.	 Add a Select node selecting only Validate Partition. (Basing ROI estimates and other
business decisions on Validation data is a very conservative and appropriate move.
Sometimes the data that we will use to validate will be brand new data that didn't
exist when the project began.)

4.	 Add an Aggregate node. The Rule Identifier will be our Key Field. NGIFTALL and
AVEGIFT will have a Sum and a Mean. LASTGIFT and TARGET_B will have a Mean only.

5.	 Add a Sort node and select Sort in Descending order for the variable TARGET_B_
mean. The mean of a 0/1 variable is the same as the percentage of 1. In this case,
this trick allows us to put the most responsive segments in the top row and the least
responsive in the bottom row.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

268

6.	 Add a Table node and click on Run.

7.	 Add a Type node and an Excel Export node. Click on Run.

The provided file has had some light editing to add currency and percentage labeling
where appropriate.

How it works...
The whole idea behind this recipe is that on any project you have many colleagues that have
access to Excel, but not to Modeler. By writing out the tree, not as a tree diagram but with the
financial characteristics of the tree segments, you are giving your colleagues something that
they can study, but that they can also manipulate. They can help decide how many segments
to market to in a more detailed way than they could with only a picture or slides. They can use
their Excel skills to dig deeper. You might decide to offer up the original data in a second tab if
it does not exceed the file size limitations.

Chapter 7

269

The mechanics of the recipe are quite simple. The key is to request the Rule Identifier. This
feature is not available for every technique. Both C&RT and CHAID have it, for instance. C5.0
does not. Also, a technique such as Neural Net or SVMs will not have it because they do not
produce segments.

See also
ff The Using aggregate to write cluster centers to Excel for conditional formatting recipe

in this chapter

Reformatting data for reporting with a
Transpose node

The Transpose node is very useful for restructuring data. One way it can be particularly helpful
is with reporting of results, especially when the data has many more columns than rows.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream Recipe –
report with transpose.str.

How to do it...
To reformat data with a Transpose node:

1.	 Open the stream Recipe – report with transpose.str by navigating to File
| Open Stream.

2.	 Make sure the datafile points to the correct path to cup98lrn_reduced_vars3.
sav.

3.	 Insert an Aggregate node and connect it to the Type node.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

270

4.	 Open the Aggregate node and in the Key fields: area, select TARGET_B as the field
to aggregate. In the Default Mode: options, deselect Sum so only Mean is checked.
Click on the Apply default operations button at the right-end of the Default Mode:
options. In the Aggregate fields region, select all of the continuous fields (except
CONTROLN) and all of the flag fields. Only the Mean should be checked. If Sum is still
checked, uncheck Sum for all fields. Click on OK.

5.	 Insert a Transpose node and connect it to the Aggregate node.

6.	 Open the Transpose node. Click on the Read from field radio button and select
TARGET_B from the drop-down menu. Click on the Read Values button. You should
see the values 0 and 1 listed. Click on OK.

Chapter 7

271

7.	 Insert a Table node and connect it to the Transpose node. Run the Table node to
see the report.

How it works...
The Transpose node simply rotates the data so the columns in the data are shown in rows,
and the rows in the data are shown in columns. For reporting, when there are only a few rows
but there could be several, dozens, or even hundreds of columns, transposing the summary
output makes it easier to read.

There's more...
The Transpose node output is easier to copy and paste into Excel or Word for reporting.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

272

Another example of a report that can be improved using a Transpose node is with clustering.
After running a K-means clustering model, each record now has a cluster label.

One can use the same procedure described in this recipe to aggregate key fields by cluster
number, transpose the results, and generate a report where the field mean values are in the
rows and cluster IDs are in the columns.

But one can do even more for clustering models and reporting. Rather than aggregating by
cluster value to compute average values, one can generate the prototype record for each
cluster, which is the record that is closest to the center of each cluster.

Chapter 7

273

To create this report, one first sorts the records by cluster ID ($KM-K-Means) and then by the
distance the record is from the cluster center ($KMD-K-Means), ascending. Then one selects
the first-occurring record for each cluster with a Select node (@INDEX = 1 or @OFFSET($KM-
K-Means, 1) /= $KM-K-Means). The @OFFSET portion of the Select node condition identifies
when the cluster label for the current record differs from the cluster label of the previous
record—the record with the smallest distance from the cluster center. Then the Transpose
node is used to generate the report. In this report, CONTROLN (customer ID) 110971 is the
closest to the center of cluster-1.

See also
ff The Changing formatting of fields in a Table node recipe in this chapter

Modeling – Assessment, Evaluation, Deployment, and Monitoring

274

Changing formatting of fields in a Table
node

Table nodes are typically used as they are without any customization. In this recipe, we will
modify the settings so that some fields that are really integers are displayed without any
decimals and other fields are displayed with additional digits of precision.

Getting ready
This recipe uses the datafile cup98lrn_reduced_vars3.sav and the stream Recipe –
modify table.str.

How to do it...
To change formatting of fields in a Table node:

1.	 Open the stream Recipe – modify table.str by navigating to File | Open
Stream. This is the stream you completed in the recipe Reformatting data for
reporting with a Transpose node.

2.	 Make sure the datafile points to the correct path to cup98lrn_reduced_vars3.
sav.

3.	 Insert a Table node and attach it to the Type node. Open the Table node. Right-click
on the node and select the Edit option and then the Format tab.

4.	 Double-click on the AGE row, select Field Format (that appears as ####.###). In
the row that has Standard decimal places:, click on the Specify: radio button and
change the digits of precision from 3 to 0. Click on OK.

Chapter 7

275

5.	 Next, for AGE, in the Justify column, click on Auto and select Center.

6.	 Repeat Steps 4 and 5 for variables LASTGIFT, FISTDATE, CONTROLN, and RFA_2F.

7.	 For the field AVGGIFT_STATEMean, change the Format field from 3 digits of precision
to 6 by following the step 4 process, but change the Specify field to 6.

8.	 Change the Justify column to Center for all of the remaining fields that are not
yet centered.

9.	 Run the Table node.

How it works...
Usually, the default settings for the Table node are sufficient for seeing the values in the
data. However, sometimes changing the format improves the visual appeal of the table
layout. In this data, changing all of the numerical data that are integers to have no decimal
places cleans the look of the table considerably. The default Table node output, without the
modifications in this recipe, would result in the output shown in the following screenshot:

Modeling – Assessment, Evaluation, Deployment, and Monitoring

276

There's more...
The Table Format options also controls the column width. This is particularly useful when the
field name is long, which makes the column width big. Changing this from auto to a smaller
number such as 10 or 20 will restrain that default width.

If one changes Table node Format settings often for a particular stream, one can make
a global change to the formats (digits of precision, not justification). Navigate to
Tools | Stream Properties | Options where one finds a screen such as the one shown
in the following screenshot.

See also
ff The Reformatting data for reporting with a Transpose node recipe in this chapter

Combining generated filters
When building a predictive model, if many data fields are available to use as inputs to the
model, then reducing the number of inputs can lead to better, simpler and easier-to-use
models. Fields or features can be selected in a number of ways: by using business and data
knowledge, by analysis to select individual fields that have a relation to the predictive target,
and by using other models to select features whose relevance is more multivariate in nature.

In a Modeler stream, selections of fields are usually represented by Filter nodes. If multiple
selections from the same set of fields have been produced, for example by generating
Filter nodes from different models, then it is useful to combine these filters. Filters can be
combined in different ways; for example, if we wish to select only the fields that were selected
by both models, then the filters are placed in sequence. If we wish to select all the fields that
were selected by either model, then a different technique is required.

Chapter 7

277

This recipe shows how to combine two Filters nodes, in this example each generated from a
different model, to produce a new filter that selects all the fields that were selected in either of
the original filters.

Getting ready
This recipe uses the datafile, cup98LRN.txt and the stream file, Combining_Generated_
Filters.str.

How to do it...
To combine generated filters:

1.	 Open the stream Combining_Generated_Filters.str by navigating to File |
Open Stream.

2.	 Edit the Type node; you can see the shape of the data by clicking on Preview in
the edit dialogue. The Type node specifies 324 input fields and one target field for
modeling. These modeling roles specified by the Type node will be used for all model
building in this stream, and the models will be used to generate filter nodes.

3.	 Run the Distribution node Target_B. In the raw data, the target field is mostly zeros,
so a Balance node has been used to select a more balanced sample for modeling
(shown in the following screenshot). This step also fills the cache on the Balance
node so that the same sample will be used for all the models.

Note that random selection by the Balance node means that the stream will not do
exactly the same thing when run again; the models and therefore the generated
filters may be slightly different, but the principles remain the same.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

278

4.	 Edit the Filter node TARGET_B T to the left of the stream. This Filter node was
generated from the CHAID decision tree TARGET_B; as shown in the following
screenshot, the filter selects 34 out of the available 325 fields, including the
target variable.

5.	 Edit the Filter node TARGET_B N to the left of the stream. This Filter node was
generated from the Neural Network model TARGET_B; as shown in the following
screenshot, the filter selects 21 out of the available 325 fields, including the target
variable and the top 20 fields used by the Neural Network.

6.	 Edit the Filter node TARGET_B T toggled in the branch with 3 Filter nodes to the right
of the stream. This is a copy of the Filter node TARGET_B T in which all fields have
been toggled; that is, fields that were on are switched off, and those that were off are
switched on. It is important that this is done using the Filter options menu and the
option Toggle All Fields. The Filter node dialogue is shown in the following screenshot;
note that it is the inverse of the filter shown in the screenshot in step 4: instead of 34
fields output, 34 fields are filtered.

Chapter 7

279

7.	 Edit the Filter node TARGET_B N toggled in the branch with 3 Filter nodes to the right
of the stream. This is a copy of the Filter node TARGET_B N that has been connected
in sequence with TARGET_B T toggled and all fields have been toggled, as in step 6.
Again it is important that this was done using the Filter options menu and the option
Toggle All Fields. The Filter node dialogue is shown in the following screenshot.
Again this is the inverse of the filter shown in the screenshot in step 5 but with a
slightly less obvious relationship; it filters 18 fields instead of 21 because some of the
relevant fields have already been filtered out by the previous node.

Modeling – Assessment, Evaluation, Deployment, and Monitoring

280

8.	 Edit the Filter node New Filter on the far right of the stream. This is a new Filter
node that has been connected in sequence with the two toggled Filter nodes and
then has itself been toggled in the same way; again it is important that this is done
using the Filter options menu. All the remaining fields are filtered out, but because it
is a new Filter node, it holds no information about fields that were filtered out by the
previous filters in the sequence.

9.	 Edit the Filter node New Filter at the lowest edge of the stream; this is a copy of
the New Filter node examined in step 8, but reconnected to the original set of fields.
Viewed in this context, this node now makes sense, it outputs 52 fields, all of those
output by the two generated filters. It does not output 55 fields (34 plus 21) because
there is a slight overlap between the two generated filters.

Chapter 7

281

How it works...
This technique can be viewed as performing Boolean logic on arrays or vectors of Boolean
values represented by Filter nodes. Under this view, placing filters in sequence acts like a
Boolean conjunction (AND), allowing a field to pass through (switched on or true) only if it is
switched on in both of the original filters. Toggling a filter provides the equivalent of a Boolean
negation or NOT. We want to construct a Boolean disjunction (OR), which will allow a field to
pass through if it was true in either of the original filters. We use the equivalence:

 p OR q = NOT(NOT(p) AND NOT(q))

First we negate (toggle) each of the filters, then we conjoin (sequence) them, then we negate
(toggle) the result in a new filter, producing the equivalent disjunction in the new filter.

This recipe has emphasized the importance of using the option to Toggle All Fields from the
Filter options menu. This is important because there is another, more obviously accessible
operation in the Filter node dialogue, the button whose tooltip is Remove fields by default.
Using this button appears to have the same effect as toggling, but the semantics of the
operation are different; this has the undesired effect that the final Filter node does not output
any fields, even when reconnected to the original set of fields.

There's more...
This technique could be used to combine more than two filters in exactly the same way, only
using a longer sequence of toggled filters. In all cases, the result is produced by adding a new
filter at the end of the sequence and toggling it.

The technique could also be generalized to situations where other Boolean operations are
required. For example, we might use it to test whether one filter is a superset of another by
treating this as a Boolean implication.

This technique was developed for a project in which a large number of fields represented
topological features in organic molecules. Because the number of fields was too large to
manipulate individual field selections by hand, it was necessary to find semi-automated ways
to manipulate filter nodes in order to control field selection en masse.

See also
ff The Using the Feature Selection node creatively to remove or decapitate perfect

predictors recipe in Chapter 2, Data Preparation – Select

8
CLEM Scripting

In this chapter, we will cover:

ff Building iterative Neural Network forecasts

ff Quantifying variable importance with Monte Carlo simulation

ff Implementing champion/challenger model management

ff Detecting outliers with the jackknife method

ff Optimizing K-means cluster solutions

ff Automating time series forecasts

ff Automating HTML reports and graphs

ff Rolling your own modeling algorithm – Weibull analysis

Introduction
IBM SPSS Modeler is the core product in an incredibly powerful and scalable predictive
analytics platform. The visual, point-n-click Modeler interface makes it almost immediately
accessible to business analysts or anyone with a quantitative background. However, having a
tool that is easy to use but cannot be automated severely limits the usefulness and scalability
of that tool. That's why CLEM scripting was added to the Modeler platform.

CLEM Scripting

284

CLEM scripting is an important pillar of the Modeler platform scalability. It serves a number of
functions that cover data preparation, modeling, evaluation, and deployment. First, scripting
allows tedious, repetitive processes within data preparation to be automated. ETL and other
data preparation processes can involve many disconnected steps. Scripting can connect
these processes into a single connected workflow. Second, model building often involves
much experimentation with variable combinations, row samples, time windows, and so on.
With scripting, advanced techniques such as Monte Carlo simulation and jackknifing can be
implemented easily and invoked with a single mouse click. Lastly, scripting is the mechanism
to deliver automation within the deployment environment. Repetitive tasks such as batch
scoring, ETL processes, and champion/challenger model management all require scripting. All
the automation features of the IBM SPSS Collaboration and Deployment Services depend
on automation through CLEM scripting.

CLEM scripting best practices
IBM does not publish any official best practices for CLEM scripting; however, they are
implied in the documentation. Also, anyone who has been a software developer will
recognize many of these recommendations as best practices across the industry. Some
of them are listed as follows:

1.	 Pick a variable-naming convention and stick to it. In this book, all variables are lower
case with underscores between words (for example, sales_data, first_name, and
so on.). Having spaces in variable names and node names is possible, but it makes
code difficult to read because of the need for quotes (for example, 'Sales Data').

2.	 Give variables descriptive names such as iteration_number and not short names
such as i.

3.	 When local variables are referenced, precede them with a circumflex (for example,
^sales_data). If you omit the circumflex, the script will often fail intermittently.

4.	 Name all your Modeler nodes with unique names (across the entire stream). This
makes it possible to uniquely identify a node by name in the CLEM script.

5.	 Perform as much configuration as possible in your stream using the point-n-click
interface. The CLEM script should be as concise as possible.

CLEM scripting shortcomings
CLEM script is incredibly easy to learn because of its simple English style syntax. However,
CLEM script is not as full-featured as most other scripting languages (for example, JavaScript).
Hence, there is no way to handle exceptions in CLEM script. If an error occurs, the script
simply fails. You must be diligent in checking for error conditions and preventing them. Also,
CLEM script does not allow you to access every Modeler node attribute or function. The
following examples show some unique workarounds to these limitations.

Chapter 8

285

Even with CLEM scripting's shortcomings, it is incredibly powerful, and mastering it will reap
many rewards, saving you time, enabling new functionality, and providing increased scalability.

Building iterative Neural Network forecasts
Artificial Neural Networks (ANN) models provide a robust method of generating forecasts.
ANN can be built using nearly any input types including categorical, flag, and continuous
inputs. ANN models are relatively insensitive to outliers and are capable of capturing subtle
interactions between input variables. All of these benefits have made ANN models increasingly
popular for many applications such as forecasting product sales, energy demand, spot market
prices, and so on.

Even though ANN forecast models are generally superior to traditional forecasting techniques
such as ARIMA, they do have a few drawbacks. The first drawback of ANN forecast models
is that they are not autoregressive (as compared to ARIMA). The model builder must choose
the appropriate lags for the input variables. For example, do we look at the price one day ago,
one week ago, or one month ago when predicting the current price? The second drawback is
that the ANN models predict a single point in the future. ARIMA models can easily generate N
predictions into the future with a single invocation. ANN models require iteration to generate
multiple, successive future predictions (that is, a forecast).

Calling an ANN model iteratively can be a tedious undertaking. For large data sets, a manual
approach is completely impractical. CLEM scripting is the solution. CLEM scripts can iteratively
read the input data, score a single row, and write the results to disk (or database) as the input
to the next iteration. When all rows are scored, the process stops.

Getting ready
This example depends on the files power_demand.csv, power_demand_score.csv, and
clem_script_interactive_ann_forecast.txt. This example writes temporary files to
C:\temp. Please ensure that this directory or a substitute directory exists.

To disable warning dialogs that require you to click on OK repetitively, go to Tools | Options |
User Options and deselect the Warn when a node overwrites a file and Warn when a node
overwrites a database table options.

How to do it...
The steps for building iterative Neural Network forecasts are as follows:

1.	 Start with a new stream by clicking on File | New Stream.

CLEM Scripting

286

2.	 Add a file source node to the upper-left of the stream. Set the file field by navigating
to the power_demand.csv file using the ellipsis button. Name the node
historical_data by clicking on the Annotations tab and setting a custom name.
Click on the Data tab to override the Cal Date input format to MM/DD/YYYY.

3.	 Add a Sort node connected to the VAR file in step 2. Choose the Cal Date field
by clicking the button on the far-right of the dialog box. Leave the sort direction
as ascending.

4.	 Add six Derive nodes connected in a line after the Sort node in step 3. Use the
following settings for each node:

Name Derive As Formula
power_lag_1 Formula @OFFSET('Power Demand',1)

power_lag_7 Formula @OFFSET('Power Demand',7)

power_avg_3 Formula @MEAN('Power Demand',3)

temp_lag_1 Formula @OFFSET(Temp,1)

temp_lag_7 Formula @OFFSET(Temp,7)

temp_avg_3 Formula @MEAN(Temp,3)

5.	 Select all six Derive nodes in step 4. Click on the Encapsulate and Selected nodes
into the supernode button on the Modeler toolbar. Name the create_lags
supernode by clicking on the Annotations tab and setting a custom name.

Chapter 8

287

6.	 Add a Type node connected to the supernode in step 5. Click on the Read Values
button to instantiate the Type node. Set the roles for each field as follows:

7.	 Add a Partition node connected to the Type node in step 6. Name the Partition node
partition by clicking on the Annotations tab and setting a custom name.

8.	 Add a Neural Network node to the Partition node in step 7. Name the Neural Network
node ann_forecast by clicking on the Annotations tab and setting a custom name.
Set a custom model name of ann_forecast_model by clicking on the Model
Options tab and setting the model name.

9.	 Right-click on the Neural Network node and select Run. Right-click on the generated
model and choose Disconnect. At this point, the stream should look as follows:

CLEM Scripting

288

10.	 Add a new VAR file Source node below the historical_data node (not connected).
Set the File field by navigating to the power_demand_score.csv file using the
ellipsis button. Name the node forecast_data by clicking on the Annotations
tab and setting a custom name. Click on the Data tab to override the Cal Date input
format to MM/DD/YYYY.

11.	 Copy the sort_by_date and create_lags nodes above and connect them to the
VAR file node in step 10.

12.	 Connect the ann_forecast_model to the new create_lags node in step 11.

13.	 Add a Filler node connected to the ann_forecast_model node. Name the node
filler by clicking on the Annotations tab and setting a custom name. Finish
configuring the node as follows:

14.	 Add a Filter node connected to the Filler node in step 13. Filter out the last seven
fields (those after Power Demand) by clicking on the Filter column.

15.	 Add a Flat File node connected to the Filter node in step 14. Set the File field by
navigating to the power_demand_score.csv file using the ellipsis button. Click on
the Overwrite option. Name the node forecast_data_overwrite by clicking on
the Annotations tab and setting a custom name.

16.	 Add a Select node connected to the forecast_data node. Set the condition field to
@NULL('Power Demand'). Name the node select_forecast_recs by clicking
on the Annotations tab and setting a custom name.

17.	 Add an Aggregate node connected to the Select node in step 16. Set the Include
record count field to N. Name the node N by clicking on the Annotations tab and
setting a custom name.

Chapter 8

289

18.	 Add a Table node connected to the Aggregate node in step 17. Name the node rec_
count_table by clicking on the Annotations tab and setting a custom name. The
finished stream should look as follows:

19.	 Go to Tools | Stream Properties and select the Script tab. Click on the first icon
in the toolbar (suitcase) and navigate to the clem_script_interactive_ann_
forecast.txt file. This will load the script into the top textbox. At the bottom of the
dialog choose the Run this Script option for On Stream Execution. Click on OK.

20.	 You can now execute the script by clicking on the large green arrow on the main toolbar.

CLEM Scripting

290

How it works...
In steps 1 to 9, we created a single point Artificial Neural Network (ANN) prediction model
using lagged data inputs. The lagged [temperature and power] variables are generated using
a series of derive nodes with the @ functions (for example, @MEAN, @OFFSET). The Power
Demand variable is the target with the lagged variables as inputs. The model tries to predict
the power demand using only lagged inputs. The ANN model has an accuracy of greater than
94 percent. The ANN model shows that power and temperature are the top predictors with
strong interactions between the inputs (that is, where neurons have more than one dark line
attached to them).

The remaining steps involve scoring the ANN model. The scoring data in step 10 provides all the
input variables including a weather forecast. There are seven days we would like to forecast.

Chapter 8

291

Initially, only a single row (row 8) can be scored. Row 9 cannot be scored yet because the
lagged power demand cannot be determined until we score row 8.

Script section 1
The screenshot of the script section 1 is as follows:

This script is simple but powerful. In lines 3 to 7, we determine the number of rows to be
forecast and read it into a local variable (that is, num_recs). In lines 8 to 11, we iteratively
score the ANN model a single row at a time. Each successive scoring run allows a new set of
lagged variables to be generated and in turn a new row to be scored. The end result is that we
have a 7-day forecast using a robust ANN model.

There's more...
In this recipe, we didn't address the need to determine the optimal time lags for the model
building process. The next recipe Quantifying variable importance with Monte Carlo simulation
gives a robust method for variable selection.

CLEM Scripting

292

Quantifying variable importance with Monte
Carlo simulation

Finding the smallest subset of all possible input variables that result in an accurate
model (that is, a parsimonious solution) is often the biggest challenge for many data mining
projects. It's common for data sets to contain 10s to 100s of input variables. Models that are
over-trained or simply fail to build are both possible with so called "wide" data sets. Removing
unimportant variables to find the sweet spot between model accuracy and stability is where
experienced data miners can deliver significant value.

The primary method of variable selection in Modeler is Feature Selection. The Feature
Selection process identifies the significance of each variable individually. Statistically
insignificant variables below a specified p-value are dropped. While this technique works
well with simple data sets and "main effects" models such as regression, it completely
ignores the interaction between variables. As often happens, the interaction of two weak (or
statistically insignificant variables) can have a significant effect on the target variable. The
interaction between variables may be significant for all observations or a smaller subset of
observations. Models such as decision trees and artificial Neural networks (ANN) are capable
of incorporating the effects of these subtle variable interactions.

The following recipe builds multiple C5 models using different random row samples (that is,
the Monte Carlo method). The variable importance results from each trial are averaged to
minimize the variability between single scoring runs. The Winnow attributes setting on the C5
node also allows a (potentially) large number of input variables to be "winnowed" down to a
more manageable number.

The data set for this recipe was generated using the following equation:

output = 0.4a + 0.2b – 0.2c + 0.15d – 0.05e + ε

where a, b, c, d, and e are input variables; output is the target variable, and ε is a random
error term. The coefficients [0.4, 0.2, -0.2, 0.15, -0.05] are the variable importance
coefficients. The data set also includes three random variables as "sanity checks". These
variables are included to gauge the "floor" for variable importance.

Getting ready
This example depends on the files input_data.sav, inputs.csv, and clem_script_
variable_selection.txt. This example writes temporary files to C:\temp. Please ensure
that this directory or a substitute directory exists.

To disable warning dialogs, that require you to click on OK repetitively, go to Tools | Options |
User Options and deselect the Warn when a node overwrites a file and Warn when a node
overwrites a database table options.

Chapter 8

293

How to do it...
The steps for quantifying variable importance with Monte Carlo simulation are as follows:

1.	 Start with a new stream by clicking on New Stream in File.

2.	 Click on Stream Properties in the File menu and choose the Parameters tab. Set up
the following parameter (exactly as shown in the screenshot):

3.	 Add a Statistics File Source node to the upper-left of the stream. Set the Input File
field by navigating to the input_data.sav file using the ellipsis button. Name the
input_data node by clicking on the Annotations tab and setting a custom name.
Right-click on the node and select Cache | Enable.

4.	 Add a Binning node connected to the Statistics File node in step 3. Add the
OUTPUT field to the list of bin fields by clicking the button on the far right of the
dialog box. Choose the Decile (10) option. Name the Binning node by clicking on
the Annotations tab and setting a custom name.

5.	 Add a Type node to the Binning node in step 4. Click on the Read Values button on
the Types tab to instantiate the Type node. Set the roles of each field as follows:

CLEM Scripting

294

Name the node type by clicking on the Annotations tab and setting a custom name:

6.	 Add a Partition node connected to the Type node in step 5. Set the training partition
to 70 and the test partition to 30. Deselect the Set Random Seed option. Name the
node partition by clicking on the Annotations tab and setting a custom name.

7.	 Add a C5.0 node to the Partition node in step 6. Set the Mode option to Expert on
the Model tab. Select the Winnow attributes option. Name the generated model
c5_model by clicking on the Model tab and setting a custom name. Name the node
c5 by clicking on the Annotations tab and setting a custom name.

8.	 Right-click on the c5 model node in step 7 and select Run to generate a model
nugget named c5_model.

9.	 Right-click on the c5_model nugget in the Models tab. Choose Export PMML and save
the file to C:\temp\c5_model.xml. At this point the stream should look as follows:

10.	 Add an XML source node below the Statistics File node in step 3. Set the XML data
source field to C:\temp\c5_model.xml. Navigate the PMML tree to /PMML/
TreeModel/MiningSchema/MiningField and then click on the right arrow to set
the Records field.

Chapter 8

295

Name the node PMML by clicking on the Annotations tab and setting a custom name.

11.	 Add a Var. File node below the XML source node in step 10. Set the File field by
navigating to the inputs.csv file using the ellipses button. Click on the Read
Values button on the Type tab to instantiate the Type node. Name the node inputs
by clicking on the Annotations tab and setting a custom name.

12.	 Connect the nodes in step 10 and 11 to a new Merge node. Select keys as the
method of performing the join. Choose name as the Key to join the data on. Choose
the partial outer join option. Click on the Select button and click the check box next
to the inputs. Name the node Merge by clicking on the Annotations tab and setting a
custom name.

13.	 Add a Filler node connected to the Merge node in step 12. Select importance as the
Fill in field. Choose Always as the replace option. Set the Replace with formula field
to to_real(@FIELD). Name the node filler by clicking on the Annotations tab
and setting a custom name.

14.	 Add another Filler node connected to the Filler node in step 12. Select importance as
the Fill in field. Choose Based on Condition as the replace option. Set the Condition
field to @NULL(@FIELD). Set the Replace with formula to: 0.0. Name the node
Filler by clicking on the Annotations tab and setting a custom name.

15.	 Add a Sort node connected to the Filler node in step 14. Select the name field with
the ascending sort option. Name the node Sort by clicking on the Annotations tab
and setting a custom name.

16.	 Add a Transpose node connected to the Sort node in step 15. Set the Read from field
option to name. Click on the Read Values button. Name the node transpose by
clicking on the Annotations tab and setting a custom name.

CLEM Scripting

296

17.	 Add a Filter node connected to the Transpose node in step 16. Filter out the ID field
by clicking the Filter column next to the field. Name the node filter by clicking on
the Annotations tab and setting a custom name.

18.	 Add a Flat File export node to the Filter node in step 17. Set the Export file option
to C:\temp\trials.txt. Choose Tab as the field separator. Name the node
trials_output by clicking on the Annotations tab and setting a custom name.

19.	 Add a Var. File node below the Var. File source node in step 11. Set the File field by
navigating to the C:\temp\trials.txt file using the ellipses button. Select Tab
as the delimiter. Click on the Read Values button on the Type tab to instantiate the
Type node. Name the node trials_inputs by clicking on the Annotations tab and
setting a custom name.

20.	 Add a Statistics node connected to the Var. File node in step 19. Select the fields A,
B, C, D, E, RANDOM1, RANDOM2, and RANDOM3 in the Examine field. Select the
Min, Max, Mean, Std Dev, and Std Error of Mean options. The final stream should
look as follows:

21.	 Click on Stream Properties in the Tools menu and select the Script tab. Click the
first icon in the toolbar (suitcase) and navigate to the clem_script_variable_
selection.txt file. This will load the script into the top textbox. At the bottom of
the dialog choose the Run this Script option for On Stream Execution. Click on OK.

22.	 You can now execute the script by clicking the large green arrow on the main toolbar.

How it works...
In this stream, we are generating multiple C5 tree models against random row samples (that
is, the Monte Carlo simulation). CLEM scripting does not allow direct access to the variable
importance results so we have to use a generated PMML model (an XML file) as a method of
reading them into the stream. The results of each Monte Carlo trial are written to text file for
the final analysis.

Chapter 8

297

In steps 1 to 7, we are building a standard C5 model building stream with a few twists.
First, we had to bin the target variable into deciles because the C5 model does not support
continuous targets. Second, in the Partition node we turned off the random seed. This
ensures that every time the data flows through the node a new random row sample is
generated. Finally, when configuring the C5 node we chose the export option and selected
Winnow attributes. This critical last step allows us to dramatically reduce the number of
[final] input variables so that we can support models with 10s to 100s of input variables.

In steps 8 to 17, we are exporting each C5 mode to PMML, reading the variable importance
results and writing the final results to a CSV file. The PMML source node allows us to extract
values from the PMML XML file using XPath statements. Navigating the XML tree in the node
automatically generates the appropriate XPath statement for us. The inputs.csv file contains
all the variable names. The list of all input variables is outer-joined to the PMML node results.
The outer join ensures that we have all possible variables in the final output even if they have
no significance. The C5 model may have "winnowed out" some of the variables. The remaining
steps restructure the data from columns to rows and replace nulls with 0.0.

The final steps 18 to 21 allow us to review the results. The Statistics node shows us the range
of each variable importance trial. Of particular interest are the Mean and Std Error of Mean
fields. These metrics give us the final variable importance and a measure of how confident we
are in the result respectively.

Script section 1
The screenshot of the script section 1 is as follows:

In lines 1 to 18 of the script, we read the total number of trials into a local variable. The user
sets this value when the stream is executed. Next we remove any lingering C5 models.

CLEM Scripting

298

Script section 2
The screenshot of the script section 2 is as follows:

In lines 20 to 39, we execute the C5 model through multiple trials. Next the script exports
the C5 model to a PMML file using a random file name. If the script overwrites the same file,
it will fail randomly due to a race condition. Finally we execute the Statistics node to view the
results. After 100 trials the results are as shown in the following table:

Variable Actual C5 Mean (Std Error) C5 Mean Range
A 0.4 0.408 (0.019) 0.0 – 0.768
B 0.2 0.154 (0.015) 0.0 – 0.625
C 0.2 0.149 (0.018) 0.0 – 0.959
D 0.15 0.074 (0.010) 0.0 – 0.482
E 0.05 0.020 (0.004) 0.0 – 0.209
RANDOM_1 0.0 0.048 (0.011) 0.0 – 1.000
RANDOM_2 0.0 0.090 (0.013) 0.0 – 1.000
RANDOM_3 0.0 0.056 (0.011) 0.0 – 0.738

The results (mean of multiple trials) are in good overall agreement with the known values;
however, we see that individual runs vary widely. Using Monte Carlo simulation with random
row samples allows us to prevent overtraining (with partitioning) but gives us the benefit of
multiple trials that cover the entire data set and smooth the variability inherent in a single
model building trial.

There's more...
In this script, we treat each trail (that is, model) as being equivalent; however, some of the
models are more accurate than others. To improve this script, the accuracy of each model could
be calculated and used to weight the resultant variable importance values. In that way, more
accurate models would have greater weight in determining the importance of overall variable.

Chapter 8

299

Implementing champion/challenger model
management

In most real-world predictive analytics applications, models must change over time. This
need for change is often due to evolving customer behavior, new offerings/promotions, and/
or changes in data availability. Regardless of the reason necessitating change, it's often
advantageous to automate the process of building updated models. Frequency of the model
refresh process depends on the nature of the business. In some rapidly changing businesses,
the refresh process is sub-hourly and automation is an absolute necessity.

With the champion/challenger technique, the currently deployed model is called the
champion model. New models built by training on the latest data are called the challenger
models. Challenger models can replace the champion model if the challenger is more
effective than the champion model. Model effectiveness can be defined many ways including,
but not limited to, mean absolution percent error (MAPE) for continuous targets and overall
accuracy, or lift for categorical targets. Which metric is chosen is driven by business need.

In this example, we simulate changes in data surrounding a sales promotion. The champion/
challenger process is implemented to keep the response model relevant and up-to-date with
changes in customer preferences.

Getting ready
This example depends on the promotion_response.sav and clem_script_champion_
challenger.txt files.

To disable warning dialogs that require you to click on OK repetitively, go to Tools | Options |
User Options and deselect the Warn when a node overwrites a file and Warn when a node
overwrites a database table options.

How to do it...
The steps for implementing champion/challenger model are as follows:

1.	 Start with a new stream by clicking on New Stream in the File menu.

CLEM Scripting

300

2.	 Click on Stream Properties in File and choose the Parameters tab. Set up the
following parameter (exactly as shown):

3.	 Add a Statistics File source node to the upper-left of the stream. Set the input file field
by navigating to the promotion_response.sav file using the ellipsis button. Name
the node promotion_data by clicking on the Annotations tab and setting a custom
name. Right-click on the node and select Cache | Enable.

4.	 Add a Partition node to the Statistics File source node in step 1. Set the training
partition size to 10 and the testing partition to 90. Deselect the Set random seed
option. Name the node partition by clicking on the Annotations tab and setting a
custom name.

5.	 Add a CHAID node to the Partition node in step 4. Name the generated model
chaid_model by clicking on the Model tab and setting a custom name. Name the
node CHAID by clicking on the Annotations tab and setting a custom name. Right-
click on the CHAID node and select Run to build the model nugget.

6.	 Add a Select node connected to the CHAID node in step 5. Set the condition to
Partition = "2_Testing". Name the node select_test_partition by
clicking on the Annotations tab and setting a custom name.

7.	 Add a Derive node connected to the Select node in step 6. Configure the node as
follows:

Chapter 8

301

Name the node correct by clicking on the Annotations tab and setting a custom name.

8.	 Add an Aggregate node connected to the Derive node in step 7. Select Correct as the
aggregate field and choose the Sum option. Select the Include record count in field
option and enter N as the field value.

CLEM Scripting

302

Name the node aggregate by clicking on the Annotations tab and setting a custom
name.

9.	 Add a Derive node connected to the Aggregate node in step 8. Set the Derive
field value to Percent Correct. Choose Formula in the Derive as field. Set the
Formula field to Correct_Sum/N. Name the node select_test by clicking on the
Annotations tab and setting a custom name.

10.	 Add a Table node connected to the Derive node in step 9. Name the node eval_
table by clicking on the Annotations tab and setting a custom name. The final
stream should look as follows:

11.	 Go to Tools | Stream Properties and select the Script tab. Click on the first icon in
the toolbar (suitcase) and navigate to the clem_script_champion_challenger.
txt file. This will load the script into the top textbox. At the bottom of the dialog,
choose the Run this Script option for on-stream execution. Click on OK.

12.	 You can now execute the script by clicking the large green arrow on the main toolbar.

Chapter 8

303

How it works...
In this example, we simulate new data by drawing randomly from a large data set. In a
real-world implementation, this stream would perform time-windowing on historical
data, pulling the most recent window of data for building the Challenger models. The
performance metric used here is simply the accuracy (number of correct predictions/
total number of predictions).

In steps 1 to 5, we build a CHAID model against a random 10 percent row sample. In steps
6 to 12, we evaluate the model by calculating the overall accuracy of the predictions on the
training data set.

The stream is incredibly simple because the majority of the logic is delivered via the script.

Script section 1
The screenshot of the script section 1 is as follows:

In lines 1 to 17, the script reads the user supplied parameters into local variables. The
promotion_threshold is the minimum change in accuracy that results in a promotion from
challenger to champion (for example, a -0.2 value means the accuracy must improve by 0.2
percent to crown a new champion model). The script also deletes any existing CHAID models.

CLEM Scripting

304

Script section 2
The screenshot of the script section 2 is as follows:

In lines 21 to 51, we start by building an initial model and calculating the overall accuracy
of that model. If this is the first iteration, we promote this model to the champion. Normally,
this model would already exist from prior work and this step would not be necessary. On
subsequent iterations, if the gain in accuracy is greater than the user-specified threshold, we
promote the model generated on line 21 and promote it to champion. Finally, we remove the
challenger model and if the iterations are complete we place the champion model back into
the stream to be used for future scoring.

There's more...
This example simulates new data by generating random samples. A true production
implementation would use a moving time window. For example, the challenger would be built
with data from the past 90 days.

Detecting outliers with the jackknife method
Outlier observations can have a dramatic (often negative) impact on the accuracy of many
predictive models. Identifying Outlier observations and handling them appropriately is an
important step in the data preparation phase of the CRISP-DM process. Outliers are often
defined as observations with extreme values. This is a very limited criterion for defining
an outlier. A more robust definition of outlier is an observation that contains a value that
is significantly different from what would be predicted by a model built using the other
observations in the sample. This definition is more robust as it allows observations to have
extreme values if the model predicts an extreme value.

Chapter 8

305

Extreme values can represent normal/predictable outcomes especially in cases of strong
variable interaction.

The jackknife method is based on a Monte Carlo simulation where individual data points
are held out of the training and testing partition. The overall accuracy of this step is then
compared to a model where the same data point is included in the training partition but
not the testing partition. Stated differently, we test the effect of a single observation on
the accuracy of the model across the entire data set (minus that data point). The jackknife
approach answers the question: "Is the model significantly more accurate by excluding a
single data point?" If excluding the observation is significantly beneficial to the overall model
accuracy, the observation is labeled an outlier. In the absence of the ability to easily define
statistical significance in Modeler, the script substitutes a simple arbitrary metric to define
significance: percent change in the absolute error for all observations.

The linear model in this example predicts customer value (that is, annual customer spend).
The goal of the script is to identify Outlier customers. Outlier customers will exhibit actual
annual spends that vary significantly from their predicted annual spend as predicted by a
model built from the remaining customers. The final result of this Monte Carlo simulation is a
list of customers ordered by percent change of absolute model error. The customers at the top
of the list are the most likely outliers.

Getting ready
This example depends on the file customer_spend.sav. This example writes temporary files
to C:\temp. Please ensure this directory or a substitute directory exists.

To disable warning dialogs that require you to click on OK repetitively, go to Tools | Options |
User Options and deselect the Warn when a node overwrites a file and Warn when a node
overwrites a database table options.

How to do it...
The steps for detecting outliers with the jackknife method are as follows:

1.	 Start with a new stream by clicking on File | New Stream.

2.	 Add a Statistics File source node to the upper-left of the stream. Set the input file field
by navigating to the customer_spend.sav file using the ellipsis button. Name the
node spend_data by clicking on the Annotations tab and setting a custom name.
Right-click on the node and select Cache | Enable.

3.	 Add a Select node connected to the Statistics File in step 2. Choose the Discard
option. Set the Condition to: CUSTOMER_ID = -1. Name the node deselect_cust
by clicking on the Annotations tab and setting a custom name.

CLEM Scripting

306

4.	 Add a Linear model node connected to the Select node in Step 3. Name the
generated model linear_model by clicking on the Model tab and setting a custom
name. Name the node linear by clicking on the Annotations tab and setting a custom
name. Right-click on the Liner node and select Run to build the model nugget.

5.	 Add a Derive node connected to the Linear node in step 4. Name the new field by
setting the Derive field to error. Choose Formula for the Derive as field. Set the
Formula to abs('$L-ANNUAL_SPEND' - ANNUAL_SPEND). Name the node error
by clicking on the Annotations tab and setting a custom name.

6.	 Add an Aggregate node connected to the Derive field in step 5. Select the error
field as an Aggregate fields and choose the Sum option. Deselect the Include
record count in field option. Name the node sum_abs_error by clicking on the
Annotations tab and setting a custom name.

Chapter 8

307

7.	 Add a Table node connected to the Aggregate node in step 6. Name the node sum_
abs_error_output by clicking on the Annotations tab and setting a custom name.

8.	 Add a Table node connected below the Statistics File node in step 2. Name the node
cust_id_output by clicking on the Annotations tab and setting a custom name.

9.	 Using Notepad or another text editor, create a text file C:\temp\output.csv with
the contents:
CUSTOMER_ID,FULL_MODEL_ERROR,JACK_KNIFE_ERROR,PCT_DIFF

10.	 Add a Var. File node below the Table node in step 8. Set the file field by navigating to
the C:\temp\output.csv file using the ellipsis button. Name the node output_
data by clicking on the Annotations tab and setting a custom name.

11.	 Add a Sort node connected to the Var. File node in step 10. Select the PCT_DIFF field
in the Sort by field. Name the node sort_by_diff by clicking on the Annotations
tab and setting a custom name.

12.	 Add a Table node connected below the Sort node in step 11. Name the node
output_table by clicking on the Annotations tab and setting a custom name. The
final stream should look as follows:

How it works...
The stream is quite simple. The stream is set up to build a linear regression model
and calculate the total absolute error across all observations. The jackknife algorithm
is implemented via the CLEM script. The script manipulates the filter condition in the
deselect_cust field while iterating over all the customer records. The results of each
iteration are written to a CSV file. The results include the customer ID and the change in total
model error by excluding the customer. Finally, the customer records are sorted by the error
metric with the most likely Outlier customers at the top of the list.

CLEM Scripting

308

Script section 1
The screenshot of the script section 1 is as follows:

In lines 1 to 23, the script first cleans up any lingering linear models. Next the script opens a
text file (that is, a CSV file) and writes a header row to the file.

Script section 2
The screenshot of the script section 2 is as follows:

In lines 25 to 55, the jackknife algorithm is implemented. The script iterates through all
customers by reading the customer IDs from the spend data. On line 29, the script excludes a
bogus customer (that is, -1) to build a full model. Next, the script excludes the actual customer
and calculates the total error. One line 42, a model based on all customers minus the current
customer is built. Next, the script calculates the total model error with this new jackknife
model. On line 48, the difference in model error is calculated by excluding this customer.
Finally, a new row is added to the output CSV file.

Chapter 8

309

Script section 3
The screenshot of the script section 3 is as follows:

Finally, the results for all customers are shown in table format by reading the CSV results file.

There appears to be a sharp drop-off in the error differences after the first three customers.
These customers probably merit further investigation (see next).

There's more...
Now that we can identify likely Outlier customers, we can use a C5 model to help us identify
the common characteristics of the outliers. First, we would add a flag variable IS_OUTLIER
to the original spend data set. IS_OUTLIER would have a value of 1 for the top three outliers;
otherwise 0. IS_OUTLIER would then become the target of a C5 model with all the other
fields as inputs. A generated C5 rule may then be able to identify the common attributes of
the outliers.

CLEM Scripting

310

Optimizing K-means cluster solutions
K-means clustering is a well-established technique for grouping entities together based
on overall similarity. It has many applications including customer segmentation, anomaly
detection (finding records that don't fit into existing clusters), and variable reduction
(converting many input variables into fewer composite variables).

For all its power and popularity, the K-means algorithm does have a number of known
limitations. First, the K-means algorithm is iterative and can arrive at many possible solutions
based on the data and the initial algorithm parameters. Some solutions may be better
than other solutions and the final solution generally depends on the choice for the location
of the initial cluster centers. In most implementations of K-means (including the Modeler
implementation), the initial centers depend on the ordering of the data. Thus the quality of the
clusters depends on the order of the data during modeling. Second, the K-means algorithm
does not determine the optimal number of clusters. Practitioners must have some a prior
knowledge or constraints that helps determine how many clusters to use.

In this example, we use scripting to automate the process of finding the optimal number of
clusters and initial cluster centers. The example involves clustering (or segmenting) retail store
locations based on the demographics of the store trade area. These cluster assignments (or
segments) can be used directly by marketing or operations or in further modeling (potentially
as an input to split on, resulting in a separate model for each segment). As you will see, this
tedious process, that might take a few hours for a practitioner, is reduced to a few minutes
and a single click with scripting.

Getting ready
This example depends on the files customer_location_demographics.sav and clem_
script_scripting_k_means.txt.

To disable warning dialogs that require you to click on OK repetitively, go to Tools | Options |
User Options and deselect the Warn when a node overwrites a file and Warn when a node
overwrites a database table options.

How to do it...
The steps for optimizing K-means cluster solutions are:

1.	 Start with a new stream by clicking File | New Stream.

Chapter 8

311

2.	 Click on File | Stream Properties and choose the Parameters tab. Set up the
following parameters (exactly as shown):

3.	 Add a Statistics File source node to the upper-left of the stream. Set the import file
field by navigating to the customer_location_demographics.sav file using
the ellipsis button. Select the Types tab and click on the Read Values button. Name
the node store_demographics by clicking on the Annotations tab and setting a
custom name. Click on OK to exit to the stream overview. Right-click the node and
chose Cache | Enable.

4.	 Add a Derive node to the canvas connected to the Statistics Node in step 3. Name
the node random_number by clicking on the Annotations tab and setting a custom
name. Choose the Settings tab and create a formula field shown as follows:

5.	 Add a Sort node connected to the Derive node in step 4. Name the node sort_by_
rand_num by clicking on the Annotations tab and setting a custom name. Choose
the RANDOM field by clicking on the button on the far right of the dialog. It doesn't
matter which sort direction you choose.

CLEM Scripting

312

6.	 Add a Filter node connected to the Sort node in step 4. Name the node filter_
rand_num by clicking on the Annotations tab and setting a custom name. Choose
the Filter tab and click on the arrow next to the RANDOM field (to filter it out). It
should display a red x when it is filtered out.

7.	 Add a K-Means modeling node connected to the Filter node. Name the node k_
means by clicking on the Annotations tab and setting a custom name. Choose the
Model tab and set the following options (including the custom Model name field).

8.	 Create a temporary K-Means model node by right-clicking on the K-means node
in step 7 and choosing Run. When the parameters dialog appears, click on OK. A
gold model nugget named k_means_model should be generated, connected to the
K-means node.

9.	 Create an Aggregate node connected to the gold model nugget created in step 8.
Name the node sum_euclid_dist by clicking on the Annotations tab and setting
a custom name. Choose the $KMD-k_means_model in the Aggregate fields section.
Ensure that only the sum option is checked.

Chapter 8

313

10.	 Create a Table node connected to the Aggregate node. Name the node eval_table
by clicking on the Annotations tab and setting a custom name. At this point your
stream should look like the following:

11.	 Go to Tools | Stream Properties and select the Script tab. Click on the first icon in
the toolbar (suitcase) and navigate to the clem_script_scripting_k_means.
txt file. This will load the script into the top textbox. At the bottom of the dialog
choose the Run this Script option for On Stream Execution. Click on OK.

12.	 You can now execute the script by clicking the large green arrow on the main toolbar.

How it works...
Let's look at how the stream functions without the script. First, it loads and caches the store
demographic records. Second, it generates a random number field and appends it to the store
demographic records. Third, we sort the records using this random number. In effect, we are
randomizing the order of the data. Fourth, we cluster the randomized records by generating
a K-means model. Fifth, we calculate the Euclidian distance between each record and its
closest cluster center. Finally, this distance field is then summed in the aggregation step.
The result is a single measure of the effectiveness of the chosen clusters. A smaller number
equates to tighter clusters. Note that adding more clusters will generally decrease the total
Euclidean distance. In fact, if you have as many clusters as data points the total Euclidean
distance can be zero. However, the reality is that at some point we reach a diminishing return.
Adding more clusters becomes impractical as the improvement is marginal.

CLEM Scripting

314

The script attempts to find the optimal (in this case practical) number of clusters that
minimizes the total Euclidean distance and also to run multiple trials so that optimal initial
cluster centers can be located. Running the script prompts you to enter some parameters that
are used within the script.

Min Clusters is the minimum number of clusters to use. Max Clusters is the maximum
number of clusters to be considered. The Number of Iterations is the number of models to
be built (with randomly ordered data) for each cluster size. Min Percent Change for More
Clusters determines if we move to a model with more clusters. In this case, if adding one
more cluster decreases the total Euclidean distance by more than 5 percent then the script
promotes the model to the new champion model. Without the check, we would almost always
have the maximum number of clusters (even if they didn't add much value).

Script section 1
The screenshot of the script section 1 is as follows:

In section 1, we define some script-level variables, and set their initial values to the
user-entered values from the parameters dialog.

Chapter 8

315

Script section 2
The screenshot of the script section 2 is as follows:

In section 2, we loop through all the stream nodes and check for K-means models. If they
exist, we delete them. This code allows the script to be re-run even if we have an error.

Script section 3
The screenshot of the script section 3 is as follows:

In section 3, we implement the loop that gradually increases the cluster size and runs the
trials for each cluster size. Within each trial, we implement a champion/challenger approach
to finding the best model. The change in total Euclidean distance is the metric by which we
compare models.

Script section 4
The screenshot of the script section 4 is as follows:

Finally a winning model is declared and placed back into the stream.

CLEM Scripting

316

There's more...
Another shortcoming of the K-means algorithm is that K-means can be very sensitive to
the Outlier records (records with extreme values). Just a few Outlier records can dominate
the final solution as they can have a big impact on the total Euclidean distance forcing an
"Outlier cluster".

This stream/script could easily be modified to identify the Outlier records, and exclude them
from the model building phase. Identification could be achieved by looking at the Euclidean
distance of individual records after building the model, and exclude the records that fall
outside the three standard deviations of the mean. The model could then be rebuilt with
the new data set. Alternatively, you could use the Anomaly node to identify and filter out the
Outlier records.

Automating time series forecasts
The Expert Modeler functionality in Modeler greatly simplifies time series forecasting. The
Time Series node will automatically determine which model type is most appropriate for
your data: ARIMA, exponential smoothing, seasonal model, and so on. However, in practice,
a time series model nugget can only generate forecast models for a single time series. It is
possible to generate multiple time series forecasts using the Time Series node but it is largely
impractical. First, you must pivot the data such that each series is a column. Second, defining
input variable roles can become convoluted due to each field having only a single role (for
example, a field cannot be an input for one series but none for another input). Finally, you
must reverse-pivot the forecast data back to the original format to make use of it. This reverse
pivot requires you to have a fixed set of input names to pivot. With all of these limitations, the
Time Series node does not scale to large data sets without CLEM scripting.

Scripting time series models is simple and straightforward. Data sets with 10 to 100k separate
time series can be modeled and forecasted by invoking a simple script. Each time series is
individually modeled and the inclusion of input variables does not present any complication.

Examples of large time series data sets are wide-spread. In finance, it's common to forecast
financial performance across regions, divisions, warehouse, factory, store level, and so on.
The following example is taken from retail. In this example, we forecast the sales performance
for individual SKUs (that is, the individual products) at different store locations. CLEM
scripting makes this process simple and scalable. Without scripting, the forecast process
would be a tedious and time-consuming process.

Getting ready
This example depends on the weekly_sales.sav and clem_script_time_series_
forecasting.txt files. This example writes temporary files to C:\temp. Please ensure that
this directory or a substitute directory exists.

Chapter 8

317

To disable warning dialogs that require you to click OK repetitively, go to Tools | Options |
User Options and deselect the Warn when a node overwrites a file and Warn when a node
overwrites a database table options.

How to do it...
The steps for automating time series forecasts are as follows:

1.	 Start with a new stream by clicking on the New Stream option in the File menu.

2.	 Add a Statistics File source node to the upper-left of the stream. Set the input file field
by navigating to the weekly_sales.sav file using the ellipsis button. Review the
preset roles for each input variable by clicking on the Types tab.

Name the node sales_data by clicking on the Annotations tab and setting a
custom name.

3.	 Add a Sort node connected to the Statistics File node in step 2. Select the Sort by
field: CUSTOMER_LOCATION_ID, SKU_NUMBER, CAL_YEAR, and CAL_WEEK_OF_
YEAR ascending.

CLEM Scripting

318

Name the node sort_by_date by clicking on the Annotations tab and setting a
custom name. Right-click on the node and go to Cache | Enable.

4.	 Add a Distinct node connected to the Sort node in step 3. Choose CUSTOMER_
LOCATION_ID and SKU_NUMBER as the key fields for grouping. Name the node
distinct by clicking on the Annotations tab and setting a custom name.

5.	 Add a Filter node connected to the Distinct node in step 4. Filter out the last three
fields: CAL_YEAR, CAL_WEEK_OF_YEAR, and UNIT_SALES by clicking the Filter
column next to each field. Name the node filter by clicking on the Annotations tab
and setting a custom name.

6.	 Add a Table node connected to the Filter node in step 5. Name the node sku_loc_
table by clicking on the Annotations tab and setting a custom name.

7.	 Add a Select node connected below the sort_by_date node in step 3. Set the
Condition field to: CUSTOMER_LOCATION_ID = 1001 and SKU_NUMBER = 1001.
Name the node select_sku_loc by clicking on the Annotations tab and setting a
custom name.

8.	 Add a Time Interval field connected to the Select node in step 7. Configure the
Intervals tab as follows:

On the Forecast tab, set the Extend records into the future field to 4. Name the
node intervals by clicking on the Annotations tab and setting a custom name.

9.	 Add a Time Series node connected to the Time Intervals node in step 8. Name the
generated model time_series_model by clicking on the Model tab and setting a
custom name. Name the node time_series by clicking on the Annotations tab and
setting a custom name. Right-click on the node and select Run to build the model
nugget.

Chapter 8

319

10.	 Add a Filler node connected to the model nugget generated in step 9. Configure the
node to replace null values with the last non-null value as follows:

Name the node replace_nulls by clicking on the Annotations tab and setting a
custom name.

11.	 Add a Derive node connected to the Filler node in step 10. Set the Derive field to:
TIME_LABEL. Choose Formula for the Derive as field. Set the formula to: "W" ><
'$TI_Period' >< "-" >< '$TI_Cycle'. Name the node time_label by
clicking on the Annotations tab and setting a custom name.

12.	 Add a Filter node connected to the Derive node in step 11. Configure the Filter tab as
follows (note the renamed fields):

CLEM Scripting

320

Name the node clean_up by clicking on the Annotations tab and setting a
custom name.

13.	 Add a Flat File output node connected to the Filter node in step 12. Set the Export
file field to C:\temp\time_series_forecast_output.csv. Name the node
forecast_output by clicking on the Annotations tab and setting a custom name.
The final stream should look as follows:

14.	 Click on the Stream Properties option from the Tools menu and select the Script
tab. Click on the first icon in the toolbar (suitcase) and navigate to the clem_
script_time_series_forecasting.txt file. This will load the script into the top
textbox. At the bottom of the dialog choose the Run this Script option for On Stream
Execution. Click on OK.

15.	 You can now execute the script by clicking on the large green arrow on the main toolbar.

How it works...
In steps 1 to 6, we sort and cache the time series data by location, SKU number, and date.
Next, we determine the distinct location/SKU combinations so that we can iterate over all
combinations to generate the time series forecasts.

In steps 7 to 9, we define the specific time series to model/forecast (that is, location and SKU
combination). Next we define the time series interval to be cyclic weeks. We also specify a
four-week forecast interval. Finally, we use the Expert Modeler within the Time Series node to
generate an initial forecast model nugget.

In step 8 to 13, we clean up the final forecast data and write it to a CSV text file. This file
will be used in the next Automating HTML reports and graphs recipe. The replace_nulls
Filler node uses an interesting function @LAST_NON_BLANK(@FIELD). The @LAST_NON_
BLANK field is useful with time series forecasts because the non-target fields are null for the
forecasted rows. This function allows us to replicate the last non-null value into fields such as
the location and SKU.

Chapter 8

321

Script section 1
The screenshot of the script section 1 is as follows:

In script lines 1 to 17, we delete any lingering time series models. Next, we populate the table
with all the location/SKU combinations to iterate over.

Script section 2
The screenshot of the script section 2 is as follows:

In lines 17 to 42, we iterate over all the possible location/SKU combinations. Setting the
Select node condition, we can pull each location/SKU time series, build a unique model, and
generate a four-week forecast. The results are written to a CSV text file for further processing.

CLEM Scripting

322

There's more...
This script allows a repetitive task of model building and forecasting to be fully automated, but
does not necessarily scale well. A 100k location/SKU forecast data set may take more than 8
hours to complete using a single instance of Modeler running this script. A possible solution
to this single-threaded model would be to have this script running in parallel across several
instances of Modeler. This can be accomplished by:

1.	 Running multiple instances of the Modeler client on one or more computers.

2.	 Using IBM SPSS Modeler Batch with command-line scheduling.

3.	 Deployment to IBM SPSS Collaboration and Deployment Services.

No matter which method is employed, the script would need to handle concurrent access
to the same data. It would not make sense for more than one script to execute the same
forecast. The easiest approach to concurrency would be to somehow divide the input data
set by location or SKU set. A select node that filtered the input data by a range of locations
or SKUs would allow each Modeler script instance to have a unique input data set. The final
solution would need to consolidate the resultant CSV file (or simply modify the stream to write
to a shared database table).

Automating HTML reports and graphs
Generating reports from predictive models is not very exciting but it is one of the most common
applications of scripting. The main benefit of scripting is the ability to generate large amounts of
graphics and make them easy to navigate through an HTML interface. It's certainly possible and
often advisable to use a BI (Business Intelligence) platform to deliver these graphics; however
there are a few cases when the BI solution is not possible and we must use scripting:

ff A BI solution is not available

ff The visualization (for example, web plot, chloropleth, and so on) is not available in the
BI platform

ff The data to generate the BI visualization is not persisted to the database

The following example generates plots for the sales forecasts in the previous example.

Getting ready
This example depends on the sales_forecasts.sav file. Choose a local directory where
this script can write the HTML report file and JPEG images.

To disable warning dialogs that require you to click on OK repetitively, go to Tools | Options |
User Options and deselect the Warn when a node overwrites a file and Warn when a node
overwrites a database table options.

Chapter 8

323

How to do it...
The steps for automating the HTML reports and graphs are as follows:

1.	 Start with a new stream by clicking on the New Stream option in the File menu.

2.	 Click on the Stream Properties option in the File menu and choose the Parameters
tab. Set up the following parameters (exactly as shown):

3.	 Add a Statistics File source node to the upper-left of the stream. Set the input file field
by navigating to the sales_forecast.sav file using the ellipsis button. Name the
node forecast_data by clicking on the Annotations tab and setting a custom name.

4.	 Add a Sort node connected to the Statistics File node in step 3. Select the Sort by
fields: CUSTOMER_LOCATION_ID, SKU_NUMBER, YEAR, and WEEK ascending.

Name the node sort by clicking on the Annotations tab and setting a custom name.
Right-click on the node and go to Cache | Enable.

CLEM Scripting

324

5.	 Add a Select node connected to the Sort node in step 4. Set the condition to
CUSTOMER_LOCATION_ID = 1001 and SKU_NUMBER = 1001. Name the node
choose_sku_loc by clicking on the Annotations tab and setting a custom name.

6.	 Add a Derive node to the Select node in step 5. Set the Derive field to Week_Num.
Choose Formula for the Derive as field. Enter the Formula @INDEX. Name the node
forecast_data by clicking on the Annotations tab and setting a custom name.

7.	 Add a Multiplot graph node connected to the Derive node in step 6. Choose Week_
Num as the X field. Choose UNIT_SALES, FORECAST_UNIT_SALES, LCI_UNIT_
SALES, and UCI_UNIT_SALES as the Y fields on the Plot tab. On the Appearance
tab set the X label to Week and the Y label to Unit Sales. Name the node graph
by clicking on the Annotations tab and setting a custom name.

8.	 Add a Select node connected below the Statistic File node in step 3. Set the
condition to CUSTOMER_LOCATION_ID >= '$P-start_loc' and CUSTOMER_
LOCATION_ID <= '$P-end_loc' on the Settings tab. Name the node loc_
range by clicking on the Annotations tab and setting a custom name.

9.	 Add a Distinct node connected to the Select node in step 8. Select
CUSTOMER_LOCATION_ID and SKU_NUMBER as the key fields for grouping. Name
the node distinct by clicking on the Annotations tab and setting a custom name.

10.	 Add a Sort node connected to the Distinct node in step 9. Choose CUSTOMER_
LOCATION_ID and SKU_NUMBER with the Ascending option in the Sort by field. Name
the node sort by clicking on the Annotations tab and setting a custom name.

11.	 Add a Table node connected to the Sort node in step 10. Name the node sku_loc_
table by clicking on the Annotations tab and setting a custom name. The final
stream should look as follows:

12.	 Click on the Stream Properties option on the Tools menu and select the Script
tab. Click the first icon in the toolbar (suitcase) and navigate to the clem_script_
visualization.txt file. This will load the script into the top textbox. At the bottom
of the dialog choose the Run this Script option for On Stream Execution. Click on OK.

13.	 You can now execute the script by clicking on the large green arrow on the main toolbar.

Chapter 8

325

How it works...
This script generates a series for forecast graphs by iterating through a distinct list of locations
and SKUs. The output of the graph node is redirected to disk as a JPEG file using a standard
naming convention (using location and SKU number). The HTML report file references these
graphs using an IMG (image) and A (anchor) tag. The HTML report file is created by writing a
HTML syntax directly to a text (HTML) file. The final result is a report where each graph is shown
in preview. Clicking on the smaller image preview causes the full graph image to be shown (by
following a hyperlink to the JPEG file).

Script section 1
The screenshot of the script section 1 is as follows:

In lines 1 to 18, we read the user-specified output directory into a local variable. Next, we
create a table of distinct location and SKU combinations.

CLEM Scripting

326

Script section 2
The screenshot of the script section 2 is as follows:

In lines 19 to 24, we create an HTML report file, write the HEAD section, and add an overall
header for the report.

Script section 3
The screenshot of the script section 3 is as follows:

In lines 25 to 43, we iterate over all the location/SKU combinations and generate the time
series graphs. The graphs are redirected to JPEG files on disk using a standard naming
convention. After each JPEG is generated an IMG (image) and surrounding A (anchor) tag are
created to show the preview and hyperlink to the full image. Finally, we close the HTML output
and close the file.

There's more...
This example generates a very basic report. A more realistic implementation would provide a
mechanism for grouping the forecasts and provide more detail on the four-week forecast. A
Table node or Flat File node could generate a CSV file that contains the entire forecast. The
HTML report could link to each CSV file for users that wanted to pull the forecast tools such as
Microsoft Excel.

Chapter 8

327

Rolling your own modeling
algorithm – Weibull analysis

Weibull analysis is a well-known technique for understanding the reliability of physical assets
over time and is not directly supported in Modeler. The analysis is based on understanding the
failure distribution of physical assets such as bearing, switches, electrical components, pipes
(think corrosion), and so on. The only inputs to the model are the times to failure. A Weibull
failure distribution is fit to the empirical failure distribution. In the two-parameter Weibull
model, there are Alpha and Beta parameters. The parameters give insights into the failures:

ff Beta < 1 indicates infant mortality

ff Beta = 1 indicates random failures

ff Beta > 1 indicates wear-out

Alpha is the number of cycles where approximately 68 percent of circuit boards would
have failed (and can also be used to calculate the MTTF (mean time to failure). Lastly, the
CDF (cumulative distribution function), which can be calculated directly from the Weibull
parameters, can be used to predict the reliability of an asset at any point in its lifetime.

In this example, we play the role of a manufacturer testing circuit boards. All boards are run
to failure and the number of cycles at the time of failure is the input to the Weibull analysis.
If there were circuit boards that had not failed yet (so called censored observations), this
method of calculating the parameter estimates would be biased and we would need to use a
slightly different approach.

Getting ready
This example depends on the circuit_board_failures.csv and clem_script_
visualization.txt files.

To disable warning dialogs that require you to click on OK repetitively, go to Tools | Options |
User Options and deselect the Warn when a node overwrites a file and Warn when a node
overwrites a database table options.

How to do it...
The steps for rolling your own modeling algorithm (Weibull analysis) are as follows:

1.	 Start with a new stream by navigating to File | New Stream.

2.	 Add a Var. File source node to the upper-left of the stream. Set the file field by
navigating to the circuit_board_failures.csv file using the ellipsis button.
Name the node circuit_board_failures by clicking on the Annotations tab and
setting a custom name.

CLEM Scripting

328

3.	 Add a Sort node connected to the Var. File in step 2. Choose Cycles in the Sort by field.
Name the node sort by clicking on the Annotations tab and setting a custom name.

4.	 Add a Derive node connected to the Sort node in step 3. Set the Derive Field to RANK.
Choose Formula for the Derive as field. Set the Formula to @INDEX. Name the node
rank by clicking on the Annotations tab and setting a custom name.

5.	 Add an Aggregate node connected below the Derive node in step 4. Select
the Include record count in field option and specify N in the name field. Name the
node calc_n by clicking on the Annotations tab and setting a custom name.

6.	 Add a Merge node connected to both the Derive and Aggregate nodes in steps 4 to
5. Choose Keys as the Merge Method. There will be no possible keys. Choose the
Include matching and selected non-matching records (partial outer join) option.
Click on the Select button. Select the Outer Join option for the first row.

Name the node merge by clicking on the Annotations tab and setting a custom name.

7.	 Add three Derive nodes connected in succession to the Merge node in step 6.
Configure the nodes, in order, using the following table:

Name Derive Field Formula

median_rank MEDIAN_RANK ((RANK-0.3)/(N+0.4))
trans_median_rank LN_MEDIAN_RANKS log(log(1/(1-MEDIAN_RANK)))
ln_cycles LN_CYCLES log('Cycles'

Chapter 8

329

8.	 Select the nodes from sort to ln_cycles and enclose them in a supernode by
clicking on the first star icon in the main toolbar. Name the supernode weibull_
calculations by clicking on the Annotations tab and setting a custom name. The
supernode contents should look as follows:

9.	 Connect a Plot graph node to the supernode in step 8. Choose LN_CYCLES as the
X field and LN_MEDIANK_RANKS as the Y field. Name the node weibull_plot by
clicking on the Annotations tab and setting a custom name.

10.	 Add a Type node connected below the supernode in step 8. Click on the Read Values
button on the Types tab to instantiate the Type node. Set the role for LN_MEDIAN_
RANKS to Target and LN_CYCLES to Input. All other inputs should be set to None.
Name the node type by clicking on the Annotations tab and setting a custom name.

11.	 Add a Linear model node connected to the Type node in Step 10. Name the generated
model linear_model by clicking on the Model tab and setting a custom name. Name
the node linear by clicking on the Annotations tab and setting a custom name. Right-
click on the Liner node and select Run to build the model nugget.

12.	 Right-click on the linear_model nugget on the Model tab and choose Export
PMML. Save the PMML file to C:\temp\linear_model.xml.

CLEM Scripting

330

13.	 Add an XML source node below the Statistics File node in step 3. Set the XML data
source field to C:\temp\lineaer_model.xml. Navigate PMML tree to: /PMML/
GeneralRegressionModel/ParamMatrix/PCell and then click the right arrow
to set the Records field. Name the node pmml by clicking on the Annotations tab
and setting a custom name. Right-click on the Liner node and select Run to build the
model nugget.

14.	 Add a Transpose node connected to the XML source node in step 12. Choose
the Read from field option and click on the Read Values button. Name the node
transpose by clicking on the Annotations tab and setting a custom name.

15.	 Add a Select node to the Transpose node in step 14. Set the condition to
ID = 'beta'. Name the node select_model_params by clicking on the
Annotations tab and setting a custom name.

16.	 Add a Filter node connected to the Select node in step 15. Deselect the ID
variable by clicking on the Filter column. Name the node clean_up by clicking on
the Annotations tab and setting a custom name.

17.	 Add three Derive nodes connected in succession to the Filter node in step 6.
Configure the nodes, in order, using the following table:

Name Derive Field Formula
beta BETA to_number(SLOPE)
alpha ALPHA exp(-INTERCEPT/SLOPE)
median_life MEDIAN_LIFE ALPHA * log(2)**(1/BETA)

18.	 Add a Table node connected to the median_life node in step 17. Name the node
output_table by clicking on the Annotations tab and setting a custom name. The
final stream should look as follows:

Chapter 8

331

19.	 Go to Tools | Stream Properties and select the Script tab. Click on the first icon in
the toolbar (suitcase) and navigate to the clem_script_weibull.txt file. This will
load the script into the top textbox. At the bottom of the dialog choose the Run this
Script option for On Stream Execution. Click on OK.

20.	 You can now execute the script by clicking on the large green arrow on the main toolbar.

How it works...
This script and corresponding stream determine the best estimates for the Weibull
distribution parameters (that fit a set of failure data) using the regression method. The
weibull_calculations supernode contains a data preparation routine that calculates
the median ranks for the failure data. The results of the data preparation are plotted in the
weibull_plot. A straight line on this plot implies a single failure node (and ultimately that
the data came from a single failure distribution). The linear node creates a linear regression
model that is used to calculate the Weibull parameter estimates. Exporting the linear model
to PMML (XML file) allows the slope and intercept to be read into the parameter calculations
(that is, a series of derive nodes). The final results are parameter estimates for a best-fit
Weibull distribution to the failure data.

The large beta (>1) implies that the failure is due to wear-out (not infant mortality or random
failure). The median life is an (average) estimate of how many cycles a circuit board will
experience before failure. Using the ALPHA and BETA estimates we can also determine the
probability of a failure at any cycle count (for example, the probability of failure between time
t and t+n is the difference in the Weibull CDF at times t and t+n). The Weibull CDF is the
cumulative density function and can be calculated directly from ALPHA and BETA.

CLEM Scripting

332

Script section 1
The screenshot of the script section 1 is as follows:

The script starts by removing lingering linear models. Next, it generates a linear model using
the input failure data. The PMML model is exported to disk, read into memory, and the Weibull
parameters are calculated and displayed.

There's more...
This example does not use the final Weibull model for predictions. It would be a simple
modification to calculate the CDF for various time windows and calculate the probability of
failure (also known as "reliability") of circuit boards that are currently in service.

Business
Understanding

This chapter consists of four essays on the critical first phase of CRISP-DM:

ff Defining business objectives by Tom Khabaza

ff Assessing the situation by Meta Brown

ff Translating your business objective into a data mining objective by Dean Abbott

ff Producing a project plan ensuring a realistic timeline by Keith McCormick

Introduction
This is a special chapter because it does not consist of recipes but four essays through which
it addresses the subtasks within the opening phase of any data mining project—the business
understanding phase:

"Understanding the project objectives and requirements from a business
perspective, then converting this knowledge into a data mining problem definition".

Business understanding is about problem definition. It should involve management. It should
involve stakeholders. It should involve key players who will benefit from it or will be involved
in the deployed model; if deployment has not been discussed, that oversight needs to be
addressed during this phase as well. "Why are we doing this?" is the question of this phase. It
is about restating lofty goals, and turning vaguely-defined needs into a soluble problem. It is
about making better decisions, decisions informed by data.

Business Understanding

334

What decisions are you trying to make using data?
The business understanding phase should be scheduled to occur over quite a few days. They
might not be, and often are not, for days. Business understanding is all about meetings,
and therefore it suffers from the same delays that plague anything involving calendars and
meeting rooms. It is more important to get the right people than to rush through it. Deadlines
are important, but it is even more important to get it right. It is probably about a week's work
but is often spread out over two to three weeks. It is hard work, but you will know when you
have done it well. You will either feel a sense of consensus or you won't. If you have sold the
importance of it to your own self, you will find your way.

Define business objectives by Tom Khabaza
Business objectives are the origin of every data mining solution. This may seem obvious for
how can there be a solution without an objective? Yet this statement defines the field of data
mining; everything we do in data mining is informed by, and oriented towards, an objective
in the business or domain in which we are operating. For this reason, defining the business
objectives for a data mining project is the first key step from which everything else follows.

The importance of business objectives in data mining
It is possible to describe data mining or other analytical activities without reference to
business context but to do so is to omit a crucial component. It's because business knowledge
is central to every step of the data mining process. There are two reasons for this:

ff Data necessarily provides a narrow or limited view of the world—the real world
is always much richer than the data we collect about it—business knowledge is
therefore always required in order to interpret this data and relate it back to reality

ff Data mining and all forms of data analysis perform a function such as
perception; therefore, like perception, they are determined by knowledge and
directed towards goals

Defining the business objectives of a data mining
project

Defining the business objectives of a data mining project can be broken down into four steps:

1.	 Understanding the overall goals of the business

2.	 Understanding the objectives of your client

3.	 Connecting these objectives to analytical results

4.	 Linking these results to data mining goals

Appendix

335

Understanding the goals of the business
The first step in defining the business objective is to understand the overall goals of the
business or the domain in which data mining is undertaken. These vary considerably
depending on the business context, but even supposedly simple goals such as commercial
ones can have surprising subtleties, for example:

ff Commercial goals: In a commercial situation, it might be expected that the primary
goal will always be to increase profit or revenue. However, most companies are
considerably more sophisticated than this and focus on customer relationships,
quality, and the market position of their products; they often include broader
concerns such as ethical or social motives.

ff Service goals: For many organizations and government organizations in particular,
business objectives focus on the service they provide, although they may also have
revenue goals.

ff Scientific goals: Scientific organizations, and scientific departments within
commercial or government organizations, often formulate their goals in terms of the
development of knowledge.

Therefore, at the start of every data mining project, make sure that you understand the nature
of the business and its goals.

Understanding the objectives of your client
Within a given business, different individuals or departments have their own objectives;
these may be stated in writing or may be implicit in a job title or job description. Often these
objectives are embodied in one or more KPIs (key performance indicators) that are used
to measure success in or progress towards these objectives. When formulating business
objectives for a data mining project, it is helpful to relate these to the objectives and KPIs of
the client who commissions the analysis; this allows a direct understanding of the benefits
that the project will bring in relation to the objectives of the client. For example, in a project for
a client with customer management objectives, the business objectives may be expressed in
terms of KPIs such as churn rate or cost of acquisition per customer.

Connecting specific objectives to analytical results
Once you have understood the overall goals of the organization and the objectives of your
client, the next step is to select analytical results or targets that will have benefits from these
objectives or KPIs.

Business Understanding

336

This requires a combination of business understanding and analytical knowledge, and these
results can be very varied; however, for data mining, they always fall into two categories:

ff Insight or new knowledge: An analysis may reveal a new fact, for example, a
relationship between customer attrition and the length of service or products held,
or a complex relationship such as combinations of factors influencing customer
retention. The key property of insight is that it is knowledge in the head; insight is
usually delivered as a presentation or a report providing information, which will then
be used by the business.

ff Predictive models: Data mining also has the option to deliver results in the form of
predictive models, that is, knowledge in an artificial form. Different kinds of predictive
models (such as classification, regression, clustering, or association models) vary
in how they are used, but they all have one thing in common: they can improve the
information available about a specific example (such as a customer). They do this by
adding information that has been derived by generalizing over a range of examples—
this is the function of data mining algorithms.

In order to select analytical results that will contribute to a specific objective or KPI, consider
how newly acquired knowledge or predictions of models will be used to further these
objectives; the use of analytical results should always be at the front of a data miner's
thoughts. One guideline is that management or strategic objectives are often served by
insight, whereas operational decision making is often aided by predictive models. However,
predictive models of more readable kinds such as decision trees and rule sets (and also
analyses of the behavior of less-readable models) can be interpreted to deliver insight for
management or strategic purposes.

Specifying your data mining goals
When defining business objectives for a data mining project, the data miner must
simultaneously consider the likely data mining goals that these objectives will generate, such
as segmenting the customer base in a particular way or predicting the likelihood of a specific
customer behavior. This is necessary because the likely consequent data mining goals,
considered in the light of what is technically possible, may lead to adjustments or refinements
of the business objectives. The specification of data mining goals will be described in more
detail in the Translating your Business Objective into a Data Mining Objective by Dean Abbott
essay, later in this Appendix.

Appendix

337

Assessing the situation by Meta Brown
Modern computers and software make it easy to dive into data and explore, so why delay
the action with assessment and planning? Why not get right down to business and see
what develops? Your organization, be it business, a government agency, or nonprofit, has
a mission. Your role as a data miner is to provide relevant information in support of that
mission. Assessment and planning early in the data mining process aligns your efforts with
management goals and maximizes your chances of developing information that is actionable,
rather than merely interesting.

Time is your most precious resource, so ensure that you use it to meet the expectations set out
for you. There's a simple survival motivation—if you don't deliver what your manager requires,
and on time, it won't be good for you. Yet you want more than mere survival. It feels good to
uncover really useful information, to find something that was not obvious to others, or to give
factual support to what was once just a hunch. Perhaps you have some personal theories you'd
like to explore; you will be able to do that if you get the requirements covered first.

Does any project go so smoothly that no roadblocks are encountered along the way? Perhaps
you will face unexpected resistance to access the data you require. The tech support contact
that has always been so helpful may be replaced by someone who is less cooperative. The
subject matter expert whose help you require may not consider your project a high priority.
Early preparation readies you to effectively address problems such as these so you can get on
with your work.

As you go through the assessment and planning steps, understand that you are about to do
much more than thinking and chatting. Each item must be documented in writing. Sponsoring
managers should review these documents and revise them if necessary. Documents must
be easily available to the data miners as the project progresses. These documents provide
guidance as you go about your everyday work, support when challenges arise, and verify that
the information you deliver is consistent with the goals set at the start.

Taking inventory of resources
Gather all the documents that mention the resources to be used in your project. Think broadly
when considering resources; these may include intangibles such as executive sponsorship
and approvals as well as direct resources such as people participating in the project, budgets,
and hardware. Any informal notes and verbal or informal understandings should now be
properly documented.

Business Understanding

338

Some documents may contain private or sensitive information that is not appropriate to
include in the project file. For each document of this type, create a simple document outlining
the nature of the resource mentioned and the information that data miners working on the
project will require. In some instances, these replacement documents may be as simple as
the originals with sensitive information such as passwords omitted and replaced with the
name of the person who has access and knows the password. While the original document
contains a lot of sensitive or irrelevant information, the replacement document may be a
summary of any sections relevant to data mining project resources, again with reference to
the original source document and appropriate contacts.

Create an outline listing the major resource types for your project. These will include items
such as the project description, personnel, data sources, and other relevant categories. Using
the information in the documents that you have saved, prepare a summary for each heading
in your outline. For example, under personnel, list the names and roles (data miners assigned
to the project, a business expert or subject matter expert, and so on) of each person,
information about skills and experience, and other details. Data should include explanations
of the general purpose of the data source, how it may be accessed, data dictionaries (detailed
descriptions of fields and coding within the data source), and so on. The project description
may be the most difficult section to complete. In most instances, you will find that there are
gaps in either your level of understanding or in project resources, or in documentation.

Take action now to obtain additional documentation for any areas where your understanding
about resources is still informal. In some instances, this may require only an e-mail to confirm
that a certain resource is at your disposal. Other items may be far more challenging, requiring
meetings and considerable discussion. Tackle these now. Most important are the elements of
the project description itself.

By establishing a clear, documented explanation of the work to be done and the resources
available, you will save time and other resources while the work is underway. Revise and
complete your summaries of each resource type in the outline. Circulate the document to
project participants for final review and make any necessary corrections.

Doubts or disagreements about the direction of your project can be resolved by reviewing
the project description and its evaluation criteria. Resistance from data gatekeepers can be
addressed by referring to the original correspondence assuring access. In most instances,
you will be able to resolve questions and conflicts without requiring further involvement of the
management, and when it is required, your preparation will smooth the path.

Appendix

339

Reviewing requirements, assumptions, and constraints
Prepare summaries for your understanding of project requirements, assumptions, and
constraints. The more thoroughly you determine business objectives, the easier it will be
to prepare these summaries. In most instances, though, you will discover some gaps in
your understanding. The requirements section should refer to the project description and
also include information regarding executive sponsorship and success criteria. You must
establish a clear understanding of expectations, especially of how results will be evaluated.
Assumptions may be verifiable (such as the distribution of a particular variable in the dataset)
or not (such as the future level of growth in GDP). State whether each assumption is verifiable
and if so, how. Constraints may include deadlines, resources and technological limitations,
boundaries related to privacy and legal obligations, and others.

A well-defined understanding of management expectations is the most valuable thing a data
miner can have. Establishing this from the start maximizes the chances of producing results
that will motivate an executive to take action. Remedy any obvious gap in information through
additional research and discussions to complete the summary of requirements, assumptions,
and constraints.

When your project is completed, you will be making a report to the management on the
results in writing, as a presentation, or both. By introducing your report with a reminder of the
goals and success criteria set by the management for you at the start, you will establish that
the results you are about to show are exactly what was requested. It means that they must be
evaluated based on the criteria that were set from the start, and that if the results meet those
criteria, the executive must follow through with the next steps.

Identifying risks and defining contingencies
Using the documents that you have saved, including dark and creative thinking, list all the
risks that could delay or halt your work; organize these in categories. For example, your work
depends on computing resources. What could threaten your access to computing resources?
Hardware failure, network failure, and competing demands for use of equipment are among
the possibilities. For each of these, create a contingency plan with one or more alternatives.
Each contingency plan should first include preventive measures. Often, a bit of maintenance
or negotiation now avoids aggravation and delays later. If you encounter any risks for which
a satisfactory contingency is not available, address this concern with the management. An
influential advocate may be able to open up alternatives or assure a greater level of security.
If any of the contingencies that you have planned require the assistance of others or access
to resources not normally under your control, contact the parties involved and verify that the
contingency is realistic.

Business Understanding

340

When your project is threatened, you will be able to respond quickly and effectively if you have
a clear contingency planned in advance. No executive is sympathetic to excuses about project
delays, no matter how valid they are. Stand out from the crowd by making productive use of all
your time, even when conditions make that difficult, and completing your work on time, even
when others do not.

Defining terminology
Review the documents that you have created and saved earlier. Cull these, creating a list of
abbreviations, acronyms, and terminology that may not be immediately understood by all
the stakeholders. As you review materials, imagine that it will be read long after the project
is completed by someone who has a good understanding of business in general, does not
work in your organization, is not very familiar with your field, and is not a data miner. What
terms would be less than clear if the reader were an outside consultant, a new employee, or a
manager coming from a different department or industry?

Organize the terms into three categories: general business terms—those that are used in many
organizations—organization-specific terms, and data mining terms. Pay particular attention
to organization-specific terms, as these are often problematic for outsiders or for those
reviewing older projects after internal changes have caused terminology to change. If you have
not documented those terms, important points in your work may become incomprehensible
over time. Define all the terms, making an effort to explain how these are used within your
organization. Illustrate your definitions with examples that are relevant to the project.

A glossary of terminology is a resource that helps all the stakeholders to clearly understand
one another.

As you proceed with your work, refer to the glossary occasionally and make an effort to add
additional terms as they arise and improve on the definitions you have created. You may
choose to refer to specific steps and results in the data mining project.

Never consider the glossary as completely finished; treat it as a living
document.

When the time comes to prepare your final report, the glossary will remind you of what
terms to use that can be clearly understood by the management as well as refining your own
understanding of those terms. You may choose to include the glossary as an appendix to written
reports. In any event, be sure that the glossary is archived with other project resources. It is an
important resource, even for your own use, when reviewing projects at a later time.

Appendix

341

Evaluating costs and benefits
Review the material that you have prepared earlier in the project assessment, particularly
materials relating to project requirements and their success criteria. Extract goals and
success metrics. If these are not already stated in monetary terms, they must be converted.
For example, perhaps the success metric is the conversion rate for a marketing campaign,
and the success criteria calls for action if the conversion rate improves by 5 percent for a
particular intervention.

How much money will that bring in for the company? You may have to assemble several facts
to determine the answer. If the current campaign results in 100,000 sales at an average of
50 dollars, meeting the success criteria implies an additional 100,000 sales, which means it
need to be 5 percent of 50 dollars per sale, or at least 250,000 dollars in increased revenue.
In the same manner, identify any costs associated with the alternatives you will investigate.
Include these in your summary side-by-side with benefits.

The cost/benefit analysis is a reality check for both the data miner and the business. Data
miners must be reminded of the difference between an interesting model and solid return
for the business; business managers cannot dismiss analytics when the financial impact is
made clear.

Keep in mind that you are a data miner and not an accountant, so keep the analysis simple. It
must be reasonable but not perfect. If your project absolutely demands a sophisticated cost/
benefit analysis, it may be worthwhile to enlist the aid of an appropriate expert in finance.

No part of your final report will be more important or compelling than the information that is
expressed in terms of cold, hard dollars. Indeed, this varies little even in organizations that
are not profit-making businesses. If you have performed a cost/benefit analysis at the start
of your project, you have a good motivator for everyone involved. You can be certain that your
effort is worthwhile and that executives will understand the significance of your findings, not in
the statistical sense but in terms of financial impact to the organization.

Translating your business objective into a
data mining objective by Dean Abbott

The business objectives use business language to describe the purpose of the data mining
project. However, business objectives are not sufficiently specific to build predictive models;
business objectives must be translated into data mining goals. These data mining objectives
should be expressed in the language of data mining or data mining software so that the
objectives are clear and reproducible.

Business Understanding

342

For example, let's assume the federal government is trying to crack down on government-
contracting invoice fraud. A broad business objective may be to identify fraudulent invoices
more effectively from the millions of invoices submitted annually. A more specific business
objective may be to develop predictive models to identify 100 invoices per month for
investigators to examine that are highly likely to be fraudulent.

For the former, the business objective can be to create a data mining objective such as
building classification models to predict the likelihood of an invoice being fraudulent. Note
that this definition not only defines what type of model will be built (classification) but also the
level of analysis to be used (each record is an invoice, rather than an invoice payee).

One could be more specific in the data mining definition to clarify the nature of the prediction.
Rather than a single binary outcome of fraudulent versus nonfraudulent as the label for each
invoice, if we hypothesize that models can be built more accurately and that the specific
type of fraud should be predicted, our data mining objective can be rephrased as building
classification models to predict the likelihood of an invoice belonging to each of the four types
of invoice fraud.

One other aspect to consider in creating the data mining objective is that data mining projects
require data miners with particular skill sets. The tuning of the business objective should keep
in mind who will be performing the analysis so that there is sufficient matching of the skill set
with the analyst.

The key to the translation – specifying target variables
As we have seen, the data mining objective(s) is a translation of the business objective,
worded in the language of data mining. Latent in the data mining objective is perhaps the
most critical part of the data mining objective definition: specification of one or more target
variables. The very process of creating one or more columns in the data that are the target
variables requires clarity and specificity in ways that can be finessed when only words are
used in describing the data mining objective.

In the invoice fraud example, the very definition of fraud is key to the data mining modeling
process. Two definitions are often considered in fraud detection. The first definition is the
strict one, labeling an invoice as fraudulent if and only if the case has been prosecuted
and the payee of the invoice has been convicted of fraud. The second definition is that of a
looser, labeling an invoice as fraudulent if the invoice has been identified as being worthy of
investigating further by one or more managers or agents. In the second definition, the invoice
has failed the "smell test" but there is no proof yet that the invoice is fraudulent. Many more
potential target variable definitions exist, but these two are each reasonable definitions for our
consideration here.

Appendix

343

Note that there are advantages and disadvantages of each option. The primary advantage of
the first definition is clarity; all of those labeled 1 are clearly fraudulent. However, there are
also several disadvantages. First, some invoices may have been fraudulent, but they did not
meet the standard for a successful prosecution. Some may have been dismissed based on
technicalities. Others may have had potential but were too complex to prosecute efficiently.
Still others may have shown potential, but the agency did not have sufficient resources
to pursue the case. The result is that many 0 values really have potential but are labeled
the same as those cases that have no potential at all. In fact, there may be more of these
ambiguous nonfraudulent invoices than there are fraudulent invoices in the data.

On the other hand, if we use the second definition, many cases labeled 1 may not be
fraudulent after all, even if they appear suspicious upon first glance. In other words, some
"fraudulent" labels are done prematurely; If we had waited long enough for the case to
proceed, it would have been clear that the invoice was not fraudulent after all. Relaxed
definitions of fraud can increase the number of invoices labeled as fraudulent in the data by a
factor of 10 or more.

There is no perfect definition of a target variable. The definition should be formulated to match
the business objective as completely as possible and to meet the core business objectives
of the organization. It may be the case that the best match of a target variable definition with
the business doesn't exist, and a compromised target variable must instead be selected. It is
often the case that these compromises, while not desirable, enable the organization to build
models that improve upon already established practices, and thus are still valuable.

Data mining success criteria – measuring how good
the models actually are

The determination of what is considered as a good model is project-dependent and depends
on the business success criterion or criteria. If the purpose of the model is to provide highly
accurate predictions or decisions to be used by the business, measures of accuracy will be
used. If interpretation of the business is what is of most interest, accuracy measures will not be
used; instead, subjective measures of what provides maximum insight may be most desirable.
Some projects may use a combination of both so that the most accurate model is not selected if
a less accurate but more transparent model with nearly the same accuracy is available.

Success criteria for classification
For classification problems, the most frequent metrics for model selection in data mining
include Percent Correct Classification (PCC); confusion matrix metrics such as precision
and recall, sensitivity and specificity, Type I and Type II errors, and false alarms and false
dismissals; and rank-ordered metrics such as Lift, Gain, ROC, and Area Under the Curve
(AUC). AUC can be computed from any of the rank-ordered metrics.

Business Understanding

344

PCC and the confusion matrix metrics are good when an entire population must be scored
and acted on. Medical diagnoses are an example of this. If one will treat only a subset of the
population, rank-ordering the population and acting on only a portion of those in that "select"
group can be accomplished through metrics such as Lift, Gain, ROC, and AUC.

Also, any number of customized cost functions can be created from the quadrants of a
confusion matrix. Most commonly, practitioners will weigh the quadrants to emphasize some
errors over others as being particularly unwelcome. If one would like to reduce false alarms,
for example, one could weigh these twice as much as false dismissals and create a single
score base on the custom formula.

Success criteria for estimation
For continuous-valued estimation problems, metrics often used for assessing models are R^2,
average error, Mean Squared Error (MSE), median error, average absolute error, and median
absolute error. In each of these metrics, one first computes the error of an estimate, which
is the actual value minus the predicted estimate. The metrics then sum errors over all the
records in the data.

Average errors can be useful in determining whether the models are biased toward positive or
negative errors. Average absolute errors are useful in estimating the magnitude of the errors
(whether positive or negative). Analysts most often examine not only the overall value of the
success criterion, but also examine the entire range of predicted values by considering scatter
plots of actual versus predicted values or actual versus residuals (errors).

In principal, one can also include rank-ordered metrics such as AUC and Gain as candidates to
estimate the success criteria, though they often are not included in data mining software for
estimation problems. In these instances, one needs to create a customized success criterion.

Other customized success criteria
Sometimes none of the typical success criteria are sufficient to evaluate predictive models
because they do not match the business objective. Consider the invoice fraud example
described earlier. Let's assume that the purpose of the model is to identify 100 invoices per
month to investigate from the hundreds of thousands of invoices submitted. If one builds a
classification model and selects a model that maximizes PCC, we can be fooled into thinking
that the best model as assessed by PCC is good, even though none of the top 100 invoices are
good candidates for investigation. How is this possible? If there are 100,000 invoices submitted
in a month, we are selecting only 0.1 percent of them for investigation. The model could be
perfect for 99.9 percent of the population and miss what we care about the most, the top 100.

Appendix

345

In situations such as this one, when there are very specific needs for the organization, it is
best to consider customized cost functions. In this instance, we want to identify a population
of 100 invoices such that it maximizes the chances of these 100 invoices being true alerts
(not false alarms). What metric does this? No metric addresses this directly, though ROC
curves are close to the idea. Instead, the best way to rank the models is the direct method,
that is, pick the model that maximizes the true fraud alert rate in the top 100 invoices of
the scored population, ignoring the rest of the population. Data miners should adjust their
algorithm settings appropriately to focus the attention of the classifiers on accuracy at the
top of the predicted probabilities, such as weighting the cost of false alarms higher than the
errors estimating true alerts.

Another candidate for customized scoring functions include Return On Investment (ROI) or
profit, where there is a fixed or variable cost associated with the treatment of a customer or
transaction (a record in the data), and a fixed or variable return or benefit if the customer
responds favorably. For example, if one is building a customer acquisition model, the cost
is typically a fixed cost associated with mailing or calling the individual; the return is the
estimated value of acquiring a new customer. For fraud detection, there is a cost associated
with investigating the invoice or claim, and a gain associated with the successful recovery of
the fraudulent dollar amount.

Note that for many customized success criteria, the actual predicted values are not nearly
as important as the rank order of the predicted values. If one computes the cumulative net
revenue as a customized cost function associated with a model, the predicted probability
may never enter into the final report, except as a means to threshold the population into the
"select" group (that is to be treated) and the "nonselect" group.

Produce a project plan – ensuring a realistic
timeline by Keith McCormick

Since data mining is closely affiliated with other approaches, new practitioners of data mining
often surprise their colleagues when they suggest that the data mining project will take many
weeks. If one is confusing it with running ad hoc reports on an already identified problem
area, the timeline discussed in this section may seem surprising. On one's very first data
mining project, the new data miner may not feel fully prepared themselves. This section will
explore each of the CRISP-DM phases and examine some considerations for estimating how
long each phase will take. In general, something in the order of 8 to 20 weeks is probably a
good rule of thumb.

Business Understanding

346

Business understanding
There is a general agreement among veteran data miners that novice data miners do not
spend enough time on business understanding. One of the challenges during business
understanding is that it involves many voices throughout the enterprise. The junior analyst
might not frequently attend meetings with C-level executives, but during this phase, it is
always a good idea to work their way up the hierarchical chart until one reaches the decision
maker who will be approving the actual deployed results of the data mining project. If the
internal beneficiary of the project is not in attendance for at least one planning meeting,
the project will probably be deployed via a slide presentation. One hopes that it is a slide
presentation leavened with considerable insight, but it will still be just a slide presentation.
If the project's ambition aims higher, it is critical to involve key decision making in the actual
activity of business understanding, or at the very least, signing off on the conclusions of
business understanding before the project begins in earnest.

As a result of having many players, business understanding cannot be rushed. This is not a
phase where the data miner can burn the midnight oil and push forward on their own. It is
good practice to assume the eight hours of progress each day may not be possible in this
phase. Real progress can only be made in a group setting, and meetings can be hard to
schedule. Although it may only require two to five days of solid work, it is a good idea to allow
two weeks on the calendar to accomplish it. Finally, always remember to allow time to write
the conclusions of each phase and to communicate those results to others. This is not to say
that CRISP-DM phases come to an abrupt halt before the next phase can begin. This is not
true. CRISP-DM tends to be highly iterative. Nonetheless, writing a business understanding
report before moving on is being wise.

Phase About the phase Duration

Business
understanding

2 to 5 days of solid work, but it is difficult to
schedule. Give yourself plenty of ''calendar
time".

1 to 2 weeks

Data understanding

It helps in understanding whether:

ff Analysts have direct access to the data

ff Analysts have ready access to IT support

ff There are delays in getting data

2 to 8 weeks

Appendix

347

Phase About the phase Duration

Data preparation

Famously estimated to be 70 to 90 percent
of the actual work hours of the data mining
lead. ''Clean'' data doesn't eliminate this
need, although it helps. Tread carefully ... data
preparation can explode your timeline.

3 to 10 weeks*

Modeling

No model is ever optimal but diminishing
returns kick in pretty early. An experienced
modeler can make tremendous progress in
a week as long as there is no residual data
preparation.

1 to 2 weeks

Evaluation

Evaluation is usually not very time-consuming,
but the following two factors can change that:

ff Whether management needs a walk-
through

ff Whether you want to conduct a ''dress
rehearsal'' on the current data

1 week*

Deployment

This phase will answer the following questions:

ff What form will deployment take?

ff Will deployment involve changes to the
data warehouse?

ff Will deployment be complex in real
time?

1 to 6 weeks

Data understanding
Reasonable veterans of the process might quibble on this distinction, but a general tendency
is for data understanding to be largely a group activity whereas data preparation is often
a largely solitary one. Why? When the data miner is an outsider (either of the department
or of the entire organization), he/she has to seek out allies who know some aspect of the
organization's data that they do not. Even when a data miner and a subject matter expert are
sitting side by side throughout the process, the most compelling data mining projects always
involve some integration of data that has not been attempted before, leaving even the subject
matter experts seeking help from others. When one only searches in standard tables that pre-
exist the project, there is a considerable risk that what will be discovered has already been
baked into a cake, that is, your discoveries might be limited to problems that have been at
least partially addressed.

Business Understanding

348

As a result, data understanding will tend to expand to the amount of time that you can
allocate to it. One attempts to get access to as much relevant data as one can while still
staying on schedule. One approach is to identify a true expert within each major department,
getting an audience with them along with one's lead SME in attendance, and asking them
what they have to offer. How long will this take? How many departments are there, and how
many SMEs do you have to interview? A key step in the process is to mark the calendar with
the arrival date of each piece of data—the contribution of each department. If this is not a
factor in your project, the phase will go quicker. If you have direct access to all the data and do
not rely on third parties to help you get it, the phase will go quicker.

Once the data is available in its raw form, you will have to explore it. Naturally, 50 variables
tend be quicker than 1,200. While in statistics, one usually attempts all the univariates
and bivariates, this is often impossible in data mining as the number of variables scale up.
Still, some effort must be made to look at the individual pieces before data cleaning, data
augmentation, and data integration can begin (during data preparation).

Don't forget to leave time for:

ff A round of questioning with SMEs during and after data exploration

ff Delays waiting for data to arrive a second time (if problems are found)

ff Documenting what you have found

ff Revisiting business understanding if you conclude that certain data is not available
after all (or not available on schedule)

Data preparation
Where does all the time go? If the old adage that 70 to 90 percent of the project hours may
be spent in activities associated with data understanding and this phrase is true, where
are all of those hours being spent? The origin of this estimate is mysterious, and its source
cannot be easily nailed down; however, even though most of them have acknowledged that
there is no hard evidence to back it up, most agree that its percentage should be high. If your
organization has super clean data stored in the latest data warehousing technology, will your
experience be different, better? Does Big Data complicate, slow down data preparation?

The trick in understanding where the time goes is that data preparation comes in more than one
flavor, and no data warehouse will eliminate all of it. CRISP-DM lists five: select, clean, construct,
integrate, and format. Data in a data warehouse is there to support routine reporting and
operating the business.

Appendix

349

A really solid data warehouse may help with clean and format but will not likely help with select,
construct, or integrate. Why? Let's investigate each in turn.

ff Select: Data will be usually selected for reasons that are driven by the goals of the
project and as such will not have been anticipated by the teams that are in charge
with long term storage of data. Most data miners agree that sampling is a critical
component of data mining. It is not a technology issue, nor is it a question of the
increasingly vast amounts of data, and not all of it is relevant. Good modeling often
requires balancing and always requires partitioning (training and test partitions). In
short, the size of your data warehouse since its inception is not a good indicator of
the size of your training data set. Assessing this and choosing the right data to model
takes time, and that time must be allocated.

ff Clean: If you have done a good job of building your data warehouse, this step is
simplified. The less messy, the less time it would take; however, ensure that you make
no mistake. Few data miners will ever encounter truly clean data in their careers.
And even when it is clean, a null in the data warehouse might need to be a zero in
the model of vice versa. Nonetheless, if the data has been thoroughly cleaned, this
particular generic task might take less than a week. If it is not clean, there is almost
no limit to the potential delays. One might even conclude that the data mining project
must wait until the situation is addressed, first addressing the overall problem and
only then cleaning for the purpose of a particular data mining project.

ff Construct: At the risk of generalizing too much, this is the phase that gets data
miners in trouble; the time consumer that they don't see coming, the destroyer of
time lines, the endangerer of model quality. Quite simply, the best variables in one's
model probably don't exist at the start of the project. A variable such as previous
month spend/rolling 12 months spend is a good example. No variable such as this
is stored in one's data warehouse but can be terribly useful in predicting changes
in behavior. Their relevance has to be slowly ferreted out, their formulas have to be
crafted often with much trial and error, and their efficacy must be shown. Then they
have to be paraded in front of the algorithms along with dozens or hundreds of their
siblings, awaiting the conclusion of dozens of modeling attempts. When you're done
with the modeling, you will notice that it is often these kind of variables that are
populating the top 10 list.

ff Integrate: Most data miners anticipate this—the combining of data tables. In
Modeler, this takes the form of merging, appending, and aggregating. However, one
might assume that the queries that one needs already exist. Probably not. The data
miner frequently has to go all the way back to the billing detail to calculate something
that was lost in the aggregating done for reporting. In other words, it often has to be
done all over again since the needs of reporting and the needs of the data miner are
almost always different. Doing this over again takes time, usually a couple of weeks.

Business Understanding

350

ff Format: How compatible are the formatting decisions you have already made with the
needs of your data mining software? Did you anticipate all the variable declarations,
data formatting, file formatting, naming conventions, and so on as they apply to the
modeler? Frankly, it's unlikely. There are always little, and not so little conflicts, that
pop up between the way departments store data or how data is parsed in Modeler.
Modeler is a powerful software, but it is not immune to little formatting conflicts. Few
data miners define this task as fun, but it is usually present at least to a degree. If
the data warehouse is in good shape and your infrastructure is fairly current, this
task might be no more than a bump in the road, taking relatively less amount of
time. Data mining as a discipline has matured, and as Modeler has matured as well;
this task is less and less of an issue. One might get away with only a data or so. An
experienced user of Modeler spots these issues early and might avoid most of them
before they happen. As many as 20 or 30 years ago, business users dreaded trying to
install a new printer, but formatting compatibility becomes less of an issue with each
new release of analytics software.

Modeling
Modeling is the phase that gets all the attention. Many books are dedicated to it. You would
think that you need to allocate the vast majority of time to this phase. Not quite!

8th Law of Data Mining, by Tom Khabaza, the Value Law, states:

"The value of data mining results is not determined by the accuracy or stability of
predictive models".

In the clever article of Dorian Pyle about rules not to follow, the fifth rule is Find the best
algorithms in which he urges the reader to spend all of their available time on modeling.

The blog post written by Will Dwinell take on this, quoted later, is a third data miner's voice
in the chorus. Certainly all the authors of this cookbook would join in saying that poor
workmanship in the earlier phases will not be compensated for spending extra time on
modeling. So how do you know how much time to spend? One to two weeks. There you go—a
rare direct recommendation. If you have more time to spend than that, consider spending the
time in another phase, particularly in data understanding and data preparation.

How should the time be spent? Expect to build several dozen models such as different
algorithms, difference settings, balanced and not balanced, and variations on the target
variable. The details could, and have, make a book, but you will hit economies of scale in that
one- to two-week time frame, and often in just the first week. By then, you will be fighting for
that last 1 percent of increase in accuracy. In time, with experience, the modeling phase may
even start to feel like a valediction of sorts, eventually arriving at this phase with a sense of
relief that the toughest part is over.

Appendix

351

Evaluation
Will Dwinell wrote a blog post on this subject entitled Data Mining and Predictive Analytics:

Within the time allotted for any empirical modeling project, the analyst must decide
how to allocate time for various aspects of the process. As is the case with any
finite resource, more time spent on this means less time spent on that. I suspect
that many modelers enjoy the actual modeling part of the job most. It is easy to try
"one more" algorithm: Already tried logistic regression and a neural network? Try
CART next.

Of course, more time spent on the modeling part of this means less time spent on
other things. An important consideration for optimizing model performance, then,
is: Which tasks deserve more time, and which less?

Experimenting with modeling algorithms at the end of a project will no doubt produce
some improvements, and it is not argued here that such efforts be dropped. However,
work done earlier in the project establishes an upper limit on model performance.
I suggest emphasizing data clean-up (especially missing value imputation) and
creative design of new features (ratios of raw features, etc.) as being much more
likely to make the model's job easier and produce better performance.

A fair question is, what is the difference between the assessment task of modeling and the
evaluation phase? Revisiting the 8th Law of Data Mining is in order. Tools such as Lift, AUC,
overall accuracy, and so on, are just those tools. They help us sort through dozens of model
variations that due diligence requires us to examine during the modeling phase. When we get
to the evaluation phase, however, we must remind ourselves that companies don't earn ROI
on Lift (well, certainly not directly, they don't). What was the purpose of the data mining model
in the first place? Reduce marketing expense—well, how much does the model help us reduce
marketing expense. In other words, in this phase, we must translate the data mining question
back into the language of the business question and evaluate the efficacy in business terms.

Time to get that internal customer back into the meeting room. Only with the help of
management can we choose from the semifinalists the models that emerged from the
modeling phase showing promise on the technical criteria. It is fine to choose those models
on the basis of a criterion that is one generation removed from the business criteria because
evaluation can be time-consuming and might require the analyst to collaborate with members
of the marketing team, or the finance team, or the operations team to get their numbers
straight. One does not do that analysis on 50 or 100 models. But the number of promising
models is narrowed down to the range of three to eight; it is time for the actual beneficiaries
of the model with the business to help chose the final models. Although, it is possible for this
to take just a week or so, it is also possible that it might take several weeks. Often evaluation
takes the form of a "dress rehearsal"—that is for a month or more, running the business on
two parallel tracks. The first track is the way it has always been done, and the second track is
in a way informed by the chosen model.

Business Understanding

352

Perhaps it is in an experimental region or for a randomly chosen group of customers, but it
is the ultimate test. Deciding how to complete work on this phase depends on the nature of
the stakes and the project's budget, but naturally the duration can vary wildly as a result of
it. Most internal customers, however, will recognize that when you have entered this phase,
the potential for saving or for revenue gain has already arrived, and that often the analysis
team can breathe a sigh of relief at this point, surrendering part of the responsibility to other
parties. If you are working in an organization that has access to IBM Collaboration and
Deployment Services (C and DS) or IBM Decision Management, the role of those packages
will wax as the role of modeler will begin to wane.

Deployment
Deployment truly deserves its own book, perhaps even its own cookbook. It is even more difficult
to generalize about this phase than the others, because for other phases, we can assume that
as a reader of this book you are using Modeler for data preparation and modeling. We cannot
assume very much at all about how you plan to deploy. Will you deploy in real time or in batch?
Will you have the IBM deployment resources mentioned at the end of the Evaluation section. If
you are deploying directly to a modeler client, a week is probably realistic.

What is involved? In theory, all you are doing is changing the source data and running
the exact same stream on the current data; however, in practice you will not want to do that.
You will want to revisit your Modeler streams and ensure that only transformations (and there
will be lots of them) that are necessary at deployment are present. In other words, remove
derived nodes that represent inputs that were considered but rejected. You might also
discover some efficiencies that escaped your attention during modeling when speed was not
as important as accuracy. Now on to deployment where accuracy has been established but
speed needs to be maximized.

You may have to call a meeting to discuss topics that might not sound like they are in the
analyst's bailiwick such as interface design or executive dashboards. This is all for the
good, frankly, because it ensures that the model will be utilized. Isn't that the goal? If more
elaborate forms of deployment are considered such as real-time deployment, the deployment
phase can be equal in time and scope to the other phases combined. All of the estimates of
data preparation being 70 to 90 percent of the scope did not envision the intricacies of real-
time deployment. It is almost like a second project but can absolutely be worth it because the
possibilities for ROI are compelling.

Appendix

353

Deployment is a good candidate for the second prize next to business understanding in the
phase that far too many data miners invest too little in. No project can really achieve anything
without either. Without business understanding, you run the real risk of solving the wrong
problem. In the final phase, an impressive model that never rises above the status of a slide
deck is always inferior to a competent model that is actually deployed.

Index
Symbols
@FIELD function 128
>< function 182
@GLOBAL variable 98
@LAST_NON_BLANK field 320
@NULL multiple Derive

used, to explore missing data 38-41
_null variables 90

A
Active donor 25, 95
aggregate

used, for creating classification tree financial
summary 266-268

aggregation
flag variables, creating for 146-148

allbutfirst function 189
analytical results

specific objectives, connecting to 335, 336
ANN 285
Area Under the Curve. See AUC
Artificial Neural Networks. See ANN
Association Rules

used, for interaction detection / feature crea-
tion 148-154

assumptions
reviewing 339

AUC 343
Auto Classifier

balancing, evaluating with 205-208
used, to tune models 233-237

B
bagged logistic regression models

creating 222-229
balancing

evaluating, with Auto Classifier 205-208
benefits

evaluating 341
BI (Business Intelligence) 322
bootstrap sample

creating 216-222
business goals

about 335
commercial goals 335
scientific goals 335
service goals 335

business objectives
about 334
business goals, understanding 335
client objectives, understanding 335
data mining goals, specifying 336
in data mining 334
specific objectives, connecting to analytical

results 335, 336
business understanding 333, 346, 347

C
Cartesian product merge

performing 171-173
performing, dummy keys used 174-176

categorical values
grouping 136-141

CDF (cumulative distribution function) 327
CHAID modeling Node

used, for selecting variables 72-76

356

CHAID stumps
using 26-33

champion/challenger model
implementing 299-304

classification tree financial summary
creating, aggregate used 266-268
creating, Excel Export node used 266-268

classification trees
used, to explore predictions of Neural Net

251-254
clean downstream

performing, Filter node used 183
CLEM expression language

functions 182
CLEM scripting

about 284
best practices 284
shortcomings 284

cluster centers
writing, to Excel for conditional formatting

262-265
commercial goals 335
conditional formatting

cluster centers, writing to Excel for 262-265
constraints

reviewing 339
contingencies

defining 339
conversion rates

calculating 131-136
comparing 131-136

correlation matrices
used, for removing redundant variables 68-

72
costs

evaluating 341

D
data

preparing 348-350
reformatting, for reporting with Transpose

node 269-273
data integration

missing data, evaluating 59- 62
Data miners 244

data mining goals
specifying 336

data understanding 347, 348
date arithmetic

performing 185-193
datetime_date() function 182
deployment 352, 353
Derive Count nodes 201
Derive node

functions, nesting into 182
Derive State nodes 201
Dorian Pyle 54
dummy keys

used, for performing Cartesian product merge
174-176

E
else branch 122
elseif branch 122
empty aggregate

used, to evaluate sample size 16-21
evaluation 351, 352
Excel Export node

used, for creating classification tree financial
summary 266-268

F
Feature Selection node

used, for detecting model instability 46- 48
used, to remove perfect predictors 54-58

field formatting
changing, in Table node 274-276

Filter node
used, for performing clean downstream 183

First time donor 25, 95
flag variables

creating, for aggregation 146-148
full data model

used, to address missing data 94-97
functions

nesting, into one Derive node 182

357

G
generated filters

combining 276-281
graphs

automating 322-326
Grow button 31

H
high skew variable

transforming, with multiple Derive node 141-
145

HTML reports
automating 322-326

I
IBM SPSS Modeler 283
if branch 122
imbalanced target variable

prior probabilities, incorporating for 256-261
Inactive donor 25, 95
initial data

sampling from 21-25
in-stream mean

imputing 98-101
interaction detection / feature creation

Association Rules, using for 148-154
intof() function 182
iterative Neural network forecasts

building 285-291

J
jackknife method

Outliers, detecting with 304-309

K
key performance indicators. See KPIs
K-means cluster

using, as alternative to anomaly detection 34
-38

K-means clustering 310
K-means cluster solutions

optimizing 310-316

K-Nearest Neighbors. See KNN
KNN

used, to match similar cases 229-232
KPIs 335
kurtosis variable

transforming, with multiple Derive node 141-
145

L
Lapsing donor 25, 95
large datasets

offers for 238-242
locchar function 189
log transform 143
lookup table

merging 163-167

M
mean absolution percent error (MAPE) 299
Mean button 101
Means node

used, for selecting variables 76-80
Mean Squared Error (MSE) 344
median

imputing 98-101
Merge node

speeding up, cache used 160-163
speeding up, optimization settings used 160-

163
missing data

addressing, for binning scale variables 86-93
addressing, full data model used 94-97
addressing, partial data model used 94-97
evaluating, during data integration 59-62
exploring, @NULL multiple Derive used 38-41

missing values
imputing, from normal distribution 102-105
imputing, from uniform distribution 102-105

Modeling 204, 350
model instability

detecting, Feature Selection node used 46-
48

detecting, Partition node used 46-48
models

building, with outliers 208-211
building, without outliers 208-211

358

tuning, Auto Classifier used 233-237
Monte Carlo simulation

variable importance, quantifying with 292-
298

MTTF (mean time to failure) 327
multiple Derive nodes

high skew variable, transforming with 141-
145

kurtosis variable, transforming with 141-145
transformations, building with 127-130

N
Neural Net predictions

classification trees, using 251-254
neural network

used, for searching similar records 109-112
Neural Network Feature Selection

performing 212-215
neuro-fuzzy searching

about 113
used, to find similar names 113-117

New donor 25, 95
nonstandard aggregation

performing 167-170
nonstandard dates

parsing 180-182
normal distribution

missing values, imputing from 102-105

O
OK button 99, 100, 103, 107
outlier report

creating 42-45
outliers

detecting, with jackknife method 304-309
models, building with 208-211
models, building without 208-211

P
parameters

used, in calculations 183, 184
partial data model

used, to address missing data 94-97
Partition node

used, for detecting model instability 46-48

PCC 222, 343
Percent Correct Classification. See PCC
perfect predictors

removing, Feature Selection node used 54-58
Predictors...� button 74
Preview button 240
prior probabilities

incorporating, for imbalanced target variable
256-261

Q
quirk reports 41

R
random()function 222
random imputation

used, to match variable distribution 105-108
Read Values button 190, 240, 287, 295, 330
Records field 294
redundant variables

removing, correlation matrices used 68-72
requirements

reviewing 339
resources inventory

taking 337, 338
Return On Investment (ROI) 345
risks

identifying 339
Run button 73, 239

S
sample size

evaluating, empty aggregate used 16-21
sampling

need for, evaluating 62-67
scale variables

binning, to address missing data 86-93
scientific goals 335
Select button 295, 328
Sequence function @DIFF1 202
Sequence function @OFFSET 202
Sequence function @SINCE 202
sequence processing

using 193-201
working 201, 202

359

service goals 335
similar cases

matching, KNN used 229-232
similar names

finding, neuro-fuzzy searching used 113-117
similar records

searching, neural network used 109-112
Single-Antecedent Association Rules

used, for selecting variables 80-83
Soundex codes

producing 117-123
specific objectives

connecting, to analytical results 335, 336
Star donor 25, 95
Subject Matter Experts (SMEs) 15
substring_between() function 130
substring() function 182
success criteria

for classification 343, 344
for estimation 344

SuperNode button 286
Support Vector Machines (SVMs) 233

T
Table node

field formatting, changing 274-276
target variables

specifying 342, 343
terminology

defining 340
time-aligned cohorts

creating 154-158
TIMELAG_null variable 41
time series forecasts

automating 316-322
timestamp variable

parsing 184-193

to_integer() function 129, 182
Tom Khabaza

URL 245
to_string() function 182
transformations

building, with multiple Derive nodes 127-130
Transpose node

data reformatting, for reporting with 269-273

U
uniform distribution

missing values, imputing from 102-105

V
validation

need for 246-251
variable distribution

matching, random imputation used 105-108
variable importance

quantifying, with Monte Carlo simulation 292-
298

variable names
changing, Derive node used 176-180

variables
selecting, CHAID modeling Node used 72-76
selecting, Means node used 76-80
selecting, Single-Antecedent Association

Rules used 80-84

W
Wealth2_null variable 41
Weibull analysis

about 327
rolling 327-332

Thank you for buying
IBM SPSS Modeler Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

IBM Cognos Business
Intelligence 10.1
Dashboarding Cookbook
ISBN: 978-1-84968-582-5 Paperback: 206 pages

Working with dashboards in IBM Cognos BI 10.1: Design,
distribute, and collaborate

1.	 Exploring and interacting with IBM Cognos
Business Insight and Business Insight Advanced

2.	 Creating dashboards in IBM Cognos Business
Insight and Business Insight Advanced

3.	 Sharing and Collaborating on Dashboards using
portlets

4.	 Best practices related to Dashboards in Cognos
10.1

IBM DB2 9.7 Advanced
Administration Cookbook
ISBN: 978-1-84968-332-6 Paperback: 480 pages

Over 100 recipes focused on advanced administration
tasks to build and configure powerful databases with
IBM DB2

1.	 Master all the important aspects of administration
from instances to IBM's newest High Availability
technology pureScale with this book and e-book

2.	 Learn to implement key security features to
harden your database's security against hackers
and intruders

3.	 Empower your databases by building efficient data
configuration using MDC and clustered tables

Please check www.PacktPub.com for information on our titles

IBM Cognos Business
Intelligence
ISBN: 978-1-84968-356-2 Paperback: 318 pages

Discover the practical approach to BI with IBM Cognos
Business Intelligence

1.	 Learn how to better administer your IBM Cognos
10 environment in order to improve productivity
and efficiency

2.	 Empower your business with the latest Business
Intelligence (BI) tools

3.	 Discover advanced tools and knowledge that can
greatly improve daily tasks and analysis.

4.	 Explore the new interfaces of IBM Cognos 10

IBM Cognos TM1 Developer's
Certification guide
ISBN: 978-1-84968-490-3 Paperback: 240 pages

Fast track your way to COG-310 certification!

1.	 Successfully clear COG-310 certification

2.	 Master the major components that make up
Cognos TM1 and learn the function of each

3.	 Understand the advantages of using Rules versus
Turbo Integrator

4.	 This book provides a perfect study outline and
self-test for each exam topic

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Data Understanding
	Introduction
	Using an empty aggregate to evaluate sample size
	Evaluating the need to sample from the initial data
	Using CHAID stumps when interviewing an SME
	Using a single cluster K-means as an alternative to anomaly detection
	Using an @NULL multiple Derive to explore missing data
	Creating an outlier report to give to SMEs
	Detecting potential model instability early using the Partition node and Feature Selection

	Chapter 2: Data Preparation – Select
	Introduction
	Using the Feature Selection node creatively to remove, or decapitate, perfect predictors
	Running a Statistics node on anti-join to evaluate potential missing data
	Evaluating the use of sampling for speed
	Removing redundant variables using correlation matrices
	Selecting variable using the CHAID modeling node
	Selecting variables using the Means node
	Selecting variables using single-antecedent association rules

	Chapter 3: Data Preparation – Clean
	Introduction
	Binning scale variables to address
missing data
	Using a full data model/partial data model approach to address missing data
	Imputing in-stream mean or median
	Imputing missing values randomly from uniform or normal distributions
	Using random imputation to match a variable's distribution
	Searching for similar records using a neural network for inexact matching
	Using neuro-fuzzy searching to find similar names
	Producing longer Soundex codes

	Chapter 4: Data Preparation – Construct
	Introduction
	Building transformations with multiple Derive nodes
	Calculating and comparing conversion rates
	Grouping categorical values
	Transforming high skew and kurtosis variables with a multiple Derive node
	Creating flag variables for aggregation
	Using Association Rules for interaction detection/feature creation
	Creating time-aligned cohorts

	Chapter 5: Data Preparation – Integrate and Format
	Introduction
	Speeding up merge with caching and optimization settings
	Merging a look-up table
	Shuffle-down (nonstandard aggregation)
	Cartesian product merge using key-less merge by key
	Multiplying out using Cartesian product merge, user source, and derive dummy
	Changing large numbers of variable names without scripting
	Parsing nonstandard dates
	Parsing and performing a conversion on a complex stream
	Sequence processing

	Chapter 6: Selecting and Building
a Model
	Introduction
	Evaluating balancing with the Auto Classifier
	Building models with and without outliers
	Neural Network Feature Selection
	Creating a bootstrap sample
	Creating bagged logistic regression models
	Using KNN to match similar cases
	Using Auto Classifier to tune models
	Next-Best-Offer for large datasets

	Chapter 7: Modeling – Assessment, Evaluation, Deployment, and Monitoring
	Introduction
	How (and why) to validate as well as test
	Using classification trees to explore the predictions of a Neural Net
	Correcting a confusion matrix for an imbalanced target variable by incorporating priors
	Using aggregate to write cluster centers to Excel for conditional formatting
	Creating a classification tree financial summary using aggregate and an Excel Export node
	Reformatting data for reporting with a Transpose node
	Changing formatting of fields in a Table node
	Combining generated filters

	Chapter 8: CLEM Scripting
	Introduction
	Building iterative Neural Network forecasts
	Quantifying variable importance with Monte Carlo Simulation
	Implementing champion/challenger model management
	Detecting Outliers with the jackknife method
	Optimizing K-means cluster solutions
	Automating time series forecasts
	Automating HTML reports and graphs
	Rolling your own modeling algorithm: Weibull analysis

	Appendix: Business Understanding
	Introduction
	Define business objectives by Tom Khabaza
	Assessing the situation by Meta Brown
	Translating your business objective into a data mining objective by Dean Abbott
	Produce a project plan – ensuring a realistic timeline by Keith McCormick

	Index

