
www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

 

Kim Topley 

Publisher: O'Reilly 

Edition March 2002 

ISBN: 0-596-00253-X, 478 pages 

 

J2ME in a Nutshell provides a solid, no-nonsense reference to the 'alphabet soup' of micro 

edition programming, covering the CLDC, CDC, KVM and MIDP APIs. The book also 

includes tutorials for the CLDC, KVM, MIDP and MIDlets, MIDlet user interfaces, 

networking and storage, and advice on programming small handhelds. Combined with 

O'Reilly's classic quick reference to all the core micro-edition APIs, this is the one book that 

will take you from curiosity to code with no frustrating frills in between. 

www.allitebooks.com

http:///
http://www.allitebooks.org


Table of Contents 

Preface .....................................................
   Contents of This Book ..........................................
   Related Books ................................................
   J2ME Programming Resources Online ................................
   Examples Online ..............................................
   Conventions Used in This Book ....................................
   Request for Comments ..........................................
   Acknowledgments .............................................
 

1
1
3
4
5
5
6
6

I: Introduction to the Java 2 Micro Edition Platform API ..................
 

8

1. Introduction ................................................
   1.1 What Is the J2ME Platform? ....................................
   1.2 J2ME Specifications .........................................
   1.3 J2ME and Other Java Platforms ..................................
 

9
9

14
14

2. The Connected Limited Device Configuration ........................
   2.1 The CLDC Java Virtual Machine .................................
   2.2 The CLDC Class Libraries .....................................
   2.3 KVM Debugging ...........................................
   2.4 Advanced KVM Topics .......................................
 

16
16
24
32
37

3. The Mobile Information Device Profile and MIDlets ....................
   3.1 MIDP Overview ............................................
   3.2 The MIDP Java Platform ......................................
   3.3 MIDlets and MIDlet Suites .....................................
   3.4 MIDlet Execution Environment and Lifecycle ........................
   3.5 Developing MIDlets .........................................
   3.6 Delivery and Installation of MIDlets ..............................
 

47
47
51
51
57
62
76

4. MIDlet User Interfaces ........................................
   4.1 User Interface Overview ......................................
   4.2 The High-Level User Interface API ...............................
 

84
84
88

5. The Low-Level MIDlet User Interface API ...........................
   5.1 The Canvas Class ...........................................
   5.2 Painting and the Graphics Class ..................................
   5.3 Graphics Attributes ..........................................
   5.4 Drawing Lines and Arcs .......................................
   5.5 Translating the Graphics Origin ..................................
   5.6 A Simple Animation MIDlet ....................................
   5.7 The Graphics Clip ...........................................
   5.8 Rendering Text ............................................
   5.9 Images ..................................................
   5.10 Event Handling ...........................................
   5.11 Multithreading and the User Interface .............................
 

139
139
143
144
147
153
155
158
161
166
171
176

6. Wireless Java: Networking and Persistent Storage .....................
   6.1 A Networking Architecture for Small Devices ........................
   6.2 Sockets ..................................................
   6.3 Datagrams ................................................
   6.4 HTTP Connections ..........................................
   6.5 Persistent Storage ...........................................
 

179
179
183
187
192
207

www.allitebooks.com

http:///
http://www.allitebooks.org


7. The Connected Device Configuration and Its Profiles ...................
   7.1 The CDC ................................................
 

227
227

8. J2ME Command-Line Tools .....................................
   8.1 cvm: The Connected Device Configuration Virtual Machine ...............
   8.2 kdp: The KVM Debug Proxy ...................................
   8.3 kvm: The Kilobyte Virtual Machine ...............................
   8.4 midp: The MID Profile Execution Environment .......................
   8.5 emulator: The J2ME Wireless Toolkit Emulator .......................
   8.6 preverify: The KVM Class Preverifier .............................
   8.7 MakeMIDPApp: JAD to PRC Conversion Tool .......................
   8.8 chMEKeyTool: Public Key Certificate Management Tool ................
 

239
239
244
246
250
254
258
261
264

9. J2ME Programming Environments ................................
   9.1 The J2ME Wireless Toolkit ....................................
   9.2 MIDP for PalmOS ..........................................
   9.3 J2ME and Forte For Java ......................................
   9.4 Other Integrated Development Environments .........................
 

267
267
281
291
296

II: API Quick Reference .........................................
 

298

10. J2ME Packages and Classes ....................................
   10.1 J2ME Packages ...........................................
   10.2 J2SE Packages Not Present in J2ME ..............................
   10.3 J2ME Package Contents ......................................
 

308
308
309
310

11. java.io ...................................................
   Package java.io ...............................................
   ByteArrayInputStream ..........................................
   ByteArrayOutputStream .........................................
   DataInput ...................................................
   DataInputStream ..............................................
   DataOutput ..................................................
   DataOutputStream .............................................
   EOFException ...............................................

   InputStream .................................................
   InputStreamReader ............................................
   InterruptedIOException .........................................
   IOException .................................................
   OutputStream ................................................
   OutputStreamWriter ............................................
   PrintStream .................................................
   Reader .....................................................
   UnsupportedEncodingException ....................................
   UTFDataFormatException .......................................

   Writer .....................................................
 

325
325
325
327
327
328
329
330
331
332
333
334
334
335
336
337
338
339
339
339

12. java.lang ..................................................
   Package java.lang .............................................
   ArithmeticException ...........................................
   ArrayIndexOutOfBoundsException ..................................
   ArrayStoreException ...........................................
   Boolean ....................................................
   Byte ......................................................
   Character ...................................................
   Class ......................................................
   ClassCastException ............................................
   ClassNotFoundException ........................................

341
341
342
343
343
343
344
345
346
347
347

www.allitebooks.com

http:///
http://www.allitebooks.org


   Error ......................................................
   Exception ...................................................
   IllegalAccessException ..........................................
   IllegalArgumentException ........................................
   IllegalMonitorStateException ......................................
   IllegalStateException ...........................................
   IllegalThreadStateException ......................................
   IndexOutOfBoundsException .....................................

   InstantiationException ..........................................
   Integer .....................................................
   InterruptedException ...........................................
   Long ......................................................
   Math ......................................................
   NegativeArraySizeException ......................................
   NullPointerException ...........................................
   NumberFormatException ........................................
   Object .....................................................
   OutOfMemoryError ............................................
   Runnable ...................................................
   Runtime ....................................................
   RuntimeException .............................................
   SecurityException .............................................
   Short ......................................................
   String .....................................................
   StringBuffer .................................................
   StringIndexOutOfBoundsException .................................
   System ....................................................

   Thread .....................................................
   Throwable ..................................................
   VirtualMachineError ...........................................
 

348
348
349
349
350
350
351
351
352
352
353
354
355
355
356
356
356
358
358
359
359
360
360
361
363
365
366
367
368
369

13. java.util ..................................................
   Package java.util ..............................................
   Calendar ...................................................
   Date ......................................................
   EmptyStackException ..........................................

   Enumeration .................................................
   Hashtable ...................................................
   NoSuchElementException ........................................
   Random ....................................................
   Stack ......................................................
   Timer .....................................................
   TimerTask ..................................................
   TimeZone ..................................................
   Vector .....................................................
 

370
370
371
373
374
374
375
376
376
377
378
379
379
380

14. javax.microedition.io .........................................
   Package javax.microedition.io .....................................
   Connection ..................................................
   ConnectionNotFoundException ....................................
   Connector ..................................................
   ContentConnection ............................................
   Datagram ...................................................
   DatagramConnection ...........................................
   HttpConnection ...............................................
   InputConnection ..............................................
   OutputConnection .............................................
   StreamConnection .............................................

383
383
384
385
385
387
388
389
391
393
394
394

www.allitebooks.com

http:///
http://www.allitebooks.org


   StreamConnectionNotifier ........................................
 

395

15. javax.microedition.lcdui .......................................
   Package javax.microedition.lcdui ...................................
   Alert ......................................................
   AlertType ..................................................

   Canvas ....................................................

   Choice .....................................................
   ChoiceGroup ................................................
   Command ..................................................
   CommandListener .............................................
   DateField ...................................................
   Display ....................................................
   Displayable .................................................
   Font ......................................................
   Form ......................................................
   Gauge .....................................................
   Graphics ...................................................
   Image .....................................................
   ImageItem ..................................................
   Item ......................................................
   ItemStateListener .............................................

   List .......................................................
   Screen .....................................................
   StringItem ..................................................
   TextBox ....................................................
   TextField ...................................................
   Ticker .....................................................
 

396
396
398
399
400
402
404
405
407
407
408
409
410
412
413
414
417
418
419
420
421
422
423
424
424
427

16. javax.microedition.midlet ......................................
   Package javax.microedition.midlet ..................................
   MIDlet ....................................................
   MIDletStateChangeException .....................................
 

428
428
428
430

17. javax.microedition.rms ........................................
   Package javax.microedition.rms ....................................
   InvalidRecordIDException .......................................
   RecordComparator .............................................
   RecordEnumeration ............................................
   RecordFilter .................................................
   RecordListener ...............................................
   RecordStore .................................................
   RecordStoreException ..........................................
   RecordStoreFullException ........................................
   RecordStoreNotFoundException ...................................

   RecordStoreNotOpenException ....................................
 

432
432
432
433
434
436
437
438
441
441
442
442

Class, Method, and Field Index ....................................
   A ........................................................
   B ........................................................
   C ........................................................
   D ........................................................
   E ........................................................
   F ........................................................
   G ........................................................
   H ........................................................
   I .........................................................
   J .........................................................

443
443
445
447
451
455
458
460
471
477
483

www.allitebooks.com

http:///
http://www.allitebooks.org


   K ........................................................
   L ........................................................
   M ........................................................
   N ........................................................
   O ........................................................
   P ........................................................
   R ........................................................
   S ........................................................
   T ........................................................
   U ........................................................
   V ........................................................
   W ........................................................
   Y ........................................................
 

483
485
487
490
492
494
497
502
512
515
516
516
518

Colophon ....................................................
 

519

 

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

1 

Preface 

This book is a desktop quick reference for the Java  2 Micro Edition (J2ME ). It is 

intended for Java programmers writing applications for devices with limited memory 

resources and processor power, such as cell phones, Personal Data Assistants (PDAs), and 

set-top boxes. The first part of this book provides a fast-paced introduction to the two 

different configurations that make up the J2ME platform -- the Connected Limited Device 

Configuration (CLDC) and the Connected Device Configuration (CDC), along with 

the profiles that are based on them, such as the Mobile Information Device Profile (MIDP), 

which provides the APIs for programming cell phones and similar devices. These chapters are 

followed by a quick-reference section that details each class of the CLDC and MIDP APIs, 

along with tables that show which Java packages and classes are available in each 

configuration and profile.  

This book is intended to be used in conjunction with the best-selling Java in a Nutshell, by 

David Flanagan, and Java Enterprise in a Nutshell, by Jim Farley, David Flanagan, and 

William Crawford (both published by O'Reilly). Java in a Nutshell introduces the Java 

programming language itself and provides an API quick reference for the core packages and 

classes of the Java 2 Standard Edition (J2SE) platform. Java Enterprise in a Nutshell does 

the same for the APIs in the Java 2 Enterprise Edition (J2EE). The CDC and its profiles are 

actually large subsets of the J2SE API, and, therefore, this book does not replicate their API 

quick reference material, which you can find in Java in a Nutshell and, in the case of the RMI 

profile, in Java Enterprise in a Nutshell.  

Contents of This Book 

The first nine chapters of this book describe the J2ME platform, the command-line tools that 

are provided with Sun's J2ME reference implementations, and some of the visual 

development environments that you can use when writing J2ME applications:  

Chapter 1  

This chapter introduces the J2ME platform and the concepts of configuration and 

profile, and it compares J2ME to a number of other Java platforms for small devices.  

Chapter 2  

This chapter covers the Connected Limited Device Configuration (CLDC), which is 

the basic building block for the J2ME profiles for wireless devices and PDAs. It 

begins by outlining the differences between CLDC and the core libraries of the J2SE 

platform. Then it takes a close look at KVM, the small-footprint virtual machine that 

is used in Sun's reference implementation of CLDC.  

Chapter 3  

This chapter introduces MIDlets, the wireless Java equivalent of applets. MIDlets are 

part of the Mobile Information Device Profile (MIDP), which is the subject of this 

and the following three chapters. This chapter looks at the lifecycle of a MIDlet 

and illustrates it with a simple example. It concludes with a discussion of the facilities 

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

2 

that a typical mobile device would provide to allow the user to download, install, 

manage, and remove MIDlets.  

Chapter 4  

The devices that MIDlets run on range from cell phones with a small two-color 

display and room for only a few lines of text to PDAs with larger, multicolor screens. 

In order to isolate MIDlets from the specifics of the devices on which they are 

running, MIDP includes a high-level API that provides simple input and output 

controls and the ability to combine these controls to create form-like screens. This 

chapter takes a detailed look at the high-level API and provides sample MIDlets that 

can be run on cell phones or PDAs.  

Chapter 5  

This chapter looks at an alternative user interface API that provides lower-level access 

to a mobile device's screen and input devices. This chapter looks at the details of this 

API and shows how to avoid writing code that may not be portable between devices 

with different user interface capabilities.  

Chapter 6  

Networking is a key feature of a mobile device. The first part of this chapter looks at 

the Generic Connection Framework (GCF), which provides the basis for access to 

various networking APIs, including optional protocols (such as sockets and 

datagrams) and HTTP, which all MIDP implementations are required to support. A 

simple example that involves fetching information from a web site is used to illustrate 

the use of HTTP on a mobile device and shows how to avoid problems that arise when 

working in an environment with limited memory. The second part of this chapter 

looks at the facilities available for storing information on a mobile device and 

illustrates them by extending the HTTP example to include persistence of information 

retrieved from the web site.  

Chapter 7  

This chapter looks at the Connected Device Configuration (CDC) and its profiles, 

which are designed for use on devices that have more than 2 MB of memory to devote 

to the Java platform. It begins by looking at Sun's reference implementation of CDC 

and the CVM, the virtual machine for CDC devices, then briefly covers the content of 

the CDC-based profiles that are currently defined.  

Chapter 8  

This chapter contains reference material for the command-line tools that are provided 

with the CLDC and CDC reference implementations and the MIDP for the PalmOS 

product.  

 
 
 

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

3 

Chapter 9  

This chapter covers the J2ME wireless toolkit, a development environment provided 

by Sun that allows you to create and test MIDlets using a cell-phone emulator that can 

be customized to resemble a number of different cell phones and PalmOS-based 

handhelds. It also looks at how to use the wireless toolkit in conjunction with Sun's 

Forte for Java IDE to create a complete development environment, and it investigates 

a number of alternative third-party products that provide similar functionality.  

These first nine chapters provide a tutorial introduction to J2ME, with particular emphasis on 

wireless devices, which are currently the most popular application of J2ME technology. 

The core of this book, however, is the API quick reference, Chapter 10 through Class, 

Method, and Field Index, which is a succinct but detailed API reference formatted for 

optimum ease of use. Please be sure to read "How To Use This Quick Reference," which 

appears at the beginning of the reference section; it explains how to get the most out of this 

section.  

Related Books 

O'Reilly & Associates, Inc., publishes an entire series of books on Java programming. These 

books include Java in a Nutshell and Java Enterprise in a Nutshell, which, as mentioned 

earlier, are companions to this book.  

You can find a complete list of Java books from O'Reilly at http://java.oreilly.com/. Books 

that are of particular interest to J2ME programmers include:  

Java in a Nutshell, by David Flanagan  

A Java language tutorial and complete API reference for the core Java classes. This 

book is of particular interest if you intend to work with the CDC-based profiles, since 

the APIs very closely match those of J2SE.  

Java Enterprise in a Nutshell, by Jim Farley and William Crawford, with David 
Flanagan  

A tutorial and API reference for Java's enterprise APIs, including Remote Method 

Invocation (RMI). This book will be of interest to you if you intend to use the RMI 

profile.  

Java Network Programming, by Elliotte Rusty Harold  

A book that describes the J2SE networking APIs. 

Java I/O, by Elliotte Rusty Harold  

A book that describes the input/output architecture of the Java platform, a proper 

understanding of which is essential if you intend to use the networking and persistent 

storage features of MIDP.  

 

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

4 

Java Threads, by Scott Oaks and Henry Wong  

A book that describes how to make use of Java's built-in multithreading features, 

which are also available in the J2ME platform.  

Learning Wireless Java, by Qusay Mahmoud  

An introduction to Wireless Java, this book also shows how to install MIDlets in some 

of the Java-enabled cell phones that are currently available.  

J2ME Programming Resources Online 

This book is a quick reference designed for speedy access to frequently needed information. It 

does not, and cannot, tell you everything you need to know about J2ME. In addition to 

the books listed earlier, there are several valuable (and free) electronic sources of information 

about J2ME.  

Sun's web site for all things related to Java is http://java.sun.com/. This web site includes 

home pages for many of the products that make up the J2ME platform, including 

the following:  

http://java.sun.com/j2me/  

General information on the J2ME platform 

http://java.sun.com/products/cldc/  

The CLDC specification and to download the reference implementation 

http://java.sun.com/products/midp/  

The MIDP specification 

http://java.sun.com/products/cdc/  

The specification and reference implementation of the CDC 

The following page is useful as a starting point for finding the latest documentation:  

http://java.sun.com/j2me/docs/  

The web site specifically for Java developers is http://developer.java.sun.com/. Much of the 

content on this developer site is password-protected, and access to it requires (free) 

registration. This site includes a forum for the K Virtual Machine (KVM), which also 

discusses wider issues related to wireless development and J2ME in general. Once you have 

registered, you can reach this forum at the following URL:  

http://forum.java.sun.com/forum.jsp?forum=50  

 

http:///


J2ME in a Nutshell 

5 

Sun also has a web site dedicated to Wireless Java development: 

http://wireless.java.sun.com/  

There is also a mailing list for discussion of KVM and MIDP; you can subscribe to it or just 

browse the archives at:  

http://archives.java.sun.com/archives/kvm-interest.html  

Bill Day's J2ME site is very useful for up-to-date documentation and for links to other sources 

of J2ME-related information and development tools:  

http://www.billday.com/j2me/  

J2ME implementations currently do not have XML or cryptography support included. In 

many applications, one or both of these is vital. You can find an open-source XML product 

suitable for J2ME at http://www.kxml.org/ and an open-source, lightweight crytography 

product at http://www.bouncycastle.org/.  

Information on cell phones and PDAs that support J2ME can be obtained from:  

http://www.javamobiles.com/  

Examples Online 

The examples in this book are available online and can be downloaded from the home page 

for the book at http://www.oreilly.com/catalog/j2meanut/. You may also want to visit this site 

to see if any important notes or errata about the book have been published there.  

The example code is held in two separate directory structures, which contain exactly the same 

source code, but organized differently. The directory src has the source code arranged in 

a hierarchy that is convenient if you intend to build and run the examples using an integrated 

development environment such as Sun's Forte for Java. If, on the other hand, you plan to use 

the J2ME Wireless Toolkit, which expects its source files to be arranged differently, you 

should use the examples in the wtksrc directory. The J2ME Wireless Toolkit is available for 

free download from Sun's web site at http://java.sun.com/products/j2mewtoolkit/.  

Some of the descriptions of the examples in this book assume that you are using the J2ME 

Wireless Toolkit. You'll find information on how to use the example source code with the 

wireless toolkit in Chapter 3 and how to use it with Forte for Java in Chapter 9.  

Conventions Used in This Book 

The following font conventions are used in this book: 

Italic  

Used for emphasis and to signify the first use of a term. Italic is also used for 

commands, email addresses, URLs, FTP sites, file and directory names, and 

newsgroups.  

http:///


J2ME in a Nutshell 

6 

Constant width  

Used in all Java code and generally for anything that you would type literally when 

programming, including keywords, data types, constants, method names, variables, 

class names, and interface names.  

Constant width italic  

Used for the names of function arguments and generally as a placeholder to indicate 

an item that should be replaced with an actual value in your program.  

 

Used to indicate a general note or tip. 

 

 

Used to indicate a warning. 

 

Request for Comments 

Please address comments and questions concerning this book to the publisher:  

O'Reilly & Associates, Inc.  
1005 Gravenstein Highway North  
Sebastopol, CA 95472  
(800) 998-9938 (in the United States or Canada)  
(707) 829-0515 (international/local)  
(707) 829-0104 (fax)  

There is a web page for this book, which lists errata, examples, or any additional information. 

You can access this page at:  

http://www.oreilly.com/catalog/j2meanut/  

To comment or ask technical questions about this book, send email to: 

bookquestions@oreilly.com  

For more information about books, conferences, Resource Centers, and the O'Reilly Network, 

see the O'Reilly web site at:  

http://www.oreilly.com/  

Acknowledgments 

This book is based on the style of the bestselling Java in a Nutshell, which is one of the two 

books that made it possible for me to make my living in the Java world. First and foremost, 

therefore, I would like to express my thanks to David Flanagan, the author of Java in a 

http:///


J2ME in a Nutshell 

7 

Nutshell, both for his part in getting me started down this path and for his help and advice 

during the creation of reference material for J2ME in a Nutshell.  

Thanks are also due Mike Loukides and Bob Eckstein, who gave me the opportunity to write 

this book based on a very sketchy proposal and realize my longstanding ambition to write for 

O'Reilly. Bob was also this book's editor and provided excellent feedback on each chapter as 

it was completed. He and the rest of the O'Reilly production team, whose names appear in the 

colophon, also converted my final draft into the more polished form in which it now appears. 

Special thanks to Leanne Soylemez for arranging the production schedule to fit my holiday 

plans, to Robert Romano for making the diagrams in the book look like they were produced 

by a professional, and to the book's technical reviewers, Marc Loy (coauthor of O'Reilly's 

Java Swing, along with Bob Eckstein) and Tom Keihl, for their helpful and constructive 

comments.  

The final couple of chapters and the reference material for this book were completed over the 

Christmas and New Year 2000-2001 holiday period, when I should really have been spending 

more time with my family eating turkey and Christmas pudding and drinking the beer my son 

thoughtfully gave me as a present. Thanks to Berys, Andrew, and Katie for allowing me to 

retreat to my study for most of every day (and night) during that hectic period, and for 

allowing me to come out and rejoin the family when the book was finished!  

http:///


J2ME in a Nutshell 

8 

Part I: Introduction to the Java 2 Micro Edition 
Platform API 

Part I is an introduction to the Java 2 Micro Edition platform. These chapters 

provide enough information for you to get started using the J2ME APIs right 

away.  

http:///


J2ME in a Nutshell 

9 

Chapter 1. Introduction 

This book is an introduction to and a quick reference for the Java 2 Micro Edition (J2ME) 

APIs. J2ME is a family of specifications that defines various downsized versions of the 

standard Java 2 platform; these downsized versions can be used to program consumer 

electronic devices ranging from cell phones to highly capable Personal Data Assistants 

(PDAs), smart phones, and set-top boxes. Diverse as they are in both form and function, these 

devices have in common the fact that they either do not have the memory and/or processing 

power or do not need to support J2SE, the standard Java platform used on desktop and server 

systems. This chapter introduces J2ME and compares it to other platforms that target the same 

range of hardware.  

1.1 What Is the J2ME Platform? 

In the early 1990s, Sun Microsystems created a new programming language called Oak as 

part of a research project to build consumer electronics products that relied heavily on 

software. The first prototype for Oak was a portable home controller called Star7, a small 

handheld device with an LCD touchscreen and built-in wireless networking and infrared 

communications. It could be used as remote control for a television or VCR and as 

an electronic program guide, and it also had some of the functions that are now associated 

with PDAs, such as appointment scheduling. Software for this type of device needs to be 

extremely reliable and must not make excessive demands on memory or require an extremely 

powerful (and therefore expensive) processor. Oak was developed as a result of the 

development team's experiences with C++, which, despite having many powerful features, 

proved to be prone to programmer errors that affected software reliability. Oak was designed 

to remove or reduce the ability for programmers to create problems for themselves by 

detecting more errors at compile time and by removing some of the features of the C++ 

language (such as pointers and programmer-controlled memory management) that seemed to 

be most closely associated with the reliability problems. Unfortunately, the market for the 

type of devices that the new language was intended for did not develop as Sun hoped, and no 

Oak-based devices were ever sold to consumers. However, at around the same time, the 

beginnings of public awareness of the Internet created a market for Internet browsing 

software. In response to this, Sun renamed the Oak programming language Java and used it to 

build a cross-platform browser called HotJava. It also licensed Java to Netscape, which 

incorporated it into its own popular browser, at the time the undisputed market leader. Thus, 

the world was introduced to Java applets.  

Within a couple of years, the cross-platform capabilities of the Java programming language 

and its potential as a development platform for free-standing applications that could be written 

once and then run on both Windows and Unix-based systems had sparked the interest of 

commercial end users as a way of reducing software development costs. In order to meet the 

needs of seasoned Windows and Motif/X-Windows developers working to create applications 

for sophisticated end users accustomed to using rich user interfaces, Sun rapidly expanded the 

scope (and size) of the Java platform. This expanded platform included a much more complex 

set of user interface libraries than those used to build the original applets, together with an 

array of features for distributed computing and improved security.  

By the time Sun released the first customer shipment of the Java 2 platform, it had become 

necessary to split it into several pieces. The core functionality, regarded as the minimum 

support required for any Java environment, is packaged as the Java 2 Standard Edition(J2SE). 

http:///


J2ME in a Nutshell 

10 

Several optional packages can be added to J2SE to satisfy specific requirements for particular 

application domains, such as a secure sockets extension to enable electronic commerce. Sun 

also responded to an increasing interest in using Java for enterprise-level development and in 

application server environments with the Java 2 Enterprise Edition (J2EE), which 

incorporates new technology such as servlets, Enterprise JavaBeans, and JavaServer pages.  

As with most software, Java's resource requirements have increased with each release. 

Although it has its roots in software for consumer electronics products, J2SE requires far too 

much memory and processor power to be a viable solution in that marketplace. Ironically, 

while Sun was developing Java for the Internet and commercial programming, demand began 

to grow for Java on smaller devices and even on smart cards, thus returning Java to its roots. 

Sun responded by creating several reduced-functionality Java platforms, each tailored to a 

specific vertical market segment, some of which will be covered briefly at the end of this 

chapter. These platforms are all based on JDK 1.1, the predecessor of the Java 2 platform, and 

they take different approaches to the problem of reducing the platform to fit the available 

resources. In a sense, therefore, each of these reduced-functionality platforms represents an 

ad-hoc solution to this problem, a solution that has evolved over time to meet the needs of its 

own particular markets.  

J2ME is a platform for small devices that is intended eventually to replace the various JDK 

1.1-based products with a more unified solution based on Java 2. Unlike the desktop and 

server worlds targeted by J2SE and J2EE, the micro-world includes such a wide range of 

devices with vastly different capabilities that it is not possible to create a single software 

product to suit all of them. Instead of being a single entity, therefore, J2ME is a collection of 

specifications that define a set of a platforms, each of which is suitable for a subset of the total 

collection of consumer devices that that fall within its scope. The subset of the full Java 

programming environment for a particular device is defined by one or more profiles, which 

extend the basic capabilities of a configuration. The configuration and profile or profiles that 

are appropriate for a device depend both on the nature of its hardware and the market to which 

it is targeted.  

1.1.1 Configurations 

A configuration is a specification that defines the software environment for a range of devices 

defined by a set of characteristics that the specification relies on, usually such things as:  

• The types and amount of memory available 

• The processor type and speed 

• The type of network connection available to the device 

A configuration is supposed to represent the minimum platform for its target device and is not 

permitted to define optional features. Vendors are required to implement the specification 

fully so that developers can rely on a consistent programming environment and, therefore, 

create applications that are as device-independent as possible.  

J2ME currently defines two configurations:  

 
 
 

http:///


J2ME in a Nutshell 

11 

Connected Limited Device Configuration (CLDC)  

CLDC is aimed at the low end of the consumer electronics range. A typical CLDC 

platform is a cell phone or PDA with around 512 KB of available memory. For this 

reason, CLDC is closely associated with wireless Java, which is concerned with 

allowing cell phone users to purchase and download small Java applications known as 

MIDlets to their handsets. A large and growing number of cell phone vendors have 

signed agreements with Sun Microsystems that will allow them to begin using this 

technology, so the number of handsets with the capability to be programmed in Java 

will probably grow rapidly in the next few years.  

Connected Device Configuration (CDC)  

CDC addresses the needs of devices that lie between those addressed by CLDC and 

the full desktop systems running J2SE. These devices have more memory (typically 2 

MB or more) and more capable processors, and they can, therefore, support a much 

more complete Java software environment. CDC might be found on high-end PDAs 

and in smart phones, web telephones, residential gateways, and set-top boxes.  

Each configuration consists of a Java virtual machine and a core collection of Java classes that 

provide the programming environment for application software. Processor and memory 

limitations, particularly in low-end devices, can make it impossible for a J2ME virtual 

machine to support all of the Java language features or instruction byte codes and software 

optimizations provided by a J2SE VM. Therefore, J2ME VMs are usually defined in terms of 

those parts of the Java Virtual Machine Specification and the Java Language Specification 

that they are not obliged to implement. As an example of this, devices targeted by CLDC 

often do not have floating point hardware, and a CLDC VM is therefore not required to 

support the Java language types float and double or any of the classes and methods that 

require these types or involve floating-point operations.  

It is important to note that configuration specifications do not require implementations to use 

any specific virtual machine. Vendors are free to create their own VM or license a third-party 

VM, provided that it meets the minimum requirements of the specification. Sun provides 

reference implementations of both configurations, each of which includes a conforming 

virtual machine:  

• The CLDC reference implementation is a source code and binary product for the 

Windows, Solaris and Linux platforms. It includes the Kilobyte Virtual Machine 

(KVM), a reduced-functionality VM that has a very small memory footprint and 

incorporates a garbage collector that is optimized for a memory-constrained 

environment. KVM, which is discussed in Chapter 2, is likely to be used as the basis 

for most CLDC implementations in the near future, but there are other VMs that could 

be used instead, such as the J9 VM from IBM.  

• The CDC reference implementation is a source code-only product for Linux and 

the Wind River VxWorks real-time operating system. The VM included with this 

product, called CVM (see Chapter 7), implements the full range of J2SE VM features 

as required by the CDC specification. However, it does not include the HotSpot 

technology found in the J2SE Version 1.3 VM or even a just-in-time compiler (JIT) as 

found in earlier J2SE releases. Several third-party vendors, including Insignia 

http:///


J2ME in a Nutshell 

12 

Solutions and IBM, have plans to release their own CDC implementations that include 

different virtual machines.  

A configuration also includes a core set of Java language classes. The core class libraries 

defined for a configuration (and for profiles) are required to be based on those of the Java 2 

platform. This promotes as much compatability as possible between applications written for 

different J2ME platforms and those written with J2SE, and it also reduces the learning curve 

for J2ME developers. Broadly speaking, this means that developers can rely on the following:  

• Where possible, J2ME must reuse J2SE classes and packages. This means that, for 

example, it would not be acceptable for a J2ME configuration or profile to eschew the 

java.util.Date class and introduce one of its own.
1
 As a result, everything that you 

know about J2SE can be carried forward to J2ME, provided you know the exceptions 

that apply to the configuration and profiles you are working with. That information is 

available in the reference section of this book.  

• When a J2SE class is incorporated into J2ME, new methods and fields may not be 

added to it. Similarly, new classes cannot be added to a coopted J2SE package. These 

rules ensure that code written for J2ME that uses only those classes it shares with 

J2SE will compile and work on J2SE, thus making it possible to share code between 

these platforms.  

You'll find detailed coverage of CLDC and KVM in Chapter 2 and coverage of CDC and 

CVM in Chapter 7.  

1.1.2 Profiles 

A profile complements a configuration by adding additional classes that provide features 

appropriate to a particular type of device or to a specific vertical market segment. Both J2ME 

configurations have one or more associated profiles, some of which may themselves rely on 

other profiles. Figure 1-1 shows the profiles that are currently defined or in the process of 

being defined and the configurations they are dependent upon. These processes are described 

in the following list:  

Mobile Information Device Profile (MIDP)  

This profile adds networking, user interface components, and local storage to CLDC. 

This profile is primarily aimed at the limited display and storage facilities of mobile 

phones, and it therefore provides a relatively simple user interface and basic 

networking based on HTTP 1.1. MIDP is the best known of the J2ME profiles because 

it is the basis for Wireless Java and is currently the only profile available for PalmOS-

based handhelds.  

PDA Profile (PDAP)  

The PDA Profile is similar to MIDP, but it is aimed at PDAs that have better screens 

and more memory than cell phones. The PDA profile, which is not complete at the 

time of writing, will offer a more sophisticated user interface library and a Java-based 

                                                 
1 It could be argued that CLDC breaks this rule with its networking classes, because there is no usable subset of the java.net package that would 

fit into the restricted memory available to a CLDC-based device. This problem is solved by creating a new package that contains a more lightweight 

set of networking classes. See Chapter 6 for details. 

http:///


J2ME in a Nutshell 

13 

API for accessing useful features of the host operating system. When this profile 

becomes available, it is likely to take over from MIDP as the J2ME platform for small 

handheld computers such as those from Palm and Handspring.  

Foundation Profile  

The Foundation Profile extends the CDC to include almost all of the core Java 2 

Version 1.3 core libraries. As its name suggests, it is intended to be used as the basis 

for most of the other CDC profiles.  

Personal Basis and Personal Profiles  

The Personal Basis Profile adds basic user interface functionality to the Foundation 

Profile. It is intended to be used on devices that have an unsophisticated user interface 

capability, and it therefore does not allow more than one window to be active at any 

time. Platforms that can support a more complex user interface will use the Personal 

Profile instead. At the time of writing, both these profiles are in the process of being 

specified.  

RMI Profile  

The RMI Profile adds the J2SE Remote Method Invocation libraries to the Foundation 

Profile. Only the client side of this API is supported.  

Game Profile  

The Game Profile, which is still in the process of being defined, will provide a 

platform for writing games software on CDC devices. At the time of writing, it is not 

certain whether this profile will be derived from the Foundation Profile or based 

directly on CDC.  

Figure 1-1. J2ME configurations and profiles 

 

 

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

14 

1.2 J2ME Specifications 

All of the J2ME configurations and profiles have been developed as part of the Java 

Community Process (JCP). The JCP brings together leading players in the relevant industries 

with the aim of agreeing on a common specification to which they can all design their 

products. Each configuration or profile started out as a Java Specification Request(JSR), 

which describes the scope of the work to be done and an outline of the areas to be covered. 

An expert group is assembled to create the specification, which is then subject to an internal 

ballot and revision before being made available for public review. Following public review 

and a possible last revision, the final draft is produced, and the JSR is completed.  

The current list of JSRs, including those that have been completed, can be found on the JCP 

web site at http://jcp.org/jsr/all/. The JSRs that define the current J2ME configurations and 

profiles are as follows:  

Number Scope 

JSR 30 J2ME Connected Limited Device Configuration (CLDC) 

JSR 37  Mobile Information Device Profile for the J2ME Platform (MIDP) 

JSR 75 PDA Profile for the J2ME Platform 

JSR 36 J2ME Connected Device Configuration (CDC) 

JSR 46 J2ME Foundation Profile 

JSR 129 Personal Basis Profile Specification 

JSR 62 Personal Profile Specification 

JSR 66 J2ME RMI Profile 

JSR 134 Java Game Profile 

There is also work in progress that is not directly related to any configuration or profile:  

Number Scope 

JSR 82 Java APIs for Bluetooth 

JSR 120 Wireless Telephony Communication APIs (WTCA) 

JSR 135 J2ME Multimedia API 

Finally, even though some of the current profiles have not yet been fully defined, work is 

already underway to define the next generation of the J2ME platform. At the time of writing, 

nothing is available for public review, but it would be worth keeping an eye on the following 

JSRs:  

Number Scope 

JSR 68 J2ME Platform Specification 

JSR 118 Mobile Information Device Next Generation 

JSR 139 Connected Limited Device Configuration Next Generation 

1.3 J2ME and Other Java Platforms 

J2ME is intended to be the way ahead for Java on small devices, but, as noted at the 

beginning of this chapter, there are other Java platforms already in existence (and in use) that 

have similar scope. The following sections briefly summarize these alternative platforms and 

compare them to J2ME.  

http:///


J2ME in a Nutshell 

15 

1.3.1 JavaCard 

JavaCard is a platform aimed at smart card technology. Smart cards are the smallest 

environment for which a Java platform exists. The constraints of these devices are such that 

the JavaCard virtual machine and the small set of Java class libraries that it supports require 

only around 16 KB of non-volatile memory and 512 bytes of volatile memory. The scope of 

J2ME does not extend to platforms with this little resource, so there is no J2ME configuration 

that is suitable for the current generation of smart cards. You can find more information about 

JavaCard at http://java.sun.com/products/javacard/.  

1.3.2 EmbeddedJava 

EmbeddedJava is a JDK 1.1-based platform that is used to create software for embedded 

devices. These devices typically have a 32-bit processor with 512 KB of ROM and 512 KB of 

RAM available for the VM, class libraries, and embedded application. Since embedded 

devices generally serve only one purpose, it is unnecessary to include parts of the Java 

platform that the application does not require. In fact, EmbeddedJava allows the implementor 

to remove any package or class -- or even a method within a class -- that is not required, in 

order to fit the final product into the memory available. The EmbeddedJava specification, 

which can be found at http://java.sun.com/products/embeddedjava/, defines only the 

maximum possible content of the platform, rather than a minimum (as is the case with J2ME 

specifications).  

EmbeddedJava is currently undergoing its end-of-life cycle, which means that it will no 

longer be supported as of January 1, 2003. In the future, developers in embedded 

environments will probably migrate to CDLC and one of its profiles, which are targeted to 

devices with similar resources.  

1.3.3 PersonalJava 

PersonalJava is intended for a much more general application environment than 

EmbeddedJava. The target devices for Personal Java have up to 2 MB of ROM and at least 1 

MB of RAM available for the Java platform itself, with more required for application 

software. Some of the larger PDAs and communicator devices, such as the Compaq iPAQ and 

the Nokia 9210 cell phone, are currently using the PersonalJava environment.  

PersonalJava is based on JDK 1.1.8 and includes a fully featured Java VM. The specification, 

available at http://java.sun.com/products/personaljava/, designates each of the core JDK 1.1.8 

packages as required, modified, or optional. Similar designations may also be applied to 

individual classes and methods. A required package must contain all of the classes from its 

JDK 1.1.8 counterpart, and each class must be a full implementation. An optional package 

may or may not be present, but if it is present, it must be complete. A modified package must 

be present, but its content may differ from its JDK 1.1.8 equivalent according to rules laid 

down in the specification. PersonalJava includes user interface components in the form of a 

modified java.awt package, and it also has optional support for RMI.  

PersonalJava developers are expected to use CDC as a migration path to the Java 2 platform. 

Since PersonalJava includes user interface components, it will be necessary to wait for the 

Personal Basis and Personal Profiles to become available before migration can be started. 

PersonalJava applications that use RMI will also need to use the CDC RMI profile.  

http:///


J2ME in a Nutshell 

16 

Chapter 2. The Connected Limited Device 
Configuration 

The Connected Limited Device Configuration (CLDC) is the basic building block on which 

the J2ME profiles for small devices, such as cell phones, pagers, and low-end PDAs, are built. 

These devices are characterized by their limited memory resources and processing power, 

which make it impossible for them to host a fully featured Java platform. CLDC specifies 

a minimal set of Java packages and classes and a reduced functionality Java virtual machine 

that can be implemented within the resource constraints imposed by such small devices.  

The first part of this chapter describes the features that a Java virtual machine capable of 

supporting CLDC must provide, and it explains how such a VM differs from the standard one 

required by J2SE. As part of this discussion, we'll make use of Sun's reference 

implementation of the CLDC specification and the Kilobyte Virtual Machine, or KVM, 

around which it is based. The second part of the chapter covers the Java packages and classes 

that a CLDC implementation must provide, which are a small subset of the core packages 

found in J2SE. The chapter concludes with a discussion of the debugging facilities provided 

by the KVM and a couple of advanced features -- using native code and preloading Java 

classes -- that will be of interest to readers who want to work with the KVM at the source 

code level.  

2.1 The CLDC Java Virtual Machine 

The hardware and software limitations imposed by the devices at which CLDC is targeted 

make it impractical to support either a full Java virtual machine or a complete set of J2SE core 

classes. Running a simple "Hello, world" application on the Windows platform requires 

around 16 MB of memory to be allocated. Contrast this with the minimum platform 

requirements for CLDC, which call for:  

• 128 KB of ROM, flash or battery-backed memory for persistent storage of the Java 

VM and the class libraries that make up the CLDC platform.  

• 32 KB (or more) of volatile memory to be available for runtime allocation. This 

memory is used to satisfy the dynamic requirements of Java applications, which 

include class loading and the allocation of heap space for objects and the stack.  

In order to support a Java runtime environment with such limited resources, CLDC defines 

reduced requirements for the virtual machine, the language itself, and the core libraries, 

details of which we'll describe in the following sections.  

Other than the memory requirements, CLDC makes few assumptions about its host platform. 

It does not, for example, assume that the device will have any kind of display or user input 

mechanism such as a keyboard or a mouse, and it does not require any kind of local storage 

for application data. These issues are all assumed to be addressed individually by each device 

vendor. J2ME profiles, of course, place additional requirements that are suitable for the more 

limited range of devices they are intended for, as you'll see in Chapter 3 and Chapter 7. For 

CLDC, the number of requirements is minimized in order to maximize the number of 

platforms on which it can be implemented.  

http:///


J2ME in a Nutshell 

17 

As far as the software environment is concerned, CLDC assumes only that the host device has 

some kind of operating system that can execute and manage the virtual machine. Although 

Java is a multithreaded programming environment, it is not necessary for the operating system 

to have the concept of threads or even to be able to schedule more than one process at any 

given time. Instead, the virtual machine is required to provide the illusion of a multithreaded 

environment using whatever native functionality is available to it.  

The full specification of CLDC, which was developed under the Java Community Process, 

can be downloaded from http://jcp.org/jsr/detail/30.jsp.  

2.1.1 Virtual Machine and Language Features 

The CLDC specification defines the features that a VM must have by describing the parts of 

the full Java Virtual Machine Specification and the Java Language Specification that it is not 

required to support and the parts to which limitations and qualifications are applied. Sun 

provides a reference implementation of the CLDC specification that is based on the KVM, a 

small-footprint VM that satisfies the CLDC requirements. Manufacturers of devices that 

support CLDC and its profiles are not, however, required to base their products around KVM. 

Any virtual machine that has the features required by the specification and can work within 

the resource restrictions of the CLDC environment can be used. In this book, I will often refer 

to features of KVM, but, unless I explicitly state the contrary, everything I say also applies to 

any conforming virtual machine.
1
  

The following sections describe the virtual machine and language features that are not 

supported in a CLDC environment or in which the CLDC behavior is different from that in 

J2SE.  

2.1.1.1 Floating point support 

Since many of the processors used in the target platforms for CLDC do not have floating 

point hardware, the virtual machine is not required to support floating point operations.
2
 In 

terms of the virtual machine, this means that the byte code operations listed in Table 2-1 are 

not implemented.  

Table 2-1. Floating-Point Byte Codes Not Implemented by a CLDC VM 

Dadd dload dsub fcmpl frem i2d 

Daload dload_x d2f fconst_0 freturn i2f 

dastore dmul d2i fconst_1 fstore l2d 

dcmpg dneg d2l fdiv fstore_x l2f 

dcmpl drem fadd fload fsub newarray (double) 

dconst_0 dreturn faload fload_x f2d newarray (float) 

dconst_1 dstore fastore fmul f2i   

ddiv dstore_x fcmpg fneg f2l   

 

                                                 
1 The IBM J9 virtual machine is another example of a VM that conforms to the CLDC specification. See http://www.embedded.oti.com/ for further 

information. 
2 Nothing prevents a VM from emulating floating point instructions in software, but the memory resources required for this are too great for this to be 

a general requirement for all platforms. 

http:///


J2ME in a Nutshell 

18 

This leads to the following coding restrictions: 

• Variables of type float and double and arrays of these types cannot be declared or 

used.  

• Constants of type float and double (i.e., 1.0, 2.0F) cannot be used.  

• Method arguments may not be of type float or double.  

• Methods may not return double or float values.  

• Objects of type Float and Double cannot be created (and, in fact, these classes do not 

exist in CLDC -- see Section 2.2 for further details).  

Sun does not supply a different version of its Java compiler for use when developing CLDC 

applications, so it is possible, using a J2SE compiler, to create Java class files that use floating 

point types and, therefore, violate these rules. However, these class files will be rejected when 

they are loaded into the CLDC virtual machine during class file verification (see Section 2.1.2 

for a discussion of class file verification).  

2.1.1.2 Language omissions 

Aside from the floating point restrictions, there are a few other Java language features that are 

not available to CLDC applications:  

Reflection  

The java.lang.reflect package and all of the features of java.lang.Class that are 

connected with reflection are not available. This restriction is applied partly to save 

memory, but it also saves having to determine whether application code has the 

privilege to access these features.  

Weak references  

Weak references and the java.lang.ref package are not provided because of the 

memory required to implement them.  

Object finalization  

Object finalization causes great complexity in the VM for relatively little benefit. 

Therefore, finalization is not implemented, and the CLDC java.lang.Object class 

does not have a finalize( ) method.  

Threading features  

CLDC provides threads, but it does not allow the creation of a daemon thread (a 

thread that is automatically terminated when all non-daemon threads in the VM 

terminate) or thread groups.  

Errors and exceptions  

J2SE has a large number of classes that represent error and exception conditions. 

Since Java applications are not, in general, expected to recover from errors (meaning 

thrown exceptions derived from the class java.lang.Error), most of the classes 

http:///


J2ME in a Nutshell 

19 

representing them are not included in the CLDC platform. When such an error occurs, 

the device is responsible for taking appropriate action instead of reporting it to 

application code. For further details, see Section 2.2.  

Java Native Interface  

CLDC does not provide the J2SE JNI feature, which allows native code to be called 

from Java classes. JNI is omitted partly because it is memory-intensive to implement 

and partly in order to protect CLDC devices against security problems caused by 

malicious application code. Further discussion of this issue will be found in 

Section 2.1.2.  

2.1.1.3 Class loading 

Class loading in J2SE is performed by class loaders, including application-defined class 

loaders that can implement an open-ended set of mechanisms for locating and loading Java 

classes. By contrast, the CLDC specification requires implementations to provide their own 

class loading mechanism that cannot be overridden or extended by application code. Doing so 

removes the security implications of allowing classes to be loaded from untrusted sources.  

CLDC specifies that all VM implementations must be able to load applications packaged in 

compressed JAR files. It does not, however, rule out additional, device-dependent means of 

representing or accessing application code, and it does not prescribe any particular means 

whereby the device would locate and fetch the packaged code. These tasks are delegated to a 

piece of device-dependent application management software, the nature of which is outside 

the scope of the specification. Sun's CLDC reference implementation includes an example 

implementation of this functionality, which it refers to as a Java Application Manager (JAM).  

A device is allowed to transform applications presented in any supported external format into 

an internal format that is more suitable or more efficient for that device. For example, the 

MIDP for PalmOS product, which includes an implementation of CLDC for the PalmOS 

platform, accepts applications in the form of a JAR file and converts them to the internal PRC 

format used by PalmOS for storage on the device. See Section 9.2 for further details.  

2.1.2 Security Features 

In J2SE, the security model is powerful enough to allow code originating from different 

sources to have different levels of privilege and therefore different levels of access to system 

resources. At one end of the scale, applications installed on a user's system have, by default, 

unrestricted access. An applet downloaded from an untrusted web site, however, operates in 

an extremely restricted environment that permits no access to local resources, such as the 

user's filestore, and only limited access to the network. Between these extremes, the security 

model allows privileges to be individually assigned or denied to an application or applet based 

on the level of trust that the user has for its originator. Code to be trusted can be delivered 

with a certificate that provides assurance that the code comes from its claimed point of origin. 

It can also be cryptographically signed so that the receiver can be sure that it has not been 

modified while being transported from its source.  

A CLDC VM could be used in a device that does not allow code to be installed by the user, 

and which, therefore, has much less need of security features. It could also be used at the heart 

http:///


J2ME in a Nutshell 

20 

of a cell phone connected to a network that allows applications to be downloaded, possibly 

from untrusted sources; the network should be subject to the same type of security constraints 

that apply to J2SE applets. It would also be useful to have intermediate security levels for 

code that is known to be trusted. Unfortunately, this is not practical in the general case, 

because the memory and processing power required to implement the fine-grained security 

model of J2SE, verify cryptographic signatures, and check certificates are too great for the 

devices targeted by the CLDC specification. Therefore, a CLDC VM runs application code in 

a "sandbox" environment that ensures it cannot maliciously damage the device on which it is 

executing. The following sections summarize the constraints that the VM applies to create the 

sandbox.  

2.1.2.1 Class loading controls 

Each CLDC implementation has its own class loader that can load classes from whatever 

location or locations the host device can support, typically over a network or from device 

local storage, if there is any. Unlike J2SE, application code is not permitted to create its own 

class loaders and cannot affect in any way the process that the system's own class loader uses 

to search for and locate classes. (In other words, there is no way to change the system's 

effective CLASSPATH or its equivalent.)  

An important consequence of this restriction is that application code cannot attempt to 

substitute its own versions of core classes in the java and javax.microedition package 

hierarchies. If this were allowed, it could compromise the security of the Java runtime 

environment. The system class loader always ignores classes that claim to be part of these 

packages if they are included in application code.  

2.1.2.2 Access to native code 

CLDC does not include an implementation of JNI, and therefore it is not possible to link 

dynamically to native code at runtime, even if such code could be installed as part of an 

application. As a side effect, this also prevents direct access to functionality provided by the 

host device's native operating system, unless a specific Java interface for it is provided by 

CLDC or one of its profiles. This restriction prevents application code from reading or 

modifying information to which the user might not want it to have access.  

However, it is possible to extend the API available to Java applications by prelinking extra 

native code with the VM, but this facility is available only to applications that are installed 

with a custom-built VM and is therefore not a general security risk. See Section 2.4.2 for 

details of this mechanism.  

2.1.2.3 Class verification 

J2SE has always provided a byte-code verifier that can check the integrity of Java class files. 

It ensures that the class files do not pose a risk to system security by failing to uphold rules of 

the Java language that are normally checked and enforced by the Java compiler, such as the 

following:  

• All local variables must be initialized before use. 

• Following creation of an object, its constructor must be called before it is used further.  

• Each constructor must begin with an invocation of a constructor of its superclass (with 

the exception of the constructor of java.lang.Object).  

http:///


J2ME in a Nutshell 

21 

• Local variables and instance and static members declared to contain a reference to an 

object of a particular type must always hold a reference to an object of that type or one 

that is legally assignable to it. It is not legal, for example, to define a variable of type 

TimerTask and then assign a reference to a Timer to it.  

By default, the J2SE VM runs the byte-code verifier over all classes loaded from an external 

source (such as over a network) but not to classes loaded from a local filesystem. In the 

mobile environment, it is generally advisable to apply these checks to all application code. 

However, the algorithms necessary to perform the checks are very processor-intensive and 

may require large amounts of memory, and, therefore, they cannot feasibly be carried out at 

runtime on the small devices for which CLDC is primarily intended. For this reason, class file 

verification is performed in two stages:  

1. Preverification is performed on class files before they are installed on the target 

device. This process involves most of the complex and time-consuming parts of the 

byte-code verification algorithm and is typically performed as part of or immediately 

followimg source code compilation. The results of the preverification step are 

recorded in the class file, where they can be accessed at runtime.  

2. Runtime verification is performed on the device itself. Depending on the nature of the 

device, it may be done when a class is loaded or as part of the application installation 

process, provided that installed code cannot subsequently be modified. This step uses 

the information stored by preverification in conjunction with a linear sweep through 

the byte codes of the class to ensure that all the language rules are followed. It is much 

quicker than preverification and requires far less memory.  

You don't need to know much about preverification and runtime verification in order to 

compile and run CLDC applications, but brave souls can find the details in the CLDC 

Specification.  

2.1.3 Compiling and Running Code with the KVM 

In order to compile and run applications using the KVM, you need to download and install the 

following software:  

• The Java 2 SDK or a development environment that has a command-line Java 

compiler  

• Sun's CLDC reference implementation 

If you don't already have a suitable Java 2 SDK installed, you can download one from 

http://java.sun.com/j2se/.  

The CLDC reference implementation contains source code and documentation for Sun's 

CLDC implementation, which runs on Microsoft Windows, Linux, and Solaris, and it also 

contains the KVM and its associated tools in executable form. It can be obtained from 

http://java.sun.com/products/cldc/.  

The reference implementation is provided in the form of an archive suitable for your target 

platform, which you should unpack into a convenient directory. In the rest of this section, 

we'll use the following variables to refer to the installation directories for both the Java 2 SDK 

and the CLDC reference implementation:  

http:///


J2ME in a Nutshell 

22 

%JAVA_HOME% (Windows) or $JAVA_HOME (Linux/Solaris)  

The base installation directory for the Java 2 SDK. For Windows, this is typically 

c:\jdk1.3.1.  

%CLDC_HOME% (Windows) or $CLDC_HOME (Linux/Solaris)  

The base installation directory for the CLDC reference implementation, such as 

c:\CLDC. The archive unpacks itself into a directory called j2me_cldc beneath this 

location.  

%CLDC_PATH% (Windows) or $CLDC_PATH (Linux/Solaris)  

The bin directory beneath the CLDC installation directory. Equal to 

%CLDC_HOME%\j2me_cldc\bin for Windows and $CLDC_HOME/j2me_cldc/bin 

for Linux and Solaris.  

The source code for this book includes a trivial example that we'll use to demonstrate how to 

compile and run code for the KVM. We'll use the variable %EXAMPLES% (or $EXAMPLES) 

to refer to the location at which the example source code is installed. Based on this variable, 

the source file for the example that we're going to use is contained in the file 

%EXAMPLES%\src\ora\ch2\HelloWorld.java and shown in Example 2-1.  

Example 2-1. A Trivial KVM Application  

package ora.ch2; 
 
public class HelloWorld { 
    public static void main(String[] args) { 
        System.out.println("Hello, KVM world"); 
    } 
} 

The first step is to open a command window (or a shell if you're using Linux or Solaris) and 

set the PATH variable to include the executable files for both the Java 2 SDK and the CLDC 

reference implementation. For Windows, the following command should be used:  

PATH=%JAVA_HOME%\bin;%CLDC_PATH%\win32;%PATH% 

If you are using Linux or Solaris, you'll need to use the appropriate command for your chosen 

shell and also make sure that you pick the correct directory for the CLDC executables, which 

is $CLDC_PATH/linux or $CLDC_PATH/solaris.  

The second step is to compile the example source code to produce a class file. In order to 

simplify the following commands, change your working directory to %EXAMPLES%\src, the 

directory in which the example source code is installed, and then type the following 

commands:  

mkdir tmpclasses 
javac -bootclasspath %CLDC_PATH%\common\api\classes -d tmpclasses 
     ora\ch2\HelloWorld.java 

http:///


J2ME in a Nutshell 

23 

These commands compile the source file ora\ch2\HelloWorld.java, creating a single class file 

called tmpclasses\ora\ch2\HelloWorld.class. A couple of points are worth noting:  

• We used the -d command line option to direct the compiler to put the class file into a 

directory under the newly created tmpclasses directory instead of in the same directory 

as the source file, which is the default. This is because all class files to be loaded into 

the KVM have to be preverified (see Section 2.1.2.3) before they can be used, which 

involves creating a modified class file. We'll use the class file under tmpclasses as 

input to the preverification process and write the output class file to the source file 

directory.  

• When running the Java compiler, we used the -bootclasspath option to change the 

location from which the core classes are loaded during compilation. As you'll see in 

Section 2.2, CLDC does not include all the packages and classes available to a J2SE 

application, so we need to be sure that the compiler picks up the CLDC core libraries 

instead of those for J2SE, which it would use by default. If we had not done this, it 

would be possible to compile code that referenced J2SE APIs that are not available in 

CLDC. This would produce a legal class file that would subsequently fail to load into 

the KVM.  

Before you can use the class file with the KVM, it has to be preverified using the preverify 

command that is included in the CLDC reference implementation. To preverify the class file 

and write the preverified version to the same directory as the original source code, use the 

following command:  

preverify -classpath %CLDC_PATH%\common\api\classes;tmpclasses -d .  
     ora.ch2.HelloWorld 

The -classpath command-line option indicates the directories in which the preverify command 

should look for class files, both the core Java libraries and the class file to be preverified, 

while the -d option is used to control where the preverified class file will be written. The 

directory names supplied with the -classpath option should be separated by semicolons on the 

Windows platform, colons in the case of Linux or Solaris. Notice that the compiler requires a 

source filename, but preverify needs a fully qualified Java class name (with its parts separated 

by periods) instead.  

In the case of an application that consists of more than one class file, all class files must be 

preverified, although not necessarily at the same time. There are two ways to arrange for 

preverify to operate on more than one class file at a time. The most obvious way is to list all 

of the classes on the command line:  

preverify -classpath %CLDC_PATH%\common\api\classes;tmpclasses -d .  
     ora.ch2.HelloWorld ora.ch2.Help 

Alternatively, if you supply one or more directory names on the command line, preverify 

recursively searches them and processes every class file and each ZIP and JAR file that it 

finds:  

preverify -classpath %CLDC_PATH%\common\api\classes -d . tmpclasses 

Notice that in this case, there was no need to include tmpclasses in the -classpath argument 

because its presence is inferred from the fact that it is the directory to be searched.  

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

24 

The complete set of command-line options recognized by the preverify command can be 

found in Chapter 8.  

Finally, you can run the example using the kvm command:  

kvm -classpath . ora.ch2.HelloWorld 

which produces some very familiar output: 

Hello, KVM world 

Notice that the -classpath option identified only the directory search path needed to find the 

class file for ora.ch2.HelloWorld. There is no need to specify where the core libraries are 

located, because the KVM knows where to find them.
3
  

2.2 The CLDC Class Libraries 

CLDC addresses a wide range of platforms that do not have sufficient memory resources to 

support the full range of packages and classes provided by J2SE. Because CLDC is a 

configuration rather than a profile, it cannot have any optional features. Therefore, the 

packages and classes that it specifies must have a small enough footprint that they can be 

hosted by devices that meet only the minimum requirements of the CLDC specification. The 

CLDC class library is very small -- it is composed of a package containing functionality that 

is specific to J2ME (called javax.microedition.io), along with a selection of classes from 

the following packages in the core J2SE platform:
4
  

• java.io 
• java.lang 
• java.util 

All J2ME configurations and profiles include packages or classes from J2SE. When J2ME 

incorporates software interfaces from J2SE, it must follow several rules:  

• The names of the packages or classes must be the same, wherever possible. It would 

not be acceptable, for example, to completely reimplement the java.lang package in 

a package called javax.microedition.lang if the API in the java.lang package 

can be used.  

• The semantics of classes and methods that are carried over into J2ME must be 

identical to those with the same name in J2SE.  

• It is not possible to add public or protected fields or methods to a class that is shared 

between J2SE and J2ME.  

Because of these rules, J2ME packages and classes will always be a subset of the packages 

and classes of the same name in J2SE, and the J2ME behavior will not be surprising to 

developers familiar with J2SE. Furthermore, J2ME configurations and profiles are not 

allowed to add extra functionality in packages and classes that they share with J2SE, so 

                                                 
3 In fact, the core libraries are built into the KVM using a technique known as "ROMizing," which will be covered in Section 2.4.1, later in this 

chapter. 
4 Among other things that have been omitted due to resource constraints, CLDC does not include any support for internationalization of applications 

and the formatting of dates and numbers according to locale-specific conventions. If you need to write an application that is locale-sensitive, you will 

need to do all the hard work yourself. 

http:///


J2ME in a Nutshell 

25 

upward compatibility from J2ME to J2SE is preserved. However, it is permissible to exclude 

from J2ME those fields, methods, and classes that are deprecated in J2SE and this has been 

done by the Java Community Process expert group responsible for the CLDC specification.  

You'll find complete information on which classes from J2SE are included in CLDC and how 

this set compares to other J2ME configurations and profiles in Chapter 10. Detailed 

information on the individual classes in the reference chapters can be found in Part II of this 

book. The following sections describe the most important aspects of each of the CLDC 

packages that distinguish them from their counterparts in J2SE.  

2.2.1 The java.lang Package 

The CLDC java.lang package has only half of the classes of its J2SE counterpart and some 

classes that are included are not complete implementations. The major points of interest are 

covered in the following sections.  

2.2.1.1 The Object class 

The CLDC java.lang.Object class has no finalize( ) method because CLDC virtual 

machines do not implement finalization. Furthermore, the clone( ) method has been 

removed along with the java.lang.Cloneable interface. There is, therefore, no generic way 

to clone an object in a CLDC VM.  

2.2.1.2 Number-related classes 

As noted earlier, floating point operations are not supported by the CLDC VM and, as a 

consequence, the J2SE java.lang.Float and java.lang.Double classes, are not part of the 

core library set. The other number classes (Byte, Integer, Long, and Short) are provided, 

but their J2SE base class, java.lang.Number, is not included. The numeric classes are, 

therefore, derived from Object instead of Number. Another difference worthy of note is that 

the java.lang.Comparable interface does not exist in CLDC, so CLDC numbers cannot be 

directly compared in the same way that their J2SE counterparts are.  

2.2.1.3 Reflective features 

The exclusion of all VM support for reflection means that all methods in java.lang.Class 

that are connected with this feature have been removed. It is still possible, however, to 

perform limited operations on classes whose types are not known at compile time by using the 

forName( ) and newInstance( ) methods.  

2.2.1.4 System properties 

The CLDC profile defines only a very small set of system properties that does not include any 

of those available with J2SE. The properties that an implementation is required to provide are 

listed in Table 2-2.
5
  

 

                                                 
5 Note that, at the time of writing, there is no consistency in the way that the default encoding is represented. The KVM returns the default encoding 

as ISO8859_1, which is the value required in the CLDC specification document, whereas the MIDP reference implementation returns  

ISO-8859-1. 

http:///


J2ME in a Nutshell 

26 

Table 2-2. System Properties Defined by CLDC 

Property Name Meaning Example 

microedition.configuration 
The name of the J2ME configuration that the platform 

supports, together with its version number.  
CLDC-1.0

microedition.encoding 

The default character encoding that the device supports. 

Devices are not required to provide any extra encodings, but 

vendors are free to do so. There is, however, no way to find 

out which encodings are available.  

ISO8859_1

microedition.platform 
The name of the platform or device. The default KVM 

implementation returns the value null for this property.  
J2ME 

microedition.profiles 
The J2ME profiles that the device supports, separated by 

spaces. Since the KVM does not provide any profiles, the 

reference implementation returns null for this property.  

MIDP-1.0 

The value of a specific property can be obtained by using the getProperty( ) method in the 

java.lang.System class:  

String configuration = System.getProperty("microedition.configuration"); 

Since the CLDC java.util package does not include the J2SE Properties class, the 

System class does not include the getProperties( ) method, and it is not possible to get a 

list of all of the available properties programmatically. Vendors are free to add their own 

implementation-specific properties, but it is not possible for application code to define its 

own, because there is no setProperty( ) method. A device that supports one or more J2ME 

profiles must include them in the microedition.profiles property, and profiles typically 

define their own properties in addition to those listed in Table 2-2.  

2.2.1.5 The System and Runtime classes 

The System and Runtime classes in J2SE contain a collection of methods that perform 

relatively low-level operations. These operations often involve the underlying host platform, 

such as starting the execution of a native-language executable from within a Java application. 

Because of the platform-dependent nature of these operations, and because of other 

restrictions imposed by the virtual machine, many features supported by these classes have 

been removed, including the following:  

• Direct access to system properties using the getProperties( ), setProperty( ), 

and setProperties( ) methods  

• Methods that allow the source and destinations for the standard input, output, and error 

streams to be changed  

• Methods that provide access to native code libraries, which are not required because 

JNI is not supported  

• The ability to get a reference to and change the active SecurityManager  

2.2.1.6 Threads 

CLDC virtual machines are required to provide a multithreaded programming environment 

even if the underlying platform does not. The Java programming interfaces used in J2SE to 

support multithreading -- the synchronized keyword, the Object wait( ), notify( ), and 

notifyAll( ) methods, and the Thread class -- are all included in the CLDC specification. 

http:///


J2ME in a Nutshell 

27 

However, CLDC does not provide thread groups or the ThreadGroup class, and several 

features of the J2SE Thread class are omitted, including the following:  

• All constructors and methods relating to ThreadGroups have been removed.  

• Threads do not have application-settable names, so the getName( ) and setName( ) 

methods are not required and have been removed.  

• The resume( ), suspend( ), and stop( ) methods have been removed. These 

methods are, in any case, deprecated in J2SE, because they are inherently unsafe with 

respect to locking in a multithreaded environment.  

• The destroy( ), interrupt( ), and isInterrupted( ) methods do not exist. 

Consequently, the only way to cause a thread to terminate is to signal it to do so by 

changing the value of an instance variable that the thread periodically inspects, using a 

construction like the following:  

 
 public void run( ) { 
  while (!requestedToStop) { 
    // Do whatever is required 
  } 

 } 

• The dumpStack( ) method has been removed. The only way to get a stack backtrace 

for debugging purposes (other than to run your code under the control of a debugger) 

is to throw an exception, as described in the next section.  

2.2.1.7 Exceptions and errors 

As discussed in Section 2.1.1.2, CLDC includes the majority of the exceptions defined by the 

J2SE java.lang package, but most of the error classes have been removed, leaving only the 

following:  

• java.lang.Error 
• java.lang.OutOfMemoryError 
• java.lang.VirtualMachineError 

The Throwable method printStackTrace( ) is part of the CLDC specification (although 

the overloaded version that directs the stack trace to somewhere other than the standard error 

stream is not). However, the format of the output from this method is implementation-

dependent; more importantly, in the KVM reference implementation, this method simply 

prints the name of the exception. To get a stack backtrace, it is necessary either to recompile 

the virtual machine with the symbol PRINT_BACKTRACE defined and nonzero or to use the 

debug version of the VM in the directory j2me_cldc\bin\win32\debug (for the Windows 

platform), which is compiled in this way.  

As noted in the previous section, the Thread method dumpStack( ) is not available, so the 

following code, which is commonly used in J2SE, does not even compile in a CLDC 

environment:  

Thread.currentThread().dumpStack( ); 

http:///


J2ME in a Nutshell 

28 

Unfortunately, an attempt to work around this by creating an exception like the following also 

fails:  

new Exception().printStackTrace( ); 

This works for J2SE, but it fails in CLDC because the VM is not required to fill in the stack 

trace in the exception when it is created. The KVM fills in the stack trace only when the 

exception is actually thrown, so the only way to get a stack trace is to use the debug version of 

the KVM and include the following code:  

try { 
    throw new Exception( ); 
} catch (Exception ex) { 
    ex.printStackTrace( ); 
} 

Of course, this technique is not available when working with production CLDC platforms, 

such as cell phones, where debugging is not compiled in. Fortunately, most problems can be 

diagnosed by running your code in an emulated environment where a debugger or a debug 

version of the VM is available.  

2.2.2 The java.util Package 

The CLDC java.util package contains collection classes and classes that are related to date 

and time handling.  

2.2.2.1 Collection classes 

CLDC includes the following collection-related classes:  

• Hashtable 
• Stack 
• Vector 
• Enumeration 

This is a subset of the collections that were available in JDK 1.1, excluding Dictionary, 

Properties, and the pseudo-collection BitSet. Unfortunately, due to resource constraints, 

none of the Java 2 collection framework is available to CLDC applications, and, therefore, 

methods that were added to the Hashtable and Vector classes that make them more 

compatible with the Java 2 collection framework (such as keySet( ) and entrySet( )) have 

also been removed. As noted earlier in this chapter, the lack of the Properties class has the 

side effect that it is not possible to get access to or change the complete set of system 

properties.  

2.2.2.2 The Date class 

The J2SE Date class has a lot of functionality that was originally introduced by JDK 1.0 and 

subsequently deprecated, such as the ability to construct a Date given a date and time 

specified as day, month, year, hours, minutes, and seconds and the ability to extract those 

values from an existing Date. In JDK 1.1, those functions became the responsibility of the 

Calendar and GregorianCalendar classes. In line with the policy of cleaning up deprecated 

http:///


J2ME in a Nutshell 

29 

functionality, the CLDC Date class does not have any of the constructors or methods that deal 

with this functionality. Instead, a Date is simply a wrapper around a long value that represents 

a date and time as its offset from 00:00 GMT on January 1, 1970. It only has constructors that 

create a Date object representing the current time or a time given by its offset, a pair of 

methods that allow the time offset to be set or retrieved, and an equals( ) method that 

compares one Date with another. To convert between Dates and externally meaningful date 

and time representations, you have to use the Calendar class, described a little later.
6

  

2.2.2.3 The TimeZone class 

A TimeZone object represents the offset of a time zone from GMT. Because all dates in Java 

are represented in terms of an offset from 00:00 GMT on January 1, 1970, you need to know 

its time offset from GMT to format the corresponding time correctly for your location. This 

offest is encapsulated in the default TimeZone object for the platform on which the Java VM 

is running. J2SE has full support for time zones specified with familiar time-zone names (such 

as PST, CDT, etc., although these are deprecated), those using more complete specifications 

(such as America/Los_Angeles), or those specified as an offset from GMT (e.g., GMT-5 for 

EST).  

The CLDC TimeZone class is somewhat more restricted; implementations are required to 

support only GMT, and, in fact, the CLDC reference implementation provides only GMT and 

UTC (which is, to all intents and purposes, identical).  

2.2.2.4 The Calendar class 

The CLDC Calendar class is a simplified version of its J2SE counterpart, whose primary use 

is to convert back and forth between an instant in time given as a Date and the corresponding 

day, month, year, hours, minutes, and seconds values. The details of this conversion depend 

on two things:  

• The time zone for which the operation is performed 

• The calendar rules used in the user's locale 

Calendar takes account of the first of these by virtue of the fact that it is associated with an 

appropriate TimeZone object. As noted in the previous section, however, the range of time 

zones that a given host environment supports may be limited. The second issue is slightly 

more complex. Calendar is actually an abstract class; to obtain an instance of it, you must use 

the static getInstance( ) methods, which can be parameterized with a TimeZone object if 

necessary. These methods are supposed to return a subclass of Calendar that implements 

appropriate rules for the environment in which the host device operates. In most cases, this 

would be an object that operated with the same rules as the J2SE GregorianCalendar class 

(which is not included in the CLDC specification), although some locales, such as Japan, 

might require different rules to be applied. Implementations of CLDC that are intended to 

operate in regions where there are requirements of this kind are expected to return an 

appropriate Calendar subclass.  

                                                 
6 A useful feature of the J2SE Date class was the fact that its toString( ) method produced a reasonable representation of the corresponding 

date and time, such as "Tue Nov 20 20:05:00 GMT 2001". The CLDC Date class does not override the Object toString( ) method and 

therefore does not return anything as useful as this. The only way to get a formatted date from a CLDC Date object is to use the Calendar class. 

http:///


J2ME in a Nutshell 

30 

Once you have a Calendar object, you can use the setTime( ) method to install a time and 

date value, then the get( ) method to extract the values of the various fields that represent 

that value in a more user-friendly form. The following code, for example, gets the current day 

and month:  

Calendar cal = Calendar.getInstance( ); 
Date date = new Date( ); 
cal.setTime(date); 
int month = cal.get(Calendar.MONTH); 
int day = cal.get(Calendar.DAY_OF_MONTH); 

On March 23, 2002, for example, this code would set day to 23 and month to 2 (month 

numbers count from 0). (You can find the complete list of constant values that can be passed 

to the get( ) method in the reference materials in Part II.) You can also use the Calendar 

object to perform the reverse process by setting individual fields using the get( ) method 

and then calling getTime( ) to get the corresponding Date object. Unlike its J2SE 

counterpart, Calendar does not have any explicit methods that perform date arithemetic, but 

you can easily implement this yourself using the Calendar and Date classes together. The 

following code, for example, determines the day and month 20 days from today:  

// Get a Calendar and get the millisecond value of today's date 
Calendar cal = Calendar.getInstance( ); 
Date date = new Date( ); 
long offset = date.getTime( ); 
 
// Add 20 days to the date 
final long MILLIS_PER_DAY = 24 * 60 * 60 * 1000L; 
offset += 20 * MILLIS_PER_DAY; 
date.setTime(offset); 
 
// Install the new date in the Calendar offset 
cal.setTime(date); 
         
// Now get the adjusted date 
month = cal.get(Calendar.MONTH); 
day = cal.get(Calendar.DAY_OF_MONTH);  

This code uses the Date class to get the current date and time in milliseconds; adds the 

required offset, also in milliseconds; stores it in the Date object; and then installs the Date 

object in the Calendar so that the day and month can be extracted. Unfortunately, there are 

no useful definitions for things like the number of milliseconds in a day, so you have to create 

them yourself.  

It is worth noting that setting an individual field does not affect other fields, even if it appears 

that it should. As an example of this, consider the following code, which also attempts to add 

20 days to the current date:  

// Get the day and month for today 
Calendar cal = Calendar.getInstance( ); 
Date date = new Date( ); 
cal.setTime(date); 
int month = cal.get(Calendar.MONTH); 
int day = cal.get(Calendar.DAY_OF_MONTH); 
 
 

http:///


J2ME in a Nutshell 

31 

// Add 20 days to the day and change the Calendar 
cal.set(Calendar.DAY_OF_MONTH, day + 20); 
         
// Now get the adjusted date -- THIS DOES NOT WORK! 
month = cal.get(Calendar.MONTH); 
day = cal.get(Calendar.DAY_OF_MONTH);  

Suppose this code were executed on March 20, 2002. The day and month values would 

initially be set to 20 and 2, respectively. Adding 20 to the day and storing it back would set it 

to 40, which is illegal for March, so it would be adjusted to 9 (i.e., 40 minus the number of 

days in March). You might expect this operation to increment the month field to April, but it 

does not, so the result is March 9, 2002, not April 9, 2002.  

The Calendar class does not return string values for the days of the week and the months of 

the year, and, because the J2SE java.text package is not included in the CLDC 

specification, there is no way to get these strings from the system in a convenient form. The 

only way to get day and month strings without creating them yourself is to call the Calendar 

toString( ) method, which formats the date in readable terms:  

Tue, 9 Apr 2002 12:00:00 UTC 

This is only a feature of the reference implementation, however, and not part of the official 

specification. Device vendors might implement this method to return a string suitable for the 

locale in which their device is operating, or they may not.  

2.2.3 The java.io Package 

CLDC provides only a limited subset of the extensive J2SE java.io package. The only input 

and output streams that you can connect to a real data source or sink are 

ByteArrayInputStream and ByteArrayOutputStream. These streams can be used to read 

from or write into a byte array directly, or, wrapped with a DataInputStream or 

DataOutputStream, they provide a way of storing or transmitting primitive Java data types. 

Access to all other data sources is provided by private InputStream and OutputStream 

implementations that are obtained by calling methods on other classes. The most important 

examples of this pattern are the openInputStream( ) and openOutputStream( ) methods 

of the StreamConnection interface, which is part of a generic framework that is used to 

access external data sources. This is described in detail in Section 6.1.  

The CLDC java.io package also retains support for character input and output by wrapping 

byte streams with an InputStreamReader or OutputStreamWriter. However, the set of 

character encodings that can be used with these classes is implementation-dependent and is 

required to extend only to the device's default encoding. Self-contained Reader and Writer 

classes like FileReader and StringWriter are not part of the CLDC specification.  

2.2.4 The javax.microedition.io Package 

This package, which is not inherited from J2SE, contains a collection of interfaces that define 

the Generic Connection Framework. This framework is intended to be used by CLDC-based 

profiles to provide a common mechanism for accessing network resources and other resources 

that can be addressed by name and that can send and receive data via an InputStream and an 

http:///


J2ME in a Nutshell 

32 

OutputStream. A typical example of such a resource is an HTML page or a Java servlet, 

which can be identified by its Uniform Resource Locator (URL).  

Although the CLDC specification defines the interfaces and methods of the framework and 

suggests how it might be used to allow applications to open connections to various types of 

resources, including network servers and serial ports, the specification does not require any 

actual implementations to be provided. However, by specifying common methods needed to 

open, close, and get data from any of these resources, the framework makes it a lot easier for 

developers to write applications that can connect to data sources using different 

communication mechanisms, such as sockets, datagrams, or HTTP, because there is only one 

coding pattern to follow. (In J2SE, socket communication and HTTP communication involve 

using different classes and different coding patterns.) Further discussion of this topic and a 

full description of the Generic Connection Framework and the javax.microedition.io 

package are found in Chapter 6.  

2.3 KVM Debugging 

In order to provide Java-level debugging facilities, hooks must be supplied by the Java VM so 

that a debugger can perform tasks such as placing breakpoints, inspecting and modifying 

objects, and arranging to be notified when a debugging-related event occurs within the VM. 

The Java 2 platform includes an architecture, called the Java Platform Debugger Archicture 

(JPDA), that defines the debugging features that must be provided by a VM and the way in 

which they can be accessed by a debugger. Figure 2-1 shows the logical software components 

defined by the JPDA.  

Figure 2-1. The Java 2 Platform Debugger Architecture 

 

2.3.1 The JPDA 

In the JPDA, the debugger interacts with the Java VM using a well-defined protocol called the 

Java Debug Wire Protocol (JDWP). This protocol specifies messages that are passed from a 

JDWP client to a JDWP server to request that operations be performed on the target VM, 

corresponding to debugging commands issued by the user. It also defines events that can be 

transmitted in the opposite direction to notify the debugger of state changes within the VM.  

The architecture separates the debugger and the JVM from the details of the wire-level 

protocol by inserting an insulating layer on each side of the JDWP; this layer takes care of 

mapping the protocol messages to and from the programming interfaces required by the 

debugger and provided by the VM. In order to make it possible to accomodate different VM 

http:///


J2ME in a Nutshell 

33 

or debugger implementations without requiring each of them to provide their own JDWP 

implementation, two internal APIs are defined:  

The Java Debug Interface (JDI)  

The JDI is a Java-level interface that exposes the services of a JDWP client to a 

debugger. Typically, the debugger is a GUI program written by a third party vendor, 

but it could provide a command-line interface (such as that provided by the jdb 

command in the SDK). Debuggers using this interface can be assured that they will 

work with any JVM written to conform to the JPDA.  

The Java Virtual Machine Debug Interface (JVMDI)  

JVMDI is the interface exposed by the JVM itself to allow operations received by the 

JDWP to be performed and to report VM state changes to the JDWP server. Unlike 

JDI, JVMDI is a native language interface because it requires low-level access to the 

virtual machine.  

The only absolute requirement of the JPDA is that the VM must support the use of the JDWP 

as the means for the debugger to communicate with it.
7
 As a consequence, there is no 

requirement for a VM actually to implement the JVMDI; it could, instead, directly provide the 

JDWP server interface and dispense with JVMDI. As long as the VM responds correctly to 

messages delivered by the JDWP, a debugger need not be aware of the implementation 

details. Similarly, although a debugger may be written to interface to the JWDP using the JDI 

(and a reference implementation of the JDI is part of the Java 2 SDK), it is not required to do 

so and could instead include its own JDWP client implementation.  

2.3.2 The KVM Implementation of the JPDA 

The CLDC specification does not place any requirements for debugging support within the 

VM, but a practical VM implementation needs to provide some kind of debugging capability. 

The KVM has debugging support, but resource constraints make it impossible to fully 

implement the server side of the JDWP protocol and the hooks within the KVM itself. 

Instead, this functionality is divided between the VM and another process called the KVM 

debug proxy (or KDP), as shown in Figure 2-2.  

 

 

 

 

 

 

 

                                                 
7 The architecture does not specify how JWDP messages should be carried between the debugger and the VM, but typically either a socket (for remote 

debugging) or shared memory (for colocated debugger and VM) is used. 

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

34 

Figure 2-2. The KVM implementation of the JPDA 

 

The function of the debug proxy is to implement features of the JDWP that are too resource-

intensive to be placed within the KVM process itself. Normally, the debug proxy is not run on 

the same device as the KVM itself, so it does not require device resources. Instead, the debug 

proxy might be executed on a desktop system and communicate with the KVM using a 

specially designed variant of JDWP called the KVM Debug Wire Protocol (KDWP), carried 

over a socket connection. The definition of the KDWP can be found in the KVM Debug Wire 

Protocol Specification, which is included with the CLDC reference implementation.  

From the viewpoint of the debugger, the debug agent appears to support the JDWP, and it can 

therefore be accessed either directly or through the JDI. A debugger does not need to be aware 

that it is communicating with the debug proxy instead of the KVM itself and that it might not 

be on the same machine as the debug proxy.  

2.3.3 Debugging a KVM Application  

In Section 2.1.3, you saw how to run a simple CLDC application. In this section, you'll see 

how to modify the procedure used earlier in order to run an application under the control of a 

debugger. As before, the commands shown are for the Windows platform; if you are using 

Solaris or Linux, you should adjust them appropriately. The source for the application that we 

are going to use in this section is in the file ora\ch2\KVMProperties.java, which can be found 

in the example source code for this book. The application consists of a loop that prints the 

values of the system properties as listed in Table 2-2.  

Begin by opening a DOS window and setting the shell variable EXAMPLES to point to the 

directory in which the example source code is installed. Then change your working directory 

to %EXAMPLES%\src and create a directory called tmpclasses, if you do not already have 

one. As before, we need to first compile the source code for the application that we're going to 

run under the control of the debugger and preverify it. With the shell variable CLDC_PATH 

set to the bin directory beneath the installation directory of the CLDC reference 

implementation and JAVA_HOME set to the directory in which the J2SE SDK is installed 

(such as c:\jdk1.3.1), set up the DOS PATH variable as follows:
8
  

PATH=%JAVA_HOME%\bin;%CLDC_PATH%\win32;%PATH% 
PATH=%CLDC_PATH%\win32\debug;%PATH% 

                                                 
8 Refer to Section 2.1.3 for a full description of these shell variables. 

http:///


J2ME in a Nutshell 

35 

Now use the following commands to compile and preverify the example source code:  

javac -g -bootclasspath %CLDC_PATH%\common\api\classes -d tmpclasses 
     ora\ch2\KVMProperties.java 
preverify -classpath %CLDC_PATH%\common\api\classes;tmpclasses -d .  
     ora.ch2.KVMProperties 

An important difference between these commands and those used in our earlier example is 

that in this case we include the -g argument to the Java compiler. This argument causes 

debugging information to be written to the class file; be sure to use this argument when 

creating class files for debugging purposes.  

The next step is to start the KVM to run the example code. The standard KVM is built without 

debugging support to minimize its memory footprint, but the CLDC reference implementation 

contains a second copy of the KVM (called kvm_g) in the directory 

%CLDC_PATH%\win32\debug that can be used for debugging. You will notice that this 

directory is one of those included in the PATH variable set above. The following command 

starts the VM and prepares it for debugging:  

kvm_g -classpath . -debugger -port 2000 ora.ch2.KVMProperties 

The -debugger argument causes the VM to load the specified class and suspend execution to 

wait for the debug proxy to connect to it. The -port argument specifies the TCP/IP port 

number on which the KVM will listen for a connection from the debug proxy; in this case, 

port 2000 has been chosen, but any other free port could be used instead. Suspending 

execution of the application is the default and usually the correct thing to do, because you 

normally do not want to allow execution to proceed until you have set a breakpoint from the 

debugger. You can explicitly request suspension by supplying the -suspend argument, or you 

can allow execution to proceed without waiting for the debugger with the -nosuspend 

argument:  

kvm_g -classpath . -debugger -nosuspend -port 2000 ora.ch2.KVMProperties 

Now open another DOS window and set up the shell variables EXAMPLES, CLDC_PATH 

and PATH as before. We'll use this window to start the debug proxy process and connect it to 

the KVM listening on port 2000. The debug proxy is a Java application that is included in the 

CLDC reference implementation; its class files are located in the directory 

%CLDC_PATH%\common\tools\kdp\classes. For convenience, you should set up two more 

shell variables as follows:  

set KDPCLASSPATH=%CLDC_PATH%\common\tools\kdp\classes 
set CP=%CLDC_PATH%\common\api\classes;%EXAMPLES%\src 

KDPCLASSPATH points to the class files for the debug proxy itself, and the CP variable 

points to the class files for the CLDC core libraries and the compiled classes for this book's 

example source code. Using these variable definitions, the debug proxy can be started using 

the following command:  

java -classpath %KDPCLASSPATH% kdp.KVMDebugProxy -l 3000 -p  
     -r localhost 2000 -cp %CP% 

The arguments passed to the debug proxy are as follows: 

http:///


J2ME in a Nutshell 

36 

-l 3000  

The port number on which the debug proxy listens for incoming connections from the 

debugger. This can be any free port number to which you have access (i.e., on Solaris 

or Linux, it must be greater than 1023 unless you are logged in as root).  

-r localhost 2000  

The host and port number for the KVM to be debugged, which must match the value 

of the KVM -port argument. Here we assume that the debug proxy and the KVM are 

on the same machine, but this is not a requirement; if you run them on different 

machines, the name of the machine on which the KVM is running should be supplied 

in place of localhost.  

-cp %CP%  

The class path used to locate the CLDC core libraries and the classes for the 

application being run in the debugger. Of course, the application classes should have 

been compiled with the -g compiler option so that they have debugging information 

available. If you are running the debug proxy and the KVM on different machines, 

you will need to take a local copy of the class files or make them available on a 

network drive.  

You'll find a description of the complete set of arguments supported by the debug proxy in 

Chapter 8.  

As soon as it is started, the debug proxy connects to the KVM and then waits for a debugger 

to connect on its socket port. You can use any debugger that supports JPDA, such as the ones 

that are provided with Borland JBuilder
9
 or with Sun's free Forte for Java IDE, which we'll 

use here.  

To connect a debugger to the debug proxy, follow these steps: 

1. Start Forte for Java and create a new project, supplying %EXAMPLES%\src as the 

source directory to be initially mounted.  

2. In the filesystem window, open the nodes for the example source code and double-

click the KVMProperties class so that it is opened in the editor window.  

3. Right-click on the first line of the for loop in the main( ) method and apply a 

breakpoint using the Add/Remove Breakpoint command in the popup menu.  

4. From the main menu, select Debug and then Attach to VM. In the dialog that appears, 

ensure that the debugger type is set to JPDA and the connector type is sockets. Then 

fill in the debug proxy host and port names, typically localhost and 3000, 

respectively.  

5. Press OK to start the debugger.  

At this point, Forte connects to the debug agent and resumes the application in the KVM, 

which quickly reaches a breakpoint and stops, causing Forte to highlight the source line in the 

editor window, as shown in Figure 2-3.  

                                                 
9 JBuilder 5 provides JPDA support for remote debugging in the Professional and Enterprise editions only; it is not available in the Personal edition 

(or the Foundation edition for JBuilder 4). 

http:///


J2ME in a Nutshell 

37 

Figure 2-3. Reaching a breakpoint in Forte for Java 

 

With the debugger stopped at a breakpoint, you can now open the debug window (from View 

on the main menu) and examine variables, look at the stack backtraces for the threads in the 

KVM (as in Figure 2-4) or use any of the other features provided by the debugger, including 

stepping through the code line by line. More information on Forte for Java and the facilities it 

provides for building and debugging code, especially code written for MIDP, can be found in 

Chapter 9. Further information on the debug proxy and KVM debugging in general can be 

found in the KVM Porting Guide and the KVM Debug Wire Protocol Specification, both of 

which are supplied with the CLDC reference implementation.  

Figure 2-4. Examining the stack frame of a thread running in the KVM 

 

2.4 Advanced KVM Topics 

To close this chapter, we look at a couple of advanced techniques you can use with the KVM. 

If your focus is on developing applications for mass market wireless devices, the techniques 

shown in this section will be of little relevance, because they require you to be able to build 

your own copy of the VM from its source code and ship it along with your application. This is 

an option that is likely to be open to you only if you are using the KVM in a specialist 

application of some kind or if you are working for a device vendor incorporating the KVM 

into a new product.  

http:///


J2ME in a Nutshell 

38 

In order to build the KVM, you need to download a copy of the CLDC reference 

implementation and acquire a suitable compiler and build tools. The details of the build 

process and the development tools with which it has been tested can be found in the KVM 

Porting Guide, which is one of documents included with the reference implementation. Since 

describing how to compile the VM is beyond the scope of this book, the rest of this section 

assumes you have set up an environment within which you can compile and link the VM 

using the Makefiles supplied by Sun.  

2.4.1 Preloading Java Classes 

In a J2SE system, the core class libraries are stored in the file rt.jar and are dynamically 

loaded and linked on demand from the point at which the VM starts up. This has two 

consequences, both of which are not ideal in the kind of limited-resource environment toward 

which the KVM is targeted:  

• The process of loading a class and locating and linking it to other classes that it 

depends upon takes a certain amount of time. This time is relatively small for each 

individual class, but it becomes noticable when a large number of classes have to be 

loaded at the same time, which is typically what happens when an application starts 

executing. This effect would be much worse on the processors that the KVM runs on. 

These processors are slower than those used in desktop systems, but they are used in 

devices, such as cell phones, where the user will probably be prepared to wait only a 

very short time between requesting a service and the service becoming available.  

• In a desktop system, classes are loaded from the rt.jar file on disk into memory. 

KVM-based systems, however, typically don't have disks; instead, they just have a 

small amount of memory. In a typical device, the KVM and its class libraries are held 

in nonvolatile memory (ROM). If the KVM used the same technique as J2SE, these 

classes would have to be (at least partly) copied from ROM into RAM during the 

loading and linking process, causing an unacceptable overhead both in time and 

memory usage. (This is because the CLDC specification requires that only 32 KB of 

RAM be available, compared to a minimum of 128 KB of ROM.)  

To address both these problems, the KVM uses a technique called prelinking or ROMizing, 

which involves preprocessing all the core classes into a compact image form in which they 

appear to have been loaded and linked already. This image is then burned into the device 

ROM along with the KVM itself. Thus, when the VM starts up, all the core classes appear to 

have been loaded already, thus avoiding the memory overhead of copying the classes and the 

time overhead of linking them. The ROMizing process is performed during the KVM build 

process by a tool called JavaCodeCompact, which is itself built when the KVM is compiled.
10

  

You can arrange to have your own classes included in the ROMizing process, so that they 

appear to be preloaded when the KVM starts up. If you are building a device that has the 

KVM in ROM, you would use this technique to ensure that your application is available as 

soon as the device starts up. In order to do this, you have to understand how the KVM build 

process works. The steps of the process that are relevant to ROMizing are as follows, where 

the pathnames are relative to the directory in which the CLDC reference implementation is 

installed:  

                                                 
10 ROMizing is optional. You can build a KVM that does not have any classes preloaded by defining the build-time constant ROMIZING to have 

the value false. 

http:///


J2ME in a Nutshell 

39 

1. The core class libraries are compiled and built into a ZIP file called classes.zip in the 

directory j2me_cldc\api.  

2. The Makefile in the directory j2me_cldc\tools\jcc extracts all of the files from 

classes.zip, removes any that are not required on the platform for which the KVM is 

being built, and builds a new ZIP file consisting of the files that remain. For the 

Windows platform, for example, this file would be called classesWin.zip.  

3. The new ZIP file is processed by JavaCodeCompact to produce the ROMized image 

for the corresponding platform in the form of a C-language source file. For the 

Windows platform, this file would be called ROMJavaWin.c. This file is then 

compiled and linked into the KVM.  

To include your own classes among those preloaded into the KVM, you can do one of two 

things:  

• Create your own directory containing your source code and the Makefiles to compile it 

into Java class files, and modify j2me_cldc\tools\jcc\Makefile so that it includes your 

class files when building classesWin.zip.  

• Include your source code below the directory j2me_cldc\api\src, which contains the 

source for the CLDC class libraries. All Java source files below this directory will be 

compiled and included in classes.zip without the need to modify any Makefiles.  

The first of these is the better solution and the one recommended for serious development. 

However, for simplicity, we'll use the second alternative to demonstrate the ROMizing 

process. In the next section, you'll see an example that uses the first technique.  

To create a KVM with an additional preloaded class, do the following: 

1. Copy the file ora\ch2\KVMProperties.java in the source code examples for this book 

to j2me_cldc\api\src\ora\ch2\KVMProperties.java.  

2. Make j2me_cldc\build\win32 your current directory.  

3. Use make (or gnumake) to build the KVM as normal, as described in the KVM Porting 

Guide.  

The KVM that this process creates will be in the directory j2me_cldc\kvm\VmWin\build. If 

you make that directory your working directory and type the command:  

.\kvm ora.ch2.KVMProperties 

you'll see that the values of the four CLDC system properties are printed on the standard 

output stream, indicating that the KVMProperties class has been preloaded into the KVM.  

2.4.2 Interfacing with Native Code 

Since the KVM does not support the Java Native Interface, it is not possible to write an 

application that consists of a mixture of Java and native code and simply load the native code 

into the VM on demand at runtime. The only way to make native code available to Java 

applications running on the KVM is to include it in the VM build process. Like class 

preloading, this is a technique that you can use only when you have full control over the VM, 

and it is therefore not of any use when writing mass-market cell phone or PDA applications.  

http:///


J2ME in a Nutshell 

40 

The KVM Porting Guide describes the environment that the KVM provides for native code 

programming. A discussion of the details of native code programming is beyond the scope of 

this book, but, before embarking on writing your own native code, you should read the 

relevant chapters of the porting guide to ensure that you understand how to handle interaction 

with the garbage collector and how to interface with Java code. This section concentrates on 

getting you started with KVM native programming by showing you how to get your code 

built and linked into the VM and what you need to do to create the linkage between the VM 

and your Java code.  

2.4.2.1 Writing the Java code 

The first step when writing native code is to decide which methods of your Java classes will 

be implemented as native methods. When you have done this, you simply declare them in the 

same way as you would with a standard JVM. For the purposes of discussion, in this section 

we'll use the class KVMNative, which you'll find in the directory ora\ch2 in the source code 

examples for this book. This class has a single native method, declared using the Java 

language native keyword, as shown in Example 2-2.  

Example 2-2. A Java Class Containing a Native Method  

package ora.ch2; 
 
public class KVMNative { 
 
    public native void printMessage(String message); 
     
    public static void main(String[] args) { 
        String msg = args.length > 0 ? args[0] : ""; 
        for (int i = 1; i < args.length; i++) { 
           msg += " " + args[i]; 
        } 
        new KVMNative( ).printMessage(msg); 
    } 
} 

The intent of this simple application is to use native code to print on the standard output a 

message constructed by concatenating all of the application's command-line arguments. Once 

you've written the Java code, compile and preverify it in the usual way, then wrap it in a JAR 

file:  

javac -bootclasspath %CLDC_PATH%\common\api\classes -d tmpclasses  
     ora\ch2\KVMNative.java 
preverify -classpath %CLDC_PATH%\common\api\classes -d . tmpclasses 
jar cvfM0 native.jar ora\ch2\KVMNative.class 

If you have several classes that need access to native code, it is easier to integrate them with 

the KVM build process if they are in a JAR file, so we opt to create a JAR file in this example 

-- even though we have only a single class -- to demonstrate the most general case. Note that 

the JAR file does not need a manifest (hence the M option), and it must not be compressed, 

which explains the use of the 0 option (note that this is the digit 0, not the uppercase letter O).  

 

 

http:///


J2ME in a Nutshell 

41 

2.4.2.2 Determining the name of the native function 

The second step is to write the native code. Native code is written in the C programming 

language. The first problem to be tackled when writing a C-language function that 

implements a native method is naming the function. The KVM uses the same naming 

convention as the JNI; that is, the native function name is constructed as follows:  

1. It starts with the string "Java_". 

2. The fully qualified name of the class is appended, replacing periods with underscore 

characters.  

3. The method name is appended, separated from the class name by another underscore.  

4. If the method is overloaded, then the method signature is appended, preceded by two 

underscores.  

In the case of the native method shown in Example 2-2, the correct native function name 

would be Java_ora_ch2_KVMNative_printMessage( ). Since it is not overloaded, there is 

no need to include the argument types in the name. However, if we declared a pair of methods 

like this:  

public native void printMessage(String str); 
public native void printMessage(String intro, String str); 

the native function names would have to include the method signature in order to 

disambiguate them. The easiest way to obtain the method signatures is to compile the Java 

class and then examine its content using javap, specifying argument -s:  

javap -s ora.ch2.KVMNative 

If the two definitions of printMessage( ) shown previously had been included in this class, 

then the output from this command would look like this:  

public class KVMNative extends java.lang.Object { 
    public KVMNative( ); 
        /* (  )V */ 
    public native void printMessage(java.lang.String); 
        /* (Ljava/lang/String;)V */ 
    public native void printMessage(java.lang.String, java.lang.String); 
        /* (Ljava/lang/String;Ljava/lang/String;)V */ 
} 

The method signatures are shown in brackets. To build the complete native method name, the 

signature is modified and added to the part constructed from the package and class name. The 

signature is modifed as follows:  

• The part within the brackets, which specifies the arguments, is extracted.  

• Any "/" characters are replaced with "_".  

• Any "_" characters are replaced with "_1".  

• Any ";" characters are replaced with "_2".  

• Any "[" characters are replaced with "_3".  

For your convenience, a utility program that prints the name of the native function, given the 

class name, method name, and signature, is included in the example source code for this book. 

http:///


J2ME in a Nutshell 

42 

To get the signature for a method that is not overloaded, you need to specify only the class 

and method names, being careful to use "/" as the separator within the class name. For 

example, the command:  

java ora.ch2.KVMPrintNativeMethodName ora/ch2/KVMNative printMessage 

produces the output: 

Java_ora_ch2_KVMNative_printMessage 

For overloaded methods, include the signature as displayed by javap as the third argument, 

like this:  

java ora.ch2.KVMPrintNativeMethodName ora/ch2/KVMNative printMessage 
(Ljava/lang/String;)V 

which gives the following output: 

Java_ora_ch2_KVMNative_printMessage_ _Ljava_lang_String_2 

The result for the two-argument variant of printMessage( ) would be:  

Java_ora_ch2_KVMNative_printMessage_ 
_Ljava_lang_String_2Ljava_lang_String_2 

2.4.2.3 Writing the native code 

Having determined what the native code function will be called, all that remains is to write it. 

Native code needs to make use of utility methods provided by the KVM. Some of the more 

useful KVM functions used by native code are described in the KVM porting guide, but, in 

general, you will need to examine the KVM source code to work out what is available to you 

and how to use it. In this case, we simply need to get hold of the Java string passed to the 

method and print it on standard output. Example 2-3 shows a possible implementation of this 

method, which you can find in the source file KVMNativeExample.c in the directory ora\ch2 

of the example source code.  

Example 2-3. An Example of Native Code for the KVM  

#include <global.h> 
 
void Java_ora_ch2_KVMNative_printMessage( ) 
{ 
    STRING_INSTANCE stringInstance = popStackAsType(STRING_INSTANCE); 
    INSTANCE thisPtr = popStackAsType(INSTANCE); 
    char *string = getStringContents(stringInstance); 
    if (string != (char *)0 && *string != (char)0) { 
        printf("Message is %s\n", string); 
    } else { 
        printf("No message\n"); 
    } 
} 

Although it is beyond the scope of this book to cover the details of native language 

programming for the KVM, it is worth reviewing a few details of this code:  

http:///


J2ME in a Nutshell 

43 

• The source code starts by including the header file global.h. This file contains 

definitions of constants and functions that native code will need to reference. You'll 

find this file in the directory j2me_cldc\kvm\VmCommon\h within the CLDC reference 

implementation.  

• The function name matches that described above. Note, however, that it is declared to 

have no arguments, even though the corresponding Java method has an argument of 

type String.  

• Instead of being passed to the function in the usual way, Java language arguments are 

pushed onto a stack, along with the value of the this pointer for the object on which 

the method was invoked (except in the case of a static method). The item at the top of 

the stack is the rightmost argument in the argument list.  

• To access the arguments, you use macros defined in the file global.h. Here, the macro 

popStackAsType( ) is used to pop first the pointer to the string argument and then 

the value of the this pointer. Other macros can be used for removing primitive types 

such as integers and longs, and there are also a small number of reference types (or 

INSTANCE types) defined for use with the popStackAsType( ) macro. Refer to 

global.h for further information on these definitions.  

• It is important that all arguments and the this pointer (if it is present) be popped off 

the stack before the function returns. If this is not done, the likely result is that the 

KVM will crash.  

• The string reference obtained from the stack is not a pointer that can be directly used 

by C-language code. References to Java objects are passed to native code in the form 

of opaque objects known as handles; handles cannot be used directly but must be 

passed to KVM methods to access the real data. In this case, the string reference is 

used as an argument to the getStringContents( ) method, which returns a pointer 

to an array of characters that can be used directly by the C code. From here, the 

string's value is printed directly to the standard output using the printf function in the 

usual way. Note that getStringContents( ) copies the string into a global buffer, so 

there is no need to worry about freeing the memory that it occupies.  

• This particular method does not return a value to the Java code that calls it. To return a 

value, you must push it onto the stack using one of the macros such as pushStack( ), 

pushLong( ) or pushStackAsType( ), defined in global.h.  

2.4.2.4 Arranging for the native code to be compiled and included in the KVM 

Once you have written your native code functions, you need to arrange for them to be 

compiled and linked with the KVM. The simplest way to achieve this is to include them with 

the source files for the KVM itself and to modify its Makefiles so that they are included in the 

build process. The following steps arrange for the native code created above to be linked into 

the KVM:  

• Create a new directory called j2me_cldc\Native\src in the source distribution included 

with the CLDC reference implementation.  

• Copy the file KVMNativeExample.c from the ora\ch2 directory to 

j2me_cldc\Native\src.  

• Modify the KVM build Makefile to include the new source code in the build.  

The Makefile to be modified in the last step depends on the platform for which the KVM is to 

be built. For Windows, this Makefile can be found at j2me_cldc\kvm\VmWin\build\Makefile, 

while for Linux and Solaris it is j2me_cldc\kvm\VmUnix\build\Makefile. Add the following 

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

44 

lines (shown in bold) to include KVMNativeExample.c in the list of source files to be 

compiled:  

ifeq ($(ROMIZING), false)  
   ROMFLAGS = -DROMIZING=0 
else 
   SRCFILES += ROMjavaWin.c 
endif 
 
# Include the example native code 
SRCFILES += KVMNativeExample.c 

The directory in which the native code file is included also needs to be added to the list of 

those searched for source files by adding it to the existing list:  

# Add last entry to include native code directory 
vpath %.c $(TOP)/kvm/VmCommon/src/ $(TOP)/kvm/VmWin/src/ \ 
        $(TOP)/kvm/VmExtra/src/ $(TOP)/tools/jcc/ \ 
        $(TOP)/jam/src/ $(TOP)/Native/src 

With these changes, when the KVM is next built, the native code in KVMNativeExample.c 

will be built and linked into it.  

2.4.2.5 Connecting the Java code to the native code 

The final step is to connect the native code in the KVM to the Java code that will invoke it. 

Because the KVM does not support JNI, there has to be a different mechanism that maps at 

runtime a native Java method call to the corresponding native function that implements it. The 

details of how this is done depends on whether the KVM is built with ROMizing enabled. 

Before looking at this in more detail, here are the steps that you need to follow to arrange for 

the KVM build process to link the Java code and native code:  

• Copy the file native.jar that contains the compiled Java classes created earlier (see 

Section 2.4.2.3) to the directory j2me_cldc\tools\jcc.  

• Delete the files nativeFunctionTableWin.c and ROMjavaWin.c (or 

nativeFunctionTableUnix.c and ROMjavaUnix.c for Linux and Solaris), if they exist, 

to force them to be rebuilt.  

• Edit the file j2me_cldc\tools\jcc\Makefile as shown later.  

In the Makefile, you will find two targets called ROMjava%.c. Modify the first of these 

targets and the nativeFunctionTable%.c target that follows it by making them depend on the 

file native.jar :  

 
ROMjava%.c: classes%.zip native.jar tools 
        @cp -f src/*.properties classes 
        @$(MAKE) $@ JCC_PASS_TWO=true 
 
nativeFunctionTable%.c: classes%.zip native.jar tools 
        @cp -f src/*.properties classes 
        @$(MAKE) $@ JCC_PASS_TWO=true 

These changes ensure that if you change your Java source code and rebuild the native.jar file, 

the appropriate parts of the KVM will also be rebuilt.  

http:///


J2ME in a Nutshell 

45 

Further down the Makefile, you will find a second set of the same targets. Modify these so 

that they also depend on native.jar and to ensure that the files in native.jar are included in the 

build process:  

ROMjava%.c: classes%.zip native.jar 
        echo ... $@ 
        echo Arch $($(patsubst classes%.zip,%Arch,$<)) 
        $(JAVA) -classpath classes JavaCodeCompact \ 
                 -nq -arch $($(patsubst classes%.zip,%Arch,$<)) -o $@ $^ 
 
nativeFunctionTable%.c: classes%.zip native.jar 
        echo ... $@ 
        echo ... $^ 
        cp -f src/*.properties classes 
        $(JAVA) -classpath classes JavaCodeCompact \ 
                         -nq -arch KVM_Native -o $@ $^ 

Note that the $< on last line of each target has been changed to $^. This causes 

JavaCodeCompact to include the class files in both classesWin.zip (or classesUnix.zip) and 

native.jar. With these changes in place, you can rebuild the KVM. The new VM can be found 

in the directory j2me_cldc\kvm\VmWin\build for the Windows platform or 

j2me_cldc\kvm\VmWin\build for Linux and Solaris. If you use it to run the example code 

written earlier, you should see any words you supply as command line arguments written to 

the standard output by the native function in the KVMNativeExample.c file:  

> kvm ora.ch2.KVMNative Hello, Native World 
Message is Hello, Native World 

Now let's look a little more closely at how this works. There are slightly different 

explanations depending on whether ROMizing is in use or not.  

When ROMizing is enabled, JavaCodeCompact creates the linkage between the Java code 

and the native code at build time. In this case, any Java code that needs to access native 

methods must be included as part of the KVM build. This is why the native.jar file is one of 

the files included as a target for the ROMjava%.c target in the Makefile. At build time, this 

target builds a file in the directory j2me_cldc\tools\jcc called ROMjavaWin.c or 

ROMJavaUnix.c, which contains the ROMized image of the CLDC core libraries and any 

application preloaded classes. When we run the KVM and load the class 

ora.ch2.KVMNative, we are actually using the copy of this class that was preloaded into the 

KVM and linked to the native code at build time. If we had linked the native code into the 

KVM but not preloaded the class ora.ch2.KVMNative, we would see an error message 

saying that the native method could not be found when we attempt to run the example, even 

though the native code has been built into the KVM.  

When ROMizing is not enabled, the core libraries and all application code is loaded into the 

KVM on demand, from the class path supplied using its -classpath argument. In this case, 

there is no build-time linkage created between the Java code and its corresponding native 

methods. Instead, the nativeFunctionTable%.c target of the Makefile causes 

JavaCodeCompact to generate a file called nativeFunctionTableWin.c or 

nativeFunctionTableUnix.c that maps from the name of a Java native method to a pointer to 

the native function that implements it. JavaCodeCompact generates the code in this file 

automatically by scanning all the Java classes passed to it on the command line (in ZIP files, 

JAR files, or individually named class files) looking for native methods. The generated source 

http:///


J2ME in a Nutshell 

46 

file contains native method information for each class that contains a native method, as well 

as a master index for all packages that have classes with native methods. Since this file is 

generated automatically, you do not need to concern yourself with all the details, but it is still 

instructive to examine the file's content. For the class ora.ch2.KVMNative, for example, the 

following code is generated:  

const NativeImplementationType ora_ch2_KVMNative_natives[] = { 
    { "printMessage", NULL, Java_ora_ch2_KVMNative_printMessage}, 
    NATIVE_END_OF_LIST 
}; 

This shows that this class has one native method called printMessage( ), which is 

implemented by the function Java_ora_ch2_KVMNative_printMessage( ). The NULL that 

appears before the function reference is used to indicate the method signature in cases of 

method overloading. Since there is only one printMessage( ) method in this class, there is 

no need to specify a signature. Compare this with the entries for the native methods in the 

core library class java.lang.String:  

const NativeImplementationType java_lang_String_natives[] = { 
    { "charAt", NULL, Java_java_lang_String_charAt}, 
    { "equals", NULL, Java_java_lang_String_equals}, 
    { "indexOf", "(I)I", Java_java_lang_String_indexOf_ _I}, 
    { "indexOf", "(II)I", Java_java_lang_String_indexOf_ _II}, 
    NATIVE_END_OF_LIST 
}; 

Here, the entries for the indexOf method have to include the signature field because there are 

two overloaded variants:  

public int indexOf(int ch); 
public int indexOf(int ch, int fromIndex); 

You can see that the function names also include the method signature parts.  

There is also a master index that is used to map from a class name to the native methods for 

that class. Here is an extract from that index, which clearly shows how it works:  

const ClassNativeImplementationType nativeImplementations[] = { 
    { "java/lang", "Object", java_lang_Object_natives }, 
    { "java/lang", "Throwable", java_lang_Throwable_natives }, 
    { "ora/ch2", "KVMNative", ora_ch2_KVMNative_natives }, 
    // MORE ENTRIES - NOT SHOWN 
NATIVE_END_OF_LIST 
}; 

Note that this file is generated even if ROMizing is enabled, but its content is not used.  

http:///


J2ME in a Nutshell 

47 

Chapter 3. The Mobile Information Device Profile and 
MIDlets 

The Connected Limited Device Configuration provides the basis for running Java on devices 

that have insufficient resources to support a complete virtual machine together with a full 

version of the J2SE core packages. However, if you are an application developer, it is 

extremely unlikely that you will ever need to write software that works solely with the APIs 

provided by CLDC, because it contains nothing that allows for interaction with users, storage 

devices, or a network. CLDC is intended to be a base layer on top of which a range of profiles 

that provide the missing facilities can be provided, in a form suitable for the class of device 

for which each profile is designed. The Mobile Information Device Profile, or MIDP for short, 

is one such profile, intended for use on small footprint devices with a limited user interface in 

the form of a small screen with some kind of input capability. This chapter introduces MIDP; 

in the following two chapters, we'll look in more detail at how it supports user interfaces, 

networking, and persistent storage of information.  

3.1 MIDP Overview 

MIDP is a version of the Java platform based on CLDC and KVM that is aimed at small 

footprint devices, principally cell phones and two-way pagers. It is also suitable for running 

on PDAs, and an implementation is available for PalmOS Version 3.5 and higher. (In the 

longer term, it is intended that these devices use the PDA profile, which is also hosted by 

CLDC.) The MIDP specification was developed under the Java Community Process and is 

available for download from http://jcp.org/jsr/detail/37.jsp.  

The logical position of MIDP within the software architecture of a device that implements it is 

shown in Figure 3-1. The software that implements MIDP runs in the KVM supplied by 

CLDC and provides additional services for the benefit of application code written using 

MIDP APIs. MIDP applications are called MIDlets. As Figure 3-1 shows, MIDlets can 

directly use both MIDP facilities and the APIs described in Chapter 2 that MIDP inherits from 

CLDC itself. MIDlets do not access the host platform's underlying operating system and 

cannot do so without becoming nonportable. Because the KVM does not support JNI, the only 

way for a MIDP application to access native platform facilities directly is by linking native 

code into a customized version of the virtual machine.  

Figure 3-1. The Mobile Information Device Profile 

 

Sun provides a reference implementation of MIDP that can be used on Windows; the Wireless 

Toolkit, which contains versions of MIDP for Windows, Solaris and Linux; and a separate 

http:///


J2ME in a Nutshell 

48 

MIDP product for use on PalmOS-based PDAs. Device manufacturers typically use the Sun 

reference implementation as the basis for their own products. They usually integrate 

additional code as part of their MIDP implementation to provide management features such as 

installation, removal, and management of MIDlets that are not portable between devices and 

hence not part of the reference software. As shown in Figure 3-1, this code (labeled "OEM 

Code") may use some combination of MIDP and CLDC services and will also depend on the 

host platform's operating system. Some parts of the core MIDP software are themselves 

device-dependent and thus are also supplied by the manufacturer. These typically include 

parts of the networking support, the user interface components, and the code that provides 

persistent storage.  

3.1.1 MIDP Hardware Requirements 

As mentioned earlier, MIDP is intended for small devices with limited memory, CPU, and 

display capabilities. The minimum hardware requirements are described in the following 

sections.  

3.1.1.1 Memory 

As you'll see over the next few chapters, MIDP includes quite a lot of software that is not part 

of the core Java platform and therefore requires more memory than the minimal CLDC 

environment is obliged to supply. The MIDP specification requires at least 128 KB of RAM 

be available to store the MIDP implementation itself, over and above whatever is needed by 

CLDC. In addition to this, there must be at least 32 KB available for the Java heap. In 

practice, a 32 KB heap is very limiting and demands that the developer exercise great care 

when allocating objects and take all possible steps to avoid holding references to objects 

longer than necessary, in order to allow the garbage collector to reclaim heap space as quickly 

as possible. As well as the RAM requirement, MIDP devices must also supply at least 8 KB 

of nonvolatile memory to be used as persistent storage so that MIDlets can save information 

in such a way that it is not lost when the device is switched off. The content of this storage is 

not guaranteed to be preserved over battery changes, however, and there is a general 

expectation that the device also provides some way (such as the PDA "hot sync" mechanism) 

to back up its content to a more permanent location.  

3.1.1.2 Display 

MIDP devices are characterized by small displays. The specification requires that the screen 

should be at least 96 pixels wide and 54 pixels high and that each pixel be (approximately) 

square. The screen must support at least two colors, and many cell phones are capable of no 

more than this. At the top of the range, PDAs typically have screens with 160 pixels in each 

direction and support as many as 65,536 different colors. This wide disparity in capability 

provides the developer who wants to write a fully portable MIDlet with some interesting 

challenges, and it has led to some trade-offs in the MIDP user interface library, as we'll see in 

Chapter 4 and Chapter 5.  

3.1.1.3 Input device 

As with displays, there are several different types of input device that might be found on a 

MIDP platform. At one end of the spectrum, the more sophisticated devices, like the RIM 

wireless handheld, have a complete alphanumeric keyboard, as shown on the left of   

Figure 3-2. Similarly, PalmOS-based handhelds allow the user to "write" on a special area of 

http:///


J2ME in a Nutshell 

49 

the screen using a form of shorthand known as Graffiti; they also provide a simulated 

onscreen keyboard for users who prefer a more traditional approach. The screenshot on 

the right side of Figure 3-2 shows the Graffiti area of a Palm handheld.  

Figure 3-2. Handheld input devices 

 

Contrast these highly functional keyboards (or keyboard substitutes) with the more basic one 

that you'll find on most cell phones, an example of which is shown in Figure 3-3. Keyboards 

like this provide relatively easy numeric input, but they require slightly more work on the part 

of the user to type alphabetic characters, and there are almost no special characters available.  

The minimum assumption made by the MIDP specification is that the device has the 

equivalent of a keypad that allows the user to type the numbers 0 through 9, together with the 

equivalent of arrow keys and a select button as shown in the diamond-shaped arrangement at 

the top of Figure 3-3, where the select button is the white circle between the arrows. These 

requirements are directly met by cell phones and may be satisfied in various ways on other 

devices. On the Palm, for example, there are buttons that may be programmed to act as 

directional arrows, while the select operation can be performed by tapping the screen with the 

stylus. As we'll see in Chapter 5, this cut-down representation of the input device is reflected 

in the APIs that handle the user interface, and it requires the developer to be careful when 

handling events from whatever passes for the keyboard on the device on which a MIDlet is 

running.  

Figure 3-3. A typical cell phone keypad 

 

3.1.1.4 Connectivity 

Mobile information devices have some kind of network access, whether it's the built-in 

wireless connection in a cell phone or pager, or a separate modem attached to a PDA. MIDP 

does not assume that devices are permanently attached to a network or that the network 

directly supports TCP/IP. It does, however, require that the device vendor provide at least 

http:///


J2ME in a Nutshell 

50 

the illusion that the device supports HTTP 1.1, either directly over an Internet protocol stack, 

as would be the case for a Palm handheld connected to a modem, or by bridging a wireless 

connection to the Internet via a WAP gateway. This provision allows developers to write 

network-aware MIDlets that work equally well (other than performance differences due to 

differing network bandwidth) across all supported platforms.  

3.1.2 MIDP Software Requirements 

Sun's reference version of MIDP is not a commercial product. Device vendors are expected to 

port the reference implementation to their own hardware and software by implementing code 

that bridges the gap between the expectations of Sun's reference code and the vendor's 

hardware and operating system software. As with the hardware described previously, the 

reference implementation makes the following assumptions about the capabilities offered by 

the software base on which it will be hosted (shown as "Host Platform Operating System" in 

Figure 3-1:  

• The operating system must provide a protected execution environment in which the 

JVM can run. Because CLDC supports the threading capabilities of J2SE, the host 

platform ideally supports multithreading, and, if it does, the KVM can make direct use 

of it. However, MIDP implementations are required to provide the illusion of 

multithreading even when this is not available from the native operating system. They 

do this by sharing the single available thread between the Java threads that belong to 

application code and those used within the VM and the MIDP and core libraries.  

• Networking support is required in some form. On some platforms, such as PalmOS, a 

socket-level API is available, over which the mandatory MIDP HTTP support can be 

implemented. In the case of devices that do not offer such a convenient interface, 

including those that do not have direct connectivity to an IP-based network, the vendor 

is required to provide a means for HTTP to be bridged from the device's own network 

to the Internet. The networking aspects of MIDP are discussed in detail in Chapter 6.  

• The software must provide access to the system's keyboard or keypad (or equivalent) 

and a pointing device, if it is available. The software must be able to deliver events 

when keys are pressed and released and when the pointing device is moved or 

activated. (For example, for a handheld with a stylus, the software must deliver an 

event when the stylus touches the screen, when it is lifted off the screen, and when it 

moves over the screen.) The vendor is required to map whatever codes are delivered 

by the user's keystrokes to a standard set of values so that similar keystrokes lead to 

the same results across different hardware platforms. This issue is discussed further in 

Chapter 5.  

• It must be possible to access the device's screen. MIDP allows MIDlets to treat the 

screen as a rectangular array of pixels, each of which may be independently set to one 

of the colors supported by the device. Therefore, it is required that the software 

provide access to the screen as if it were a bit-mapped graphics device. MIDP user 

interfaces and graphics are covered in detail in Chapter 4 and Chapter 5.  

• The platform must provide some form of persistent storage that does not lose its state 

when the device is switched off (that is, when it is in its minimum power mode, but 

not necessarily when it has no power at all). MIDP provides record-level access to this 

storage and therefore requires that the host software supply some kind of 

programmatic interface to its persistent storage mechanism. The MIDP storage APIs 

are described in Chapter 6.  

http:///


J2ME in a Nutshell 

51 

3.2 The MIDP Java Platform 

The Java platform available to MIDlets is that provided by CLDC as described in Chapter 2, 

together with a collection of MIDP-specific packages arranged under 

the javax.microedition package hierarchy. The core libraries themselves are almost 

unaffected by the MIDP specification; the only change is the addition of the J2SE 1.3 timer 

facility in the java.util package, which will be covered in Section 3.5.4. The MIDP 

specification also places the following requirements on the core libraries:  

• Like applets, MIDlets are managed in an execution environment that is slightly 

different from that of a Java application. As you'll see shortly, the initial entry point to 

a MIDlet is not the main( ) method of its MIDlet class, and the MIDlet is not allowed 

to cause the termination of the Java VM. In order to enforce this restriction, 

the exit( ) methods in both the System and Runtime classes are required to throw 

a SecurityException if they are invoked.  

• In addition to the system properties defined by CLDC, MIDP devices must set the 

microedition.locale property to reflect the locale in which the device is operating. 

The locale names are formed in a slightly different way from those used by J2SE, 

because the language and country components are separated by a hyphen instead of an 

underscore character. A typical value for this property would be en-US on a MIDP 

device, whereas a J2SE developer would expect the locale name in the form en_US. 

Since both MIDP and CLDC provide almost no support for localization, however, the 

precise format of this property is of little direct interest to MIDlets. Instead, it is 

intended to be used when installing MIDlets from external sources, to allow the 

selection of a version of the MIDlet suitable for the device owner's locale. The 

property must therefore be properly interpreted by the agent (perhaps a servlet running 

in a web server) that supplies the software.  

• The system property microedition.profiles must contain at least the value MIDP-

1.0. In the future, as new versions of the MIDP specification are released and 

implemented, devices that support multiple profiles may list them all in this profile, 

using spaces to separate the names.  

In summary, the values of the system properties that are introduced by or changed by MIDP 

relative to the requirements placed by CLDC, are shown in Table 3-1.  

Table 3-1. MIDP System Properties 

Property Meaning Value 

microedition.locale The current locale of the device e.g., en-US  

microedition.profiles Blank-separated list of supported profiles MIDP-1.0 

3.3 MIDlets and MIDlet Suites 

Java applications that run on MIDP devices are known as MIDlets. A MIDlet consists of at 

least one Java class that must be derived from the MIDP-defined abstract class 

javax.microedition.midlet.MIDlet. MIDlets run in an execution environment within 

the Java VM that provides a well-defined lifecycle controlled via methods of the MIDlet class 

that each MIDlet must implement. A MIDlet can also use methods in the MIDlet class to 

obtain services from its environment, and it must use only the APIs defined in the MIDP 

specification if it is to be device-portable.  

http:///


J2ME in a Nutshell 

52 

A group of related MIDlets may be collected into a MIDlet suite. All of the MIDlets in a suite 

are packaged and installed onto a device as a single entity, and they can be uninstalled and 

removed only as a group. The MIDlets in a suite share both static and runtime resources of 

their host environment, as follows:  

• At runtime, if the device supports concurrent running of more than one MIDlet, all 

active MIDlets from a MIDlet suite run in the same Java VM. All MIDlets in the same 

suite therefore share the same instances of all Java classes and other resources loaded 

into the Java VM. Among other things, this means that data can be shared between 

MIDlets, and the usual Java synchronization primitives can be used to protect against 

concurrent access not only within a single MIDlet, but also between concurrently 

executing MIDlets from the same suite.  

• Persistent storage on the device is managed at the MIDlet suite level. MIDlets can 

access their own persistent data and that of other MIDlets in the same suite. However, 

it is not possible for a MIDlet to gain access to persistent storage owned by another 

suite, because the naming mechanism used to identify the data implicitly includes the 

MIDlet suite. This is partly to avoid unintended name clashes between MIDlets 

obtained from unrelated sources, and partly as a security measure so that a MIDlet's 

data cannot be read or corrupted by malicious code imported from an unreliable 

source.  

As an example of the sharing of classes and data between MIDlets, suppose a MIDlet suite 

contains a class called Counter, intended to keep count of the number of instances of MIDlets 

from that suite are running at any given time.  

public class Counter { 
    private static int instances; 
 
    public static synchronized void increment( ) { 
        instances++; 
    } 
 
    public static synchronized void decrement( ) { 
        instances--; 
    } 
 
    public static int getInstances( ) { 
        return instances; 
    } 
} 

Only a single instance of this class will be loaded in the Java VM, no matter how many 

MIDlets from the suite that supplies it are running in that VM. This means that the same static 

variable instances is used by all of these MIDlets, and, therefore the increment and 

decrement methods all affect the same counter. The fact that these methods are synchronized 

protects the instances variable from concurrent access by any threads in all of the MIDlets.  

3.3.1 MIDlet Security 

For the developer, dealing with MIDlet security is a very simple issue, because there isn't any! 

The Java security model used in J2SE is both powerful and flexible, but it is expensive in 

terms of memory resources, and it requires a certain amount of administration that may be 

beyond the knowledge expected of a mobile device user. Therefore, neither CLDC nor MIDP 

http:///


J2ME in a Nutshell 

53 

includes any of the security checking of API calls that is available in J2SE, with the exception 

of the Runtime and System exit( ) methods, which can never be used by a MIDlet.  

For the mobile device owner, this means that a MIDlet appears to be more of a potential threat 

than an applet would to a browser user, because the MIDlet is not constrained by the Java 

applet "sandbox" that the browser imposes via a SecurityManager. A mobile device owner 

needs to be careful when installing MIDlets and, preferably, he should accept software only 

from trusted sources. Unfortunately, at the time of writing, there is no way for the user to be 

completely sure who is actually providing a MIDlet or that the MIDlet code has not been 

interfered with en route to the device; the authentication mechanisms that provide this for the 

J2SE platform (i.e., public key cryptography and certificates) are not a standard part of the 

MIDP specification. The secure version of the HTTP protocol (HTTPS), which will help to 

alleviate this problem, is under consideration for inclusion in a future version of MIDP. In the 

meantime, there is limited security against malicious MIDlets. There are no MIDlet APIs that 

allow access to information already on the device, such as address and telephone number lists 

or calendars, and it is not possible for a MIDlet to directly control the device. As you'll see in 

Chapter 6, a MIDlet can store information on a device, but that storage is private to that 

MIDlet and its suite, so the MIDlet can harm only its own data.  

3.3.2 MIDlet Packaging 

MIDlets need to be properly packaged before they can be delivered to a device for 

installation. The MIDlet subclass that acts as the main entry point for the MIDlet, together 

with any other classes that it requires (apart from those provided by MIDP itself) and any 

images or other files to which it needs access at runtime, must be built into a single JAR file. 

Packaging information that tells the device what is in the JAR must be supplied in the JAR's 

manifest file. Similar packaging information is also provided in another file called the Java 

application descriptor (or JAD file for short), which is held separately from the JAR. A JAR 

may contain more than one MIDlet, in which case all the MIDlets are deemed to be in the 

same MIDlet suite. To put the same thing another way, all MIDlets that are in the same 

MIDlet suite must be packaged in the same JAR.  

Both the manifest file and the JAD file are simple text files in which each line has the form:  

attribute-name: attribute-value 

The name and value are separated by a colon and optional whitespace. All the attributes that 

are of relevance to the installation of MIDlets have names with the prefix "MIDlet-". A 

complete list of these attributes, together with a short description of their associated values, 

can be found in Table 3-2. The values in the JAR and JAD columns indicate whether the 

attribute is mandatory (M), optional (O) or ignored (I) in the file corresponding to that 

column.  

 

 

 

 

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

54 

Table 3-2. MIDlet Packaging Attributes 

Attribute Name JAR JAD Value and Meaning 

MIDlet-Name M M 
The name of the MIDlet suite packaged in the JAR file. This name may be 

displayed to the user.  

MIDlet-Version M M 

The version number of the MIDlet suite packaged in the JAR file. Version 

numbers take the form a.b.c (for example 1.2.3), where larger values in each 

field indicate a newer version, with the leftmost field taking precedence. For 

example, version 1.2.5 is taken to be more recent than version 1.2.3, and, 

similarly, version 2.1.5 is newer than 1.3.7.  

MIDlet-Vendor M M 
The name of the MIDlet suite provider. This is free-form text that is intended 

for display to the user.  

MIDlet-n M I 

Attributes that describe the MIDlet in the MIDlet suite. The value n is replaced 

by a numeric value starting from 1 to identify individual MIDlets. The format 

of the value associated with this attribute is described in the text.  

MicroEdition-
Profile 

M I 

The version or versions of the MIDP specification that the MIDlets in this suite 

can work with. Where more than one version appears, they must be separated 

by spaces. The versions specified are compared to those listed in the 

microedition.profiles property of the target device to determine 

whether the MIDlets are compatible with them. MIDP-1.0 is a typical value 

for this attribute.  

MicroEdition-
Configuration 

M I 

The J2ME configuration required by the MIDlets in this suite. This value is 

compared to the target device's microedition.configuration

property to determine compatibility.  

MIDlet-
Description 

O O A description of the MIDlet suite intended to be displayed to the user.  

MIDlet-Icon O O 
An icon that may be used to represent the MIDlet suite during or following 

installation. The icon must be a Portable Network Graphics (PNG) file.  

MIDlet-Info-
URL 

O O 

The URL of a file that contains further information describing the MIDlet 

suite. The content of this file may be displayed to the user to allow the user to 

decide whether to install the MIDlet suite.  

MIDlet-Data-
Size 

O O 

The minimum amount of persistent storage that this MIDlet suite requires. This 

refers to space used for the long-term storage of data used by the MIDlet suite, 

not the space required to install and manage the MIDlet suite itself. It is 

specified in bytes. If this attribute is not supplied, it is assumed that the MIDlet 

suite does not require persistent storage. Whether or not MIDlets can use more 

persistent storage space than they initially request is device-dependent.  

MIDlet-Jar-URL I M 
The URL of the JAR file that contains the MIDlet or MIDlet suite described by 

these attributes. This attribute is used only in the application descriptor.  

MIDlet-Jar-
Size 

I M 
The size of the MIDlet JAR file in bytes. This attribute is used only in the 

application descriptor.  

MIDlet-
Install-Notify 

I O 

A URL used to report the success or failure of MIDlet installation performed 

from a remote server. This attribute is not included in the current MIDP 

specification, but it is supported by the Wireless Toolkit. See Section 3.6 for 

further details.  

MIDlet-Delete-
Confirm 

I O 

A message to be displayed to the user before the MIDlets are deleted from the 

device on which they are installed. Like MIDlet-Install-Notify, this 

attribute is not currently included in the formal specification.  

MIDlet-specific 

attributes 
O O 

MIDlet developers can provide limited configurability for MIDlets by 

including attributes that can be retrieved at runtime.  

As you can see, many of the attributes must be supplied in both the manifest file, which 

resides in the JAR, and in the JAD file, which does not. To see why, it is necessary to 

understand why two files are used.  

http:///


J2ME in a Nutshell 

55 

The job of the manifest file is to indicate to the device the name and version of the MIDlet 

suite in the JAR and to specify which of the class files it contains correspond to the individual 

MIDlets. In order to make use of this information, however, the device must download the 

JAR and extract the manifest. Having done this, it can then display the values associated with 

the MIDlet-Name, MIDlet-Version, and MIDlet-Vendor attributes and the optional MIDlet-

Description and MIDlet-Icon attributes. These attributes allow the user to decide whether 

the MIDlets should be installed. However, the JAR for a MIDlet suite might be quite large 

and may take some time to retrieve over the relatively slow networks to which mobile devices 

typically have access. If the only useful description of its content were in the JAR itself, a lot 

of time might be wasted transferring large files that are immediately rejected as uninteresting.  

To solve this problem, some of the attributes from the manifest file, together with extra 

information, is duplicated in the JAD file. Instead of downloading the whole JAR, a MIDP 

device first fetches its JAD file, which is much smaller than the JAR and can be transferred 

quickly. The device then displays the JAD file's contents to the user so that she can decide 

whether to fetch the JAR file. The JAD contains some attributes that come from the manifest 

file and others that do not appear in the manifest. The common attributes are as follows:  

MIDlet-Name  

MIDlet-Vendor  

MIDlet-Version  

MIDlet-Description  

MIDlet-Icon  

MIDlet-Info-URL  

MIDlet-Data-Size  

These attributes (with the possible exception of the last one) can all be presented to the user as 

an aid to deciding whether the content of the corresponding JAR file is interesting enough to 

download. The first three of these attributes are mandatory in both JAR and JAD files, and the 

MIDP specification requires that their values be identical. The remaining attributes are all 

optional. If they appear in both the manifest and the JAD file, the value in the JAD file takes 

precedence over that in the manifest (and at this stage, the device can see only the value in the 

JAD file).  

The JAD file also contains two other attributes that are not present in the manifest file:  

MIDlet-Jar-Size  

MIDlet-Jar-URL  

The MIDlet-Jar-Size attribute can be displayed to the user to help determine how long it 

will take to fetch the JAR; it also enables the user to guess whether the device has enough free 

space to install the JAR. Assuming the user decides to install the MIDlet suite, the next step is 

to fetch the JAR itself, which can be found by using the value of the MIDlet-Jar-URL 

attribute.  

Suppose a company called "Wireless Java Inc." creates a suite of MIDlets called 

WirelessTrader that allow a user to do online stock trading from a MIDP device. The suite 

contains two MIDlets, one for trading, the other for simply browsing through stock prices. 

The main classes for these two MIDlets are called com.wireless.TradeMIDlet and 

com.wireless.BrowseMIDlet, and they make use of common code in the 

com.wireless.Utils class. The manifest for this suite would look something like this:  

http:///


J2ME in a Nutshell 

56 

MIDlet-Name: WirelessTrader 
MIDlet-Vendor: Wireless Java Inc. 
MIDlet-Version: 1.0.1 
MIDlet-Description: A set of MIDlets for online trading. 
MIDlet-Icon: /com/wireless/icons/wireless.png 
MIDlet-Info-URL: http://www.wireless.com/trader/info.html 
MIDlet-Data-Size: 512 
MicroEdition-Profile: MIDP-1.0 
MicroEdition-Configuration: CLDC 
MIDlet-1: 
StockTrader,/com/wireless/icons/trader.png,com.wireless.TradeMIDlet  
MIDlet-2: 
StockBrowser,/com/wireless/icons/browser.png,com.wirelessBrowseMIDlet  

In the JAR, this file would appear as META-INF/MANIFEST.mf. The JAR would also include 

the following files:  

/com/wireless/BrowseMIDlet.class  

/com/wireless/TradeMIDlet.class  

/com/wireless/Utils.class  

/com/wireless/icons/browser.png  

/com/wireless/icons/trader.png  

/com/wireless/icons/wireless.png  

Note the following about the attributes in the manifest file and the content of the JAR:  

• The JAR contains the two MIDlet class files and the class file for 

com.wireless.Utils, which contains code that is used by both MIDlets. This latter 

file, however, does not need to be referenced from the manifest file. The JAR also 

contains the three icons that are referred to from the manifest file.  

• The MIDlet-Icon attribute contains the absolute path of the icon file for the MIDlet 

suite, relative to the JAR file itself.  

• Each MIDlet has an attribute that describes it; the attribute's name is of the form 

MIDlet-n, where n is an integer. The value of this attribute has the following form:  

name,icon,class 

name is the name of the MIDlet within the MIDlet suite. icon is the full path of the 

icon that the device may use along with the MIDlet name when displaying the content 

of the MIDlet suite to the user. class is the name of the MIDlet's main class. The icon 

is optional; if no icon is required, it should be omitted:  

MIDlet-2: StockBrowser,,com.wireless.BrowseMIDlet  

Note that even if an icon is specified, the device is not obliged to display it. The same 

applies to the MIDlet suite icon defined by the optional MIDlet-Icon attribute.  

The JAD file for this suite can be constructed like this: 

MIDlet-Name: WirelessTrader 
MIDlet-Vendor: Wireless Java Inc. 
MIDlet-Version: 1.0.1 
MIDlet-Description: A set of MIDlets for online trading. 

http:///


J2ME in a Nutshell 

57 

MIDlet-Info-URL: http://www.wireless.com/trader/info.html 
MIDlet-Data-Size: 512 
MIDlet-Jar-Size: 10312 
MIDlet-Jar-URL: http://www.wireless.com/trader/Midlets.jar 

This file contains the information that the device displays to the user, together with the URL 

of the MIDlet suite JAR. In this case, the common attributes have the same values in the 

manifest and the JAR, but it is possible to override the MIDlet-Description, MIDlet-Icon, 

MIDlet-Info-URL, and MIDlet-Data-Size attributes by specifying different values in the 

JAD file.  

In order to be fully portable, the JAD file should be encoded using ISO-8859-1, because all 

MIDP implementations are required to support this character encoding. The successful use of 

any other encoding depends on the target device, which may not support the encoding, and the 

way in which the JAD file is transported to the device. If, for example, the file is fetched 

using HTTP, the Content-Type header can be used to specify the encoding as described in 

Section 3.6. In some cases, it is useful to be able to include in the JAD file Unicode characters 

that are not available in the ISO-8859-1 encoding or that are not easy to access from a 

standard keyboard. The MIDP reference implementation allows you to use Unicode escape 

sequences of the form \uxxxx to overcome encoding limitations. For example, the following 

line includes the copyright character (Unicode value 00A9) in the MIDlet suite description:  

MIDlet-Description: A set of MIDlets for online trading. \u00A9 Wireless 
Java Inc. 

Although this feature is available in the MIDP reference implementation, it is not mentioned 

in the MIDP specification, so there is no guarantee that real devices will actually support it.  

At runtime, a MIDlet can access files from its JAR using the getResourceAsStream( ) 

method of java.lang.Class. Any file in the JAR, apart from class files, can be accessed this 

way. This is typically how you would include images or text files that should be displayed in 

the user interface, an example of which will be shown in Chapter 4. A MIDlet can also define 

its own private attributes in the manifest file and the JAD and retrieve them at runtime, as 

you'll see in Section 3.5, later in this chapter.  

3.4 MIDlet Execution Environment and Lifecycle 

All MIDlets are derived from the abstract base class javax.microedition.midlet.MIDlet, 

which contains methods that the MIDP platform calls to control the MIDlet's lifecycle, as well 

as methods that the MIDlet itself can use to request a change in its state. A MIDlet must have 

a public default constructor (that is, a constructor that requires no arguments), which may be 

one supplied by the developer if there is any initialization to perform or, when there are no 

explicit constructors, the empty default constructor inserted by the Java compiler. This is what 

a skeleton MIDlet class might look like:  

 
 
 
 
 
 
 

http:///


J2ME in a Nutshell 

58 

public class MyMIDlet extends MIDlet { 
 
    // Optional constructor 
    MyMIDlet( ) { 
    } 
 
    protected void startApp( ) throws MIDletStateChangedException { 
    } 
 
    protected void pauseApp( ) { 
    } 
 
    protected void destroyApp(boolean unconditional)  
                              throws MIDletStateChangedException { 
    } 
} 

At any given time, a MIDlet is in one of three states: Paused, Active, or Destroyed. A state 

diagram that shows how these states are related and the legal state transitions is shown in 

Figure 3-4.  

Figure 3-4. The lifecycle of a MIDlet 

 

When a MIDlet is loaded, it is initially in the Paused state. The usual class and instance 

initialization is then performed -- that is, static initializers are called the first time the MIDlet 

class is loaded, all instance initializers are invoked when the MIDlet instance is created, and 

its public, no-argument constructor is then invoked. If the MIDlet throws an exception during 

the execution of its constructor, the MIDlet is destroyed. If the MIDlet does not throw an 

exception, it is scheduled for execution at some later time. Its state is changed from Paused to 

Active, and its startApp( ) method is called. The MIDlet class declares this method as 

follows:  

protected void startApp( ) throws MIDletStateChangeException; 

That this method is abstract means that you must implement it in your MIDlet, and that it is 

protected implies that it will be called either from the MIDlet class itself or from another class 

in the javax.microedition.midlet package. In the reference implementation, the MIDlet 

lifecycle methods are called from a class in this package called Scheduler, but there is 

nothing in the MIDP specification that requires this class be used. Licensees may provide 

their own scheduler implementations, provided that it supports the MIDlet lifecycle as 

described in this section. It is very common for MIDlet developers to redefine the 

startApp( ) method as public, which is certainly a safe option, but this should not be 

http:///


J2ME in a Nutshell 

59 

necessary because vendor implementations must continue to work even if these methods are 

declared as protected.  

The startApp( ) method may complete normally, in which case the MIDlet is allowed to 

run, or it may inform the MIDP platform that the MIDlet does not want to run at this point. 

There are several ways to achieve the latter:  

• If the startApp( ) method detects an error condition that stops it from completing, 

but which might not exist later (i.e., a transient error condition), it should throw a 

MIDletStateChangeException. This moves the MIDlet back to the Paused state, so 

that another attempt to start it can be made later.  

• If the startApp( ) method detects an error condition from which recovery is likely 

never to be possible (a nontransient error condition), it should call its 

notifyDestroyed( ) method, which is described a little later.  

• Finally, the MIDlet may throw an exception other than 

MIDletStateChangeException, either deliberately or because a method that it 

invokes throws the exception, and the startApp( ) method does not catch it. In this 

case, it is assumed that a fatal error has occurred, and the MIDlet is destroyed by 

calling its destroyApp( ) method (described later).  

If the MIDlet does none of these things, it is in the Active state and will be allowed to run 

until it is either paused or destroyed. A MIDlet returns after completing its startApp( ) 

method, and it does not have a method that contains the main logic to which control could be 

passed, so where is the MIDlet's code placed? Usually, a MIDlet has a user interface and 

executes code as a result of events generated by key presses or pointer movements. MIDlets 

can also start separate background threads to run code that does not depend on the user 

interface, or they can use a timer to schedule work periodically, as will be shown later. If you 

take these approaches, it is important to manage the background threads and/or timers 

appropriately when the MIDlet itself is paused or destroyed.  

At any time, the MIDP platform can put a MIDlet into the Paused state. On a cell phone, for 

example, this might happen when the host software detects an incoming call and needs to 

release the phone's display so the user can answer the call. When a MIDlet is paused, its 

pauseApp( ) method is called:  

protected abstract void pauseApp( ); 

As with startApp( ), a MIDlet is required to provide an implementation for this method. 

The appropriate response to this state change depends on the MIDlet itself, but, in general, it 

should release any resources it is holding and save the current state so it can restore itself 

when it is reactivated later.  

The main consequence of being moved to the Paused state is that the MIDlet no longer has 

access to the screen; any threads that it created are not automatically terminated, and timers 

remain active. A MIDlet may choose to terminate any open network connections or 

background threads and cancel active timers when told to pause, but it is not obliged to do so.  

If the host platform decides to resume a paused MIDlet, because the incoming call has 

terminated, for example, the MIDlet's startApp( ) method is invoked again to notify the 

MIDlet that it has access to the screen. As a consequence, a MIDlet's startApp( ) method 

http:///


J2ME in a Nutshell 

60 

should be written carefully to distinguish, if necessary, between the first time that it is called, 

which signifies that the MIDlet is being started for the first time, and subsequent calls 

notifying resumption from the Paused state, to prevent resources from being allocated 

multiple times. Of course, if a MIDlet reacts to being moved to the Paused state by releasing 

all of its resources, it would probably be appropriate to execute the same initialization code in 

startApp( ) to reallocate the resources upon resumption. However, a properly written 

MIDlet would still take special action in the startApp( ) method to restore the user interface 

and its internal state to the way it was before it was paused, rather than show the initial screen 

again.  

The fact that the startApp( ) method can be invoked more than once in the lifetime of a 

MIDlet raises the question of whether initialization should be performed here or in the 

MIDlet's constructor. The developer is free to choose the more convenient location to allocate 

resources and prepare the MIDlet's state. In general, resources that will be released in 

pauseApp( ) should be allocated in startApp( ). Other resources can be allocated in either 

startApp( ) or the constructor, with care being taken to ensure that allocations performed in 

startApp( ) are not repeated following resumption from the Paused state.  

An important difference between the startApp( ) method and the constructor is that, 

according to the MIDP specification, the MIDlet is guaranteed to be able to access the 

Display object that corresponds to the screen (see Chapter 4) only from the point at which 

startApp( ) is invoked for the first time. Under a strict interpretation of the specification, 

therefore, initialization that involves a Display object cannot be performed in the constructor. 

Of course, actual MIDP implementations may not enforce this apparent restriction, but 

portability may be compromised if the MIDlet accesses the Display object in its constructor.  

A MIDlet may refuse a request to be resumed from the Paused state by throwing a 

MIDletStateChangeException when its startApp( ) method is called, as described earlier.  

When the host platform needs to terminate a MIDlet, it calls the MIDlet's destroyApp( ) 

method:  

public abstract void destroyApp(boolean unconditional) throws 
     MIDletStateChangeException; 

In the destroyApp( ) method, the MIDlet should release all the resources that it has 

allocated, terminate any background threads, and stop any active timers. When the MIDlet is 

terminated this way, the unconditional argument has the value true, to indicate that the 

MIDlet cannot prevent the process from continuing. Under some circumstances, however, it is 

useful to give the MIDlet the option to not terminate, perhaps because it has data that it needs 

to save. In this case, the destroyApp( ) method can be invoked with the argument false, in 

which case the MIDlet can indicate that it wants to continue by throwing a 

MIDletStateChangeException. The following code illustrates how this technique can be 

used to implement the conditional shutdown of a MIDlet:  

 
 
 
 
 
 

http:///


J2ME in a Nutshell 

61 

try { 
    // Call destroyApp to release resources 
    destroyApp(false); 
 
    // Arrange for the MIDlet to be destroyed 
    notifyDestroyed( ); 
} catch (MIDletStateChangeException ex) { 
    // MIDlet does not want to close 
} 

This code might be used to respond to an Exit button in the MIDlet's user interface. It begins 

by directly invoking the MIDlet's own destroyApp( ) method so that resources are released. 

If the MIDlet is not in an appropriate state to terminate, and destroyApp( ) is called with 

argument false, the MIDlet should throw a MIDletStateChangeException. The calling 

code should catch this exception and do nothing, as shown here. On the other hand, if the 

MIDlet is prepared to be terminate, it should complete the destroyApp( ) method normally, 

in which case the calling code uses the MIDlet notifyDestroyed( ) method to tell the 

MIDP platform that the MIDlet wants to be terminated.  

This example also illustrates the use of the notifyDestroyed( ) method, which is used by a 

MIDlet to voluntarily terminate. It is important to understand the relationship between the 

destroyApp( ) and notifyDestroyed( ) methods and when they are used:  

• When the MIDlet is being destroyed by the platform, most likely because the user has 

requested it, the MIDlet's destroyApp( ) method is called with the argument true, 

and the MIDlet is destroyed when this method completes. It is not necessary in this 

case for the MIDlet to invoke its notifyDestroyed( ) method.  

• When the MIDlet itself wants to terminate, typically because it has no more useful 

work to do or the user has pressed an Exit button, it can do so by invoking its 

notifyDestroyed( ) method, which tells the platform that it should be destroyed. In 

this case, the platform does not call the MIDlet's destroyApp( ) method; it assumes 

that the MIDlet is already prepared to be terminated. Most MIDlets invoke their own 

destroyApp( ) method to perform the usual tidy up before calling 

notifyDestroyed( ), as shown earlier.  

Note that calling notifyDestroyed( ) is the only way for a MIDlet to terminate voluntarily. 

MIDlets cannot terminate by calling the System or Runtime exit( ) methods, because these 

throw a SecurityException.  

There are two other methods that a MIDlet may invoke to influence its own lifecycle:  

public final void notifyPaused( ); 
public final void resumeRequest( ); 

The notifyPaused( ) method informs the platform that the MIDlet wishes to be moved to 

the Paused state; this has the same effect as if the platform had invoked the MIDlet's 

pauseApp( ) method. When the MIDlet calls notifyPaused( ), the platform does not 

invoke its pauseApp( ) method, in the same way that it does not call destroyApp( ) in 

response to notifyDestroyed( ), because it assumes that the MIDlet has prepared itself to 

be paused. A MIDlet often, therefore, precedes an invocation of notifyPaused( ) with a call 

to pauseApp( ) so that the appropriate steps are taken before the MIDlet is suspended.  

http:///


J2ME in a Nutshell 

62 

The resumeRequest( ) method is the reverse of notifyPaused( ); it tells the platform that 

a MIDlet in the Paused state wishes to return to the Active state. At some future time, 

the platform may resume the MIDlet by calling its startApp( ) method. 

The resumeRequest( ) method typically is called by a background thread or from a timer 

that the MIDlet left active while it was paused, an example of which is shown in the next 

section.  

3.5 Developing MIDlets 

To illustrate the MIDlet lifecycle and how it can be controlled, we'll create a very simple 

MIDlet that does the following:  

• Prints a message when its constructor is called. 

• Creates a timer that fires from time to time, putting the MIDlet in the paused state if it 

is active and returning it to the active state if it is paused. When the timer has been 

through this cycle twice, it terminates the MIDlet.  

• Creates a background thread when it is started that simply prints a message every 

second. This thread is allowed to run only when the MIDlet is active.  

Since you haven't yet seen how to create user interfaces, this example MIDlet communicates 

by writing messages to its standard output stream. On a real device, you can't see what is 

written to standard output or standard error (unless you are using debug facilities provided by 

the device vendor), but most device emulators provide a way to monitor the content of these 

streams. There are several products available that allow you to build and test MIDlets either in 

an emulated environment or on the real device; some of these products are described in 

Chapter 9. Here, we'll use the Wireless Toolkit, which is available free of charge from Sun.  

3.5.1 Building a MIDlet with the Wireless Toolkit 

The Wireless Toolkit provides an implementation of MIDP together with an emulator that can 

be customized to look and behave somewhat like a number of real cell phones. It can also be 

used in conjunction with a third-party emulator that allows you to see how your MIDlets 

would behave on handhelds that are based on PalmOS. It is not, however, a complete 

development enviroment, because it does not provide an integrated editor to allow you to 

create, view, and modify source code. Consequently, if you want to use the Wireless Toolkit 

as part of a complete development cycle, you will need a text editor or IDE to manage the 

source code. At the time of writing, the Wireless Toolkit can be installed to integrate with 

Forte for Java, which is available for download from Sun's web site, and Borland JBuilder, 

but any IDE will do.  

The first step when using the Wireless Toolkit is to create a project, which manages the 

source code, classes, and resources corresponding to a MIDlet suite. To do this, start the 

KToolbar and press the New Project button to open the New Project dialog, which is shown 

in Figure 3-5. For this example, the name of the MIDlet's main class should be 

ora.ch3.ExampleMIDlet, and the project name can be anything you like.  

 

 

http:///


J2ME in a Nutshell 

63 

Figure 3-5. Creating a new project with the Wireless Tooklit 

 

When you press the Create Project button in the dialog, the Wireless Toolkit opens another 

window, shown in Figure 3-6; it contains a set of tabs that allow you to provide the attributes 

used to generate the manifest for the MIDlet's JAR and the JAD file. You can edit these 

attributes by clicking the cell that you want to change and typing the new value. The fields on 

the Required tab contain the attributes shown in Table 3-2 that are marked as mandatory. 

Most of the values supplied by default can be used without modification. For example, the 

MIDlet-Name field (which is actually the name that will be used for the MIDlet suite, not for 

any individual MIDlet) matches the project name, and the name of the JAR that will be 

created is also derived from the project name. The only field you might want to change on this 

tab is MIDlet-Vendor, which is initially set to Sun Microsystems by default.  

Figure 3-6. Setting required attributes for a MIDlet suite 

 

To define the MIDlets that should be included in the MIDlet suite, select the MIDlets tab. 

Initially, this contains a single row whose content is constructed from the name of the project. 

In this example, the suite contains a single MIDlet called ExampleMIDlet in the package 

ora.ch3, so you should press the Edit button and edit the values for the MIDlet-1 attribute on 

this tab so that it looks like this:  

Key Name Icon Class 

MIDlet-1 ExampleMIDlet /ora/ch3/icon.png ora.ch3.ExampleMIDlet 

In this example, the name assigned to the MIDlet matches the class name (ignoring the 

package prefix), but this need not be the case. Notice also that although the class name is 

specified in the usual way, with the parts of the name separated by periods, the location of the 

icon is specified as a filename, in which the path components are separated by a "/" character. 

If an icon is present, an absolute pathname must be provided here. If the MIDlet does not have 

an associated icon, this field should be left blank.  

For a MIDlet suite with more than one MIDlet, you add an extra line for each MIDlet. It is 

important that consecutive numbers are used in the key field, so the next MIDlet to be added 

in this example would need to have the key MIDlet-2. Other required class files must be 

included in the JAR, but they should not be included in the MIDlets list.  

www.allitebooks.com

http:///
http://www.allitebooks.org


J2ME in a Nutshell 

64 

For this example, we are also going to use a user-defined attribute. A user-defined attribute is 

a private attribute that can be set in the manifest and/or the JAD; its value can be retrieved at 

runtime by any MIDlet in the MIDlet suite. These attributes provide a mechanism similar to 

the setting of system properties in J2SE and allow the operation of the MIDlet to be 

customized without the need to recompile source code. In this example, we'll use a user-

defined attribute to specify the length of a timer. To set the value of the attribute, select the 

User Defined tab and press the Add button. In the dialog box that appears, supply the property 

name as Timer-Interval and press OK. This creates a new entry in the table on the User 

Defined tab. Click in the Value cell, and type the required value, which, in this case, should 

be 3000. The property name is case-sensitive and, to avoid confusion with reserved attribute 

names, should not begin with "MIDlet-". The property value is always a string that is 

interpreted by the MIDlet. In this case, it represents the timer interval in milliseconds, so the 

value given here results in a timer that has a three-second interval. You'll see shortly how the 

MIDlet retrieves the values of user-defined attributes.  

This completes the setting of the MIDlet's attributes. To save them, press the OK button at the 

bottom of the dialog. You can change these settings (perhaps to add extra MIDlets) at any 

time by pressing the Settings . . . button on the main KToolbar window, which is shown in 

Figure 3-7.  

Figure 3-7. The main window of the Wireless Tooklit KToolbar 

 

The next step is to place the source code and the icon for the MIDlet where the Wireless 

Toolkit can get access to them. Most IDEs allow you to choose where your project source 

files are kept, but the Wireless Toolkit uses a fixed filesystem layout for each project, based 

beneath the directory in which the Toolkit was originally installed. The name of the top-level 

directory for a project is derived from the name given to the project when it was created. If, 

for example, you installed the Windows Toolkit in the directory c:\J2MEWTK, all the files for 

the Chapter3 project need to be placed below the directory c:\J2MEWTK\apps\Chapter3. 

When the Chapter3 project was created, the toolkit created the following four directories 

below the main directory for the project:  

src  

Holds the source code for the MIDlets and any shared classes 

res  

Holds any resources required by the MIDlets, such as icons 

 
 

http:///


J2ME in a Nutshell 

65 

lib  

Holds JAR or ZIP files for third-party libraries that the MIDlets need 

bin  

Holds the JAR, JAD and manifest files 

Before building the project, you need to place the appropriate files in the src, res and lib 

subdirectories. This example has one source file and a single icon, which can both be found in 

the directory ora\ch3 of the source code for this book. The package structure used by the 

MIDlet must be reflected in the directory layout as seen by the Wireless Toolkit, as it would 

be by an IDE. Therefore, to install the files where the Wireless Toolkit can use them, you 

should copy them as follows, creating the ora\ch3 subdirectory beneath both the src and res 

directories while doing so:  

Source Destination 

ora\ch3\ExampleMIDlet.java c:\J2MEWTK\apps\Chapter3\src\ora\ch3\ExampleMIDet.java  

ora\ch3\icon.png c:\J2MEWTK\apps\Chapter3\res\ora\ch3\icon.png 

Once the files have been placed in the correct directories, the next step is to build the project 

by pressing the Build button on the KToolbar main window. The build process performs the 

following steps:  

• Creates a tmpclasses directory below the main directory, compiles all the source files 

below the src directory, and places the class files beneath tmpclasses, having regard to 

the package hierarchy. Thus, for example, the class files for the MIDlet 

ora.ch3.ExampleMIDlet would be placed in the directory 

c:\J2MEWTK\apps\Chapter3\tmpclasses\ora\ch3.  

• Creates a classes directory below the main directory and runs the preverifier on all of 

the classes found below tmpclasses, placing the verified class files below the classes 

directory in a directory layout that again reflects the package hierarchy. The verified 

ExampleMIDlet classes would, therefore, end up in 

c:\J2MEWTK\apps\Chapter3\classes\ora\ch3.  

• Creates the manifest file and the JAD file and places them in the bin directory.  

 

The source code for this book is actually stored in two different 

directory hierarchies, one for standard IDEs, the other for the J2ME 

Wireless Toolkit. This example showed you how to create a project 

from scratch using existing source files. A quicker way to use the book's 

source code is to copy the content of the directory wtksrc into 

c:\J2MEWTK\apps. This will give you subdirectories called Chapter3, 

Chapter4, etc., that contain all the source code and resources for each 

chapter's examples in the format expected by the J2ME Wireless 

Toolkit. To use each set of examples, select Open Project on the 

KToolBar main screen instead of Create Project, and then select the 

project from the dialog box that appears.  
 

 

http:///


J2ME in a Nutshell 

66 

3.5.2 Running a MIDlet 

At this stage, the JAR file has not been created, but you can nevertheless test the MIDlet suite 

by selecting an appropriate target device on the KToolbar main window and pressing the Run 

button. This loads the MIDlet classes, its resources, and any associated libraries from the 

classes, res, and lib subdirectories. If you select the default gray phone and press the Run 

button, the emulator starts and displays the list of MIDlets in this suite, as shown in   

Figure 3-8.  

Figure 3-8. The Wireless Toolkit emulator 

 

When the MIDlet suite is loaded, the device's application management software displays a list 

of the MIDlets that it contains and allows you to select the one you want to run. In this case, 

even though the suite contains only one MIDlet, the list is still displayed, as shown in 

Figure 3-8. Given the current lack of security for MIDlets imported from external sources, it 

would be dangerous for the device to run a MIDlet automatically, and, by giving the device 

user the chance to choose a MIDlet, it allows him the opportunity to decide not to run any of 

the MIDlets if, for any reason, they are thought to be a security risk or otherwise unsuitable. It 

is not obvious, though, on what basis such a decision would be made, since the user will see 

only the MIDlet names at this stage, but requiring the user to confirm that a MIDlet should be 

run transfers the ultimate responsibility to the user. In this case, the device displays the 

MIDlet name and its icon (the exclamation mark) as taken from the MIDlet-1 attribute in the 

manifest file. The device is not obliged to display an icon, and it may use its own icon in 

preference to the one specified in the manifest.  

When you run the MIDlet suite this way, the Wireless Toolkit compiles the source code with 

the option set to save debugging information in the class files, and it does not create a JAR 

file. If you want to create a JAR, you can do so by selecting the Package item from the Project 

menu. This rebuilds all the class files without debugging enabled, which reduces the size of 

the class files, a measure intended to keep the time required to download the JAR to a cell 

phone or PDA as small as possible. It also extracts the content of any JARs or ZIP files it 

finds in the lib subdirectory and includes them in the MIDlet JAR, after running the 

preverifier over any class files that it finds in these archives. The JAR can be used, along with 

http:///


J2ME in a Nutshell 

67 

the JAD file, to distribute the MIDlet suite for installation into a device over a network, as 

will be shown in Section 3.6.  

Further information on the Wireless Toolkit and other MIDlet development environments can 

be found in Chapter 9.  

3.5.3 A Simple MIDlet 

Now let's look at the implementation of the ExampleMIDlet class you have just built and 

packaged with the Wireless Toolkit. This simple MIDlet demonstrates the lifecycle methods 

that were described in Section 3.4, and it also illustrates how the MIDlet's foreground activity 

interacts with background threads, as well as how to create and use timers. The code for this 

example in shown in Example 3-1. For clarity, the timer-related code has not been included in 

the code listing; you'll see how that works when timers are discussed later in this chapter.  

Example 3-1. A Simple MIDlet  

package ora.ch3; 
 
import java.util.Timer; 
import java.util.TimerTask; 
import javax.microedition.midlet.MIDlet; 
import javax.microedition.midlet.MIDletStateChangeException; 
 
public class ExampleMIDlet extends MIDlet { 
     
    // Flag to indicate first call to startApp 
    private boolean started = false; 
     
    // Background thread 
    private Thread thread; 
     
    // Timer interval 
    private int timerInterval; 
     
    // Timer 
    private Timer timer; 
     
    // Task to run via the timer 
    private TimerTask task; 
     
    // Required public constructor. Can be omitted if nothing to do and no 
    // other constructors are created. 
    public ExampleMIDlet( ) { 
        System.out.println("Constructor executed"); 
         
       // Get the timer interval from the manifest or JAD file. 
        String interval = getAppProperty("Timer-Interval"); 
        timerInterval = Integer.parseInt(interval);  
        System.out.println("Timer interval is " + interval); 
    } 
         
 
 
 
 
 
 

http:///


J2ME in a Nutshell 

68 

    protected void startApp( ) throws MIDletStateChangeException { 
        if (!started) { 
            // First invocation. Create and start a timer. 
            started = true;   
            System.out.println("startApp called for the first time"); 
            startTimer( ); 
        } else { 
            // Resumed after pausing.  
            System.out.println("startApp called following pause"); 
        } 
         
        // In all cases, start a background thread. 
        synchronized (this) { 
            if (thread == null) { 
                thread = new Thread( ) { 
                    public void run( ) { 
                        System.out.println("Thread running"); 
                        while (thread == this) { 
                            try { 
                                Thread.sleep(1000); 
                                System.out.println("Thread still active"); 
                            } catch (InterruptedException ex) { 
                            } 
                        } 
                        System.out.println("Thread terminating"); 
                    } 
                }; 
            } 
        }; 
        thread.start( ) 
    } 
 
    protected void pauseApp( ) { 
        // Called from the timer task to do whatever is necessary to pause 
        // the MIDlet. 
        // Tell the background thread to stop. 
        System.out.println("pauseApp called."); 
        synchronized (this) { 
            if (thread != null) { 
                thread = null; 
            } 
        } 
    } 
 
    protected void destroyApp(boolean unconditional)  
                            throws MIDletStateChangeException { 
        // Called to destroy the MIDlet. 
        System.out.println("destroyApp called - unconditional = "  
                            + unconditional); 
        if (thread != null) { 
            Thread bgThread = thread; 
            thread = null;  // Signal thread to die 
            try { 
                bgThread.join( ); 
            } catch (InterruptedException ex) { 
            } 
        } 
        stopTimer( ); 
    }     
    // Timer code not shown here 
} 

http:///


J2ME in a Nutshell 

69 

This simple MIDlet does two things: 

• Starts a background thread that writes a message to standard output every second so 

that you can see that the MIDlet is active  

• Starts a timer that periodically pauses the MIDlet if it is active and makes it active 

again if it is paused  

The code listing shows the implementation of the MIDlet's constructor and its startApp( ), 

pauseApp( ) and destroyApp( ) methods. A MIDlet is not required to do anything in its 

constructor and may instead defer initialization until the startApp( ) method is executed. In 

this example, the constructor prints a message so that you can see when it is being executed. It 

also performs the more useful function of getting the interval for the timer that will be used to 

change the MIDlet's state. It is appropriate to put this code in the constructor because this 

value needs to be set only once. The timer value is obtained from the Timer-Interval 

attribute that was specified in the settings dialog of the Wireless Toolkit and subsequently 

written to the JAD file. Here is what the JAD file created for this MIDlet suite actually looks 

like:  

MIDlet-1: ExampleMIDlet, /ora/ch3/icon.png, ora.ch3.ExampleMIDlet 
MIDlet-Jar-Size: 100 
MIDlet-Jar-URL: Chapter3.jar 
MIDlet-Name: Chapter3 
MIDlet-Vendor: J2ME in a Nutshell 
MIDlet-Version: 1.0 
Timer-Interval: 3000 

A MIDlet can read the values of its attributes using the following method from the MIDlet 

class:  

public final String getAppProperty(String name); 

This method looks for an attribute with the given name; it looks first in the JAD file, and then, 

if it was not found there, in the manifest file. Attributes names are case-sensitive and scoped 

to the MIDlet suite, so every MIDlet in the suite has access to the same set of attributes. The 

getAppProperty( ) method can be used to retrieve any attributes in the JAD file or the 

manifest, so the following line of code returns the name of the MIDlet's suite, in this case 

Chapter3:  

String suiteName = geAppProperty("MIDlet-Name"); 

The timer interval for this MIDlet is obtained as follows: 

String interval = getAppProperty("Timer-Interval"); 
timerInterval = Integer.parseInt(interval);  

Once the value in the form of a string has been retrieved, the next step is to convert it to an 

integer by calling the Integer parseInt( ) method. If the Timer-Interval attribute is not 

included in the JAD file or manifest (or if its name is misspelled), getAppProperty( ) 

returns null, and the parseInt( ) method throws an exception. A similar thing happens if 

the attribute value is not a valid integer. Notice that the constructor does not bother to catch 

either of these exceptions. The main reason for catching an exception is to display some 

meaningful information to the user and possibly allow recovery, but, strictly speaking, the 

http:///


J2ME in a Nutshell 

70 

MIDlet is not allowed to use the user interface in the constructor, so attempting to post a 

message would not necessarily work. The most appropriate thing to do in a real MIDlet is to 

install a default value for the timer interval and arrange to notify the user from the startApp( 

) method, when access to the user interface is possible. In this simple example, we allow the 

exception to be thrown out of the constructor, which causes the MIDlet to be destroyed. 

Additionally, the version of MIDP in the Wireless Toolkit does, in fact, display the exception 

on the screen, but vendor implementations are not bound to do so.  

Once the constructor has completed execution, the device eventually calls the MIDlet's 

startApp( ) method, which allocates any resources that the MIDlet needs. 

The startApp( ) method is also called when the MIDlet is resumed after being in the Paused 

state. In that case, however, it should allocate only the resources that were released by 

pauseApp(). A boolean variable called started, which is false only when startApp( ) is 

entered for the first time, is used to distinguish these two cases:  

• When started is false, startApp( ) creates and starts the MIDlet timer and the 

MIDlet's background thread.  

• When started is true, startApp( ) does not need to concern itself with the timer, 

because it is not canceled by the pauseApp( ) method. It does, however, create a new 

background thread, because the original thread will be stopped when the MIDlet is 

paused.  

Since the timer is going to be active throughout the lifetime of the MIDlet, it could have been 

allocated in the constructor. We deferred creating the timer until startApp( ) executes for 

the first time, however, because it isn't actually needed until that point; it is better, in an 

environment with such limited memory, to delay allocating resources until they are needed. 

The decision whether to commit resources in the constructor or in the startApp( ) method 

depends on the MIDlet and must therefore be made on a case-by-case basis.  

The pauseApp( ) method is relatively simple. Its job is to release any resources that the 

MIDlet does not need while it is not in the Active state. The MIDlet is making use of only two 

resources:  

• A background thread printing a message every second 

• A timer responsible for pausing and resuming the MIDlet periodically 

Clearly, we can't stop the timer when the MIDlet is paused, because the timer is responsible 

for resuming it later. Therefore, the only resource the pauseApp( ) method can release is the 

background thread, by arranging for it to stop execution.  

How is the pauseApp( ) method going to stop the background thread? The J2SE Thread 

class has two methods that might help: stop( ) and interrupt( ). Neither of these methods 

is available in the CLDC version of Thread, however, so it is not possible to act directly on 

the background thread to stop it. Instead, we use a common mechanism, a shared variable that 

the thread inspects from time to time to find out whether it has been asked to stop. In this 

case, the MIDlet class keeps a reference to the Thread instance in a variable called thread. In 

order to stop the thread, the pauseApp( ) method sets this variable to null, while the main 

loop of the background thread checks its value on each pass:  

 

http:///


J2ME in a Nutshell 

71 

public void run( ) { 
    System.out.println("Thread running"); 
    while (thread == this) { 
        try { 
            Thread.sleep(1000); 
            System.out.println("Thread still active"); 
        } catch (InterruptedException ex) { 
        } 
    } 
    System.out.println("Thread terminating"); 
} 

You'll notice that this code actually checks not whether the thread variable is null, but 

whether it is pointing to the background thread itself. This prevents a race condition in which 

the pauseApp( ) method clears thread to null, and the timer thread resumes the MIDlet 

before the background thread restarts following the sleep( ) call and checks its value. In this 

case, the startApp( ) method has started a new thread and stored its reference in thread, 

which therefore will not be null when the previous code checks it.  

Finally, the destroyApp( ) method needs to stop the background thread and stop and release 

the timer. The thread can be stopped just as it is in the pauseApp( ) method. However, 

destroyApp( ) also waits for the thread to terminate so that it can guarantee that the MIDlet 

is not using any resources when it returns. It does this by calling the Thread.join( ) 

method, which blocks until the thread terminates (and returns immediately if it has already 

terminated). The stopTimer( ) method, which destroyApp( ) calls to stop and release the 

timer, is described in the next section.  

If you now launch the MIDlet from the emulator, you'll see the results in the Wireless 

Toolkit's console window, an extract of which follows:  

Constructor executed 
Timer interval is 3000 
startApp called for the first time 
Timer started. 
Thread running 
Thread still active 
Thread still active 
Timer scheduled 
>> Pausing MIDlet 
pauseApp called. 
Thread still active 
Thread terminating 
Timer scheduled 
>> Resuming MIDlet 
startApp called following pause 
Thread running 

As you can see, the constructor is executed first; it reads the value of the timer interval from 

the JAD file. Then startApp( ) is called, and it detects that it is being called for the first 

time and starts both the timer and the background thread. The "Thread running" and "Thread 

active" messages are printed by the background thread itself and show that the thread executes 

its loop twice before the timer fires. The code that executes when the timer expires, which 

will be shown in the next section, alternately pauses and resumes the MIDlet. In this case, as 

you can see, pauseApp( ) is called, which signals the background thread to stop running; the 

"Thread terminating" message indicates that the thread detects that it has been told to stop. 

http:///


J2ME in a Nutshell 

72 

Three seconds later, the timer expires again and resumes the MIDlet, causing its startApp( ) 

method to be invoked again to recreate the background thread. This process continues through 

two cycles, at which point the timer code destroys the MIDlet.  

3.5.4 Timers and TimerTasks 

Code to be executed when a timer expires should be implemented as a TimerTask and 

scheduled by a Timer. The Timer class provides the ability to execute sequentially one or 

more TimerTasks in a dedicated background thread. Usually, a MIDlet creates a single Timer 

to schedule all its TimerTasks, but it is possible to have more than one Timer active, each 

running its assigned TimerTasks in its own thread.  

TimerTask is an abstract class with three methods: 

public abstract void run( ); 
public boolean cancel( ); 
public long scheduledExecutionTime( ); 

You create a unit of work to be scheduled by a Timer by subclassing TimerTask and 

implementing the run( ) method. You can schedule the run( ) method to be executed just 

once or to be executed repeatedly at either a fixed interval or a fixed rate. You can use the 

TimerTask cancel( ) method to stop future execution of a specific TimerTask. You may 

invoke it from the run( ) method, in which case the current execution of the task is allowed 

to complete, or you make invoke it from somewhere else. This method returns true if the task 

was scheduled to run either once or repeatedly and has been canceled; it returns false if the 

task was not associated with a Timer or if it had had been scheduled to be run once and has 

already run. The scheduledExecutionTime( ) method gets the time at which the task was 

most recently executed by its associated Timer. If called from within the run( ) method, it 

returns the time at which the run( ) method began execution. The value returned by this 

method is the number of milliseconds since midnight, January 1, 1970, which is the same as 

that returned by the System currentTimeMillis( ) method. If this method is called before 

the task is scheduled for the first time, its return value is undefined.  

The Timer class has two methods that can be used to arrange for a task to be run exactly once:  

public void schedule(TimerTask task, Date time); 
public void schedule(TimerTask task, long delay); 

The first of these methods schedules the task at the given time or as soon as possible 

afterwards; the second runs the task when a given time interval, specified in milliseconds, has 

passed. There are four methods that schedule a task for repeated execution:  

public void schedule(TimerTask task, Date time, long period); 
public void schedule(TimerTask task, long delay, long period); 
public void scheduleAtFixedRate(TimerTask task, Date time, long period); 
public void scheduleAtFixedRate(TimerTask task, long delay,  
     long period); 

The difference between these methods is that the first two apply a fixed delay between 

successive executions of the task, and the last two attempt to execute the task at a fixed rate. 

http:///


J2ME in a Nutshell 

73 

In both cases, the desired interval between task executions is given by the period parameter. 

Figure 3-9 shows how fixed-delay and fixed-rate scheduling differ.  

Figure 3-9. Fixed-delay (top) and fixed-rate scheduling of TimerTasks 

 

In this example, task A is scheduled to run once every second; task B runs once, starting 900 

milliseconds along the time line shown in the diagram. Task A first runs at T+0, followed by 

task B, which begins its execution at T+900ms. Task B takes 200 milliseconds to complete, 

however, which means that it is still running at T+1 second, when task A is supposed to run 

for the second time. Since a Timer can schedule only one TimerTask at a time, the execution 

of task A is delayed until task B finishes. Task A's second run begins, therefore, at T+1100ms. 

The difference between fixed-delay and fixed-rate scheduling is what happens as a result of 

this delay:  

• In fixed-rate scheduling, the next execution of task A is scheduled relative to the time 

its previous execution should have started. In this case, task A should have begun 

execution at T+1 second. Under fixed rate scheduling, it will next run at T+2 seconds, 

as it would have had task B not delayed it.  

• With fixed-delay scheduling, the next execution of task A is timed relative to the time 

its previous execution actually took place. Since task A last ran at T+1100ms, it will 

next run at T+2100ms, then at T+3100ms, and so on.  

With fixed-delay scheduling, therefore, any delay affects all future executions of the task. 

With fixed-rate scheduling, however, an attempt is made to "ignore" the delay and schedule 

the task again where it would have run had there been no delay.  

In some cases, additional executions of a fixed-rate task may be required to ensure that it runs 

the correct number of times when viewed over a long period. When this is necessary, the task 

may be run two or more times in succession to catch up with the number of times that it 

should have been run. For example, fixed-rate scheduling would be appropriate if you were 

using a timer to trigger redrawing the second hand of a clock displayed on the screen. Delayed 

execution of the redrawing task would cause the second hand to move more slowly, but the 

extra executions would ensure that it eventually moved forward to catch up with the real time. 

By contrast, using fixed delay execution in this case would result in the clock losing time that 

it would never make up, because execution delays are never corrected.  

You may be able to reduce timing delays by using more than one Timer and dividing tasks 

among the Timers, because each Timer uses its own Thread. This only works, however, if the 

platform has more than one processor (which is unlikely in a J2ME environment), or if it has 

http:///


J2ME in a Nutshell 

74 

preemptive thread scheduling and chooses to suspend the thread of the Timer scheduling the 

long-running task B in favor of the thread for task A's Timer. The most reliable way to obtain 

predictable timer scheduling, however, is to ensure that code to be executed by a TimerTask 

executes as quickly as possible and does not block.  

Like TimerTask, the Timer class has a cancel( ) method:  

public void cancel( ); 

This method cancels all the TimerTasks associated with the Timer. The Timer's thread stops 

executing when it has no more TimerTasks to be scheduled and there are no live references to 

it.  

Example 3-2 shows the timer-related code for our example MIDlet.  

Example 3-2. Using a MIDlet Timer  

// Starts a timer to run a simple task 
private void startTimer( ) { 
     
    // Create a task to be run 
    task = new TimerTask( ) { 
        private boolean isPaused; 
        private int count; 
         
        public void run( ) { 
            // Pause or resume the MIDlet. 
            System.out.println("Timer scheduled"); 
            if (count++ == 4) { 
                // Terminate the MIDlet 
                try { 
                    ExampleMIDlet.this.destroyApp(true); 
                } catch (MIDletStateChangeException ex) { 
                    // Ignore pleas for mercy! 
                } 
                ExampleMIDlet.this.notifyDestroyed( ); 
                return; 
            } 
            if (isPaused) { 
                System.out.println(">> Resuming MIDlet"); 
                ExampleMIDlet.this.resumeRequest( ); 
                isPaused = false; 
            } else { 
                System.out.println(">> Pausing MIDlet"); 
                isPaused = true; 
                ExampleMIDlet.this.pauseApp( ); 
                ExampleMIDlet.this.notifyPaused( ); 
            }   
        } 
    }; 
         
    // Create a timer and schedule it to run 
   timer = new Timer( ); 
    timer.schedule(task, timerInterval, timerInterval);  
    System.out.println("Timer started."); 
} 
     
 

http:///


J2ME in a Nutshell 

75 

// Stops the timer 
private void stopTimer( ) { 
    if (timer != null) { 
        System.out.println("Stopping the timer"); 
        timer.cancel( ); 
    } 
} 

The startTimer( ) method, which is called during the first invocation of startApp( ), 

creates a TimerTask and schedules it to be run by a Timer object with the initial delay and 

repeat period given by the Timer-Interval attribute obtained from the application 

descriptor. The stopTimer( ) method is called from destroyApp( ). It cancels the 

TimerTask and the Timer by calling the Timer's cancel( ) method.  

The code that is executed when the timer expires is worth looking at because it demonstrates 

how to control the lifecycle of a MIDlet. The intent of this code is to pause the MIDlet if it is 

active when the timer expires and resume if it is paused. However, there is no method that 

allows a MIDlet to find out whether it is in the Paused state, so the timer code has to retain 

this state for itself using an instance variable called isPaused. The code used to suspend the 

MIDlet looks like this:  

isPaused = true; 
ExampleMIDlet.this.pauseApp( ); 
ExampleMIDlet.this.notifyPaused( ); 

The notifyPaused( ) method tells the MIDlet scheduler that the MIDlet wants to be moved 

into the Paused state. As stated earlier, when the MIDlet calls this method, it is assumed that it 

is ready to be suspended, so its pauseApp( ) method is not called to give it a chance to 

release resources. For this reason, the timer code calls the MIDlet's pauseApp( ) method 

directly before suspending it. Moving a MIDlet to the Paused state simply means that it no 

longer has access to the screen and so does not receive user interface events in response to key 

presses or pointer movements. Timers and background threads belonging to a suspended 

MIDlet continue to be scheduled, provided that they are not stopped by the MIDlet itself in its 

pauseApp( ) method.  

Moving the MIDlet from the Paused state to the Active state is a little easier:  

ExampleMIDlet.this.resumeRequest( ); 
isPaused = false; 

The resumeRequest( ) call notifies the scheduler that the MIDlet would like to be made 

Active. In response to this, the MIDlet's startApp( ) method will be called at some future 

time to allow it to reallocate resources that were released when it was paused. If another 

MIDlet is currently in the foreground, the resumed MIDlet has to wait until the foreground 

MIDlet is paused or terminates before it becomes eligible to become the foreground MIDlet 

and recover use of the screen and input devices.  

Finally, after two suspend/resume cycles are completed, the timer code destroys the MIDlet 

by calling notifyDestroyed( ):  

 
 

http:///


J2ME in a Nutshell 

76 

// Terminate the MIDlet 
 try { 
    ExampleMIDlet.this.destroyApp(true); 
} catch (MIDletStateChangeException ex) { 
    // Ignore pleas for mercy! 
} 
ExampleMIDlet.this.notifyDestroyed( ); 

As is the case with notifyPaused( ), the MIDlet's destroyApp( ) method is not invoked as 

a result of a call to notifyDestroyed( ), so the timer code explicitly invokes it in order to 

allow the MIDlet to release its resources. Because this is an involuntary termination, the 

destroyApp( ) method is called with its unconditional argument set to true. However, 

care is taken to catch a MIDletStateChangeException in case the destroyApp( ) method 

ignores this argument. It is important to note that notifyDestroyed( ) does not actually 

terminate the MIDlet or any of its threads; it simply arranges for the MIDlet never to be 

scheduled as the foreground MIDlet and removes it from the list of active MIDlets. It is the 

MIDlet's responsibility to stop its active threads and timers in its destroyApp( ) method. 

Failure to do this may cause the Java VM to continue running and consuming memory when 

it has no useful work to do, which is unacceptable given the resource constraints of the typical 

MIDP device.  

3.6 Delivery and Installation of MIDlets 

The MIDP specification creates the concept of a MIDlet, defines its lifecycle and its execution 

environment, and specifies the programming interfaces that a MIDlet can expect to be present 

on any conforming device. However, it currently does not address in any detail how the user 

should locate MIDlet suites, how MIDlet suites will be installed on a cell phone or a PDA, 

and what facilities are to be provided to allow the user to select and launch an installed 

MIDlet or to remove MIDlet suites from the device. These features are not covered in detail in 

the MIDP specification because they are largely device-specific. Instead, it refers loosely to 

software that is intended for application delivery and management. The term Application 

Management Software (AMS) is generally used to describe the software components that take 

on this responsibility.
1
 The MIDP reference implementation provides an example AMS for 

the benefit of vendors porting the software to their own devices, and both the Wireless Toolkit 

and the MIDP for PalmOS product have their own AMS implementations, which allow 

software to be installed from two different sources:  

From a local host computer via a dedicated, relatively high speed connection  

This mode of operation is particularly suitable for PDAs, which are typically 

associated with a desktop or laptop computer with which they periodically 

synchronize. Synchronizing backs up the user's data from the handheld onto the larger 

system and copies software and data in the other direction, as well. The MIDP for 

PalmOS implementation is a good example of this, because its AMS allows MIDlet 

suites to be installed from a host PC during the synchronization process. Once the 

MIDlets are installed, they can be launched on the PDA in the same way as its native 

applications. The same application management features are supported for MIDlets, so 

they appear to be almost the same as native applications.  

                                                 
1 The term Java Application Manager (or JAM) was originally used to describe the MIDP application management software. However, this resulted 

in confusion with the Java Application Manager software that is part of the CLDC reference implementation, which performs similar functions but 

with which it is incompatible. 

http:///


J2ME in a Nutshell 

77 

Over a network to which the device is connected  

This is the most common way in which MIDlets are downloaded to cell phones and 

similar wireless devices, although it is also applicable to network-connected PDAs. 

The process of deploying MIDlet suites over a network is referred to as over-the-air 

provisioning, or OTA provisioning for short. OTA provisioning is not part of the 

MIDP specification, but it is likely to be the dominant mechanism for distributing 

MIDlets, and it will doubtless be included in the formal specification in the near 

future. An AMS that supports installation of MIDlets from an HTTP server is included 

in the Wireless Toolkit.  

3.6.1 Over-the-Air Provisioning 

With OTA provisioning, MIDlet providers install their MIDlet suites on web servers and 

provide hypertext links to them. A user activates the links to download the MIDlets to a cell 

phone via a WAP or Internet microbrowser. Figure 3-10 shows the steps involved in a typical 

MIDlet installation.  

 

OTA provisioning as described in this section is not formally a part of 

the MIDP specification at the time of writing, but it is likely to be 

included in the next version of the specification. Meanwhile, it has the 

status of best-practice recommendation.  
 

The process begins when the user fetches a page from the corporate web site of the (fictional) 

corporation ACME, Inc. The page includes a link to a suite of MIDlets that allow the user to 

browse ACME's product catalog and place orders directly from a Java-enabled cell phone. 

Intrigued by this prospect, the user activates the link, which causes a request for the target to 

be sent to ACME's web server. The link in question would look something like this:  

<A HREF="Suite.jad">Click here</A> to install the ACME MIDlet suite 

Figure 3-10. Installing MIDlets using OTA provisioning 

 

As you can see, this link points to the JAD file for the ACME MIDlet suite. The request to 

retrieve this file is sent by the cell phone's browser (see step 2 in Figure 3-10), but it will be 

http:///


J2ME in a Nutshell 

78 

passed to and handled by the phone's application management software. To enable browsers 

to easily identify JAD files, the web server is configured to return them with the following 

MIME type:  

text/vnd.sun.j2me.app-descriptor 

On receipt of data with this content type, the phone's AMS activates and displays the content 

of the application descriptor, so that the user can decide whether or not to install the MIDlet 

suite. At this stage, the user has waited only a relatively short time for the download of the 

small JAD file. Since this file contains an attribute that corresponds to the size of the JAR file 

that contains the MIDlets as well as a textual description of the services they provide, the user 

should be able to choose whether to install them. This is the advantage of providing MIDlet 

information in both the JAD file and the JAR file manifest.  

Should the user decide to install the MIDlets, the AMS looks for the MIDlet-Jar-URL 

attribute in the JAD file and sends a request to that URL for the JAR, which the server should 

return tagged with the MIME type application/java-archive.  

At this point, the MIDlet suite is installed, and the user can select and run the individual 

MIDlets. Following installation, the AMS may be required to deliver a status report to the 

provisioning server indicating whether the suite was successfully installed and identifying the 

reason for failure if it was not. This report takes the form of a status code and a status message 

that is sent using an HTTP POST request to the URL given by the MIDlet-Install-Notify 

attribute in the JAD file. If this attribute is not present, no installation report is sent. Of course, 

the server must be configured to expect an installation report at the given URL. The server 

typically uses a servlet or CGI script to save the report along with details of the originator for 

later use.  

 

If you are not familiar with the HTTP protocol, you'll find a discussion 

of those parts of it that are supported by MIDP devices, including the 

POST request, in Chapter 6. More complete coverage of HTTP can be 

found in Java Network Programming by Elliotte Rusty Harold (O'Reilly 

& Associates, Inc.).  
 

The status codes and their meanings are listed in Table 3-3.  

Table 3-3. Status Codes Used to Report Success or Failure of MIDlet Installation 

Status 

Code 
Meaning 

900 Success 

901 Insufficient memory 

902 Canceled by the user 

903 
Loss of network service (because of the network service loss, this report may never get delivered to 

the server)  

904 JAR size mismatch 

905 Attribute mismatch 

906 Invalid descriptor 

http:///


J2ME in a Nutshell 

79 

As well as implementing the MIDlet discovery and installation service as just described, the 

AMS software is required to provide the following functionality:  

MIDlet suite updates  

MIDlet updates are delivered just as the original MIDlet suite is: the user returns to the 

original server and requests the software as if an installation were being performed. 

Because the JAD file contains the version number of the associated MIDlet suite, the 

AMS can determine whether the software already installed is older than that on the 

server; if it is, the AMS can perform an upgrade, with permission from the user. 

Equally important, it can avoid downloading the JAR file if the newest version is 

already installed.  

MIDlet selection and execution  

The AMS provides the user with a means of selecting an installed MIDlet to run. The 

exact means by which this is achieved is device-dependent. On a cell phone, a menu 

item might give the user the ability to launch the AMS, or individual MIDlet suites 

may be included in the menu itself. On a PDA, MIDlet suites might be available in 

exactly the same way as native applications.  

MIDlet removal  

The Java application management software is responsible for removing MIDlet suites 

from the device on user request. MIDlets cannot be removed individually. Following 

successful removal, the application manager must also delete any persistent storage 

resources that were allocated to the MIDlet suite (see Section 6.5 for further details). 

Because MIDlet removal causes loss of persistent data and is therefore almost 

certainly an irreversible process, the AMS will normally prompt the user for 

confirmation. The MIDlet suite vendor can use the MIDlet-Delete-Confirm attribute 

in the JAD file to include a message that should be displayed to the user before 

removal. This message can be used to warn the user of the consequences, if any, of 

removing the MIDlet suite.  

3.6.2 The Wireless Toolkit Application Management Software 

To prepare a MIDlet suite for remote installation, take the following steps:  

1. Install the MIDlet suite JAR file on your web server. 

2. Edit the JAD file so that its MIDlet-Jar-URL attribute points to the JAR file. Note that 

the specification requires that an absolute URL is required in the JAD file; relative 

URLs are not guaranteed to work. The Wireless Toolkit does not generate a JAD file 

containing an absolute URL, so you will need to edit it manually.  

3. Place the JAD file on the web server. 

4. Create an HTML or WML page with a hypertext link to the JAD file. The hypertext 

link must use an absolute URL, since application managers are not required to support 

relative URLs.  

5. Configure the web server so that JAD files are returned with MIME type 

text/vnd.sun.j2me.app-descriptor and JAR files with MIME type 

application/java-archive.  

http:///


J2ME in a Nutshell 

80 

The Wireless Toolkit contains a graphical AMS that can be used to test the OTA provisioning 

of MIDlet suites as well as to provide developers and vendors with a demonstration of typical 

application management and removal features. To use it, run the emulator provided with the 

Toolkit from the command line and pass it the argument -Xjam. Assuming you have installed 

the Wireless Toolkit in the directory c:\j2mewtk, issuing the following command in DOS 

starts the emulator and activates the AMS:  

c:\j2mewtk\bin\emulator.exe -Xjam 

When started, the application manager displays the Java logo and a copyright message. Press 

the Done button to show the application manager's main screen, which is shown on the left of 

Figure 3-11.  

Figure 3-11. The Wireless Toolkit application management software 

 

Pressing the Install button opens another screen that allows you to supply the URL of an 

HTML page that contains links to MIDlet suites, as shown on the right of Figure 3-11. This 

should be the URL of the HTML page set up previously, in step 4. The directory ora\ch3 in 

this book's example source code contains a sample HTML file called MIDlet.html that you 

can use for testing purposes. You should compile and package the MIDlet in this directory in 

the usual way and copy the files MIDlet.html, Chapter3.jad and Chapter3.jar onto your web 

server. Open Chapter3.jad and change the MIDlet-Jar-URL attribute to the absolute URL 

that corresponds to the location of the JAR file. Also edit the MIDlet.html file so that the HREF 

attribute in the <A> tag is the absolute URL of the JAD file.  

Press the Go button to start the process. At this point, the AMS loads the HTML page and 

scans it for links that point to JAD files. A commercial application manager distinguishes 

these links from other links by making a request to the server for the target of the link and 

looking for a returned MIME type of text/vnd.sun.j2me.app-descriptor. However, the 

Wireless Toolkit AMS appears to take a shortcut and simply looks for links for which the 

target URL ends with .jad. If the target page does not contain any links that correspond to 

MIDlet suites, the error message shown on the left of Figure 3-12 appears.  

Figure 3-12. Selecting a MIDlet suite for installation 

 

http:///


J2ME in a Nutshell 

81 

If you experience problems with this example, check that the server is properly configured 

and that the JAR and JAD files are consistent:  

• The URL that you supply to the AMS must point to an HTML file that contains 

absolute hypertext links to one or more JAD files. The HTML file for this example 

looks like this:  

   <HTML> 
     <HEAD> 
       <TITLE> 
       J2ME in a Nutshell Example MIDlet Download Page 
       </TITLE> 
     </HEAD> 
     <BODY> 
       Install the example MIDlet suite for 
       <A HREF="http://localhost:8080/Chapter3.jad">Chapter 3</A> of  
       "J2ME in a Nutshell". 
     </BODY> 

</HTML> 

• The web server must be configured to return JAD files with MIME type 
text/vnd.sun.j2me.app-descriptor.  

• The MIDlet-Jar-URL attribute in the JAD file must be an absolute URL pointing to 

the JAR file.  

• The JAD file must contain the mandatory attributes listed in Table 3-2.  

If the AMS locates any JAD files, it displays a list of the links that point to them, using the 

text within the <A></A> tag pair to identify each MIDlet suite, as shown on the right side of 

Figure 3-12. This implementation does not display the MIDlet suite name or the JAR file size 

from the JAD file because it hasn't fetched it yet. To continue with the installation process, 

press the Install button.  

At this point, the Wireless Toolkit AMS reads the JAD file from the server and uses the 

MIDlet-Jar-URL attribute to locate and fetch the JAR file. If this process succeeds, a 

confirmation message appears as shown on the left side of Figure 3-13. After a short pause, 

the application manager switches back to its main screen, shown in the center of Figure 3-13. 

If you compare this to Figure 3-11, you'll see that the main screen now contains the name of 

the MIDlet suite that was just installed. The list of installed MIDlets is saved on the device, so 

this list will reappear when you next run the emulator. In the case of a MIDlet suite containing 

more than one MIDlet, the list in the main screen displays each suite together with the 

MIDlets that it contains. An example of this is shown on the right-hand side of Figure 3-13, in 

which a MIDlet suite called Chapter5 containing individual MIDlets called Socket, Time, 

Ranking and others that are not visible in the screen shot, has been installed.  

Figure 3-13. Installing a MIDlet suite 

 

http:///


J2ME in a Nutshell 

82 

The main screen also includes an option that lets you launch MIDlets. If you select a MIDlet 

suite and choose this option, the usual MIDlet selector lets you pick the actual MIDlet to be 

run (see Figure 3-8). For a suite with multiple MIDlets, you can also choose an individual 

MIDlet from the main screen and launch it directly.  

The Menu option provides access to the other application management features of 

the Wireless Toolkit AMS, presented in the form of a list, as shown in Figure 3-14.  

Figure 3-14. The Wireless Toolkit AMS application management menu 

 

Of these menu items, only the first three are worth discussing here. Each of these items 

operates on a MIDlet suite, so selecting any of them brings up another copy of the MIDlet 

selection screen so that you can choose the suite to which the command should apply.  

The Info command displays the content of the JAD file that was fetched when the MIDlet 

suite was installed. Ideally, this information would be displayed to the user before the 

installation process starts, but, as noted previously, the Wireless Toolkit AMS does not 

implement this feature. Figure 3-15 shows the information displayed for the Chapter3 MIDlet 

suite.  

Figure 3-15. MIDlet suite information as displayed by the Windows Tooklit AMS 

 

The Update command reinstalls the MIDlet suite from its original source. As noted earlier, the 

AMS can compare the MIDlet version in its installed JAD file and the one it acquires from the 

server to determine if it already has the latest version of a MIDlet suite.  

The Remove option deletes a MIDlet suite and all its associated persistent storage from the 

device. The Wireless Toolkit AMS displays a warning message and asks the user for 

confirmation before performing this operation (see Figure 3-16).  

 

 

 

 

http:///


J2ME in a Nutshell 

83 

Figure 3-16. Deleting a MIDlet suite using the Wireless Toolkit AMS 

 

The Wireless Toolkit AMS can be controlled from the command line as well as through its 

user interface. For example, you can install a MIDlet suite directly from a web server using 

the command:  

c:\j2mewtk\bin\emulator.exe -Xjam:install=http://www.yourserver.com/ 
    SOMETHING/Chapter3.jad 

A complete description of the command-line arguments recognized by the Wireless Toolkit 

emulator can be found in Chapter 8.  

http:///


J2ME in a Nutshell 

84 

Chapter 4. MIDlet User Interfaces 

MIDlets are intended to be portable to a range of devices with widely varying input and 

display capabilities, ranging from the very small, mainly two-color screens and restricted 

keypads on pagers and cell phones to the larger, often multicolor displays and more 

sophisticated keyboards or handwriting recognizers available on PDAs. Creating a set of user 

interface components suitable for such a wide range of devices is not a simple task. One 

option available to the MIDP designers was to use a subset of the Abstract Windows Toolkit 

(AWT) or Swing components from J2SE. However, this is not really a viable solution. 

Resource constraints rule out the adoption of Swing, while the basic user interface model 

around which the AWT is based is far too complex to be used on small devices.  

Both AWT and Swing are based on giving the developer maximum freedom to create a rich 

and complex GUI in a multiwindowed environment, in which the user might be interacting 

with several applications at the same time. By contrast, because of the limited screen size, cell 

phone users do not expect to be able to work with more than one window or even more than 

one MIDlet at any given time. Instead of trying to find a subset of the AWT that would be 

appropriate for this restricted environment, the MIDP expert group chose to introduce a much 

simpler set of components and a lighter, screen-based programming model. In this model, the 

MIDlet developer focuses more on the business logic of the application rather than on the 

minute details of the user interface itself. The result is a class library that is much smaller and 

easier to use and also less demanding of memory and processor resources than either Swing or 

AWT.  

The price to be paid for this simplicity is that developers using this "high-level" API are much 

less able to control the exact look and feel of their MIDlets; the programming interface does 

not include features that would allow customization of colors, fonts, or even component 

layout. The high-level API is covered in the second half of this chapter, but it does not 

represent the entire scope of the MIDlet user interface support. Recognizing that some 

application types, such as games (which are likely to form a large part of the software market 

for cell phones) require a much greater level of control, MIDP also includes a "low-level" 

user interface API. This API gives the developer exactly the opposite of the high-level API, 

namely complete control over (a part of) the screen and access to the keypad and whatever 

pointing device might be available. The trade-off for this greater control is greater 

responsibility: using the low-level API means writing code to draw everything that appears on 

the user's screen and interpreting every input keystroke and pointer movement to decipher 

what the user wants to do. J2SE developers with experience creating custom components for 

AWT and Swing applications will probably feel very much at home with the low-level API, 

which is covered in the next chapter.  

4.1 User Interface Overview 

The user interface model for MIDP devices is very simple. J2SE applications often consist of 

several simultaneously visible windows between which the user can move the input focus 

simply by clicking with the mouse. A MIDP device, on the other hand, is required to display 

only a single "window" at a time, and the ability to move from one window to another 

depends on whether the MIDlet developer includes UI components that allow the user to do 

so. Furthermore, if there is more than one MIDlet running in a device at the same time, only 

one of them can have access to the screen, and the device may or may not provide a way for 

the user to select which MIDlet should be given the screen at any particular time. The MIDlet 

http:///


J2ME in a Nutshell 

85 

user interface library, which is implemented in the javax.microedition.lcdui package, 

includes several classes that represent the device's screen and provide the basic top-level 

windows. Developers can use these as the basis for building form-based MIDlets or more 

graphically sophisticated MIDlets, such as games.  

4.1.1 The Display and Displayable Classes 

The Display class represents a logical device screen on which a MIDlet can display its user 

interface. Each MIDlet has access to a single instance of this class; you can obtain a reference 

to it by using the static getDisplay( ) method:  

public static Display getDisplay(MIDlet midlet); 

A MIDlet usually invokes getDisplay( ) when its startApp( ) method is called for the 

first time and then uses the returned Display object to display the first screen of its user 

interface. You can safely call this method at any time from the start of the initial invocation of 

the startApp( ) method, up to the time when the MIDlet returns from destroyApp( ) or 

notifyDestroyed( ), whichever happens first. Each MIDlet has its own, unique and 

dedicated instance of Display, so getDisplay( ) returns the same value every time it is 

called. A MIDlet will, therefore, usually save a reference to its Display object in an instance 

variable rather than repeatedly call getDisplay( ).  

Every screen that a MIDlet needs to display is constructed by mounting user interface 

components (which are called items in MIDP terminology) or drawing shapes onto a top-level 

window derived from the abstract class Displayable, which will be discussed later. A 

Displayable is not visible to the user until it is associated with the MIDlet's Display object 

using the Display's setCurrent( ) method:  

public void setCurrent(Displayable displayable) 

Similarly, the Displayable currently associated with a Display can be retrieved by calling 

getCurrent( ):  

public Displayable getCurrent( ) 

Since a Display can show only one screen at a time, calling the setCurrent( ) method 

causes the previously displayed screen, if any, to be removed and replaced with the new one. 

However, the effect of calling setCurrent( ) is not guaranteed to be immediate; the device 

is allowed to defer the change to a more convenient time. This has the following 

consequences:  

• Code such as the following: 

 Form newForm = new Form("New Form"); 
 display.setCurrent(newForm); 
 Form currentForm = display.getCurrent( ); 

 System.out.println(newForm == currentForm); 

(where Form is a kind of Displayable that will be introduced shortly) does not 

necessarily print "true" because getCurrent( ) may return the Displayable that was 

installed before setCurrent( ) was called.  

http:///


J2ME in a Nutshell 

86 

• Installing a new Displayable and then blocking to perform a slow operation, such as 

making a network connection, is likely to result in the MIDlet appearing to stop with 

the previous screen on display. If you want to display a "Please wait..." message to 

make it clear to the user that a long-lasting operation is in progress, it is best to call 

setCurrent( ) to install a new Form containing the message and initiate the 

operation in a separate thread. The original thread can then continue unblocked and 

eventually display the message.  

The Display object does not correspond directly to the device's screen. Instead, it acts as a 

virtual screen that the MIDlet can use to control what it would like to display. If there is more 

than one active MIDlet, only one of them can control the real screen at any given time. The 

MIDlet that has direct access to the screen is said to be in the foreground, and other MIDlets 

are in the background. The MIDP device's AMS is responsible for selecting which MIDlet is 

in the foreground at any given time. When a MIDlet is moved to the foreground, the 

Displayable selected in its Display object is switched into the screen, and the MIDlet's 

startApp( ) method is called, as described in Section 3.4. Figure 4-1 shows the relationship 

between the device screen and the Display and current Displayable of foreground and 

background MIDlets.  

Figure 4-1. Foreground MIDlet and the Display object 

 

Once a MIDlet has the foreground, it retains it until it does one of the following things:  

• Invokes its notifyPaused( ) method to request a temporary move to the background 

state  

• Invokes its notifyDestroyed( ) method to indicate that it no longer wants to be 

scheduled into the foreground  

Although a MIDlet would normally call these methods as part of its event handling in 

response to user commands, a background thread running in the same MIDlet (or even in 

another MIDlet) may also invoke them to move the MIDlet out of the foreground.  

Since the current Displayable is an attribute of the Display object, a background MIDlet 

also has a current Displayable, which it may change by calling the setCurrent( ) method 

if it has threads or timers running while it is not in the foreground. These changes have no 

effect on what the user sees until the MIDlet returns to the foreground.  

http:///


J2ME in a Nutshell 

87 

A MIDlet can determine whether a given Displayable is visible to the user by calling 

isShown( ), which is one of the four methods of the Displayable class:  

public abstract class Displayable { 
        public boolean isShown( ); 
        public void addCommand(Command cmd); 
        public void removeCommand(Command cmd); 
        public void setCommandListener(CommandListener l); 
} 

The isShown( ) method returns true only when the Displayable can actually be seen by 

the user, which requires that it be the current Displayable of the MIDlet's Display and that 

the MIDlet be in the foreground. However, this condition is not sufficient, as the following 

code illustrates:  

Form newForm = new Form("New Form"); 
display.setCurrent(newForm); 
System.out.println("New form is shown? " + newForm.isShown( )); 

In this case, newForm may not yet be visible, because the effect of setCurrent( ) is not 

required to be immediate.  

The other three methods of the Displayable class deal with the addition and removal of 

Command objects and the registration of a listener to receive events from Commands. As the 

name suggests, Commands allow the user to request that an action be performed, such as 

opening a network connection, switching to another screen, or terminating the MIDlet. 

Commands are discussed in detail later in Section 4.2.4.  

4.1.2 The High- and Low-Level User Interface APIs 

Displayable is the base class for all MIDlet user interfaces, but it doesn't provide enough 

functionality to be useful in its own right. There is a set of more useful classes, derived from 

Displayable, that can be used as the basis for building real user interfaces. The class 

hierarchy for these classes is shown in Figure 4-2.  

Figure 4-2. Top-level user interface classes 

 

As you can see, there are two direct subclasses of Displayable, both of which are also 

abstract. These two subclasses are the starting points for the two different styles of user 

interface programming supported by the javax.microedition.lcdui package.  

 

http:///


J2ME in a Nutshell 

88 

Canvas  

The Canvas class is the cornerstone of the low-level GUI API. Canvas acts like a 

blank sheet of paper that covers most of the user's screen. In order to create a user 

interface using the low-level API, you subclass Canvas and implement the paint( ) 

method to draw directly on the screen. You can also respond to user input by 

overriding methods that are called as a result of key presses or pointer movements. 

The low-level API does not provide any individual components to handle text input, 

display lists, offer choices, and so on, although it does include the ability to use 

Commands, which Canvas inherits from Displayable. The low-level API is well suited 

for writing graphical games or displaying data in chart form and is described in detail 

in Chapter 5.  

Screen  

Screen is the basic class from which the top-level windows of the high-level API are 

derived. Like Canvas, Screen is an abstract class, but, unlike Canvas, developers are 

not expected to subclass it in order to implement a MIDlet user interface. Screen adds 

to Displayable the ability to include an optional title string and an optional ticker, 

which displays a continuously scrolling text message. The most commonly used 

concrete subclass of Screen is Form, which allows you to build a user interface by 

adding standard components (referred to as Items) to it, much like you add 

Components to a Container in the AWT. List, TextBox, and Alert, which is the 

MIDP equivalent of a dialog, are other subclasses of Screen. Unlike the low-level 

API, the high-level API does not allow the developer to draw directly to the screen or 

to handle events from the keyboard or the pointer. Instead, these events are handled 

internally and, where appropriate, are converted to higher-level events that originate 

from the Items that appear on the user's screen.  

Although the low- and high-level APIs are very different in style, they can be used together 

within a MIDlet. A typical example of this might be using the high-level API to create a form 

that allows the user to specify the location of some data, then switching to a Canvas on which 

the data is presented as a chart. You cannot, of course, use the high- and low-level APIs on 

the same screen.  

4.2 The High-Level User Interface API 

A MIDlet written using the high-level API typically consists of one or more screens built 

using the Form, List, or TextBox classes, together with a set of Commands that allow the user 

to tell the MIDlet what actions to perform and how to navigate from screen to screen. Let's 

start our examination of the high-level API by creating a simple MIDlet with a single screen 

containing a TextBox.  

4.2.1 A TextBox Example 

TextBox is a component used to display and modify text. Since it is derived from Screen, 

TextBox occupies the entire screen of the device and therefore can accomodate relatively 

large amounts of text spread over several lines. Most of the API provided by TextBox is 

identical to that of a similar component called TextField, which is covered in detail in 

http:///


J2ME in a Nutshell 

89 

Section 4.2.9, later in this chapter. In this example, we use only the features that TextBox 

inherits from Screen (and which are not available to TextField, because it is not derived 

from Screen). The code for this example is shown in Example 4-1.  

Example 4-1. Creating and Using a TextBox  

package ora.ch4; 
 
import java.io.InputStream; 
import java.io.InputStreamReader; 
import java.io.IOException; 
import javax.microedition.lcdui.Display; 
import javax.microedition.lcdui.TextBox; 
import javax.microedition.lcdui.TextField; 
import javax.microedition.lcdui.Ticker; 
import javax.microedition.midlet.MIDlet; 
 
public class TextBoxMIDlet extends MIDlet { 
 
    // Maximum size of the text in the TextBox 
    private static final int MAX_TEXT_SIZE = 64; 
     
    // The TextBox 
    protected TextBox textBox; 
     
    // The MIDlet's Display object 
    protected Display display; 
     
    // Flag indicating first call of startApp 
    protected boolean started; 
     
    protected void startApp( ) { 
        if (!started) { 
            // First time through - initialize   
            // Get the text to be displayed 
            String str = null; 
            try { 
                InputStream is = getClass( ).getResourceAsStream( 
                    "resources/text.txt"); 
                InputStreamReader r = new InputStreamReader(is); 
                char[] buffer = new char[32]; 
                StringBuffer sb = new StringBuffer( ); 
                int count; 
                while ((count = r.read(buffer, 0, buffer.length)) > -1) { 
                    sb.append(buffer, 0, count); 
                } 
                str = sb.toString( ); 
            } catch (IOException ex) { 
                str = "Failed to load text"; 
            } 
             
            // Create the TextBox 
            textBox = new TextBox("TextBox Example", str,  
                                MAX_TEXT_SIZE, TextField.ANY); 
             
            // Create a ticker and install it 
            Ticker ticker = new Ticker("This is a ticker..."); 
            textBox.setTicker(ticker); 
             
 

http:///


J2ME in a Nutshell 

90 

            // Install the TextBox as the current screen 
            display = Display.getDisplay(this);   
            display.setCurrent(textBox); 
 
            started = true; 
        }   
    } 
 
    protected void pauseApp( ) { 
    } 
 
    protected void destroyApp(boolean unconditional) { 
    } 
} 

In this simple MIDlet, all of the code is in the startApp( ) method, which simply reads 

some text from a file, installs it in a TextBox, and arranges for the TextBox to appear on the 

screen. Since the startApp( ) method could be called more than once during the lifetime of 

a MIDlet, this initialization code is protected by a boolean flag that ensures that it is 

performed only on the first invocation of startApp( ).  

Skipping for a moment the code that obtains the actual text, let's look at how the user interface 

is created. The TextBox is created using its only constructor:  

public TextBox(String title, String text, int maxSize, int constraints) 

The title argument sets the title that appears above the TextBox; you can set it to null if no 

title is required. The second argument specifies the text that will initially be displayed in the 

TextBox, and the final two arguments allow you to exercise some control over what the 

TextBox is allowed to contain, as follows:  

maxSize  

Specifies the maximum number of characters that the TextBox can contain at any 

time. Once the TextBox contains the maximum number of characters, the user will not 

be allowed to enter any more. The same restriction also applies to the text supplied to 

the constructor and to all the other methods that allow you to change programmatically 

the content of the TextBox, which you'll see later when we look at the TextField 

component. There is no way to avoid specifying an upper bound on the number of 

characters that the TextBox can hold; specifying 0, for example, creates a TextBox 

that cannot contain any text at all! Furthermore, the implementation is permitted to 

apply a smaller upper bound than the one you specify, so trying to avoid this 

constraint by setting a large maximum size is unlikely to work. You can find out the 

actual maximum size that applies to a TextBox by calling its getMaxSize( ) method.  

constraints  

Specifies the type of content that should be allowed in the TextBox. Using this 

argument, you can, for example, restrict the user to entering only numbers or more 

complex things such as phone numbers or URLs without having to write the code to 

validate the content yourself. Since this is another feature that TextBox shares with 

TextField, we'll defer further discussion of it until later in the chapter. In this 

http:///


J2ME in a Nutshell 

91 

example, the constraint has the value TextField.ANY, which places no restriction on 

what the TextBox can contain.  

TextBox inherits the ability to display a title from its superclass (Screen). Here is how 

Screen itself is defined:  

public abstract class Screen extends Displayable { 
    public Ticker getTicker( ); 
    public String getTitle( ); 
    public void setTicker(Ticker ticker); 
    public void setTitle(String title); 
} 

You can change the title associated with the TextBox at any time by calling the setTitle( ) 

method, and you can also use the setTicker( ) method to add a Ticker to the screen. 

Ticker is a very simple class that displays a string that continuously scrolls across the screen 

area allocated to it, which is usually at the top. Here's the definition of this class:  

public class Ticker { 
    public Ticker(String str); 
    public String getString( ); 
    public void setString(String str); 
} 

You'll notice that there is no way to explicitly start or stop the ticker or to control the direction 

or rate at which it scrolls its content; these aspects are all controlled by the MIDP 

implementation itself. This lack of direct control is a deliberate design feature of the high-

level API, which emphasizes simplicity, partly to minimize the size of the API and partly to 

make it possible to port both the platform itself and the MIDlets that rely on it to devices with 

varying user interface capabilities. In this example, we add a Ticker to the TextBox so that 

you can see how it works and where it is placed:  

Ticker ticker = new Ticker("This is a ticker...") 
textBox.setTicker(ticker); 

It is worth noting that a single Ticker can be associated with any number of screens at the 

same time. This is a very useful feature, not only because it potentially saves resources, but 

also because any changes made to the Ticker by calling its setString( ) method (e.g., 

updating stock prices) takes effect immediately for all the screens on which the Ticker 

appears.  

To run this example, you can use the Run MIDP Application utility that comes with the 

Wireless Toolkit. Point it at the file ora\ch4\Chapter4.jad in the example source code for this 

book and select TextBoxMIDlet. The MIDlet's user interface, as seen on the default color 

phone, is shown in Figure 4-3.  

 

 

 

 

http:///


J2ME in a Nutshell 

92 

Figure 4-3. A TextBox with a ticker and screen title 

 

This phone arranges the three parts of the screen so that the Ticker is placed at the top with 

the title below it and the content of the TextBox itself at the bottom. Other devices might take 

a different approach. For example, if you run this code on a PalmOS-based handheld, 

the result looks like Figure 4-4, where the title and ticker are placed side by side. Notice also 

that because less space is allocated for the title on the PalmOS platform, the text is truncated..  

Figure 4-4. Title and Ticker as shown on a PalmOS-based handheld 

 

Although the text used in this example is fairly short due to the small size of the phone's 

screen and the space taken up by the title and ticker, it isn't possible for the TextBox to show 

all of the text at once. When this happens, the TextBox allows the user to scroll its content 

using the up and down arrow keys on the keypad and draws a scroll arrow on the screen to 

indicate that there is more text to be seen. On other devices, such as handhelds with pointing 

devices, a scrollbar that could be dragged using the pointer might be provided. The presence 

and nature of these visual cues and the way in which they work is transparent to the MIDlet, 

which doesn't need to include any code to deal with them or even be concerned about whether 

they are required.  

Since TextBox provides editing facilities, you can use the keys on the emulated phone's 

keyboard to change the text or add extra characters. If you try to add more than 6 characters, 

however, you will fail, because this TextBox has a capacity of only 64 characters, and the 

initial text is 58 characters long. Using the arrow keys, you can move the insertion point 

around within the TextBox and insert or delete characters anywhere you like, provided you 

don't exceed the 64-character limit.  

The emulated devices provided by the Wireless Toolkit attempt to mimic the input 

mechanisms of the real devices. In the case of a cell phone, the small number of keys 

available means that most of the keys are overloaded to perform several functions. Most of 

the keys give numbers when pressed, but if you press them repeatedly, they yield other 

characters. On the default color phone, for example, the 2 key can be used to input the number 

2 or the letters A, B, or C, provided you press the key quickly enough. You can use the 

MODE key to shift into a separate mode to make the input of alphabetics quicker or to force 

each key to represent only the number on its face. You can also use the MODE key to select 

a screen that contains special symbols. The RIM wireless handheld, on the other hand, has 

a larger set of keys that include alphabetics, with numbers and special characters accessible 

via a mode shift. When you use the TextBox or TextField components, you don't need to 

http:///


J2ME in a Nutshell 

93 

concern yourself with the details of the keypad or keyboard, because the mapping from key 

strokes to Unicode characters is handled for you in a manner appropriate to the device that 

your MIDlet is running on.  

When you are using the cell phone emulator, you will probably find it tedious and quite time-

consuming to use the phone's keypad to enter text. In the real world, this would not be quite 

so difficult, because you are probably used to using the real keypad of your own phone, but it 

is inconvenient to use such a slow approach when developing MIDlets. To alleviate this 

problem, the emulators allow you use your PC's keyboard to edit the content of the TextBox 

instead of having to resort to the mouse. The quickest way to enter this mode is to press the 

Return key on your keyboard. This replaces the MIDlet's screen with a full-screen editor that 

accepts keystrokes from your keyboard, as shown in Figure 4-5. When you have finished 

editing, you can return to normal mode by pressing Return again. You can also abandon any 

changes you have made by pressing the Escape key. Another way to enter and leave full-

screen editing mode is to use the mouse to "press" the key that corresponds to the SELECT 

action on the emulator's keypad. In the case of the default color phone, this is the round white 

button just below the screen, as shown in Figure 4-5. The full-screen editing facility is, of 

course, not available on real devices, and you should perform some testing without using this 

facility before deciding that your MIDlets are error-free.  

Figure 4-5. Using the emulator's full-screen editor to enter text into a TextBox 

 

4.2.2 Displaying the TextBox 

Once you've created the TextBox, the next step is to make it visible to the user, which 

requires two lines of code:  

display = Display.getDisplay(this); 
display.setCurrent(textBox); 

The static getDisplay( ) method of Display gets the Display object for the MIDlet passed 

as its only argument. Since this call is made directly from the MIDlet's startApp( ) method, 

it is appropriate to use this as the MIDlet reference. It is necessary to call getDisplay( ) 

only once in the lifetime of a MIDlet, because the returned reference is valid until the MIDlet 

is destroyed. Most MIDlets, therefore, simply store the reference in an instance variable, as 

shown in this example. To make the TextBox visible, the Display setCurrent( ) method is 

used with the TextBox reference supplied as the argument. The TextBox will appear on the 

user's screen sometime shortly after the setCurrent( ) method returns.  

 

http:///


J2ME in a Nutshell 

94 

4.2.3 Accessing Resources in the MIDlet JAR File 

For this example, instead of hard-coding the text to be displayed in the TextBox, I put it into a 

text file that is included in the MIDlet JAR file. Separating text from code is a useful 

technique that can be used to allow tailoring of a MIDlet suite to meet locale- or customer-

specific requirements, such as the need to translate text in the user interface into other 

languages. The only problem with this approach is getting access to the file while the MIDlet 

is executing.  

To solve this problem, the CLDC version of the class java.lang.Class provides an 

implementation of the J2SE method getResourceAsStream( ):  

public InputStream getResourceAsStream(String name); 

Given the name of a resource, this method returns an InputStream that can be used to read its 

content. To use this method, however, you need to have a Class object on which to invoke it 

and a properly formed resource name.  

 

CLDC/MIDP does not provide an implementation of the other J2SE 

method that is commonly used to access resources in JAR files:  

public URL getResource(String name) 

Supporting this method would require the URL class, which is not part of 

either CLDC or MIDP. Another reason for not providing it is that it is 

of limited use even in J2SE, because some web browsers did not 

support it for applets but did implement getResourceAsStream( ). 

Therefore, probably much less existing code uses getResource( ) than 

getResourceAsStream( ).  
 

There are two different ways to specify the resource: with a relative name or an absolute 

name. To see how the resource name is constructed, you need to keep in mind how the JAR 

file is logically arranged. The simplest way to understand the layout is simply to imagine the 

JAR file expanded out into a filesystem hierarchy. This is usually very easy to do, because 

most JAR files are constructed from a filesystem anyway. In this example, the MIDlet class 

file is in a package called ora\ch4 and, therefore, in terms of a filesystem layout, the class file 

would be called ora\ch4\TextBoxMIDlet.class. The text file is called text.txt and was placed in 

a package called ora\ch4\resources. Therefore, the filesystem pathnames for these two files 

would be:  

ora\ch4\TextBoxMIDlet.class  

ora\ch4\resources\text.txt  

For the purposes of this example, we want to access the latter of these files while executing 

the code of the former. The simplest way to do this is to use an absolute resource name for the 

text file, which can be created by taking the logical pathname of the file, replacing all the "\" 

characters with "/", and prefixing the result with a "/" to form an absolute pathname:  

/ora/ch4/resources/text.txt  

http:///


J2ME in a Nutshell 

95 

When you use an absolute resource name, you can invoke the getResourceAsStream( ) 

method of any class in the same JAR file to get an InputStream for the resource. In this 

example, the simplest approach to take is to use the Class object of the MIDlet itself. Hence, 

one way to locate the text file is to write the following:  

InputStream is = getClass( ).getResourceAsStream( 
    "/ora/ch4/resources/text.txt"); 

Alternatively, you can use a relative resource name. Normally, you use a resource name that 

is relative to the class whose code is using it, so in this case you need a resource name relative 

to ora\ch4\TextBoxMIDlet.class. If you view the JAR as a filesystem, it is easy to see that the 

appropriate relative resource name would be resources/text.txt. Note that relative resource 

names do not begin with a "/" character. Because this name is relative to 

TextBoxMIDlet.class, you need to use the Class object of that class (or, in fact, any other 

class in the same package, since all such classes are in the same directory in a filesystem 

representation of the JAR file structure). Hence, to use a relative pathname, you would code 

the following:  

InputStream is = getClass( ).getResourceAsStream("resources/text.txt"); 

Relative resource names are a little more flexible than absolute names because they are 

unaffected by package name changes, provided that you keep the relative locations of the 

class file and the target file unchanged. Hence, if the MIDlet were moved from the package 

ora.ch4 into a different package called ora.ch8, the relative resource name would continue 

to work, provided that the text file is moved to ora/ch8/resources. No code changes would 

need to be made, other than to change the package line at the top of the source file and 

recompile. If you use absolute resource names, changing the package hierarchy requires that 

you search for and change all affected instances of getResourceAsStream( ).  

Once you have an InputStream for the resource, you can use the usual mechanisms to load 

its content. Here, we simply wrap the InputStream with an InputStreamReader to convert 

the content of the file into Unicode characters and read it into a StringBuffer a piece at a 

time.  

The MIDP specification allows you to use getResourceAsStream( ) to access anything in 

the JAR file apart from the class files. This includes the JAR's manifest file, which can be 

obtained as follows:  

InputStream is = getClass( ).getResourceAsStream("/META-INF/MANIFEST.MF"); 

4.2.4 Commands 

The TextBoxMIDlet example allows you to view and edit text, but there is no way to tell the 

MIDlet to save your changes in persistent storage, and it is not possible to terminate the 

MIDlet in an orderly manner. To provide this functionality, you need to use Commands. 

Commands are a feature of the Displayable class, so you can add them to any user interface, 

even those created using the low-level API.  

4.2.4.1 Creating Commands 

The Command class has a single constructor:  

http:///


J2ME in a Nutshell 

96 

public Command(String label, int type, int priority); 

The label argument supplies the text that will be used to represent the Command in the user 

interface, and the type and priority arguments are hints that the MIDP implementation can 

use when deciding where the Command will be placed. The type and priority arguments are 

required because of the diversity of the devices on which MIDP is intended to be used. 

Following construction, you cannot change the label, type and priority attributes of a 

Command.  

If you were writing a J2SE application using AWT or Swing, you would add a command 

action to the user interface by creating a button or a menu item and connecting to it a listener 

that would perform the action associated with the command upon activation by the user. The 

limited capabilities of most MIDP devices make it impossible to rely on the general 

availability of anything that resembles a menu, nor do you have the screen space to display 

more than a couple of buttons. Cell phones, for example, typically have only two soft keys to 

which application actions can be assigned. PalmOS applications are more fortunate: they have 

access to a traditional pull-down menu system and a larger number of buttons that can be 

drawn on the screen.  

Clearly, a portable MIDlet cannot be coded in such a way as to assign command actions 

explicitly to individual menus or buttons, because these may not be available on any given 

device. On the other hand, forcing all MIDlets to work to the lowest common denominator 

(i.e., two soft keys) would be overly restrictive, especially for PDAs. For this reason, the 

responsibility for mapping Commands to GUI resources rests with the MIDP implementation, 

which is specific to each platform and, therefore, aware of what is available. MIDlets can use 

the type and priority constructor arguments to supply hints to the MIDP implementation 

regarding the semantic meanings of Commands and their relative importance, so that those 

likely to be most frequently used can be made most easily accessible to the user.  

The type argument is used to convey the meaning of a Command in terms of a small set of 

commonly required application operations. The possible values for this argument and their 

interpretations are given in Table 4-1.  

Table 4-1. The Command type Parameter 

type 

Paramter 

Value 

Meaning 

OK 
Implies agreement by the user for some operation to be performed. Commands of this type would 

normally be placed to be easily accessible to the user.  

BACK Replaces the currently displayed screen with the one that preceded it. 

CANCEL 

Abandons an operation before it has been initiated. This command, along with the OK command, 

is typically made available while setting up the parameters for the operation. It might also be 

available on an Alert screen used to explicitly prompt the user for confirmation of an operation 

that might not easily be reversible.  

STOP Stops an operation that is already in progress. 

EXIT Requests that the MIDlet stop all outstanding operations and terminate in an orderly manner.  

HELP Requests general or context-sensitive help. 

SCREEN 
Relates to the function of the current screen, but does not fit into one of the specific categories 

listed previously. Most application-specific actions are of this type.  

ITEM Indicates a command that is associated with a particular user interface component.  

http:///


J2ME in a Nutshell 

97 

4.2.4.2 Adding Commands to the user interface 

Once you have created a Command object, the next step is to arrange for it to appear in the user 

interface. This is achieved by calling the addCommand( ) method of Displayable:  

public void addCommand(Command cmd); 

MIDP platforms are allowed to follow their own rules when determining how to represent 

Commands in the user interface. In general, however, the choice is made first based on the 

Command type and then on the priority, where lower priority values tend to result in a more 

favorable placement. The order in which Commands are added to a Displayable is not usually 

of any significance in the determination of placement, and the label text is not used at all, 

because the semantic meaning of the command is supposed to be conveyed via the type 

attribute.  

On a cell phone, for example, the type might be used to favor well-known operations (such as 

OK, CANCEL, BACK, etc.) that the user would normally expect to be able to access via a 

soft key. Where the number of these Commands exceeds the number of soft keys available, the 

phone might use the priority to determine which Commands should be installed on the soft 

keys, with lower values increasing the likelihood of assignment to a soft key. The remaining 

Commands would then be placed on a menu that would itself be accessible via a soft key. 

When the number of Commands does not exceed the number of soft keys, they can all be 

allocated a soft key. When a platform has both soft keys and pull-down menus, it may choose 

to place Commands on menus as well as, or instead of, on soft keys, with the choice again 

being made usually based on the type and priority attributes.  

Some commands, such as EXIT, might need to appear on more than one application screen. 

When this is the case, it is not necessary to create a dedicated instance for each screen, 

because a single Command can be added to any number of screens:  

Command exitCommand = new Command("Exit", Command.EXIT, 0); 
form1.addCommand(exitCommand); 
form2.addCommand(exitCommand); 

4.2.4.3 Responding to user activation of Commands 

In order to be notified when the user activates a Command, you have to register a 

CommandListener with the Displayable to which the Command was added. You do this by 

invoking its setCommandListener( ) method:  

public void setCommandListener(CommandListener l); 

CommandListener is an interface with a single method:  

public void commandAction(Command c, Displayable d) 

The commandAction( ) method is called when any Command on the Displayable is 

activated. The first argument is the more useful, because it allows you to determine which 

operation the user wants to perform. The Displayable argument is useful if you add the same 

Command to more than one screen, and the resulting action is dependent on the current screen. 

http:///


J2ME in a Nutshell 

98 

It can also be useful if the action needs a reference to the screen in order to perform its 

assigned function.  

Note that the setCommandListener() method allows only a single CommandListener to be 

registered at a time. Calling this method again replaces any existing listener with the new one, 

and calling it with a null argument removes the previous listener. This is very different from 

J2SE event handling, which normally allows you to add as many listeners as you like and 

requires you to register with the component itself rather than an enclosing container. Although 

it is very flexible, the J2SE model tends to result in the creation of lots of small event handler 

classes, which is very expensive in terms of memory and class-loading time; it is therefore not 

suitable for small-memory devices. MIDlets can get away with only one listener per screen 

and, if the MIDlet itself implements the CommandListener interface, this won't even entail 

creating a new class. If a MIDlet has several screens, it can choose to create a single listener 

class for each, or it can save even that overhead by subclassing the screen class to implement 

CommandListener, as follows:  

public class MyTextBox extends TextBox implements CommandListener { 
    public MyTextBox(String title, String text, int maxSize,  
        int constraints) { 
        super(title, text, maxSize, constraints); 
        setCommandListener(this); 
        // Add Commands (not shown) 
 } 
    // Handle command actions 
    public void commandAction(Command c, Displayable d) { 
        // Code not shown 
    } 
} 

4.2.4.4 A Command example 

We can easily illustrate the use of Commands by extending the TextBoxMIDlet example to 

include four operations:  

• An Exit command that terminates the MIDlet. 

• An OK command that prints a message to standard output. (In a real MIDlet, this 

would obviously do something a little more useful!)  

• A Clear command that removes all of the text from the TextBox.  

• A Reverse command that reverses the text in the TextBox.  

The implementation of this modified example is shown in Example 4-2.  

Example 4-2. Adding Commands to the TextBoxMIDlet Example  

package ora.ch4; 
 
import javax.microedition.lcdui.Command; 
import javax.microedition.lcdui.CommandListener; 
import javax.microedition.lcdui.Displayable; 
 
import javax.microedition.lcdui.*; 
 
 
 

http:///


J2ME in a Nutshell 

99 

public class TextBox2MIDlet extends TextBoxMIDlet implements 
 CommandListener { 
 
    // Exit command 
    private static final Command EXIT_COMMAND =  
                        new Command("Exit", Command.EXIT, 0); 
     
    // OK command 
    private static final Command OK_COMMAND = 
                        new Command("OK", Command.OK, 0); 
     
    // Clear text box content 
    private static final Command CLEAR_COMMAND = 
                        new Command("Clear", Command.SCREEN, 1); 
     
    // Reverse the content of the text box 
    private static final Command REVERSE_COMMAND = 
                        new Command("Reverse", Command.SCREEN, 1); 
 
    protected void startApp( ) { 
        boolean firstTime = !started; 
        super.startApp( ); 
         
        // If this is the first execution of startApp, install commands 
        if (firstTime) { 
            textBox.addCommand(OK_COMMAND);   
            textBox.addCommand(EXIT_COMMAND); 
            textBox.addCommand(CLEAR_COMMAND);   
            textBox.addCommand(REVERSE_COMMAND);   
            textBox.setCommandListener(this); 
        } 
    } 
     
    // Command implementations. 
    public void commandAction(Command c, Displayable d) { 
        if (c == EXIT_COMMAND) { 
            destroyApp(true); 
            notifyDestroyed( ); 
        } else if (c == OK_COMMAND) { 
            System.out.println("OK pressed"); 
        } else if (c == CLEAR_COMMAND) { 
            textBox.setString(null); 
        } else if (c == REVERSE_COMMAND) { 
            String str = textBox.getString( ); 
            if (str != null) { 
                StringBuffer sb = new StringBuffer(str); 
                textBox.setString(sb.reverse().toString( )); 
            }   
        } 
    }   
} 

Notice that this example is implemented by deriving it directly from the TextBoxMIDlet class 

from the previous example. Of course, you wouldn't normally have to do this in the real 

world, but here it serves to show how easy it is to add command handling to an existing class, 

and you don't need to replicate code that you saw earlier!  

The four Commands are defined as static class members, for example:  

http:///


J2ME in a Nutshell 

100 

private static final Command EXIT_COMMAND = new Command("Exit",  
    Command.EXIT, 0); 

Since Commands are simply constant-valued objects, you can usually define them in this way 

and then reuse them wherever you need to, which would include adding the same instance to 

more than one screen, if necessary. You can see from Example 4-2 that the EXIT and OK 

commands use the standard types Command.EXIT and Command.OK, respectively, which allows 

the device on which the MIDlet will be run to represent them in whatever way it would 

normally present EXIT and OK actions. By constrast, the other two commands are of type 

Command.SCREEN, because they are application-defined actions that have no generic meaning. 

Notice that the OK and EXIT actions have priority 0, whereas the other two have priority 1. 

This hints to the device that if it has no built-in preferences, we would rather have the OK and 

EXIT actions more quickly accessible to the user than Clear and Reverse. However, there is 

no guarantee that the device will take this hint.  

Making these operations available from the user interface is a simple matter of adding the 

Command instances to the TextBox and registering the MIDlet class itself as the 

CommandListener:  

textBox.addCommand(OK_COMMAND); 
textBox.addCommand(EXIT_COMMAND); 
textBox.addCommand(CLEAR_COMMAND); 
textBox.addCommand(REVERSE_COMMAND); 
textBox.setCommandListener(this); 

The last step is to implement the CommandListener interface by providing a commandAction 

method, which is responsible for carrying out the operations associated with the Commands. 

The commandAction method shown in Example 4-2 is typical of most event handling in 

MIDlets. Because there is only a single command handler for each screen, its first task is to 

determine which operation the user wants to perform. To do this, it examines the first method 

argument to see which Command has been activated. The neatest way to do this is with a 

switch statement, but this is not possible because Command is not an integral value. Instead, 

MIDlet event handlers tend to consist of if statements that compare the first method 

argument with each of the possible Commands. Once the correct operation is found, the code 

that performs the required function is trivial.  

You can try this example by selecting TextBox2MIDlet from the MIDlet suite for this 

chapter. On the default color phone, the result is shown in Figure 4-6.  

Figure 4-6. Commands on a typical cell phone 

 

 

http:///


J2ME in a Nutshell 

101 

4.2.4.5 Command placement 

The default color phone, like most cell phones, has two soft keys to which Commands can be 

assigned, but the TextBox used in this example has four Commands. As a result, the Exit 

command has been mapped to the left soft key, and the right key provides access to a menu of 

the remaining three Commands, as shown in Figure 4-7. The fact that the Exit command has 

been given its own key in preference to the OK command is a feature of this particular MIDP 

implementation. The result might not be the same on other devices, and the menu might also 

not look the same as it does in Figure 4-7. The MIDlet developer, of course, has no real 

control over these decisions and can only provide hints in the form of the type and priority 

arguments to the Command constructor.  

Figure 4-7. Command assigned to a separate menu 

 

4.2.4.6 Command placement on a PalmOS device 

The same MIDlet looks slightly different when run on a PalmOS platform, where the larger 

screen space means that more Commands can be assigned to buttons that are always visible to 

the user. Figure 4-8 shows two views of this MIDlet running on a PalmOS-based handheld. In 

this case, three of the four Commands have been assigned to buttons below the TextBox. 

Commands are assigned to buttons based on their types, as listed here in descending order of 

preference:  

• Command.BACK 
• Command.OK 
• Command.CANCEL 
• Command.STOP 
• Command.SCREEN 
• Command.CANCEL 

Figure 4-8. Commands on a PalmOS device 

 

http:///


J2ME in a Nutshell 

102 

If the number of commands exceeds the number of buttons that can be created in the button 

area, the command priority is also taken into account when assigning commands to buttons. 

Note, however, that commands of type Command.EXIT and Command.HELP are never mapped 

to buttons.  

PalmOS also has pull-down menus, and, as these two views show, the application-specific 

Commands have been assigned to the Actions menu, while the OK and Exit commands appear 

on a menu labeled Go. In this implementation, the Actions menu is used to hold     

application-specific commands of type Command.SCREEN or Command.ITEM. If both types of 

Command are installed in the same screen, they all appear on the same menu, with Commands of 

the same type grouped together, and the two groups separated by a horizontal line, as shown 

in Figure 4-9. Commands of type Command.BACK, Command.OK, Command.CANCEL, 

Command.STOP, and Command.EXIT are placed on the Go menu, and Command.HELP appears in 

the Option menu.  

Figure 4-9. Grouping of commands on pull-down menus 

 

4.2.5 Forms and Items 

Form is a subclass of Screen that can be used to construct a user interface from simpler 

elements such as text fields, strings, and labels. Like TextBox, Form covers the entire screen 

and inherits from its superclasses the ability to have a title, display a Ticker, and be 

associated with Commands. The elements that you can add to a Form are all derived from the 

abstract class Item:  

public abstract class Item { 
    public String getLabel( ); 
    public void setLabel(String label); 
} 

On its own, Item provides only the ability to store and retrieve a text label, but because each 

component that can be added to a Form is derived from Item, it follows that all of them can 

have an associated label. The implementation displays this somewhere near the component in 

such a way as to make the association between the label and the component clear. The 

components that MIDP provides are described briefly in Table 4-2; each of them will be 

discussed in greater detail in later sections of this chapter.  

Table 4-2. Items That Can Be Added to a Form 

Item  Description 

StringItem An item that allows a text string to be placed in the user interface 

TextField A single-line input field much like the full-screen TextBox  

DateField 
A version of TextField that is specialized for the input of dates; it includes a visual helper 

that simplifies the process of choosing a date  

http:///


J2ME in a Nutshell 

103 

Gauge 
A component that can be used to show the progress of an ongoing operation or allow selection 

of a value from a contiguous range of values  

ChoiceGroup 
A component that provides a set of choices that may or may not be mutually exclusive and 

therefore may operate either as a collection of checkboxes or radio buttons  

ImageItem A holder that allows graphic images to be placed in the user interface 

The Form class has two constructors:  

public Form(String title); 
public Form(String title, Item[] items); 

The first constructor creates an empty Form with a given title, which may be null in the 

unlikely event that no title is required; the second constructor can be used to install an initial 

set of Items on the Form. The Items that are associated with the Form are held in an internal 

list, the order of which determines how they are placed on the form. Form has three methods 

that allow items to be added to the end of this internal list, which causes them to appear on the 

Form itself:  

public void append(Item item); 
public void append(Image image); 
public void append(String string); 

The second and third methods provide a quick and convenient way to include an image or 

string on the Form: just create and append an ImageItem containing a supplied Image or a 

StringItem containing the given string.  

Unlike an AWT container, Form does not have the concept of a separate layout manager that 

you can select to control how items are arranged on the screen. Instead, Form has a few simple 

rules that determine how items are arranged:  

• Items that involve user input (that is, TextField, DateField, Gauge, and 

ChoiceGroup) are laid out vertically, with the first item in the Form's internal list at the 

top of the screen, the second one directly below it, and so on.  

• Adjacent StringItems and ImageItems that have a null or empty label are laid out 

horizontally. If there is insufficient space to fit a complete StringItem in the 

horizontal space remaining in a row, the text is wrapped to the next line, and the 

implementation breaks at whitespace where possible. If there is insufficient space to fit 

an entire ImageItem, the image is simply clipped.  

• StringItems and ImageItems with a nonempty label cause a line break before the 

label is rendered.  

• Newlines in StringItems cause a line break. A similar effect can be obtained using 

layout directives of the ImageItem class, as described in Section 4.2.11, later in this 

chapter.  

• The width of the Form is always the same as that of the screen. The Form may, 

however, be taller than the screen. If so, the implementation provides a means for the 

user to scroll the Form vertically. Horizontal scrolling is not provided.  

• Where it is necessary to scroll vertically, the implementation attempts to ensure that 

scrolling never obscures the label associated with a visible item, if the item has one.  

http:///


J2ME in a Nutshell 

104 

To clarify how these rules work in practice, let's look at a simple example that places strings 

and TextFields on a Form.. The code that builds the Form is shown in Example 4-3. You can 

run it by selecting FormExampleMIDlet from the MIDlet suite in Chapter4.jad.  

Example 4-3. A Demonstration of Form Layout Rules  

Form form = new Form("Item Layout"); 
 
form.append("Hello"); 
form.append("World"); 
 
form.append("\nLet's start\na new line\n"); 
form.append("This is quite a long string that may not fit on one line"); 
 
form.append(new TextField("Name", "J. Doe", 32, TextField.ANY)); 
form.append("Address"); 
form.append(new TextField(null, null, 32, TextField.ANY));  

The first four append( ) calls add text strings to the Form, the results of which can be seen in 

the leftmost two screenshots in Figure 4-10. These screenshots show the MIDlet running on 

the relatively small screen of the default color phone emulator from the Wireless Toolkit. The 

top line of the screen holds the two separate items "Hello" and "World", which have been laid 

out horizontally because they are string items. Note that, even though they were added 

separately, no space has been left between them.  

The next item to be added begins and ends with newline characters; you can see that it is 

placed vertically below the first two items because of the leading newline, and the trailing 

newline also causes a line break. Notice that in this string, and in the next, rather longer, one, 

the text is automatically wrapped, and line breaks are placed between words.  

Figure 4-10. Form layout on a cell phone 

 

Since the Form is too large to fit on the screen, the implementation draws an arrow at the 

bottom to indicate that the screen can be scrolled vertically, as has been done in the middle 

and right views.  

Following the text strings, a TextField is added: 

form.append(new TextField("Name", "J. Doe", 32, TextField.ANY)) 

The constructor supplies both the Item label ("Name") and the initial content of the field itself 

("J. Doe"). As you can see, the label has been placed below the previous text string, even 

though the string did not end with a newline, but above the input field itself. If you scroll the 

screen up and down, you'll find that it is impossible to arrange for the label to be visible 

without the text field, and vice versa.  

http:///


J2ME in a Nutshell 

105 

The last two items are the text string "Address" and another TextField. Because this device's 

screen is so narrow, it would be difficult to see the difference between the effect of the code 

used here:  

form.append("Address"); 
form.append(new TextField(null, null, 32, TextField.ANY)); 

and the apparently similar: 

form.append(new TextField("Address", null, 32, TextField.ANY)); 

which includes the string "Address" as the item's label. To see the difference, you need to run 

this example using the PalmOS emulator. Because this emulator has a much larger screen, it 

can lay out the items differently, as shown in Figure 4-11.  

Figure 4-11. Form layout on a PDA 

 

Most of the items are shifted over to the right side of the screen, leaving mostly blank space to 

the left. This is because the MIDP for PalmOS implementation allocates the left side of the 

screen to the label part of each Item and places the active part of the Item to the right. Hence, 

all the strings (which are actually StringItems with no label) appear on the right side of the 

screen. The only Item with a real label is the first TextField, and its label has been placed on 

the left of the input field itself, rendered in a bold font, and been appended with a colon. 

Compare this to the next TextField: the "Address" string was added as a separate string and 

not installed as the Item label, and it therefore appears above the input field itself. Although 

the difference between using a label and using a separate text string was hard to detect with 

the cell phone emulator, here it becomes very obvious and underlines the fact that the Item 

label should be used instead of installing a separate a text string to describe the following 

input field. Another important reason to take advantage of the Item label is the automatic font 

highlighting provided for the label. You cannot achieve this in any other way, because the 

high-level API does not allow you to select fonts or colors.  

Form has a small number of other methods, in addition to the three variants of append( ), 

that allow the list of Items it contains to be manipulated:  

 
 
 
 

http:///


J2ME in a Nutshell 

106 

public void delete(int index); 
public Item get(int index); 
public void insert(int index, Item item); 
public void set(int index, Item item); 
public int size( ); 

Most of these methods use an index argument to specify the list position to be operated on, 

where the first item has index 0. The delete( ) method removes the Item at the given index; 

like all the other methods that change the Item list, it causes the screen layout to be updated 

immediately to reflect the change. The get( ) method returns the Item at the given index 

without modifying the list at all. The insert( ) method places a new Item at the given index 

within the list, moving the Item at that index and greater indices down by one position. The 

set( ) method, by contrast, replaces the Item at the index supplied as its first argument and 

does not affect any other Item in the Form. Finally, the size( ) method returns the number 

of Items on the Form.  

 

A single Command or Ticker instance can be shared between multiple 

screens simply by adding it to each screen in turn. However, an Item is 

allowed to be on only one Form at any given time. If you try to add the 

same Item to another Form without first removing it from the original, 

an IllegalStateException is thrown.  
 

4.2.6 Item State Changes 

Since Form is subclassed indirectly from Displayable, it is possible to add a Command to a 

Form to allow the user to request that values entered into it be processed. The logic for this 

processing is implemented in the commandAction method of a CommandListener attached to 

the Form, as illustrated in Example 4-2. Sometimes, however, it is necessary to take action as 

soon as the value in an input field is changed. Changes in the state of Items that accept user 

input are notified to an ItemStateListener registered with the Form. ItemStateListener is 

an interface with a single method, which is called when any Item on the Form has a state 

change to report:  

public void itemStateChanged(Item item); 

An ItemStateListener is registered using the following Form method:  

public void setItemStateListener(ItemStateListener l); 

As was the case with CommandListeners, only one ItemStateListener can be associated 

with a Form at any time and calling setItemStateListener( ) removes any listener that 

was previously installed. Calling this method with the argument null removes any existing 

listener.  

The conditions under which the ItemStateListener is notified of a state change are specific 

to each individual type of Item; these conditions are described in the sections that follow. It is 

important to note, however, that only user actions result in the listener's itemStateChanged 

method being called. Changing the state of an Item programmatically does not cause 

notification to the listener.  

http:///


J2ME in a Nutshell 

107 

4.2.7 High-Level API User Interface Components 

In the rest of this section, we take a closer look at each of the Items you can use with the Form 

class, together with the TextBox and List components. TextBox and List are derived from 

Screen, so they are not suitable for use with Forms, but they have Form-based counterparts 

that are sufficiently similar that they are best described together.  

The examples used in this section are all part of a single MIDlet called ItemMIDlet. You can 

run it with the Wireless Toolkit by opening the project called Chapter4 and pressing the Run 

button, then selecting ItemMIDlet. This displays a screen (actually a List) that has an entry 

that runs the example for each of the following sections. To run the example code for these 

sections, simply highlight the appropriate entry in the list and press the SELECT button on the 

emulated phone's keypad, as shown in Figure 4-5.
1

  

4.2.8 StringItems 

StringItem, the simplest of the MIDP user interface components, provides the ability to 

place a string or pair of strings on a Form. Initial values for both strings may be supplied to the 

constructor:  

public StringItem(String label, String text) 

The label part is the label that is inherited by all Items from their base class; its value can be 

retrieved or changed using the Item getLabel( ) and setLabel( ) methods. StringItem 

provides similar methods for its own text attribute:  

public String getText( ) 
public void setText(String text) 

Either or both of the label and text string may be null.  

A technique often used when adding text to a Form is simply to use the variant of the append 

method that accepts a String argument:  

form.append("Name"); 

This code, in fact, amounts to the use of a StringItem with a null label and so could also be 

written like this:  

form.append(new StringItem(null, "Name")); 

It might seem strange to provide a component that displays two text strings, when the same 

effect could apparently be achieved by creating a component that supports only one string and 

the ability to place two of them next to each other. In fact, this would not lead to the same 

result, because the label and text string parts of a StringItem are not equivalent. The 

difference between the label and the text is the same for StringItem as it is for the label and 

content of any Item, namely:  

                                                 
1 A small number of examples in this section produce output on the MIDlet's standard output stream. When using the Wireless Toolkit, this stream 

usually directs its output to the Wireless Toolkit console. However, if you use the PalmOS device emulator, this information is written to a separate 

file instead. To examine the file content, you must stop the emulator. For further details, see Chapter 9. 

http:///


J2ME in a Nutshell 

108 

• The layout management code of the MIDP platform should attempt to display the label 

close to the text and ensure that they are either both visible or both not visible when 

scrolling takes place.
2

  

• The platform may choose to render the label differently from the content to make clear 

the distinction between them.  

As described in Section 4.2.5, the layout policy for StringItems required by the MIDP 

specification results in a horizontal arrangement, unless a line break is forced by the use of 

newline characters within the label or text, or if there is insufficient space to fit the entire 

StringItem in the current line. Additionally, the Sun reference implementations force a line 

break before a StringItem that has a non-null label.  

A typical example in which it would be advantageous to use both the label and text attributes 

of a StringItem is a labeled item in which the content can be updated by the MIDlet but 

must not by the user. Such a StringItem might be used to show the state of a connection to a 

web server:  

StringItem status = new StringItem("Status ", "Not connected"); 
status.setText("Connecting");  // Change the state 

In Example 4-3, you've already seen several examples of the use of StringItem created 

indirectly by appending a String to a Form. ItemMIDlet includes a screen that has a few 

more StringItem examples. The code that creates this Form is shown in Example 4-4.  

Example 4-4. Using StringItem  

Form form = new Form("StringItem"); 
form.append(new StringItem("State ", "OK")); 
form.append(new StringItem(null, "No label\n")); 
form.append(new StringItem(null, "Line\nbreak")); 
form.append(new StringItem("Label", "Text.")); 
form.append(new StringItem("Label2 ", "Text2.")); 

The results of running this example on both the default color phone and on the PalmOS 

device are shown in Figure 4-12. The first StringItem uses both the label and text attributes. 

Notice that the color phone doesn't distinguish between the label and the text in any way, 

whereas the PalmOS MIDP implementation uses a bold font to represent the label, adds a 

colon, and places all the labels in a dedicated area on the left side of the screen. The second 

StringItem contains only the text and is placed immediately after the text of the first 

StringItem, with no line break. Because the text ends with a newline character, however, it 

is followed by a line break.  

Figure 4-12. StringItems on the default phone and PalmOS emulators 

 

                                                 
2 Unfortunately, at the time of writing, the MIDP implementation used in the Wireless Toolkit does not do this. 

http:///


J2ME in a Nutshell 

109 

The third example shows the effect of embedding a newline in the text, which results in a line 

break on the screen. Although it isn't illustrated here, you can also include a newline in the 

label part, and the effect is the same. The final two examples illustrate an important difference 

in the handling of labels between the PalmOS platform and the cell phone version. In the first 

case, the label and text are set up as follows:  

form.append(new StringItem("Label", "Text.")); 

As you can see, the color phone does not interpose any whitespace between the label and text, 

whereas the PalmOS version displays them with a clear gap, owing to its special handling for 

labels. In most cases, you want to clearly separate the label from the text; you can do this by 

adding a space at the end of the label:  

form.append(new StringItem("Label2 ", "Text2.")); 

This produces the desired effect on the color phone and also works on the PalmOS platform, 

which strips out trailing whitespace before appending the colon that marks the end of the 

label, as you can see on the right side of Figure 4-12.  

4.2.9 TextFields and TextBoxes 

TextField and TextBox are two very similar components that have almost the same 

programming interface. The differences between them are as follows:  

• TextBox is derived from Screen and therefore occupies the entire display. TextField 

is an Item that occupies space on a Form. Usually, a TextField appears as a single-

line input field, but some implementations spread its content over extra lines if a single 

line is not sufficient.  

• TextBox does not have a way to report changes in its content to a listener, but 

modifications to a TextField are reported to the ItemStateListener associated with 

the Form on which the TextField is displayed.  

Since the specifics of TextBox have already been covered, the rest of this section focuses on 

the common features of these two components and illustrates them with TextFields.  

4.2.9.1 Construction 

TextField has only one constructor:  

public TextField(String label, String text, int maxSize,  
    int constraints); 

The label and text arguments specify, respectively, the Item label to be placed near the 

component and the string to be placed initially in the TextField; either or both of these 

arguments may be null. The constraints argument can be used to limit the type of data that 

can be entered into the TextField. See Section 4.2.9.3, later in this chapter, for details.  

The maxSize argument determines the maximum number of characters that the TextField 

can hold. The MIDP implementation is allowed to place an upper limit on the allowed values 

of maxSize and may therefore impose a lower limit than the one specified in the constructor. 

http:///


J2ME in a Nutshell 

110 

The actual limit applied to a particular TextField can be obtained by calling the 

getMaxSize( ) method. The maximum size is applied whenever the field content is changed, 

that is:  

• When the initial value is set at construction time 

• When a new value is supplied by calling the setString( ) method  

• When some or all of the field content is modified using the insert or setChars 

methods  

• As the user amends the content of the TextField by adding characters anywhere in 

the string  

In the first three cases, the result of attempting to install a value whose length exceeds the 

capacity of the TextField is an IllegalArgumentException. If the user tries to type more 

characters than the field can hold, the extra characters are ignored, and the device may supply 

audible feedback.  

The capacity of the TextField can be changed by calling the setMaxSize( ) method. If the 

number of characters in the TextField exceeds the new capacity, it is truncated to the 

maximum size.  

4.2.9.2 Field content changes and listener notification 

If the Form that contains the TextField has an ItemStateListener installed, it will be 

notified of changes made by the user to its content. You can get the value held in the 

TextField by calling its getString( ) or getChars( ) methods, which return a String or 

an array of characters, respectively:  

public String getString( )  
public int getChars(char[] chars) 

To use the getChars( ) method, you have to allocate the character array to be filled. The 

return value of this method is the number of characters of the array that were used. If the array 

is too short to hold the content of the TextField, an ArrayIndexOutOfBoundsException is 

thrown. You can avoid this by using the size( ) method to get the number of characters that 

are currently in the TextField:  

char[] chars = new char[textField.size( )]; 
int copied = textField.getChars(chars); 

The following code extract shows how a listener might use getString( ) to retrieve the last 

value that the user entered as a String:  

public void itemStateChanged(Item item) {   
    if (item instanceof TextField) { 
        System.out.println("Text field content: <" + 
                        ((TextField)item).getString( ) + ">"); 
    } 
}  

The point at which the ItemStateListener is called following a change in the content of the 

TextField is implementation-dependent. The MIDP specification requires only that this 

http:///


J2ME in a Nutshell 

111 

should happen no later than when the user moves the input focus away from the TextField or 

activates a command on the Form. The reference implementation provides notification when 

the user completes an editing operation in the TextField; the MIDP for PalmOS version does 

it after any character has been inserted or deleted.  

The TextField (and TextBox) API contains several methods that allow programmatic 

changes to its content.
3
 All of these methods throw an IllegalArgumentException and 

leave the TextField content unchanged if the result of performing the requested operation 

would make the content inconsistent with the constraint, if any, applied to the TextField. 

This means, for example, that an exception would be thrown if an attempt were made to insert 

non-numeric characters into a TextField to which the TextField.NUMERIC constraint has 

been applied. Constraints are described in Section 4.2.9.3.  

The following are the methods that enable programmatic changes to TextField and 

TextBoxes:  

public void delete(int offset, int length)  

Removes length characters from the TextField, starting with the character at 

position offset.  

public void insert(char[ ] chars, int offset, int length, int 
position)  

Inserts the characters from chars[offset] through chars[offset + length - 1] 

into the TextField, starting at the given position. The characters that originally 

occupied offsets position and higher are moved to the right to make room for the 

new characters. An IllegalArgumentException is thrown if this operation would 

make the content of the TextField exceed its maximum size.  

public void insert(String src, int position)  

Inserts the characters that make up the given String into the TextField, starting at 

the given position. The characters that originally occupied offsets position and 

higher are moved to the right to make room for the new characters. An 

IllegalArgumentException is thrown if this operation would make the content of 

the TextField exceed its maximum size.  

public void setChars(char[ ] chars, int offset, int length)  

Replaces the content of the TextField with chars[offset] through chars[offset + 

length - 1] of the given character array. An IllegalArgumentException is thrown 

if this operation would make the content of the TextField exceed its maximum size.  

 
 

                                                 
3 As noted earlier, TextBox does not have any way of notifying application code that its content has changed because it is not an Item and therefore 

cannot be associated with an ItemStateListener. Application code normally retrieves the content of a TextBox (using getString( ) or 

getChars( )) only when prompted to do so by the activation of a Command attached to the TextBox. 

http:///


J2ME in a Nutshell 

112 

public void setString(String src)  

Replaces the content of the TextField with the characters from the given String. An 

IllegalArgumentException is thrown if this operation would make the content of 

the TextField exceed its maximum size.  

Note that programmatic changes are not notified to ItemStateListeners.  

In general, application code that modifies the content of a TextField uses either the 

setString( ) or setChars( ) methods to replace its entire content. Less frequently, it is 

necessary to insert content starting at the location of the TextField's insertion point, which is 

indicated on the screen by a cursor, otherwise known as a caret. You can get the offset of the 

cursor within the TextField using the following method:  

public int getCaretPosition( ); 

The following code could be used to insert three characters starting at the cursor position:  

textField.insert("ABC", textField.getCaretPosition( )); 

4.2.9.3 Constraints 

The constraints argument of the constructor or the setConstraints method can be used to 

limit the characters that the user can type into a TextField. The effect of each constraint may 

be device-dependent. Table 4-3 describes what these constraints do in the MIDP reference 

implementation.  

Table 4-3. TextField Input Constraints 

Constraint Value Effect 

TextField.ANY Allows any characters to be typed into the input field. 

TextField.EMAILADDR 

Limits the user's input to a legal email address. The format of a valid email 

address may vary from device to device, so vendors are expected to implement 

this in a manner appropriate to the network to which their device will be 

connected. In the reference implementation, the constraint has no effect.  

TextField.NUMERIC 

Limits input to integer values. The first character may be a minus sign, and the 

other characters must be digits 0 through 9. On a cell phone, the implementation 

typically forces the keypad into a mode where it assumes that each key press 

represents the number on the face of the key when this constraint is applied.  

TextField.PHONENUMBER 

Specifies that the field should contain a phone number. The format of a valid 

phone number may vary from device to device and network to network. The 

reference implementation provides a default implementation of this constraint 

that is described later in this section.  

TextField.URL 
Although this constraint signifies that the input field should only be allowed to 

hold a valid URL, it has no effect in the reference implementation.  

http:///


J2ME in a Nutshell 

113 

TextField.PASSWORD 

This constraint may be specified in conjunction with TextField.ANY or 

TextField.NUMERIC to convert the TextField into a field intended to 

hold a password, for example:  

TextField.PASSWORD | TextField.ANY 

The implementation usually displays the content of a password field differently 

from that of a plain TextField. Typically, the characters are displayed as 

asterisks for security reasons.  

When input is constrained, the user cannot type any characters that would result in the field 

content becoming inconsistent with the constraint. Calling a method to change the field 

content results in an IllegalArgumentException if the result would not match the 

constraint.  

You can change the constraint associated with a TextField or TextBox at any time by calling 

the setConstraints( ) method:  

public void setConstraints(int constraints); 

When this method is called, the current content of the control is checked to ensure that it is 

consistent with the new constraints; if not, the field is cleared.  

The effect of some of the constraint values can be seen by launching the ItemMIDlet and 

selecting the TextField example. This example contains four TextFields with different 

constraints, as shown in Figure 4-13.  

Figure 4-13. TextFields with various input constraints 

 

The first field, shown at the top on the left side of Figure 4-13, has constraint TextField.ANY, 

which permits any characters to be entered. If you start typing into this field, either by 

clicking with the mouse on the emulator's onscreen keypad or using your PC keyboard, the 

display switches to a full-screen TextBox that you can use to type and edit the value that you 

want, as shown in Figure 4-14. To enter the displayed value into the TextField, press the 

Save soft key, or press Back to abandon editing and leave the field content unchanged.  

Figure 4-14. Full-screen TextBox for entering or editing a value 

 

http:///


J2ME in a Nutshell 

114 

The second TextField has the TextField.PHONENUMBER constraint. In the reference 

implementation, this constraint limits the characters that can be typed to the digits 0 through 9 

and the characters +, *, and #. This constraint also causes the content of the TextField to be 

displayed so that it looks like a telephone number by separating the digits into groups 

separated by space characters. The appropriate grouping depends entirely on the part of the 

world in which the cell phone or PDA is being used, since different conventions apply in 

different countries. The reference implementation uses the following rules:  

• If the first digit is zero, the number is assumed to be for international dialing and is 

represented in the form "0xx xxx xxxx . . . ".  

• If the first digit is 1, the number is formatted as "1 xxx xxx xxxx . . . ".  

• In all other cases, the number is displayed as "xxx xxx xxx . . . ".  

Note that the spaces used to separate the number groups are purely visual and do not appear in 

the TextField content. For example, if the TextField displayed "044 171 1234567", the 

result of calling the getString( ) method would be "0441711234567". Similarly, an attempt 

to store a value containing spaces would result in an IllegalArgumentException. If you run 

this example using the Wireless Toolkit, you can observe the results of typing different values 

into this field or any of the other fields by looking at the Wireless Toolkit console, to which a 

message is written whenever any of the fields calls the ItemStateListener registered with 

this screen.  

The third field has the constraint TextField.NUMERIC applied to it. As you can verify for 

yourself, this field will allow you to type only positive and negative integer values and zero.  

The final field is set up with the constraint TextField.PASSWORD|TextField.NUMERIC, 

which limits the user to numeric values but also displays each character that is typed as an 

asterisk, as shown on the right side of Figure 4-13. On PalmOS, a field that includes the 

constraint TextField.PASSWORD is handled slightly differently. When the field is empty, its 

content is shown as "-Prompt-", as shown on the left side of Figure 4-15. When an attempt is 

made to enter a value, a separate window opens up to allow you to type the required 

password. As you can see from the screen shot in Figure 4-15, this window displays the actual 

password value instead of disguising it. Once a password has been entered, the TextField 

displays "-Assigned-", as shown at the right side of the figure.  

Figure 4-15. Password fields on the PalmOS platform 

 

4.2.10 DateFields 

DateField is a component that allows you to display and edit the value of an object of type 

Date. The DateField class has two constructors:  

http:///


J2ME in a Nutshell 

115 

public DateField(String label, int mode)  
public DateField(String label, int mode, TimeZone timeZone)  

The date and time value held in a Date object is always relative to midnight UTC on January 

1, 1970. When displaying the time, a correction needs to be made for the time zone in which 

the user is working. On the east coast of the United States, for example, a Date value that 

corresponds to 9:00 P.M. on January 31, 2002 (UTC), would need to be displayed as 4:00 

P.M., January 31, 2002, and in Tokyo, it would need to be shown as 6:00 A.M., February 1, 

2002. You can use the timeZone argument to supply a TimeZone object that can be used to 

determine how to display the date and time for a specific location in the world. If this 

argument is not supplied (or is null), the device's default TimeZone is used, which should 

properly display local time. Therefore, it should be necessary to supply a TimeZone value 

only when the date and time for a different time zone are to be displayed.  

 

The DateField component works with any valid TimeZone object and 

therefore should be able to properly display the date and time anywhere 

in the world. However, the CLDC specification requires only that the 

time zone for GMT be supported. Practical considerations dictate that a 

device also support the time zone in which it normally operates, but 

there is no guarantee that other time zones will be available.  
 

The mode argument determines what the DateField will display and takes one of the 

following values:  

DateField.TIME  

The DateField should display only the time. 

DateField.DATE  

The DateField should display only the date. 

DateField.DATE_TIME  

The DateField should display both the date and time.  

An example of a DateField in each of these three modes can be seen by running the 

ItemMIDlet and selecting the DateField screen. The result is shown in Figure 4-16. The left 

side of this figure shows DateFields configured with mode DateField.TIME at the top and 

DateField.DATE at the bottom, while the bottom DateField on the right side has mode 

DateField.DATE_TIME.  

 

 

 

 

http:///


J2ME in a Nutshell 

116 

Figure 4-16. DateFields on the default color phone 

 

DateField allows the user to edit the date and/or time that it displays. In the reference 

implementation, if you start pressing keys or press the SELECT button on the emulator 

keypad while a DateField has the input focus, a full-screen editor appears. There are separate 

editors for dates and times, as shown in Figure 4-17.  

Figure 4-17. DateField date and time editing helper components on the default color phone 
emulator 

 

Note that DateField is derived from Item and not from TextField, so it is not possible to 

gain access to the characters displayed on the screen as would be the case with TextField.  

Like all Items, when the user changes the date and/or time displayed by a DateField, the 

change is reported to the ItemStateListener, if any, registered with the Form that the 

DateField is displayed on. The value of the Date object associated with the DateField can 

be obtained or changed using the following methods:  

public void setDate(Date date); 
public Date getDate( ); 

When the setDate method is called, the DateField does not store a reference to the Date 

that is passed to it. Instead, it copies the value so that changes made within the DateField 

component are not reflected in the Date object supplied. Similarly, the value returned by 

getDate( ) is a newly created object that reflects the date and/or time in the DateField at 

the time of the method call.  

The setDate method may be called with argument null. In this case, the DateField is 

considered to be in an uninitialized state and does not display a valid value. The DateField is 

also in this state following construction and until setDate( ) is called with a valid Date. The 

getDate method returns null when the DateField is in this state, and, in the reference 

implementation, the time part displays the string <time> while the date part displays <date>.  

DateField has a very simple programming interface, but there are some traps waiting for the 

unwary. The nature of these traps depends on the mode in which the DateField is operating.  

 

http:///


J2ME in a Nutshell 

117 

4.2.10.1 DateField in DATE_TIME mode 

This is the simplest case to handle. The only possible problem here arises from the fact that 

the DateField does not preserve the seconds and milliseconds value of the Date object that is 

passed to it. As a consequence of this, for example, if the setDate( ) method is called with a 

Date object for 10:04:03 P.M. on January 31, 2002, and no changes are made by the user, the 

value returned by the getDate( ) method corresponds to 10:04 P.M. on the same date.  

4.2.10.2 DateField in DATE mode 

In this mode, the DateField works only with the year, month, and date parts of the time and 

does not preserve the time elements. Therefore, the value returned by getDate( ) in this 

mode reports zero values for the time.  

4.2.10.3 DateField in TIME mode 

TIME mode causes the greatest inconvenience. According to the specification, in this mode, 

the Date passed to the setDate( ) method must have the date parts initialized to the "epoch" 

date, January 1, 1970, and the Date returned by getDate( ) contains this same date. The 

problem with this is that code like the following does not necessarily work as you might want 

it to:  

Date now = new Date( );  // Current date and time 
dateField.setDate(now);  // We want to display only the time 

Ideally, the setDate method would ignore the date and display only the time. Unfortunately, 

the specification excludes this possibility. For predictable results, you have to pass in a Date 

value with the date parts set to those for the epoch. In the reference inplementation, if you fail 

to do this, the DateField considers its content to be invalid and puts itself into the 

uninitialized state, as if setDate(null) had been called. The following code extract can be 

used to create a Date object that contains the current time and the year, month, and day values 

for the epoch, without assuming what the epoch date is:  

// Get Calendar for the epoch date and time 
Calendar baseCal = Calendar.getInstance( ); 
Date baseDate = new Date(0); 
baseCal.setTime(baseDate); 
 
// Get Calendar for now and use the epoch 
// values to reset the date to the epoch. 
Calendar cal = Calendar.getInstance( ); 
Date now = new Date( );   
cal.setTime(now); 
 
// Set the year, month and day in month from the epoch 
cal.set(Calendar.YEAR, baseCal.get(Calendar.YEAR)); 
cal.set(Calendar.MONTH, baseCal.get(Calendar.MONTH)); 
cal.set(Calendar.DATE, baseCal.get(Calendar.DATE)); 

 

 

 

http:///


J2ME in a Nutshell 

118 

4.2.10.4 Changing the DateField mode 

Under most circumstances, the DateField mode would not be changed following 

construction. If required, however, the mode can be changed using the setInputMode( ) 

method:  

public void setInputMode(int mode); 

where the mode argument is DateField.DATE, DateField.TIME, or DateField.DATE_TIME. 

Changing the mode affects the visual appearance of the component and may also affect the 

Date value that it contains, as follows:  

Changing to DateField.DATE mode  

The time part is reset to 00:00 A.M. on the date contained in the DateField.  

Changing to DateField.TIME mode  

The date part is reset to the epoch date, January 1, 1970.  

4.2.11 ImageItems 

ImageItem lets you place an image on a Form with some limited control over how it is placed 

relative to other Items. The ImageItem class has a single constructor:  

public ImageItem(String label, Image image, int layout, String altText) 

Adding an ImageItem to a Form causes the optional label and the image to be placed subject 

to the constraints specified by the layout argument. The device is free to ignore the layout 

argument and apply its own layout rules. It may also use the text supplied by the altText 

argument in place of the image when, in the words of the MIDP specification, "the image 

exceeds the capability of the device to display it."  

The image is supplied in the form of an Image object, which will be described in detail when 

we discuss the low-level API in Chapter 5. There are several ways to create an Image, 

including loading data over a network connection, using graphics primitives to compose the 

Image from lines, points, curves and solid shapes, and loading encoded data from a file. For 

the purposes of illustration, we will use the last of these methods in this chapter because it is 

easy to demonstrate and creates an immutable image, which is a requirement for ImageItem.4  

To load an image from a file, use the following static method of the Image class:  

public static Image createImage(String name) throws IOException 

name is a resource name that corresponds to the location of the file in the MIDlet suite's JAR 

file. The name parameter is used as the argument to the getResourceAsStream( ) method 

that was described in Section 4.2.3, earlier in this chapter. Although 

                                                 
4 An immutable image is one that cannot be changed in situ. Some methods of building an Image produce an immutable Image, while others result 

in one that is mutable. As you'll see in Chapter 5, an immutable Image can always be obtained from a mutable one, so any Image you create can be 

used in conjunction with an ImageItem, either directly or after being made immutable. 

http:///


J2ME in a Nutshell 

119 

getResourceAsStream( ) can be given either an absolute or relative resource name, 

the name parameter should always be absolute in this case, because a relative name would not 

be interpreted as being relative to your MIDlet's class (and, in fact, the class relative to which 

a relative resource name would be interpreted is implementation-dependent). The indicated 

file must contain an image encoded in Portable Network Graphics (PNG) format, since this is 

the only graphics file format that MIDP devices are required to support. Most of 

the commonly used utilities that allow you to design graphics or manipulate images provide 

the option to save in PNG format.  

The layout parameter is a bitmask made up from legal combinations of the following values:  

ImageItem.LAYOUT_DEFAULT  

The image should be placed according to the platform's default layout policy.  

ImageItem.LAYOUT_LEFT  

The image should be left-justified in the space available to it. 

ImageItem.LAYOUT_RIGHT  

The image should be right-justified in the space available to it. 

ImageItem.LAYOUT_CENTER  

The image should be centered in the space available to it. 

ImageItem.LAYOUT_NEWLINE_BEFORE  

A line break should occur before the image is drawn. 

ImageItem.LAYOUT_NEWLINE_AFTER  

A line break should occur after the image is drawn. 

When LAYOUT_DEFAULT is used, the device places the image according to implementation-

dependent rules. In the reference implementation, this value causes the ImageItem to be 

handled in the same way as StringItem -- that is, it is placed on the same horizontal line as 

the Item that precedes it, providing that both of the following conditions are met:  

• The ImageItem does not contain a nonempty label, because this always forces a line 

break.  

• The space remaining in the current line is not less than the width of the image.  

If these conditions are not met, a line break occurs before the optional label and image are 

drawn. The remaining layout constraints may be mixed together subject to the following 

rules:  

• LAYOUT_LEFT, LAYOUT_RIGHT, and LAYOUT_CENTER are mutually exclusive. They 

determine how the image is placed within the remaining space on the current line.  

http:///


J2ME in a Nutshell 

120 

• LAYOUT_NEWLINE_BEFORE and LAYOUT_NEWLINE_AFTER can be used separately or 

together; they may also be used in conjunction with either LAYOUT_DEFAULT or one of 

LAYOUT_LEFT, LAYOUT_RIGHT, or LAYOUT_CENTER. Because LAYOUT_DEFAULT has 

value 0, a layout value of LAYOUT_NEWLINE_BEFORE is equivalent to 

LAYOUT_NEWLINE_BEFORE | LAYOUT_DEFAULT.  

As a shorthand, you can add an image to a Form using the following Form method:  

public void append(Image image); 

This is equivalent to creating and appending an ImageItem with layout LAYOUT_DEFAULT and 

no label, that is:  

form.append(new ImageItem(null, image, ImageItem.LAYOUT_DEFAULT, null)); 

You can see some examples of ImageItems by selecting the ImageItem entry from the list 

presented by ItemMIDlet. The result of running this example on the default color phone is 

shown in Figure 4-18 and on the PalmOS platform in Figure 4-19.  

Figure 4-18. ImageItems as shown by the default color phone emulator 

 

Figure 4-19. ImageItems displayed by MIDP for PalmOS 

 

The top four lines all contain ImageItems that have both an image and a label. These 

components were created as follows:  

Image red = Image.createImage("/ora/ch4/resources/red.png"); 
Image blue = Image.createImage("/ora/ch4/resources/blue.png"); 
 
// ImageItems with labels 
form.append(new ImageItem("Center", red, ImageItem.LAYOUT_CENTER, null)); 
form.append(new ImageItem("Left", red, ImageItem.LAYOUT_LEFT, null)); 
form.append(new ImageItem("Right", red, ImageItem.LAYOUT_RIGHT, null)); 
form.append(new ImageItem("Default", red, ImageItem.LAYOUT_DEFAULT, null)); 

http:///


J2ME in a Nutshell 

121 

The layout arguments used here do not include LAYOUT_NEWLINE_BEFORE, so the images 

directly follow their labels. However, each ImageItem is placed on a line of its own even 

though LAYOUT_NEWLINE_AFTER is not specified, because each has a label, which forces a line 

break.  

If you compare Figure 4-18 and Figure 4-19, you'll notice that the image placements on the 

default color phone do not correspond to those requested by the layout argument: they all 

appear to be left-aligned, whereas the PalmOS implementation places them properly. This is 

not inconsistent with the MIDP specification, which allows a device to treat the layout 

parameter as a hint. It serves to illustrate that you cannot rely on having images placed exactly 

where you want them.  

The last five ImageItems differ from the first four in two respects:  

• They do not have labels. 

• Three of them have layout values that include both LAYOUT_NEWLINE_BEFORE and 

LAYOUT_NEWLINE_AFTER.  

The code used to add these components is as follows: 

form.append(new ImageItem(null, blue, ageItem.LAYOUT_NEWLINE_BEFORE |  
    ImageItem.LAYOUT_CENTER |ImageItem.LAYOUT_NEWLINE_AFTER, null)); 
form.append(new ImageItem(null, blue, mageItem.LAYOUT_NEWLINE_BEFORE | 
    ImageItem.LAYOUT_DEFAULT | ImageItem.LAYOUT_NEWLINE_AFTER, null)); 
form.append(new ImageItem(null, blue, ImageItem.LAYOUT_NEWLINE_BEFORE | 
    ImageItem.LAYOUT_RIGHT | ImageItem.LAYOUT_NEWLINE_AFTER, null)); 
form.append(new ImageItem(null, blue, ImageItem.LAYOUT_DEFAULT, null));  
form.append(new ImageItem(null, blue, ImageItem.LAYOUT_DEFAULT, null));  

Because these ImageItems do not include labels, they would normally be laid out on a single 

line with no line breaks. The LAYOUT_NEWLINE_BEFORE and LAYOUT_NEWLINE_AFTER values 

cause each image to be preceded and followed by a line break. Note that only a single line 

break is used between each pair of images, even though it might appear that two newlines 

have been requested (i.e., one after each image and one before the image that follows it). The 

last two ImageItems are created with the layout argument set to LAYOUT_DEFAULT only. As a 

result, no line breaks are added, and, as you can see, they appear on the same line. The line 

break before the first ImageItem is due to the LAYOUT_NEWLINE_AFTER part of the layout 

attribute of the ImageItem on the line above.  

Notice that the default color phone has obeyed the positioning constraints when placing these 

ImageItems, as you can see from the right side of Figure 4-18. At the time of writing, the 

MIDP reference implementation honors the LAYOUT_RIGHT and LAYOUT_CENTER constraints 

only if the layout attribute also includes both LAYOUT_NEWLINE_BEFORE and 

LAYOUT_NEWLINE_AFTER.  

4.2.12 Gauges 

A Gauge provides a way to represent a single selected value from a contiguous range of 

integers starting from 0 and ranging up to an application-supplied maximum. The Gauge class 

has a single constructor:  

http:///


J2ME in a Nutshell 

122 

public Gauge(String label, boolean interactive, int maxValue,  
    int initialValue); 

The maxValue and initialValue arguments specify, respectively, the largest value of the 

range covered by the gauge and the value that will be displayed initially. The minimum value 

is always implicitly zero, and the current value must always be positive and not greater than 

the maximum.  

The interactive argument determines whether the user can adjust the value in the gauge. To 

use a gauge as a slider, you should set this argument to true. Adjustments made by the user 

are reported to the ItemStateListener attached to the Form on which the gauge is displayed. 

If interactive is false, the value of the gauge can be adjusted only under application control. 

In this mode, the gauge acts more like a progress bar.  

The current value of a gauge can be obtained or changed using the following methods:  

public int getValue( ); 
public void setValue(int value); 

The value passed to the setValue( ) method must be nonnegative and less than or equal to 

the maximum value. The maximum value can itself be manipulated using similar methods:  

public int getMaxValue( ); 
public void setMaxValue(int value); 

The value passed to setMaxValue( ) must be greater than 0. If the new maximum value is 

less than the current value, the current value is reduced to the new maximum. Note that, as 

with all programmatic changes, this change in the current value is not reported to 

ItemStateListeners.  

There is also a method that allows you to determine whether a gauge is interactive:  

public boolean isInteractive( ); 

However, you cannot change this attribute: a gauge is either always interactive or always not 

interactive.  

If you run the ItemMIDlet and select the Gauge example, you'll see a screen displaying three 

gauges, all of which have a maximum value of 100, as shown in Figure 4-20. The code used 

to create this Form is as follows:  

Form form = new Form("Gauge"); 
form.append(new Gauge(null, true, 100, 50)); 
form.append(new Gauge(null, true, 100, 25)); 
form.append(new Gauge(null, false, 100, 50)); 

 

 

 

http:///


J2ME in a Nutshell 

123 

Figure 4-20. Gauges as shown by the default color phone 

 

The top two gauges are interactive, and the bottom one is not. Notice first that the Gauge that 

has the focus is distinguished from the the others in that its bars are fully drawn, while those 

of the other two are not. Also, the two interactive gauges have bars that increase in size from 

left to right, but the noninteractive one has bars of constant height.  

These gauges represent their complete range using 10 bars, so that each bar corresponds to a 

range of 10 values. For a larger value range, each bar would correspond to a wider range of 

values. On the default color phone, the number of filled bars gives a guide to the current value 

of the gauge, but the user can see only an approximation of the real value, because each bar 

represents more than one possible value (a range of 10 possible values, in this case). On other 

devices, the gauge might use a different total number of bars to represent the same total value 

range, or it might not use bars at all. On the PalmOS platform, for example, both interactive 

and noninteractive gauges are represented quite differently from those on the default color 

phone, as shown in Figure 4-21.  

Figure 4-21. Gauges on the PalmOS platform 

 

On the default color phone, you can use the up and down arrow keys to move the input focus 

from gauge to gauge. When an interactive gauge has the focus, you can use the left and right 

arrow keys to adjust the current value up or down; horizontal arrows are drawn on the screen 

as a visual cue, as you can see at the bottom of the left screenshot in Figure 4-20. When the 

gauge is at its maximum value, the right-pointing arrow is not shown, and the right arrow key 

has no effect; the left arrow and key show similar behavior when the gauge is at its minimum 

value. No visual cues are shown when the input focus is assigned to a noninteractive gauge, as 

is the case in the right screen shot in Figure 4-20, because the user cannot change the value of 

this gauge.  

If you change the value of either of the top two gauges with the arrow keys, you'll notice that 

a message is written to the Wireless Toolkit console window to reflect every value change. 

This value is obtained by calling the Gauge.getValue( ) method from the Form's 

itemStateChanged( ) method:  

 
 
 
 

http:///


J2ME in a Nutshell 

124 

public void itemStateChanged(Item item) {   
    if (item instanceof Gauge) { 
        int value = ((Gauge)item).getValue( ); 
        System.out.println("Gauge value set to " + value); 
    } else { 
        // Other code not shown here 
    } 
}  

You have to click the right or left arrow key 10 times to affect the visual representation of the 

gauge, but the ItemStateListener is notified of each individual change.  

An interactive gauge generally is used to allow the user to select one of a range of values, and 

the MIDlet usually interacts with it only when the user changes the value or when it is 

necessary to set a new value programmatically. By contrast, when the gauge is used as a 

progress bar, the MIDlet updates it regularly to reflect the state of an operation that it is 

performing.  

4.2.13 ChoiceGroups and Lists 

ChoiceGroup and List are two similar components that present the user with a set of choices 

and allow one or more them to be selected. The relationship between them is similar to that 

between TextField and TextBox: ChoiceGroup is an Item to be used as part of a Form, 

while List is derived from Screen and is therefore a freestanding component that occupies 

the entire screen. Most of the programming interface is common and is described by an 

interface called Choice. For simplicity, we'll cover the common features by examining 

ChoiceGroup and then look at how List differs from it.  

4.2.13.1 Creating a ChoiceGroup 

There are two types of ChoiceGroup, distinguished by the number of items within the group 

that can be selected at the same time. The choice between these two types is made when the 

ChoiceGroup is created with one of its two constructors:  

public ChoiceGroup(String label, int choiceType); 
public ChoiceGroup(String label, int choiceType, String[] strings, 
    Image[] images); 

The choiceGroup parameter takes one of the following values, defined in the interface 

Choice, which ChoiceGroup implements:  

Choice.EXCLUSIVE  

Creates an exclusive ChoiceGroup in which only one item can be selected and which, 

therefore, acts like a collection of radio buttons  

Choice.MULTIPLE  

Creates a multiple-selection ChoiceGroup, which is like a set of check boxes, in which 

any number of items can be selected.  

http:///


J2ME in a Nutshell 

125 

You can see examples of both types of ChoiceGroup by running the ItemMIDlet and 

choosing the ChoiceGroup entry. The result of running this on the default color phone is 

shown in Figure 4-22, with an EXCLUSIVE ChoiceGroup on the left and a MULTIPLE 

ChoiceGroup on the right.  

Figure 4-22. ChoiceGroups on the default color phone 

 

There are two ways to initialize a ChoiceGroup: the selections can be added using the second 

of the constructors shown above, or they can be added following construction. The left 

ChoiceGroup in Figure 4-22 was initialized at construction time:  

Image red = Image.createImage("/ora/ch4/resources/red.png"); 
Image green = Image.createImage("/ora/ch4/resources/green.png"); 
Image blue = Image.createImage("/ora/ch4/resources/blue.png"); 
 
// Exclusive choice group 
String[] strings = new String[] { "Red", "Green", "Blue" }; 
Image[] images = new Image[] { red, green, blue }; 
ChoiceGroup exGroup = new ChoiceGroup("Choose one",  
    ChoiceGroup.EXCLUSIVE, strings, images); 

Each element of a ChoiceGroup consists of a string and an optional Image that the device 

may display near the string, although it is not obliged to display the Image at all. When using 

the constructor to initialize a ChoiceGroup, the following rules must be followed:  

• The strings argument must not be null and no element of the strings array can be 

null. This restriction implies that image-only entries are not supported.  

• The images argument may be null if images are not required.  

• If the images argument is not null, it must have the same number of elements as the 

strings array. The image at index N of the images array corresponds to the string at 

element N of the strings array. Images must be immutable. Any element in the 

images array may be null if an image is not required for that entry of the 

ChoiceGroup.  

The device is responsible for rendering the ChoiceGroup in such a way as to visually 

distinguish an EXCLUSIVE ChoiceGroup from a MULTIPLE one. As shown in Figure 4-22, the 

default color phone achieves this by following the common convention of using a circle to 

represent a radio button in the EXCLUSIVE group and a square for a check box in the MULTIPLE 

group. This is not the only way to achieve this differentiation, however, as you can see in 

Figure 4-23, later in this chapter, which shows the same ChoiceGroups as those in     

Figure 4-22 as they appear on the PalmOS platform. Note that the EXCLUSIVE ChoiceGroup is 

represented in the form of a popup menu, which shows only the selected item when the menu 

is not visible. This figure also illustrates that a platform is not obliged to use Images even if 

they are supplied.  

http:///


J2ME in a Nutshell 

126 

An alternative way to initialize a ChoiceGroup is to add entries after construction. This is 

how the multiple-choice group shown on the right side of Figure 4-22 was created:  

ChoiceGroup multiGroup = new ChoiceGroup("Choose any",  
    ChoiceGroup.MULTIPLE); 
multiGroup.append("Use SSL", null); 
multiGroup.append("Reconnect on failure", null); 
multiGroup.append("Enable tracing", null); 

The append( ) method supplies both the string and the optional image, in that order:  

public int append(String string, Image image); 

This method requires that the string argument is not null. The image argument may be 

null if no image is required; if it is not null, the Image that it refers to must be immutable. 

The value returned by this method is the index of the entry created within the ChoiceGroup, 

so the first call in the code example would return 0, the second would return 1, and so on. The 

append( ) method is one of several methods from the Choice interface that can be used to 

change the content of the ChoiceGroup at any time. The other methods are described in 

Section 4.2.13.4, a little later in the chapter.  

4.2.13.2 Handling selection 

When a ChoiceGroup has the input focus, the user can navigate from item to item within it 

with the up and down arrow keys (or their equivalents) on the phone keypad. These internal 

navigation operations are not visible to application code. To change the selected state of an 

entry, the user must press the device's SELECT button. The location of the SELECT button on 

the default color phone is shown in Figure 4-5. The effect that this has depends on the 

ChoiceGroup type:  

MULTIPLE ChoiceGroup  

Pressing the SELECT button when an element that is not currently selected has the 

focus results in that element being selected, but it does not affect the state of any other 

item. Pressing the SELECT button for an item that is already selected has the effect of 

deselecting it.  

EXCLUSIVE ChoiceGroup:  

Because only one item in an exclusive group may be selected at any time, selecting an 

element clears the previous selection. Attempting to select an element that is already 

selected has no effect. (It does not deselect the entry; this would result in no element 

being selected, which is not allowed.)  

Changes in the selection state of an element within a ChoiceGroup are reported to the 

ItemStateListener of the Form on which the ChoiceGroup is displayed. In the case of a 

multiple-selection group, notification occurs whenever an element is selected or deselected. 

For an exclusive group, selecting one element implicitly deselects another element, but only 

one notification takes place.  

http:///


J2ME in a Nutshell 

127 

Handling state changes using an ItemStateListener is appropriate for applications where an 

immediate response is required, perhaps to update some other part of the user interface to 

reflect the user's selection. On the other hand, the ChoiceGroup might be part of a larger input 

form whose contents will be processed as a single unit when all fields have been filled in. In 

this case, you add a Command (typically Command.OK) to the Form and implement the logic of 

the Form in its commandAction( ) method. Whichever approach you take, you need to be 

able to find out which elements of the ChoiceGroup are selected. ChoiceGroup has three 

methods that can be used to get the current selection state:  

public boolean isSelected(int index); 
public int getSelectedIndex( ); 
public int getSelectedFlags(boolean[] flags);  

The isSelected( ) method returns true if the element with the given index is selected, 

false if it is not. This method is most often used with multiple-selection ChoiceGroups 

where each check box represents a different program action that is likely to be independent of 

the others. Typical code for this case might look like this:  

public static final int USE_SSL = 0; 
public static final int RECONNECT_ON_FAILURE = 1; 
public static final int TRACING_ENABLED = 2; 
.... 
do { 
    if (multiGroup.isSelected(USE_SSL)) { 
        // Connect using SSL 
    } else { 
        // Connect using vanilla sockets 
    } 
    if (failed && multiGroup.isSelected(TRACING_ENABLED)) { 
        // Log failure 
    } 
} while (failed && multiGroup.isSelected(RECONNECT_ON_FAILURE)); 

In the case of an EXCLUSIVE ChoiceGroup, since only one element can be selected, the 

getSelectedIndex( ) method can be used to determine its index:  

public static final int RED = 0; 
public static final int GREEN = 1; 
public static final int BLUE = 2; 
.... 
int index = exGroup.getSelectedIndex( ); 
if (index == RED) { 
    // Act on red selection 
}  

This method always returns -1 if it is called for a multiple-choice ChoiceGroup because there 

could be more than one selected element. It also returns -1 if the ChoiceGroup has no 

elements at all (which is unlikely in practice).  

If you need to get the selection state of every element in the ChoiceGroup, the 

getSelectedFlags( ) method should be used. This method requires an array of booleans 

that has at least as many elements as there are items in the ChoiceGroup; it sets each entry in 

the array to true or false depending on whether the corresponding entry is selected. The 

return value is the number of items that are selected. Before invoking this method, you need 

http:///


J2ME in a Nutshell 

128 

to allocate a boolean array of the appropriate size. If the number of elements in the 

ChoiceGroup is not constant, you can use the size( ) method to find out how many there 

are:  

boolean[] flags = new boolean[multiGroup.size( )]; 
int count = multiGroup.getSelectedFlags(flags); 
do { 
    if (flags[USE_SSL]) { 
            // Connect using SSL 
        } else { 
            // Connect using vanilla sockets 
        } 
    if (failed && flags[TRACING_ENABLED]) { 
        // Log failure 
    } 
} while (failed && flags[RECONNECT_ON_FAILURE]); 

This technique works for both types of ChoiceGroup. 

Finally, to get the value of an element within the ChoiceGroup, use the getString( ) 

method:  

public String getString(int index); 

The following code extract returns either "Red", "Green", or "Blue":  

String color = exGroup.getString(exGroup.getSelectedIndex( )); 

The code that handles selection changes for the ChoiceGroups used in the ItemMIDlet is 

shown in Example 4-5.  

Example 4-5. Handling Selection Changes in a ChoiceGroup or List Component  

// Handles the selection for a Choice  
private void handleChoiceSelection(Choice choice) { 
    int count = choice.size( ); 
    boolean[] states = new boolean[count]; 
    int selCount = choice.getSelectedFlags(states); 
    if (selCount > 0) { 
        System.out.println("Selected items:"); 
        for (int i = 0; i < count; i++) { 
            if (states[i]) { 
                System.out.println("\t" + choice.getString(i)); 
            } 
        } 
    } else { 
        System.out.println("No selected items."); 
    } 
    int selectedIndex = choice.getSelectedIndex( ); 
    System.out.println("Selected index is " + selectedIndex);   
} 

This method, which is called from the ItemStateListener attached to the Form in which the 

ChoiceGroups are contained, is given an argument of type Choice instead of ChoiceGroup. 

When it is invoked, however, the calling code passes a reference to the ChoiceGroup. This is 

acceptable, because ChoiceGroup implements the Choice interface. The benefit of requiring 

http:///


J2ME in a Nutshell 

129 

an argument of type Choice instead of ChoiceGroup is that this same code can also be used to 

handle selection changes for the List component, which also implements Choice.  

The aim of this code is simply to demonstrate a couple of ways of handling selection changes. 

The first part of this code uses the getSelectedFlags( ) method to get an array of 

booleans that shows which elements are selected. The code then loops over the returned 

array, gets the strings corresponding to selected entries, and prints them. The second part of 

the method uses the getSelectedIndex( ) method to access directly the index of the 

selected item, which, as noted above, returns a meaningful result only for an EXCLUSIVE 

ChoiceGroup. Selecting the Green item in the ChoiceGroup example and pressing the 

SELECT button results in the following output in the Wireless Toolkit console:  

Selected items: 
        Green 
Selected index is 1 

Because this is an EXCLUSIVE ChoiceGroup, only one item can ever be selected, so the 

getSelectedIndex( ) method is able to return its index. Selecting Use SSL in the multiple-

choice ChoiceGroup gives this result:  

Selected items: 
        Use SSL 
Selected index is -1 

Here, getSelectedIndex( ) has returned -1 because the type is MULTIPLE. Selecting another 

entry in the same ChoiceGroup results in the following:  

Selected items: 
        Use SSL 
        Enable tracing 
Selected index is -1 

As you can see, the getSelectedFlags( ) method returns all the selected items.  

4.2.13.3 Setting and changing the selection 

The selection state of the elements within a ChoiceGroup can be changed programmatically 

using the following methods:  

public void setSelectedIndex(int index, boolean selected); 
public void setSelectedFlags(boolean[] flags); 

The effect of the setSelectedIndex( ) method depends on the ChoiceGroup type. In the 

multiple-choice case, this method selects or deselects the element at the given index, 

depending on the value of the selected argument. In an exclusive ChoiceGroup, however, 

this method has an effect only if the selected argument has value true. In this case, it 

selects the element at index and deselects the element that was previously selected. If 

selected is false, the call is ignored. This happens because an exclusive ChoiceGroup must 

always have one selected element, so it is not possible simply to deselect the element that is 

currently selected without selecting another element at the same time.  

http:///


J2ME in a Nutshell 

130 

You can set the selected state of all the elements in a ChoiceGroup by calling the 

setSelectedFlags( ) method, passing it an array of booleans containing true for those 

elements that are to be selected and false for those that are not. The boolean array must 

contain an entry for each element in the ChoiceGroup:  

public boolean[] initialStates = new boolean[3]; 
initialStates[RECONNECT_ON_FAILURE] = true;  // Select just this element 
multiGroup.setSelectedFlags(initialStates); 

In the multiple-choice case, any number of entries in the array can be true. Since exclusive 

ChoiceGroups can have only one element selected, in this case the boolean array must have 

exactly one entry with value true. If this is not the case, the following selection rules apply:  

• If the array has no entries set to true, the first entry in the ChoiceGroup is selected.  

• If the array has more than one entry set to true, the element in the ChoiceGroup 

corresponding to the first true entry is selected.  

Note that changing the selection using these methods does not result in notification to the 

Form's ItemStateListener.  

4.2.13.4 Changing the content of a ChoiceGroup 

The content of a ChoiceGroup can be changed at any time using the following methods:  

public int append(String string, Image image); 
public void insert(int index, String string, Image image); 
public void set(int index, String string, Image image); 
public void delete(int index); 

The append( ) method, which has already been discussed, adds a new element to the end of 

the ChoiceGroup. The insert( ) method is similar, except that it places the new entry at the 

given index, moving the element at that index and all higher indexes down to make room for 

the new one. This method can also be used to add an element at the end of the ChoiceGroup 

by supplying the size of the ChoiceGroup as the insertion index:  

multiGroup.insert(multiGroup.size( ), "New Entry", null); 

Insertion indexes greater than size( ) are invalid and cause an 

IndexOutOfBoundsException to be thrown.  

The set( ) method replaces the content of an existing element with new values. Both the 

string and image parts of the element are changed: it is not possible to change only one of 

these attributes by supplying null for the other. For all of these methods, the image argument 

may be null if no image is required, but the string argument must not be null. If an image 

is supplied, it must be immutable.  

Finally, an element can be removed from the ChoiceGroup using the delete( ) method:  

public void delete(int index); 

http:///


J2ME in a Nutshell 

131 

Changing the content of a ChoiceGroup may have an effect on its selection state. The rules 

that apply are as follows:  

• Adding an item using the append( ) method has no effect on the selection. The only 

exception to this is an EXCLUSIVE ChoiceGroup that was previously empty. In this 

case, the newly added element is selected.  

• Inserting an element using the insert( ) method preserves the selected state of each 

existing item in the list, but, of course, the indexes of the selected items may change. 

As an example of this, if elements 2 and 3 are selected and a new element is inserted at 

index 2, the selected item indexes change to 3 and 4. As a special case, as with the 

append( ) method, if an EXCLUSIVE ChoiceGroup was previously empty, the new 

element is selected.  

• Replacing an item using the set( ) method gives the new item the same selected state 

as the item that it replaced.  

Deleting an item has no effect on the selection state of other items, except when the selected 

element in an EXCLUSIVE ChoiceGroup is deleted. In this case, if the deleted item is not at the 

end of the list, the item that replaces it is selected (that is, the selected index remains the 

same). If the selected item is the last item, then the element that becomes the last item is 

selected instead.  

4.2.13.5 The List component 

List is a full-screen version of ChoiceGroup that shares most of its programming interface. 

The common functionality is grouped into an interface called Choice, which has the 

following methods:  

public int append(String string, Image image); 
public void delete(int index); 
public Image getImage(int index); 
public int getSelectedFlags(boolean[] flags); 
public int getSelectedIndex( ); 
public String getString(int index); 
public void insert(int index, String string, Image image); 
public boolean isSelected(int index); 
public void set(int index, String string, Image image); 
public void setSelectedFlags(boolean[] flags); 
public void setSelectedIndex(int index, boolean selected); 
public int size( ); 

List has two constructors that mirror those of ChoiceGroup and work in exactly the same 

way:  

public List(String title, int type); 
public List(String title, int type, String[] strings, Image[] images); 

The only difference is that the first parameter is used to set the title of the List's screen, 

whereas it is used as the label for a ChoiceGroup.  

As well as supporting the EXCLUSIVE and MULTIPLE modes of operation, List has a third 

mode, selected by setting the type to Choice.IMPLICIT, which cannot be used with 

ChoiceGroup. IMPLICIT mode creates a List that behaves somewhat like a standard list (e.g., 

http:///


J2ME in a Nutshell 

132 

the Swing JList component), with the restriction that only one element can be selected at 

a time. This mode is often used to create a menu, and, in fact, this is how the list of MIDlets in 

a MIDlet suite is presented when you launch the Java VM (see Figure 3-8). If you select 

the List item from the menu presented by ItemMIDlet, you'll see an IMPLICIT List, as 

shown on the left side of Figure 4-23. The code used to create this list is very similar to 

the corresponding ChoiceGroup code:  

List list = new List("List", List.IMPLICIT); 
Image red = Image.createImage("/ora/ch4/resources/red.png"); 
Image green = Image.createImage("/ora/ch4/resources/green.png"); 
Image blue = Image.createImage("/ora/ch4/resources/blue.png"); 
 
list.append("Red", red); 
list.append("Green", green); 
list.append("Blue", blue); 

Figure 4-23. List component on the default color phone 

 

The same List as displayed on the PalmOS platform is shown in Figure 4-24. As you can 

see, the cell phone emulator displays both the string and the image associated with each 

element in the list, whereas the PalmOS implementation ignores the image, as it did in the 

case of the ChoiceGroup.  

Figure 4-24. List component on the PalmOS platform 

 

The IMPLICIT and EXCLUSIVE modes are very similar, in that both require exactly one 

element of the list to be selected at any time. In fact, all previous comments regarding 

EXCLUSIVE mode made in connection with ChoiceGroup also apply to the IMPLICIT mode of 

List. The difference between these modes can be seen by comparing the IMPLICIT List on 

the left side of Figure 4-23 with the EXCLUSIVE ChoiceGroup on the right. As you can see, 

the ChoiceGroup has a separate radio button that indicates which element is selected, whereas 

the List does not. This means that the highlighted element in the ChoiceGroup (Green) need 

not be the same as the selected element (Red). In the case of an IMPLICIT list, however, the 

highlighted element is implicitly considered to be the selected element, which is why this is 

referred to as IMPLICIT mode.  

Since List is not an Item, changes in its selection state cannot be notified to application code 

via an ItemStateListener. In fact, there is no way to detect when the selected element of a 

List changes, in any of its modes, until the user activates a Command installed on the List 

http:///


J2ME in a Nutshell 

133 

that would prompt application code to examine its selection state.
5
 In the case of an IMPLICIT 

List, however, if the user presses the SELECT key on the cell phone keypad or presses the 

arrow to the left of each item on the PalmOS platform (refer to Figure 4-24), the List's 

CommandListener, if there is one, is notified of a selection change. Usually, when the 

commandAction( ) method of the CommandListener is called, it is passed a reference to the 

application-supplied Command that was activated and the Displayable to which the Command 

was attached. In this case, however, there is no application Command associated with the 

selection action, so the List provides a private Command called List.SELECT_COMMAND, 

which indicates that the commandAction( ) method has been called as a result of an 

IMPLICIT List selection. The Displayable argument passed to commandAction( ) refers to 

the List itself.  

To associate a CommandListener with a List, you use the setCommandListener( ) method 

inherited from Displayable:  

List list = new List("List", Choice.IMPLICIT); 
list.setCommandListener(new CommandListener( ) { 
    public void commandAction(Command c, Displayable d) { 
        // Handle notification from the List 
    } 
}); 

The ItemMIDlet commandAction( ) method includes a case that detects the List selection 

change:  

public void commandAction(Command c, Displayable d) { 
    if (c == List.SELECT_COMMAND) { 
        // Selection made in the IMPLICIT LIST 
        handleChoiceSelection((Choice)d); 
    } else { 
         // Other cases not shown 
    } 
} 

Because List implements the Choice interface, you can use the same methods to handle the 

selection as those shown in connection with ChoiceGroup. In fact, the previous code uses the 

same handleChoiceSelection( ) method as was used to handle the ChoiceGroup selection 

in Example 4-5. Notice that a reference to the List is obtained by casting the Displayable to 

an object of type Choice. This is correct because the notification comes from the List (the 

Displayable), which implements Choice.  

 

Note carefully that this discussion applies only to Lists created with 

type IMPLICIT. The CommandListener will not be notified of any 

selection change for Lists of type MULTIPLE or EXCLUSIVE. For these 

types, it is necessary to attach to the List a Command that notifies 

application code that the List selection should be checked.  
 

                                                 
5 Strictly speaking, this is not true, because you could periodically examine the selection state from a background thread or on expiration of a Timer, 

but such tactics are not likely to be useful in a real application! 

http:///


J2ME in a Nutshell 

134 

The behavior of the Choice methods concerned with selection handling in the IMPLICIT 

mode is the same as that for EXCLUSIVE mode, as described in the earlier sections 

Section 4.2.13.2 and Section 4.2.13.3.  

4.2.14 Alerts 

Alert is a subclass of Screen that behaves much like a dialog, albeit with very limited 

functionality. When an Alert is displayed by calling the Display setCurrent( ) method, it 

covers some or all of the device screen and receives all key and pointer events generated by 

user action while it is visible. An Alert may be modal or nonmodal. In this context, an Alert 

is modal if it remains displayed until the user explicitly dismisses it. A nonmodal dialog, by 

contrast, is displayed for a limited maximum time period before being closed automatically.  

Alert has several attributes that determine its appearance and behavior:  

Title  

This attribute is inherited from Screen. An Alert is not required to have a title.  

String  

This attribute contains the message that the Alert displays to the user. Line breaks 

may be created within the message by including newline characters.  

Image  

An optional image may be provided to be displayed along with the message. The way 

in which the image is displayed, and whether it is displayed at all, is device-dependent.  

Timeout  

Specifies how long the Alert is displayed. A default timeout is applied if no explicit 

timeout value is set. The distinguished value Alert.FOREVER is used to indicate that 

the Alert should be displayed until the user dismisses it. There is no requirement for 

the device to provide a means for the user to remove an Alert with a finite timeout 

value before the timeout expires. This feature should be used with care to ensure that 

the user does not have to wait an unduly long period for a simple confirmation 

message to time out and dismiss itself.  

Type  

This attribute, which is of type AlertType, conveys the intent of the Alert to the 

platform. The platform may use this attribute to tailor the alert's visual appearance to 

help the user distinguish between errors, warnings, and informational messages. The 

platform may also generate an appropriate sound to draw the user's attention to the 

alert. An Alert is not required to have an AlertType, and the platform is not required 

to act upon it even if it does. The available types are:  

AlertType.ALARM  

AlertType.CONFIRMATION  

http:///


J2ME in a Nutshell 

135 

AlertType.ERROR  

AlertType.INFO  

AlertType.WARNNG  

Note that the CONFIRMATION type is intended to confirm to the user that an action 

previously requested has been completed, not to solicit something like a Yes, No, or 

Cancel response before an action is performed. In fact, it is not possible to construct an 

Alert that accepts any input. If you want to get confirmation from a user before 

performing an action, you must construct and display a Form containing the 

appropriate Commands to allow the user to approve or cancel the proposed action.  

You can see all the available Alert types and how the timeout works by selecting the Alert 

example from the ItemMIDlet. This example lets you configure the attributes of an Alert 

and display the result. When the example starts, you see a Form containing two 

ChoiceGroups. Figure 4-25 shows how this looks on the default color phone, where you need 

to scroll to see all of the Form.  

Figure 4-25. Configuring an Alert on the default color phone 

 

The first ChoiceGroup, shown on the left side of Figure 4-25, lets you select the timeout for 

the Alert, which can be either Alert.FOREVER or a value specified in seconds. If you select 

the second item in the ChoiceGroup, a Gauge appears so that you can adjust the timeout 

value, as shown on the right side of the figure. The second ChoiceGroup allows you to choose 

the AlertType. On the PalmOS platform, this Form has a more compact representation, 

shown in Figure 4-26, but the functionaility is the same.  

Figure 4-26. Configuring an Alert on the PalmOS platform 

 

Once you've configured the Alert, you can use the OK command to display it. On the 

PalmOS platform, this is available as a button on the Form, but on other devices you might 

need to access a soft-key menu to locate it. Pressing the OK button displays the Alert, and, 

on some devices, a sound plays (the specific sound may depend on the AlertType). If you 

experiment with different types, you'll notice that, with the exception of the text message 

(which is constructed by ItemMIDlet to remind you of the parameters that you selected), 

there is no difference in appearance on the default color phone. The alerts all look like the one 

shown on the upper left side of Figure 4-27. The exception is when you select a timeout of 

http:///


J2ME in a Nutshell 

136 

Alert.FOREVER: you get a command button labeled Done that allows you to dismiss the 

Alert at any time.  

On the PalmOS platform, however, the Alerts use different icons to indicate the AlertType. 

Furthermore, as you can see from Figure 4-27, when a finite timeout is selected, the time 

remaining until the Alert is dismissed counts down in a small circle in its bottom left. When 

the timeout value is set to Alert.FOREVER, there is a Done button in this area instead.  

Figure 4-27. Various Alerts on the default color phone and the PalmOS platform 

 

 

 

Only Alerts with the timeout set to Alert.FOREVER can be dismissed 

by the user; the others remain displayed until their timeout expires. You 

can't get around this by trying to add your own Done button, because 

Alert overrides the addCommand and setCommandListener methods of 

Displayable and throws an IllegalStateException if you try to add 

a Command or install a CommandListener.  
 

The code used to create and display an Alert is simple:  

Alert alert = new Alert("Alert Title", "This is an Alarm", alarmImage, 
    AlertType.ALARM); 
Display.getDisplay(this).setCurrent(alert); 

As you can see, you use the Display setCurrent( ) method to display an Alert, just as you 

would any other type of Displayable. The Alert partially or completely covers the screen 

that was active when the setCurrent( ) method is called. When the Alert is dismissed, the 

original screen is redisplayed. In some cases, though, it might be appropriate to show a 

different screen once the Alert has closed. You can arrange for this to happen by using a 

different form of setCurrent( ):  

public void setCurrent(Alert alert, Displayable displayable); 

http:///


J2ME in a Nutshell 

137 

This method first displays the given Alert; when it closes, the Displayable given as the 

second argument appears instead of the screen that was originally displayed. As a special 

case, passing null for the Displayable reverts to the original screen -- that is, it behaves just 

like the single-argument variant of setCurrent( ).  

Alert has several methods that you can use to customize it after creation or to get some of its 

attributes. The AlertType can be obtained or changed using the following methods:  

public void setAlertType(AlertType alertType); 
public AlertType getAlertType( ); 

You can get or change the text string and image using similar methods: 

public void setString(String string); 
public String getString( ); 
public void setImage(Image image); 
public Image getImage( ); 

When an Alert is created, a default timeout is applied, which you can get using the 

getDefaultTimeout( ) method:  

public int getDefaultTimeout( ); 

Note that this is not a static method, so you have to create an Alert before you can use it. 

There is no method to change the default timeout. The returned value is in milliseconds.  

Finally, you can get or change the actual timeout for a specific Alert using the following 

methods, where the time is again measured in milliseconds:  

public int getTimeout( ); 
public void setTimeout(int timeOut); 

If you call setTimeout( ) with the argument Alert.FOREVER, then the Alert will be modal.  

 

An Alert with timeout set to Alert.FOREVER is described in the MIDP 

specification as a modal dialog, but it is not modal in the same sense 

that a J2SE Dialog or JDialog is. In particular, when you display a 

J2SE modal dialog by calling its show( ) or setVisible( ) method, 

control is not returned until the dialog is dismissed. The same is not true 

of Alert. That is, in the following code the setCurrent( ) method 

returns control immediately; it does not wait for the Alert to be 

dismissed:  

Alert alert = new Alert("Modal", "Modal Alert", null,  
                        AlertType.ALARM); 
alert.setTimeout(Alert.FOREVER); //Make the Alert "modal" 
Display.getDisplay(this).setCurrent(alert) 
// Returns IMMEDIATELY 

In fact, the Alert may not actually have been displayed when it returns, 

as discussed in Section 4.1.1, earlier in this chapter.  
 

http:///


J2ME in a Nutshell 

138 

4.2.15 Playing Sounds 

MIDP does not currently have an API for playing arbitrary sounds, but it is possible to create 

a small set of sounds on devices that support it by using the AlertType method on its own. 

The AlertType method has a public method that plays its associated sound:  

public boolean playSound(Display display); 

where display is the Display object associated with the MIDlet. The following code extract 

requests that the device play the sound associated with an ALARM:  

AlertType.ALARM.playSound(Display.getDisplay(this)); 

The device is not obliged to play any sounds or to generate a different sound for each 

AlertType. If the playSound( ) method actually plays a sound, it returns true. You can 

experiment with the various sounds by selecting the Sounds example from ItemMIDlet, 

choosing each sound in turn from the List component that the MIDlet displays, and using the 

SELECT key (or its equivalent) to play it. The return value of the playSound( ) method is 

written to the Wireless Toolkit console. If you are running this example on a PalmOS device, 

and you don't hear any sounds, be sure to enable System Sounds using the Prefs applet from 

the main screen.  

http:///


J2ME in a Nutshell 

139 

Chapter 5. The Low-Level MIDlet User Interface API 

The high-level API provides enough functionality for you to create, with relatively little 

effort, MIDlets with user interfaces that work unchanged across a wide range of devices. 

The price to be paid for this, however, is that you are restricted to using the components 

provided in the javax.microedition.lcdui package, and you have very little control over 

the appearance of your MIDlet.  

The low-level API gives you almost exactly the opposite situation. To use it, you need to put 

much more effort into creating the user interface, but in return you get pixel-level access to 

the screen, you have control over colors (or shades of gray) and fonts; and you can respond 

directly to the user's key presses or pointer actions. This section takes a detailed look at the 

low-level API, which is useful for writing simple games or drawing charts. It may be used on 

its own or mixed with screens built using Form and the other classes covered in the previous 

chapter.  

5.1 The Canvas Class 

Canvas is the basic building block of the low-level API. Because it is derived directly from 

Displayable, it inherits the ability to have associated Commands, but it does not provide a title 

or the ability to contain other components. Canvas gives you direct access to the screen of 

a MIDP device, apart from the area used to draw Command buttons or labels, as shown in 

Figure 5-1. In the figure, the black area is the part of the screen occupied by the Canvas itself.  

Figure 5-1. The Canvas class 

 

Unlike the user interface components that we have seen so far, Canvas is an abstract class. To 

use Canvas, you have to subclass it and implement the paint method to draw whatever you 

want to appear on the screen. This method is called with a single argument, which is an 

instance of another low-level API class called Graphics. This class provides methods that 

allow you to draw lines, rectangles, and arcs, fill areas with a solid color, and render text onto 

the device's screen. The Canvas class also has methods -- which you can override -- to receive 

notification of key presses and use of the pointer (on those devices that have one).  

5.1.1 Screen Attributes 

The low-level API is intended to give you much greater control over the screen and keypad of 

a MIDP device than the high-level API does. In doing so, however, it makes it more likely 

that you will inadvertently create a MIDlet that is device-dependent because it relies on the 

dimensions of the screen or on a feature that is not universally available. To make it easier to 

write code that adapts itself to its environment, the Canvas and Display classes provide 

http:///


J2ME in a Nutshell 

140 

methods, described in the following sections, to allow you to query the attributes that 

distinguish one device from another.  

5.1.1.1 Display methods 

The Display class provides the following methods: 

public boolean isColor( )  

This method returns true if the device has a color display, false if not.  

public int numColors( )  

If the isColor( ) method returns true, numColors( ) can be used to get the number 

of different colors the device supports. When isColor( ) returns false, numColors( 

) returns the number of shades of gray that the device's display can provide. As you'll 

see later, you can treat a grayscale device as if it supported color, and the color values 

you use will be converted to a shade of gray that approximates the brightness of the 

original color. However, you might be able to obtain better results in some cases by 

coding your MIDlet to work in grayscale if the device does not support color.  

5.1.1.2 Canvas methods 

The Canvas class provides the following methods: 

public int getWidth( )  
public int getHeight( )  

These methods return the width and height of the Canvas, which corresponds to the 

usable part of the device's screen.  

public boolean hasRepeatEvents( )  

While all MIDP platforms provide keyboard input, some (especially cell phones) do 

not support the concept of repeated keys. If this method returns true, your MIDlet 

will be notified when the user holds down a key long enough for the device to 

consider it a repeated key. Key handling and the mechanism by which the MIDlet is 

informed of repeated keys are covered in Section 5.10.1, later in this chapter.  

public boolean hasPointerEvents( )  
public boolean hasPointerMotionEvents( )  

Cell phones are usually limited to input via the keypad, but more functional devices, 

such as PDAs, usually also have some kind of pointing device (such as a stylus) used 

in conjunction with a touch screen. If such a pointer is available, the 

hasPointerEvents( ) method returns true, and the MIDlet can expect to be notified 

when the user touches the screen with the pointer or lifts the pointer away from the 

screen. Additionally, if the hasPointerMotionEvents( ) method returns true, the 

platform might periodically deliver notifications to the MIDlet if the user drags the 

pointer while it is in contact with the screen. For maximum portability, MIDlets 

http:///


J2ME in a Nutshell 

141 

should not rely on the availability of a pointer and should not assume, even if a pointer 

is available, that pointer motion events will be available.  

public boolean isDoubleBuffered( )  

This method returns true if the MIDP implementation provides double buffering, so 

that graphics operations performed in the Canvas paint( ) method are applied to an 

offscreen buffer instead of directly to the screen. The advantage of double buffering is 

that it can make screen updates look much smoother because the user never sees 

partially updated frames that can result in display flashing or temporary 

inconsistencies while the display is being redrawn. If isDoubleBuffered( ) returns 

false, a MIDlet can still attempt to alleviate display problems of this type by 

performing its own double buffering. The disadvantage of this, however, is that 

allocating an off-screen buffer may require more memory than the platfom can make 

available to the MIDlet.  

You can obtain the values of these attributes for the emulated devices supported by the 

Wireless Toolkit by building and running the Chapter5 project from this book's example 

source code. Select the MIDlet called AttributesMIDlet, which uses the high-level API to 

show these attributes; it creates (but does not display) a Canvas from which the attribute 

values are obtained, as shown in Example 5-1.  

Example 5-1. Getting Display and Canvas Attributes for a Device  

package ora.ch5; 
 
import javax.microedition.lcdui.Canvas; 
import javax.microedition.lcdui.Command; 
import javax.microedition.lcdui.CommandListener; 
import javax.microedition.lcdui.Display; 
import javax.microedition.lcdui.Displayable; 
import javax.microedition.lcdui.Form; 
import javax.microedition.lcdui.Graphics; 
import javax.microedition.lcdui.StringItem; 
import javax.microedition.midlet.MIDlet; 
 
public class AttributesMIDlet extends MIDlet implements CommandListener {  
 
    // The MIDlet's Display object 
    private Display display; 
         
    // Flag indicating first call of startApp 
    protected boolean started; 
     
    // Exit command 
    private Command exitCommand; 
     
    protected void startApp( ) { 
        if (!started) { 
            display = Display.getDisplay(this); 
            Canvas canvas = new DummyCanvas( ); 
             
 
 
 
 

http:///


J2ME in a Nutshell 

142 

            // Build a Form displaying the Display and Canvas attributes. 
            Form form = new Form("Attributes"); 
            exitCommand = new Command("Exit", Command.EXIT, 0); 
            form.addCommand(exitCommand); 
             
            boolean isColor = display.isColor( ); 
            form.append(new StringItem(isColor ? "Colors: " : "Grays: ",  
                String.valueOf(display.numColors( )))); 
            form.append(new StringItem("Width: ", String.valueOf 
                (canvas.getWidth( )))); 
            form.append(new StringItem("Height: ", String.valueOf 
                (canvas.getHeight( )))); 
            form.append(new StringItem("Pointer? ", String.valueOf 
                (canvas.hasPointerEvents( )))); 
            form.append(new StringItem("Motion? ", String.valueOf 
                (canvas.hasPointerMotionEvents( )))); 
            form.append(new StringItem("Repeat? ", String.valueOf 
                (canvas.hasRepeatEvents( )))); 
            form.append(new StringItem("Buffered? ", String.valueOf 
                (canvas.isDoubleBuffered( )))); 
             
            form.setCommandListener(this); 
 
            display.setCurrent(form); 
             
            started = true; 
        } 
    } 
 
    protected void pauseApp( ) { 
    } 
 
    protected void destroyApp(boolean unconditional) { 
    } 
 
    public void commandAction(Command c, Displayable d) { 
        if (c == exitCommand) { 
            // Exit. No need to call destroyApp 
            // because it is empty. 
            notifyDestroyed( ); 
        } 
    }  
     
    // A Canvas that has no painting logic 
    static class DummyCanvas extends Canvas { 
        protected void paint(Graphics g) { 
            // Do nothing 
        } 
    } 
} 

The results of running this MIDlet on the default color phone and a color PalmOS platform 

are shown in Figure 5-2. Notice that, as expected, the cell phone does not provide pointer 

events, but the PalmOS device does. The cell phone also has far fewer colors available than 

this particular PDA. On the other hand, the cell phone implementation of MIDP provides 

automatic screen double-buffering, whereas that on the PDA does not. Finally, note that the 

PDA screen size is reported as 160 pixels wide and 142 pixels high, although the physical 

screen of this device is actually 160 pixels in each direction. The missing 18 pixels on the 

vertical axis are not available to MIDlets because they are reserved for Command buttons.  

http:///


J2ME in a Nutshell 

143 

Figure 5-2. Display and Canvas attributes on two emulated devices 

 

5.2 Painting and the Graphics Class 

When the platform determines that the content of a Canvas needs to be drawn onto the screen, 

it calls the paint( ) method, which the MIDlet developer is required to implement:  

protected void paint(Graphics g) 

This method is called at the following times: 

• When the Canvas becomes visible as a result of the Display setCurrent( ) method 

being invoked  

• When some or all of the Canvas reappears after being partly or wholly obscured by an 

Alert or a system screen, such as a menu of Commands opened from a soft button  

• As a result of application code requesting that the screen be repainted following a 

change in the data that it is rendering  

The Graphics object passed to the paint( ) method provides methods that allow graphics 

operations, such as line and text rendering and color filling, to be performed on its target. The 

target is either the screen itself or, in the case of a platform that supports double buffering, an 

off-screen image that will be copied to the screen when the paint( ) method returns. 

Implementing this method is the only way to get a Graphics object that can access the screen; 

unlike the J2SE Component class, Canvas does not have a getGraphics( ) method that can 

be used to get access on demand to the screen space that it occupies. Therefore, all screen 

updates must be performed in the paint( ) method. The MIDP specification prohibits 

holding a reference to the Graphics object passed to paint( ) for use elsewhere.
1
  

When the visibility of a Canvas changes, the following methods are called:  

protected void showNotify( ) 
protected void hideNotify( ) 

The MIDP specification guarantees that the paint( ) method will not be invoked before 

showNotify( ) is called and, following return from hideNotify( ), any further calls to the 

paint( ) method will be preceded by another call to showNotify( ). This essentially 

amounts to the statement that paint( ) is called only when the Canvas is visible. The default 

implementations of these methods do nothing. Subclasses may override the showNotify( ) 

method to perform any initialization required prior to the Canvas being displayed, while 

hideNotify( ) typically reverses the steps taken by showNotify( ).  

                                                 
1 It is also possible to get a Graphics object that allows you to draw onto a mutable Image. Graphics objects obtained in this way are valid for 

use at any time, and a persistent reference to one can be kept. For further discussion on this topic, refer to Section 5.9. 

http:///


J2ME in a Nutshell 

144 

As an example of typical use of these methods, a "Space Invaders"-type game might use the 

showNotify( ) method to start a timer to control the regular movement of the aliens across 

the screen and hideNotify( ) to stop the timer. This would ensure that resources are not 

wasted moving aliens while the game is not in use. This technique is used in an example 

shown later in this chapter (see Section 5.6.1).  

5.3 Graphics Attributes 

The Graphics class provides operations that let you do the following:  

• Draw straight lines, arcs, and rectangles 

• Fill the space occupied by an arc or a rectangle 

• Render images 

• Draw text presented in the form of a String or as character data  

All these operations use a coordinate system to indicate at least their starting point, and most 

of them also use one or more attributes of the Graphics object that act as implicit parameters. 

When the paint( ) method is called, the attributes of the Graphics object that is passed to it 

have well-defined values that can be modified if necessary. The attributes and their initial 

values are listed in Table 5-1. A more detailed description of each attribute and the way in 

which it is used are found in later sections.  

Table 5-1. Graphics Attributes 

Attribute Use Initial Value 

Clip 
The clip sets the region of the Canvas within which graphics 

operations have any effect. The clip is discussed in Section 5.7.  

Depends on the reason 

paint( ) was invoked 

Color 
The color that will be used when drawing or filling shapes or 

rendering text. See Section 5.3.2 for further details.  
Black 

Font The font used when rendering text. Fonts are discussed in Section 5.8. 
Set to the platform's default 

font 

Stroke 

Style 

Determines whether lines, rectangles, and arcs are drawn using solid 

or dotted strokes, as described in Section 5.4.1.  
Set to draw a solid line 

Origin 
The position of the coordinate point (0, 0) relative to the top left of the 

Canvas.  
The top left corner of the 
Canvas 

5.3.1 The Coordinate System 

The Graphics class uses a coordinate system in which the origin is situated at the top left 

corner of the Canvas. Along the x-axis, coordinates increase from 0 on the left side of the 

Canvas to their maximum value on the right. Similarly, the value of the y coordinate increases 

toward the bottom of the Canvas, as shown on the left side of Figure 5-3.  

Figure 5-3. The Graphics coordinate syatem 

 

http:///


J2ME in a Nutshell 

145 

It is important to note that the coordinates do not refer to the locations of the pixels 

themselves but to the intersection points of an imaginary grid that occupies the space between 

the pixels, as shown on the right in Figure 5-3. In the figure, the pixels themselves are shown 

as filled squares. The coordinate location (0, 0), corresponding to the origin, does not strictly 

refer to the pixel at the top left corner of the grid, but to the grid intersection point just to the 

left of and above it. Similarly, (1, 0) refers to the grid intersection point just to the top right of 

that pixel, which is also at the top-left of the pixel to its right. Although this might seem a 

trivial and rather technical distinction, it becomes important when describing how line 

drawing and color fill operations work, as will be seen in Section 5.4. For the sake of clarity, 

and notwithstanding the fact that it is slightly innacurate to do so, this book usually refers to 

"the pixel at (0, 0)" when what is really meant is "the pixel whose top left corner is at (0, 0)."  

The MIDP specification requires that pixels be approximately square, as shown in Figure 5-3. 

In reality, a device need not have square pixels. If it does not, the MIDP platform or the host 

operating system is expected to group device pixels logically so that they appear square to a 

MIDlet. If, for example, a particular device has pixels that are four times as long as they are 

tall, the software is required to map a request from a MIDlet to set the color of the pixel at (0, 

0) into hardware operations that set the color of that hardware pixel and the three below it to 

the requested color. Furthermore, the screen size as reported by the Canvas getWidth( ) and 

getHeight( ) methods are expressed in terms of logical, square pixels, so a MIDlet does not 

need to be concerned about any mapping that is taking place.  

5.3.2 Colors and Grayscale 

The Graphics operations that draw and fill shapes, lines, and text use the color attribute as an 

implicit parameter to determine the color to be used for each affected pixel. This attribute can 

be set using one of the following Graphics methods, of which the second is the one most 

commonly used:  

public void setColor(int color) 
public void setColor(int red, int green, int blue) 
public void setGrayScale(int value) 

The color model specified by MIDP represents a color as an RGB value with 8 bits to 

represent each of the red, green, and blue components. Numerically lower values represent 

less of the corresponding color and therefore produce a darker effect. The second 

setColor( ) method lets you set the color by specifying these component values 

individually, so that the following setting gives a pure, bright red:  

setColor(255, 0, 0) 

This setting is a combination of red and green that produces yellow: 

setColor(255, 255, 0) 

The other setColor( ) method uses its integer argument to encode the color components as 

follows:  

00 RR GG BB 

http:///


J2ME in a Nutshell 

146 

Using this encoding, the bright red with RGB components (255, 0, 0) is represented as 

0x00FF0000, yellow is 0x00FFFF00, black is 0, and white is 0x00FFFFFF. The current 

MIDP specification does not support transparency, so colors are always opaque, and there is 

no alpha value to encode.
2

  

The availability of 24 bits to encode a color means that a total of 16,581,375 colors can be 

represented. Most MIDP devices cannot display anywhere near that number of colors, and 

some cannot display color at all. When a pixel is drawn, the color value is mapped to the 

nearest available color that the device can actually represent. This mapping is not visible to 

the MIDlet, which does not have direct access to the actual pixel data.  

On a device that uses grayscale instead of color (that is, one for which the Display 

isColor( ) method returns false), the pixel value is converted to a gray value that 

approximates the brightness of the actual color. This automatic conversion means that a 

MIDlet originally intended for a color device can also be used on one that does not support 

color. Grayscale values are encoded using integer values 0 to 255 inclusive, where 0 is the 

darkest (black) and 255 the brightest (white). A MIDlet that can work directly with grayscale 

values can use the setGrayScale( ) method instead of setColor( ) to set the Graphics 

color attribute.  

There are several Graphics methods that retrieve the value of the color attribute:  

public int getColor( ) 
public int getRedComponent( ) 
public int getGreenComponent( ) 
public int getBlueComponent( ) 
public int getGrayScale( ) 

The getColor( ) method returns the color attribute in the same integer encoding as that used 

by setColor( ). The getRedComponent( ), getGreenComponent( ), and 

getBlueComponent( ) methods return the individual red, green, and blue parts of the color. 

The getGrayScale( ) method returns a grayscale value in the range 0-255 that approximates 

the brightness of the current color.  

If the color attribute was actually set using setGrayScale( ), getGrayScale( ) returns the 

actual grayscale value, and the other four methods return RGB values for a device-dependent 

color that approximates the brightness of the supplied gray. In the MIDP reference 

implementation, the mapping from grayscale to the returned color is a simple one: the red, 

green, and blue components are all set to the grayscale value. That is to say, the following 

code prints "127" for all three color components:  

g.setGrayScale(127); 
System.out.println("Red = " + g.getRedComponent( ) + ", green = " + g. 
getGreenComponent( ) + ", blue = " + g.getBlueComponent( )); 

The same might not be true for other implementations. 

 

                                                 
2 In J2SE, the alpha channel represents the transparency of a color; it is usually held in the top 8 bits of a color when encoded as an integer. An opaque 

red pixel, for example, would actually be encoded as 0xFFFF0000, while 0x00FF0000 would be a transparent red that would be invisible! Note also 

that MIDP does not have a Color class: colors are always represented as integers or integer triplets. 

http:///


J2ME in a Nutshell 

147 

5.4 Drawing Lines and Arcs 

The Graphics class methods that let you draw straight lines, rectangles, and arcs are very 

similar to those available in J2SE. There are, of course, none of the advanced features 

provided by Java 2D. Even some of the more basic features, such as convenience methods 

that let you draw polygons and polylines, are missing, although some of them can easily be 

simulated.  

The drawing primitives work by determining the set of pixels that will be affected and setting 

each of them to the value of the current color attribute as set by setColor( ) or 

setGrayScale( ). Because there is no support for transparency and color blending, no 

account is taken of the initial state of an affected pixel.  

Perhaps surprisingly, no provision is made for an "exclusive-or" drawing mode, in which the 

new pixel value is combined with the existing one using a bitwise exclusive-or operation. This 

is not an issue, in practice, because MIDlets have access to a Graphics object only in the 

paint( ) method, when everything must be redrawn, whether it has moved or not. By 

contrast, it is possible in J2SE to get a Graphics object at any time, and, therefore, parts of 

the screen can be updated directly, without having to wait for the paint( ) method to be 

called.  

5.4.1 Lines and Rectangles 

The simplest shape you can draw on a Canvas is a straight line:  

public void drawLine(int x1, int y1, int x2, int y2) 

This method draws a line between the two pixels at (x1, y1) and (x2, y2). Usually, both these 

points would be within the bounds of the Canvas, but this is not a requirement. It is possible 

to draw a line in which one or both of the points are off the Canvas, in which case only the 

part of the line that crosses the Canvas is actually rendered.  

The boundaries of the line include both the given endpoints. For example, the following 

method call actually affects 4 pixels:  

g.drawLine(0, 0, 3, 0); 

The pixels at both (0, 0) and (3, 0) are filled, as well as those in between, as shown in 

Figure 5-4.  

Figure 5-4. Drawing a straight line 

 

The drawLine( ) method plots a single point if the start and end points are the same.  

http:///


J2ME in a Nutshell 

148 

The actual pixels that are affected by the drawLine( ) operation depend on the Graphics 

stroke style. This attribute is set using the setStrokeStyle( ) method, which requires a 

single parameter that takes one of the following values:  

Graphics.SOLID  

Draws a solid line in which all affected pixels are set to the current Graphics color.  

Graphics.DOTTED  

Draws a line in which only a subset of the pixels that would be set in Graphics.SOLID 

mode are affected.  

You can see the difference between these two modes by building and running the Chapter5 

project from this book's source code examples. Launch the MIDlet called GraphicMIDlet, 

then select "Lines" from the examples list that appears. The result of running this example on 

the default color phone is shown in Figure 5-5.  

Figure 5-5. Drawing straight lines on a Canvas 

 

The code that produced the lines in Figure 5-5 looks like this:  

public void paint(Graphics g) { 
    int width = getWidth( ); 
    int height = getHeight( ); 
 
    // Fill the background using black 
    g.setColor(0); 
    g.fillRect(0, 0, width, height); 
 
    // White horizontal line 
    g.setColor(0xFFFFFF); 
    g.drawLine(0, height/2, width - 1, height/2); 
 
    // Yellow dotted horizontal line 
    g.setStrokeStyle(Graphics.DOTTED); 
    g.setColor(0xFFFF00); 
    g.drawLine(0, height/4, width - 1, height/4); 
 
    // Solid diagonal line in brightest gray 
    g.setGrayScale(255); 
    g.setStrokeStyle(Graphics.SOLID); 
    g.drawLine(0, 0, width - 1, height - 1); 
}  

You'll notice that the Canvas used here has a black background, which is due to 

the fillRect( ) call that is made at the start of the paint( ) method, after setting 

http:///


J2ME in a Nutshell 

149 

the current color to black. Because Canvas does not have any painting logic of its own, 

the MIDlet itself is responsible for filling its background. If this is not done, the Canvas will 

be transparent, which might be useful in some cases. In this case, failing to fill the background 

would result in the drawing operations being overlaid on top of the list from which the Lines 

example was selected. (The fillRect( ) method will be described shortly.)  

Each invocation of drawLine( ) is preceded by calls to setColor( ) to set the appropriate 

color and setStrokeStyle( ) to select a solid or dotted line. It is not always necessary to 

call these methods repeatedly, because the value of a Graphics attribute is preserved over 

graphics operations (but not between invocations of the paint( ) method itself). In the case 

of the last line, which extends from the top left side of the canvas to the bottom right, 

the drawing color is set using the setGrayScale( ) method instead of setColor( ). Passing 

the value 255 results in the selection of the brightest gray that the display can support, which 

is very likely to be white.  

Drawing a rectangle is just as easy as drawing a straight line: 

public void drawRect(int x, int y, int width, int height) 

The point (x, y) represents the top left corner of the rectangle, and the width and height 

arguments obviously determine its width and height, respectively. As with straight lines, the 

rectangle outline touches both the start and end pixels on all sides, so that the top of the 

rectangle consists of a line drawn from the point (x, y) to the point (x + width - 1, y) 

inclusive. Whether some or all of the pixels on the rectangle boundary are set depends on 

whether the stroke style is SOLID or DOTTED, as shown on the left of Figure 5-6.  

Figure 5-6. Drawing dotted and solid rectangles and rounded rectangles. 

 

This screenshot at the left of Figure 5-6 is the result of selecting the Rectangles item from the 

GraphicsMIDlet, the code for which follows:  

public void paint(Graphics g) { 
    int width = getWidth( ); 
    int height = getHeight( ); 
 
    // Create a white background 
    g.setColor(0xffffff); 
    g.fillRect(0, 0, width, height); 
 
    // Draw a solid rectangle 
    g.setColor(0); 
    g.drawRect(width/4, 0, width/2, height/4); 
 
    // Draw a dotted rectangle inside the solid rectangle. 
    g.setStrokeStyle(Graphics.DOTTED); 
    g.drawRect(width/4 + 4, 4, width/2 - 8, height/4 - 8); 

http:///


J2ME in a Nutshell 

150 

    // Draw a rounded rectangle 
    g.setStrokeStyle(Graphics.SOLID); 
    g.drawRoundRect(width/4, height/2, width/2, height/4, 16, 8); 
} 

Note that all rectangles are drawn with their sides parallel to those of the Canvas. The MIDP 

Graphics class does not provide any rotation operations that could be used to create a 

rectangle with its sides at an arbitrary angle to the drawing axes.  

The rectangles at the top of Figure 5-6 both have sharp corners, but you can also draw a 

rectangle with rounded corners, as shown at the bottom of the figure. To achieve this effect, 

use the drawRoundRect( ) method, which requires two extra parameters in addition to those 

required to describe the rectangle itself:  

public void drawRoundRect(int x, int y, int width, int height,  
    int arcWidth, int arcHeight) 

To understand how these extra parameters work, imagine that the rounded edges form part of 

an ellipse placed at the corners of the rectangle, as shown in the diagram on the right of 

Figure 5-6. The horizontal diameter of this ellipse is given by the arcWidth parameter and the 

vertical diameter by arcHeight. The rounded rectangle at the bottom of the screenshot was 

drawn by the following line of code:  

g.drawRoundRect(width/4, height/2, width/2, height/4, 16, 8); 

which results in a corner that is wider than it is tall. To get a circular corner, the arcWidth and 

arcHeight values should be equal.  

As well as rectangular outlines, you can also draw rectangles and rounded rectangles that are 

filled with a solid color, using the following methods:  

public void fillRect(int x, int y, int width, int height) 
public void fillRoundRect(int x, int y, int width, int height,  
    int arcWidth, int arcHeight) 

The parameters required are the same as those for the corresponding draw methods. However, 

the boundaries of a drawn rectangle and a filled rectangle are not exactly the same, as shown 

in Figure 5-7.  

 

 

 

 

 

 

 

http:///


J2ME in a Nutshell 

151 

Figure 5-7. Outline differences between drawn and filled rectangles 

 

The rectangle at the top of Figure 5-7 was drawn using this code:  

g.drawRect(0, 0, 4, 2) 

Because an outline touches the pixels at each end, this rectangle includes the points (0, 0), (4, 

0), (0, 2), and (4, 2). By contrast, a filled rectangle created using the same arguments uses the 

width and height values to describe the exact area to be filled: 4 pixels wide and 2 pixels 

down, as shown at the bottom in Figure 5-7. You can see that a drawn rectangle occupies one 

more pixel each to the right and at the bottom than a filled rectangle.  

You can see this for yourself by selecting the RectangleFills example from GraphicsMIDlet. 

This creates a rectangle drawn with a dotted outline and a filled rectangle, using identical 

arguments for each. Magnified versions of the top left and bottom right corners of these 

rectangles are shown in Figure 5-8. The figure clearly shows that the color fill does not reach 

the right side or the bottom of the drawn rectangle, but it does cover the top and left of it.  

Figure 5-8. Drawn and filled rectangles 

 

5.4.2 Arcs 

Elliptical or circular arcs, including complete circles and ellipses, can be drawn either in 

outline or filled using the following methods:  

public void drawArc(int x, int y, int width, int height, int startAngle, 
    int arcAngle) 

http:///


J2ME in a Nutshell 

152 

public void fillArc(int x, int y, int width, int height, int startAngle, 
    int arcAngle) 

The overall shape of the arc is determined by its bounding rectangle, specified by the x, y, 

width, and height arguments; if the width and height values are the same, the arc is a circle 

or part of a circle. The portion of the ellipse or circle to be drawn is controlled by the 

startAngle and arcAngle arguments, both of which are measured in degrees. The 

startAngle argument specifies where the arc begins; it is measured relative to the the three 

o'clock position on the bounding rectangle. The angle through which the arc turns from its 

starting position is given by the arcAngle argument. For both parameters, a positive value 

indicates a clockwise turn; a negative value indicates a counterclockwise turn. The Arcs 

example in the GraphicsMIDlet draws three arcs with different start and turning angles, as 

shown in Figures Figure 5-9 and Figure 5-10.  

Figure 5-9. Drawing arcs 

 

The arc in the top left corner is a counterclockwise rotation of 90° from the default starting 

point at the three o'clock position on the bounding box. For the sake of clarity, the bounding 

boxes for all the arcs are drawn also so that you can see how the arcs are positioned within 

them. The code that creates this arc looks like this:  

g.drawArc(0, 0, width/2, height/2, 0, 90); 

Since the width and height of the bounding box are equal, this arc is part of a circle. The 

second arc is similar, but it has a negative arcAngle so that it turns through 90° in a 

clockwise direction:  

g.drawArc(width/2, 0, width/2, height/2, 0, -90); 

The line drawing on the top left of Figure 5-10 shows how this arc is drawn.  

Finally, the larger arc at the bottom of Figure 5-9 starts 90° clockwise from the 3 o'clock 

position (so that startAngle is -90) and sweeps through a complete clockwise half-turn:  

g.drawArc(0, height/2, width, height/2, -90, -180) 

In this case, the bounding box is twice as wide as it is high, so this is an elliptical arc. The 

angles used in this example are shown at the bottom of Figure 5-10.  

 

 

 

http:///


J2ME in a Nutshell 

153 

Figure 5-10. Drawing arcs 

 

A filled arc is described in the same way as an arc outline. The pie-shaped region extending 

from the center of the arc to the start and end points is filled with the current Graphics color. 

Figure 5-11 shows the result of selecting the FilledArcs example from the GraphicsMIDlet, 

which fills the same arcs as those drawn in the previous example.  

Figure 5-11. Filled arcs 

 

5.5 Translating the Graphics Origin 

The origin of the Graphics object that you get in the paint( ) method is initially placed at 

the top left of the Canvas. However, you can move it to any location you choose using the 

translate( ) method:  

public void translate(int x, int y) 

This method relocates the origin to the point (x, y) as measured in the coordinates that apply 

before this call is made. If the paint( ) method begins with the following statements:  

g.drawLine(0, 0, 20, 0); 
g.translate(10, 10); 
g.drawLine(0, 0, 20, 0); 

a line is first drawn along the top of the Canvas from (0, 0) to (20, 0), the origin is shifted so 

that (0, 0) is at the point (10, 10) relative to the top left corner of the Canvas, and finally 

another line is drawn. This line stretches from (0, 0) to (20, 0) in the new coordinate system, 

which is the same as (10, 10) to (30, 10) relative to the the Canvas itself. Figure 5-12 

illustrates the effect of moving the origin.  

 

 

 

 

http:///


J2ME in a Nutshell 

154 

Figure 5-12. Translating the Graphics origin 

 

Once you have moved the origin, the effect of another translate( ) call is cumulative with 

respect to the first. This means that, for example, the following code results in the origin being 

moved to (10, 10) and then back to its initial location:  

g.translate(10, 10); 
g.translater(-10, -10); 

The following code moves to the origin to (15, 15) relative to the top left-hand corner of the 

Canvas:  

g.translate(10, 10); 
g.translate(5, 5); 

The origin can be moved outside the bounds of the Canvas, if necessary. For example:  

g.translate(-10, -10); 
g.drawLine(10, 10, 30, 10); 

The previous code moves the origin to a point that is above and to the left of the corner of the 

Canvas and then draws the same straight line along the top of the Canvas as the original 

example in this section.  

Translating the origin is commonly used for the following reasons:  

• To give the appearance of scrolling the screen over an image that is too large to be 

displayed all at once. To implement scrolling, you catch key presses or pointer actions, 

respond by moving the origin in the paint( ) method in the opposite direction from 

the motion requested by the user, and then paint the Canvas again. Moving the origin 

causes everything on the Canvas to be drawn in a different location.  

• As a way to use the same code to draw a shape in different locations on the Canvas. 

This allows you to have a method that draws a complex shape using coordinates based 

at (0, 0) and then call it to draw one copy at (10, 10) and another copy at (50, 40). You 

do this by translating the origin first to (10, 10) and then by a further amount of (40, 

30):  

 g.translate(10, 10); 
 drawMyShape(g);  // Draw at (10, 10) 
 g.translate(40, 30); 

    drawMyShape(g);  // Draw at (50, 40) 

You can get the position of the origin relative to the Canvas using the following methods:  

http:///


J2ME in a Nutshell 

155 

public int getTranslateX( ) 
public int getTranslateY( ) 

These methods let you move the origin to a specific location without needing to keep track of 

where it is. For example, no matter where the origin has been translated to, the following 

operation always moves it back to the top left corner of the Canvas:  

g.translate(-g.getTranslateX(), -g.getTranslateY( )); 

Similarly, this operation moves it to absolute coordinates (x, y) relative to the Canvas:  

g.translate(x-g.getTranslateX(), y-g.getTranslateY( )); 

5.6 A Simple Animation MIDlet 

So far, all the Canvas examples have involved drawing shapes onto the screen when the 

platform calls the paint( ) method. If the content of the Canvas is static, it is sufficient to 

draw it only when the platform detects that the screen content has been partly or completely 

overwritten by an Alert, or when a different MIDlet screen is shown and then removed. If 

you want to display dynamic content, however, you can't wait for the platform to call paint( 

), because you need to repaint the Canvas whenever the dynamic content changes.  

For example, suppose you wanted to create a simple animation that involves moving small 

blocks around the screen. In order to do this, you might create a class to represent each block 

by recording its x and y coordinates and its speeds along the x and y axes:  

class Block { 
    int x;  // X position 
    int y;  // Y position 
    int xSpeed;  // Speed in the X direction 
    int ySpeed;  // Speed in the Y direction 
} 

The Canvas paint( ) method then fills its background with an appropriate color and loops 

over the set of blocks, drawing a filled rectangle for each, using its current coordinates to 

determine the location of its corresponding rectangle. Example 5-2 shows how you might 

implement this for a set of square blocks represented by an array of Block objects in an array 

called blocks.  

Example 5-2. Painting Blocks onto a Canvas  

protected void paint(Graphics g) { 
    // Paint with the background color 
    g.setColor(background); 
    g.fillRect(0, 0, width, height); 
 
    // Draw all of the blocks 
    g.setColor(foreground); 
    synchronized (this) { 
        for (int i = 0, count = blocks.length; i < count; i++) { 
            g.fillRect(blocks[i].x, blocks[i].y, SIZE, SIZE); 
        } 
    } 
} 

http:///


J2ME in a Nutshell 

156 

Each time this method is called, it paints all the blocks at their current locations. In order to 

create movement, you need to start a timer that periodically calls a method that updates the 

coordinates of each block and then causes the Canvas to be painted again. The problem with 

this is that you cannot call the Canvas paint( ) method directly, because there is no way to 

get a Graphics object that would allow you to draw on the screen. Fortunately, the Canvas 

class provides a method that you can call at any time to request a repaint operation:  

public final void repaint( ) 

Invoking this method does not result in an immediate call to paint( ). Instead, the platform 

arranges for paint( ) to be invoked sometime in the near future. Using this method, you can 

arrange for each block to be moved to its new location and redrawn using code like that 

shown in Example 5-3.  

Example 5-3. Moving and Redrawing Blocks 

public synchronized void moveAllBlocks( ) { 
    // Update the positions and speeds 
    // of all of the blocks 
    for (int i = 0, count = blocks.length; i < count; i++) { 
        blocks[i].move( ); 
                 
         // Request a repaint of the screen 
         repaint( );   
     } 
} 

This code updates the x and y coordinates of each Block by calling its move( ) method 

(which we don't show here because it is of little interest); it then invokes the Canvas 

repaint( ) method. Even though this code involves an invocation of repaint( ) for each 

block, this does not result in the same number of paint( ) calls, because the platform merges 

multiple repaint( ) requests into a single call to paint( ) to mimimize the amount of 

drawing required. The code shown above is scheduled as a TimerTask, which, as described in 

Chapter 3, is executed in a thread associated with a Timer. Painting, on the other hand, is 

performed in a system thread that also handles keyboard and pointer input events; these are 

discussed later in this chapter. Because both the moveAllBlocks( ) and paint( ) methods 

need to access the Block objects that hold the current locations of the blocks to be drawn, 

they are both synchronized to ensure thread safety.  

You can see how this code works in practice by selecting the AnimationMIDlet from the 

Chapter5 project in the Wireless Toolkit. When this MIDlet starts, it displays two Gauges 

that let you select the number of frame updates per second (from 1 to 10) and the number of 

blocks to display (in the range 1 to 4), as shown on the left side of Figure 5-13. Once you 

have set the parameters, select the Run command to start the animation.  

 

 

 

 

http:///


J2ME in a Nutshell 

157 

Figure 5-13. A MIDlet that performs simple animation 

 

5.6.1 The Canvas showNotify( ) and hideNotify( ) Methods 

The animation in this example is driven by a timer. When should this timer be started and 

stopped? The simplest possible approach is to start it when the startApp( ) method is called 

for the first time and stop it in destroyApp( ). This might be appropriate if the Canvas were 

always visible, but that is not the case here, because the Canvas has a Setup command that 

allows the user to switch back to the configuration screen to change the frame update rate or 

the number of blocks to be drawn. While the configuration screen is displayed, it would be a 

waste of time to continue to move the blocks on the Canvas because it is not visible. The most 

efficient approach in cases like this is to start the timer when the Canvas becomes visible and 

stop it when it is hidden. You can easily implement this policy by overriding the following 

Canvas methods:  

protected void showNotify( ) 
protected void hideNotify( ) 

The platform makes the following guarantees with respect to these methods:  

• The showNotify( ) method is called just before the Canvas is made visible. Before 

this method is called, no invocations of paint( ) occur.  

• The hideNotify( ) method is called after the Canvas has been removed from the 

screen. The paint( ) method is not called between a call to hideNotify( ) and the 

next invocation of showNotify( ).  

As an example of how these methods are typically used, Example 5-4 shows the code that 

controls the animation in this example. Note that showNotify( ) starts the Timer for the 

TimerTask that moves the blocks, and hideNotify( ) stops it, so no time is wasted moving 

the blocks when the Canvas is not visible. Since the Canvas implementations of showNotify( 

) and hideNotify( ) are empty, there is no need to include calls to super.showNotify( ) 

and super.hideNotify( ) when overriding them.  

Example 5-4. Using showNotify( ) and hideNotify( ) to Control Animation  

// Notification that the canvas has been made visible 
protected void showNotify( ) { 
    // Start the frame timer running 
    startFrameTimer( ); 
} 
 
 
 
 
 

http:///


J2ME in a Nutshell 

158 

// Notification that the canvas is no longer visible 
protected void hideNotify( ) { 
    // Stop the frame timer  
    stopFrameTimer( ); 
} 
 
// Starts the frame redraw timer 
private void startFrameTimer( ) { 
    timer = new Timer( ); 
 
    updateTask = new TimerTask( ) { 
        public void run( ) { 
            moveAllBlocks( ); 
        } 
    }; 
    long interval = 1000/frameRate; 
    timer.schedule(updateTask, interval, interval); 
} 
 
// Stops the frame redraw timer 
private void stopFrameTimer( ) { 
    timer.cancel( );   
} 

5.7 The Graphics Clip 

Although the previous animation example works, it is rather inefficient. The main problem 

lies with the way the paint( ) method interacts with the moveAllBlocks( ) method. When 

the frame timer expires, moveAllBlocks( ) updates the coordinates of all the blocks and then 

arranges for paint( ) to be called, which then redraws the whole screen. Redrawing the 

entire screen is, of course, highly inefficient, because most of it has not changed. In fact, when 

a block moves, all that you really need to do is use the background color to paint the area that 

it used to occupy and then redraw the block in its new location. Because you can't get hold of 

a Graphics object to do this directly within moveAllBlocks( ), you need some way to 

communicate to the paint( ) method that it doesn't need to repaint everything. Fortunately, 

there is a simple way to do this that requires small modifications to both moveAllBlocks( ) 

and the paint( ) method.  

In Example 5-3, moveAllBlocks( ) signals that a repaint is required by calling the Canvas 

repaint( ) method. The variant of repaint( ) that it uses signals to paint( ) that the 

whole screen needs to be redrawn, but there is a second version that can be used to pass more 

information:  

public void repaint(int x, int y, int width, int height) 

This method defines a rectangle that needs to be repainted, instead of the whole screen. Using 

this method, moveAllBlocks( ) can be rewritten as shown in Example 5-5 to indicate that 

only the old and new positions of each block need to be redrawn.  

 

 

 

http:///


J2ME in a Nutshell 

159 

Example 5-5. Using repaint( ) to Restrict the Areas to be Redrawn  

public synchronized void moveAllBlocks( ) { 
    // Update the positions and speeds of all of the blocks and repaint 
    // only the part of the screen that they occupy 
    for (int i = 0, count = blocks.length; i < count; i++) { 
        // Request a repaint of the current location 
        Block block = blocks[i]; 
        repaint(block.x, block.y, SIZE, SIZE); 
 
        blocks[i].move( ); 
 
        // Request a repaint of the new location 
        repaint(block.x, block.y, SIZE, SIZE); 
    } 
} 

Notice that repaint( ) is called once before the block moves, to arrange for the original 

location to be redrawn, and once afterwards.  

The next step is to change the paint( ) method to take into account the information supplied 

to repaint( ). But paint( ) doesn't have any parameters that describe the area to be 

repainted, so how is this information passed to it? The answer to this question is an attribute 

of the Graphics object called the clip. In MIDP, the clip is a rectangular subset of the 

drawing surface (the Canvas in this case), outside of which drawing operations are ignored.
3

  

The effect of the clip can be seen in Figure 5-14, which shows a Canvas 40 pixels wide and 

60 pixels tall, with a clip indicated by the dotted rectangle covering a subset of its surface.  

Figure 5-14. The Graphics clip 

 

If the following line of code were to be executed in the paint( ) method:  

g.drawLine(0, 30, 40, 30); 

only the part of the line that lies within the clip is actually drawn -- that is, the segment from 

(10, 30) to (30, 30). The parts of the line from (0, 30) to (10, 30) and from (30, 30) to (40, 30), 

which are dotted in Figure 5-14, are not drawn at all.  

                                                 
3 In J2SE, the clip doesn't have to be rectangular, but that is a Java 2D feature that is not supported by MIDP. 

http:///


J2ME in a Nutshell 

160 

When repaint( ) is called with no arguments, or when the platform first displays a Canvas, 

the Graphics clip is set to cover the entire surface of the Canvas. However, when the other 

repaint( ) method is called, the clip is set according to its arguments. To set the clip shown 

in Figure 5-14, for example, the following call is made:  

repaint(10, 15, 20, 35); 

Now suppose that the moveAllBlocks( ) method moves a single square block of size 4 

pixels from (0, 0) to (4, 4). In performing this operation, it executes the following pair of 

repaint( ) calls:  

repaint(0, 0, 4, 4);  // Repaint the old location of the block 
repaint(4, 4, 4, 4);  // Repaint the new location of the block 

When several repaint( ) calls are made, the clip is set to the smallest rectangle that covers 

all the areas to be redrawn. In this case, the clip covers the area from (0, 0) to (8, 8). So what 

effect does this have on the paint( ) method? Recall from Example 5-2 that the first 

operation performed by the paint( ) method is to fill the entire surface of the Canvas with 

its background color:  

g.setColor(background); 
g.fillRect(0, 0, width, height); 

In the case of a device with a screen measuring 96 pixels by 100 pixels (i.e., the default color 

phone), this involves setting the color of 9,600 individual pixels. However, when the 

repaint( ) method sets a clipping rectangle that covers only the area occupied by the block 

in its old and new locations, the same fillRect( ) call operates only within the clip -- that 

is, it fills only the rectangle from (0, 0) to (8, 8), a total of 64 pixels -- even though its 

arguments still specify that all 9600 pixels should be painted. Setting the clip, then, gives a 

benefit even if no changes are made to the paint( ) method.  

You can sometimes improve matters even more by taking account of the clip when 

implementing the paint( ) method. If, for example, your Canvas contains an image or a 

sequence of drawing operations that takes a relatively long time to draw, you don't need to do 

anything to keep them from being drawn when the clip is set to exclude them: all Graphics 

operations automatically restrict themselves to the area covered by the clip. However, making 

this check costs a small amount of time. If you can inspect the clip yourself and determine 

that an operation does not need to be performed, you may improve the performance of your 

MIDlet. You can get the bounds of the clip using the following methods:  

public int getClipX( ) 
public int getClipY( ) 
public int getClipWidth( ) 
public int getClipHeight( ) 

Using this information, you may be able to save a small amount of time in the paint( ) 

method by explicitly restricting the fillRect( ) operation to the clip, as follows:  

 
 
 
 

http:///


J2ME in a Nutshell 

161 

// Get the clipping rectange 
int clipX = g.getClipX( ); 
int clipY = g.getClipY( ); 
int clipWidth = g.getClipWidth( ); 
int clipHeight = g.getClipHeight( ); 
 
// Paint with the background color - only 
// the area within the clipping rectangle 
g.setColor(background); 
g.fillRect(clipX, clipY, clipWidth, clipHeight); 

As a general rule, when implementing a Canvas paint( ) method, consider taking account of 

the clip to skip time-consuming operations or those that involve nontrivial calculations.  

5.8 Rendering Text 

The Graphics class has four methods that you can use to draw text on a Canvas:  

public void drawChar(char c, int x, int y, int anchor)  

Renders the single character given as the first argument. The position of the character 

is determined by the x, y, and anchor arguments, as described below.  

public void drawChars(char[ ] chars, int offset, int length,  
                      int x, int y, int anchor)  

Draws characters chars[offset] through chars[offset + length - 1] using the 

positioning information given by the last three arguments.  

public void drawString(String str, int x, int y, int anchor)  

Renders the string str at the given location. This is the method most commonly used 

to draw text.  

public void drawSubstring(String str, int offset, int length,  
                          int x, int y, int anchor)  

Draws the part of the string given by the first argument that occupies the character 

positions offset to (offset + length - 1).  

The text is drawn in the color set by the last setColor( ) or setGrayScale( ) call. Its 

position and style are affected by the font property of the Graphics object and the location 

parameters passed to the drawing method. These parameters are described in the following 

sections.  

5.8.1 Fonts 

The font determines the shape and size of the text it is used to render. The font attribute can 

be set or read using the following Graphics methods:  

public void setFont(Font font) 
public Font getFont( ) 

http:///


J2ME in a Nutshell 

162 

In contrast to desktop systems, MIDP devices generally support only a very limited set of 

fonts, one of which is considered to be the system default font. The default font is installed 

automatically in the Graphics object passed to the paint( ) method. You can also obtain a 

reference to it using the following static method of the Font class:  

public static Font getDefaultFont( ) 

A font has three independent attributes that determine the appearance of rendered text:  

Face  

The font face describes the overall appearance of the characters it renders. The MIDP 

specification defines three different font faces, each with an associated constant -- 

defined by the Font class -- that can be used to select it:  

Font.FACE_MONOSPACE  

A constant-width font. 

Font.FACE_PROPORTIONAL  

A proportional font. 

Font.FACE_SYSTEM  

The "system" font face. The MIDP specification does not define what is meant by the 

system font. In the case of the default color phone emulator in the Wireless Toolkit, it 

is the same as the proportional font.  

Style  

The style property determines whether text is rendered in bold, italics, or underlined. 

The Font class defines four values to specify the font style:  

Font.STYLE_PLAIN  

Font.STYLE_BOLD  

Font.STYLE_ITALIC  

Font.STYLE_UNDERLINE  

Styles may be combined using the logical OR operator so that, for example, 

STYLE_BOLD | STYLE_ITALIC represents a bold italic font, and STYLE_UNDERLINED 

gives underlined plain text. Combining STYLE_PLAIN with any of the other style 

constants is allowed but has no effect, because STYLE_PLAIN has the value 0.  

Size  

The size argument can have one of the following values: 

SIZE_SMALL  

SIZE_MEDIUM  

SIZE_LARGE  

http:///


J2ME in a Nutshell 

163 

Unlike J2SE, MIDP does not allow a MIDlet to request a particular font size; instead, 

it restricts it to this narrow set of unspecific values that the platform can interpret as it 

chooses. This argument is not a bitmask, so combining size values is not allowed.  

Font objects can be obtained by calling the following static Font method:  

public static Font getFont(int face, int style, int size) 

This method returns a font chosen by the platform based on the arguments supplied. The 

device may not have fonts that satisfy all possible combinations of these arguments, however, 

so the platform is permitted to substitute one that does not have all the required characteristics 

when it cannot provide an exact match.  

Since Fonts can be obtained only from the getFont( ) or getDefaultFont( ) methods and 

cannot be directly instantiated, the platform can minimize the number of active Font objects 

(and therefore reduce memory usage and garbage collection) by returning a single instance in 

response to getFont( ) calls that specify identical attributes. As a consequence, it is possible 

to determine whether two fonts are the same by comparing references instead of using the 

equals( ) operator.
4
  

Fonts have several characteristic measurements, shown in Figure 5-15, that are affected by the 

face, style, and size attributes. MIDP provides methods that return these measurements in the 

Font class, rather than having separate classes such as the J2SE FontMetrics and 

LineMetrics classes.  

Figure 5-15. Font measurements 

 

The font height is the distance that should be left between between the top of one line of text 

and the top of the line immediately below it to ensure no vertical overlap and satisfactory 

readability. The font height includes a certain amount of space, known as leading 

(pronounced ledding), that appears below the text itself. There is no way to get the leading 

value, but the font height itself can be obtained by calling the following method:  

public int getHeight( ); 

The getBaselinePosition( ) method returns the distance from the top pixel line of 

characters from this Font to the baseline. As shown in Figure 5-15, the baseline is the 

horizontal line along which text characters are placed. If you were writing longhand on a 

ruled page, the ruled lines would coincide with the baseline.  

                                                 
4 Note, however, that fonts that are considered equal need not have been created with the same set of attributes. 

http:///


J2ME in a Nutshell 

164 

The following methods let you measure the advance (i.e., the width) of one or more text 

characters as rendered by a font:  

public int charWidth(char c) 
public int charsWidth(char[] c, int offset, int length) 
public int stringWidth(String str) 
public int substringWidth(String str, int offset, int length) 

In a proportional font, characters have varying widths. The charWidth( ) method returns the 

width of the single character passed as its argument, while the other three return the total 

width of a string or a character array. Note that the width of a set of characters is not 

necessarily the same as the sum of the widths of its individual characters, because the 

platform may perform kerning (i.e., placing some characters closer together than their 

individual widths). Also, in some languages (such as Arabic), a single font character may be 

used to represent several characters from the string being rendered. The widths returned by all 

these methods include the intercharacter spacing required for readability, which appears on 

the right side of each character.  

5.8.2 Text Positioning 

In J2SE, you place text by supplying the coordinates of the point on the baseline at which you 

want rendering to start. MIDP has a more flexible scheme that lets you specify the location of 

one of several different anchor points on the bounding box of the text instead of restricting 

you to using the position of the baseline. Each text drawing method has an anchor argument 

that is constructed by combining a vertical position constant with a horizontal position 

constant to describe the point whose coordinates are given by the x and y method arguments. 

Figure 5-16 shows the vertical and horizontal text positioning values that can be used when 

rendering text. These values are constants defined by the Graphics class.  

Figure 5-16. Text anchor points 

 

The following line of code draws the string "Hello, world" with the top left corner of its 

bounding box at coordinates (0, 0), in the top left corner of the Canvas:  

g.drawString("Hello, world", 0, 0, Graphics.TOP | Graphics.LEFT); 

To right-justify the same string at the top of the Canvas, you instead write:  

g.drawString("Hello, world", canvas.getWidth( ), 0,  
    Graphics.TOP | Graphics.RIGHT); 

Because the anchor argument allows you to specify which part of the bounding box the 

coordinates refer to, you don't need to calculate for yourself how wide the text is in order to 

right-justify it, as would be necessary in J2SE. The same feature also makes it easy to center 

http:///


J2ME in a Nutshell 

165 

text horizontally on the screen. The following line of code achieves this by placing the center 

point of the top of the bounding box halfway across the top line of the Canvas:  

g.drawString("Hello, world", canvas.getWidth( )/2, 0,  
    Graphics.TOP | Graphics.HCENTER); 
 

 

Although the Graphics class defines a constant called VCENTER, you 

cannot use it to vertically center text, because this operation is not 

supported by any of the text drawing methods. The VCENTER constraint 

can, however, be used when positioning an Image, as you'll see later in 

this chapter.  
 

Bear in mind when positioning text that the anchor argument identifies a point on the 

bounding box, and the x and y coordinates specify where that point should be placed on the 

Canvas.
5
 If you insist on using J2SE conventions, you could write code like the following:  

g.drawString("Hello, world", 0, font.getBaselinePosition( ),  
    Graphics.BASELINE | Graphics.LEFT); 

This has the same effect as: 

g.drawString("Hello, world", 0, 0, Graphics.TOP | Graphics.LEFT); 

You can see more examples of text positioning by running the GraphicsMIDlet that we used 

earlier in this chapter and selecting Text from the example list. Running this example on the 

default color phone and the PalmOS platform produces the results shown in Figure 5-17.  

Figure 5-17. Text drawing and positioning 

 

The two lines of text at the top left of the screen were drawn as follows:  

// Top left of canvas 
g.setColor(0xffffff); 
g.drawString("Top left", 0, 0, Graphics.TOP | Graphics.LEFT); 
 
// Draw another string one line below 
Font font = g.getFont( ); 
g.drawString("Below top left", 0, font.getHeight( ),  
    Graphics.TOP | Graphics.LEFT); 

                                                 
5 The x and y coordinates are, of course, relative to the origin of the Graphics object. For the sake of brevity, we are equating the origin with the 

top left corner of a Canvas, but this need not be the case, because the Graphics origin could have been moved by calling the translate( ) 

method. As you'll see later in this chapter, a Graphics object can also be used to draw text onto a mutable Image, using the same concept of anchor 

points 

http:///


J2ME in a Nutshell 

166 

The first string is placed at the top left corner of the Canvas by placing the top left corner 

(Graphics.TOP | Graphics.LEFT) of its bounding box at coordinates (0, 0). The second 

line of text is intended to be drawn immediately below it. To do this, you use the same anchor 

point and x coordinate, but you increase the y coordinate by the height of the font. Refer to 

Figure 5-15 if necessary to see why this is the correct thing to do.  

The text at the bottom right is positioned as follows: 

// Bottom right of canvas 
g.drawString("Bottom right", width, height, Graphics.BOTTOM |  
    Graphics.RIGHT); 

width and height are, respectively, the width and height of the Canvas in pixels.  

The remainder of this example, which produces the text in the middle of the Canvas, 

illustrates how to mix different fonts and colors in the same text line. Since each drawing 

operation uses the current font and color attributes of the Graphics object, you need to 

perform a separate operation for each font and color change. The first part of the string is 

drawn by the following code:  

String str = "Multi-font "; 
font = Font.getFont(Font.FACE_PROPORTIONAL, Font.STYLE_UNDERLINED,  
    Font.SIZE_LARGE); 
g.setFont(font); 
g.drawString(str, 0, height/2, Graphics.LEFT | Graphics.BASELINE); 

This code selects a large proportional font with underlining enabled and draws the text with 

its baseline at the middle point of the Canvas, starting on its left side. To draw the rest of the 

text, you need to use the same anchor constraint, but you have to adjust the x coordinate by 

the amount of horizontal space taken up by the first string, which you can get using the Font 

stringWidth( ) method. Let's select a different font (bold and italic with no underlines) and 

change the drawing color:  

int x = font.stringWidth(str); 
g.setColor(0x00ff00); 
g.setFont(Font.getFont(Font.FACE_PROPORTIONAL, Font.STYLE_BOLD |  
    Font.STYLE_ITALIC,                                                          
 
Font.SIZE_MEDIUM)); 
g.drawString("and multi-color", x, height/2, Graphics.LEFT |  
    Graphics.BASELINE); 

As you can see in Figure 5-17, if the text being rendered is too wide to fit on the screen, it is 

simply clipped. The low-level API does not provide automatic line wrapping; if you need this 

capability, you have to provide it for yourself.  

5.9 Images 

You have already seen that some of the components provided by the high-level user interface 

API allow you to display images. You can create a suitable Image object by loading it from a 

resource in a MIDlet suite's JAR file encoded in PNG format. This section looks at other ways 

to create Image objects and discuss how you can use Images with the low-level API.  

http:///


J2ME in a Nutshell 

167 

5.9.1 Creating Images 

The Image class has four static methods that can be used to create an Image:  

public static Image createImage(String name); 
public static Image createImage(byte[] data, int offset, int length); 
public static Image createImage(int width, int height); 
public static Image createImage(Image source); 

The first and second methods build an Image from data stored either in a named resource 

within the MIDlet's JAR file (as described in Section 4.2.11) or as part of a byte array in 

memory. The image data must be in an encoding format that is both self-identifying (typically 

because it begins with a well-known sequence of bytes, such as "GIF" or "PNG") and 

supported by the platform. At the present time, the only encoding format that MIDP devices 

are required to support is Portable Network Graphics (PNG), which is a public domain 

replacement for the popular GIF format.  

The first of these methods is normally used to load images that are included as part of the 

MIDlet installed on the device. The second is useful for creating an Image from data read into 

a byte array from the network or data stored in and retrieved from the device's permanent 

storage.
6
 In both cases, the image created is immutable, that is, you cannot make any changes 

to it. Immutable images are required by high-level API components such as ImageItem, since 

they don't need to be concerned about having to redraw the image on the screen in the event 

of changes being made.  

The third method creates a mutable image of the given width and height, in which every pixel 

is initialized to white. This method is used to create a buffer that you can use to create an 

image programmatically, using the same Graphics drawing methods that you would use to 

draw on a Canvas. Having created a mutable image in this way, you can use the fourth 

method to create an immutable copy of it so that it can be used in connection with the high-

level API.  

5.9.2 Drawing Images 

Once you have an image (either mutable or immutable), you can draw it onto a Canvas in its 

paint( ) method using the following Graphics method:  

public void drawImage(Image image, int x, int y, int anchor); 

The x, y, and anchor arguments are used in the same way here as they are when drawing text: 

the anchor argument defines an anchor point on the bounding box of the image, and the x and 

y arguments specify the location relative to the origin of the Graphics object at which the 

anchor point should be placed. The legal values for the anchor argument are the same as 

those described earlier for text, except that BASELINE cannot be used (since images do not 

have the concept of a baseline), but VCENTER (which is not valid for text) can be used instead, 

to vertically center the image relative to the given location. If an image is too wide or too tall 

to fit on the screen when drawn at the specified location, it is clipped at boundaries of the 

Canvas. Images are never scaled to fit them into a smaller space, and there is no API that 

would allow a MIDlet to request that an image be scaled.  

                                                 
6 Both networking and local storage are described in Chapter 6. 

http:///


J2ME in a Nutshell 

168 

An example that illustrates image drawing can be seen by running the Chapter5 project in the 

Wireless Toolkit, launching ImageMIDlet, and selecting DrawImage. This example displays a 

Canvas with a paint( ) method that loads an image from the MIDlet JAR file and draws it 

in one of three positions, as shown in Figure 5-18.
7
  

Figure 5-18. Drawing images using drawImage( ) 

 

The implementation of the Canvas and its paint( ) method is shown in Example 5-6.  

If you examine the paint( ) method, you'll see that there are three drawImage( ) calls that 

determine where the image will be drawn. The choice of which to use depends on a counter 

that is incremented each time the method is executed. To force the Canvas to repaint, use the 

Back command to return to the selection list on the previous screen and then reselect 

DrawImage.  

Example 5-6. Canvas That Paints an Image in Three Different Locations  

class DrawImageCanvas extends Canvas { 
    static Image image; 
     
    int count; 
     
    public void paint(Graphics g) { 
        int width = getWidth( ); 
        int height = getHeight( ); 
 
        // Fill the background using black 
        g.setColor(0); 
        g.fillRect(0, 0, width, height); 
         
        // Load an image from the MIDlet resources 
        if (image == null) { 
            try { 
                image = Image.createImage("/ora/ch5/resources/earth.png"); 
            } catch (IOException ex) { 
                g.setColor(0xffffff); 
                g.drawString("Failed to load image!", 0, 0, Graphics.TOP |  
                    Graphics.LEFT); 
                return; 
            } 
        } 
         
 
 
 
 

                                                 
7 This image of the earth was taken by the astronaut crew of Apollo 8 on Christmas, 1969, and was obtained from the historical image archive of 

the National Aeronautical and Space Administration. 

http:///


J2ME in a Nutshell 

169 

        switch (count % 3) { 
        case 0: 
            // Draw the image at the top left of the screen 
            g.drawImage(image, 0, 0, Graphics.TOP | Graphics.LEFT); 
            break; 
 
        case 1: 
            // Draw it in the bottom right corner 
            g.drawImage(image, width, height, Graphics.BOTTOM |  
                Graphics.RIGHT); 
            break; 
        case 2: 
            // Draw it in the center 
            g.drawImage(image, width/2, height/2, Graphics.VCENTER |  
                Graphics.HCENTER); 
        } 
        count++; 
    } 
} 

When the MIDlet first appears, the image is drawn by this method call: 

g.drawImage(image, 0, 0, Graphics.TOP | Graphics.LEFT); 

which places the top left of the image at coordinate location (0, 0), as can be seen on the left 

of Figure 5-18. The second time, this drawImage( ) call is executed:  

g.drawImage(image, width, height, Graphics.BOTTOM | Graphics.RIGHT); 

Now the image appears at the bottom right of the screen. The last call is more interesting:  

g.drawImage(image, width/2, height/2, Graphics.VCENTER |  
    Graphics.HCENTER); 

Here the anchor argument is VCENTER | HCENTER, which refers to the center of the image 

itself, and the drawImage( ) call places this point halfway across and halfway down the 

Canvas -- in other words, the image is centered on the Canvas. Note that none of these 

examples require you to know the size of the image in order to place it properly. If you need 

this information, you can get it from the Image getWidth( ) and getHeight( ) methods.  

5.9.3 Creating an Image Programmatically 

If you create a mutable Image, you can use Graphics methods to draw onto it and then copy 

the result to the screen. This technique can be used to improve performance by drawing 

complex shapes that do not change or change rarely offline so that they can be quickly copied 

to the screen when required in the paint( ) method of the Canvas class. This same 

technique, when taken to its extreme, can also be used to implement double buffering for 

those devices that do not directly support it (i.e., those for which the Canvas 

isDoubleBuffered( ) method returns false).  

To draw on a mutable Image, you first need to get a Graphics object using the following 

method:  

public Graphics getGraphics( ); 

http:///


J2ME in a Nutshell 

170 

This method throws an IllegalStateException if it is invoked on an immutable Image. The 

returned Graphics object has its coordinate origin at the top left corner of the Image, and a 

clip covers its surface. The object is initialized with the default font, the current color is black, 

and its stroke style is set to draw solid lines. These attributes are the same as those installed in 

the Graphics object passed to the paint( ) method. An important difference between these 

two, however, is that you can retain a reference to the object returned by getGraphics( ) 

indefinitely, and it remains valid, whereas the Graphics object used in the paint( ) method 

should not be used once paint( ) returns.  

An example that uses the technique of drawing onto a mutable image can be seen by selecting 

the ImageGraphics example from the list offered by the ImageMIDlet. The example creates a 

pattern using colored lines as shown in Figure 5-19. The code that creates this pattern is 

shown in Example 5-7.  

Figure 5-19. Drawing onto a mutable Image 

 

Example 5-7. Drawing on a Mutable Image  

public void paint(Graphics g) { 
    int width = getWidth( ); 
    int height = getHeight( ); 
 
    // Create an Image the same size as the Canvas. 
    Image image = Image.createImage(width, height); 
    Graphics imageGraphics = image.getGraphics( ); 
 
    // Fill the background of the image black 
    imageGraphics.fillRect(0, 0, width, height); 
 
    // Draw a pattern of lines 
    int count = 10; 
    int yIncrement = height/count; 
    int xIncrement = width/count; 
    for (int i = 0, x = xIncrement, y = 0; i < count; i++) { 
        imageGraphics.setColor(0xC0 + ((128 + 10 * i) << 8) +  
            ((128 + 10 * i) << 16)); 
        imageGraphics.drawLine(0, y, x, height); 
        y += yIncrement; 
        x += xIncrement; 
    } 
 
    // Add some text 
    imageGraphics.setFont(Font.getFont(Font.FACE_PROPORTIONAL, 
                            Font.STYLE_UNDERLINED, Font.SIZE_SMALL)); 
    imageGraphics.setColor(0xffff00); 
    imageGraphics.drawString("Image Graphics", width/2, 0, Graphics.TOP |  
        Graphics.HCENTER); 
 
 

http:///


J2ME in a Nutshell 

171 

    // Copy the Image to the screen 
    g.drawImage(image, 0, 0, Graphics.TOP | Graphics.LEFT); 
} 

The paint( ) method creates a blank image that is exactly the same size as the Canvas and 

uses getGraphics( ) to get a Graphics object that can be used to draw on it. The process of 

drawing the line pattern and the text that appears at the top of the image is exactly the same as 

would be used if they were being drawn directly onto the Canvas itself. Finally, the content of 

the image is copied to the Canvas itself and therefore to the screen, using the drawImage( ) 

method of the Canvas Graphics and supplying the Image object as the source:  

g.drawImage(image, 0, 0, Graphics.TOP | Graphics.LEFT); 

This example is a demonstration of double buffering, because the graphics are first drawn in 

an off-screen buffer (the Image) and then copied onto the screen. For devices that do not 

implement automatic double buffering, this technique can improve the appearance of a 

MIDlet by hiding screen updates from the user until they are complete. A possible 

disadvantage of this technique is that it requires more memory than direct screen updates.  

5.10 Event Handling 

So far, you have seen how to use the Canvas, Image, and Graphics classes to draw lines, 

shapes, and images onto the screen. The low-level API also provides the ability for a MIDlet 

to detect and respond to user input from the keypad and a pointing device, if the device has 

one.  

5.10.1 Key Handling 

High-level API user interface components like TextBox and TextField automatically handle 

interaction with the user via the keypad (or its equivalent), so that the MIDlet just has to wait 

for the user to indicate that input is complete and read the content of the control as a String 

or an array of characters. If you are using the low-level API, however, the only way to 

respond to keyboard input is by overriding the following methods of the Canvas class:  

protected void keyPressed(int keyCode) 
protected void keyReleased(int keyCode) 
protected void keyRepeated(int keyCode) 

The keyPressed( ) and keyReleased( ) methods are, fairly obviously, called when the 

user presses and releases a key. If the user holds a key down for a device-dependent time, 

some platforms periodically call the keyRepeated( ) method, passing it the same argument 

as that supplied to the previous keyPressed( ) call. Since not all devices have a repeating 

keyboard, a MIDlet can determine whether to expect these events by calling the Canvas 

hasRepeatEvents( ) method and adjusting its behavior appropriately.  

Unlike PC keyboards, which are more or less standardized, the wide range of different 

devices supported by MIDP brings with it a similar range of keypads, many of which have 

only a very small number of keys. Examples of typical keypads can be seen in Figures 

Figure 3-2 and Figure 3-3. The low-level API assumes only that the device has the minimal 

set of keys required by the MIDP specification:  

http:///


J2ME in a Nutshell 

172 

• The digits 0 through 9 

• The star or asterisk character (*) 

• The pound or hash character (#) 

The Canvas class defines constants that represent these keys, listed in Table 5-2. The MIDP 

platform vendor is required to ensure that these constant values are passed as the keyCode 

argument when keyPressed( ), keyRepeated( ), and keyReleased( ) are called 

whenever the keys that correspond to them are pressed or released. The actual values are, in 

fact, the Unicode values for the corresponding characters so that, for example, the following 

expression has the value true:  

Canvas.KEY_NUM0 == '0' 
 

Table 5-2. Standard Key Codes and Game Actions 

Key Code/Action Meaning Key Code/Action Meaning 

KEY_NUM0 Number key 0 KEY_POUND The pound key (#) 

KEY_NUM1 Number key 1 UP Game action UP 

KEY_NUM2 Number key 2 DOWN Game action DOWN 

KEY_NUM3 Number key 3 LEFT Game action LEFT 

KEY_NUM4 Number key 4 RIGHT Game action RIGHT 

KEY_NUM5 Number key 5 FIRE Game action FIRE 

KEY_NUM6 Number key 6 GAME_A Custom game action A 

KEY_NUM7 Number key 7 GAME_B Custom game action B 

KEY_NUM8 Number key 8 GAME_C Custom game action C 

KEY_NUM9 Number key 9 GAME_D Custom game action D 

KEY_STAR The star key (*)     

The example source code for this book contains a MIDlet that displays the key codes 

generated by the keys of a MIDP device. In the Wireless Toolkit, run the Chapter5 project 

and select EventsMIDlet. As you press and hold down a key, the screen displays both the 

numeric value of the keyCode argument passed to the keyPressed( ) method and the name 

of the Canvas constant that corresponds to it, if there is one. The screen shot on the left side of 

Figure 5-20 shows the result of pressing the 1 key on the keypad of the default color phone. 

As you can see, the key code itself has value 49, which is the Unicode value for the character 

1, and it has been identified as Canvas.KEY_NUM1.  

Figure 5-20. Key codes and game actions on cell phones 

 

Portable MIDlets must rely only on the key codes (that is, the constants whose names begin 

with "KEY_") listed in Table 5-2. Devices with larger keyboards might be capable of 

returning additional key codes when other keys are pressed. For example, the RIM wireless 

handheld keyboard, shown in Figure 3-2, includes keys that represent alphabetic characters as 

well as the standard number keys. If you run the EventsMIDlet on this emulated device, you 

http:///


J2ME in a Nutshell 

173 

will find that the alphabetic keys also generate key codes (which also happen to be the 

Unicode characters that correspond to the characters on the key faces), but making use of 

them (or relying on their values) would introduce device-dependent assumptions into the 

MIDlet.  

Games (and even some more serious applications) usually require movement keys and a FIRE 

button, and many MIDP devices have keys that are obvious candidates to be used for these 

functions. On the default color phone, for example, the cluster of arrow keys could be used to 

indicate which way to move, and the circular SELECT button at their center could be the 

FIRE button. On other devices, such as the RIM wireless handheld, there aren't any keys that 

immediately seem ideal for these functions. The Canvas class defines nine constants, shown 

in the "Key Code/Action" columns of Table 5-2, that can be used to identify a set of game 

actions in a platform-independent way, so that MIDlets do not need to be concerned about 

how they are mapped to keys on the keypad. Five of these values (UP, LEFT, DOWN, RIGHT, and 

FIRE) have obvious meanings and should be available on all MIDP devices. The remaining 

four (GAME_A, GAME_B, GAME_C, and GAME_D) can be used for game-specific functions. Because 

not all devices will necessarily be able to map keys to these functions (and those that map 

some of them may not provide all four), they should be used only to provide a quick and 

convenient way for the user to access functionality that is also accessible by more portable 

means, such as Commands attached to the Canvas.  

Because the mapping of game actions to key codes is platform-dependent, MIDlets do not 

detect them by examining the keyCode argument of the keyPressed( ) method. In other 

words, the following code is incorrect:  

if (keyCode == Canvas.FIRE) { 
    // NOT CORRECT!!! 
} 

Instead, there are two Canvas methods that can be used to test whether a given key code 

represents a game action:  

public int getGameAction(int keyCode) 
public int getKeyCode(int gameAction) 

The getGameAction( ) method converts a key code to the corresponding game action and 

returns 0 if the key is not mapped to an action:  

protected void keyPressed(int keyCode) { 
    if (getGameAction(keyCode) == Canvas.FIRE) { 
        // FIRE action 
    } 
} 

The getKeyCode( ) method does just the opposite: given a game action, it returns the key 

code for the key that is mapped to that action. This method would normally be used during 

initialization to get the mappings for the game actions that a MIDlet uses; this avoids method 

calls in the keyPressed( ) method. For example:  

 
 
 

http:///


J2ME in a Nutshell 

174 

int fireKey = getKeyCode(Canvas.FIRE); 
int upKey = getKeyCode(Canvas.UP); 
int downKey = getKeyCode(Canvas.DOWN); 
        . 
        . 
protected void keyPressed(int keyCode) { 
    if (keyCode == fireKey) { 
        // FIRE action 
    } else if (keyCode == upKey) { 
        // UP actions 
    }  
} 

The advantage of using getKeyCode( ) in this way is that the code in the keyPressed( ) 

method will run slightly faster than if it called getGameAction( ) each time a key is pressed. 

The downside is that if the platform allows the user to change the mapping between game 

actions and keys, the MIDlet will no longer work as expected if any of the game actions that it 

uses are remapped.  

The EventsMIDlet uses the getGameAction( ) method to check each key code passed to its 

keyPressed( ) method to determine whether it is a game action; it displays the action name 

if it is. By experimenting with this MIDlet on the different emulated devices in the Wireless 

Toolkit, you can see how device-dependent the mapping between game actions and keys is. 

You can see an example of this in Figure 5-20. The middle screenshot demonstrates that on 

the default color phone, the UP arrow key, which is mapped to the UP game action, has key 

code -1, whereas on the Motorola cell phone, shown on the right, the same game action is 

mapped from the key with key code -10.  

The low-level key handling API is much more primitive than the facilities available from 

TextBox and TextField. In particular, the small number of standard key codes makes it 

impossible to provide alphabetic input in a platform-independent way. In fact, in the MIDP 

reference implementation, the keyboard input features used by the high-level components are 

actually built on the same key handling described in this section. In order to provide 

alphabetic and other characters, the high-level API implementation maintains internal shift 

state information and maps the key presses to the appropriate Unicode character values. For 

example, on the default color phone, the star key can be used to shift input modes. Pressing 

this key causes the internal state information to be changed, and a different lookup table is 

used to convert keycodes to characters. Furthermore, because each key has more than one 

legend engraved on it, more complex logic is needed to determine whether pressing the key 

labeled 2 should generate the code for 2 or for one of the letters A, B, or C. This process, is, 

of course, device-dependent since it requires knowledge of the keyboard layout, which is 

customized by device vendors.  

If you have developed GUI applications using J2SE, you have almost certainly at some time 

had to develop or purchase custom components to provide functionality that isn't provided by 

Swing and/or AWT. Writing nontrivial custom components on the MIDP platform, however, 

is almost impossible. As far as the high-level API is concerned, the methods that you need to 

access or override to change the behavior of an existing component are all either private or 

package private, making them inaccessible to third-party code. There is, therefore, no base 

class like Component or JComponent from which you can start constructing a custom 

component. You can use the low-level API to develop more sophisticated user interfaces, but, 

as just noted, providing fully featured key input is very complex. Even if you take the trouble 

http:///


J2ME in a Nutshell 

175 

to implement it properly, you can't take something built for the low-level API and use it with 

a Form, so the component could not be used in the high-level API. Furthermore, there is no 

concept of Container or layout manager in MIDP, so it is not practical to build small 

components that you can plug into a Canvas without having first to reinvent much of the 

infrastructure provided by the high-level API. Some device vendors have solved this problem 

by creating their own custom components or offering toolkits that make it possible to write 

your own. Using these facilities will, of course, make your MIDlet nonportable to other 

devices.  

5.10.2 Using the Pointer 

MIDlets running on devices that have a pointing device can detect pointer state changes by 

overriding the following Canvas methods:  

protected void pointerPressed(int x, int y) 
protected void pointerDragged(int x, int y) 
protected void pointerReleased(int x, int y) 

In all cases, the x and y arguments give the position of the pointer relative to the top left 

corner of the Canvas. A MIDlet can determine whether the pointerPressed( ) and 

pointerReleased( ) methods will be called by using the Canvas hasPointerEvents( ) 

method; hasPointerMotionEvents( ) indicates whether pointerDragged( ) will be 

called.  

The EventsMIDlet reports pointer events on devices that support them by displaying the x 

and y values passed to the three previous methods on the Canvas. If you run this MIDlet 

under the Wireless Toolkit and select the PalmOS device, you can click and drag the mouse 

on the emulator's screen to generate pointer events. If you click on the screen and drag the 

mouse around, you will notice the following:  

• A continuous stream of events is generated as the pointer moves around, but the 

stream does not necessarily report every point that the pointer traverses. The faster you 

move the pointer, the further apart successive pairs of (x, y) values will be.  

• If you drag the pointer from the top of the screen to the bottom, the y value stops 

increasing when you move out of the drawing area of the Canvas, which excludes the 

area allocated to Command buttons.  

• If you drag the pointer outside the screen and even outside the emulator window, you 

will still get pointer events, provided that one of the coordinates is within the range of 

valid values for the Canvas. If, for example, you start from the center of the Canvas 

and drag the pointer out to the right, you will continue to receive events in which the y 

coordinate changes, but the x coordinate remains at its maximum value. If you then 

drag the pointer up, the y coordinate decreases to zero, but negative values are not 

returned. Starting from the center and dragging up, down, or left gives similar results. 

If you release the mouse (i.e., lift the pointer) when it is outside the screen area, the 

pointerReleased( ) method is still called, as evidenced by the fact that coordinates 

are no longer displayed on the screen.  

 

 

http:///


J2ME in a Nutshell 

176 

5.11 Multithreading and the User Interface 

If you have developed J2SE GUI applications with Swing, you know that you have to be very 

careful when manipulating Swing components, because, with the exception of a few special 

cases, they are not thread-safe. The end result of this is that, although the application may be 

multithreaded, any logic that affects the user interface must be executed in the event thread. 

The MIDP user interface components, however, are completely thread-safe, so you can create 

and manipulate them from any thread. This makes writing MIDlets much simpler than 

building Swing applications. Nevertheless, there are a few things that you need to be aware of 

with regard to multithreaded MIDlets. We'll cover those in this section.  

5.11.1 Serialization of User Interface Events 

Although application code can freely access user interface components from arbitrary threads, 

the user interface code itself arranges for all of its own event handling to be serialized. Thus, 

only one of the following may be happening at any given time:  

• Painting of any user interface component by calling its paint( ) method  

• Reporting of a key event in the Canvas keyPressed( ), keyRepeated( ), or 

keyReleased( ) methods  

• Reporting of pointer events in the pointerPressed( ), pointerDragged( ), and 

pointerReleased( ) methods  

This serialization is achieved by running all these methods in a single thread, which we'll refer 

to here as the event thread. From the MIDlet point of view, this can be a great benefit, because 

MIDlets that construct a user interface during initialization (which is not performed in the 

event thread) and then simply react to user interface events do not need to concern themselves 

with multithreading issues at all. All of their event handling is automatically serialized.  

Note, however, that TimerTasks are run in the threads of their associated Timers and 

therefore are not synchronized with the event thread. Since the user interface components 

themselves are thread-safe, the only implications of this are that the MIDlet must be careful 

when modifying its internal state in methods that execute as a result of timer events. This 

applies especially to MIDlets that use the low-level API, where the Canvas paint( ) method 

might use state that is being updated in a separate thread. You saw an example of this in the 

AnimationMIDlet shown earlier in this chapter, where the section of the paint( ) code that 

needs to use the locations of the blocks on the screen (see Example 5-2) is synchronized so 

that it does not run at the same time as the section of code that moves the blocks, which is 

shown in Example 5-3.  

5.11.2 Running Code in the Event Thread 

Although the MIDP user interface components are thread-safe and therefore can be updated 

from any thread, it is sometimes useful to arrange for MIDlet code to be run in the event 

thread. This might come in handy if the MIDlet has a thread that obtains data from a network 

connection and then needs to update internal data structures that are also used by the user 

interface. You could handle this by applying locks around the code that performs the update 

and in the painting code, as we did with the AnimationMIDlet, or you could perform all the 

updates in the event thread itself, which removes the need for locking. You can implement the 

latter approach using the following method of the Display class:  

http:///


J2ME in a Nutshell 

177 

public void callSerially(Runnable runnable); 

The code to be executed in the event thread should be implemented in the run( ) method of 

the Runnable passed to the callSerially( ) method:  

Display.getDisplay(midletReference).callSerially(new Runnable( ) { 
    public void run( ) { 
        // Code to be run in the event thread goes here 
    } 
}); 

The platform does not make any guarantees about when this code will be run, apart from the 

following:  

• If there are any pending paint operations to be performed on the display, they will be 

completed before any code scheduled using callSerially( ) is run.  

• If more than one call of callSerially( ) is made, the run( ) methods of the 

Runnable objects are executed in the same order as the callSerially( ) calls.  

Since all pending paint operations are guaranteed to be complete before the code in the run( 

) method is executed, you can use this mechanism to interleave code that creates the next 

stage of an animation with the painting operations. As an example, instead of running the 

frame updates for the AnimationMIDlet from a timer, you could instead include the 

following code in its startApp( ) method:  

display.callSerially(new Runnable( ) { 
    public void run( ) { 
        // Move all of the blocks to their new locations. 
        // This method calls repaint( ) 
        moveAllBlocks( ); 
       
       // Schedule this code to run again 
      display.callSerially(this); 
    } 
}); 

When the callSerially( ) method is invoked for the first time, it calls moveAllBlocks( ) 

to place all the blocks in their new positions. Since this method calls repaint( ) internally, 

when it returns, there will be a pending paint operation. Finally, it uses the callSerially( ) 

method to cause itself to be scheduled again. However, the platform guarantees that the paint 

operation will be completed before code scheduled using callSerially( ), so the painting 

and animation code runs alternately, like this:  

1. First call to Runnable calls moveAllBlocks( ) (and repaint( )) and 

callSerially( ).  

2. paint( ) method updates the screen. 

3. On completion of paint( ), Runnable is called again. This calls moveAllBlocks( ), 

repaint( ), and callSerially( ).  

4. paint( ) method updates the screen. 

5. Runnable is called again. 

http:///


J2ME in a Nutshell 

178 

And so on. This produces screen updates at the maximum rate that the platform can sustain 

because there is no apparent timer delay. In the MIDP reference implementation, however, 

calling repaint( ) does not cause an invocation of paint( ) to be scheduled immediately. 

There is a short delay to allow subsequent repaint( ) operations to be serviced at the same 

time. As a result, the previous code results in one frame update in each paint cycle, which is 

approximately every 30 milliseconds in the reference implementation.  

Another way to produce the same effect is to create a separate thread that does nothing other 

than call moveAllBlocks( ) in a loop:  

public void run( ) { 
    while (!stopped) { 
        moveAllBlocks( ); 
    } 
} 

stopped is set to true when the MIDlet's destroyApp( ) method is called. As it stands, this 

code would not work well, because it would simply spin, updating the positions of all the 

blocks and scheduling repaints that occur in a separate thread at a much lower frequency. You 

really need to wait for the repaint operation to complete after each invocation of 

moveAllBlocks( ), to synchonize it with the repaint cycle. The following Canvas method 

can be used to arrange this:  

publlic void serviceRepaints( ) 

serviceRepaints( ) works by blocking until all pending repaint operations on the Canvas 

have been completed. Therefore, the following code (where the run( ) method is assumed to 

be a method of the Canvas subclass in question) would implement an animation rate of one 

frame per paint cycle:  

public void run( ) { 
    while (!stopped) { 
        moveAllBlocks( ); 
        serviceRepaints( );  // Block until painting done 
    } 
} 

http:///


J2ME in a Nutshell 

179 

Chapter 6. Wireless Java: Networking and Persistent 
Storage 

The devices that the J2ME platform is intended for are, by their nature, reliant for their 

usefulness on the ability to communicate with the outside world. Cell phones, of course, serve 

no real purpose other than to exist on a network, while PDAs would be much less useful if 

you could not connect them occasionally to a desktop computer to save your new customer 

orders or upload more appointments from your departmental calendar. As important as 

networking is, however, there is a certain cost to be paid for it in terms of the resources 

needed for the software that implements the various networking protocols in use today. Given 

the relatively small amount of memory and processing power available in cell phones and the 

smaller PDAs, compromises have to be made in order to provide networking support for the 

type of hardware on which profiles designed for the CLDC are run. The same constraints do 

not exist for the larger devices that host CDC profiles. Not surprisingly, then, these two 

different profile families incorporate completely different communication software 

architectures. This chapter looks at networking and communications in the context of the 

CLDC configuration and MIDP, which differs greatly from its CDC equivalent, covered in 

Chapter 7.  

This chapter also looks at another essential feature for a mobile device: the ability to store 

information and access it from applications running on that device. The type of storage 

available, and the amount of space available, varies greatly from device to device. In order to 

make software written for the J2ME platform as portable as possible, MIDP includes a 

package that provides a simple and platform-independent mechanism for accessing whatever 

type of persistent storage is available on the device that the application is running on. The end 

of this chapter, brings together both the networking and storage threads by showing you how 

to create a small database of book details that resides on your cell phone or in your PDA and 

can also be updated from the Internet on demand.  

6.1 A Networking Architecture for Small Devices 

J2SE contains a low-level networking infrastructure implemented in the java.net package, 

layered on top of which are higher-level facilities such as RMI, CORBA, Jini, and the rest of 

the enterprise networking APIs. Since networking and communications are fundamental to 

any mobile device, they fall within the scope of the CLDC. Rather than specifying that mobile 

devices should use some or all of the java.net package to provide these features, the CLDC 

specification instead defines a completely new framework as the basis for all the external 

connectivity to be supplied by the profiles that depend on it. This choice was made for the 

following reasons:  

Memory requirements  

The java.net package contains 21 classes, 5 interfaces, and 8 exceptions, in addition 

to referencing other APIs from the core packages, not all of which are guaranteed to 

be available in any given profile. The memory requirement for this set of classes was 

judged to be too great for the small footprint devices that CLDC is designed for.  

 

http:///


J2ME in a Nutshell 

180 

Consistency  

The J2SE networking classes support both low-level socket programming and access 

to web servers using HTTP, which is layered above the socket interfaces. The 

programming model for these two modes of operation is different, however. For 

example, to make a socket-level connection, you need an InetAddress object and a 

port number with which you construct a Socket; on the other hand, to connect to a 

web server using HTTP, you need a URL from which you can then obtain a 

URLConnection. The differences are even greater when it comes to using a serial 

device, because you need to install an extra package and use yet another programming 

model. Given the diversity of devices and communication mechanisms that the CLDC 

might be required to support, a more uniform API was clearly required.  

Implementation flexibility  

Within the java.net package, most of the API revolves around classes that are 

directly accessed by the application programmer. For example, all socket-based 

programs use the Socket class, while any application that requires HTTP obtains an 

instance of the HttpURLConnection class. In the context of J2ME, however, the 

mechanism by which a particular device provides these facilities might be device-

specific: the HTTP implementation for a handheld with direct connectivity to the 

Internet is probably nothing like that for a cell phone that does not have similar 

connectivity. Although the J2SE networking package provides mechanisms that allow 

the actual classes that provide the low-level implementation details to be substituted 

by application code and by the J2SE platform vendor, the means by which this is 

achieved is different for sockets and for URL-based protocols like HTTP. Instead of 

using the same approach, the CLDC designers decided to use an architecture based 

entirely around interfaces, so that application code would not be tied to particular 

classes. Thus, vendors are free to provide socket and HTTP implementations that are 

appropriate for their specific devices.  

The CLDC Generic Connection Framework (GCF) is implemented in the 

javax.microedition.io package; its class hierarchy is shown in Chapter 14.  

6.1.1 Connection and Connector 

The most basic interface in this package is Connection, which represents a connection of any 

kind. At this level, all you can do is open or close the connection. In fact, the Connection 

interface has only one method:  

public interface Connection { 
    public void close( ) throws IOException; 
} 

Connection doesn't need an open( ) method because you can't use a Connection to obtain a 

Connection. Instead, all Connections are obtained from the Connector class, which has 

three static open( ) methods that can be used for this purpose:  

public static Connection open(String name); 
public static Connection open(String name, int mode); 
public static Connection open(String name, int mode, boolean timeouts); 

http:///


J2ME in a Nutshell 

181 

The name parameter specifies the type of connection that is required. Its general format is:  

scheme:address;parameters 

The scheme determines the protocol or device type to be used, address is a protocol- or 

device-specific identifier for the resource to be accessed, and parameters provides any extra 

information that is required to open a connection of the required type. Although the CLDC 

specification defines the GCF itself, it does not require implementations to provide support 

for any fixed set of protocols and, therefore, does not specify any particular scheme names 

that might be used, although it does give examples. Sun's CLDC reference implementation 

includes unofficial and unsupported implementations of various schemes, the names of which 

are very likely to be adopted by profiles that include official support for them. Here are a few 

examples that show how the name parameter is typically constructed for a given protocol:  

socket://www.amazon.com:80 
http://www.amazon.com/index.html 
comm:0;baudrate=28800;parity=even 

At the time of writing, the only officially supported protocol is HTTP, which is specified by 

MIDP. Examples that use HTTP and some of the other schemes provided by the CLDC 

reference implementation will be shown later in this chapter.  

The remaining parameters of the open( ) method specify attributes of the connection itself. 

The optional mode parameter can take one of the values Connector.READ, Connector.WRITE, 

or Connector.READ_WRITE. If you don't specify a value, Connector.READ_WRITE is 

assumed. Not all devices support both reading and writing; for example, some printers might 

not recognize a read mode. If you attempt to use a mode that the device does not support 

(which might include the default), an IllegalArgumentException is thrown. The optional 

timeout parameter can be used to indicate that application code can make use of timeouts on 

read or write operations if they are supported by the implementation. If the device or protocol 

implementation supports timeouts, and this parameter is true, an InterruptedIOException 

is thrown from any method that experiences a timeout. This is typically used to ensure that an 

attempt to read from a network connection does not block indefinitely. Note, however, that 

the length of the timeout period cannot be set by the application.  

6.1.2 Types of Connection 

The InputConnection and OutputConnection interfaces are derived directly from 

Connection. They add the ability to obtain input and output streams to access whatever 

underlies the connection. InputConnection provides two methods that provide streams for 

input:  

public InputStream openInputStream( ) throws IOException 
public DataInputStream openDataInputStream( ) throws IOException 

OutputConnection has the corresponding methods for output streams:  

public OutputStream openOutputStream( ) throws IOException 
public DataOutputStream openDataOutputStream( ) throws IOException 

http:///


J2ME in a Nutshell 

182 

InputStream and OutputStream provide direct, byte-level access to the underlying data 

stream, whereas DataInputStream and DataOutputStream allow you to work in terms of 

primitive Java data types such as int, char, and String.  

Although most communications mechanisms support both input and output, these interfaces 

are kept separate. Thus, devices or protocols that are inherently unidirectional, at least as far 

as data transfer is concerned, can return a subinterface of Connection that either does not 

allow reading or does not allow writing, as appropriate. Where bidirectional, stream-based 

data communication is supported, the implementation can return a StreamConnection, which 

combines the methods of InputConnection and OutputConnection in a single interface:  

public interface StreamConnection extends InputConnection, 
    OutputConnection; 

In the CLDC reference implementation, the socket scheme returns a StreamConnection 

from the Connector open method, because a socket can be used both to send and receive 

data.  

A StreamConnection offers the ability to transfer a sequence of bytes from a sender to a 

receiver, but it leaves the interpretation of the content of the byte stream to the 

communicating parties. If there is a more ordered structure to the data that is being 

exchanged, the protocol can use the ContentConnection interface, which adds the following 

methods to those of StreamConnection:  

public long getLength( ); 
public String getType( ); 
public String getEncoding( ); 

This interface envisages the exchange of information with defined message boundaries, so 

that it is meaningful to have a getLength( ) method that can return the length of the next 

message in the input stream. The getType( ) method allows different data types to be 

distinguished, while the getEncoding( ) method allows the use of different schemes for 

encoding 16-bit Unicode character data into an 8-bit byte stream. The means by which the 

message boundaries, data type, and encoding are communicated from the sender to the 

receiver depend entirely on the underlying protocol. One protocol that can provide this 

information is HTTP, so it is perhaps not surprising that the HttpConnection interface 

extends ContentConnection. HttpConnection and the MIDP implementation of HTTP are 

described later in this chapter.  

There are two more interfaces in the javax.microedition.io package shown in Chapter 14 

that we haven't yet covered: DatagramConnection and StreamConnectionNotifier. Both 

these interfaces are derived directly from Connection, because neither of them is associated 

with a data stream. DatagramConnection is concerned with sending and receiving discrete 

packets of data (called datagrams) without setting up a connection between the sender and the 

receiver. DatagramConnection and the associated Datagram class are discussed in more 

detail in Section 6.3. Finally, StreamConnectionNotifier is used when implementing a 

server when using sockets, which is the subject of the next section.  

 

http:///


J2ME in a Nutshell 

183 

6.2 Sockets 

Sockets are the lowest level of network communication that most programmers encounter, 

although real enthusiasts might choose to delve into the murky details of transport and 

network layers -- and some even survive the experience! Because the socket API is so simple, 

widely known, and universally available, it is often used as the basis for distributed 

applications involving one or more clients talking to a single server, exchanging information 

using a very basic application-level protocol. In this situation, the use of a higher-level 

abstract such as RMI, CORBA, or one of the Java Enterprise products would not be justified. 

All this notwithstanding, CLDC does not require the provision of a socket interface to the 

network, and neither does MIDP. Part of the reason is that sockets are usually used in 

connection with Internet protocols such as TCP/IP, but many mobile devices do not have a 

direct connection to the Internet, and, therefore, the device's host software almost certainly 

does not include a TCP/IP protocol stack. Making sockets part of MIDP would have required 

manufacturers to add this software to their devices (which has an associated cost) or 

necessitated its inclusion in the MIDP reference implementation, which is not economically 

possible on many platforms because of the memory requirements. Socket support is, however, 

under consideration for the next version of MIDP, which is being developed under the Java 

Community Process as JSR 118. You can obtain information about JSR 118 from 

http://www.jcp.org/jsr/detail/118.jsp.  

At the present time, therefore, applications that use sockets work on some devices, such as 

PDAs with modems, but not on others and thus cannot be considered portable. However, 

because sockets are likely to be supported in the next version of MIDP, we'll take advantage 

of the socket implementation in the CLDC 1.0 reference release to illustrate how sockets fit 

into the GCF by showing a simple application that retrieves some data from a web server.  

6.2.1 Client Sockets 

The steps required to open a socket connection to a web server and read some data from it are 

as follows:  

1. Build the appropriate name string and invoke the Connector open( ) method.  

2. Get an output stream and use it to send a request message to the server.  

3. Open an input stream and read the response. 

4. Close both streams and the socket. 

The naming scheme for sockets uses the fixed string "socket://" followed by the server name 

and port, separated by a colon. Here's how you might open a socket to a web server given the 

server's name and a string containing its port number (usually 80) in variables called server 

and port, respectively:  

 StreamConnection socket; 
        try {  
           String name = "socket://" + server + ":" + port; 
            socket = (StreamConnection)Connector.open(name,  
                Connector.READ_WRITE); 
        } catch (Exception ex) { 
            // Handle failure to connect here... 
        } 

http:///


J2ME in a Nutshell 

184 

If the address you supply is invalid, or the server is not accessible, the open( ) method 

throws an exception. For the sake of brevity, the error handling is not shown here. The 

protocol implementation for sockets returns a StreamConnection, which means that you can 

send and receive data by getting a pair of output and input streams. In this example, we're 

going to send a message to the server to request a copy of its home page, which we can do as 

follows:  

// Send a message to the server 
String request = "GET / HTTP/1.0\n\n"; 
os = socket.openOutputStream( ); 
os.write(request.getBytes( )); 
os.close( ); 

The StreamConnection openOutputStream( ) method returns an OutputStream that we 

can use to send the HTTP message "GET / HTTP/1.0" to the server, which is a request for the 

server to send its home page. Note that you can't write the message string directly to the 

output stream, because it contains Unicode characters, and the server is expecting to receive a 

stream of bytes. To perform the conversion, we use the String getBytes( ) method, which 

creates an array of bytes that represents the original String in the default encoding of the host 

platform. As long as the request string contains only ASCII characters, which is the case here, 

this gives the correct result, because ASCII characters are valid in every character encoding. 

Writing data to the output stream does not necessarily result in it being sent immediately to 

the server, because the protocol implementation is allowed to buffer unsent data. To force the 

message to be sent, you can use the OutputStream flush( ) method or close the 

OutputStream.  

The next step is to read the response from the server. Since we've asked for the server's home 

page, we have no way of knowing in advance how much data we have to read before we have 

the whole page. Because the server sends an HTTP reply, we could look for the Content-

Length header, which, if it is present, tells us how much data to expect. In this example, 

however, we are simply treating the socket connection as a byte stream, so we don't want to 

try to interpret the reply. The following code takes the simplest possible approach and reads 

up to 128 bytes from the socket, discarding anything else that might follow:  

// Read the server's reply, up to a maximum of 128 bytes. 
is = socket.openInputStream( ); 
final int MAX_LENGTH = 128; 
byte[] buf = new byte[MAX_LENGTH]; 
int total = 0; 
while (total < MAX_LENGTH) { 
    int count = is.read(buf, total, MAX_LENGTH - total); 
    if (count < 0) { 
        break; 
    } 
    total += count; 
} 
is.close( ); 
String reply = new String(buf, 0, total); 

Notice that rather than simply performing a single read for 128 bytes, this code loops around 

reading data in chunks until it fills its input buffer or reaches the end of the input stream 

(which causes the read( ) method to return -1). This is necessary because networks don't 

always deliver data in a single chunk, and the protocol implementation is not bound to buffer 

http:///


J2ME in a Nutshell 

185 

data until it has enough to satisfy the application's read( ) request. In the general case, when 

you ask for N bytes of data from an InputStream obtained from a network connection, you 

should expect to receive anything between 1 and N bytes.  

An alternative way to achieve the same thing is to get a DataInputStream from the socket 

instead of an InputStream. You can then use the readFully( ) method, which blocks until 

its buffer is full, all the data is read, or an error occurs:  

DataInputStream dis = socket.openDataInputStream( ); 
final int MAX_LENGTH = 128 
byte[] buf = new byte[MAX_LENGTH]; 
int total = dis.readFully(buf); 

The first of these two approaches allows you to do something with the data as you receive it, 

but the second commits you to waiting until everything has been received. Which you choose 

will depend on the needs of your application.  

Finally, the bytes that have been read are converted to a Unicode string using a constructor of 

the String class that accepts a byte array. As before, this relies on the returned message being 

encoded either in the receiver's default encoding or in ASCII. Unless you know in advance 

what encoding the web server used, this is the best you can do. Even if you knew the 

encoding, as you almost certainly would if you used HTTP to transfer the page, you still 

might not be able to correctly convert the incoming byte stream to Unicode, because neither 

CLDC nor MIDP makes any guarantees about which character conversion tables are available 

on any given device.  

After reading all the data, both the input and output stream and the socket itself must be 

closed. In order to make sure that all of these resources are freed up even when an error 

occurs, the usual practice is to perform cleanup operations inside a finally block, like this:  

StreamConnection conn = null; 
InputStream is = null 
OutputStream os = null; 
try { 
    // Code shown above 
} finally { 
    // Close the input stream, if we opened it 
    if (is != null) { 
        is.close( ); 
        is = null; 
    } 
    // Repeat for the output stream and the socket. 
} 

 

Ensuring that resources are properly released is of much greater 

importance in the J2ME environment because of the limited resources 

available. It is surprising how quickly you can run out of memory as a 

result of forgetting to close an I/O stream or a network connection. It is 

also good practice to get into the habit of helping the garbage collector 

by nulling references that are no longer required, as shown in the 

finally block above. Regrettably, it is also possible to find yourself 

short of memory even if you never leak any, as you'll see when we 

discuss how to analyze the content of an HTML page in Section 6.4.  
 

http:///


J2ME in a Nutshell 

186 

To try out the code you've just seen, start the RunMIDlet application from the J2ME Wireless 

Toolkit, point it at the Chapter6.jad file in the ora\ch6 directory of this book's example code, 

and select the Socket application from the list of MIDlets. This application lets you supply 

the name and port address of a web server and then fetches and displays the beginning of the 

server's home page. In Figure 6-1, the application was pointed at O'Reilly's web server, which 

listens on port 80 at http://www.oreilly.com/. The right side of the diagram captures the result, 

showing the HTTP headers preceding the O'Reilly home page.  

Figure 6-1. Using a socket to connect to a web server 

 

6.2.2 Server Sockets 

So much for client sockets, but what happens if you want to create a server and listen for 

incoming calls? The programming model for server sockets differs in several ways from that 

of client sockets. First, the name that you give to the Connector open( ) method contains the 

port that you want the server to listen on, but it does not specify the hostname. A server 

implicitly listens on the host it is running on, so there is no need to give a hostname; the 

protocol implementation uses this fact to distinguish a request to create a server socket from a 

request for a client socket. To listen on port 80, for example, you would use the following 

name:  

socket://:80 

The biggest difference with server sockets is that the Connector open( ) method doesn't 

return a StreamConnection object that you can use to send and receive data. This is because 

a server differs from a client in two important ways:  

• When a server is started, it isn't connected to a client at all. Instead, it needs to register 

a port to listen on and then wait for a client to connect to that port.  

• In general, a server supports many clients, either one after another or in parallel. 

Therefore, it needs several different sockets, one for each client that it communicates 

with.  

Instead of returning a StreamConnection, the open( ) method returns a 

StreamConnectionNotifier. StreamConnectionNotifier is an interface, derived from 

Connection, that has only one method (in addition to the close( ) method inherited from 

Connection):  

public StreamConnection acceptAndOpen( ) throws IOException 

Once it has created its StreamConnectionNotifier, a server typically enters a loop in which 

it calls acceptAndOpen( ). This method returns when a client connects to the server, and its 

return value is a StreamConnection object that represents the server's end of the connection. 

http:///


J2ME in a Nutshell 

187 

This object behaves in exactly the same way as the client's socket, so the server can use the 

same coding pattern as the client to send and receive data on the connection.  

Because servers usually have to handle more than one client at a time, they usually create a 

new thread to process each connection. Thus, they avoid holding up all connections while 

waiting for an event on any one of them. Here is a typical coding pattern for a J2ME socket 

server:  

StreamConnectionNotifier serverSocket = 
    (StreamConnectionNotifier)Connector.open("socket://:8000"); 
for (;;) { 
    // Get the next connection 
    final StreamConnection socket = 
        (StreamConnection)serverSocket.acceptAndOpen( ); 
 
    // Handle the connection in a new thread 
    Thread t = new Thread( ) { 
        public void run( ) { 
            OutputStream os = null; 
            try { 
                os = socket.openOutputStream( ); 
                // Communicate with client here . . .  
            } catch (IOException ex) { 
                // Handle error 
            } finally { 
                if (os != null) { 
                    try { 
                        os.close( ); 
                        os = null; 
                    } catch (IOException ex) { 
                    } 
                } 
                try { 
                    socket.close( ); 
                } catch (IOException ex) { 
                } 
            } 
        } 
    }; 
    t.start( ); 
} 

All you need to add to this code is the server-specific processing in the thread that is created 

to handle each connection.  

 

At the time of writing, the reference version of MIDP recognizes client 

sockets, but it does not allow you to create server sockets. If you 

attempt to do so, the Connector open( ) method returns null. You 

can test J2ME socket servers if you use the CLDC reference 

implementation, however, because it does support them.  
 

6.3 Datagrams 

In addition to stream sockets, the CLDC reference implementation contains support for 

datagrams. Datagrams and stream sockets differ in several ways:  

http:///


J2ME in a Nutshell 

188 

Data stream versus message passing  

A stream socket sends a continuous stream of data from a sender to a receiver, with no 

provision for marking record boundaries. Datagrams are sent in discrete packets; data 

sent in one packet is never delivered in the same read as data from another packet.  

Connection-oriented versus connectionless  

When a stream socket is used, a connection, along which all the data flows, is created 

between the sender and the receiver. As a result, there is no need to specify where 

each message is going. A datagram socket does not use a connection; each message is 

individually addressed, and different messages may go to different destinations. 

Likewise, a datagram socket may receive messages from any number of different 

sources, but a stream socket receives data from only a single sender.  

Reliability  

Data sent using a stream socket is guaranteed to be delivered to the receiver, unless the 

intervening network fails. In that case, the receiver is notified that its connection to the 

sender has been lost. Furthermore, the individual bytes are delivered in the order in 

which they were sent, without duplication. A datagram socket makes no such 

promises. Messages may be lost or duplicated, or may not arrive in the order in which 

they were sent.  

Because they do not incur the relatively large cost of setting up a connection before 

communication can commence, datagrams are typically used for lightweight protocols where 

total reliability is not required.  

The CLDC datagram sockets uses the same naming scheme as stream sockets, but the 

protocol name is datagram instead of socket. The following code prepares a datagram 

listener to receive incoming datagrams addressed to port number 32767:  

DatagramConnection receiver =   
    (DatagramConnection)Connector.open("datagram://:32767"); 

On the other hand, this call creates a Connection that allows datagrams to be sent to port 

32767 on a host called target:  

DatagramConnection sender =   
    (DatagramConnection)Connector.open("datagram://target:32767"); 

The object returned by these calls is a DatagramConnection, which is derived directly from 

the primitive Connection interface (see Chapter 14). This means that it does not have 

methods that return input and output streams to allow you to send and receive data -- which is 

appropriate, because, as mentioned above, datagrams do not form a data stream of any kind.  

6.3.1 Sending a Datagram 

To send a datagram, you have to obtain a Datagram object, populate it with the data to be 

sent, and invoke the send( ) method. The DatagramConnection interface has four methods 

that you can use to get a Datagram object:  

http:///


J2ME in a Nutshell 

189 

public Datagram newDatagram(int size) 
public Datagram newDatagram(int size, String address) 
public Datagram newDatagram(byte[] buf, int size) 
public Datagram newDatagram(byte[] buf, int size, String address) 

The first two of these methods allocate both the Datagram object and an associated data 

buffer with the given size; the last two just create a Datagram that points to a preallocated 

buffer. Notice that when you supply your own buffer, you also need to specify the buffer size. 

This allows you to restrict incoming data to only a portion of the actual buffer. Needless to 

say, the size parameter must not be larger than the buffer itself.  

Two of these methods allow you supply an address parameter. By default, all datagrams are 

sent to the address that was specified in the open( ) call, but this can be overridden by 

supplying a different address when you create each datagram. For example:  

DatagramConnection sender =   
    (DatagramConnection)Connector.open("datagram://target:32767"); 
Datagram dgram = sender.newDatagram(64); 
sender.send(dgram);  // Send to port 32767 on target 
dgram = sender.newDatagram(64, "datagram://anotherHost:12345");   
sender.send(dgram);  // Send to port 12345 on anotherHost  

The Datagram interface has a number of methods that allow you to manipulate the data buffer 

or the destination address of the datagram. The getData( ) method returns a reference to the 

data buffer, which is useful if you didn't supply your own buffer when creating the datagram:  

byte[] buffer = dgram.getData( ); 
String message = "Hello, world\n"; 
byte[] dataBytes = message.getBytes( ); 
System.arraycopy(dataBytes, 0, buffer, 0, dataBytes.length); 
dgram.setLength(dataBytes.length); 
sender.send(dgram);  // Send "Hello, world\n" 

An alternative, and probably more sensible, way to do this uses the setData( ) method to 

replace the Datagram's data buffer with a new one:  

byte[] dataBytes = "Hello, world\n".getBytes( ); 
dgram.setData(dataBytes, 0, dataBytes.length); 
sender.send(dgram); 

An interesting feature of the Datagram interface is that it extends both DataOutput and 

DataInput, which means that you can use the methods of these interfaces to store Java data 

types in the output buffer and retrieve them at the receiving end. For example, the following 

code:  

dgram.writeUTF("Hello, world\n"); 
dgram.writeLong(System.currentTimeMillis( )); 
sender.send(dgram); 

sends a datagram containing a greeting along with the current time, which the receiver can 

extract in a similar way:  

String greeting = dgram.readUTF( ); 
long time = dgram.readLong( ); 

http:///


J2ME in a Nutshell 

190 

When using these methods, you need to ensure that the buffer is large enough for the data to 

be written into it.  

Finally, you can change the destination address associated with a Datagram using its 

setAddress( ) method, where the address string is in the same format as the one passed to 

the Connector open( ) method:  

dgram.setAddress("datagram://differentHost:11223"); 
sender.send(dgram);  // Send to port 11223 on differentHost 

6.3.2 Receiving Datagrams 

To receive a datagram, you first have to allocate a Datagram object with a buffer large enough 

for the data that you expect to receive. This can be something of a difficult problem in the 

general case, but applications tend to exchange data with a known maximum size, which can 

be used when calling the newDatagram( ) method. The DatagramConnection interface 

provides two methods, getMaximumLength( ) and getNominalLength( ), that return the 

theoretical maximum size and nominal size (whatever that is supposed to mean) of a 

datagram. However, these are not likely to be of great use, because the protocol that is usually 

used to send datagrams (the User Datagram Protocol, or UDP for short) can support almost 64 

KB in a single message. Calling getMaximumLength( ) and allocating a buffer of the size 

that it returns is not a good idea; not only is it wasteful of space, but it is also likely to require 

more heap space than a typical CLDC device has available!  

The following code snippet shows how to receive datagrams:  

DatagramConnection receiver =  
    (DatagramConnection)Connector.open("datagram://:32767"); 
byte[] buffer = new byte[256]; 
Datagram dgram = receiver.newDatagram(buffer, buffer.length); 
for (;;) { 
    dgram.setLength(buffer.length); 
    receiver.receive(dgram); 
    int length = dgram.getLength( ); 
    System.out.println("Datagram received. Length is " + length); 
 
    // Show the content of the datagram. 
    for (int i = 0; i < length; i++) { 
        System.out.print(buffer[i] + " "); 
    } 
} 

Once this code obtains a DatagramConnection from the Connector open( ) method, it 

allocates a 256-byte buffer, gets a Datagram object pointing at the buffer, and enters a loop 

calling the DatagramConnection receive( ) method. This method blocks until a datagram 

is received and then reads it into the buffer, setting the Datagram length field to reflect the 

amount of data received; this can subsequently be retrieved using the getLength( ) method. 

Notice that at the top of the loop, the setLength( ) method is called to reset the length field 

to allow use of the whole buffer. This is necessary because receipt of a smaller datagram of, 

say 40 bytes, would change the length field; on the next pass of the loop, only 40 bytes of the 

buffer would be available to receive the next message.  

http:///


J2ME in a Nutshell 

191 

 

The intended result of using a buffer that is too small to receive a 

datagram that has been sent to it is currently not clear from the CDLC 

documentation. In the J2SE implementation of datagrams, any data that 

doesn't fit into the receive buffer is simply discarded without warning. 

At the time of writing, if the CDLC implementation receives a datagram 

that is too large for the buffer, it throws an IOException from the 

receive( ) method.  
 

6.3.3 Replying to the Sender 

So far, I've given the impression that datagram connections are opened either for sending or 

receiving, depending on the format of the address passed to the Connector open( ) method. 

In fact, this is not the case: no matter how you open the connection, you can use it to both 

send and receive datagrams. It is quite common for a program to listen for an incoming 

datagram, process it, and send a reply to the sender. A very simple example of this is the 

Internet daytime protocol, which is described in RFC 867 (available from 

http://www.ietf.org/rfc/rfc867.txt). To implement this protocol, you simply have to listen for 

incoming datagrams on port 13 and send a message back to the caller containing the time of 

day in any text format you choose. The content of the incoming datagram is ignored (and, in 

fact, there needn't be any data). This is such a simple protocol that it requires only a few lines 

of code:  

Calendar cal = Calendar.getInstance( ); 
DatagramConnection receiver =  
    (DatagramConnection)Connector.open("datagram://:13"); 
byte[] buffer = new byte[256]; 
Datagram dgram = receiver.newDatagram(buffer, buffer.length); 
for (;;) { 
    dgram.setLength(buffer.length); 
 
    // Wait for somebody to call... 
    receiver.receive(dgram); 
 
    // Get the time and store it in the buffer 
    cal.setTime(new Date( )); 
    String time = cal.toString( ); 
    byte[] dataBytes = time.getBytes( ); 
    System.arraycopy(dataBytes, 0, buffer, 0, dataBytes.length); 
 
    // Send back the reply 
    dgram.setLength(dataBytes.length); 
    receiver.send(dgram); 
} 

This code allocates a 256-byte receive buffer and a Datagram pointing to it. When any 

message is received, the code gets the current time, stores it in the buffer, and sends it back to 

the caller. Notice that the same Datagram and buffer are used both to receive the caller's 

message and send a reply. This is useful not only for memory conservation, but also because 

the caller's address is stored in the Datagram when the message is received and is therefore 

already there when the reply is sent. If you need access the caller's address, you can use the 

Datagram getAddress( ) method to retrieve it.  

http:///


J2ME in a Nutshell 

192 

The daytime service has been around for a very long time and is commonly available on Unix 

machines. You can even find this service available on the Internet. Start the RunMIDlet 

application from the J2ME Wireless Toolkit, point it at the Chapter6.jad file in the ora\ch6 

directory of this book's example code, and select the Time application from the list of 

MIDlets. This application lets you specify a hostname and then sends a datagram to port 13 at 

that host, to see if it is running the daytime service. If so, the application displays the time that 

it gets back. Such a service is provided by the U.S. Naval Observatory on a host called, 

appropriately, tock.usno.navy.mil. Figure 6-2 shows the result of sending a datagram to this 

host. If you don't get a response from that particular host, try tick.usno.navy.mil instead!  

Figure 6-2. The Internet daytime service, accessed from a Java cell phone 

 

6.4 HTTP Connections 

The only communications protocol that every MIDP device is required to provide is the fairly 

simple Hypertext Transfer Protocol (HTTP), described in RFC 2616 (available from 

http://www.ietf.org/rfc/rfc2616.txt). HTTP makes use of stream sockets to carry messages 

between an HTTP client (usually a web browser) and a web server that often (but not always) 

returns an HTML page to the client. This works well in the desktop environment, but there are 

two potential problems with bringing all this to the devices for which MIDP is intended:  

• Many of these devices, particularly cell phones, do not have a direct connection to the 

Internet and therefore almost certainly do not support sockets.  

• The MIDP user interface components do not provide any support for displaying 

HTML, so there is no built-in browser capability in a MIDP device.  

It is the responsibility of the device vendor to arrange for the device to be able to support 

HTTP even if it does not have a direct connection to the Internet. In most cases, this means 

that the device needs to connect to a gateway that can switch HTTP messages to whatever 

protocol is used to connect to the Internet gateway. In the wireless environment, for example, 

the device might use WSP (the Wireless Session Protocol) to connect to a WAP gateway that 

can bridge between a wireless network and the Internet. However this mapping is achieved, it 

must be done in such a way that the MIDP application cannot tell whether it is directly 

connected to the Internet.  

The lack of browser support is not necessarily an issue. In many cases, applications that take 

advantage of MIDP HTTP support use a private message encoding scheme instead of HTML, 

and the client part of the application uses the MIDP GUI components to present the 

information that it gets from the server. Even if the application fetches an HTML page from 

the server, it can still scan the returned HTML for relevant information and display that 

information as it sees fit, therefore acting as its own microbrowser. We'll see a good example 

of this later in Section 6.4.5.  

http:///


J2ME in a Nutshell 

193 

6.4.1 Using HTTP 

As with sockets and datagrams, the first thing you need to do in order to use HTTP is call the 

Connector open( ) method:  

HttpConnection conn =  
    (HttpConnection)Connector.open("http://www.oreilly.com/",  
    Connector.READ_WRITE); 

The name parameter is the URL of the required resource. The general form of this parameter 

looks like this:  

http://host:port/path?parameters#reference 

The parts of the URL are as follows:  

http  

The protocol name. The current MIDP specification requires support for HTTP 

Version 1.1. Higher-end or specialized devices might also provide secure HTTP, but 

the availability of HTTPS on any particular platform cannot be guaranteed.  

host:port  

The hostname and port number of the web server. If the port is not specified, port 80 is 

assumed.  

path  

The path of the required resource relative to the root of the web server.  

parameters  

Web servers can offer dynamic content based on parameters supplied by the client; 

this is done by mapping the path to an executable object such as a script or Java servlet 

and passing it the parameters as part of its execution environment. One way to pass 

parameters to the web server is to append them to the URL as name=value pairs, 

separated by ampersand characters. As an example, you can get online stock quotes 

from Yahoo! by entering a URL like this:  

http://finance.yahoo.com/q?s=SUNW&d=v1  

This URL provides two parameters (s with value SUNW and d with value v1) to the 

executable resource mapped to the path q at finance.yahoo.com. Another way to 

supply parameters is in the body of the message, an example of which will be shown 

in Section 6.4.5.  

reference  

The name associated with an <A> tag within the HTML page returned by the web 

server. Strictly speaking, the reference is not a true part of the URL at all, but an 

http:///


J2ME in a Nutshell 

194 

instruction to the browser to scroll so that the tagged location within the document is 

visible when it is displayed to the user. Whether and how you can include a reference 

in a URL depends on your application.  

The object returned from the open method is of type HttpConnection, which is derived from 

ContentConnection, as shown in Chapter 14. This means that you can use input and output 

streams to transfer data, as you can with stream sockets, and the data returned from the server 

has an associated length, type, and encoding. These three properties are available because 

HTTP includes message headers that the server can set to convey this and other information to 

the client.  

Although HTTP is predominantly used to carry HTML from web servers to web browsers, it 

is also possible to use it to carry other types of information such as XML, images, or even 

binary data. This is because one of the message headers specifies the type of the data in the 

message body. Furthermore, the communicating parties do not have to be a browser and a 

web server. The examples in this section all involve MIDlets talking to a web server, but 

HTTP is routinely used for other purposes, such as tunneling protocols. These allow the 

transmission of data that would otherwise be barred from passing through corporate firewalls, 

since most companies allow HTTP to transmitted through their firewalls or via a proxy server. 

The HTTP support in J2ME gives you access to all these possibilities.  

6.4.2 Basic Use of HttpConnection 

Using an HTTP connection is very similar to using a stream socket. Here are the basic steps 

that you need to perform, some of which can be omitted in many cases:  

1. Construct the URL for the web page or other resource that you want to access, and call 

the Connector open( ) method to get an HttpConnection instance.  

2. Set the request method. This step can often be omitted. 

3. Set any request headers that you need. This is another task that you don't always need 

to worry about.  

4. Call the openOutputStream( ) or openDataOutputStream( ) method to get a 

stream to write any data that needs to be sent.  

5. Write the request data, if any, to the output stream and flush the stream.  

6. Call the openInputStream( ) or openDataInputStream( ) method to get an input 

stream from which to read the response.  

7. Get the response code using the getResponseCode( ) method. If the request was 

successful, read the returned data from the input stream.  

8. Finally, close the input and output streams and the connection itself. 

Let's clarify some of these steps by looking at an example. Section 6.2.1 showed you how to 

use a stream socket to fetch the home page of the O'Reilly web site. As you might expect, it is 

equally simple to do the same thing using an HttpConnection. Here's what the code looks 

like:  

 
 
 
 
 
 

http:///


J2ME in a Nutshell 

195 

String url = "http://www.oreilly.com/"; 
conn = (HttpConnection)Connector.open(url, Connector.READ_WRITE); 
if (conn.getResponseCode( ) == HttpConnection.HTTP_OK) { 
    is = conn.openInputStream( ); 
    final int MAX_LENGTH = 128; 
    byte[] buf = new byte[MAX_LENGTH]; 
    int total = 0; 
    while (total < MAX_LENGTH) { 
        int count = is.read(buf, total, MAX_LENGTH - total); 
        if (count < 0) { 
            break; 
        } 
        total += count; 
    } 
    is.close( ); 
    String reply = new String(buf, 0, total); 
} 

This code looks very similar to the socket code you saw earlier, but there is a striking 

difference. The socket code first opened an OutputStream and sent the following request to 

the web server before trying the read the response:  

String request = "GET / HTTP/1.0\n\n"; 

Here, however, it isn't necessary to do that because the HttpConnection does it for you. In 

fact, all you have to do in this simple case is get the server's response code, check that the 

request succeeded, open an input stream, and read the reply. As before, only the first 128 

bytes are read. If you want to read all of the data in the response message, you can use the 

getLength( ) method to retrieve the number of bytes in the message body, and then either 

use a loop, as shown previously, or get a DataInputStream instead of an InputStream and 

use its readFully( ) method:  

dis = conn.openDataInputStream( ); 
byte[] buf = new byte[conn.getLength( )]; 
dis.readFully(buf); 

It is important to note, however, that the HTTP reply message will not always include the 

header that contains the length of the reply. In this case, the setLength( ) method returns -1, 

and you will have to loop reading data from the input stream until the read( ) method 

returns -1, as shown earlier. It is important to check the server response code before trying to 

read any data; as we'll see later, you don't always get the data back immediately. There are 

cases in which you might have to make a second request. Table 6-1 shows some of the most 

common HTTP response codes. For a complete list, refer to RFC 2616.  

Table 6-1. Common HTTP Response Codes 

HttpConnection 

Name 
Value Meaning 

HTTP_OK 200 The request succeeded. 

HTTP_MOVED_PERM 301 
The requested resource has been moved permanently to the URL in the 

Location header.  

HTTP_MOVED_TEMP 302 
The requested resource has been moved temporarily to the URL in the 

Location header.  

HTTP_SEE_OTHER 303 
The requested resource can be obtained by performing a GET request on the 

URL in the Location header.  

http:///


J2ME in a Nutshell 

196 

HTTP_BAD_REQUEST 400 The request failed because it was malformed. 

HTTP_FORBIDDEN 403 
The request is valid, but the server is not permitted to action it, typically due to 

access control restrictions.  

HTTP_NOT_FOUND 404 The resource corresponding to the URL supplied by the client does not exist.  

To see this code in action, select the HttpClient MIDlet from the Chapter6.jad file in the 

ora\ch6 directory of this book's example code and type a URL into the text field that appears, 

as shown in Figure 6-3. If you compare the result in the right-hand side of the figure with that 

in Figure 6-1, you'll see that what you get this time is different: here, you see the start of the 

web page itself, whereas in Figure 6-1 you saw the HTTP headers returned by the server; 

these precede the web page.  

Figure 6-3. Using HTTP to retrieve an HTML page 

 

6.4.3 HTTP Requests 

To make proper use of the MIDP HTTP support, you need to understand a little about how 

HTTP requests and responses are structured and how your code interacts with them when 

using the HttpConnection interface. An HTTP request message consists of three parts:  

• An HTTP request line, followed by a newline character. This part is always present.  

• An optional set of request headers each on its own line, followed by a blank line.  

• The message body, which contains any data that needs to accompany the request. This 

part is present only if it is needed.  

The request line specifies the request method and the path of the resource to be retrieved, 

together with any query parameters and the protocol version to be used. Here is a typical 

request line that might be generated from the URL http://www.oreilly.com/index.html:  

GET /index.html HTTP/1.1 

The word GET corresponds to the request method, which tells the web server what it is 

supposed to do. HTTP 1.1 specifies seven different request methods, but MIDP does not 

require the implementation to provide any support for OPTIONS, PUT, TRACE, and 

DELETE. Only the request methods shown in Table 6-2 are guaranteed to work properly in 

MIDP 1.0.  

 

 

 

http:///


J2ME in a Nutshell 

197 

Table 6-2. HTTP Request Methods Supported by MIDP 1.0 

Method Symbolic Constant Meaning 

GET HttpConnection.GET 

Requests the transfer of the resource given by the path in the request line. 

The path is given relative to the root of the web server's name space and 

may include query parameters. For the Yahoo! finance example shown 

earlier, the request line would look like this:  

GET /q?s=SUNW&d=v1 HTTP/1.1 

When GET is used, no data should be sent along with the request, but 

headers are permitted.  

HEAD HttpConnection.HEAD 

HEAD is the same as GET, but the web server returns only a response 

indicating whether a GET request with the same parameters would have 

succeeded, together with the HTTP headers that would have accompanied 

the data. It does not return the data itself. This can be used to obtain 

information such as the size of the data or the time at which the data was 

last modified, without having to transfer the data itself.  

POST HttpConnection.POST 

It is common for HTML pages that include forms that the user fills with 

information to result in GET requests where the form fields are turned into 

parameters that are appended to the URL. The POST method is an 

alternative to this approach: the parameters are sent as data in the body of 

the request rather than in the URL. This is useful if there is a lot of query 

information, because some systems impose arbitrary limits on the size of 

the URL. It also allows the query data to be hidden from the user. An 

example of a POST request can be found in Section 6.4.5, later in this 

chapter.  

The default request method for HttpConnection is GET. You can change this if necessary 

using the setRequestMethod( ) method, for example:  

conn.setRequestMethod(HttpConnection.POST); 

The request headers follow the request line. Each header consists of the header name (which 

is case-insensitive), a colon, and the header value, followed by a newline. Headers can be 

used to convey information to the web server, such as the encoding used for the data 

accompanying a POST request or specifying the amount of data that accompanies it. A POST 

request containg 256 bytes of data, for example, would include the following header:  

Content-Length: 256 

The complete set of valid headers can be found in Section 14 of RFC 2616. Table 6-3 

summarizes the ones that you are likely to use most frequently.  

Table 6-3. Frequently Used HTTP Headers 

Name Meaning 

Connection 
If this header is present and has the value Close, the connection will be closed once the server 

sends its reply message. If you do not include this header, the same connection can be used to 

exchange several messages.  

Content-
Length 

Contains the number of bytes in the message, not including the headers.  

http:///


J2ME in a Nutshell 

198 

Content-
Type 

Describes how the data in the message body is encoded. Typically this header specifies the data 

type of the heading; occasionally, the character encoding is also included. The most common 

value for this heading is:  

Content-Type: text/html 

but you might also see something like: 

Content-Type: text/html; charset=ISO-8859-1 

which specifies that the message contains an HTML page with characters from the ISO-8869-1 

character set. The data content is described using MIME types registered by the Internet 

Assigned Numbers. A full list of valid MIME types can be found at ftp://ftp.isu.edu/in-

notes/iana/assignments/media-types/media-types.  

This header is always sent in reply messages from a web server. Client software sometimes uses 

this heading in conjunction with a POST request to describe the data that it is sending to the web 

server.  

Date 

The date and time at which the message was sent. The date format is described in RFC 2616. 

For example:  

Date:Tue, 07 Aug 2001 20:14:50 GMT  

Last-
Modified 

The date and time at which the resource returned by the server was last changed. The date is in 

the same format as the Date header. This may be stored by the client and used to cache the 

returned data. A client that caches data typically includes an If-Modified-Since header 

giving this time when the next request is made for this data. When this header is present, the 

server returns the data only if its copy is more recent.  

Location 

Used by a web server to redirect the client to an alternate location at which the requested 

resource can be found. The value of this header is an absolute URL:  

Location: http://www.host.com/elsewhere.html 

Server 

Contains text that identifies the responding server. This header is informational only:  

Server: Apache/1.3.14 (Unix) PHP/4.0.4 

User-Agent 

Contains text that identifies the client making a request. Like the Server header, this is 

generally used for informational purposes only. However, the MIDP specification recommends 

that the device profile and configuration identifier be included in this header field when 

communicating with a server that is supplying MIDlets to be downloaded to the device:  

User-Agent: Profile/MIDP-1.0 Configuration/CLDC-1.0 

Headers are set using the setRequestProperty( ) method, which requires the header name 

and the associated value as arguments. For example, the following line sets the Content-Type 

header:  

conn.setRequestProperty("Content-Type",  
    "application/x-www-form-urlencoded"); 

Note that you can set the request method and the headers only before any data has been sent, 

because this information has to be placed at the start of the byte stream sent to the server.  

One final point to be aware of in connection with HTTP requests concerns the use of query 

parameters, either in the URL or in the message body when sent as part of a POST request. As 

stated earlier, query parameters are sent in the following form:  

http:///


J2ME in a Nutshell 

199 

name1=value1&name2=value2&name3=value3 

This looks very simple and obvious, but there is a catch: what if the value part needs to 

contain an ampersand or an equal sign? Simply including these characters in the value would 

cause confusion, because they are already used as delimiters. In fact, there are a number of 

characters that you can't just place in the value part of a query parameter. Instead of sending 

parameters as they are, you need to carry out a process known as URL encoding on the 

parameter values. The rules for URL encoding are applied to each individual character of the 

value:  

• Uppercase and lowercase alphabetical characters in the ASCII character set (that is, a 

through z and A through Z) and the digits 0 through 9 are left unchanged.  

• The characters . (period), - (hyphen), * (asterisk), and _ (underscore) are also left 

unchanged.  

• Every space is changed to a plus sign (+). 

• All other characters are converted to their 2-digit hexadecimal representation preceded 

by a percent character (%).  

Since the last rule refers to using two hexadecimal digits to represent a character, it is clear 

that these rules were framed with standard 8-bit character encodings in mind. Java, of course, 

works with Unicode, so each character is 16 bits wide, requiring 4 hexadecimal digits to 

represent it. The correct approach to this problem is to convert each Unicode character to the 

corresponding bytes that would represent it in the platform's default representation (or the 

representation to be used on the network, which might be different). This is done by writing 

the value through an OutputStreamWriter and encoding each resulting byte as a percent sign 

followed by two hexadecimal digits. If you only send values that contain ASCII characters, 

you won't have to worry about this detail.  

Say, for example, that you wanted to send a query string consisting of the following two 

parameters:  

Publisher=O'Reilly 
Title=Java Swing 

After URL encoding, you would actually append the following string to the URL for a GET 

request or place it in the message body for a POST operation:  

Publisher=O%27Reilly&Title=Java+Swing 

Notice that the apostrophe has been translated to its hexadecimal equivalent, and the space in 

the book title has become a plus sign. The bad news about this is that, in MIDP 1.0, there is 

nothing equivalent to the J2SE java.net.URLEncode and java.net.URLDecode classes to do 

this job for you; you have to write the code yourself. In practice, you are unlikely to need the 

decode facility, since this is used mainly by web servers. As far as encoding is concerned, if 

you don't want to write the code yourself, there is a class called EncodeURL in the example 

source code for this chapter that contains the code necessary to handle URL encoding, as long 

as you stick to ASCII characters.  

 

 

http:///


J2ME in a Nutshell 

200 

6.4.4 HTTP Responses 

HTTP responses have an almost identical structure to HTTP requests, consisting of the 

following:  

• A single response line, terminated by a newline. 

• A set of headers, each terminated by a newline. The last header is followed by a blank 

line to separate it from the message body.  

• The message body containing the data. The format of the data is specified in the 

Content-Type header.  

The response line, an example of which you can see on the right side of Figure 6-1, has three 

parts:  

• The protocol version used by the web server. This is usually HTTP/1.1, but you may 

come across older servers that use HTTP/1.0.  

• A numeric response code that indicates the result of the request. The most common 

response codes are listed in Table 6-1.  

• A text message that describes or qualifies the response code. 

You can get the response code and response message using the HttpConnection 

getResponseCode( ) and getResponseMessage( ) methods. As noted earlier, you should 

always check that the response code is HttpConnection.HTTP_OK (which has the value 200) 

before interpreting the message body, since some servers send further information regarding 

an error in the message body.  

Here is a typical set of HTTP response headers that were obtained from the O'Reilly web 

server:  

date = Tue, 07 Aug 2001 20:14:50 GMT 
server = Apache/1.3.14 (Unix) PHP/4.0.4 
last-modified = Tue, 07 Aug 2001 17:17:13 GMT 
etag = "47eb3-793f-3b702299" 
accept-ranges = bytes 
content-length = 31039 
content-type = text/html 

There are several ways to get the headers from a response message. You can get the value 

associated with any header by calling the HttpConnection getHeaderField( ) method, 

which returns a String, or null if the requested header is not present in the response:  

String contentType = conn.getHeaderField("Content-Type"); 

Note that the header name string passed to this method and to the others in this section is not 

case-sensitive.  

For header fields that have integer or date values, you can avoid parsing the strings yourself 

by using the following methods:  

public int getHeaderFieldInt(String name, int def) throws IOException 
public long getHeaderFieldDate(String name, long def) throws IOException 

http:///


J2ME in a Nutshell 

201 

The value of the def argument is returned if the named header is not found or if it does not 

have a value of the required type. The getHeaderFieldDate( ) method returns the value in a 

date-valued field expressed as the number of milliseconds since January 1, 1970.  

A small number of fields have dedicated methods that return the associated value:  

public long getExpiration( ) throws IOException 
public long getDate( ) throws IOException 
public long getLastModified( ) throws IOException 

These methods all return zero if the required information is not in the header. 

The getType( ), getLength( ), and getEncoding( ) methods that HttpConnection 

inherits from its parent interface (ContentConnection) also work by getting their return 

values from the header.  

Finally, you can find out which headers are present in the reply using 

the getHeaderFieldKey( ) method:  

public String getHeaderFieldKey(int index) throws IOException 

The index starts at zero for the first header. There is no method that returns the number of 

available headers, so the usual approach is to loop until getHeaderFieldKey( ) returns 

null. The following code uses this method to print the names and values of all of the headers 

in a reply message:  

for (int i = 0; ; i++) { 
    String name = conn.getHeaderFieldKey(i); 
    String value = conn.getHeaderField(i); 
    if (name == null) { 
        // Reached the last header 
        break; 
    } 
    System.out.println(name + ": " + value) 
} 

Notice that this code uses an overloaded version of getHeaderField( ) that takes a field 

index instead of a header name. It could equally well have used getHeaderField(name) to 

get the header value.  

6.4.5 An HTTP Example 

For a MIDP application, the most likely reason to use HTTP is to fetch an HTML page from a 

web server and extract some information from it for display. This process almost certainly 

starts with the application displaying a form from which it obtains parameters that will be sent 

to the server along with the appropriate URL. Essentially, your application plays the role of an 

intelligent web browser, charged with the task of displaying only the essential parts of a web 

page that could not be shown in its entirety due to screen size. Because the HttpConnection 

is much more basic than the HTTP support in J2SE, and the environment is restrictive in 

terms of resources, it is a little harder to implement this kind of feature in a J2ME application 

that it would be with J2SE. To illustrate some of the problems that arise, let's look at what 

should be a relatively simple task.  

http:///


J2ME in a Nutshell 

202 

In this example, we want to be able to go to http://www.amazon.com/, look up a book, and 

find its sales ranking and the number of reader reviews that have appeared. All this 

information appears on a book's catalog page, but it would not be practical to display the 

whole page, so we want to extract the details we need and put them on the screen of the 

mobile device.  

We first need to figure out how to get the correct catalog page for the book. For a human, the 

most obvious way to do this is to go to the web page and enter the book's title in the Search 

box. Unfortunately, instead of getting back the book's catalog page, you get a list of all the 

books that might match your search string, and you have to choose one. This would be very 

difficult for an application to handle, because it would have to interpret what it gets back and 

try to find the links to the real books. A more promising approach is to use the book's ISBN 

number, which is unique to that book. In fact, if you know a book's ISBN number, you can 

create a URL that you can use to make a GET request that returns the book's catalog page.  

There is another, slightly more complex approach. It gets the same result, but it also allows us 

to show you how to extract values from a form-based interface and use them to perform an 

HTTP POST request. We'll use this latter approach as the basis of this example.  

Obviously, we're interested mainly in the details of using HttpConnection to ask for the 

book's catalog page and how to extract the information that we need from it, so we're not 

going to delve into the nitty gritty of creating the user interface itself. To give you a feel for 

what we are aiming for, the screenshot on the left side of Figure 6-4 shows the form used to 

enter the ISBN; the results of the search are shown in the screenshot on the right. If you start 

the J2ME Wireless Toolkit MIDlet runner, you can use this application for yourself by 

choosing the Ranking MIDlet from Chapter6.jad in the directory ora\ch6 of the examples for 

this book.  

Figure 6-4. An HTTP-based book details application 

 

This MIDlet takes the ISBN from the input form, uses it to fetch the book's catalog page, 

scans the HTML for the information it needs, and returns that information to be displayed by 

the user interface code. Given the ISBN, we need to return three pieces of information:  

• The book's title 

• Its current sales ranking 

• The number of user reviews it has 

For convenience, we'll define a class that lets us store these three properties along with 

the ISBN. Here's how the members of this class are defined:  

 
 
 

http:///


J2ME in a Nutshell 

203 

public class BookInfo { 
    int id;  // Used when persisting 
    String isbn;  // The book ISBN 
    String title;  // The book title 
    int reviews;  // Number of reviews 
    int ranking;  // Current ranking 
    int lastReviews;  // Last review count 
    int lastRanking;  // Last ranking 

We've also added three other fields that we don't need in this example. They'll come in handy 

later in this chapter when I show you how to save this information in persistent storage on the 

mobile device.  

This is the information we need, so how do we get it? To fetch the catalog page for a book 

with a given ISBN, we need to send a POST request to the following URL:  

http://www.amazon.com/exec/obidos/search-handle-form/0  

We also need to supply the parameters that specify the Amazon.com store to be searched and 

the ISBN for the book. Since we are using a POST message, these parameters go in the 

message body rather than in the URL itself. To look for ISBN 156592455X, for example, the 

message body should contain the following:  

index=books&field-keywords=156592455X 

(If you are wondering how you would know to do this, you simply have to examine the 

HTML page that contains the search box a human user would use and work out what would 

be sent to the web server.)  

Assuming that the ISBN is valid, you'll get back the HTML for the book's catalog page. If you 

follow this process with a web browser and view the source of the returned page, you'll see 

what to do to get the needed information from the HTML. The basic technique is to scan for a 

fixed sequence of characters that precedes what we need and then pull out the desired bytes 

by reference to those fixed points. For a book catalog page, the book's title follows the string 

"buying info:", its sales rank is found immediately after the string "Sales Rank", and the 

number of reviews appears after the text "Based on". Once you've worked all this out, it 

should be simple to write the code to use HttpConnection to fetch the page and then scrape 

the desired details out of the HTML you get back. In fact, in the J2ME environment, this isn't 

quite as simple as you might think. Let's look at the fetching and analysis issues separately.  

6.4.5.1 Fetching the HTML page 

The code that fetches the HTML page for a book and creates a BookInfo class instance is 

implemented in a class called Fetcher. The code for the fetch( ) method of this class, 

which does all the work, is shown in Example 6-1.  

 

 

 

http:///


J2ME in a Nutshell 

204 

Example 6-1. Fetching the HTML Page for a Book  

private static final String BASE_URL = "http://www.amazon.com"; 
private static final String QUERY_URL = BASE_URL + 
                            "/exec/obidos/search-handle-form/0"; 
private static final int MAX_REDIRECTS = 5; 
 
public static boolean fetch(BookInfo info) throws IOException { 
   
       InputStream is = null; 
       OutputStream os = null; 
       HttpConnection conn = null; 
       int redirects = 0; 
       try { 
           String isbn = info.getIsbn( ); 
           String query = "index=books&field-keywords=" + isbn + "\r\n"; 
           String requestMethod = HttpConnection.POST; 
           String name = QUERY_URL; 
 
          while (redirects < MAX_REDIRECTS) { 
              conn = (HttpConnection)Connector.open(name,   
                  Connector.READ_WRITE); 
              // Send the ISBN number to perform the query 
             conn.setRequestMethod(requestMethod); 
             if (requestMethod.equals(HttpConnection.POST)) { 
                  conn.setRequestProperty("Content-Type",  
                      "application/x-www-form-urlencoded"); 
                  os = conn.openOutputStream( ); 
                  os.write(query.getBytes( )); 
 
                  os.close( ); 
                  os = null; 
             }  
             // Read the response from the server 
            is = conn.openInputStream( ); 
            int code = conn.getResponseCode( ); 
 
            // If we get a redirect, try again at the new location 
            if ((code >= HttpConnection.HTTP_MOVED_PERM && code <= 
                   HttpConnection.HTTP_SEE_OTHER) || 
                   code == HttpConnection.HTTP_TEMP_REDIRECT) { 
               // Get the URL of the new location (always absolute) 
               name = conn.getHeaderField("Location"); 
               is.close( ); 
               conn.close( ); 
               is = null; 
               conn = null; 
 
               if (++redirects > MAX_REDIRECTS) { 
                   // Too many redirects - give up. 
                   break; 
               } 
 
               // Choose the appropriate request method 
               requestMethod = HttpConnection.POST; 
               if (code == HttpConnection.HTTP_MOVED_TEMP ||  
                   code == HttpConnection.HTTP_SEE_OTHER) { 
                   requestMethod = HttpConnection.GET; 
               } 
               continue; 
           } 

http:///


J2ME in a Nutshell 

205 

           String type = conn.getType( ); 
           if (code == HttpConnection.HTTP_OK && type.equals("text/html"))  
           { 
              info.setFromInputStream(is); 
              return true; 
           } 
        } 
    } catch (Throwable t) { 
        System.out.println(t); 
    } finally { 
        // Tidy up code (not shown) 
    } 
    return false; 
} 

As you can see, instead of simply building the URL, calling the Connector.open( ) method, 

sending the POST data, and reading the response, this method actually contains a loop that 

can make more than one request to the server. Initially, the open( ) method is called with the 

URL for the search form (shown earlier), the request method is set to HttpConnection.POST, 

and the data that forms the query is written to the message body, like this:  

conn.setRequestProperty("Content-Type", 
    "application/x-www-form-urlencoded"); 
os = conn.openOutputStream( ); 
os.write(query.getBytes( )); 
os.close( ); 
os = null; 

The query string, which contains the book ISBN, is written to the message body by obtaining 

an OutputStream and then calling its write( ) method, passing the result of converting the 

query string to an array of bytes in the device's local encoding. In this case, since we know the 

query contains only alphabetic and numeric characters, there is no need to perform URL 

encoding. In the general case, you would have to encode the parameter values. That is, in the 

following query string:  

param1=value1&param2=value2 

you would URL-encode value1 and value2. This code also sets the Content-Type header of 

the outgoing request to application/x-www-form-urlencoded, which tells the server to 

interpret the message body as if it had been generated from an HTML form, which simply 

says that it is in param=value form. If you don't do this, some servers do not interpret the 

POST data correctly.  

The next step is to open an input stream and check the response code from the server's reply 

message. You would hope that the server would reply with HTTP_OK and send the book's 

catalog page. However, it does not. When you submit a book search, the Amazon web server 

doesn't send you the page you need; instead, it sends you an HTTP redirect message that 

contains the URL you need to access the page directly. An HTTP redirect is a reply message 

where the response code is in the range 301 to 307. Redirect messages and how you are 

expected to respond to them are described in the HTTP 1.1 specification (RFC 2616). When 

you receive such a message, you need to do the following:  

 

http:///


J2ME in a Nutshell 

206 

1. Get the URL to which you are being redirected from the Location header of 

the response. This is always an absolute URL.  

2. Close the original connection and its input and output streams. 

3. Use the Connector open( ) method to get an HttpConnection to the new URL.  

4. Set the request method for the new connection. If the response code is 

HTTP_MOVED_TEMP (302) or HTTP_SEE_OTHER (303), use a GET instead of a POST 

request. For the other types, you continue to POST the original query data.  

5. Send the new request, open an input stream, and check the response code again.  

Theoretically, even after following one redirection you could get another one, or even several 

more. To accomodate this possibilty, the code in Example 6-1 makes the initial connection 

perform the redirection process in a loop. However, in order to avoid the consequences of a 

server error causing an infinite loop, it allow a maximum of five redirections. You can handle 

this without an arbitrary limit on the number of redirections by keeping a history of the 

redirection URLs and stopping only if the same one is received twice. In practice, you will 

rarely see more than five redirects, so the simple solution shown here will suffice.  

The need for application code to follow redirects in this way is a consequence of the 

lightweight implementation of the HttpConnection interface, and it is unique to the J2ME 

environment. If you are familiar with using HTTP with J2SE, you will probably find this 

surprising, because the J2SE HTTP support handles redirection transparently, and you 

probably weren't even aware that it was happening.  

6.4.5.2 Analyzing the HTML 

Eventually, the server should return an HTTP_OK response code, together with the book's 

catalog page. Extracting the information that we need should now simply be a case of reading 

the reply data, converting it into a String, and using the indexOf( ) method to look for the 

strings that precede the book title, sales ranking, and review count. The code might look like 

this:  

DataInputStream dis = conn.openDataInputStream( ); 
int length = conn.getLength( );  // Length from Content-Length header 
byte[] buffer = new byte[length]; 
dis.readFully(buffer); 
String reply = new String(buffer); 
 
// Find the book's title 
int index = reply.indexOf("buying info: "); 

This code is theoretically fine, but, in practice, it is unlikely to work in all cases. In the 

constrained environment of most MIDP implementations, there is unlikely to be enough heap 

space to allow you to read the entire web page into memory and convert it into a String as 

this code requires. This is especially true in this case, because web pages returned by 

Amazon.com are relatively large: pages bigger than 50 KB are quite normal. A MIDP 

environment often has only 64 KB of heap space for the whole VM!  

The only reliable way to handle this problem is to read the response byte by byte and perform 

the search manually (that is, without using any prewritten code from the core J2ME libraries). 

The details of this operation are not really relevant to our discussion of HTTP. If you're 

interested, you'll find the code in the InputHelper class in the directory ora\ch6 of this 

book's example source code.  

http:///


J2ME in a Nutshell 

207 

As demonstrated by this example, it is often necessary in the J2ME environment to approach 

a problem slightly differently than you would if you were working with J2SE, and you may 

have to do a little more work to achieve the same result.  

6.5 Persistent Storage 

Almost all MIDlets need to be able to save information so that it is retained between 

invocations. Examples of the types of information that might need to be stored include the 

following:  

• Data entered by the user, such as text typed into a memo pad application.  

• User configuration or preference information. For a mail application, this might be the 

name of the mail server to which outgoing mail should be sent or how frequently to 

poll for new incoming mail.  

• Values that the user recently entered or uses frequently. For an application that 

accesses the Internet, for example, it would be helpful to keep a history of recently 

used URLs that the user can use as a shortcut list.  

A J2SE application typically stores state in local files that are quickly and easily accessible 

from the hard drive or transparently accessible over a fast local area network. Mobile devices, 

however, do not have local disks and rarely have network connectivity that is permanently 

available or fast enough to support storage of frequently used information at a remote 

location. The MIDP specification requires all implementations to provide a persistent storage 

facility so that information can be preserved while a MIDlet is not running or when the device 

is turned off. In practice, the actual storage mechanism may vary from device to device, but 

the programming interface does not, which makes MIDlets that use this facility more portable 

than if they had been required to be aware of the device-dependent details. The MIDP storage 

facility is based around a class called RecordStore and is implemented in the 

javax.microedition.rms package.  

6.5.1 Record Stores 

A record store is a collection of records that the MIDP implementation stores in some way on 

its host device. Each record store is identified by a case-sensitive name consisting of 1 to 32 

Unicode characters. Record store names are shared by all MIDlets in a MIDlet suite, so that 

the combination (record store name, MIDlet suite) uniquely identifies a record store. This has 

the following consequences:  

• A MIDlet in a MIDlet suite has access to record stores created by itself or by any other 

MIDlet in the same suite. If, for example, a record store called Scores is created by 

one MIDlet, an attempt by a different MIDlet in the same suite to open a record store 

called Scores results in the same record store being accessed.  

• MIDlets cannot see record stores created by MIDlets in other MIDlet suites. As a 

result, it is not possible for a MIDlet in suite A to open the Scores record store (or any 

record store) created by a MIDlet in suite B. It is not possible for a MIDlet to get any 

information about record stores belonging to other suites.  

http:///


J2ME in a Nutshell 

208 

 

Record stores are a private mechanism that allows MIDlets to retain 

data on a device. A consequence of the design of record stores is that it 

is not possible for a MIDlet to access data belonging to other MIDlet 

suites or, perhaps more significantly, data belonging to other non-Java 

applications on the same device. This latter restriction is quite 

significant, because it means that you cannot access things like a user's 

address book or appointment diary from a MIDlet. Similarly, non-Java 

applications cannot access data stored by MIDlets. Whether these 

restrictions will be addressed in a future version of the MIDP 

specification remains to be seen.  
 

To create or open a record store, MIDlets use the following static RecordStore method:  

public static RecordStore openRecordStore(String name, boolean create) 

This method locates a record store with the given name, opens it, and returns a RecordStore 

object that can be used to access it. If no record store with the given name exists, and the 

create argument is true, a new one is created. If the create argument is false, a 

RecordStoreNotFoundException is thrown if the record store does not exist. The usual 

pattern for accessing a record store is this:  

RecordStore scores = RecordStore.openRecordStore("Scores", true); 

This opens the record store if it already exists and creates it if it does not. Opening and 

creation of record stores is handled by the same method, so if you always set the create 

argument to true, you do not need to be concerned about whether the record store already 

exists before you open it, and attempting to create a record store that has already been created 

by another MIDlet in the same suite is not a problem either.  

When a MIDlet has finished with a record store, it should close it using the 

closeRecordStore( ) method. If a record store is opened more than once by a MIDlet, it 

will not actually be closed until each open instance is closed:  

// Open the same record store twice 
RecordStore scores = RecordStore.openRecordStore("Scores", true); 
RecordStore scores2 = RecordStore.openRecordStore("Scores", true); 
 
// Close the record store. This first call does not actually close it 
scores.closeRecordStore( ); 
 
// This call finally closes the record store 
scores2.closeRecordStore( ); 

In the example shown here, scores and scores2 are actually references to the same 

RecordStore object. Each RecordStore has a count that is incremented on each 

openRecordStore( ) call and decremented when closeRecordStore( ) is called. Only 

when this counter reaches zero is the record store itself closed. Once the record store is 

closed, attempts to use its RecordStore object fail with a RecordStoreNotException.  

A record store can be removed by calling the static deleteRecordStore( ) method:  

http:///


J2ME in a Nutshell 

209 

public static void deleteRecordStore(String name) 

Since the name argument is automatically scoped to the current MIDlet suite, it is not possible 

for a MIDlet to remove a record store belonging to a MIDlet in another suite. Record stores 

cannot be removed while they are in use by a MIDlet. If an attempt is made to do this, a 

RecordStoreException is thrown. If no record store with the given name exists, a 

RecordStoreNotFoundException is thrown. Note that only closed record stores can be 

deleted, and a record store is automatically deleted when the MIDlet suite that owns it is 

uninstalled from the device.  

A MIDlet can get the names of all the record stores owned by its MIDlet suite using the 

listRecordStores( ) method:  

public static String[] listRecordStores( ) 

If the MIDlet suite does not have any associated record stores, this method returns null rather 

than an empty array.  

There are several other operations that can be performed at the record store level, all of which 

require an open RecordStore object:  

public String getName( ) 
public long getLastModified( ) 
public int getVersion( ) 
public int getSize( ) 
public int getSizeAvailable( ) 

The getName( ) method returns the name of the RecordStore to which it is applied. The 

getLastModified( ) method returns the time at which the last modification was made to the 

RecordStore, measured as the number of milliseconds from January 1, 1970 (which is the 

same as the values returned by the System currentTimeMillis( ) method). The 

getVersion( ) method returns an integer value that is changed each time a record in the 

record store is inserted, deleted, or modified. This method can be used by software that backs 

up record stores to more permanent storage by allowing it to detect quickly whether the record 

store has changed by comparing the current version number with that of the last archived 

copy.  

The getSize( ) method returns the number of bytes that the record store occupies. The 

getSizeAvailable( ) method returns the amount by which the record store could grow 

given the current space available for record stores on the device. Note that both these figures 

include space that might be allocated to internal data structures that are used to maintain the 

record store itself, as well as the space occupied by record data. Therefore, if the 

getSizeAvailable( ) method returns 100, it does not follow that a 100-byte record could be 

created in the record store, because some space might be needed to store information to 

manage that record.  

6.5.2 Records 

A record store contains zero or more records, each of which is an arbitrary array of bytes with 

an associated integer identifier that can be used to unambiguously identify it. A record's 

http:///


J2ME in a Nutshell 

210 

identifier is not part of the record itself but is held separately by the implementation and 

assigned when the record is created. Identifiers obey the following simple rules:  

• The identifier assigned to the first record created in a record store has the value 1.  

• The identifier assigned to a new record is one greater than that assigned to the record 

created before it.  

If you create a new record store and add several records to it, the identifiers assigned to these 

records will, therefore, be 1, 2, 3, 4, and so on. If a record is subsequently removed, its 

identifier is not reused; for example, if you removed the record with identifier 2 and created 

another new record, it would be assigned identifier 5, not 2. As a result, as records are deleted 

and new ones added, the set of valid identifiers no longer constitutes a contiguous sequence of 

numbers; instead, it is quite likely that the active identifiers will have widely different values.  

A new record is created using the addRecord( ) method, which returns the value of the 

newly assigned identifier:  

public int addRecord(byte[] data, int offset, int size) 

The record is created from the the range of bytes from data[offset] to data[offset + 

size - 1]. At first sight, it may not seem very convenient to have to supply the data to be 

written in the form of a byte array, because most of the time you deal with objects that hold 

data in instance fields. A simple way to create a record from a class is to use a 

DataOutputStream to write the values from the class that you need to store into a 

ByteArrayOutputStream, which will create the appropriate array of bytes for you. Suppose, 

for example, that you have an object that represents a player's score in a game, and you want 

to save this as a record in the Scores record store for your suite of MIDlet games. The score 

recording class might be defined like this:  

public class ScoreRecord { 
    public String playerName;  // Player name 
    public int score;  // Player's score 
} 

Here's how you would store a player's score in a record store:  

// Create an object to be written 
ScoreRecord record = new ScoreRecord( ); 
record.playerName = "TopNotch"; 
record.score = 12345678; 
 
// Create the output streams 
ByteArrayOutputStream baos = new ByteArrayOutputStream( ); 
DataOutputStream os = new DataOutputStream(baos); 
 
// Write the values to be saved to the output streams 
os.writeUTF(record.playerName); 
os.writeInt(record.score); 
os.close( ); 
 
// Get the byte array with the saved values 
byte[] data = baos.toByteArray( ); 
 
 

http:///


J2ME in a Nutshell 

211 

// Write the record to the record store 
int id = recordStore.addRecord(data, 0, data.length); 
 

 

You might be tempted to try to save the contents of an object by writing 

it to an ObjectOutputStream and feeding the output from that stream 

into a ByteArrayOutputStream. Unfortunately, you cannot do this 

because neither CLDC nor MIDP includes support for object 

serialization.  
 

Using a DataOutputStream and a ByteArrayOutputStream in this way frees you from 

worry about how to convert Java types and primitives into a collection of bytes. It also 

relieves you of the responsibility of allocating the byte array. Retrieving a record from the 

record store and unpacking it is simply a matter of reversing the above code, using the 

RecordStore getRecord( ) method:  

public byte[] getRecord(int recordId) 

This method throws an InvalidRecordIDException if you pass it an identifier that does not 

correspond to an active record in the record store. Here is how you would retrieve a player's 

name and score from a record store, given the identifier of the record containing the 

information:  

byte[] data = recordStore.getRecord(recordId); 
DataInputStream is = new DataInputStream(new ByteArrayInputStream(data)); 
ScoreRecord record = new ScoreRecord( ); 
record.playerName = is.readUTF( ); 
record.score = is.readInt( ); 
is.close( ); 

You can update the content of an existing record by using the setRecord( ) method:  

public void setRecord(int recordId, byte[] data, int offset, int size); 

The process of modifying a record is simply a combination of the two steps shown above for 

reading and writing records. To add 10 to the score in a given record, for example, you would 

use the code just shown to read the record, change the score, and then write it back out using 

setRecord( ) instead of addRecord( ):  

// Modify the score 
record.score += 10; 
 
ByteArrayOutputStream baos = new ByteArrayOutputStream( ); 
DataOutputStream os = new DataOutputStream(baos); 
os.writeUTF(record.playerName); 
os.writeInt(record.score); 
os.close( ); 
byte[] data = baos.toByteArray( ); 
 
// Write the record to the record store, overwriting the existing record 
recordStore.setRecord(recordId, data, 0, data.length); 

http:///


J2ME in a Nutshell 

212 

Note that there is no requirement that the new and old record sizes be the same. The 

implementation does whatever is needed to store the modified record content into the record 

store, which might involve moving other data around to accomodate an enlarged record.  

A record can be deleted using the deleteRecord( ) method:  

public void deleteRecord(int recordId) 

Changes to the content of a record store are reported as events to objects that implement the 

RecordListener interface and register with the RecordStore using the 

addRecordListener( ) method. The RecordListener interface consists of three methods:  

public void recordAdded(RecordStore store, int recordId); 
public void recordChanged(RecordStore store, int recordId); 
public void recordDeleted(RecordStore store, int recordId); 

Each of these methods is passed a reference to the RecordStore in which the operation took 

place and the identifier of the record that was affected. A listener can be removed by calling 

the removeRecordListener( ) method. All listeners are automatically removed when a 

RecordStore is closed as a result of calling closeRecordStore( ). If the store is opened 

more than once, the listeners are not removed until the last closeRecordStore( ) call is 

made (that is, until the record store has been closed as many times as it was opened).  

There are three other record-related methods provided by the RecordStore class:  

public int getNumRecords( ); 
public int getRecordSize(int recordId); 
public int getNextRecordID( ); 

The getNumRecords( ) method returns the number of records in the record store. This does 

not, of course, include deleted records. The getRecordSize( ) method returns the size of a 

record with a given identifier. This is actually the size of the useful data in the record and does 

not include any implementation-dependent information that might be stored along with the 

MIDlet data. Finally, getNextRecordID( ) returns the value of the identifier that will be 

assigned to the next record to be created in the record store. This method is useful if you want 

to create a reference from one record to another (to simulate a database foreign key) or if you 

need to embed the identifier for a record within the record itself, because you usually don't get 

the identifier until after you have written the data to the record store. You'll see an example of 

this in Section 6.5.6, later in this chapter. You need to be very careful when using this 

method, because the returned value is no longer correct once addRecord( ) is called. This is 

particularly dangerous in a multithreaded environment if a different thread can call 

addRecord( ) after getNextRecordID( ) is called but before addRecord( ) has been used 

to create the record in the original thread. See Section 6.5.5, later in this chapter, for a brief 

discussion of multithreading considerations when using record stores.  

6.5.3 Record Enumerations 

The RecordStore methods that are used to access, modify, and delete records assume that 

you know the identifier of the record you want to operate on. The record store uses the 

identifier as a key to identify a record, but it is not usually convenient for application code to 

remember which identifier corresponds to a piece of data. In the case of game scores, for 

http:///


J2ME in a Nutshell 

213 

example, you would most likely want to key on the player's name and retrieve the record for a 

given player. The most obvious way to do this would be to retrieve every record and compare 

its name field with the name of the player to be matched, using code like this:  

for (int i = 1, limit = store.getNextRecordID( ); i < limit; i++) { 
    try { 
        // Get the next record from the record store 
        byte[] data = store.getRecord(i); 
        // Get name from record (not shown) 
        // If the name matches the required player name, 
        // break (not shown) 
    } catch (InvalidRecordIDException ex) { 
        // Skip records that have been deleted 
    } 
} 

The problem with this code is that it becomes less and less efficient as records are added and 

deleted from the record store, because, as noted earlier, the list of active record identifiers can 

quickly become sparse. A record store might, for example, contain three records with 

identifiers 1, 5001, and 10000. The code shown here would need to iterate up to 10,000 times 

to process all three records, with most of its execution time wasted finding out that the 

identifiers it is iterating through are invalid.  

To avoid the need for this brute force approach, the RecordStore API includes a method 

called enumerateRecords( ) that you can use to search efficiently through all the records in 

the record store to get the identifier for the record that you need:  

public RecordEnumeration enumerateRecords(RecordFilter filter, 
    RecordComparator comparator, boolean keepUpdated) 

The filter argument allows you to determine which records in the record store are included 

in the returned RecordEnumeration. The order of the records is controlled by the 

RecordComparator. The keepUpdated argument specifies whether the content of the 

enumeration should change to reflect modifications to the record store itself.  

The following call gets a static snapshot containing all the records in the record store:  

RecordEnumeration enum = recordStore.enumerateRecords(null, null, false); 

The number of entries in this enumeration can be obtained using the numRecords( ) method. 

In this example, in which no filter is used, this will be the same as the number of records in 

the record store itself.  

Using enumerateRecords( ) to access all the records in a record store is likely to be much 

more efficient than the simple-minded loop shown earlier, because the implementation can 

take advantage of the fact that it can directly access all the active records without having to 

"poll" for the existence of each record.  

MIDP does not define the order of the records in this enumeration. Because records do not 

have any natural ordering (except, possibly, based on their identifiers), you shouldn't make 

any assumptions about ordering when you don't supply a RecordComparator. Before looking 

http:///


J2ME in a Nutshell 

214 

at how to determine an order or exclude records that are not of interest, let's look at what a 

RecordEnumeration is.  

The RecordEnumeration interface contains a set of methods that can be used to iterate 

through the record identifiers that it contains. Unlike a regular Java Enumeration, a 

RecordEnumeration allows you to traverse either forwards or backwards and also lets you 

change direction at any time. The hasNextElement( ) and hasPreviousElement( ) 

methods allow you to find out whether the end of the enumeration has been reached, while 

nextRecordId( ) and previousRecordId( ) are used to fetch the actual elements of the 

enumeration:  

// Traverse forwards 
while (enum.hasNextElement( )) { 
    int id = enum.nextRecordId( ); 
     
    // Do something with this record id (not shown) 
} 
 
// Traverse backwards 
while (enum.hasPreviousElement( )) { 
    int id = enum.previousRecordId( ); 
 
    // Do something with this record id (not shown) 
} 

When an enumeration is created, it is logically positioned "before" the first identifier; each 

time it is called, the nextRecordId( ) method increments the position and then returns the 

item at the new position. If you create an enumeration and call previousRecordId( ) 

instead of nextRecordId( ), the position cursor is moved to the last element of the 

enumeration. Hence, the following code processes the enumeration backwards:  

RecordEnumeration enum = recordStore.enumerateRecords(null, null, false); 
while (enum.hasPreviousElement( )) { 
    int id = enum.previousRecordId( ); 
 
    // Do something with this record id (not shown) 
} 

If you call nextRecordId( ) after reaching the end of the enumeration or 

previousRecordId( ) after reaching the beginning, an InvalidRecordIDException is 

thrown.  

Typically, after obtaining a record identifier, you read the content of the corresponding record 

into memory by calling the getRecord( ) method. You can combine these two steps using 

the nextRecord( ) or previousRecord( ) methods:  

// Traverse forwards 
while (enum.hasNextElement( )) { 
    byte[] record = enum.nextRecord( ); 
 
    // Do something with this record (not shown) 
} 
 
 
 

http:///


J2ME in a Nutshell 

215 

// Traverse backwards 
while (enum.hasPreviousElement( )) { 
    byte[] record = enum.previousRecord( ); 
 
    // Do something with this record (not shown) 
} 

These methods are convenient if you simply want read access to the records, but they are not 

suitable if you want to modify the data, because changes made in the returned array are not 

automatically reflected in the record store. Moreover, you don't have a record identifier that 

you could pass to setRecord( ) to write out the data once you have modified it in memory.  

Unlike regular Enumerations, RecordEnumeration has a reset( ) method that allows you 

to restart the iteration from the beginning:  

// Traverse forwards 
while (enum.hasNextElement( )) { 
    byte[] record = enum.nextRecord( ); 
 
    // Do something with this record (not shown) 
} 
 
enum.reset( );  // Reset to initial state 
 
// Read all the records again 
while (enum.hasNextElement( )) { 
    byte[] record = enum.nextRecord( ); 
 
    // Do something with this record (not shown) 
} 

When you call enumerateRecords( ) and pass false for the keepUpdated argument, you 

get a static enumeration that reflects the state of the record store at the point that the 

enumeration was created. Subsequent changes in the record store content (made either by the 

same MIDlet or by another MIDlet in the same suite) are not reflected in the enumeration. 

This has two consequences:  

• Newly added records do not appear in the enumeration. 

• If a record is deleted before its identifier has been retrieved from the enumeration, an 

InvalidRecordIDException is thrown if that identifier is subsequently used to 

retrieve the deleted record, whether by calling getRecord(enum.nextRecordId( )) 

or enum.nextRecord( ).  

In order to safely traverse a static enumeration if there is a possibility that records might be 

deleted while enumeration is being used, you need to catch and ignore 

InvalidRecordIDException:  

 
 
 
 
 
 
 
 

http:///


J2ME in a Nutshell 

216 

while (enum.hasNextElement( )) { 
    try { 
        int id = enum.nextRecordId( ); 
        // Next line throws an exception if record "id" 
        // has been deleted 
        byte[] data = recordStore.getRecord(id); 
    } catch (InvalidRecordIDException ex) { 
        // Ignore deleted record 
    } 
} 

Another way to achieve the same effect is to create a dynamically updated 

RecordEnumeration by setting the keepUpdated argument of enumerateRecords( ) to 

true:  

RecordEnumeration enum = recordStore.enumerateRecords(null, null, true); 

Now, any record that is added to or removed from the record store will also appear in or be 

removed from the enumeration (assuming that the record passes the enumeration's optional 

filter, which will be described shortly), so you don't need to take special action to ignore 

deleted records. The disadvantage to this approach, however, is that there is a potentially large 

overhead associated with rebuilding the enumeration when any change occurs in the record 

store.  

There are three other RecordEnumeration methods that are associated with keeping 

enumerations consistent with changes in the record store:  

public boolean isKeptUpdated( ) 
public void keepUpdated(boolean keepUpdated) 
public void rebuild( ) 

The isKeptUpdated( ) method returns true if the enumeration tracks changes in the record 

store. The keepUpdated( ) method can be used to change the state of an enumeration so that 

it either does or does not automatically track changes; in most cases, though, you simply set 

this property via the enumerateRecords( ) method and don't change it. The rebuild( ) 

method reconstructs the enumeration from the current state of the record store. A typical way 

to use this method is to add a RecordListener to the RecordStore and invoke rebuild( ) 

when notification of a record addition or removal is received. In practice, application code is 

unlikely to use this method, because the same functionality is available from a dynamic 

enumeration without the need for additional code.  

When you have finished using a RecordEnumeration, you should use the destroy( ) 

method to release its resources.  

6.5.4 Record Filters and Comparators 

If you don't want to iterate through all the records in a record store, you can create a 

RecordEnumeration containing only those records that fulfill a given criterion by supplying a 

filter to the enumerateRecords( ) method. A filter is an object that implements the 

RecordFilter interface, which has a single method:  

public boolean matches(byte[] data) 

http:///


J2ME in a Nutshell 

217 

As the enumeration is being constructed, the enumerateRecords( ) method reads each 

record from the record store and passes it to the filter's matches( ) method; the record is 

included in the final enumeration only if the matches( ) method returns true.  

Suppose that you have a record store for a suite of MIDlet games, in which each entry 

contains a player's name and their highest score. You want to get a list of players who have 

scored more than 10,000 points. Here's how you might write the RecordFilter 

implementation to achieve this:  

RecordFilter filter = new RecordFilter( ) { 
    public boolean matches(byte[] data) { 
        try { 
            DataInputStream is = new DataInputStream( 
            new ByteArrayInputStream(data)); 
            is.readUTF( );  // Skip name 
            int score = is.readInt( ); 
             
            // Match scores over 10000 
            return score > 10000; 
        } catch (IOException ex) { 
            // Cannot read - no match 
            return false; 
        } 
    } 
}; 

Each record is passed to the filter as a byte array, from which the score has to be extracted 

using the usual combination of a ByteArrayInputStream and a DataInputStream, as 

outlined in Section 6.5.2. In this case, the original records were created by writing out the 

player name as a string and then the score as an integer; to retrieve the score, it is necessary 

first to skip over the player name by calling readUTF( ) on the DataInputStream. Once the 

score has been obtained, all that is necessary is to return true if it is greater than 10,000 or 

false if not.  

Once you have a RecordFilter, just pass it as the first argument to the enumerateRecords( 

) method. Here's how you might use this filter to extract and print the names and scores of 

qualifying players from an open record store:  

// Use the filter to get an enumeration that contains only 
// a subset of the records in the record store 
RecordEnumeration enum = store.enumerateRecords(filter, null, false); 
 
// Print those players whose scores match the filter 
while (enum.hasNextElement( )) { 
    byte[] record = enum.nextRecord( ); 
    ByteArrayInputStream bais = new ByteArrayInputStream(record); 
    DataInputStream is = new DataInputStream(bais); 
    System.out.println("Name: <" + is.readUTF( ) + ">"); 
    System.out.println("Score: <" + is.readInt( ) + ">\n"); 
    is.close( ); 
} 
enum.destroy( ); 

You can impose an order on the records in a RecordEnumeration by implementing a 

RecordComparator. RecordComparator is another interface that has one method:  

http:///


J2ME in a Nutshell 

218 

public int compare(byte[] first, byte[] second) 

As the enumeration is being constructed, this method is called several times, each time with a 

pair of records to be compared. The details of the comparison operation depend on the 

structure of the records and the criteria according to which they should be sorted. The return 

value from this method specifies the relative position of the given records in the sorting order:  

RecordComparator.EQUIVALENT  

Indicates that the two records are equal as far as the sorting criterion is concerned  

RecordComparator.PRECEDES  

Indicates that the first record should come before the second record in the sorting 

order  

RecordComparator.FOLLOWS  

Indicates that the first record follows the second in the sorting order  

The implementation of the comparator should be designed so results are consistent and 

independent of which record appears first in the method arguments:  

• If records A and B are equivalent, compare(A, B) and compare(B, A) should both 

return RecordComparator.EQUIVALENT.  

• If compare(A, B) and compare(B, C) both return RecordComparator.EQUIVALENT, 

then compare(A, C) must also return RecordComparator.EQUIVALENT.  

• If record A precedes record B, compare(A, B) should return 

RecordComparator.PRECEDES and compare(B, A) should return 

RecordComparator.FOLLOWS.  

Using the game scores record store as an example again, suppose we wanted to get 

an enumeration in which the records are returned in descending order of scores. Here's 

a RecordComparator that could be used to sort the records appropriately:  

// Sort an enumeration using a RecordComparator 
RecordComparator comparator = new RecordComparator( ) { 
    public int compare(byte[] first, byte[] second) { 
        try { 
            DataInputStream isFirst = new DataInputStream( 
                        new ByteArrayInputStream(first)); 
            DataInputStream isSecond = new DataInputStream( 
                        new ByteArrayInputStream(second));  
 
            // Use descending order of scores. 
            String firstName = isFirst.readUTF( ); 
            int firstScore = isFirst.readInt( ); 
            String secondName = isSecond.readUTF( ); 
            int secondScore = isSecond.readInt( ); 
  
 
 
 

http:///


J2ME in a Nutshell 

219 

           if (firstScore != secondScore) { 
                return firstScore > secondScore ? 
                            RecordComparator.PRECEDES : 
                            RecordComparator.FOLLOWS; 
            } 
 
            // When the scores are equal, sort based 
            // on the player name. 
            int comp = firstName.compareTo(secondName); 
            if (comp == 0) { 
                return RecordComparator.EQUIVALENT; 
            } else if (comp < 0) { 
                return RecordComparator.PRECEDES; 
            } else { 
                return RecordComparator.FOLLOWS; 
            } 
 
        } catch (IOException ex) { 
            // Cannot read - claim that they match 
            return RecordComparator.EQUIVALENT; 
        }   
    } 
}; 

As with RecordFilter, the records are passed as byte arrays, so a pair of DataInputStreams 

is used to get access the the record content. The first test compares the two record scores and 

simply returns FOLLOWS or PRECEDES, depending on their relative values. If the scores are the 

same, it would be perfectly reasonable to return EQUIVALENT. Here, though, we choose to sort 

records with equal scores in ascending order based on the player's name. To do this, the 

names are compared using the String compareTo( ) method, and the result is interpreted to 

determine the appropriate return value for the compare method.  

The sorted list of scores can be obtained using the following line of code:  

RecordEnumeration enum = store.enumerateRecords(null, comparator, false); 

The first record in this enumeration is the one with the highest score, the second the one with 

the next highest score, and so on.  

6.5.5 Multithreading and Concurrent Access 

The MIDP specification requires implementations to ensure that record store operations are 

atomic. For example, an attempt to insert two records at the same time from two separate 

threads (or two MIDlets in the same suite) must be serialized so that each record is safely 

inserted and has a separate identifier. However, there are still issues of consistency that need 

to be taken care of at the MIDlet level. Some examples of issues that might arise follow. Care 

must be taken when coding multithreaded MIDlets or MIDlet suites that share the same 

record store to ensure that these conditions are properly handled.  

• The RecordStore numRecords( ) method returns the number of records in the record 

store. Using this value as a limiting value in a loop is safe only as long as no other 

thread or MIDlet could add or delete records while the loop is in progress.  

http:///


J2ME in a Nutshell 

220 

• Static enumerations reflect the state of the record store at the time that the enumeration 

is created. You can create a dynamic enumeration to ensure that the enumeration 

always reflects the state of the record store.  

• The value returned by the getNextRecordID( ) method is valid only until a new 

record is inserted in the record store. If you need to know in advance the identifier of 

the next record you will write before you actually write it (perhaps because you want 

to include the identifier in the record itself), you must make sure that no other thread 

or MIDlet could write a new record first. This can be done by synchronizing on the 

RecordStore object as a means of gaining permission to insert a new record in a 

multithreaded MIDlet.  

6.5.6 A RecordStore Example 

As a practical example of the use of record stores, let's look at how to add persistence to the 

book-ranking application that we used in the HTTP discussion. This application allows a user 

to enter a book's ISBN and then fetches its title, sales ranking, and number of reviews from 

the http://www.amazon.com/ web site. By saving these details in the record store, we save the 

user from having to remember book ISBNs (which are not the most memorable things in the 

world), and it also becomes possible to compare a book's current ranking to its previous one, 

so that we can see how sales are going. The features that we want are these:  

• When the MIDlet starts, it should retrieve the ISBNs and titles of any books it knows 

about and display them in a list. If the record store has not yet been created, or if it is 

empty, the MIDlet should display the ISBN entry screen.  

• When the user selects an item from the list, the current details for the chosen book 

should be displayed on the screen. A command should be provided that allows the user 

to get the latest information from the web site, and the new details should be 

displayed, with an indication of how much the book's sales ranking and number of 

reviews have changed.  

• The user should be able to enter a new ISBN to retrieve the details for a book that is 

not currently in the record store.  

• Whenever book details are fetched for a new book, or updates are obtained for an 

existing book, they should be written to the record store.  

• Finally, the user should be able to delete records for books that she is no longer 

interested in.  

Modifying the MIDlet to add these features is a matter of adding a class to manage the record 

store, together with a set of changes to the user interface code. Because we are mainly 

interested in this section in the persistence aspects, we'll look only briefly at some of the 

modified user interface code. If you want to see the complete implementation of the GUI, 

you'll find it in the file PersistentRankingMidlet.java in this book's example source code. You 

can also try out the MIDlet by selecting PersistentRanking from this chapter's MIDlet 

suite. The first time you run this, you'll just see the same ISBN entry screen shown in 

Figure 6-4. When you enter an ISBN, the details for the book are fetched and displayed as 

before. However, this time you'll also have access to a command button labeled Back. If you 

press this button, you'll see that your chosen book has been entered into a list, as shown on the 

left in Figure 6-5.  

 

http:///


J2ME in a Nutshell 

221 

Figure 6-5. A book-ranking application 

 

When you next start this MIDlet, the stored book list is displayed so that you can update the 

state of any book that it contains. When you select an entry from the list, the information that 

is stored for it is shown, along with a command button labeled Check. If you press this button, 

updated information is obtained from the web site and the change in sales ranking and number 

of reviews appears, as shown in the middle of Figure 6-5. There are also commands available 

to allow you to create an entry for a new book and delete an existing entry. On a typical cell 

phone, these commands would be presented on a separate menu, as shown on the right side of 

Figure 6-5.  

Now let's look at some of the implementation details. In order to keep the persistence issues 

separate from the user interface, we encapsulate access to the record store in a class called 

BookStore that works in terms of the BookInfo objects that were created for the original 

application. The BookStore class provides the following features:  

• Returns the number of books in the BookStore. 

• Returns a list of all the books in the BookStore in the form of a RecordEnumeration. 

The books are sorted alphabetically by title.  

• Stores the content of a BookInfo object in the record store, creating a new record or 

updating an existing one as necessary.  

• Gets the details for a book with a given record identifier or ISBN from the record store 

and returns the corresponding BookInfo object.  

The most fundamental aspects of the BookStore class are the way in which it manages the 

underlying record store and how it stores the BookInfo objects. Example 6-2 shows the 

methods of the BookStore class that manage the RecordStore itself.  

Example 6-2. Managing a RecordStore  

// A class that implements a persistent store 
// of books, keyed by ISBN. 
public class BookStore implements RecordComparator, RecordFilter { 
    // The name of the record store used to hold books 
    private static final String STORE_NAME = "BookStore"; 
 
    // The record store itself 
    private RecordStore store; 
 
 
 
 
 
 
 
 

http:///


J2ME in a Nutshell 

222 

    // Creates a bookstore and opens it 
    public BookStore( ) { 
        try { 
            store = RecordStore.openRecordStore(STORE_NAME, true); 
        } catch (RecordStoreException ex) { 
            System.err.println(ex); 
        } 
    } 
 
    // Closes the bookstore 
    public void close( ) throws RecordStoreException { 
        if (store != null) { 
            store.closeRecordStore( ); 
        } 
    } 
 
    // Gets the number of books in the book store 
    public int getBookCount( ) throws RecordStoreException { 
        if (store != null) { 
            return store.getNumRecords( ); 
        } 
        return 0; 
    } 
 
    // Adds a listener to the book store 
    public void addRecordListener(RecordListener l) { 
        if (store != null) { 
            store.addRecordListener(l); 
        } 
    } 
 
    // Removes a listener from the book store 
    public void removeRecordListener(RecordListener l) { 
        if (store != null) { 
            store.removeRecordListener(l); 
        } 
    } 
 
    // More code (not shown) 
 
} 

This code makes direct use of RecordStore interfaces to manage the underlying record store. 

The constructor uses the openRecordStore( ) method to open a record store called 

BookStore. This call creates the record store if it does not exist. Similarly, the close( ) 

method closes the record store by calling the closeRecordStore( ) method, and the 

getBookCount( ) method obtains the number of books by calling numRecords( ). The 

addRecordListener( ) and removeRecordListener( ) methods delegate directly to the 

RecordStore methods of the same name. These methods allow users of the BookStore class 

to be notified when book details are added, removed, or modified. In this MIDlet, this facility 

is used by the user interface code to keep the list of books shown on the left side of Figure 6-5 

up to date.  

Saving and retrieving BookInfo objects is also straightforward, requiring only the use of the 

appropriate input and output streams, as shown in Example 6-3. The deleteBook( ) method, 

which deletes the entry for a book, given its BookInfo object, is also shown here.  

http:///


J2ME in a Nutshell 

223 

Example 6-3. Saving and Retrieving BookInfo Objects  

// Writes a record into a byte array. 
private byte[] toByteArray(BookInfo bookInfo) throws IOException { 
    ByteArrayOutputStream baos = new ByteArrayOutputStream( ); 
    DataOutputStream os = new DataOutputStream(baos); 
 
    os.writeUTF(bookInfo.isbn); 
    os.writeUTF(bookInfo.title == null ? "" : bookInfo.title); 
    os.writeInt(bookInfo.ranking); 
    os.writeInt(bookInfo.reviews); 
    os.writeInt(bookInfo.lastRanking); 
    os.writeInt(bookInfo.lastReviews); 
 
    return baos.toByteArray( ); 
} 
 
// Gets a BookInfo from a store record 
// given its record identifier 
public BookInfo getBookInfo(int id) throws RecordStoreException,, 
IOException 
{ 
    byte[] bytes = store.getRecord(id); 
    DataInputStream is = new DataInputStream(new  
        ByteArrayInputStream(bytes)); 
 
    String isbn = is.readUTF( ); 
    BookInfo info = new BookInfo(isbn); 
    info.id = id; 
    info.title = is.readUTF( ); 
    info.ranking = is.readInt( ); 
    info.reviews = is.readInt( ); 
    info.lastRanking = is.readInt( ); 
    info.lastReviews = is.readInt( ); 
 
    return info; 
} 
 
// Deletes the entry for a book from the store 
public void deleteBook(BookInfo bookInfo) throws RecordStoreException { 
    if (store != null) { 
        store.deleteRecord(bookInfo.id); 
    } 
} 

RecordStore methods use record identifiers to denote individual records whereas, for the 

most part, application code would prefer to deal exclusively with a BookInfo object or an 

ISBN and not be concerned about the implementation details of the storage mechanism. This 

is, of course, one of the reasons why the original design of the BookInfo class included a field 

to hold the RecordStore identifier for the book's stored record. As a result, the deleteBook( 

) method can use a BookInfo object to identify the book to be deleted. The getBookInfo( ) 

method, however, uses a record identifier to identify the book. This is because it is useful to 

be able to get a RecordEnumeration containing all or a subset of the books and then retrieve 

the corresponding records. A RecordEnumeration contains a record identifier, so there is a 

need for a public method that accepts such a value as its argument.  

The remaining methods in the BookStore class satisfy the requirements of the book-ranking 

MIDlet. When the MIDlet starts, it needs to get a list of all of the books in the BookStore so 

http:///


J2ME in a Nutshell 

224 

that it can populate a list for display to the user. For convenience, this list is displayed in 

alphabetical order by title. This functionality can obviously be provided by 

RecordEnumeration:  

public RecordEnumeration getBooks( ) throws RecordStoreException { 
    if (store != null) { 
        return store.enumerateRecord(null, this, false); 
    } 
} 

The alphabetical sorting is performed by a RecordComparator, which, to avoid introducing 

extra classes, is provided by BookStore itself (which is why the second argument of the 

enumerateRecord( ) call is this):  

// RecordComparator implementation 
public int compare(byte[] book1, byte[] book2) { 
    try { 
        DataInputStream stream1 = 
            new DataInputStream(new ByteArrayInputStream(book1)); 
        DataInputStream stream2 = 
            new DataInputStream(new ByteArrayInputStream(book2)); 
 
        // Match based on the ISBN, but sort based on the title. 
        String isbn1 = stream1.readUTF( ); 
        String isbn2 = stream2.readUTF( ); 
        if (isbn1.equals(isbn2)) { 
            return RecordComparator.EQUIVALENT; 
        } 
        String title1 = stream1.readUTF( ); 
        String title2 = stream2.readUTF( ); 
        int result = title1.compareTo(title2); 
        if (result == 0) { 
            return RecordComparator.EQUIVALENT; 
        } 
        return result < 0 ? RecordComparator.PRECEDES : 
                            RecordComparator.FOLLOWS; 
    } catch (IOException ex) { 
        return RecordComparator.EQUIVALENT; 
    } 
} 

To determine whether the two records are equal, the ISBNs are compared. If they do not 

match, the titles are compared, and PRECEDES, EQUIVALENT, or FOLLOWS is returned, 

depending on the outcome. The MIDlet user interface code builds the book list by using the 

getBooks( ) method to get a sorted list of books, then calling getBookInfo( ) with each 

record identifier returned in the RecordEnumerator, as follows:  

RecordEnumeration enum = bookStore.getBooks( ); 
while (enum.hasNextElement( )) { 
    int id = enum.nextRecordId( ); 
    BookInfo info = bookStore.getBookInfo(id); 
    bookInfoList.addElement(info); 
} 
enum.destroy( ); 

When the user selects an item from the list, its details need to be displayed. Since the list 

contains each book's BookInfo object, the information is immediately available. If the user 

http:///


J2ME in a Nutshell 

225 

asks for new information to be retrieved from the web site, however, the stored information 

will ultimately need to be updated. Similarly, if the user enters an ISBN for a new book, and 

that book's details are retrieved, a new record needs to be created. The BookStore class 

provides a method called saveBookInfo( ) to satisfy this requirement:  

// Adds an entry to the store or modifies the existing 
// entry if a matching ISBN exists. 
public void saveBookInfo(BookInfo bookInfo) throws IOException, 
RecordStoreException { 
    if (store != null) { 
        searchISBN = bookInfo.getIsbn( ); 
        RecordEnumeration enum = store.enumerateRecords(this, null, 
            false); 
        if (enum.numRecords( ) > 0) { 
            // A matching record exists. Set the id 
            // of the BookInfo to match the existing record 
            bookInfo.id = enum.nextRecordId( ); 
            byte[] bytes = toByteArray(bookInfo); 
            store.setRecord(bookInfo.id, bytes, 0, bytes.length); 
        } else { 
            // Create a new record 
            bookInfo.id = store.getNextRecordID( ); 
            byte[] bytes = toByteArray(bookInfo); 
            store.addRecord(bytes, 0, bytes.length); 
        } 
 
        // Finally, destroy the RecordEnumeration 
        enum.destroy( ); 
    } 
} 

If the book already has an entry in the record store, the setRecord( ) method is used to 

update it. If it does not, addRecord( ) must be used to create a new record. As we have 

already seen, the quickest way to determine whether a record exists in a record store is to use 

a RecordEnumeration and search it for the required record. Here, we use a variant of that 

technique: it supplies a filter that allows through only a book with a given ISBN, stored in the 

searchISBN instance variable. The filter implementation (which, like the RecordComparator, 

is provided directly by the BookStore class) is very simple:  

// RecordFilter implementation 
public boolean matches(byte[] book) { 
    if (searchISBN != null) { 
        try { 
           DataInputStream stream =  
               new DataInputStream(new ByteArrayInputStream(book)); 
              
            // Match based on the ISBN. 
            return searchISBN.equals(stream.readUTF( )); 
        } catch (IOException ex) { 
            System.err.println(ex); 
        } 
    } 
 
    // Default is not to match 
    return false; 
} 

http:///


J2ME in a Nutshell 

226 

If the returned enumeration is not empty, we know that the book is already in the record store, 

so the setRecord( ) method is used to update it, after calling the toByteArray( ) method 

shown in Example 6-3 to convert the BookInfo object to a byte array for storage. If a new 

record is needed, addRecord( ) must be used instead. In this case, however, we haven't yet 

assigned a record store identifier to the record, so we use the RecordStore 

getNextRecordID( ) method to get the identifier under which the record will be stored. We 

save that in the BookInfo object before calling toByteArray( ) and addRecord( ).  

Finally, for completeness, although it is not used by the book ranking MIDlet, BookStore 

also provides a method that searches for a book given its ISBN. This method uses the same 

technique that SaveBookInfo( ) does of creating a filtered RecordEnumeration to locate the 

record for the book. Because this search also uses the book ISBN, the same RecordFilter 

implementation is used:  

public BookInfo getBookInfo(String isbn) throws RecordStoreException, 
IOException { 
    BookInfo bookInfo = null; 
    searchISBN = isbn;  
         
    // Look for a book with the given ISBN 
    RecordEnumeration enum = store.enumerateRecords(this, null, false); 
         
    // If found, get its identifier and fetch its BookInfo object 
    if (enum.numRecords( ) > 0) { 
        int id = enum.nextRecordId( ); 
        bookInfo = getBookInfo(id); 
    } 
     
    // Release the enumeration 
    enum.destroy( ); 
         
    return bookInfo; 
} 

This completes our examination of MIDP's networking and storage capabilities. The example 

in this chapter demonstrates not only how powerful the provided facilities can be, but also 

how simple it is to use them to create a useful application using a relatively small amount of 

code. At the same time, you have seen that it is important to be aware of the limited resources 

available on these platforms -- particularly memory -- and to adjust your coding style 

accordingly.  

http:///


J2ME in a Nutshell 

227 

Chapter 7. The Connected Device Configuration and 
Its Profiles 

The Connected Limited Device Configuration (CLDC) and the Mobile Information Device 

Profile (MIDP) bring a usable, if restricted, Java programming capability to a very large 

number of small devices. There is a wide gulf between the cell phones and small PDAs that 

the CLDC profiles address and the desktop world of J2SE, and between these two extremes 

lie a range of other devices. Among these are consumer electronic devices such as set-top 

boxes, two-way pagers, and larger PDAs that, while not needing to support the complete J2SE 

environment, are nevertheless not well served by CLDC and MIDP and have the resources to 

host a more capable Java platform. The Connected Device Configuration (CDC) is the J2ME 

configuration that is aimed at this class of device. This chapter provides an overview of CDC 

and the current state set of profiles that are defined for it, many of which are, as yet, not fully 

specified.  

7.1 The CDC 

The CDC is targeted at devices that have a minimum of 2 MB of memory available to be used 

by the Java VM and its class libraries. As with CLDC, most devices probably have the VM 

and the core class libraries in ROM or Flash memory, but they also require RAM for 

application classes (unless the application is embedded and hence also included in the ROM) 

and the Java heap.  

CDC devices typically have a 32-bit processor and a network connection, which may be 

intermittent or permanent, often directly to the Internet or a TCP/IP-based intranet. This 

contrasts to the CLDC environment, which is often hosted by slower 16-bit processors, and 

which has only a relatively low-bandwidth, nonpermanent connection to a network that 

cannot be assumed to support TCP/IP.  

Like CLDC, the CDC specification requires a VM and a set of class libraries represent the 

minimal subset of the Java 2 platform required for all devices to which this configuration is 

targeted. The CDC specification was prepared under the Java Community Process as JSR 36, 

which can be downloaded from http://jcp.org/jsr/detail/36.jsp. Devices built to target specific 

applications or markets require additional software facilities that are provided by CDC's 

associated profiles, which will be described later in this chapter. Figure 7-1 shows the 

relationship between CDC and the profiles that are currently defined for it; they are described 

in Section 7.1.5.  

 

 

 

 

 

 

http:///


J2ME in a Nutshell 

228 

Figure 7-1. CDC and its profiles 

 

7.1.1 The CDC Virtual Machine 

Because CDC devices are much more capable than those targeted by CLDC, they can support 

a full Java VM. In fact, any VM provided as part of a CDC implementation must provide all 

the features described in the second edition of the Java Virtual Machine specification. Sun 

provides a reference implementation of CDC, downloadable from 

http://java.sun.com/products/cdc/, that is based on the CVM,
1
 a virtual machine that supports 

all the features of the full J2SE VM, but which operates with a smaller memory footprint and 

has a garbage collector that is designed to work in a limited-memory environment.  

The CDC reference implementation contains the source code for the CVM and the core CDC 

Java class libraries. If you download it, you will find that you have to build it for yourself, 

because class files and executables are not included. The reference implementation can be 

compiled for Linux (strictly speaking, only Red Hat Linux Version 6.2 is supported) and 

VxWorks, a real-time operating system. However, CVM is designed to be highly portable, 

and the download includes documentation that covers the details of the porting layer for those 

who need to implement it for a different platform. Perhaps somewhat surprisingly, Sun does 

not provide a version of CVM for PocketPC platforms such as the Compaq iPAQ range of 

PDAs, which would be an ideal host for a Java 2 programming environment. Third party 

support for these devices is almost certain to appear, however, when the GUI-based profiles 

become available.
2

  

CVM uses the same ROMizing feature used by KVM to reduce VM startup time and 

minimize memory usage by building a prelinked set of Java classes directly into the VM. The 

reference implementation produces a CVM prelinked with most of the core CDC classes and, 

optionally, some the classes in the Foundation Profile. See Section 2.4.1 in Chapter 2 for 

details of the ROMizing mechanism.  

Since CVM is a full virtual machine, the VM and the core libraries include many features that 

are not available in the KVM, including the following:  

                                                 
1 Although the initials "CVM" were originally short for "Compact Virtual Machine," this description was thought to be likely to lead to confusion 

with KVM, which is also "compact." As a result, CVM is now called just CVM. 
2 There are actually two Java platforms already in existence for the Compaq iPAQ: PersonalJava and Savaje. The former is Sun's implementation of 

Java 1.1.8 for small devices. The long-term aim is to replace PersonalJava with the Java 2-based Personal Profile, running atop CDC, as described 

later in this chapter. Savaje is an entirely different approach that replaces the PocketPC host operating system with a native Java 2 platform that 

includes all of Java 2 Version 1.3, to produce a Java-only PDA. 

http:///


J2ME in a Nutshell 

229 

• Floating-point byte codes and data types 

• Native code execution using the Java Native Interface 

• Weak references 

• Reflection 

• Object serialization 

• Developer-defined class loaders 

• Java Virtual Machine Debugging Interface (JVMDI) support 

The availability of JVMDI means that it is possible to connect a debugger to the CVM 

without the use of the debug proxy agent required by the KVM. The CDC platform also 

incorporates the full Java 2 security model and byte-code verification, which means that the 

off-device preverification process used by KVM is unnecessary.  

Despite the fact that the CVM has all the features of the J2SE VM as defined by the JVM 

specification, it is not the same as the J2SE Version 1.3 virtual machine. In particular, it does 

not have hotspot technology or even a just-in-time (JIT) compiler. CVM is strictly a byte-code 

interpreter, albeit an optimized one.  

7.1.2 Running Java Code with the CVM 

Before you can use the CVM, you will need to download the source code and compile it. 

There are two downloads available from Sun from which you can build the VM. From 

http://java.sun.com/products/cdc/ you can get the CDC reference implementation, while the 

Foundation Profile can be downloaded from http://java.sun.com/products/foundation/. Both of 

these downloads contain the same source code, which includes the CVM and the CDC core 

libraries and the libraries for the Foundation Profile. The only difference between them is that 

the first contains the CDC documentation, while the second has the documentation for the 

Foundation Profile, which is a superset of CDC as far as the class libraries are concerned.  

You can build the reference implementations on either VxWorks or Linux. The 

documentation supplied with the download includes build instructions for both platforms; the 

rest of this chapter assumes you are using Linux. Although the documentation specifies that 

the target platform is Red Hat 6.2, it is possible to build and run the CVM on other Linux 

distributions, provided you have installed the correct releases of the C compiler and the make 

command. Although the build process is not described here (because it is very simple and 

adequately covered in the product documentation), it is worth noting that there are several 

options you can choose when building the VM that determine what is produced. In order build 

a VM that can be used for development and debugging with both the CDC core libraries and 

the Foundation Profile, the following command should be used:  

make CVM_DEBUG=true CVM_JVMDI=true J2ME_CLASSLIB=foundation 

The arguments you can supply to the make command to control the build process are listed in 

the build instructions. The three options used here have the following effects:  

CVM_DEBUG=true  

Builds the CVM with debugging enabled. All the core and Foundation Profile Java 

classes are compiled with the -g option, so that they contain debugging information 

required by debuggers.  

http:///


J2ME in a Nutshell 

230 

CVM_JVMDI=true  

Enables the CVM JVMDI support. This option must be set to true if you intend to 

use a debugger with the CVM.  

J2ME_CLASSLIB=foundation  

Builds both the CDC and Foundation Profile classes. If this option is not specified or 

has the value cdc, only the CDC core libraries are built.  

The build process produces three files that you will need to use when running CVM 

application. The pathnames given here use the shell variable CDC as shorthand for the 

directory in which the downloaded source code was unpacked:  

$CDC/build/linux/bin/cvm  

The CVM executable 

$CDC/build/linux/lib/cdc.jar or $CDC/build/linux/lib/foundation.jar  

Java class libraries for CDC or the Foundation Profile, respectively; only one of these 

files will be created, depending on the value of the J2ME_CLASSLIB option supplied 

to the make command  

$CDC/build/linux/btclasses.zip  

The CDC boot classes 

The CVM is built with the majority of the classes in the CDC core libraries preloaded (and 

many of the Foundation Profile classes, if you have chosen to compile them). The classes that 

are not preloaded are included in cdc.jar or foundation.jar, depending on your build choice.  

In order to run a CDC application, you first need to compile the source code. CDC does not 

include its own compilation system, so you'll need to have J2SE Version 1.3 (or higher) 

installed to perform the compilation. As was the case with CLDC, if you use the classes that 

the J2SE compiler links to by default, you won't find out until runtime if you inadvertently 

used J2SE classes that are not part of CDC or the profile that you are targeting. Also, you 

won't be able to use classes that are specific to J2ME (such as those in the 

javax.microedition package hierarchy). In order to force the compiler to use the correct 

classes, you need to use the -bootclasspath option. As an example, if you have installed this 

book's source code in the directory pointed to by the environment variable EXAMPLES, you 

could use the following shell commands to compile the file CVMProperties.java:  

cd $EXAMPLES/src/ora/ch7 
javac -bootclasspath $CDC/build/linux/lib/foundation.jar:$CDC/build/ 
    linux/btclasses.zip CVMProperties.java 

Notice that the list of archive files supplied with the -bootclasspath option includes not only 

foundation.jar, but also btclasses.zip. The reason for this is that foundation.jar includes only 

those classes that are not prelinked into the VM; the prelinked classes are stored in 

http:///


J2ME in a Nutshell 

231 

btclasses.zip instead. The reason that the prelinked classes are not included in foundation.jar 

(or in cdc.jar) is that they don't need to be there at runtime (because they are already 

preloaded in the VM). Including them would both increase the total memory requirement and 

incur a performance overhead due to the increased times required to search a larger JAR file 

for classes that have not been included in the ROMized image of the VM.  

In order to run this example, make sure that your PATH environment variable includes the 

directory $CDC/build/linux/bin and type the command:  

cvm -Xbootclasspath:$CDC/build/linux/lib/foundation.jar -Djava.class. 
    path=$EXAMPLES/src ora.ch7.CVMProperties 

CVM provides a small set of command-line options, some of which are covered in this 

section. You'll find a complete description of all the available options in Chapter 8.  

In this example, most of the classes that the VM needs are preloaded. However, it is still 

necessary to supply the location of foundation.jar (or cdc.jar) using the -Xbootclasspath 

option, because the VM loads a small number of classes from this file in order to access the 

local filesystem. This is necessary here in order to open the JAR file and to load the example 

class file. Note, however, that there is no need to use btclasses.zip here, because the classes 

that it contains are part of the cvm executable. In the special (but not very likely) case in 

which your working directory is $CDC/build/linux/bin , you won't need to use the -

Xbootclasspath option, because CVM will look for a file called ../lib/foundation.jar by 

default.  

The java.class.path system property specifies the application classpath and so is set here 

to point to the example source code directory. Unlike the J2SE virtual machine, CVM does 

not automatically set this property from the CLASSPATH environment variable.  

This simple example lists all the system properties that are set during CVM startup. Since 

CDC fully supports the J2SE Properties class and the System getProperties( ) method, 

most of the properties that you may be familiar with from J2SE are also available to CDC 

applications. Table 7-1 shows the values of some of these properties as printed by this 

example.  

Table 7-1. CVM System Properties 

Property Name Value 

java.runtime.name Java (TM) 2, Micro Edition 

java.vm.name CVM 

java.vm.specification.name Java Virtual Machine Specification 

java.specification.name Java Platform API Specification 

java.specification.version 1.3 

java.version J2ME Foundation 1.0 

7.1.3 Debugging Java Code in the CVM 

CVM supports the JVMDI, so you can connect a JPDA debugger to it without involving a 

separate debug proxy of the type used by KVM. However, before you can start debugging, 

you need to do two things:  

http:///


J2ME in a Nutshell 

232 

1. Build the CVM with the CVM_DEBUG and CVM_JVMDI options to the make 

command set to true.  

2. Build the library libjdwp, which contains the native code that implements the Java 

Debug Wire Protocol (JDWP). This protocol allows debuggers to connect to the VM 

over a socket or using shared memory.
3
  

You can build libjdwp using the following commands: 

cd $CDC/ext/jpda/build/linux 
make 

This creates the library and writes it to the file $CDC/jdk_build/linux/lib/i386/libjdwp.so.  

Starting CVM for debugging requires quite a long command line: 

cvm -Xdebug -Xrunjdwp:transport=dt_socket,server=y,address=5000 
-Xbootclasspath:$CDC/build/linux/lib/foundation.jar -Dsun.boot.library. 
path=$CDC/jdk_build/linux/lib/i386 -Djava.class.path=$EXAMPLES/src ora. 
ch7.CVMProperties 

The options used here are as follows: 

-Xdebug  

Starts the VM in debug mode. When this option is used, the VM suspends operation 

before entering the main( ) method of the initial application class.  

-Xrunjdwp  

Tells the VM to use JDWP for debugging. This option requires several parameters, 

separated from it by a colon and from each other by commas, that specify how the 

debugger will connect to the VM. In this case, the parameters supplied are as follows:  

transport=dt_socket  

Specifies that the debugger will connect over a socket. 

server=y  

Tells JDWP to take on the server role. The debugger itself acts as the client.  

address=5000  

Specifies the port number that the server should use to listen for a connection from the 

debugger client.  

 
 
 

                                                 
3 JDWP and the role that it plays in Java-level debugging is described in Section 2.3.1 in Chapter 2. 

http:///


J2ME in a Nutshell 

233 

-Xbootclasspath  

Specifies the location of VM's boot classes, in this case the set of core and Foundation 

Profile classes that have not been prelinked into the VM.  

-Dsun.boot.library.path  

Gives the directory in which the JWDP implementation library (libjdwp.so for Linux) 

can be found.  

-Djava.class.path  

Specifies the locations to be searched for application classes. 

Once the CVM has started, it will suspend and wait for a debugger to connect to it on the port 

specified in the -Xrunjdwp argument. If you have an IDE that supports remote JPDA 

debugging (such as Forte for Java), you can use it to perform source- level debugging using 

the same technique as shown in Section 2.3.3. Alternatively, you can use the command-line 

tool jdb, which is part of the J2SE SDK. To connect using jdb, you need to specify the socket 

address on which the VM is listening and the location at which the source code for the 

application's classes can be found:  

jdb -attach localhost:5000 -sourcepath $EXAMPLES/src 

Here, jdb and the CVM are assumed to be on the same machine, but this need not be the case. 

Following connection, you need to use the step command to force the VM to enter the 

main( ) method. From here, you can use jdb commands to set breakpoints, list the source 

code around the line currently being executed, inspect and modify objects and fields, and so 

on. The jdb command is described in detail in Java in a Nutshell by David Flanagan 

(O'Reilly).  

By default, when you use the -Xdebug argument, the JVMDI support in the VM starts at the 

same time as the VM itself and suspends execution until a debugger connects to it. However, 

you can choose to have JVMDI defer its initialization until an exception of a named type or an 

uncaught exception is thrown. The latter case is often the type of error that you would like to 

use a debugger to investigate, but starting the VM in debug usually causes it to execute byte 

codes more slowly. Using this feature, you can run the VM at full speed until the exception 

occurs.  

The options that control the point at which the debugging features initialize is part of the -

Xrunjdwp argument. The following command:  

cvm -Xdebug -Xrunjdwp:transport=dt_ 
socket,server=y,address=5000,onuncaught=y  -Xbootclasspath:$CDC/build/ 
linux/lib/foundation.jar -Dsun.boot.library.path=$CDC/jdk_build/linux/ 
lib/i386 -Djava.class.path=$EXAMPLES/src ora.ch7.CVMException 

adds the onuncaught option with value y, which delays initialization of the JVMDI until an 

uncaught exception occurs. The class ora.ch7.CVMException used here waits for 10 

seconds, then deliberately causes a NullPointerException that it does not catch, at which 

http:///


J2ME in a Nutshell 

234 

point the debug facilities initialize and the VM is suspended. You can now start jdb to analyze 

the problem.  

Alternatively, if you simply want to start debugging when a NullPointerException occurs, 

use the onthrow option, which requires the class name of the exception to wait for:  

cvm -Xdebug -Xrunjdwp:transport=dt_ 
socket,server=y,address=5000,onthrow=java.lang.NullPointerException   
-Xbootclasspath:$CDC/build/linux/lib/foundation.jar -Dsun.boot.library. 
path=$CDC/jdk_build/linux/lib/i386 -Djava.class.path=$EXAMPLES/src   
ora.ch7.CVMException 

Finally, you can use the launch option to cause a command to be executed when the VM 

debug facilities initialize. This option requires the name of the command, which should be 

either an absolute path or the name of an executable on your search path (i.e., included in the 

PATH variable for Linux). When it is started, the program receives the transport name and 

address used by the debugger as arguments -- that is, it is effectively run with arguments like 

this:  

name dt_socket 5000 

One way to make use of this is to create a script that starts jdb when the condition that starts 

the JVMDI support occurs, like this:  

#!/bin/sh 
jdb -attach localhost:$2 -sourcepath $EXAMPLES/src 

If you put these lines into a file called startdbg.sh (in a directory included in your PATH 

variable) and make it executable (using a command like chmod +x startdbg.sh), the 

following command:  

cvm -Xdebug -Xrunjdwp:transport=dt_ 
socket,server=y,address=5000,onthrow=java.lang. 
NullPointerException,launch=startdbg.sh -Xbootclasspath:$CDC/build/ 
linux/lib/foundation.jar -Dsun.boot.library.path=$CDC/jdk_build/linux/ 
lib/i386 -Djava.class.path=$EXAMPLES/src ora.ch7.CVMException 

runs the VM until a NullPointerException occurs, at which point it initializes the JVMDI 

code, suspends bytecode execution, and runs your script. This results in jdb starting and 

connecting to the VM, using the port number that is passed as the second argument to the 

script.  

7.1.4 CDC Class Libraries 

The CDC specification includes a minimal set of core Java classes that provide the common 

functionality required by every CDC platform. According to the specification, the core 

libraries represent little more than the minimum needed to support a Java VM. They include 

classes from the following packages:  

 
 
 
 

http:///


J2ME in a Nutshell 

235 

java.io  
java.lang  
java.lang.ref  
java.lang.reflect  
java.math  
java.net  
java.security  
java.security.cert  
java.text  
java.util  
java.util.jar  
java.util.zip  
javax.microedition.io  

Unlike CLDC, a class included in CDC is unchanged from its J2SE counterpart, unless it has 

deprecated APIs. Because there is no legacy CDC application code to support, there is no 

requirement for backward compatibility, and, therefore, the opportunity has been taken to 

remove APIs that are deprecated in J2SE Version 1.3, whenever there is an alternative 

available. In general, however, working with CDC or a CDC-based profile is much closer to 

using a full J2SE Version 1.3 platform than CLDC, so there is much less to relearn.  

The following paragraphs briefly cover the differences between the CDC packages and their 

J2SE counterparts. You'll find a complete list of the classes from these packages that are 

included in CDC in Chapter 10.  

The java.io package  

Most of the J2SE classes in this package are included in CDC, with the exception of 

some of the less commonly used Reader and Writer subclasses, as well as 

LineNumberInputStream and StringBufferInputStream, both of which are 

deprecated in J2SE.  

The java.lang package  

In this package, only the Compiler class and UnknownException have been omitted.  

The java.lang.ref package  

Complete. 

The java.lang.reflect package  

Complete. 

The java.math package  

This package contains only two classes in J2SE. The CDC version includes 

BigInteger but excludes BigDecimal.  

 
 
 

http:///


J2ME in a Nutshell 

236 

The java.net package  

CDC provides the classes necessary to support datagrams (i.e., the UDP protocol), but 

it does not support sockets (i.e., TCP) or HTTP and therefore omits classes that relate 

to these two features. URL-based operations can be used, provided they do not rely on 

HTTP or sockets. This means, for example, that file and jar-based URLs are 

allowed, but http URLs are not.  

The java.security package  

Only those parts of the java.security package that deal with handling fine-grain 

security for Java classes is included, together with minimal support for creating and 

checking message digests.  

The java.security.cert package  

Contains only the Certificate class and two certificate-related exception classes. 

This package is of limited use because it does not include any concrete certificate 

implementations (such as X509Certificate).  

The java.text package  

The CDC java.text package provides support for locale-specific formatting, parsing 

of numbers and dates, and formatting of error messages. Classes that support advanced 

locale-sensitive collation and attributed character strings are omitted.  

The java.util package  

This useful package is almost complete in CDC. The only omissions are classes that 

relate to event handling (such as Observer and EventObject) and timers. Unlike 

CLDC, CDC includes both the JDK 1.1 and Java 2 collection frameworks.  

The java.util.jar package  

This package is complete, apart from the JarOutputStream class, which means that it 

is possible to read but not create a JAR file. This distinction is possible because, 

although the VM has to be able to load Java classes and other resources from a JAR 

file, it never needs to write to one.  

The java.util.zip package  

This package contains the classes that are necessary for the VM to read from a 

compressed or uncompressed ZIP file, but it omits the classes that allow writing or 

provide streams that handle compression and decompression of data for the benefit of 

applications. Compressed ZIP files are supported by virtue of the inclusion of the 

Inflater class.  

 
 
 

http:///


J2ME in a Nutshell 

237 

The javax.microedition.io package  

This package is provided for upward compatibility with applications written for 

CLDC. It contains the classes and interfaces that make up the Generic Connection 

Framework and includes support for datagrams. Interestingly, the StreamConnection 

and StreamConnectionNotifier classes, which are intended for support of TCP-

based sockets, are included, even though the java.net package excludes socket 

support, and a CDC implementation is not required to allow socket communication. 

Furthermore, in the reference implementation, it is possible to connect using a GCF 

socket URL. The HttpConnection class is, however, not included.  

7.1.5 CDC Profiles 

At the time of writing, CDC has only one profile, the Foundation Profile, for which a 

reference implementation is available. Another, the RMI profile, has been specified, but an 

implementation has not yet been released. Three others are still in the process of being 

specified. This section provides an overview of the Foundation Profile and touches briefly on 

the remaining profiles, which are currently of little practical use because there are no 

implementations available.  

7.1.6 The Foundation Profile 

Most of the CDC profiles are based on the Foundation Profile, which adds to the minimal 

facilities of the CDC core libraries in much the same way that MIDP extends CLDC. This 

profile fills many of the gaps in the basic CDC class libraries by supplying most of the 

omitted classes from the packages that CDC supports; it also adds many of the other J2SE 

packages that are not included by CDC. The most important omissions from the Foundation 

Profile are the user interface classes, which are not required on all devices and which are 

instead provided by the Personal Basis and Personal profiles that are layered on top of the 

Foundation Profile. The specification of this profile can be obtained from 

http://jcp.org/jsr/detail/46.jsp.  

The packages in the Foundation Profile include all the classes from their J2SE counterparts. 

The following packages are provided:  

java.io (but not LineNumberInputStream and StringBufferInputStream, which are 
deprecated in J2SE)  
java.lang  
java.lang.ref  
java.lang.reflect  
java.math  
java.net  
java.security  
java.security.acl  
java.security.cert  
java.security.interfaces  
java.security.spec  
java.text  
java.util  
java.util.jar  
java.util.zip  

http:///


J2ME in a Nutshell 

238 

The Foundation Profile also supports all of the javax.microedition.io package, including 

HTTP connections.  

7.1.7 The RMI Profile 

The RMI profile adds a subset of the J2SE Remote Method Invocation facility on top of the 

Foundation Profile. Since CDC devices are typically used in the role of the RMI client, only 

the client RMI functionality is included in this profile. At the time of writing, the RMI profile 

is available only in the form of a specification. There is, as yet, no reference implementation.  

The RMI packages and classes provided by this profile are listed in Chapter 10. The 

specification can be downloaded from http://jcp.org/jsr/detail/66.jsp.  

7.1.8 Other CDC Profiles 

Unlike MIDP, the Foundation Profile does not have any support for a user interface of any 

kind. This is entirely appropriate for some devices, such as set-top boxes, where only a very 

primitive style of interaction with the user occurs, and the overhead of GUI classes is not 

required. For applications that require a user interface, CDC provides the Personal Basis and 

Personal profiles, which together are intended to provide a Java 2-based replacement for Sun's 

PersonalJava platform, which is derived from JDK 1.1.8. At the time of writing, the 

specifications for these profiles are still being developed. You can check the current state of 

this work at http://jcp.org/jsr/detail/129.jsp for the Personal Basis profile and 

http://jcp.org/jsr/detail/62.jsp for the Personal profile.  

The Game Profile, which is aimed at providing a platform for writing game software, is 

currently in the process of being defined as JSR 134. As shown in Figure 7-1, at the time of 

writing there is some uncertaintly as to whether this profile will be based on CDC itself or 

assume the presence of the Foundation Profile. The current state of this specification can be 

found at http://jcp.org/jsr/detail/134.jsp.  

http:///


J2ME in a Nutshell 

239 

Chapter 8. J2ME Command-Line Tools 

J2ME developers have a range of visual environments to choose from when developing and 

debugging applications. Some of these have already been mentioned or will be covered in 

Chapter 9. In some cases, however, it is necessary to come to grips with the lower-level tools 

that lie behind these development environments. This chapter provides reference material for 

some of the command-line tools that developers are most likely to need to use.  

8.1 cvm: The Connected Device Configuration Virtual Machine 

8.1.1 Availability 

CDC Reference Implementation, Foundation Profile Reference Implementation  

8.1.2 Synopsis 

cvm [options] [properties] classfile [args] 

8.1.3 Description 

CVM is a virtual machine that meets the requirements of the Connected Device Configuration 

specification. It provides all of the features required by the second edition of the Java Virtual 

Machine Specification and incorporates a garbage collector that is optimized for a small 

memory environment. In order to reduce startup time and memory overhead, the CVM 

usually has the core Java classes prelinked with it at build time using a process called 

ROMizing, which is also used by the CLDC virtual machine (KVM) and described in 

Section 2.4.1.  

CVM is provided in source code form as part of the CDC and Foundation Profile reference 

implementations, which are supported on Linux and VxWorks.  

8.1.4 Options 

-version  

Displays version information and exits. Typical output from this command looks like 

this:  

java version "J2ME Foundation 1.0" 
Java(TM) 2, Micro Edition (build 1.0fcs-ar) 
CVM (build .0fcs-ar, native threads) 

-showversion  

Prints the same information as -version but does not exit afterwards. This option can 

be used to output version information before running an application.  

-fullversion  

Despite its name, this option displays less information than -version. Typical output is 

the following:  

http:///


J2ME in a Nutshell 

240 

java full version "1.0fcs-ar" 

The VM exits after processing this option. 

-Xbootclasspath:list  
-Xbootclasspath=list  

Sets the list of directories, JAR files, or ZIP files in which the VM looks to load boot 

classes that are not part of its preloaded set. List entries should be separated by a colon 

on the Linux platform or a semicolon for VxWorks.  

-Xbootclasspath/p:list  
-Xbootclasspath/p=list  

Prepends a given list of directories, JAR files, or ZIP files to the existing boot class 

path. List entries should be separated by a colon on the Linux platform or a semicolon 

for VxWorks.  

-Xbootclasspath/a:list  
-Xbootclasspath/a=list  

Appends a given list of directories, JAR files, or ZIP files to the existing boot class 

path. List entries should be separated by a colon on the Linux platform or a semicolon 

for VxWorks.  

-Xsssize  

Sets the native language thread stack size to size bytes. To specify a size in kilobytes 

or megabytes, the letters k, K, m, or M may be appended. Note that no space is allowed 

between the characters -Xss and the specified size, so -Xss1m is valid, but -Xss 1m is 

not.  

-Xmssize  

Sets the size of the Java heap. The size value is specified in the same way as it is for 

the -Xss option. The actual value used may be rounded to a size that is more 

convenient for the VM.  

-Xgc:gc_specific_options  

Specifies options for the garbage collector. The set of valid options depends on the 

garbage collector implementation in use.  

-Xverify:type  

Specifies the scope of class verification. If type is not specified or has the value all, 

then all classes are verified as they are loaded. To verify only classes loaded remotely, 

use remote, and, to disable class verification, specify none. If this option is omitted, 

only remotely loaded classes are verified.  

http:///


J2ME in a Nutshell 

241 

-Xdebug  

Enables the VM support for JPDA debugging. This option is used in conjunction with 

-Xrunjdwp and may be used only if the VM was built with JVMDI support enabled. 

See Section 8.1.6 for further details.  

-Xrunname:options  

Loads the native code library specified by name into the VM. This argument may 

appear more than once to cause several libraries to be loaded. The name string is 

converted to the name of a library in a platform-dependent way. For Linux, this 

follows the pattern libname.so, while for VxWorks the pattern is libname.o. If the VM 

is built with debugging enabled, however, the patterns become libname_g.so and 

libname_g.o respectively. No spaces may appear between -Xrun and the library name. 

To load libjdwp.so (or libjdwp.o), therefore, the argument -Xrunjdwp is supplied. The 

system properties sun.boot.library.path and java.library.path determine the 

locations that are searched for the library.  

The library name may optionally be followed by a set of options, separated from the 

name by a colon. The format and meaning of the options string is determined by the 

library. If the library contains a function called JVM_onLoad( ), it is called during the 

loading process with the options string as one of its arguments. See Section 8.1.6 for 

an example of the use of this feature.  

-Xtrace:value  

Turns on low-level tracing in the virtual machine. The value argument determines 

exactly what is traced, by adding values from the following table. This option is 

available only if the VM was compiled with debugging enabled.  

Value What Is Traced 

0x0000001 Byte-code execution 

0x0000002 Method execution 

0x0000004 Internal state of the interpreter loop on method calls and returns 

0x0000008 Fast path of Java synchronization 

0x0000010 Slow path of Java synchronization 

0x0000020 Mutex locking and unlocking operations 

0x0000040 Consistent state transitions 

0x0000080 Beginning and end of garbage collection 

0x0000100 Garbage collector root scans 

0x0000200 Garbage collector heap object scans 

0x0000400 Object allocation 

0x0000800 Garbage collector internal details 

0x0001000 Transition between garbage collector safe and unsafe states 

0x0002000 Execution of class static initializers 

0x0004000 Java exception handling 

0x0008000 Heap initialization and destruction, global state initialization and safe exits  

0x0010000 Read and write barriers for the garbage collector 

0x0020000 Generation of garbage collection maps for Java stacks 

http:///


J2ME in a Nutshell 

242 

0x0040000 Class loading 

0x0080000 Lookup of classes in VM internal tables 

0x0100000 Type system operations 

0x0200000 Java class verification 

0x0400000 Weak reference handling 

0x0800000 Class unloading 

0x1000000 Class linking 

8.1.5 Properties 

Arguments of the following form: 

-Dname=value 

can be used to set the value of a property in the system properties table called name to value. 

Java code can retrieve the property value using code of the form:  

String value = System.getProperty("name"); 

Several properties have specific meanings to the virtual machine and the core class libraries. 

In particular, the following properties influence the loading of Java classes and native code 

libraries:  

java.class.path  

Interpreted as a list of directories, JAR files, and ZIP files from which application 

classes are loaded. Entries in the list should be separated using colons on the Linux 

platform and semicolons for VxWorks. This property is the CVM equivalent of the 

J2SE CLASSPATH environment variable, but it must be set explicitly because CVM 

does not read CLASSPATH. See Section 8.1.7 for an example of the use of this 

property.  

sun.boot.class.path  

This property plays the same role as java.class.path but determines the location of 

system (or boot) classes. This property can more conveniently be set using one of the -

Xbootclasspath options.  

java.library.path  

A colon- (Linux) or semicolon-separated (VxWorks) list of directories to be searched 

for native code libraries used with JNI. This path is intended to be used for native 

libraries belonging to application classes.  

sun.boot.class.path  

Specifies the library search path for boot classes. This is the system-level equivalent of 

java.library.path.  

 

http:///


J2ME in a Nutshell 

243 

8.1.6 Debugging 

If the CVM is built with JVMDI support enabled, Java source-level debugging can be 

performed by connecting a JPDA debugger, provided that the VM is started with the -Xdebug 

and -Xrunjdwp options, the latter required to load the library that contains the JDWP 

implementation. The -Xrunjdwp option requires additional parameters that the library uses to 

configure itself. The overall format of this argument is:  

-Xrunjdwp:parameter=value[,parameter=value....] 

The valid parameters and their meanings are as follows: 

transport=type  

Specifies the type of transport that the VM should use to communicate with the 

debugger. At the time of writing, only sockets are supported, requiring the type to be 

specified as dt_socket.  

address=value  

The transport address on which the VM should listen for a connection from a 

debugger. The format of the accompanying value depends on the value of the transport 

parameter. For the dt_socket transport, the value is a TCP/IP port number.  

server=y|n  

Specifies whether the JDWP library should adopt the server (value y) or client (value 

n) role. In order to receive a connection from a JPDA debugger, the value y should be 

used.  

suspend=y|n  

If this option has the value y, which is the default, the VM suspends execution during 

initialization of the JVMDI debugging code until a debugger connects. Normally, this 

is at VM startup, but the initialization of the debugging facilities can be deferred until 

an exception occurs if the onuncaught or onthrow options are used.  

strict=y|n  

Specifies whether the CVM debugging support adheres strictly to the JVMDI 

specification. By default, this option has value n. This option is not likely to be of 

general use.  

onuncaught=y|n  

By default, the debugger initializes during VM startup. If this option has value y, 

however, the debugger delays initialization until an uncaught exception is thrown. 

This avoids the overhead of the debugger until the point of failure.  

 

http:///


J2ME in a Nutshell 

244 

onthrow=value  

This option is similar to onuncaught, except that it delays debugger initialization until 

a specific exception is thrown (whether it is caught or not). The value argument gives 

the class name of the exception. The debugger initializes when an exception of this 

exact class is thrown. To initialize when a NullPointerException is thrown, for 

example, use:  

onthrow=java.lang.NullPointerException 

stdalloc=y|n  

If this option has value y, the standard C-library memory allocation methods are used. 

Otherwise, the VM uses its own memory allocation package, which is the default.  

launch=value  

Causes an executable whose name is specified by the value parameter to be run when 

the debugger initializes. The executable is passed two parameters: the name of the 

transport over which the debugger is communicating (e.g., dt_socket) and the transport 

address. The value parameter should be an absolute path name or the name of an 

executable that is on the VM's search path.  

8.1.7 Examples 

cvm -Xbootclasspath:../lib/foundation.jar -Djava.class.path=/home/user/project 
myPkg.myClass  

Loads and runs a Java application beginning with the main( ) method of the class 

myPkg.myClass. The core classes that are not built into the VM are loaded from 

../lib/foundation.jar, and application classes can be found below the directory 

/home/user/project.  

cvm -Xbootclasspath:../lib/foundation.jar -Djava.class.path=/home/user/project -
Djava.library.path=/home/user/nativecode/lib myPkg.myClass  

Runs the same application, but allows loading of native libraries from the directory 

/home/user/nativecode/lib.  

8.1.8 See Also 

• The Java 2 Platform, Micro Edition Connected Device Configuration (CDC) 1.0 

Porting Guide in the CDC or Foundation Profile reference implementation downloads  

• Section 7.1.3 for an example that shows how to enable JPDA debugging  

8.2 kdp: The KVM Debug Proxy 

8.2.1 Availability 

CLDC Reference Implementation  

http:///


J2ME in a Nutshell 

245 

8.2.2 Synopsis 

java kdp.KVMDebugProxy [options] 

8.2.3 Description 

kdp is a Java application that acts as a proxy between a JPDA-conformant debugger and a 

virtual machine such as the KVM. While fully featured VMs, such as those supplied with 

J2SE, have their own built-in implementation of the JDWP that allows them to be directly 

connected to a debugger, the resource constraints that apply to a typical CLDC VM do not 

allow a complete implementation of JDWP. The Java debug proxy interposes itself between a 

debugger and the VM to offload some of the implementation details from the VM.  

kdp usually runs on a desktop system so as not to consume any resources on the target 

platform; it communicates with the KVM over a socket connection, using a cut-down version 

of JDWP called KDWP (the KVM Debug Wire Protocol).  

8.2.4 Options 

-classpath path  

Lists the locations of copies of the class files that will be loaded in the VM being 

debugged. Locations, which may be directory names or JAR filenames, are separated 

by the platform's path separator (i.e., a semicolon for the Windows platform or colon 

for Unix). This option is required only if the -p option is used.  

-cp path  

A synonym for -classpath. 

-l localport  

The port number on which the debug proxy listens for a connection from a JPDA-

conformant debugger.  

-p  

If this argument is present, the debug proxy handles operations that involve classes 

locally instead of passing them to the target VM. This argument is normally supplied 

when debugging with the KVM to offload the overhead of storing class-related 

information from the VM to the debug proxy. The -cp or -classpath option must also 

be supplied so that the proxy can load copies of the classes being used by the VM 

itself.  

-r host port  

The name or IP address of the host on which the VM being debugged is running, and 

the port at which it is listening for a connection from the debug proxy. This port 

number is set using the KVM's -port argument.  

http:///


J2ME in a Nutshell 

246 

-v verbosity  

Enables the output of debug trace information and controls the level of debugging. 

The verbosity argument can take the values 1 through 9, where a higher value 

corresponds to more detailed debugging.  

8.2.5 Examples 

To start the debug proxy and connect to a KVM listening on port 2000 of the same machine, 

load class files from the classpath defined by the environment variable CP, and listen for a 

connection from a debugger on port 3000:  

java kdp.KVMDebugProxy -l 3000 -p -r localhost 2000 -cp %CP% 

8.2.6 See Also 

• Section 8.3 

• The KVM Debug Wire Protocol Specification in the CLDC reference implementation 

download  

8.3 kvm: The Kilobyte Virtual Machine 

8.3.1 Availability 

CLDC Reference Implementation  

8.3.2 Synopsis 

kvm [options] classfile [args] 

8.3.3 Description 

The kvm command is a reference implementation of a Java virtual machine that meets the 

requirements of the CLDC specification. KVM can load classes from a directory structure in a 

local file system or from a set of JAR files. In order to reduce memory footprint and 

application startup time, it is usually built with a copy of the core Java libraries preloaded, 

using a technique known as ROMizing.  

The kvm command provided with the CLDC reference implementation does not provide 

support for Java-level debugging. However, a second version, kvm_g , is provided. This 

version can provide this capability in conjunction with the KVM debug proxy (kdp), together 

with a set of additional command-line options that can be used to request debug trace 

information to be written to the standard output stream. It is also possible to build a version of 

the KVM that includes an implementation of a Java application manager (JAM) that can be 

used to load applications over a network and install them in local filestore. This feature is 

usually not used, however, since most systems prefer to incorporate more sophisticated 

application manager software of the type provided by the emulator and midp commands.  

 

http:///


J2ME in a Nutshell 

247 

8.3.4 Options 

The following options are available in all versions of the KVM: 

-version  

Prints the version number of the CLDC reference implementation, and exits.  

-classpath path  

Lists the locations of the class files to be loaded into the VM. Locations, which may 

be directory names or JAR filenames, are separated by the platform's path separator 

(i.e., a semicolon for the Windows platform or colon for Unix). The class path can also 

be set from the CLASSPATH environment variable.  

-heapsize size  

Sets the size of the Java heap, overriding the implementation-dependent default value. 

The size parameter may be an absolute value in bytes (such as 131072) or an 

abbreviated value like 512k or 2M. It must not be less than 32K or larger than 64M.  

-help  

Prints a synopsis of the command and a list of the available options and exits.  

The following additional options are available when the KVM is built to include JPDA 

debugging support:  

-debugger  

Enables JDPA debugging in the VM. 

-port number  

Sets the port number on which to listen for connections from the KVM debug proxy. 

Port number 2800 is used if this option is not supplied.  

-suspend  

Causes the VM to suspend execution of the Java application until requested to resume 

by a remote debugger. This is the default action when the -debugger argument is 

supplied.  

-nosuspend  

When the -debugger argument is used, application execution is not suspended to wait 

for a debugger to connect.  

The following additional options are provided when debug tracing is built into the VM:  

http:///


J2ME in a Nutshell 

248 

-traceall  

Enables all debug tracing. Equivalent to specifying all of the remaining options.  

-traceallocation  

Enables tracing of memory allocation, including the size of each allocated block and 

the amount of free memory remaining.  

-tracebytecodes  

Enables tracing of each bytecode instruction as it is executed. The output includes the 

instruction name, the operand values, and the method that it is part of.  

-traceclassloading  

Traces loading and initialization of Java classes. 

-traceclassloadingverbose  

Traces loading and initialization of Java classes, supplying more detailed information 

than -traceclassloading.  

-tracedebugger  

Traces debugging operations. 

-traceevents  

Enables tracing of events (such as pen movements) received from the host platform. 

Only the event type is traced.  

-traceexceptions  

Writes trace information when any exception is thrown. 

-traceframes  

Traces pushing and popping of stack frames as methods are called or returned.  

-tracegc  

Traces when garbage collection starts and ends and the number of bytes freed during 

each garbage collection phase.  

-tracegcverbose  

Produces the same output as -tracegc but also logs objects that the garbage collector is 

inspecting.  

http:///


J2ME in a Nutshell 

249 

-tracemethods  

Traces entry to and exit from every method, logging the class name and method name.  

-tracemethodsverbose  

Traces entry to and exit from every method, logging the type of call (virtual, static, 

special, interface, etc.), the class name, the method name, and the method signature.  

-tracemonitors  

Traces monitor activity. Monitors are used to control synchronized methods or blocks 

of code.  

-tracenetworking  

Traces networking activity. 

-tracestackchunks  

Traces the creation of new stacks (when a new thread is started) and pushing and 

popping of execution frames on the stack (like -traceframes).  

-tracestackmaps  

Traces stack map activities. Stack maps are used to record live references on the stack 

for use when garbage collecting.  

-tracethreading  

Traces threading activity, such as: 

Thread creation  
Thread startup  
Thread switching  
Thread termination  
Thread suspension  
Thread resumption  

-traceverifier  

Traces the activity of the runtime byte-code verifier. 

If the KVM JAM feature is compiled into the VM, the following options can also be used:  

-jam  

Enables the use of the KVM Java application manager. When this option is used, the 

classfile argument must be supplied and should be the URL of a descriptor file that 

describes the application to be loaded and executed. The format of this file is 

http:///


J2ME in a Nutshell 

250 

described in the KVM Porting Guide, which is part of the CLDC reference 

implementation download.  

-appsdir directory  

Sets the local directory in which applications loaded by the JAM are installed.  

-repeat  

Repeats loading and execution of the application whose class file is named on the 

command line, until interrupted by the user.  

8.3.5 Examples 

kvm -classpath myApp.jar com.myco.MyApp  

Loads and runs the class com.myco.MyApp, searching for classes in the JAR file 

myApp.jar.  

kvm_g -traceall -classpath myApp.jar com.myco.MyApp  

Loads and runs the class com.myco.MyApp, searching for classes in the JAR file 

myApp.jar and turning on all trace logging. This produces a lot of output.  

kvm_g -debugger -port 2850 -classpath myApp.jar com.myco.MyApp  

Loads the class com.myco.MyApp, searching for classes in the JAR file myApp.jar and 

suspends execution waiting for a debugger to connect via port 2850 and resume 

execution.  

8.3.6 See Also 

• The KVM Porting Guide in the CLDC reference implementation download  

8.4 midp: The MID Profile Execution Environment 

8.4.1 Availability 

MIDP Reference Implementation  

8.4.2 Synopsis 

midp [options] 

midp [options] [-Xdescriptor filename] class 

midp [options] -Xdescriptor filename 

midp [options] -autotest descriptor_URL [MIDlet_name]  

midp [options] -transient descriptor_URL [MIDlet_name]  

http:///


J2ME in a Nutshell 

251 

midp [options] -install [-force] descriptor_URL 

midp [options] -run (suite number | storage name) [MIDlet_name]  

midp [options] -remove (suite number | storage name | all)  

midp [options] -list 

midp [options] -storageNames 

8.4.3 Description 

midp is an executable program that contains a KVM implementation, classes required by 

MIDP Version 1.0, and an implementation of an Application Management Software 

subsystem. It is, therefore, a complete environment for testing the execution and installation 

of MIDlets.  

8.4.4 MIDlet Management and Storage 

A MIDlet consists of one or more class files and associated resources stored in a JAR file. 

Several MIDlets may be combined into a MIDlet suite. All the MIDlets that make up a given 

suite are packaged in the same JAR file and are managed as a single unit: they are installed 

together in the simulated nonvolatile device storage maintained by the midp command and 

removed together. Furthermore, they all execute in the same instance of the Java VM.  

MIDlets may be loaded from a local filesystem for testing purposes, but, in the real world, 

they will almost always be installed over a network or via a local connection to an associated 

host system, such as a desktop computer. Because the JAR file that contains a MIDlet suite 

may be large, each suite has an associated Java Archive Descriptor file (JAD) that is small 

enough to download quickly, but which contains enough information about the suite to allow 

the user to decide whether to install it. The Application Management Software (AMS) of a 

MIDP device (such as a cell phone) typically first downloads the JAD file, whose location is 

specified by its URL. If the user decides to install the MIDlet suite, the AMS downloads the 

JAR file, which can be located by using one of the attributes in the JAD. The MIDlet suite is 

then stored on the device, and subsequently, the MIDlets it contains can be loaded from the 

locally installed copy.  

The various synopses of the midp command reflect the ways in which a MIDlet can be run 

and the set of management functions that the AMS supports.  

8.4.4.1 Execution without permanent installation 

For testing purposes, it is possible to execute a MIDlet or load a MIDlet suite and allow a 

MIDlet to be selected from it without permanently installing it in the simulated nonvolatile 

memory of the emulated device. The simplest way to run a specific MIDlet is to use the 

variant of midp that requires the name of the MIDlet class. For example:  

midp -classpath . ora.ch4.FormExampleMIDlet 

This form of the command is useful for testing MIDlets that have not yet been packaged into a 

JAR file for deployment. If the MIDlet needs to be able to access application properties stored 

http:///


J2ME in a Nutshell 

252 

in a JAD file, the -Xdescriptor argument can provide the location of the JAD file to be used, 

which must be the name of a file on the local system:  

midp -classpath . -Xdescriptor ora\ch4\Chapter4.jad 
ora.ch4.FormExampleMIDlet 

To launch a MIDlet suite and allow the user to select a MIDlet to execute, supply the name of 

the suite's JAD file, but omit the MIDlet class name:  

midp -classpath . -Xdescriptor ora\ch4\Chapter4.jad  

This variant of midp requires that the MIDlet suite be packaged into a JAR file that is 

referenced from the MIDlet-Jar-URL attribute of the application descriptor. It is also possible 

to install a MIDlet suite temporarily, select and execute a MIDlet from it, and uninstall it 

automatically using the -transient or -autotest options. For example:  

midp -transient http://www.midlethost.acme.com/suite.jad CalendarMIDlet 
midp -transient http://www.midlethost.acme.com/suite.jad 
midp -autotest http://www.midlethost.acme.com/suite.jad CalendarMIDlet 

The -transient option performs a single install/execute/remove cycle, whereas -autotest 

repeats this set of operations until it is interrupted, which is useful for automated testing of 

MIDlets, particularly those that do not require user input. If a MIDlet name is not supplied on 

the command line, a menu of all of the MIDlets in the suite referenced by the JAD file is 

displayed to allow the user to choose which should be executed.  

8.4.4.2 MIDlet suite management 

The Application Management Software (AMS) built into the midp command can be driven 

from the command line or its graphical user interface. The following command launches a cell 

phone emulator and displays a menu that allows the user to enter the AMS to install a MIDlet 

suite over the network:  

midp 

Alternatively, the information required to fetch and permanently install a MIDlet suite can be 

provided on the command line, avoiding the need for interaction with the graphical AMS:  

midp -install http://www.midlethost.acme.com/suite.jad 
midp -install -force http://www.midlethost.acme.com/suite.jad 

The -force option can be used to force reinstallation of an already installed MIDlet suite 

without removing it first. The midp command supports download of a MIDlet suite from a 

network server using an implementation of OTA provisioning (see Section 3.6.1), where 

HTTP is used as the underlying communications mechanism.  

A list of installed MIDlet suites can be obtained by using the -list option:  

midp -list 

This command prints summary information for each MIDlet suite, an example of which 

follows:  

http:///


J2ME in a Nutshell 

253 

[1] 
  Name: Chapter4 
  Vendor: J2ME in a Nutshell 
  Version: 1.0 
  Storage name: #J2#M#E%0020in%0020a%0020#Nutshell_#Chapter4_ 
  Size: 23K 
  Installed From: http://hostname/path/Chapter4.jad 
  MIDlets: 
    [list of MIDlets in the suite] 

Each MIDlet suite is assigned a suite number (1 in the example above) and a storage name, 

the format of which depends on the implementation. The midp command creates the storage 

name using the rule vendorName_suiteName_, but precedes uppercase letters with a # symbol 

and converts nonalphabetic, nonnumeric characters to their Unicode values preceded by a % 

symbol. This allows the name to be stored without loss in a storage system that supports only 

8-bit characters, and even on systems that cannot distinguish upper- and lowercase characters. 

A list of the storage names of all installed MIDlet suites can be obtained as follows:  

midp -storageNames 

Once a MIDlet suite is installed, you start the emulator so that it displays a menu of the 

MIDlets within the suite and allows one to be chosen for execution. You do this by using the -

run option together with the suite's storage number or storage name:  

midp -run 1 
midp -run #J2#M#E%0020in%0020a%0020#Nutshell_#Chapter4_ 

Similarly, you can use the suite number or storage name to remove an installed MIDlet suite:  

midp -remove 1 
midp -remove #J2#M#E%0020in%0020a%0020#Nutshell_#Chapter4_ 

8.4.5 Options 

The midp command has three optional arguments: 

-classpath path  

Lists the locations of MIDlet class files. This option is useful when running MIDlets 

developed and installed locally and not yet packaged for network installation. 

Locations, which may be directory names or JAR file names, are separated by the 

platform's path separator (i.e., a semicolon for the Windows platform, colon for Unix).  

-help  

Prints a message displaying the available options and command usage and exits.  

-version  

Displays the supported versions of CLDC and MIDP and the version number of the 

executable and exits.  

http:///


J2ME in a Nutshell 

254 

In addition to these arguments, any of the options provided by KVM (see Section 8.3) may 

also be used, including the debugging options if the midp executable has been built with 

debugging enabled.  

8.4.6 See Also 

• Section 8.3 

• Section 8.5  

8.5 emulator: The J2ME Wireless Toolkit Emulator 

8.5.1 Availability 

J2ME Wireless Toolkit  

8.5.2 Synopsis 

emulator [options] [classname] 

8.5.3 Description 

The emulator command provides the execution environment and application management 

software for the J2ME Wireless Toolkit. Its functionality and command-line interface are both 

very similar to those of midp, but it supports the use of device skins together with a 

configuration file, so different devices can be emulated without the need to modify any code. 

Although the emulator can be used from the command line, it is most frequently accessed 

indirectly via the KToolBar interface provided by the Wireless Toolkit.  

8.5.4 Options 

The operation of the emulator command is determined by the options supplied to it. There are 

three different modes of operation:  

• Displaying information using the -help, -version, and -Xquery options. Here, the 

classname argument is not required, and the command exits after printing the required 

information.  

• Running a MIDlet from the local system or by loading from a network server, but 

without installing it. This mode of operation uses the -classpath option together with a 

class name or the -Xdescriptor option, which may or may not be accompanied by a 

class name.  

• Using the emulator's application management software to install, run, list, or delete 

MIDlet suites. This mode of operation uses the -Xjam option.  

The following list describes emulator options: 

-classpath path  

Lists the locations in which MIDlet class files can be found. This option is useful 

when running MIDlets developed and installed locally and not yet packaged for 

network installation. Locations, which may be directory names or JAR filenames, are 

http:///


J2ME in a Nutshell 

255 

separated by the platform's path separator (i.e., a semicolon for the Windows platform, 

colon for Unix).  

-cp path  

A synonym for -classpath. 

-help  

Displays the valid command arguments and exits. 

-version  

Prints the version numbers of the J2ME Wireless Toolkit and the embedded CLDC 

and MIDP implementations, then exits.  

-Xdebug  

Prepares the emulator for runtime debugging. This option must be used in conjunction 

with -Xrunjdwp.  

-Xdevice:name  

Runs the emulation using the named device. Selecting a difference device affects the 

quantity of memory and the input and display capabilities available to MIDlets, and it 

also causes a different skin to be used for the benefit of the user. The following name 

values are recognized by default:  

DefaultColorPhone  

A cell phone with a color display 

DefaultGrayPhone  

A cell phone with a grayscale display 

MinimumPhone  

A basic telephone with a two-color display 

Motorola_i85s  

The Motorola i85s cell phone 

PalmOS_Device  

A PalmOS pseudo-device 

 
 

http:///


J2ME in a Nutshell 

256 

RIMJavaHandheld  

The Research In Motion wireless handheld 

-Xdescriptor:fileName  

Loads a MIDlet suite given the location of a JAD file and allows the user to select a 

MIDlet to be executed. If the optional classname argument is supplied, it is assumed 

to be a MIDlet in that MIDlet suite to be executed. The fileName argument may be a 

URL or a local filename.  

-Xheapsize:size  

Sets the size of the Java heap, overriding the implementation-dependent default value. 

The size parameter may be an absolute value in bytes (such as 131072) or an 

abbreviated value like 512k or 2M.  

-Xjam:command  

Starts the emulator and performs the operation indicated by the command argument 

using its application management software. The legal operations are described in the 

next section.  

-Xquery  

Lists the properties of all the devices that the emulator can emulate, including the 

device description and details of its screen and input capabilities. See Section 8.5.6 for 

some example output.  

-Xrunjdwp:options  

When used in conjunction with -Xdebug, this argument sets the transport type and 

transport address at which the VM listens for a connection from a remote debugger. 

The options value is specified as follows:  

transport=<transport>,address=<address>,server=<y/n> 

where transport must currently take the value dt_socket, and address has the form 

host:port. The server argument should always be y.  

-Xverbose:options  

Switches on verbose output of trace information according to options, which can either 

take the value all or be a comma-separated list of one or more of the following:  

allocation bytecodes class 

classverbose events exceptions 

frames gc gcverbose 

methods methodsverbose monitors 

networking stackchunks stackmaps 

http:///


J2ME in a Nutshell 

257 

threading verifier   

8.5.5 Application Management Commands 

You can control the emulator's application management software by using the -Xjam 

argument, followed by a colon and one of the commands from Table 8-1. The -Xjam 

argument may also be used on its own to start the emulator and run the graphical interface to 

the AMS, as described in Section 3.6.2.  

Table 8-1. Wireless Toolkit Emulator AMS Control Commands 

Command Description 

force 
When used in conjuction with install, forces installation even if the MIDlet suite is 

already installed.  

install=descriptor_URL Installs the MIDlet suite whose JAD is at the given location. 

list 
Lists information regarding the installed MIDlet suites, including the suite number 

and storage name. The format of this data is described in Section 8.4.4.2.  

remove=storage_name Removes the MIDlet suite with the given storage name. 

remove=suite_number Removes the MIDlet suite with the given suite number. 

remove=all Removes all installed MIDlet suites. 

run=storage_name 
Displays a menu allowing the user to select a MIDlet from the installed suite with the 

given storage name, then executes the MIDlet.  

storageNames 
Lists the storage names of all installed MIDlet suites. Storage names are described in 

Section 8.4.4.2.  

transient=descriptor_URL

Temporarily installs a MIDlet suite, allows the user to select and run a MIDlet, and 

then removes the MIDlet suite. If the suite is already installed, the installation step is 

skipped, but the removal is still performed.  

8.5.6 Examples 

emulator -cp dir1;dir2;dir3 ora.ch5.AttributesMIDlet  

Executes the MIDlet ora.ch5.AttributesMIDlet, loading its classes from the 

supplied classpath.  

emulator -Xdebug -Xrunjdwp:transport=dt-socket,address=2000,server=y -cp 
dir1;dir2;dir3 ora.ch5.AttributesMIDlet  

Executes the MIDlet ora.ch5.AttributesMIDlet, loading its classes from the 

supplied classpath and preparing the VM for debugging.  

emulator -Xdescriptor:http://servername/path/suite.jad  

Loads the MIDlet suite whose JAD file is at the given URL and allows the user to 

select a MIDlet to be executed.  

emulator -Xdescriptor:http://servername/path/suite.jad ora.ch5.AttributesMIDlet  

Loads the MIDlet suite whose JAD file is at the given URL and runs the MIDlet from 

the suite whose class file is ora.ch5.AttributesMIDlet.  

http:///


J2ME in a Nutshell 

258 

emulator -Xquery  

Prints information for all the devices supported by the emulator. The following is 

typical output for a single device:  

# Properties for device DefaultGrayPhone 
DefaultGrayPhone.description: DefaultGrayPhone 
DefaultGrayPhone.screen.width: 96 
DefaultGrayPhone.screen.height: 128 
DefaultGrayPhone.screen.isColor: false 
DefaultGrayPhone.screen.isTouch: false 
DefaultGrayPhone.screen.width: 96 
DefaultGrayPhone.screen.bitDepth: 8 
 

emulator -Xjam:install=http://servername//path/suite.jad  

Installs a MIDlet suite over the network given the location of its JAD file. If the 

MIDlet suite is already installed, this command fails.  

emulator -Xjam:install=http://servername//path/suite.jad -Xjam:force  

Installs the given MIDlet suite, forcing it to overwrite any copy of the MIDlet suite 

that is already installed.  

emulator -Xjam:run=#J2#M#E%0020in%0020a%0020#Nutshell_#Chapter5_  

Displays a menu listing all the MIDlets in the suite with the given storage name, and 

allows the user to select one to be executed.  

emulator -Xjam:storageNames  

Lists the storage names of all installed MIDlet suites. 

emulator -Xjam:remove=1  

Removes the installed MIDlet suite with suite number 1. 

8.5.7 See Also 

• Section 8.4  

8.6 preverify: The KVM Class Preverifier 

8.6.1 Availability 

CLDC Reference Implementation, MIDP Reference Implementation, Wireless Toolkit  

8.6.2 Synopsis 

preverify [options] classnames | dirnames | JARnames  

 

http:///


J2ME in a Nutshell 

259 

8.6.3 Description 

The class preverifier for classes to be loaded into a CLDC-conformant virtual machine, such 

as the KVM. All classes must be preverified before use to ensure that they are valid and do 

not attempt to circumvent Java programming language rules in such a way as to cause a 

potential security breach.  

The preverify command processes a set of input class files and writes them to an output 

location, which must be different from the input location. The set of class files to be processed 

can be specified using any combination of the following:  

• A set of class names, in which each class is located relative to the class path given by 

the -classpath argument or via the CLASSPATH environment variable  

• A JAR file or ZIP file containing Java class files 

• A directory that is recursively searched for class files, JAR files, or ZIP files  

The output from this process is written to the directory specified by the -d argument or to a 

directory called output if the -d argument is omitted. JAR or ZIP file contents are written to a 

JAR or ZIP file with the same name in the output directory.  

8.6.4 Options 

@filename  

Supplies the name of a file from which command-line arguments are read. The file 

must contain only a single line consisting of legal program arguments, which are 

processed as the file is read. Directory and class names included in this file must be 

enclosed in double quotes and may contain whitespace.  

-classpath path  

Lists the locations of class files. Locations, which may be directory names or JAR file 

names, are separated by the platform's path separator (i.e., a semicolon for the 

Windows platform or colon for Unix). The -classpath option should specify the 

location of the core libraries as well as that of the classes to be preverified, unless this 

information can be obtained from the CLASSPATH environment variable.  

-cldc  

If present, this argument causes the preverifier to check that class files do not attempt 

to use VM features that are not part of the CLDC specification; that is, they may not 

use native methods, floating point operations, or object finalization. It is equivalent to 

supplying all of the -nofinalize, -nofp, and -nonative arguments.  

-d outputdirname  

Supplies the name of the directory to which the preverified classes will be written, 

defaulting to output if this argument is not supplied. If the preverify command reads 

any ZIP or JAR files, the processed versions will also be written to this directory.  

http:///


J2ME in a Nutshell 

260 

-nofinalize  

If present, this argument causes the preverifier to ensure that classes do not attempt to 

make use of object finalization. If this argument is omitted, and the -cldc option is not 

supplied, use of object finalization causes an error at runtime.  

-nofp  

If present, this argument causes the preverifier to ensure that classes do not attempt to 

use floating point operations. If this argument is omitted, and the -cldc option is not 

supplied, use of floating point operations causes an error at runtime.  

-nonative  

If present, this argument causes the preverifier to ensure that classes do not declare 

native methods. If this argument is omitted and the -cldc option is not supplied, use of 

native methods may cause an error at runtime. Note, however, that applications 

specifically written for a customized version of the KVM may use native methods, as 

described in Section 2.4.2. In such cases, use of this argument would not be 

appropriate.  

-verbose  

Causes debug information to be written to the standard error stream. 

-verify-verbose  

Causes detailed debug information for the class verification process to be written to 

the standard error stream. This option can result in large amounts of output.  

8.6.5 Examples 

To preverify a single class called ora.ch2.KVMProperties at location 

tmpclasses\ora\ch2\KVMProperties.class relative to the current directory, where the core 

library classes are located in the directory c:\j2me\j2me_cldc\bin\common\api\lclasses, and 

writing the verified class to a file called output\ora\ch2\KVMProperties.class:  

preverify -classpath c:\j2me\j2me_cldc\bin\common\api\lclasses;tmpclasses  
ora.ch2.KVMProperties 

To preverify all the classes in tmpclasses\native.jar, writing the output to native.jar in the 

current directory and ensuring that floating point operations and object finalization are not 

used:  

preverify -classpath c:\j2me\j2me_cldc\bin\common\api\lclasses -nofp  
-nofinalize -d . tmpclasses\native.jar 

To preverify all the classes in the directory tmpclasses and all of its subdirectories, writing the 

output to an identical directory hierarchy in the current directory:  

 

http:///


J2ME in a Nutshell 

261 

preverify -classpath c:\j2me\j2me_cldc\bin\common\api\lclasses -d .  
tmpclasses 

8.6.6 See Also 

• Section 8.3 

• The KVM Porting Guide in the CLDC reference implementation download  

8.7 MakeMIDPApp: JAD to PRC Conversion Tool 

8.7.1 Availability 

MIDP for PalmOS  

8.7.2 Synopsis 

java -cp Converter.jar com.sun.midp.palm.database.MakeMIDPApp [options] 
jarfile  

8.7.3 Description 

The MakeMIDPApp command converts a MIDlet suite in the form of a JAR and a JAD file 

into a form suitable for installation on a PalmOS device. MakeMIDPApp is a Java language 

utility found in the file %INSTALL_DIR%\Converter\Converter.jar, where 

%INSTALL_DIR% is the installation directory of the MIDP for PalmOS product, of which it 

is a part.  

8.7.4 Options 

-help  

Prints a synopsis of the command and the options that it recognizes. 

-v  

Provides verbose output. If you use this option twice (i.e., -v -v), slightly more output 

is produced.  

-jad file  

Supplies the Java Archive Descriptor (JAD) for the MIDlet suite. This argument is 

optional, but if you don't supply it, any application properties held in the JAD file that 

are not also in the manifest file of the JAR will not be accessible at runtime. See 

Section 3.5.3 for a discussion of application properties.  

-name name  

Gives the name to be associated with the MIDlet suite when it is displayed on the 

PalmOS device's application launcher screen. The name may contain spaces, provided 

that quotes are used to separate it from other arguments. Names longer than nine 

characters are not guranteed to be displayed in full. If this argument is not supplied, 

http:///


J2ME in a Nutshell 

262 

the MIDlet suite name from the manifest file or the JAD file (if supplied) is used 

instead.  

-longname name  

Supplies a name of up to 31 characters that will be used to describe the MIDlet where 

there is room for a slightly longer name, such as in the list of MIDlets that can be 

displayed from the developer preferences dialog (which is accessible from the Options 

menu of the MIDlet while it is running). Quotes should be used to delimit the name if 

it contains spaces.  

-icon file  

Specifies an icon to be used for the MIDlet suite when it appears on the device's 

launcher screen in "icon" mode. A default icon is used if this argument is supplied. 

The icon may be in one of three image formats:  

BMP  

Windows bitmap format 

PBM  

Portable bitmap format 

BIN  

PalmOS bitmap format 

Compressed or color Windows bitmaps are not supported. For best results, the image 

should be a 32-pixel square bitmap, in which the 5 leftmost and rightmost columns 

and the last 10 rows should be white. If the image size is incorrect, it will be adjusted 

to the right size, which may result in a loss of quality.  

-smallicon file  

Specifies an icon to be used for the MIDlet suite when it appears on the device's 

launcher screen in "list" mode. A default icon is used if this argument is supplied. The 

image bitmap should be 15 pixels wide and 9 pixels high.  

-creator id  

Assigns a four-character PalmOS creator ID to the MIDlet suite. If you intend to 

assign a creator ID to a commercial product, you should register it at 

http://www.palm.com/devzone/. The creator ID is assigned to the RMS storage that 

the MIDlet suite creates and also appears in the list of installed MIDlet suites available 

from the developer preferences dialog. If you don't supply a creator ID, one will be 

assigned for you. In this case, you must also supply the arguments -type Data.  

 

http:///


J2ME in a Nutshell 

263 

-type type  

Specifies the type of output file to create. The type argument is case sensitive and may 

take the values appl (which is the default) or Data. If you do not use the -creator 

argument to assign an explicit creator ID, the type must be given as Data. MIDlet 

suites created with type Data cannot be beamed between PalmOS devices.  

-outfile file  

The name of the file to which the converted MIDlet suite should be written. Output 

file names conventionally use the suffix .prc.  

-o file  

Synonym for -outfile.  

8.7.5 Examples 

java -cp Converter.jar com.sun.midp.palm.database.MakeMIDPApp -icon 
myIcon.bmp -smallicon myListIcon.bmp -jad Chapter3.jad -o Chapter3.prc -type Data 
Chapter3.jar  

Converts the MIDlet suite packaged in the file Chapter3.jar and its associated 

attributes from the file Chapter3.jad into a form suitable for loading onto a PalmOS 

device. The output is written to a file called Chapter3.prc. The icons to be displayed 

on the device's launcher screen are held in the files myIcon.bmp (for icon mode) and 

myListIcon.bmp (for list mode), respectively. Since an explicit creator ID is not being 

assigned, the type is given as Data.  

java -cp Converter.jar com.sun.midp.palm.database.MakeMIDPApp -jad 
Chapter3.jad -o Chapter3.prc -creator ORA3 -name "Ch 3" -longname "J2ME 
Chapter 3" Chapter3.jar  

Converts the MIDlet suite packaged in the file Chapter3.jar and its associated 

attributes from the file Chapter3.jad into a form suitable for loading onto a PalmOS 

device. The output is written to a file called Chapter3.prc. On the launcher screen, the 

MIDlet suite will be displayed with the default icons and with the name "Ch 3". In 

contexts where a longer name is used, the text "J2ME Chapter 3" will appear. A 

creator ID of ORA3 is associated with this MIDlet suite, so the -type argument does 

not need to be supplied.  

Be aware that not all combinations of creator ID and type result in a MIDlet suite that can be 

executed on a PalmOS device. The following list, in which XXXX represents any four-

character creator ID, summarizes the various combinations of these arguments and the results 

that are obtained:  

-creator XXXX -type appl  

Always results in an executable MIDlet suite. MIDlets can be beamed to another 

PalmOS device.  

http:///


J2ME in a Nutshell 

264 

-creator XXXX -type Data  

The MIDlet suite can be installed but is not executable and cannot be beamed.  

-type Data  

The MIDlet suite is executable but cannot be beamed.  

8.8 chMEKeyTool: Public Key Certificate Management Tool 

8.8.1 Availability 

MIDP Reference Implementation, Wireless Toolkit 

8.8.2 Synopsis 

java -jar MEKeyTool.jar -help 

java -jar MEKeyTool.jar -list [-MEkeystore filename]  

java -jar MEKeyTool.jar -import [-MEkeystore filename] [-keystore filename] 
[-storepass password] -alias keyAlias [-domain domain]  

java -jar MEKeyTool.jar -delete [-MEKeystore filename] -owner ownerName  

8.8.3 Description 

MEKeyTool is a Java language utility used to manage a keystore that holds public key 

certificates required to use the support for secure networking (HTTPS) provided by the MIDP 

reference implementation and the J2ME Wireless Toolkit. MEKeyTool is shipped in the form 

of a JAR file called MEKeyTool.jar in the directory %INSTALL_DIR%\bin, where 

%INSTALL_DIR% is the directory in which the J2ME Wireless Toolkit is installed. It is also 

provided in source code form as part of the MIDP reference implementation.  

When used with the J2ME Wireless Toolkit, MEKeyTool maintains a certificate keystore (it is 

referred to here as the ME keystore), that is held, by default, in a file called 

%INSTALL_DIR%\appdb\_main.ks. All operations implicitly apply to this keystore, unless 

you supply an alternative using the -MEkeystore option. MEKeyTool can list the content of the 

keystore, import a certificate from a J2SE keystore, or delete a certificate from the keystore. 

In order to make proper use of MEKeyTool, you need to be familiar with the J2SE keystore 

and the keytool command that is used to manage it, both of which are covered in Java in a 

Nutshell by David Flanagan (O'Reilly).  

8.8.4 Options 

-MEKeystore filename  

Specifies the location of the ME keystore. By default, the keystore is held in the file 

appdb\_main.ks below the installation directory of the wireless toolkit.  

 

http:///


J2ME in a Nutshell 

265 

-keystore filename  

Gives the location of the J2SE keystore. J2SE ships with a set of certificates for root 

certification authorities which can be used to populate the ME keystore. This keystore 

is located at %JAVA_HOME%\jre\lib\security\cacerts.  

-storepass filename  

The password used to protect the J2SE keystore. By default, the password for the 

default J2SE keystore is changeit, but this may be changed using the J2SE keytool 

command.  

-alias aliasName  

Identifies the certificate from the J2SE keystore that is to be exported. You can get a 

list of the certificates in a J2SE keystore, which shows the alias for each certificate, by 

using the J2SE keytool command with the -list option:  

keytool -list -keystore C:\jdk1.3.1\jre\lib\security\lib\cacerts  
    -storepass changeit 

A typical line of output from this command looks like this: 

Certificate fingerprint (MD5): 
18:87:5C:CB:F8:20:5D:24:4A:BF:19:C7:13:0E:FD:B4 
verisignserverca, Mon Jun 29 18:07:34 BST 1998, trustedCertEntry, 

The aliasName that you would use to import this certificate into the ME keystore is 

verisignserverca.  

-owner ownerName  

Specifies the owner name of a key to be deleted from the ME keystore. Owner names 

are rather cumbersome, as the following extract from the keystore shows:  

Key 1 
 Owner: OU=Class 2 Public Primary Certification Authority;O=VeriSign, 
Inc.;C=US 
 Valid from Mon Jan 29 00:00:00 GMT 1996 to Wed Jan 07 23:59:59 GMT 
2004 
 Domain: untrusted 

Here, the owner is the string "OU=Class 2 Public Primary Certification 

Authority;O=VeriSign, Inc.;C=US".  

-domain domainName  

This option can be used to associate a security domain with the key when it is 

imported into the ME keystore. This option does not need to be used when installing 

certificates for use with the HTTPS support in the MIDP reference implementation.  

 

http:///


J2ME in a Nutshell 

266 

8.8.5 Examples 

MEKeyTool accesses its default keystore using the relative filename appdb\_main.ks. To 

avoid having to use the -MEkeystore option to specify an explicit pathname, it is usually most 

convenient to make the J2ME wireless toolkit installation directory your working directory 

before using MEKeyTool. The examples in this section assume that this has been done.  

To import into the default ME keystore a certificate with alias versignserverca from the J2SE 

keystore in the file c:\jdk1.3.1\jre\lib\security\cacerts:  

set JCE=c:\jdk1.3.1\jre\lib\security\cacerts 
java -jar bin\MEKeyTool.jar -import -keystore %JCE% -storepass changeit 
verisignserverca 

To list the entire content of the default ME keystore: 

java -jar bin\MEKeyTool.jar -list 

The following is typical output from the previous command: 

Key 1 
  Owner: OU=Secure Server Certification Authority;O=RSA Data Security, 
Inc.;C=US 
  Valid from Wed Nov 09 00:00:00 GMT 1994 to Thu Jan 07 23:59:59 GMT 2010 
  Domain: untrusted 
Key 2 
  Owner: OU=Class 3 Public Primary Certification Authority;O=VeriSign, 
Inc.;C=US 
  Valid from Mon Jan 29 00:00:00 GMT 1996 to Wed Jan 07 23:59:59 GMT 2004 
  Domain: untrusted 

To delete from the default keystore the second key in the output shown above:  

java -jar bin\MEKeyTool.jar -delete -owner "OU=Class 3 Public Primary  
Certification Authority;O=VeriSign, Inc.;C=US" 

8.8.6 See Also 

• The description of the keytool command in O'Reilly's Java in a Nutshell  

http:///


J2ME in a Nutshell 

267 

Chapter 9. J2ME Programming Environments 

Java developers who worked with the JDK 1.0 and 1.1 no doubt recall how much time it took 

for the first production quality integrated development environments to come to market. Most 

developers at that time had little choice but to create their code with their favorite editor and 

compile it using the command-line tools included with the JDK.
1
 Debugging was even more 

of a nightmare, because the only tool available, jdb, was low-powered and not very robust. In 

the last few years, and especially since the release of the Java 2 platform, J2SE IDEs have 

matured to the point that you can now place your trust in them for routine development tasks. 

Most of them even have wizards that build JAR files for you or extract your Javadoc 

documentation.  

Happily for J2ME developers, it has not been necessary to wait such a long time for 

reasonable development software to appear. Sun has made available the J2ME Wireless 

Toolkit, which can be used alone or integrated into some of the leading IDEs on the market. 

Several cell phone manufacturers provide their own development environments, which can be 

used to develop and test MIDlets on their devices. This chapter looks in some detail at the 

J2ME Wireless Toolkit and at Forte for Java, which provides a seamless environment for 

developing MIDlet suites, based on its ability to be tightly integrated with the Wireless 

Toolkit. The chapter also lists some other third-party IDEs that provide support for J2ME, 

together with the URLs from which they can be downloaded. Many of these IDEs, including 

the Wireless Toolkit and Forte for Java, are either free or have no-cost or low-cost entry-level 

editions that make them a convenient way to build J2ME applications.  

9.1 The J2ME Wireless Toolkit 

The J2ME Wireless Toolkit is based on Sun's reference implementation of the MIDP 1.0 and 

CLDC 1.0 specifications. It includes a graphical user interface that allows you to build and 

run MIDlet suites, together with some additional features, such as support for OTA 

provisioning and HTTPS, that are not currently part of the official MIDP specification. We 

have already used the Wireless Toolkit in this book, and you'll find an introduction that shows 

you how to use it to create a new project and build a MIDlet suite in Chapter 3. In this section, 

you'll find a brief recap of its major features, followed by a more detailed examination of 

those aspects of the Wireless Toolkit that have not been mentioned in earlier chapters.  

9.1.1 J2ME Wireless Toolkit Overview 

When you install the J2ME Wireless Toolkit, you get several command-line and GUI utilities:  

KToolBar  

KToolBar is the main user interface component of the Wireless Toolkit. You can use it 

to create and manage projects, compile, package, and run MIDlet suites, and select the 

emulated device to be used. The basic operation of KToolBar is summarized in the 

next section.  

                                                 
1 In fact, many serious developers still work this way, feeling that there is no need to use a full-blown development environment. This is a view that 

I have a great deal of respect for, having trod this path myself for many years. It is only quite recently that I have found that the advantages of using 

an IDE can sometimes outweigh the disadvantages, but no doubt there will always be those who prefer to work with notepad, vi or emacs, and javac. 

The good news for them is that Sun includes the command-line tools that they require either in the JDK or with the J2ME reference releases and 

the Wireless Toolkit. The most important of these tools are covered in Chapter 8. 

http:///


J2ME in a Nutshell 

268 

Run MIDP Application  

This utility pops up a dialog that allows you to browse your computer's filesystem for 

a MIDlet suite packaged in a JAR with an associated JAD file and run it using the 

currently selcted default device. It is useful if you want to demonstrate a MIDlet 

without starting the full toolkit.  

Default device selection  

The default device selection utility lets you select the device that will be used when 

you run a MIDlet suite using the Run MIDP Application utility or by double-clicking 

on the icon representing a JAD file.  

Preferences  

This utility opens a dialog box that lets you change customizable features of the 

emulators that the Wireless Toolkit uses to run MIDlet suites. The same dialog can 

also be accessed directly from KToolBar.  

Utilities  

The Utilities application opens a dialog that provides two features:  

• For PalmOS devices, it allows you to convert a MIDlet suite to .prc format, 

which is required to install the suite on a PalmOS device or the PalmOS 

emulator. See Section 9.2 for more information on deploying MIDlets onto 

PalmOS devices.  

• For other devices, it provides the ability to remove the files that are used to 

emulate RMS storage on your system. See Section 6.5 for a discussion of RMS 

storage.  

The same dialog can be accessed directly from KToolBar. 

Command-line tools  

All of the graphical utilities that are part of the toolkit are installed as command-line 

tools in the bin directory of the toolkit installation. In addition to these, the toolkit 

provides the emulator command, which can be used to execute MIDlet suites from the 

command line (see Section 8.5), and MEKeyTool, which manages the certificates and 

keys required by the Wireless Toolkit HTTPS support, a feature that is described in 

Section 9.1.5, later in this chapter.  

9.1.2 Developing MIDlet Suites with the Wireless Toolkit 

The Wireless Toolkit is based around projects, where a project contains all the source files 

and resources for a MIDlet suite. When you start the KToolBar application, you can choose 

either to open an existing project or to create a new one (see Figure 3-7). If you create a new 

project, you are prompted to supply a project name, which will be used to create a new 

directory hierarchy to contain all of the project's files. By default, this directory will be 

created under %INSTALL_DIR%\apps\project_name, where INSTALL_DIR is the directory in 

http:///


J2ME in a Nutshell 

269 

which the Wireless Toolkit is installed. The project's files are organized within these 

directories as follows:  

bin  

The toolkit uses this directory to store the manifest file for the JAR into which the 

MIDlet is packaged, the JAD file used to describe the MIDlet suite, and the MIDlet 

suite's JAR file itself. Note that the JAR file is not created by the usual build and 

testing process; it is built only if you request that the suite be packaged.  

classes  

Contains the compiled class files for the MIDlet suite after they have been preverifed.  

lib  

This directory can be used to hold JAR and ZIP files containing classes that are not 

part of the project you want to be incorporated when compiling, running, and 

packaging the MIDlet suite. The content of these libraries is extracted and included in 

the JAR created when the MIDlet suite is packaged.  

Files stored in this directory are used only in connection with its containing project. 

You can arrange for libraries to be available to all projects by placing their JAR or ZIP 

files in the toolkit's own lib directory (%INSTALL_DIR%\lib).  

res  

This directory should be used to store resource files, such as images, that MIDlets in 

the MIDlet suite will need to access at runtime.  

src  

This is where you place the source code for your MIDlets. The usual mapping between 

package name and directories should be used, so that, for example, the source files for 

a MIDlet in a package called ora.ch3 should be placed in the directory src\ora\ch3. 

Note that the Wireless Toolkit is not a full-fledged IDE and does not provide the 

ability to edit source files. You will need to use your own editor or that of a third-party 

IDE to create and edit MIDlet source files. For greater convenience, you can also 

integrate the Wireless Toolkit with certain IDEs, including Forte for Java and Borland 

JBuilder -- see Section 9.3, later in this chapter, for further information.  

tmpclasses  

This is a working directory that the Wireless Toolkit creates when required. It uses this 

directory to store compiled class files before they are preverified and copied into the 

classes directory.  

 
 
 

http:///


J2ME in a Nutshell 

270 

tmplib  

This directory is used to hold copies of the JAR and ZIP files read from the project lib 

directory, in which the class files have been converted to their corresponding 

preverified forms.  

You can specify the names of the MIDlets included in a MIDlet suite, along with their MIDlet 

class files and associated icons, by pressing the Settings button in the KToolBar main 

window. Similarly, you can compile all of the MIDlet class files using the Compile button. 

These processes are described in detail in Section 3.5.1.  

Once you have compiled your MIDlets, there are several ways to test them. The simplest way 

is simply to use the Run button on the KToolBar window, which uses the device selected in 

the Device combo box to run the project's MIDlet suite using the class files in the classes 

directory, the resources in the res directory, and any library classes in the tmplib directory. 

Alternatively, you can arrange for the Wireless Toolkit to package the project contents into a 

JAR file by using the Package command on the Project menu, which places the resulting JAR 

file in the project bin directory. From here, you can run it using the Run MIDP Application 

utility or, from the command line, using the emulator or midp commands (see Chapter 8 for a 

full description of these commands). In order to minimize the size of the JAR file, the 

packaged version of the project is built without debugging information, whereas the classes 

created when you run the project within the KToolBar environment include debug 

information.  

9.1.3 Debugging MIDlets with the Wireless Toolkit 

The Wireless Toolkit does not incorporate its own debugger, but you can use it to set up a 

debugging session between a MIDlet running in one of the Toolkit's emulated devices and a 

third-party debugger that supports remote debugging using the Java Platform Debugging 

Architecture (JPDA). Most commercial IDEs provide support for JPDA, although some of 

them do not include remote debugging in their entry-level products. (Borland JBuilder is an 

example of this: it supports remote debugging only in the Professional and Enterprise 

editions.)  

The KVM does not directly support the JPDA architecture, but the Wireless Toolkit 

incorporates a debug proxy agent that can be used together with the KVM to provide support 

for remote debugging.
2
 To debug a MIDlet, first open its project in the KToolBar, choose the 

device that you want to run it on, and then select Debug from the Project menu. This opens a 

dialog (see Figure 9-1) that invites you to supply the port number on which the debug proxy 

will wait for a connection from the JPDA debugger. Choose a suitable port (the default value 

of 5000 should be fine in most cases), and press the Debug button to start the emulator and the 

debug proxy. At this point, the device emulator window appears, but the MIDlet does not start 

executing because the KVM is suspended waiting for the debugger to connect.  

 

 

 

                                                 
2 Details of the debug proxy agent and the JPDA as it relates to the KVM can be found in Section 2.3. 

http:///


J2ME in a Nutshell 

271 

Figure 9-1. Using the Wireless Toolkit to debug a MIDlet 

 

The next step is to open the IDE and start the remote debugger. Here, we'll use Forte for Java 

as the IDE, but the steps to be followed are similar for other development environments. Once 

you have started the IDE, you need to point it at the source file or source files for the MIDlet 

that you want to debug and place a breakpoint. Using Forte for Java, you do this by mounting 

the project's src directory as a filesystem in the Explorer window and opening the MIDlet 

source for editing; then select a line of code and press Ctrl+F8, or use the editor's context 

menu and select the Add/Remove Breakpoint menu item, as shown in Figure 9-2.  

Figure 9-2. Setting a breakpoint using Forte for Java 

 

Once you've set a breakpoint, start the debugger by opening the Debug menu and selecting 

Attach to VM. Because you need to connect using sockets, make sure that the connector 

shown uses sockets, type the port number supplied to the Wireless Toolkit (typically 5000) 

into the port number box (and the name of the host on which the Wireless Toolkit is running, 

if it is not the same as the system running Forte), and press OK.  

Once the debugger connects to the debug proxy, the device emulator will resume execution
3
 

and the usual MIDlet selection menu appears. Select a MIDlet and start using it as usual. 

When the breakpoint is reached, the emulator is suspended again, and you can use the 

debugger's facilities to inspect and modify data in the usual way.  

A somewhat simpler way to debug MIDlets is to integrate the Wireless Toolkit with your IDE 

instead of using it directly. At the time of writing, this is possible with two of the most 

popular third-party IDEs: Forte for Java (see Section 9.3, later in this chapter) and Borland 

                                                 
3 Execution resumes automatically when the Forte for Java debugger is used. Some debuggers might need to be explicitly told to resume the debugged 

process. 

http:///


J2ME in a Nutshell 

272 

JBuilder. It is likely that other IDEs will also support the integration of the Wireless Toolkit in 

the near future.  

9.1.4 Wireless Toolkit Localization Features 

The MIDP specification requires a device to support only a single locale and a single 

character encoding at a time. In the real world, MIDP device manufacturers are likely to 

customize a device for the locale in which it is being used. For example, a cell phone intended 

for use in Japan or by a Japanese-speaking person will be configured with Japanese fonts and 

Japanese character sets. From the point of view of the application developer, it is useful to be 

able to develop and test MIDlets on devices that are customized for different locales. The 

J2ME Wireless Toolkit enables this by allowing the fonts and available encodings for 

emulated devices to be changed to any of those supported by the J2SE platform on which the 

emulator is running.  

9.1.4.1 Changing fonts 

The MIDP specification requires application code to specify the characteristics of a font in 

strictly logical terms by using a combination of three attributes -- face, style and size -- as 

described in Section 5.8.1. As a typical example, an application might request a 12-point, 

proportional, bold font or a 14-point, system, italic font. The MIDP implementation must map 

this logical request to the closest font that it has available. The Wireless Toolkit emulator does 

this by reference to a set of font definitions that map logical font descriptions to actual J2SE 

platform fonts.  

The font definitions applicable to a device are contained in its properties file, which is 

supplied by the Wireless Toolkit and held in a directory specific to that device.
4
 For the 

default color phone, for example, the properties file is called:  

%INSTALL_DIR%\wtklib\devices\DefaultColorPhone\ DefaultColorPhone.properties  

The properties file for the emulated Motorola i85s cell phone can be found at:  

%INSTALL_DIR%\wtklib\devices\Motorola_i85s\Motorola_i85s.properties  

%INSTALL_DIR% is the directory in which the J2ME Wireless Toolkit is installed.  

Within the properties file, the fonts are defined by associating a property name, constructed 

from the parts of the logical font definition used by application code, with a property value 

that specifies the actual J2SE font to be used when the font given by the property name is 

requested.  

The property name has the following general form: 

font.face.style.size 

The components of the name are the following:  

                                                 
4 The device properties file actually defines all the configurable characteristics of an emulated device. For detailed information on all of these 

characteristics, refer to the J2ME Wireless Toolkit's Basic Customization Guide. 

http:///


J2ME in a Nutshell 

273 

• face is derived from the font face value specified by the application and must be one 

of monospaced, proportional, or system.  

• style is derived from the font styles specified by the application, excluding 

underlining (which is handled separately). The legal combinations of font styles are 

mapped to the following possible values in the properties file: plain, bold, italic, 

and bold.italic.  

• size is the font size requested by the application and must be one of small, medium, 

or large.  

The property value associated with each of these properties can be one of two things:  

• The name of a font available on the host platform described using the usual J2SE font 

naming conventions, referred to as a system font definition.  

• The name of a properties file that describes a font in terms of its metrics and a bitmap 

image containing representations of the font glyphs, referred to as a bitmap font 

definition.  

The creation and use of bitmap fonts is beyond the scope of this book. If you need to use a 

bitmap font, you should refer to the Basic Customization Guide included with the J2ME 

Wireless Toolkit download for further information.  

System fonts are described in terms of font name, style, and size, using the following format:  

fontName-style-pointsize 

SansSerif-plain-9 or Monospaced-bolditalic-14 are examples of system fonts.  

Using these definitions, the following is a typical extract from a device properties file, which 

provides the mappings for the system font face:  

font.system.plain.small: SansSerif-plain-9 
font.system.plain.medium: SansSerif-plain-11 
font.system.plain.large: SansSerif-plain-14 
 
font.system.bold.small: SansSerif-bold-9 
font.system.bold.medium: SansSerif-bold-11 
font.system.bold.large: SansSerif-bold-14 
 
font.system.italic.small: SansSerif-italic-9 
font.system.italic.medium: SansSerif-italic-11 
font.system.italic.large: SansSerif-italic-14 
 
font.system.bold.italic.small: SansSerif-bolditalic-9 
font.system.bold.italic.medium: SansSerif-bolditalic-11 
font.system.bold.italic.large: SansSerif-bolditalic-14 

As a result of these definitions, the font requested using the following line of code would 

actually be realized using a 9-point, bold, sans-serif font.:  

Font font = Font.getFont(Font.FACE_SYSTEM, Font.STYLE_BOLD,  
    Font.SIZES_SMALL); 

http:///


J2ME in a Nutshell 

274 

It is also necessary to define a default font, which is installed into a Graphics object when no 

other font is requested, and a font to be used for the text that appears on soft buttons in the 

user interface. These fonts are defined as the values of the font.default and 

font.softButton properties:  

font.default=SansSerif-plain-10 
font.softButton=SansSerif-plain-11 

Changing the font associated with an application font definition is simply a matter of 

modifying the property value associated with it in the device properties file. If you would 

prefer to use the Comic Sans MS font as the system font for the default color phone, for 

example, you would replace SansSerif in the block of properties shown above by Comic 

Sans MS, as the following extract shows:  

font.system.plain.small:Comic Sans MS-plain-9 
font.system.plain.medium: Comic Sans MS-plain-11 
font.system.plain.large: Comic Sans MS-plain-14 
     . 
     . 
font.system.bold.italic.large: Comic Sans MS-bolditalic-14 

You need to restart the Wireless Toolkit for the font change to take effect.  

9.1.4.2 Changing the available character encodings 

The set of character encodings available to an emulated device can be configured in its 

properties file by associating the appropriate values with two properties:  

microedition.encoding  

Specifies the default encoding, as returned by 

System.getProperty("microedition.encoding").  

microedition.encoding.supported  

A comma-separated list defining the complete set of supported encodings. All the 

encodings in this list must be available in the J2SE platform on which the Wireless 

Toolkit is running.  

The following extract from a device property file sets the default encoding for the device to 

ISO-8859-5 and makes four other encodings available to applications running on the device:  

microedition.encoding = ISO-8859-5 
microedition.encoding.supported =  
    ISO-8859-1, ISO-8859-2, UTF-8, UTF-16, ISO-8859-5 

Note that ISO-8859-1 is always available, even if it is not included in the list of supported 

encodings.  

There is currently no way for a MIDlet to programmatically obtain the list of supported 

encodings. However, including an encoding in the microedition.encoding.supported list 

makes it possible to use that encoding with constructor and method calls that require an 

http:///


J2ME in a Nutshell 

275 

encoding name. For example, the following code results in an 

UnsupportedEncodingException unless ISO-8859-5 is in the list of supported encodings:  

byte[] bytes = new byte[32]; 
String str = new String(bytes, "ISO-8859-5"); 

9.1.5 Secure Networking  

Although it is not a requirement of the MIDP specification, the MIDP reference 

implementation includes support for HTTPS. HTTPS creates a secure environment for e-

commerce and other applications by exchanging HTTP messages over secure sockets rather 

than their vanilla (and insecure) counterparts. Since the Wireless Toolkit is based on the 

reference implementation, it inherits the HTTPS support and also provides a command-line 

tool that allows you to install the public key certificates you will need in order to use HTTPS.  

9.1.5.1 SSL, HTTPS, and certificates 

Network traffic exchanged over the Internet (and potentially over insufficiently secure 

intranets) using vanilla sockets is insecure for at least three reasons:  

• Unauthorized parties can receive and read data in transit and extract potentially useful 

information from it, such as credit-card numbers or commercial secrets.  

• Because the data passes through routers that are not under the control of the sender, it 

is possible for modifications to be made that appear to the receiver to have come from 

the sender. This is, obviously, undesirable for many reasons.  

• There is no way for a communicating party to be sure that they are connected to the 

other party that they think they are connected to.  

SSL and its successor, TLS, were designed to solve all three of these problems. HTTPS is the 

same as HTTP, except that it is transmitted using SSL rather than ordinary sockets and, 

therefore, inherits the security supplied by SSL. Although a thorough discussion of general 

network security and the details of SSL are beyond the scope of this book, it is worth looking 

briefly at the mechanisms that SSL uses to secure a network connection.  

SSL addresses the three security issues listed above as follows: 

• Data that is exchanged between the communicating parties is encrypted using a 

symmetric encryption algorithm, which requires both the sender and the receiver to 

know the encryption key. Encrypting the data prevents unauthorized snooping, unless 

the snooper manages to work out what the key is. In order to minimize the chances of 

this happening, the key is randomly chosen for each communication session, so that 

discovering the key for one session -- most likely by analyzing captured data offline -- 

will be of no use, because the next session will use a different key.  

• Simply encrypting data does not keep a third party from modifying it, because random 

data could be inserted, or data could be deleted or modified. In order to make it 

possible to detect such changes (even though they cannot be prevented), a secure 

message digest is sent with each package of data. The message digest is computed 

from the data content using an algorithm that is designed to make it extremely unlikely 

that any change to the data would result in its new content having the same digest 

value. When data is received, the receiver calculates the digest and compares it to the 

http:///


J2ME in a Nutshell 

276 

value computed and supplied by the sender. If they do not match, the message must 

have been tampered with.  

• Finally, there is the matter of authenticating the communicating parties. This is done 

during connection establishment by using public key certificates. Simply put, a public 

key certificate uniquely identifies its owner. In most cases, the server sends its 

certificate to the client so that the client can be sure that it is talking to the correct 

counterparty. Optionally, the server may also require the client to authenticate itself by 

sending its own certificate. This is not usually done, however, because the client 

provides a credit card number that acts as its identity, or simply because the server 

doesn't need to trust the client.
5
  

Public key certificates are extremely important to SSL. A company or individual obtains a 

certificate by applying to a certification authority or root CA (such as Thawte or Verisign). 

After applying vetting procedures, the CA issues the certificate in electronic form. The 

certificate is actually one end of a certificate chain that may have two or more entries. A 

certificate obtained directly from a CA might have only two entries: the certificate itself and 

the certificate of the CA that issued it. In some cases, commercial organizations find it 

convenient to be able to issue certificates directly to their own customers; to do so, they 

become intermediate certification authorities by registering themselves with a root CA and 

obtaining an intermediate CA certificate. Certificates issued by such a CA have a chain of at 

least three entries: the issued certificate itself, the certificate of the intermediate CA, and the 

certificate of the root CA.  

In effect, each certificate is vouched for by the one above it in the certificate chain. For 

example, if you apply to a root CA and obtain a certificate, your certificate is authenticated by 

the fact that it comes with a copy of the root CA's certificate. To prevent forgeries, the root 

CA applies to your certificate a cryptographic signature that only it could generate. When you 

present your certificate to a third party, they can check this signature. If it is found to be 

correct, then the third party knows that the certificate was issued by the owner of the 

certificate above it in the certificate chain. When there are multiple certificates in the chain, 

each one can be checked against the one above it.  

At the end of this process, the certificate chain has either been rejected or is known to be 

consistent. However, it is still not known to be valid. If I wanted to forge a certificate chain, I 

could create a certificate and sign it with another certificate that claims to have been issued by 

a root CA, but which I also created. The receiver of such a certificate chain would not be able 

to detect that it is a forgery simply by checking the cryptographic signatures, because they 

would be correct. The solution to this problem is for the certificates of the root CAs and 

intermediate CAs involved in the path to be held on the client so that they can be compared to 

those received in any certificate chain. When a client is sent a certificate claiming to have 

been issued by Verisign, not only can the client check cryptographic signatures to verify 

internal consistency, but it can also compare the certificate in the path that claims to be from 

Verisign with its own copy of that certificate. If they match, the client finally can be sure that 

the whole certificate chain is valid. When an SSL connection is being established, the client 

verifies the server's certificate by checking its cryptographic signature and comparing the CA 

certificates in its certificate chain with the ones that it holds locally. If they do not match, or if 

the chain includes CA certificates that the client does not have its own copies of, the client 

can reject the connection as untrusted.  

                                                 
5 The SSL implementation in the Wireless Toolkit does not currently support client authentication. 

http:///


J2ME in a Nutshell 

277 

Browsers that support HTTPS come with a database of root CA and intermediate CA 

certificates. To see an example, start Internet Explorer and select Tools Internet Options 

Content Certificates Trusted Root Certification Authorities. You'll see the set of CA 

certificates that Internet Explorer knows about. Figure 9-3 shows a typical set of certificates; a 

similar list is held by other browsers such as Netscape Navigator.  

Figure 9-3. Certification Authority Certificates stored by Internet Explorer 

 

If you use Internet Explorer to open a secure web page, such as https://www.microsoft.com/, 

you can view the server certificate that is used to authenticate the SSL connection by right-

clicking on the page in the browser, selecting Properties and then Certificate, and finally 

activating the Certification Path tab of the dialog that appears, as shown in Figure 9-4. As you 

can see, Microsoft's certificate is vouched for by Verisign's secure server CA certificate.  

 

 

 

 

 

 

 

 

http:///


J2ME in a Nutshell 

278 

Figure 9-4. A certificate chain from a secure web site 

 

9.1.5.2 Using HTTPS with the J2ME Wireless Toolkit 

From the application point of view, using HTTPS is almost identical to using HTTP. The only 

differences are that you specify the protocol in the Connector open( ) call as https instead 

of http and the default port number (which you don't need to supply) is 443 instead of 80. 

Once the connection has been established, you use exactly the same code to inspect the HTTP 

header values and exchange data; all the connection setup details and the encryption and 

decryption of data are handled for you automatically. The only difference you will notice is 

that the connection process takes much longer because of the need to transfer the server 

certificate chain and establish the encryption key to be used when transferring data.  

To see how HTTPS works in practice, start the J2ME Wireless Toolkit and open the 

Chapter6 project from this book's source code, build the project (if you have not already done 

so), and run it. From the list of MIDlets, choose HTTP; this runs the same HTTP example that 

you saw in Chapter 6, whose opening screen is shown in Figure 6-3. In the textbox, type the 

URL https://www.verisign.com and press OK. What you would expect to see, after a short 

delay, is the first part of the HTML for Verisign's home page, but what you'll almost certainly 

see instead is a screen reporting an I/O error. If you look in the Wireless Toolkit console, 

there will be an error message, probably one saying "not a CA" or "no trusted keystore given." 

So what went wrong here?  

During connection setup, the certficate chain sent by the server has to be verified. As 

described earlier, not only must the cryptographic signatures be verified, but the CA 

certificates must also be checked to see if they are valid. To do this, the SSL implementation 

has to compare them to reference copies stored locally. Therein lies the problem: where are 

the local copies of the certificates held? The MIDP reference implementation holds CA 

certificates in a keystore. When running under the control of the Wireless Toolkit, this 

http:///


J2ME in a Nutshell 

279 

keystore is located at %INSTALL_DIR%\appdb\_main.ks, where %INSTALL_DIR% is the 

directory in which the J2ME Wireless Toolkit is installed. When you first install the Wireless 

Toolkit, however, there are no certificates in this file. To add them, you need to use a 

command-line utility called MEKeyTool, which allows you to import certificates that are 

already installed in a J2SE keystore. J2SE ships with a keystore in the file 

%JAVA_HOME%\jre\lib\security\cacerts that contains root CA certificates for the most 

common used certification authorities. You can inspect the content of this file using the 

keytool command, which can be found in the directory %JAVA_HOME%\bin, and which is 

discussed in detail in Java in a Nutshell. The following command shows all of the certificates 

in this keystore, which is protected by a password (set initially to changeit):  

keytool -list -keystore %JAVA_HOME%\jre\lib\security\cacerts -storepass 
changeit 

The following is typical output: 

Keystore type: jks 
Keystore provider: SUN 
 
Your keystore contains 10 entries: 
 
thawtepersonalfreemailca, Fri Feb 12 20:12:16 GMT 1999, trustedCertEntry, 
Certificate fingerprint (MD5): 
1E:74:C3:86:3C:0C:35:C5:3E:C2:7F:EF:3C:AA:3C:D9 
thawtepersonalbasicca, Fri Feb 12 20:11:01 GMT 1999, trustedCertEntry, 
Certificate fingerprint (MD5): 
E6:0B:D2:C9:CA:2D:88:DB:1A:71:0E:4B:78:EB:02:41 
verisignclass3ca, Mon Jun 29 18:05:51 BST 1998, trustedCertEntry, 
Certificate fingerprint (MD5): 
78:2A:02:DF:DB:2E:14:D5:A7:5F:0A:DF:B6:8E:9C:5D 
thawtepersonalpremiumca, Fri Feb 12 20:13:21 GMT 1999, trustedCertEntry, 
Certificate fingerprint (MD5): 
3A:B2:DE:22:9A:20:93:49:F9:ED:C8:D2:8A:E7:68:0D 
thawteserverca, Fri Feb 12 20:14:33 GMT 1999, trustedCertEntry, 
Certificate fingerprint (MD5): 
C5:70:C4:A2:ED:53:78:0C:C8:10:53:81:64:CB:D0:1D 
verisignclass4ca, Mon Jun 29 18:06:57 BST 1998, trustedCertEntry, 
Certificate fingerprint (MD5): 
1B:D1:AD:17:8B:7F:22:13:24:F5:26:E2:5D:4E:B9:10 
verisignclass1ca, Mon Jun 29 18:06:17 BST 1998, trustedCertEntry, 
Certificate fingerprint (MD5): 
51:86:E8:1F:BC:B1:C3:71:B5:18:10:DB:5F:DC:F6:20 
verisignserverca, Mon Jun 29 18:07:34 BST 1998, trustedCertEntry, 
Certificate fingerprint (MD5): 
74:7B:82:03:43:F0:00:9E:6B:B3:EC:47:BF:85:A5:93 
thawtepremiumserverca, Fri Feb 12 20:15:26 GMT 1999, trustedCertEntry, 
Certificate fingerprint (MD5): 
06:9F:69:79:16:66:90:02:1B:8C:8C:A2:C3:07:6F:3A 
verisignclass2ca, Mon Jun 29 18:06:39 BST 1998, trustedCertEntry, 
Certificate fingerprint (MD5): 
EC:40:7D:2B:76:52:67:05:2C:EA:F2:3A:4F:65:F0:D8 

Each entry begins with an alias that can refer to the certificate. The first certificate shown 

above, for example, has the alias thawtepersonalfreemailca. As you can see, all these 

certificates are issued either by Thawte, Inc., or Verisign, Inc.  

http:///


J2ME in a Nutshell 

280 

To import a certificate into the keystore used by the SSL implementation (the ME keystore), 

open a command window and make the Wireless Toolkit installation directory (e.g., 

c:\j2mewtk) your current directory, and then use the MEKeyTool command to copy the 

certificate from the J2SE keystore, using the alias to identify the certifcate you want. (The 

MEKeyTool command is documented in detail in Chapter 8.) As an example, the following set 

of commands imports the certificate with alias verisignserverca, where the shell variable JCE 

is initialized to point to the J2SE keystore for convenience:  

cd c:\j2mewtk 
set JCE=c:\jdk1.3.1\jre\lib\security\cacerts 
java -jar bin\MEKeyTool.jar -import -keystore %JCE%  
    -storepass changeit verisignserverca 

Repeat this command for each certificate in the J2SE keystore, so your ME keystore is 

equipped to handle certificate chains where the certificate was issued directly by Verisign or 

Thawte. Then restart the Wireless Toolkit, run the HttpClient MIDlet again, and try 

connecting to https://www.verisign.com once more. It should work this time, because the 

required certificate is in the keystore.  

Failures due to problems with certificate chains are commonly seen when testing with 

HTTPS, at least until you get all the certificates you require in your certificate keystore. These 

errors cause an IOException to be thrown during connection establishment. If you print the 

message from this exception, the one that you'll most commonly see has the form:  

(x) bad certificate [details of certificate] 

where x is a number that identifies the problem with the certificate, and [details of 

certificate] is a short description of the server certificate. The numeric identifier is the 

most useful part of this message; the possible values are shown in Table 9-1.
6
  

Table 9-1. Certificate Problems 

Code Meaning 

1 
Certificates are valid only for a period of time determined by the certificate issuer. This error occurs when 

a certificate whose validity period has expired is received.  

2 The period of certificate validity has not yet started. 

3 The signature of at least one certificate in the chain is not valid. 

4 
The signature of a certificate in the chain was created using an algorithm that is not recognized by the 

MIDP SSL implementation.  

5 
A certificate in the chain was issued by an authority that is not recognized. This is usually caused by the 

fact that the CA's certificate is not in the ME keystore.  

6 

A certificate contains the name of the server from which it was sent, but that is not the server to which the 

client connected. This check is intended to prevent one server masquerading as another by copying its 

certificate chain and claiming it as its own.  

7 The certificate chain exceeds the maximum length supported by the implementation.  

8 A certificate in the chain does not contain a signature. 

9 

A certificate in the exchange has one or more critical extensions that are unrecognized. An extension is an 

optional part of a certificate. However, if the extension is marked as critical, the receiver must act on it. 

When a critical extension is not recognized by the receiver, it must report an error and consider the 

certificate to be invalid.  

                                                 
6 The information in this table is not part of the official Wireless Toolkit documentation; it was, in fact, obtained from the source code of the MIDP 

reference implementation. It is, therefore, possible that new error codes will be added in the future. 

http:///


J2ME in a Nutshell 

281 

10 The certificate has an inappropriate keyUsage or extendedKeyUsage extension.  

11 
A certificate in the chain was not issued by the next certificate above it in the chain. This is like receiving 

a Verisign certificate chained to a Thawte root CA certificate.  

12 One of the certificates in the chain belonging to root or intermediate CA has expired.  

Unfortunately, there is little that you can do to work around most of these errors, because the 

SSL implementation does not allow you to ask the user if they would like to ignore a problem 

and continue anyway.  

If the problem is due to a missing certificate that is not in the J2SE keystore, you can obtain a 

copy of the certificate by opening the same web page in your browser and examining the 

certificate chain, as shown in Figure 9-4. Select the certificate that you need from the chain 

and click View Certificate. In the dialog that appears, click Copy to File . . . and then select an 

export format, such as "DER encoded binary X.509 (.CER)", to store the certificate in a file. 

Next, import the certificate into your J2SE keystore:  

keytool -import -keystore %JCE% -storepass changeit -alias CERTALIAS -file 
filename.cer 

filename.cer is the name of the file to which you exported the certificate, and CERTALIAS 

should be replaced by a short and meaningful description of the certificate (such as 

verisgnclass1ca). The final step is to copy the certificate from the J2SE keystore to the ME 

keystore:  

java -jar bin\MEKeyTool.jar -import -keystore %JCE% -storepass changeit -
alias CERTALIAS 

Although the HTTPS support in the MIDP reference implementation and Wireless Toolkit 

and the certificate handling provided by MEKeyTool are useful for testing access to secure 

servers, the way in which certificates are handled for real devices is the concern of the device 

manufacturer and will probably be very different from the mechanism used here. This area is 

being addressed for a future version of the MIDP specification.  

9.2 MIDP for PalmOS 

MIDP for PalmOS is an implementation of MIDP 1.0 and CLDC 1.0 for devices running 

PalmOS Version 3.5 or higher. It is developed by Sun Microsystems and available for free 

download from http://java.sun.com/products/midp4palm/index.html.  

MIDP for PalmOS can be installed on a real device, or, for ease of development, you can use 

it together with the PalmOS Emulator (POSE) on your PC to develop and debug MIDlets 

using the J2ME Wireless Toolkit or one of the other IDEs that support J2ME.  

MIDP for PalmOS is delivered with documentation that describes in detail how to install and 

configure it. Rather than repeat what is in the official documentation, in this section, we 

briefly cover the most important aspects of installation and configuration. Then we look at 

some of the features that are relevant from the development and debugging point of view.  

 

http:///


J2ME in a Nutshell 

282 

9.2.1 The PalmOS Emulator (POSE) 

When you are creating MIDlets, you'll find it much easier and quicker to use an emulated 

PalmOS device than a real one. Once you are confident that the MIDlet is working, you can 

then deploy it to the real device for final testing. The PalmOS emulator is a free product that 

can be downloaded from http://www.palmos.com/dev/tech/tools/emulator/. Once you have 

downloaded and installed it, you need to upload a ROM image. If you have a real PalmOS 

device, you can transfer the contents of its ROM to the emulator by placing it in its cradle and 

following the instructions in the documentation that comes with the emulator.
7
 If you do not 

have a PalmOS device, then you need to register with Palm Computing and download a ROM 

image from their site. Note that the registration process includes offline authorization and 

takes some time. Visit http://www.palmos.com/dev/ for details on how to obtain a 

downloadable ROM image.  

9.2.2 MIDP for PalmOS Installation and Configuration 

MIDP for PalmOS is delivered in the form of two ZIP files, one containing the product itself, 

the other the documentation. When you expand the ZIP files, you will find a directory called 

PRCfiles that contains the files that need to be installed on your PalmOS device or in the 

emulator:  

MIDP.prc  

This file contains the MIDP for PalmOS implementation, including the KVM and the 

core and MIDP libraries. When you install this file, it creates an icon labeled JavaHQ 

that can be used to set global preferences. This is the file that an end user would install 

if they wanted to run MIDP applications on their PalmOS device.  

Developer.prc  

This is an additional file that is intended for use by developers only. When it is 

installed, it adds its own icon, called Developer, that allows you to enable extra 

options in the JavaHQ application that select features that are useful for debugging.  

Both these files should be installed on your PalmOS device in the same way as any other 

application, using the Install feature of the PalmOS desktop and performing a HotSync 

operation. You should also install them in the PalmOS emulator by right-clicking on the 

emulator window, selecting Install Other, and browsing the filesystem until you find the 

files. Once you have successfully installed the files, there are several steps you need to take, 

both on the real device and the emulator, to complete the setup:  

• Click on the Developer icon. This displays a screen that allows you to enable 

debugging options for the JavaHQ application. Click on Show and return to the home 

screen.  

• Click on the JavaHQ icon and select Preferences. The current global settings are 

displayed, as shown in Figure 9-5 (although the settings that you see may not be the 

same). Global settings are valid for all applications.  

                                                 
7 Note that older versions of POSE support transfer of the ROM image only if the device is connected to its host system via a serial cradle. If you have 

a USB cradle, you will need to get the most recent release of the emulator. 

http:///


J2ME in a Nutshell 

283 

Figure 9-5. The JavaHQ Global Preferences screen 

 

The Colors setting is initially set to a value that depends on the capabilities of the real 

or emulated PalmOS device in use. You can change it in order to see how your MIDlet 

would behave on a device with lesser capabilities.  

Drawing Speed lets you choose between smooth or fast animation. 

The App Memory setting determines the size of the heap that will be available to the 

Java VM. The initial setting depends on the amount of memory available in the 

emulated device, subject to a maximum of 64 KB. Although you can decrease this 

value to simulate operation in a smaller device, you cannot increase it beyond its 

initial setting.  

If you plan to use networking, you should enable it. MIDP for PalmOS supports HTTP 

(but not HTTPS) and also has an unsupported implementation of client sockets (but 

not server sockets). If you do not have direct access to the Internet, you need to 

configure an HTTP proxy.  

If you are configuring the emulator and have enabled networking, you need to make 

sure that all network access is directed to the TCP/IP stack of the system on which the 

emulator is running. To do this, right-click on the emulator window and select Settings 

Properties. In the dialog that appears, check the box labeled "Redirect NetLib calls 

to host TCP/IP."  

Note that networking must be enabled if you want to debug MIDlets in the PalmOS 

emulator using the J2ME Wireless Toolkit, because the debug proxy connects to the 

VM using TCP/IP. The procedure for debugging with POSE is the same as it is for 

any other emulator. Refer to the earlier section Section 9.1.3 if you are going to use 

the Wireless Toolkit; refer to Section 9.3, later in this chapter, for an example 

involving integrated debugging with another development environment.  

• From the Preferences combo box at the top of the screen, select Developer. The screen 

that appears (Figure 9-6) contains the options provided by Developer.prc.  

http:///


J2ME in a Nutshell 

284 

Figure 9-6. JavaHQ Developer Preferences 

 

The Heap Status option, if set to Show, causes the amount of heap space allocated to 

the Java VM to be displayed when it starts up.  

The Save Output option is probably the most useful for developers. If you set it to 

Yes, another button labeled Output appears between Cancel and Reset, and the 

standard output and standard error streams of the Java VM are saved during MIDlet 

execution and can be viewed on demand. You can view this saved output while a 

MIDlet is executing; refer to Section 9.2.3.6, earlier in this chapter, for further 

information.  

If you are using the PalmOS emulator, this output is also directed to files that you can 

inspect once you close down the emulator, thus allowing you to check trace output or 

read exception stack traces generated during MIDlet execution. These files are called 

STDOUT.txt and STDERR.txt, and they reside in the emulator's installation directory. 

When this option is set to Yes, another button labeled Output appears between Cancel 

and Reset that allows you to view the same output on the screen.  

The MIDlets button does not change the setting of an option. When you press it, it 

shows a list of up to 100 MIDlet suites that are currently installed on the device, 

together with their assigned creator IDs. Only MIDlets whose creator IDs are of the 

form VMnn will be shown; IDs of this form are automatically assigned by MIDP for 

PalmOS. If you assign your own creator ID to a MIDlet suite and it is not of this form, 

it will not appear in this list. See Section 9.2.3.1, in the next section, for information 

on how to assign a creator ID.  

In addition to these global and developer preferences, MIDP for PalmOS provides application 

preferences that must be set individually for each MIDlet suite. These settings are discussed in 

the next section.  

9.2.3 Using MIDlet Suites with MIDP for PalmOS 

MIDP for PalmOS is simply an implementation of the MIDP 1.0 and CLDC 1.0 

specifications. From the developers point of view, therefore, in most respects there is no real 

http:///


J2ME in a Nutshell 

285 

difference between developing MIDlets for PalmOS devices or for cell phones. Most 

importantly, the API seen by a MIDlet running under MIDP for PalmOS is exactly the same 

as that seen when it is executing on a cell phone. There are, however, some differences that 

you need to be aware of in the areas of MIDlet suite installation and management and display 

and input devices.  

If you are planning to use POSE for MIDlet development, you can use it as a standalone 

program and install MIDlet suites into it as you would any other PalmOS applications 

(converting them first, as described in the next section). Alternatively, you can use POSE as 

just another emulated device for the J2ME wireless emulator, which takes care of the 

installation process for you. Both these cases are covered in the next section, which also 

describes how to work with a real PalmOS device.  

9.2.3.1 MIDlet suite conversion 

The MIDP specification requires that a MIDlet suite be packaged in a single JAR file for 

delivery to a device, and devices must, at a minimum, be able to install MIDlet suites 

packaged in this way. However, it does contain a caveat indicating that it is acceptable for 

some preprocessing of the JAR to be performed before it is actually installed, in order to 

create a delivery package suitable for devices that have their own storage mechanisms. 

PalmOS devices expect to receive installable applications in the form of PRC files. Since 

MIDP for PalmOS uses the standard installation mechanism, it is necessary to convert any 

MIDlet suite to be used with a PalmOS device from a JAR file to the corresponding PRC file. 

Fortunately, a tool is provided to carry out this conversion. This tool can be used in three 

different ways:  

• Directly, as a command-line utility with all necessary information provided to it as 

arguments  

• Directly, via its own GUI interface 

• Indirectly, through the J2ME Wireless Toolkit or another compatible IDE  

Of these choices, the last two are the most convenient, since they don't require much work on 

the part of the developer. The disadvantage of these two options is that you don't have any 

control over the details of the conversion process. In most cases, this is not an issue, because 

the defaults are usually acceptable. If you use the command-line interface, however, you have 

complete control over the conversion process.  

9.2.3.2 Using the converter with the J2ME Wireless Toolkit 

This is the simplest way to prepare a MIDlet suite to run with the PalmOS emulator. All that 

is necessary is to open a project and select PalmOS_Device as the target device, then press the 

Run button. The MIDlet suite is automatically converted into a .prc file and loaded into the 

emulator.  

9.2.3.3 Using the converter GUI  

If you want more control over the conversion process, you can initiate the conversion process 

using the converter tool's graphical interface with the following command:  

java -jar %INSTALL_DIR%\Converter\Converter.jar 

http:///


J2ME in a Nutshell 

286 

where %INSTALL_DIR% is the installation directory of the MIDP for PalmOS product. The 

user interface, shown on the left side of Figure 9-7, allows you to select the JAD/JAR file 

combination to be converted and determine where the output should be written. The 

Preferences item on the File menu lets you specify whether the .prc file should be written to 

the same directory as the JAD file (the default), or to another directory of your choice, as 

shown on the right side of Figure 9-7. The Convert menu item (or toolbar button) opens a file 

selection dialog that lets you browse to locate the JAD file for the MIDlet suite to be 

converted. The JAR file is located using the MIDlet-Jar-URL attribute in the JAD file.  

Figure 9-7. The PRC Converter Tool user interface 

 

9.2.3.4 Using the converter command-line interface 

If you want maximum control over the creation of the .prc file, you need to use the conversion 

tool's command-line interface, provided by the class 

com.sun.midp.palm.database.MakeMIDPApp, which can be found in Converter.jar:  

java -cp %INST_DIR%\Converter\Converter.jar 
    com.sun.midp.palm.database.MakeMIDPApp [options] jarfile 

%INST_DIR% is the directory in which MIDP for PalmOS is installed, and jarfile is the name 

of the JAR file to be converted. You will find full details of this command and its associated 

options in Section 8.7. Among the more useful possibilities offered by this command is the 

ability to choose the icons that are displayed for your MIDlet suite on the device's launcher 

screen.  

9.2.3.5 Installing and running MIDlet suites on a PalmOS device 

There are three ways to install and run a MIDlet suite. The first, and probably the most 

commonly used, is to open a project in the J2ME Wireless Toolkit, select PalmOS_Device as 

the target emulator, and press the Run button. This carries out the .prc file conversion and 

installation in a single step and initiates the execution of the MIDlet suite. Note that the first 

time you attempt to use the PalmOS_Device, a dialog box appears, prompting you to supply 

the location of the PalmOS emulator file. Since this method always performs the .prc 

conversion process, you can't use it to install and run files that you have converted using the 

GUI or command-line interface to the converter.  

http:///


J2ME in a Nutshell 

287 

The second way to use a .prc file, which is applicable if you perform the conversion yourself, 

is to start the emulator and use its popup menu to install the .prc file. The popup menu is 

accessed by right-clicking on the emulator window. When you select the Install option, a 

menu appears; it contains the paths of .prc files you have recently installed, together with a 

menu item that lets you browse for a new .prc file. Once you have installed your MIDlet suite, 

it appears in the device's launcher window, as shown in Figure 9-8, where the MIDlet suite 

containing the example code for Chapter 6 of this book has been installed. The left side of the 

figure shows the device launcher in list mode; the right side uses icon mode. You can choose 

the icons used to represent your MIDlet suite in both of these modes if you use the command-

line version of the converter tool.  

Figure 9-8. MIDlet suites installed in the PalmOS Emulator 

 

The third and final way to use your .prc file is to install it on a real PalmOS device using the 

Install feature of the Palm desktop to select the .prc file (or whatever equivalent functionality 

your device uses for application installation) and then perform a HotSync operation. The 

result should be the same as performing an installation in the emulator.  

In all three cases, to run the MIDlet suite, you simply tap on its icon and then choose a MIDlet 

from the menu that appears. Note that, unlike the cell phone version of the AMS in the 

reference implementation and the Wireless Toolkit, you won't see a MIDlet list for a MIDlet 

suite that contains only one MIDlet; in this case, tapping the MIDlet icon starts the MIDlet 

without further user intervention.  

9.2.3.6 Application menus and preferences 

Every MIDlet that uses the high-level user interface is provided with a menu bar. The menu 

bar contains a mixture of menu items created from the Command objects assigned to each 

screen by the MIDlet (as described in Section 4.2.4.6) and commands that are installed by 

MIDP for PalmOS.
8
 The Go menu, for example, includes a menu item that lets you beam a 

MIDlet suite from one PalmOS device to another, as shown at the top of Figure 9-9.  

 

 

 

 

 

                                                 
8 Menu bars are not provided on Canvases. 

http:///


J2ME in a Nutshell 

288 

Figure 9-9. JavaHQ application menus 

 

This menu item is always present, but it works only if the MIDlet suite was built in such a 

way as to allow beaming. Beaming is allowed by default, but you can disallow it if you use 

the command-line version of the .prc conversion utility and specify the output file type as 

Data instead of appl. See Section 8.7 for further information. Note that you cannot beam 

MIDlet suites using the Beam command on the App menu on the application launcher main 

page, and you can only beam entire MIDlet suites, not individual MIDlets.  

The Edit menu, shown on the right of Figure 9-9, contains standard commands for working 

with text input. The most useful menu for the developer is Options, which contains three 

menu items, as shown at the bottom of Figure 9-9. The middle one, Preferences Help, just 

displays a help screen that explains the use of preferenecs, but the other two are more useful.  

The Java Preferences menu displays a screen that gives access to all of the preferences 

supported by MIDP for PalmOS. Initially, this screen displays the global preferences, as 

shown in Figure 9-5. If Developer.prc is installed, you can also access the developer 

preferences, shown in Figure 9-6, from here. This is useful, because it lets you look at any 

messages that have been sent to the System.out and System.err streams even while the 

MIDlet is executing, provided that you have set the Save Output preference setting to Yes. 

Finally, this screen also provides access to preferences that apply only to the executing 

MIDlet suite, as shown in Figure 9-10. These preferences, which are discussed further in the 

next section, can only be set from these screen; they are related to the way in which the screen 

and the limited number of input devices available on most PalmOS platforms are used.  

 

 

 

 

 

http:///


J2ME in a Nutshell 

289 

Figure 9-10. JavaHQ application preferences 

 

The Memory Info menu item displays a screen that shows memory usage information for both 

the PalmOS device as a whole and the Java VM itself, an example of which is shown in 

Figure 9-11. From the point of view of a MIDlet developer, the most interesting value on this 

screen is javafreeheap, which shows how much space is left for the allocation of Java objects 

and execution stack frames. The other value, permanent, is the amount of space allocated for 

internal use by the VM.  

Figure 9-11. JavaHQ memory usage information 

 

9.2.3.7 Display and input devices 

The application preferences dialog provides several settings that determine whether or not 

input is performed via real buttons on the PalmOS device or emulated controls drawn on the 

display. Using emulated controls has the effect of reducing the screen area available to 

MIDlets; because this choice is made by the user, you should develop and test your MIDlets 

with this possibility in mind. The following sections briefly describe these settings and the 

effect they have.  

 

http:///


J2ME in a Nutshell 

290 

9.2.3.8 Game controls 

By default, the game actions described in Chapter 5 (LEFT, RIGHT, UP, DOWN, FIRE) are 

mapped to keys on the PalmOS device or the emulator. Chapter 9 shows these buttons and 

the actions they correspond to on a typical device. There are, however, two alternative ways 

to map the game actions, both of which involve using the device screen. These alternative 

modes are selected through the Game Controls setting on the application preference screen:  

Joystick  

This mode includes four arrow keys and a fire button drawn in a rectangular area on 

one side of the screen, as shown on the left of Figure 9-13.  

Full keypad  

This mode uses slightly more screen space but includes not only the directional arrows 

and fire button, but also the letters A through D, representing the four customizable 

game actions, and a cell phone-style numeric keypad, as shown on the right of 

Figure 9-13. This mode is useful for MIDlets that were developed for cell phones, 

which rely heavily on the numeric keypad for input.  

Figure 9-12. Game Buttons on a typical PalmOS device 

 

Figure 9-13. Alternate game button configurations: joystick (left), full keypad (right) 

 

9.2.3.9 Keypad 

The Keypad setting is used only if Game Buttons is set to display a joystick or a full keypad 

on the screen. The setting determines whether the joystick or keypad is displayed on the right 

or left side of the screen. The default is to display the joystick or keypad on the right.  

9.2.3.10 Soft buttons 

This setting determines whether Commands added to Canvases are represented with soft 

buttons at the bottom of the screen, as, for example, the Setup button is on the left of  

http:///


J2ME in a Nutshell 

291 

Figure 9-14, which uses the default value of this option. When Soft Buttons is set to off, as 

shown on the right of Figure 9-14, the button no longer appears, and the MIDlet has access to 

the full screen area. When soft buttons are disabled, the functions that they provide can be 

accessed from the menu. The menu is not visible by default when the current Displayable is 

a canvas, but it can be displayed using a device-dependent button, which, in the case of Palm 

devices, is a soft button in the Graffiti area.  

This option does not affect screens built with the high-level user interface API.  

Figure 9-14. A Canvas with and without soft buttons in MIDP for PalmOS 

 

9.3 J2ME and Forte For Java 

Sun's Forte for Java IDE can be used to develop and debug MIDlets through its tight 

integration with the J2ME Wireless Toolkit. The Community Edition of Forte for Java is free 

and can be downloaded from http://www.sun.com/forte/ffj/. Once you have installed it, you 

need to install (or reinstall) the Wireless Toolkit in order to integrate its features into the IDE. 

During the Wireless Toolkit installation, a dialog appears, offering two different types of 

setup: standalone or integrated. To use the features of the Wireless Toolkit from within Forte 

for Java, you must select integrated setup.  

Once you have completed the setup, the extra features that let you create MIDlet suites and 

MIDlets and run and debug them in the emulators supported by the Wireless Toolkit appear in 

the IDE's menu system. The rest of this section assumes that you are reasonably familiar with 

Forte for Java and concentrate on demonstrating some of the J2ME-related functionality 

without going into much detail on the IDE itself.  

9.3.1 Creating a Project and Importing Source Code 

Like most IDEs, Forte for Java is based around projects. In order to create and compile source 

code, you first need to create a project, which you can do by selecting Project Project 

Manager New . . . and supplying a name for your project. A project has an associated set of 

filesystems that represent the directories and JAR or ZIP files that the IDE tools work with. 

All the class libraries and source code that you want to work with must be mounted as 

filesystems before you can compile or test anything. In order to begin development of a 

MIDlet suite, you need to do the following:  

 

http:///


J2ME in a Nutshell 

292 

• Mount the class files for the CLDC and MIDP class libraries. 

• Mount the directory or directories containing the CLDC and MIDP source code if you 

need to perform source-level debugging that includes stepping through or setting 

breakpoints in system-level code.  

• Mount the directory or directories containing your own source code, or create them if 

they do not exist.  

Filesystems are mounted in the Explorer window. To mount a directory or a JAR or ZIP file, 

right-click on the Filesystems node, select the appropriate command from the popup menu, 

and navigate to the directory or file in the file chooser that appears. The class files for the 

CLDC and MIDP class libraries, for example, can be found in 

%INSTALL_DIR%\lib\midpapi.zip, where %INSTALL_DIR% is the installation directory of 

the J2ME Wireless Toolkit. To include the MIDP and CLDC source code, you'll need to 

download and install the CLDC and MIDP reference implementations. Referring to the 

installation directories for these two products as %CLDC_DIR% and %MIDP_DIR%, 

respectively, the directories to be mounted to make all of their Java-level source code 

available are:  

%MIDP_DIR%\src\share\classes  
%CLDC_DIR%\api\src  

Finally, you need to mount the directory containing your source code, if you have any. In this 

section, we'll be using this book's example source code for demonstration purposes. To make 

this code accessible to the IDE, you should mount the directory src, which is found in the 

directory in which you installed the book's source code. Figure 9-15 shows the Explorer 

window after all these filesystems have been mounted.  

Figure 9-15. Mounting filesystems for MIDlet development in Forte for Java 

 

If you don't have any existing source code, you should first create the directory beneath which 

you intend to store it, and then mount that directory in the Explorer window. If you are 

developing MIDlets, the first thing you'll need to do is create a new package and a new 

MIDlet suite.  

To create a new package, right-click on the directory in the Explorer window that will contain 

your source code, select New Package from the popup menu, and type the full package name 

in the dialog box that appears. This creates the directories that match the package hierarchy 

and displays them in the Explorer window. If, for example, you supply the package name 

myCo.myPackage, the directory myCo\myPackage is created below your source code 

directory.  

http:///


J2ME in a Nutshell 

293 

To create the MIDlet suite, right-click the node for the directory created for your package 

(i.e., myCo\myPackage) and select New from the popup menu. This opens another menu 

containing an item labeled MIDP that gives access to all of the MIDP-related items that you 

can create within the IDE, as shown in Figure 9-16. Select the item labeled MIDletSuite, and, 

in the dialog that appears next, supply the name of your MIDlet suite and press Next. The next 

dialog that appears allows you to create the first MIDlet in the new MIDlet suite. In the 

MIDlet Name field, type the name of the MIDlet as you want it to appear when the list of 

MIDlets in the suite is displayed to the user at runtime. Type the name of its implementation 

class (which will be derived from javax.microedition.midlet.MIDlet) in the Class Name 

field, leaving out the package prefix (that is, supply the class name TestMIDlet, not 

myCo.myPackage.TestMIDlet). When you press Finish, the IDE creates a file to represent 

the MIDlet suite and the Java source file for the MIDlet itself. You can create additional 

MIDlets in the same suite by right-clicking the directory node, opening the same menus, and 

selecting MIDletClass instead of MIDletSuite.  

Figure 9-16. MIDP-related items provided by Forte for Java 

 

9.3.2 Compiling MIDlet Source Code 

Compiling MIDlet source code is extremely simple. To see how it's done, open the node in 

the Explorer window that contains this book's example source code, open the ora node 

beneath it, and, finally, the ch4 subnode. This node contains the example source code for 

Chapter 4. To compile all of the source files in the ora.ch4 package, right-click on the ch4 

node and select Compile All from the popup menu. To compile a single source file, right-click 

on the node for the file and select Compile -- that's all there is to it. The CLDC and MIDP 

classes used by the compiler are those that are mounted from midpapi.zip in the project's 

filesystem.  

http:///


J2ME in a Nutshell 

294 

The Compile commands check whether anything needs to be done by comparing the 

modification time of the source code to that of the corresponding class files, then compiling 

only those source files that are newer than their class files. If you want to force a 

recompilation regardless of the relative ages of the source and class files, you can use the 

Build command instead.  

9.3.3 Creating the MIDlet JAR and JAD Files 

Before you can test a MIDlet, you need to package its MIDlet suite in a JAR and create 

the JAD file. To do this, double-click on the node that represents the MIDlet suite itself, 

which, in this case, is labeled Chapter4, as shown in Figure 9-17. This opens a dialog box 

with two tabs that let you specify the attributes for the MIDlets in the suite and select the files 

to be included in the JAR.  

Figure 9-17. The node representing a MIDlet suite 

 

The Descriptor tab, shown in Figure 9-18, lets you set the attributes that will appear in 

the JAD file and the JAR's manifiest file. Initially, only a single MIDlet appears in this dialog. 

To add a new MIDlet, type MIDlet-2 in the input field at the bottom of the dialog and press 

the New Tag button. You can use the same technique to create application properties that 

MIDlets can retrieve using the getAppProperty( ) method. The attribute values can be 

edited by clicking in the appropriate row in the column headed Value. The names and values 

of the standard attributes can be found in Section 3.3.2.  

Figure 9-18. Specifying the attributes of MIDlets in a MIDlet suite 

 

Unlike the J2ME Wireless Toolkit, Forte for Java does not automatically determine the set of 

files to be included in the JAR. Instead, you have to specify them in the Content tab, shown in 

Figure 9-19. The left side of this tab shows the content of the Explorer window, while 

the right side lists the files selected for inclusion. Usually, you choose to include all of 

the MIDlet suite class files and any resource files that it needs, which includes images and 

http:///


J2ME in a Nutshell 

295 

other external files referenced from within the code and any images referred to from 

the MIDlet-n attributes in the JAD file.  

Figure 9-19. Specifying which files should be included in a MIDlet suite JAR 

 

Once you have completed both tabs of this dialog and closed it, you can build the JAR by 

right-clicking on the MIDlet suite node in the Explorer window and selecting Update JAR. 

This command preverifies all the class files, constructs the JAD file and the JAR, and places 

them in the same directory as the MIDlet source code.  

9.3.4 Running MIDlets 

Once a JAR file has been built, you can use the IDE to load it into any of the device emulators 

supported by the J2ME Wireless Toolkit. To select the emulator you want to use, right-click 

the MIDlet suite node, choose Emulator Select Device, and select the emulator from the 

dialog that appears. The Emulator menu also contains menu items that allow you to access the 

Preferences and Utilities facilities of the J2ME Wireless Toolkit that were mentioned earlier 

in this chapter. Having selected the emulator, right-click the MIDlet suite node again and 

select Execute. This starts the selected device, loads the MIDlet suite, and starts execution. 

Output written by MIDlets to the standard output or standard error streams will be routed to 

Forte for Java's Output window.  

 

If you right-click on the node for a MIDlet source file, you'll see a menu 

item labeled Execute. It is tempting to use this to try to run a single 

MIDlet, but it doesn't work. This command is intended to run the main( 

) method of a Java class and therefore is not suitable for testing 

MIDlets.  
 

Note that, to use the PalmOS_Device emulator, you need to have the PalmOS emulator 

installed and configured. When using this emulator, the standard output and standard error 

streams are not connected to the Output window, but their content can be saved in a file or 

http:///


J2ME in a Nutshell 

296 

viewed on the device. Refer to Section 9.2.3, earlier in this chapter, for further information on 

running MIDlets in the PalmOS emulator.  

9.3.5 Debugging MIDlets 

Debugging a MIDlet with Forte for Java is a very simple process that requires the following 

steps:  

1. Open one of the MIDlet's source files in the Editor window by double-clicking on its 

node in the Explorer window. Click on any line where you would like to place a 

breakpoint, then press Ctrl+F8, or right-click and select Toggle Breakpoint from the 

popup menu. The selected line will be highlighted in red.  

2. Select the MIDlet suite node in the Explorer window. 

3. On the Forte for Java main menu, select Debug Start. This runs the MIDlet suite 

under the debugger in the currently selected emulator device.  

4. When the breakpoint is reached, execution is suspended, and the corresponding source 

line is highlighted in blue.  

At this point, you can use all the debugging features of the IDE to inspect and change values, 

look at the stack frames of all active threads, and so on.  

This process is essentially the same as that described in Section 9.1.3, where the J2ME 

Wireless Toolkit itself was used to build and run MIDlet suites, and Forte for Java was simply 

used as a convenient JPDA debugger. Using Forte directly is quicker and easier, because there 

is no need to start the Wireless Toolkit separately.  

 

It is essential that you select the MIDlet suite node in the Explorer 

window before starting the debugger. If you forget to do this, Forte will 

try to run your MIDlet suite as a Java application and fail, because it 

won't be able to find a main( ) method.  
 

9.4 Other Integrated Development Environments 

The J2ME Wireless Toolkit and Forte for Java are not the only development environments 

that you can use to develop J2ME applications. Several of the IDEs that are commonly used 

for J2SE and J2EE development now have support for J2ME. Some of the cell phone vendors 

that have Java-based products in the market place have created IDE add-ins that you can use 

to develop software for their devices. The following list describes some of these products, 

together with information on where to get them. Unless otherwise noted, these products are 

supported only on the Windows platform.  

Borland JBuilder MobileSet  

JBuilder MobileSet is an add-in for JBuilder 5 or JBuilder 6. It allows JBuilder to 

integrate mobile device development kits from third parties in much the same way as 

the J2ME Wireless Toolkit can be integrated into Forte for Java. In order to use it, you 

must do the following:  

http:///


J2ME in a Nutshell 

297 

1. Install JBuilder itself, which can be downloaded from 

http://www.borland.co.uk/jbuilder/.  

2. Install JBuilder MobileSet from http://www.borland.co.uk/jbuilder/mobileset/.  

3. Download and install an appropriate adapter for a third-party wireless 

development kit. At the present time, Borland provides two such adapters, both 

of which can be downloaded from 

http://www.borland.co.uk/jbuilder/mobileset/. One of them allows JBuilder to 

integrate the J2ME Wireless Toolkit, while the other is for the Nokia 

Developer's Suite.  

Nokia Developer's Suite  

The Nokia Developer Suite is an add-in that provides an emulator for Nokia's Java-

enabled phones. It can be used with JBuilder or Forte for Java Version 3.0 and can be 

downloaded from http://americas.forum.nokia.com/java/.  

Metrowerks CodeWarrior  

Metrowerks CodeWarrior is a popular IDE that has built-in support for MIDlet 

development and a cell-phone emulator. It runs on either Windows or MacOS and can 

be obtained from http://www.metrowerks.com/desktop/java/.  

Zucotto Whiteboard SDK  

Another IDE with support for CLDC and MIDP development, the Zucotto Whiteboard 

SDK can be obtained from http://www.zucotto.com/whiteboard/index.html. It is 

supported on the Windows platform only.  

Visual Age for Java, Microedition  

Visual Age for Java, Microedition, is a version of IBM's Java development 

environment intended for developers building solutions for small and embedded 

devices. It is based on IBM's own J9 virtual machine, which is highly portable and 

available on a range of platforms, rather than on Sun's KVM. The Windows port of the 

J9 VM includes an implementation of CLDC and MIDP; it can be downloaded from 

http://www.embedded.oti.com/.  

Siemens Mobility Toolkit  

The Siemens Mobility Toolkit is an add-in for Forte for Java that includes a version of 

CLDC and MIDP and an emulator for the Siemens SL45i Java-enabled cell phone. 

The Siemens MIDP includes proprietary extensions that allow greater access to the 

capabilities of the phone than MIDP itself does. To obtain this development kit, go to 

http://www.siemens-mobile.de/mobile/, and follow the links to Developer Portal and 

then Wireless Java, where you will need to register before gaining access to the 

download area.  

http:///


J2ME in a Nutshell 

298 

Part II: API Quick Reference 

Part II is the real heart of this book: quick-reference material for the Java 2 

Micro Edition platform APIs. Please read the following section, "How to Use 

This Quick Reference," to learn how to get the most out of this material.  

II.1 How to Use This Quick Reference 

The quick-reference section that follows packs a lot of information into a small 

space. This introduction explains how to get the most out of that information. It 

describes how the quick reference is organized and how to read the individual 

quick-reference entries.  

II.2 Finding a Quick-Reference Entry 

The quick reference is organized into chapters, each of which documents a 

single package of the Java platform or a group of related packages. Packages 

are listed alphabetically within and between chapters, so you never really need 

to know which chapter documents which package: you can simply search 

alphabetically, as you might do in a dictionary. The documentation for each 

package begins with a quick-reference entry for the package itself. This entry 

includes a short overview of the package and a listing of the classes and 

interfaces included in the package. In this listing of package contents, classes 

and interfaces are first grouped by general category (interfaces, classes, and 

exceptions, for example). Within each category, they are grouped by class 

hierarchy, with indentation to indicate the level of the hierarchy. Finally, 

classes and interfaces at the same hierarchy level are listed alphabetically.  

Each package overview is followed by individual quick-reference entries for 

the classes and interfaces defined in the package. All the entries in this 

reference are organized alphabetically by class and package name, so related 

classes are grouped near each other. This means that to look up a quick-

reference entry for a particular class, you must also know the name of the 

package that contains that class. Usually, the package name is obvious from 

the context, and you should have no trouble looking up the quick-reference 

entry you want. Use the tabs on the outside edge of the book and the 

dictionary-style headers on the upper corner of each page to help you quickly 

find the package and class you need.  

Occasionally, you may need to look up a class for which you do not already 

know the package. In this case, refer to Chapter 25. This index allows you to 

look up a class by class name and find out what package it is part of.  

II.3 Reading a Quick-Reference Entry 

The quick-reference entries for classes and interfaces contain quite a bit of 

information. The sections that follow describe the structure of a quick-

reference entry, explaining what information is available, where it is found, 

and what it means. While reading the descriptions that follow, you may find it 

http:///


J2ME in a Nutshell 

299 

helpful to flip through the reference section itself to find examples of the 

features being described.  

II.3.1 Class Name, Package Name, Availability, and Flags 

Each quick-reference entry begins with a four-part title that specifies the name, 

package name, and availability of the class, and may also specify various 

additional flags that describe the class. The class name appears in bold at the 

upper left of the title. The package name appears, in smaller print, in the lower 

left, below the class name.  

The upper-right portion of the title indicates the availability of the class; it 

specifies the earliest release that contained the class. If a class was introduced 

in Java 1.1, for example, this portion of the title reads "Java 1.1". The 

availability section of the title is also used to indicate whether a class has been 

deprecated, and, if so, in what release. For example, it might read "Java 1.1; 

Deprecated in Java 1.2".  

In the lower-right corner of the title you may find a list of flags that describe 

the class. The possible flags and their meanings are as follows:  

checked  

The class is a checked exception, which means that it extends 

java.lang.Exception, but not java.lang.RuntimeException. In other 

words, it must be declared in the throws clause of any method that may throw 

it.  

cloneable  

The class, or a superclass, implements java.lang.Cloneable.  

collection  

The class, or a superclass, implements java.util.Collection or 

java.util.Map.  

comparable  

The class, or a superclass, implements java.lang.Comparable.  

error  

The class extends java.lang.Error.  

event  

The class extends java.util.EventObject.  

 

http:///


J2ME in a Nutshell 

300 

event adapter  

The class, or a superclass, implements java.util.EventListener, and the 

class name ends with "Adapter".  

event listener  

The class, or a superclass, implements java.util.EventListener.  

runnable  

The class, or a superclass, implements java.lang.Runnable.  

unchecked  

The class is an unchecked exception, which means it extends 

java.lang.RuntimeException and therefore does not need to be declared in 

the throws clause of a method that may throw it.  

II.3.2 Description 

The title of each quick-reference entry is followed by a short description of the 

most important features of the class or interface. This description may be 

anywhere from a couple of sentences to several paragraphs long.  

II.3.3 Hierarchy 

If a class or interface has a nontrivial class hierarchy, the "Description" section 

is followed by a figure that illustrates the hierarchy and helps you understand 

the class in the context of that hierarchy. The name of each class or interface in 

the diagram appears in a box; classes appear in rectangles (except for abstract 

classes, which appear in skewed rectangles or parallelograms). Interfaces 

appear in rounded rectangles, in which the corners have been replaced by arcs. 

The current class -- the one that is the subject of the diagram -- appears in a 

box that is bolder than the others. The boxes are connected by lines: solid lines 

indicate an "extends" relationship, and dotted lines indicate an "implements" 

relationship. The superclass-to-subclass hierarchy reads from left to right in the 

top row (or only row) of boxes in the figure. Interfaces are usually positioned 

beneath the classes that implement them, although in simple cases an interface 

is sometimes positioned on the same line as the class that implements it, 

resulting in a more compact figure. Note that the hierarchy figure shows only 

the superclasses of a class. If a class has subclasses, those are listed in the 

cross-reference section at the end of the quick-reference entry for the class.  

II.3.4 Synopsis 

The most important part of every quick-reference entry is the class synopsis, 

which follows the title and description. The synopsis for a class looks a lot like 

the source code for the class, except that the method bodies are omitted and 

http:///


J2ME in a Nutshell 

301 

some additional annotations are added. If you know Java syntax, you know 

how to read the class synopsis.  

The first line of the synopsis contains information about the class itself. It 

begins with a list of class modifiers, such as public, abstract, and final. 

These modifiers are followed by the class or interface keyword and then by 

the name of the class. The class name may be followed by an extends clause 

that specifies the superclass and an implements clause that specifies any 

interfaces the class implements.  

The class definition line is followed by a list of the fields and methods that the 

class defines. Once again, if you understand basic Java syntax, you should 

have no trouble making sense of these lines. The listing for each member 

includes the modifiers, type, and name of the member. For methods, the 

synopsis also includes the type and name of each method parameter and an 

optional throws clause that lists the exceptions the method can throw. The 

member names are in boldface, so it is easy to scan the list of members looking 

for the one you want. The names of method parameters are in italics to indicate 

that they are not to be used literally. The member listings are printed on 

alternating gray and white backgrounds to keep them visually separate.  

II.3.4.1 Member availability and flags 

Each member listing is a single line that defines the API for that member. 

These listings use Java syntax, so their meaning is immediately clear to any 

Java programmer. There is some auxiliary information associated with each 

member synopsis, however, that requires explanation.  

Recall that each quick-reference entry begins with a title section that includes 

the release in which the class was first defined. When a member is introduced 

into a class after the initial release of the class, the version in which the 

member was introduced appears, in small print, to the left of the member 

synopsis. For example, if a class was first introduced in Java 1.1, but had a new 

method added in Java 1.2 the title contains the string "Java 1.1", and the listing 

for the new member is preceded by the number "1.2". Furthermore, if a 

member has been deprecated, that fact is indicated with a hash mark (#) to the 

left of the member synopsis.  

The area to the right of the member synopsis is used to display a variety of 

flags that provide additional information about the member. Some of these 

flags indicate additional specification details that do not appear in the member 

API itself. Other flags contain implementation-specific information. This 

information can be quite useful in understanding the class and in debugging 

your code, but be aware that it may differ between implementations. The 

implementation-specific flags displayed in this book are based on Sun's Linux 

implementation of Java.  

The following flags may be displayed to the right of a member synopsis:  

 

http:///


J2ME in a Nutshell 

302 

native  

An implementation-specific flag that indicates that a method is implemented in 

native code. Although native is a Java keyword and can appear in method 

signatures, it is part of the method implementation, not part of its specification. 

Therefore, this information is included with the member flags, rather than as 

part of the member listing. This flag is useful as a hint about the expected 

performance of a method.  

synchronized  

An implementation-specific flag that indicates that a method implementation is 

declared synchronized, meaning that it obtains a lock on the object or class 

before executing. Like the native keyword, the synchronized keyword is 

part of the method implementation, not part of the specification, so it appears 

as a flag, not in the method synopsis itself. This flag is a useful hint that the 

method is probably implemented in a thread-safe manner.  

Whether or not a method is thread-safe is part of the method specification, and 

this information should appear (although it often does not) in the method 

documentation. There are a number of different ways to make a method thread-

safe, however, and declaring the method with the synchronized keyword is 

only one possible implementation. In other words, a method that does not bear 

the synchronized flag can still be thread-safe.  

Overrides:  

This flag indicates that a method overrides a method in one of its superclasses. 

The flag is followed by the name of the superclass that the method overrides. 

This is a specification detail, not an implementation detail. As we'll see in the 

next section, overriding methods are usually grouped together in their own 

section of the class synopsis. The Overrides: flag is only used when an 

overriding method is not grouped in that way.  

Implements:  

This flag indicates that a method implements a method in an interface. The flag 

is followed by the name of the interface that is implemented. This is a 

specification detail, not an implementation detail. As we'll see in the next 

section, methods that implement an interface are usually grouped into a special 

section of the class synopsis. The Implements: flag is only used for methods 

that are not grouped in this way.  

empty  

This flag indicates that the implementation of the method has an empty body. 

This can be a hint to the programmer that the method may need to be 

overridden in a subclass.  

 

http:///


J2ME in a Nutshell 

303 

constant  

An implementation-specific flag that indicates that a method has a trivial 

implementation. Only methods with a void return type can be truly empty. 

Any method declared to return a value must have at least a return statement. 

The "constant" flag indicates that the method implementation is empty except 

for a return statement that returns a constant value. Such a method might 

have a body like return null; or return false;. Like the "empty" flag, this 

flag may indicate that a method needs to be overridden.  

default:  

This flag is used with property accessor methods that read the value of a 

property (i.e., methods whose names begins with "get" and take no arguments). 

The flag is followed by the default value of the property. Strictly speaking, 

default property values are a specification detail. In practice, however, these 

defaults are not always documented, and care should be taken, because the 

default values may change between implementations.  

Not all property accessors have a "default:" flag. A default value is determined 

by dynamically loading the class in question, instantiating it using a no-

argument constructor, and then calling the method to find out what it returns. 

This technique can be used only on classes that can be dynamically loaded and 

instantiated and that have no-argument constructors, so default values are 

shown for those classes only. Furthermore, note that when a class is 

instantiated using a different constructor, the default values for its properties 

may be different.  

=  

For static final fields, this flag is followed by the constant value of the 

field. Only constants of primitive and String types and constants with the 

value null are displayed. Some constant values are specification details, while 

others are implementation details. The reason that symbolic constants are 

defined, however, is so you can write code that does not rely directly upon the 

constant value. Use this flag to help you understand the class, but do not rely 

upon the constant values in your own programs.  

II.3.4.2 Functional grouping of members 

Within a class synopsis, the members are not listed in strict alphabetical order. 

Instead, they are broken down into functional groups and listed alphabetically 

within each group. Constructors, methods, fields, and inner classes are all 

listed separately. Instance methods are kept separate from static (class) 

methods. Constants are separated from non-constant fields. Public members 

are listed separately from protected members. Grouping members by category 

breaks a class down into smaller, more comprehensible segments, making the 

class easier to understand. This grouping also makes it easier for you to find a 

desired member.  

http:///


J2ME in a Nutshell 

304 

Functional groups are separated from each other in a class synopsis with Java 

comments, such as "// Public Constructors", "// Inner Classes", and "// Methods 

Implementing DataInput". The various functional categories are as follows (in 

the order in which they appear in a class synopsis):  

Constructors  

Displays the constructors for the class. Public constructors and protected 

constructors are displayed separately in subgroupings. If a class defines no 

constructor at all, the Java compiler adds a default no-argument constructor 

that is displayed here. If a class defines only private constructors, it cannot be 

instantiated, so a special, empty grouping entitled "No Constructor" indicates 

this fact. Constructors are listed first because the first thing you do with most 

classes is instantiate them by calling a constructor.  

Constants  

Displays all of the constants (i.e., fields that are declared static and final) 

defined by the class. Public and protected constants are displayed in separate 

subgroups. Constants are listed here, near the top of the class synopsis, because 

constant values are often used throughout the class as legal values for method 

parameters and return values.  

Inner classes  

Groups all of the inner classes and interfaces defined by the class or interface. 

For each inner class, there is a single-line synopsis. Each inner class also has 

its own quick-reference entry that includes a full class synopsis for the inner 

class. Like constants, inner classes are listed near the top of the class synopsis 

because they are often used by a number of other members of the class.  

Static methods  

Lists the static methods (class methods) of the class, broken down into 

subgroups for public static methods and protected static methods.  

Event listener registration methods  

Lists the public instance methods that register and deregister event listener 

objects with the class. The names of these methods begin with the words "add" 

and "remove" and end in "Listener". These methods are always passed a 

java.util.EventListener object. The methods are typically defined in 

pairs, so the pairs are listed together. The methods are listed alphabetically by 

event name rather than by method name.  

Property accessor methods  

Lists the public instance methods that set or query the value of a property or 

attribute of the class. The names of these methods begin with the words "set", 

"get", and "is", and their signatures follow the patterns set out in the JavaBeans 

http:///


J2ME in a Nutshell 

305 

specification. Although the naming conventions and method signature patterns 

are defined for JavaBeans, classes and interfaces throughout the Java platform 

define property accessor methods that follow these conventions and patterns. 

Looking at a class in terms of the properties it defines can be a powerful tool 

for understanding the class, so property methods are grouped together in this 

section. Property accessor methods are listed alphabetically by property name, 

not by method name. This means that the "set", "get", and "is" methods for a 

property all appear together.  

Public instance methods  

Contains all of the public instance methods that are not grouped elsewhere.  

Implementing methods  

Groups the methods that implement the same interface. There is one subgroup 

for each interface implemented by the class. Methods that are defined by the 

same interface are almost always related to each other, so this is a useful 

functional grouping of methods.  

Note that if an interface method is also an event registration method or a 

property accessor method, it is listed both in this group and in the event or 

property group. This situation does not arise often, but when it does, all of the 

functional groupings are important and useful enough to warrant the duplicate 

listing. When an interface method is listed in the event or property group, it 

displays an "Implements:" flag that specifies the name of the interface of 

which it is part.  

Overriding methods  

Groups the methods that override methods of a superclass broken down into 

subgroups by superclass. This is typically a useful grouping, because it helps to 

make it clear how a class modifies the default behavior of its superclasses. In 

practice, it is also often true that methods that override the same superclass are 

functionally related to each other.  

Sometimes a method that overrides a superclass is also a property accessor 

method or (more rarely) an event registration method. When this happens, the 

method is grouped with the property or event methods and displays a flag that 

indicates which superclass it overrides. The method is not listed with other 

overriding methods, however. Note that this is different from interface 

methods, which, because they are more strongly functionally related, may have 

duplicate listings in both groups.  

Protected instance methods  

Contains all of the protected instance methods that are not grouped elsewhere.  

 
 

http:///


J2ME in a Nutshell 

306 

Fields  

Lists all the non-constant fields of the class, breaking them down into 

subgroups for public and protected static fields and public and protected 

instance fields. Many classes do not define any publicly accessible fields. For 

those that do, many object-oriented programmers prefer not to use those fields 

directly, but instead to use accessor methods when such methods are available.  

Deprecated members  

Deprecated methods and deprecated fields are grouped at the very bottom of 

the class synopsis. Use of these members is strongly discouraged.  

II.3.5 Cross-References 

The synopsis section of a quick-reference entry is followed by a number of 

optional cross-reference sections that indicate other, related classes and 

methods that may be of interest. These sections are the following:  

Subclasses  

This section lists the subclasses of this class, if there are any.  

Implementations  

This section lists classes that implement this interface.  

Passed To  

This section lists all of the methods and constructors that are passed an object 

of this type as an argument. This is useful when you have an object of a given 

type and want to figure out what you can do with it.  

Returned By  

This section lists all of the methods (but not constructors) that return an object 

of this type. This is useful when you know that you want to work with an 

object of this type, but don't know how to obtain one.  

Thrown By  

For checked exception classes, this section lists all of the methods and 

constructors that throw exceptions of this type. This material helps you figure 

out when a given exception or error may be thrown. Note, however, that this 

section is based on the exception types listed in the throws clauses of methods 

and constructors. Subclasses of RuntimeException and Error do not have to 

be listed in throws clauses, so it is not possible to generate a complete cross 

reference of methods that throw these types of unchecked exceptions.  

 

http:///


J2ME in a Nutshell 

307 

Type Of  

This section lists all of the fields and constants that are of this type, which can 

help you figure out how to obtain an object of this type.  

II.3.6 A Note About Class Names 

Throughout the quick reference, you'll notice that classes are sometimes 

referred to by class name alone and at other times referred to by class name 

and package name. If package names were always used, the class synopses 

would become long and hard to read. On the other hand, if package names 

were never used, it would sometimes be difficult to know what class was being 

referred to. The rules for including or omitting the package name are complex. 

They can be summarized approximately as follows, however:  

• If the class name alone is ambiguous, the package name is always used.  

• If the class is part of the java.lang package or is a very commonly 

used class, the package name is omitted.  

• If the class being referred to is part of the current package (and has a 

quick-reference entry in the current chapter), the package name is 

omitted.  

http:///


J2ME in a Nutshell 

308 

Chapter 10. J2ME Packages and Classes 

There are two types of packages and classes in the J2ME platform:  

• Those that are inherited from the J2SE platform 

• Those that are specific to J2ME and have no counterpart in J2SE 

Most of J2ME falls into the first category. Depending on the configuration and profile you are 

using, you can use a different subset of J2SE packages and a subset of those packages that are 

part of J2ME itself, as shown in Table 10-1. Some J2SE packages, particularly those 

associated with the user interface, are not currently part of any J2ME profile. These classes 

are listed in Table 10-2.  

Even when a package is available, it is not necessarily the case that all of its classes are 

included in the J2ME implementation. The remaining sections of this chapter list all classes in 

the J2SE packages included in at least one J2ME profile and show, for each configuration and 

profile, the classes applicable to it.
1
 In some cases, you'll see that a J2SE class is not available 

at all in J2ME. Classes are usually omitted because of resource limitations, but there has also 

been an effort to remove classes that are deprecated in Java 2 Version 1.3; where this is the 

case, it is indicated in the tables.  

10.1 J2ME Packages 

The following table shows the packages that make up J2ME and the configurations and 

profiles in which they are available. For example, the appearing on the top row of the 

"CLDC 1.0" column indicates that the java.io package is available in the CLDC 

configuration.  

Table 10-1. J2ME Package List 

Package 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

java.io      

java.lang      

java.lang.ref        

java.lang.reflect        

java.math        

java.net        

java.rmi          

java.rmi.activation          

java.rmi.dgc          

java.rmi.registry          

java.rmi.server          

java.security        

java.security.acl         

java.security.cert        

java.security.interfaces         

java.security.spec         

                                                 
1 Since all of the J2ME profiles are based on Java 2 Version 1.3, the tables in this chapter show the packages and classes from that version. 

http:///


J2ME in a Nutshell 

309 

java.text        

java.util      

java.util.jar        

java.util.zip        

javax.microedition.io      

javax.microedition.lcdui          

javax.microedition.midlet          

javax.microedition.rms          

Note that the presence of a package does not mean that all classes in that J2SE package are 

available in J2ME. Class availability is covered in later sections of this chapter.  

10.2 J2SE Packages Not Present in J2ME 

The J2SE packages listed in the following table are not included in any J2ME configuration or 

profile. Since all J2ME configurations and profiles are based on Java 2 Version 1.3, this list 

does not include classes available in later J2SE platform releases.  

Table 10-2. J2SE Packages Not Included in J2ME 

java.applet javax.swing 

java.awt javax.swing.border 

java.awt.color javax.swing.colorchooser 

java.awt.datatransfer javax.swing.event 

java.awt.dnd javax.swing.filechooser 

java.awt.event javax.swing.plaf 

java.awt.font javax.swing.plaf.basic 

java.awt.geom javax.swing.plaf.metal 

java.awt.im javax.swing.plaf.multi 

java.awt.im.spi javax.swing.table 

java.awt.image javax.swing.text 

java.awt.image.renderable javax.swing.text.html 

java.awt.print javax.swing.text.html.parser 

java.beans javax.swing.text.rtf 

java.beans.beancontext javax.swing.tree 

java.sql javax.swing.undo 

javax.accessibility javax.transaction 

javax.naming org.omg.CORBA 

javax.naming.directory org.omg.CORBA_2_3 

javax.naming.event org.omg.CORBA_2_3.portable 

javax.naming.ldap org.omg.CORBA.DynAnyPackage 

javax.naming.spi org.omg.CORBA.ORBPackage 

javax.rmi org.omg.CORBA.portable 

javax.rmi.CORBA org.omg.CORBA.TypeCodePackage 

javax.sound.midi org.omg.CosNaming 

javax.sound.midi.spi org.omg.CosNaming.NamingContextPackage 

javax.sound.sampled org.omg.SendingContext 

javax.sound.sampled.spi org.omg.stub.java.rmi 

http:///


J2ME in a Nutshell 

310 

10.3 J2ME Package Contents 

This section contains tables that indicate which classes are available in each of the J2ME 

packages, itemized by configuration or profile. The presence of a symbol in a cell indicates 

that the class corresponding to its row is available in the configuration or profile 

corresponding to its column.  

10.3.1 The java.io Package 

Table 10-3. Classes in the J2ME java.io Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

BufferedInputStream        

BufferedOutputStream        

BufferedReader        

BufferedWriter        

ByteArrayInputStream      

ByteArrayOutputStream      

CharArrayReader         

CharArrayWriter         

CharConversionException        

DataInput       

DataInputStream      

DataOutput      

DataOutputStream      

EOFException       

Externalizable        

File        

FileDescriptor        

FileFilter        

FilenameFilter        

FileInputStream         

FileNotFoundException        

FileOutputStream        

FilePermission        

FileReader        

FileWriter        

FilterInputStream        

FilterOutputStream        

FilterReader         

FilterWriter         

InputStream      

InputStreamReader      

InterruptedIOException      

InvalidClassException         

InvalidObjectException        

IOException      

LineNumberInputStream  Deprecated 

http:///


J2ME in a Nutshell 

311 

LineNumberReader         

NotActiveException        

NotSerializableException        

ObjectInput        

ObjectInputStream        

ObjectInputStream.GetField        

ObjectInputValidation        

ObjectOutput        

ObjectOutputStream        

ObjectOutputStream.PutField        

ObjectStreamClass        

ObjectStreamConstants        

ObjectStreamException        

ObjectStreamField        

OptionalDataException        

OutputStream      

OutputStreamWriter      

PipedInputStream        

PipedOutputStream        

PipedReader          

PipedWriter         

PrintStream      

PrintWriter        

PushbackInputStream        

PushbackReader         

RandomAccessFile         

Reader      

SequenceInputStream         

Serializable        

SerializablePermission        

StreamCorruptedException         

StreamTokenizer        

StringBufferInputStream Deprecated 

StringReader         

StringWriter          

SyncFailedException        

UnsupportedEncodingException      

UTFDataFormatException      

Writer      

WriteAbortedException         

10.3.2 The java.lang Package 

Table 10-4. Classes in the J2ME java.lang Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation 

Profile 1.0 

RMI Profile 

1.0 

AbstractMethodError        

ArithmeticException      

http:///


J2ME in a Nutshell 

312 

ArrayIndexOutOfBoundsException      

ArrayStoreException       

Boolean      

Byte      

Character      

Character.Subset        

Character.UnicodeBlock        

Class       

ClassCastException      

ClassCircularityError        

ClassFormatError        

ClassLoader        

ClassNotFoundException      

Cloneable        

CloneNotSupportedException         

Comparable        

Compiler          

Double        

Error       

Exception      

ExceptionInInitializerError        

Float        

IllegalAccessError         

IllegalAccessException      

IllegalArgumentException      

IllegalMonitorStateException      

IllegalStateException        

IllegalThreadStateException      

IncompatibleClassChangeError        

IndexOutOfBoundsException      

InheritableThreadLocal        

InstantiationError      

InstantiationException        

Integer      

InternalError        

InterruptedException      

LinkageError        

Long      

Math      

NegativeArraySizeException      

NoClassDefFoundError         

NoSuchFieldError        

NoSuchFieldException        

NoSuchMethodError        

NoSuchMethodException        

NullPointerException       

Number        

NumberFormatException      

http:///


J2ME in a Nutshell 

313 

Object      

OutOfMemoryError      

Package        

Process        

Runnable      

Runtime      

RuntimeException      

RuntimePermission        

SecurityException      

SecurityManager         

Short      

StackOverflowError        

StrictMath        

String      

StringBuffer      

StringIndexOutOfBoundsException      

System      

Thread      

ThreadDeath        

ThreadGroup        

ThreadLocal        

Throwable      

UnknownError         

UnsatisfiedLinkError        

UnsupportedClassVersionError        

UnsupportedOperationException        

VerifyError        

VirtualMachineError       

Void         

10.3.3 The java.lang.ref Package 

Table 10-5. Classes in the J2ME java.lang.ref Package 

Class CLDC 1.0 MID Profile 1.0 CDC 1.0 Foundation Profile 1.0 RMI Profile 1.0 

PhantomReference        

Reference        

ReferenceQueue        

SoftReference        

WeakReference        

10.3.4 The java.lang.reflect Package 

Table 10-6. Classes in the J2ME java.lang.reflect Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

AccessibleObject        

Array        

Constructor        

http:///


J2ME in a Nutshell 

314 

Field        

InvocationHandler        

InvocationTargetException        

Member        

Method        

Modifier        

Proxy        

ReflectPermission        

UndeclaredThrowableException        

10.3.5 The java.math Package 

Table 10-7. Classes in the J2ME java.math Package 

Class CLDC 1.0 MID Profile 1.0 CDC 1.0 Foundation Profile 1.0 RMI Profile 1.0 

BigDecimal           

BigInteger         

10.3.6 The java.net Package 

Table 10-8. Classes in the J2ME java.net Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

Authenticator         

BindException        

ConnectException         

ContentHandler        

ContentHandlerFactory        

DatagramPacket        

DatagramSocket        

DatagramSocketImpl        

DatagramSocketImplFactory        

FileNameMap        

HttpURLConnection         

InetAddress        

JarURLConnection        

MalformedURLException        

MulticastSocket         

NetPermission        

NoRouteToHostException         

PasswordAuthentication         

ProtocolException        

ServerSocket         

Socket         

SocketException        

SocketImpl         

SocketImplFactory         

SocketOptions        

SocketPermission        

http:///


J2ME in a Nutshell 

315 

UnknownHostException        

UnknownServiceException        

URL        

URLClassLoader        

URLConnection        

URLDecoder         

URLEncoder         

URLStreamHandler        

URLStreamHandlerFactory        

10.3.7 The java.rmi Package 

Table 10-9. Classes in the J2ME java.rmi Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

AccessException          

AlreadyBoundException          

ConnectException          

ConnectIOException          

MarshalException          

MarshalledObject          

Naming          

NoSuchObjectException          

NotBoundException          

Remote          

RemoteException          

RMISecurityException           

RMISecurityManager          

ServerError          

ServerException          

ServerRuntimeException           

StubNotFoundException          

UnexpectedException          

UnknownHostException          

UnmarshalException          

10.3.8 The java.rmi.activation Package 

Table 10-10. Classes in the J2ME java.rmi.activation Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

Activatable           

ActivateFailedException          

ActivationDesc           

ActivationException          

ActivationGroup           

ActivationGroupDesc           

http:///


J2ME in a Nutshell 

316 

ActivationGroupDesc. 

CommandEnvironment 

          

ActivationGroupID           

ActivationID          

ActivationInstantiator           

ActivationMonitor           

ActivationSystem           

Activator          

UnknownGroupException           

UnknownObjectException          

The CDC RMI profile contains only a small subset of the J2SE java.rmi.activation 

package, because it provides only the client-side functionality. The server side is assumed to 

be hosted in a J2SE or J2EE environment.  

10.3.9 The java.rmi.dgc Package 

Table 10-11. Classes in the J2ME java.rmi.dgc Package 

Class CLDC 1.0 MID Profile 1.0 CDC 1.0 Foundation Profile 1.0 RMI Profile 1.0 

DGC          

Lease          

VMID          

10.3.10 The java.rmi.registry Package 

Table 10-12. Classes in the J2ME java.rmi.registry Package 

Class CLDC 1.0 MID Profile 1.0 CDC 1.0 Foundation Profile 1.0 RMI Profile 1.0 

LocateRegistry          

Registry          

RegistryHandler Deprecated 

10.3.11 The java.rmi.server Package 

Table 10-13. Classes in the java.rmi.server Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

ExportException          

LoaderHandler Deprecated 

LogStream Deprecated 

ObjID          

Operation          

RemoteCall          

RemoteObject          

RemoteRef          

RemoteServer          

RemoteStub          

RMIClassLoader          

http:///


J2ME in a Nutshell 

317 

RMIClientSocketFactory          

RMIFailureHandler          

RMIServerSocketFactory          

RMISocketFactory          

ServerCloneException          

ServerNotActiveException          

ServerRef           

Skeleton Deprecated 

SkeletonMismatchException Deprecated 

SkeletonNotFoundException Deprecated 

SocketSecurityException          

UID          

UnicastRemoteObject          

Unreferenced          

10.3.12 The java.security Package 

Table 10-14. Classes in the J2ME java.security Package 

Class 
CLDC 

1.0 

MID 

Profile 1.0 

CDC 

1.0 

Foundation 

Profile 1.0 

RMI 

Profile 1.0 

AccessControlContext        

AccessControlException        

AccessController        

AlgorithmParameterGenerator         

AlgorithmParameterGeneratorSpi         

AlgorithmParameters         

AlgorithmParametersSpi         

AllPermission        

BasicPermission        

Certificate         

CodeSource        

DigestException        

DigestInputStream         

DigestOutputStream        

DomainCombiner        

GeneralSecurityException        

Guard        

GuardedObject        

Identity         

IdentityScope         

InvalidAlgorithmParameterException         

InvalidKeyException        

InvalidParameterException        

Key        

KeyException        

KeyFactory         

KeyFactorySpi         

KeyManagementException         

http:///


J2ME in a Nutshell 

318 

KeyPair         

KeyPairGenerator         

KeyPairGeneratorSpi         

KeyStore         

KeyStoreException         

KeyStoreSpi         

MessageDigest        

MessageDigestSpi        

NoSuchAlgorithmException        

NoSuchProviderException        

Permission        

PermissionCollection        

Permissions        

Policy        

Principal         

PrivateKey         

PrivilegedAction        

PrivilegedActionException        

PrivilegedExceptionAction        

ProtectionDomain        

Provider        

ProviderException        

PublicKey        

SecureClassLoader        

SecureRandom         

SecureRandomSpi         

Security        

SecurityPermission        

Signature         

SignatureException        

SignatureSpi         

SignedObject         

Signer         

UnrecoverableKeyException         

UnresolvedPermission        

10.3.13 The java.security.acl Package 

Table 10-15. Classes in the J2ME java.security.acl Package 

Class CLDC 1.0 MID Profile 1.0 CDC 1.0 Foundation Profile 1.0 RMI Profile 1.0

Acl         

AclEntry         

AclNotFoundException         

Group         

LastOwnerException         

NotOwnerException         

Owner         

Permission         

http:///


J2ME in a Nutshell 

319 

10.3.14 The java.security.cert Package 

Table 10-16. Classes in the J2ME java.security.cert Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation 

Profile 1.0 

RMI Profile 

1.0 

Certificate        

Certificate.CertificateRep        

CertificateEncodingException        

CertificateException        

CertificateExpiredException         

CertificateFactory         

CertificateFactorySpi         

CertificateNotYetValidException         

CertificateParsingException         

CRL         

CRLException         

X509Certificate         

X509CRL         

X509CRLEntry         

X509Extension         

10.3.15 The java.security.interfaces Package 

Table 10-17. Classes in tn the J2ME java.security.interfaces Package 

Class CLDC 1.0 MID Profile 1.0 CDC 1.0 Foundation Profile 1.0 RMI Profile 1.0

DSAKey         

DSAKeyPairGenerator         

DSAParams         

DSAPrivateKey         

DSAPublicKey          

RSAKey          

RSAPrivateCrtKey          

RSAPrivateKey          

RSAPublicKey         

10.3.16 The java.security.spec Package 

Table 10-18. Classes in the J2ME java.security.spec Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

AlgorithmParameterSpec         

DSAParameterSpec         

DSAPrivateKeySpec         

DSAPublicKeySpec         

EncodedKeySpec         

InvalidKeySpecException         

InvalidParameterSpecException         

KeySpec         

http:///


J2ME in a Nutshell 

320 

PKCS8EncodedKeySpec         

RSAKeyGenParameterSpec         

RSAPrivateCrtKeySpec         

RSAPrivateKeySpec         

RSAPublicKeySpec         

X509EncodedKeySpec         

10.3.17 The java.text Package 

Table 10-19. Classes in the J2ME java.text Package 

Class 
CLDC 

1.0 

MID 

Profile 

1.0 

CDC 

1.0 

Foundation 

Profile 1.0 

RMI 

Profile 

1.0 

Annotation         

AttributedCharacterIterator         

AttributedCharacterIterator.Attribute         

AttributedString         

BreakIterator         

CharacterIterator         

ChoiceFormat        

CollationElementIterator         

CollationKey         

Collator         

DateFormat        

DateFormatSymbols        

DecimalFormat        

DecimalFormatSymbols        

FieldPosition        

Format        

MessageFormat        

NumberFormat        

ParseException        

ParsePosition        

RuleBasedCollator         

SimpleDateFormat        

StringCharacterIterator         

10.3.18 The java.util Package 

Table 10-20. Classes in the J2ME java.util Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation 

Profile 1.0 

RMI Profile 

1.0 

AbstractCollection         

AbstractList        

AbstractMap         

AbstractSequentialList        

AbstractSet         

ArrayList        

http:///


J2ME in a Nutshell 

321 

Arrays        

BitSet        

Calendar      

Collection         

Collections        

Comparator        

ConcurrentModificationException        

Date      

Dictionary        

EmptyStackException      

Enumeration      

EventListener         

EventObject         

GregorianCalendar        

HashMap        

HashSet        

Hashtable      

Iterator        

LinkedList        

List         

ListIterator        

ListResourceBundle        

Locale        

Map        

Map.Entry        

MissingResourceException        

NoSuchElementException      

Observable         

Observer         

Properties        

PropertyPermission        

PropertyResourceBundle        

Random      

ResourceBundle         

Set        

SimpleTimeZone        

SortedMap        

SortedSet         

Stack       

StringTokenizer        

Timer        

TimerTask        

TimeZone      

TooManyListenersException          

TreeMap        

TreeSet        

Vector      

WeakHashMap         

http:///


J2ME in a Nutshell 

322 

10.3.19 The java.util.jar Package 

Table 10-21. Classes in the J2ME java.util.jar Package 

Class CLDC 1.0 MID Profile 1.0 CDC 1.0 Foundation Profile 1.0 RMI Profile 1.0 

Attributes        

Attributes.Name        

JarEntry        

JarException        

JarFile        

JarInputStream        

JarOutputStream         

Manifest        

10.3.20 The java.util.zip Package 

Table 10-22. Classes in the J2ME java.util.zip Package 

Class CLDC 1.0 MID Profile 1.0 CDC 1.0 Foundation Profile 1.0 RMI Profile 1.0

Adler32         

CheckedInputStream         

CheckedOutputStream         

Checksum        

CRC32        

DataFormatException        

Deflater         

DeflaterOutputStream         

GZIPInputStream         

GZIPOutputStream         

Inflater        

InflaterInputStream        

ZipEntry        

ZipFile        

ZipException        

ZipInputStream        

ZipOutputStream         

10.3.21 The javax.microedition.io Package 

Table 10-23. Classes in the J2ME javax.microedition.io Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

Connection      

Connector      

ConnectionNotFoundException      

ContentConnection      

Datagram      

DatagramConnection      

HttpConnection        

InputConnection      

http:///


J2ME in a Nutshell 

323 

OutputConnection      

StreamConnection      

StreamConnectionNotifier      

10.3.22 The javax.microedition.lcdui Package 

Table 10-24. Classes in the J2ME javax.microedition.lcdui Package 

Class CLDC 1.0 MID Profile 1.0 CDC 1.0 Foundation Profile 1.0 RMI Profile 1.0 

Alert          

AlertType          

Canvas          

Choice          

ChoiceGroup          

Command          

CommandListener          

DateField          

Display          

Displayable          

Font          

Form          

Gauge          

Graphics          

Image          

ImageItem          

Item          

ItemStateListener          

List          

Screen          

StringItem          

TextBox          

TextField          

Ticker          

10.3.23 The javax.microedition.midlet Package 

Table 10-25. Classes in the J2ME javax.microedition.midlet Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

MIDlet          

MIDletStateChangeException          

10.3.24 The javax.microedition.rms Package 

Table 10-26. Classes in the javax.microedition.rms Package 

Class 
CLDC 

1.0 

MID Profile 

1.0 

CDC 

1.0 

Foundation Profile 

1.0 

RMI Profile 

1.0 

InvalidRecordIDException          

RecordComparator          

http:///


J2ME in a Nutshell 

324 

RecordEnumeration          

RecordFilter          

RecordListener          

RecordStore          

RecordStoreException          

RecordStoreFullException          

RecordStoreNotFoundException          

RecordStoreNotOpenException          

http:///


J2ME in a Nutshell 

325 

 

Chapter 11. java.io 

Package java.io  CLDC 1.0, MIDP 1.0  

 

  

This package, whose class hierarchy is shown in Figure 11-1, contains interfaces and classes 

used to access input and output sources and treat them either as a sequence of 8-bit bytes or 

16-bit characters.  

The CLDC version of this package contains only the basic classes and interfaces from its 

J2SE counterpart that provide 8-bit input and output, together with support for Unicode 

conversion using the InputStreamReader and OutputStreamWriter classes. Most of the 

concrete input and output stream and reader/writer classes available in J2SE are not provided. 

In addition, some abstract classes (such as FilterInputStream) are also omitted so that 

derived classes in CLDC are reparented directly to InputStream or OutputStream.  

ByteArrayInputStream  CLDC 1.0, MIDP 1.0  

 

java.io   

This is a subclass of InputStream that returns data from an array of bytes passed into one of 

its constructors. It is useful when you have data stored in a byte array and wish to read it as if 

it were coming from a file, pipe, or socket. A good example of this is provided by MIDlet 

RecordStores, which hold their content in byte arrays. MIDlets typically read these records 

by creating a ByteArrayInputStream from the content of a record and then wrap it with a 

DataInputStream to recover strings and Java data types without assuming the format used to 

store them.  

This class supports the mark() and reset() operations of InputStream. Once constructed, 

the byte array from which this stream gets its data cannot be switched. However, because the 

data is not copied by the stream, the contents of the array can be modified and then re-read 

following a reset(). Note that such an approach is only practical if the original byte array is 

large enough to hold any desired modifications.  

 

 

 

 

 

 

http:///


J2ME in a Nutshell 

326 

Figure 11-1. The java.io hierarchy 

 

 
public class ByteArrayInputStream extends InputStream { 

// Public Constructors 

   public ByteArrayInputStream( byte[] buf);   

   public ByteArrayInputStream(byte[] buf, int offset,  

        int length);   

// Public Methods Overriding InputStream 

   public int available();                           // synchronized 

   public void close() throws IOException;           // synchronized empty

   public void mark( int readAheadLimit);   

   public boolean markSupported();                   // constant 

   public int read();                                // synchronized 

   public int read( byte[] b, int off, int len);     // synchronized 

   public void reset();                              // synchronized 

   public long skip( long n);                        // synchronized   

// Protected Instance Fields 

   protected byte[] buf;   

   protected int count;   

   protected int mark;   

   protected int pos;   

} 

http:///


J2ME in a Nutshell 

327 

 

ByteArrayOutputStream  CLDC 1.0, MIDP 1.0  

 

java.io   

This subclass of OutputStream stores data written to it in a buffer which can later be 

retrieved using its toByteArray() method. When the stream is created, the buffer is empty. It 

is then expanded as data is written to the stream.  

ByteArrayOutputStream is often used in J2ME in conjunction with a DataOutputStream to 

allow strings and Java primitives types to be stored in a byte array. This byte array is written 

to persistent storage on a device using the RecordStore APIs in the 

javax.microedition.rms package.  

 
public class ByteArrayOutputStream extends OutputStream {   

// Public Constructors 

   public ByteArrayOutputStream();   

   public ByteArrayOutputStream( int size);     

// Public Instance Methods 

   public void reset();                                  // synchronized

   public int size();   

   public byte[] toByteArray();                          // synchronized 

// Public Methods Overriding OutputStream 

   public void close() throws IOException;               // synchronized

   public void write( int b);                            // synchronized

   public void write( byte[] b, int off, int len);       // synchronized 

// Public Methods Overriding Object 

   public String toString();     

// Protected Instance Fields 

   protected byte[] buf;   

   protected int count;   

} 

DataInput  CLDC 1.0, MIDP 1.0  

 

java.io   

This interface is implemented by classes that can read strings and Java primitive types from a 

platform-independent binary encoding created by a class implementing the DataOutput 

interface.  

The class provides methods for reading primitives of type boolean, byte, char, int, long 

and short. There is also provision for reading an unsigned short, which is a 16-bit value that 

is returned in a Java int without sign extension.  

Strings are held in a slightly modified form of UTF-8, which results in Unicode characters 

with values in the range 0-127 inclusive being encoded as a single byte. This is an 

http:///


J2ME in a Nutshell 

328 

optimization for the most common characters in Western locales. The readUTF() returns a 

String from a sequence of bytes held in this form.  

The readFully() methods read a stream of bytes into a buffer, blocking until either a 

specified number of bytes has been read or an end-of-file is reached. This is a convenience 

method that repeatedly reads from the underlying input stream until the end condition is met; 

it removes the need for application code to include this loop.  

public interface DataInput {   

// Public Instance Methods 

   public abstract boolean readBoolean() throws IOException;  

   public abstract byte readByte() throws IOException;   

   public abstract char readChar() throws IOException;   

   public abstract void readFully( 

        byte[] b) throws IOException;   

   public abstract void readFully(byte[] b, int off,  

        int len) throws IOException;   

   public abstract int readInt() throws IOException;   

   public abstract long readLong() throws IOException;   

   public abstract short readShort() throws IOException;   

   public abstract int readUnsignedByte() throws IOException; 

   public abstract int readUnsignedShort( 

        ) throws IOException;   

   public abstract String readUTF() throws IOException;   

   public abstract int skipBytes( int 

   n) throws IOException;   

} 

Implementations 

DataInputStream, javax.microedition.io.Datagram  

Passed To 

DataInputStream.readUTF()  

DataInputStream  CLDC 1.0, MIDP 1.0  

 

java.io   

This subclass of InputStream implements the methods of the DataInput interface, reading 

encoded data as a sequence of bytes from another InputStream. Instances of this class can 

not only be created directly, but can also be obtained from various other methods, such as the 

openDataInputStream method of javax.microedition.io.Connector. In this case, the 

openDataInputStream method returns a stream to read data from a network connection or 

some other type of data source accessed using the CLDC Generic Connection Framework.  

Note that the CLDC version of this class is derived from InputStream and not 

FilterInputStream as in J2SE. This is because CLDC does not have a FilterInputStream 

class.  

http:///


J2ME in a Nutshell 

329 

 
public class DataInputStream extends InputStream implements DataInput {   

// Public Constructors 

   public DataInputStream( InputStream in);     

// Public Class Methods 

   public static final String readUTF( 

        DataInput in) throws IOException;   

// Methods Implementing DataInput 

   public final boolean readBoolean() throws IOException;   

   public final byte readByte() throws IOException;   

   public final char readChar() throws IOException;   

   public final void readFully( 

        byte[] b) throws IOException;   

   public final void readFully(byte[] b, int off,  

        int len) throws IOException;   

   public final int readInt() throws IOException;   

   public final long readLong() throws IOException;   

   public final short readShort() throws IOException;   

   public final int readUnsignedByte() throws IOException;   

   public final int readUnsignedShort() throws IOException;   

   public final String readUTF() throws IOException;   

   public final int skipBytes( int n) throws IOException;     

// Public Methods Overriding InputStream 

   public int available() throws IOException;   

   public void close() throws IOException;   

   public void mark( int readlimit);                             // 

synchronized 

   public boolean markSupported();   

   public int read() throws IOException;   

   public final int read( 

        byte[] b) throws IOException;   

   public final int read(byte[] b, int off,  

        int len) throws IOException;   

   public void reset() throws IOException;                       // 

synchronized 

   public long skip( long n) throws IOException;     

// Protected Instance Fields 

   protected InputStream in;   

} 

Returned By 

javax.microedition.io.Connector.openDataInputStream(), 

javax.microedition.io.InputConnection.openDataInputStream()  

DataOutput  CLDC 1.0, MIDP 1.0  

 

java.io   

This interface is implemented by classes that write strings and Java primitive types to 

a platform-independent binary encoding that can be read by a class implementing 

the DataInput interface.  

http:///


J2ME in a Nutshell 

330 

Methods are provided for writing a single byte or an array of bytes as well as primitives of 

type boolean, char, int, long and short.  

The writeChars() method writes the content of a String as an array of 16-bit characters. In 

many cases, it is more efficient to output a String by using the writeUtf() method. This 

method encodes the characters in the String using a slightly modified form of UTF-8, which 

results in Unicode characters with values in the range 0-127 inclusive being encoded as a 

single byte. This is an optimization for the most common characters in Western locales.  

public interface DataOutput {   

// Public Instance Methods 

   public abstract void write( 

        byte[] b) throws IOException;   

   public abstract void write( int b) throws IOException;   

   public abstract void write(byte[] b, int off,  

        int len) throws IOException;   

   public abstract void writeBoolean( 

        boolean v) throws IOException;   

   public abstract void writeByte( int v) throws IOException; 

   public abstract void writeChar( int v) throws IOException; 

   public abstract void writeChars( 

        String s) throws IOException;   

   public abstract void writeInt( int v) throws IOException;  

   public abstract void writeLong(long v) throws IOException; 

   public abstract void writeShort(int v) throws IOException; 

   public abstract void writeUTF( 

        String str) throws IOException;   

} 

Implementations 

DataOutputStream, javax.microedition.io.Datagram  

DataOutputStream  CLDC 1.0, MIDP 1.0  

 

java.io   

This is a subclass of OutputStream that implements the methods of the DataOutput 

interface, writing encoded data as a sequence of bytes to another OutputStream. Instances of 

this class can be created directly. In addition, they can also be obtained from various other 

sources, such as the openDataOutputStream method of 

the javax.microedition.io.Connector. This example returns a stream to write data to 

a network connection or some other type of data source accessed using the CLDC Generic 

Connection Framework.  

Note that the CLDC version of this class is derived from OutputStream and not 

FilterOutputStream, as it is in J2SE. This is because the CLDC does not have 

a FilterOutputStream class.  

http:///


J2ME in a Nutshell 

331 

 
public class DataOutputStream extends OutputStream implements DataOutput {

// Public Constructors 

   public DataOutputStream( OutputStream out);   

// Methods Implementing DataOutput 

   public void write( int b) throws IOException;   

   public void write(byte[] b, int off,  

        int len) throws IOException;   

   public final void writeBoolean( 

        boolean v) throws IOException;   

   public final void writeByte( int v) throws IOException;   

   public final void writeChar( int v) throws IOException;   

   public final void writeChars(String s) throws IOException;   

   public final void writeInt( int v) throws IOException;   

   public final void writeLong( long v) throws IOException;   

   public final void writeShort( int v) throws IOException;   

   public final void writeUTF(String str) throws IOException;     

// Public Methods Overriding OutputStream 

   public void close() throws IOException;   

   public void flush() throws IOException;     

// Protected Instance Fields 

   protected OutputStream out;   

} 

Returned By 

javax.microedition.io.Connector.openDataOutputStream(), 

javax.microedition.io.OutputConnection.openDataOutputStream()  

EOFException  CLDC 1.0, MIDP 1.0  

 

java.io  checked  

An exception that signals that all available data on an input stream or a reader has been 

consumed. This class is identical to its J2SE equivalent, apart from its inability to be 

serialized.  

public class EOFException extends IOException {   

// Public Constructors 

   public EOFException();   

   public EOFException( String s);   

} 

http:///


J2ME in a Nutshell 

332 

 

InputStream  CLDC 1.0, MIDP 1.0  

 

java.io   

This is an abstract class that defines the methods used to read data from an input source in the 

form of a stream of bytes.  

The no-argument read() method returns a single byte from the stream in the low-order 8 bits 

of an int, blocking until a byte is available to be read. If no more data is available from the 

stream, -1 is returned. There are also two other variants of read() that read a sequence of 

bytes into a buffer and return the number of bytes actually read, or -1 if end-of-file has been 

reached. These methods also block until data is available; however, they only guarantee to 

return a single byte--they do not block until the buffer is full. If you need this functionality, 

wrap the InputStream with a DataInputStream and use the readFully() method.  

The available() method can be used to determine how much data is available to be read 

without blocking; this method is useful when the input source is a network connection which 

typically does not have all of its data immediately available. The skip() skips over a given 

number of bytes in the input stream; this method returns the number of bytes that it actually 

skipped, which may be fewer than the number requested if end-of-file was reached before or 

during the operation.  

The mark() and reset() methods provide the capability for application code to mark a 

position in the input stream, which may be returned to later. The argument passed to the 

mark() method specifies the maximum number of bytes that application code will read 

beyond the mark before invoking the reset() and therefore represents the maximum 

buffering that the stream will need to use to save the data if it cannot be re-read on demand 

from the underlying data source. Not all InputStream subclasses support this functionality; 

markSupported() can be used to discover whether this facility is available.  

The close() method closes the InputStream and releases any resources associated with it. 

An IOException may be thrown if an attempt is made to use a closed input stream (although 

not all InputStream subclasses do this).  

It is important to note that an InputStream is byte-oriented and not character-oriented and 

therefore cannot safely be used on its own to read character data by widening a sequence of 

bytes into a sequence of chars. Instead, character data should be handled using the 

readUTF() or readChar() methods of DataInputStream or by using an 

InputStreamReader with the appropriate encoding for the data in the input stream.  

public abstract class InputStream {   

// Public Constructors 

   public InputStream();     

// Public Instance Methods 

   public int available() throws IOException;        // constant 

   public void close() throws IOException;           // empty 

   public void mark( int readlimit);                 // synchronized empty

   public boolean markSupported();                   // constant 

http:///


J2ME in a Nutshell 

333 

   public abstract int read() throws IOException;   

   public int read( byte[] b) throws IOException;   

   public int read(byte[] b, int off,  

        int len) throws IOException;   

   public void reset() throws IOException;           // synchronized 

   public long skip( long n) throws IOException;   

} 

Subclasses 

ByteArrayInputStream, DataInputStream  

Passed To 

DataInputStream.DataInputStream(), InputStreamReader.InputStreamReader()  

Returned By 

Class.getResourceAsStream(), 

javax.microedition.io.Connector.openInputStream(), 

javax.microedition.io.InputConnection.openInputStream()  

Type Of 

DataInputStream.in  

InputStreamReader  CLDC 1.0, MIDP 1.0  

 

java.io   

InputStreamReader is a subclass of Reader that reads bytes from an underlying 8-bit input 

stream and converts them to Unicode characters. The mapping of the bytes from the 

InputStream to the characters returned by the InputStreamReader is performed using the 

encoding specified in the constructor, or the default encoding of the host platform if the 

single-argument constructor is used. Note that InputStreamReader supports the mark() and 

reset() methods only if the underlying InputStream does.  

CLDC devices typically support only their own default encoding. Hence, it is unlikely that 

many alternative encodings will be available. The CLDC specification does not provide any 

mechanism that would allow application code to determine the available encodings at runtime 

apart from the default encoding, which can be obtained from the system property 

microedition.encoding. The CLDC version of this class does not include the 

getEncoding() method from J2SE, which returns the name of the encoding used by an 

InputStreamReader.  

 

 

http:///


J2ME in a Nutshell 

334 

 
public class InputStreamReader extends Reader {   

// Public Constructors 

   public InputStreamReader( InputStream is);   

   public InputStreamReader(InputStream is,  

        String enc) throws UnsupportedEncodingException;     

// Public Methods Overriding Reader 

   public void close() throws IOException;   

   public void mark( int readAheadLimit) throws IOException; 

   public boolean markSupported();   

   public int read() throws IOException;   

   public int read(char[] cbuf, int off,  

        int len) throws IOException;   

   public boolean ready() throws IOException;   

   public void reset() throws IOException;   

   public long skip( long n) throws IOException;   

} 

InterruptedIOException  CLDC 1.0, MIDP 1.0  

 

java.io  checked  

This is an exception that is thrown when an I/O operation is interrupted, usually as a result of 

a timeout. The bytesTransferred() method can be used to find out how much data, if any, 

was transferred before the interruption occurred. This class is the same as its J2SE equivalent, 

apart from its inability to be serialized.  

 
public class InterruptedIOException extends IOException {

// Public Constructors 

   public InterruptedIOException();   

   public InterruptedIOException( String s);     

// Public Instance Fields 

   public int bytesTransferred;   

} 

IOException  CLDC 1.0, MIDP 1.0  

 

java.io  checked  

This exception signals that an error has occurred during an I/O operation. Some I/O failures 

are reported using a more specific exception derived from this class. IOException is not 

derived from java.lang.RuntimeException and therefore it must be caught and handled by 

application code. This class is the same as its J2SE equivalent, apart from its inability to be 

serialized.  

 

 

http:///


J2ME in a Nutshell 

335 

public class IOException extends Exception {   

// Public Constructors 

   public IOException();   

   public IOException( String s);   

} 

Subclasses 

EOFException, InterruptedIOException, UnsupportedEncodingException, 

UTFDataFormatException, javax.microedition.io.ConnectionNotFoundException  

Thrown By 

Too many methods to list.  

OutputStream  CLDC 1.0, MIDP 1.0  

 

java.io   

OutputStream is an abstract class that defines methods used to write a stream of bytes to an 

output source. The write() methods write either a single byte or an array of bytes to the 

output stream. Any error encountered when writing the data results in an IOException. Note 

that some subclasses may buffer data internally instead of writing directly to the underlying 

storage mechanism. Application code may use the flush() to force any buffered data to be 

written out. Buffered data is automatically flushed when the stream is closed by the close() 

method.  

Like InputStream, OutputStream is byte-oriented and not character-oriented and cannot 

safely be used to write character data by storing the bottom 8 bits of each character in a byte 

and writing out the resulting byte array. Character data should be handled using the 

writeUTF() or writeChars() methods of DataOutputStream or by using an 

OutputStreamWriter with the appropriate encoding for the data being written.  

public abstract class OutputStream {   

// Public Constructors 

   public OutputStream();     

// Public Instance Methods 

   public void close() throws IOException;                       // empty

   public void flush() throws IOException;                       // empty

   public abstract void write( int b) throws IOException;   

   public void write( byte[] b) throws IOException;   

   public void write(byte[] b, int off,  

        int len) throws IOException;   

} 

Subclasses 

ByteArrayOutputStream, DataOutputStream, PrintStream  

http:///


J2ME in a Nutshell 

336 

Passed To 

DataOutputStream.DataOutputStream(), 

OutputStreamWriter.OutputStreamWriter(), PrintStream.PrintStream()  

Returned By 

javax.microedition.io.Connector.openOutputStream(), 

javax.microedition.io.OutputConnection.openOutputStream()  

Type Of 

DataOutputStream.out  

OutputStreamWriter  CLDC 1.0, MIDP 1.0  

 

java.io   

This is a subclass of Writer that writes its output into an 8-bit output stream. The mapping 

from the 16-bit Unicode characters passed into this class to the bytes required by the 

underlying output stream is performed according to the encoding whose name is passed to the 

constructor, or the default encoding of the host platform if the single-argument constructor is 

used.  

CLDC devices typically support only their own default encoding. Therefore, it is unlikely that 

many alternative encodings will be available. The CLDC specification does not provide any 

mechanism that would allow application code to determine the available encodings at run 

time, apart from the default encoding which can be obtained from the system property 

microedition.encoding. Note that the CLDC version of this class does not include the 

getEncoding() method from J2SE, which returns the name of the encoding used by an 

OutputStreamWriter.  

public class OutputStreamWriter extends Writer {   

  // Public Constructors 

   public OutputStreamWriter( OutputStream os);   

   public OutputStreamWriter(OutputStream os,  

        String enc) throws UnsupportedEncodingException; 

  // Public Methods Overriding Writer 

   public void close() throws IOException;   

   public void flush() throws IOException;   

   public void write( int c) throws IOException;   

   public void write(char[] cbuf, int off,  

        int len) throws IOException;   

   public void write(String str, int off,  

        int len) throws IOException;   

} 

http:///


J2ME in a Nutshell 

337 

 

PrintStream  CLDC 1.0, MIDP 1.0  

 

java.io   

PrintStream is an OutputStream subclass that contains methods that convert Java primitive 

types and objects into a printable format before writing them to an underlying OutputStream.  

The overloaded variations of the print() method handle primitives of type boolean, char, 

char[], int, long, String and Object. The string representation of an Object is obtained 

from its toString() method. The println() methods behave in the same way as print(), 

but follow their output with a newline character.  

The System.out and System.err variables hold instances of PrintStream. Because streams 

of this type are often used when inserting debugging or tracing code where it would be 

inconvenient to catch exceptions, the print() and println() methods do not throw an 

IOException if an error is detected. Instead, they set an internal error state that can be 

checked by calling the checkError() method.  

public class PrintStream extends OutputStream {   

  // Public Constructors 

   public PrintStream( OutputStream out);     

  // Public Instance Methods 

   public boolean checkError();   

   public void print( long l);   

   public void print( int i);   

   public void print( char[] s);   

   public void print( Object obj);   

   public void print( String s);   

   public void print( char c);   

   public void print( boolean b);   

   public void println();   

   public void println( long x);   

   public void println( int x);   

   public void println( Object x);   

   public void println( String x);   

   public void println( char[] x);   

   public void println( char x);   

   public void println( boolean x);     

// Public Methods Overriding OutputStream 

   public void close();   

   public void flush();   

   public void write( int b);   

   public void write( byte[] buf, int off, int len);    

// Protected Instance Methods 

   protected void setError();   

} 

Type Of 

System.{err, out}  

http:///


J2ME in a Nutshell 

338 

Reader  CLDC 1.0, MIDP 1.0  

 

java.io   

Reader is an abstract class that defines the methods implemented by subclasses that provide 

character input. A Reader differs from an InputStream in that it works in terms of 16-bit 

Unicode characters rather than 8-bit bytes. An 8-bit InputStream can be converted to a 

sequence of Unicode characters by wrapping it with an instance of the InputStreamReader 

class, which is the only concrete subclass of Reader provided in the CLDC java.io package.  

Most of the methods provided by Reader are the same as those available from InputStream, 

except that the fundamental unit of transfer is a char rather than a byte. The read() methods 

copy data from the data source into a character array, or return a single character held in the 

least significant 16 bits of an int. The skip() method skips over the given number of chars 

in the input source, or until end-of-file is reached. The mark(), reset() and 

markSupported() methods behave the same as an InputStream, except that the limit value 

passed to the mark() method is expressed in characters, not bytes.  

Reader does not have an available() method that returns the amount of data waiting to be 

read without blocking. Instead, it has a ready() method that simply returns true if there is 

some data to be read, and false if there is not.  

public abstract class Reader {   

// Protected Constructors 

   protected Reader();   

   protected Reader( Object lock);     

// Public Instance Methods 

   public abstract void close() throws IOException;   

   public void mark( int readAheadLimit) throws IOException;   

   public boolean markSupported();                               // 

constant 

   public int read() throws IOException;   

   public int read( char[] cbuf) throws IOException;   

   public abstract int read(char[] cbuf, int off,  

        int len) throws IOException;   

   public boolean ready() throws IOException;                    // 

constant 

   public void reset() throws IOException;   

   public long skip( long n) throws IOException;     

// Protected Instance Fields 

   protected Object lock;   

} 

Subclasses 

InputStreamReader  

http:///


J2ME in a Nutshell 

339 

 

UnsupportedEncodingException  CLDC 1.0, MIDP 1.0  

 

java.io  checked  

This exception signals that an attempt has been made to create an InputStreamReader or an 

OutputStreamWriter using an encoding that the platform does not support. This class is the 

same as its J2SE equivalent, apart from its inability to be serialized.  

 
public class UnsupportedEncodingException extends IOException { 

// Public Constructors 

   public UnsupportedEncodingException();   

   public UnsupportedEncodingException( String s);   

} 

Thrown By 

InputStreamReader.InputStreamReader(), 

OutputStreamWriter.OutputStreamWriter(), String.{getBytes(), String()}  

UTFDataFormatException  CLDC 1.0, MIDP 1.0  

 

java.io  checked  

This exception signals that an incorrect sequence of bytes has been found when reading a byte 

stream encoded in UTF-8. The UTF-8 encoding allows 16-bit Unicode characters to be sent in 

an 8-bit stream, where characters with values in the range 0-127, which are the most 

commonly used in Western locales, occupy only a single byte. This class is the same as its 

J2SE equivalent, apart from its inability to be serialized.  

 
public class UTFDataFormatException extends IOException {

// Public Constructors 

   public UTFDataFormatException();   

   public UTFDataFormatException( String s);   

} 

Writer  CLDC 1.0, MIDP 1.0  

 

java.io   

Writer is an abstract class that defines the methods implemented by subclasses that provide 

character output. A Writer differs from an OutputStream in that it works in terms of 16-bit 

Unicode characters rather than 8-bit bytes. A sequence of Unicode characters can be safely 

http:///


J2ME in a Nutshell 

340 

converted to an 8-bit data stream by wrapping an output stream with an instance of the 

OutputStreamWriter class, which is the only concrete subclass of Writer provided in the 

CLDC java.io package.  

Most of the methods provided by Writer are the same as those available from OutputStream, 

except that the fundamental unit of transfer is a char rather than a byte. The write() 

methods copy Unicode characters instead of bytes to the underlying storage. Writer also 

provides overloaded variants of write() that write out some or all of a String. Because 

some implementations may buffer data internally, Writer provides a flush() to force 

buffered data to be written. Buffered data is always written out when the close() method is 

called.  

public abstract class Writer {   

// Protected Constructors 

   protected Writer();   

   protected Writer( Object lock);     

// Public Instance Methods 

   public abstract void close() throws IOException;  

   public abstract void flush() throws IOException;  

   public void write( String str) throws IOException; 

   public void write(char[] cbuf) throws IOException; 

   public void write( int c) throws IOException;   

   public void write(String str, int off,  

        int len) throws IOException;   

   public abstract void write(char[] cbuf, int off,  

        int len) throws IOException;     

// Protected Instance Fields 

   protected Object lock;   

} 

Subclasses 

OutputStreamWriter  

http:///


J2ME in a Nutshell 

341 

 

Chapter 12. java.lang 

Package java.lang  CLDC 1.0, MIDP 1.0  

 

  

The java.lang package, whose class hierarchy is shown in Figure 12-1, contains the classes 

that form the core of the Java language API. The CLDC version of this package contains just 

under half of the classes and interfaces of its J2SE counterpart. The major omissions are:  

• Most of the Error classes, which are not required because the CLDC VM does not 

support them. Some of the J2SE Exception classes are also omitted.  

• The Float and Double types, omitted because the VM does not provide floating point 

operations.  

• Various other classes such as ClassLoader, SecurityManager and StrictMath 

which are not needed because the associated functionality is not part of the CLDC 

specification.  

The most fundamental classes in this package are Object, Class and Throwable.  

Object is the base class for all Java objects. The CLDC Object class provides most of the 

methods of its J2SE counterpart, with the notable exceptions of clone() and finalize(), 

which are omitted because neither cloning nor finalization is supported in the CLDC Java 

virtual machine.  

Class contains the information used to manage a class in the Java virtual machine. The 

CLDC version of this class does not contain the methods from the J2SE version that are 

related to reflection, again because reflection is not provided by the CLDC virtual machine.  

Throwable is the base class for all Java exceptions. Throwable has two subclasses, 

Exception and Error, that are the roots of separate class hierarchies of recoverable and non-

recoverable errors, respectively. The set of Errors supported by the CLDC Java VM is much 

smaller than that in J2SE, because the VM considers most of the error conditions that are 

reported by J2SE to be fatal and hence does not need to be able to report them to Java code.  

 

 

 

 

 

 

 

http:///


J2ME in a Nutshell 

342 

Figure 12-1. The java.lang hierarchy 

 

ArithmeticException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception signals an attempt to divide by zero or use the modulus operator (%) to 

determine the remainder on division by zero. This class is the same as its J2SE equivalent, 

apart from its inability to be serialized.  

 
public class ArithmeticException extends RuntimeException { 
// Public Constructors 
   public ArithmeticException();   
   public ArithmeticException( String s);   
} 

http:///


J2ME in a Nutshell 

343 

 

ArrayIndexOutOfBoundsException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception signals an attempt to access an element of an array using an index that is 

negative or greater than or equal to the number of elements in the array (recall that arrays are 

zero-based in Java). This class is the same as its J2SE equivalent, apart from its inability to be 

serialized.  

public class ArrayIndexOutOfBoundsException extends  
    IndexOutOfBoundsException {   
// Public Constructors 
   public ArrayIndexOutOfBoundsException();   
   public ArrayIndexOutOfBoundsException( String s);   
   public ArrayIndexOutOfBoundsException( int index);   
} 

ArrayStoreException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception signals an attempt to store an object in an array entry that is not the same type 

as the array, a subclass of that type, or in the case of an array of interface types, is not an 

object that implements that interface. This class is the same as its J2SE equivalent, apart from 

its inability to be serialized.  

 
public class ArrayStoreException extends RuntimeException { 
// Public Constructors 
   public ArrayStoreException();   
   public ArrayStoreException( String s);   
} 

Boolean  CLDC 1.0, MIDP 1.0  

 

java.lang   

Boolean provides an object wrapper for a Java boolean primitive. The constructor initializes 

the wrapper with the value true or false, after which the object becomes immutable. For 

convenience, the static variables Boolean.TRUE and Boolean.FALSE refer to predefined 

instances of this class with the values true and false, respectively, and should normally be 

used instead of constructing a new instance.  

http:///


J2ME in a Nutshell 

344 

The booleanValue() method can be used to retrieve the boolean value of a Boolean object. 

In addition, the toString() method will return the string "true" or "false" as appropriate.  

public final class Boolean {   
// Public Constructors 
   public Boolean( boolean value);    
// Public Instance Methods 
   public boolean booleanValue();     
// Public Methods Overriding Object 
   public boolean equals( Object obj); 
   public int hashCode();   
   public String toString();   
} 

Byte  CLDC 1.0, MIDP 1.0  

 

java.lang   

Byte provides an object wrapper for a Java byte primitive value. The constructor initializes 

the wrapper with a byte value, after which the object becomes immutable. The value 

associated with a Byte object can be retrieved using the byteValue() method.  

The static parseByte() converts a numeric value held in a string into a primitive byte. The 

single-argument variant of this method assumes that the string is encoded in base 10; the two-

argument variant can be used to specify a different number base if necessary. A 

NumberFormatException is thrown if the string does not represent a valid number in the 

given number base.  

The static variables Byte.MIN_VALUE and Byte.MAX_VALUE are byte (not Byte) values that 

represent the smallest and largest values, respectively, that can be held in a byte primitive.  

Note that this class is derived from Object and not Number, as the CLDC does not provide a 

Number class as the J2SE does.  

public final class Byte {   
// Public Constructors 
   public Byte( byte value);     
// Public Constants 
   public static final byte MAX_VALUE;                           // =127 
   public static final byte MIN_VALUE;                           // =-128 
// Public Class Methods 
   public static byte parseByte( 
        String s) throws NumberFormatException;   
   public static byte parseByte(String s,  
        int radix) throws NumberFormatException;     
// Public Instance Methods 
   public byte byteValue();     
// Public Methods Overriding Object 
   public boolean equals( Object obj);   
   public int hashCode();   
   public String toString();   
} 

http:///


J2ME in a Nutshell 

345 

Character  CLDC 1.0, MIDP 1.0  

 

java.lang   

Character provides an object wrapper for a Java char primitive. The constructor initializes 

the wrapper with a char value, after which the object is immutable. The value associated with 

a Character object can be retrieved using the charValue() method.  

The Character class contains several static methods that are useful for handling characters 

without making any assumptions about the locale in which an application is executing. The 

digit() method returns the integer value of a character provided that it represents a digit in a 

given number base, or -1 if it does not. Use the isDigit() method to test whether a given 

character represents a numeric digit in a given number base. The isUpperCase() and 

isLowerCase() methods return true if the primitive char passed to them is an upper-case or 

lower-case letter, respectively, while toUpperCase() and toLowerCase() convert a char to 

upper- or lower-case and return the result, or the original char if it has no upper- or lower-

case equivalent.  

The static variables Character.MIN_VALUE and Character.MAX_VALUE are char (not 

Character) values that represent the smallest and largest values that can be held in a char 

primitive.  

public final class Character {   
// Public Constructors 
   public Character( char value);     
// Public Constants 
   public static final int MAX_RADIX;                         // =36 
   public static final char MAX_VALUE;                        // ='\uFFFF'
   public static final int MIN_RADIX;                         // =2 
   public static final char MIN_VALUE;                        // ='\0'   
// Public Class Methods 
   public static int digit( char ch, int radix);   
   public static boolean isDigit( char ch);   
   public static boolean isLowerCase( char ch);   
   public static boolean isUpperCase( char ch);   
   public static char toLowerCase( char ch);   
   public static char toUpperCase( char ch);     
// Public Instance Methods 
   public char charValue();     
// Public Methods Overriding Object 
   public boolean equals( Object obj);   
   public int hashCode();   
   public String toString();   
} 

http:///


J2ME in a Nutshell 

346 

 

Class  CLDC 1.0, MIDP 1.0  

 

java.lang   

This class contains information representing a Java class or interface. Only one instance of 

this object exists for each class loaded within the Java virtual machine, no matter how many 

instances of that class are created. The Class object for a class can be obtained by using the 

getClass() method of any instance of that class, or by calling the static Class forName() 

method and supplying the fully-qualified class name. For example, the expression 

Class.forName("java.lang.Class") would return a Class object for Class itself.  

A Class object can be used to discover various attributes of a class. The getName() method 

returns the fully-qualified name of the class (e.g., java.lang.Class). The isArray() 

method returns true if the class represents an array, such as the one returned by the 

expression new Object[0].getClass(). The isInterface() returns true if the Class 

object to which it is applied represents an interface.  

The isAssignableFrom() and isInstance() methods can be used to determine the 

relationship between one class or interface and another. The isInstance() method returns 

true if the object passed as its argument is of the same class as the Class object, or an 

instance of a subclass. If the Class object represents an interface, then the object passed as 

the argument to isInstance() must implement that interface or one of its subinterfaces.  

The isAssignableFrom() method also takes a Class object as its argument and returns true 

if that object could be assigned to a varable of the type of Class to which it is applied.  

The newInstance() method constructs a new instance of the Class to which it is applied 

using its no-argument constructor. An exception will occur if the class does not have a no-

argument constructor, if the caller does not have access to that constructor, or if the class is 

abstract or represents an interface.  

The getResourceAsStream() method returns an InputStream that can be used to read the 

content of a resource whose name is supplied as its argument. This method is typically used to 

access images or text files that are included in the same JAR file as a MIDlet or a package 

Java application. The resource name must be either an absolute name beginning with the "/" 

character (e.g., "/com/acme/MIDlets/resources/icon.png"), or a name that is resolved 

relative to the package of the Class object, such as "resources/icon.png". The latter would 

correspond to the same resource if the Class object on which it is invoked is for a class or 

interface in the com.acme.MIDlets package.  

public final class Class { 
// No Constructor   
// Public Class Methods 
   public static Class forName(                                  // native
        String className) throws ClassNotFoundException;     
// Public Instance Methods 
   public String getName();                                      // native
 

http:///


J2ME in a Nutshell 

347 

   public java.io.InputStream getResourceAsStream( 
        String name);   
   public boolean isArray();                                     // native
   public boolean isAssignableFrom( Class cls);                  // native
   public boolean isInstance( Object obj);                       // native
   public boolean isInterface();                                 // native
   public Object newInstance(                                    // native
        ) throws InstantiationException, IllegalAccessException;     
// Public Methods Overriding Object 
   public String toString();   
} 

Passed To 

Class.isAssignableFrom()  

Returned By 

Class.forName(), Object.getClass()  

ClassCastException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception signals an attempt to cast an object to a type that it is not an instance of, or an 

attempt to cast an object to an interface that it does not implement. This class is the same as 

its J2SE equivalent, apart from its inability to be serialized.  

 
public class ClassCastException extends RuntimeException { 
// Public Constructors 
   public ClassCastException();   
   public ClassCastException( String s);   
} 

ClassNotFoundException  CLDC 1.0, MIDP 1.0  

 

java.lang  checked  

This exception signals that the class named by the argument of the Class forName() method 

was not found. This class is the same as its J2SE equivalent, apart from its inability to be 

serialized.  

public class ClassNotFoundException extends Exception {  
// Public Constructors 
   public ClassNotFoundException();   
   public ClassNotFoundException( String s);   
} 

http:///


J2ME in a Nutshell 

348 

Thrown By 

Class.forName()  

Error  CLDC 1.0, MIDP 1.0  

 

java.lang  error  

Error is a subclass of Throwable. It is the base class for exceptions that are not likely to be 

recoverable by application code, but also do not represent programming errors (and hence are 

not derived from RuntimeException). Methods that might throw Errors are not required to 

indicate that fact by including a throws declaration. In the same manner, code that calls such 

a method is not required to catch the Error.  

The number of Error subclasses defined by CLDC is much less than the number that exist in 

J2SE, primarily because the cause of most errors on this platform is device-specific and 

therefore not susceptible to common handling by platform-independent code. Errors that are 

reported as such in J2SE are often regarded as terminal conditions that should halt the 

execution of the virtual machine in CLDC.  

This class is the same as its J2SE equivalent, apart from its inability to be serialized.  

public class Error extends Throwable {   
// Public Constructors 
   public Error();   
   public Error( String s);   
} 

Subclasses 

VirtualMachineError  

Exception  CLDC 1.0, MIDP 1.0  

 

java.lang  checked  

Exception is the base class for Java language exceptions. Exceptions represent non-fatal 

error conditions that applications may be able to recover from. Exception is derived from the 

Throwable class, which is also the parent of Error. However, exceptions derived from Error 

differ from those derived from Exception in that they represent conditions from which 

application code would not usually be expected to recover.  

Methods that throw Exceptions are required to include a throws clause in their declarations, 

except under one condition: methods are not obliged to declare any exceptions that derive 

http:///


J2ME in a Nutshell 

349 

from the RuntimeException class. These types of exceptions typically indicate a 

programming error that cannot be recovered from.  

This class is the same as its J2SE equivalent, apart from its inability to be serialized.  

public class Exception extends Throwable {   
// Public Constructors 
   public Exception();   
   public Exception( String s);   
} 

Subclasses 

java.io.IOException, ClassNotFoundException, IllegalAccessException, 

InstantiationException, InterruptedException, RuntimeException, 

javax.microedition.midlet.MIDletStateChangeException, 
javax.microedition.rms.RecordStoreException  

IllegalAccessException  CLDC 1.0, MIDP 1.0  

 

java.lang  checked  

This exception signals that a class has attempted to perform an operation on an object which it 

does not have access. This typically occurs when an attempt is made to create an instance of a 

class using the Class newInstance() method and the executing code does not have access to 

the no-argument constructor, even though it has access to the class itself. This class is the 

same as its J2SE equivalent, apart from its inability to be serialized.  

public class IllegalAccessException extends Exception {  
// Public Constructors 
   public IllegalAccessException();   
   public IllegalAccessException( String s);   
} 

Thrown By 

Class.newInstance()  

IllegalArgumentException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception signals that a method has been passed an argument whose value does not meet 

certain conditions. This exception is often thrown to signal that a null reference has been 

http:///


J2ME in a Nutshell 

350 

passed to a method that expects a non-null argument. This class is the same as its J2SE 

equivalent, apart from its inability to be serialized.  

 
public class IllegalArgumentException extends RuntimeException { 
// Public Constructors 
   public IllegalArgumentException();   
   public IllegalArgumentException( String s);   
} 

Subclasses 

IllegalThreadStateException, NumberFormatException  

IllegalMonitorStateException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This is an exception that signals one of the following conditions:  

• A thread has called the Object wait() method on a object for which it does not hold 

the monitor.  

• A thread has called the Object notify() or notifyAll() method on a object for 

which it does not hold the monitor.  

The monitor for an object obj is acquired either by synchronizing on that object using the 

synchronized (obj) expression, or by entering a non-static method of that object's class 

that is declared using the synchronized keyword.  

This class is the same as its J2SE equivalent, apart from its inability to be serialized.  

 
public class IllegalMonitorStateException extends RuntimeException { 
// Public Constructors 
   public IllegalMonitorStateException();   
   public IllegalMonitorStateException( String s);   
} 

IllegalStateException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception is thrown to indicate that a method has been invoked under inappropriate 

circumstances. For example, a method may throw this exception to indicate that it expected 

the caller to first set the parameters that it requires to complete its operation. This class is the 

same as its J2SE equivalent, apart from its inability to be serialized.  

http:///


J2ME in a Nutshell 

351 

 
public class IllegalStateException extends RuntimeException { 
// Public Constructors 
   public IllegalStateException();   
   public IllegalStateException( String s);   
} 

IllegalThreadStateException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception is thrown when an operation is performed on a Thread that is not in the proper 

state. In J2SE, there are several circumstances in which this exception is thrown. In CLDC, 

however, most of these are not possible because the Thread operations that throw this 

exception simply do not exist. The only cause for this exception in CLDC is calling the 

start() method on a Thread that has already been started. This class is the same as its J2SE 

equivalent, apart from its inability to be serialized.  

 
public class IllegalThreadStateException extends IllegalArgumentException 
{   
// Public Constructors 
   public IllegalThreadStateException();   
   public IllegalThreadStateException( String s);   
} 

IndexOutOfBoundsException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception indicates that an operation used an index value that was invalid for the given 

data. J2SE provides two subclasses of IndexOutOfBoundsException that are commonly used 

with arrays and strings: ArrayIndexOutOfBoundsException and 

StringIndexOutOfBoundsException. This class is the same as its J2SE equivalent, apart 

from its inability to be serialized.  

 
public class IndexOutOfBoundsException extends RuntimeException { 
// Public Constructors 
   public IndexOutOfBoundsException();   
   public IndexOutOfBoundsException( String s);   
} 

Subclasses 

ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException  

http:///


J2ME in a Nutshell 

352 

InstantiationException  CLDC 1.0, MIDP 1.0  

 

java.lang  checked  

This exception is thrown when the Class newInstance() method is used to either create an 

instance of a class that represents an array, or cannot be instantiated because it is an interface 

or is declared to be abstract. This class is the same as its J2SE equivalent, apart from its 

inability to be serialized.  

public class InstantiationException extends Exception {  
// Public Constructors 
   public InstantiationException();   
   public InstantiationException( String s);   
} 

Thrown By 

Class.newInstance()  

Integer  CLDC 1.0, MIDP 1.0  

 

java.lang   

Integer provides an object wrapper for a Java int primitive value. The constructor initializes 

the wrapper with an int value, after which the object is immutable. The value associated with 

an Integer object can be retrieved as a byte, short, int or long using the byteValue(), 

shortValue(), intValue() and longValue() methods, respectively. If the value is too large 

to fit into a byte or short, the high-order bits of the integer are truncated.  

The static parseInt() converts a numeric value held in a String into a primitive int. The 

single-argument variant of this method assumes that the string is encoded in base 10; the two-

argument variant can be used to specify a different number base if necessary. A 

NumberFormatException is thrown if the String does not represent a valid number in the 

given number base. There are also two static valueOf methods that parse a string and return 

an Integer object-- one assumes that the String is a base 10 number, the other accepts a 

number base argument.  

The zero-argument toString() method returns a String representation of the value of the 

Integer encoded as a base 10 number. There is also a static variant of this method that prints 

the value of a given int as a base 10 number, as well as a two-argument variant that prints a 

value using digits from the number base supplied as its second argument. The static 

toHexString(), toOctalString and toBinaryString() methods return a String that 

represents the value of a given int as a number in base 16, 8 and 2 respectively.  

http:///


J2ME in a Nutshell 

353 

The static variables Integer.MIN_VALUE and Integer.MAX_VALUE are int (not Integer) 

values that represent the smallest and largest values that can be held in a int primitive.  

Note that this class is derived from Object and not Number, as the CLDC does not provide the 

Number class.  

public final class Integer {   
// Public Constructors 
   public Integer( int value);     
// Public Constants 
   public static final int MAX_VALUE;                      // =2147483647 
   public static final int MIN_VALUE;                      // =-2147483648 
// Public Class Methods 
   public static int parseInt( 
        String s) throws NumberFormatException;   
   public static int parseInt(String s,  
        int radix) throws NumberFormatException;   
   public static String toBinaryString( int i);   
   public static String toHexString( int i);   
   public static String toOctalString( int i);   
   public static String toString( int i);   
   public static String toString( int i, int radix);   
   public static Integer valueOf( 
        String s) throws NumberFormatException;   
   public static Integer valueOf(String s,  
        int radix) throws NumberFormatException;     
// Public Instance Methods 
   public byte byteValue();   
   public int intValue();   
   public long longValue();   
   public short shortValue();     
// Public Methods Overriding Object 
   public boolean equals( Object obj);   
   public int hashCode();   
   public String toString();   
} 

Returned By 

Integer.valueOf()  

InterruptedException  CLDC 1.0, MIDP 1.0  

 

java.lang  checked  

In J2SE, this exception is thrown when one thread uses the interrupt() method to interrupt 

another thread that is blocked due to the Thread sleep() or join() methods. In CLDC, 

however, the Thread interrupt() method does not exist, so this exception will not actually 

be thrown in these cases. However, for reasons of compatibility, this exception is still 

declared to be thrown from the Object wait() and the Thread sleep() and join() 

methods.  

http:///


J2ME in a Nutshell 

354 

The actual use of this exception is in the implementation of the socket support for the Generic 

Connection Framework, which is not a required part of the specification and is not visible to 

application code.  

This class is the same as its J2SE equivalent, apart from its inability to be serialized.  

public class InterruptedException extends Exception {   
// Public Constructors 
   public InterruptedException();   
   public InterruptedException( String s);   
} 

Thrown By 

Object.wait(), Thread.{join(), sleep()}  

Long  CLDC 1.0, MIDP 1.0  

 

java.lang   

Long provides an object wrapper for a Java long primitive. The constructor initializes the 

wrapper with a long value, after which the object is immutable. The value associated with a 

Long object can be retrieved using the longValue() method.  

The static parseLong() converts a numeric value held in a String into a primitive long. The 

single-argument variant of this method assumes that the String is encoded in base 10; the 

two-argument variant can be used to specify a different number base if necessary. A 

NumberFormatException is thrown if the String does not represent a valid number in the 

given number base.  

The zero-argument toString() method returns a String representation of the value of the 

Long encoded as a base 10 number. There is also a static variant of this method that prints the 

value of a given long as a base 10 number, as well as a two-argument variant that prints a 

value using digits from the number base supplied as its second argument.  

The static variables Long.MIN_VALUE and Long.MAX_VALUE are long (not Long) values 

representing the smallest and largest values, respectively, that can be held in a long primitive.  

Note that this class is derived from Object and not Number, as it is in the J2SE. This is 

because the CLDC does not provide the Number class.  

public final class Long {   
// Public Constructors 
   public Long( long value);   
// Public Constants 
   public static final long MAX_VALUE;            // =9223372036854775807 
   public static final long MIN_VALUE;            // =-9223372036854775808
 

http:///


J2ME in a Nutshell 

355 

// Public Class Methods 
   public static long parseLong( 
        String s) throws NumberFormatException;   
   public static long parseLong(String s,  
        int radix) throws NumberFormatException;   
   public static String toString( long i);   
   public static String toString( long i, int radix);     
// Public Instance Methods 
   public long longValue();     
// Public Methods Overriding Object 
   public boolean equals( Object obj);   
   public int hashCode();   
   public String toString();   
} 

Math  CLDC 1.0, MIDP 1.0  

 

java.lang   

The CLDC Math class is an extremely small subset of its J2SE counterpart, providing utility 

methods that work with int and long values. Most of the J2SE methods cannot be included 

because a CLDC VM does not provide for floating point arithmetic.  

The abs() methods return the absolute value of an int or long pased as its argument. 

The max() method returns the larger of two ints or longs, while min() returns the smaller.  

public final class Math { 
// No Constructor   
// Public Class Methods 
   public static int abs( int a);                              // strictfp
   public static long abs( long a);                            // strictfp
   public static int max( int a, int b);                       // strictfp
   public static long max( long a, long b);                    // strictfp
   public static int min( int a, int b);                       // strictfp
   public static long min( long a, long b);                    // strictfp
} 

NegativeArraySizeException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception signals that an attempt has been made to create an array with a negative 

number of elements. This class is the same as its J2SE equivalent, apart from its inability to be 

serialized.  

 
public class NegativeArraySizeException extends RuntimeException { 
// Public Constructors 
   public NegativeArraySizeException();   
   public NegativeArraySizeException( String s);   
} 

http:///


J2ME in a Nutshell 

356 

NullPointerException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception is thrown when an application attempts to use a null object reference. This 

class is the same as its J2SE equivalent, apart from its inability to be serialized.  

 
public class NullPointerException extends RuntimeException { 
// Public Constructors 
   public NullPointerException();   
   public NullPointerException( String s);   
} 

NumberFormatException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception signals that an attempt has been made to convert a String to a numeric type 

when the String contains a sequence of characters that does not form a valid number. This 

class is the same as its J2SE equivalent, apart from its inability to be serialized.  

 
public class NumberFormatException extends IllegalArgumentException {
// Public Constructors 
   public NumberFormatException();   
   public NumberFormatException( String s);   
} 

Thrown By 

Byte.parseByte(), Integer.{parseInt(), valueOf()}, Long.parseLong(), 
Short.parseShort()  

Object  CLDC 1.0, MIDP 1.0  

 

java.lang   

This class that represent a Java object. Object is an ancestor of every Java class. Therefore, a 

variable of type Object can be safely assigned a reference to any Java object, array, or 

interface type without casting. In addition, the methods of this class can be invoked on all 

objects, arrays, and interface types.  

The equals() method determines whether the current object is equal to the object passed in. 

The default case defines two objects as equivalent if they are the same object instance. 

http:///


J2ME in a Nutshell 

357 

However, most subclasses override this method and use it to test for byte-to-byte equivalence, 

instead of testing for the same object instance.  

getClass() returns a Class object representing the object's class or interface. hashCode() 

returns a hash code that can be used as a non-unique hashing key for the object. Note that 

invoking this method on different objects that are equivalent according to equals() must 

result in the same value being returned. Also, it is important to point out that two different 

objects may return the same hash code. Subclasses may override this method to return a hash 

code more suitable to particular object types. The value returned by the Object 

implementation of this method can always be obtained by calling the 

System.identityHashCode() method.  

The wait() method provides a way for a thread to wait for a specific condition to be met. 

notify() and notifyAll() allow another thread to signal that either one waiter or all waiters 

should re-evaluate whether that condition has been met. A thread that wishes to wait should 

first obtain the monitor of an object. This can be done either by entering an instance method 

of that object that is declared to be synchronized, or by entering a synchronized block on 

that object and invoking one of its wait() methods. Depending on the variant of wait() that 

is used, the calling thread will be suspended until another thread notifies the condition or until 

a given time interval expires. To notify a condition on an object, a thread must obtain the 

object's monitor and invoke the object's notify() or notifyAll() method. If notify() is 

used, one thread waiting on the object is resumed and returns from its wait(). If 

notifyAll() is used, it resumes all waiting threads.  

Note that the CLDC Object class does not include the J2SE clone() and finalize methods. 

This is because cloning and finalization are not supported by a CLDC virtual machine.  

public class Object {   
// Public Constructors 
   public Object();                                              // empty  
// Public Instance Methods 
   public boolean equals( Object obj);   
   public final Class getClass();                                // native
   public int hashCode();                                        // native
   public final void notify();                                   // native
   public final void notifyAll();                                // native
   public String toString();   
   public final void wait() throws InterruptedException;   
   public final void wait(                                       // native
        long timeout) throws InterruptedException;   
   public final void wait(long timeout,  
        int nanos) throws InterruptedException;   
} 

Subclasses 

Too many classes to list.  

Passed To 

Too many methods to list.  

http:///


J2ME in a Nutshell 

358 

Returned By 

Class.newInstance(), java.util.Enumeration.nextElement(), 

java.util.Hashtable.{get(), put(), remove()}, java.util.Stack.{peek(), 

pop(), push()}, java.util.Vector.{elementAt(), firstElement(), 
lastElement()}  

Type Of 

java.io.Reader.lock, java.io.Writer.lock, java.util.Vector.elementData  

OutOfMemoryError  CLDC 1.0, MIDP 1.0  

 

java.lang  error  

An OutOfMemoryError is thrown when an allocation of memory has been attempted, either in 

Java code or native code, and both the VM and the garbage collector cannot satisfy the 

request. This class is the same as its J2SE equivalent, apart from its inability to be serialized.  

 
public class OutOfMemoryError extends VirtualMachineError { 
// Public Constructors 
   public OutOfMemoryError();   
   public OutOfMemoryError( String s);   
} 

Runnable  CLDC 1.0, MIDP 1.0  

 

java.lang  runnable  

This interface is implemented by a class containing code that is to be run either in a thread of 

its own or with a TimerTask. The code to be scheduled should be implemented in the run() 

method.  

public interface Runnable {   
// Public Instance Methods 
   public abstract void run(); 
} 

Implementations 

Thread, java.util.TimerTask  

Passed To 

Thread.Thread(), javax.microedition.lcdui.Display.callSerially()  

http:///


J2ME in a Nutshell 

359 

Runtime  CLDC 1.0, MIDP 1.0  

 

java.lang   

The Runtime class contains methods and variables that provide access to low-level facilities 

provided by the Java virtual machine. In order to access these facilities, application code must 

first use the static getRuntime() method to obtain an instance of the Runtime class. The 

CLDC version of this class contains only a small subset of the functionality of its J2SE 

counterpart.  

The exit() method causes the virtual machine to terminate. A CLDC application is permitted 

to use this method. However, a MIDlet will receive a SecurityException if it attempts to do 

so.  

The gc() method hints to the garbage collector that it should attempt to reclaim unreferenced 

memory. Garbage collectors implemented in small-footprint virtual machines (e,g, the KVM) 

are typically quite agressive at cleaning up unused memory, so the programmer should not 

have to call this method very often. The totalMemory() method returns the total amount of 

memory, in bytes, occupied by the Java virtual machine. In some environments, demand for 

more memory can cause this value to increase as the VM uses extra system resources. The 

freeMemory() method returns a value that indicates approximately how much of the total 

memory occupied by the Java VM is free for allocation to new objects.  

public class Runtime { 
// No Constructor   
// Public Class Methods 
   public static Runtime getRuntime();     
// Public Instance Methods 
   public void exit( int status);   
   public long freeMemory();                                     // native
   public void gc();                                             // native
   public long totalMemory();                                    // native
} 

Returned By 

Runtime.getRuntime()  

RuntimeException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

A base class for Exception subclasses that need not be be declared in the throws clause of a 

method definition and, consequently, application code need not catch. Exceptions of this type 

are generally caused by programming errors and need to be addressed during application 

development, rather than attempting recovery at run time. This class is the same as its J2SE 

equivalent, apart from its inability to be serialized.  

http:///


J2ME in a Nutshell 

360 

public class RuntimeException extends Exception {   
// Public Constructors 
   public RuntimeException();   
   public RuntimeException( String s);   
} 

Subclasses 

ArithmeticException, ArrayStoreException, ClassCastException, 

IllegalArgumentException, IllegalMonitorStateException, IllegalStateException, 

IndexOutOfBoundsException, NegativeArraySizeException, NullPointerException, 

SecurityException, java.util.EmptyStackException, 
java.util.NoSuchElementException  

SecurityException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception signals that a run time security check has been violated. This class is the same 

as its J2SE equivalent, apart from its inability to be serialized.  

 
public class SecurityException extends RuntimeException {
// Public Constructors 
   public SecurityException();   
   public SecurityException( String s);   
} 

Short  CLDC 1.0, MIDP 1.0  

 

java.lang   

Short provides an object wrapper for a Java short primitive. The constructor initializes the 

wrapper with a short value, after which the object becomes immutable. The value associated 

with a Short object can be retrieved using the shortValue() method.  

The static parseShort() converts a numeric value held in a String into a primitive short. 

The single-argument variant of this method assumes that the String is encoded in base 10; 

the two-argument variant can be used to specify a different number base if necessary. A 

NumberFormatException is thrown if the String does not represent a valid number in the 

given number base.  

The static variables Short.MIN_VALUE and Short.MAX_VALUE are short (not Short) values 

that represent the smallest and largest values, respectively, that can be held in a short 

primitive.  

http:///


J2ME in a Nutshell 

361 

Note that this class is derived from Object and not Number. This is because CLDC does not 

provide the Number class.  

public final class Short {   
// Public Constructors 
   public Short( short value);     
// Public Constants 
   public static final short MAX_VALUE;                        // =32767 
   public static final short MIN_VALUE;                        // =-32768 
// Public Class Methods 
   public static short parseShort( 
        String s) throws NumberFormatException;   
   public static short parseShort(String s,  
        int radix) throws NumberFormatException;     
// Public Instance Methods 
   public short shortValue();     
// Public Methods Overriding Object 
   public boolean equals( Object obj);   
   public int hashCode();   
   public String toString();   
} 

String  CLDC 1.0, MIDP 1.0  

 

java.lang   

This class represents a immutable character string. Operations on String objects that change 

their content actually place their results in other String objects. When concatenating strings 

or changing the values of characters within a string, it is more efficient to use a 

StringBuffer instead.  

The CLDC String class is similar to its J2SE equivalent, but lacks the following methods: 

compareToIgnoreCase(), copyValueOf(), equalsIgnoreCase() and intern(). It also 

does not contain the variants of lastIndexOf() that accept a String- valued argument, or 

the valueOf() methods for types float and double.  

A String can be constructed as a copy of another String, from the content of a 

StringBuffer, or from an array of characters or bytes. When constructing a String from 

bytes, the appropriate character encoding must be used; if an encoding is not specified, the 

platform's default encoding is assumed. A String can also be created by applying the static 

valueOf() methods to a boolean, a char, an array of characters (char[]), an int, a long or 

an arbitrary Java Object. With an Object, the String is created using the return value of the 

object's toString() method.  

The toCharArray() method returns an array of chars initialized with the content of the 

String. The getChars() method is similar, but requires the caller to allocate the destination 

array and can be used to extract a subset of the string. The getBytes() methods copy a subset 

of the String into a pre-allocated byte array, using either a specified encoding or the 

platform's default encoding. The charAt() method can be used to retrieve the value of a 

single character whose location is specified by a zero-based index. The length of the String, 

in characters, can be obtained using the length() method.  

http:///


J2ME in a Nutshell 

362 

There are several methods that can be used to compare strings or search the content of a 

string. The compareTo() method performs a comparison of one string with another; it returns 

0 if they are equal, or a negative or positive value depending on whether the source string is 

lexicographically less than or greater than the string passed as an argument. The 

startsWith() and endsWith() method determine whether a string starts or ends with a 

sequence of characters represented by a second string, while the regionMatches() method 

determines whether a region of the string matches a given region (of the same length) of 

another string.  

The indexOf() method looks for either an individual character or a substring. It returns the 

offset at which the match was found, or -1 if there was no match, and the search may start 

either at the beginning of the String or from any specified index within it. The 

lastIndexOf() method is similar but returns the index of the last match for a given 

character, searching back either from the end of the string or from a given offset. Note that 

unlike indexOf(), there is no variant of lastIndexOf() that accepts a string-valued 

argument.  

The replace() method returns a new String object in which all occurrences of one 

character have been replaced by a second character. The substring() methods return a new 

String created from a given range of characters from the String to which it is applied. The 

toUpperCase() and toLowerCase() methods create a new String in which the characters of 

the original have been converted to upper- or lower-case respectively (characters that are not 

case-dependent are left unchanged.) The trim() method returns a new String formed by 

removing all leading and trailing white space from the String to which it is applied.  

public final class String {   
// Public Constructors 
   public String();   
   public String( byte[] bytes);   
   public String( String value);   
   public String( char[] value);   
   public String( StringBuffer buffer);   
   public String(byte[] bytes,  
        String enc) throws java.io.UnsupportedEncodingException;   
   public String( byte[] bytes, int off, int len);   
   public String(char[] value, int offset,  
        int count);   
   public String(byte[] bytes, int off, int len,  
        String enc) throws java.io.UnsupportedEncodingException;     
// Public Class Methods 
   public static String valueOf( char c);   
   public static String valueOf( int i);   
   public static String valueOf( long l);   
   public static String valueOf( boolean b);   
   public static String valueOf( Object obj);   
   public static String valueOf( char[] data);   
   public static String valueOf(char[] data,  
        int offset, int count);     
// Public Instance Methods 
   public char charAt( int index);                               // native
   public int compareTo( String anotherString);   
   public String concat( String str);   
   public boolean endsWith( String suffix);   
   public byte[] getBytes();   
 

http:///


J2ME in a Nutshell 

363 

   public byte[] getBytes( 
        String enc) throws java.io.UnsupportedEncodingException;   
   public void getChars(int srcBegin, int srcEnd,  
        char[] dst, int dstBegin);   
   public int indexOf( int ch);                                  // native
   public int indexOf( String str);   
   public int indexOf( int ch, int fromIndex);                   // native
   public int indexOf( String str, int fromIndex);   
   public int lastIndexOf( int ch);   
   public int lastIndexOf( int ch, int fromIndex);   
   public int length();   
   public boolean regionMatches(boolean ignoreCase,  
        int toffset, String other, int ooffset, int len);   
   public String replace( char oldChar, char newChar);   
   public boolean startsWith( String prefix);   
   public boolean startsWith( String prefix, int toffset);   
   public String substring( int beginIndex);   
   public String substring( int beginIndex, int endIndex);   
   public char[] toCharArray();   
   public String toLowerCase();   
   public String toUpperCase();   
   public String trim();     
// Public Methods Overriding Object 
   public boolean equals( Object anObject);                      // native
   public int hashCode();   
   public String toString();   
} 

Passed To 

Too many methods to list.  

Returned By 

Too many methods to list.  

Type Of 

javax.microedition.io.HttpConnection.{GET, HEAD, POST}  

StringBuffer  CLDC 1.0, MIDP 1.0  

 

java.lang   

A StringBuffer is an array of characters that can be expanded or contracted as necessary. 

StringBuffers are typically used to construct an array of characters that is then converted 

into an immutable String.  

The characters that make up the content of a StringBuffer are held in an internal array. The 

number of entries in the array is referred to as the capacity of the StringBuffer, while the 

actual number of characters in use is referred to as its size. A StringBuffer is constructed 

with a specific initial capacity (the default is 16 characters). It can also be constructed from 

http:///


J2ME in a Nutshell 

364 

the content of a String, in which case an appropriate initial capacity is determined. When the 

size approaches the capacity, a new character array is allocated and the existing characters are 

copied into it. Note that this can be a costly operation that may have to be repeated if the 

StringBuffer's size grows continuously. If possible, the StringBuffer should be created 

with sufficient capacity to hold all of the characters that it will contain.  

Following construction, the ensureCapacity() method is used to ensure that the internal 

array can hold at least the number of characters specified without needing to be expanded any 

further. capacity() returns the current capacity of the StringBuffer, while length() 

returns its actual size. The actual number of characters in use can be changed by calling the 

setLength() method. If the new length is smaller than the old length, the characters at the 

end are lost. If it is larger, null characters are appended.  

A common use of a StringBuffer is to concatenate several Strings. This can be achieved 

by using one of the overloaded append() methods, which accept arguments of type boolean, 

char, char[], int, long, Object and String. These methods convert the target data value to 

character form and add its content to the end of the internal array. Each of these methods 

returns a reference to the StringBuffer itself, so that the programmer can chain commands 

together (e.g., sb.append("x = ").append(x)). The toString() method is used to convert 

the characters in a StringBuffer into an immutable String.  

It is also possible to insert content into a StringBuffer using one of the insert() methods, 

which has the same variants as the append() methods. These methods insert characters before 

the position given by the specified index, shifting all characters that follow to higher indices. 

As with append(), these methods also return a reference to the StringBuffer to allow 

command chaining. The value of a single character can be changed using the setCharAt() 

method; this method supplies the new character value and the index of the character to 

replace. Characters can be removed from the StringBuffer using the delete() and 

deleteCharAt() methods. Finally, the content of the internal array can be reversed 

efficiently by calling reverse().  

Apart from toString(), there are two ways to extract characters from a StringBuffer. To 

get the value of a single character, invoke the charAt() method with the index of the required 

character in the internal array. To get a range of characters in the form of a String, use one of 

the two variants of substring().  

public final class StringBuffer {   
// Public Constructors 
   public StringBuffer();   
   public StringBuffer( String str);   
   public StringBuffer( int length);     
// Public Instance Methods 
   public StringBuffer append( char[] str);         // synchronized 
   public StringBuffer append( String str);         // native synchronized
   public StringBuffer append( Object obj);         // synchronized 
   public StringBuffer append( boolean b);   
   public StringBuffer append( long l);   
   public StringBuffer append( int i);              // native 
   public StringBuffer append( char c);             // synchronized 
   public StringBuffer append(char[] str, int offset,    // synchronized 
        int len);   
   public int capacity();   

http:///


J2ME in a Nutshell 

365 

   public char charAt( int index);                   // synchronized 
   public StringBuffer delete( int start, int end);  // synchronized 
   public StringBuffer deleteCharAt( int index);     // synchronized 
   public void ensureCapacity( int minimumCapacity); // synchronized 
   public void getChars(int srcBegin, int srcEnd,    // synchronized 
        char[] dst, int dstBegin);   
   public StringBuffer insert( int offset, int i);   
   public StringBuffer insert( int offset, Object obj); // synchronized 
   public StringBuffer insert( int offset, long l);   
   public StringBuffer insert( int offset, boolean b);   
   public StringBuffer insert( int offset, char c);     // synchronized 
   public StringBuffer insert(int offset,               // synchronized 
        char[] str);   
   public StringBuffer insert( int offset, String str); // synchronized 
   public int length();   
   public StringBuffer reverse();                       // synchronized 
   public void setCharAt( int index, char ch);          // synchronized 
   public void setLength( int newLength);               // synchronized   
// Public Methods Overriding Object 
   public String toString();                            // native 
} 

Passed To 

String.String()  

Returned By 

Too many methods to list.  

StringIndexOutOfBoundsException  CLDC 1.0, MIDP 1.0  

 

java.lang  unchecked  

This exception is thrown when an operation is attempted on a String or StringBuffer 

object involving an index that is either negative or too large. This class is the same as its J2SE 

equivalent, apart from its inability to be serialized.  

public class StringIndexOutOfBoundsException extends  
    IndexOutOfBoundsException {   
// Public Constructors 
   public StringIndexOutOfBoundsException();   
   public StringIndexOutOfBoundsException( int index);  
   public StringIndexOutOfBoundsException( String s);   
} 

http:///


J2ME in a Nutshell 

366 

 

System  CLDC 1.0, MIDP 1.0  

 

java.lang   

The System class contains static methods and variables that provide access to low-level 

facilities. The CLDC version of this class contains only a small subset of the functionality of 

its J2SE counterpart.  

The public static variables out and err are PrintStream objects that can be used for standard 

output and error output. With J2ME, these streams are useful when running code in an 

emulated environment, where they typically result in the creation of log files. Note that there 

is no in variable as there is no standard input stream for a CLDC device.  

The currentTimeMillis() method returns the current time as a millisecond offset from 0:00 

UTC on January 1st, 1970. This is the same representation used by the java.util.Date and 

java.util.Calendar classes.  

The exit() method causes the virtual machine to terminate. A CLDC application is permitted 

to invoke this method. However, a MIDlet will receive a SecurityException if it attempts to 

do so. The gc() method hints to the garbage collector that it should attempt to reclaim 

unreferenced memory. Note that the garbage collectors implemented in the small-footprint 

virtual machines (such as the KVM) are aggressive at cleaning up unused memory, so this 

method should not need to called very often.  

The identityHashCode() method returns a system-defined hash code for the object passed 

as its argument. This method returns the same value as the hashCode() method in the Object 

class would for the same object. It is provided as a convienence because many classes 

override the hashCode() method to return a different hash code.  

The arraycopy() method provides an efficient means of copying a portion of an array of 

objects into a separate array. The source and destination arrays may be the same. In addition, 

the source and target ranges may overlap. The getProperty() method returns the value of a 

named system property. CLDC does not provide any means to retrieve the complete list of 

available properties. Instead, an application must know beforehand the names of the 

properties that it accesses. The properties defined by CLDC are listed in Chapter 2; those for 

MIDP are listed in Chapter 3.  

public final class System { 
// No Constructor   
// Public Constants 
   public static final java.io.PrintStream err;   
   public static final java.io.PrintStream out;     
// Public Class Methods 
   public static void arraycopy(Object src, int src_position,    // native
        Object dst, int dst_position, int length);   
   public static long currentTimeMillis();                       // native
   public static void exit( int status);   
   public static void gc();   

http:///


J2ME in a Nutshell 

367 

   public static String getProperty( String key);   
   public static int identityHashCode( Object x);                // native
} 

Thread  CLDC 1.0, MIDP 1.0  

 

java.lang  runnable  

A class that represents a thread of execution in the Java virtual machine. Each thread has its 

own call stack and its own copy of local variables created by the Java methods that it 

executes.  

An application may create a new thread of execution by instantiating a subclass of Thread 

and overriding the run() method, or by implementing a Runnable interface and passing its 

reference to the Thread constructor. A new thread is created in an inactive state. To begin 

execution, its start() method must be invoked. The total number of threads in existence can 

be obtained by calling the static activeCount() method.  

Once a thread is running, it continues to do so until the run() of the Thread subclass 

terminates, or the Runnable returns control to its caller. Note that even though its thread of 

execution has ended, a Thread object continues to exist until all references to it have been 

released and the object is removed by the garbage collector. The isAlive() method can be 

used to determine whether a Thread object still has an active thread of execution.  

Unlike J2SE, the CLDC Thread class does not provide the stop(), suspend() and resume() 

methods. However, there are two Thread methods that allow a thread to suspend its own 

execution. The static sleep() method suspends the thread for a fixed period of time specified 

in milliseconds. The thread will be scheduled for resumption when the delay period expires, 

but may not resume immediately if another thread is currently running. The join() method 

forces the current thread to block until the passed-in Thread thread terminates. Both sleep() 

and join() can throw an InterruptedException in the event of an interruption. (In 

practice, this is not likely to happen because the CLDC Thread does not include the J2SE 

interrupt() method.) The yield() method allows a thread to temporarily yield control to 

other threads that are waiting to run.  

Each thread has an execution priority that may be used when determining which thread should 

be chosen for execution. The setPriority() can be used to set a thread's priority and the 

getPriority() method used to retrieve it. Three standard priority levels (MIN_PRIORITY, 

NORM_PRIORITY and MAX_PRIORITY) are defined. Only priorities in the range of 

MIN_PRIORITY to MAX_PRIORITY inclusive are valid. Threads with higher priority that are 

ready to run are chosen in preference over those with lower priority. The algorithm used to 

choose between threads that have the same priority is not defined and therefore may be 

platform- and VM-dependent.  

The static currentThread() is used to obtain a reference to the Thread that is currently 

executing. This method can be used to allow a thread to perform operations on itself.  

 

http:///


J2ME in a Nutshell 

368 

 
public class Thread implements Runnable {   
// Public Constructors 
   public Thread();   
   public Thread( Runnable target);     
// Public Constants 
   public static final int MAX_PRIORITY;           // =10 
   public static final int MIN_PRIORITY;           // =1 
   public static final int NORM_PRIORITY;          // =5   
// Public Class Methods 
   public static int activeCount();                // native 
   public static Thread currentThread();           // native 
   public static void sleep(                       // native 
        long millis) throws InterruptedException;   
   public static void yield();                     // native   
// Public Instance Methods 
   public final int getPriority();                 // default:5 
   public final boolean isAlive();                 // native default:false
   public final void join() throws InterruptedException;   
   public final void setPriority( int newPriority);   
   public void start();                            // native synchronized 
// Methods Implementing Runnable 
   public void run();     
// Public Methods Overriding Object 
   public String toString();   
} 

Returned By 

Thread.currentThread()  

Throwable  CLDC 1.0, MIDP 1.0  

 

java.lang   

Throwable is the base class from which all Java exception types are derived. Throwable 

objects may be constructed with an associated message that provides diagnostic information 

relating to the cause of the exception. The message, if it is set, can be retrieved using 

the getMessage() method.  

Throwable has two subclasses that are base classes for different types of exceptions. 

The Error class and its subclasses describe errors that application code is not expected to 

recover from. J2SE has a large number of error subclasses; however, the CLDC supports only 

two of them. The Exception class is the base class for exceptions that an application can 

recover from. Application code is required to declare any Exceptions that it throws. It must 

also catch those exceptions thrown by methods that it invokes, apart from RuntimeException 

and its subclasses.  

A Throwable contains a stack backtrace that contains the method call stack at the point at 

which the exception was thrown. The stack trace may be printed using 

the printStackTrace() method. Unlike J2SE, the CLDC Throwable class does not include 

a stack trace when it is created and does not provide a fillInStackTrace() method to force 

http:///


J2ME in a Nutshell 

369 

the stack trace to be written to it on demand. The CLDC reference implementation virtual 

machine fills in the stack trace only when the exception is thrown.  

public class Throwable {   
// Public Constructors 
   public Throwable();   
   public Throwable( String message);     
// Public Instance Methods 
   public String getMessage();                             // default:null
   public void printStackTrace();     
// Public Methods Overriding Object 
   public String toString();   
} 

Subclasses 

Error, Exception  

VirtualMachineError  CLDC 1.0, MIDP 1.0  

 

java.lang  error  

This is an error that indicates that a fatal condition has been detected with the Java virtual 

machine. In CLDC, this error is never thrown. Instead, it is used only as the parent class of 

OutOfMemoryError. This class is the same as its J2SE equivalent, apart from its inability to 

be serialized.  

 
public abstract class VirtualMachineError extends Error {
// Public Constructors 
   public VirtualMachineError();   
   public VirtualMachineError( String s);   
} 

Subclasses 

OutOfMemoryError  

http:///


J2ME in a Nutshell 

370 

 

Chapter 13. java.util 

Package java.util  CLDC 1.0, MIDP 1.0  

 

  

The java.util package, whose class hierarchy is shown in Figure 13-1, contains several 

utility classes that are of general use, but not central enough to the Java language to be 

included in the java.lang package.  

The Java 2 version 1.3 java.util package contains 54 classes and interfaces. By contrast, the 

CLDC version contains only 10 classes; MIDP adds another two for timer handling. As a 

result, these platforms have drastically reduced support for collections and 

internationalization. The CDC platform provides a much more complete implementation of 

this package, leaving out only 7 classes, and the Foundation Profile requires that all of the 

J2SE classes and interfaces be present. As with the other packages in this reference section, 

we won't address the CDC and Foundation Profile versions here because the classes they 

contain are identical to those in J2SE. See Java in a Nutshell (O'Reilly) for more information.  

The collection classes in this package are a subset of those available with JDK 1.1. All 

vestiges of the Java 2 collections framework have been removed. One consequence of this is 

that some classes have been reparented. Vector, for example, is derived from Object in 

CLDC rather than from AbstractList, as it is in J2SE. Other notable changes are the 

removal of the Properties class as well as the Dictionary class, the latter being the parent 

of Hashtable. In CLDC, Hashtable remains, but it is derived from Object instead.  

CLDC retains the J2SE Calendar and Date classes, but with reduced functionality. See the 

descriptions of these classes in this chapter for more detailed information.  

The removal of the Cloneable, Comparable and Serializable interfaces from the CLDC 

java.lang package means that some of the classes in the java.util can no longer 

implement these interfaces. In practice, this will have little effect since most of the facilities 

that use these interfaces have also been removed. A possible minor annoyance is that it is no 

longer possible to compare two Date objects using the compareTo() method as in J2SE.  

 

 

 

 

 

 

 

http:///


J2ME in a Nutshell 

371 

Figure 13-1. The java.util hierarchy 

 

Calendar  CLDC 1.0, MIDP 1.0  

 

java.util   

Calendar is an abstract base class for platform-dependent classes that convert between date 

and time offsets. Since the rules for converting between an absolute UTC time and a date may 

depend on local conventions, application code does not directly instantiate a subclass of 

Calendar. Instead, it uses one of the static getInstance() methods, which returns an object 

that can handle dates using rules appropriate to the device's default locale. This arrangement 

allows an application running in a device in a western locale to obtain a Calendar that uses 

the rules of the Gregorian calendar, while allowing the same application to work with other 

calendars (such as Japanese Gregorian) in other locales.  

The proper conversion of a point in time measured in UTC depends on the time zone in which 

a device is being used. The Calendar object returned by the zero-argument variant of 

getInstance() performs the proper conversions for the default time zone of the device it is 

running on. To create a Calendar for a different time zone, obtain a TimeZone object for that 

time zone and use the variant of getInstance() that accepts a TimeZone argument. 

Alternatively, any Calendar offset can be set to work in a different time zone by calling the 

setTimeZone() method.  

The date and time associated with a Calendar object can be set from a Date object using the 

setTime() method, or to an absolute time using the setTimeInMillis() method, which 

requires a millisecond offset from 0:00 UTC on January 1st, 1970. Once the time has been set, 

the get() method can be used to get various fields of the associated date. The date or time 

http:///


J2ME in a Nutshell 

372 

field that is required is specified using one of the constants defined by the Calendar. For 

example, to get the year associated with a given date, use the expression 

get(Calendar.YEAR). Constants are also defined that correspond to days of the week and 

months of the year. To test whether a date falls on a Thursday, use the expression 

(cal.get(Calendar.DAY_OF_WEEK) == Calendar.THURSDAY), or to check whether the 

date falls in May, use (cal.get(Calendar.MONTH) == Calendar.MAY).  

The reverse conversion can be performed by using the set() method to change the individual 

fields of a Calendar and calling the getTime() or getTimeInMillis() method to obtain the 

corresponding Date or millisecond time offset.  

The equals(), after() and before() methods can be used to compare the date and time in 

a Calendar to another object, which must also be of type Calendar.  

public abstract class Calendar {   
// Protected Constructors 
   protected Calendar();     
// Public Constants 
   public static final int AM;                             // =0 
   public static final int AM_PM;                          // =9 
   public static final int APRIL;                          // =3 
   public static final int AUGUST;                         // =7 
   public static final int DATE;                           // =5 
   public static final int DAY_OF_MONTH;                   // =5 
   public static final int DAY_OF_WEEK;                    // =7 
   public static final int DECEMBER;                       // =11 
   public static final int FEBRUARY;                       // =1 
   public static final int FRIDAY;                         // =6 
   public static final int HOUR;                           // =10 
   public static final int HOUR_OF_DAY;                    // =11 
   public static final int JANUARY;                        // =0 
   public static final int JULY;                           // =6 
   public static final int JUNE;                           // =5 
   public static final int MARCH;                          // =2 
   public static final int MAY;                            // =4 
   public static final int MILLISECOND;                    // =14 
   public static final int MINUTE;                         // =12 
   public static final int MONDAY;                         // =2 
   public static final int MONTH;                          // =2 
   public static final int NOVEMBER;                       // =10 
   public static final int OCTOBER;                        // =9 
   public static final int PM;                             // =1 
   public static final int SATURDAY;                       // =7 
   public static final int SECOND;                         // =13 
   public static final int SEPTEMBER;                      // =8 
   public static final int SUNDAY;                         // =1 
   public static final int THURSDAY;                       // =5 
   public static final int TUESDAY;                        // =3 
   public static final int WEDNESDAY;                      // =4 
   public static final int YEAR;                           // =1   
// Public Class Methods 
   public static Calendar getInstance();                   // synchronized
   public static Calendar getInstance( TimeZone zone);     // synchronized 
// Public Instance Methods 
   public boolean after( Object when);   
   public boolean before( Object when);   
   public final int get( int field);   

http:///


J2ME in a Nutshell 

373 

   public final Date getTime();   
   public TimeZone getTimeZone();   
   public final void set( int field, int value);   
   public final void setTime( Date date);   
   public void setTimeZone( TimeZone value);     
// Public Methods Overriding Object 
   public boolean equals( Object obj);     
// Protected Instance Methods 
   protected long getTimeInMillis();   
   protected void setTimeInMillis( long millis);   
} 

Returned By 

Calendar.getInstance()  

Date  CLDC 1.0, MIDP 1.0  

 

java.util   

The Date class represents a date and time held internally as a millisecond offset from 0:00 

UTC on January 1st, 1970. The default constructor creates a Date that represents the date and 

time at the time of its creation. A Date object for an arbitrary time can be created by passing 

the appropriate offset to the Date(long offset) constructor. Negative offsets can be used to 

represent dates in 1969 and earlier years. The time associated with a Date can be changed 

using the setTime() method and the time offset for a Date can be obtained using getTime().  

The CLDC version of Date is much simpler than the J2SE implementation. Deprecated APIs 

and constructors have been removed, as have methods that allow two Date objects to be 

compared. A consequence of this is that it is no longer possible to convert between a Date 

object and the corresponding parts of a date, such as year, month, day, etc. The Calendar 

class must be used to perform these conversions instead.  

Note that a Date object always contains a time offset measured relative to UTC. To work in 

other time zones, an appropriate TimeZone object must be obtained and used together with an 

instance of the Calendar class.  

public class Date {   
// Public Constructors 
   public Date();   
   public Date( long date);     
// Public Instance Methods 
   public long getTime();                         // default:1010205995686
   public void setTime( long time);     
// Public Methods Overriding Object 
   public boolean equals( Object obj);   
   public int hashCode();   
} 

 

http:///


J2ME in a Nutshell 

374 

Passed To 

Calendar.setTime(), Timer.{schedule(), scheduleAtFixedRate()}, 
javax.microedition.lcdui.DateField.setDate()  

Returned By 

Calendar.getTime(), javax.microedition.lcdui.DateField.getDate()  

EmptyStackException  CLDC 1.0, MIDP 1.0  

 

java.util  unchecked  

This is an exception that is thrown to signal that an attempt has been made to remove or peek 

at the top element of an empty Stack. This class is the same as its J2SE equivalent, apart from 

its inability to be serialized.  

 
public class EmptyStackException extends RuntimeException { 
// Public Constructors 
   public EmptyStackException();   
} 

Enumeration  CLDC 1.0, MIDP 1.0  

 

java.util   

Enumeration is an interface that provides methods to access an underlying sequence of 

objects that can be traversed in an implementation-defined order. An Enumeration is often 

used to traverse the elements of a Vector as an alternative to directly accessing each element 

by its index.  

The hasMoreElements() method returns false if the Enumeration is empty or has already 

returned its last element. The first call to nextElement() returns the first element in the 

Enumeration, if it is not empty. Each subsequent invocation of this method returns the 

following element. Calling this method after the last element has been returned results in a 

NoSuchElementException. The hasMoreElements() is typically called before each use of 

nextElement() to check whether the end of the sequence has been reached. Note that the 

values of an Enumeration can be iterated through only once; there is no way to reset it to the 

beginning.  

public interface Enumeration {   
// Public Instance Methods 
   public abstract boolean hasMoreElements(); 
   public abstract Object nextElement();   
} 

http:///


J2ME in a Nutshell 

375 

Returned By 

Hashtable.{elements(), keys()}, Vector.elements()  

Hashtable  CLDC 1.0, MIDP 1.0  

 

java.util   

Hashtable is a collection class in which objects (referred to as values) are stored with 

associated keys. An entry is added to the Hashtable using the put() method, which takes a 

key and a value. Both the key and the value can be arbitrary Java objects, but neither may be 

null. Only one instance of each key may appear in the Hashtable; an attempt to store a 

second value with the same key will replace the first value. Key equality is determined by 

using the equals() method.  

The value associated with a key can be obtained by passing the key to the get() method. If 

there is no value in the Hashtable with the supplied key, then null is returned. The 

contains() method can be used to determine whether an entry with a given key exists. The 

containsKey() method returns true if at least one entry with the supplied value is found in 

the table. Since only keys are required to be unique, it is possible for the same value (or 

values that are equal according to their equals() methods) to appear in the table more than 

once.  

The size() method returns the number of entries in the Hashtable. However, to determine 

whether the Hashtable is empty, it is often more convienent to use the isEmpty() method.  

To remove an entry from the Hashtable, pass its key to the remove() method. If an entry 

with the given key was found in the table, the remove() method returns its value, 

implementing a read-and-clear operation. All of the entries in the Hashtable can be deleted 

by calling the clear() method.  

To create a loop that accesses all of the values in the Hashtable, use the elements() method, 

This method returns an Enumeration with one entry for each value in the table. The order in 

which the values are returned is not defined. To obtain an Enumeration that iterates over all 

of the keys in the table, use the keys() method.  

public class Hashtable {   
// Public Constructors 
   public Hashtable();   
   public Hashtable( int initialCapacity);     
// Public Instance Methods 
   public void clear();                                    // synchronized
   public boolean contains( Object value);                 // synchronized
   public boolean containsKey( Object key);                // synchronized
   public Enumeration elements();                          // synchronized
   public Object get( Object key);                         // synchronized
   public boolean isEmpty();                               // default:true
   public Enumeration keys();                              // synchronized
   public Object put( Object key, Object value);           // synchronized
   public Object remove( Object key);                      // synchronized

http:///


J2ME in a Nutshell 

376 

   public int size();     
// Public Methods Overriding Object 
   public String toString();                               // synchronized 
// Protected Instance Methods 
   protected void rehash();   
} 

NoSuchElementException  CLDC 1.0, MIDP 1.0  

 

java.util  unchecked  

This exception is thrown to signal that an attempt has been made to access an element of a 

collection or an enumeration that does not exist. This class is the same as its J2SE equivalent, 

apart from its inability to be serialized.  

 
public class NoSuchElementException extends RuntimeException { 
// Public Constructors 
   public NoSuchElementException();   
   public NoSuchElementException( String s);   
} 

Random  CLDC 1.0, MIDP 1.0  

 

java.util   

This class generates pseudo-random numbers based on an initial seed value. The algorithm 

used is deterministic in that two instances of this class, initialized with the same seed and 

subject to the same method calls in the same order, will return identical sequences of 

numbers. Subclasses can implement a different random number generation algorithm by 

overriding the protected next() method to return a pseudo-random number with the specified 

number of bits.  

The nextInt() and nextLong() methods return the next pseudo-random integer and long 

values, respectively, from the random number sequence of this generator. The default 

algorithm generates numbers that are approximately evenly distributed over the total range of 

values for the return type, which implies that there is an almost equal chance that any given 

bit in the random value will be 0 or 1.  

The setSeed() can be used to set a new seed value from which subsequent random numbers 

will be generated. The seed can also be supplied when an instance of this class is created. 

A Random object constructed with its default constructor is seeded with the current time, 

expressed as the number of milliseconds since Jan 1st, 1970.  

The CLDC implementation of this class does not include the J2SE methods for random 

floating point numbers (the CLDC VM does not support floating point values), nor does it 

offer the ability to obtain random boolean values and random-valued byte arrays.  

http:///


J2ME in a Nutshell 

377 

public class Random {   
// Public Constructors 
   public Random();   
   public Random( long seed);     
// Public Instance Methods 
   public int nextInt();   
   public long nextLong();   
   public void setSeed( long seed);                        // synchronized 
// Protected Instance Methods 
   protected int next( int bits);                          // synchronized
} 

Stack  CLDC 1.0, MIDP 1.0  

 

java.util   

A class that represent a last-in, first-out push down stack. Items on the stack can be arbitrary 

Java objects. The push() method is used to add another item to the top of the stack. 

The uppermost item on the stack can be removed using the pop() method, which returns 

the item to the caller. The peek() method returns the uppermost object without removing it 

from the stack. If either peek() or pop() is called when the stack is empty, 

an EmptyStackException is thrown. This situation can be detected in advance by checking 

the empty() method, which returns true when there are no items on the stack.  

The search() method can be used to determine whether a given object is in the stack. If 

the object is found, its distance from the top of the stack is returned, where the topmost object 

is considered to be at distance 1. If the object is not found in the stack, -1 is returned. 

The Stack class does not provide any methods that allow direct access to any item other than 

the topmost element . However, the methods of its Vector superclass can be used to access 

and remove any item on the stack. (This practice is not recommended, however, since it 

breaks the encapsulation of the data within the stack.)  

 
public class Stack extends Vector {   
// Public Constructors 
   public Stack();     
// Public Instance Methods 
   public boolean empty();   
   public Object peek();                                   // synchronized
   public Object pop();                                    // synchronized
   public Object push( Object item);   
   public int search( Object o);                           // synchronized
} 

http:///


J2ME in a Nutshell 

378 

 

Timer  CLDC 1.0, MIDP 1.0  

 

java.util   

A class that allows code to be scheduled for execution in the future. A Timer creates 

a dedicated thread which it uses to execute code in one or more TimerTask objects. These 

objects are passed to it using its schedule() and scheduleAtFixedRate() methods.  

To schedule a task to be run once, use one of the two-argument variants of schedule(), 

passing it either the delay in milliseconds until its only execution, or a Date object holding the 

required execution time.  

The three-argument schedule() methods arrange for the task to be run at a given initial time, 

or after an initial delay and then subsequently executed with a fixed delay between the start 

times. If task execution is delayed for any reason, the next execution of the same task will also 

be delayed. Over time, these delays can increase, so this mode of operation is acceptable 

when the total number of times that the task is run in a given period is not critical (e.g., 

polling a mail server for undelivered mail).  

When it is important that tasks be executed with a given average frequency, such as graphics 

animation, the scheduleAtFixedRate() method should be used instead. This method does 

not schedule each execution relative to the start time of the previous one. Instead, it attempts 

to compensate for delays by scheduling the task more often in order to maintain the desired 

long-term execution frequency. This might mean that the task will occasionally run more 

often than an identical task scheduled using the schedule() method. Consequently, 

successive executions might be separated by a smaller time interval than the delay specified in 

the scheduleAtFixedRate() call.  

Since all of the TimerTasks associated with a Timer execute in the same thread, a delay 

caused by one task may result in other tasks not being executed in a timely manner. In a J2SE 

system, delays of this type may be avoided by assigning tasks to more than one Timer. A 

CLDC system, however, may not have native thread support in its operating system. Hence, 

such a strategy may not achieve the desired effect.  

The cancel() method can be used to cancel all pending task executions and terminate the 

thread associated with the Timer. A task that is executing when this method is invoked will be 

allowed to complete.  

public class Timer {   
// Public Constructors 
   public Timer();     
// Public Instance Methods 
   public void cancel();   
   public void schedule( TimerTask task, Date time);   
   public void schedule( TimerTask task, long delay);   
   public void schedule(TimerTask task, Date firstTime,  
        long period);   
 

http:///


J2ME in a Nutshell 

379 

   public void schedule(TimerTask task, long delay,  
        long period);   
   public void scheduleAtFixedRate(TimerTask task,  
        Date firstTime, long period);   
   public void scheduleAtFixedRate(TimerTask task, long delay, 
        long period);   
} 

TimerTask  CLDC 1.0, MIDP 1.0  

 

java.util  runnable  

An abstract class that should be subclassed to provide a unit of work. The TimerTask can then 

be scheduled for execution through the use of the Timer object. Subclasses should place code 

to be executed by the Timer in the run() method and use either the schedule() or 

scheduleAtFixedRate() method to arrange for it to be scheduled.  

Once a task has been scheduled, future execution can be canceled by calling the cancel() 

method. If the task is executing when this method is called, however, it will be allowed to 

complete. A task will not be scheduled for execution again once the cancel() method 

returns.  

The scheduledExecutionTime() method can be used to get the time at which the task was 

most recently scheduled for execution, as a millisecond offset from 0:00 UTC on January 1st, 

1970.  

public abstract class TimerTask implements Runnable {   
// Protected Constructors 
   protected TimerTask();     
// Public Instance Methods 
   public boolean cancel();   
   public long scheduledExecutionTime();   
// Methods Implementing Runnable 
   public abstract void run();   
} 

Passed To 

Timer.{schedule(), scheduleAtFixedRate()}  

TimeZone  CLDC 1.0, MIDP 1.0  

 

java.util   

A TimeZone object holds information for a specific time zone, such as its offset from GMT 

and whether it observes daylight savings. The getDefault() method returns the default 

TimeZone for the device. A list of the time zones that a device supports can be obtained using 

the static getAvailableIDs() method. A TimeZone object for a specific time zone can be 

http:///


J2ME in a Nutshell 

380 

obtained by calling the getTimeZone() method, passing the time zone's identifier, which 

must be one of the strings returned by the getAvailableIDs() method. Note that CLDC 

devices are only required to support their default time zone. Therefore, it may not be possible 

for application code to obtain a TimeZone object for any other time zone.  

A TimeZone object contains a fixed time offset from GMT. This value, which is expressed in 

milliseconds, can be obtained by calling the getRawOffset() method. This value does not 

take into account daylight savings time. If a time zone uses daylight savings time, which can 

be determined from the useDaylightTime() method, the actual offset on any given date 

depends on whether daylight savings time is in force. The offset from GMT adjusted for 

daylight savings can be obtained from the getOffset() method, which returns the offset in 

force at a specified date and time.  

public abstract class TimeZone {   
// Public Constructors 
   public TimeZone();     
// Public Class Methods 
   public static String[] getAvailableIDs();   
   public static TimeZone getDefault();                    // synchronized
   public static TimeZone getTimeZone( String ID);         // synchronized 
// Public Instance Methods 
   public String getID();                                  // constant 
   public abstract int getOffset(int era, int year, int month,  
        int day, int dayOfWeek, int millis);   
   public abstract int getRawOffset();   
   public abstract boolean useDaylightTime();   
} 

Passed To 

Calendar.{getInstance(), setTimeZone()}, 
javax.microedition.lcdui.DateField.DateField()  

Returned By 

Calendar.getTimeZone(), TimeZone.{getDefault(), getTimeZone()}  

Vector  CLDC 1.0, MIDP 1.0  

 

java.util   

Vector is a collection class that behaves like a variable-length array of objects. A Vector can 

contain an arbitrary number of Java objects, accessed with an integer position index. The first 

entry is index 0. Since an entry in a Vector is distinguished only by its index, the same object 

can appear any number of times in the same Vector.  

Entries can be appended to the end of the Vector using the addElement() method. Entries 

can be inserted at a given index using the insertElementAt() method. 

The insertElementAt() method causes all elements at that location and higher to be shifted 

http:///


J2ME in a Nutshell 

381 

up by one position. An element at a given index can be replaced using the setElementAt() 

method.  

Elements can be removed from a Vector by index or by value. The removeElementAt() 

method removes the element with the given index, while removeElement(Object obj) 

removes the element with the lowest index that is equivalent to the object passed in. Both of 

these methods cause the indices of all elements that follow the removed element to be reduced 

by 1. The removeAllElements() removes all entries from the Vector.  

There are several ways to access the elements in a Vector. The elementAt() returns the 

element at the specified index. The convenience methods firstElement() and 

lastElement() return the first and last elements (which will be the same if the Vector has 

only one element). The elements() method returns an Enumeration that iterates over all of 

the elements in the Vector in order of increasing index. Finally, the contents of the Vector 

can be copied into a pre-allocated array (which must be large enough to hold it) using the 

copyInto() method. In many cases, it is quicker to use this method than it is to use the 

Enumeration returned by the elements(). However, the possible performance gain must be 

weighed against the memory required for the array if the Vector is large.  

The number of elements in a Vector can be obtained from the size() method. To determine 

whether a Vector is empty, use the isEmpty() method. The size of a Vector can be 

explicitly set using the setSize() method. If the value passed to this method is smaller than 

the current size, elements with indices greater than or equal to the new size are removed. If 

the new size is larger than the existing size, then slots with indices greater than or equal to the 

old size are filled with null.  

A Vector manages its elements using an internal array that is larger than the number of 

elements that it contains. The size of this array is referred to as the Vector's capacity and can 

be retrieved using the capacity() method. As elements are added, the Vector increases its 

capacity by allocating a new internal array with additional entries and copying the element list 

from the old array to the new one. The initial capacity and the amount that it increases when 

necessary can be supplied to the constructor. Since the process of increasing an array's 

capacity is expensive, it is a good idea to set the initial capacity so that it is large enough to 

hold all of the elements that it may contain in its lifetime, if this is known in advance. The 

same effect can be obtained at run time by calling the ensureCapacity() method, supplying 

the expected number of Vector elements. The size of the internal array can be reduced to the 

number required to actually hold its content using the trimToSize() method.  

Vector provides methods that allow its content to be searched for a given object. The 

contains() method returns true if the Vector holds an element that is equivalent to its 

argument. To find the index of an element that matches a given object, use indexOf(), which 

has two variants. The first searches from the start of the Vector, while the second searches 

from a specified starting index. The lastIndexOf() methods are similar, but return the index 

of the last matching element. Each of these methods return -1 if no match is found.  

public class Vector {   
// Public Constructors 
   public Vector();   
   public Vector( int initialCapacity);   
   public Vector(int initialCapacity, int capacityIncrement);     

http:///


J2ME in a Nutshell 

382 

// Public Instance Methods 
   public void addElement( Object obj);                  // synchronized
   public int capacity();   
   public boolean contains( Object elem);   
   public void copyInto( Object[] anArray);              // synchronized
   public Object elementAt( int index);                  // synchronized
   public Enumeration elements();                        // synchronized
   public void ensureCapacity( int minCapacity);         // synchronized
   public Object firstElement();                         // synchronized
   public int indexOf( Object elem);   
   public int indexOf( Object elem, int index);          // synchronized
   public void insertElementAt( Object obj, int index);  // synchronized
   public boolean isEmpty();                             // default:true
   public Object lastElement();                          // synchronized
   public int lastIndexOf( Object elem);   
   public int lastIndexOf( Object elem, int index);      // synchronized
   public void removeAllElements();                      // synchronized
   public boolean removeElement( Object obj);            // synchronized
   public void removeElementAt( int index);              // synchronized
   public void setElementAt( Object obj, int index);     // synchronized
   public void setSize( int newSize);                    // synchronized
   public int size();   
   public void trimToSize();                             // synchronized 
// Public Methods Overriding Object 
   public String toString();                             // synchronized 
// Protected Instance Fields 
   protected int capacityIncrement;   
   protected int elementCount;   
   protected Object[] elementData;   
} 

Subclasses 

Stack  

http:///


J2ME in a Nutshell 

383 

 

Chapter 14. javax.microedition.io 

Package 
javax.microedition.io  

CLDC 1.0, MIDP 1.0, CDC 
1.0  

 

  

This package contains the interfaces and classes that form the Generic Connection 

Framework. This framework provides a simpler and more uniform interface for accessing 

external devices, such as networks and serial communication ports, than the corresponding 

classes in J2SE.  

The key elements of this package are the Connector class and the Connection interface. The 

Connector class contains static methods that create specialized connections (i.e. objects that 

implement the Connection interface) to various types of device or network protocol. The 

Connector open() method accepts a name argument that describes the connection target; it 

then returns an instance of a class that implements a sub-interface of Connection suitable for 

the specified protocol or device. Note that the actual classes that are returned are not part of 

the public API, but the interfaces that they implement (e.g., HttpConnection) are all 

contained in this package.  

The Generic Connection Framework is part of the CLDC specification. Although it defines 

the framework and most of the interfaces in this package, it does not require the 

implementation of any specific protocols. The HttpConnection interface is introduced by the 

MID profile rather than being part of CLDC. MIDP requires only that the HTTP protocol be 

supported, although device vendors are free to implements sockets, datagrams and other 

protocols according to the requirements of their devices.  

Although intended for CLDC and its associated profiles, this package is also included in the 

Connected Device Configuration (CDC) and the Foundation Profile, for reasons of 

compatibility.  

Figure 14-1 shows the class hierarchy of this package. See Chapter 6 for more details about 

the Generic Connection Framework.  

 

 

 

 

 

 

 

http:///


J2ME in a Nutshell 

384 

Figure 14-1. The java.microedition.io hierarchy 

 

Connection  CLDC 1.0, MIDP 1.0, CDC 1.0  

 

javax.microedition.io   

Connection is a base interface that represents a generic connection to a device or remote 

object accessed over a network. This interface defines only a close() method. A class that 

implements this interface is obtained from the open() method of the Connector class. These 

connections are already in the open state, so there is no open() method in the Connection 

interface.  

public interface Connection {   
// Public Instance Methods 
   public abstract void close() throws java.io.IOException; 
} 

Implementations 

DatagramConnection, InputConnection, OutputConnection, 
StreamConnectionNotifier  

Returned By 

Connector.open()  

http:///


J2ME in a Nutshell 

385 

 

ConnectionNotFoundException 
CLDC 1.0, MIDP 1.0, CDC 
1.0  

 

javax.microedition.io  checked  

This exception reports an error related to the Generic Connection Framework. It is thrown 

when the Connector open() method is invoked requesting a protocol that is not supported by 

the implementation.  

 
public class ConnectionNotFoundException extends java.io.IOException {
// Public Constructors 
   public ConnectionNotFoundException();   
   public ConnectionNotFoundException( String s);   
} 

Connector  CLDC 1.0, MIDP 1.0, CDC 1.0  

 

javax.microedition.io   

The Connector class is a factory that creates Connection objects, which encapsulate a 

protocol connection with another target device. Note that the communications mechanism that 

each device supports is implementation-dependent. The CLDC specification does not require 

any protocols to be supported, and MIDP 1.0 requires only HTTP.  

The three open() methods create and return a Connection to an entity that is defined by the 

name argument. The legal values of the name argument and their precise interpretations are 

implementation-dependent. However, they always take the form of a URL. The most common 

forms of this argument are:  

http://host:port/path  

Creates an HTTP connection to a server at port number port on the given host, to 

access the resource named by path. Some implementations may also support secure 

communications using HTTPS, which would use https: as the protocol selector.  

socket://host:port  

Creates a socket connection to a server at port number port on the given host.  

socket://:port  

Creates a server socket to receive connections addressed to port port on the local host.  

 
 

http:///


J2ME in a Nutshell 

386 

datagram://host:port  

Creates a connection to send datagrams to port port on the given host.  

datagram://:port  

Creates a connection to receive datagrams addressed to port port on the local host.  

comm://port;params  

Opens a serial port on the local host. The params argument may supply optional 

parameters such as the required baud rate.  

file://path  

Opens a file in the filestore of the host system.  

If the value of the name argument is not recognized or support for the underlying 

communication mechanism is not provided, the method throws a 

ConnectionNotFoundException.  

The mode takes the values READ, WRITE or READ_WRITE and specifies the type of access 

required to the connection. Some connection types may place restrictions on the values of this 

argument that they accept. For example, a connection to a printer may not allow read access. 

If this argument is not specified, the value READ_WRITE is assumed.  

A timeout argument can be also supplied to the method. By default, this parameter has the 

value false. When timeouts are requested and supported, a connection timeout causes this 

method to throw an InterruptedIOException.  

The type of object returned by the open() method is implementation-dependent. This object, 

however, always implements an interface derived from Connection that is appropriate for the 

device or communication protocol being used. For example, if the name argument indicates an 

HTTP connection, then the returned object will implement the HttpConnection interface. 

Similarly, sockets return either a StreamConnection or StreamConnectionNotifier object. 

Datagrams return a DatagramConnection.  

The openInputStream(), openOutputStream(), openDataInputStream() and 

openDataOutputStream() methods return I/O streams without returning the underlying 

Connection object to the caller. The name argument is interpreted in the same way as if it 

were passed to the open() method. These methods succeed only if the name argument is valid 

and supported on the local system, and the underlying communication mechanism allows 

reading or writing (depending on whether an input or output stream is requested).  

public class Connector { 
// No Constructor   

// Public Constants 
   public static final int READ;                                 // =1
   public static final int READ_WRITE;                           // =3
   public static final int WRITE;                                // =2 

http:///


J2ME in a Nutshell 

387 

 

// Public Class Methods 
   public static Connection open( 
        String name) throws java.io.IOException;   
   public static Connection open(String name,  
        int mode) throws java.io.IOException;   
   public static Connection open(String name, int mode,  
        boolean timeouts) throws java.io.IOException;   
   public static java.io.DataInputStream openDataInputStream( 
        String name) throws java.io.IOException;   
   public static java.io.DataOutputStream openDataOutputStream( 
        String name) throws java.io.IOException;   
   public static java.io.InputStream openInputStream( 
        String name) throws java.io.IOException;   
   public static java.io.OutputStream openOutputStream( 
        String name) throws java.io.IOException;   
} 

ContentConnection  CLDC 1.0, MIDP 1.0, CDC 1.0  

 

javax.microedition.io   

ContentConnection is a StreamConnection whose data is some kind of identifiable object. 

The type of object depends on the communicating entities and must either be known in 

advance or be identifiable from the value returned by the getType() method. A 

ContentConnection may convey one object, or a sequence of objects.  

The getType() method returns a String that identifies the type of the data in the input 

stream. In most cases, the object type will be identified by its MIME type, but any arbitrary 

string that has meaning to both the sender and the receiver can be used. When the connection 

between sender and receiver is implemented using HTTP, the type is conveyed in the HTTP 

Content-Type header field.  

The getLength() method returns the number of bytes that make up the object's 

representation in the data stream. This method may return -1 if the protocol used to carry the 

data does not include a mechanism for conveying the length of the object. In this case, the 

receiver should continue to read data until an end-of-file indication is received or some 

characteristic of the data indicates that a complete object has been read. Where a stream may 

carry several objects in succession, the value returned by this method may be used to mark the 

boundary between them. When the connection between sender and receiver is implemented 

using HTTP, the length is conveyed in the HTTP Content-Length header field.  

The getEncoding() method returns a String that indicates the character set in which the 

bytes are encoded. This method is useful when the data consists of a sequence of bytes that 

represent strings that need to be converted into Unicode by the receiver, rather than binary 

data that needs no conversion. When the connection between sender and receiver is 

implemented using HTTP, the length is conveyed in the HTTP Content-Encoding header 

field.  

 

http:///


J2ME in a Nutshell 

388 

 
public interface ContentConnection extends StreamConnection { 
// Public Instance Methods 
   public abstract String getEncoding();   
   public abstract long getLength();   
   public abstract String getType();   
} 

Implementations 

HttpConnection  

Datagram  CLDC 1.0, MIDP 1.0, CDC 1.0  

 

javax.microedition.io   

A Datagram represents a message to be sent from a sender to a receiver. A Datagram consists 

of an arbitrary sequence of bytes together with an address. Datagram objects are created using 

the newDatagram() method of the DatagramConnection class.  

When preparing a Datagram for transmission, the data content must be set using the 

setData() method, which requires the data to be supplied in the form of an array of bytes, 

where the offset and len arguments specify the portion of the array that is to be used to 

form the message body. The maximum permitted length of a Datagram can be obtained from 

the DatagramConnection object. The data length associated with the Datagram can be 

changed using the setLength() method, but it cannot be increased beyond the end of the 

buffer supplied by the setData method. The reset() method is used to set the offset and 

length values to zero. This method is often used when creating the message body using the 

DataOutput interface methods.  

A Datagram must have a destination address, which is set using one of the two setAddress() 

methods. One variant allows the address to be copied from another Datagram, which is a 

convenient when creating a response to a received Datagram. The other variant accepts a 

string of the form datagram://host:port, where host is the host name or IP address of the 

destination and port is the destination's port number. A Datagram without a destination 

address to be sent using a DatagramConnection in client mode (see the description of 

DatagramConnection for more information) will use the DatagramConnection's address. If 

the Datagram address is set, however, it temporarily overrides the address associated with the 

DatagramConnection.  

When a Datagram is received, the address of the sender can be obtained by calling the 

getAddress() method. This returns a String encoded in the form datagram://host:port. 

The message content is obtained by calling the getData(), getLength(), and getOffset() 

methods. The first of these methods returns an array of bytes, while the other two return the 

offset of the first byte that contains the message data and the length of that data. (In other 

words, the first valid data byte is given by dgram.getData()[dgram.getOffset()] and the 

last valid byte by dgram.getData()[dgram.getOffset() + dgram.getLength() - 1].  

http:///


J2ME in a Nutshell 

389 

For convenience when creating or reading the body of a message, Datagram implements both 

the DataInput and DataOutput interfaces. This is primarily a convienence when reading or 

writing to the message body. For example, one way to create a datagram is to use the 

setData() method to supply the output buffer, passing the offset and length arguments as 

zero, and then call methods of the DataOutput interface (such as writeInt() or 

writeUTF()) to store data in the buffer. When these methods are used, the length of the 

outgoing Datagram is automatically set to match that of the data written to the buffer. The 

same Datagram can be used to create more than one message by calling the reset() method 

to empty the buffer after the Datagram has been sent.  

Similarly, on receiving a Datagram, the DataInput methods (such as readInt() and 

readUTF()) can be used to extract fields from the message body. These methods 

automatically update the offset value so that subsequent methods read from the next available 

byte in the buffer. Note that the reset() method should never be called in this case, as it 

would have the effect of making the received message appear to be empty.  

 
public interface Datagram extends java.io.DataInput, java.io.DataOutput {
// Public Instance Methods 
   public abstract String getAddress();   
   public abstract byte[] getData();   
   public abstract int getLength();   
   public abstract int getOffset();   
   public abstract void reset();   
   public abstract void setAddress( Datagram reference);   
   public abstract void setAddress( 
        String addr) throws java.io.IOException;   
   public abstract void setData(byte[] buffer,  
        int offset, int len);   
   public abstract void setLength( int len);   
} 

Passed To 

Datagram.setAddress(), DatagramConnection.{receive(), send()}  

Returned By 

DatagramConnection.newDatagram()  

DatagramConnection  CLDC 1.0, MIDP 1.0, CDC 1.0  

 

javax.microedition.io   

DatagramConnection is a Connection that is used to send Datagram objects to one or more 

receivers. A datagram is a sequence of bytes that is delivered together in the form of a 

message. Datagrams are not guaranteed to be delivered. In addition, the order of delivery of 

successive datagrams does not always match the order in which they were sent. Since a 

http:///


J2ME in a Nutshell 

390 

DatagramConnection deals in discrete messages, it does not have any associated input or 

output streams.  

A DatagramConnection receiver is obtained by calling the Connector open() method with a 

name argument of the form datagram://:port, where port is the port number to which 

senders should address messages. DatagramConnections created in this way can also be used 

to send Datagrams, often as responses. A DatagramConnection created in this way is said to 

be in server mode.  

A DatagramConnection sender is obtained by supplying a name argument of the form 

datagram://host:port. This type of DatagramConnection is said to be in client mode. The 

difference between server and client modes is that the port number for server mode is known 

in advance (and must be known by senders so that they can address messages). In client 

mode, the port number is dynamically allocated, and it may be different each time the client 

executes. The client port number will appear in the messages received by the server and can 

be used to address the reply message. There is currently no direct way for a client to find out 

the port number that has been allocated to it.  

Once a DatagramConnection has been obtained, Datagrams can be created by calling one of 

the newDatagram() methods. There are four variants of this method that either specify or 

omit the data and the address. If either one is not specified with newDatagram(), they can be 

supplied later using the setData() and setAddress() methods provided by the Datagram 

interface.  

To send a Datagram, use the send() method. Note that the send() method requires that the 

destination address in the Datagram has been set. The receive() retrieves a message 

addressed to the specified DatagramConnection, stores it in the Datagram passed to it, and 

returns the number of bytes copied. If the buffer associated with the Datagram is not large 

enough to receive the entire message, the excess bytes are discarded and no error is reported. 

The address field of the Datagram should represent the host and port number of the message 

sender.  

 
public interface DatagramConnection extends Connection {   
// Public Instance Methods 
   public abstract int getMaximumLength( 
        ) throws java.io.IOException;   
   public abstract int getNominalLength( 
        ) throws java.io.IOException;   
   public abstract Datagram newDatagram( 
        int size) throws java.io.IOException;   
   public abstract Datagram newDatagram(byte[] buf,  
        int size) throws java.io.IOException;   
   public abstract Datagram newDatagram(int size,  
        String addr) throws java.io.IOException;   
   public abstract Datagram newDatagram(byte[] buf,  
        int size, String addr) throws java.io.IOException; 
   public abstract void receive( 
        Datagram dgram) throws java.io.IOException;   
   public abstract void send( 
        Datagram dgram) throws java.io.IOException;   
} 

http:///


J2ME in a Nutshell 

391 

HttpConnection  CLDC 1.0, MIDP 1.0, Foundation 1.0  

 

javax.microedition.io   

HttpConnection is a ContentConnection that uses HTTP 1.1 as its underlying protocol. An 

instance of HttpConnection is obtained by invoking the Connector open() with a name 

argument of the form http://host:port/path. Some implementations may also support a 

secure connection using HTTPS.  

The usual sequence of events when using an HttpConnection is to first call 

setRequestMethod() to set the request method type to either GET (the default), HEAD or POST. 

Next, add any optional HTTP headers using the setRequestProperty() method. Finally, if 

this is a POST request, write any data to be sent to an output stream obtained from the 

openOutputStream() or openDataOutputStream() methods (inherited from 

ContentConnection).  

The getResponseCode() method can be called to retrieve the server's response, which will 

indicate whether the request was successful (HTTP_OK). Some response codes, such as 

HTTP_MOVED_TEMP or HTTP_UNAUTHORIZED, require the application to take further action 

before the request can be performed. The getResponseMessage() method returns any 

message sent by the server to further explain or qualify the response code.  

HTTP headers sent by the server can be retrieved in several ways. The 

getHeaderFieldKey() and getHeaderField() methods can be used to access all of the 

headers in the request by supplying a zero-based index. These methods return null when the 

last header has been reached. Given the name of a header, its value can either be retrieved in 

string form using an overloaded form of getHeaderField() that accepts the header name, or 

decoded as a Java int or Date object using the getHeaderFieldInt() and 

getHeaderFieldDate methods. Finally, some fields can be obtained using convenience 

methods such as getDate() and getExpiration().  

The reply data can be read from an InputStream obtained from the openInputStream() or 

openDataInputStream() methods. The getType() and getEncoding() methods can be 

used to get the MIME type and character encoding of the data, respectively. Both of these 

methods may return null, in which case the application will need to make suitable default 

assumptions. The number of bytes available to be read can be obtained from the getLength() 

method, which returns the value of the Content-Length header. If this header was not 

included by the server, the application must repeatedly read the input stream until an end-of-

file condition is returned.  

 
public interface HttpConnection extends ContentConnection {   
// Public Constants 
   public static final String GET;                              // ="GET" 
   public static final String HEAD;                             // ="HEAD"
   public static final int HTTP_ACCEPTED;                       // =202 

http:///


J2ME in a Nutshell 

392 

   public static final int HTTP_BAD_GATEWAY;                    // =502 
   public static final int HTTP_BAD_METHOD;                     // =405 
   public static final int HTTP_BAD_REQUEST;                    // =400 
   public static final int HTTP_CLIENT_TIMEOUT;                 // =408 
   public static final int HTTP_CONFLICT;                       // =409 
   public static final int HTTP_CREATED;                        // =201 
   public static final int HTTP_ENTITY_TOO_LARGE;               // =413 
   public static final int HTTP_EXPECT_FAILED;                  // =417 
   public static final int HTTP_FORBIDDEN;                      // =403 
   public static final int HTTP_GATEWAY_TIMEOUT;                // =504 
   public static final int HTTP_GONE;                           // =410 
   public static final int HTTP_INTERNAL_ERROR;                 // =500 
   public static final int HTTP_LENGTH_REQUIRED;                // =411 
   public static final int HTTP_MOVED_PERM;                     // =301 
   public static final int HTTP_MOVED_TEMP;                     // =302 
   public static final int HTTP_MULT_CHOICE;                    // =300 
   public static final int HTTP_NO_CONTENT;                     // =204 
   public static final int HTTP_NOT_ACCEPTABLE;                 // =406 
   public static final int HTTP_NOT_AUTHORITATIVE;              // =203 
   public static final int HTTP_NOT_FOUND;                      // =404 
   public static final int HTTP_NOT_IMPLEMENTED;                // =501 
   public static final int HTTP_NOT_MODIFIED;                   // =304 
   public static final int HTTP_OK;                             // =200 
   public static final int HTTP_PARTIAL;                        // =206 
   public static final int HTTP_PAYMENT_REQUIRED;               // =402 
   public static final int HTTP_PRECON_FAILED;                  // =412 
   public static final int HTTP_PROXY_AUTH;                     // =407 
   public static final int HTTP_REQ_TOO_LONG;                   // =414 
   public static final int HTTP_RESET;                          // =205 
   public static final int HTTP_SEE_OTHER;                      // =303 
   public static final int HTTP_TEMP_REDIRECT;                  // =307 
   public static final int HTTP_UNAUTHORIZED;                   // =401 
   public static final int HTTP_UNAVAILABLE;                    // =503 
   public static final int HTTP_UNSUPPORTED_RANGE;              // =416 
   public static final int HTTP_UNSUPPORTED_TYPE;               // =415 
   public static final int HTTP_USE_PROXY;                      // =305 
   public static final int HTTP_VERSION;                        // =505 
   public static final String POST;                             // ="POST"
// Property Accessor Methods (by property name) 
   public abstract long getDate() throws java.io.IOException;   
   public abstract long getExpiration( 
        ) throws java.io.IOException;   
   public abstract String getFile();   
   public abstract String getHost();   
   public abstract long getLastModified( 
        ) throws java.io.IOException;   
   public abstract int getPort();   
   public abstract String getProtocol();   
   public abstract String getQuery();   
   public abstract String getRef();   
   public abstract String getRequestMethod();   
   public abstract void setRequestMethod( 
        String method) throws java.io.IOException;   
   public abstract int getResponseCode( 
        ) throws java.io.IOException;   
   public abstract String getResponseMessage( 
        ) throws java.io.IOException;   
   public abstract String getURL();     
// Public Instance Methods 
   public abstract String getHeaderField( 
        int n) throws java.io.IOException;   

http:///


J2ME in a Nutshell 

393 

   public abstract String getHeaderField( 
        String name) throws java.io.IOException;   
   public abstract long getHeaderFieldDate(String name,  
        long def) throws java.io.IOException;   
   public abstract int getHeaderFieldInt(String name,  
        int def) throws java.io.IOException;   
   public abstract String getHeaderFieldKey( 
        int n) throws java.io.IOException;   
   public abstract String getRequestProperty( String key);   
   public abstract void setRequestProperty(String key,  
        String value) throws java.io.IOException;   
} 

InputConnection  CLDC 1.0, MIDP 1.0, CDC 1.0  

 

javax.microedition.io   

InputConnection is an interface implemented by connections that can provide an input 

stream from the data source. Most connections allow input, but in exceptional cases, such as 

a connection to a printer, this might not be the case.  

The openInputStream() method obtains an input stream that can be used to read an ordered 

sequence of bytes from the data source, while openDataInputStream() returns a stream that 

can also be used to decode Java primitive data types written to the connection using 

a DataOutputStream.  

The result of calling these methods more than once is not defined by the specification. Sun's 

reference implementations treat a second call as an error and throw an IOException. 

The openInputStream() and openDataInputStream() methods will also throw 

an IOException if the InputConnection was obtained from a Connector open() call which 

specified a mode of Connector.WRITE.  

 
public interface InputConnection extends Connection {   
// Public Instance Methods 
   public abstract java.io.DataInputStream openDataInputStream( 
        ) throws java.io.IOException;   
   public abstract java.io.InputStream openInputStream( 
        ) throws java.io.IOException;   
} 

Implementations 

StreamConnection  

http:///


J2ME in a Nutshell 

394 

 

OutputConnection  CLDC 1.0, MIDP 1.0, CDC 1.0  

 

javax.microedition.io   

OutputConnection is an interface implemented by connections that can provide an output 

stream to the data source.  

The openOutputStream() obtains an output stream that can be used to write an ordered 

sequence of bytes from the data source, while openDataOutputStream returns a stream that 

can be used to write Java primitive data types to the connection in a platform-independent 

format. Data written using the latter method can be retrieved on the other side using a 

DataInputStream.  

The result of calling these methods more than once is not defined by the specification. Sun's 

reference implementations treat a second call as an error and throw an IOException. The 

openOutputStream() and openDataOutputStream() methods will also throw an 

IOException if the OutputConnection was obtained from a Connector open() call which 

specified a mode of Connector.READ.  

 
public interface OutputConnection extends Connection {   
// Public Instance Methods 
   public abstract java.io.DataOutputStream openDataOutputStream( 
        ) throws java.io.IOException;   
   public abstract java.io.OutputStream openOutputStream( 
        ) throws java.io.IOException;   
} 

Implementations 

StreamConnection  

StreamConnection  CLDC 1.0, MIDP 1.0, CDC 1.0  

 

javax.microedition.io   

StreamConnection is an interface that combines the methods of InputConnection and 

OutputConnection, allowing a connection that is capable of both input and output. Although 

there is no method that explicitly returns a StreamConnection, most invocations of 

Connector open() will return an object that implements this interface, as most connection 

types support both input and output.  

Even though a StreamConnection is capable of allowing both input and output, it is an error 

to obtain an input stream from a StreamConnection that was obtained using the Connector 

http:///


J2ME in a Nutshell 

395 

open() method with Connector.WRITE, or to obtain an output stream if Connector.READ 

mode was used.  

 
public interface StreamConnection extends InputConnection, 
    OutputConnection { 
} 

Implementations 

ContentConnection  

Returned By 

StreamConnectionNotifier.acceptAndOpen()  

StreamConnectionNotifier  CLDC 1.0, MIDP 1.0, CDC 1.0  

 

javax.microedition.io   

StreamConnectionNotifier is a type of Connection returned when the application invokes 

the Connector open() method with the name argument of the form socket://:port. This 

creates a server socket, which listens for connections from clients and creates a 

StreamConnection for each connection received.  

Connections can be retrieved by calling the acceptAndOpen() method, which blocks until a 

connection is available. Application code will normally loop through calling this method and 

creating a new thread to service each connection. Invoking the StreamConnectionNotifier 

close() method causes acceptAndOpen() to throw an IOException, which can be used to 

break out of such a loop.  

 
public interface StreamConnectionNotifier extends Connection { 
// Public Instance Methods 
   public abstract StreamConnection acceptAndOpen( 
        ) throws java.io.IOException;   
} 

http:///


J2ME in a Nutshell 

396 

 

Chapter 15. javax.microedition.lcdui 

Package javax.microedition.lcdui  MIDP 1.0  

 

  

This package, whose class hierarchy is shown in Figure 15-1, contains the user interface 

classes for the Mobile Information Device Profile.  

Each MIDlet is associated with an instance of the Display class, which represents the 

MIDlet's view of the screen. At any given time, at most one MIDlet has access to the actual 

screen and the keyboard and pointer, if the device has them. This MIDlet is said to be in the 

foreground. While a MIDlet is in the foreground, the content of its Display object will be 

visible to the user and any changes to it will be seen some time after they are made.  

A Display shows an object derived from the abstract class Displayable, of which there are 

two types: Screen and Canvas. Screen is a base class for a set of form-based screens that are 

part of the the high-level user interface API, while Canvas is a drawing surface for the low-

level API.  

The high-level API provides a set of components, derived from the Item class, that allow the 

construction of simple user interfaces containing text fields, check boxes, radio buttons and 

lists. Since the range of devices for which MIDP is intended has a wide variety of input and 

output capabilities, these classes deliberately provide a programming interface that hides the 

details of the platform itself and very little customization of the appearance of these 

components is possible. In particular, it is not possible to change the colors or fonts used to 

render these components.  

Items are arranged on a Screen subclass called a Form, which is somewhat like the AWT 

Frame class. The layout of Items within a Form cannot be directly controlled by the 

application and may vary from device to device, subject to certain rules that are described in 

the reference material for the Form class.  

The ListBox and TextBox classes are full-screen lists and text entry components that, like 

Form, are derived from Screen. All of these components have the ability to display a title and 

a ticker, a scrolling text string that works in the same way as a stock price ticker. The same 

capabilities are also inherited by the Alert class, which behave like a dialog and is usually 

used to display error, warning and informational messages.  

 

 

 

 

 

http:///


J2ME in a Nutshell 

397 

Figure 15-1. The java.microedition.lcdui hierarchy 

 

The low-level API allows the developer to access the screen at the pixel level, but does not 

provide any GUI components other than the Canvas class, which the developer must subclass 

to provide painting logic and to handle keyboard and pointer input events.  

Both the low-level Canvas class and the Screens of the high-level API can be associated with 

one or more Commands. Commands are usually represented in the user interface in the form of 

buttons, but may also appear in the menu system, if the device has one. When the user 

activates a Command, an event is generated to which application code can respond by 

performing some action. Several standard Commands, such as OK, EXIT and CANCEL, are 

defined.  

Both the high- and low-level APIs allow the display of images, with a fidelity that depends on 

the capabilities of the screen. MIDP 1.0 supports images encoded in Portable Network 

Graphics (PNG) format, via the Image and ImageItem classes.  

User interface operations that are initiated by the device itself, such as event notification and 

screen repainting operations, take place in a dedicated thread and therefore application code 

that executes in response to these events should be written in such a way that it executes 

quickly and delegates time-consuming operations to a separate thread. All of the user 

interface classes are thread-safe, so it is safe to call their methods in arbitrary threads.  

http:///


J2ME in a Nutshell 

398 

 

Alert  MIDP 1.0  

 

javax.microedition.lcdui   

Alert is a subclass of Screen that behaves somewhat like a dialog. There are several standard 

Alert styles that can be used; the style is specified using an AlertType object which may be 

supplied when the Alert is constructed or using the setType() method.  

An Alert has a title, a message, and an image. These attributes may be set at construction 

time or using the setTitle(), setString() and setImage() methods. An Alert with no 

image may be created by calling setImage() with argument null. The way in which the 

Alert is rendered is platform-dependent. A device is not required to display an image and, 

even if it does, need not display the image suggested by the application. However, if the 

platform displays an image at all, changing the AlertType results in a different image being 

drawn on the Alert. An image explicitly supplied at construction time or using setImage() 

would override the default one associated with the AlertType.  

An Alert will usually be displayed for a fixed length of time, after which it will be removed 

from the display and the screen previously on view will be restored. The display time may be 

specified using the setTimeout() method, which requires an argument in milliseconds. The 

special value Alert.FOREVER may be used to create an Alert that remains visible until the 

user explicitly dismisses it using a control (usually a button) provided by the platform for that 

purpose. The default time for which an Alert will be displayed (if no explicit timeout is 

provided) can be obtained using the getDefaultTimeout() method.  

Devices that have sound capability may play a sound when displaying an Alert. The sound 

may be a default supplied by the platform, or a specific sound that is determined by the 

AlertType associated with the Alert.  

Unlike other Displayables, an Alert may not have application-supplied Commands or 

CommandListeners and an attempt to call methods that set these attributes will result in an 

IllegalStateException.  

 
public class Alert extends Screen {   
// Public Constructors 
   public Alert( String title);   
   public Alert(String title, String alertText,  
        Image alertImage, AlertType alertType);     
// Public Constants 
   public static final int FOREVER;                              // =-2 
// Property Accessor Methods (by property name) 
   public int getDefaultTimeout();   
   public Image getImage();   
   public void setImage( Image img);   
   public String getString();   
   public void setString( String str);   
   public int getTimeout();   

http:///


J2ME in a Nutshell 

399 

   public void setTimeout( int time);   
   public AlertType getType();   
   public void setType( AlertType type);     
// Public Methods Overriding Displayable 
   public void addCommand( Command cmd);   
   public void setCommandListener( CommandListener l);   
} 

Passed To 

Display.setCurrent()  

AlertType  MIDP 1.0  

 

javax.microedition.lcdui   

This is a class that provides a set of type-safe constants that are used to specify the type of an 

Alert. The AlertType provides a hint to the platform as to how it should render the Alert 

and typically causes an appropriate icon to be included along with the application-supplied 

message. On devices that have a sound capability, a sound (which might be type-dependent) 

may also be played when the alert is displayed.  

The playSound() method may be used to play the sound associated with the AlertType, 

even when no Alert is displayed. Since not all devices will be able to play sounds, the 

playSound() method returns a boolean indicating whether a sound was produced, to allow 

the application to use an alternate mechanism to attract the user's attention if sound is not 

available.  

public class AlertType {   
// Protected Constructors 
   protected AlertType();     
// Public Constants 
   public static final AlertType ALARM;   
   public static final AlertType CONFIRMATION; 
   public static final AlertType ERROR;   
   public static final AlertType INFO;   
   public static final AlertType WARNING;     
// Public Instance Methods 
   public boolean playSound( Display display); 
} 

Passed To 

Alert.{Alert(), setType()}  

Returned By 

Alert.getType()  

 

http:///


J2ME in a Nutshell 

400 

Type Of 

AlertType.{ALARM, CONFIRMATION, ERROR, INFO, WARNING}  

Canvas  MIDP 1.0  

 

javax.microedition.lcdui   

Canvas is a Displayable that serves as the most fundamental class of the low-level user 

interface API. A Canvas can be thought of as a blank sheet of paper that covers the accessible 

area of a device's screen. In order to use the Canvas class, a MIDlet must subclass it to 

provide drawing and event handling logic. When such a subclass is installed as a MIDlet's 

current screen (using the Display.setCurrent() method) and the MIDlet is in the 

foreground, the paint() method will be called as necessary to cause the content of the 

Canvas to be drawn onto the screen. Similarly, events from the keyboard or a pointing device, 

if there is one, will be notified to the Canvas and can be handled appropriately by the MIDlet.  

The abstract paint() method must be implemented to draw the content of the canvas onto the 

screen, using the Graphics object supplied as its argument. The clipping rectangle in this 

Graphics object may only cover a subset of the entire Canvas if only part of the screen needs 

to be repainted. In general, the paint() method should query the clipping rectangle and only 

perform graphics operations that would affect this part of the screen, where this can be 

economically determined.  

A device may or may not double-buffer its screen to provide smoother updates and eliminate 

flashing caused by partial updates that are visible to the user. The process of double-buffering 

is transparent to the paint() method, but a MIDlet can determine whether double-buffering 

is being used by calling isDoubleBuffered(). If this method returns false, a MIDlet may 

choose to implement its own double-buffering by allocating an Image with the same 

dimensions as the Canvas (or its clipping rectangle), getting a Graphics object for the image 

using its getGraphics() method, painting into the image and then copying it to the screen 

using the Graphics.drawImage() method. The size of the Canvas can be obtained by calling 

the getWidth() and getHeight() methods. Note that the Canvas may be smaller than the 

screen because the device may reserve some space for command buttons and soft keypads.  

Painting operations are always performed in a thread that is dedicated to servicing the user 

interface. MIDlet code in any thread can request that part or all of the screen be repainted by 

calling one of the Canvas repaint() methods, which will cause the paint() method to be 

called in turn at some time in the future. Multiple calls to repaint() may be coalesced into a 

single paint() call to minimize painting overhead. Code that needs to flush all pending 

repaint operations may call the serviceRepaints() method, which blocks until all such 

operations have been completed.  

The showNotify() and hideNotify() methods may be overridden to receive notification 

when the Canvas becomes visible to the user or is hidden. These methods may, for example, 

be used by a MIDlet that performs background calculations to update the contents of a Canvas 

to temporarily suppress them while the Canvas is not visible.  

http:///


J2ME in a Nutshell 

401 

The keyPressed(), keyReleased() and keyRepeated() methods can be overridden to 

handle events from the keyboard or keypad, if the device has one. Some devices that do not 

have a physical keypad may provide an on-screen emulation that will result in the generation 

of the same events. On some platforms, holding a key down for a short period will cause it to 

repeat and call the keyRepeated(). A MIDlet can determine whether these events are 

supported by calling the hasRepeatEvents() method.  

The argument passed to the key handling methods is an integer key code. Some key codes 

are standardized over all platforms, while others are not. For portability, a MIDlet should only 

directly test the values of the standard key codes, which correspond to the digits 0 through 9 

and the star and pound keys found in cell phone keypads. The values of these key codes are 

available as numeric constants, such as KEY_NUM0 and KEY_STAR. Support is also provided for 

game actions, which are mapped to platform-dependent keys or buttons. Each game action 

has a corresponding numeric constant, such as LEFT, RIGHT, FIRE or GAME_A that should be 

used by application code instead of hard-coding non-portable key code values. The game 

action for a key code can be obtained by calling the getGameAction() method so that, for 

example, the expression (getGameAction(keyCode) == Canvas.LEFT) can be used to 

check whether the key that corresponds to LEFT has been pressed (or released). An alternative 

is to use the getKeyCode() method to get the key code for a game action, as in the expression 

(getKeyCode(Canvas.LEFT) == keyCode).  

There is no portable way to handle keys that are not numeric and do not map to a game action. 

In particular, proper handling of text input, including shift states, is difficult and is better 

handled by using high-level components such as TextField on separate screens.  

On devices that have a pointing device, the pointerPressed(), pointerDragged() and 

pointerReleased() methods can be overridden to react to pointer actions. All of these 

methods receive the coordinates of the pointer relative to the top left-hand corner of the 

Canvas at the time that the event occurred. The hasPointerEvents() method can be used to 

determine whether pressed and release events will be notified, and 

hasPointerMotionEvents() indicates whether pointer drag events are available.  

 
public abstract class Canvas extends Displayable {   
// Protected Constructors 
   protected Canvas();     
// Public Constants 
   public static final int DOWN;                                 // =6 
   public static final int FIRE;                                 // =8 
   public static final int GAME_A;                               // =9 
   public static final int GAME_B;                               // =10 
   public static final int GAME_C;                               // =11 
   public static final int GAME_D;                               // =12 
   public static final int KEY_NUM0;                             // =48 
   public static final int KEY_NUM1;                             // =49 
   public static final int KEY_NUM2;                             // =50 
   public static final int KEY_NUM3;                             // =51 
   public static final int KEY_NUM4;                             // =52 
   public static final int KEY_NUM5;                             // =53 
   public static final int KEY_NUM6;                             // =54 
   public static final int KEY_NUM7;                             // =55 
   public static final int KEY_NUM8;                             // =56 

http:///


J2ME in a Nutshell 

402 

   public static final int KEY_NUM9;                             // =57 
   public static final int KEY_POUND;                            // =35 
   public static final int KEY_STAR;                             // =42 
   public static final int LEFT;                                 // =2 
   public static final int RIGHT;                                // =5 
   public static final int UP;                                   // =1   
// Property Accessor Methods (by property name) 
   public boolean isDoubleBuffered();   
   public int getHeight();   
   public int getWidth();     
// Public Instance Methods 
   public int getGameAction( int keyCode);   
   public int getKeyCode( int gameAction);   
   public String getKeyName( int keyCode);   
   public boolean hasPointerEvents();   
   public boolean hasPointerMotionEvents();   
   public boolean hasRepeatEvents();   
   public final void repaint();   
   public final void repaint(int x, int y, int width,  
        int height);   
   public final void serviceRepaints();     
// Protected Instance Methods 
   protected void hideNotify();                                  // empty
   protected void keyPressed( int keyCode);                      // empty
   protected void keyReleased( int keyCode);                     // empty
   protected void keyRepeated( int keyCode);                     // empty
   protected abstract void paint( Graphics g);   
   protected void pointerDragged( int x, int y);                 // empty
   protected void pointerPressed( int x, int y);                 // empty
   protected void pointerReleased( int x, int y);                // empty
   protected void showNotify();                                  // empty
} 

Choice  MIDP 1.0  

 

javax.microedition.lcdui   

Choice is an interface that contains the methods common to user interface components that 

allow the user to choose from several possible alternatives. This interface is implemented by 

the full-screen List control and by ChoiceGroup, which is an Item.  

A Choice can operate in one of three different modes:  

EXCLUSIVE  

Only one alternative can be selected. If the user selects one item from the set of 

offered alternatives, any item already selected is deselected. In this mode, the control 

behaves as (and is usually rendered to look like) a set of radio buttons. 

MULTIPLE  

Any number of alternatives can be selected. Selecting one item from the list has no 

effect on the selected state of other entries. In this, the control behaves like a collection 

of check boxes. 

http:///


J2ME in a Nutshell 

403 

IMPLICIT  

This mode is available only with the List control. It allows only one item to be 

selected at any given time and is typically used to create a menu. The difference 

between this mode and EXCLUSIVE, apart from the visual differences, lies in the way in 

which selection changes are notified to application code. See the description of the 

List control for details. 

Each entry in a Choice consists of one or both of an image provided in the form of an Image 

object and a text string. The image, if provided, is rendered in addition to any icon, such as a 

check box or radio button, supplied by the control itself. The number of entries can be 

obtained by calling the size() method. An entry is distinguished by its index, where the first 

entry has index 0 and the last has index size() - 1. New entries can be added to the end of 

the list using the append() method, or inserted before an existing entry with a given index by 

calling insert(). The set() method replaces the text and image associated with an entry at a 

specified index and the delete() method removes an entry.  

The platform will provide some means for the user to navigate the entries in the Choice. 

Usually, one entry will be considered to have the input focus and will be highlighted in some 

way to distinguish it from the other entries. The platform will also supply a mechanism for the 

user to toggle the selected state of the highlighted entry. It is important to realize that selection 

and highlighting are different, in that highlighting is used only for the convenience of the user, 

whereas selection changes the state of the control. Changing the selection may cause a 

notification to be delivered to a listener. The specifics of event notification depend on the 

control itself and are described in the reference entries for the ChoiceGroup and List 

controls.  

There are three methods that application code can use to access the selected state of entries in 

the Choice. The getSelectedIndex() method returns the index of the selected entry, or -1 if 

no entry is selected. In MULTIPLE mode, this method always returns -1 because more than one 

entry could be selected. The isSelected() method returns true if the entry with a given 

index is selected, false if it is not. Finally, the getSelectedFlags() method returns the 

selected state of each entry in an array of booleans that must be allocated by the caller and 

must have at least as many entries as there are entries in the Choice. The entry at index n in 

the array is returned with value true if the entry at index n in the Choice is selected, false if 

it is not. The return value of this method is the total number of selected entries.  

There are two methods that allow the selection in the Choice to be programmatically 

changed. The setSelectedIndex() method sets the selected state of an entry with a given 

index according to the boolean value supplied as its second argument. In MULTIPLE mode, this 

method simply changes the selected state of the given entry and has no effect on other entries. 

In EXCLUSIVE and IMPLICIT modes, this method has an effect only if the boolean argument is 

true. In both modes, the given entry is selected and any previously selected entry is 

deselected. The setSelectedFlags() method sets the state of every element in the Choice 

from the corresponding entry in an array of boolean values supplied as its argument. In 

EXCLUSIVE and IMPLICIT modes, only one entry in the array can have value true. If this is 

not the case, then the first entry in the Choice will be selected and all other entries will be 

deselected.  

http:///


J2ME in a Nutshell 

404 

Programmatic changes to the selection do not generate notifications to listeners.  

public interface Choice {   
// Public Constants 
   public static final int EXCLUSIVE;                            // =1
   public static final int IMPLICIT;                             // =3
   public static final int MULTIPLE;                             // =2 
// Public Instance Methods 
   public abstract int append(String stringElement,  
        Image imageElement);   
   public abstract void delete( int elementNum);   
   public abstract Image getImage( int elementNum);   
   public abstract int getSelectedFlags( 
        boolean[] selectedArray_return);   
   public abstract int getSelectedIndex();   
   public abstract String getString( int elementNum);   
   public abstract void insert(int elementNum,  
        String stringElement, Image imageElement);   
   public abstract boolean isSelected( int elementNum);   
   public abstract void set(int elementNum,  
        String stringElement, Image imageElement);   
   public abstract void setSelectedFlags( 
        boolean[] selectedArray);   
   public abstract void setSelectedIndex(int elementNum,  
        boolean selected);   
   public abstract int size();   
} 

Implementations 

ChoiceGroup, List  

ChoiceGroup  MIDP 1.0  

 

javax.microedition.lcdui   

This class is an Item that presents a list of alternatives to the user and allows one or more of 

them to be selected. Most of the methods of the ChoiceGroup class are implementations of 

those specified by the Choice interface, which it implements, and are described in the 

reference entry for Choice.  

A ChoiceGroup can be constructed in either Choice.EXCLUSIVE mode, when it behaves as a 

group of radio buttons, or in Choice.MULTIPLE mode when it acts like a collection of check 

boxes. ChoiceGroup does not implement the Choice.IMPLICIT mode.  

At any given time, one entry in the ChoiceGroup control has the input focus. The user can 

move the focus to any entry in the list using keys on the keypad or the pointer, depending on 

the platform. The entry with the input focus will be highlighted in some way to distinguish it 

from the other entries. The user can change the selected state of the focused entry. When the 

selection is changed in this way, the ItemStateListener for the Form containing the 

ChoiceGroup is notified. Note, however, that changing the entry that has the input focus has 

no effect on the selection and is not notified to the listener.  

http:///


J2ME in a Nutshell 

405 

 
public class ChoiceGroup extends Item implements Choice {   
// Public Constructors 
   public ChoiceGroup( String label, int choiceType);   
   public ChoiceGroup(String label, int choiceType,  
        String[] stringElements,  
        Image[] imageElements);   
// Methods Implementing Choice 
   public int append(String stringElement,  
        Image imageElement);   
   public void delete( int index);   
   public Image getImage( int i);   
   public int getSelectedFlags( 
        boolean[] selectedArray_return);   
   public int getSelectedIndex();   
   public String getString( int i);   
   public void insert(int index, String stringElement,  
        Image imageElement);   
   public boolean isSelected( int index);   
   public void set(int index, String stringElement,  
        Image imageElement);   
   public void setSelectedFlags( 
        boolean[] selectedArray);   
   public void setSelectedIndex(int index, boolean selected); 
   public int size();     
// Public Methods Overriding Item 
   public void setLabel( String label);   
} 

Command  MIDP 1.0  

 

javax.microedition.lcdui   

Command is a class that represents an operation that the may be represented in the user 

interface. Commands may be added to any Displayable with the exception of Alerts and are 

rendered in a platform-dependent way, often using buttons or as entries in a menu system. 

When the user activates the user interface control associated with a Command, the 

CommandListener associated with the Displayable is notified.  

A Command has three attributes that are set at construction time. Once set, the values of these 

attributes can be obtained using the getLabel(), getCommandType() and getPriority() 

methods, but cannot be changed:  

Label  

The command name that the user will see in the user interface. 

Type  

A constant value that indicates the semantic intent of the command. 

 

http:///


J2ME in a Nutshell 

406 

Priority  

An integer value that gives the priority of this command relative to others of the same 

type. Lower values indicate higher priority. 

The type is used to indicate to the platform whether the command is one of the standard types 

that it knows about and might provide special display handling for, or an application-private 

command. The standard types, whose meanings should be obvious from their names, are 

BACK, CANCEL, EXIT, HELP, OK and STOP. Application-private commands are assigned types of 

ITEM or SCREEN.  

The type usually determines where the platform will display the command. Where there is 

more than one command with the same type, the priority value is used to determine the 

relative prominence of each of those competing commands. If a device has a policy of 

attaching commands of type SCREEN to its two soft buttons, for example, and a Displayable 

has three such commands, the device might assign the command with lowest numerical 

priority value to one of the buttons and then create a menu to hold the other two commands 

and attach the menu to the other soft button. It is important to note that the application can 

only hint to the implementation as to how it would like it commands to be displayed - no 

direct control is possible, and different results will be obtained on different platforms.  

Unlike a Swing Action, a Command does not contain the implementation of the action to be 

carried when it is activated - it is simply a value that a CommandListener can use to 

determine which operation the user wants to perform.  

public class Command {   
// Public Constructors 
   public Command(String label, int commandType,  
        int priority);     
// Public Constants 
   public static final int BACK;                                 // =2
   public static final int CANCEL;                               // =3
   public static final int EXIT;                                 // =7
   public static final int HELP;                                 // =5
   public static final int ITEM;                                 // =8
   public static final int OK;                                   // =4
   public static final int SCREEN;                               // =1
   public static final int STOP;                                 // =6 
// Public Instance Methods 
   public int getCommandType();   
   public String getLabel();   
   public int getPriority();   
} 

Passed To 

Alert.addCommand(), CommandListener.commandAction(), 
Displayable.{addCommand(), removeCommand()}  

Type Of 

List.SELECT_COMMAND  

http:///


J2ME in a Nutshell 

407 

CommandListener  MIDP 1.0  

 

javax.microedition.lcdui   

An interface implemented by objects that want to be notified when the user activates a 

Command associated with a Displayable. A Displayable can have a single 

CommandListener, set using its setCommandListener() method.  

When any Command on a Displayable is activated, its CommandListener's 

commandAction() method is called. In order to allow a single listener to handle the actions 

associated with more than one Command, this method receives a reference to both the Command 

itself and the Displayable that this instance of the Command is associated with. The 

commandAction() method is typically invoked in the context of the thread that is responsible 

for managing the user interface and therefore any delay caused by this method may cause the 

user interface to appear to be unresponsive.  

public interface CommandListener {   
// Public Instance Methods 
   public abstract void commandAction(Command c, 
        Displayable d);   
} 

Passed To 

Alert.setCommandListener(), Displayable.setCommandListener()  

DateField  MIDP 1.0  

 

javax.microedition.lcdui   

This class is an Item that displays and allows the user to edit the value of a date, a time or 

both date and time, held internally as a java.util.Date object. Like all Items, DateField 

can have a label that is displayed near to it to indicate its function.  

The input mode, which can be one of DATE, TIME, or DATE_TIME, determines which parts of 

the Date object associated with the DateField are displayed for editing. It can be set at 

construction time or by calling the setInputMode() method.  

By default, the DateField is initialized with a null date and time value. An explicit date and 

time can be set using the setDate() method, which requires a Date object containing the new 

value. If the DateField is in DATE, the time portion of the Date object is ignored. If it is in 

TIME mode, the date portion must be set to Jan 1st, 1970.  

The date is displayed according to the default time zone for the device. A different time zone 

can be specified by passing a suitable TimeZone object to the constructor. However, the 

http:///


J2ME in a Nutshell 

408 

MIDP specification does not provide full support for time zones and therefore some 

restrictions on the available time zones might be encountered on some devices.  

When the user interacts with the DateField and changes its value, the ItemStateListener 

for the Form on which the control appears is notified. The new date and time can be retrieved 

using the getDate() method.  

 
public class DateField extends Item {   
// Public Constructors 
   public DateField( String label, int mode);   
   public DateField(String label, int mode,  
        java.util.TimeZone timeZone);     
// Public Constants 
   public static final int DATE;                                 // =1
   public static final int DATE_TIME;                            // =3
   public static final int TIME;                                 // =2 
// Public Instance Methods 
   public java.util.Date getDate();   
   public int getInputMode();   
   public void setDate( java.util.Date date);   
   public void setInputMode( int mode);     
// Public Methods Overriding Item 
   public void setLabel( String label);   
} 

Display  MIDP 1.0  

 

javax.microedition.lcdui   

This class represents a MIDlet's view of the screen of the device on which it is running. Every 

MIDlet has access to a single instance of this class, which it may obtain a reference to by 

calling the static getDisplay() method once its startApp() method has been entered for the 

first time. Subsequent calls will return the same instance, which remains valid until the 

MIDlet's destroyApp() method completes, or until the MIDlet calls notifyDestroyed(). 

When a MIDlet is in the foreground, the Display object becomes associated with the screen; 

when the MIDlet is not in the foreground, operations performed on the Display have no 

effect until the MIDlet gains the foreground.  

A Display object shows the content of the Displayable passed to its setCurrent() method. 

MIDlets usually use the single-argument variant of this method to switch from one screen to 

another. When displaying an Alert, if the single-argument variant is used, the Displayable 

that was originally displayed will be restored when the Alert is dismissed. If it is appropriate 

to display a different screen when the Alert is dismissed, the two-argument variant may be 

used and the new Displayable supplied as its second argument.  

The getCurrent() method returns a reference to the Displayable that the Display object is 

currently showing to the user if it is in the foreground, or would show to the user if it is in the 

background. It is important to note when using getCurrent() that the setCurrent() method 

does not necessarily take effect immediately - an implementation is permitted to defer 

changing the screen to a time convenient for itself. This means that it is not safe to assume 

http:///


J2ME in a Nutshell 

409 

that the value returned by the getCurrent() method is the Displayable passed to the last 

invocation of setCurrent().  

Another possible side effect of this feature is that calling setCurrent() to display a screen 

and then blocking to wait for some condition set by the logic implemented in the event 

handlers for that screen may result in an application hang if setCurrent() is called in the 

thread used to manage the user interface, because the new screen may not be displayed until 

the method that called setCurrent() returns  

The isColor() and numColors() methods can be used to discover the capabilities of the 

screen. If isColor() returns true, then the number returned by numColors() is the number 

of different colors that the screen is able to display. If, however, isColor() returns false, 

then numColors() indicates the number of available shades of gray. A typical, two-color cell 

phone for example, would return false to isColor() and 2 from numColors().  

The callSerially() method can be used to arrange for a segment of code, implemented in 

the run() method of a Runnable, to be executed in the thread used to manage the user 

interface. This method might be used to defer the execution of such code until all pending 

repaint operations have been completed, or so that code that needs to operate on data that is 

relied upon by painting logic does not have to be made thread-safe.  

public class Display { 
// No Constructor   
// Public Class Methods 
   public static Display getDisplay( 
        javax.microedition.midlet.MIDlet c);  
// Public Instance Methods 
   public void callSerially( Runnable r);   
   public Displayable getCurrent();   
   public boolean isColor();   
   public int numColors();   
   public void setCurrent( Displayable next); 
   public void setCurrent(Alert alert,  
        Displayable nextDisplayable);   
} 

Passed To 

AlertType.playSound()  

Returned By 

Display.getDisplay()  

Displayable  MIDP 1.0  

 

javax.microedition.lcdui   

Displayable is an abstract base class for objects that can be shown by a Display.  

http:///


J2ME in a Nutshell 

410 

The addCommand() method provides the ability to associate one or more Commands with the 

displayable object. The way in which these Commands are represented in the user interface is 

platform-dependent, but would normally involve one or both of a button and a menu item. A 

Command may be removed using the removeCommand() method.  

The setCommandListener() allows a single CommandListener to be registered to be notified 

when a Command is activated. If this method is called when a listener is already registered, the 

original listener is removed and will not receive further event notifications. Calling this 

method with argument null removes any registered listener.  

The isShown() method can be used to determine whether the Displayable is currently 

visible. This method returns true when the owning MIDlet is in the foreground and the 

Displayable is the object currently displayed by its Display.  

public abstract class Displayable { 
// No Constructor   
// Public Instance Methods 
   public void addCommand( Command cmd);   
   public boolean isShown();   
   public void removeCommand( Command cmd);   
   public void setCommandListener( CommandListener l); 
} 

Subclasses 

Canvas, Screen  

Passed To 

CommandListener.commandAction(), Display.setCurrent()  

Returned By 

Display.getCurrent()  

Font  MIDP 1.0  

 

javax.microedition.lcdui   

This class represents a font that can be used to render text in the low-level API. A device has 

a default font that can be obtained from the static getDefaultFont() method. Other fonts, if 

there are any, can be obtained from the getFont() method, which requires three attributes:  

Font face  

An integer value that describes the type of font based on its appearance. The legal 

values are FACE_MONOSPACE, FACE_PROPORTIONAL and FACE_SYSTEM, which 

corresponds to a platform-dependent system font. 

http:///


J2ME in a Nutshell 

411 

Font style  

Selects a style of the given font face. Legal values are STYLE_PLAIN, STYLE_ITALIC, 

STYLE_BOLD and STYLE_UNDERLINE. STYLE_ITALIC and STYLE_BOLD may be used 

together to request a bold, italic font. STYLE_UNDERLINE may be combined with any of 

the other styles. 

Font size  

The relative size of the font, chosen from SIZE_SMALL, SIZE_MEDIUM and 

SIZE_LARGE. 

Since the capabilities of MIDP devices vary widely, the application is only able to select a 

font based on this narrow set of logical attributes. The getFont() method returns the font 

from the set available to it that most closely matches the arguments supplied to it. Some 

devices may be able to closely match a wide range of requested fonts, while others might only 

be able to accurately represent a very small number. In order to minimize memory usage, the 

same Font instance will be returned by this method whenever the arguments supplied to it 

resolve to the same device font. This is possible because Font objects are immutable.  

The Font object has methods that allow certain font attributes to be retrieved, including 

isBold(), isItalic() and isUnderlined(), which return the component parts of the font 

style. Note that the values returned by these methods represent the font actually selected and 

may not match those supplied to getFont(). The selected font size and face can also be 

retrieved using the getSize() and getFace() methods.  

Several methods of the Font class perform functions that are supplied by the FontMetrics 

and LineMetrics classes in J2SE. The charWidth(), charsWidth(), stringWidth() and 

substringWidth() methods measure the horizontal size of a string or set of characters when 

rendered by the Font object on which they are called. The getHeight() method returns the 

height of a standard line in the font, including interline spacing, while 

getBaselinePosition() returns the distance from the top of the font to its baseline, both of 

these being measured in pixels. These methods can be used when manually placing text using 

the methods of the Graphics class.  

public final class Font { 
// No Constructor   
// Public Constants 
   public static final int FACE_MONOSPACE;                       // =32 
   public static final int FACE_PROPORTIONAL;                    // =64 
   public static final int FACE_SYSTEM;                          // =0 
   public static final int SIZE_LARGE;                           // =16 
   public static final int SIZE_MEDIUM;                          // =0 
   public static final int SIZE_SMALL;                           // =8 
   public static final int STYLE_BOLD;                           // =1 
   public static final int STYLE_ITALIC;                         // =2 
   public static final int STYLE_PLAIN;                          // =0 
   public static final int STYLE_UNDERLINED;                     // =4   
// Public Class Methods 
   public static Font getDefaultFont();   
   public static Font getFont(int face, int style, int size);     
 

http:///


J2ME in a Nutshell 

412 

// Property Accessor Methods (by property name) 
   public int getBaselinePosition();   
   public boolean isBold();   
   public int getFace();   
   public int getHeight();   
   public boolean isItalic();   
   public boolean isPlain();   
   public int getSize();   
   public int getStyle();   
   public boolean isUnderlined();     
// Public Instance Methods 
   public int charsWidth(char[] ch, int offset,          // native 
        int length);   
   public int charWidth( char ch);                               // native
   public int stringWidth( String str);                          // native
   public int substringWidth(String str, int offset,             // native
        int len);   
} 

Passed To 

Graphics.setFont()  

Returned By 

Font.{getDefaultFont(), getFont()}, Graphics.getFont()  

Form  MIDP 1.0  

 

javax.microedition.lcdui   

Form is a subclass of Screen that is used to build form-like screens using Items. It inherits 

from its superclass the ability to have a title, a ticker and to have associated Commands and a 

CommandListener.  

Items are usually added to a Form using the append(Item item) method, which adds the 

Item to the end of an internal list maintained by the Form. There are also two overloaded 

versions of this method that accept arguments of type String and Image. These methods are 

simply wrappers that add respectively a StringItem and an ImageItem to the form, with an 

empty label. It is also possible to insert an Item in between those already added by calling the 

insert() method, which requires the index of the Item before which the new one is to be 

added. The set() method can be used to replace an Item at a given index with a new one. 

Finally, the delete() method removes the Item at the supplied index. The total number of 

Items on a Form can be obtained from the size() method.  

When rendered on the screen, Items appear on the Form from top to bottom in the order in 

which they appear in the Form's internal list. With the exception of StringItem and 

ImageItem, each Item is rendered on a line of its own. When the Item is too wide to fit the 

screen, it may be shortened or, in the case of a StringItem, the text will overflow onto 

following lines as necessary. A Form is always as wide as the display area available to it, but 

its height may exceed the total viewable area of the screen. When this is the case, the 

http:///


J2ME in a Nutshell 

413 

implementation will provide some means (such as a scrollbar) to allow the user to move the 

viewable area over the entire vertical extent of the Form. Horizontal scrolling is not required 

and is never provided.  

When an Item has an associated label, it will normally be placed close to the rest of the Item 

and may be displayed in such as way as to distinguish itself. In the PalmOS implementation, 

for example, Items are arranged in two columns with the label in the left-hand column 

rendered in bold and the rest of the Item in the right-hand column.  

Successive StringItems and ImageItems that do not have associated labels are laid out 

horizontally whenever possible. If there is insufficient room, the text of a StringItem is 

broken at white space if possible and the balance appears on succeeding lines. An image that 

is too wide for the space allocated to its ImageItem is displayed on the next line and is 

truncated on the right if it is too wide for the device's screen. When these Items have labels, a 

line break will occur before the label in the usual way.  

The setItemStateListener() method allows application code to register a single 

ItemStateListener to receive notification of state changes in any of the Items on the Form. 

Calling this method when there is already a listener registered replaces that listener with the 

new one, while invoking it with a null argument completely removes any existing listener.  

public class Form extends Screen {   
// Public Constructors 
   public Form( String title);   
   public Form( String title, Item[] items);     
// Public Instance Methods 
   public int append( String str);   
   public int append( Image image);   
   public int append( Item item);   
   public void delete( int index);   
   public Item get( int index);   
   public void insert( int index, Item item);   
   public void set( int index, Item item);   
   public void setItemStateListener( 
        ItemStateListener iListener);   
   public int size();   
} 

Gauge  MIDP 1.0  

 

javax.microedition.lcdui   

This class is an Item that can be used as either a progress bar or a slider. The Gauge displays a 

fixed range of integer values together with the current value. The maximum value of the 

range and the initial value are set when the Gauge is constructed and may subsequently be 

changed using the setMaxValue() and setValue() methods. The minimum value is always 

implicitly zero.  

In normal operation, the current value would probably start at zero and be updated by 

application code by calling the setValue() method to reflect the progress of an ongoing 

http:///


J2ME in a Nutshell 

414 

operation. In this mode, the Gauge operates as a progress bar and its value cannot be changed 

by the user. To prevent the user changing the value, the Gauge should be made non-

interactive, which can be done by setting the interactive constructor argument to false. 

Note that this attribute cannot be changed once the Gauge has been constructed, although its 

value can be obtained by calling isInteractive().  

To use the Gauge as a slider, it should be made interactive. In this mode, the user can change 

the current value within the permitted range using a device-dependent gesture. As the value 

changes, the Gauge notifies the ItemStateListener for the Form on which it is displayed, 

which can retrieve the new value using the getValue() method.  

Owing to display limitations, it may not be possible for every possible value in the allowed 

range to be displayed and therefore the user may have to adjust the Gauge value several times 

before a change in its appearance is seen. For this reason, it is recommended that the current 

value also be displayed in another control, such as a StringItem, so that the user can see the 

result of every adjustment.  

public class Gauge extends Item {   
// Public Constructors 
   public Gauge(String label, boolean interactive,  
        int maxValue, int initialValue);     
// Public Instance Methods 
   public int getMaxValue();   
   public int getValue();   
   public boolean isInteractive();   
   public void setMaxValue( int maxValue);   
   public void setValue( int value);     
// Public Methods Overriding Item 
   public void setLabel( String label);   
} 

Graphics  MIDP 1.0  

 

javax.microedition.lcdui   

The Graphics class provides drawing and fill operations that can be used to paint the content 

of a Canvas or a mutable Image. A Graphics object for a Canvas is passed to its paint() 

method and is valid only within that method. A Graphics object for an Image can be obtained 

from its getGraphics() method and remains valid as long as the Image is referenced.  

All operations on a Graphics object use a coordinate reference system measured in pixels, in 

which the origin is initially at the top-left hand corner of the Canvas or Image. Values of the x 

coordinate increase when moving to the right, while y value increase downwards. The 

coordinate origin may be moved by calling the translate() method, supplying the 

coordinates of the new origin relative to the current origin. Negative coordinate values are 

valid and, depending on the location of the origin, may or may not correspond to points on the 

drawing surface. It is permissible to move the origin to a location that is outside the drawing 

area.  

http:///


J2ME in a Nutshell 

415 

A Graphics object has an associated clipping rectangle which bounds the area within 

which graphics operations will be performed. The clipping rectangle for an Image is initially 

set to cover the entire image, while that for a Canvas is set by the platform to cover the part of 

the Canvas that needs to be repainted. Operations performed on a Graphics object will not 

change pixels that lie outside clipping rectangle, even if their scope would include those 

pixels. Thus, setting the clipping rectangle can be used as a means of protecting areas that 

should not be changed. The bounds of the clipping rectangle, relative to the current origin, can 

be obtained from the getClipX(), getClipY(), getClipWidth() and getClipHeight() 

methods. The clipping rectangle can be changed using the setClip() method which sets an 

entirely new clip, and clipRect() intersect the current clip with the rectangular area 

specified by its arguments to produce smaller clipping area.  

All drawing and filling operations make use of the currently selected color. When a Graphics 

object is created, its drawing color is black. The drawing color can be changed by calling the 

setColor() or setGrayScale() methods. Colors are represented as 24-bit RGB values held 

in an integer where the least significant 8 bits encode the blue value, the next 8 bits hold the 

green value and the next 8 hold the red value. Using this scheme, the values 0xFF0000 and 

0x7F0000 represent shades of red, whereas 0xFF represents blue. There are two variants of the 

setColor() method that allow the specification of the individual red, green and blue 

components, or of all of the components in a single integer. On devices that only support gray 

scale, the setGrayScale() method can be used to set a gray level in the range 0 to 255 

inclusive, where 0 represents black and 255 is white.  

The drawArc(), drawLine(), drawRect() and drawRoundRect() methods draw outline 

shapes in the current color using coordinates that are specified by their arguments. The pixels 

that are affected by these methods depend on the stroke style, which can be set using the 

setStrokeStyle() method to DOTTED or SOLID. By default, solid lines are drawn. Each 

drawing primitive, apart from drawLine(), has a corresponding fill operation that fills the 

shape with the current drawing color instead of drawing the outline. The fillRect() method, 

for example, can be used to create a solid, filled rectangular shape. The stroke style is not 

relevant for fill operations.  

Text may be drawn onto a Canvas or an Image by using the drawChar(), drawChars(), 

drawString() and drawSubstring() methods, which specify the characters to be drawn and 

the location of an anchor point that determines where the text will be placed. To understand 

how the anchor point works, it is necessary to consider the text as being tightly wrapped in a 

rectangle. The anchor point specifies a point on the boundary of the rectangle and the drawing 

primitive gives the coordinates at which the anchor point will be placed, relative to the origin. 

For example, if the anchor point is specified as (TOP | LEFT) and the location is (40, 50), 

then the top-left of the bounding rectangle of the text will be placed at coordinates (40, 50) 

relative to the origin. On the other hand, if the anchor is (TOP | HCENTER), then the top of 

the bounding rectangle will be at y coordinate 50, and the text will be horizontally centered 

around x = 40. Use of the anchor point in this way makes it possible to center or right-align 

text without having to compute the width of the text using the text measurement methods of 

the Font class. Note, however, that vertical centering is not supported, even though there is a 

Graphics.VCENTER constant. This constant can, however, be used to vertically center an 

Image, as described below.  

http:///


J2ME in a Nutshell 

416 

Text is always drawn using the current font, which may be set using the setFont() method, 

using a font obtained from the Font getFont() or getDefaultFont() methods. When it is 

created, a Graphics object is initialized to use the system default font.  

An Image can be drawn onto the drawing surface of a Canvas or another Image by using the 

drawImage() method. By default, this method draws the whole image with its top left corner 

at a given coordinate location. However, it is possible to copy only a subset of the Image by 

setting the clipping rectangle of the Graphics object to bound the exact area of the target onto 

which the Image section should be copied. Neither the stroke style nor the drawing color is 

relevant to the drawImage method, since all pixels are copied from the source image. The 

coordinate location for the drawImage() method includes the specification of an anchor point, 

which is used in the same way as it is when drawing text, with the exception that vertical 

centering is also allowed. The bounding box used when determining the location of anchor 

points is the rectangle formed by the outer edge of the Image.  

public class Graphics { 
// No Constructor   
// Public Constants 
   public static final int BASELINE;                             // =64 
   public static final int BOTTOM;                               // =32 
   public static final int DOTTED;                               // =1 
   public static final int HCENTER;                              // =1 
   public static final int LEFT;                                 // =4 
   public static final int RIGHT;                                // =8 
   public static final int SOLID;                                // =0 
   public static final int TOP;                                  // =16 
   public static final int VCENTER;                              // =2   
// Property Accessor Methods (by property name) 
   public int getBlueComponent();   
   public int getClipHeight();   
   public int getClipWidth();   
   public int getClipX();   
   public int getClipY();   
   public int getColor();   
   public void setColor( int RGB);   
   public void setColor( int red, int green, int blue);   
   public Font getFont();   
   public void setFont( Font font);   
   public int getGrayScale();   
   public void setGrayScale( int value);   
   public int getGreenComponent();   
   public int getRedComponent();   
   public int getStrokeStyle();   
   public void setStrokeStyle( int style);   
   public int getTranslateX();   
   public int getTranslateY();     
// Public Instance Methods 
   public void clipRect(int x, int y, int width, int height);   
   public void drawArc(int x, int y, int width, int height,      // native
        int startAngle, int arcAngle);   
   public void drawChar(char character, int x, int y,            // native
        int anchor);   
   public void drawChars(char[] data, int offset,                // native
        int length, int x, int y, int anchor);   
   public void drawImage(Image img, int x, int y,                // native
        int anchor);   
   public void drawLine( int x1, int y1, int x2, int y2);        // native

http:///


J2ME in a Nutshell 

417 

   public void drawRect(int x, int y, int width, int height);    // native
   public void drawRoundRect(int x, int y, int width,            // native
        int height, int arcWidth, int arcHeight);   
   public void drawString(String str, int x, int y,              // native
        int anchor);   
   public void drawSubstring(String str, int offset, int len,    // native
        int x, int y, int anchor);   
   public void fillArc(int x, int y, int width, int height,      // native
        int startAngle, int arcAngle);   
   public void fillRect(int x, int y, int width, int height);    // native
   public void fillRoundRect(int x, int y, int width,            // native
        int height, int arcWidth, int arcHeight);   
   public void setClip( int x, int y, int width, int height);   
   public void translate( int x, int y);   
} 

Passed To 

Canvas.paint()  

Returned By 

Image.getGraphics()  

Image  MIDP 1.0  

 

javax.microedition.lcdui   

A class that represents a memory-resident image that can be drawn onto the screen. Images 

are used in both the high- and low-level user interface APIs. In the high-level API, Images 

can be used with Alerts, ChoiceGroups, ImageItems and Lists. In the low-level API, an 

Image can be drawn onto any part of a Canvas object from within its paint() method.  

An Image may be either mutable or immutable. Images used in the high-level API must be 

immutable; either type may be used with the low-level API. Given an arbitrary Image, the 

isMutable() method can be used to determine whether it is mutable or not. The dimensions 

of an Image can be obtained by calling its getWidth() and getHeight() methods.  

There are are four static createImage() methods can be used to create an Image. The 

createImage(byte[] data, int offset, int length) method creates an immutable 

image from data held in a portion of a given byte array. The data must be encoded in a format 

that is supported by the implementation. The only format that the MIDP specification requires 

a device to support is Portable Network Graphics (PNG). The image data can be obtained 

from any source, such as over a network or from a record in a RecordStore on the device. 

The createImage(String fileName) method uses the content of a file addressable using 

the resource name fileName as the image data and creates an immutable image from it. 

fileName is usually the absolute path name of a file within the MIDlet suite's JAR file, such 

as /ora/ch4/resources/red.png. The createImage(int width, int height) method 

returns a blank, mutable image with the supplied dimensions, that the application can use as 

the target of drawing operations by obtaining a Graphics object using its getGraphics() 

http:///


J2ME in a Nutshell 

418 

method. Finally, the createImage(Image source) creates an immutable copy of an existing 

image. This method can be used, for example, to create an immutable copy of a mutable 

image so that it can be used with the high-level API.  

public class Image { 
// No Constructor   
// Public Class Methods 
   public static Image createImage( 
        String name) throws java.io.IOException;   
   public static Image createImage( Image image);   
   public static Image createImage( int width, int height);   
   public static Image createImage(byte[] imagedata,  
        int imageoffset, int imagelength);     
// Public Instance Methods 
   public Graphics getGraphics();   
   public int getHeight();   
   public int getWidth();   
   public boolean isMutable();                                 // constant
} 

Passed To 

Too many methods to list.  

Returned By 

Alert.getImage(), Choice.getImage(), ChoiceGroup.getImage(), 

Image.createImage(), ImageItem.getImage(), List.getImage()  

ImageItem  MIDP 1.0  

 

javax.microedition.lcdui   

This class is a subclass of Item that displays an Image as well as the optional label provided 

by Item. The image to be displayed is supplied as an instance of the Image class and must be 

immutable. It is also possible to supply an alternate text string that is displayed in place of the 

image if the platform does not support images. These attributes are usually set at construction 

time, but may be changed later using the setImage() and setAltText() methods.  

By default, an ImageItem that has a null or empty label is placed on the same line as any 

preceding StringItem or ImageItem, provided that there is room to accomodate the image. If 

there is insufficient room, then a line break will occur. The application may request that a 

different layout policy be applied by supplying an explicit layout argument to the constructor 

or using the setLayout() method.  

The layout value consists of an optional alignment value together with an optional request 

for line breaks. The alignment value must be one (and only one) of the following:  

 
 

http:///


J2ME in a Nutshell 

419 

LAYOUT_DEFAULT  

Applies the default layout policy described above 

LAYOUT_LEFT  

Left justifies the image within the space allocated to it. 

LAYOUT_RIGHT  

Right justifies the image within the space allocated to it. 

LAYOUT_CENTER  

Centers the image within the space allocated to it. 

A line break can be requested before and/or after the ImageItem by including the values 

LAYOUT_NEWLINE_BEFORE and LAYOUT_NEWLINE_AFTER in the layout value. The value 

(LAYOUT_CENTER | LAYOUT_NEWLINE_BEFORE | LAYOUT_NEWLINE_AFTER), for example, 

centers the image on a line of its own. LAYOUT_NEWLINE_BEFORE is redundant if the 

ImageItem includes a non-empty label, because a label always forces a line break. Similarly, 

LAYOUT_NEWLINE_AFTER is redundant if the next Item would force a line break.  

 
public class ImageItem extends Item {   
// Public Constructors 
   public ImageItem(String label, Image img, int layout,  
        String altText);     
// Public Constants 
   public static final int LAYOUT_CENTER;                        // =3 
   public static final int LAYOUT_DEFAULT;                       // =0 
   public static final int LAYOUT_LEFT;                          // =1 
   public static final int LAYOUT_NEWLINE_AFTER;                 // =512
   public static final int LAYOUT_NEWLINE_BEFORE;                // =256
   public static final int LAYOUT_RIGHT;                         // =2  
// Public Instance Methods 
   public String getAltText();   
   public Image getImage();   
   public int getLayout();   
   public void setAltText( String altText);   
   public void setImage( Image img);   
   public void setLayout( int layout);     
// Public Methods Overriding Item 
   public void setLabel( String label);   
} 

Item  MIDP 1.0  

 

javax.microedition.lcdui   

This class is the base class for the high-level API user interface components that can be added 

to a Form. An Item has a label that is displayed near to and closely associated with the 

http:///


J2ME in a Nutshell 

420 

component itself. The label can be set using the setLabel() method and its value retrieved 

using getLabel(). The implementation is recommended to arrange for the label and the 

component to either both be visible or both be invisible when they are affected by the 

scrolling of the Form that they are part of.  

On some platforms, some components, such as TextFields, may display a full-screen editor 

that hides the original Form while the user is interacting with them. When this is the case, the 

label may be displayed as part of the editor as a reminder to the user of the meaning of the 

value being entered.  

Even though, in implementation terms, Item is very much like the AWT Component class, in 

MIDP 1.0 it is not possible to subclass it to create custom high-level components.  

public abstract class Item { 
// No Constructor   
// Public Instance Methods 
   public String getLabel();   
   public void setLabel( String label); 
} 

Subclasses 

ChoiceGroup, DateField, Gauge, ImageItem, StringItem, TextField  

Passed To 

Form.{append(), Form(), insert(), set()}, 
ItemStateListener.itemStateChanged()  

Returned By 

Form.get()  

ItemStateListener  MIDP 1.0  

 

javax.microedition.lcdui   

An interface implemented by objects that want to be notified when the state of an Item is 

changed as the result of user action. Each Form can have a single ItemStateListener that is 

registered by calling its setItemStateListener() method. Programmatic changes to the 

state of an Item are never notified to the ItemStateListener.  

The ItemStateListener's itemStateChanged() method is called when the user makes a 

notifiable change in the state of any Items on the Form. The circumstances that result in 

notification depend on the nature of the Item. A text field, for example, will typically not 

notify every character entered or deleted, but will delay notification until the user moves the 

input focus elsewhere. A ChoiceGroup, on the other hand, will notify the Form's 

ItemStateListener whenever the user changes its selection state.  

http:///


J2ME in a Nutshell 

421 

public interface ItemStateListener {   
// Public Instance Methods 
   public abstract void itemStateChanged( Item item); 
} 

Passed To 

Form.setItemStateListener()  

List  MIDP 1.0  

 

javax.microedition.lcdui   

List presents a list of alternatives to the user and allows one or more of them to be selected. 

Most of the methods of the List class are implementations of those specified by the Choice 

interface, which it implements, and are described in the reference entry for Choice. Since 

List is derived from Screen, it occupies the entire screen of the device and, unlike 

ChoiceGroup, cannot appear together with other controls.  

A List can be constructed in Choice.EXCLUSIVE mode, when it behaves as a group of radio 

buttons, in Choice.MULTIPLE mode when it acts like a collection of check boxes or in 

Choice.IMPLICIT mode, which is usually used to create a full-screen menu. Both IMPLICIT 

and EXCLUSIVE modes allow only one entry in the LIST to be selected at any given time. The 

difference between these modes is the way they handle event notification as described below.  

At any given time, one entry in the List control has the input focus. The user can move the 

focus to any entry in the list using keys on the keypad or the pointer, depending on the 

platform. The entry with the input focus will be highlighted in some way to distinguish it 

from the other entries and its state can be toggled between selected and unselected using a 

platform-dependent gesture.  

Unlike ChoiceGroup, a List is not associated with an ItemStateListener because it is not 

an Item. How the application is made aware of selection changes depends on the mode.  

In MULTIPLE and EXCLUSIVE modes, selection changes are not notified by the control. Instead, 

the application should attach a Command to the List that the user can activate to instruct 

application code to retrieve and act upon the current selected state of the List entries. In 

IMPLICIT mode, only one entry can be selected at any given time. Changing the selected 

entry results in the commandAction() method of the CommandListener attached to the List 

being called, with the Displayable argument referencing the List and the Command set to the 

special value List.SELECT_COMMAND. This arrangement makes it possible to use an IMPLICIT 

List that behaves like a menu without having to attach an application-defined Command to it. 

Note that changing the highlighted entry or changing the selection programmatically does not 

cause an event to be generated.  

 

http:///


J2ME in a Nutshell 

422 

 
public class List extends Screen implements Choice {   
// Public Constructors 
   public List( String title, int listType);   
   public List(String title, int listType,  
        String[] stringElements,  
        Image[] imageElements);     
// Public Constants 
   public static final Command SELECT_COMMAND;   
// Methods Implementing Choice 
   public int append(String stringElement,  
        Image imageElement);   
   public void delete( int index);   
   public Image getImage( int index);   
   public int getSelectedFlags( 
        boolean[] selectedArray_return);   
   public int getSelectedIndex();   
   public String getString( int index);   
   public void insert(int index, String stringElement,  
        Image imageElement);   
   public boolean isSelected( int index);   
   public void set(int index, String stringElement,  
        Image imageElement);   
   public void setSelectedFlags( 
        boolean[] selectedArray);   
   public void setSelectedIndex(int index, boolean selected); 
   public int size();   
} 

Screen  MIDP 1.0  

 

javax.microedition.lcdui   

This class is an abstract class derived from Displayable that is the base from which the 

screen classes used in the high-level API (Alert, Form, List and TextBox) are derived. This 

class adds two features to those provided by its superclass:  

A title  

An optional string that is typically displayed at the top of the screen and describes the 

function of the screen. The title is set using the setTitle() method and may be 

retrieved using getTitle().  

A ticker  

An optional scrolling string that is usually placed above the screen, alongside, above 

or below the title, depending on the implementation. The ticker is an instance of the 

Ticker class that may be installed using the setTicker(). The same ticker may be 

associated with more than one Screen.  

 

http:///


J2ME in a Nutshell 

423 

public abstract class Screen extends Displayable { 
// No Constructor   
// Public Instance Methods 
   public Ticker getTicker();   
   public String getTitle();   
   public void setTicker( Ticker ticker);   
   public void setTitle( String s);   
} 

Subclasses 

Alert, Form, List, TextBox  

StringItem  MIDP 1.0  

 

javax.microedition.lcdui   

StringItem is a subclass of Item that displays a string as well as the label associated with its 

superclass. The string to be displayed can be set using the setText() and retrieved using 

getText(). In normal use, the label would remain unchanged and would describe the 

meaning of the text, which would vary depending on context. Typical usage might be to set 

the label to Address: and display an address using the text part of the StringItem.  

The platform may choose to render the label and the text differently so as to highlight the 

distinction between them, but is not obliged to do so. The MIDP for PalmOS implementation, 

for example, uses a bold font for the label.  

Placing a StringItem with a null or empty label on a Form does not cause a line break, so 

that successive StringItems (or ImageItems) that do not have labels may appear together on 

the same line if there is room. Newline characters may be embedded anywhere within the 

label or the text to force a line break to occur. Where a line break is required because there is 

insufficient space, the implementation will normally break at whitespace, where possible.  

public class StringItem extends Item {   
// Public Constructors 
   public StringItem( String label, String text);     
// Public Instance Methods 
   public String getText();   
   public void setText( String text);     
// Public Methods Overriding Item 
   public void setLabel( String label);   
} 

http:///


J2ME in a Nutshell 

424 

 

TextBox  MIDP 1.0  

 

javax.microedition.lcdui   

TextBox is a full-screen text editing component that has almost the same programming 

interface as TextField. Apart from the fact that a TextBox is visually represented as a multi-

line control and occupies the whole screen whereas TextField usually appears as a single 

line in a Form, the only real difference between these two controls is the fact that TextBox 

does not notify content changes to a listener. Application code should add a Command to the 

TextBox to allow the user to request that its content be processed.  

 
public class TextBox extends Screen {   
// Public Constructors 
   public TextBox(String title, String text, int maxSize, 
        int constraints);     
// Public Instance Methods 
   public void delete( int offset, int length);   
   public int getCaretPosition();   
   public int getChars( char[] data);   
   public int getConstraints();   
   public int getMaxSize();   
   public String getString();   
   public void insert( String src, int position);   
   public void insert(char[] data, int offset,  
        int length, int position);   
   public void setChars(char[] data, int offset,  
        int length);   
   public void setConstraints( int constraints);   
   public int setMaxSize( int maxSize);   
   public void setString( String text);   
   public int size();   
} 

TextField  MIDP 1.0  

 

javax.microedition.lcdui   

TextField is an Item that may be placed on a Form to display and allow the editing of a text 

string. The initial content of a TextField is set at construction time or by using the 

setString() method and the possibly modified value can be retrieved at any time by calling 

getString(). A TextField may initially appear as a single-line control in the user interface, 

but multi-line input is permitted and some devices may provide a separate full-screen editor 

that can be invoked by user action to make it easier for the user to edit the field content.  

Two types of constraint may be applied to the string displayed by a TextField - a length 

constraint and a content constraint.  

http:///


J2ME in a Nutshell 

425 

The maximum size of the text that may appear in the field is set at construction time and can 

subsequently be changed using setMaxSize(). The implementation may impose a fixed 

upper limit on all TextFields, which overrides the value requested by application code. The 

actual maximum size can be obtained from the getMaxSize() method. The maximum size is 

applied whenever the content of the field is changed, whether programmatically or by the 

user.  

A content constraint can be applied either at construction time or using 

the setConstraints() method to limit the type of data that the field may contain. When 

a constraint is in place, the TextField ensures that each character entered is consistent with 

the constraint and will reject characters that are not permitted. Constraints are applied both 

during editing and when the content of the field is changed programmatically. The following 

constraints are defined by the MIDP specification; not all of these are implemented by all 

devices:  

ANY  

Represents the absence of any constraint, allowing the field to contain any characters 

EMAILADDR  

Constrains the input to be an e-mail address 

NUMERIC  

Requires the field to contain a valid number. 

PASSWORD  

Does not constrain the characters that can be entered, but specifies that they should not 

be echoed. 

PHONENUMBER  

Specifies that the field will contain a phone number. The device may apply checks to 

ensure that the value entered conforms with one or more well-known formats for 

telephone numbers. 

URL  

Specifies that the field should contain a Uniform Resource Locator (URL). 

In some cases, the presence of a content constraint also causes the field to format the field 

content to reflect the data type. In the case of PHONENUMBER, for example, the field may insert 

parentheses and other characters that give the value entered the appearance of a telephone 

number. Characters that are added in this way are visible to the user, but are not part of the 

content of the field. If, for example, the user enters the digits 1234567890 into a field with 

this constraint applied, they may be displayed in the form (123) 456-7890, but the 

getString() method would return the value 1234567890.  

http:///


J2ME in a Nutshell 

426 

There are several ways to change the content of a TextField. The setString() method 

overwrites the whole field content with the string passed as its argument and setChars() 

does the same, except that the new value is given as a portion of an array of characters. In 

both cases, using a null reference for the new data causes the field to be emptied. The 

insert methods cause a string or a set of characters to be inserted before a given location in 

the field, given by its index. The index should be 0 to insert characters before the first 

character of the field and the value returned by the size() method to add characters at the 

end. A range of characters can be removed from the field using the delete() method. Any 

insertion and removal operation will fail and throw an IllegalArgumentException if the 

modified content would violate the field's content or length constraints.  

The content of a TextField can be retrieved in the form of a string using the getString() or 

as a character array using getChars(). The latter method is preferred for password fields, 

because the content of the returned array can be cleared once the password has been verified, 

to minimize the possibility of accidental disclosure of the password. This cannot be done 

when the password is extracted in string form, because Strings are immutable.  

Changes in the content of a TextField are notified to the ItemStateListener of the Form 

that it is contained in. An implementation is not obliged to notify every change in the field 

content made while focus remains in the field , but must do so at the latest when the user 

moves the input focus elsewhere.  

 
public class TextField extends Item {   
// Public Constructors 
   public TextField(String label, String text, int maxSize,  
        int constraints);     
// Public Constants 
   public static final int ANY;                                  // =0 
   public static final int CONSTRAINT_MASK;                      // =65535
   public static final int EMAILADDR;                            // =1 
   public static final int NUMERIC;                              // =2 
   public static final int PASSWORD;                             // =65536
   public static final int PHONENUMBER;                          // =3 
   public static final int URL;                                  // =4   
// Public Instance Methods 
   public void delete( int offset, int length);   
   public int getCaretPosition();   
   public int getChars( char[] data);   
   public int getConstraints();   
   public int getMaxSize();   
   public String getString();   
   public void insert( String src, int position);   
   public void insert(char[] data, int offset,  
        int length, int position);   
   public void setChars(char[] data, int offset,  
        int length);   
   public void setConstraints( int constraints);   
   public int setMaxSize( int maxSize);   
   public void setString( String text);   
   public int size();     
// Public Methods Overriding Item 
   public void setLabel( String label);   
} 

http:///


J2ME in a Nutshell 

427 

Ticker  MIDP 1.0  

 

javax.microedition.lcdui   

A high-level API class that displays a scrolling text message on a Screen. The ticker is 

typically displayed at the top of the screen adjacent to the screen title, if there is one. The 

ticker is associated with a Screen by calling its setTicker(). The same ticker instance may 

be associated with more than one screen so that the same information can remain displayed as 

the user navigates through the application.  

The text to be displayed by the ticker is set using the setString method. The rate at which 

the text is scrolled and the scrolling direction are platform-dependent and cannot be controlled 

by the application. It is not possible to halt the scrolling effect, but the ticker can be removed 

from a screen by calling its setTicker() method with argument null.  

public class Ticker {   
// Public Constructors 
   public Ticker( String str);     
// Public Instance Methods 
   public String getString();   
   public void setString( String str); 
} 

Passed To 

Screen.setTicker()  

Returned By 

Screen.getTicker()  

http:///


J2ME in a Nutshell 

428 

 

Chapter 16. javax.microedition.midlet 

Package javax.microedition.midlet  MIDP 1.0  

 

  

This package contains only two classes: MIDlet and MIDletStateChangeException. 

The MIDlet class is the base class for all MIDlets, which are the Mobile Information Device 

Profile's equivalent of Java applets. Like applets, MIDlets have a small number of methods 

that must be overridden so that MIDlets can respond to state changes. These state changes are 

caused by interactions with the user or with other MIDlets. Under certain circumstances, 

a MIDlet can report a problem during a state change by throwing 

a MIDletStateChangeException, which may or may not stop the state change from being 

completed.  

Figure 16-1 shows the class hierarchy of this package. See Chapter 3, "The Mobile 

Information Device Profile and MIDlets," for more details about MIDlets.  

Figure 16-1. The javax.microedition.midlet hierarchy 

 

MIDlet  MIDP 1.0  

 

javax.microedition.midlet   

This class is the abstract base class from which all MIDlet classes are derived. MIDlets run on 

devices that support the Mobile Information Device Profile (MIDP), under the control of 

device-dependent application management software (AMS) that creates, schedules, and 

destroys them.  

MIDlets are grouped together into suites. MIDlet suites are always installed, managed, and 

removed as a single unit. All MIDlets from the same suite execute within a single Java virtual 

machine instance, enabling them to share data using static variables declared in their class 

implementations. MIDlets can also share information by using RecordStores, which can be 

accessed using the APIs defined in the javax.microedition.rms package. Partitioning 

MIDlets so that only those from the same suite execute in the same VM ensures that 

potentially malicious MIDlets from one suite cannot read or modify information belonging to 

another. RecordStores are similarly protected by ensuring that they are private to the MIDlet 

suite whose MIDlets create them.  

http:///


J2ME in a Nutshell 

429 

Of all the MIDlets that are currently executing on a device, only one of them is considered to 

be in the foreground. The foreground MIDlet is unique in that it has access to the device's 

screen, keypad, and pointer (if the device supports them). Updates to the screen made by the 

foreground MIDlet will be seen by the user--possibly after a short delay-- whereas those made 

in a MIDlet that is in the background will not affect the display until that MIDlet comes to the 

foreground again. The selection of the foreground MIDlet is made by the AMS scheduler. A 

MIDlet may influence the choice of the foreground MIDlet by calling its resumeRequest() 

method to indicate that it would like to move to the foreground. The scheduler may ignore this 

request or it may assign the MIDlet to the foreground at some future time. Similarly, a MIDlet 

uses the notifyPaused() method to give up the foreground. Since both of these methods are 

public, a MIDlet may invoke them on an instance of a different MIDlet from the same suite, 

provided that it can obtain a reference to it. In addition, the resumeRequest() method can be 

called by a MIDlet to have a second MIDlet perform a task on its behalf. The first MIDlet 

must then rely on the second one to resume it once the assigned task has been completed.  

To implement a MIDlet, create a MIDlet subclass that provides implementations of the 

methods startApp(), pauseApp() and destroyApp(). These methods are declared to be 

abstract in the base class and are invoked by the scheduler at well-defined points in the 

MIDlet's life cycle. A MIDlet's constructor is called as soon as it is created. Its startApp() 

method is invoked when the MIDlet is moved to the foreground, which may (or may not) be 

shortly after its construction. Since this method can be called several times during its 

lifecycle, a MIDlet often contains an instance variable that it uses to detect the first invocation 

of startApp() so that it can perform initialization of resources that are not required until it 

has access to the screen. A MIDlet's startApp() method can indicate to the scheduler that it 

does not wish to be moved to the foreground by throwing a MIDletStateChangeException, 

perhaps because it is currently performing a background activity. This typically leaves the 

MIDlet in a state from which another attempt can be made to resume it later. If the MIDlet 

encounters an error from which it cannot recover, it may throw a different exception (which 

must be derived from RuntimeException), or it may call the notifyDestroy() method.  

The pauseApp() method is called to notify the MIDlet that it is no longer in the foreground. 

A MIDlet typically uses this method to free any resources that it only needs while it has 

access to the screen. These resources can then be reallocated when the MIDlet regains the 

foreground using the startApp() method. A paused MIDlet may continue to do useful work 

in other threads, but should consume as little resources as possible if it chooses to do so.  

The destroyApp() method is called to notify the MIDlet that it is being terminated. This 

method has a boolean argument. If this argument has the value true (which will always be 

the case when it is called from the scheduler) the termination is unconditional and the MIDlet 

must release any resources it is holding and return. The MIDlet will lose the foreground and 

will not be scheduled again after it returns from the destroyApp() method. 

The destroyApp() method may also be called by the MIDlet itself (or by another MIDlet in 

the same suite) with a false argument; this notifies the MIDlet that it has the option of 

terminating. If the MIDlet is in a state in which it is convenient to stop, it should behave as 

described above; the code that called destroyApp() must then call notifyDestroyed() to 

tell the scheduler that the MIDlet is in the destroyed state. However, if the MIDlet does not 

wish to stop, it may signal this fact to the caller by throwing 

a MIDletStateChangeException.  

http:///


J2ME in a Nutshell 

430 

The notifyDestroyed() method tells the scheduler that the MIDlet has voluntarily 

terminated. Before calling this method, the MIDlet should release its resources, as the 

scheduler does not invoke its destroyApp() method to give it an opportunity to do so. 

MIDlets that call notifyDestroyed() usually precede the call with an invocation of 

destroyApp() to achieve this.  

A MIDlet can retrieve the values of properties set in either its application descriptor file 

(JAD) or in the manifest file of the JAR in which it is packaged using the getAppProperty() 

method. If the same property is defined in both the manifest and the JAD, the value in the 

JAD is returned. Property values are read-only and are shared by all of the MIDlets in a 

MIDlet suite. They are typically used to customize a MIDlet's behavior without requiring 

recompilation.  

public abstract class MIDlet {   

// Protected Constructors 

   protected MIDlet();     

// Public Instance Methods 

   public final String getAppProperty( String key);   

   public final void notifyDestroyed();   

   public final void notifyPaused();   

   public final void resumeRequest();     

// Protected Instance Methods 

   protected abstract void destroyApp( 

        boolean unconditional) throws MIDletStateChangeException; 

   protected abstract void pauseApp();   

   protected abstract void startApp( 

        ) throws MIDletStateChangeException;   

} 

Passed To 

javax.microedition.lcdui.Display.getDisplay()  

MIDletStateChangeException  MIDP 1.0  

 

javax.microedition.midlet  checked  

This exception signals that a MIDlet state change failed. This exception may be thrown from 

the MIDlet's startApp() method to indicate that it currently does not wish begin or resume 

execution, but may be able to do so at a later time. It may also be thrown from destroyApp() 

if that method was called with a false argument and the MIDlet does not wish to terminate.  

 
public class MIDletStateChangeException extends Exception { 

// Public Constructors 

   public MIDletStateChangeException();   

   public MIDletStateChangeException( String s);   

} 

 

http:///


J2ME in a Nutshell 

431 

Thrown By 

MIDlet.{destroyApp(), startApp()}  

http:///


J2ME in a Nutshell 

432 

 

Chapter 17. javax.microedition.rms 

Package javax.microedition.rms  MIDP 1.0  

 

  

This package, whose class hierarchy is shown in Figure 17-1, allows MIDlets to store 

information on a device that will persist even when the MIDlet is not running. How the 

information is stored is device-specific and is not intended to be visible to MIDlets.  

The key class in this package is RecordStore, which represents a collection of records. Each 

record in the record store is an array of bytes with an associated identifier. This identifier can 

be used to retrieve the record, modify it, or delete it. MIDlets in the same MIDlet suite can 

share record stores, but may not access (or even know of the existence of) record stores in 

other suites. All record stores belonging to a suite are automatically removed if the suite is 

removed from the device.  

Records in a record store can be traversed by creating a RecordEnumeration. 

The enumeration may contain all of the records, or a subset filtered according to some 

MIDlet-defined criterion. The order in which the records appear in the enumeration can also 

be controlled through the use of a RecordComparator.  

InvalidRecordIDException  MIDP 1.0  

 

javax.microedition.rms  checked  

This exception signals that a RecordStore operation has been attempted using an invalid 

record ID. A record ID is invalid if it does not correspond to a record in the RecordStore. 

Zero is always an invalid ID, as are all negative integers.  

 
public class InvalidRecordIDException extends RecordStoreException { 

// Public Constructors 

   public InvalidRecordIDException();   

   public InvalidRecordIDException( String message);   

} 

Thrown By 

RecordEnumeration.{nextRecord(), nextRecordId(), previousRecord(), 

previousRecordId()}, RecordStore.{deleteRecord(), getRecord(), 

getRecordSize(), setRecord()}  

 

 

http:///


J2ME in a Nutshell 

433 

Figure 17-1. The java.microedition.rms hierarchy 

 

RecordComparator  MIDP 1.0  

 

javax.microedition.rms   

This is an interface used when creating a RecordEnumeration that determines the order in 

which records are returned. The interface consists of the single method compare(), which is 

passed a pair of byte-array records, rec1 and rec2. The method returns one of the following 

integer values to indicate their relative ordering:  

PRECEDES  

Indicates that rec1 should appear before rec2 

EQUIVALENT  

Indicates that rec1 and rec2 are equivalent according to the sorting criterion applied 

by this comparator. Note that this does not imply that the records are equal, although 

equal records would result in this value being returned.  

FOLLOWS  

Indicates that rec1 should appear after rec2 

A typical implementation of this method wraps each of the records with 

a ByteArrayInputStream and a DataInputStream so that the contents of the records can be 

accessed as a set of fields. To construct a filter that sorts based on the natural sorting order of 

http:///


J2ME in a Nutshell 

434 

the first field in the record, which is assumed to be a String, the record in the byte arrays 

rec1 and rec2 is converted to DataInputStreams like this:  

DataInputStream dis1 = new DataInputStream(new ByteArrayInputStream(rec1));  

DataInputStream dis2 = new DataInputStream(new ByteArrayInputStream(rec2));  

At this point, the field to be compared is extracted from each record using the 

DataInputStream readUTF() method, and the comparison is performed:  

int res = dis1.readUTF().compareTo(dis2.readUTF());  

The return value from the method should be PRECEDES if res is negative, EQUIVALENT if res 

is zero and FOLLOWS otherwise.  

public interface RecordComparator {   

// Public Constants 

   public static final int EQUIVALENT;                           // =0 

   public static final int FOLLOWS;                              // =1 

   public static final int PRECEDES;                             // =-1 

// Public Instance Methods 

   public abstract int compare(byte[] rec1,  

        byte[] rec2);   

} 

Passed To 

RecordStore.enumerateRecords()  

RecordEnumeration  MIDP 1.0  

 

javax.microedition.rms   

RecordEnumeration is an interface that provides method to enumerate, or iterate, through a 

set of records in a RecordStore. The RecordEnumeration may be constructed so that only a 

subset of the records appear. In addition, it may also specify the order in which the records are 

presented. Once the enumeration has been constructed, records may be traversed either 

forwards or backwards, and the traversal direction may be changed at any time.  

A RecordEnumeration is obtained by calling the RecordStore enumerateRecords() 

method, which accepts three parameters that determine the content and ordering of the 

enumeration:  

filter  

A RecordFilter that selects which records will appear in the enumeration. If this 

argument is null, the enumeration will include all of the records.  

 
 

http:///


J2ME in a Nutshell 

435 

comparator  

A RecordComparator that determines the order in which the records appear in the 

enumeration. If this parameter is null, the record order is undefined.  

keepUpdated  

If this parameter has the value false, the set of records that appears in the 

enumeration, as well as their order, is determined once and is thereafter fixed, even if 

the underlying RecordStore content changes. If this parameter is true, changes in the 

RecordStore will be immediately visible in the enumeration. Note that setting this 

parameter to true can be very expensive as each change to the RecordStore requires 

a potentially time-consuming operation to rebuild the enumeration.  

Once an enumeration has been created, the numRecords() method can be used to check the 

number of records that it will return. If the enumeration is dynamically updated, the number 

of records in the enumeration may vary and the value returned by this method may be 

unreliable. The isKeptUpdated() method may be used to determine whether the enumeration 

is updated in this way. The keepUpdated() method can be used to convert a static 

enumeration to one that is dynamically updated, or vice versa. An alternative to creating a 

dynamically updated enumeration is to call the rebuild() method, which recreates the 

enumeration to reflect the current state of the RecordStore and resets it so that it is pointing 

to the first record.  

An enumeration may be traversed in the forward direction using the nextRecordId() or 

nextRecord() methods, which return the identifier of the next record or the record itself, 

respectively. The hasNextElement() method can be used to determine when there are no 

more records to be retrieved. If nextRecordId() or nextRecord() methods are called when 

the last record in the enumeration has already been returned, an InvalidRecordIDException 

is thrown.  

The enumeration may be traversed in the opposite direction using the previousRecordId() 

and previousRecord() methods. The hasPreviousElement() can be used to determine 

whether an invocation of either of these methods would return a record or throw an 

InvalidRecordIDException. It is possible to change the direction of traversal by mixing the 

use of nextRecord() and previousRecord(). It is also possible to reset the enumeration to 

its initial state using the reset() method.  

There is a possibility that records in the RecordStore might be deleted by another thread in 

the MIDlet or by another MIDlet in the same suite. If this is the case, the nextRecord() or 

previousRecord() methods will throw an InvalidRecordIDException when they reach a 

record that has been deleted. It is safe to catch this exception and continue to the next record. 

This only happens if the enumeration is not dynamically updated. In the same manner, the 

nextRecordId() and previousRecordId() methods may return record identifiers for 

records that have been deleted. If an attempt is made to read such a record, an 

InvalidRecordIDException is thrown. Note that this issue exists even for dynamically 

updated enumerations, because the record could be removed after its identifier is returned but 

before it is read from the RecordStore. Consequently, application code should always be 

http:///


J2ME in a Nutshell 

436 

prepared to receive an InvalidRecordIDException and simply advance to the next record if 

the cause is not the enumeration's end.  

When the application has no further use for a RecordEnumeration, it must call the 

destroy() method to release its resources. Once done, any further attempts to use the 

enumeration results in an IllegalStateException. Also, if the RecordStore that the 

enumeration is associated with is closed, nextRecord() and previousRecord() will fail 

with a RecordStoreNotOpenException.  

public interface RecordEnumeration {   

// Public Instance Methods 

   public abstract void destroy();   

   public abstract boolean hasNextElement();   

   public abstract boolean hasPreviousElement();   

   public abstract boolean isKeptUpdated();   

   public abstract void keepUpdated( boolean keepUpdated);   

   public abstract byte[] nextRecord( ) throws InvalidRecordIDException, 

        RecordStoreNotOpenException, RecordStoreException;   

   public abstract int nextRecordId( 

        ) throws InvalidRecordIDException;   

   public abstract int numRecords();   

   public abstract byte[] previousRecord( ) throws  

 InvalidRecordIDException, RecordStoreNotOpenException,  

 RecordStoreException;   

   public abstract int previousRecordId( 

        ) throws InvalidRecordIDException;   

   public abstract void rebuild();   

   public abstract void reset();   

} 

Returned By 

RecordStore.enumerateRecords()  

RecordFilter  MIDP 1.0  

 

javax.microedition.rms   

This interface selects which RecordStore records should be included in a 

RecordEnumeration. It consists of a single method, matches(), which examines the contents 

of a record and returns true if the record should be included, or false if it should not.  

A typical implementation of this method wraps the incoming record with a 

ByteArrayInputStream and a DataInputStream so that the contents of the record can be 

accessed as a set of fields. For example, to construct a filter that would include only records 

whose first field (assumed to be a String) starts with the letter S, first create 

a DataInputStream from the candidate:  

DataInputStream dis = new  

DataInputStream(new ByteArrayInputStream(candidate));  

http:///


J2ME in a Nutshell 

437 

Then, extract the field to be compared using the DataInputStream readUTF() method and 

test its first character:  

return dis.readUTF().startsWith("S");  

public interface RecordFilter {   

// Public Instance Methods 

   public abstract boolean matches(byte[] candidate); 

} 

Passed To 

RecordStore.enumerateRecords()  

RecordListener  MIDP 1.0  

 

javax.microedition.rms   

This interface is implemented by classes that wish to be notified of changes to the content of 

one or more RecordStores. A listener is registered by calling the addRecordListener() 

method of a RecordStore and removed using the removeRecordListener() method.  

This interface has three methods. The recordAdded() method is called when a new record is 

added to a RecordStore. recordDeleted() is called when a new record is removed from a 

RecordStore. Finally, recordChanged() is called when the content of an existing record is 

modified. Each of these methods are passed a reference to the RecordStore and the ID of the 

affected record. This allows a single listener to monitor more than one RecordStore. Note 

that in the case of recordDeleted(), the record ID will already be invalid by the time this 

method is invoked, so it is not possible to retrieve the contents of the deleted record.  

public interface RecordListener {   

// Public Instance Methods 

   public abstract void recordAdded(RecordStore recordStore,  

        int recordId);   

   public abstract void recordChanged(RecordStore recordStore, 

        int recordId);   

   public abstract void recordDeleted(RecordStore recordStore, 

        int recordId);   

} 

Passed To 

RecordStore.{addRecordListener(), removeRecordListener()}  

http:///


J2ME in a Nutshell 

438 

 

RecordStore  MIDP 1.0  

 

javax.microedition.rms   

A RecordStore provides persistent storage for a collection of records. The means by which 

the records are stored is device-dependent. A RecordStore may be implemented using a 

native feature of the host operating system; therefore the data that it contains might be visible 

or subject to modification by native applications. The programming interface provided by the 

RecordStore class is intended to be simple enough that it can be implemented across a 

variety of different platforms. A RecordStore does not expose the details of the underlying 

storage mechanism.  

A RecordStore is identified by its name, which is a string of up to 32 Unicode characters. 

RecordStores can be shared by all MIDlets in the same MIDlet suite; hence, the name must 

be unique within the MIDlet suite. RecordStores belonging to one suite are not visible to 

MIDlets in other suites as the MIDlet suite itself is implicitly part of the RecordStore name. 

As a result, MIDlets in different suites can create stores with the same name without conflict.  

The static openRecordStore() method opens an existing RecordStore given its name. 

The createIfNecessary argument should be set to true to create the RecordStore if it does 

not already exist. The openRecordStore() method may be called several times within 

the same MIDlet and will always return the same RecordStore instance given the same 

name. When a MIDlet no longer needs to access a RecordStore, it should call 

the closeRecordStore() method. Note that the number of times a store is opened by 

a MIDlet is counted and the store is not actually closed until the number of 

closeRecordStore() calls matches the number of opens.  

There are two other static methods that operate at the RecordStore level. 

The listRecordStores() method returns the names of all of the record stores belonging to 

the MIDlet suite in the form of a string array. The deleteRecordStore() method deletes 

a named RecordStore. This operation succeeds only if the record store is not currently open. 

A RecordStore is automatically deleted when the MIDlet suite that owns it is uninstalled 

from the host device.  

A RecordStore consists of a set of records, each of which is simply an array of bytes with an 

associated record identifier. The record identifier is a unique, positive integer value assigned 

by the RecordStore implementation when the record is created. The first record to be created 

in a record store is assigned the identifier 1, and subsequent records are assigned an identifier 

that is one greater then that assigned to the record created before it. If a record is deleted, its 

identifier is not reused, even if it is the most recently created record. The 

getNextRecordID() can be used to get the value of the next identifier to be assigned. The 

value returned should be used carefully, however, because it will become invalid if another 

thread in the same MIDlet or another MIDlet creates a new record. Although RecordStore 

operations are thread-safe, it is the MIDlet's responsibility to ensure that the required level of 

consistency is maintained when multiple operations must be performed without other changes 

http:///


J2ME in a Nutshell 

439 

being made. One way to achieve this is to code multi-step operations in a block that is 

synchronized on the RecordStore reference.  

While the RecordStore is open, you can use the getNumRecords(), getSize() and 

getSizeAvailable() methods to get the total number of records in the record store, the 

number of bytes that the record store occupies and the approximate number of bytes by which 

the record store may grow before reachings its size limit, respectively. Since the record store 

implementation uses some space for its management information, the value returned by the 

getSize() method may be larger than the total size of the existing records and the value 

returned by getSizeAvailable() will be larger than the remaining space available for the 

storage of records.  

A new record can be added to the record store using the addRecord() method, which is given 

the record content in the form of a range of bytes from a byte array and returns the identifier 

assigned to the record. Records are usually created by wrapping a ByteArrayOutputStream 

with a DataOutputStream and then writing Java primitive types and strings to the record 

using DataOutputStream methods. When the record is complete, the 

ByteArrayOutputStream toByteArray() can be used to get the byte array to be passed to 

addRecord().  

The content of an existing record can be obtained using the getRecord() methods, which 

require the record identifier and, optionally, a preallocated buffer into which the record will 

be read. The size of a record can be obtained by calling the getRecordSize() method. Once 

a record has been retrieved, its content can be modified and the updated version written back 

to the record store using the setRecord() method. This method can also be used to set the 

content of an existing record from a byte array containing arbitrary content that was not 

initialized by calling getRecord(). The setRecord() method always overwrites a complete 

record and may increase or decrease the record size. It is not possible to update only part of a 

record other than by reading it into memory, modifying the affected portion and writing the 

result back in its entirety.  

Records can be deleted using the deleteRecord() method. Once a record has been deleted, 

its record identifier becomes permanently invalid.  

To scan the records in a record store, the enumerateRecords() method should be used to get 

a RecordEnumeration. The arguments passed to this method allow for the returned 

enumeration to present the records in a specified order and to include only records that meet a 

given criterion. See the description of the RecordEnumeration interface for further 

information.  

The record store has an associated version number that is incremented whenever a record is 

added, deleted or changed. The time of the last modification is also recorded. The version 

number and last modification time can be obtained using the getVersion() and 

getLastModified() methods, respectively. The modification time is returned in the same 

form as the system time returned by the System currentTimeMillis() method.  

A more immediate way to discover changes in the record store is to register 

a RecordListener using the addRecordListener() methods. Listeners are notified each 

time a record is added, removed or changed. A listener can be removed using 

http:///


J2ME in a Nutshell 

440 

the removeRecordListener() method; all listeners are automatically deregistered when 

the record store is closed.  

public class RecordStore { 

// No Constructor   

// Public Class Methods 

   public static void deleteRecordStore( String recordStoreName) throws  

        RecordStoreException, RecordStoreNotFoundException;   

   public static String[] listRecordStores();   

   public static RecordStore openRecordStore( String recordStoreName,  

        boolean createIfNecessary) throws RecordStoreException,  

        RecordStoreFullException, RecordStoreNotFoundException;   

// Event Registration Methods (by event name) 

   public void addRecordListener( RecordListener listener);   

   public void removeRecordListener(RecordListener listener);     

// Property Accessor Methods (by property name) 

   public long getLastModified( 

        ) throws RecordStoreNotOpenException;   

   public String getName( 

        ) throws RecordStoreNotOpenException;   

   public int getNextRecordID( 

        ) throws RecordStoreNotOpenException, RecordStoreException;   

   public int getNumRecords( 

        ) throws RecordStoreNotOpenException;   

   public int getSize() throws RecordStoreNotOpenException;   

   public int getSizeAvailable( 

        ) throws RecordStoreNotOpenException;   

   public int getVersion( 

        ) throws RecordStoreNotOpenException;     

// Public Instance Methods 

   public int addRecord(byte[] data, int offset, int numBytes) 

        throws RecordStoreNotOpenException, RecordStoreException,  

        RecordStoreFullException;   

   public void closeRecordStore( 

        ) throws RecordStoreNotOpenException, RecordStoreException;   

   public void deleteRecord( int recordId)  

        throws RecordStoreNotOpenException, InvalidRecordIDException,  

        RecordStoreException;   

   public RecordEnumeration enumerateRecords( 

        RecordFilter filter, RecordComparator comparator,  

        boolean keepUpdated) throws RecordStoreNotOpenException;   

   public byte[] getRecord( 

        int recordId) throws RecordStoreNotOpenException,  

        InvalidRecordIDException, RecordStoreException; 

   public int getRecord(int recordId, byte[] buffer, int offset) 

        throws RecordStoreNotOpenException, InvalidRecordIDException,  

        RecordStoreException; 

   public int getRecordSize( int recordId)  

        throws   

 RecordStoreNotOpenExceptionInvalidRecordIDExceptionRecordStoreException;

   public void setRecord(int 

   recordId, byte[] newData, int offset, int numBytes) throws  

        RecordStoreNotOpenException, InvalidRecordIDException,  

        RecordStoreException, RecordStoreFullException; 

} 

Passed To 

RecordListener.{recordAdded(), recordChanged(), recordDeleted()}  

http:///


J2ME in a Nutshell 

441 

Returned By 

RecordStore.openRecordStore()  

RecordStoreException  MIDP 1.0  

 

javax.microedition.rms  checked  

This is the base class for all exceptions thrown by RecordStore operations. This class is also 

used as a generic exception that is thrown when none of the more specific exceptions are 

appropriate. The getMessage() method is used to obtain further information on the problem 

that caused the exception.  

public class RecordStoreException extends Exception {   

// Public Constructors 

   public RecordStoreException();   

   public RecordStoreException( String message);   

} 

Subclasses 

InvalidRecordIDException, RecordStoreFullException, 

RecordStoreNotFoundException, RecordStoreNotOpenException  

Thrown By 

RecordEnumeration.{nextRecord(), previousRecord()}, 
RecordStore.{addRecord(), closeRecordStore(), deleteRecord(), 

deleteRecordStore(), getNextRecordID(), getRecord(), getRecordSize(), 

openRecordStore(), setRecord()}  

RecordStoreFullException  MIDP 1.0  

 

javax.microedition.rms  checked  

This exception signals that the RecordStore operation could not be performed because there 

is insufficient space available. Note that a RecordStore implementation may require its own 

private space in the RecordStore, so that there may be insufficient space for an operation to 

be performed even when it appears that there is enough space.  

 
public class RecordStoreFullException extends RecordStoreException { 

// Public Constructors 

   public RecordStoreFullException();   

   public RecordStoreFullException( String message);   

} 

http:///


J2ME in a Nutshell 

442 

Thrown By 

RecordStore.{addRecord(), openRecordStore(), setRecord()}  

RecordStoreNotFoundException  MIDP 1.0  

 

javax.microedition.rms  checked  

This exception signals that a RecordStore to be opened or deleted could not be found. One 

common cause of this error is trying to access a RecordStore in another MIDlet suite, which 

is not allowed.  

 
public class RecordStoreNotFoundException extends RecordStoreException {

// Public Constructors 

   public RecordStoreNotFoundException();   

   public RecordStoreNotFoundException( String message);   

} 

Thrown By 

RecordStore.{deleteRecordStore(), openRecordStore()}  

RecordStoreNotOpenException  MIDP 1.0  

 

javax.microedition.rms  checked  

This exception signals that an operation was attempted on a RecordStore that has already 

been closed using the closeRecordStore() method.  

 
public class RecordStoreNotOpenException extends RecordStoreException {

// Public Constructors 

   public RecordStoreNotOpenException();   

   public RecordStoreNotOpenException( String message);   

} 

Thrown By 

Too many methods to list.  

http:///


J2ME in a Nutshell 

443 

 

Class, Method, and Field Index 

A 

abs():  

Math 

 

acceptAndOpen():  

StreamConnectionNotifier 

 

activeCount():  

Thread  

 

addCommand():  

Alert, Displayable  

 

addElement():  

Vector  

 

addRecord():  

RecordStore  

 

addRecordListener():  

RecordStore  

 

after():  

Calendar  

http:///


J2ME in a Nutshell 

444 

ALARM:  

AlertType  

 

Alert:  

javax.microedition.lcdui  

 

AlertType:  

javax.microedition.lcdui  

 

AM:  

Calendar  

 

AM_PM:  

Calendar  

 

ANY:  

TextField  

 

append():  

Choice, ChoiceGroup, Form, List, StringBuffer  

 

APRIL:  

Calendar  

 

ArithmeticException:  

java.lang  

http:///


J2ME in a Nutshell 

445 

arraycopy():  

System  

 

ArrayGlossOutOfBoundsException:  

java.lang  

 

ArrayStoreException:  

java.lang  

 

AUGUST:  

Calendar  

 

available():  

ByteArrayInputStream, DataInputStream, InputStream  

 

B 

BACK:  

Command  

 

BASELINE:  

Graphics  

 

before():  

Calendar  

 

 

http:///


J2ME in a Nutshell 

446 

Boolean:  

java.lang  

 

booleanValue():  

Boolean  

 

BOTTOM:  

Graphics  

 

buf:  

ByteArrayInputStream, ByteArrayOutputStream  

 

Byte:  

java.lang  

 

ByteArrayInputStream:  

java.io  

 

ByteArrayOutputStream:  

java.io  

 

bytesTransferred:  

InterruptedIOException  

 

byteValue():  

Byte, Integer  

http:///


J2ME in a Nutshell 

447 

C 

Calendar:  

java.util  

 

callSerially():  

Display  

 

CANCEL:  

Command  

 

cancel():  

Timer, TimerTask  

 

Canvas:  

javax.microedition.lcdui  

 

capacity():  

StringBuffer, Vector  

 

capacityIncrement:  

Vector  

 

Character:  

java.lang  

 

 

http:///


J2ME in a Nutshell 

448 

charAt():  

String, StringBuffer  

 

charsWidth():  

Font  

 

charValue():  

Character  

 

charWidth():  

Font  

 

checkError():  

PrintStream  

 

Choice:  

javax.microedition.lcdui  

 

ChoiceGroup:  

javax.microedition.lcdui  

 

Class:  

java.lang  

 

ClassCastException:  

java.lang  

http:///


J2ME in a Nutshell 

449 

ClassNotFoundException:  

java.lang  

 

clear():  

Hashtable  

 

clipRect():  

Graphics  

 

close():  

ByteArrayInputStream, ByteArrayOutputStream, Connection, DataInputStream, 

DataOutputStream, InputStream, InputStreamReader, OutputStream, 

OutputStreamWriter, PrintStream, Reader, Writer  

 

closeRecordStore():  

RecordStore  

 

Command:  

javax.microedition.lcdui  

 

commandAction():  

CommandListener  

 

CommandListener:  

javax.microedition.lcdui  

 

 

http:///


J2ME in a Nutshell 

450 

compare():  

RecordComparator  

 

compareTo():  

String  

 

concat():  

String  

 

CONFIRMATION:  

AlertType  

 

Connection:  

javax.microedition.io  

 

ConnectionNotFoundException:  

javax.microedition.io  

 

Connector:  

javax.microedition.io  

 

CONSTRAINT_MASK:  

TextField  

 

contains():  

Hashtable, Vector  

http:///


J2ME in a Nutshell 

451 

containsKey():  

Hashtable  

 

ContentConnection:  

javax.microedition.io  

 

copyInto():  

Vector  

 

count:  

ByteArrayInputStream, ByteArrayOutputStream  

 

createImage():  

Image  

 

currentThread():  

Thread  

 

currentTimeMillis():  

System  

 

D 

Datagram:  

javax.microedition.io  

 

 

http:///


J2ME in a Nutshell 

452 

DatagramConnection:  

javax.microedition.io  

 

DataInput:  

java.io  

 

DataInputStream:  

java.io  

 

DataOutput:  

java.io  

 

DataOutputStream:  

java.io  

 

Date:  

java.util  

 

DATE:  

Calendar, DateField  

 

DATE_TIME:  

DateField  

 

DateField:  

javax.microedition.lcdui  

http:///


J2ME in a Nutshell 

453 

DAY_OF_MONTH:  

Calendar  

 

DAY_OF_WEEK:  

Calendar  

 

DECEMBER:  

Calendar  

 

delete():  

Choice, ChoiceGroup, Form, List, StringBuffer, TextBox, TextField  

 

deleteCharAt():  

StringBuffer  

 

deleteRecord():  

RecordStore  

 

deleteRecordStore():  

RecordStore  

 

destroy():  

RecordEnumeration  

 

destroyApp():  

MIDlet  

http:///


J2ME in a Nutshell 

454 

digit():  

Character  

 

Display:  

javax.microedition.lcdui  

 

Displayable:  

javax.microedition.lcdui  

 

DOTTED:  

Graphics  

 

DOWN:  

Canvas  

 

drawArc():  

Graphics  

 

drawChar():  

Graphics  

 

drawChars():  

Graphics  

 

drawImage():  

Graphics  

http:///


J2ME in a Nutshell 

455 

drawLine():  

Graphics  

 

drawRect():  

Graphics  

 

drawRoundRect():  

Graphics  

 

drawString():  

Graphics  

 

drawSubstring():  

Graphics  

 

E 

elementAt():  

Vector  

 

elementCount:  

Vector  

 

elementData:  

Vector  

 

 

http:///


J2ME in a Nutshell 

456 

elements():  

Hashtable, Vector  

 

EMAILADDR:  

TextField  

 

empty():  

Stack  

 

EmptyStackException:  

java.util  

 

endsWith():  

String  

 

ensureCapacity():  

StringBuffer, Vector  

 

enumerateRecords():  

RecordStore  

 

Enumeration:  

java.util  

 

EOFException:  

java.io  

http:///


J2ME in a Nutshell 

457 

equals():  

Boolean, Byte, Calendar, Character, Date, Integer, Long, Object, Short, String  

 

EQUIVALENT:  

RecordComparator  

 

err:  

System  

 

ERROR:  

AlertType  

 

Error:  

java.lang  

 

Exception:  

java.lang  

 

EXCLUSIVE:  

Choice  

 

EXIT:  

Command  

 

exit():  

Runtime, System  

http:///


J2ME in a Nutshell 

458 

F 

FACE_MONOSPACE:  

Font  

 

FACE_PROPORTIONAL:  

Font  

 

FACE_SYSTEM:  

Font  

 

FEBRUARY:  

Calendar  

 

fillArc():  

Graphics  

 

fillRect():  

Graphics  

 

fillRoundRect():  

Graphics  

 

FIRE:  

Canvas  

 

 

http:///


J2ME in a Nutshell 

459 

firstElement():  

Vector  

 

flush():  

DataOutputStream, OutputStream, OutputStreamWriter, PrintStream, Writer  

 

FOLLOWS:  

RecordComparator  

 

Font:  

javax.microedition.lcdui  

 

FOREVER:  

Alert  

 

Form:  

javax.microedition.lcdui  

 

forName():  

Class  

 

freeMemory():  

Runtime  

 

FRIDAY:  

Calendar  

http:///


J2ME in a Nutshell 

460 

G 

GAME_A:  

Canvas  

 

GAME_B:  

Canvas  

 

GAME_C:  

Canvas  

 

GAME_D:  

Canvas  

 

Gauge:  

javax.microedition.lcdui  

 

gc():  

Runtime, System  

 

GET:  

HttpConnection  

 

get():  

Calendar, Form, Hashtable  

 

 

http:///


J2ME in a Nutshell 

461 

getAddress():  

Datagram  

 

getAltText():  

ImageItem  

 

getAppProperty():  

MIDlet  

 

getAvailableIDs():  

TimeZone  

 

getBaselinePosition():  

Font  

 

getBlueComponent():  

Graphics  

 

getBytes():  

String  

 

getCaretPosition():  

TextBox, TextField  

 

getChars():  

String, StringBuffer, TextBox, TextField  

http:///


J2ME in a Nutshell 

462 

getClass():  

Object  

 

getClipHeight():  

Graphics  

 

getClipWidth():  

Graphics  

 

getClipX():  

Graphics  

 

getClipY():  

Graphics  

 

getColor():  

Graphics  

 

getCommandType():  

Command  

 

getConstraints():  

TextBox, TextField  

 

getCurrent():  

Display  

http:///


J2ME in a Nutshell 

463 

getData():  

Datagram  

 

getDate():  

DateField, HttpConnection  

 

getDefault():  

TimeZone  

 

getDefaultFont():  

Font  

 

getDefaultTimeout():  

Alert  

 

getDisplay():  

Display  

 

getEncoding():  

ContentConnection  

 

getExpiration():  

HttpConnection  

 

getFace():  

Font  

http:///


J2ME in a Nutshell 

464 

getFile():  

HttpConnection  

 

getFont():  

Font, Graphics  

 

getGameAction():  

Canvas  

 

getGraphics():  

Image  

 

getGrayScale():  

Graphics  

 

getGreenComponent():  

Graphics  

 

getHeaderField():  

HttpConnection  

 

getHeaderFieldDate():  

HttpConnection  

 

getHeaderFieldInt():  

HttpConnection  

http:///


J2ME in a Nutshell 

465 

getHeaderFieldKey():  

HttpConnection  

 

getHeight():  

Canvas, Font, Image  

 

getHost():  

HttpConnection  

 

getID():  

TimeZone  

 

getImage():  

Alert, Choice, ChoiceGroup, ImageItem, List  

 

getInputMode():  

DateField  

 

getInstance():  

Calendar  

 

getKeyCode():  

Canvas  

 

getKeyName():  

Canvas  

http:///


J2ME in a Nutshell 

466 

getLabel():  

Command, Item  

 

getLastModified():  

HttpConnection, RecordStore  

 

getLayout():  

ImageItem  

 

getLength():  

ContentConnection, Datagram  

 

getMaximumLength():  

DatagramConnection  

 

getMaxSize():  

TextBox, TextField  

 

getMaxValue():  

Gauge  

 

getMessage():  

Throwable  

 

getName():  

Class, RecordStore  

http:///


J2ME in a Nutshell 

467 

getNextRecordID():  

RecordStore  

 

getNominalLength():  

DatagramConnection  

 

getNumRecords():  

RecordStore  

 

getOffset():  

Datagram, TimeZone  

 

getPort():  

HttpConnection  

 

getPriority():  

Command, Thread  

 

getProperty():  

System  

 

getProtocol():  

HttpConnection  

 

getQuery():  

HttpConnection  

http:///


J2ME in a Nutshell 

468 

getRawOffset():  

TimeZone  

 

getRecord():  

RecordStore  

 

getRecordSize():  

RecordStore  

 

getRedComponent():  

Graphics  

 

getRef():  

HttpConnection  

 

getRequestMethod():  

HttpConnection  

 

getRequestProperty():  

HttpConnection  

 

getResourceAsStream():  

Class  

 

getResponseCode():  

HttpConnection  

http:///


J2ME in a Nutshell 

469 

getResponseMessage():  

HttpConnection  

 

getRuntime():  

Runtime  

 

getSelectedFlags():  

Choice, ChoiceGroup, List  

 

getSelectedGloss():  

Choice, ChoiceGroup, List  

 

getSize():  

Font, RecordStore  

 

getSizeAvailable():  

RecordStore  

 

getString():  

Alert, Choice, ChoiceGroup, List, TextBox, TextField, Ticker  

 

getStrokeStyle():  

Graphics  

 

getStyle():  

Font  

http:///


J2ME in a Nutshell 

470 

getText():  

StringItem  

 

getTicker():  

Screen  

 

getTime():  

Calendar, Date  

 

getTimeInMillis():  

Calendar  

 

getTimeout():  

Alert  

 

getTimeZone():  

Calendar, TimeZone  

 

getTitle():  

Screen  

 

getTranslateX():  

Graphics  

 

getTranslateY():  

Graphics  

http:///


J2ME in a Nutshell 

471 

getType():  

Alert, ContentConnection  

 

getURL():  

HttpConnection  

 

getValue():  

Gauge  

 

getVersion():  

RecordStore  

 

getWidth():  

Canvas, Image  

 

Graphics:  

javax.microedition.lcdui  

 

H 

hashCode():  

Boolean, Byte, Character, Date, Integer, Long, Object, Short, String  

 

Hashtable:  

java.util  

 

 

http:///


J2ME in a Nutshell 

472 

hasMoreElements():  

Enumeration  

 

hasNextElement():  

RecordEnumeration  

 

hasPointerEvents():  

Canvas  

 

hasPointerMotionEvents():  

Canvas  

 

hasPreviousElement():  

RecordEnumeration  

 

hasRepeatEvents():  

Canvas  

 

HCENTER:  

Graphics  

 

HEAD:  

HttpConnection  

 

HELP:  

Command  

http:///


J2ME in a Nutshell 

473 

hideNotify():  

Canvas  

 

HOUR:  

Calendar  

 

HOUR_OF_DAY:  

Calendar  

 

HTTP_ACCEPTED:  

HttpConnection  

 

HTTP_BAD_GATEWAY:  

HttpConnection  

 

HTTP_BAD_METHOD:  

HttpConnection  

 

HTTP_BAD_REQUEST:  

HttpConnection  

 

HTTP_CLIENT_TIMEOUT:  

HttpConnection  

 

HTTP_CONFLICT:  

HttpConnection  

http:///


J2ME in a Nutshell 

474 

HTTP_CREATED:  

HttpConnection  

 

HTTP_ENTITY_TOO_LARGE:  

HttpConnection  

 

HTTP_EXPECT_FAILED:  

HttpConnection  

 

HTTP_FORBIDDEN:  

HttpConnection  

 

HTTP_GATEWAY_TIMEOUT:  

HttpConnection  

 

HTTP_GONE:  

HttpConnection  

 

HTTP_INTERNAL_ERROR:  

HttpConnection  

 

HTTP_LENGTH_REQUIRED:  

HttpConnection  

 

HTTP_MOVED_PERM:  

HttpConnection  

http:///


J2ME in a Nutshell 

475 

HTTP_MOVED_TEMP:  

HttpConnection  

 

HTTP_MULT_CHOICE:  

HttpConnection  

 

HTTP_NO_CONTENT:  

HttpConnection  

 

HTTP_NOT_ACCEPTABLE:  

HttpConnection  

 

HTTP_NOT_AUTHORITATIVE:  

HttpConnection  

 

HTTP_NOT_FOUND:  

HttpConnection  

 

HTTP_NOT_IMPLEMENTED:  

HttpConnection  

 

HTTP_NOT_MODIFIED:  

HttpConnection  

 

HTTP_OK:  

HttpConnection  

http:///


J2ME in a Nutshell 

476 

HTTP_PARTIAL:  

HttpConnection  

 

HTTP_PAYMENT_REQUIRED:  

HttpConnection  

 

HTTP_PRECON_FAILED:  

HttpConnection  

 

HTTP_PROXY_AUTH:  

HttpConnection  

 

HTTP_REQ_TOO_LONG:  

HttpConnection  

 

HTTP_RESET:  

HttpConnection  

 

HTTP_SEE_OTHER:  

HttpConnection  

 

HTTP_TEMP_REDIRECT:  

HttpConnection  

 

HTTP_UNAUTHORIZED:  

HttpConnection  

http:///


J2ME in a Nutshell 

477 

HTTP_UNAVAILABLE:  

HttpConnection  

 

HTTP_UNSUPPORTED_RANGE:  

HttpConnection  

 

HTTP_UNSUPPORTED_TYPE:  

HttpConnection  

 

HTTP_USE_PROXY:  

HttpConnection  

 

HTTP_VERSION:  

HttpConnection  

 

HttpConnection:  

javax.microedition.io  

 

I 

identityHashCode():  

System  

 

IllegalAccessException:  

java.lang  

 

 

http:///


J2ME in a Nutshell 

478 

IllegalArgumentException:  

java.lang  

 

IllegalMonitorStateException:  

java.lang  

 

IllegalStateException:  

java.lang  

 

IllegalThreadStateException:  

java.lang  

 

Image:  

javax.microedition.lcdui  

 

ImageItem:  

javax.microedition.lcdui  

 

IMPLICIT:  

Choice  

 

in:  

DataInputStream  

 

glossOf():  

String, Vector  

http:///


J2ME in a Nutshell 

479 

GlossOutOfBoundsException:  

java.lang  

 

INFO:  

AlertType  

 

InputConnection:  

javax.microedition.io  

 

InputStream:  

java.io  

 

InputStreamReader:  

java.io  

 

insert():  

Choice, ChoiceGroup, Form, List, StringBuffer, TextBox, TextField  

 

insertElementAt():  

Vector  

 

InstantiationException:  

java.lang  

 

Integer:  

java.lang  

http:///


J2ME in a Nutshell 

480 

InterruptedException:  

java.lang  

 

InterruptedIOException:  

java.io  

 

intValue():  

Integer  

 

InvalidRecordIDException:  

javax.microedition.rms  

 

IOException:  

java.io  

 

isAlive():  

Thread  

 

isArray():  

Class  

 

isAssignableFrom():  

Class  

 

isBold():  

Font  

http:///


J2ME in a Nutshell 

481 

isColor():  

Display  

 

isDigit():  

Character  

 

isDoubleBuffered():  

Canvas  

 

isEmpty():  

Hashtable, Vector  

 

isInstance():  

Class  

 

isInteractive():  

Gauge  

 

isInterface():  

Class  

 

isItalic():  

Font  

 

isKeptUpdated():  

RecordEnumeration  

http:///


J2ME in a Nutshell 

482 

isLowerCase():  

Character  

 

isMutable():  

Image  

 

isPlain():  

Font  

 

isSelected():  

Choice, ChoiceGroup, List  

 

isShown():  

Displayable  

 

isUnderlined():  

Font  

 

isUpperCase():  

Character  

 

Item:  

javax.microedition.lcdui  

 

ITEM:  

Command  

http:///


J2ME in a Nutshell 

483 

itemStateChanged():  

ItemStateListener  

 

ItemStateListener:  

javax.microedition.lcdui  

 

J 

JANUARY:  

Calendar  

 

join():  

Thread  

 

JULY:  

Calendar  

 

JUNE:  

Calendar  

 

K 

keepUpdated():  

RecordEnumeration  

 

KEY_NUM0:  

Canvas  

 

http:///


J2ME in a Nutshell 

484 

KEY_NUM1:  

Canvas  

 

KEY_NUM2:  

Canvas  

 

KEY_NUM3:  

Canvas  

 

KEY_NUM4:  

Canvas  

 

KEY_NUM5:  

Canvas  

 

KEY_NUM6:  

Canvas  

 

KEY_NUM7:  

Canvas  

 

KEY_NUM8:  

Canvas  

 

KEY_NUM9:  

Canvas  

http:///


J2ME in a Nutshell 

485 

KEY_POUND:  

Canvas  

 

KEY_STAR:  

Canvas  

 

keyPressed():  

Canvas  

 

keyReleased():  

Canvas  

 

keyRepeated():  

Canvas  

 

keys():  

Hashtable  

 

L 

lastElement():  

Vector  

 

lastGlossOf():  

String, Vector  

 

 

http:///


J2ME in a Nutshell 

486 

LAYOUT_CENTER:  

ImageItem  

 

LAYOUT_DEFAULT:  

ImageItem  

 

LAYOUT_LEFT:  

ImageItem  

 

LAYOUT_NEWLINE_AFTER:  

ImageItem  

 

LAYOUT_NEWLINE_BEFORE:  

ImageItem  

 

LAYOUT_RIGHT:  

ImageItem  

 

LEFT:  

Canvas, Graphics  

 

length():  

String, StringBuffer  

 

List:  

javax.microedition.lcdui  

http:///


J2ME in a Nutshell 

487 

listRecordStores():  

RecordStore  

 

lock:  

Reader, Writer  

 

Long:  

java.lang  

 

longValue():  

Integer, Long  

 

M 

MARCH:  

Calendar  

 

mark:  

ByteArrayInputStream  

 

mark():  

ByteArrayInputStream, DataInputStream, InputStream, InputStreamReader, Reader  

 

markSupported():  

ByteArrayInputStream, DataInputStream, InputStream, InputStreamReader, Reader  

 

 

http:///


J2ME in a Nutshell 

488 

matches():  

RecordFilter  

 

Math:  

java.lang  

 

max():  

Math  

 

MAX_PRIORITY:  

Thread  

 

MAX_RADIX:  

Character  

 

MAX_VALUE:  

Byte, Character, Integer, Long, Short  

 

MAY:  

Calendar  

 

MIDlet:  

javax.microedition.midlet  

 

MIDletStateChangeException:  

javax.microedition.midlet  

http:///


J2ME in a Nutshell 

489 

MILLISECOND:  

Calendar  

 

min():  

Math  

 

MIN_PRIORITY:  

Thread  

 

MIN_RADIX:  

Character  

 

MIN_VALUE:  

Byte, Character, Integer, Long, Short  

 

MINUTE:  

Calendar  

 

MONDAY:  

Calendar  

 

MONTH:  

Calendar  

 

MULTIPLE:  

Choice  

http:///


J2ME in a Nutshell 

490 

N 

NegativeArraySizeException:  

java.lang  

 

newDatagram():  

DatagramConnection  

 

newInstance():  

Class  

 

next():  

Random  

 

nextElement():  

Enumeration  

 

nextInt():  

Random  

 

nextLong():  

Random  

 

nextRecord():  

RecordEnumeration  

 

 

http:///


J2ME in a Nutshell 

491 

nextRecordId():  

RecordEnumeration  

 

NORM_PRIORITY:  

Thread  

 

NoSuchElementException:  

java.util  

 

notify():  

Object  

 

notifyAll():  

Object  

 

notifyDestroyed():  

MIDlet  

 

notifyPaused():  

MIDlet  

 

NOVEMBER:  

Calendar  

 

NullPointerException:  

java.lang  

http:///


J2ME in a Nutshell 

492 

NumberFormatException:  

java.lang  

 

numColors():  

Display  

 

NUMERIC:  

TextField  

 

numRecords():  

RecordEnumeration  

 

O 

Object:  

java.lang  

 

OCTOBER:  

Calendar  

 

OK:  

Command  

 

open():  

Connector  

 

 

http:///


J2ME in a Nutshell 

493 

openDataInputStream():  

Connector, InputConnection  

 

openDataOutputStream():  

Connector, OutputConnection  

 

openInputStream():  

Connector, InputConnection  

 

openOutputStream():  

Connector, OutputConnection  

 

openRecordStore():  

RecordStore  

 

out:  

DataOutputStream, System  

 

OutOfMemoryError:  

java.lang  

 

OutputConnection:  

javax.microedition.io  

 

OutputStream:  

java.io  

http:///


J2ME in a Nutshell 

494 

OutputStreamWriter:  

java.io  

 

P 

paint():  

Canvas  

 

parseByte():  

Byte  

 

parseInt():  

Integer  

 

parseLong():  

Long  

 

parseShort():  

Short  

 

PASSWORD:  

TextField  

 

pauseApp():  

MIDlet  

 

 

http:///


J2ME in a Nutshell 

495 

peek():  

Stack  

 

PHONENUMBER:  

TextField  

 

playSound():  

AlertType  

 

PM:  

Calendar  

 

pointerDragged():  

Canvas  

 

pointerPressed():  

Canvas  

 

pointerReleased():  

Canvas  

 

pop():  

Stack  

 

pos:  

ByteArrayInputStream  

http:///


J2ME in a Nutshell 

496 

POST:  

HttpConnection  

 

PRECEDES:  

RecordComparator  

 

previousRecord():  

RecordEnumeration  

 

previousRecordId():  

RecordEnumeration  

 

print():  

PrintStream  

 

println():  

PrintStream  

 

printStackTrace():  

Throwable  

 

PrintStream:  

java.io  

 

push():  

Stack  

http:///


J2ME in a Nutshell 

497 

put():  

Hashtable  

 

R 

Random:  

java.util  

 

READ:  

Connector  

 

read():  

ByteArrayInputStream, DataInputStream, InputStream, InputStreamReader, Reader  

 

READ_WRITE:  

Connector  

 

readBoolean():  

DataInput, DataInputStream  

 

readByte():  

DataInput, DataInputStream  

 

readChar():  

DataInput, DataInputStream  

 

 

http:///


J2ME in a Nutshell 

498 

Reader:  

java.io  

 

readFully():  

DataInput, DataInputStream  

 

readInt():  

DataInput, DataInputStream  

 

readLong():  

DataInput, DataInputStream  

 

readShort():  

DataInput, DataInputStream  

 

readUnsignedByte():  

DataInput, DataInputStream  

 

readUnsignedShort():  

DataInput, DataInputStream  

 

readUTF():  

DataInput, DataInputStream  

 

ready():  

InputStreamReader, Reader  

http:///


J2ME in a Nutshell 

499 

rebuild():  

RecordEnumeration  

 

receive():  

DatagramConnection  

 

recordAdded():  

RecordListener  

 

recordChanged():  

RecordListener  

 

RecordComparator:  

javax.microedition.rms  

 

recordDeleted():  

RecordListener  

 

RecordEnumeration:  

javax.microedition.rms  

 

RecordFilter:  

javax.microedition.rms  

 

RecordListener:  

javax.microedition.rms  

http:///


J2ME in a Nutshell 

500 

RecordStore:  

javax.microedition.rms  

 

RecordStoreException:  

javax.microedition.rms  

 

RecordStoreFullException:  

javax.microedition.rms  

 

RecordStoreNotFoundException:  

javax.microedition.rms  

 

RecordStoreNotOpenException:  

javax.microedition.rms  

 

regionMatches():  

String  

 

rehash():  

Hashtable  

 

remove():  

Hashtable  

 

removeAllElements():  

Vector  

http:///


J2ME in a Nutshell 

501 

removeCommand():  

Displayable  

 

removeElement():  

Vector  

 

removeElementAt():  

Vector  

 

removeRecordListener():  

RecordStore  

 

repaint():  

Canvas  

 

replace():  

String  

 

reset():  

ByteArrayInputStream, ByteArrayOutputStream, Datagram, DataInputStream, 

InputStream, InputStreamReader, Reader, RecordEnumeration  

 

resumeRequest():  

MIDlet  

 
reverse():  

StringBuffer  

http:///


J2ME in a Nutshell 

502 

RIGHT:  

Canvas, Graphics  

 

run():  

Runnable, Thread, TimerTask  

 

Runnable:  

java.lang  

 

Runtime:  

java.lang  

 

RuntimeException:  

java.lang  

 

S 

SATURDAY:  

Calendar  

 

schedule():  

Timer  

 

scheduleAtFixedRate():  

Timer  

 

 

http:///


J2ME in a Nutshell 

503 

scheduledExecutionTime():  

TimerTask  

 

SCREEN:  

Command  

 

Screen:  

javax.microedition.lcdui  

 

search():  

Stack  

 

SECOND:  

Calendar  

 

SecurityException:  

java.lang  

 

SELECT_COMMAND:  

List  

 

send():  

DatagramConnection  

 

SEPTEMBER:  

Calendar  

http:///


J2ME in a Nutshell 

504 

serviceRepaints():  

Canvas  

 

set():  

Calendar, Choice, ChoiceGroup, Form, List  

 

setAddress():  

Datagram  

 

setAltText():  

ImageItem  

 

setCharAt():  

StringBuffer  

 

setChars():  

TextBox, TextField  

 

setClip():  

Graphics  

 

setColor():  

Graphics  

 

setCommandListener():  

Alert, Displayable  

http:///


J2ME in a Nutshell 

505 

setConstraints():  

TextBox, TextField  

 

setCurrent():  

Display  

 

setData():  

Datagram  

 

setDate():  

DateField  

 

setElementAt():  

Vector  

 

setError():  

PrintStream  

 

setFont():  

Graphics  

 

setGrayScale():  

Graphics  

 

setImage():  

Alert, ImageItem  

http:///


J2ME in a Nutshell 

506 

setInputMode():  

DateField  

 

setItemStateListener():  

Form  

 

setLabel():  

ChoiceGroup, DateField, Gauge, ImageItem, Item, StringItem, TextField  

 

setLayout():  

ImageItem  

 

setLength():  

Datagram, StringBuffer  

 

setMaxSize():  

TextBox, TextField  

 

setMaxValue():  

Gauge  

 

setPriority():  

Thread  

 

setRecord():  

RecordStore  

http:///


J2ME in a Nutshell 

507 

setRequestMethod():  

HttpConnection  

 

setRequestProperty():  

HttpConnection  

 

setSeed():  

Random  

 

setSelectedFlags():  

Choice, ChoiceGroup, List  

 

setSelectedGloss():  

Choice, ChoiceGroup, List  

 

setSize():  

Vector  

 

setString():  

Alert, TextBox, TextField, Ticker  

 

setStrokeStyle():  

Graphics  

 

setText():  

StringItem  

http:///


J2ME in a Nutshell 

508 

setTicker():  

Screen  

 

setTime():  

Calendar, Date  

 

setTimeInMillis():  

Calendar  

 

setTimeout():  

Alert  

 

setTimeZone():  

Calendar  

 

setTitle():  

Screen  

 

setType():  

Alert  

 

setValue():  

Gauge  

 

Short:  

java.lang  

http:///


J2ME in a Nutshell 

509 

shortValue():  

Integer, Short  

 

showNotify():  

Canvas  

 

size():  

ByteArrayOutputStream, Choice, ChoiceGroup, Form, Hashtable, List, TextBox, 

TextField, Vector  

 

SIZE_LARGE:  

Font  

 

SIZE_MEDIUM:  

Font  

 

SIZE_SMALL:  

Font  

 

skip():  

ByteArrayInputStream, DataInputStream, InputStream, InputStreamReader, Reader  

 

skipBytes():  

DataInput, DataInputStream  

 
 
 
 

http:///


J2ME in a Nutshell 

510 

sleep():  

Thread  

 

SOLID:  

Graphics  

 

Stack:  

java.util  

 

start():  

Thread  

 

startApp():  

MIDlet  

 

startsWith():  

String  

 

STOP:  

Command  

 

StreamConnection:  

javax.microedition.io  

 

StreamConnectionNotifier:  

javax.microedition.io  

http:///


J2ME in a Nutshell 

511 

String:  

java.lang  

 

StringBuffer:  

java.lang  

 

StringGlossOutOfBoundsException:  

java.lang  

 

StringItem:  

javax.microedition.lcdui  

 

stringWidth():  

Font  

 

STYLE_BOLD:  

Font  

 

STYLE_ITALIC:  

Font  

 

STYLE_PLAIN:  

Font  

 

STYLE_UNDERLINED:  

Font  

http:///


J2ME in a Nutshell 

512 

substring():  

String  

 

substringWidth():  

Font  

 

SUNDAY:  

Calendar  

 

System:  

java.lang  

 

T 

TextBox:  

javax.microedition.lcdui  

 

TextField:  

javax.microedition.lcdui  

 

Thread:  

java.lang  

 

Throwable:  

java.lang  

 

 

http:///


J2ME in a Nutshell 

513 

THURSDAY:  

Calendar  

 

Ticker:  

javax.microedition.lcdui  

 

TIME:  

DateField  

 

Timer:  

java.util  

 

TimerTask:  

java.util  

 

TimeZone:  

java.util  

 

toBinaryString():  

Integer  

 

toByteArray():  

ByteArrayOutputStream  

 

toCharArray():  

String  

http:///


J2ME in a Nutshell 

514 

toHexString():  

Integer  

 

toLowerCase():  

Character, String  

 

toOctalString():  

Integer  

 

TOP:  

Graphics  

 

toString():  

Boolean, Byte, ByteArrayOutputStream, Character, Class, Hashtable, Integer, Long, 

Object, Short, String, StringBuffer, Thread, Throwable, Vector  

 

totalMemory():  

Runtime  

 

toUpperCase():  

Character, String  

 

translate():  

Graphics  

 

 
 

http:///


J2ME in a Nutshell 

515 

trim():  

String  

 

trimToSize():  

Vector  

 

TUESDAY:  

Calendar  

 

U 

UnsupportedEncodingException:  

java.io  

 

UP:  

Canvas  

 

URL:  

TextField  

 

useDaylightTime():  

TimeZone  

 

UTFDataFormatException:  

java.io  

 

 

http:///


J2ME in a Nutshell 

516 

V 

valueOf():  

Integer, String  

 

VCENTER:  

Graphics  

 

Vector:  

java.util  

 

VirtualMachineError:  

java.lang  

 

W 

wait():  

Object  

 

WARNING:  

AlertType  

 

WEDNESDAY:  

Calendar  

 

WRITE:  

Connector  

 

http:///


J2ME in a Nutshell 

517 

write():  

ByteArrayOutputStream, DataOutput, DataOutputStream, OutputStream, 

OutputStreamWriter, PrintStream, Writer  

 

writeBoolean():  

DataOutput, DataOutputStream  

 

writeByte():  

DataOutput, DataOutputStream  

 

writeChar():  

DataOutput, DataOutputStream  

 

writeChars():  

DataOutput, DataOutputStream  

 

writeInt():  

DataOutput, DataOutputStream  

 

writeLong():  

DataOutput, DataOutputStream  

 

Writer:  

java.io  

 

 
 

http:///


J2ME in a Nutshell 

518 

writeShort():  

DataOutput, DataOutputStream  

 

writeUTF():  

DataOutput, DataOutputStream  

 

Y 

YEAR:  

Calendar  

 

yield():  

Thread  

 

http:///


J2ME in a Nutshell 

519 

Colophon 

Our look is the result of reader comments, our own experimentation, and feedback from 

distribution channels. Distinctive covers complement our distinctive approach to technical 

topics, breathing personality and life into potentially dry subjects. 

The animal on the cover of J2ME in a Nutshell is a galago. Galagos are prosimian primates, 

"pre-monkeys" that existed before monkeys, apes, and humans evolved. These small (10-35 

cm long, not including their tail, which ranges from 20 to nearly 50 cm long), nocturnal 

animals live in Africa, spending much of their time in trees and eating mostly bugs, fruit, and 

the occasional small bird. Their big ears, featured prominently on the cover, can be bent 

almost completely back, either one at a time or both together, something the galagos 

apparently like to do quite frequently. 

Leanne Soylemez was the production editor and copyeditor for J2ME in a Nutshell. Mary 

Anne Weeks Mayo was the proofreader, and Matt Hutchinson and Jane Ellin provided quality 

control. John Bickelhaupt wrote the index. 

Ellie Volckhausen designed the cover of this book, based on a series design by Edie 

Freedman. The cover image is from Animal Creation. Emma Colby produced the cover layout 

with QuarkXPress 4.1 using Adobe's ITC Garamond font.  

Melanie Wang and David Futato designed the interior layout based on a series design by 

Nancy Priest. Neil Walls cleaned up the original FrameMaker files for Part I. The print 

version of Part II was generated from XML using a basic macro set developed by Steve 

Talbott from the GNU troff -gs macros and adapted to the book design by Lenny Muellner; 

Norm Walsh wrote the Perl filter that translates XML source into those macros. The text and 

heading fonts are ITC Garamond Light and Garamond Book. The illustrations that appear in 

the book were produced by Robert Romano and Jessamyn Read using Macromedia 

FreeHand 9 and Adobe Photoshop 6. This colophon was written by Leanne Soylemez. 

http:///

	Cover
	Table of Contents
	Preface
	Contents of This Book
	Related Books
	J2ME Programming Resources Online
	Examples Online
	Conventions Used in This Book
	Request for Comments
	Acknowledgments

	I: Introduction to the Java 2 Micro Edition Platform API
	1. Introduction
	1.1 What Is the J2ME Platform?
	1.2 J2ME Specifications
	1.3 J2ME and Other Java Platforms

	2. The Connected Limited Device Configuration
	2.1 The CLDC Java Virtual Machine
	2.2 The CLDC Class Libraries
	2.3 KVM Debugging
	2.4 Advanced KVM Topics

	3. The Mobile Information Device Profile and MIDlets
	3.1 MIDP Overview
	3.2 The MIDP Java Platform
	3.3 MIDlets and MIDlet Suites
	3.4 MIDlet Execution Environment and Lifecycle
	3.5 Developing MIDlets
	3.6 Delivery and Installation of MIDlets

	4. MIDlet User Interfaces
	4.1 User Interface Overview
	4.2 The High-Level User Interface API

	5. The Low-Level MIDlet User Interface API
	5.1 The Canvas Class
	5.2 Painting and the Graphics Class
	5.3 Graphics Attributes
	5.4 Drawing Lines and Arcs
	5.5 Translating the Graphics Origin
	5.6 A Simple Animation MIDlet
	5.7 The Graphics Clip
	5.8 Rendering Text
	5.9 Images
	5.10 Event Handling
	5.11 Multithreading and the User Interface

	6. Wireless Java: Networking and Persistent Storage
	6.1 A Networking Architecture for Small Devices
	6.2 Sockets
	6.3 Datagrams
	6.4 HTTP Connections
	6.5 Persistent Storage

	7. The Connected Device Configuration and Its Profiles
	7.1 The CDC

	8. J2ME Command-Line Tools
	8.1 cvm: The Connected Device Configuration Virtual Machine
	8.2 kdp: The KVM Debug Proxy
	8.3 kvm: The Kilobyte Virtual Machine
	8.4 midp: The MID Profile Execution Environment
	8.5 emulator: The J2ME Wireless Toolkit Emulator
	8.6 preverify: The KVM Class Preverifier
	8.7 MakeMIDPApp: JAD to PRC Conversion Tool
	8.8 chMEKeyTool: Public Key Certificate Management Tool

	9. J2ME Programming Environments
	9.1 The J2ME Wireless Toolkit
	9.2 MIDP for PalmOS
	9.3 J2ME and Forte For Java
	9.4 Other Integrated Development Environments


	II: API Quick Reference
	10. J2ME Packages and Classes
	10.1 J2ME Packages
	10.2 J2SE Packages Not Present in J2ME
	10.3 J2ME Package Contents

	11. java.io
	Package java.io
	ByteArrayInputStream
	ByteArrayOutputStream
	DataInput
	DataInputStream
	DataOutput
	DataOutputStream
	EOFException
	InputStream
	InputStreamReader
	InterruptedIOException
	IOException
	OutputStream
	OutputStreamWriter
	PrintStream
	Reader
	UnsupportedEncodingException
	UTFDataFormatException
	Writer

	12. java.lang
	Package java.lang
	ArithmeticException
	ArrayIndexOutOfBoundsException
	ArrayStoreException
	Boolean
	Byte
	Character
	Class
	ClassCastException
	ClassNotFoundException
	Error
	Exception
	IllegalAccessException
	IllegalArgumentException
	IllegalMonitorStateException
	IllegalStateException
	IllegalThreadStateException
	IndexOutOfBoundsException
	InstantiationException
	Integer
	InterruptedException
	Long
	Math
	NegativeArraySizeException
	NullPointerException
	NumberFormatException
	Object
	OutOfMemoryError
	Runnable
	Runtime
	RuntimeException
	SecurityException
	Short
	String
	StringBuffer
	StringIndexOutOfBoundsException
	System
	Thread
	Throwable
	VirtualMachineError

	13. java.util
	Package java.util
	Calendar
	Date
	EmptyStackException
	Enumeration
	Hashtable
	NoSuchElementException
	Random
	Stack
	Timer
	TimerTask
	TimeZone
	Vector

	14. javax.microedition.io
	Package javax.microedition.io
	Connection
	ConnectionNotFoundException
	Connector
	ContentConnection
	Datagram
	DatagramConnection
	HttpConnection
	InputConnection
	OutputConnection
	StreamConnection
	StreamConnectionNotifier

	15. javax.microedition.lcdui
	Package javax.microedition.lcdui
	Alert
	AlertType
	Canvas
	Choice
	ChoiceGroup
	Command
	CommandListener
	DateField
	Display
	Displayable
	Font
	Form
	Gauge
	Graphics
	Image
	ImageItems
	Item
	ItemStateListener
	List
	Screen
	StringItem
	TextBox
	TextField
	Ticker

	16. javax.microedition.midlet
	Package javax.microedition.midlet
	MIDlet
	MIDletStateChangeException

	17. javax.microedition.rms
	Package javax.microedition.rms
	InvalidRecordIDException
	RecordComparator
	RecordEnumeration
	RecordFilter
	RecordListener
	RecordStore
	RecordStoreException
	RecordStoreFullException
	RecordStoreNotFoundException
	RecordStoreNotOpenException


	Class, Method, and Field Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y

	Colophon

