
ACM Books is a new series of high quality books
for the computer science community, published
by ACM in collaboration with Morgan & Claypool
Publishers. ACM Books publications are widely
distributed in both print and digital formats

through booksellers and to libraries (and library consortia) and
individual ACM members via the ACM Digital Library platform.

ABOUT ACM BOOKS

The first course in software engineering is the most critical. Education must start from
an understanding of the heart of software development, from familiar ground that is
common to all software development endeavors. This book is an in-depth introduction
to software engineering that uses a systematic, universal kernel to teach the essential
elements of all software engineering methods.
 This kernel, “Essence” is a vocabulary for defining methods and practices.
Essence was envisioned and originally created by Ivar Jacobson and his colleagues,
developed by Software Engineering Method and Theory (SEMAT) and approved by
The Object Management Group (OMG) as a standard in 2014. Essence is a practice-
independent framework for thinking and reasoning about the practices we have and
the practices we need. Essence establishes a shared and standard understanding what
is at the heart of software development. Essence is agnostic to any particular method,
lifecycle independent, programming language independent, concise, scalable,
extensible, and formally specified. Essence frees the practices from their method
prisons.
 The first part of the book describes Essence, the essential elements to work
with, the essential things to do and the essential competencies you need when
developing software. The other three parts describe more and more advanced use
cases of Essence. Using real but manageable examples, it covers the fundamentals of
Essence and the innovative use of serious games to support software engineering. It
also explains how current practices such as user stories, use cases, Scrum, and micro-
services can be described using Essence, and illustrates how their activities can be
represented using the Essence notions of cards and checklists. The fourth part of the
book offers a vision how Essence can be scaled to support large, complex systems
engineering.
 Essence is supported by an ecosystem developed and maintained by a
community of experienced people worldwide. From this ecosystem, professors and
students can select what they need and create their own way of working, thus learning
how to create ONE way of working that matches the particular situation and needs.

The Essentials of Modern
Software Engineering

ACM Books

Editor in Chief
M. Tamer Özsu, University of Waterloo

ACM Books is a new series of high-quality books for the computer science community,
published by ACM in collaboration with Morgan & Claypool Publishers. ACM Books
publications are widely distributed in both print and digital formats through booksellers
and to libraries (and library consortia) and individual ACM members via the ACM Digital
Library platform.

The Essentials of Modern Software Engineering: Free the Practices from the
Method Prisons!
Ivar Jacobson, Ivar Jacobson International
Harold “Bud” Lawson, Lawson Konsult AB (deceased)
Pan-Wei Ng, DBS Singapore
Paul E. McMahon, PEM Systems
Michael Goedicke, Universität Duisburg–Essen
2019

Concurrency: The Works of Leslie Lamport
Dahlia Malkhi, VMware Research and Calibra
2019

Data Cleaning
Ihab F. Ilyas, University of Waterloo
Xu Chu, Georgia Institute of Technology
2019

Conversational UX Design: A Practitioner’s Guide to the Natural
Conversation Framework
Robert J. Moore, IBM Research–Almaden
Raphael Arar, IBM Research–Almaden
2019

Heterogeneous Computing: Hardware and Software Perspectives
Mohamed Zahran, New York University
2019

Hardness of Approximation Between P and NP
Aviad Rubinstein, Stanford University
2019

The Handbook of Multimodal-Multisensor Interfaces, Volume 3:
Language Processing, Software, Commercialization, and Emerging Directions
Editors: Sharon Oviatt, Monash University
Björn Schuller, University of Augsburg and Imperial College London
Philip R. Cohen, Monash University
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2019

Making Databases Work: The Pragmatic Wisdom of Michael Stonebraker
Editor: Michael L. Brodie
2018

The Handbook of Multimodal-Multisensor Interfaces, Volume 2:
Signal Processing, Architectures, and Detection of Emotion and Cognition
Editors: Sharon Oviatt, Monash University
Björn Schuller, University of Augsburg and Imperial College London
Philip R. Cohen, Monash University
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2018

Declarative Logic Programming: Theory, Systems, and Applications
Editors: Michael Kifer, Stony Brook University
Yanhong Annie Liu, Stony Brook University
2018

The Sparse Fourier Transform: Theory and Practice
Haitham Hassanieh, University of Illinois at Urbana-Champaign
2018

The Continuing Arms Race: Code-Reuse Attacks and Defenses
Editors: Per Larsen, Immunant, Inc.
Ahmad-Reza Sadeghi, Technische Universität Darmstadt
2018

Frontiers of Multimedia Research
Editor: Shih-Fu Chang, Columbia University
2018

Shared-Memory Parallelism Can Be Simple, Fast, and Scalable
Julian Shun, University of California, Berkeley
2017

Computational Prediction of Protein Complexes from Protein Interaction
Networks
Sriganesh Srihari, The University of Queensland Institute for Molecular Bioscience
Chern Han Yong, Duke-National University of Singapore Medical School
Limsoon Wong, National University of Singapore
2017

The Handbook of Multimodal-Multisensor Interfaces, Volume 1:
Foundations, User Modeling, and Common Modality Combinations
Editors: Sharon Oviatt, Incaa Designs
Björn Schuller, University of Passau and Imperial College London
Philip R. Cohen, Voicebox Technologies
Daniel Sonntag, German Research Center for Artificial Intelligence (DFKI)
Gerasimos Potamianos, University of Thessaly
Antonio Krüger, Saarland University and German Research Center for Artificial Intelligence
(DFKI)
2017

Communities of Computing: Computer Science and Society in the ACM
Thomas J. Misa, Editor, University of Minnesota
2017

Text Data Management and Analysis: A Practical Introduction to Information
Retrieval and Text Mining
ChengXiang Zhai, University of Illinois at Urbana–Champaign
Sean Massung, University of Illinois at Urbana–Champaign
2016

An Architecture for Fast and General Data Processing on Large Clusters
Matei Zaharia, Stanford University
2016

Reactive Internet Programming: State Chart XML in Action
Franck Barbier, University of Pau, France
2016

Verified Functional Programming in Agda
Aaron Stump, The University of Iowa
2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions
2016

Ada’s Legacy: Cultures of Computing from the Victorian to the Digital Age
Robin Hammerman, Stevens Institute of Technology
Andrew L. Russell, Stevens Institute of Technology
2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology
2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter Than Their Machines: Oral Histories of Pioneers in Interactive Computing
John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business
and Government, John F. Kennedy School of Government, Harvard University
2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington
2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity
Computers
Bryan Jeffrey Parno, Microsoft Research
2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington
2014

The Essentials of Modern
Software Engineering
Free the Practices from the Method Prisons!

Ivar Jacobson
Ivar Jacobson International

Harold “Bud” Lawson
Lawson Konsult AB (deceased)

Pan-Wei Ng
DBS Singapore

Paul E. McMahon
PEM Systems

Michael Goedicke
Universität Duisburg-Essen

ACM Books #25

Copyright © 2019 by the Association for Computing Machinery
and Morgan & Claypool Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means—electronic, mechanical, photocopy,
recording, or any other except for brief quotations in printed reviews—without the prior
permission of the publisher.

Designations used by companies to distinguish their products are often claimed as
trademarks or registered trademarks. In all instances in which Morgan & Claypool is aware
of a claim, the product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

The Essentials of Modern Software Engineering: Free the Practices from the Method Prisons!

Ivar Jacobson, Harold “Bud” Lawson, Pan-Wei Ng, Paul E. McMahon, Michael Goedicke

books.acm.org
www.morganclaypoolpublishers.com

ISBN: 978-1-94748-727-7 hardcover
ISBN: 978-1-94748-724-6 paperback
ISBN: 978-1-94748-725-3 eBook
ISBN: 978-1-94748-726-0 ePub

Series ISSN: 2374-6769 print 2374-6777 electronic

DOIs:

10.1145/3277669 Book 10.1145/3277669.3277685 Part III
10.1145/3277669.3277670 Preface 10.1145/3277669.3277686 Chapter 13
10.1145/3277669.3277671 Part I 10.1145/3277669.3277687 Chapter 14
10.1145/3277669.3277672 Chapter 1 10.1145/3277669.3277688 Chapter 15
10.1145/3277669.3277673 Chapter 2 10.1145/3277669.3277689 Chapter 16
10.1145/3277669.3277674 Chapter 3 10.1145/3277669.3277690 Chapter 17
10.1145/3277669.3277675 Chapter 4 10.1145/3277669.3277691 Chapter 18
10.1145/3277669.3277676 Chapter 5 10.1145/3277669.3277692 Part IV
10.1145/3277669.3277677 Chapter 6 10.1145/3277669.3277693 Chapter 19
10.1145/3277669.3277678 Chapter 7 10.1145/3277669.3277694 Chapter 20
10.1145/3277669.3277679 Chapter 8 10.1145/3277669.3277695 Chapter 21
10.1145/3277669.3277680 Part II 10.1145/3277669.3277696 Chapter 22
10.1145/3277669.3277681 Chapter 9 10.1145/3277669.3277697 Chapter 23
10.1145/3277669.3277682 Chapter 10 10.1145/3277669.3277698 Appendix A
10.1145/3277669.3277683 Chapter 11 10.1145/3277669.3277699 References/Index/Bios
10.1145/3277669.3277684 Chapter 12

A publication in the ACM Books series, #25
Editor in Chief: M. Tamer Özsu, University of Waterloo
Area Editor: Bashar Nuseibeh, The Open University

This book was typeset in Arnhem Pro 10/14 and Flama using ZzTEX.

First Edition

10 9 8 7 6 5 4 3 2 1

http://dx.doi.org/10.1145/3277669
http://dx.doi.org/10.1145/3277669.3277685
http://dx.doi.org/10.1145/3277669.3277670
http://dx.doi.org/10.1145/3277669.3277686
http://dx.doi.org/10.1145/3277669.3277671
http://dx.doi.org/10.1145/3277669.3277687
http://dx.doi.org/10.1145/3277669.3277672
http://dx.doi.org/10.1145/3277669.3277688
http://dx.doi.org/10.1145/3277669.3277673
http://dx.doi.org/10.1145/3277669.3277689
http://dx.doi.org/10.1145/3277669.3277674
http://dx.doi.org/10.1145/3277669.3277690
http://dx.doi.org/10.1145/3277669.3277675
http://dx.doi.org/10.1145/3277669.3277691
http://dx.doi.org/10.1145/3277669.3277676
http://dx.doi.org/10.1145/3277669.3277692
http://dx.doi.org/10.1145/3277669.3277677
http://dx.doi.org/10.1145/3277669.3277693
http://dx.doi.org/10.1145/3277669.3277678
http://dx.doi.org/10.1145/3277669.3277694
http://dx.doi.org/10.1145/3277669.3277679
http://dx.doi.org/10.1145/3277669.3277695
http://dx.doi.org/10.1145/3277669.3277680
http://dx.doi.org/10.1145/3277669.3277696
http://dx.doi.org/10.1145/3277669.3277681
http://dx.doi.org/10.1145/3277669.3277697
http://dx.doi.org/10.1145/3277669.3277682
http://dx.doi.org/10.1145/3277669.3277698
http://dx.doi.org/10.1145/3277669.3277683
http://dx.doi.org/10.1145/3277669.3277699
http://dx.doi.org/10.1145/3277669.3277684

In every block of marble I see a statue as plain as though it stood

before me, shaped and perfect in attitude and action. I have only

to hew away the rough walls that imprison the lovely apparition

to reveal it to the other eyes as mine see it. —Michelangelo

Standing on the shoulders of a giant . . .

We are liberating the essence from the burden of the whole.

—Ivar Jacobson

Contents

Foreword by Ian Sommerville xvii

Foreword by Grady Booch xix

Preface xxi

PART I THE ESSENCE OF SOFTWARE ENGINEERING 1

Chapter 1 From Programming to Software Engineering 3

1.1 Beginning with Programming 4
1.2 Programming Is Not Software Engineering 6
1.3 From Internship to Industry 8
1.4 Journey into the Software Engineering Profession 12

What Should You Now Be Able to Accomplish? 15

Chapter 2 Software Engineering Methods and Practices 17

2.1 Software Engineering Challenges 17
2.2 The Rise of Software Engineering Methods and Practices 18
2.3 The SEMAT Initiative 28
2.4 Essence: The OMG Standard 29

What Should You Now Be Able to Accomplish? 30

Chapter 3 Essence in a Nutshell 31

3.1 The Ideas 32
3.2 Methods Are Compositions of Practices 32
3.3 There Is a Common Ground 34
3.4 Focus on the Essentials 37
3.5 Providing an Engaging User Experience 37

What Should You Now Be Able to Accomplish? 38

xii Contents

Chapter 4 Identifying the Key Elements of Software Engineering 41

4.1 Getting to the Basics 41
4.2 Software Engineering Is about Delivering Value to Customers 43
4.3 Software Engineering Delivers Value through a Solution 45
4.4 Software Engineering Is Also about Endeavors 48

What Should You Now Be Able to Accomplish? 50

Chapter 5 The Language of Software Engineering 53

5.1 A Simple Practice Example 53
5.2 The Things to Work With 54
5.3 Competencies 61
5.4 Things to Do 62
5.5 Essentializing Practices 63

What Should You Now Be Able to Accomplish? 65

Chapter 6 The Kernel of Software Engineering 67

6.1 Organizing with the Essence Kernel 67
6.2 The Essential Things to Work With: The Alphas 69
6.3 The Essential Things to Do: The Activities 72
6.4 Competencies 75
6.5 Patterns 77

What Should You Now Be Able to Accomplish? 81

Chapter 7 Reflection on Theory 83

7.1 Where’s the Theory for Software Engineering? 84
7.2 Uses of Theory 87
7.3 Essence Is a General, Descriptive Theory of Software Engineering 87
7.4 Toward a General Predictive Theory of Software Engineering 91
7.5 A Theoretical Foundation Helps You Grow 93

What Should You Now Be Able to Accomplish? 94
Postlude to Part I 94
Recommended Additional Reading 95

Chapter 8 Applying Essence in the Small—Playing Serious Games 97

8.1 Progress Poker 99
8.2 Chasing the State 105
8.3 Objective Go 108
8.4 Checkpoint Construction 111

Contents xiii

8.5 Reflection 113
What Should You Now Be Able to Accomplish? 114

PART II DEVELOPING SOFTWARE WITH ESSENCE 115

Chapter 9 Kick-Starting Development Using Essence 117

9.1 Understand the Context Through the Lens of Essence 118
9.2 Agreeing on the Development Scope and Checkpoints 122
9.3 Agreeing on the Most Important Things to Watch 124

What Should You Now Be Able to Accomplish? 126

Chapter 10 Developing with Essence 127

10.1 Planning with Essence 132
10.2 Doing and Checking with Essence 138
10.3 Adapting a Team’s Way of Working with Essence 140
10.4 How the Kernel Helps Adapt Their Way of Working 141

What Should You Now Be Able to Accomplish? 143

Chapter 11 The Development Journey 145

11.1 Visualizing the Journey 145
11.2 Ensuring Progress and Health 146
11.3 Dealing with Anomalies 148

What Should You Now Be Able to Accomplish? 149

Chapter 12 Reflection on the Kernel 151

12.1 Validity of the Kernel 151
12.2 Applying the Kernel Effectively 151

What Should You Now Be Able to Accomplish? 152
Postlude 153
Recommended Additional Reading 153

PART III SMALL-SCALE DEVELOPMENT WITH PRACTICES 155

Chapter 13 Kick-Starting Development with Practices 157

13.1 Understand the Context Through the Lens of Essence 158
13.2 Agree upon Development Scope and Checkpoints 159
13.3 Agree upon Practices to Apply 165

xiv Contents

13.4 Agree upon the Important Things to Watch 167
13.5 Journey in Brief 169

What Should You Now Be Able to Accomplish? 170

Chapter 14 Running with Scrum 171

14.1 Scrum Explained 171
14.2 Practices Make a Software Engineering Approach Explicit and Modular 173
14.3 Making Scrum Explicit Using Essence 174
14.4 Scrum Lite Alphas 179
14.5 Scrum Lite Work Products 182
14.6 Scrum Lite Roles 184
14.7 Kick-Starting Scrum Lite Usage 187
14.8 Working with Scrum Lite 188
14.9 Reflecting on the Use of Scrum with Essence 198

What Should You Now Be Able to Accomplish? 202

Chapter 15 Running with User Story Lite 203

15.1 User Stories Explained 204
15.2 Making the User Story Lite Practice Explicit Using Essence 207
15.3 User Story Lite Alphas 208
15.4 User Story Lite Work Products 209
15.5 Kick-Starting User Story Lite Usage 211
15.6 Working with User Story Lite 211
15.7 The Value of the Kernel to the User Story Lite Practice 215

What Should You Now Be Able to Accomplish? 218

Chapter 16 Running with Use Case Lite 221

16.1 Use Cases Explained 222
16.2 Making the Use Case Lite Practice Explicit Using Essence 227
16.3 Use Case Lite Alphas 230
16.4 Use Case Lite Work Products 233
16.5 Kick-Starting Use Cases Lite to Solve a Problem Our Team Is Facing 237
16.6 Working with Use Cases and Use-Case Slices 240
16.7 Visualizing the Impact of Using Use Cases for the Team 244
16.8 Progress and Health of Use-Case Slices 245
16.9 User Stories and Use Cases—What Is the Difference? 246

What Should You Now Be Able to Accomplish? 248

Contents xv

Chapter 17 Running with Microservices 249

17.1 Microservices Explained 250
17.2 Making the Microservice Practice Explicit Using Essence 252
17.3 Microservices Lite 256
17.4 Microservices Lite Alphas 257
17.5 Microservices Lite Work Products 259
17.6 Microservices Lite Activities 267
17.7 Visualizing the Impact of the Microservices Lite Practice on the Team 270
17.8 Progress and Health of Microservice Development 271

What Should You Now Be Able to Accomplish? 272

Chapter 18 Putting the Practices Together: Composition 275

18.1 What Is Composition? 276
18.2 Reflecting on the Use of Essentialized Practices 282
18.3 Powering Practices through Essentialization 283

What Should You Now Be Able to Accomplish? 284
Recommended Additional Reading 284

PART IV LARGE-SCALE COMPLEX DEVELOPMENT 287

Chapter 19 What It Means to Scale 289

19.1 The Journey Continued 289
19.2 The Three Dimensions of Scaling 291

What Should You Now Be Able to Accomplish? 294

Chapter 20 Essentializing Practices 295

20.1 Practice Sources 295
20.2 Monolithic Methods and Fragmented Practices 296
20.3 Essentializing Practices 298
20.4 Establishing a Reusable Practice Architecture 299

What Should You Now Be Able to Accomplish? 303

Chapter 21 Scaling Up to Large and Complex Development 305

21.1 Large-Scale Methods 306
21.2 Large-Scale Development 308
21.3 Kick-Starting Large-Scale Development 309
21.4 Running Large-Scale Development 315

xvi Contents

21.5 Value of Essence to Large-Scale Development 322
What Should You Now Be Able to Accomplish? 324

Chapter 22 Reaching Out to Different Kinds of Development 325

22.1 From a Practice Architecture to a Method Architecture 326
22.2 Establishing a Practice Library within an Organization 328
22.3 Do Not Ignore Culture When Reaching Out 330

What Should You Now Be Able to Accomplish? 331

Chapter 23 Reaching Out to the Future 333

23.1 Be Agile with Practices and Methods 335
23.2 The Full Team Owns Their Method 337
23.3 Focus on Method Use 337
23.4 Evolve Your Team’s Method 338

What Should You Now Be Able to Accomplish? 339
Recommended Additional Reading 339

Appendix A A Brief History of Software and Software Engineering 341

References 349

Index 353

Author Biographies 369

Foreword by Ian Sommerville

There’s some debate over whether the term software engineering was first coined by
Margaret Hamilton at NASA in the 1960s or at the NATO conference at the end of
that decade. It doesn’t really matter because 50 years ago it was clear that software
engineering was an idea whose time had come.

Since then, developments in software engineering have been immense.
Researchers and practitioners have proposed many different methods and
approaches to software engineering. These have undoubtedly improved our ability
to create software, although I think it is fair to say that we sometimes don’t really
understand why. However, we have no basis for comparing these methods to see
if they really offer anything new and we can’t assess the limitations of software
engineering methods without experiencing failure. Although we are a lot better at
developing software than we were in the 20th century, it is still the case that many
large software projects run into problems and the software is delivered late and
fails to deliver the expected value.

The SEMAT initiative was established with the immense ambition to rethink
software engineering. Rather than inventing another new method, however, Ivar
Jacobson and his collaborators went back to first principles. They examined soft-
ware engineering practice and derived a common underlying language and kernel
(Essence) that could be used for discussing and describing software engineering.
Essence embodies the essential rather than the accidental in software engineering
and articulates new concepts such as alphas that are fundamental to every devel-
opment endeavor.

Essence is not a software engineering method but you can think of it as a
meta-method. You can use it to model software engineering methods and so com-
pare them and expose their strengths and weaknesses. More importantly, perhaps,
Essence can also be the starting point for a new approach to software engineer-
ing. Because of the universality of the concepts that it embodies, Essence can be
used across a much wider range of domains than is possible with current methods.

xviii Foreword by Ian Sommerville

It wisely separates the notion of specific practices, such as iterative development,
from fundamental concepts so it can be used in a variety of settings and application
domains.

The inventors of Essence understand that the value of Essence can only be
realized if it is widely used. Widespread use and experience will also expose its
limitations and will allow Essence to evolve and improve. This book is an important
contribution to transferring knowledge about Essence from specialists to a more
general audience. Although notionally aimed at students, it provides an accessible
introduction to Essence for all software engineers.

Organized into four parts, the first three parts focus squarely on using Essence as
a means of thinking about, planning, and describing software development. Using
real but manageable examples, Parts I and II of the book cover the fundamentals of
Essence and the innovative use of serious games to support software engineering.
Part III explains how current practices such as user stories, use cases, Scrum, and
microservices can be described using Essence and shows how their activities can be
represented using the Essence notions of cards and checklists. Part IV is perhaps
more speculative but offers readers a vision of how Essence can scale to support
large, complex systems engineering.

Software engineering has been both facilitated and hampered by the rate of
technological innovation. The need to build software for new technologies has led
to huge investment in the discipline but, at the same time, has made it difficult to
reflect on what software engineering really means. Now, 50 years on, Essence is an
important breakthrough in understanding the meaning of software engineering. It
is a key contribution to the development of our discipline, and I’m confident that
this book will demonstrate the value of Essence to a wider audience. It, too, is an
idea whose time has come.

Ian Sommerville

Emeritus Professor of Software Engineering at St. Andrews University, Scotland. For
more than 20 years, his research was concerned with large-scale complex IT systems.
He is the author of a widely used textbook on software engineering, titled Software
Engineering, first published in 1982, with the 10th edition published in 2015.

Foreword by Grady Booch

The first computers were human; indeed, the very noun “computer” meant “one
who computes or calculates” (and most often those ones were women).

My, how the world has changed.
Computing has woven itself into the interstitial spaces of society. Software-

intensive systems power our cars and airplanes; they serve as our financial conduits;
they track our every action; they fight our wars; they are as intimate as devices we
hold close to us or even within us and as grand as the wanderers we have flung into
space and that now inhabit other planets and venture to other stars. There is no
other invention in the history of humanity that has such a potential to amplify us,
diminish us, and perhaps even replace us.

I have often observed that the entire history of software engineering can be char-
acterized as the rising levels of abstraction. We witness this in our programming
languages, in our tools, in our frameworks, in the very ways with which we interact
with software-intensive systems . . . and even in the ways in which we craft these
systems. This is the world of software engineering methods.

I am proud and humbled to call myself a friend of Ivar Jacobson. The two of us,
along with Jim Rumbaugh, were at the center of a sea change in the way the world
develops and deploys software-intensive systems. We got some things right; we got
some things wrong. But, most important, we helped to codify the best practices
of software engineering in their time. Indeed, that was an incredibly vibrant time
in the history of software engineering, wherein many hundreds if not thousands
of others were struggling with how to codify the methods by which systems of
importance could best be built.

The nature of software development has changed—as it should and as it will
again—and even now we stand at an interesting crossroads in the field. Agile meth-
ods have proven themselves, certainly, but we are at the confluence of technical and
economic forces that bring us again to a very vibrant point in time. As the Internet
of Things brings computing to billions of devices, as computational resources grow

xx Foreword by Grady Booch

in unceasing abundance, and as deep learning and other forms of artificial intel-
ligence enter the mainstream, now is the time to establish a sound foundation on
which we can build the next generation of software-intensive systems that matter.

In a manner of speaking, one might say that the essence of Essence is its powerful
mastery of the fundamental abstractions of software engineering. I saw in Ivar the
seeds of Essence in the early days of working with him and Jim on the UML, and
so now it is wonderful to see this work in its full flowering. What you hold in your
hands (or on your computer or tablet, if you are so inclined) represents the deep
thinking and broad experience of Ivar; information that you’ll find approachable,
understandable, and—most importantly—actionable.

Enjoy the journey; it will make a difference for the good.

Grady Booch

IBM Fellow, ACM Fellow, IEEE Fellow, recipient of the BCS Ada Lovelace Award, and
IEEE Computer Pioneer.

Preface

We have developed software for many years, clearly more than 50 years. Thousands
of books and many more papers have been written about how to develop software.
Almost all teach one particular approach to doing it, one which the author thinks
is the best way of producing great software; we say each author has canned his/her
method. Most of these authors have some interesting ideas, but none can help you
in all the circumstances you will be faced with when you develop software. Even
the most modern books take this approach of presenting and selling “the one true
way” of doing it. Unless you are a world leader ready to impose your own true way
of doing it, all other top experts in the world seem to be in agreement that this
proprietary approach is not the way to teach software development to students.

You now have in front of you a book that will teach you modern software engi-
neering differently from how the subject has been taught since its infancy. On one
hand, it stands on the shoulders of the experience we have gained in the last 50
years or more. On the other hand, it teaches the subject in a universal and generic
way. It doesn’t teach you one particular way of developing software, but it teaches
you how to create one way of working that matches your particular situation and
your needs. The resulting way of working that you create is easy to learn (intuitive),
easy to adopt (by a team), easy to change (as you learn more), and fun to work with
thanks to its user experience being based on games and playing cards.

It is worth repeating: This book does not primarily teach you one particular way
of developing great software; rather, it teaches you how to create such a way of
working that should result in great software.

How This Book Is Different from Other Software
Engineering Textbooks
On the surface this book looks like most other books in software engineering (and
there are many of them; some are excellent books). It describes many important

xxii Preface

aspects of software engineering and how a typical software engineering initiative
resulting in a new or improved software product takes place. However, underneath
the surface, this book is fundamentally different. The things being described are
selected because they are prevalent in every software engineering initiative. They
are the essential things to work with, the essential things to do, and the essential
competencies needed when you develop software. They are not just examples of
things or typical things. They are selected because they are the things that underpin
all recognized ways of developing software. The selection has been made by a group
of experts from around the world representing academia, research, and industry,
under the auspices of an international group called Object Management Group that
gave rise to the Essence standard.1

Essence addresses, first and foremost, a number of serious challenges we have
in the software industry today, one of which is that for 50 years we have had a war
between the canned methods (but there are many more challenges, which we will
discuss in the book). In addressing these issues, Essence has made it possible to
systematically improve the way we work, which should result in better software—
faster and cheaper. However, this will have to wait to be discussed until you have
gone deeper into the book.

Finally, the following summary can be repeated over and over again.

. Essence supports people when working with methods and it helps people
while they actually work developing software.

. Essence is not yet another method. It is many things but not a method
competing with any other method.

. It is a foundation to be used to describe methods effectively and efficiently.

. It is a thinking framework to be used when creating your method or using
your method, whether it is explicit or tacit.

. It can help you in a method-agnostic way to measure progress and health in
your endeavor.2

. It can help you, if you have challenges, to find root causes of the problems
with your endeavor.

1. Essence has been likened to the DNA of software engineering or the periodic table in chemistry.

2. Throughout this book, except for the cases where the term project is more appropriate for
historical reasons, we use the term endeavor. This is because not all software development occurs
within the context of a formal project.

Preface xxiii

How This Book Can Help Students
If you are a student, this book will play a significant role in your career, because from
this book you will learn the fundamentals of the complex discipline of software
engineering. Even if you are not a student, you will rediscover your discipline in a
way you never expected. This is no ordinary software engineering textbook. What
you will learn from this book you can take with you wherever you go, for the rest of
your software engineering career.

Other books will help you learn the latest technologies, practices, and meth-
ods. While you will need that kind of information as you go through your career,
their value will fade over time as new technologies, practices, and methods come
into play. There is nothing wrong with that. Part of our profession is continuous
improvement and we encourage and expect that to go on forever.

What You Will Learn from This Book
So that you have the right expectations, we want to tell you what you can expect to
learn from this book.

. You will learn what are the essentials of software engineering presented as a
common ground.

. You will learn a simple, intuitive language by which you can describe specific
ways of working, called practices, using the common ground as a vocabulary.

. You will learn how the common ground can be used to assess the progress
and health of your software development endeavors no matter how simple
or complex.

. You will learn “lite” versions of a number of practices that are popular at the
time of writing this book, but they are only meant as examples to demonstrate
how to use the common ground and the language to describe practices.

. You will learn how to improve your way of working by adding or removing
practices, as and when the situation demands.

. You will learn how to improve communication with your teammates.

To be clear, this is what you won’t learn from this book.

. You will not learn any fully developed practices to be used in a real endeavor
(in a commercial production environment), since what we teach here is not

xxiv Preface

intended for that purpose. To learn practices that will work in such an envi-
ronment, you need to go to practice libraries such as the Ivar Jacobson Inter-
national practice library (https://practicelibrary.ivarjacobson.com/start) or,
if the practices are not yet essentialized, you will have to go to books or pa-
pers written about these practices.

. You will not learn the latest technologies, practices, and methods.

This book is about learning a foundation that underlies all practices and meth-
ods that have come and gone during the last 50 years, and all that will likely come
and go over the next 50 years. What you learn from this book you can take with you,
and it will continue to help you grow throughout your software engineering career.

Our Approach to Teaching in This Book
We also want to share with you a little bit about the approach to teaching software
engineering that we use in this book. While we do share some of the history of
software engineering in Part I and in the appendix, our general approach through-
out the book is a bottom-up approach instead of a top-down one. The “user” is a
young student and he/she is presented with more and more advanced use cases
of software development—from small systems to large systems. Or said in another
way, we present the essence of software engineering through the eyes of a young
student who moves from introductory courses into the industry. This approach will
help you understand how software engineering is often first viewed by new software
developers and how their perceptions and understanding of software engineering
grow with their experiences.

So with this brief introduction, you are now ready to start your exciting journey
toward the essentials of modern software engineering. During the journey, you will
pass through the following.

Part I, The Essence of Software Engineering. Here, we introduce the student
to software engineering and to the Essence standard.

Part II, Applying Essence in the Small. Here, Essence is first used to carry out
some simple, small, but very useful practices. They are so small that they
could be called mini-practices, but we call them games—serious games. They
are highly reusable when carrying out practices resulting in, for instance,
software products.

Then in the rest of this part we advance the problem and consider building
some real but rather small software. We make the assumption that the given
team members have worked together before, so they have tacit knowledge

https://practicelibrary.ivarjacobson.com/start

Preface xxv

about the practices they use and don’t need any additional explicit guidance
in the form of described practices.

Part III, Small-Scale Development with Practices. We use practices defined on
top of the kernel to provide further guidance to small teams.

Part IV, Large-Scale Complex Development. To describe how to develop large
software systems is far too complex for a textbook of this kind. However, we
do explain the impact large teams and organizations have on the practices
needed and how they are applied.

Appendix, A Brief History of Software Engineering.

On our website, http://software-engineering-essentialized.com, you are pro-
vided with additional training material and exercises associated with each part of
the book. This website will be continuously updated and will provide you with ad-
ditional insight. As you gain experience, we hope you will also be able to contribute
to this growing body of knowledge.

How This Book Can Free the Practices from the Method Prisons
and Why This Is Important
In 1968, more than 50 years ago, the term software engineering was coined to address
the so-called software crisis. Thousands of books have been written since then to
teach the “best” method as perceived by their authors. Some of them have been very
successful and inspired a huge number of teams to each create their own method.
The classical faith typically espoused by all these popular methods has been that
the previous popular method now has become completely out of fashion and must
be replaced by a new, more fashionable method. People have been swinging with
these trends and, apart from learning something new, each time they must also
relearn what they already knew but with just a new spin to it.

The problem is that among all these methods there has been almost nothing
shared, even if in reality much more has been shared than what separated them.
What they shared was what we will call practices—some kind of mini-methods.
Every method author (if very successful, each became a guru) had their own way
of presenting their content so that other method authors couldn’t simply reuse it.
Instead, other authors had to reinvent the wheel by describing what could have been
reusable—the practices—in a way that fit these other authors’ presentation styles.
Misunderstandings and improper improvements happened and the method war
was triggered. It is still going on. Instead of “standing on one another’s shoulders,”
these various authors are “standing on one another’s toes.”

http://software-engineering-essentialized.com

xxvi Preface

This book will show how reusable practices can be liberated from the methods
that use them—their method prisons. Free the practices from the method prisons!

Acknowledgments
Special thanks and acknowledgment goes to Svante Lidman and Ian Spence for
their work on the first Essence book [Jacobson et al. 2013a], from which some pieces
of text have been used, to Mira-Kajko-Mattson for her role in the original shaping
of this book, to Pontus Johnson for his work on theory in Part I, Chapter 7 and to
Barbora Buhnova for in particular her clear and accurate writing of the goal and the
accomplishments paragraphs in each chapter of the book. All these contributions
improved the clarity of the book as a whole.

The authors also want to recognize and thank all the people that worked with
us in creating the OMG Essence standard and in working on its use cases. Without
these individuals’ work this book would never have been written:

. For founding the SEMAT (Software Engineering Method And Theory) com-
munity in 2009 and later leading it: Apart from Ivar Jacobson, the founders
were Bertrand Meyer and Richard Soley. June Park chaired the SEMAT com-
munity from 2012 to 2016 and Sumeet Malhotra from 2016 until now.

. For serving as members of the Advisory Board chaired by Ivar Jacobson: Scott
Ambler, Herbert Malcolm, Stephen Nadin, Burkhard Perkens-Colomb.

. For supporting the foundation of the SEMAT initiative and its call for action:

Individuals: Pekka Abrahamsson, Scott Ambler, Victor Basili, Jean
Bézivin, Robert V. Binder, Dines Bjorner, Barry Boehm, Alan W.
Brown, Larry Constantine, Steve Cook, Bill Curtis, Donald Fire-
smith, Erich Gamma, Carlo Ghezzi, Tom Gilb, Robert L. Glass, Ellen
Gottesdiener, Martin Griss, Sam Guckenheimer, David Harel, Brian
Henderson-Sellers, Watts Humphrey, Ivar Jacobson, Capers Jones,
Philippe Kruchten, Harold “Bud” Lawson, Dean Leffingwell, Robert
Martin, Bertrand Meyer, Paul Nielsen, James Odell, Meilir Page-
Jones, Dieter Rombach, Ken Schwaber, Alec Sharp, Richard Soley,
Ian Sommerville, Andrey Terekhov, Fuqing Yang, Edward Yourdon.

Corporations: ABB, Ericsson, Fujitsu UK, Huawei, IBM, Microsoft
Spain, Munich RE, SAAB, SICS, SINTEF, Software Engineering Insti-
tute (SEI), Tata Consulting Services, Telecom Italia, City of Toronto,
Wellpoint.

Preface xxvii

Academics: Chalmers University of Technology, Florida Atlantic Uni-
versity, Free University of Bozen Bolzano, Fudan University, Harbin
Institute of Technology, Joburg Centre for Software Engineering
at Wits University, KAIST, KTH Royal Institute of Technology, Na-
tional University of Colombia at Medellin, PCS—Universidade de São
Paulo, Peking University, Shanghai University, Software Engineering
Institute of Beihang University, Tsinghua University, University of
Twente, Wuhan University.

. For developing what eventually became the Essence standard with its use
cases and for driving it through the OMG standards process: Andrey Bayda,
Arne Berre, Stefan Bylund, Dave Cuningham, Brian Elvesæter, Shihong
Huang, Carlos Mario Zapata Jaramillo, Mira Kajko-Mattson, Prabhakar R.
Karve, Tom McBride, Ashley McNeille, Winifred Menezes, Barry Myburgh,
Gunnar Overgaard, Bob Palank, June Park, Cecile Peraire, Ed Seidewitz, Ed
Seymour, Ian Spence, Roly Stimson, Michael Striewe.

. For organizing SEMAT Chapters around the world: Doo-Hwan Bae, Steve
Chen, Zhong Chen, Barry Dwolatsky, Gorkem Giray, Washizaki Hironori,
Debasish Jana, Carlos Mario Zapata Jaramillo, Pinakpani Pal, Boris Pozin.

. For co-chairing the “Software Engineering Essentialized” project with Ivar
Jacobson: Pekka Abrahamsson. This project develops training material,
quizzes, exercises, certification, games, essentialized practices, etc. to sup-
port teachers giving classes based on this book.

From the outset of the writing of this book, the authors were aware of the funda-
mental change they proposed to the education in software engineering. Therefore,
they wanted the book to be meticulously reviewed before publication. The book
has been reviewed in 5 phases, each being presented as a draft. About 1000 com-
ments have been given by more than 25 reviewers and each comment has been
discussed and acted upon. We are very grateful for the help we received from the
following people (alphabetically ordered) in making this a book we are very proud
of: Giuseppe Calavaro, A. Chamundeswari, Görkem Giray, Emanuel Grant, Deba-
sish Jana, Eréndira Miriam Jiménez Hernandez, Reyes Juárez-Ramı́rez, Winifred
Menezes, Marcello Missiroli, Barry Myburgh, Anh Nguyen Duc, Hanna Oktaba,
Don O’Neill, Gunnar Overgaard, Pinakpani Pal, Cecile Peraire, Boris Pozin, Antony
Henao Roqueme, Anthony Ruocco, Vladimir Savic, Armando Augusto Cabrera Silva,
Kotrappa Sirbi, Nebojsa Trninic, Hoang Truong Anh, Eray Tüzün, Murat Paşa Uysal,

xxviii Preface

Ervin Varga, Monica K. Villavicencio Cabezas, Bernd G. Wenzel, Carlos Mario Zap-
ata Jaramillo.

As you can see from these acknowledgments, many people have contributed to
where we are today with Essence and its usage. Some people have made seminal
technical contributions without which we wouldn’t have been able to create a kernel
for software engineering. Some other people have contributed significant time and
effort to move these technical contributions into a high-quality standard to be
widely adopted. Some people have been instrumental in identifying the vision and
leading the work through all the pitfalls that an endeavor can encounter when it is
as huge as the SEMAT in fact is. Finally, some people have made huge efforts and
with high passion marketed the work and the result to break through the barriers
that fundamentally new ideas always face. We have not made an effort to rank all
these contributions here, but we hope all these individuals are assured that we
know about them and we are tremendously grateful for all they have done.

We would also like to thank the team at Windfall Software for carefully copy
editing and preparing the content of this book. We are especially grateful to their
professional developmental editor, who was instrumental in this endeavor and put
in a huge effort to achieve this high-quality result.

IP A R T

THE ESSENCE OF
SOFTWARE
ENGINEERING
We live at an exciting time in the history of computer and network technologies
where software has become a dominant aspect of our everyday life. Wherever you
look and wherever you turn, software is there. It is in almost everything you use
and affects most everything you do. Software is in many things such as microwaves,
ATMs, smart TVs, machines running vehicles, and factories, as well as being uti-
lized in all types of organizations.

Although software provides many opportunities for improving many aspects of
our society, it presents many challenges as well. One of them is development, de-
ployment, and sustainment of high-quality software on a broad scale. Another is
the challenge of utilizing technology advancements in new domains, for instance,
intelligent homes and Smarter Cities. Here, the evolution of the mobile internet,
apps, the internet of things (IoT), and the availability of big data and cloud comput-
ing, as well as the application of artificial intelligence and deep learning, are some
of the latest “game-changers” with more still to come.

This book provides you with fundamental knowledge you will need for address-
ing the challenges faced in this era of rapid technology change. Part I will introduce
you to software engineering through the lens of a kernel of fundamental con-
cepts that have been provided by the Object Management Group’s standard called
Essence 1. Essence is rapidly becoming a “lingua franca” for software engineering.
The authors are convinced that this approach will provide a perspective that will
be a lasting contribution to your knowledge base and prepare you to participate in
teams that can develop and sustain high-quality software.

1From Programming to
Software Engineering
This chapter sets the scene with respect to the relationship between programming
und software engineeering. The important issue is that software engineering is
much more than just programming. Of course, the running system created by an act
of programming is an essential and rewarding ingredient of what the right system
will become, and it is important that the reader is actually able to use and apply
a programming language to create a program, at least a small one. But is it by no
means everything. Thus, this chapter

. introduces the notion of software development and that it is more than just
putting a program together;

. shows what additionally is needed beyond programming, i.e., shows the
differences between programming, software development, and software en-
gineering;

. shows the motivations for the discipline of software engineering;

. introduces some important elements of software engineering that actually
show the differences between software engineering and programming, and
shows how they relate to each other.

What is fascinating about this aspect of software development is that it is more
than just programming. Rather, it is to learn the whole picture and as a software
engineer to solve a problem or exploit an opportunity that the users may have.

As a new student, understanding what software engineering is about is not easy,
because there is no way we can bring its realities and complexities into the student’s
world. Nevertheless, it is a student’s responsibility to embark on this journey of
learning and discovery into the world of software engineering.

Throughout this entire book, we will trace the journey of a young chap, named
Smith, from his days in school learning about programming through to becoming

4 Chapter 1 From Programming to Software Engineering

Sidebar 1.1 Programming

Programming is used here as a synonym for implementation and coding. From Wikipedia
we quote: “Related tasks include testing, debugging, and maintaining the source
code, These might be considered part of the programming process, but often the
term software development is used for this larger process with the term programming,
implementation, or coding reserved for the actual writing of source code.”

a software engineering professional and continuing his on-going learning process
in this ever-changing and growing field. In a way, we are compressing time into
the pages of this book. If you are a new student, you are considered to be the pri-
mary audience for this book. Smith will be your guide to the software engineering
profession, to help you understand what software engineering is about. If you are
already a software engineer by profession, or you teach and coach software engi-
neering, you can reflect on your own personal journey in this exciting profession.
As an experienced developer you will observe an exicting and fundamentally new
way to understand and practice software engineering. Regardless of your current
personal level of experience, through Smith’s experiences we will distill the essence
of software engineering.

1.1 Beginning with Programming
The focus of our book is not about programming (see Sidebar 1.1), but about
software engineering. However, understanding programming is an obvious place to
start. Before we delve deeper into it, we should clarify the relation of programming
to software development and to software engineering.

Thus we have chosen the following.

. Programming stands for the work related to implementation or coding of
source code.

. Software development is the larger process which, apart from programming,
includes working with requirements, design, test, etc.

. “Software engineering combines engineering techniques with software de-
velopment practices” (from Wikipedia). Moving from development to engi-
neering means more reliance on science and less on craft, which typically
manifests itself in some form of description of a designated way of work-
ing and higher-level automation of work. This allows for repeatability and
consistency from project to project. Engineering also means that teams, for
example, learn as they work and continuously improve their way of work-

1.1 Beginning with Programming 5

ing. Thus, stated in simple terms, software engineering is bringing engineering
discipline to software development.

Going forward, when introducing software engineering we will mean the larger
subject of “software development + engineering,” implicitly understood without
specifically separating out the two parts. This will be so even if in many cases the
discussion is more about the development aspect, because the approach we take is
chosen to facilitate the other aspect—engineering. When we sometimes talk about
software development we want to be specific and refer to the work: the activities
or the practices we use. We will not further try to distinguish these terms, so the
reader can in many cases see them as synonyms.

As a frequent user of applications like Facebook, Google, Snapchat, etc., whether
on his laptop or his mobile, Smith knew that software forms a major component
in these products. From this, Smith became strongly interested in programming
and enrolled in a programming course where he started to understand what pro-
gram code was and what coding was all about. More importantly, he knew that
programming was not easy. There were many things he had to learn.

The very first thing Smith learned was how to write a program that displays
a simple “Hello World” on his screen, but in this case, we have a “Hello Essence!”,
as in Figure 1.1. Through that he learned about programming languages,

Figure 1.1 Hello Essence.

6 Chapter 1 From Programming to Software Engineering

programming libraries, compilers, operating systems, processes and threads,
classes, and objects. These are things in the realm of computer technology. We ex-
pect that you, through additional classes, will have learned about these things. We
also expect you as a student to have some knowledge of these things as a prerequi-
site to reading this book. We expect that you have some knowledge of programming
languages like Java and JavaScript.

1.2 Programming Is Not Software Engineering
However, Smith quickly learned that programming on its own is not software
engineering. It is one thing to develop a small program, such as the “Hello Essence”
program; it is a different thing to develop a commercial product.

It is true that some fantastic products such as those that gave birth to Apple, Mi-
crosoft, Facebook, Twitter, Google, and Spotify once were developed by one or a few
individuals with a great vision but by just using programming as a skill. However, as
the great vision has been implemented, be sure that these companies are today not
relying on heroic programmers. Today, these companies have hired the top people
with long experience in software engineering including great programming skills.

So, what is software engineering? Before we answer this question, we must
first make it very clear that there is a remarkable difference between hacking
versus professional programming. Professional programming involves clear logical
thinking, beginning with the objective of the program, and refining the objective
into logically constructed expressions. Indeed, the expressions are a reflection of
the programmers’ thinking and analysis. Hacking on the other hand is an ad hoc
trial and error to induce the desired effect. When the effect is achieved, the hacker
marvels without really understanding why it worked. Professional programmers
understand why and how it worked.

As such, professional programming is highly disciplined. Software engineering
takes this discipline to software teams working on complex software. A typical soft-
ware development endeavor involves more than one person working on a complex
problem over a period of time to meet some objectives. Throughout Smith’s in-
troductory software engineering course, he worked on several assignments, which
frequently required him to work with his fellow students, and which included tasks,
such as:

1. brainstorming what an event calendar app would look like;

2. writing code for a simple event calendar in a small group;

3. writing code for the event calendar app, and hosting the app on the cloud;

1.2 Programming Is Not Software Engineering 7

4. reviewing a given piece of code to find issues in it, for example bugs, and
poor understandability; and

5. reviewing a fellow student’s code.

Through these assignments, Smith came to several conclusions. First, there is
no one true way to write code for a given problem. Writing good quality code that
fellow students can understand is not easy. It often takes more than one pair of eyes
to get it working and comprehensible. He learned the following.

. Testing, i.e., checking that the program behaves as intended, is not easy.
There are so many paths that executing the code can follow and all have to
be tested.

. Agreeing on what the application would do was challenging. Even for that
simple event calendar app, Smith and his team debated quite a while before
they came to a consensus on what functionality ought to be available, and
how the user interface should be laid out.

. A simple application may require multiple programming languages. For
example, the event calendar app would need HTML5 and JavaScript for the
front end, and the Java and SQL database for the backend. Consequently,
Smith found that he had to spend a significant amount of time learning and
getting familiar with new programming languages and new programming
frameworks. Although he endeavored to learn about all these, it was certainly
not easy with the limited time that was available.

. Time management is not easy because it is hard to estimate how much time
each activity will require—or when to stop fine-tuning a certain piece of code
to meet time constraints of the project.

As Smith was preparing for his industry internship interview, he tried to sum-
marize on a piece of paper, from those things he then understood, what software
engineering is about, and what he had learned thus far. Smith drew what he under-
stood many times, and he observed that he couldn’t get it quite right. In the end,
he settled for what is shown in Figure 1.2.

To Smith, software engineering was about taking some idea and forming a team
according to the requirements. The team then transforms the requirements into
a software product. To do this, the team engages in some kind of brainstorming,
consensus, writing and testing code, getting to a stable structure, maintaining user
satisfaction throughout, and finally delivering the software product. This requires
the team to have competencies in coding, analysis, and teamwork. In addition,

8 Chapter 1 From Programming to Software Engineering

Programming language
• Java
• JavaScript

Competency
• Coding
• Analysis
• Teamwork

Software
product

What I think
software

engineering
is about

RequirementsIdea

Team
Stable

Start Evolve

Time

{
}

Figure 1.2 What software engineering is from the eyes of a student.

the team needs familiarity with some programming language, such as Java and
JavaScript, which Smith knew. What Smith didn’t yet know was that the tasks he
had been given were still relatively simple tasks compared to what is typical in the
software industry. Nevertheless, with this preparation, Smith marched toward his
internship interview.

1.3 From Internship to Industry
With some luck, Smith managed to join the company TravelEssence as an intern
trainee. Dave the interviewer saw some potential in Smith. Dave was particularly
intrigued that Smith managed to draw the picture in Figure 1.2. Most students
couldn’t, and would get stuck if they even attempted to.

TravelEssence is a fictitious company that we will be using as an example
throughout this book. TravelEssence provides online hotel booking services for
travelers (see Figure 1.3). In addition, TravelEssence provides Software as a Service
(SaaS) for the operation of hotels. SaaS means that the owner of the software, in
this case TravelEssence, provides software as a service over the internet and the
clients pay a monthly fee. Hotels can sign up and use the TravelEssence service to
check-in and check-out their customers, print bills, compute taxes, etc.

Smith’s stint in TravelEssence provided a whole new experience. To him, his new
colleagues seemed to come from two groups: those who stated what they wanted the
software to do, and those who wrote and tested the software. Figure 1.4 highlights
the dramatic changes Smith experienced. While everyone seemed to speak English,
they used words that he did not understand, especially the first group. As a diligent
person, Smith compiled a list of some of this jargon.

1.3 From Internship to Industry 9

Figure 1.3 TravelEssence home page.

Technology stack
• Java, JavaScript
• MongoDB, MySQL

Competency
• Coding
• Analysis
• Testing
• Teamwork

Software
product

Speak the
language and
do no harm!

RequirementsIdea

Team
Changes

Bug fix Stable

Start Evolve

Time

Figure 1.4 What software engineering is from the eyes of a student after internship.

Book. To sell or reserve rooms ahead of time.

No-Show. A guest who made a room reservation but did not check in.

Skipper. A guest who left with no intention of paying for the room.

PMS. Property Inventory Management System, which maintained records of
items owned by the hotel such as items in each room including televisions,
beds, hairdryers, etc.

10 Chapter 1 From Programming to Software Engineering

POS. Point of Sale Systems (used in restaurants/outlets) that automated the
sale of items and managed purchases with credit or debit cards.

It took Smith a little while to get on “speaking terms” with his new colleagues and
mentors.

In his student days, Smith always wrote code from scratch, starting with an
empty sheet of paper. However, at TravelEssence it was mostly about implement-
ing enhancements to some existing code. The amount of code that Smith saw was
way above the toy problems he came across as a student. His development col-
leagues did not trust him to make any major changes to the system. Developers in
TravelEssence emphasized code reviews heavily and stressed the importance of “Do
no harm” repeatedly. They would repeatedly test his understanding of terminology
and their way of working. Smith felt embarrassed when he could not reply confi-
dently. He started to understand the importance of reviewing and testing his work.
After his internship, Smith attempted to summarize what he understood software
engineering to be (see Figure 1.4). This was quite similar to what he thought before
his internship (see Figure 1.2), but with new knowledge (indicated in red) and an
emphasis on testing and doing no harm as he coded changes to the software prod-
uct. Smith came to recognize the importance of knowledge in different areas, not
just about the code, but also about the problem domain (in this case, about hotel
management), and the technologies that were being used.

Competency not only involved analysis, coding, and teamwork, but also exten-
sive testing to ensure that Smith did no harm. Understanding programming lan-
guages was no longer sufficient; a good working knowledge of the technology stack
was critical. A technology stack is the set of software technologies, often called the
building blocks, that are used to create a software product. Smith was familiar with
multiple technologies that were being used including Java, JavaScript, MongoDB,
and MySQL. Never mind if you do not know these specific terms.

Note: There are myriads of technology stacks available, and it is not possible for
anyone to learn them all. Nevertheless, our recommendation to students is to gain
familiarity with a relevant technology stack of your choice.

Smith graduated and was employed at TravelEssence. A few years later, at a
get-together, Smith and his old classmates shared their newfound experiences in
the real commercial world. At this occasion Smith said: “At TravelEssence even
though everyone seemed to be using different terminology, and everyone did things
differently, there seemed to be something common to what they were all doing.”
One of his old classmates asked Smith if he could explain more, but Smith just
shook his head and said, “I don’t know exactly what it is.”

1.3 From Internship to Industry 11

Technology stack
• Java, JavaScript
• MongoDB, MySQL
• SpringBoot
• ReactNative
• Node.js, SpringCloud
• Docker, Rancher

Competency
• Leadership
• Management
• Coding
• Analysis
• Testing
• Teamwork

Software System
Stakeholders

Values
Principles
Practices

Speak the
language and
do no harm!

RequirementsIdea

Team
Changes

Bug fix

Stable

Start Evolve

Time

Figure 1.5 What software engineering is from the eyes of a young professional.

Some years later, Smith became a technical lead for a small group at Travel-
Essence. As a technical lead he found himself continuously thinking about that
discussion with his old classmates as he tried to figure out just what it was that was
common about the way everyone worked at TravelEssence.

One evening the old classmates got together again. This time the discussions
were a blend between technologies and people management. The old classmates
were also talking more about their experiences dealing with people including their
colleagues, managers, and their customers; consequently, they were talking more
about the way work got done in their organizations. Managing stakeholders and
their expectations became more important as they started to take on more senior
positions.

After the meeting with classmates, Smith started to draw what he then thought
software engineering was about (see Figure 1.5). The changes compared to Smith’s
internship experience are highlighted in red.

Stakeholder collaboration played an important part of Smith’s work. Collaborat-
ing well involved having an agreed-on set of values, principles, and practices. These
values included agreeing upon a common goal, and respecting and trusting team
members, as well as being responsible and dependable. All of these values are qual-
ities of a good and competent team player. Principles include, for instance, having
frequent and regular feedback, and fixing bugs as soon as they are detected. All of

12 Chapter 1 From Programming to Software Engineering

these principles identify good behaviors in a team. Practices are specific things the
team will do to deliver what is expected of the team consistent with the above values
and principles, as well as good quality software.

1.4 Journey into the Software Engineering Profession
Smith through his experience at TravelEssence thus far had started to appreciate
the complexities involved in producing and sustaining high-quality software that
meets the needs of stakeholders. He now appreciated that while programming is
an important aspect, there is much more involved. It is the engineering discipline
that is concerned with all aspects of the development and sustainment of software
products.

Smith then reflected upon the knowledge he had attained thus far in his career.
As a student with no other experience than having done some programming, it
is quite difficult to understand what more is involved in software engineering.
Typically, when creating a program in a course setting, the exercise starts from an
idea that may have been explained in a few words: say, less than one hundred words.
Based on the idea, Smith and his classmates developed a piece of software, meaning
they wrote code and made sure that it worked. After the assignment they didn’t need
to take care of it. These assignments were small and to perform them they really did
not need much engineering discipline. This situation is quite unlike what you have
to do in the industry, where code written will stay around for years, passing through
many hands to improve it. Here a sound approach to software engineering is a must.
Otherwise, it would be impossible to collaborate and update the software with new
features and bug fixes. Nevertheless, the experience in school is an important and
essential beginning, even though Smith wished that it were more like the industry.

The authors of this book have all experienced, through their personal journeys,
the importance of utilizing an engineering approach in providing high-quality soft-
ware. Thus, we can characterize, for you, what is important in respect to software
engineering.

Considering the software industry, let’s put the success of Microsoft, Apple,
Google, Facebook, Twitter, etc. on the side because they are so unique—relying
on innovative ideas that found a vast commercial market—and programming,
per se, was not the root cause of their success. In a more normal situation you
will find yourself employed by a company that as part of their mission needs to
develop software to support their business or to sell a product needed by potential
customers. The company may be rather small or very large, and you will be part of
a team. The reasons you won’t be alone are many. What needs to be done is more

1.4 Journey into the Software Engineering Profession 13

than what one person can do alone. If the software product is large your team will
most likely not be the only one; there will be many teams that have to work in some
synchronized way to achieve the objectives of your company.

As a young student having spent most of your life at school and not yet work-
ing in the industry, you may be more interested in the technologies related to
software—the computer, programming languages, operating systems, etc.—and
less interested in the practicalities of developing commercial software for a partic-
ular business.

However, this is going to change with this book.

First, let us consider the importance of a team. The team has a role in the com-
pany to develop some software. To do that, they need to know what the users of
the software need, or in other words they need to agree on the requirements. In
some cases, they will receive the requirements indicating that they want software
that does what another piece of software does. In these cases, the team must study
the other product and do something like that product or better. In other situations,
someone will just tell them what to do and be with the team while they do it. In more
regulated organizations, someone (or a group of people) has written a document
specifying what is believed to be some or all of the requirements. Typically, people
don’t specify all the requirements before starting the development, but some re-
quirements will be input to the team, so they can start doing something to show to
the future users of the product. Interacting with users on intermediary results will
reveal weaknesses and tell the team what they need to do next. These discussions
may imply that the team has to backtrack and redo parts of what they have done
and demonstrate the new results to the users. These discussions will also tell the
team what more needs to be done.

Anyway, the team will in one way or the other have to understand what re-
quirements they should use as input to the work of their team. Understanding the
requirements is normally not trivial. It may take as much time or even more as it
takes to program a solution. As we just stated, you will typically have to modify them
and sometimes throw away some of the requirements as well as work results before
the users of the software are reasonably satisfied with what they have received.

As a newcomer to software engineering but with some background in program-
ming, you may think that working with requirements is less rewarding and less
interesting than programming. Well, it is not. There is an entire discipline (require-
ments engineering) that specifies how you dig out the requirements, how you think
about them to create great user experiences supported by the software, and how you

14 Chapter 1 From Programming to Software Engineering

modify them to improve and sustain the software. There are requirements manage-
ment tools to help you that are as interesting to work with as programming tools.
There are many books and other publications on how to work with requirements,
so there is a lot to learn as you advance in your career. Therefore, working with re-
quirements is one of the things to do that is more than programming but part of
software engineering.

Another thing to do that is more than programming is the design of the software.
Design means structuring the code in such a way that it is easy to understand,
easy to change to meet new requirements, easy to test, etc. You can describe your
design by using elements of a programming language such as component, class,
module, interface, message, etc. You can also use a visual language with symbols
for such elements that have a direct correspondence in the programming language
you are utilizing. In the latter case, you use a tool to draw diagrams with symbols
representing, for instance, components with interfaces. In short, you express the
design in a diagram form. The visual language can be quite sophisticated and allow
you to not just express your design; for example, you can do quality controls using a
visual language tool as well as testing the design to some extent. Doing design is as
interesting and rewarding as programming and it is an important part of software
engineering.

Apart from working with requirements and creating a design, there are many
other things we need to do when we engineer software. We do extensive testing
of the software; we deploy it on a computer so it can be executed and used. If
the software we have developed is successful, we will change it for many years to
come. In fact, most people developing software are engaged in changing existing
software that has been developed, often many years ago. This means we need to
deal with versions of existing software and if the software has been used at many
places (even around the world) we often need to have different versions of the
same original software at different locations in the world. Each version will change
independent of the other existing versions. And, the complexity of the software
product just continues to increase. The only way to deal with this complexity is to
use tools specifically designed for its purpose: testing, deployment, version and
configuration control, etc.

So, you see that software engineering is certainly much more than program-
ming. While definitions of software engineering are always a subject of debate
among professionals, the following neatly summarizes our view. Software engineer-
ing is the application of a systematic, disciplined, and quantifiable approach to the
development, testing, deployment, operation, and maintenance of software systems.

What Should You Now Be Able to Accomplish? 15

To us, “a systematic, disciplined, and quantifiable approach” means it is repeat-
able and consistent from one project to another, with continuous improvement
on the way. It means it is accompanied by some form of description of the way of
working and it allows us to automate more. Software engineering includes under-
standing what users and other stakeholders need and transforming those needs
into clear requirements that can be understood by programmers. It also includes
understanding the specific technologies needed to build and to test the software.
It requires teams that have the social skills to work together, so each piece of the
software works with other pieces to achieve the overall goal. So, software engi-
neering encompasses the collaboration of individuals to evolve software to achieve
some goal.

Programming is very rewarding since you immediately see the impact of your
work. However, as you will learn during your journey, the other activities in software
engineering—requirements, design, testing, etc.—are also fascinating for similar
reasons. It has been more difficult, though, to teach these other activities in a
systematic and generic manner. This is due to the fact that there are so many
variations of these activities and there has not been a common ground for teaching
them until now as presented in this book. You will find that most students who
study in the software domain have an initial desire to work with programming.
However, as these people become more and more experienced they gradually move
into the other areas of software engineering. This is not because programming is
not important. In fact, without programming there is no product to use and sell.
No, it is because they find the other areas to be more challenging; also, success in
these other areas requires more experience. By essentializing software engineering
as presented in this book, the full scope of the discipline will be easier to grasp and
to teach.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to:

. explain the terms programming, software development, and software engineer-
ing, and how they relate to each other;

. explain the difference between professional programming and hacking;

. understand how teamwork affects the dynamics of software engineering
(e.g., importance of code understandability);

16 Chapter 1 From Programming to Software Engineering

. explain the importance of testing as a tool to promote safe modification of
existing code;

. understand how people management blends into software engineering and
why it is important to consider it;

. explain the role of requirements engineering.

In order to support your learning activities, we invite you to visit www.software-
engineering-essentialized.com. There one can find additional material, exercises
related to this chapter, and some questions one might encounter in an exam.

In addition to this you will find a short account of the history of software engi-
neering in Appendix A.

2Software Engineering
Methods and Practices
In this chapter we present how the way of working to develop software is organized,
and to some extent what additional means are needed (e.g., notations for specifi-
cations). In particular, we

. describe the challenges in software engineering covering a wide range of
aspects like how to proceed step by step, involve people, methods and
practices;

. outline various key concepts of some commonly used software engineer-
ing methods created during the last four decades (i.e., waterfall methods,
iterative lifecycle methods, structured methods, component methods, agile
methods); and

. describe the motivation behind the initiative to create the Essence standard
as a basic and extendable foundation for software engineering.

This will also take the reader briefly through the development of software engi-
neering.

2.1 Software Engineering Challenges
From Smith’s specific single-person view of software engineering, we move to take
a larger worldview in this chapter and the next. We will return to Smith’s journey
in Chapter 4. From 2012–2014, the IEEE Spectrum published a series of blogs on
IT hiccups.1 There are all kinds of bloopers and blunders occurring in all kinds of
industries, a few of which we outline here.

. According to the New Zealand Herald, the country’s police force in February
2014 apologized for mailing over 20,000 traffic citations to the wrong drivers.

1. http://spectrum.ieee.org/riskfactor/computing/it/it-hiccups-of-the-week

http://spectrum.ieee.org/riskfactor/computing/it/it-hiccups-of-the-week

18 Chapter 2 Software Engineering Methods and Practices

Apparently, the NZ Transport Agency, which is responsible for automatically
updating drivers’ details and sending them to the police force, failed to do
so from October 22 to December 16, 2013. As a result, “people who had sold
their vehicles during the two-month period . . . were then incorrectly tick-
eted for offenses incurred by the new owners or others driving the vehicles.”
In New Zealand, unlike the U.S., license plates generally stay on a vehicle for
its life.2

. The Wisconsin State Journal reported in February 2013 that “glitches” with
the University of Wisconsin’s controversial payroll and benefits system had
resulted in US $1.1 million in improper payments which the university would
likely end up having to absorb. This was after a news report in the previous
month indicated that problems with the University of Wisconsin’s payroll
system had resulted in $33 million in improper payments being made over
the past two years.3

These types of highlighted problems seem to be those which we can find
amusing; however they are really no laughing matter if you happen to be
one of the victims. What is more surprising is that the problem with these
situations is that they can be prevented, but they almost inevitably do occur.

2.2 The Rise of Software Engineering Methods and Practices
Just as we have compressed Smith’s journey from a young student to a seasoned
software engineer in a few paragraphs, we will attempt to compress some 50 years
of software engineering into a few paragraphs. We will do that with a particular
perspective in mind: what resulted in the development of a common ground in
software engineering—the Essence standard. A more general description of the
history is available in Appendix A.

However, the complexity of software programs did not seem to be the only root
cause of the so-called “software crisis.” Software endeavors and product develop-
ment are not just about programming; they are also about many other things such
as understanding what to program, how to plan the work, how to lead the people
and getting them to communicate and collaborate effectively.

2. http://spectrum.ieee.org/riskfactor/computing/it/new-zealand-police-admits-sending-20-000-
traffic-tickets-to-the-wrong-motorists

3. http://spectrum.ieee.org/riskfactor/computing/it/it-hiccups-of-the-week-university-of-wiscon
sin-loses-another-11-million-in-payroll-glitches

http://spectrum.ieee.org/riskfactor/computing/it/new-zealand-police-admits-sending-20-000-traffic-tickets-to-the-wrong-motorists
http://spectrum.ieee.org/riskfactor/computing/it/new-zealand-police-admits-sending-20-000-traffic-tickets-to-the-wrong-motorists
http://spectrum.ieee.org/riskfactor/computing/it/it-hiccups-of-the-week-university-of-wisconsin-loses-another-11-million-in-payroll-glitches
http://spectrum.ieee.org/riskfactor/computing/it/it-hiccups-of-the-week-university-of-wisconsin-loses-another-11-million-in-payroll-glitches

2.2 The Rise of Software Engineering Methods and Practices 19

For the purpose of this introductory discussion, we define a method as providing
guidance for all the things you need to do when developing and sustaining software.
For commercial products “all the things” are a lot. You need to work with clients
and users to come up with “the what” the system is going to do for its users—the
requirements. Further, you need to design, code, and test. However, you also need
to set up a team and get them up to speed, they need to be assigned work, and they
need a way of working.

These things are in themselves “mini-methods” or what many people today
would call practices. There are solution-related “practices,” such as work with re-
quirements, work with code, and conduct testing. There are endeavor-related prac-
tices, such as setting up a collaborative team and an efficient endeavor as well
as improving capability of the people and collecting metrics. There are of course
customer-related practices, such as making sure that what is built is what the cus-
tomers really want.

The interesting discovery we made more than a decade ago was that even if the
number of methods in the world was huge, it seemed that all these methods were
just compositions of a much smaller collection of practices, maybe a few hundred
of such practices in total. Practices are what we call reusable because they can be
used over and over again to build different methods.

To understand how we as a software engineering community have improved our
knowledge in software engineering, we provide a description of historical develop-
ments. Our purpose with this brief history is to make it easier for you to understand
why Essence was developed.

2.2.1 There Are Lifecycles
From the ad hoc approach used in the early years of computing came the water-
fall method around the 1960s; actually, it was not just one single method—it was
a whole class of methods. The waterfall methods describe a software engineering
project as going through a number of phases such as Requirements, Design, Imple-
mentation (Coding), and Verification (i.e., testing and bug-fixing) (see Figure 2.1).

While the waterfall methods helped to bring some discipline to software en-
gineering, many people tried to follow the model literally, which caused serious
problems especially on large complex efforts. This was because software engineer-
ing is not as simple as this linear representation indicates.

A way to describe the waterfall methods is this: What do you have once you think
you have completed the requirements? Something written on “paper.” (You may
have used a tool and created an electronic version of the “paper,” but the point is
that it is just text and pictures.) But since it has not been used, do you know for sure

20 Chapter 2 Software Engineering Methods and Practices

Requirements

R

Design

D

Implementation
 (Code)

I

Verification
(Test)

V

Figure 2.1 Waterfall lifecycle.

at this point if they are the right requirements? No, you don’t. As soon as people
start to use the product being developed based on your requirements, they almost
always want to change it.

Similarly, what do you have after you have completed your design? More “paper”
of what you think needs to be programmed? But are you certain that it is what your
customer really intended? No, you are not. However, you can easily claim you are
on schedule because you just write less and with less quality.

Even after you have programmed according to the design, you still don’t know
for sure. However, all of the activities you have conducted don’t provide proof that
what you did is correct.

Now you may feel you have done 80%. The only thing you have left is to test. At
this point the endeavor almost always falls apart, because what you have to test is
just too big to deal with as one piece of work. It is the code coming from all the
requirements. You thought you had 20% left but now you feel you may have 80%
left. This is a common well-known problem with waterfall methods.

There are some lessons learned. Believing you can specify all requirements up-
front is just a myth in the vast majority of situations today. This lesson learned has
led to the popularity of more iterative lifecycle methods. Iterating means you can
specify some requirements and you can build something meeting these require-
ments, but as soon as you start to use what you have built you will know how to
make it a bit better. Then you can specify some more requirements and build, and
test these until you have something that you feel can be released. But to gain confi-
dence you need to involve your users in each iteration to make sure what you have

2.2 The Rise of Software Engineering Methods and Practices 21

Iteration 1

R

I

V D

Iteration 2

R

I

V D

Iteration 3

TimeR

I

V D

Figure 2.2 Iterative lifecycle.

provides value. These lessons gave rise at the end of the 1980s to a new lifecycle
approach called iterative development, a lifecycle adopted by the agile paradigm
now in fashion (see Figure 2.2).

New practices came into fashion. The old project management practices fell out
of fashion and practices relying on the iterative metaphor became popular. The
most prominent practice was Scrum, which started to become popular at the end
of the 1990s and still is very popular. We will discuss this more deeply in Part III of
the book.

2.2.2 There Are Technical Practices
Since the early days of software development, we have struggled with how to do the
right things in our projects. Originally, we struggled with programming because
writing code was what we obviously had to do. The other things we needed to do
were ad hoc. We had no real guidelines for how to do requirements, testing, con-
figuration management, project management, and many of these other important
things.

Later new trends became popular.

2.2.2.1 The Structured Methods Era
In the late 1960s to mid-1980s, the most popular methods separated the software
to be developed into the functions to be executed and the data that the functions
would operate upon: the functions living in a program store and the data living in a
data store. These methods were not farfetched because computers at that time had
a program store, for the functions translated to code, and a data store. We will just
mention two of the most popular methods at that time: SADT (Structured Analysis
and Design Technique) and SA/SD (Structured Analysis/Structured Design). As a
student, you really don’t need to learn anything more about these methods. They

22 Chapter 2 Software Engineering Methods and Practices

Control

OutputInput

Mechanisms

Function

Figure 2.3 SADT basis element.

were used for all kinds of software engineering. They were not the only methods in
existence. There were a large number of published methods available and around
each method there were people strongly defending it. It was at this time in the
history of software engineering that the methods war started. And, unfortunately, it
has not yet finished!

Every method brought with it a large number of practices such as requirements,
design, test, defect management, and the list goes on.

Each had its own blueprint notation or diagrams to describe the software from
different viewpoints and with different levels of abstraction (for example, see Fig-
ure 2.3 on SADT). Tools were built to help people use the notation and to keep
track of what they were doing. Some of these practices and tools were quite so-
phisticated. The value of these approaches was, of course, that what was designed
was close to the realization—to the machine: you wrote the program separate from
the way you designed your data. The problems were that programs and data are
very interconnected and many programs could access and change the same data.
Although many successful systems were developed applying this approach, there
were far many more failures. The systems were hard to develop and even harder to
change safely, and that became the Achilles’ heel for this generation of methods.

2.2.2.2 The Component Methods Era
The next method paradigm shift4 came in early 1980 and had its high season until
the beginning of the 2000s.

In simple terms, a software system was no longer seen as having two major
parts: functions and data. Instead, a system was a set of interacting elements—

4. Wikipedia: “A paradigm shift, as identified by American physicist and philosopher Thomas
Kuhn, is a fundamental change in the basic concepts and experimental practices of a scientific
discipline.”

2.2 The Rise of Software Engineering Methods and Practices 23

Sidebar 2.1 Paradigm Shift in Detail

In more detail, this paradigm shift was inspired by a new programming metaphor—
object-oriented programming—and the trigger was the new programming language
Smalltalk. However, the key ideas behind Smalltalk were derived from an earlier
programming language, Simula 67, that was released in 1967. Smalltalk and Simula
67 were fundamentally different from previous generations of programming languages
in that the whole software system was a set of classes embracing its own data, instead
of programs (subroutines, procedures, etc.) addressing data types in some data store.
Execution of the system was carried out through the creation of objects using the
classes as templates, and these objects interacted with one another through exchanging
messages. This was in sharp contrast to the previous model in which a process was
created when the system was triggered, and this process executed the code line by line,
accessing and manipulating the concrete data in the data store. A decade later, around
1990, a complement to the idea of objects received widespread acceptance inspired, in
particular, by Microsoft. We got components.

components (see also Sidebar 2.1). Each component had an interface connecting
it with other components, and over this interface messages were communicated.
Systems were developed by breaking them down into components, which collabo-
rated with one another to provide for implementation of the requirements of the
system. What was inside a component was less important as long as it provided the
interfaces needed to its surrounding components. Inside a component could be
program and data, or classes and objects, scripts, or old code (often called legacy
code) developed many years ago. Components are still the dominating metaphor
behind most modern methods. An interesting development of components that
has become very popular is microservices, which we will discuss in Part III.

With components, a completely new family of methods evolved. The old meth-
ods with their practices were considered to be out of fashion and were discarded.
What started to evolve were in many cases similar practices with some significant
differences but with new terminology. In the early 1990s, about 30 different com-
ponent methods were published. They had a lot in common, but it was almost
impossible to find the commonalities since each method author created his/her
own terminology.

In the second half of the 1990s, OMG (a standards body called Object Manage-
ment Group) felt that it was time to at least standardize how to represent software
drawings, namely notations used to develop software. This led to a task force be-
ing created to drive the development of a new standard. The work resulted in the

24 Chapter 2 Software Engineering Methods and Practices

Place Local Call
Called

Subscriber
Calling

Subscriber

Place Long Distance Call

Retrieve Customer
Billing Information

Get Call History
Customer

Billing System

Figure 2.4 A diagram (in fact a Use-Case diagram) from the Unified Modeling Language standard.

Unified Modeling Language (UML; see Figure 2.4), which will be used later in the
book. This development basically killed all methods other than the Unified Process
(marketed under the name Rational Unified Process (RUP)). The Unified Process
dominated the software engineering world around the year 2000. Again, a sad step,
because many of the other methods had very interesting and valuable practices
that could have been made available in addition to some of the Unified Process
practices. However, the Unified Process became in fashion and everything else was
considered out of fashion and more or less thrown out.

Over the years, many more technical practices other than the ones supported
by the 30 component methods arrived. More advanced architectural practices or
sets of practices, e.g., for enterprise architecture (EA), service-oriented architecture
(SOA), product-line architecture (PLA), and recently architecture practices for big
data, the cloud, mobile internet, and the internet of things (IoT) evolved. At the mo-
ment, it is useful to see these practices as pointers to areas of software engineering
interest at a high level of abstractio: suffice it to say that EA was about large infor-
mation systems for, e.g., the finance industry; SOA was organizing the software as
a set of possibly optional service packages; and PLA was the counterpart of EA but
for product companies, e.g., in the telecom or defense industry. More important is
to know that again new methodologies grew up as mushrooms around each one

2.2 The Rise of Software Engineering Methods and Practices 25

of these technology trends. With each new such trend method authors started over
again and reinvented the wheel. Instead of “standing on the shoulders of giants,”5

they preferred to stand on another author’s toes. They redefined already adopted
terminology and the methods war just continued.

2.2.2.3 The Agile Methods Era
The agile movement—often referred to just as agile—is now the most popular trend
embraced by the whole world. Throughout the history of software engineering,
experts have always been trying to improve the way software is being developed.
The goal has been to compress timescales to meet the ever-changing business
demands and realities. If agile were to have a starting date, one can pinpoint it
to the time when 17 renowned industry experts came together and penned the
words of the agile manifesto. We will present the manifesto in Part IV and how
Essence contributes to agile. But for now, it suffices to say that agile involves a set of
technical and people-related practices. Most important is that agile emphasizes an
innovative mindset such that the agile movement continuously evolves its practices.

Agile has evolved the technical practices utilized with components. However,
its success did not come from introducing many new technical practices, even if
some new practices, such as continuous integration, backlog-driven development,
and refactoring, became popular with agile. Continuous integration suggests that
developers several times daily integrate their new code with the existing code base
and verify it. Backlog-driven development means that the team keeps a backlog of
requirement items to work with in coming iterations. We will discuss this practice
in more detail when we discuss Scrum in Part III. Refactoring is to continuously
improve existing code iteration by iteration.

Agile rather simplified what was already in use to assist working in an iterative
style and providing releasable software over many smaller iterations, or sprints as
Scrum calls them.

2.2.3 There Are People Practices
As strange as it may sound, the methods we employed in the early days did not pay
much attention to the human factors. Everyone understood of course that software
was developed by people, but very few books or papers were written about how
to get people motivated and empowered in developing great software. The most

5. From Wikipedia: “The metaphor of dwarfs standing on the shoulders of giants . . . expresses
the meaning of ‘discovering truth by building on previous discoveries’.”

26 Chapter 2 Software Engineering Methods and Practices

successful method books were quite silent on the topic. It was basically assumed
that in one way or the other this was the task of management.

However, this assumption changed dramatically with agile methods. Before,
there was a high reliance on tools so that code could be automatically generated
from design documents such as UML diagrams. Accordingly, the role of program-
mers was downgraded, and other roles were more prestigious, such as project man-
agers, analysts, and architects. With agile methods programming became reevalu-
ated as a creative job. The programmers, the people who eventually created working
software, were “promoted” and coding became again a prestigious task.

With agile many new practices evolved, for instance self-organizing teams, pair
programming, and daily standups.

A self-organizing team includes members who are more generalists than
specialists—most know how to code even if some are experts. It is like a soccer
team—everyone knows how to kick the ball even if some are better at scoring goals
and someone else is better at keeping the ball out of the goal.

Pair programming means that two programmers are working side-by-side devel-
oping the same piece of code. It is expected that the code quality is improved and
that the total cost will be reduced. Usually one of the two, is more senior than the
other, so this is also a way to improve team competency.

Daily standup is a practice intended to reduce impediments that team members
have, as well as to retain motivation. Every morning the team meets for 15 min to
go through each member’s situation: what he/she has done and what he/she will
be doing. Any impediments are brought up but not addressed during the meeting.
The issues will be discussed in separate meetings. This practice is part of the Scrum
practice discussed in Part III.

Given the impact agile has had on the empowerment of programmers, it is easy
to understand that agile has become very popular. Moreover, given the positive
impact agile has had on our development of software, there is no doubt it has
deserved to become the latest paradigm.

2.2.4 Consequences
There is a methods war going on out there. It started 50 years ago, and it still goes
on. Jokingly, we can call it the Fifty Years’ War, and there is still no truce. In fact,
there are no signs that this will stop by itself.

. With every major paradigm shift such as the shift from structured methods
to component methods and from the latter to the agile methods, basically
the industry throws out all they know about software engineering and starts

2.2 The Rise of Software Engineering Methods and Practices 27

all over with new terminology with little relation to the old. Old practices are
viewed as irrelevant and new practices are hyped. To make this transition
from the old to the new is extremely costly to the software industry in the
form of training, coaching, and change of tooling.

. With every major technical innovation, for instance cloud computing, re-
quiring a new set of practices, the method authors also “reinvent the wheel.”
Although the costs are not as huge as in the previous point, since some of
the changes are not fundamental across everything we do (it is no paradigm
shift) and thus the impact is limited to, for instance, cloud development,
there is still foolish waste.

. Within every software engineering trend there are many competing meth-
ods. For instance, back as early as 1990 there were about 30 competing
object-oriented methods. When this book was written, there were about 10
competing methods on scaling agile to large organizations; some of the most
famous ones are Scaled Agile Framework (SAFe), Disciplined Agile Delivery
(DAD), Large Scale Scrum (LeSS), and Scaled Professional Scrum (SPS). They
typically include some basic widely used practices such as Scrum, user sto-
ries or alternatively use cases, and continuous integration, but the method
author has “improved” them—sarcastically stated. There is reuse of ideas,
but not reuse of original text, so the original inventor of the practice feels he
or she has been robbed of his/her work; there is no collaboration between
method authors, but instead they are “at war” as competing brands.

Within these famous methods, there are some often useful practices
that are specific for each one. The problem is that all these methods are
monolithic, not modular, which means that you cannot easily mix and match
practices from different methods. If you select one, you are more or less stuck
with it. This is not what teams want, and certainly not their companies. This
is, of course, what most method authors whose method is selected like, even
if it was never what they intended.

Typically, every recognized method has a founding parent, sometimes more
than one parent. If successful, this parent is raised to guru status. The guru more or
less dictates what goes into his/her method. Thus, once you have adopted a method,
you get the feeling you are in a method prison controlled by the guru of that method.
Ivar Jacobson, together with Philippe Kruchten, was once such a guru governing
the Unified Process prison. Jacobson realized that this was “the craziest thing in
the world,” a situation unworthy in any industry and in particular in such a huge
industry as the software industry. To eradicate such unnecessary method wars and

28 Chapter 2 Software Engineering Methods and Practices

method prisons, the SEMAT (Software Engineering Method and Theory) initiative
was founded.

2.3 The SEMAT Initiative
As of the writing of this book there are about 20 million software developers6 in the
world and the number is growing year by year. It can be guesstimated that there are
over 100,000 different methods to develop software, since basically every team has
developed their own way of working even if they didn’t describe it explicitly.

Over time, the number of methods is growing much faster than the number of
reusable practices. There is no problem with this. In fact, this is what we want to
happen, because we want every team or organization to be able to set up its own
method. The problem is that until now we have not had any means to really do that.
Until now, creating your own method has invited the method author(s) to reinvent
everything they liked to change. This has occurred because we haven’t had a solid
common ground that we all agreed upon to express our ideas. We didn’t have a
common vocabulary to communicate with one another, and we didn’t have a solid
set of reusable practices from which we could start creating our own method.

In 2009, several leaders of the software engineering community came together,
initiated by Ivar Jacobson, to discuss the future of software engineering. Through
that, the SEMAT (Software Engineering And Theory) initiative commenced with two
other leaders founding it: Bertrand Mayer and Richard Soley.

The SEMAT call for action in 2009 read as follows.

Software engineering is gravely hampered today by immature practices. Specific
problems include:

. The prevalence of fads more typical of fashion industry than of an engi-
neering discipline.

. The lack of a sound, widely accepted theoretical basis.

. The huge number of methods and method variants, with differences little
understood and artificially magnified.

. The lack of credible experimental evaluation and validation.

. The split between industry practice and academic research.

6. https://www.infoq.com/news/2014/01/IDC-software-developers

https://www.infoq.com/news/2014/01/IDC-software-developers

2.4 Essence: The OMG Standard 29

We support a process to re-found software engineering based on a solid theory,
proven principles, and best practices that:

. Include a kernel of widely agreed elements, extensible for specific uses

. Address both technology and people issues

. Are supported by industry, academia, researchers and users

. Support extension in the face of changing requirements and technology.

This call for action was signed by around 40 thought leaders in the world coming
from most areas of software engineering and computer science; 20 companies
and about 20 universities have signed it, and more than 2,000 individuals have
supported it. You should see the “specific problems” identified earlier as evidence
that the software world has severe problems. When it comes to the solution “to
re-found software engineering” the keywords here are “a kernel of widely agreed
elements,” which is what this book has as a focus.

It was no easy task to get professionals around the world to agree on what
software engineering is about, let alone how to do it. It led, of course, to significant
controversy. However, the supporters of SEMAT persevered. Never mind that the
world is getting more complex, and there is no single answer, but there ought to be
some common ground—a kernel.

2.4 Essence: The OMG Standard
After several years of hard work, the underlying language and kernel of software
engineering was accepted in June 2014 as a standard by the OMG and it was
given the name Essence. As is evident from the call for action, the SEMAT leaders
realized already at the very start that a common ground of software engineering
(a kernel) needed to be widely accepted. In 2011, after having worked two years
together and having reached part of a proposal for a common ground, we evaluated
where we were and understood that the best way to get this common ground
widely accepted was to get it established as a formal standard from an accredited
standards body. The choice fell on OMG. However, it took three more years to get
it through the process of standardization. Based upon experience from the users
of Essence, it continues to be improved by OMG through a task force assigned to
this work.

In the remainder of this part of the book, we will introduce Essence, the key
concepts and principles behind Essence, and the value and use cases of Essence.

30 Chapter 2 Software Engineering Methods and Practices

This material is definitely useful for all students and professionals alike. Readers
interested in learning more, please see Jacobson et al. [2012, 2013a, 2013b], and
Ng [2014].

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to:

. explain the meaning of a method (as providing guidance for all the things
you need to do when developing and sustaining software);

. explain the meaning of a practice and its types (i.e., solution-related prac-
tices, endeavor-related practices, customer-related practices);

. explain the meaning of waterfall methods and their role in the history of
software engineering;

. explain the iterative lifecycle methods, structured methods, component
methods, and agile methods, as well as their characteristics;

. give examples of some practices (e.g., self-organizing teams, pair program-
ming, and daily standups as examples of agile practices);

. explain the “method prison” issue discussed in the chapter; and

. explain the SEMAT initiative and the motivation behind the Essence stan-
dard.

Again we point to additional reading, exercises, and further material at
www.software-engineering-essentialized.com.

3Essence in a Nutshell

In this chapter we present key ideas resulting in Essence as a common ground
for all software engineering methods. Basic concepts of Essence, the notion of a
method and the architecture of Essence are introduced. In particular, this chapter
introduces and explains

. the key ideas resulting in Essence and why they are important for software
engineering;

. the concept of composition as a way to combine practices to form a method
to guide a development endeavor;

. the common ground Essence as consisting of a language and a kernel of
essential elements;

. the concepts of practices and methods built of top of Essence forming a
method architecture; and

. the concept of cards as a means to give the abstract elements of Essence an
attractive and tangible user experience.

This chapter shows that the main idea behind Essence is to focus on the most
important things to think about when developing software (focus on the essentials
only).

Essence became a standard in 2014 as a response to “the craziest thing in the world”
presented in Chapters 1 and 2.

In this chapter, we will present some key ideas used as input when designing
Essence. We will also separately motivate each idea and describe how it has been
realized with Essence.

32 Chapter 3 Essence in a Nutshell

3.1 The Ideas
Essence relies on the following insights.

. Methods are compositions of practices.

There are a huge number of methods (guesstimated to be > 100,000)
in the world, some of which are recognized and have a large user
base.

There are only a few hundred reusable practices in the world. With n

practices the number of theoretically possible combinations of these
practices can quickly grow very large.

. There is a common ground, or a kernel, shared among all these methods and
practices.

. Focus on the essentials is needed when providing guidelines for a method
or practice.

. Providing an engaging user experience is possible when teaching and learn-
ing methods and practices.

3.2 Methods Are Compositions of Practices
As explained in Chapter 2, a method is created with the intention to guide the
software development team(s) through everything they need to do during the de-
velopment process: that is, giving them all the practices they need. A practice is
like a mini-method in that it guides a team in how to carry out one particular thing
in their work. For instance, “requirements management” is a potential practice
dealing with what a software system should do. It is obviously not all you need to
do when you develop software; you need many other such practices, for instance,
“design, implement, and test,” “organize your team,” “perform project manage-
ment,” etc. For small endeavors, it is not uncommon that you need a dozen such
mini-methods/practices.

Because a method is attempting to give complete guidance for the work, it relies
on a composition of practices. This is an operation merging two or more practices to
form the method. Such a composition operation has to be defined mathematically
in order to be unambiguous and precise. It has to be specified by a method expert
with the objective to resolve potential overlaps and conflicts among the practices,
if there are any. Usually most practices can be composed easily by setting them side

3.2 Methods Are Compositions of Practices 33

by side because there are no overlaps and conflicts, but in some cases, these have
to be taken care of.

This is because, while practices are separate, they are not independent. They
are not like components that have interfaces over which communication/inter-
operation will happen. They also share elements, so let us briefly look at what these
might be. Inside a practice are, for instance, guidelines for activities that a user
(e.g., a developer) is supposed to perform, and guidelines for work products (e.g.,
components) that a user is expected to produce. Although two practices may share
the same work product, they contribute separate guidelines to this work product,
and composing these two practices, resolving potential overlaps and conflicts, will
require that you specify how the contributions must be combined in a meaningful
and constructive way.

However, not just methods are compositions, but also practices can be compo-
sitions of smaller practices. Scrum, for instance, can be seen as a composition of
three smaller practices: Daily Standup, Backlog-Driven Development, and Retro-
spective. (We will discuss these later when we come to Scrum in Part III.)

We will come back later to compositions when we have more details about prac-
tices in our knowledge bag. (If you want to have a peek into more on compositions
now, take a look at Chapter 19.)

What eventually becomes a method or a practice is just a practical decision. To
reiterate, a method is closer to the complete guidance you need whereas a prac-
tice (composed or not) is just one aspect (or several) of what you need to guide
the team(s) to deal with all the “things” they need to deal with when developing
software. An individual can create one or a few practices based on experience, but
a method is always too big to be created by one individual without “borrowing”
practices from others. We say “borrowing” within quotes, because it is an act with-
out consent of the originator. Practices are successful because of the knowledge
they provide, whereas methods are usually branded (like RUP, SAFe, DAD, Nexus,
Less) and success is more about great marketing than about knowledge being
provided.

When we say that a practice guides a team, we mean it is described one way or
another to indicate what to do. How explicit a practice should be, i.e., how detailed
the descriptions should be, depends on two factors: capabilities and background.

Capability. Capability refers to team members’ ability, based upon the knowl-
edge they already have, to figure things out for themselves. Team members
with high skill and capability need only a few reminders and examples to

34 Chapter 3 Essence in a Nutshell

Tacit
practices
sufficient

Common

Background

Different

High

Capability

Low

Tacit
practices

with
coaching

Explicit
practices

with
coaching

Explicit
practices
needed

Figure 3.1 How explicit practices depend on capability and background.

get going. Others may need training and coaching to learn how to apply a
practice effectively.

Background. If the team has worked together using a practice in the past or
have gone through the same training, then they have a shared background.
In this case, practices can be tacit. On the other hand, if team members
have been using different practices, e.g., some have been using traditional
requirements specifications while others have been using user story (a more
modern way of dealing with requirements), then they have different back-
grounds. In this case, practices should be described to avoid miscommuni-
cation.

How these two factors interact and influence the form that your practices should
take is summarized in Figure 3.1.

As an example, in the case where a team’s requirements challenges relate to
different backgrounds and members do not know that much about requirements
collaboration techniques, the team needs explicit practices and some coaching
which a more experienced team member can provide out of the box. Additional
factors to be considered, contributing to the need for practices, include the size of
the team and how its members are geographically distributed.

3.3 There Is a Common Ground
Using a common ground as a basis for presenting guidelines for all practices will
make it easier to teach, learn, use, and modify practices and easier to compare
practices described using the same common ground.

3.3 There Is a Common Ground 35

Kernel

+ =

Language Essence

Figure 3.2 Essence and its parts.

Essentialized methods

use

Essentialized practices

The Essence kernel

The Essence language

use

uses

Figure 3.3 Essence method architecture.

Figure 3.2 illustrates Essence as this common ground, providing both a lan-
guage and a kernel of software engineering.

The Essence language is very simple, intuitive, and practical, as we will show
later in this section.

As previously described, it was left to the software engineering community to
contribute practices, which can then be composed to form methods. Figure 3.3
depicts the relationships between methods composed using practices, which are
described using the Essence kernel and the Essence language. As you can see in
Figure 3.3, the notation used in the Essence language for practices is the hexagon,
and for methods it is the hexagon enclosing two minor hexagons.

The practices are essentialized, meaning they are described using Essence—the
Essence kernel and the Essence language. Consequently, the methods we will de-
scribe are also essentialized. In Part III you will see many examples of essentialized
practices.

36 Chapter 3 Essence in a Nutshell

Essence

User
Story TDD=

Method

Some
other

practices

Backlog
Driven

Figure 3.4 A method is a composition of practices on top of the kernel.

Essentializing not only means that the method/practice is described using
Essence; it also focuses the description of the method/practice on what is essential.
It doesn’t mean changing the intent of the practice or the method. This provides
significant value. We as a community can create libraries of practices coming from
many different methods. Teams can mix and match practices from many methods
to obtain a method they want. If you have an idea for a new practice, you can just
focus on essentializing that practice and add it to a practice library for others to
select; you don’t need to “reinvent the wheel” to create your own method (see, e.g.,
Figure 3.4. This liberates that practice from monolithic methods, and it will open
up the method prisons and let companies and teams get out to an open world.

As mentioned earlier, a team usually faces a number of challenges and will
need the guidance of several practices. Starting with the kernel, a team can select
a number of practices and support tools to make up its way-of-working. The set of
practices that they select for their way-of-working is their method.

When learning a new practice or method, perhaps about use cases, or user
stories, it is sometimes difficult to see how it will fit with your current way-of-
working. By basing the practices on a common ground, you can easily relate new
practices to what you already have. You learn the kernel once and then you just
focus on what is different with each new practice.

Even if there are many different methods (every team or at the least every orga-
nization has one), they are not as different as it may seem. Examples of common
practices are user story, test-driven development (TD), and backlog driven devel-
opment. These terms may not mean much to you now, but in Part III we will give
meaning to them. Right now, this combination serves just as an example of the
relationship between a method and its practices.

3.5 Providing an Engaging User Experience 37

Sidebar 3.1 How Much Does a Developer Need to Know About Methods?

You may be asking yourself at this point, do I really need to care about all of this method
theory? Remember, a method is a description of the team’s way of working and it
provides help and guidance to the team as they perform their tasks. What the kernel
does is help you structure what you do in a way that supports incremental evolution
of the software system. In other words, it puts you in control of the way you work and
provides the mechanism to change it.

The idea of describing practices on top of the kernel is a key theme of this book.
A further discussion of how they are formed this way is found in Part III (see also
Sidebar 3.1).

3.4 Focus on the Essentials
Our experience is that developers rarely have the time and interest to read detailed
methods or practices. Starting to learn the essentials gets teams ready to start
working significantly earlier than if they first have to learn “all” there is to say about
the subject.

These essentials are usually just a small fraction of what an expert knows about
a subject—we suggest 5%—but with the essentials you can participate in conver-
sations about your work without having all the details. It helps to grow T-shaped
people—people who have expertise in a particular field, but also broad knowledge
across other fields. Such people are what the industry needs as work becomes more
multi-disciplinary. Once you have learned the essentials it is relatively straightfor-
ward to find out more by yourself from different sources.

Some teams and organizations need more than the essentials, so different levels
of details must be made optional.

3.5 Providing an Engaging User Experience
Many books have been written to teach software engineering. Some people inter-
ested in learning about ideas and trends in this space read these books, but the
vast majority of software development practitioners don’t—not even if they have
bought the books. Thus, textbooks are not the best way to teach practices to prac-
titioners. Modern method-authors have taken a different approach by presenting
their methods as a navigable website.

Essence has taken a different approach by providing a hands-on, tangible user
experience focused on supporting software professionals as they carry out their
work. For example, the kernel can be accessed (and actually touched) through the

38 Chapter 3 Essence in a Nutshell

Figure 3.5 Cards make the kernel and practices tangible.

use of cards (see Figure 3.5). The cards provide concise reminders and cues for team
members as they go about their daily tasks. By providing practical check-lists and
prompts, as opposed to conceptual discussions, the kernel becomes something
the team uses on a daily basis. This is a fundamental difference from traditional
approaches, which tend to emphasize method description over method use and
tend to be consulted only by people new to the team.

Cards have proven to be a lightweight and practical way to remember, but also
to use in practice in a team. They make the kernel and the practices easy to digest
and use. For this reason, throughout the book we will use cards to present elements
in the kernel and in practices.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. name the key elements of Essence;

. distinguish between a practice and a method (give some examples of both);

What Should You Now Be Able to Accomplish? 39

. explain the concept of composition as a key technique to build methods
using practices (and to support extensibility in Essence);

. explain the concept of tacit vs. explicit practices;

. explain the role of capability and background in deciding how explicit a
practice should be; and

. explain the layered architecture of Essence and its elements.

Again, we point to additional reading, exercises, and further material at
www.software-engineering-essentialized.com.

Given that the reader is now equipped with ability to distinguish essential (i.e.,
the important) steps/aspects/decisions from those of minor importance, more
knowledge can now be gained by proceeding in a given project and by working
on the project with other people/stakeholders involved.

4Identifying the Key
Elements of Software
Engineering

The goal of this chapter is to present the key elements of the development endeavor,
which later become “alphas,” the building blocks of Essence—the things we work
with when developing software. In this chapter, we discuss

. the key elements within software engineering that deliver value to the
customer;

. the key elements in software engineering that are related to the targeted
solution and development endeavor; and

. the role and importance of different stakeholders, requirements, and team
composition.

This knowledge will help us to lay out a model of software engineering with areas
of concern and key elements, which will create the basis for our understanding of
Essence. To understand this model in practical application, we now rejoin Smith
in his journey into software development.

4.1 Getting to the Basics
After Smith had been working in the software industry for several years, he had his
fair share of ups and downs. He wished there were more ups than downs. Without a
doubt, software engineering is a creative process, but Smith had come to recognize
that there are some fundamental basics—some things to be mindful of, to avoid
making unnecessary mistakes.

42 Chapter 4 Identifying the Key Elements of Software Engineering

Smith’s colleagues also recognized that, but they had difficulty articulating these
fundamentals due to their different backgrounds, experience, and, consequently,
the different terms they used. It seemed that every time a new team was formed,
members had to go through a “storming and norming” process to iron out these
terms before starting to deal with the challenges.

If you have been in the software industry for some time, you can empathize
with Smith. For students new to software engineering, we want you to appreciate
the complexities of a software development endeavor as you read this chapter and
compare that against the complexities of your class, or of project assignments that
you have worked on.

Essence was developed to help people like Smith and companies like Travel-
Essence who rely heavily on software to run their business. What the contributors
to Essence did was to lay down the foundation of software engineering for folks like
Smith and yourself to cut short this startup period and ensure health and speed as
your software development endeavors progress. The term health is discussed and
defined later on for the area of software development. See, for example, Chapter 11
for a more detailed discussion.

Let’s begin with some commonly used terms found in software engineering,
which we will briefly introduce in italics. Regardless of size and complexity, all
software development endeavors involve the following facets (see Figure 4.1):

. There are customers with needs to be met.

Someone has a problem or opportunity to address.

There are stakeholders who use and/or benefit from the solution
produced, and some of these will fund the endeavor.

. There is a solution to be delivered.

There are certain requirements to be met.

A software system of one form or another will be developed.

. There is an endeavor to be undertaken.

The work must be initiated.

An empowered team of competent people must be formed, with an
appropriate way of working.

These terms map out what software engineering is about. When something goes
wrong, it is normally an issue with one or more of these facets. The way we handle
these issues has a direct impact on the success or failure of the endeavor. We will

4.2 Software Engineering Is about Delivering Value to Customers 43

C
u

st
om

er

Opportunity

Requirements

Work

Stakeholders

Software
System

Way of
Working

Team

So
lu

ti
on

E
n

d
ea

vo
r

Figure 4.1 The things involved in all development endeavors.

now look at each of these facets in turn. Later, in Chapter 6, we will once more
discuss issues and their relationships.

4.2 Software Engineering Is about Delivering Value to Customers
First, software engineering is about delivering value to customers. This value can
be in improvements to existing capabilities or in providing new capabilities that
are needed by the customer. (In our TravelEssence mode, customers are the users.
They can be travelers or travel agents who make reservations on behalf of actual
travelers.) Different customers would have different needs. If the endeavor does
not deliver value, then it is a waste of time and money. As the saying goes, life is too
short to build something that nobody wants!

4.2.1 Opportunity
Every endeavor is an opportunity for success or failure. It is therefore very important
to understand what the opportunity is about. Perhaps you have heard of Airbnb.
Airbnb started out in 2008 with two men, Brian Chesky and Joe Gebbia, who were

44 Chapter 4 Identifying the Key Elements of Software Engineering

struggling to pay rent. They came up with the idea of renting out three airbeds
on their living-room floor and providing their guests with breakfast. It turned
out that during that time, there was an event going on in their city and many
participants weren’t able to book accommodations. Brian and Joe realized they
were onto something. To cut the story short, Airbnb became a 1.3 billion USD
business in 2016.

However, not all businesses grow and are successful like that. In fact, far more
companies do not make it, and miss many opportunities. In fact, there has been a
90% failure rate for startups.1 Many successful companies become failures due to
missed opportunities. Thus, understanding opportunities is critical.

An opportunity is a chance to do something, including fixing an existing prob-
lem. In our context, an opportunity involves building or enhancing software to meet
a need. Regardless of what the opportunity is, it can either succeed or fail. It can
deliver real value, or it could be something that nobody wants.

As an example, our TravelEssence model revealed that customers like to engage
travel staff because of the recommendations that the staff provides. The opportu-
nity here is that if TravelEssence can provide recommendations online through a
software solution, it can provide better service to customers, thereby shortening
the time customers need to make a purchase decision. Of course, whether this op-
portunity is truly viable depends on many factors.

Thus, when working with an opportunity it is important to continuously evaluate
the viability of the opportunity as it gets implemented.

. When the opportunity is first conceived, some due diligence is necessary to
determine if it truly addresses a real need or a real new idea that customers
are willing to pay money for.

. It would likely be the case that different solution options are available to
address the opportunity, and some difficult choices will have to be made.

. When the solution goes live, it normally takes some time before the benefits
become visible to customers.

4.2.2 Stakeholders
For opportunities to be taken up, there must be some people involved in the
decision. The name we have for those individuals, organizations, or groups is
stakeholders. Stakeholders who have some interest or concern in the system being
developed are known as external stakeholders; those interested in the development

1. https://www.forbes.com/sites/neilpatel/2015/01/16/90-of-startups-will-fail-heres-what-you-
need-to-know-about-the-10/#43f76e846679

https://www.forbes.com/sites/neilpatel/2015/01/16/90-of-startups-will-fail-heres-what-you-need-to-know-about-the-10/#43f76e846679
https://www.forbes.com/sites/neilpatel/2015/01/16/90-of-startups-will-fail-heres-what-you-need-to-know-about-the-10/#43f76e846679

4.3 Software Engineering Delivers Value through a Solution 45

endeavor itself are called internal stakeholders. In our TravelEssence case, internal
stakeholders include a development team assembled to develop the new services
for travelers, along with key managers in the organization who need to agree to
the new venture. Examples of external stakeholders being affected by the system
include a manager in our TravelEssence organization who needs to agree to fund
the new software effort, or a traveler who might benefit by using the new services.

One of the biggest challenges in a development endeavor is getting stakeholders
to agree. Before that can occur, they must first be involved in some way. The worst
thing that could happen is that when all is said and done, someone says, “This is
not what we want.” This happens too often.

Thus, it is really important early in the endeavor to:

. understand who the stakeholders are and what their concerns are;

. ensure that they are adequately represented and involved in the process; and

. ensure that they are satisfied with the evolving solution.

4.3 Software Engineering Delivers Value through a Solution
What sets a software development endeavor apart from other endeavors is that the
solution that addresses the opportunity is via a good piece of software. Nobody wants
a poor-quality product. Customers’ needs are ever evolving, so the solution needs
to evolve as well, and for that to happen it has to be extensible. This extensibility
applies to both the requirements of the solution and the software system that realizes
the requirements.

In TravelEssence, the requirements for the solution cover different usage sce-
narios for different kinds of customers (e.g., new travelers, frequent travelers, cor-
porate travelers, agents, etc.). The software system involves a mix of mobile appli-
cations and a cloud-based backend.

4.3.1 Requirements
Requirements provide the stakeholders’ view of what they expect the software
system to provide. They indicate what the software system must do, but do not
explicitly express how it must be done. They identify the value of the system in
respect to the opportunity and indicate how the opportunity will be pursued via
the creation of the system.

As such, requirements serve like a medium between the opportunity and the
software system. Among the biggest challenges software teams face are changing
requirements. Usually, there is more than one stakeholder in an endeavor, and
stakeholders will of course have different and even conflicting preferences and

46 Chapter 4 Identifying the Key Elements of Software Engineering

opinions. Even if there is only one stakeholder, he/she might have different opin-
ions at different times. Moreover, the software system will evolve together with the
requirements. What we see affects what we want. Thus, requirement changes are
inevitable because the team’s understanding of what’s needed will evolve. What we
want to prevent is unnecessary miscommunication and misunderstanding.

At TravelEssence, Smith encountered this when working on a discount program.
The team had thought that this enhancement would be very simple. However, the
stakeholders had different ideas on how long the program should last, which group
of users the discount program should focus on, the impact of the discount program
on reservation rates, etc. They had wanted to launch the discount program within
a month’s time, yet there was a great deal of debate even to the very last hour.

Thus, how a team works with requirements is absolutely crucial, with principles
like:

. ensuring that requirements are continuously anchored to the opportunity;

. organizing the requirements in a way that facilitates understanding and
resolves conflicting requirements;

. ensuring that the requirements are testable, i.e., that one can verify that the
software system does indeed fulfill the requirements without ambiguity; and

. using the requirements to drive the development of the software system. In
fact, code needs to be well structured and easy to relate back to the require-
ments. Progress is measured in terms of how many of the requirements have
been completed.

4.3.2 Software System
The primary outcome of a software endeavor is of course the software system itself.
This software system can come in one of many different forms. It could be the
app running on your mobile phone; it could be embedded in your air conditioner;
it could help you register for your undergraduate program; it could tally election
votes. It could run on a single machine or be distributed on a server farm in data
centers or across a vast network as in the Internet today.

Whatever the case, there are three important characteristics of software systems
necessary before they can be of value to users and stakeholders: functionality,
quality, and extensibility.

The need to have functionality is obvious. Software systems are designed and
built to make the lives of humans easier. They each must serve some functions,
which are derived from the software system’s requirements.

4.3 Software Engineering Delivers Value through a Solution 47

The need for quality is easy to understand. Nobody likes a software system that
is of poor quality. You do not want your word processor to crash when you are
finishing your report, especially if you have not saved your work. You want your
social media posts to be instantaneous. Thus, quality attributes like reliability
and performance are important. Other qualities, such as ease of use or a rich
user experience, are becoming more important as software systems become more
ubiquitous. Of course, the extent of quality needed depends on the context itself.
This again can be derived from the software system’s requirements.

The third characteristic is that of being extensible. It can be said that this is an-
other aspect of quality, but we want to call this out separately. Software engineering
is about changing and evolving the software system, from one version to the next,
giving it more and more functionality to serve its users. This evolution occurs over
time as a series of increments of more functionality, where every increment is de-
scribed by more requirements. This is illustrated in Smith’s job at TravelEssence,
which involves introducing changes to the existing travel reservation software sys-
tem when TravelEssence introduces new discount programs, initiates membership
subscription incentives, integrates with new accommodation providers, etc.

There are several important aspects of this evolution. First, it does not merely
entail hacking or patching code into the software system. Otherwise, as the software
system grows in size, it will be harder to add new functionality. Consequently, teams
often organize software systems into interconnecting parts known as components.
Each component realizes part of the requirements and has a well-defined scope
and interface. As a student, the lessons you will learn about object orientation, etc.
are about organizing the software system into manageable components.

Second, code needs to be well structured and easy to relate back to the re-
quirements. Just as the requirements will evolve, the software system needs to be
extensible to such changes.

Third, the evolution involves transitioning the software system across different
environments, from the developer’s machines, to some test environment, to what
is known as the production environment, where actual users will be using the soft-
ware system. It is not unusual to find that software that works on the developer’s
machines will have defects (or bugs) in the test or production environment. Many
senior developers get irritated when they hear novices say: “But it works on my
machine.” A developer’s job is not done until they system works well in the produc-
tion environment. A quality software system must:

. have a design that is a solution to the problem and agreed to;

. have demonstrated critical interfaces;

48 Chapter 4 Identifying the Key Elements of Software Engineering

. be usable, adding value to stakeholders; and

. have operational support in place.

4.4 Software Engineering Is Also about Endeavors
An endeavor is any action that we take with the purpose of achieving an objective,
which in our case means both delivering value according to the given opportunity
and satisfying stakeholders. Within software engineering, an endeavor involves a
conscious and concerted effort of developing software from the beginning to the
end. It is a purposeful activity conducted by a software team that achieves its goals
by doing work according to a particular way of working.

4.4.1 Team
Software engineering involves the application of many diverse competencies and
skills in a manner similar to a sports team. As such, a team typically involves several
people and has a profound effect upon any development endeavor. Without the
team there will be no software.

Good teamwork is essential for high performance. It creates a synergy, where
the combined effect of the team is much greater than the sum of individual efforts.
But getting to a high-performance state does not come naturally; instead, it results
from a deliberate attempt to succeed.

To obtain this high level of performance, the team members should reflect on
the way they work together and how they focus on the team goal.

Teams need to:

. be formed with enough people to start the work;

. be composed of personnel possessing the right competencies/skills;

. work together in a collaborative way; and

. continuously adapt to their changing environment.

When working in TravelEssence, Smith belonged to a development team. Al-
though members of Smith’s team had slightly different skill sets, they collaborated
to achieve the team’s goal together. Smith was particularly focused on backend
technologies (i.e., the part of the software system running on the cloud), whereas
Grace, a colleague, focused on front-end JavaScript and React Native technologies.
(Since these technologies are not the emphasis of this book, you don’t need to
know them. Moreover, technologies change rather quickly. Instead, what we want to

4.4 Software Engineering Is Also about Endeavors 49

emphasize is that effective teams have to address the opportunity presented to them
to satisfy stakeholders.)

4.4.2 Work
When a team comes together to do the work of making the opportunity a reality
in the software system they build, the purpose of all their efforts is to achieve a
particular goal. In general, there is a limited amount of time to reach this goal:
they must get things done fast but with high quality. The team members must
be able to prepare, coordinate, track, and complete (stop) their work. Success in
this has a profound effect upon meeting commitments and delivering value to
stakeholders. Thus, the team members must understand how to perform their work
and recognize if the work is progressing in a satisfactory manner.

Doing the work, then, involves:

. getting prepared;

. communicating the work to be done;

. ensuring that progress and risk are under control; and

. providing closure to the work.

In TravelEssence, Smith and his team managed their work through a backlog.
The backlog is a list of things to do, which originated from requirements. They
communicated regularly with their stakeholders to make sure that their backlog
was accurate, up-to-date, and represented the stakeholders’ priorities. In this way,
they could focus on getting the right things done.

4.4.3 Way of Working
A team can perform their work in different ways and this may lead to different
results. It can be performed in an ad hoc manner, meaning that you decide how to
work while doing the work. For instance, while cooking a soup, you may not follow
a recipe—you might decide on the fly which ingredients to use and in what order to
mix and cook them together. When following an ad hoc way of working, the result
may or may not be of high quality. This depends on many factors: among them, the
skill of the people involved and the number of people involved in the process.

All of us are acquainted with the saying “too many cooks spoil the broth.” If
too many cooks cook the soup in an ad hoc manner, the soup won’t taste good.
Translating the analogy to software, if too many people participate in agreeing on
how to do the job, the job will probably not be done well. There are many reasons

50 Chapter 4 Identifying the Key Elements of Software Engineering

for this. One of them is that each person has his/her own idea of how to conduct
the job and, often, they do not work in an orchestrated manner.

Smith’s team addressed this issue by regularly looking at their prioritized back-
log. They made sure that they correctly understood the scope of each item in the
backlog, checking with stakeholders and getting feedback from them. Smith’s team
regularly examined their method or, in other words, their way of working. If things
did not seem right, they made changes.

It is therefore important for team members to come into some kind of con-
sensus regarding their way of working. Disagreements about the way of working
are significant barriers to team performance. You would think that coming to an
agreement would be easy. The truth of the matter is that it is not. On a small scale,
within a single team, there is still a need for members to agree on the founda-
tions and principles, followed by specific practices and tools. This would of course
need to be adapted to the team’s context, and evolve as the environment and needs
change.

The way of working must:

. include a foundation of key practices and tools;

. be used by all the team members; and

. be improved by the team when needed.

In an industry scale, one of the things we hope to achieve through Essence is to
simplify the process of reaching a common agreement. We do that at this scale by
identifying a common ground or a kernel and having a way to deal with diversity
of approaches. In the subsequent chapters, we will discuss the approach taken by
Essence in greater detail.

In this chapter, we have introduced the following terms: opportunity, stakehold-
ers, requirements, software system, work, team, and way of working. Essence will
give these terms greater rigor and provide guidance to software teams on how to
build a stronger foundation to achieve their goals.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to:

. list and explain the things involved in all development endeavors, related to
the customer (i.e., opportunity, stakeholders), solution (i.e., requirements,
software system), and endeavor (i.e., work, team, way of working);

. give examples of different types of stakeholders, together with their interests
and concerns;

What Should You Now Be Able to Accomplish? 51

. explain the mediating role of requirements;

. name and explain the three key characteristics of software systems (i.e.,
functionality, quality, and extensibility); and

. explain what makes a good team.

Understanding the facets of software engineering covered in this chapter provides
an overview of the main core of Essence. This core may seem fairly abstract at this
point, but as you read on, you will recognize all these facets in the Essence alphas,
and be able to apply them in more and more practical and detailed ways.

5The Language of
Software Engineering
The goal of this chapter is to present how the concepts discussed in the previous
chapter are expressed as a language similar to how a programming language is
expressed in computer science. Thus, we learn the concepts of alpha, alpha state,
work product, activity, activity space, competency, and pattern, and how these
concepts are expressed. We will show in this chapter

. the language constructs of Essence;

. the role of alpha states in two alphas and related checklists;

. the meaning and benefits of essentializing a practice; and

. the concept of cards as a practical way to use the various language elements
of Essence.

What you learn here provides the necessary handles to use Essence in practice!

5.1 A Simple Practice Example
Essence provides a precise and actionable language to describe software engineer-
ing practices. Just as there are constructs like nouns and verbs in English, there
are constructs in the Essence language in the form of shapes and icons. Just as
a child learns a language by first using sentences without understanding the un-
derlying grammar, we will introduce the Essence language through a simple pair
programming practice. We choose this very simple practice because it is easily
understandable even for students new to software engineering. We will introduce
more sophisticated ones in later parts of the book.

We describe this programming practice as follows.

. The purpose of this practice is to produce higher quality code. In this case,
we assume that the concept of code quality is understandable to the different
members of the team.

54 Chapter 5 The Language of Software Engineering

Requirements Software System

< fulfills

produces >
< requires

competency

<describespro
gre

ss
es >

provides
input and is

progressed by >

Write Code Code

Development

Testing

Figure 5.1 Simple programming practice (pair programming) described using Essence language.

. Two persons (students) work in pairs to turn requirements into a software
system by writing code together.

. Writing code is part of implementing the system.

Essence uses shapes and icons to communicate the Things to Work With, the
Things to Do, and Competencies. We shall describe each of these categories in turn
and at the same time demonstrate how Essence provides explicit and actionable
guidance for them, delivered through associated checklists and guidelines.

Figure 5.1 shows the elements in our simple programming practice. The shapes
and icons are the constructs, i.e., the “nouns” and “verbs,” in the Essence language.

These different shapes and icons each have different meanings, as quickly
enumerated in Table 5.1. As the text continues, we will go into greater depth for
each one of them and explain their significance.

5.2 The Things to Work With
The “things to work with” in our programming practice are requirements, software
systems, and code. If you compare the icons in Figure 5.1 with their definitions in
Table 5.1, you will see that two of these are alphas, but one is a work product.

Essence distinguishes between elements of health and progress, which
are called alphas, versus elements of documentation, which are known as work
products. Alphas are the important intangible things we work with when conduct-

5.2 The Things to Work With 55

Table 5.1 Essence language as used in our simple programming practice

Element Type Syntax Meaning of Element Type

Alpha An essential element of the
development endeavor that is relevant
to an assessment of the progress and
health of the endeavor.

Work Product A tangible thing that practitioners
produce when conducting software
engineering activities.

Activity A thing that practitioners do.

Competency An ability, capability, attainment,
knowledge, or skill necessary to do a
certain kind of work.

ing software engineering activities. They have states to help practitioners evaluate
the progress and health of their endeavor. Work products, in contrast, are the
tangible things that practitioners produce when conducting software engineering
activities, such as requirement specifications, design models, and code. In Trave-
lEssence, for example, the work products include user story index cards, use case
narratives, and deployment scripts. As a student, your programming assignment
worksheet is an example of a tangible work product.

Alphas are not work products. Alphas are elements of the development process
that we want to track the progress of. An alpha is not tangible by itself, but it is un-
derstood or described by the work products that are associated with it. Their states
describe how far in the lifecycle these aspects of development have progressed.

To illustrate this, in our programming practice example, Requirements and
Software System1 are alphas. Taking Requirements as our first instance: there will
always be requirements for a software development endeavor, regardless of whether

1. In this book we have adopted a convention for the use of lowercase vs. uppercase letters. Lower-
case letters are default for Essence language constructs such as practice, alpha, alpha state, alpha
card, work product, and level of detail. However, when referring to names of elements defined
in the Essence language we capitalize each word. Examples are names of alphas (Requirements,
Software System), alpha states (Requirements: Conceived), work products (Use Case Narrative),
and level of detail (Outlined). Italics are used independently, only to provide emphasis. When
referring to instances of these elements we use lower case letters, for instance if we refer to the
requirements of the Travel Exchange system, we use lower case letters.

56 Chapter 5 The Language of Software Engineering

you document them or not, or how you document them (e.g., as requirements
items, test cases, user manuals, etc.). In some cases, the requirements for an en-
deavor may just exist in the heads of people. However, the alpha may be evidenced
by providing one or more descriptions; that is, by attaching work products to the
alpha. This is not always needed but very often desirable, in particular for larger
endeavors.

Software System is another example of an alpha. Similarly, there will always be a
software system, regardless of techniques used and documents produced. Software
System too has a work product, which is code. Code is the physical thing that you
as a developer write. The computer processes the Code into a Software System.
The Software System itself (the alpha) is intangible, whereas the Code (the work
product) is tangible.

We will develop these concepts throughout the book, but for now focus in a bit
more on each of these differentiated Things to Work With.

5.2.1 Alphas
Alphas, again, are aspects of a software endeavor whose evolution we want to
understand, monitor, direct, and control. Why are they called alphas? The develop-
ers of Essence, in searching for a word to describe these important key elements,
chose the word alpha, which has been used to denote important elements such as a
position in a social hierarchy or the first (often the brightest) star in a constellation
(examples from Wikipedia). The alphas bound the work to be accomplished in pro-
gressing toward the provisioning of the software system. Alphas are portrayed as an
icon that is a stylized variant of the first letter of the Greek alphabet (see Figure 5.1
and Table 5.1).

Simply put, alphas are the most important things you must attend to and
progress in order to be successful in a development endeavor.

Although an alpha is commonly understood or evidenced by one or more asso-
ciated work products (which thus describe particular aspects of it), it is not tangible
by itself, so there must at least be tacit knowledge linked to each alpha. One form
of this knowledge is the alpha’s state.

5.2.2 Alpha States
Alphas have states that describe progression through a lifecycle. As an example,
Essence defines the states of the Requirements alpha as follows.

Conceived. The need for a new system has been agreed upon.

Bounded. The purpose and theme of the new system are clear.

5.2 The Things to Work With 57

Alpha name

Very brief
alpha description

Alpha states
Each alpha state has
an alpha state card

Figure 5.2 Requirements alpha card.

Coherent. The requirements provide a consistent description of the essential
characteristics of the new system.

Acceptable. The requirements describe a system that is acceptable to the stake-
holders.

Addressed. Enough of the requirements have been addressed to satisfy the
need for a new system in a way that is acceptable to the stakeholders.

Fulfilled. The requirements have been addressed to fully satisfy the need for a
new system.

To help remember the states of the Requirements alpha, Essence provides a
poker card description, as shown in Figure 5.2. As we will discuss later, such poker-
sized cards will also serve as teaching tools, and even make software engineering
more fun through games.

Let’s consider the layout of the card. At the top left, you see the icon rep-
resenting an alpha. This distinguishes it as an alpha card rather than a work
product card, competency card, or any other element. The top of the card also
highlights the name of the element—in this case, the Requirements—followed by
a brief description of the alpha and the states of the alpha. (This is a very con-
cise overview of the requirements alpha. For more details, refer to the Essence
specification.)

Cards are also available for each alpha state, as shown in Figure 5.3, which shows
six cards, one for each of the Requirements alpha states. The layout of each of

58 Chapter 5 The Language of Software Engineering

Figure 5.3 Requirements alpha state cards.

these cards comprises the alpha icon and . . . by the standard. (These abbreviations
make it possible to fit the checklists on the cards for easy, quick reference. If you
do not find them to be fully understandable, you should refer to the full checklists
in the Essence Quick Reference Guide, available for download from www.software-
engineering-essentialized.com.)

The other alpha in our example, the Software System, has the states shown in
Figure 5.4.

The states are defined on the basis of an incremental risk-driven approach
to building the Software System, first by establishing a sound architecture, and
then by demonstrating key decisions about the Software System. These states are
summarized as follows.

5.2 The Things to Work With 59

Figure 5.4 Software System alpha card.

Architecture Selected. Key decisions about the Software System have been
made. For instance, the most important system elements and their inter-
faces are agreed upon.

Demonstrable. Key use of the Software System has been demonstrated and
agreed.

Usable. The Software System is usable from the point of view of its users.

Ready. The Software System has sufficient quality for deployment to produc-
tion, and the production environment is ready.

Operational. The Software System is operating well in the production environ-
ment.

Retired. The Software System is retired and replaced by a new version of the
Software System, or by a separate Software System.

5.2.3 Work Products
Work products, again, are tangible things such as documents and reports, and
may provide evidence to verify the achievement of alpha states. An example of a
work product for the Requirements alpha might be some kind of a requirements
specification—a description of the software system to be built. When a complete
and accepted requirements document has been developed, it can be one way to

60 Chapter 5 The Language of Software Engineering

Work product name

Brief
work product
description

Level of detail

Relationships to
other elements

Figure 5.5 The Code work product card.

confirm having achieved certain checklists within a state of the Requirements
alpha. Yet the fact that you have a document is not necessarily a sufficient condition
to prove evidence of state achievement. Historically, documentation has not always
provided an accurate measurement of progress. Thus, you may reach the same
state without any documentation or with very brief documentation, as long as the
checklist for that state has been achieved satisfactorily.

Code is the example of a work product for our programming practice. We provide
a concise description of this work product in the form of a poker-sized card, as
shown in Figure 5.5.

Note that the work products you produce do not belong to the common ground
represented by the Essence standard. They are dependent on how you want to work
(which practices you want to use). Thus, Essence does not specify exactly which
work products are to be developed, but it does precisely specify what work products
are, how you represent them, and what you can do with them.

Work products can have different levels of detail. In a development endeavor,
the degree of detail needed in work products can vary greatly, depending on many
factors such as past history of team members working together, customer require-
ments, regulatory requirements (e.g., regulation for software validation of medical
devices), and organizational policies.

In TravelEssence, for example, Smith’s team expressed requirements through
use case narratives, which we will cover in Part III. These also have different levels of

5.3 Competencies 61

detail. For simple requirements, Smith’s team did not need as many specifics, but
relied on more direct communication with their stakeholders. However, for more
sophisticated requirements involving complicated calculation and decision rules,
Smith had more complete explanations in his use case narratives.

Practitioners often have trouble figuring out how detailed the various work
products they produce should be. Explicit practices, which we will cover in later
parts of the book, can provide guidance on this.

5.3 Competencies
The team members applying the programming practice must, of course, be able
to program; that is, they must have a development competency. Competencies
are the abilities needed when applying a practice. Often, software teams struggle
because they don’t have all the abilities needed for the task they have been given.
In these situations, a coach can help by explaining different ways the practitioner
can address the problem, such as learning something that is missing in their
competencies.

Figure 5.6 shows the card for the Development competency. Similar in format to
the alpha and work product cards, the top of a competency card has the competency
icon (a star) and the competency name followed by a very brief description of the
competency. Then a list of competency levels follows.

Competency name

Brief
competency
description

Competency levels

Figure 5.6 The Development competency card.

62 Chapter 5 The Language of Software Engineering

The Development competency has five levels of achievement.

1. Assists. Demonstrates a basic understanding of the concepts and can follow
instructions.

2. Applies. Able to apply the concepts in simple contexts by routinely applying
the experience gained so far.

3. Masters. Able to apply the concepts in most contexts and has the experience
to work without supervision.

4. Adapts. Able to apply judgment on when and how to apply the concepts to
more complex contexts. Can enable others to apply the concepts.

5. Innovates. A recognized expert, able to extend the concepts to new contexts
and inspire others.

Teams should be encouraged to conduct a self-assessment of their competen-
cies and compare the results to the competencies they believe they need to ac-
complish their specific endeavor. This useful exercise can help software teams
objectively determine any competency gaps they may have, which they can raise
to management for resolution before serious problems occur that could hurt their
team’s performance.

5.4 Things to Do
To make progress in a development endeavor, or for that matter, any endeavor,
all participants must do something. In our programming practice, this concerns
writing code. The Essence language calls this an activity.

5.4.1 Activities
Activities are things that practitioners do, such as holding a meeting, analyzing
a requirement, writing code, testing, or peer review. Similar to the challenges
practitioners often face with determining the appropriate level of detail in work
products, they also often struggle to determine the appropriate degree of detail or
formality with an activity, or exactly how to go about conducting it. This is another
motivation to specify explicit practices as they can provide guidance to practitioners
in selecting appropriate activities, as well as in how to go about conducting each
activity. A practice may include several activities that are specific to the practice
being described. Thus, activities are specific and not standard—they are not a part
of Essence. Figure 5.7 shows the activity card for Write Code. Its icon is an arrowed
pentagon. (The activity space concept will be described in the next section.)

5.5 Essentializing Practices 63

Activity name

Very brief
activity description

Competency to
conduct activity Activity space which

this activity belongs to

Inputs for activity

Outputs of activity

Figure 5.7 The Write Code activity card.

An activity is always bound to a specific practice and cannot “float around”
among the practices. If you find an activity that needs to be reused by many prac-
tices, then you may want to create a separate practice including this activity. The
alternative is that you decide not to reuse it, but each practice that potentially could
have reused it will have to keep its own copy of that activity. Changes to one copy
of it will not impact the other copies; they will just change independently of one
another, which means no reuse.

5.5 Essentializing Practices
What we have just presented, using the Essence tools of diagrams (such as Fig-
ure 5.1, descriptions, and checklist cards, is a simple approach to concisely describe
a practice, in this case a simple programming practice. We call the approach essen-
tialization. Essentialization makes use of the Essence language, which we summa-
rize in Figure 5.8.

As you can see, the language contains two more elements—activity space and
pattern—than have been introduced thus far. See Table 5.2. These elements will be
described further in the next chapter. The syntax and shape of these elements are
defined in Object Management Group, Essence [2015].

To summarize, alphas are the essential things we work with. Each alpha defines
a lifecycle, moving from one alpha state to another. Work products are the tangible

64 Chapter 5 The Language of Software Engineering

Alpha

Alpha State

Activity Space

Competency

Pattern

Work Product

Activity

< evidences

< describes
organizes >

< requires

progressed by >

< results in

organizes >

<
h

as
<

in
vo

lv
es

ta
rg

et
s

>

p
ro

d
u

ce
s/

u
p

d
at

es
 >

Figure 5.8 Elements of the Essence language and their relationships.

Table 5.2 Additional elements in the Essence language

Element Type Syntax Meaning of Element Type

Activity Space A placeholder for something to do
in the development endeavor. A
placeholder may consist of zero to
many activities.

Pattern An arrangement of other elements
represented in the language.

What Should You Now Be Able to Accomplish? 65

things that describe an alpha and give evidence for its alpha states. Activity is
required to produce or update a work product. Activity spaces organize activities. To
conduct an activity requires specific competencies. Patterns are solutions to typical
problems. An example of a pattern is a role that is a solution to the problem of
assigning work.

Essentializing a practice follows the following steps.

Identify the elements. First, build a list of elements that make up a practice.
The output is essentially a diagram like that in Figure 5.1 at the beginning of
this chapter.

Draft the relationships between the elements and the outline of each element.
At this point, the cards are created.

Provide further details. Usually, the cards will be supplemented with addi-
tional guidelines, hints and tips, examples, and references to other re-
sources, such as articles and books.

In the rest of this book, especially in Part III, we will provide more examples of
essentialized practices.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to:

. explain the concepts of alpha, alpha state, and work product, and how they
are expressed;

. identify the concepts of activity and activity space (how they are expressed is
shown in later chapters);

. identify the concepts of competency and pattern (how they are expressed will
be shown in later chapters);

. explain the difference between an alpha and work product;

. explain the concept of alpha with an example (e.g., the Requirements alpha
and its states) and the way these are expressed;

. explain the type of information present in Essence cards;

. explain the benefits of checklists in software engineering; and

. list the steps of essentializing a practice.

6The Kernel of
Software Engineering
The goal of this chapter is to present the complete Essence kernel with its areas
of concern, all its alphas with states and their relationships, its activity spaces, its
competencies, and to show how the pattern construct can be used for different
subjects. With the complete picture presented, we can go on to map the whole
range of aspects of things to work with, things to do, and so on. As a map is always
an abstraction from a whole set of details, this chapter will provide first a bird’s eye
view. Specifically, we show here

. the basic organization of the kernel, based on three areas of concern;

. the way in which the various alphas are related to these areas of concern;

. all the alphas, activity spaces, and other elements in the kernel;

. the way in which activities relate to progress with respect to the alpha states;

. all the competencies in the kernel, plus insight on why competencies are
important in software engineering; and

. how patterns can be used.

In Chapter 5, we introduced the Essence language of software engineering
through a simple programming practice. In this chapter, we summarize the ele-
ments of software engineering as viewed through the lens of Essence.

6.1 Organizing with the Essence Kernel
Essence takes a structured approach in organizing the elements of software en-
gineering. First, it organizes elements into three discrete areas of concern, each

68 Chapter 6 The Kernel of Software Engineering

Customer

Solution

Endeavor

Figure 6.1 The three areas of concern.

focusing on a specific dimension of software development, as portrayed in
Figure 6.1.

Customer. This area of concern contains everything to do with the actual use
and exploitation of the software system to be produced.

Solution. This area of concern contains everything related to the specification
and development of the software system.

Endeavor. This area of concern contains everything related to the development
team and the way that they approach their work.

The kernel elements are fundamentally of four kinds:

1. The essential things to work with: the alphas

2. The essential things to do: the activity spaces

3. The essential capabilities needed: the competencies

4. The essential arrangements of elements: the patterns

Finding the right elements is crucial. They must be universally acceptable, sig-
nificant, relevant, and guided by the notion that “In anything at all, perfection is
finally attained not when there is no longer anything to add, but when there is no
longer anything to take away . . . ”1 When the originators of Essence set out to iden-
tify kernel elements, we took a conservative approach. We adopted only elements

1. Antoine de Saint-Exupery, Wind, Sand and Stars (2002), trans. by Lewis Galantiere, Harcourt,
p. 42.

6.2 The Essential Things to Work With: The Alphas 69

we were sure would always be found in all types of software system endeavors. For
instance, the element architecture was discussed as a kernel element. The idea was
that while for many systems it is critical to identify an architecture, there are many
simpler systems where architecture is not an issue. Thus, since it is not common
to all endeavors, architecture is not a concern that every endeavor has to face, so it
didn’t qualify as a kernel element.

6.2 The Essential Things to Work With: The Alphas
While it is true that Essence attempts to provide a concise list of terms commonly
found in software engineering, it is not like a static dictionary that you read. Essence
is dynamic and actionable. By that we mean you can make it come alive. As we have
already begun to show, you can use it in real situations to run an endeavor (e.g.,
a project). It includes the essential elements prevalent in every endeavor, such as
Requirements, Software System, Team, and Work. These elements have states rep-
resenting progress and health, so as the endeavor moves forward, these elements
progress from state to state. The alphas in Essence are shown in Figure 6.2. The
reader is already familiar with these terms to some degree and we go into more
detail here now.

In the Customer area of concern, the team needs to understand the stakehold-
ers’ needs and the opportunity to be addressed.

Opportunity. The set of circumstances that makes it appropriate to develop or
change a software system. The opportunity articulates the reason for the cre-
ation of the new, or changed, software system. It represents the team’s shared
understanding of the stakeholders’ needs and helps shape the requirements
for the new software system by providing justification for its development.

Stakeholders. The people, groups, or organizations that affect or are affected
by a software system. The stakeholders provide the opportunity and are
the source of the requirements and funding for the software system. The
team members are also stakeholders. As much stakeholder involvement as
possible throughout a software engineering endeavor is important to support
the team and ensure that an acceptable software system is produced.

In the Solution area of concern, the team needs to establish a shared under-
standing of the requirements, and then implement, build, test, deploy, and support
a software system that fulfills them.

70 Chapter 6 The Kernel of Software Engineering

C
u

st
om

er
Opportunity

Requirements

Work

Stakeholders

Software
System

< provide

< fulfills

su
p

p
or

t >

u
se

 a
n

d
co

n
su

m
e

>

se
t u

p
 to

 a
d

d
re

ss
 >

fo
cu

se
s

>
sc

op
es

 a
n

d
co

n
st

ra
in

s
>

updates and changes >

<
p

ro
d

u
ce

s

< helps to address
< demand

< guides < applie
s

< performs and plans

Way of
Working

Team

So
lu

ti
on

E
n

d
ea

vo
r

Figure 6.2 The Essence alphas and their relationships.

Requirements. What the software system must do to address the opportunity
and satisfy the stakeholders. It is important to discover what is needed from
the software system, share this understanding among the stakeholders and
the team members, and use it to drive the development and testing of the
new system.

Software System. A system made up of software, hardware, and data that pro-
vides its primary value by the execution of the software. The primary product
of any development endeavor, a software system can be part of a larger soft-
ware, hardware, business, or social system solution.

In the Endeavor area of concern, the team and its way of working have to be
formed, and the work has to be done.

Team. A group of people actively engaged in the development, maintenance,
delivery, or support of a specific software system. The team plans and per-
forms the work needed to create, update, and/or change or retire the software
system.

6.2 The Essential Things to Work With: The Alphas 71

Work. Activity involving mental or physical effort done in order to achieve a
result. In the context of software engineering, work is everything that the
team does to meet the goals of producing a software system matching the
requirements, and addressing the opportunity, that has been presented by
the stakeholders. The work is guided by the practices that make up the team’s
way of working.

Way of Working. The tailored set of practices and tools used by a team to guide
and support their work. The team evolves their way of working alongside
their understanding of their mission and their working environment. As their
work proceeds, they continuously reflect on their way of working and adapt
it as necessary to their current context.

All alphas are vital during development endeavors. Thanks to their states, one
may think that they may live their own lives. This is partly true. All alphas are related
to one another and they complement each other by addressing their own aspects
of the development endeavor.

As illustrated in Figure 6.2, the relationships are shown with arrows and there
are many of them. They may be read as follows: Stakeholders provide Opportunity,
which then helps to identify Requirements and focuses on the most important
ones. These Requirements are then fulfilled by implementing a Software System.
The Software System implementation addresses the Opportunity, and it is used and
consumed by Stakeholders.

. It is the Team that produces the Software System by doing Work. The Work
is set up to address the Opportunity and it implies updating and changing
the Software System. Work is guided by a Way of Working that is applied
by the Team while performing its Work. The Team is continuously sup-
ported by Stakeholders who provide feedback about the Software System to
the Team.

. The OMG standard defines the states for each kernel alpha, as shown in
Figure 6.3. The details of each state can be found in the Essence standard,
and we will not go deeper into each of them in this chapter. You should later
be able to download them from the book website.

So, now you are equipped with knowledge of things to work with that will in the
following two sections be related to things you do and the competencies that are
needed.

72 Chapter 6 The Kernel of Software Engineering

Figure 6.3 Essence kernel alpha states cards.

6.3 The Essential Things to Do: The Activities
In every development endeavor, you carry out a number of activities. Examples of
activities include agreeing on a user story with a product owner, demonstrating the
system to a customer representative, and estimating work. Essence as such does not
define any activities (how your team goes about capturing and communicating the
requirements can be very different from team to team). However, Essence defines a
number of so-called activity spaces. You can think of activity spaces as generic (i.e.,
method-independent) placeholders for specific activities that will be added later,
on top of the kernel. Since the activity spaces are generic, they can be standardized
and are thus part of the Essence standard. The activity spaces are packages used to
group activities that are related to one another. This helps to keep them organized,
which in turn makes them easier for practitioners to find and use when they face
common challenges where a practice could help.

The following activity spaces provide guidance to you and your team on the
things to do in each of the three areas of concern as the team marches toward

6.3 The Essential Things to Do: The Activities 73

C
u

st
om

er
So

lu
ti

on
E

n
d

ea
vo

r

Understand the
Requirements

Shape the
System

Implement
the System

Test the
System

Deploy the
System

Operate
the System

Explore
Possibilities

Understand
Stakeholder Needs

Ensure Stakeholder
Satisfaction

Use the
System

Prepare To Do
the Work

Coordinate
Activity

Support
the Team

Track
Progress

Stop the
Work

Figure 6.4 Essence activity spaces (from the Essence standard).

achieving the states specified in the alphas. The activity spaces of Essence are shown
in Figure 6.4, where they are denoted by dashed arrowed pentagons and organized
into the areas of concern.

Activity space cards have very similar contents to activity cards. Figure 6.5 shows
an example of an activity space card. Going back to the simple programming
example in the previous chapter, the Write Code activity would be allocated to the
Implement the System activity space. The dashed symbol in the upper left-hand
corner of the card, as in Figure 6.4, is the symbol for an activity space.

In addition to being placeholders for specific activities, the activity spaces rep-
resent the essential things that have to be done to develop software. They provide
general descriptions of the challenges a team faces when developing, maintaining,
and supporting software systems, and the kinds of things that the team will do to
meet them. Each activity space then can (via the practices) be extended with con-
crete activities that progress one or more alphas—either alphas in the kernel or
practice-specific alphas.

In the top row of Figure 6.4 there are activity spaces to understand the opportu-
nity, and to support and involve the stakeholders.

Explore Possibilities. Explore the possibilities presented by the creation of a
new or improved software system. This includes the analysis of the opportu-
nity and the identification of the stakeholders.

74 Chapter 6 The Kernel of Software Engineering

Understand Stakeholder Needs. Engage with the stakeholders to understand
their needs and ensure that the right results are produced. This includes
identifying and working with the stakeholder representatives to progress the
opportunity.

Ensure Stakeholder Satisfaction. Share the results of the development work
with the stakeholders to gain their acceptance of the system produced and
verify that the opportunity has been addressed.

Use the System. Observe the use of the system in a live environment and how
it benefits the stakeholders.

In the middle row of Figure 6.4 there are activity spaces to develop an appropriate
solution to exploit the opportunity and satisfy the stakeholders.

Understand the Requirements. Establish a shared understanding of what the
system to be produced must do.

Shape the System. Form and structure, i.e., shape the system so that it is easy
to develop, change, and maintain, and can cope with current and expected
future demands. This includes the architecting and overall design of the
system to be produced.

Implement the System. Build a system by implementing, testing, and integrat-
ing one or more system elements. This includes bug fixing and unit testing
(see also Figure 6.5).

Test the System. Verify that the system produced meets the stakeholders’ re-
quirements.

Deploy the System. Take the tested system and make it available for use outside
the development team.

Operate the System. Support the use of the software system in the live environ-
ment.

In the bottom row of Figure 6.4 there are activity spaces to form a team and to
progress the work in line with the agreed way of working.

Prepare to Do the Work. Set up the team and its working environment. Under-
stand and commit to completing the work.

Coordinate Activity. Coordinate and direct the team’s work. This includes all
ongoing planning and re-planning of the work, and re-shaping of the team.

6.4 Competencies 75

Activity name

Inputs for activity

Outputs of activity

Very brief
activity description

Figure 6.5 Implement the System activity space card.

Support the Team. Help the team members to help themselves, collaborate,
and improve their way of working.

Track Progress. Measure and assess the progress made by the team.

Stop the Work. Shut down the development endeavor and handover of the
team’s responsibilities.

To make Figure 6.4 easy to read, the activity spaces are shown in a sequence
from left to right in each row. The sequence indicates the order in which things are
finished and not necessarily the order in which they are started. For example, you
can start shaping the system before you have finished understanding the require-
ments, but you can’t be sure you have finished shaping the system until you have
finished understanding the requirements.

6.4 Competencies
To participate in a software endeavor you need to have competency in different
areas. You need competency relevant to the specific tasks you are working on, but
also other competencies to understand what your teammates are working on.

Competencies are defined in the kernel and can be thought of as generic con-
tainers for specific skills. Specific skills (e.g., Java programming) are not part of
the kernel because such skills are not essential on all development endeavors. But

76 Chapter 6 The Kernel of Software Engineering

C
u

st
om

er
So

lu
ti

on
E

n
d

ea
vo

r
Stakeholder

Representation

DevelopmentAnalysis Testing

Leadership Management

Figure 6.6 The kernel competencies.

competency is always required, and it will be up to the individual teams to identify
the specific skills needed for their particular software endeavor.

A common problem on software endeavors is not being aware of the gap between
the competencies needed and those that are available. The kernel approach will
raise the visibility of this gap. Each of the competencies has a competency level,
and this is the same across all of the kernel competencies. Thus, the levels that we
presented in Section 5.3 are the same for all six competencies in Figure 6.6.

In the Customer area of concern, the team has to be able to demonstrate a clear
understanding of the business and technical aspects of their domain and have the
ability to accurately communicate the views of their stakeholders. This requires the
following competencies to be available to the team.

Stakeholder Representation. This competency encapsulates the ability to
gather, communicate, and balance the needs of other stakeholders, and
accurately represent their views.

In the Solution area of concern, the team has to be able to capture and analyze
the requirements and build and operate a software system that fulfills them. This
requires the following competencies to be available to the team.

Analysis. This competency encapsulates the ability to understand opportuni-
ties and their related stakeholder needs, and to transform them into an
agreed upon and consistent set of requirements.

6.5 Patterns 77

Development. This competency encapsulates the ability to design, program,
and code effective and efficient software systems following the standards
and norms agreed upon by the team.

Testing. This competency encapsulates the ability to test a system, and verify
that it is usable and that it meets the requirements.

In the Endeavor area of concern, the team has to be able to organize itself and
manage its workload. This requires the following competencies to be available to
the team.

Leadership. This competency enables a person to inspire and motivate a group
of people to achieve a successful conclusion to their work and to meet their
objectives.

Management. This competency encapsulates the ability to coordinate, plan,
and track the work done by a team.

6.5 Patterns
Patterns are generic solutions to typical problems. In our daily life, we see pat-
terns every day. In a classroom, we expect to have the teacher in front, with rows of
desks and chairs for students. Such a pattern is designed for the teacher to transmit
knowledge as efficiently as possible. Some classrooms are designed such that stu-
dents are arranged in circles for greater discussion and discovery. In this case, the
arrangement (i.e., pattern) is for the purpose of enhancing collaboration between
students. Both arrangements are examples of patterns. There are many different
kinds of patterns in software engineering. Examples of typical problems include
how to set objective checkpoints, or how to conduct analysis and design. These
logically lead to guidelines you may decide to give when describing a practice. An-
other typical problem to address might be how to assign responsibilities associated
with work assignments to team members. This problem can be solved by defin-
ing a role pattern, as described in the next section. Patterns are optional elements
(not a required element of a practice definition) that may be associated with any
other language element. In Figure 6.7, we see a pattern named Student Pairs with a
brief description. This pattern could be used to help two students who are working
closely together on the same piece of code.

6.5.1 Roles
Many kinds of work require more than one competency. For instance, when devel-
oping software, you need more than just a Development competency. You also need
to know how to find out what to develop, which requires an Analysis competency. A

78 Chapter 6 The Kernel of Software Engineering

Figure 6.7 Student Pairs pattern card.

common way to ensure that an individual assigned this work has these competen-
cies is to define a special kind of pattern, called a role. A role designates not only a
set of specific responsibilities, but also the competencies required to fulfill them.
A role can also specify a minimum level of each competency needed to do the job
effectively.

When someone is given a role, she/he should have the needed competencies to
succeed. If not, he/she should be offered additional training and coaching to carry
out the role successfully.

6.5.2 The Checkpoint Pattern
As another example, a pattern could be used to define a checkpoint. They are fre-
quently used within all types of development endeavors. A checkpoint is a set of
criteria to be achieved at a specific point in time in a development endeavor. Check-
points are key points in the lifecycle of a software endeavor where an important
decision must be made. They are used by organizations as points where they stop
and think about whether it makes sense to proceed or not, dependent on whether
there is or isn’t faith in what has been done. A decision could also be made to move
forward but to go in a different direction because of a known problem or risk.

All of this is simply expressed in Essence by a set of alpha states that must have
been achieved in order to pass the checkpoint. This pattern can be reused for other
similar endeavors trying to get to the same checkpoint.

6.5 Patterns 79

Figure 6.8 Coder role (pattern) card.

Requirements

Software system

Bounded

Architecture
selected

Addressed

Ready

Development
complete

checkpoint

Ready for
development

checkpoint

Pre-development Development Post-development
Time

Figure 6.9 A checkpoint pattern example.

In the simplest case, the timeline of a development endeavor can be divided
into three phases, pre-development, development, and post-development (see Fig-
ure 6.9). In the figure, the rounded boxes are states associated with the alphas.

Pre-development could be defined as the phase when the team and the stake-
holders are determining what they need to do. The end of the pre-development
phase needs to include any essential items that must be achieved before the team
can begin developing the software system. One example might be funding approval
to proceed with development.

80 Chapter 6 The Kernel of Software Engineering

Development is the phase when the team works collaboratively to create a soft-
ware system that addresses the agreed-on needs and objectives. The phase ends
when the software has reached a point where it can be used by real users.

Post-development is the phase when the software system is delivered to the user
community and the software is used with real clients.

In this example, there are two checkpoints: Ready for Development and Devel-
opment Complete. The criteria for these two checkpoints are expressed using alpha
states. For example, the Ready for Development checkpoint is defined as Require-
ments: Bounded (an abbreviation of “Requirements alpha: Bounded state”) and
Software System: Architecture Selected. The Development Complete checkpoint is
defined as Requirements: Addressed, and Software System: Ready (for production).

Note that different kinds of development will define the checkpoints differ-
ently. For example, a development endeavor that has life-threatening consequences
should it fail will have different checkpoints for exploratory development (for in-
stance, developing a new product) than for maintenance (updates after delivery of
the first version of the system).

Figure 6.10 provides a simple example of a checkpoint pattern in our program-
ming practice. In this simple programming assignment, we just need the Software
System to be demonstrable and the Requirements to be addressed.

Figure 6.10 A checkpoint pattern card.

What Should You Now Be Able to Accomplish? 81

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to:

. explain the kernel and its three areas of concern;

. explain how the various alphas are related to each other and mapped onto
the areas of concern;

. identify the relationship between alphas and alpha states;

. explain in principle how progress is made by performing activities;

. identify the competencies;

. explain how patterns can be used to express frequently occurring combina-
tions of Essence elements (alphas, activities, etc.) in software engineering;

. explain what makes Essence dynamic and actionable;

. explain the concept of activity spaces; and

. give an example of a checkpoint.

Now the basic picture of software engineering has been sketched completely. More
detail will come in later chapters of this book. The concrete “instantiation” of these
elements in a particular software development endeavor will apply these.

7Reflection on Theory
The goal of this chapter is to present the role that Essence plays in working toward
a theory of software engineering. Theoretical foundations bring technology to new
heights. We have seen that in every engineering discipline, and it would apply for
software engineering as well. In this chapter, we discuss

. that software engineering is still on its way toward appropriate theory;

. the need for a software engineering theory and the expected benefits of it;

. the differences between descriptive and predictive theories;

. the role Essence plays as a descriptive theory; and

. the role Tarpit plays as an example of a predictive theory.

The intent is to encourage readers to research and evolve a theory that helps teams
and organizations deliver software much better.

In Chapter 2, we said that the Software Engineering Method and Theory (SEMAT)
initiative called for

. . . a process to re-found software engineering based on a solid theory, proven
principles, and best practices that:

. Include a kernel of widely agreed elements, extensible for specific uses

. Address both technology and people issues

. Are supported by industry, academia, researchers and users

. Support extension in the face of changing requirements and technology.

Our work on Essence has provided a kernel that is able to represent any software
engineering method, which we will demonstrate in later parts of this book. Essence
is gaining traction in both industry and academia. But what about theory? What
about the theoretical foundation behind software engineering?

84 Chapter 7 Reflection on Theory

In the paper “Where’s the Theory for Software Engineering?” by Johnson et al.
[2012], these important questions are discussed, and with the permission of the
authors, we reprint this discussion in its entirety as Section 7.1.

7.1 Where’s the Theory for Software Engineering?
Most academic disciplines are very concerned with their theories. Standard text-
books in subjects ranging from optics to circuit theory to psychology to organi-
zational theory to international relations either present one single theory as the
subject’s core or discuss a limited set of alternative theories to better explain the
discipline’s essence to its students. A prime example is the central role of Maxwell’s
equations in the subject of electrical engineering. It’s difficult to fathom what elec-
trical engineering would be today without those four concise equations. A quite
different example is the contested Domino theory, which heavily influenced Amer-
ican foreign policy in the 1950s to 1980s by speculating that one nation’s embrace
of communism would entail the conversion of surrounding countries in a domino
effect. Even though electrical engineering and political science are different in al-
most all respects, they’re both highly interested and invested in their theories.

7.1.1 What Is Software Engineering Theory?
Software engineering, however, isn’t concerned with the topic of theory—and if
asked, the community surely couldn’t give a coherent answer about which is the
most important one. Candidates might include theories with significant scope,
such as formal systems theory, decision theory, organization theory, or theory of
cognition. Collections of propositions might also be suggested, such as Alan Davis’s
201 Principles of Software Development, Frederick P. Brooks’s propositions in The
Mythical Man-Month, or SWEBOK. Specialized models such as Cocomo might also
be candidates. We suspect that you’ll disagree with most of these proposals, but
that just proves our point about the lack of consensus. Still, why are so many other
fields explicit with their theories while software engineering is not?

Before discussing this question, we need to—in impossibly few words—describe
what we mean by that multifaceted word “theory.” The best definition comes from
a thoughtful article published in Management Information Systems Quarterly. Ac-
cording to author Shirley Gregor, there are many definitions for the term, but most
theories share three characteristics: they attempt to generalize local observations
and data into more abstract and universal knowledge; they generally have an in-
terest in causality (cause and effect); and they often aim to explain or predict a
phenomenon. Considering the purpose of theory, Gregor proposes four goals. The

7.1 Where’s the Theory for Software Engineering? 85

first is to simply describe the studied phenomenon; SWEBOK could serve as an ex-
ample. The second goal is to explain the how, why, and when of the topic; theory of
cognition, for example, is aimed at explaining the human mind’s limitations. The
third goal is to not only explain what has already happened but also to predict what
will happen next; in software engineering, Cocomo attempts to predict the cost of
software projects. The fourth goal of theory according to Gregor is to prescribe how
to act based on predictions; Alan Davis’s 201 principles exemplify this goal.

7.1.2 Three Arguments
Returning to the main question—why the software engineering community seems
so uninterested in discussing its theories—we can imagine three arguments: soft-
ware engineering doesn’t need theory, software engineering already has all the
theory it needs, and software engineering can’t have any significant, defining the-
ories. We don’t believe that these arguments are valid, but let’s consider them
individually.

7.1.2.1 Software Engineering Doesn’t Need Theory
Software engineering is doing fine without explicit theories, so why change a win-
ning formula? First, software engineering isn’t doing fine. Numerous reports about
failed IT projects have surfaced for decades now. Second, all engineering fields need
theory. To build something good, you must understand the how, why, and when of
building materials and structures. Indeed, you have to predict in the design stage
the qualities of the end product if you want to avoid the painstaking labor of trial
and error. In the words of Kurt Lewin, “There is nothing so practical as a good the-
ory.” Third, for the many software engineering researchers employed at universities
around the world, a researcher without a theory is like a gardener without a garden.
According to philosopher Thomas Kuhn, the maturity of scientific disciplines can
be measured by the unity of their theories. In the most established disciplines en-
gaged in what Kuhn calls normal science, a paradigmatic theory defines a whole
field (for example, Maxwell’s equations, Einstein’s theory of relativity, and Darwin’s
theory of natural selection). In a less mature phase, called pre-paradigm, a small
number of theories, typically with ambitious explanatory scopes, compete for aca-
demic hegemony. This is the case in psychology, where cognitive theories challenge
psychodynamic theories, and in international relations, where realist and liberalist
theories battle for dominance. Kuhn doesn’t offer a name for the phase before the
pre-paradigm, in which there exists a large number of unrelated theories, because
he considers this something less than science.

86 Chapter 7 Reflection on Theory

7.1.2.2 Software Engineering Already Has Its Theory
A discipline’s significant theories should be able to provide answers to that disci-
pline’s significant questions. Considering software engineering, one of the most
hotly debated questions concerns the choice of software engineering method. Al-
though there are many opinions on the subject, we can name very few theories that
attempt to answer the question. And to the extent that such theories exist, they
aren’t, as in other disciplines, given names, presented in textbooks, or debated at
conferences. The same goes for other significant questions of software engineering,
such as which programming language to use, how to specify system requirements,
and so on. Note that many proposed software engineering methods, programming
languages, and requirements specification languages exist, but very few theories ex-
plain why or predict that one method or language would be preferable to another,
under given conditions.

7.1.2.3 Software Engineering Can’t Have a Theory
Software engineering is a practical engineering discipline without scientific am-
bitions where rules of thumb and guidelines assume the role of theory. We can
counter this argument by reiterating the tight connection between engineering
and science. A typical definition of engineering is the one found in Encyclopedia
Britannica: “the application of science to . . . the uses of humankind.” Thus, no
engineering without science. Second, it isn’t true that there is no theory in the soft-
ware engineering community. In a sense, theory is abundant. To the previously
mentioned propositions, we could add Kent Beck’s suggestion that the change
cost curve could be logarithmic rather than exponential (Extreme Programming Ex-
plained, Addison-Wesley, 1999), Parnas’s principle of information hiding (On the
Criteria to Be Used in Decomposing Systems into Modules), Conway’s law, Dijkstra’s
theory of cognitive limits as presented in the classical article “Go to statement con-
sidered harmful” (Comm. ACM, 1968), stepwise refinement, and so on. But all of
these theories are small and most are casual, proposed by the author but rarely
subjected to extended studies, and they explain only a limited set of phenomena.
Furthermore, most of these theories aren’t subject to serious academic discussion;
they aren’t evaluated or compared with respect to traditional criteria of theoretical
quality such as consistency, correctness, comprehensiveness, and preciseness.

As should be evident by now, we don’t believe that there’s any rational reason for
the lack of theoretical focus in software engineering. It’s surely historical; born in
the hurly burly of software practice, explanation and prediction were often merely
glanced through the car window in the race between problem and solution. Today,
tens of thousands of software engineering researchers are employed in the uni-

7.3 Essence Is a General, Descriptive Theory of Software Engineering 87

versities of the world, spending innumerable man-hours on software engineering
research, but theory is still on the sidelines. To our knowledge, very few explicit
attempts propose general theories of software engineering.

This has to change: without the predictive and prescriptive support of theory,
software engineering would be relegated to the horribly costly design process of
trial and error. With theory, we rise from the drudgery of random action into the
sphere of intentional design. Software engineering is already full of implicit theory.
We just need to bring it out into the open and subject it to the serious scientific
treatment it deserves.

(This ends the quote from the paper “Where’s the Theory for Software Engineer-
ing?” [Johnson et al. 2012].)

7.2 Uses of Theory
Theory is generally used to (i) describe a phenomenon of interest and (ii) explain
and predict that phenomenon. Prediction is of importance for engineering, as
prediction allows engineers to build artifacts with predictable features and prop-
erties. Without prediction, engineering becomes no more efficient than a random
walk. Prediction and explanation, however, require the capability to describe the
salient features of the phenomenon in question. Therefore, description precedes
prediction.

To describe something, a language is needed. In the case of mechanics, that
language includes primitives such as mass, force, and acceleration. Such a language
can then be used to express causal relationships, e.g., “if the force increases, then
so will the acceleration,” or “if the mass increases, then the acceleration decreases.”

7.3 Essence Is a General, Descriptive Theory of
Software Engineering
Unfortunately, as we explained previously, there is currently no widely accepted
predictive general theory of software engineering. However, Essence takes the first
step by proposing a coherent, general, descriptive theory of software engineering
(i.e., a language of software engineering). The concepts included in Essence were
designed to capture the most important features of the various phenomena of
software engineering.

As a descriptive theory, Essence can be used to describe and facilitate discussion
of future predictive theories of software engineering. However, Essence is not
strictly limited to description; it does make a number of general claims regarding
the relationships between concepts. For instance, the states of alphas have a certain

88 Chapter 7 Reflection on Theory

Practical

ExtensibleAct
io

nab
le

Figure 7.1 Guiding principles behind Essence.

order, excluding the movement between non-neighboring states. But a complete
consideration of the causality between concepts and thus prediction is beyond the
current version of Essence.

7.3.1 A Common Ground for a Descriptive Software Engineering Theory
What Essence has provided is a common ground for software engineering. This
is an important idea, and it is worth taking a few moments to think about why
establishing the common ground in this way is so important. More than just a
conceptual model, as you will see through the practical examples in this book, the
kernel provides

. a thinking framework for teams to reason about the progress they are making
and the health of their endeavors;

. a framework for teams to assemble and continuously improve their way of
working;

. the common ground for improved communication, standardized measure-
ment, and the sharing of best practice;

. a foundation for an accessible, interoperable method and practice defini-
tions; and

. most importantly, a way to help teams understand where they are and what
they should do next.

What is it that makes the kernel anything more than just a conceptual model of
software engineering? What is it that’s really new here? This can be summarized
as the three guiding principles shown in Figure 7.1.

7.3.2 Essence Is Practical
Perhaps the most important feature of the kernel is the way it is used in practice.
Traditional approaches to software engineering methods tend to focus on support-

7.3 Essence Is a General, Descriptive Theory of Software Engineering 89

ing process engineers or quality engineers. The kernel, in contrast, is a hands-on,
tangible thinking framework focused on supporting software professionals as they
carry out their work.

For example, the kernel is tangible and deployed through the use of cards. The
cards provide concise reminders and cues for team members as they go about
their daily tasks. By providing practical checklists and prompts, as opposed to
conceptual discussions, the kernel becomes something the team utilizes on a daily
basis. This is a fundamental difference from traditional approaches, which tend to
overemphasize method description as opposed to method use.

7.3.3 Essence Is Actionable
A unique feature of the kernel is the way that the “things to work with” are handled.
These are captured as alphas, rather than work products (such as documents). An
alpha is an essential element of the development endeavor; one that is relevant
to an assessment of its progress and health. As shown in Figure 6.3, Essence has
identified seven alphas. The alphas are characterized by a straightforward set of
states that represent their progress and health. As an example, the Software System
in Figure 6.3 moves through six states. Each state has a checklist, which specifies the
criteria needed to reach the state. It is these states that make the kernel actionable
and enable it to guide the behavior of development teams.

The kernel presents software engineering not as a linear process but as a net-
work of collaborating elements: elements that need to be balanced and maintained
to allow teams to progress effectively and efficiently, eliminate waste, and develop
great software. The alphas in the kernel provide an overall framework for driving
and progressing development efforts, regardless of the practices applied or the soft-
ware engineering philosophy followed.

As practices are added to the kernel, additional alphas will be added to repre-
sent the things that either drive the progress of the kernel alphas or inhibit and
prevent progress from being made. For example, the requirements will not be ad-
dressed as a whole but will be progressed requirement item by requirement item.
It is the progress of the individual requirement items that will drive or inhibit the
progress and health of the requirements. The requirement items could be of many
different types; for example, they could be features, user stories, or use case slices,
all of which can be represented as alphas and have their states tracked. The bene-
fit of relating these smaller items to the coarser-grained kernel elements is that it
allows the tracking of the health of the endeavor as a whole. This provides a neces-
sary balance to the lower-level tracking of the individual items enabling teams to
understand and optimize their way of working.

90 Chapter 7 Reflection on Theory

7.3.4 The Kernel Is Extensible
Another unique feature of the kernel is the way it can be extended to support
different kinds of development (e.g., new development, legacy enhancements, in-
house development, off-shore, software product lines, etc.). The kernel allows you
to add practices, such as user story, use case, component-based development,
pair-programming, daily standup meetings, and self-organizing teams, to build
the methods you need. For example, different methods could be assembled for
in-house and outsourced development, or for the development of safety-critical
embedded systems and back office reporting systems.

The key idea here is that of practice separation. While the term “practice”
has been widely used in the industry for many years, the kernel has a specific
approach to the handling and sharing of practices. Practices are presented as
distinct, separate, modular units, which a team can choose to use or not to use. This
contrasts with traditional approaches that treat software engineering as a soup of
indistinguishable practices and lead teams to dump the good with the bad when
they move from one method to another.

7.3.5 How Does the Kernel Relate to Agile and Other Existing Approaches?
As we will show in more detail later in the book, the kernel can be used with all
the currently popular management and technical practices including, for instance,
Scrum, Kanban, risk-driven, iterative, waterfall, use case–driven development, ac-
ceptance test–driven development, continuous integration, and test-driven devel-
opment. It will help teams embarking on the development of new and innovative
software products and teams involved in enhancing and maintaining mature es-
tablished software products. It will help all sizes of teams, from one-man bands to
1,000-strong software engineering programs.

For example, the kernel supports the values of the Agile Manifesto. With its
focus on checklists and results, and its inherent practice independence, it values
individuals and interactions over processes and tools. With its focus on the needs
of professional development teams, it values teamwork and fulfilling team respon-
sibilities over the following of methods.

The kernel doesn’t in any way compete with existing methods, be they agile or
anything else. On the contrary, the kernel is agnostic to a team’s chosen method.
Even if you have already chosen or are using a particular method, the kernel can
still help you. Regardless of the method used, as Robert Martin has pointed out in
his Foreword to Jacobson et al. [2013a], projects—even agile ones—can get out of
kilter, and when they do teams need to know more. This is where the real value of

7.4 Toward a General Predictive Theory of Software Engineering 91

the kernel can be found. It can guide a team in the actions to take to get back on
course, to extend their method, or address a critical gap in their way of working. At
all times, it focuses on the needs of the software professional and values the “use
of methods” over “the description of method definitions” (as has been the norm in
the past).

The kernel doesn’t just support modern best practices; it also recognizes that a
vast amount of software has already been developed and needs to be maintained.
The software will live for decades and it will have to be maintained in an efficient
way. This means the way you work with this software will have to evolve alongside
the software itself. New practices will need to be introduced in a way that comple-
ments the ones already in use. The kernel provides the mechanisms to migrate
legacy methods from monolithic waterfall approaches to more modern agile ones
and beyond, in an evolutionary way. It allows you to change your legacy meth-
ods practice-by-practice whilst maintaining and improving the teams’ ability to
deliver.

7.4 Toward a General Predictive Theory of Software Engineering
As mentioned above, a general (predictive) theory of software engineering ought
to be able to provide answers to the discipline’s significant questions. Consider-
ing software engineering, there are a number of such questions, such as which
method to deploy under what circumstances. There are several questions of sim-
ilar importance, and there are numerous subquestions to each overarching one.
Three more concrete examples of questions that a general theory of software en-
gineering should be able to answer include these: (i) What is the explanation of
Brooks’s Law? (ii) Are domain-specific languages here to stay? and (iii) Is contin-
uous integration worth the effort? The first one is explanatory, and the remaining
two are predictive.

There is currently no widely accepted general theory, but there are a few con-
tenders. Here we outline one, called the Tarpit theory. This theory is described
in greater detail in Johnson and Ekstedt [2016]; here we can provide only a brief
sketch.

The theory’s name stems from the communicative tragedy that, according to
the theory, constitutes the core of the software engineering problem. On the one
hand, people have a strong desire to explain to the evermore ubiquitous comput-
ers what we would like them to do. Computers, on the other hand, are obediently
awaiting our instructions, and once received, those instructions will be performed
with remarkable loyalty and zeal. But despite the eagerness of the two parties, the

92 Chapter 7 Reflection on Theory

relationship is a frustrated one, because it has proved strangely difficult to estab-
lish efficient means of communication between people and computers. Currently,
almost twenty million software developers are employed worldwide, with the sole
task to explain to the computers what it is that we really want from them. In the pro-
posed theory’s interpretation, Alan Perlis’s famous epigram “Beware of the Turing
tar-pit in which everything is possible but nothing of interest is easy” refers pre-
cisely to the communicative intractability that separates the wondrous capabilities
of the Turing machine from the many desires of humankind.

The theory is grounded in four subfields:

1. the theory of software, on the structure and meaning of computer programs;

2. the theory of design, on the process of decision-making;

3. the theory of cognition, on the limitations of human (developers’) minds; and

4. the theory of organization, on the possibilities and limits of human cooper-
ation.

In its most skeletal form, the Tarpit theory can be reduced to four propositions.

1. The goal of software engineering is to create programs that, when executed by
a computer, result in behavior that is of utility to some stakeholder.

2. The two first challenges for developers are to (a) make appropriate design
decisions and to (b) translate between languages.

3. These challenges appear because the human mind suffers from limited cog-
nitive capabilities.

4. The cognitive limitations of a single developer can be partially mitigated by
adding more team members, but this generates a third challenge, namely that
of team coordination.

The authors claim that the theory is able to answer many of the most pertinent
questions in software engineering, including the three questions above, which are
discussed further in Johnson and Ekstedt [2016].

The Tarpit theory and Essence integrate nicely. Many concepts are identical or
easily translated, such as endeavor, stakeholder, and team. Other concepts con-
stitute the extension of each theory with the concepts of the other. Jointly, the
integrated theory gains the descriptive and practical power of Essence and the pre-
dictive power of Tarpit.

7.5 A Theoretical Foundation Helps You Grow 93

7.5 A Theoretical Foundation Helps You Grow
The main concepts and principles of Essence have been presented and you will
learn more about its application as we follow Smith’s experiences in the remainder
of the book. But how will Essence help you as you proceed in your career?

First and foremost, you will be provided with a common ground for under-
standing the scope as well as the application of software engineering methods and
practices that will be of great benefit during your career. Certainly, as new practices
and methods arrive on the scene, you will be prepared to easily integrate them into
your own body of knowledge.

As Essence is accepted by software engineering companies around the world (a
trend that is already happening), you will be able to reuse your knowledge when
moving from working with one software system to working with another one,
without having to learn a new method that utilizes different terminology introduced
by its founding gurus. This was normally not possible before Essence adoption. In
short, what Essence gives you is a means by which developers can become reflective
practitioners and think about their own ways of working outside of commercial
frameworks.

Once you become an experienced software professional, you will see additional
values. For example, Essence provides guidance to help you assess the progress
and health of your development endeavors, evaluate your current practices, and
improve your way of working. It will also help you to improve communication, move
more easily between teams, and adopt new ideas.

By providing a practice-independent foundation for the definition of software
methods, the kernel also has the power to completely transform the way that meth-
ods are defined, and practices are shared. For example, by allowing teams to mix
and match practices from different sources to build and improve their way of
working, the kernel addresses two of the key methodological problems facing the
industry. Teams are no longer trapped by their methods; they can continuously
improve their way of working by adding or removing essentialized practices when
their situation demands. Methodologists no longer need to waste their time de-
scribing complete methods: they can easily describe their new ideas in a concise
and reusable way.

As a software engineering student, you may first learn the mechanics of soft-
ware engineering (e.g., writing code, writing tests, and planning a project). But as
you progress as a software professional, you will need to gradually develop your
understanding and interpretation of this discipline. You will try to make sense of
this world. In other words, you will start to form your own theory. As detailed previ-
ously, the Essence kernel provides a universe of discourse. It gives you a language to

94 Chapter 7 Reflection on Theory

describe phenomena, thus facilitating the discussion of future predictive theories
of software engineering.

We hope that as you read the subsequent pages of the book, you will reflect on
the observed phenomena. If you are already a software engineering professional,
we encourage you to compare described phenomena in Smith’s story with what you
experience in the real world, and determine the value of the kernel in presenting
the facts. As a researcher, we certainly encourage you to use the Essence kernel to
frame your research hypothesis, findings, and conclusions. Regardless of who you
are, the Essence kernel is a springboard toward more mature software engineering
practices and a more mature software engineering discipline.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain what is expected from a software engineering theory and what in
general are the purpose and goals of a theory;

. present arguments why software engineering needs a theory;

. explain the connection of a software engineering theory and predictability
(give examples to support the explanation);

. explain the difference between descriptive and predictive theory;

. explain the role and key characteristics of Essence (i.e., that it is practical,
actionable, extensible) in the context of a software engineering theory; and

. explain the propositions of the Tarpit theory.

Postlude to Part I
In Part I of the book, we introduced Essence, its motivation, its purpose, its prin-
ciples, its language, and its kernel. In the remaining parts of the book, we will
demonstrate how Essence helps you and your teams collaborate more effectively.

Many of us know how to develop software, but we have different ideas about
how to go about doing it. Some of us know more than others and can figure it out;
some need more guidance, or just enough to get started. We make the distinction
between explicit knowledge and tacit (implicit) knowledge. Explicit knowledge is
structured and expressed clearly, whereas tacit knowledge is unstructured and
not written down—you just keep it in your head. It is knowledge emerging from
experience and discussions. Software engineering needs a combination of explicit
and tacit knowledge. It is not possible to be fully explicit and prescribe everything

Recommended Additional Reading 95

a team needs to do, because every development is different and involves creative
problem solving, which is by nature emerging as more experience is obtained. Thus,
we need to strike a balance between the use of these two kinds of knowledge.

We take you on a journey in the rest of this book, describing more and more
advanced use cases of Essence.

Recommended Additional Reading
This book is about the essentials of software engineering through the lens of
Essence, the standard. There is, of course, more to be learned than what is pre-
sented here. In the following you will find references that at the time of writing this
book are well suited as additional reading. At the website1 that accompanies the
book you will find more references related to software engineering in general, and
also updates to the following references as such become available.

. Object Management Group, Essence—Kernel and Language for Software
Engineering Methods (Essence) [OMG Essence Specification 2014]. This is
the source for the Essence standard, where you may want to go to find more
details and a formal definition of the Essence language. In this book here,
we present only a subset of the standard, selected to be useful in everyday
life. The standard is not set in stone; it undergoes continued improvements
and it will usually be updated yearly.

. I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence, and S. Lidman, The Essence
of Software Engineering: Applying the SEMAT Kernel [Jacobson et al. 2013a].
This is the first book on Essence written primarily for software development
professionals. It provides the underlying ideas behind the Essence kernel,
an overview of the kernel, and examples of how teams can use the kernel to
run a software endeavor. This reference should be used when the reader is
looking for details related to the ideas behind the kernel and more details
on how the kernel can be used by teams.

. I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence and S. Lidman, “The essence
of software engineering: The SEMAT kernel” [Jacobson et al. 2012]. This
paper discusses the background, motivation, and overview of the Essence
kernel. This reference should be used when the reader is looking for a short
synopsis of Essence.

1. http://www.software-engineering-essentialized.com/.

http://www.software-engineering-essentialized.com/

96 Chapter 7 Reflection on Theory

. I. Jacobson, I. Spence, and P.-W. Ng, Agile and SEMAT: Perfect partners
[Jacobson et al. 2013b]. This paper discusses how the Agile ideas and Essence
are related. Essence is a tool to work with methods in an agile way. This
reference should be used by readers that are using an Agile approach and
want to understand more about how Essence can help their endeavor.

. P.-W. Ng, Theory based software engineering with the SEMAT kernel: Prelim-
inary investigation and experiences [Ng 2014].

. P.-W. Ng, Integrating software engineering theory and practice using
Essence: A case study [Ng 2015].

. P. E. McMahon, A thinking framework to power software development team
performance [McMahon 2015]. This paper discusses specific features of
Essence that can help teams improve performance in ways previous frame-
works have fallen short. This reference should be consulted by teams that
are using other frameworks and are looking for ways to improve their per-
formance.

. P. Johnson, M. Ekstedt, I. Jacobson, Where’s the theory for software engi-
neering? [Johnson et al. 2012].

. P. Johnson and M. Ekstedt, The Tarpit—A general theory of software engi-
neering [Johnson and Ekstedt 2016]. This paper describes the Tarpit general
theory of software engineering.

8Applying Essence in the
Small—Playing Serious
Games
The goal of this chapter is to introduce the concept of Essence cards and card games
as a facilitation tool in a variety of settings and purposes: for instance, to ease the
process of reaching a consensus within a team, or to promote discussion related
to the health and progress of their endeavors. In this chapter, the following topics
are introduced and discussed:

. the elements of cards and the benefits of card games as a facilitation tool in
team communication;

. the benefits of card games as a learning mechanism not only for understand-
ing the software engineering process and method, but also for developing
basic mental abilities such as perception, attention, and decision making;

. the connection between four specific card games and the issues in software
engineering that they help to solve; and

. the dynamics of state change during the software engineering process, in-
cluding the fact that alphas rarely progress independently of each other (and
rather progress in “waves”).

In Part I, we illustrated how the Essence kernel and practice elements can be
represented as poker-sized cards. A card provides a concise description of the
most important information about its element. Additional details are available in
complementary guidelines.

Cards are handy and can act as reminders to practitioners. In addition, since
they look like playing cards, it is natural to use them to play different games to

98 Chapter 8 Applying Essence in the Small—Playing Serious Games

help the teams achieve goals when developing software. Teams use the cards to
play games as facilitation tools in a variety of settings and purposes: for exam-
ple, to help them obtain a consensus about their work. Cards are also a good
way to introduce the kernel and practice elements to people who are new to
Essence.

Software development is a highly intellectual and collaborative endeavor, as
described in Part I. To achieve good results, most of the work is performed and
planned by teams where the team performance is strongly dependent upon effec-
tive communication, common understanding, and trust. All team members must
understand the endeavor purpose and its benefits, as well as its problems, and re-
solve any conflicts within limited time. For this reason, most of the serious games
utilized in software engineering are collaborative in nature.

In this chapter, Essence is used in a tacit manner without explicitly described
practices on top of it. However, we will also introduce some simple, small, but
very useful techniques to facilitate working together within a team. We call these
techniques games—serious games. Serious games may be entertaining, but their
purpose is beyond entertainment. By simulating lifelike events, serious games aim
at achieving some specific goal. Usually, this goal is to solve a particular real-
world problem or to learn something new. Games also provide a powerful tool
to help develop many different skills, not the least of which include basic mental
abilities such as perception, attention, and decision making. Furthermore, in the
context of this book, games can be highly reusable aids when carrying out multiple
practices.

Again, these games are cooperative, rather than competitive. Thus, team mem-
bers—or, as we will call them here, players—play in groups with one another, rather
than against each other in a winner-take-all style. Serious games can get teams
communicating in a way that transcends differences in background, experience,
and perceptions.

To achieve common goals and maximal results, the players must express their
thoughts clearly, listen to one another, share information and resources, learn from
one another, identify solutions, negotiate, and make common decisions. Playing
serious games with the Essence cards is one way to help team members observe
how their teammates reason, and help them advance their own reasoning in a
structured and systematic way. This is because by using natural words used by
most development teams in naming the alphas, states, and checklists, the cards
stimulate a team to discuss the issues related to the health and progress of their
own endeavors.

8.1 Progress Poker 99

In addition, once the team members understand where they are, they can use
the cards to look ahead at states and checklists not yet achieved, thus stimulating
discussion on what is most important to do next.

This chapter introduces four card games1 that use the alpha state cards:

1. Progress Poker

2. Chasing the State

3. Objective Go

4. Checkpoint Construction

The card games in this chapter represent only a sample of what can be played.
By identifying the purpose behind those games included here, and investigating
other games and techniques (see Alpha State Card Games [2018], Ng [2013]), you
will understand more of the goals that can be achieved by using the Essence kernel
to facilitate work within the team.

8.1 Progress Poker
One of the most important questions teams often face is “Are we done?”—referring
to a particular piece of work being completed. This has resulted in deep discussions
over the definition of “done.” While there are several definitions of done, ours
relates to the movement of an alpha from one state to another state. Take, for
example, the Software System alpha, which over the lifecycle of a software system
moves through six different states. The definition of done here is related to when
you have done everything to qualify for a state change.

What does it take, for example, to move from Architecture Selected to Demon-
strable?

Let’s now look at the individual checklist items in Figure 8.1. Take, for instance,
the item, “Key architectural characteristics demonstrated.” Is the meaning of this
checklist item clear? Well, some people would say they know what it means, but
within a team, members can make several interpretations. One team member may
say that this means that the key architectural characteristics have been agreed to
and demonstrated to the team members, while another may think it means the
agreement and demonstration must involve external stakeholders. It is true that
the checklist items do not provide a precise definition. If they did, they would likely

1. http://www.ivarjacobson.com/publications/brochure/alpha-state-card-games

http://www.ivarjacobson.com/publications/brochure/alpha-state-card-games

100 Chapter 8 Applying Essence in the Small—Playing Serious Games

Figure 8.1 Software System: Demonstrable alpha state card.

be unintelligible to most developers. The items are not unambiguous, but they
provide a hint of what needs to be done. They are subject to interpretation by the
team members, who may each have different opinions on their meaning. One way
to reach an agreement is by playing Progress Poker.

Progress Poker is a game played to facilitate discussion about and achieve un-
derstanding of the current state of a particular alpha. It is played one alpha at
a time. This is a very important game that is reusable in many different situa-
tions. For instance, if you want to know where the team is in their endeavor, you
play this game for each alpha and then you will know very precisely the progress
the team has achieved. Just as in poker itself, this game’s tools are a deck of
cards (in this case a deck for each player), a table, and a set of rules and pro-
cedures. However, in contrast to the original game of poker, where the goal is
to win, Progress Poker is a consensus-based game. Its main objective is to en-
sure that everybody is on the same page. To play Progress Poker, you need the
Alpha Overview card and the Alpha State cards for the particular alpha whose
current state the team is trying to understand. Figure 8.2 shows these cards
for the Requirements alpha. (Note: Again, unlike the original game of poker,
Progress Poker requires a deck of cards for each participant, and all players play all
rounds.)

Here, there is no single winner. The winner is the whole team, and the winning
hand is the team’s common agreement on the endeavor status.

8.1 Progress Poker 101

Figure 8.2 Tools needed to play Progress Poker (alpha card and alpha state cards).

Progress Poker may be played by any number of players. However, experience
has indicated that it is most effective in teams consisting of three to nine players.
When you have less than three players, often there are not enough different view-
points to make the game worthwhile; when a team gets larger than nine, there is an
increased risk of not reaching consensus. There is no fixed duration of the game:
for teams familiar with the states and checklists, it may only take a few minutes to
play. The game ends as soon as a consensus has been reached on the current state
that has been achieved for a particular alpha.

Let us now sit in on a game of Progress Poker. Our players, the team members,
gather around the table. To communicate that the Requirements alpha is under
consideration, they place its alpha card in the center of the table, just as shown
in Figure 8.2. Each player then uses his/her own set of state cards for that alpha,
and identify from their own set the card that they think best represents the current
state. True to the game’s name, they should keep a poker face—i.e., keep the card
of their choice confidential. After having selected his/her card, each player should
place it face down on the table and wait until all team members have made their own

102 Chapter 8 Applying Essence in the Small—Playing Serious Games

choices. By doing so, they make sure that everyone’s initial opinion is not affected
by anyone else’s opinion. After everyone has chosen an alpha state card, all players
turn their chosen state cards face up at the same time, and compare the results.

The results of playing Progress Poker may vary. In this simplest case, all team
members have chosen the Bounded state. This means they have achieved a consen-
sus among the players and, therefore, have the same understanding of the endeavor
status. So they do not need to continue playing Progress Poker for the Requirement
alpha, and the game is over.

Quite often, though, the players have different opinions about the state of the
alpha under consideration, so the cards that they have chosen will differ. To reach
an agreement, the players have to discuss their choices. Usually, those with the
least and the most advanced states should start the discussion. They have to explain
and motivate why they have chosen these alpha states. This, in turn, may lead to
further discussions revealing the details of the endeavor status, and the next round
of Progress Poker may be played. The number of rounds required depends on how
soon the team reaches consensus. It may take three rounds for the team to arrive at
a common agreement. In some cases, it may be necessary to create an explicit list
of requirements to resolve the issue. Again, all players take part in all the rounds
of the game, and the winning hand here is the agreement of the entire team. That
is only achieved after everybody has put down the same state card.

A variant of Progress Poker can be played, in which a single team member plays
the game alone, and then explains their results to the rest of the team. When playing
this variant of the game, it is recommended that after the results are shared, the
team leader encourages the team to provide feedback as to whether they agree with
the assessment or not. This game can be effective at stimulating communication
and collaboration in organizations that have cultures where decisions and direction
are expected to come primarily from those in authority.

8.1.1 Benefits of Progress Poker
One of the benefits of Progress Poker is that everyone on the team gets involved,
since each team member is forced to make an assessment and explain their views
when their assessment differs from those of their teammates. Each team member
must think through and talk about why they assessed the state the way they did.
This helps teams avoid making decisions that are not rational, and it avoids the
situation where just a few team members’ decisions drive the team. The game also
helps to ensure that all checklist items are considered.

8.1 Progress Poker 103

Smith’s hand Grace’s hand

Figure 8.3 Differing views on state of Stakeholders and Requirements.

8.1.2 Example of TravelEssence Team Playing Progress Poker
We will now return to Smith and his team members. After learning about Essence
and the alpha state cards, Smith was eager to share and apply what he had learned.

Smith and his team had been assigned to work on providing some new func-
tionality for TravelEssence, specifically a recommendation engine for travelers.
Based upon discussions with Angela, the business analyst, Smith found out that
the goal of this recommendation engine was to recommend hotels and discount
deals to travelers based on their travel history, TravelEssence’s sales promotions,
and so on.

Tom, Joel, and Grace were members of Smith’s team. After his brief introduction
to the ideas behind the alpha state cards, the team played Progress Poker seven
times—one for each alpha—to determine their current state of development. They
were already initially in agreement for all the alphas apart from the Stakeholders
and Requirements alphas2 (see Figure 8.3).

Smith’s team couldn’t immediately agree on what the Stakeholder and Require-
ments states were.

. Smith thought the Stakeholders were quite well represented and the mem-
bers were actively involved helping the team. For example, he had been

2. If the team had been more experienced, they could have discovered this information without
playing Progress Poker.

104 Chapter 8 Applying Essence in the Small—Playing Serious Games

talking to Angela, who as a business analyst was a key stakeholder, about the
requirements for the recommendation engine, and Angela had shared with
Smith what she had learned from her analysis. Therefore, Smith deemed the
Stakeholders state to be Involved.

. Smith thought the Requirements were fairly clear because of the work Angela
had done. Therefore, he assessed the Requirements to be in the Coherent
state.

However, other team members begged to differ.

. Grace pointed out that in the past business analysts frequently did not rep-
resent stakeholders well. They would say one thing, and when it was close
to delivery, some higher-level authority would say something quite different.
This resulted in unplanned rework late in the endeavor. Therefore, Grace saw
the Stakeholders as Represented, but not Involved.

. Grace also pointed out that it was not clear how the new requirements would
affect the existing functionality of the Hotel Management System (HMS).
Therefore, Grace saw the Requirements as Bounded, but not Coherent.

Smith agreed that while Angela had completed some relevant analysis, she had
not yet gone back to the customer stakeholders to gain their agreement, and that
this created a risk to the endeavor. As a result, the entire team agreed that the
Stakeholders alpha had achieved the Represented state, but they still had some
work to do to get to the Involved state, and the Requirements had achieved the
Bounded state, but more work was needed to get to the Coherent state.

Smith wanted to obtain a wider common understanding of the current state and
what they needed to do to progress the endeavor. He rounded up his team again, as
well as Angela, and this time asked Angela to play the Progress Poker game variant
with his team in attendance. After a quick introduction, Smith asked Angela to lay
out the cards, and he asked her which alpha states she thought had been achieved
and what their current states were.

Angela was known to be rather terse when it came to requirements. She would
think that the team had understood her when in fact they did not. Smith and his
team members held their breath, as Angela shifted the cards around.

Surprisingly, Angela also recognized that Stakeholder involvement was not suf-
ficient because she had not gone back to the customer stakeholders to gain their
agreement, and that Requirements needed some more work. The source of the re-

8.2 Chasing the State 105

quirements was Dave, who was Angela’s boss. Dave needed more involvement, not
just Angela. So in the end everyone agreed that the Stakeholders were Represented,
but not Involved, and the Requirements were Bounded, but not yet Coherent.

8.2 Chasing the State
With Progress Poker you can obtain consensus within a team on which state an
alpha has reached. You can of course also use Progress Poker for all alphas and
agree on which states they all have. This must normally be determined many times
during an endeavor. You need to find out where you are in the work. However, often
teams are in agreement on which states most of the alphas have without having to
play Progress Poker; they just look at the cards for each alpha and agree on which
state has been achieved. A faster way to achieve team agreement on where they are
for all the alphas is accomplished by playing the Chasing the State game.

This game is initiated by laying out all of one alpha’s cards on a table. To the
very left is the Alpha Overview card with a picture of all the states of the alpha. To
the right are all the alpha state cards with the first state card on the left and the last
state card on the right. See Figure 8.4.

Now the first card for the Stakeholder alpha is discussed. The team studies the
first Stakeholder card (left) and agrees that all criteria are fulfilled, meaning that
state Recognized has been achieved. See Figure 8.5.

As a consequence, that card is moved to the left on the table, as in Figure 8.6.
The game continues and the second Stakeholder state card is examined. The

team agrees that this state has also been achieved, so that card is also moved to the
left, close to the first state card. Thus, the third state card is studied. Here the team
agrees that the criteria are not fulfilled, so this card is not moved; it stays where it
is. Now we have the position in Figure 8.7.

Chasing the State continues on through the Opportunity alpha, the Require-
ments alpha, etc. until the Work alpha. In this example we ended up with the
situation portrayed in Figure 8.8.

The state of the endeavor can be described as follows: Stakeholders, 2; Oppor-
tunity, 2; Requirements, 2; Software System, 1; Team, 2; Way of Working, 1; and
Work, 1.

In this particular game it is assumed that everything goes smoothly and the team
can easily agree upon the states that have been achieved. That is not always the case,
so if the team can’t easily agree, they can play Progress Poker for the particular alpha
that is not easy to agree upon.

106 Chapter 8 Applying Essence in the Small—Playing Serious Games

Stakeholders

Opportunity

Requirements

Software
System

Team

Way of
Working

Work

Figure 8.4 Initial position for playing the Chasing the State game.

Figure 8.5 Stakeholder: Recognized before and after discussion.

8.2 Chasing the State 107

Stakeholders

Opportunity

Requirements

Software
System

Team

Way of
Working

Work

Figure 8.6 The Stakeholder alpha has reached its first state.

Stakeholders

Opportunity

Requirements

Software
System

Team

Way of
Working

Work

Figure 8.7 The current state of the Stakeholder alpha is agreed to be state 2.

108 Chapter 8 Applying Essence in the Small—Playing Serious Games

Stakeholders

Opportunity

Requirements

Software
System

Team

Way of
Working

Work

Figure 8.8 The current states for all alphas have been identified.

8.3 Objective Go
The Objective Go game is played to agree upon where you need to go next. To know
where to go next, you of course need to know where you are. This game is played after
you have assessed the current states of all the alphas. Thus, it is usually played after
you have played the Chasing the State game. Let us therefore take the start position
for the game as in Figure 8.8. In this position, the team asks the question “Which is
the next step we should take to progress the endeavor?” or, in other words, “What
are the next set of alpha states we should achieve?” The team may decide that their
objective is to move to the next state for all seven alphas, or they may decide that
the next step should be to focus on just one or a few of the alphas to progress to the
their next states.

An experienced team would not deal with one alpha at a time but instead take
a holistic view and agree on which alphas to progress next. It would be a mistake
to think that alphas progress independently of each other. In fact, we have learned
through experience that the alphas often progress in “waves” that cross multiple
alphas. A simple example is that the Requirements alpha cannot be progressed

without also progressing the Stakeholders alpha; to achieve the Coherent state
of Requirements you need to have Stakeholders: Involved; see Figure 8.9.

8.3 Objective Go 109

Figure 8.9 Requirements and Stakeholders Alpha Wave

Let us assume, for example, that a team agrees that one of their next objectives is
to reach the Software System: Demonstrable state. This means the team agrees that
there are checklist item(s) in the Demonstrable state that have not been achieved;
see Figure 8.10.

As an example, let’s look at the checklist item, “Key architectural characteristics
demonstrated,” in Figure 8.10. The team may have differing opinions on the inter-
pretation of this state, and they may ultimately agree that they have not achieved
this checklist item. Suppose this is the case and the reason is that the team feels
they have not demonstrated a key performance requirement to a key stakeholder.
The team will then discuss and agree on what to do next: in this example, conduct
a demonstration for that key stakeholder; see Figure 8.11.

In a similar way, the team looks at each alpha deemed interesting to progress in
the next step. For each alpha, they discuss the next state that should be achieved and
which checklist items for that state are not yet achieved. Once they have agreed upon
where they want to go next, they also discuss what tasks they need to do to get there.
For each alpha the team has agreed to progress to a higher state, its corresponding
state card is moved to the middle of the table, as in Figure 8.12.

In our example, the team agrees that the next step’s are to move to Stakehold-
ers: Involved, Software System: Demonstrable; Way of Working: Foundation Estab-
lished; and Work: Prepared.

110 Chapter 8 Applying Essence in the Small—Playing Serious Games

Team agrees they are here Objective is to get here next

Figure 8.10 The Software System alpha—where the team is and where they need to go next.

Figure 8.11 Team agrees that demonstration to a key stakeholder is needed.

8.4 Checkpoint Construction 111

Stakeholders

Some of our goals for the next step

Opportunity

Requirements

Software
System

Team

Way of
Working

Work

Figure 8.12 The next step is represented by the cards in the middle of the table.

8.4 Checkpoint Construction
Usually, organizations have defined lifecycles that consist of phases separated by
checkpoints. Checkpoints are intentionally independent of the practices a team
agrees to use, because one of their main purposes is to assess the endeavor from
different viewpoints such as value, funding, and readiness. In this sense, check-
points can be viewed as critical points in the lifecycle of an endeavor where the
definition of “done” for the phases needs to be specified. At each checkpoint, a de-
cision is made whether to proceed to the next phase or not. A checkpoint can be
defined using alpha states, as we have shown in Section 6.5.2.

Since an endeavor can have many teams working in parallel, to synchronize
between the teams, they usually all need to have the same checkpoints. Thus, the
checkpoints for an endeavor are normally specified by the stakeholders of the whole
endeavor and not by every team participating in the endeavor. Therefore, this game
is played by the stakeholder team, or a few of the key stakeholders. In this section,

112 Chapter 8 Applying Essence in the Small—Playing Serious Games

the team to which we refer is the stakeholder team—a few key stakeholder members
that can represent the views of the stakeholders.

Checkpoint Construction is played to gain consensus on the checkpoints in an
endeavor’s lifecycle. To illustrate the use of this technique, we will use the same sim-
ple lifecycle example as in Section 6.5.2. The lifecycle of the development endeavor
comprises three phases: pre-development, development, and post-development.

Let us now play the Checkpoint Construction game. Our players, the stakeholder
team members, gather around the table. The game is played for one checkpoint
and in two rounds. One team member accepts the role of facilitator and lays out
the seven Alpha Overview cards on the table. The facilitator next describes the
checkpoint being considered. Let us assume we are going to specify the Ready for
Development checkpoint.

In the first round, each team member considers each of the seven alphas and
decides which ones should be considered as part of the checkpoint. They each jot
down their choices. Then the facilitator for each Alpha Overview card asks the team
whether that alpha should be considered in the checkpoint. Each player responds
to that question using a thumbs up/thumbs down. Thus, in this round the team just
agrees on which alphas should be considered for the checkpoint. Let us refer back
to the TravelEssence example where we assume that after going through all seven
alphas, the team agrees all alphas should be considered except for the Opportunity
alpha, which Angela was handling (see Figure 8.13).

Now, the second round is played. The facilitator lays out all of the alpha state
cards horizontally across the table for all of the selected alphas to be considered
for the checkpoint. Each player considers the set of states for each alpha and,
without informing the other players, he/she identifies the state he/she believes the
alpha needs to be in to pass the checkpoint. When everyone is ready, each of the
players simultaneously raise a hand with the number of fingers indicating the state
he/she believes the alpha needs to be in to pass the checkpoint. A closed fist is
used to indicate the sixth state. If all players have selected the same state, there is
consensus. If not, the players with the least and most advanced states explain their
reasoning. After discussion, the players again simultaneously raise their hands,
indicating the states they have selected. This step is continued until consensus is
reached.

Once the state is agreed on, the facilitator leads the group through a discussion
of potential additional checklist items to be added for this checkpoint. In this way,
the generic checklist items on the cards can be tailored to the context of the specific
endeavor.

8.5 Reflection 113

Figure 8.13 Results of team playing first round of Checkpoint Construction game.

We have now showed how Essence can be utilized to help define a checkpoint. By
applying the Checkpoint Construction game several times, a whole lifecycle (such
as the one in Section 6.5.2) can be defined.

8.5 Reflection
What we as authors have found is that serious games using Essence can provide
effective facilitation techniques. Ideas are never absent when knowledgeable work-
ers come together. Cards provide a good avenue to bring these ideas to reality very
quickly. They engage all members of the team, not just the most vocal or the most
experienced or competent. The fact that the states and their checkpoints are not
unambiguous is not just negative; it results in engaging discussions, which help
the team think about issues that might not occur to them from just their own per-
sonal experiences. They need to agree what those issues mean to their endeavor.
Ultimately, this helps the team address issues and risks early, before they become
major problems. This not only helps keep the endeavor on a healthy course, but
also helps team members learn to collaborate effectively, as well as bringing the
team together.

114 Chapter 8 Applying Essence in the Small—Playing Serious Games

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. name the elements of the information on Essence cards and explain their
significance;

. explain how the cards can be used to gain a shared understanding within a
team;

. name the key principles behind the card games, and explain their key char-
acteristics and role in the process (e.g., the focus on cooperation rather than
competition);

. explain the four introduced card games (Progress Poker, Chasing the State,
Objective Go, and Checkpoint Construction), together with the issues they
help to solve and examples of their usage; and

. explain the key concepts of the software engineering process important for
the card games, such as the state change, checkpoints, and typical lifecycle
phases.

IIP A R T

DEVELOPING SOFTWARE
WITH ESSENCE

The goal of this part of the book is to demonstrate how Essence can help a team
run a relatively simple software development endeavor under these circumstances:

. The requirements and consequently the related software system are relatively
simple.

. The team is small (only a few members).

. The team members have worked together before, know one another, and
know how to work together, so there is not much need for written guidelines.

Although simple, the foundation behind all software development endeavors is
the same. This sample endeavor does not have the clutter and noise often found in
many more complex endeavors, and therefore the team can focus upon the essence
of software engineering.

In such simple situations, teams can rely upon tacit knowledge and little ex-
plicit knowledge. (Tacit and explicit knowledge were explained at some length in
Chapter 7.) The Essence kernel provides the bare essentials to get teams started
and make progress, which you will learn about in this part of the book.

Part II will cover the following objectives:

. How to use Essence to describe some reusable “mini-practices” called games.

. How to kick-start software development using Essence only.

. How to plan the work, do the work, check the work, and adapt the way the
team works.

. How to visualize progress and health, and detect anomalies.

. How to appreciate the need to make practices explicit and modular when
facing more complex situations.

9Kick-Starting
Development Using
Essence
What we have presented thus far (in Part I) provides an overview of how to produc-
tively utilize the Essence kernel. As we progress in this part of the book, we will
provide greater detail on how the Essence kernel helped Smith and his team with
the development of their recommendation engine.

In this chapter specifically, through the story of TravelEssence, we show

. the role the Essence kernel can play in helping a team, during a real devel-
opment endeavor, to stay focused on the most important things;

. the importance of stakeholders’ involvement, clarify of requirements, and
the scope of the software system;

. the notion and role of opportunity;

. the work breakdown in relation to the agreed way of working;

. the importance of integrating the work of all members of the team;

. the steps to set up Essence for real usage;

. the application of card games step-by-step, including the involvement of
discussion, argumentation, and voting; and

. the concept of combining games into a well-aligned flow during the devel-
opment process.

In our story, Smith used the Essence framework to help his team ask the right
questions and get pointed in the right direction. To get started, his team needed to
know where they were and what they needed to head toward.

118 Chapter 9 Kick-Starting Development Using Essence

The Essence kernel, together with some of the games we saw in Part I, provides
the tools to do just that.

Getting started with Essence involves the following steps:

1. understanding the context through the lens of Essence;

2. agreeing on the development scope and checkpoints, including where the
endeavor begins and ends; and

3. agreeing on the most important things to watch.

9.1 Understand the Context Through the Lens of Essence
Software development is really a problem-solving endeavor. Problems can exist in
any dimension of software engineering.

. First of all, software engineering is a result of recognizing some problem or
an opportunity. As an example, when Apple invented the iPhone Steve Jobs
saw an opportunity to improve the way people communicated.

. There can be many sources of problems. Some of them may be related to the
software system itself that is being built or has been built; for example, if
the software system already exists, you may not fully understand the original
requirements and/or the solution that led to the existing software system.

. Perhaps you have problems related to getting stakeholders involved; for
example, you may need to talk to users of the software system to understand
their problems better, but they may not have time to talk to you.

. Perhaps you have problems related to getting your team to communicate;
for example, a less experienced developer may not be getting the guidance
needed from a more experienced developer who is very busy.

Like all problem solving, everything begins with understanding the problem,
which may include multiple related problems, each found in the different dimen-
sions of software engineering. Examples of these dimensions include stakeholders,
requirements, the software system, and the team. You have to understand the re-
quirements for the software system, but you also have to understand the needs of
the stakeholders. Essence helps you interpret your context by showing where your
problems are in each of these dimensions of software engineering. For example,
the alphas help lead us to ask questions about the development endeavor, and they
help us collect useful information pertaining to each alpha.

We consider the needs of the development team that has been assigned to
an endeavor within the company TravelEssence. As you recall, TravelEssence is a

9.1 Understand the Context Through the Lens of Essence 119

Software systemRequirements Team

OpportunityStakeholders

Angela and Dave
from Digital
Transformation
Group

Work

Way of working

Recommendations
based on travel
history

Frequent travelers
are potential
repeat customers

Mobile app plug-in
and microservices

Working demo
in 4 weeks

Smith, Tom, Joel,
and Grace

Vanilla
Essence

Figure 9.1 Understand context with Essence.

leading travel service provider that targets both leisure and business travelers, as
discussed in Part I.

Smith and his very small team came together and started capturing what they
knew about the endeavor using some sticky notes and the Essence alphas; the result
can be seen in Figure 9.1. (The text on the notes in the figure is only a sample,
intended to help you get a sense of the kind of information associated with each
alpha. Some of the information in the next sections has been used in previous
chapters, but here it is grouped all together to form a complete picture of the
endeavor Smith and his team were assigned.)

From the Perspective of the Customer Area of Concern
Stakeholders. The stakeholders in this endeavor included Angela and Dave

from the Digital Transformation Group within the company. This group was
tasked with employing digital transformation to expand the company’s busi-
ness. Digital transformation is the use of technology to radically improve
a company’s performance through changes in business models and improve-
ments to customer experience (in this example, adding features to a mobile
plug-in to help frequent travelers). In particular, Angela was leading this digi-
tal transformation effort in collaboration with Smith and his team. Dave was
the Chief Digital Officer (CDO) in the company and Angela’s boss.

Opportunity. Frequent travelers were already logging information about their
trips and sharing their experiences to social media sites, such as Facebook
and Instagram. Thus, TravelEssence already had a significant amount of

120 Chapter 9 Kick-Starting Development Using Essence

data about travelers. This situation created an opportunity for TravelEssence
to generate more business by using traveler data from repeat customers to
attract new customers.

From the Perspective of the Solution Area of Concern
Requirements. The specific requirements for the new endeavor included analy-

sis of traveler data to identify trends and relationships and to recommend
more exciting travel options to travelers. A measure of success would be an
increase in customers accessing these options (e.g., clicks on the options by
potential customers looking for more information).

Software System. TravelEssence already had a mobile application (app) that
was cloud-based, which means their customers did not need to download
and install any software on their own digital devices to access the service.
Therefore, Smith and his team only needed to develop a simple plug-in (i.e.,
addition to the software) that would allow customers to view the recom-
mendations on the already existing TravelEssence mobile app. Figure 9.2
shows the additions needed to the existing mobile app and to the existing
cloud service to provide the recommendation enhancements. Some of the
team members would also need to learn how to develop software utilizing a
software architectural style that uses small independent processes to com-
municate. This architectural approach is referred to as microservices. (You
will learn in Part III how to express practices using the Essence language and,
specifically, you will learn one way to describe microservices as a practice.)

From the Perspective of the Endeavor Area of Concern
Work. Smith and his team were asked by management to deliver a working

demo of the new product in one month.

Team. Smith’s development team comprised himself and three other develop-
ers, namely Tom, Joel, and Grace, all of whom were familiar with mobile app
development. Tom and Joel had used microservices before, but this technol-
ogy was new to Grace.

Way of Working. Smith and his team would use the facilities of the Essence
kernel as a convenient way to evaluate their endeavor’s progress and health.
The practices in their way of working were not explicitly described. They
would use the alphas, states, and checklists of the kernel to help them
figure out where their problems were and where they would need to focus

9.1 Understand the Context Through the Lens of Essence 121

Recommendation
enhancement
to mobile app

enhances

Existing
mobile

app

Existing
cloud service

Recommendation
enhancement
to cloud service

enhances

Figure 9.2 Enhancement to the Software System to achieve recommendations.

their attention as their endeavor evolved. They would also use the kernel
to help them decide about the activities they needed to conduct to help
solve the problems they identified. The team referred to this as “vanilla”
Essence because it included no explicit practices as extensions to the kernel.
They just used the alphas, states, and checklist items to help their team
initiate discussions leading to the actions agreed upon for each of the team
members.

The team had initial experience using the games as described earlier. This
helped to gain an overview of the requirements, endeavor, etc. Their plan was to
learn more about Essence and the games, using common sense and experience to
guide them. In this way they would evolve their understanding of the different ways
to use both the games and the kernel alphas. Below we will describe a few examples
of what resulted from this approach. For example, we will describe how the team
decided to add some additional alphas, referred to as “subordinate” alphas or sub-
alphas for brevity. As another example, we will also describe how the team applied
a number of the games previously discussed to help them run their endeavor and
conduct progress assessments. Later, in Part III you will learn a different way to use
the kernel when we discuss how the team extended it beyond the games and the
sub-alphas when the scope of their endeavor became more complex.

122 Chapter 9 Kick-Starting Development Using Essence

9.2 Agreeing on the Development Scope and Checkpoints
The states of the Essence kernel alphas, together with each state’s checklists, can
provide a straightforward way for a team to gain agreement about preconditions
for starting development and on the criteria for completing development. One way
to help you understand how the kernel can do this is to review the Checkpoint
Construction game discussed in Chapter 8.

Smith started the game by laying out on a table the state cards for all seven
alphas. Smith then said to his team, “We need to define two key checkpoints,
which we will name ‘Ready for Development’ and ‘Development is Complete’.” (See
Figure 9.3.)

Smith continued, saying, “Let’s start by selecting the alphas that need to be
inspected at our ‘Ready for Development’ checkpoint. Then we need to conduct a
second round where we agree on the states of each of these alphas that need to be
reached to say we have achieved this checkpoint. This checkpoint must be reached
before we can formally start the development.” (See Figure 9.4.)

After all the team members had considered all the alphas and noted to them-
selves which alphas they thought should be included, Smith said, “OK, let’s start
with the Requirements alpha. Using a thumbs-up, or thumbs-down, who thinks
this alpha should be included in our ‘Ready for Development’ checkpoint?” After
the team members all voted and reached agreement, Smith proceeded to lead the
team through the voting for the other six alphas. As you can see in Figure 9.4, the
team members agreed that all seven alphas should be included in their ‘Ready for
Development’ checkpoint.

Smith then led the team through the second round, where each team member
voted on their choice for which state of each alpha needed to be achieved to
meet their ‘Ready for Development’ checkpoint. During the second round, Grace
disagreed with her teammates, who all felt the Work alpha only needed to achieve
the Initiated state. Grace said, “I cannot start my tasks until the funding is approved,
and that checklist is in the Work alpha Prepared state.” Tom quickly replied, “We

Post-developmentPre-development Development

Ready for
development

Checkpoint

Phase

Development
is complete

Figure 9.3 Checkpoints and phases for enhancement of TravelEssence.

9.2 Agreeing on the Development Scope and Checkpoints 123

Stakeholders

Ready for
development

Development
is complete

Opportunity

Requirements

Software
System

Team

Way of
Working

Work

Figure 9.4 Defining the two key checkpoints using alpha state cards.

can’t wait for formal management funding approval because the schedule is too
aggressive and our organizational approval process is way too slow.” Smith then
responded, “Yes, Tom, you are right, but Grace has a very important point. We can’t
work without funding approval. So I will go and talk to Grace’s manager and explain
the situation. I am sure we can get approval to start while we wait for formal funding
approval.” Everyone agreed with Smith’s approach to solve this dilemma.

As shown in the figure, the team agreed that they needed to get the key Stake-
holders Involved, and they needed to establish the value of the Opportunity and
show that it was Viable. They also needed to agree that the Requirements were
Bounded and that Software System had reached Architecture Selected so that the
key technical risks had been addressed. They then agreed that the Work had to
be Initiated, the Team Formed, and they had to agree that their Way of Working
had reached the Foundation Established state. After the states were covered, the
team discussed the checklists associated with each state and reached agreement
on any additional checklist items they thought should be included. Once this dis-
cussion concluded, Smith next led the team through a similar process to define the
‘Development is Complete’ checkpoint (see Figure 9.4).

124 Chapter 9 Kick-Starting Development Using Essence

Sidebar 9.1 Sub-Alphas

When using the kernel, it is unlikely that you will progress the alphas as a single unit.
In each case you will drive the progress of the alpha by progressing smaller parts of
the alpha. For example, the Requirements will be progressed by progressing individual
requirement items. Requirement Item is an example of what we refer to as a sub-alpha
to Requirements. Sub-alphas are alphas in their own right that help to move forward or
slow the progress of the kernel alphas. As an example of slowing progress, Defect could
be a sub-alpha of the Software System alpha that slows the progress of the Software
System kernel alpha.

In contrast, Requirement Item is a sub-alpha that helps to move forward the progress
of the kernel Requirements alpha. The Requirement Item sub-alpha has states with
checklists just like the kernel alphas that can help practitioners when assessing the
state of the sub-alpha. Now you may be wondering whether or not these sub-alphas,
such as Requirement Item or Defect, are part of the kernel. The answer is that they
are not part of the Essence kernel because they are not always needed—they are not
essential. Depending on your specific endeavor and the practices your team agrees to
use, sub-alphas may or may not be needed. You will learn more about practices in Part III
where you will also see more examples of sub-alphas that are important to monitor once
you have chosen to use certain explicit practices.

9.3 Agreeing on the Most Important Things to Watch
The team agreed that watching just requirements was too coarse for their endeavor
because it would not be able to show them progress on a day-to-day basis. Often,
the Essence kernel alphas need to be broken down into smaller items to measure
progress.

Tom said, “In order to accurately measure our progress with requirements, we
need more than just the Requirements alpha.”

Angela, Smith, and the team therefore agreed that they would track requirement
items, defects, and issues that would occur during development. The team’s work
at this level could be reported each day. They agreed to use a simple spreadsheet to
track progress for these items.

After the team agreed that they had reached their ‘Ready for Development’
checkpoint, they decided to play the Chase the State game and the Objective Go
game (see Sections 8.2 and 8.3) to determine where they were and what they should
focus on next. Smith handed each team member a set of Alpha State cards. Smith
then placed the Requirements Alpha Overview card in the center of the table. Each
team member thought about which state they believed they were in and then placed
that state card face down on the table. When everyone was ready, they turned their

9.3 Agreeing on the Most Important Things to Watch 125

Team agrees achieved Team agrees not achieved

Figure 9.5 Requirements: Conceived and Bounded state cards.

cards face up. As a result of playing this game, the team agreed that they had
already achieved the Requirements: Conceived state because they knew who their
stakeholders were, and they knew which stakeholders would fund the new system.
However, they had not yet achieved the Requirements: Bounded state. This was
because the team agreed they had not yet achieved a clear understanding of what
success meant for the new system. See Figure 9.5. (Note: In the interest of brevity
we are not discussing every checklist item in these states.)

They also knew from playing the Checkpoint Construction game (Section 8.4)
earlier that they needed to get to Requirements: Bounded and to Way of Working:
Foundation Established states to get to their agreed-to ‘Ready for Development’
checkpoint. The team discussed the way they planned to work, and agreed that they
would work iteratively, which meant they would provide frequent software deliver-
ies to the customer. This discussion led to their agreement that they had reached
the Way of Working: Foundation Established state. To achieve the Requirements:
Bounded state, Angela, Smith, and the team sketched out the requirement items
that would be part of their first-month delivery (see Figure 9.6).

Having agreed on the Requirement Item list in Figure 9.6, the team agreed that
they had reached Requirements: Bounded. As can be seen in Figure 9.4, the team

126 Chapter 9 Kick-Starting Development Using Essence

Req-Item #2Req-Item #1 Req-Item #3 Req-Item #4

System generates
recommendations
for a traveler

Mobile plug-in
to display
recommendations

Handle user’s
selection to view
or discard
recommendations

System tracks
recommendation
success rate

Figure 9.6 Requirement item list for the enhancement of TravelExchange.

also needed to agree on the work that needed to be done to achieve the other
five kernel alpha states for that checkpoint—Stakeholders: Involved; Opportunity:
Viable; Software System: Architecture Selected; Work: Initiated; Team: Formed; and
Way of Working: Foundation Established. This is an example of what we mean by
describing software engineering as multidimensional, and what we mean by stating
that Essence helps the team stay focused on the most important things throughout
their endeavor. In Chapter 10 we discuss how the team reached agreement on
additional needed work.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain the steps involved when getting started with Essence (i.e., under-
standing the context, agreeing on scope and checkpoints, and agreeing on
the things to watch);

. explain how to use Essence’s areas of concern to understand the context of
the problem or opportunity an endeavor addresses;

. for a sample endeavor, name the related stakeholders, the opportunity, re-
quirements, software system, work, team, way of working; and

. explain the concept of sub-alphas and when they are useful, including exam-
ples of sub-alphas.

10Developing with Essence
The goal of this chapter is to demonstrate how Essence can help teams find the best
approach to development endeavors via selection of appropriate practices, mini-
practices, and tools. Specifically, we show

. situations within software endeavor that require the team to be ready to
resolve minor challenges during software development, because not every-
thing runs smoothly in real endeavors;

. the importance of communication and teamwork during software engineer-
ing; and

. that “essentializing software engineering” means representing the way your
team is working using the Essence language and the Essence kernel common
ground.

Furthermore, using the example of iterative development performed by Smith and
his team, we will also show

. what typically happens during parts of the development cycle that include
planning, doing, checking, and adapting;

. the role of Progress Poker, Chase the State, and Objective Go when used in
development planning; and

. the mechanisms to update the cards (by hand) when needed during the
process.

To achieve the Way of Working: Foundation Established state, Smith’s team
needed to agree on their approach to development, which included selecting their
key practices or mini-practices and tools. They agreed to work in an agile way,
splitting up the whole endeavor into smaller mini-endeavors, each mini-endeavor
resulting in progressing the work on the software to be built. This approach is called
iterative development and each mini-endeavor is called an iteration. An iteration is
a fixed period of time in which the team develops a stable piece of a software system.

128 Chapter 10 Developing with Essence

• Reflect on what happened
• Look for more suitable
 ways to work
• Improve quality of work
• Reduce waste

• Determine the current state
• Determine the next state
• Determine how to achieve
 the next state

• Track the work
• Check that work is indeed
 done

• Work toward achieving
 the next state
• Remove obstacles as they
 occur

Adapt Plan

Check Do

Figure 10.1 Plan-Do-Check-Adapt cycle.

The length of an iteration is typically two to four weeks and can involve all kinds of
activities, including requirements gathering and the deployment of the resultant
software system.

Developing your software iteratively is like taking a journey in your car. You need
to know where you are, where you are heading, how much fuel you have, and how
much further you have to go before reaching your destination. You adapt to the
road conditions, traffic, and weather as you drive. You are continuously planning,
doing, checking, and adapting1 (see Figure 10.1). This is how Smith and his team
ran their iterations. Each iteration was set to be one week in duration.

Plan. First, Smith’s team would ascertain the current state of the whole endeavor
by determining the current state of each of the alphas. Before their first weekly
iteration, they decided to start by playing the Progress Poker game (Section 8.1).
But after having done it for the first two alphas they continued to play the Chase
the State (Section 8.2) game for the other five alphas. So Smith began by placing
the first Alpha Overview card in his deck in the middle of the table. Each team
member thought about which state they believed that the Requirements alpha was
in and then placed the selected state card face down on the table. When everyone
was ready, they turned the cards face up. After the team discussed the results and
reached agreement on the state of the Requirements alpha, the team members

1. We modified Deming’s PDCA cycle (https://en.wikipedia.org/wiki/PDCA), replacing Act with
Adapt, as this is more descriptive of the intent.

https://en.wikipedia.org/wiki/PDCA

Chapter 10 Developing with Essence 129

picked up their cards. Together they had agreed that the Requirements had reached
the Coherent state.

Smith then selected the Software System alpha and placed its Alpha Overview
card in the middle of the table. He and his team repeated the same steps with this
alpha and agreed it had reached the Architecture Selected state.

It turned out that the team wasn’t needing to discuss too much to obtain con-
sensus; they found that they were in agreement immediately. So Smith suggested
instead to play the Chase the State game (Section 8.2) next. This open discussion
would more quickly reveal the state for each of the remaining five alphas.

For the Stakeholder alpha, although the team agreed that they knew Dave and
Angela were their stakeholders, they still had not yet agreed on how they would get
them involved. Thus, the Stakeholder alpha continued to be in Represented state.
For the Opportunity alpha, the team agreed that they had now achieved the Solution
Needed state, but no one thought they had achieved the Value Established state.
At this point, Joel and Tom started to discuss how they might go about convincing
senior management of the value of the endeavor, but Smith quickly interrupted,
saying, “Wait. We are just conducting the game now to agree where we are. Let’s
hold off discussing which states we need to focus on next and how we will achieve
them. We will do that after we have fully assessed where we are now and can then
decide what is most important to do next.” Everyone agreed and they continued
with Chasing the State to reach agreement on the other alphas (Work: Prepared,
Team: Formed, and Way of Working: Foundation Established); see Figure 10.2.

After finishing the games, knowing where they were, they discussed and agreed
to what alphas and states to progress in the coming iteration. This was done by the
team playing the Objective Go game (see Section 8.3), Smith decided to start the
Objective Go game saying, “We now know what state we are in for each of the seven
kernel alphas. Now we need to agree on which states to focus on achieving in our
next iteration.” Joel decided to cut to the chase and asked, “So does everyone agree
that the most important thing in the next iteration is to convince management of
the value of our endeavor?” All of the team members nodded in agreement. Smith
then said, “This means we have concurred that we need to achieve the Opportunity:
Value Established state in the next iteration.”

The team continued to discuss, and reached agreement on which states in
the other alphas they needed to achieve in the next iteration. For one thing, they
needed to get their key stakeholders, Dave and Angela, involved (meaning reach-
ing the Stakeholder: Involved state). They also agreed that the requirements for the
upcoming iteration were coherent, which means they were consistent, and that

130 Chapter 10 Developing with Essence

Figure 10.2 The alpha states agreed on after playing the Progress Poker and Chasing the State games.

they needed to address them by demonstrating the implementation of those re-
quirements to Dave and Angela. (That is, they needed to achieve the Requirements:
Addressed state.) They also agreed the team needed to be collaborating, the work
must be started, and the way of working needed to be in use; see Figure 10.3.

Together they then planned how to achieve the target states by identifying which
tasks, if completed, would achieve these states. For example, one specific part of the
work they needed to do was to set up a meeting with Dave and Angela to discuss
how they would get them involved. They also knew they needed to set up a test
environment.

This all enabled them to connect their detailed day-to-day work with the progress
of the endeavor as a whole. If the effort to complete the tasks exceeded that available
in the iteration, then it would take more than a single iteration to achieve the
objectives and the target states. This means the team would need to break their
tasks down further and agree on the pieces to complete in the current iteration. For
instance, they knew they could not get all four requirement items done in the first

Chapter 10 Developing with Essence 131

Figure 10.3 Result after applying the Objective Go game.

iteration, so they concurred to work on just the first three (for the four requirements
items mentioned here see Figure 9.6 above).

Do. Each iteration, Smith’s team worked on the identified tasks to progress the
endeavor as a whole toward the target states. This involved setting up environments,
discussing requirements, capturing agreements, writing code, testing, and so on;
see Figure 10.4.

Check. Smith’s team tracked the objectives and tasks to make sure that they were
completing what they had planned as they used their agreed-on way of working.
The team discussed the healthiness of all alphas; unhealthy meant the alpha had a
checklist that had not yet been met but should have been met, or that the checklist
had previously been met, but was no longer met due to some change in the condi-
tion of their endeavor. The team placed green stickers next to the alpha state cards
they had agreed represented healthy alphas. They also agreed that anyone could

132 Chapter 10 Developing with Essence

• Set up environment
• Discuss requirements
• Capture agreements
• Write code
• Test code
• Etc.

Figure 10.4 Task list.

place a red sticker next to a card if they felt during the iteration that an alpha had
become unhealthy.

Adapt. Smith’s team reviewed their way of working, identified obstacles, and
found better or more suitable ways of doing things. This often resulted in changes
to their plans and their way of working.

10.1 Planning with Essence
When you plan an iteration, the alphas can help you understand where you are and
where to go next. By aligning the objectives for each iteration, Smith’s team made
sure that they progressed in a balanced and consistent way. The alphas helped by
reminding them what was essential for success as the team decided what was most
important to focus upon next.

As mentioned, Smith and his team agreed that they would work in cycles where
each iteration was one week. It was the first day (Monday) of the first iteration week.
Using Essence, they reviewed their current state and the states they had previously
agreed that they wanted to achieve by the end of the first iteration. Based on that,
they identified a set of tasks. In what follows, you will find task descriptions that
were agreed on by the team after discussing each alpha, the state they had achieved,
and the next target state(s). The first state on the left in each diagram is the current
state, and the state(s) listed after the arrow is (are) the target state(s).

Sometimes we have more than one target state for a given alpha. This is because
teams often work to achieve checklist items in more than one state at the same
time. When a team works iteratively, they often are working to get some of the
requirement items both coherent and addressed in the same iteration. For example,
when our TravelEssence team was working on Req-Item #1, they needed to get
the code to actually produce recommendations on hotels, and they needed to get
clarification on how far from the traveler’s current location they should search for
possible hotels.

10.1 Planning with Essence 133

Current state Target state

Figure 10.5 Stakeholders current and target states.

As we established in Chapter 6, the alphas fall into three areas of concern:
Customer (indicated by green cards and notes), Solution (indicated by yellow cards
and notes), and Endeavor (indicated by blue cards and notes). We will look at
the planning in these terms; first we will consider it from the perspective of the
Customer area of concern, comprising the Stakeholders and Opportunity alphas.

Stakeholders: Recognized → Involved (see Figure 10.5).
The team had identified two of their key stakeholders as Dave and Angela, and
that there was not yet agreement on their involvement and commitment. As men-
tioned, they had agreed to set up a meeting with Dave and Angela to clarify their
involvement.

(Task: Stakeholder involvement meeting)

Opportunity: Solution Needed → Value Established (see Figure 10.6).
A solution was needed to exploit the travelers’ data, but what the solution required
was still up in the air. The value of that solution still needed to be established
to convince senior management at TravelEssence to move forward and fund the
effort. The team’s immediate priority was to set up a test environment where they
could quickly experiment with different ideas for using the travelers’ existing data

134 Chapter 10 Developing with Essence

Current state Target state

Figure 10.6 Opportunity current and target states.

to generate more traveler interest, leading to increased revenue. This could help
them quantify the value of the new system to Dave and Angela.

(Task: Experiment with different ideas to increase business.)
Next, we look at planning from the perspective of the Solution area of concern,

comprising the Requirements and Software System alphas.

Requirements: Conceived → Coherent, Addressed (see Figure 10.7).
The team determined two target states for this alpha: Coherent and Addressed. To
achieve their objectives in the current iteration, they would need not only to get
three requirement items into the Coherent state, but also move these requirement
items to the Addressed state. In the discussion that follows, you will see how the
team could work toward these two target states at the same time.

Smith already had a simple requirement list. In the first iteration, Smith and his
team would attempt to complete the following requirement items:

Req-Item #1. System generates recommendations for a traveler

Req-Item #2. Mobile plug-in displays recommendations

10.1 Planning with Essence 135

Current state Target states

Figure 10.7 Requirements current and target states.

Req-Item #3. System handles user’s selection to view or discard recommenda-
tions

Of course, some details needed clarification, such as finding the algorithm (cal-
culation formula) to generate a recommendation, and determining which target
set of travelers they would use as a test data set. This meant the next target state
for requirements was to get to the Coherent state by working on these issues. The
team agreed that this would be achieved by Smith collaborating with Angela to
reach agreement on the plan. Once agreed, the team would need to move forward
quickly to address these requirements for the upcoming planned demonstration
(discussed below under Software System). This means they needed to move their
requirement items to the Addressed state.

(Task: Smith to work with Angela to reach agreement on recommendation algorithm,
and which set of travelers they would use as their test data set)

Software System: Architecture Selected → Demonstrable (see Figure 10.8).
To get to the Demonstrable state, the team would need to code, test, and integrate
critical parts of the system and demonstrate the results to Angela. The team agreed
to work on their respective requirement items and integrate their work by Wednes-
day evening to be ready for a demo to Angela by Friday.

(Task: Team members work on implementing their respective requirement items)

136 Chapter 10 Developing with Essence

Current state Target state

Figure 10.8 Software System current and target states.

Last, we look at this iteration’s planning from the perspective of the Endeavor
area of concern, comprising the Work, Team, and Way of Working alphas.

Work: Initiated → Prepared, Started (see Figure 10.9).
To get to the Work: Prepared state, the team needed to make sure their tasks were
broken down into sufficiently small pieces to fit in the agreed iteration, understand
any related risks, and be sure they had a credible plan in place that extended beyond
the current iteration. While Tom, Joel, and Grace focused on the planning for the
first iteration, Smith reviewed the work the team had agreed to do. As part of Req-
Item #1, the team had discussed providing recommendations for both hotels and
restaurants, but Smith decided this was too much for the first iteration and sug-
gested the team limit the work for now to just providing hotel recommendations.

(Task: Team breaks work down to fit in iteration)

Team: Formed → Collaborating (see Figure 10.10).
Smith’s team members had successfully worked together before. They each knew
their responsibilities and how they would work together, but the team had not yet
showed that it was working as one cohesive unit. By setting the goal of integrating

10.1 Planning with Essence 137

Current state Target states

Figure 10.9 Work current and target states.

Current state Target state

Figure 10.10 Team current and target states.

138 Chapter 10 Developing with Essence

Current state Target states

Figure 10.11 Way of Working current and target states.

their work by Wednesday, they would be able to verify that they were working as
one cohesive unit (Task: Integrate work by Wednesday).

Way of Working: Principles Established → Foundation Established, In Use
(see Figure 10.11).
To get to Foundation Established, the team needed to establish a development
and test environment. Tom agreed to set up the development environment that in-
cluded the team’s chosen repository version control tool and the test environment.
Grace agreed to prepare the test environment and supporting scripts. Following
the setup of the environment, the team would start to use it to complete their tasks
during the first iteration (Task: Establish development and test environment).

10.2 Doing and Checking with Essence
With the goals (expressed as target alpha states) and the tasks identified, Smith’s
team proceeded to work on their respective tasks.

Smith and his team members were co-located: sitting near each other in the
work place. Angela’s work area was located on a different floor, near Dave. Travel-
Essence had an internal corporate chat application for collaboration, so all of them
could access each other when needed. In general, work went rather smoothly, as
the members were familiar with each other and the technology they were using.

10.2 Doing and Checking with Essence 139

On Friday afternoon, they did indeed achieve their goals and demonstrated the
implementation of the designated requirement items to Angela. They reviewed
their health and progress by playing the Chase the State game again and comparing
the results to the previous time. In the following results, the target state for each
alpha is listed in parentheses, with the actual results of the team’s effort described
afterward.

From the perspective of the Customer area of concern:

Stakeholders (Involved). Following the Friday demo, Smith had a side meeting
with Angela and Dave, where they discussed and agreed to their involvement
in future demonstrations.

Opportunity (Value Established). The Friday demonstration was successful
and convinced Dave and Angela that the system could potentially produce
significant user interest, leading to increased business. As a result, Dave was
ready to move forward and fund the effort.

From the perspective of the Solution area of concern:

Requirements (Coherent, Addressed). The team had successfully clarified the
open issues related to the agreed requirements, and then they successfully
addressed those requirements in the Friday demonstration.

Software System (Demonstrated). The team successfully demonstrated the
critical parts of the system that had been agreed to for the Friday demon-
stration.

From the perspective of the Endeavor area of concern:

Work (Prepared, Started). The team had successfully broken their agreed tasks
down for the first iteration, understood the risks, and moved forward coding,
testing, and integrating the pieces in preparation for the Friday demonstra-
tion.

Team (Collaborating). The team successfully integrated their work on Wednes-
day in preparation for the Friday demo. This activity verified that the team
was working as one consistent unit.

Way of Working (Foundation Established, In Use). The team had successfully
gotten their environment set up and used it during the first iteration to
complete the work for the Friday demonstration.

140 Chapter 10 Developing with Essence

10.3 Adapting a Team’s Way of Working with Essence
The kernel clearly helped the team capture and apply the essence of software
engineering. It reminded them to

. involve key stakeholders;

. think about the opportunity;

. break the work down to fit in the agreed way of working;

. think about risk;

. clarify requirements;

. integrate each team member’s work with teammates’ work; and

. focus on the most important things first.

But there will still always be better ways of doing things. So after the successful
Friday demonstration, the team decided to discuss what went well, what did not go
so well, and how they could do better during their next iteration.

During this discussion, Smith reminded the team of their agreed-on target alpha
states from the first iteration; see Figure 10.3.

Smith then asked the following questions:

. What went well with our planning, doing, and checking related to the above
alpha states?

. What did not go well with our planning, doing, and checking related to these
alpha states?

. What can we do better with our planning, doing, and checking related to the
alpha states?

Joel said, “We achieved a successful demonstration and now Dave is going to fund
our full endeavor, so that certainly went well.”

Tom said, “The way to achieve the Requirements: Addressed state was not clear
to me at the start of the iteration. I learned that I had to talk to Angela and get her
to agree to the requirement items to be implemented. I didn’t understand this just
by looking at the state checklist.”

Grace said, “Actually, Smith, for me to do my job better, I would like to have
better guidance regarding how to work on a requirement item.”

Smith first considered Tom’s request. That was easy; all Smith had to do was to
supplement the state checklist with some additional guidance. He scribbled two

10.4 How the Kernel Helps Adapt Their Way of Working 141

Figure 10.12 Additional guidance beyond the standard on achieving a state.

lines of text onto the Requirements card as follows (see Figure 10.12):

. gain agreement on requirement items that are within scope of Addressed;
and

. implement these requirement items.

These notes were additional guidance on how to achieve the Addressed state.
Then Smith considered Grace’s request. This request was not as easy. It meant

making the way of working on all requirement items more explicit. We will discuss
how to do this in Part III.

The way of working affects all team members, and every team member can
contribute. This is another area where the kernel is useful. By talking about the
alpha states after their successful demonstration, as we have just observed, the
team came up with a number of good ideas on how they could do better during the
next iteration.

10.4 How the Kernel Helps Adapt Their Way of Working
The kernel helps teams adapt their way of working in multiple ways.

10.4.1 Helping a Team Reason about Their Way of Working
First, it helps a team reason about their way of working and decide if there are
improvements they should make.

142 Chapter 10 Developing with Essence

Developers who come straight from an educational program often know more
about programming than developing software, and more about developing soft-
ware than working as a team and improving their way of working. Because their
experience is limited, they often need a little help. The alphas and their states can
help a team reason about their way of working as they try to improve.

When reviewing their way of working, we make the alpha states visible to the
team members to help them think about their “process.” If you are conducting a
review of your way of working for an iteration, you only need to make visible those
states relevant to the current iteration (i.e., the iteration’s target states). This helps
the team stay focused on reviewing just their way of working related to that iteration.

By visualizing the states, a mental transition takes place. The team is now
looking at the “process.” We then look at each state specifically, and ask the same
questions.

. What went well during this iteration, and have we achieved this alpha state?

. What did not go well during this iteration, and do we know what is keeping
us from achieving this alpha state?

. What can we do better in the next iteration that will help us achieve this alpha
state?

10.4.2 Making Changes to the Way of Working
The daily contact your team has with the alpha states (and hence the kernel) help
you find simple improvements to adapt your team’s way of working. This may mean
adding additional items to the alpha state checklist to meet your team’s needs.
Teams can also define new alphas or add checklists to help team members, such
as the text Smith added to Requirements: Addressed to help Tom. How to extend
the kernel elements further with more explicit practices is discussed in Part III.

Keep in mind that the team should only add information to the kernel elements
and their checklist items. Changing the information that is already there would un-
dermine the value that we gain through the use of a standard kernel. The standard
is the basis for essentializing methods and practices, a subject discussed in Part I.
You will learn more about essentializing in Part III, namely how to express explicit
practices using the Essence language.

You can just think of “essentializing software engineering” as representing the
way your team is working using the Essence language and the Essence kernel
common ground. This can help your team understand more clearly what missing
elements they need to focus on in order to be successful in their endeavor.

What Should You Now Be Able to Accomplish? 143

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain the terms iteration and iterative development;

. explain the activities involved within iterative development (i.e., planning,
doing, checking, and adapting);

. explain the use of individual card games within the planning, doing, check-
ing, and adapting parts of the iteration cycle, and be able to apply them;

. explain the role of discussion and team agreement during these activities;

. explain the role of “healthy alpha” and its use in examining alpha states; and

. give examples of the “Way of Working” and means to adapt them during
development, meeting the needs of the team and the endeavor.

11The Development Journey
In Chapter 10, we showed how Smith’s team conducted one single iteration us-
ing Essence through the Plan-Do-Check-Adapt cycle. In this chapter, we will walk
through how Smith’s team’s journey would continue to successful completion
and discuss how Essence helps the team ensure progress and health. Specifically,
we show

. the importance of tracking progress during a development endeavor; and

. the ways Essence facilitates progress tracking, via surfacing all of the essen-
tial dimensions so that an accurate progress assessment is visible and timely
actions can be taken.

11.1 Visualizing the Journey
Let’s look at Smith’s team’s development progression in terms of how its require-
ment items evolve across their journey. Figure 11.1 shows what is referred to as a
cumulative flow diagram. Such a diagram provides a visual display of how the re-
quirement items progress. It has time on its horizontal axis, and the distribution
of requirement items across different states on the vertical axis. In this figure, you
can see the states of the Requirement Item sub-alpha (Identified, Described, Imple-
mented, and Verified). The team can use these states to help assess their progress
and health in the iterations after the first one.

Smith’s team’s list of requirement items was not static. Not every item was
identified upfront as shown on the y-axis. Instead, items were added at the end of
each iteration cycle until the end of the third iteration. You can also see from this
diagram that some items were verified in the first iteration. Those are the three
requirement items discussed in Chapter 9 that the team planned to work on in the
first iteration and demonstrate to Angela. As the team continued into iteration 2,
three more requirement items were identified, and more requirement items were
implemented and verified by demonstrating them to Angela. In Part III, we will
discuss how the team used an explicit requirements practice (user stories or use

146 Chapter 11 The Development Journey

Start of
iteration 1

12

10

8

6

4

2

0
End of

iteration 2
End of

iteration 3
End of

iteration 4
End of

iteration 5

Identified

Described

Implemented

Verified

Figure 11.1 Cumulative flow diagram.

cases) as their endeavor started to become more complex, and they realized they
needed to improve their requirements approach.

11.2 Ensuring Progress and Health
Most practitioners are concerned about progress: how much stuff gets developed,
how many defects are found, how many defects are fixed, and so on. But the health
of the development endeavor includes far more than these individual progress
measures. The Titanic was progressing very well until it hit an iceberg and the rest
was history. Similarly, often software endeavors appear to be progressing very well
when limiting your view to only a few dimensions. The role of Essence alphas is
to bring all of the essential dimensions to the surface so that an accurate progress
assessment is always visible and timely actions can be taken when necessary.

Table 11.1 shows the numerical evolution of the Essence kernel alpha states. By
numerical, we mean that each number represents the nth state of the kernel alpha:
e.g., state 1 of the Requirements alpha is Conceived, state 2 is Bounded, and so on.
The column “Start of Iteration 1” represents the time when Smith’s team received
the work. “End of Iteration 1” represents the end of the first iteration, which we
discussed in detail earlier (see Chapter 9). The complete story is four iterations.

For example, in our simple story in Chapter 9, the team was able to get their key
stakeholders (Dave and Angela) involved and therefore achieved the Stakeholders:

11.2 Ensuring Progress and Health 147

Table 11.1 Kernel state evolution

Start of End of End of End of End of
Iteration 1 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Target

Stakeholders 1 3 4 4 5 5

Opportunity 2 3 3 3 3 3

Requirements 1 2 5 5 6 6

Software
System 1 2 2 4 4 4

Work 1 3 4 4 5 5

Team 2 3 4 4 4 4

Way of
Working 1 3 3 4 5 5

Note: The numbers in the table indicate the achieved state.

Involved state (state #3) in iteration 1. The team also successfully addressed all
three requirement items that were agreed to for the first iteration. However, Smith’s
team agreed to apply Essence to the complete four iterations when assessing their
progress. This means that although they completed all the requirement items
they planned to address in iteration 1, they did not assess their state of Require-
ments to have achieved the Addressed state at that point, because they had not
addressed all of the requirement items needed for the full four iterations. Although
the Requirements alpha doesn’t seem to progress in iteration 1, by introducing
requirement-item sub-alphas the team can track more accurately the progress of
each requirement item and thus of the requirements as a whole.

In the simple case, we described the states as all having progressed forward
throughout the four iterations. But when new requirement items are added in later
iterations, it is possible that the requirements alpha state may fall back to a previous
state. This is because the new requirement items may not have achieved the same
state as the original requirement items. For example, they may not have achieved
the Coherent state (state #3) or even the Bounded state (state #2). So the states of
the alphas do not always move forward linearly as depicted in Figure 11.1 and in
our simple example.

We can also picture the evolution of the kernel alpha states as a radar diagram
[Graziotin and Abrahamsson 2013] (see Figure 11.2).

148 Chapter 11 The Development Journey

Start of iteration 1

Team

Work

Opportunity

Stakeholders

Requirements

Software system

End of iteration 3

Way of
working

Way of
working

Team

Work

Opportunity

Stakeholders

Requirements

Software system

5
4
3
2
1
0

5
4
3
2
1
0

Figure 11.2 Radar diagrams for the start of iteration 1 and the end of iteration 3.

We see the endeavor evolved gradually with alphas progressing from lower states
to higher states. If a particular axis in the radar diagram (i.e., an alpha such as
Software System) is progressing slower than projected, this prompts the team to
consider what is getting in the way and what needs to be done to keep progressing
as planned. One possible way is to reduce the scope of the requirements or look for
a different approach to implement the software system so that it can be validated
earlier.

Thus, the individual alphas progress one by one and together the alphas
progress in waves. In order to make progress for the whole endeavor, the alphas
need to progress in a balanced way. For instance, you cannot progress the Software
System alpha without also progressing the Requirements alpha. These parallel
progressions in waves are critical for the success of the endeavor.

11.3 Dealing with Anomalies
Well, the reality is that things don’t always go according to plan. This means that
once you reach a certain alpha state, things can happen to cause your endeavor to
fall back. For example, stakeholders who were involved at the start of the endeavor
may stop participating because of other priorities, and even though your work may
be under control one day, the next day you may discover new risks that you never
expected, and teams that are working well together collaborating may lose seasoned
team members and instead gain new members with less experience. All of these
kinds of situations can cause your endeavor to fall back. This is why teams should
periodically use the Essence kernel alphas to provide a very straightforward health
check.

What Should You Now Be Able to Accomplish? 149

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. name different aspects of software engineering that are worthy of progress
checking (e.g., requirements met, artifacts developed, defects found, defects
fixed);

. explain what the cumulative flow diagram is and how it can be used to track
progress;

. explain the means Essence provides to facilitate progress tracking; and

. explain what the radar diagram is and how it can be used to track progress
balance among different alphas.

12Reflection on the Kernel
The goal of this chapter is to reflect on general observations on software engineer-
ing using Essence and its kernel, beyond the example discussed thus far. In this
chapter, we show

. that software engineering is essentially concerned with addressing complex-
ity when developing software;

. that each alpha addresses the complexity of a development endeavor from a
different perspective; and

. that each alpha/dimension is associated with its own lifecycle, and under-
lined with its own theory.

12.1 Validity of the Kernel
What we have shown in this part is one single case of using the kernel, as we
walked through how Smith’s team progressed through all its states. We can say
that the kernel is valid for this case, but does it work for other potential cases? To
validate that, we would need to apply the kernel over a broad range of endeavors.
As a matter of fact, we authors have done this both through academic classes and
real-world industrial projects. As of 2017, we have never received any proposal for
removing any elements from the kernel. However, we have received proposals to
add elements, and such additions will probably happen as time goes by, but in the
interest of being conservative, they must be very well motivated.

12.2 Applying the Kernel Effectively
There are two important approaches that Smith applied to run his endeavor effec-
tively: the kernel alphas and the facilitation games using cards.

Let’s revisit alphas. Development endeavors are complex and multi-dimen-
sional. Each alpha addresses this complexity from a particular dimension, and
readers should be able to recall and name these seven dimensions quite read-
ily (Opportunity, Stakeholders, Requirements, Software System, Work, Team, and

152 Chapter 12 Reflection on the Kernel

Way of Working). Each comprises a lifecycle of its own. Each dimension is based
on some underlying theory. For example, the Team alpha is based on the Tuck-
man model of team formation and performance; the Stakeholder alpha is based
on works on stakeholder engagement [Ng 2015]; and so on.

Even though the alphas are separate, they are not independent. They are just
different views of the same development process. As such, in an endeavor the
kernel alpha states progress in waves, as discussed in Section 11.2. We have to
make moves that take the endeavor from one set of states to another set of states,
and the balance is achieved by doing enough on each dimension to be able to
progress all dimensions. This wave-like progression acts as a reference for detecting
anomalies, as we discussed in Section 11.3. If some dimension—e.g., Software
System or Stakeholder—progresses much more slowly than other dimensions, it
would be a cause for concern. Waterfall projects can fall into the error of producing
a demonstrable Software System too late. Agile projects may fall into the trap of not
seeking early Stakeholder feedback and consensus. Thus, the kernel alphas provide
a simple yet holistic progress and health check.

The second approach is the facilitation games we introduced in Chapter 8.
Development is a complex process with participants coming from different back-
grounds and having different intent; they thereby could have different ideas of how
best to run the endeavor. Although the kernel alpha state cards and checklists pro-
vide descriptions of what each alpha entails, there is still important work needed to
ensure that alphas are being used and understood. As such, the cards are important
consensus facilitation tools.

Software engineering is cooperative, and having consensus among its partici-
pants is crucial for success. Just having a prescribed kernel alpha definition is not
sufficient; we need to get these definitions into the hands of the participants and
to have them used in everyday conversations. The cooperative games discussed in
this part of the book help build this consensus, aligning different people’s under-
standing and thereby working toward a common goal, which is the success of the
endeavor. (There are other games supporting the actual development work, for in-
formation on these, see the Recommended Additional Reading at the end of this
chapter.)

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain using examples that although alphas are separate, they are not inde-
pendent;

Recommended Additional Reading 153

. explain how anomalies in the endeavor can be detected via the disbalance in
alpha progress;

. name potential software engineering anomalies in waterfall and agile pro-
jects, and explain how Essence can help to detect them;

. name ways to integrate Essence into software development process; and

. perform card games you now know in the context of a method you know, so
that the card play smoothly integrates into daily team conversations.

Postlude
In Part II of this book, we showed how a team conducted a development endeavor
using minimum explicit knowledge. (This knowledge is captured in the Essence
kernel, and in particular the alpha state cards.) However, the team’s way of work-
ing was not static. For example, they added an additional sub-alpha (Requirement
Item), and they added some additional checklists to a state (Requirements: Ad-
dressed) to help a team member understand when it was achieved.

As we described, teams have to add practices to the kernel to get a complete way
of working. Often, many teams don’t describe these but keep them tacit. When
such teams grow in numbers, and as new members join and others leave the team,
it becomes quite difficult, especially for the new members, to understand exactly
how the team functions.

Even if a team did make their way of working explicit, it is another thing to
structure it in a way that is easy for the team to use and improve as they learn. So,
how does one accomplish this? In Part III we will demonstrate how to achieve this
goal through the idea of explicit practices.

Recommended Additional Reading
. Alpha State Card Games [Alpha State Card Games 2018]. Here you will find

the games described in Chapters 8 and 9 developed in some more detail. You
will also find additional games to support your team’s software development
endeavors.

. P-W. Ng, Making software engineering education structured, relevant, and
engaging through gaming and simulation [Ng 2013].

. D. Graziotin and P. Abrahamsson, A web-based modeling tool for the SEMAT
Essence theory of software engineering [Graziotin and Abrahamsson 2013].

154 Chapter 12 Reflection on the Kernel

. P. E. McMahon, A thinking framework to power software development team
performance [McMahon 2015].

. P.-W. Ng, Integrating software engineering theory and practice using
Essence: A case study [Ng 2015].

IIIP A R T

SMALL-SCALE
DEVELOPMENT
WITH PRACTICES

In Part II, we introduced how Essence helps teams to evaluate their current state,
to plan, and to progress toward achieving the next state. However, how to actually
get to the next state is not shown by merely using the Essence kernel. This instead
requires tacit or explicit knowledge that you need to have or acquire on top of what
the kernel gives you. (In this case, tacit means it is known by the team, but not
necessarily written down. Explicit means it is written down.) When facing simple
development endeavors, like the one described in Part II, you just need to rely
on tacit knowledge. However, in other situations—due to team members coming
from different backgrounds, experiences, and/or competencies—it is useful to have
some tangible and explicit practices for them to fall back on. Essence helps here,
as well. The Essence language allows you to define practices on top of the Essence
kernel, providing explicit guidance to teams on how to get to the next goal state(s)
or how to maintain the health of the current state(s). By “on top of” we mean using
Essence, the kernel elements, and the language as a vocabulary to describe your
team’s specific practices, or in other words using Essence to essentialize practices.
Moreover, teams usually need many practices and these need to be merged or
composed to remove overlaps and conflicts. Thus, the Essence language includes a
composition mechanism that is described later in this part to allow teams to create
a method including many practices of their choice.

In this part, we will motivate the need for explicit practices and discuss how ex-
plicit practices that are described on top of Essence are used by small development
teams to help solve the common challenges they often face. As an example, we have
chosen a team that uses an agile approach, but we could have chosen a team that
uses a more traditional approach, such as a waterfall approach. Agile development,
of course, is the mainstream approach to delivering software at the time of writing
this book and is utilized in many organizations. Agile development is not just a
method, but rather it is a mindset, with principles as well as practices. Over the
years, common agile practices have been codified (i.e., written down), and we ex-
plain in this part how to modularize them as practices using Essence. In particular,
you will learn how a small agile team makes use of Scrum, User Stories, Use Cases, and
Microservices practices to solve specific challenges they face during their develop-
ment. This development typically takes several weeks to complete, and we will see
how this team evolves their way of working practice-by-practice while working on a
list of changes. Now we consider a new and different situation with respect to the
TravelEssence development team. We consider it now enlarged with new persons.
Also we start with a slightly different development situation which is summarized
below (see Chapter 13 and Table 13.1).

Part III will cover the following objectives.

. Appreciate what practices are, and the types of challenges teams often face
where practices can help. We will describe practices including Scrum, User
Stories, Use Cases, and Microservices.

. Appreciate the value that representing practices in an essentialized form
provides in helping you find the right practices for your team.

13Kick-Starting
Development
with Practices
In Part II, we saw how a small team kick-started development using Essence. The
goal of this chapter is to extend the process with the use of explicit practices to
help the team with particular challenges they face. Specifically, in this chapter
we show

. the elements behind kick-starting development with explicit practices, and

. the role of these elements and—at an elementary level—the roles of four
popular practices detailed later in the book (i.e., Scrum, User Stories, Use
Cases, and Microservices).

Furthermore, we demonstrate through our example how a real endeavor can
progress as more people and stakeholders become involved. We reflect on the state
of our simple endeavor after the demonstration discussed in Part II, and move for-
ward from there. We will learn how the conditions have changed and what effect
that has had on the state.

Now that our kick-start process will involve not just tacitly agreeing on the things
to monitor as we saw earlier, but agreeing on explicit practices to apply, the kick-
start sequence has changed. It is now as follows.

1. Understand the context through the lens of Essence.

2. Agree upon development scope and checkpoints (where it begins and where
it ends).

3. Agree upon practices to apply.

4. Agree upon the important things to watch.

In the remainder of this chapter, we will explain what each of these items means,
and we will describe how teams can use practices effectively in development. As

158 Chapter 13 Kick-Starting Development with Practices

this part of the book progresses, we will see firsthand through TravelEssence’s team
the value explicit practices can bring to them over the simpler tacit practices they
have used so far.

13.1 Understand the Context Through the Lens of Essence
We have already explained in Chapter 9 why it is important to understand the con-
text of a development endeavor and how the Essence kernel alpha states can help.
What we are illustrating in this part is similar, except that the context is different.

Table 13.1 shows a mapping of each Essence kernel alpha to its state at this
point in time, and the rationale for the team’s assessment of these current states.

Table 13.1 Development context through the lens of Essence

Alpha State achieved Rationale for achieving the state

Stakeholders Involved Cheryl, Dave, and Angela are key stakeholders
in the endeavor. The state is achieved because
they were actively involved in helping the team
achieve a successful demo.

Opportunity Value
Established

Achieved this state because the team had a
successful demo supporting the objectives of
the Digital Transformation Group.

Requirements Bounded Achieved this state because the team had
successfully gotten the key stakeholders
involved and those key stakeholders had
reached a shared understanding of the extent of
the proposed solution.

Software
System

Architecture
Selected

Achieved this state because they had made their
decision to use the existing proven mobile app,
and to use an architecture approach referred to
as microservices to host their recommendation
engine.

Work Initiated Achieved this state because all the team
members had agreed that the source of their
funding, and the stakeholders who would fund
the work, were clear.

Way of
Working

Working
Well

Initially tacit agreed practices as discussed in
Part II worked well for the team, but as we shall
see the team eventually evolved to the more
explicit practices of Scrum, User Story, Use
Case and Microservice due to changes in their
endeavor as it progressed.

13.2 Agree upon Development Scope and Checkpoints 159

Dave
Chief Digital Officer

Cheryl
Chief Information Officer

Tan
from

Operations

Tom

Joel

Grace

Development Team

Smith
Angela

Figure 13.1 Participants in our story.

As pointed out above, we now consider a new and different situation with respect
to the TravelEssence. Following the team’s successful demonstration, Dave, the
Chief Digital Officer and head of the Digital Transformation Group (DTG), decided
to move ahead to the next phase of this initiative, expanding the scope and vision
of the endeavor. As a result, there would now be more people involved.

We have already introduced Dave, Angela, Smith, Tom, Joel, and Grace. We
will now introduce the new characters involved in the expanded initiative (see
Figure 13.1). Cheryl was the Chief Information Officer (CIO), responsible for all
IT systems operations including development and enhancement of each IT system.
Developers like Smith, Tom, Joel, and Grace worked for Cheryl, as did our other new
character Tan (we will find out more about his role in Part IV), from Operations.

As we move forward, we will learn how the endeavor conditions changed due to
this and other alterations in the context, and how this affected the way the team
assessed the alphas’ achieved states.

13.2 Agree upon Development Scope and Checkpoints
As we have stated previously, a team needs to know where it is going. In Chapter 9,
we demonstrated how the Essence kernel alpha states can be used to discuss and
come to an agreement on what should be achieved by a checkpoint,1 such as the
internal demo our team successfully produced. In general, if a team has enough
knowledge to accurately plan the road forward, it would look ahead and identify
several checkpoints, including a release roadmap.

1. Another commonly used word for checkpoint is milestone.

160 Chapter 13 Kick-Starting Development with Practices

Internal
demo

Now

Internal
users

Fan club Singapore TimeVarious
regions

Figure 13.2 Release roadmap.

Dave and Angela discussed how TravelEssence would introduce the recommen-
dation engine to their travelers. They agreed on an incremental approach, starting
with a small number of internal users and gradually rolling the product out to trav-
elers across various regions of the world, as depicted in Figure 13.2.

Internal users were primarily folks from the sales and marketing department
with whom Joel interacted. These users traveled as part of their jobs and were
excellent candidates for reviewing the mobile application before introducing it to
real users.

The first set of actual users outside of TravelEssence would be its fan club.
This included folks who were frequent and loyal users of the app and services
provided by TravelEssence. After the fan club, the first target set of users would be
frequent travelers to and through Singapore. TravelEssence had been approached
by the Singapore Tourism Board and had been working with them. Knowing that
the Singapore Tourism Board had been actively seeking out collaboration with
travel providers, TravelEssence executives agreed together that this was a great
opportunity.

With the first milestone (the demo) having been successfully achieved, it was
now time for the team to set its sights on its release to the internal users. While the
Friday afternoon demo to Angela had been a success, the team received feedback on
areas that Angela felt should be improved before the next release. So, to get started,
the team decided to review the current state of the whole endeavor once again by
playing the Chasing the State game to determine where they were, and then playing
the Objective Go game, as discussed in Chapter 8.

Below you will find a sampling of the results of the team discussions in playing
the game, and what the team agreed to be the next focus states to be achieved for
the upcoming release to the internal users.

As usual, we begin with alphas in the customer area of concern.

Stakeholders: Recognized → Involved (see Figure 13.3).
While the team had agreed that they had achieved the Stakeholders: Involved state
during the internal demo, they realized that they had new stakeholders joining the

13.2 Agree upon Development Scope and Checkpoints 161

Current state Target state

Figure 13.3 Stakeholders current and target states.

endeavor (i.e., Cheryl, marketing and sales) and so now they would need to gain
new agreement on these stakeholders’ involvement and commitment.

Opportunity: Value Established → Value Established (see Figure 13.4).
There would be no change in state for the Opportunity, except that the team would
have greater confidence about the value of the recommendation functionality.

Next, we examine the alphas in the solution area of concern.

Requirements: Conceived → Coherent, Addressed (see Figure 13.5).
While the team had achieved their goal for the internal demo, they knew there
would be new requirements to be added during the next iteration, as well as a need
to address the specific issues that Angela had raised during the internal demo.

Software System: Demonstrable → Usable (see Figure 13.6).
Although the team had successfully demonstrated critical parts of the system to
Angela, that demonstration had also uncovered multiple defects that would need
to be fixed before the system was usable. The team also knew there was more
functionality that the marketing department felt would need to be added before
the product was ready to be shown to real customers.

162 Chapter 13 Kick-Starting Development with Practices

Current state Target state

Figure 13.4 Opportunity current and target states.

Current state Target states

Figure 13.5 Requirements current and target states.

13.2 Agree upon Development Scope and Checkpoints 163

Current state Target state

Figure 13.6 Software System current and target states.

Last, we examine the alphas in the endeavor area of concern.

Work: Initiated → Prepared (see Figure 13.7).
Smith’s team had to quickly drill down the scope of the endeavor and come up
with a credible plan and schedule for the initial release to the internal users and
fan club.

Team: Collaborating → Performing (see Figure 13.8).
While Smith’s team members had worked together before, during the internal
demonstration, they knew there were areas for which they could improve both their
practices and tools, and also that there would be additional team members to work
with during the upcoming iteration.

Way of Working: Principles Established → Foundation Established, In Use
(see Figure 13.9).
Although Smith’s team had successfully established a development and test envi-
ronment during the internal demo, the team members realized that there had been
some miscommunications in the process of conducting certain activities. As a re-
sult, they agreed that they would need more explicit practices to make sure everyone
understood and agreed to how the team conducted these activities.

164 Chapter 13 Kick-Starting Development with Practices

Current state Target state

Figure 13.7 Work current and target states.

Current state Target state

Figure 13.8 Team current and target states.

13.3 Agree upon Practices to Apply 165

Current state Target states

Figure 13.9 Way of Working current and target states.

13.3 Agree upon Practices to Apply
Unlike the previous two steps, which just use the Essence kernel as we did in
Part II, this is a third and additional step. In this step, we are explicitly selecting a
practice to apply. We assume that there exists a library of practices from which a
development team can pick to address its challenges. We also assume that the team
is knowledgeable in selecting practices, or that there is a convenient and easy way
to select them. Of course, if a team does not possess this knowledge, there would
be a facilitator or coach to help the team. Let’s assume for this part of the book that
Smith is such a knowledgeable coach.

Smith’s development team was now no longer working on a demo or proof of
concept. They would be working as part of a larger development team and as such
would be using practices mandated for development.

Cheryl (the CIO) had, after a series of successful pilots, mandated that Scrum
and either User Stories or Use Cases be employed by all development teams. By
“pilots” we mean endeavors where certain practices are tested to determine if they
will work well in an organization before deploying the practices formally across the
full organization.

Scrum is a popular practice to help teams collaborate and work effectively in
an iterative manner. To develop software, however, Scrum is not enough. We need
practices to come up with the right requirements, and to design, code, and test

166 Chapter 13 Kick-Starting Development with Practices

these requirements. Since Scrum itself suggests an iterative way of working, this
applies to requirements, design and test—a small requirement to start with, then
design and test to fulfill it, and when that is working well, more requirements can
be addressed, etc.

When it comes to requirements, we will demonstrate that development can be
done in different ways by applying different requirements practices. We will first
utilize the user story practice and then the use case practice. These practices are
not equivalent; they address requirements breakdown and other aspects of require-
ments differently. However, in this book we won’t create a “methods war” because
our intent is not to tell our readers which practices or methods we may think are
better. Rather, our intent is to explain how you can do your own comparison and
reach your own conclusions when using Essence-based practices.

Many Scrum teams utilize user stories to help them understand and agree to
the requirements. A user story is a written description of a story that describes
functionality that will be of value to a user of a software system. User stories are first
written without all the needed details. The details are fleshed out in discussions
between the team and the stakeholders. By encouraging informal conversations,
the real needs of the customer surface, along with the details of the requirements.
Direct communication between development team members and users can be an
effective practice to help ensure that the requirements that eventually get written
down are in fact the real requirements needed by the users. We will elaborate on
the user story practice in Chapter 15.

Some teams decide that the short informal descriptions that are created with
user stories are not sufficient to help them flesh out the requirements details. In
such situations, use cases provide one possible alternative. Use cases help teams
capture and validate the completeness of requirements. Use cases provide a dia-
gram that then gives an overview of all the use cases in the system being built and
their interactions with one or more users of the system. This diagram also helps
some teams evolve their requirements by clarifying what the system will do, and
what will be done by the users of the system. We will discuss use cases in greater
detail in Chapter 16.

In our story, after the development team discussed what worked well and what
didn’t work so well after the internal demo, they realized they needed a more disci-
plined approach to capturing requirements. They started out with a plan to utilize
user stories; however, they later decided that use cases better met their needs.

After some discussion, the team also decided to use microservices to help them
evolve the software system. Microservices are small independent processes that
communicate with each other through well-defined interfaces. By building the

13.4 Agree upon the Important Things to Watch 167

Micro-
services

Use
Cases

User
StoriesScrum

Kernel

Figure 13.10 Practices for TravelEssence teams.

recommendation engine as a separate microservice rather than as a new module
within the legacy system in TravelEssence, they would be able to experiment and
evolve the new functionality with less risk of causing new defects in the legacy
system. We will elaborate on the microservices practice in Chapter 17.

Thus, for the next release to internal users, Smith and his team agreed to use
these practices in addition to the kernel.

You will learn more about how teams can use Scrum, user stories, use cases,
and microservices as explicit practices later on in Chapters 14–17.

We want to reiterate that the practices in Figure 13.10 are examples to illustrate
how essentialized practices can help teams do their work. They are a mixture of col-
laboration, engineering, and technical practices. For example, scrum is about team
collaborations. User stories and use cases are requirements engineering practices
(any decent requirements engineering book will discuss these two practices). Mi-
croservices is a highly technical practice, and we would deem it a rather advanced
one, with which even rather senior software practitioners are learning and experi-
menting as we write this book.

As a software professional, you will come in contact with many other practices.
There are simply too many for us to even attempt to enumerate in this book. We
believe that in due time, popular practices will be essentialized, and as a student
or professional who has a good understanding of Essence, you will learn these
practices quickly. We will discuss more about how practices help teams grow and
become more competent when we conclude this part of the book in Chapter 18.

13.4 Agree upon the Important Things to Watch
This fourth step to kick-start development is similar to that in Part II, except that
we have explicitly selected practices in addition to the Essence kernel. Recall that
the important things to watch out for in a development endeavor are the alphas. Of

168 Chapter 13 Kick-Starting Development with Practices

Table 13.2 Practices that TravelEssence applied

Practice Description Things to Watch (alphas)

Scrum A practice for the iterative
development of software systems
working off a backlog.

Sprint
Product Backlog Item

User stories A way to capture functionality
that will be of value to a user of a
software system.

User Story

Use cases All of the ways of using a system
to achieve a particular goal for a
particular user.

Use Case
Use Case Slice

Microservices A software architecture style
that uses small independent
processes to communicate.

Microservice

course, the kernel has already defined the seven universal alphas that you should
now know well, plus definitions of states and checklists as reminders to evaluate the
progress and health of these things, and hence that of the development endeavor.

However, the alphas from the kernel are not the only things to watch. There
are others. In Part II, we saw that Smith’s team added other things to watch as
well, specifically Requirement Items. These kinds of additions are sub-alphas. In
general, the practice you apply will explicitly call out specific things to watch out
for, as we see in our TravelEssence story. So let’s return to the story and continue
to watch what Smith’s team is doing.

Having agreed on the practices to apply, Smith’s team now had inputs as to
the important things (i.e., sub-alphas) to watch to ensure health and progress (see
Table 13.2).

Further explanation will be provided in subsequent chapters, but we want to
provide a look ahead, to alert you to some important things to watch for in the
practices that we are going to introduce.

. Scrum is a practice for iterative development where each iteration, or time-
box, is called a sprint. The sprint is an alpha, something we need to watch.
Scrum guides teams to complete work items in a backlog. These work items,
known as Product Backlog Items (PBIs) using Scrum terminology, can also
be treated as alphas.

. User Stories is a practice about expressing requirement items more suc-
cinctly, focusing on values. Specific user stories can also be viewed as sub-

13.5 Journey in Brief 169

alphas, similar to treating Requirement Items as sub-alphas of Require-
ments.

. Use Cases is a practice that [Jacobson et al. 2011, 2016] helps teams identify
and organize requirements in the form of use cases and use case slices. A
use case slice is a part of a use case that is broken down to an appropriately
sized piece of work for the development team to tackle. Specific use cases
can be viewed as sub-alphas of Requirements and specific use case slices
can be viewed as sub-alphas of a specific use case. This is discussed further
in Chapter 16.

. Microservices is a practice that helps teams break down a complex software
system into a set of cooperating small independent modules, each with its
own purpose and each with its own well-defined interface to other modules.
Specific microservices can be viewed as sub-alphas of the Software System
kernel alpha and monitored as alphas.

From the previous discussion, it should be very clear that alphas are very im-
portant things in a development endeavor to help teams understand progress and
health. The kernel calls out universal alphas explicitly, while practices call out
practice-specific alphas. It is important to identify the right alphas, because there
is a cost to making something an alpha due to the need to then explicitly assess and
track its state. As an example, small teams that have experience working together
but lean budgets may decide to track their progress and related risks through tacit
knowledge only, whereas large teams working on more complex efforts are more
likely to see the need and payback for explicitly tracking progress and key risks as
alphas.

It is also important to identify the right states and the right checklists for each
alpha, so your team can assess their progress and health. It is all these explicit
practices your team agrees upon to use that help your team progress your alphas
through their states by achieving the checklists.

13.5 Journey in Brief
In the remaining chapters in this part of the book, we will walk through the Travel-
Essence team’s journey of applying the more explicit practices their CIO requires,
as well as Microservices, as their endeavor becomes more complex. The chapters
will run as follows:

. Chapter 14—Running with Scrum

. Chapter 15—Running with User Story Lite

170 Chapter 13 Kick-Starting Development with Practices

. Chapter 16—Running with Use Case Lite

. Chapter 17—Running with Microservices

In each chapter, we will briefly present an overview of one practice, the problems
it solves, and how TravelEssence adopted and applied the practice and the benefits
they achieved, along with the benefits achieved by representing each practice in an
essentialized form.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain the challenges that might arise as the endeavor progresses (e.g.,
miscommunication at different levels if the practices are not explicit);

. name practices using examples that might be considered during the en-
deavor (e.g., Scrum or Microservices practices as used in our example) and
explain the relation among them, if any; and

. give the related description and name the alphas for the practices discussed
in this chapter.

14Running with Scrum
The goal of this chapter is to introduce the Scrum practice, including its elements
in the Essence language, and use the TravelEssence example to demonstrate the
benefits of Scrum compared to the development approach used earlier in the book.
In this chapter, the reader will be introduced to

. the Scrum practice and its elements;

. the relationships between the Scrum elements, activity flows, and to their
relationships with kernel elements (i.e., Work, Requirements, Software
System);

. the simplified version of the Scrum practice (called Scrum Lite) in a real
endeavor, including the obstacles and challenges that might arise; and

. how kernel activity spaces are covered by the Scrum Lite practice.

As mentioned previously, Cheryl (the CIO) had mandated after a series of suc-
cessful endeavors, that Scrum and either user stories or use cases be employed
by all development teams. One reason why organizations often mandate specific
practices and tools is to simplify training and communication. Recall that a prac-
tice is defined to be a repeatable approach to doing something with a specific purpose
in mind. By making a practice explicit we improve communication, reducing the
chances of someone misunderstanding how the practice is intended to be car-
ried out.

Scrum is perhaps the most popular agile practice at the time of this writing.
Jeff Sutherland and Ken Schwaber created Scrum to get teams to work iteratively
and to collaborate more effectively by following a number of practical and proven
activities.

14.1 Scrum Explained
Figure 14.1 shows a big picture overview of Scrum [Schwaber and Sutherland 2016].
It provides explicit guidance related to how a small development team with about

172 Chapter 14 Running with Scrum

Product
Owner

Scrum
Master

Daily
Standup

Scrum Team

Sprint
Review

Sprint
Retrospective

Sprint

Daily

Potentially
Shippable
IncrementSprint

Planning

Sprint
Backlog

Product
Backlog

Figure 14.1 Scrum big picture.

7 plus/minus 2 team members can work together. Henceforth, we will refer to that
team as a Scrum team. All the work that the team might have to do is first placed in
an ordered list—the product backlog. The product backlog is maintained with the
most important items near the top of the list. The things in the product backlog
are called Product Backlog Items (PBIs). A PBI can be a piece of a requirement,
something the team can do to improve themselves, or defects that they will have
to fix.

The heart of Scrum is the sprint, a fixed-length period of time, usually one to
four weeks, during which the team meets a certain goal, which includes producing
a potentially shippable increment of the product to be developed. The PBIs to be
performed in a sprint are selected through the sprint planning activity where the
team, together with the product owner (PO), agrees on the highest prioritized PBIs
to be worked on in the upcoming sprint. These PBIs are moved from the product
backlog to the sprint backlog. This activity is done on the first day of each sprint by
the full Scrum team working together to determine what can be delivered and how
it can be delivered in the agreed-to sprint time period. There are two parts to the
sprint planning activity. During the first part, the PO explains to the team the goals
of the sprint and the Product Backlog Items that, if implemented, would achieve
the sprint goal.

The goal gives the Scrum team some flexibility regarding the functionality imple-
mented within the sprint. During the second part of the meeting, the team forecasts
the PBIs it will achieve and determines their agreed-upon sprint goal. Those PBIs
are then moved to the sprint backlog (i.e., the agreed work to be done in the current
sprint).

14.2 Practices Make a Software Engineering Approach Explicit and Modular 173

Each day during the sprint, the team meets to synchronize their work and create
a plan for the next 24 hours. This is called the daily scrum (or daily standup, as
shown in Figure 14.1) and is limited to 15 minutes. At the daily scrum, each team
member explains what he/she did since the last meeting, what s/he plans to do
today, and what is getting in her/his way preventing her/him from meeting the
sprint goal. Solutions to problems are not discussed in the daily scrum. A separate
meeting is arranged to dive deeper into problems when necessary.

At the end of the sprint, the team conducts a sprint review activity with key
stakeholders to review the product in its current version (referred to as a potentially
shippable increment) they have produced. At this review, stakeholders may also
identify product improvements (PBIs) that will be placed in the product backlog.
At the end of each sprint, the team holds a sprint retrospective activity. The sprint
retrospective is an opportunity for the Scrum team to agree on improvement to
their way of working, to be implemented in the next sprint.

There are three major roles in Scrum, namely the PO, the Scrum master, and
developers. The PO is responsible for feeding the product backlog based on his/her
interaction with customers and users. The PO is also responsible for prioritizing the
PBIs. The team members (i.e., developers) are responsible for estimating the effort
for implementing each PBI.

The Scrum master role is something unique to Scrum. The Scrum master is a
servant leader, a person who facilitates the Scrum activities and motivates the team
members to follow the Scrum activities.

While the Scrum activities we have just described are fairly simple, teams often
tailor them based on their own situations. This is one reason why capturing a team’s
agreed-to way of working as a set of explicit practices can help team members—
especially new and less experienced team members—understand what activities
are expected, what options they have in carrying out these activities, and how much
detail is expected in any related work products.

14.2 Practices Make a Software Engineering Approach
Explicit and Modular
Scrum is in essence a practice, or rather, a set of practices. Briefly speaking, a
practice is about doing stuff in a certain way to address certain problems, and with
Scrum, it is about teams improving team collaborations and performance. We will
take a slight detour to explain how Essence captures practices in an explicit way and
thereby provides practical guidance to teams. We will in a short moment capture
the Essence of Scrum and demonstrate how Smith’s team applied Scrum.

174 Chapter 14 Running with Scrum

The word “practice” is an overloaded word, meaning different things to different
people. The Essence specification provides a specific definition: a practice is a
repeatable approach to doing something with a specific purpose in mind. A practice
provides a systematic and verifiable way of addressing a particular aspect of the
work at hand. It has a clear goal expressed in terms of the results its application
will achieve. It provides guidance not only to instruct practitioners in what is to be
done to achieve the goal, but also to ensure that the goal is understood and to verify
that it has been achieved.

As such, a practice provides a proven way of approaching or addressing a prob-
lem. It is something that has been done before, can be successfully communicated
to others, and can be applied repeatedly, producing consistent results.

14.3 Making Scrum Explicit Using Essence
Scrum can be represented as a practice that is a set of activities to help teams
conduct iterative development in a highly collaborative manner. In Part IV of this
book, we will show a different way to represent Scrum as a composition of multiple
practices: that is, a product ownership practice, a backlog practice, an iterative
development practice, and a retrospective practice. Thus, Scrum is not simple, and
indeed, the Scrum Guide [Schwaber and Sutherland 2016] calls Scrum a process
framework. For the purpose of this part of the book, we choose to use a simplified
version of Scrum, which we represent as a single practice that we call Scrum Lite.1

While our Scrum Lite includes what we have assessed to be the important elements
of Scrum, we do not include a discussion on the ideas of Scrum or all of the
responsibilities of all of the Scrum roles, nor do we include all of the characteristics
of a Scrum Team.

Different practice authors will have different ways to express their key concepts.
So, Scrum will be expressed in one way (as depicted in Figure 14.1), user stories
another way, use cases another way, and microservices yet another way. These
authors haven’t used a common ground, because they haven’t had one. They use
different terms for the same thing, and the same term may have different meaning
in their practices. Some authors deal with this problem by re-describing what the
original author developed, but they don’t use a standard like Essence; rather, they
create their own terms. This doesn’t create a collaborative environment between
the people who have contributed their ideas to the world. This is one of the serious
problems Essence addresses—under Essence, every author uses the same standard

1. Based on version 03.2015 of the Scrum Essentials practice originally developed by Ivar Jacobson
International. Used and adapted with permission.

14.3 Making Scrum Explicit Using Essence 175

Scrum
Master Daily

ScrumScrum
Team

Sprint
Review

Sprint
Retrospective

Sprint

Increment

Sprint
Planning

Sprint
Backlog

Product
Backlog Product

Backlog Item

Product
Owner

Figure 14.2 Scrum big picture mapped to the Essence language.

language. It becomes significantly easier for students to learn many practices. Once
they have learned one practice, they will while learning a new practice recognize
that there is a lot in common, even if the new practice covers a different topic than
the first practice. And the more practices they learn, the easier it becomes to learn
something new.

We can redraw the Scrum Lite big picture in Figure 14.1 using the Essence
language, as shown in Figure 14.2. So, what you see in this figure is the Scrum big-
picture elements represented using the Essence language symbols. To start, the
figure reminds us that PO, Scrum Master, and Scrum Team roles are represented
as patterns in the Essence language. And Sprint Planning, Daily Scrum, Sprint
Review, and Sprint Retrospective are activities. Product Backlog, Sprint Backlog,
and Increment are work products. And finally, Sprint and Product Backlog Item
are alphas in the Essence language.

A complete model of the Scrum practice is shown in Figure 14.3. It is a useful
diagram in that it shows

1. relationships between the elements in the practice, such as the relationships
between Sprint, Sprint Backlog, Product Backlog, PBI, and Increment;

2. activity flows, such as from Sprint Planning to Daily Scrum to Sprint Review
and Sprint Retrospectives; and

3. relationships with kernel elements, such as between Sprint and Work, PBI
and Requirements, and Increment and Software System.

Thus, Figure 14.3 not only shows the relationships between elements in the prac-
tice, in this case the Scrum practice, but also the relationship with the kernel, and

176 Chapter 14 Running with Scrum

Scrum
Team

Scrum
Master

Product
Owner

Requirements
(from kernel)

com
p

rises>

com
p

rises>lists>

evolu
tion

d
escrib

ed
 b

y>

described by>

described by>

prioritized
into>

delivered
through>targets>

Sprint Product
Backlog Item

Software system
(from kernel)

Work
(from kernel)

Sprint
Backlog

Sprint
Planning

Daily
Scrum

Coordinate Activity
(from kernel)

Track Progress
(from kernel)

Support the Team
(from kernel)

Sprint
Review

Sprint
Retrospective

Increment

Product
Backlog

Figure 14.3 Scrum Lite practice expressed in the Essence language.

through that you are better able to understand how Scrum provides more guidance
on top of what is available in the kernel.

An important concept highlighted in Scrum is the “Definition of Done” (DoD).
The DoD is a clear and concise list of criteria that each PBI must satisfy for the team
to call it complete. As an example, a PBI may include DoD criteria such as:

. sufficiently tested;

. accepted by the PO;

. source code checked in; and

. associated documents (e.g., user manuals) updated.

The DoD must apply to all items in the backlog. It can be considered a contract
between the Scrum team and the PO. The purpose of DoD is similar to the purpose
of the checklists of alpha states. They provide an explicit definition of what the team
members must do. DoD as provided through the alpha state checklists is available

14.3 Making Scrum Explicit Using Essence 177

for PBI and Increments, and in general any alpha or work product. Alpha states go
one step further by defining the completion criteria for each state.

Table 14.1 provides a summary of the elements in the Scrum Lite practice. Before
we look in on the TravelEssence team’s use of them, we will establish the framework
for these elements.

Table 14.1 Elements of Scrum Lite practice

Element Type Description

Sprint Alpha A time-box (e.g., fixed length of time) of one
month or less during which a “Done,” usable
and potentially shippable product increment is
created. A new sprint starts immediately after the
conclusion of the previous sprint.

Product
Backlog Item

Alpha A change to be made to the product (in a future
release, for example, a feature, user story,
requirement, enhancement, or fix).

Sprint
Backlog

Work
product

The set of PBIs selected for the sprint, plus a plan
for delivering the Increment and realizing the
sprint goal. The sprint backlog makes visible all
of the work the development team identifies as
necessary to fulfill the sprint goal.

Product
Backlog

Work
product

A priority-ordered list of everything that might
be needed in the product: the single source of
requirements for any changes to be made to the
product. The items in the product backlog are
known as PBIs.

Increment Work
product

The sum of all PBIs completed during a sprint
and those items completed during all previous
sprints. The increment must be “Done,” which
means the software system it describes must be
usable and meet the Definition of Done (DoD).
When a PBI or an increment is described as
“Done,” everyone must understand what “Done”
means. Although this varies significantly per
Scrum team, members must have a shared
understanding of what it means for work to be
complete, to ensure transparency. This is the
definition of done for the Scrum team and is used
to assess when work is complete on the product
Increment. (Work completed includes only items
that meet the team’s agreed-to DoD.)

178 Chapter 14 Running with Scrum

Table 14.1 (continued)

Element Type Description

Daily Scrum Activity The team meets every day, same time and place,
to assess progress, synchronize activity, and raise
any issues that are getting in their way and require
action to resolve. The meeting is time-boxed,
typically to 15 minutes.

Sprint
Planning

Activity Deciding what can be delivered in the sprint’s
increment and how the work needed to deliver
the agreement will be achieved.

Sprint Review Activity A time-boxed review of the outcomes of the
sprint, used to gather feedback and discuss what
should be done next.

Sprint
Retrospective

Activity The whole team meets at the end of the sprint to
reflect on its way of working. Improvements are
identified and prioritized, and actions agreed. At
the next retrospective, the results are evaluated.

Product
Owner

Pattern The PO is responsible for maximizing the value
of the product and the work of the development
team. How this is done may vary widely across
organizations, Scrum teams, and individuals. The
PO is the sole person responsible for managing
the product backlog.

Product backlog management includes clearly
expressing PBIs:

. ordering the items in the product backlog
to best achieve goals and missions;

. optimizing (maximizing) the value of the
work the development team performs;

. ensuring that the product backlog is visible,
transparent, and clear to all, and shows
what the Scrum team will work on next; and

. ensuring the development team
understands items in the product backlog
to the level needed.

Scrum
Master

Pattern The Scrum master is responsible for ensuring
that Scrum is understood and enacted. The
Scrum master is a servant leader for the Scrum
team. Among other things, the Scrum master
helps to:

14.4 Scrum Lite Alphas 179

Table 14.1 (continued)

Element Type Description

. guide Scrum activities;

. remove impediments;

. ensure everyone understands Scrum; and

. make certain all members of the Scrum
team understand the need for clear and
concise product backlog items.

Scrum Team Pattern The Scrum team consists of a PO, the
development team, and a Scrum master.
Scrum teams deliver products iteratively and
incrementally, maximizing opportunities for
feedback on how they are doing and self-
improvement. The best Scrum team size is small
enough to remain nimble and large enough to
complete all significant work within a sprint.

14.4 Scrum Lite Alphas
In this section, we will introduce each of the alphas that comprise the Scrum Lite
practice. These alphas are the Sprint alpha and the PBI alpha.

14.4.1 Sprint
As mentioned, a sprint is a time-box (e.g., fixed length of time) whereby some useful
work is completed.

In the Scrum guide [Schwaber and Sutherland 2016], there are no explicit alpha
states defined. However, we find that alpha states are very useful for teams who are
new to Scrum. They help teams understand what they must do to prepare for their
sprints and for each activity in a sprint. In our Scrum Lite practice the Sprint alpha
states are as follows (see also Figure 14.4 below).

Scheduled. The start and end dates for the sprint are scheduled and all team
members are aware of the dates; there are sufficient backlog items in the
product backlog, and the backlog items have been prioritized.

Planned. The goals to be achieved in the sprint have been agreed, including
the specific backlog items within the scope of the Sprint, and the risks have
been identified and the team has agreed how to mitigate them.

Reviewed. The outcome of the sprint has been reviewed. This includes review-
ing the product increment (such as the recommendation engine), and the
team’s way of working. This includes reviewing which specific backlog items

180 Chapter 14 Running with Scrum

Figure 14.4 The Sprint alpha card.

have been completed, which ones were not completed, why they were not
completed, how the team can improve their way of working, and what im-
provement actions they can take.

In companies, these Sprint alpha states will often be tacit. However, for students
new to Scrum, these states and checklists are very useful; new students have not
learned the essence of Scrum and can’t easily figure it out on their own. By providing
the checklists, a less experienced developer would be guided away from making
unnecessary mistakes. Figure 14.5 shows the alpha state checklists.

Figure 14.5 The Sprint alpha state cards.

14.4 Scrum Lite Alphas 181

Figure 14.6 The Product Backlog Item alpha card.

These simple checklists are also a good source of information for learning
and as reminders even for experienced developers, who can still manage to forget
what they previously learned. However, being too prescriptive might prevent the
practitioner from thinking on his/her own, and instead treating the checklists as
the word of God. Like all things, this is about striking a balance between what
should be left tacit and what should be made explicit. In our Scrum Lite practice, we
intentionally did not add a fourth state, for Retrospective Completed, to the Sprint
alpha. The value of such a state is something each organization can decide based
on its own situation, including the competencies of its people.

14.4.2 Product Backlog Item
A Product Backlog Item, or PBI, is a change to be made to the product in a future
release (for example, a feature, user story, requirement, enhancement, or fix).

The alpha has the following states identified in Figure 14.6.

To Do. It has been agreed that the PBI needs to be completed within the next
sprint. The scope and completion criteria of the PBI are clear.

Ready. The team works together with the product owner to agree on how they
should go about completing the PBI.

Doing. At this state, the team is working on the item and bringing it to com-
pletion.

Done. The Product Backlog Item has been completed.

182 Chapter 14 Running with Scrum

14.5 Scrum Lite Work Products
The Scrum Lite practice comprises the following work products:

. Product Backlog,

. Sprint Backlog, and

. Increment.

14.5.1 Product Backlog
A product backlog work product is a priority-ordered list of everything that might
be needed in a product. It is the single source of requirements for any changes to be
made to the product (see Figure 14.7). The items in the product backlog are known
as PBIs.

For endeavors at this point, there is only one level of detail in a product backlog:

Items Ordered. The product backlog Items are captured in the product back-
log, which can be in the form of a spreadsheet or within some backlog
management tool. They are ordered according to their priority, so that high
priority ones can be selected for the next sprint backlog.

For more sophisticated endeavors, there might be more levels of detail. For
example, the team might want to describe rationales for prioritizing the PBIs, so
that team members can avoid unnecessary debates.

Figure 14.7 The Product Backlog work product card.

14.5 Scrum Lite Work Products 183

Figure 14.8 The Sprint Backlog work product card.

14.5.2 Sprint Backlog
A sprint backlog work product is the set of PBIs selected for a sprint. It also includes
a plan for delivering an increment realizing the agreed-upon sprint goal. A sprint
backlog makes visible all of the work the development team identifies as necessary
to meet the sprint goal.

The Sprint Backlog comprises the following levels of detail (see also Figure 14.8).

Goals Specified. The sprint goal is clearly stated and sets the target for the team
members.

Capacity Described. The amount of work the team can perform is estimated.
In this way, the team can determine if it has too much or too little work in
the sprint.

Work Forecast Described. The team agrees on product backlog items that can
be completed within the sprint, as well as target dates they expect to complete
within the sprint.

14.5.3 Increment
An increment is the sum of all product backlog items completed during a sprint
and those items completed during all previous sprints.

184 Chapter 14 Running with Scrum

Figure 14.9 The Increment work product card.

The Increment work product has the following levels of detail (see also Fig-
ure 14.9).

Completed PBIs Listed. The PBIs that make up the Increment are clearly listed.

Increment Notes Described. Further information about the Increment is pro-
vided, such as environments in which the increment can work, known issues,
and so on. By environment we mean which browser version, which operating
system, and the like. The specific content has to be agreed upon by the team.

14.6 Scrum Lite Roles
Scrum Lite explicitly identifies two roles, namely the PO and Scrum Master. A role
is a list of responsibilities that one or more people accept. The individuals serving
as PO and Scrum Master and the rest of the team members form the Scrum team.
Essence allows you to model roles and team organization as patterns.

In Part I, you learned that Essence provides a concise representation of patterns
as poker-sized cards. Figure 14.10 shows the PO pattern card, which comprises the
most important information about the Product Owner’s responsibilities. The card
shows that the PO is responsible for managing the product backlog, ensuring each
item is clear to the team members, and making certain that the product backlog
is visible to the team. The card also shows that the PO is responsible to ensure

14.6 Scrum Lite Roles 185

Figure 14.10 The Product Owner pattern card.

the value generated by the Scrum team is optimized, which means the work of the
Scrum team provides value toward achieving the goal of the sprint.

The Scrum Master role is also represented by a pattern, as in Figure 14.11. The
individual acting as the Scrum Master coaches the team as they conduct the Scrum
activities. When team members face impediments, such as unclear backlog items,
he/she works to remove the impediment. As an example, Smith’s team faced an
impediment with using a library, which required licensing fees. If the licensing
were not resolved, Smith’s team might have to rewrite a part of the software.
Smith discussed the problem with the company legal representative and finance
officer. After discussion, they agreed to use an alternative library that didn’t require
licensing fees, which resolved the impediment.

The third pattern in Scrum Lite is the Scrum team, which is a team pattern in
Figure 14.12. The Scrum team consists of members, two of which play the roles of
a PO and a Scrum Master. Scrum teams are self-organizing, which means no one
outside the team tells the team how to achieve the goal of each sprint. The team
includes people with the needed competencies to accomplish all the required work.
This is sometimes referred to as a cross-functional team.

These cards can be used by Scrum team members by placing them on a board
or having them carry them in their pockets where they can be easily accessed as
quick reminders of their agreed-to responsibilities.

Thus, Angela agreed to be the PO, and Smith agreed to take on the Scrum Master
role for the development team.

186 Chapter 14 Running with Scrum

The Scrum Master is responsible
for ensuring that Scrum is
understood and enacted. He/she
is a servant leader for the Scrum
team.
Amongst other things, he/she
helps:

Facilitate Scrum activities
Remove impediments
Ensure tean members
understand Scrum
Promote agility

Figure 14.11 The Scrum Master pattern card.

Figure 14.12 The Scrum Team pattern card.

14.7 Kick-Starting Scrum Lite Usage 187

14.7 Kick-Starting Scrum Lite Usage
When Smith’s team discussed how they would apply Scrum Lite, there were many
questions. Tom, a rather senior and always vocal developer, asked, “How would
using Scrum Lite differ from what we did when we delivered the demo? We have
been providing demos to Angela on a weekly basis and we adapted our plans based
on her feedback.”

Smith replied, “Yes indeed, that is true, but Scrum Lite does have some things we
can learn that can help us improve the way we are currently working. We did not do
Daily Scrums to highlight problems early and improve our team communication.
We did not actively manage our Requirement Items in a backlog. We did not define
and assign roles with explicit responsibilities, such as Product Owner and Scrum
Master. This might have been OK when we were producing the demo for Dave and
Angela. But now that we are working toward a live product, and our endeavor has
greater visibility to management, we need a way to ensure our team operates with
appropriate discipline. We also did not really prioritize our work when we did the
demo, nor did we estimate the effort.” Making Scrum activities explicit helps team
members apply the practices they have agreed to use. The explicit definitions act
as reminders to team members. Also, by using Essence to describe practices, we
will be able to see any gaps in our practices that we need to fix. This is because
when we express practices using the Essence language, we can see which kernel
alphas are being progressed, and we can see which ones are not being affected. If
an alpha is not being affected by a certain practice, it should lead the team to ask
if they have another practice that is helping them progress that alpha. They may or
may not need an explicit practice for every alpha, but the team should discuss this
and decide based on their specific situation. Once the team has agreed to the set
of explicit practices they need, the cards can be used as visible reminders.

Tom asked, “How will the alpha state cards be used now that we are using
Scrum?”

Grace replied, “I think one way would be to use the Health Monitor game to help
us keep the status of each increment visible to our development team. We can easily
incorporate this game into our sprint planning, review, and retrospective activities
by keeping the green stickers and red stickers up to date on the board with our
alpha state cards.2 This can remind us to discuss problems as soon as possible.”

All in all, the team members were eager to use Essence and the cards along
with Scrum to help learn from their experiences. They agreed to move forward with
Scrum as summarized in Table 14.2.

2. Refer to Chapter 10 for information on green and red stickers.

188 Chapter 14 Running with Scrum

Table 14.2 Adopting Scrum Lite in TravelEssence

Scrum Element How the TravelEssence team did it

Product Owner Angela would be the PO for the team.

Scrum Master Smith would be the Scrum Master for the team.

Sprint Smith’s team agreed that they would iterate on a weekly
time-box.

Sprint Planning Weekly (every Monday morning)

Daily Scrum Every morning (Tuesday, Wednesday, Thursday)—note
that Mondays and Fridays were for sprint planning and
reviews, and for retrospectives.

Sprint Review Weekly (every Friday afternoon)

Sprint
Retrospective

Weekly (Friday afternoon after sprint review)

14.8 Working with Scrum Lite
Smith, in his role as Scrum Master, made sure that the activities in Scrum Lite were
observed in order to get the team into a working rhythm useful for nurturing good
habits.

As we have outlined, working with Scrum Lite involves activities like:

. Sprint Planning,

. Daily Scrum,

. Sprint Review, and

. Sprint Retrospective.

We will further explain these activities as we see how Smith’s team performs
them.

14.8.1 Sprint Planning
As it does with alphas, work products, and patterns, Essence also presents the key
information about activities through poker-sized cards. Figure 14.13 shows a Sprint
Planning activity card.

Smith’s team started using Scrum on top of Essence on one Monday morning
with Sprint Planning. This was all about deciding what priority items from the
Product Backlog should go into the current Sprint Backlog.

14.8 Working with Scrum Lite 189

Figure 14.13 Sprint Planning activity card.

But this meant more than just picking various items from the Product Backlog
and moving them to the Sprint Backlog. It was important for the team to ask some
critical questions about the items they were considering.

. “Are the items we’re selecting for this sprint properly prepared?” Properly
prepared means that the items are broken down into small enough sub-
items to be completed by the team within the time available for the next
Sprint. This means there must be enough information about each selected
backlog item for the team to estimate the effort needed to complete it. You
might be wondering how the team knew to ask this question. Some of the
questions the team asked may come from an explicit practice defined on top
of the kernel, such as the Sprint Planning activity that is part of the Scrum
practice. However, other questions may be based on the kernel itself. For
example, note that a Sprint is a sub-alpha to the Essence Work alpha (refer
to Figure 14.4). The Work alpha contains a state named Prepared. Achieving
this state means all pre-conditions for starting the work have been met. One
of the checklists in this state includes the item “The work is broken down
sufficiently for productive work to start.” This checklist item should remind
team members to ask if the backlog items have been properly prepared,
regardless of the practices they have agreed to use.

190 Chapter 14 Running with Scrum

. “There are situations when such questions as above cannot be answered due
to unclear/insufficient/ambigous information in the backlog. An indication
for this might be that the team is not able to reliably estimate the effort.”
This meant the team needed to go back to the product owner and get more
information, or reject that item as not being ready to be worked on in the
sprint.

. “Has the team considered their capacity when deciding if they can commit
to the proposed items to complete in this sprint?” This question comes
specifically from the sprint planning activity within the Scrum practice. This
means each team member needs to consider how much time they have to
work on the endeavor and if they believe that is enough time to complete
the items the team is committing to complete in the sprint. Note that in
Figure 14.12 we saw that the Scrum team has the responsibility to be self-
organizing. This means they are responsible for estimating and committing
to the work to be completed within a sprint. If the team had chosen to
use a different practice than Scrum, this responsibility might have fallen
on a different person (for instance, a manager) in the organization. This is
because another practice might define its roles differently than Scrum.

The preceding questions provide good rationale why some teams need explicit
practices and some don’t. Teams need to ask questions such as the following.

. “Are our team members experienced enough to know to ask key questions?”
If the team does not have adequate experience, they need to decide if other
team members can help, or if they need to ask for more help from outside
the team. “Do they need explicit reminders, such as checklist reminders,
to conduct a proper disciplined sprint planning session?” The answer to
this question often depends on how many people on the team have previous
experience conducting Sprint Planning. In some cases, explicit practices may
be sufficient, but if most or all of the team members are new to Scrum, then
a coach may also be needed to guide them through their first few Sprints.
Explicit practices can provide these critical reminders to teams that have
less experienced practitioners or who have never worked together before,
but sometimes a coach is needed to properly set the expectations of their
new team.

Both Product Backlog and Sprint Backlog have simple poker-sized cards to de-
scribe them. Figure 14.8 shows a Sprint Backlog work product card, which identifies
what a team agrees to work on for a sprint. Note that this card can also provide

14.8 Working with Scrum Lite 191

Table 14.3 Product Backlog

Item Product Backlog Item Originator Priority Estimate

1 Set up group of internal users Angela High 2

2 Add toggle for recommendations
feature based on user group.

Angela High 1

3 Run series of tests to ensure
the toggle for recommendations
feature does not result in
performance degradation.

Angela High 2

4 Add introductory user screen for
recommendation functionality.

Angela Medium 3

5 Develop the pre-processing data
needed for the recommendation
algorithm.

Smith Low 5

reminders of activities the team should be conducting while producing the work
product. For example, the team needs to agree on the goals for the sprint, and it
needs to estimate its capacity when it is developing its sprint backlog. In the past,
often there was considerable effort put into producing lengthy documentation that
wasn’t used. This often occurred because practitioners tasked with producing this
documentation did not have clear guidance on what should be included, along
with how much detail. Work product cards provide a simple way to communicate
what practitioners need to know to produce useful documentation that achieves
the intent of the work product.

As mentioned earlier, the team’s first target was to work toward a version of the
system suitable for internal users. Angela participated as the Product Owner and
she quickly identified a number of product backlog items, as shown in Table 14.3.

Since Smith’s expertise and background was in the technical solutions area, he
identified some key items on the product backlog, focusing on the technical issues.
He said, “We need to get going on the recommendations and the user screen. These
are both high-priority items.” This was not meant to imply that they only needed
technical issues on the backlog. As we have explained earlier, the product backlog
should include all work the team has to do from the stakeholders’ perspective. This
will make the Product Backlog the “single source of truth” for the whole team.
Everything that the team might ever need to do must eventually be added to the
Product Backlog. However, at this point in the TravelEssence endeavor, the product
backlog was not a complete list. It contained a number of items the team knew they

192 Chapter 14 Running with Scrum

needed to do, but certainly not everything needed to create a new release. This is
the way many endeavors get started.

The product backlog evolves as a team progresses through the sprints. The team
learns more about what requirements are needed as the endeavor progresses. This
is how many endeavors evolve. The TravelEssence team knew from their previous
work with Essence (during the internal demo) the value of the alpha checklists,
especially in regard to helping them get their Work to the Under Control state. As
shown above, for example, checklists from the Work alpha had already reminded
the team of the need to make sure they had sufficiently broken the work down. This
helped the team confidently estimate the work to fit within its agreed sprint.

During the sprint planning session Joel said, “I don’t think we have enough
information to estimate the work involved in Item #2. Angela, can you explain
more about what you mean by the toggle for recommendations based on user
group?” After further discussion, the team felt they understood that all Angela
wanted was a way to turn the recommendation on or off for particular user groups.
This conditional check could be easily achieved just by adding several lines of code.
Thus, they now understood the backlog item well enough to make an estimate (see
Table 14.3).

What we have just described demonstrates how, by applying the Sprint Planning
activity that is part of the Scrum practice, the team members were better able to
understand the work products.

14.8.2 Daily Scrum
The Daily Scrum is a simple activity that Scrum teams conduct every day. There
are only a few guiding principles required (Figure 14.14), such as keeping the
meeting to 15 minutes, having only the developers speak, and keeping the focus
on answering the three main questions (what did I do since the last daily scrum,
what do I plan to do next, and what obstacles am I facing).

When conducting the daily scrum, Smith’s team met at the same time and
same place each day. Keeping the meeting to just 15 minutes forced Smith’s team
members to be as brief as possible, and focused the team just on answering the
three questions. As each team member answered the questions, the others listened,
and if they heard something with which they could help, they agreed to talk further
after the meeting with just the smaller group that needed to be involved in the
discussion. In this way, team communication was enhanced while minimizing the
time lost by all team members in attending the meeting. When someone identified
an obstacle that was keeping them from getting their work done, Smith, the Scrum
Master, accepted an action to work the issue, but sometimes other team members
stepped up and helped when they knew how to solve the problem. Still, they didn’t

14.8 Working with Scrum Lite 193

Figure 14.14 The Daily Scrum activity card.

discuss the solution in the daily scrum because they didn’t want to take up the time
of the other team members who didn’t need to be involved in solving the problem.
The daily scrum helped the team keep the Work under control. (In Figure 14.14, at
the bottom of the card, the result of the activity is that the Work alpha will be in
the Under Control state. When no state is specified as input to the activity it means
that the daily scrum is done in the same state.)

During one daily scrum, Tom said, “I have been working since our last daily
scrum on Item #4, the introductory user screen, and I am having some trouble
getting it to work.” Joel replied, “Tom, I have worked on introductory user screens
before, so I will give you some help right after the daily scrum.” From an Essence
perspective, we can see from Joel’s reply how their daily scrum is helping to progress
the Team alpha’s Collaborating state checklist items: “The team is working as one
cohesive unit,” and “Communication within the team is open and honest.”

The value in documenting these simple guidelines for a daily scrum as checklist
items in an activity is that they serve as reminders to the team that can help them
conduct the daily scrum consistently. These checklist items can likewise be used
during training and coaching sessions. They are also useful for bringing new hires
on board.

14.8.3 Sprint Review
The Sprint Review is a review of the product by the stakeholders (see Figure 14.15).
The focus of this review should be on demonstrating what the team produced based

194 Chapter 14 Running with Scrum

Figure 14.15 The Sprint Review activity card.

on what they committed to produce at the previous sprint planning session. At
TravelEssence Angela, as the product owner, led this meeting, but she was sup-
ported by the other team members who worked on the changes related to the
current sprint. To keep the meeting focused, Angela started each sprint review by
going over the sprint backlog items that the team agreed to work on during the pre-
vious sprint. Then each item was demonstrated, and Angela asked the stakeholders
in attendance if they agreed that each sprint backlog item that was committed to
was achieved. Only sprint backlog items that were completed during the sprint were
demonstrated. If something was partially completed, its demonstration was put off
until the next sprint, when it could be fully demonstrated. Scrum teams do not take
“partial credit” for completing part of a backlog item. If committed sprint back-
log items are not completed, the product owner explains this during the sprint
review and explains the plan to address the missing item. The sprint review is also
an opportunity for the team members to get valuable feedback from the stakehold-
ers. This occurs primarily at the end of the sprint review, when the product owner
asks the stakeholders if they feel that the goal of the sprint was achieved. However,
often stakeholders provide feedback throughout the review. In this case, at the end
of the sprint review the PO summarized the result of the review and the actions
the team was taking out of the review to address in a future sprint review. Input
to the review is the product backlog that is used to ensure the review focuses on
the items the team committed to complete. The card also shows that sprint alpha

14.8 Working with Scrum Lite 195

is in the Planned state prior to the Sprint Review activity, and is progressed to the
Reviewed state as an output of a successful review. Moreover, it shows that the in-
crement work product is updated with new product backlog Items as an output of
the review.

Often, when Scrum teams operate with only tacit practices, the sprint review
can lose its focus, with stakeholders bringing up issues that were never planned
as part of the sprint, or team members discussing the method they are following
rather than the product they have produced. The value in adding a simple Sprint
Review activity, or at least adding checklists, is that these checklist reminders can
help the team to recall their agreed-to activities related to the sprint review. It can
also help to bring new people on board, similar to what we just discussed with the
daily scrum.

One Friday at TravelEssence, Angela, as the PO, started out the sprint review by
explaining to the stakeholders who had come—Cheryl and Dave, since this sprint
was focused on an internal release—the product backlog items that the team had
committed to for this sprint, and what they were going to see demonstrated. Angela
then asked Grace, Tom, and Joel to demonstrate what they had accomplished
during the sprint. At the conclusion, Angela explained how they had not been able
to fully implement the user screen because they ran into a few issues, but they felt
they did meet their commitments for achieving the toggle for recommendations.
She then asked the stakeholders in attendance for their feedback, and whether they
thought the goal of the sprint had been achieved.

It is worth noting that often explicit practices and their associated activities can
help teams progress multiple Essence alphas at the same time. For example, the
sprint review activity just discussed, as part of the Scrum Lite practice, helped the
team progress the Essence Stakeholder alpha’s Involved state, checklist item “The
stakeholder representatives provide feedback and take part in decision making in a
timely manner.” This was seen with the involvement and feedback provided at the
sprint review by the stakeholders Cheryl and Dave. As another example, we can also
observe from the sprint review activity how the Essence Work alpha’s Under Control
state, checklist items “Estimates are revised to reflect the team performance” and
“Measures are available to show progress and velocity” were achieved by the team’s
discussion with the stakeholders on the issues they encountered and the tasks they
successfully completed.

14.8.4 Sprint Retrospective
The purpose of a sprint retrospective is for the team to review how they are doing
on their endeavor from the perspective of their agreed-to method, and to agree to

196 Chapter 14 Running with Scrum

Figure 14.16 The Sprint Retrospective activity card.

improvements to their method to implement in the next sprint. The results of these
improvements can be tacit or explicit, which means they may or may not require
changes to practice descriptions.

There are many techniques available for conducting sprint retrospectives. There
are even books that have been written just focused on this subject alone [Derby and
Larsen 2006]. The value of the Sprint Retrospective is to get feedback from your
development team on what is working well and what isn’t working well, and get
agreement with the team on what they can do differently during the next sprint to
improve their method (see Figure 14.16). The Sprint Retrospective can also help
to guide teams with decisions related to how to move forward with the team’s
suggested improvements.

A sprint retrospective could be represented in the Essence language as an activity
within a larger practice, such as Scrum, or as a practice itself. For example, many
organizations break their retrospectives out as a separate practice and include
in the practice criteria to help teams select practical improvements that can be
implemented within the next sprint. An example of such criteria are referred to as
the SMART criteria, which stands for Small, Measurable, Attainable, Relevant, and
Testable. These attributes are intended to be used by teams to help them assess
if their agreed to improvements can be implemented within the next sprint. For
instance, a team member could ask the following questions in regard to a proposed
improvement.

14.8 Working with Scrum Lite 197

. Is this improvement small enough for the team to implement it the next
sprint?

. Is this improvement attainable? If all the team members do not have the
needed skills to implement the improvement, then it might not be attain-
able.

. Is the improvement relevant? There are lots of improvements that teams
could decide to make that might not be relevant to helping the team achieve
their goal.

. Is the improvement testable? We need to know how we are going to test the
improvement to say whether we achieved it or not.

In our TravelEssence case, Smith started the sprint retrospective by asking all
the team members to jot down on yellow sticky notes things they thought went well
during the sprint and things they thought didn’t go well and could be improved.
Smith then collected all sticky notes and grouped the ones that seemed to be related
under larger sticky notes that said “working well” and “not working well.” He then
highlighted to the team that everyone felt the team was working well with respect to
communication. (It is a good idea to always start a sprint retrospective by sharing
with the team what is working well so the team doesn’t feel like they are always just
focusing on negative things.) Smith then moved over to where he had grouped a
number of yellow sticky notes under the heading “not working well.” He pointed
out that a number of team members felt that the team could do better in future
sprint planning sessions.

Smith said, “Grace, one of your sticky notes says ‘sprint tasks unclear’. Could
you explain what you mean by that?” Grace replied, “Sure. I don’t think we are
breaking our sprint tasks down enough and describing enough about what needs
to be done to complete each task.” The team then used the Essence Work alpha’s
Started state, checklist item “The work is being broken down into actionable work
items with clear definition of done” to stimulate their retrospective discussion
related to breaking work down. Tom said, “I agree with you, Grace. I think we need
to spend a little more time discussing and agreeing what ‘Done’ means for each of
our tasks before we commit to the sprint work.” The team agreed that this would
be an improvement area they would work on during the next sprint. Specifically,
they made it a point to break down the work into items each with clear acceptance
criteria. This was one of the reasons why they moved to user stories, which will be
fully described in Chapter 15.

198 Chapter 14 Running with Scrum

14.9 Reflecting on the Use of Scrum with Essence
As we saw in Part II, Essence by itself can help teams who are experienced, or
are working on a simple endeavor where their practices are tacit (i.e., not written
down). When your endeavor is more complex or more people are involved who
have never worked together, then there is increased risk of miscommunication of
what activities the team members are expected to carry out and the degree of detail
expected in work products produced. There is also increased risk that different
team members will assess their progress and risks differently, leading to confusion
and inaccurate progress reporting to stakeholders.

14.9.1 Adding Explicit Practices
Scrum essentialization helps you to focus on the essentials of Scrum in two impor-
tant ways:

1. Calling out the most important parts of the practice.

2. Making explicit what these important parts are.

For example, there are many books written about Scrum, but how do you explain
Scrum quickly to a team new to Scrum? You will inevitably need to choose what to
talk about and what to ignore. It is worth repeating that in this chapter, we have
done that, and we call what we want to talk about Scrum Lite. Next, you have to
describe the result in a way that is easy to understand and not misinterpreted by
the team. We do that by essentializing Scrum Lite. Recall that when we use the term
“essentialized” we mean you have described your practice using the Essence kernel
and language.

Thus, an essentialized Scrum Lite can provide guidance in the essentials of
conducting certain activities such as Sprint Retrospective and Sprint Review. There
are many different ways teams can conduct a sprint retrospective [Derby and Larsen
2006] that goes beyond what is essential. As an example, they can ask each team
member to write down what went well and what didn’t go well during the last sprint.
This helps the team decide where they can improve for the next sprint.

14.9.2 Visualizing the Impact of the Scrum Lite Practice
Let’s see how essentialization helps teams see more clearly where gaps exist in
their own practices, using the Essence kernel as a reference. This leads them to
see where specific new explicit practices may be needed or improvements made to
their existing explicit practices.

14.9 Reflecting on the Use of Scrum with Essence 199

Sprint
Planning

Prepare To Do
the Work

Daily Scrum

Sprint
Planning

Coordinate
Activity

Sprint
Retrospective

Support
the Team

Endeavor

Sprint
Review

Track
Progress

Stop the
Work

Figure 14.17 Endeavor activity spaces partially filled with Scrum Lite activities.

Understand the
Requirements

Shape the
System

Implement
the System

Test the
System

Deploy the
System

Operate the
System

Solution

Figure 14.18 Solution activity spaces (not addressed by Scrum Lite).

To demonstrate what we mean, Figure 14.17 shows all the activity spaces in the
endeavor area of concern. It also shows the activity spaces that are populated by
Scrum Lite activities. Note that the Sprint Planning activity occupies two activity
spaces: Prepare to Do the Work and Coordinate Activity. sprint planning has the
dual purpose of creating an initial product backlog and a sprint backlog from
which the team can start working, and iteratively updating the product and sprint
backlogs to keep the team going.

As can be seen, Scrum Lite only occupies four out of the five activity spaces in
the endeavor area of concern. In particular, Stop the Work is empty. This activity
space is about concluding the work. These are outside the scope of the Scrum Lite
practice and thus show the team where they have gaps.

Scrum Lite also does not provide any guidance on other areas of concerns (i.e.,
the customer and solution areas)—nor does Scrum. As an example, Smith and
his team did have issues with how to work effectively with regard to activities in
the solution area of concern (see Figure 14.18) and hence needed some explicit
guidance. Because the team quickly observed gaps in their requirements practice,
it led them to apply further practices: User Story Lite, and then Use Case Lite.

200 Chapter 14 Running with Scrum

14.9.3 Value of Being Precise
The idea of practices is not new. It has been around for maybe 50 years. As we ex-
plained early in Part I, and will review at length here, in the past, we have seen two
major problems. First, practices have been applied in an ad hoc manner. Some-
times different authors use different words to mean the same thing. Or perhaps,
a single word has more than one meaning, or two words may overlap, but have
some major discrepancy at the same time. This meant that practitioners had to
relearn the vocabulary when moving from working with one practice to working
with another. What the Essence standard attempts to do is to eradicate this kind
of unnecessary confusion. The second problem is that sometimes practices and
methods are too rigorous. For example, some quite successful methods were de-
scribed using thousands of pages. The intention was good, but it didn’t work in
practice. There is a law of nature: “Most people don’t read big books.” Thus, when
developing Essence, the following points were considered for how individuals in
the team/organization should learn and improve.

1. Focus on the essentials. This is the gist of a practice, maybe 5% of what an
expert knows of the practice but enough to participate in a team.

2. Use a very simple intuitive visual language to describe guidance of practices,
alphas, activities, etc.

3. Provide a simple way to access additional guidelines, for example using links
to books, teaching materials, and tools from the essentials.

4. Keep practices separate but make them composable with other practices to
form methods.

5. Keep the practices in a library and let the teams that develop software im-
prove them easily and quickly when they do retrospectives.

Regarding the first three points above, what has been done is to be precise and
explicit, and to give the essentials a certain level of rigor using the Essence language.
The goal is to facilitate more effective communications and guidance, so that team
members can have more time to do the actual work.

This precision is made possible not only through the language and its usage
but also by focusing on the essentials. Thus, practice descriptions following this
approach are very concise and intuitive to practitioners. It serves as a reminder,
and helps teams get started with conversations. The Scrum Lite practice is just 12
cards (see Figure 14.19), one card for each element in Figure 14.3.

With an understanding of the Essence kernel as presented in Part II, a practi-
tioner only needs to have a small deck of 12 cards to begin his/her journey under-

Figure 14.19 Scrum Lite as a deck of 12 cards.

202 Chapter 14 Running with Scrum

standing, learning, and applying a new practice. If you want to give more guidance
to the practitioners, more detailed descriptions can be made available. Associated
with each card there could be a 2–4 page document with further details, guidance,
hints, tips, and common mistakes. All the cards mentioned in this book are avail-
able for download on the book’s website at http://semat.org/web/book/.

Regarding the last two points above, Essence provides a mechanism for teams
to select and compose practices. Our work with practices has yielded a sizeable set
of them. We will discuss this further in Part IV, when we talk about how Essence
can scale to large organizations.

So again, our recommendation to software engineering students is to learn the
kernel, learn the language, symbols, and agreed terms, to lay the foundation for
learning and comparing the multitude of practices in software engineering. In the
remainder of this part of the book, we will demonstrate how Smith’s team—with
the help of precise and explicit practices—embarked on their journey to successful
software delivery and personal growth.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain the benefits of the Scrum practice;

. explain how TravelEssence adopted and applied Scrum and what benefits
they achieved, together with the benefits implied by using the Scrum practice
in an essentialized form;

. explain why organizations often mandate specific practices and tools;

. list and explain the alphas, work products, activities, and patterns of Scrum;

. explain the concept “Definition of Done” used in Scrum;

. apply Scrum Lite practice;

. name relevant questions to ask during development with Scrum (e.g., “Were
the items selected for this sprint properly prepared?”); and

. explain SMART criteria for a practice (what do the letters stand for?).

http://semat.org/web/book/

15Running with User
Story Lite
The goal of this chapter is to introduce the user story practice, including its ele-
ments in the Essence language, and to illustrate how TravelEssence adopted and
applied the practice. Specifically, the reader will after finishing this chapter be
introduced to

. the elements of the user story practice, including relationships between
the respective elements, activity flows, and its relationship with the kernel
elements (in TravelEssence’s case, only Requirements and Work);

. quality criteria for each user story and the decisions they drive along the
practice;

. the elements and structure of a simplified version of the user story practice
(called User Story Lite) in a real endeavor, including the obstacles and chal-
lenges that might arise; and

. the coverage of kernel solution activity spaces by the User Story Lite practice.

In this chapter, we describe how Smith’s team started to apply user stories in
their work. User stories have the benefit of getting the team to think, inquire, and
understand the value of what they do from the point of view of their users. The
user story practice is a popular practice, in particular for small teams. It originated
from Extreme Programming (XP), a lightweight, efficient, low-risk way to develop
software [Beck 1999]. XP was in turn inspired by use cases from 1992. The User
Story Lite practice is a simplified version of the user story practice, created just for
the readers of this book.1

1. Based on version 2017.01 of the User Story Essentials practice originally published by Ivar
Jacobson International, © 2015–2017 Ivar Jacobson International SA. Used and adapted with
permission.

204 Chapter 15 Running with User Story Lite

15.1 User Stories Explained
A user story [Cohn 2004] describes functionality in the system we are building that
is valuable to a user of a system. User stories are based on an approach that was
proven successful back in the 1990s and earlier, where, rather than write lengthy
requirements documents, informal discussions were conducted between the user
of the system and the developer. A user story includes a written description that
is utilized when discussing the story, along with tests to help communicate what
is needed to complete the story. By complete we mean everything that has been
agreed upon that will achieve the user’s need. The idea of user stories is to provide
a way to facilitate discussion to help clarify who a piece of functionality is for—i.e.,
a role—and how it benefits that role. A user story is often captured on a 3 × 5 index
card with a very concise format or template as follows:

As a <role, or type of user>, I want to <list here the function you want the system to
do>, so that <list here the objective you want to achieve>.

An example could be: “As a bank customer I want to have a direct deposit
capability so that my employer can electronically send me my paycheck.” This
template helps to ensure that the “Who,” “What,” and “Why” are all considered
and captured:

. Who will get the value?

. What do we need to achieve?

. Why are we doing it?

(Note that this concept of role is different from the concept of roles we defined
earlier (Section 14.6) where a role meant a list of responsibilities that one or more
members of the team accept. The role of a bank customer within a user story is
with respect to the system being developed, whereas roles within the Scrum Lite
practice such as Scrum Master and PO are with respect to a development endeavor.)
User story cards, of course, do not provide everything that a user needs. They are
placeholders used to remind the team of the need to conduct conversations with the
users. The purpose of the conversations is to flesh out the details. These additional
details can be added to the card, or they can be captured through additional stories.
Again, the primary value of user stories is that they get a conversation going between
the development team and the user.

Figure 15.1 shows the idea of applying user stories, and a simple way of remem-
bering what a user story comprises.

Card. A succinct headline description, as captured on a story card.

15.1 User Stories Explained 205

Conversation ConfirmationCard

INVEST
Independent
Negotiable
Valuable
Estimatable
Small
Testable

As a <role>
I want to <function>
so that <objective>

Acceptance criteria:
• …
• …
• …

Figure 15.1 User Story practice big picture.

Conversation. The discussion between actual users of the proposed system
and developers about what is needed to converge on the best solution.

Confirmation. Acceptance criteria, captured as bullet-point statements, which
can be captured on the back of the story card.

To write a good user story it is useful to apply the INVEST criteria, which is an
acronym for Independent, Negotiable, Valuable, Estimatable, Small, and Testable.
Each of these six criteria items is discussed below.

Independent. User stories should be independent of each other so they each
can be developed separately.

Negotiable. At least part of the reason for promoting a conversation when using
user stories is to support give and take between the user and developers.
To do this, user stories should be written in a way that allows them to be
negotiable. Negotiation promotes understanding and commitment.

Valuable. A user story should be valuable to the user. The conversation can
help team members understand the real intent of a requirement and the
value each story brings to the user. One way to help ensure each story has
this value is to engage the user in actually writing the story.

Estimatable. A user story should be estimatable. As team members and users
work together on user stories, the goal is for enough details to emerge to

206 Chapter 15 Running with User Story Lite

allow the developer to estimate the work effort required to implement the
story.

Small. User stories should be small. Often, when stories are first written they
are too large to fit within a given iteration and therefore must be split into
smaller stories. These large stories that are too large to fit within an iteration
are often referred to as epics. Through the conversations held between de-
velopers and users, the needed smaller stories emerge and are agreed upon.

Testable. An important criterion to keep in mind for a good story is that when
completed it should be testable. Writing the tests first help ensure the story is
testable and helps ensure both the user and the developer are in agreement
on what it means to complete the story.

One question that often arises for beginners when using user stories is:

But why do we need the “so that” clause in a user story?

One of the reasons the “so that” clause is added to this format is so the develop-
ers understand the end objective of the user. This helps to support evolutionary
requirements development, by which we mean that the requirements may evolve
as we learn more about the available options and needs of the user. This also keeps
the developer’s options open in providing alternative solutions. Refer to Figure 15.2
and Table 15.1 for a summary of User Story Lite practice.

Splitting
User Stories

Requirements
(from kernel)

described by>
comprises>

verified by>

User Story Story Card Test Case

Find User
Stories

Prepare a
User Story

Understand the Requirements
(from kernel)

Test the System
(from kernel)

Accept a
User Story

Figure 15.2 User Story practice expressed in the Essence language.

15.2 Making the User Story Lite Practice Explicit Using Essence 207

Table 15.1 Elements of User Story Lite

Element Type Description

User Story Alpha Something that a software system could be
extended to do, expressed in terms of the value
that it will provide to a user of the system.

Story Card Work
Product

An index card, or equivalent, that captures the
essential details of a user story.

Test Case Work
Product

Defines test inputs and expected results to
evaluate whether a user story is fully and correctly
implemented.

Find User
Stories

Activity Identify things of value that a software system
could do. Capture these as simple and succinct
headline descriptions on story cards.

Prepare a
user story

Activity A user story is prepared for development by
discussion with users to build understanding
and refinement of its acceptance criteria and test
cases.

Accept a
User Story

Activity The user story implementation is evolved in close
collaboration with the customer/user until it is
acceptable to and accepted by the customer/user
representative.

Splitting
User
Stories

Pattern Small things get done faster. In agile development
there is a continuous and relentless drive to
reduce the size of user stories by splitting bigger
stories into smaller ones. The key is to ensure
that each story delivers value:
* Splits should support meaningful user
interactions, no matter how small or
“specialized” (think “thin” end-to-end journey
with each split providing value to the user).

15.2 Making the User Story Lite Practice Explicit Using Essence
Just as we did in the previous chapter on Scrum, we can be very explicit about how
the user story practice guides the team by understanding how user stories and
various elements surrounding user stories are related. Figure 15.2 expresses the
user story practice using the Essence language.

From Figure 15.2, it is clear that this practice is a way to decompose complex
Requirements into sub-alphas—the User Story alpha. Each user story is described

208 Chapter 15 Running with User Story Lite

by a story card and is verified through a test case. The User Story Lite practice has
several activities:

. Find User Stories;

. Prepare a User Story; and

. Accept a User Story.

We will exemplify how Smith’s team applies these activities shortly. Figure 15.2
also shows one pattern, Splitting User Stories, to help teams ease development.

When you compare this with Scrum Lite in Chapter 14, it is obvious that this
User Story Lite practice is simpler than that of Scrum Lite. Not only does User Story
Lite have fewer elements than Scrum Lite, it also relates to fewer elements in the
kernel: in this case, only the Requirements alpha. Thus, a team applying a user
story practice alone should consider other practices that provide explicit guidance
on how to progress the other kernel alphas, such as Opportunity, Work, etc.

15.3 User Story Lite Alphas

15.3.1 User Story
A user story is something that a software system could be extended to do, expressed
in terms of the value that it will provide to a user of the software system.

A user story usually progresses through the following states (see also Fig-
ure 15.3).

Figure 15.3 User Story alpha card.

15.4 User Story Lite Work Products 209

Identified. The user story is identified with its value clearly expressed. It is
placed in the team’s product backlog.

Ready for Development. The team discusses the details of the user story such
that members are clear on what is involved in fulfilling the requirements
behind the user story. This might involve details about user interfaces, im-
plementation details, and so on.

In Progress. At this state, the team is working on fulfilling the user story.

Verified. The user story is verified by a qualified user representative, such as a
product owner.

15.4 User Story Lite Work Products
The work products in the user story Lite practice are the Story Card, and the Test
Case for each user story.

15.4.1 Story Card
A story card is an index card, or equivalent, that captures the essentials of a
user story.

A user story can be expressed at different levels of detail.

Value Expressed. The value of the user story is clearly expressed, such as using
the common format described above.

Acceptance Criteria Listed. The acceptance criteria for the fulfillment of the
user story are clearly expressed.

Conversation Captured. The discussions the team has about the user story are
captured so that the team understands more clearly the requirements for
the user story and the rationale behind its details. These discussions are
usually verbal, but can be written on the story card itself or recorded by some
electronic means (see Figure 15.4).

15.4.2 Test Case
A test case defines test inputs and expected results to evaluate whether a user story
is fully and correctly implemented.

A test case has several levels of detail (see also Figure 15.5).

Acceptance Criteria Captured. The different possible ways for testing the user
story are captured.

210 Chapter 15 Running with User Story Lite

Figure 15.4 Story Card work product card.

Defines test inputs and expected
results to evaluate whether a User
Story is fully and correctly
implemented.

Acceptance Criteria Captured

Scripted

Automated

Figure 15.5 Test Case work product card.

Scripted. The step-by-step procedure for testing and accepting the user story
is available. This also necessitates the preparation of test data and test envi-
ronment used when executing the test case.

Automated. The test case is automated and can be executed with little or no
intervention.

15.6 Working with User Story Lite 211

15.5 Kick-Starting User Story Lite Usage
There were two primary challenges our TravelEssence development team faced that
led them to decide to try User Stories Lite in their endeavor. First, Smith’s team
members sometimes found themselves wondering about the purpose of the system
they were developing. This often resulted in animated discussions with Angela. So,
instead of just enumerating PBIs, Angela recognized that by investing a little time in
developing PBIs into a user story format, the resulting requirements would help the
team better understand the purpose of the system they were developing. This would
also help Angela when discussing the system with other stakeholders, such as Dave.

The second challenge the development team often faced was that product back-
log items were sometimes too large to fit within a single sprint/iteration. Smith had
heard that the User Story Lite practice could help them with both of these challenges
and so the team decided to try out this practice to see if it could help solve their
challenges.

15.6 Working with User Story Lite
Working with User Story Lite involved several activities (see Figure 15.6). First, the
team needed to find User Stories, prepare each User Story for development, and
then accept the implementation of the User Story. (The actual implementation (i.e.,
writing and testing code) is outside the scope of the User Story Lite practice we are
describing in this section; it is expected to be addressed by another practice. Later

Figure 15.6 User Story Lite activity cards.

212 Chapter 15 Running with User Story Lite

in Chapter 17, we will show how a microservice practice can be used to accomplish
this.)

15.6.1 Find User Stories
Angela and the team were discussing which PBIs they would target for the next
iteration. Among them were the following three backlog items:

. improve algorithms to rank destinations according to traveler-specific pref-
erence;

. improve algorithms to rank destinations according to general popularity of
destinations; and

. collect user data from users and analyze them.

15.6.2 Prepare a User Story
Having agreed to the User Story Lite practice, the team proceeded to prepare each
story for development in the next iteration. The preparation involved some detailed
discussion.

Tom was quick to highlight that the purpose and scope of the above items
were not clear. For example, the team was not clear on the acceptance criteria for
improving the algorithms. They were also unclear about the purpose of collecting
and analyzing user data, and hence the scope of this backlog item.

Smith explained the idea of the User Story Lite practice to Angela. She was quick
to grasp the problem the team was facing, and understood how this practice could
help. Together as a team, they expressed the User Stories as shown in Figure 15.7.

As a traveler, I want to have
destinations I like to be ranked
higher than other destinations so
that it is easier for me to find them.

Acceptance criteria:
1. A visited destination ranks
 higher than a non-visited one.
2. A “liked” destination ranks
 higher than a “non-liked” one.

As a traveler, I want to have
popular destinations ranked
higher than other destinations so
that it is easier for me to find them.

Acceptance criteria:
1. Each destination visited by a
 traveler will be given a higher
 score.
2. Each destination liked by a
 traveler will be given a higher
 score.

As TravelEssence promotion staff,
I want to track the actions on the
recommendation list so that I can
improve the quality of the recom-
mendation and user experience.

Acceptance criteria:
1. Count the clicks, likes, and
 booking on each recommendation
 destination by specific traveler
 and travelers in general.
2. Trend chart by day, week, month
 of top N destinations.

Figure 15.7 User Story examples.

15.6 Working with User Story Lite 213

Tom, Joel, and Grace were much happier with the User Story format as depicted
in Figure 15.7 compared to what they had earlier (see Sections 10.1 and 14.4.2), as
this format helped them better understand the purpose of the system they were
developing. Furthermore, the added detail helped them estimate each story and
ensure each one was small enough to fit into an iteration.

Angela mentioned that expressing the requirements in this User Story format
demanded more effort from her, but after some discussion, she agreed that this
small upfront investment was worthwhile because it made her think in more detail
about what she wanted. For example, in the first and second stories in Figure 15.7,
the agreed-on acceptance criteria made clear to the team what Angela would accept
for improved algorithms. In the third story, because it specified “count clicks” and
created a “trend chart,” the team understood better what Angela would accept
for the data to be collected and how she expected it to be analyzed. The user
stories would also help Angela when explaining to Dave, her boss, the specific
requirements that the team would be focusing on in the next sprint. Note that these
were not the only three user stories they were delivering. There were others, but for
brevity, we limit our discussion to these three.

The development of each story would involve designing user interfaces, writing
code (user interface code, back-end processing code, and database code), preparing
test data, and testing the code according to the acceptance criteria. So, in general,
completing one user story was not something each member could do in a day,
especially if it involved new functionality, rather than a simple modification of
some existing functionality. (Keep in mind that explaining how the team conducts
their implementation—code and testing—is outside the scope of our User Story
Lite practice.)

15.6.3 Applying the Splitting User Stories Pattern
As part of preparing the stories for development, the team proceeded to split each
user story that was too large into smaller stories that were more aligned with the
INVEST criteria (see Section 15.1), especially the small and testable criteria (see also
Figure 15.8).

In general, having smaller stories with clear test criteria makes each story eas-
ier to complete, which rewards team members with a sense of achievement and
improves team member progress assessments.

As an example, Figure 15.9 shows how the first user story was split into three
smaller ones. The team members took the guidance from the Splitting User Sto-
ries pattern for approaches to accomplish the splitting, ensuring that the smaller
stories were testable all the time.

214 Chapter 15 Running with User Story Lite

Small things get done faster. In agile
development there is continuous and
relentless drive to reduce the size of
User Stories by splitting bigger stories
into smaller ones. The key is to ensure
that each story delivers value:
• Splits should support meaningful
 user interactions, no matter how
 small or “specialized” (think “thin
 end-to-end journey / slice” not
 technical architecture “dice”—e.g.
 front-end without back-end)
• Remember: each and every Test
 Case is a potential new story.

Figure 15.8 Splitting User Stories pattern card.

As a traveler, I want to have
destinations I like to be ranked higher
than other destinations so that it is
easier for me to find them.

Acceptance criteria:
1. A visited destination ranks higher
 than a non-visited one.
2. A “liked” destination ranks higher
 than a “non-liked” one.

Processing of traveler
visited destination

Handling of traveler
“liked” destinations

Ranking of
recommended
destination given a
user travel destination

Figure 15.9 Splitting a user story.

15.6.4 Accept a Story
The team worked on the user stories within the current iteration. They made it a
point to have their acceptance criteria expressed clearly. This investment paid off,
as developers had a clearer idea what had to be done. They found that it was not
easy to specify acceptance criteria at the same time as they described the story,
because they were not yet sure what was really needed. Nevertheless, they felt that
doing their best to split the stories was the right thing to do. Over the course of the

15.7 The Value of the Kernel to the User Story Lite Practice 215

delivery of each user story, they regularly communicated with Angela and with each
other regarding its details. The result was reduced disagreements when accepting
the story.

Angela continued to work closely with the development team using their agreed-
to Scrum Lite practice. She also participated in the acceptance of each user story.
Whenever issues arose during the sprint, she worked with the team to refine the
acceptance criteria.

15.7 The Value of the Kernel to the User Story Lite Practice
By describing the User Story Lite practice in an essentialized form (e.g., activity
cards showing relationships to alphas), the team could see which alphas were
being progressed and where their Requirements practice still had weaknesses.
Specifically, the team recognized that their User Story Lite practice helped them
achieve the following Essence kernel alpha states.

. Requirements alpha: Bounded and Coherent state

. Work alpha: Prepared state

. Requirements alpha: Acceptable state

The explicit activities in the User Story Lite practice directly supported the team
in achieving key checklists within the Requirements alpha: Bounded and Coherent
states. For example, the User Story practice encouraged stakeholders and team
members to discuss and to agree on the purpose of the new system, as well as
helping everyone involved to achieve a shared understanding of the extent of the
proposed system. Furthermore, discussions helped both the team members and
stakeholders to work through issues related to potentially conflicting requirements
(see checklist items in Figure 15.10).

Achieving the Work alpha: Prepared state was helped because the User Story Lite
practice encourage the splitting of each story in order to break the requirements
down into tasks that the team could estimate and commit to completing within a
single Sprint (see Figure 15.11).

The explicit activities in the User Story Lite practice next directly supported
the team in achieving key checklists in the Requirements alpha: Acceptable state.
For example, it encouraged the team and Angela to agree together on acceptance
criteria, which reminded them of the importance of describing clear test steps
that would lead to an acceptable solution (see highlighted checklist item in Fig-
ure 15.12).

216 Chapter 15 Running with User Story Lite

Conflicts
addressed

System purpose
agreed

Shared solution
understanding
exists

Figure 15.10 Requirements Alpha: Bounded and Coherent alpha state cards.

Sufficiently broken
down to start

Figure 15.11 Work: Prepared alpha state card.

15.7.1 Visualizing the Impact of the User Story Lite Practice
While the User Story Lite practice helped the team progress two Essence kernel
alphas, it did not solve all the challenges the development team faced with regard
to satisfying Angela and progressing these alphas. After some discussion, the team
began to realize that the User Story Lite practice had a number of weaknesses that
was holding them back from fully achieving the Requirement alpha: Coherent and
Acceptable states. For example, the informal nature of the User Story format left
too much room for ambiguity in the requirements, and the team realized they were
having trouble seeing the “big picture” and how new requirements would fit into
that big picture. This led them to realize that they needed more help than the User

15.7 The Value of the Kernel to the User Story Lite Practice 217

Acceptable
solution described

Figure 15.12 Requirements: Acceptable alpha state card.

Story Lite practice was providing when it came to structuring and documenting the
stories within the overall system.

Smith said that he had heard that the weaknesses the team had found in their
use of the User Story Lite practice could be addressed if the team considered
migrating to use cases. As a result, the team agreed to study the Use Case Lite
practice, which we will present in the next chapter.

The first thing they did is to compare the two practices and their coverage. We
will present their comparison later, once we have introduced Use Case Lite in the
next chapter. Here, we will discuss only that provided by the User Story Lite practice
(see Figure 15.13).

The three activities in User Story Lite only cover two activity spaces. In par-
ticular, there is no activity that covers the Shape the System activity space. This
is the activity space that deals with the structure of the solution area, including
the structure of requirements and the structure of the software system. That was
precisely what Smith’s team indicated when they said they have trouble seeing
the “big picture.” They had a list of user stories, but not how all the stories
were related to one another. They could not see the entire shape of the soft-
ware system. In the next chapter, we will present use cases as a way to deal with
this gap.

We want to point out here again to the reader that it is not our intent in this book
to create arguments or explain why one practice may be better than another (e.g.,

218 Chapter 15 Running with User Story Lite

Understand the
Requirements

Shape the
System

Implement
the System

Test the
System

Deploy the
System

Operate the
System

Solution

Find User
Stories

Accept a
User Story

Prepare a
User Story

Figure 15.13 User Story Lite coverage of kernel solution activity spaces.

use cases vs. user stories). Our intent in this book is to help the reader understand
the value of expressing practices in an essentialized form. Essentialization can
aid teams in discussing their own endeavor situations, leading to appropriate
decisions.

By looking at their practices through the lens of Essence, the team was able
to see the strengths of their current agreed practices, as well as the weaknesses.
For example, when the team was still small and they had just a few requirements,
the User Story Lite practice worked well for them. But as their requirements grew
further, and new team members were added, they realized they needed another
approach to describe the big picture, and see how all the requirements fit into that
big picture. By having an open and honest discussion about this, the team was
able to agree that it would be an improvement to migrate to use cases. In the next
chapter, we will discuss what the team learned as they did this, and how it helped
them with their current challenges.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain the “Who,” “What,” and “Why” of user stories;

. explain the purpose of Card, Conversation, and Confirmation within a user
story;

. explain the INVEST criteria;

. explain why we need the “so that” clause in a user story;

What Should You Now Be Able to Accomplish? 219

. explain the purpose of the User Story Lite practice and the problems it solves;

. explain how TravelEssence adopted and applied User Story Lite and the
benefits they achieved, together with the benefits implied by using the User
Story Lite practice in an essentialized form; and

. list and explain the alphas, work products, activities, and patterns of User
Story Lite.

16Running with
Use Case Lite

The goal of this chapter is to introduce the Use Case Lite practice and its elements,
and to demonstrate its application within the TravelEssence journey. In this chap-
ter, the reader will be shown

. the differences between use cases and user stories;

. the elements of the use case practice, including relationships between ele-
ments, activity flows, and relationships with kernel elements;

. the concept of use-case slices and their benefit when use cases are used
together with Scrum;

. the importance of monitoring progress and health of use cases and use-case
slices;

. a simplified version of the use case practice (called Use Case Lite) in a real
endeavor, together with the obstacles and challenges that might arise; and

. the coverage of kernel solution activity spaces by the Use Case Lite practice.

In this chapter, we will see why and how Smith’s team started applying use cases
in their development. The use case practice is a requirements analysis technique
that has been widely used in modern software engineering since its introduction
by Ivar Jacobson in 1987 [Jacobson 1987]. In fact, Ivar Jacobson introduced a
larger practice, Use-Case Driven Development (UCDD) that extends the use case
practice beyond requirements analysis to driving design, implementation, and
testing. Since its introduction, the use case practice has been widely adopted in
basically all industries and inspired the user story practice we presented in the
previous chapter. In fact, the use case idea has become so widespread that the term
“use case” has become a normal English expression used to understand the usages
of virtually anything. The use case practice has evolved since 1987 and in its turn

222 Chapter 16 Running with Use Case Lite

has become inspired by the lightness of the user story practice, making it practical
to use in all kinds of endeavors and in particular in agile endeavors [Jacobson et al.
2011, 2016]. Similar to what we did with Scrum and user stories, in this chapter
we will describe a simplified version of the use case practice, which we refer to as
Use Case Lite. It is designed for this book only and to be exchangeable with the
user story practice; the better way to handle use cases is provided by the UCDD
practice.

Smith’s team had already been working with product backlog items as part
of their Scrum explicit practice, as previously described. These product backlog
items frequently had relationships between them that were not evident from the
simple product backlog list. For example, some product backlog items provided
basic functionality (meaning high-level requirements that do not include details),
while other product backlog items provided additional extended functionality. Use
cases can help teams understand the bigger picture and how product backlog items
are related.

16.1 Use Cases Explained
A use case is all the ways of using a system to achieve a particular goal for a particular
user. Use cases [Bittner and Spence 2003] help teams understand how user needs
and requirements affect the behavior of the system. Often, at the start of a software
endeavor, development teams are given a requirements specification which is es-
sentially a narrative that supposedly captures the requirements for the system to be
built. As shown in Chapter 15, user stories can help flesh out missing requirements
by encouraging informal discussion between developers and users. However, often
these informal discussions lead to user stories that are fragmented—there are too
many of them, it is not clear how they make up something more complete—and they
lack structure. This can become a significant problem especially for large complex
systems. One approach that has been used to help address this problem is devel-
oping larger stories first, which are referred to as epics (see Section 15.1). This is an
area, though, where use cases may be more helpful to teams. Use cases provide a
systematic way to organize requirements. This structure makes it easier for teams
to conduct analysis and orchestrate facets such as user interface (UI) design, service
design, implementation, tests, and so on.

In the Unified Modeling Language [Booch et al. 2005], the relationships between
users and use cases are represented in what is referred to as a use-case model—a
model of the use cases within a system. Since users are not always human but can

16.1 Use Cases Explained 223

Make a travel plan
Traveler

Figure 16.1 Use-Case Model example: “Make a Travel Plan.”

Make a travel plan

Traveler

Provide
recommendations Travel staff

Figure 16.2 Use-Case Model for TravelEssence providing travel recommendations.

also be other systems, we use a more general term than users and speak instead
about actors.

As you will recall, TravelEssence was a leading travel service provider that tar-
geted both leisure and business travelers. One of their customer-facing systems, a
travel portal, had the use case shown in Figure 16.1 (among others, but right now
we will pay our attention to only this one).

The stick figure is the UML symbol for an actor and the oval is the UML symbol
for a use case. A use-case model provides a visual representation of the software
system, which is a very useful way for brainstorming its overall scope. What we
show in Figure 16.1 is a use-case model with only one actor and one use case. In
real systems, there are many actors and use cases. Figure 16.2 shows the actors and
use cases for the development endeavor our TravelEssence team had just embarked
upon with the following requirement items implemented:

Req-Item #1. System generates recommendations for a traveler

Req-Item #2. Mobile plug-in displays recommendations

Req-Item #3. System handles user’s selection to view or discard recommenda-
tions

Req-Item #4. System tracks recommendation success rate

224 Chapter 16 Running with Use Case Lite

Basic Flow:

1. Traveler provides travel details (travel dates and destination).

2. System searches and displays hotels for the travel dates and destination.

3. Traveler selects a hotel and room type.

4. System computes and displays available rooms and prices.

5. System makes a tentative reservation for the traveler at the selected hotel.

Alternate Flows:

A1. Travel plan with multiple destinations.

A2. Travel plan with a single destination but non-consecutive dates.

A3. Travel plan with non-consecutive dates and multiple destinations.

Figure 16.3 Use-Case Narrative example: “Make a Travel Plan.”

The reader should not jump to the conclusion that use cases are just about
diagrams. Use cases include the actual functionality and behavior of the sys-
tem. Each use case is described in a use-case narrative. A use-case narrative
provides a textual description of the sequence of interactions between the actor
and the system. It also describes what the system does as a response to each
message from the actor. This response includes internal actions as well as the
sending of messages back to the actor or to other actors (which could be other
systems). Figure 16.3 shows an example use-case narrative for the “Make a travel
plan” use case. The use-case narrative is usually separated into two parts, re-
ferred to as the basic flow and the alternate flows. The basic flow describes a
normal use of the described use case, often called the happy day scenario. In our
TravelEssence case, this would be making a travel plan. The basic flow is worded
in a sequence of steps you would expect to encounter when using or testing the
system.

The alternate flows (there may be a single or multiple alternate flows) are vari-
ations of the basic flow to deal with more specific cases. These variations can be
enhancements, special cases, etc. In this case, we have three alternative paths A1–
A3 (see Figure 16.3). Their steps should be listed, but for brevity, we did not show
them in the referenced figure.

As another example, the use-case narrative for “Provide travel recommenda-
tions” is depicted in Figure 16.4. The basic flow enumerates the sequence of interac-
tions between the software system and the user to provide travel recommendations
to the user (i.e., the traveler).

16.1 Use Cases Explained 225

Basic Flow:

1. Traveler verifies travel details (travel dates and destination).

2. Traveler requests recommendations.

3. System provides list of recommendations.

4. Traveler browses recommendations.

5. Traveler selects and views a recommendation.

Alternate Flows:

A1. Recommendations of different entities

a. Hotel

b. Place of Interest

A2. Recommendations

a. Recommendations based on popularity rating

b. Recommendations based on pricing

c. Weighting function (preference indicator) for the above parameters

A3. Recommendation request trigger

a. User initiated

b. System triggered

A4. Sorting of recommendations

a. Sorting based on prices

Figure 16.4 Use-Case Narrative: “Provide Travel Recommendations.”

When trying to understand requirements, or anything, we start by understand-
ing the heart of the matter, before diving into details. Use cases are structured to
help with this kind of thinking. This same idea works when you are implement-
ing a system; you start building the skeleton before fleshing out the details. The
basic flow acts as the skeleton. If you compare the use case approach to captur-
ing requirements with that of user stories in Chapter 15, it should be clear that
the use case approach provides more structure through the separation of basic and
alternate flows, in addition to other features we will describe. This structure also
makes the requirements easier to understand, especially for endeavors that are
large and complex.

Keep in mind that what you find in this chapter is just a brief introduction to the
use case approach. In Section 16.9, we have made a more complete comparison. All
of the practices we present in this book are example practices. We want the reader
to understand how they can be represented in an essentialized form and what value
essentialization brings to comparing practices helping you make the best decision

226 Chapter 16 Running with Use Case Lite

given your own situation. If you are interested in learning more, we recommend
you study this approach in detail [Jacobson et al. 2011].

16.1.1 Slicing Use Cases
Use cases can help solve one of the key problems with incremental development
that many teams face. That is the fact that the functionality of the entire software
system can become fragmented into product backlog items scattered across all
the iterations throughout the evolution of the software system. As such, it is often
challenging to understand what the system can do at any point in time, or answer
questions about the impact of a new product backlog item on the current software
system. Use cases provide an approach for putting all these product backlog items
into context from the user’s point of view. A use case often contains too much
functionality to be developed in a single iteration, such as a single sprint when
using Scrum. That is why a use case is split up into a number of smaller parts
that are referred to as use-case slices. These use-case slices taken together represent
the whole use case. Each use-case slice should provide some value to its users, so
they should typically include a sequence of activities and not just represent a user
interface part or a business rule.

For example, as explained, the “Make a travel plan” use case has a basic flow and
three alternate flows. So, you might implement the basic flow first as one use-case
slice, before implementing the alternate flows as subsequent use-case slices. Recall
that in Chapter 15, we discussed an example for splitting user stories. With use
cases, the way a use-case narrative is expressed (partitioned into basic and alternate
flows) facilitates splitting up the use case into smaller use-case slices. These can
then be placed into the backlog for development (see Jacobson et al. 2011, 2016).

A use-case slice is a slice through a use case that is meaningful to describe, design,
implement, and test in one go. It doesn’t need to by itself give value to a user, but
together with all other slices of the same use case, the value is achieved. For
example, the basic flow of a use case is a good candidate to become an early
use-case slice. Additional slices can then be added to complete the whole use
case later. The slicing mechanism is very flexible, enabling you to create slices
as big or small as you need to drive your development. The use-case slices in-
clude more than just the requirements. They also slice through all the other
aspects of the system—e.g., user experience (user interface), architecture, de-
sign, code, test—and its documentation. Thinking about and developing a soft-
ware system through slices in this way helps you create the right system. The
slices provide a way to link the requirements to the parts of the system that im-
plement them, the tests used to verify that the requirements have been imple-

16.2 Making the Use Case Lite Practice Explicit Using Essence 227

mented successfully, and the release and endeavor plans that direct the develop-
ment work.

The Use Case Lite practice that we discuss below provides a scalable, agile
practice that utilizes use cases to capture the functionality of a software system
and test them to ensure the system fulfills them.

16.2 Making the Use Case Lite Practice Explicit Using Essence
We have just introduced the concepts and the purpose of use cases and use-case
slices, which are essential parts of our Use Case Lite practice. We will now look at
how to describe this practice using Essence. The first questions we always ask when
essentializing a practice are as follows:

. What are the things you need to work with?

. What are the activities you do?

Figure 16.5 expresses the elements of our Use Case Lite practice using the
Essence language.

The Use Case Lite practice decomposes Requirements into Use Cases, which
in turn are broken down into Use-Case Slices. Requirements, Use Cases, and Use-
Case Slices are all important things we need to work with and progress. They are
alphas in our essentialized representation of the Use Case Lite practice.

The Requirements are described using a Use-Case Model. A Use-Case Model is a
tangible description of the Requirements, and therefore it is a work product. Each
Use Case within our Use-Case Lite practice has one related work product, a Use-
Case Narrative, and each Use-Case Slice has one related work product, a Use-Case
Slice Test Case.

The bottom of Figure 16.5 shows four activities in our Use Case Lite practice,
namely:

1. Find Actors and Use Cases to gain an overall understanding of what the
system is about;

2. Slice the Use Cases to break them up into a number of intelligently selected
Use-Case Slices that each fit within a single sprint;

3. Prepare a Use-Case Slice by enhancing the Narrative and Test Cases to clearly
define what it means to successfully implement the slice; and

4. Test a Use-Case Slice to verify it is done and ready for inclusion in a release.

228 Chapter 16 Running with Use Case Lite

Requirements
(from kernel)

captured as>

Slice the
Use Cases

Prepare a
Use-Case Slice

Understand the Requirements
(from kernel)

Test the System
(from kernel)

Test a
Use-Case Slice

Find actors
and Use Cases

described by>

Use Case Use-Case
Narrative

described by>

Use-Case
Model

described by>

Use-Case Slice Use-Case Slice
Test Cases

scope managed and
addressed as a set of slices >

Figure 16.5 Use Case Lite practice expressed in the Essence language.

The first three activities reside in the Understand the Requirements activity
space and the fourth resides in the Test the System activity space.

Use-Case Slices are identified by working through the use case to identify paths,
scenarios, or—as we say—the stories that build up the use case. Typically, a story
is any path that you may want to follow going through the use case: its basic flow
or its alternative flows. Concrete examples of stories in the use case “Make a travel
plan” are

1. the basic flow;

2. the basic flow complemented with alternative flow 1; and

3. the basic flow complemented with alternative flow 2.

16.2 Making the Use Case Lite Practice Explicit Using Essence 229

The story idea is similar to that in the User Story Lite practice and is a very
important step to find good slices. A use-case slice typically includes one or more
stories.

Note that this practice does not provide any patterns. This illustrates that it is
up to the author of a practice to dictate its scope. Normally, the more there is in a
practice, the more specific it is. The less complexity it has, the more generic it is,
and others can supply more specific information, such as patterns, when necessary.

The elements of the Use Case Lite practice are summarized in Table 16.1.

Table 16.1 Elements of the Use Case Lite practice

Element Type Description

Use Case Alpha All the ways of using a system
to achieve a particular goal for a
particular user.

Use-Case
Narrative

Work
Product

The story of how the system and its
actors work together to achieve a
particular goal.

Use-Case Slice Alpha One or more stories selected from a
use case to form a work item that is of
clear value to the customer.

Use-Case Model Work
Product

A model that captures and visualizes
all of the practical ways to use a
system.

Use-Case Slice
Test Case

Work
Product

Defined inputs and expected results to
help evaluate whether a system works
correctly.
There can be one or more test cases to
verify each use-case slice.

Find Actors and
Use Cases

Activity Agree on the goals and value of the
system by identifying ways of using
and testing it.

Slice the Use
Cases

Activity Break each use case up into a number
of intelligently selected smaller parts
for development.

Prepare a Use-
Case Slice

Activity Enhance the narrative and test cases
to clearly define what it means to
successfully implement the slice.

Test a Use-Case
Slice

Activity Verify the slice is done and ready for
inclusion in a release.

230 Chapter 16 Running with Use Case Lite

This practice is primarily in the solution area of concern because it focuses on
the Requirements and the Software System kernel alphas. Like the User Story Lite
practice, it provides no explicit guidance in the endeavor area of concern, and is
therefore well complemented by the Scrum Lite practice.

16.3 Use Case Lite Alphas
The Use Case Lite practice involves the following alphas (shown in Figure 16.6):
Requirements (from the kernel), Use Case, and Use-Case Slice. The cards show the
states of each alpha.

16.3.1 Progressing Use Cases
The Use Case Lite practice provides an effective way to progress requirements.
Again, a use case is all the ways of using a system to achieve a particular goal for a
particular user. So, the use case first starts off with a goal, and along with it go all
the ways—or what we call stories—for achieving that goal. Through the use-case
narrative, the stories are organized with a structure that is understandable by both
the customer representative and the development team. A team then fulfills the
simplest story and proceeds to incrementally progress through other stories until
all of them are fulfilled.

Thus, the Use Case alpha has the following states of progression and health (see
Figure 16.7).

Goal Established. The scope of a use case is defined by the goal of the use case:
what the actor wants to achieve.

Figure 16.6 Things to work with (alphas).

16.3 Use Case Lite Alphas 231

Figure 16.7 Use Case alpha state cards.

Story Structure Understood. One of the key benefits of use cases is that it
provides a structure. Rather than a heap of requirement items or user stories,
use cases provide a structure. In this state, that structure is defined and
understood.

Simplest Story Fulfilled. The simplest or the most basic flow through the use
case drives the code skeleton. Once this code skeleton is formed and stabi-
lized, it becomes easy to implement the rest of the stories.

Sufficient Stories Fulfilled. Once sufficient stories are fulfilled, the use case
can be evaluated as to whether it achieves its goal well.

All Stories Fulfilled. Finally, the entire use case is completed.

232 Chapter 16 Running with Use Case Lite

Figure 16.8 Use-Case Slice alpha state cards.

16.3.2 Progressing Use-Case Slices
It will take several sprints, or even releases, to fulfill all the stories in a use case.
In each sprint, teams fulfill a portion of a use case, which (as you know) we call a
use-case slice.

Working with a use-case slice is quite similar to working with a user story. The
use-case slice alpha has the following states (see Figure 16.8).

Scoped. When this state is complete, the use-case slice has been identified and
its scope clarified.

Prepared. At this state, the information the development team needs to im-
plement the use-case slice is available, including priorities relative to other

16.4 Use Case Lite Work Products 233

slices, estimates of cost to implement, dependencies on other use-case
slices, etc.

Analyzed. At this state, the development team has a common agreement on
how the use-case slice will be implemented. This includes agreeing on as-
pects such as user interfaces (i.e., how information should be presented on
the screen, how the user would interact with the system), persistence (e.g.,
updating the database), and so on.

Implemented. At this state, the use-case slice is implemented. This involves
writing actual code.

Verified. At this state, product owners verify the use-case slice does what is
expected.

16.4 Use Case Lite Work Products
The work products in this practice are depicted in Figure 16.9. There are cards
whose content provides guidance on the levels of detail for each of the work prod-
ucts (Use-Case Model, Use-Case Narrative, Use-Case Slice Test Case). The following
quote is taken from the Use Case 2.0 ebook [Jacobson et al. 2011]:

All of the work products are defined with a number of levels of detail. The first level of
detail defines the bare essentials, the minimal amount of information that is required
for the practice to work. Further levels of detail help the team cope with any special
circumstances they might encounter. For example, this allows small, collaborative
teams to have very lightweight use-case narratives defined on simple index cards
and large distributed teams to have more detailed use-case narratives presented as
documents. The teams can then grow the narratives as needed to help with communi-
cation, or thoroughly define the important or safety critical requirements. It is up to
the team to decide whether or not they need to go beyond the essentials, adding detail
in a natural fashion as they encounter problems that the bare essentials cannot cope
with.

The lightest level of detail is shown at the top of each work product card. The
amount of detail increases as you go down the card. For example, in Figure 16.9,
Value Established is the lightest level of detail for the Use-Case Model, while Struc-
tured provides the greatest detail. For the Use-Case Narrative, Briefly Described is
the lightest level of detail, whereas Fully Described is the deepest level. A team al-
ways starts with the lightest level, and can then decide how much more detail they
need, based on their own situation. These levels of details will be described in the
next section, when we elaborate each work product.

234 Chapter 16 Running with Use Case Lite

Figure 16.9 Things to work with (work products).

It is to be expected that each use case will evolve over several iterations/sprints by
coming back to the activity slice the use cases. More slices may be added to the use
case, and each use case is improved as we learn more. As such, the alpha states that
show progress of a use case could be based on the evolution of the slices. This is a
similar idea to what we saw earlier in Part II, where the progress of the Requirement
alpha was based on the progress of Requirements Items. This will be more apparent
later when we provide a concrete example.

16.4.1 Use-Case Model
A use-case model captures and visually presents all the useful ways to work with a
system (see Figure 16.10). Figure 16.2 gave an example of a simple use-case model.

A use-case model describes not just one but several use cases and how together
they provide value to its users (i.e., actors). These use cases need to have clearly
defined scope. The use-case model has the following levels of detail.

Value Established. At this level of detail, the value of the use cases and hence
the use-case model is established. Readers of the use-case model have a good
understanding of what the use cases are about, what they do, and how actors
benefit from them.

System Boundary Established. At this level, the scope and boundaries of the
requirements are described. The team and stakeholders have a clear under-
standing of what is within its scope and what is not.

16.4 Use Case Lite Work Products 235

Figure 16.10 Use-Case Model work product.

Structured. At this level of detail, the Use-Case Model is well structured. There
is little or no overlap between Use Cases. The dependencies and relationships
between Use Cases are described clearly.

16.4.2 Use-Case Narrative
A Use-Case Narrative describes the story (i.e., sequence of steps) of how the system
and the actors work together to achieve a particular goal. (The term “story” here is
not the “user story” we presented in the previous chapter. Rather, the term “story”
is just the normal English word.)

A use-case narrative can be described at several levels of detail (see also
Figure 16.11).

Briefly Described. At this level of detail, the use-case narrative only has a brief
description of the use-case goal and what it is about.

Bulleted Outline. At this level of detail, the story of how the system and ac-
tors will work together is available. The examples provided in Figures 16.3
and 16.4 are at this level of detail. Of course, the lists can also be numbered.

Essential Outline. At this level of detail, the story is full blown. In the context
of requirements of the software system, the various alternative usages and
exceptions to be handled are clearly described.

Fully Described. This is a very detailed description of the use case. All conver-
sations are clearly spelled out.

236 Chapter 16 Running with Use Case Lite

Figure 16.11 Use-Case Narrative work product.

16.4.3 Use-Case Slice Test Case
The use-case slice test case work product defines the inputs and expected outputs
to help evaluate whether a use-case slice is implemented correctly.

Figure 16.12 depicts the level of details in a use-case slice test case.

Figure 16.12 Use-Case Slice Test Case work product.

16.5 Kick-Starting Use Cases Lite to Solve a Problem Our Team Is Facing 237

Scenario Chosen. At this level of detail, the different scenarios required to test
the use-case slice are described. This includes the normal way of
using the use-case slice and other variations (alternative usages and
exception cases). The example in Section 16.6.2, Table 16.3, is at this level of
detail.

Variables Identified. At this level, the different variables are listed. For exam-
ple, the variables for testing the “Make a travel plan” use case include traveler
identification and destinations (see Figure 16.3).

Variables Set. At this level, the actual variables are defined. To continue the
same example, the traveler might be Sam, whose identification is 12345678.
The destination is Singapore. The popularity rating of the Singapore Zoolog-
ical Gardens and Shangri-La Hotel are set.

Scripted or Automated. At this level of detail, the test cases are clearly described
such that a person can run the test case by following a step-by-step procedure
without misinterpretation, or a software tool can execute it repeatedly with
pass/fail results clearly defined.

16.5 Kick-Starting Use Cases Lite to Solve
a Problem Our Team Is Facing
One day at TravelEssence, Tom raised a question: “Our endeavor is getting more
complex and it is difficult to see the big picture when looking at our product back-
log. I have heard that the Use Case Lite practive could help us with this problem.
But if we migrate to use cases, do we need to rewrite all our old product backlog
items into use cases?”

Smith replied, “Kick-starting Use Case Lite for an endeavor starts with iden-
tifying users and use cases to produce a skeletal use-case model, and skeletal
use-case narratives. By skeletal, I just mean it is not necessary to have detailed
descriptions of all use cases of the system. So, no, we don’t need to rewrite all
our old product backlog items. We just need to make a use-case model and map
the backlog items that are already done to use-case slices of the use cases in that
model. The new backlog items will of course be the use-case slices that are not yet
implemented.”

The activities to apply Use Case Lite are Find Actors and Use Cases, Slice the Use
Cases, Prepare a Use-Case Slice, and Test a Use-Case Slice, which we will discuss in
subsequent subsections.

238 Chapter 16 Running with Use Case Lite

Figure 16.13 Find Actors and Use Cases work product.

16.5.1 Find Actors and Use Cases
The Find Actors and Use Cases activity is about agreeing on the goals and value of
the software system by identifying the different ways of using it. As a corollary to
this, we also find the different ways of testing it (see Figure 16.13).

On the Find Actors and Use Cases card, we see that the Stakeholder Represen-
tation and Analysis competencies are needed. We also see that this activity con-
tributes to achieving the Requirements alpha’s Conceived, Bounded, and Coherent
states.

The card also indicates that the use-case model needs at a minimum to achieve
the Value Established level of detail and that the use-case narrative at a minimum
must be Briefly Described. The use case alpha needs to achieve the Goal Established
state.

At TravelEssence, Smith next worked with his team to create a skeletal use-case
model for the system as developed so far (see Figure 16.2). This can be said to
represent release 1 of the TravelEssence system.

Smith then went on to create a new use-case model for the new release of the
system—release 2—that they were now working on (see Figure 16.14). He added
a new actor, Digital Officer, responsible for overseeing all new product releases.
He also added two new use cases: “Manage release” and “Analyze recommenda-
tion results.” The “Manage release” use case provided features to review upcoming
planned releases, and the “Analyze recommendation results” use case contributed

16.5 Kick-Starting Use Cases Lite to Solve a Problem Our Team Is Facing 239

Make a travel plan

Traveler

Provide travel
recommendations

Manage release

Digital officer

Analyze
recommendations

Travel staff

Figure 16.14 Use-Case Model for the next release of TravelEssence.

features to examine recommendations generated by the system and provide feed-
back.

Moreover, after a successful rollout to internal users, Angela had collected a
number of feedback comments, which Smith also wanted to act upon for the
next release of TravelEssence. Some of the feedback comments related to usability
enhancements, while others related to new functionality requests, such as the
following:

Recommendations by Advertisements. “We have revenue from advertisers. If
these advertisers are within the vicinity of the traveler’s destination, they
should be in the recommendations. However, we need to come up with a
fair approach for prioritizing recommendations.”

Sorting by Vicinity. “The list of recommendations is rather long; it should be
sorted according to how close the advertisers are to the traveler.”

Handling Favorites. “Sometimes, the traveler might want to remember the
recommendation for future trips through some kind of ‘favorites.’ Favorites
should appear in future recommendations.”

From the above list of suggested improvements, Smith made the following
updates to the “Provide travel recommendation” use-case narrative shown in
Figure 16.15. Updated and new lines are labeled in the figure.

240 Chapter 16 Running with Use Case Lite

Basic Flow:

1. Traveler provides travel details (travel dates and destination).

2. Traveler requests recommendations.

3. System provides list of recommendations.

4. Traveler browses recommendations.

5. Traveler selects and views a recommendation.

Alternate Flows:

A.1 Recommendations of different entities

a. Hotel

b. Places of Interest

A.2 Recommendation computation

a. Recommendations based on popularity rating

b. Recommendations based on pricing

c. #New Recommendations based on advertisements

d. #New Recommendations based on favorites

e. #Updated Weighting function for the above parameters

(popularity, pricing, etc.)

A.3 Recommendation request trigger

a. User initiated

b. System triggered

A.4 Sorting of recommendations

a. Sorting based on prices

b. #New Sorting based on vicinity

A.5 #New Recommendation actions

a. #New Add selected recommendations to favorites.

Figure 16.15 Use-Case Narrative: Provide Travel Recommendations
(Updated in the next release).

16.6 Working with Use Cases and Use-Case Slices
Working with Use Cases Lite is about iteratively updating the use cases and use-case
slices. It provides a high-level guide to everyone on the team, not only to developers
and testers, but also to product owners like Angela. As a software system evolves,
the use-case model, with the use-case narratives, continuously provides an easy-to-
understand overview of what the system does.

16.6 Working with Use Cases and Use-Case Slices 241

Figure 16.16 Slice the Use Cases activity card.

16.6.1 Slice the Use Cases
In the Slice the Use Cases activity, each use case gets broken up into smaller parts
to facilitate development (see Figure 16.16).

Identifying the use-case slices for simple situations is extremely easy, because
we don’t need to think about all possible conditions. Of course, we eventually have
to include alternative paths to cover each possible situation, but by handling each
separately we keep things simple. The use-case narrative itself is structured in a
form amenable for this purpose.

The use-case slices for the subsequent iterations of the TravelEssence team’s
endeavor are shown in Table 16.2. The three use-case slices in the table correspond
to the three requests listed earlier. The key difference is that the use-case slices now
have explicit reference to modular and testable changes to the use-case narrative.

After Smith and Angela had discussed and gained agreement on the modifica-
tions to the use-case narratives, they started conversing with the team about the
changes for the next iteration.

After reviewing the narratives Smith had developed, Tom exclaimed, “Wow!
Now I see how everything fits. This organization of the narratives gives a very
good structure to help me understand how new requirement items will impact our
system, the requirements, and the tests. After we implement our chosen slices for
each sprint, we will need to verify that each one is done and is ready for inclusion
in our next release.”

242 Chapter 16 Running with Use Case Lite

Table 16.2 New Use-Case Slices for the Use Case “Provide Travel Recommendations”

Use-Case Slice Name Use-Case Slice Description

Recommendation
by advertisements

#New Recommendations based on advertisements
#Updated Weighting function for the above
parameters

Sorting by vicinity #New Sorting based on vicinity

Handle favorites #New Add selected recommendations to favorites
#New Recommendations based on favorites
#Updated Weighting function for the above
parameters

As you can see from Figure 16.15, the use-case narrative is organized such
that each of the alternate flows provides a way to group related requirements.
For example, recommendations on places of interest to visit or hotels to stay at
(alternate flow 1) are grouped together, and recommendations based on attributes
such as pricing and popularity are grouped together (alternate flow 2). This kind of
organization can help developers structure their code and test cases in a way that
eases the long-term maintainability of the system.

16.6.2 Prepare a Use-Case Slice
The Prepare a Use-Case Slice activity enhances the use-case narrative and the use-
case slice test cases to clearly define what it means to successfully implement the
use-case slice.

For brevity, we will only focus on one use-case slice: “Handle favorites.” Favorites
are just a list, which the application stores for the user. If a user determines that a
recommendation is useful, she might want to store this recommendation in her/his
favorites list. This favorite list also acts as an input to the recommendation engine.
So, the recommendation will behave differently for a new user without any favorites
than for an old user that has some favorites.

It is clear from Table 16.2 that there are three distinct and separate slices:

1. #New Add selected recommendations to favorites

2. #New Recommendations based on favorites

3. #Updated Weighting function for the above parameters

Another important work product output of this activity is the use-case slice test
cases. Smith and his team brainstormed the use-case slice test cases for each of
these slices. The resulting outlines are summarized in Table 16.3.

The level of detail for the use-case slice test cases was Scenario Chosen.

16.6 Working with Use Cases and Use-Case Slices 243

Figure 16.17 Prepare a Use-Case Slice activity card.

Table 16.3 Test Cases for “Handle Favorites”

Use-Case Slice Use-Case Test Cases

#New Add selected
recommendations to
favorites

1. New favorite
2. Favorite already exists
3. Maximum number of favorites

#New Recommen-
dations based on
favorites

1. No favorites
2. One favorite within vicinity of traveler
destination
3. One favorite outside vicinity of traveler
destination

#Updated Weighting
function for the above
parameters

1. Weightage of favorites set to 0
2. Weightage of favorites set to 0.5

16.6.3 Test a Use-Case Slice
The goal of the Test a Use-Case Slice activity is to verify that the slice is done and
ready for inclusion in a release (see Figure 16.18).

The use-case slice test cases chosen in Section 16.6.2 are of course an impor-
tant input to this activity. During testing, these test cases are refined further with
additional details to make sure that they are repeatable.

244 Chapter 16 Running with Use Case Lite

Figure 16.18 Test a Use-Case Slice activity card.

16.7 Visualizing the Impact of Using Use Cases for the Team
In our story, as the complexity of the endeavor grew, team members recognized
that their approach to capturing requirements as a collection of user stories
was insufficient. By migrating to use cases, the team found they could see the
big picture of the system better through their use-case model and use-case
narratives.

This is made visible by looking at Use Case Lite’s coverage of the solution ac-
tivity spaces in Figure 16.19. Compare this with Figure 15.13 in Section 15.7.1, and
you will see that the activity space Shape the System is covered by the Find Actors
and Use Cases activity. This activity has the dual purpose of understanding require-
ments and shaping the system. Both the use-case model and use-case narratives
(basic and alternate flows) are tools that help teams organize/structure/shape re-
quirements. They help teams see the big picture.

As new requirements came to the team, they could easily see where these
would fit in the overall structure of use cases, use-case slices, and associated
work products such as use-case narratives and use-case slice test cases. The team
members agreed that the overall maintainability of the system had been much im-
proved by their move to use cases. This was for multiple reasons: first, because of
the structure provided by the organization of the narrative separating basic and
multiple alternative flows; second, because of the big picture provided by the use-
case model.

16.8 Progress and Health of Use-Case Slices 245

Understand the
Requirements

Shape the
System

Implement
the System

Test the
System

Deploy the
System

Operate the
System

Solution

Find Actors
and Use Cases

Find Actors
and Use Cases

Test a
Use-Case

Slice

Prepare a
Use-Case Slice

Slice the
Use Cases

Figure 16.19 Use Case Lite practice coverage of kernel solution activity spaces.

16.8 Progress and Health of Use-Case Slices
You have just learned about how to apply the Use-Case Lite practice for several
use-case slices from a single use case, “Provide travel recommendations.” In gen-
eral, teams work with multiple use-case slices from multiple use cases at any
given point in time. They complete use-case slices within each sprint (i.e., drive
them to the Use-Case Slice: Verified state). While individual use-case slices are
completed in each sprint, often it requires multiple sprints to complete a full
use case.

Since on most software endeavors there are a number of use cases and use-case
slices progressing in parallel, it is important that the team has agreed to a way
to monitor their progress and health. One approach that is popular at the time of
writing this book is for team members to have the competency to self-monitor their
progress and health. The alpha state cards for Use Case and Use-Case Slices (see
Figures 16.7 and 16.8) provide a tool for this purpose.

Now, recalling that our TravelEssence team has chosen multiple practices, this
means that they have a number of alphas to juggle.

. From the Scrum Lite practice:

Sprint—focusing on the sprint goals.

Product Backlog Item—a change to be made to the product in a
future release.

246 Chapter 16 Running with Use Case Lite

. From the Use Case Lite practice:

Use-Case Slices—certain ones need to be Verified by the end of the
sprint.

Use Cases—they need not be completed for each sprint, but they
are useful for determining which Use-Case Slices should be imple-
mented first. As a group, they will take several sprints to be com-
pleted (i.e., All Stories Fulfilled). Thus, different use cases will be at
different states at the end of each sprint.

. From the Essence kernel:

Work—the team needs to maintain the Under Control state as devel-
opment progresses.

Requirements—this alpha progresses towards Addressed or Ful-
filled, depending on the goals of the sprint.

Smith’s team found that agreeing on these target states helped them achieve
focus at the beginning of each sprint. They were also useful for reviewing progress
during their Daily Scrum (see Chapter 14).

During one of their sprint retrospectives, Tom stated, “I find the checklists for
the Use Case alpha states and Use-Case Slice alpha states more useful to me than
the Requirements alpha states.”

Smith replied, “Yes, that is reasonable, as you are focusing on progressing
specific use-case slices for specific use cases. However, from my perspective, I still
need to view the big picture of development progress for the whole endeavor. Thus,
I would need to understand the progress and health of it all. That would include
not just the Requirements or Work alphas, but also the Opportunity, Stakeholders,
Team, Way of Working, and Software System alphas.”

16.9 User Stories and Use Cases—What Is the Difference?
In the previous chapter, Smith’s team applied user stories and in this chapter they
applied use cases. This change resulted in much discussion and debate among
the team members. In particular, Tom had been reluctant to make the transition.
However, Tom agreed that the point should not be about his own preference, but
about what was best for the team. The team decided to do their homework, research
both approaches (i.e., user stories and use cases), and determine which was most
appropriate for them.

The best way to answer the question “What is the difference between User
Stories and Use Cases?” is to start by looking at their common properties, the things

16.9 User Stories and Use Cases—What Is the Difference? 247

that make them both work well as backlog items and enable them both to support
popular agile approaches such as Scrum.

Use-case slices and user stories [Cohn 2004] share many common characteris-
tics, such as the following:

. They both define slices of the functionality that teams can accomplish in a
Sprint.

. They can both be sliced up if they are too large, resulting in numerous smaller
items.

. They can both be written on index cards.

. They both result in test cases that represent the acceptance criteria.

. They are both placeholders for a conversation.

. They can both be estimated in similar ways.

So, given that they share so many things in common, what is it that makes them
different?

Use cases and use-case slices provide added value. This is because they:

. provide a big picture to help people understand the extent of the system and
the value it provides;

. offer support for simple systems, complex systems, and systems-of-systems;
and

. result in easier identification of missing and redundant functionality, thanks
to the big picture.

The sweet spot for user stories is when you have easy access to an expert on the
subject of the requirements and when the severity of errors is low. use cases and
use-case slices are more suitable when there is no easy access to an expert or when
error consequences are high. However, because the use case approach can scale
down to the same scope as for user stories, you may still want to apply them. If
you are confident that the subject system will always be in the best range for user
stories, they may be a good choice. If you expect the system to grow outside that
area, though, you might consider use cases and use-case slices.

Even though Smith’s team had Angela close by, they found that when it came to
explaining details of the requirements, she had difficulty expressing herself. That
was when the team found that using use-case narratives in the lightweight manner
described above became extremely useful. They found that when the requirements

248 Chapter 16 Running with Use Case Lite

became explicit, communications were simplified. Each person clearly understood
what the others meant.

As we mentioned in this chapter’s introduction, the term “use case” has been
used as a normal English expression since around 2010. Consequently, at the
introductory and executive level, many things are presented in terms of their use
cases (for instance, within both Dropbox and Industrial Internet). Having this term
in common encourages seamless traceability from introductory presentations to
their realizations, and simplifies communication between people working with
early visioning and people working with development.

Despite his early reluctance to apply use cases, Tom had one meeting with Dave
that changed his stance. Dave was talking about the new digital “use cases” for the
hotel system where the recommendation engine was part of the digital transforma-
tion. Dave used the term “use cases” like a normal English term. Moreover, when
Tom was demonstrating the “Provide travel recommendations” use case, he found
that he could explain his intent very well by simply walking through its narrative
as he stepped through the demo. It was then that Tom was finally convinced about
this term and the ideas behind it, from stakeholder conversations early on to re-
alizations by the team (both developers and testers). From then on, the team as a
whole had no more qualms living with use cases.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain the purpose of the Use Case Lite practice and the problem it solves;

. explain the difference between the basic and alternate flow of a use Case;

. explain use-case slices and their benefits compared to pure use cases;

. list and explain the alphas, work products, and activities of Use Case Lite;

. explain how TravelEssence adopted and applied Use Case Lite and the ben-
efits they achieved, together with the benefits implied by using the Use Case
Lite practice in an essentialized form; and

. compare use cases to user stories and describe scenarios in which each of
them is more beneficial than the other.

17Running with
Microservices
The goal of this chapter is to introduce the microservices practice and its elements,
and to see how TravelEssence adopted and applied microservices and what benefits
they achieved, together with the rest of the benefits that can be gained by using this
practice in an essentialized form. Specifically, the reader will be shown

. the conceptual framework of microservices and how they relate to software
components;

. the elements of the microservices practice and how they interrelate, in addi-
tion to activities to progress the alphas and work products;

. how to use the microservices practice in a real endeavor, and specify potential
obstacles and challenges;

. how to identify which kernel solution activity spaces are covered by this
practice; and

. the visual representation of microservices using the Unified Modeling
Language (UML).

Developing software with microservices is an evolution of designing software
with components, which facilitates a modular approach to building the software
system.

A component can be described as an element containing code and data. Only
the code “inside” the component can modify the data inside the component, and
only when another component sends a message with a request to do that. This idea
is known as “data hiding” (data is hidden to other components) and is an accepted
best practice in developing maintainable software.

Components were created to help solve the problems many developers face with
large complex software systems that require long change cycles. Like components,

250 Chapter 17 Running with Microservices

microservices are interconnected via interfaces over which messages are sent. Com-
ponents as well as microservices manage their own databases, only accessible from
other components via the interfaces. Such a “decentralized” approach allows each
component and microservice to be developed and managed independently. Like
components, then, each microservice can evolve separately from other microser-
vices, thus making it easy to introduce new functionality.

In a software system built this way, each microservice runs a unique process,
which is an execution of a computer program. There may be several such executions
or instances of the same program running in parallel. What microservices bring to
software beyond what components already did in this aspect is the ability to also
deploy them independently without stopping the execution of the entire software
system. This is very attractive to businesses because they can now update their
software more quickly and hence adapt to market changes more rapidly.

17.1 Microservices Explained
To understand the value of microservices [Newman 2015], one needs to know
how most software systems were traditionally developed before components be-
came the standard. Traditional approaches resulted in monolithic software; every-
thing was one big chunk of code and data with no modularity of real value (see
Figure 17.1).

Before we continue our discussion, we would like to introduce some terms and
concepts used in Figure 17.1 that a student new to software engineering may not
be familiar with. The following are the four primary parts of a software system.

Monolithic architecture Microservice architecture

User

User interface

Application logic

Data store

Container

Figure 17.1 Microservices big picture.

17.1 Microservices Explained 251

User Interface. A user interface is the part of a software system that users
interact with (screens, buttons, and the like).

Application Logic. The application logic is the code behind the user interface
that performs computation, moves data around, etc.

Data Store. The stored data, retrievable by the application logic, lives in a data
store.

Containers. Containers are components of a software system that can be man-
aged separately (i.e., started, stopped, upgraded, and so on).

The left-hand side of Figure 17.1 depicts a monolithic software system. Even
though it serves many users with different user interfaces, there is no clear separa-
tion of application logic or the data store. These appear as a single complex piece,
wherein changes to one part affect other parts in a possibly uncontrolled manner.
Such systems are not easy to maintain and extend.

The right-hand side of Figure 17.1 shows a microservice-based software system.
Each microservice runs as a separate process, possibly in its own container or
virtual machine. It has its own programming language, user interface, application
logic, and data store. This allows developers to upgrade a particular microservice—
say, from Java 8 to Java 9 to take advantage of new language features in Java 9,
or to upgrade the data store without impacting other microservices. If, however,
code for a different logical software element were to run in the same process or
virtual machine, an upgrade of one element may inadvertently impact another
element. Thus, enhancing the functionality of an existing microservice is easier
than improving an entire monolithic software system. As an analogy, you can treat
each column on the left side of Figure 17.1 as a village of people eating out of a single
pot—i.e., the data store. With the monolithic approach, every time the one pot is
being cleaned, everyone is affected. With the microservice approach, each family
has their own pot. While one family is cleaning their pot, other families are not
affected. Each family can clean and use their pots, independent of other families.
This is similar to the modularity of microservices.

However, designing microservices is not without its challenges. If microservices
are not designed properly, there might be too much coupling between micro-
services—for example, too much inter-microservice communication—leading to
performance degradation. You can resolve this in one of two ways.

1. There must be appropriate identification of microservices. In addition to
considering modularity, one needs to consider performance, specifically the
interactions between microservices. There are a number of trade-offs that

252 Chapter 17 Running with Microservices

require design practices and patterns, which are mostly out of the scope of
this book.

2. One can utilize the fact that we are in the era wherein computing resources
are inexpensive through the use of the cloud. This is because with cloud
computing, when you need more computational computer time, you don’t
need to upgrade your own hardware; rather, you just request it from the
cloud and the additional resources are provided via hardware that is owned
and operated by the cloud service providers. For example, when Smith’s
recommendation engine was first introduced to a small group of users, a
single instance of the engine was sufficient. When it was introduced to more
users, more instances were needed, each requiring computing resources.
With cloud services, adapting to changing requirements can be done easily
and usually with reduced infrastructure costs because you can just purchase
the amount of resources you need from the cloud service provider. You don’t
need to worry about the impact to modifying your own hardware setup inside
your organization. Analogously, not so long ago, we needed to buy external
hard drives to back up our data, but today we can put our data in the cloud
for a yearly subscription fee. Through economies of scale the cloud provider
can optimize the allocation of cloud storage for all its subscribers.

The second point above is the view taken today. Adaptability is key with the ad-
vent of inexpensive computing power. Upgrading finer-grained microservices is less
disruptive to end users compared to upgrading monolithic systems, because you
can upgrade module by module. You have probably encountered service providers
saying, “We will not be providing any services during the maintenance period.” This
can be a thing of the past with microservices.

17.2 Making the Microservice Practice Explicit Using Essence
Microservices has become a very popular practice for software design. It was in
the 1990s that it became standard to develop software by utilizing components
with well-defined interfaces. Although this approach had already been used for
more than 20 years (information hiding, object-oriented programming), it became
popular through new platforms such as .COM and new languages such as Java. Part
of what microservices has added to this evolution is support for components all the
way down from design, to code, to deployment. Although this practice is popular, it
is not a new idea; similar support has been provided with components since their
introduction in the 1970s.

17.2 Making the Microservice Practice Explicit Using Essence 253

Make
Evolvable

Evolve
Microservice

Implement the SystemShape the System

Identify
Microservices

described by>

Design ModelSoftware System
(from kernel)

described by>

captured as>

Microservice
Design

built and
deployed

using>

Microservice
Build and

Deployment Script

verified by>

Microservice
Test Case

Microservice

Figure 17.2 Microservices Lite practice expressed in the Essence language.

Moving from a monolithic approach to a microservice-based approach is not
easy. It requires a new way of thinking. In particular, there are two important
challenges:

. finding an effective way to decompose a monolithic software system into
cooperating microservices; and

. finding an effective way to make changes to microservices and upgrade them
once they are deployed.

A simple practice that takes advantage of microservices and addresses these
challenges is depicted in Figure 17.2. This is a “Lite” practice because we have
selected what we deem as a minimal core of the practice: we can make it minimal for
demonstration, but in the real world it would require much more technical detail.
For instance, we do not go into the depths of object-oriented analysis and design,
or the technology needed to implement microservices, which would each require
a set of books by themselves. The Microservices Lite practice highlights what we
deem as important differences from traditional component thinking.

In this chapter, to demonstrate the use of the Microservices Lite practice, we
will continue to use the example of the recommendation engine that Smith and
his team were building. They implemented it as a set of microservices outside of

254 Chapter 17 Running with Microservices

the existing legacy hotel reservation system. This allowed Smith to take advantage
of new data processing technologies to perform the recommendation computation.

This practice extends the kernel with guidance regarding the following.

Microservice. This is an alpha, which the team will progress from its identi-
fication to its deployment (i.e., when it is made available to users). Since a
software system is comprised of microservice sub-alphas, the progress and
health of the software system is dependent on each and every microservice.
In our TravelEssence example, the recommendation engine’s set of micro-
services included one for general recommendations (based on user prefer-
ences and history) and one for location-based recommendations (based on
the traveler’s current location).

Design Model. This is a work product that describes the software system at a
higher abstraction level than code—usually in some graphical notation such
as UML. A good design model must simplify the understanding of the code,
which normally means that elements in it are traceable to elements in the
code. Here, we are looking at the software system as a whole to identify ap-
propriate ways of decomposing it into microservices: a delicate activity called
Identify Microservices, which relies not only on experience by the developers,
but also on well-known criteria such as keeping low coupling between dif-
ferent microservices and high cohesion within a microservice.1 The work on
the design model also focuses on creating well-defined interfaces between
microservices. Through the Design Model work product, we can also un-
derstand how individual microservices collaborate with one another. In our
TravelEssence example, the work product describes how the recommenda-
tion microservices interact with the legacy hotel reservation system.

Microservice Design. This is a work product that clearly describes the design of
a microservice, from its interfaces to its behavior and internal design. In our
Microservices Lite version, we do not go into further detail beyond saying that
a good microservice design exhibits the characteristics of clear interfaces,
internal cohesion, and low coupling to other microservices.

Microservice Build and Deployment Script. This is a work product made con-
crete as an automated script that supports rapid production and deployment
of each microservice independent of other microservices.

1. “Coupling is the degree of interdependence between software modules; a measure of how
closely connected two routines or modules are; i.e., the strength of the relationships between
modules. Coupling is usually contrasted with cohesion.” From https://en.wikipedia.org/wiki/
Coupling_(computer_programming)

https://en.wikipedia.org/wiki/Coupling_(computer_programming)

17.2 Making the Microservice Practice Explicit Using Essence 255

Microservice Test Case. This is a work product for measuring the behavior of
a microservice.

The description of how the TravelEssence team applied the Microservices Lite
practice is provided later in this chapter.

There are a number of activities providing explicit guidance on how to progress
the above alphas and work products.

Identify Microservices. This first activity identifies and clarifies the purpose
and scope of the set of microservices that will best fulfill requirements, still
focusing on high cohesion within each microservice and low coupling be-
tween microservices. In our story, from earlier requirements background
studies, Angela had found that recommendations fall into two categories:
those based on customer traits, and those based on geographical localities.
These two categories of recommendations are subject to independent re-
quirement changes and enhancements. Thus, Smith identified them as two
candidates for microservices.

Make Evolvable. This second activity looks at all the ways the development can
support the evolution of a microservice. This includes making the design
extensible, analogous to adding/upgrading an app on your phone without up-
grading or buying a new phone. It also includes automation to test and deploy
the microservice quickly without impacting other microservices. This is usu-
ally done by developing scripts that allow each microservice to be produced
and deployed (made ready for use), independent of other microservices. By
keeping each microservice small and reducing its impact on others, rapid
deployment is supported.

Evolve Microservice. This is an ongoing activity to add new functionality to
the microservice. Evolving a microservice includes modifying and testing
the code to ensure each part meets its intent. Because microservices can be
changed, tested, and deployed independently, evolving one can be accom-
plished rapidly. This includes making the microservice available to users.

Most of Smith’s team found the idea of microservices very attractive. Joel, the
ever-so eager-to-try-new-technology geek on the team, was elated when the sug-
gestion was proposed. Joel was tasked to investigate the technologies needed to
support microservice development. But Grace was not as convinced as Joel on the
value microservices would provide to the team. She said, “I don’t see how micro-
services will help us any more than using use cases and components.” Joel replied,

256 Chapter 17 Running with Microservices

Figure 17.3 Requirements and Software System alpha cards.

“Grace, let me show you by using the Essence kernel.” He then pulled out the
Requirements and Software System alpha cards (see Figure 17.3) and said, “Use
cases help us progress the Requirements alpha, and components help us with the
Software System alpha. Microservices also help us to progress the Software System
alpha, but more on the deployment side.”

17.3 Microservices Lite
Microservices Lite is a practice that begins first by having a team identify the re-
quirements, which can be done by applying use cases or user stories or using any
other requirement practice. Next, they must find a proper set of microservices to im-
plement the requirements; this is basically the same activity as finding appropriate
components for a software system. The next task is to make each microservice evolv-
able by developing the needed support environment, such as deployment scripts
that support the rapid deployment of each microservice, independently of other
ones. Last, each microservice is evolved independently, which involves rapid coding
and testing of each microservice as well as its rapid deployment into the production
environment (which is the “live” environment in which real users use the software
system).

The elements of the Microservices Lite practice are summarized in Table 17.1.

17.4 Microservices Lite Alphas 257

Table 17.1 Elements of Microservices Lite

Element Type Description

Microservice Alpha A separately replaceable piece of software that
exhibits the properties of high internal cohesion,
low coupling to external microservices, and
well-defined interfaces.

Microservice
Design

Work
Product

A description of the responsibilities of the
microservice and how it fulfills them.

Design Model Work
Product

A description of the overall software system and
how the microservices relate to and interact with
one another.

Microservice
Build and
Deployment
Script

Work
Product

An automated script that supports rapid
production and deployment of each microservice,
independent of other ones.

Microservice
Test Case

Work
Product

The set of tests to verify the behavior of the
microservice.

Identify
Microservices

Activity Finding an appropriate set of microservices
needed in the software system to implement the
requirements, then outlining the responsibilities
for each one.

Make Evolvable Activity Developing deployment scripts that allow each
microservice to be produced and deployed (made
ready for use), independent of other ones.

Evolve
Microservice

Activity This incremental activity includes rapid coding
and testing of each microservice as well as
rapid deployment of the microservice into the
production environment.

17.4 Microservices Lite Alphas
The primary alpha in the Microservices Lite practice is of course the Microservice
alpha. All work products and activities in this practice revolve around this alpha.
The Microservice alpha relates to the Software System alpha as a sub-alpha; see
Figure 17.4. As shown in the figure, the Microservice alpha represents “a resilient
and elastic piece of the software” (i.e., part of the Software System) “that delivers
a well-defined capability.” By resilient, we mean that it will be robust to changes
made in other microservices. By elastic, we mean that the microservice can adapt
to changes in workload (e.g., from a thousand users to one million users).

258 Chapter 17 Running with Microservices

Figure 17.4 Microservice alpha card.

Building and delivering microservices progress through the following states.

Identified. First, the scope of the microservice must be clear. Team members
must understand what functionality they are responsible for.

Rapidly Deployable. The major point about using microservices is the ability
to quickly change each one and re-deploy it to the production environment.
In this way, team members can quickly evolve the functionality of a micro-
service within the production environment. This rapid deployment capa-
bility is what gives microservices its advantage over traditional approaches.
This is very much unlike monolithic systems, which—due to their complexity
and tight coupling—are difficult to test and upgrade. Achieving rapidly de-
ployable microservices, in contrast, requires an architecture with, again, low
coupling between microservices and high cohesion within the microservice.
It also requires setting up build and deployment scripts to automate the test
and deployment steps.

Minimal. Once the microservice can be updated and deployed rapidly, the
team can then work iteratively to realize its required functionality. This starts
with fulfilling a minimal set of requirements so that it can be integrated and
tested in collaboration with other microservices.

Complete. The team then evolves the microservice to fulfill all its required
interfaces. At the same time, the team would likely refine the structure of the

17.5 Microservices Lite Work Products 259

Figure 17.5 Microservice alpha state cards.

microservice so that it is extensible (i.e., new functionality to the software
system can be added without big changes to the microservice).

The checklists for the Microservice alpha states are depicted in Figure 17.5.

17.5 Microservices Lite Work Products
The Microservices Lite practice introduces several work products: the Design
Model, Microservice Design, the Microservice Build and Deployment Script, and
the Microservice Test Case.

The Design Model work product describes how a microservice fits within the
overall Software System alpha, and the Microservice Design describes the scope,
interfaces, and the design of a particular microservice. The Build and Deployment
Script is the work product that makes the microservice rapidly deployable. The
Microservice Test Case is a work product to evaluate the quality of the microservice,
ensuring that its implementation indeed meets the requirements.

Working with microservices is not easy. It is not just about understanding engi-
neering concepts, but also the implementation technology. This book is not meant
to be a comprehensive source on microservices. What we provide is a glimpse of
how to work with microservices in a healthy manner, using the Microservices Lite
practice.

There are several prerequisites when working with microservices, such as being
able to clearly articulate their design, implementation, and deployment. A good
form of visual notation can help. After the next subsection, in which we give an

260 Chapter 17 Running with Microservices

overview of one standard form of such notation (UML), we will describe how to use
each Microservices Lite work product in detail.

17.5.1 A Brief UML Primer
Before we go into greater detail about the Microservice Lite work products, we will
provide a very brief and concise introduction to the Unified Modelling Language
(UML). The UML is a visual language to describe various systems, particularly ones
that are software intensive. Whereas Essence provides a visual language to describe
software engineering practices and methods through constructs such as alphas,
work products, etc., UML provides a visual language to describe software-intensive
systems. By this we mean systems that may involve hardware, but are driven largely
by the software. The main focus of UML is describing the software part. As we use
UML to describe how Smith’s team makes use of microservices, you will see how
the languages of Essence and UML work together to build even more complete
understanding and communication within Smith’s team.

A microservice, again, is a special kind of subsystem that has its own data
store. A legacy system is an existing system or subsystem that was likely built using
some traditional approach that has resulted in it being monolithic. However, both
microservices and legacy systems are denoted by the same subsystem notation.

Note that UML involves a lot more than what we discuss above. It also provides
guidance to describe the structure and behavior of software elements. We only focus
on a small portion of UML’s structure description, using its notation for interfaces
and subsystems, as shown in Table 17.2. We do, however, recommend that you
learn more about UML.

17.5.2 Design Model
The design model (see Figure 17.6) is a description of the Software System alpha.
It depicts the elements in the Software System and how they interact with one
another. Using Smith’s recommendation engine as an example, we will just provide
a brief overview of the design model, bearing in mind that comprehensive design
is outside the scope of this book.

The Design Model work product has the following levels of detail.

Structure and Approach Described. At this level of detail, the design model
clearly describes the elements of the software system. It delineates how the
different parts are organized and the purpose of each part.

17.5 Microservices Lite Work Products 261

Table 17.2 UML for Microservices Design

Element Type Notation Description

Subsystem This notation is like a folder, or what we
like to call a package. A package contains
a group of code or classes to offer some
functionalities that clients might want to
invoke.

Provided
Interface

This notation looks like a lollipop. It is the
outward functionality a subsystem offers.
When using the functionality, the client
does not need to understand what goes on
within the subsystem.

Required
Interface

This notation is like a socket. You can
plug stuff into the socket to provide more
functionality for a subsystem. For example,
on your computer, you can plug hard disks,
cameras, etc. into your USB port.

Collaborations and Interfaces Defined. At this level of detail, the roles and
responsibilities of each part are more detailed. (The example in this section
progresses to this level.)

Figure 17.6 Design Model work product card.

262 Chapter 17 Running with Microservices

iRecommendation

iRecommendation

Recommendation
subsystem

iTravel-
EventHandler

eTravel-
EventProducer

Legacy
hotel system

iTravel-
EventHandler

Traveler
Recommendation

Geographical
Recommendation

«microservice»

«microservice»

Figure 17.7 Design Model for recommendation functionality.

Design Patterns Identified. At this level of detail, common design patterns that
can be shared across elements are identified and described. A design pattern
is a common design solution to a common design problem.

At TravelEssence, re-engineering the legacy hotel system from a monolith to
one entirely based on microservices would have been too big an effort. However, its
new recommendation functionality was quite separate and distinct. The company’s
decision was to leave the legacy hotel system alone with minimal changes, and
so the team addressed the task of developing the required new recommendation
functionality using a separate microservices approach, as shown in Figure 17.7.

The left-hand side of Figure 17.7 shows the legacy hotel system. It would be mod-
ified slightly to provide an interface (referred to as an eTravelEventProducer) used
to push out traveler events. Once the software in the legacy hotel system executed
and got to a point where something of interest happened, such as when a traveler
booked a hotel, that fact would be communicated to the iTravelEventHandler by an
event. Such information would then be used by the Recommendation subsystem
to analyze the popularity of hotels, travelers’ preferences, etc.

The right-hand side of Figure 17.7 shows the recommendation subsystem de-
signed using two microservices: (1) the “Traveler Recommendation” microservice
dealing with specific travelers or groups of travelers and (2) the “Geographical

17.5 Microservices Lite Work Products 263

Recommendation” microservice dealing with specific recommendations related to
the traveler’s current or upcoming geographical locations.

. As the name implies, each traveler would collect events through the iTravel-
EventHandler interface, which would analyze them either geographically or
according to specific travelers or traveler groups.

. These microservices would each provide an iRecommendation interface to
present recommendations to travelers. The “Traveler Recommendation”
microservice would provide some basic recommendations, and delegate the
determination of further recommendations based on geographical details
to the “Geographical Recommendation” microservice.

Once the system was deployed, there would be multiple microservice processes
running (one for each traveler group and for each geographical area), each with its
own data store for traveler recommendations. This was in line with TravelEssence’s
goal to gradually roll out the recommendation functionality to increase the number
of travelers and geographical regions.

17.5.3 Microservice Design
The microservice design (see Figure 17.8) is a work product describing the design
of a microservice, from its interfaces to its behavior and internal design. It provides
more detail than the design model for that specific microservice.

Figure 17.8 Microservice Design work product card.

264 Chapter 17 Running with Microservices

iService

Geographical
Recommendation

«microservice»

iTravel-
EventHandler

iRecommendation

Figure 17.9 Microservice Design of “Geographical Recommendation.”

The levels of detail for this work product are as follows.

Required Behavior Defined. At this level of detail, the scope of a microservice
is described in words.

Interfaces Specified. At this level of detail, the scope of the microservice is
described using interfaces.

Internal Structure Defined. Once the external behavior is agreed on, this level
of detail describes the elements within the microservice. Developers can then
start to write code with a good understanding of this structure.

Internal Elements Designed. For complex microservices and elements
therein, more details are needed; they are provided at this level.

We will continue to use TravelEssence’s recommendation engine as an example,
and in particular the “Geographical Recommendation” microservice.

In addition to the interfaces highlighted in the design model, a microservice
also needs interfaces to manage its execution, such as setting configuration pa-
rameters and controlling its execution (starting, pausing, resuming, stopping,
reset). Figure 17.9 shows all the interfaces to the “Geographical Recommendation”
microservice: those that manage its execution (iService), manage its recommenda-
tions (iRecommendation), and handle traveler events (iTravelEventHandler).

17.5.4 Build and Deployment Script
The Build and Deployment Script (see Figure 17.10) is an automated script that
supports rapid production and deployment of each microservice, independent of
other ones. The primary purpose of this work product is to make the build and
deployment process as repeatable as possible, which is critical when working with

17.5 Microservices Lite Work Products 265

Figure 17.10 Microservice Build and Deployment Script work product card.

microservices. Without any rapid deployment and upgrade capability, there is no
real advantage to using microservices when compared to using more traditional
component approaches.

Working with build and deployment scripts involves the following levels of
detail.

Outlined. At this level of detail there is an agreement as to what “rapidly evolv-
able” entails, and steps to achieve it are agreed on and described. There is
not an actual runnable script available yet.

Automated. This is the level at which the real work has been done. The team
has written the actual build and deployment script and it has made sure that
it works within the development and deployment environment.

Continuous. This is a higher level of detail that ensures that the script runs in
continuous support of microservice upgrades, without disruption to other
microservices.

17.5.5 Microservice Test Case
The testing of a microservice follows a similar approach to testing user stories and
use-case slices: You start by first identifying scenarios.

The execution of a microservice will likely depend on other microservices. So,
you might have to “mock out” the surrounding dependencies (i.e., substitute real

266 Chapter 17 Running with Microservices

Test Scenarios Chosen

Test Dependencies Managed

Test Automated

Figure 17.11 Microservice Test Case work product card.

parts of the software system that developers have little control over with parts that
developers do have control over during testing). For example, at TravelEssence,
the recommendation engine has a dependency on the legacy hotel system. So,
instead of testing the recommendation engine microservices with the real legacy
hotel system, Smith’s team chose to create a mock (substitute) hotel system whose
behavior they could change quickly. This might sound like a big task, but in reality
only the interfaces needed by the recommendation engine need to be mocked out.

Testing microservices is not much different from how you think about test cases
for use cases and user stories. Of course, the tools you use to test microservices
(which normally do not have user interfaces) and use cases (which quite possibly
have user interfaces) will be different. The levels of detail of the Microservice Test
Case work product (see Figure 17.11) are as follows.

Test Scenarios Chosen. At this level of detail, different scenarios in which the
microservice is used are enumerated systematically and prioritized.

Test Dependencies Managed. At this level of detail, the scope for each test case
is agreed on, including dependencies, which will be mocked or stubbed.
“Mocked” in this case means to create extra test code that simulates the
other side of the interface. “Stubbed” means that, instead of simulating the
interface, the testers just ensure that the test code will execute without the
program crashing.

17.6 Microservices Lite Activities 267

Test Automated. At this level of detail, the test cases are scripted and auto-
mated. They usually run as part of the build and deployment process.

17.6 Microservices Lite Activities
Applying the Microservices Lite practice involves several activities: Identify
Microservices, Make Evolvable, and Evolve Microservice. Each of these is discussed
in the following subsections.

17.6.1 Identify Microservices
Microservice development begins with the identification of microservices within
a software system. Identifying microservices requires both the Development and
Analysis competencies. These competencies are needed to identify microservices
that exhibit high cohesion, low coupling, and well-defined interfaces. Identifying
microservices with these characteristics helps teams achieve the Software System
alpha’s Architecture Selected state (see Figure 17.12).

Depending on the specific endeavor, teams may make different decisions on
the level of detail needed for work products during the identification of microser-
vices. For example, some teams may decide that their design model work product
only needs to describe the structure and approach (lowest level of detail; see Fig-
ure 17.6). Other teams may decide that the collaborations and interfaces among

Figure 17.12 Identify Microservices activity card.

268 Chapter 17 Running with Microservices

microservices need to be documented explicitly (second level of detail in Design
Model). Still, other teams may decide that the design patterns employed need to be
explicitly captured in the model (highest level of detail in Design Model).

Similarly, different teams may reach different conclusions on the level of detail
needed in their Microservice Design work product with respect to the level of detail
needed for defining required behavior, specifying interfaces, defining the internal
structure, and internal element design (see Figure 17.8).

The Design Model work product (see Figure 17.6) gave Smith’s team an overall
perspective on how to design and implement the recommendation functionality.
Working with microservices involves making them evolvable and then evolving
each microservice and adding levels of detail to its design, build and deployment
scripts, and test cases. Progressing the Microservice alpha through its states will
be discussed later in this chapter (see Section 17.8).

17.6.2 Make Evolvable
The key and compelling characteristic about microservice development is the abil-
ity to make rapid changes to a software system in the production environment. The
key goal is to be able to replace a single microservice quickly without affecting other
parts of the software system (i.e., other microservices). By “rapidly” or “quickly,” we
mean that changes that used to take months are now reduced to hours, and even
to minutes. This does not come free, and it is what the Make Evolvable activity is
about. It requires at least two areas of investment.

1. Ensuring the modularity and extensibility of each microservice so that re-
quirements changes are localized to individual microservices, and that
changes to a microservice do not severely impact other microservices. This
is about great design, which we unfortunately cannot cover in this book. But
suffice it to say that a team will capture its design approach in the Design
Model, Microservice Design, and Microservice Test Case work products (see
Sections 17.5.2, 17.5.3, and 17.5.5, respectively).

2. Improving the development and production environment so that changes to
microservices are repeatable, reliable, and fast. This requires the stream-
lining of the deployment pipeline with plenty of automation. The idea
is to reduce as much mundane and manual work as possible. This is em-
bodied in the Build and Deployment Script work product (see Section
17.5.4).

17.6 Microservices Lite Activities 269

Figure 17.13 Make Evolvable activity card.

The first point above is covered largely by the activity Identify Microservices (see
Section 17.6.1), whereas the activity Make Evolvable focuses more on the second
point (see Figure 17.13). It requires the scope and boundaries of microservices to
be stable.

In our story, Smith had earlier identified several microservices, and they were
now in the Identified state. The next state to achieve was to make each micro-
service Rapidly Deployable, which means that it should be possible to deploy the
microservice to a target environment quickly, be it the test environment or the
deployment environment. This deployment always has to be automated, which
necessitates the use of build and deployment scripts.

17.6.3 Evolve Microservice
Once a microservice has been made rapidly deployable and its interfaces identified,
it becomes straightforward to evolve each microservice, and thereby introduce new
functionality to the entire software system (see also Figure 17.14).

Having gotten to this point, Smith’s team could now safely develop and test the
code required for each microservice. The team achieved this by first agreeing on the
test cases before adding/changing microservice code required to successfully pass
the test cases. In effect, Smith was applying another practice known as Test Driven
Development (TDD) (i.e., first agree on the test cases and then use the test cases
to drive the development). The test cases would initially fail because there was no

270 Chapter 17 Running with Microservices

and have

Software System: Architecture Selected

Microservice Identified

Microservice: Rapidly Deployable and Beyond

Microservice Design: Internal Structure

Microservice Test Case:Test Scenarios
Defined and Beyond

Chosen

Figure 17.14 Evolve Microservice activity card.

implementation. Smith’s team might identify more test cases along the way. But
as the team completed the implementation, more test cases would pass. Thus, the
number of test cases that passed would act as a progress indicator.

17.7 Visualizing the Impact of the Microservices Lite Practice
on the Team
Recall that neither User Story Lite nor Use Case Lite provided any guidance on how
to implement the software system. These two practices focused on requirements
and tests of the software system. The Microservices Lite practice addresses imple-
mentation guidance, as shown in Figure 17.15. The Microservices Lite activities,
for example, provided guidance to Smith’s team on how to design and implement
solutions.

Note that Microservices Lite does not deal with the requirements and test of the
solution itself. It provides guidance only for the testing of individual microservices,
not the entire software system’s functionality. That is covered by the Use Case Lite
practice discussed in the previous chapter.

At the time of writing this book, microservices are gaining widespread attention.
Although the idea of having components as a separate and independent deployable
unit of modularity has been in existence for a long while, the implementation of this
idea more often than not had not been ideal. Monolithic designs often inevitably

17.8 Progress and Health of Microservice Development 271

Understand the
Requirements

Shape the
System

Implement
the System

Test the
System

Deploy the
System

Operate the
System

Solution

Identify
Microservice

Evolve
Microservice

Make
Evolvable

Figure 17.15 Microservices Lite coverage of the kernel solution activity spaces.

resulted in components tightly coupled with either language, infrastructure, or data
store. The idea of microservices each being independently deployable seems to be
an attractive answer.

Of course, having many microservices each running separately raises other
problems such as

. how to manage and coordinate their execution;

. how to propagate the change of data from one microservice to others;

. how to manage the security of each microservice; and so on.

Fortunately, there are a number of approaches to deal with the above problems,
and cloud providers such as Amazon Web Services provide standard mechanisms
to solve them. This allows developers to concentrate on the application rather than
on the low-level infrastructure plumbing that now happens behind the scenes. As
a result, developers can focus on realizing user requirements, push out function-
ality to the users quickly, get user feedback, and innovate. Such rapid cycles are
ultimately the highest value of microservices.

17.8 Progress and Health of Microservice Development
What we have demonstrated in the above sections is a single pass on how a mi-
croservice is developed from its identification to its evolution. The progress on this
development is captured through the Microservice alpha state cards, as shown in
Figure 17.5.

As their endeavor progressed, Smith’s team found that not all work was directly
related to implementing requirements, as we discussed in Chapter 16. There was

272 Chapter 17 Running with Microservices

additional work including identifying microservices, building deployment scripts,
coding, and testing. All of this work required time. What the team realized was that
the Microservice alpha state provided a way to help them think about and plan all
the tasks they would have to do to get the Software System to a state where the
customer would be happy with the result.

Thus, by the time they explicitly applied the Scrum Lite, Use Case Lite, and
Microservices Lite practices, they had quite a number of alphas in addition to the
kernel alphas. To recap, they had

. Sprint;

. Product Backlog Item;

. Use-Case Slice;

. Use Case; and

. Microservice.

Someone outside Smith’s team was looking at how they were running develop-
ment with Essence and this latest practice. He asked, “For a small endeavor like
ours, isn’t this too many things to check? It seems that you have many cards!”

The usually quiet Grace was quick to reply, “When we are doing the actual work,
each of us will only focus on achieving a few alpha states, for example Use-Case
Slice: Verified, and Microservice: Rapidly Deployable. The states are like micro-
checklists for the small chunks of work we do that can be completed each day. They
help us split the work into small chunks, and give us a sense of progress during the
day.”

That is indeed true; each practice deals with a specific set of challenges, and
would normally be useful for persons playing specific roles. Smith as the leader of
the team focused most on the Essence kernel alphas and the sprint and use case al-
phas. The developers were mostly focusing on the use-case slice and microservice
alphas. Joel, the techie guy, was especially delighted with the microservice alpha
states. He always said, “The essence of Microservices is getting to Rapidly Deploy-
able first, before adding functionality! This is a 180-degree change from old ways
that implement first, before even considering how to deploy to the production en-
vironment.”

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain the purpose of microservice architecture and the problem it solves
in contrast to a monolithic system architecture;

What Should You Now Be Able to Accomplish? 273

. explain the challenges connected to the microservice architecture;

. explain the concept of “data hiding”;

. explain the effect of microservice communication on performance degrada-
tion and how to prevent it;

. name and explain the alphas, work products, and activities of the Micro-
services Lite practice;

. name the activities used when applying the Microservices Lite practice with
examples; and

. explain how to ensure that the system is ready for quick replacement of
one microservice with another without affecting other parts of the software
system.

18Putting the Practices
Together: Composition
The goal of this chapter is to introduce the concept of the composition of practices
as a means to arrive at the best fitting software engineering method. In this chapter,
the reader will understand

. the concepts of composition and the description of how essentialized prac-
tices facilitate the composition process and thereby help teams to learn and
apply practices better;

. that while practices are separate, they are not independent, and thus com-
position has certain rules that need to be respected;

. the ways in which the composition of practices treats its things to work with,
things to do, competencies, and patterns;

. that during practice composition the kernel forms the core of the resulting
method that is then decorated with elements of individual practices; and

. that software engineering is knowledge centric and its mastery is about being
able to apply appropriate practices effectively, discovering improvements as
you apply them.

In this part of the book, we have demonstrated the need for explicit practices
and how small development teams use the essentialized forms of these practices
(along with the kernel) to help solve common challenges. We used Scrum, User
Stories, Use Cases, and Microservices as just a few examples of the many kinds of
practices that teams can use explicitly.

Our purpose in this, again, is to show you how to go about representing practices
using the Essence language so you can do comparisons yourself and make the
best decisions on which practices are best for your team given your own endeavor

276 Chapter 18 Putting the Practices Together: Composition

situation. To demonstrate the use of the Essence language, we only essentialized
what we deem to be the real core of these practices. This is why we referred to the
practices we described with the “Lite” adjective. It is, again, not our intent in any
part of this book to present arguments for or against any particular practice, nor to
present arguments as to why one practice may be better than another. Moreover, it
is not our position to show that these lite versions of the practices convey everything
you need to know about them. Rather, we hope they will act as a solid foundation
from which to learn and go on to master these practices.

When beginning this process, teams do not need to adopt all practices at the
same time. Instead, they usually try one at a time. In fact, this was how Smith’s
team learned and grew. They started with the kernel. Then they added Scrum Lite
to improve their collaboration. They tried User Story Lite, but then decided to go
for Use Case Lite because it gave them a better requirements structure. They then
chose Microservices Lite to help make their software system rapidly deployable.
Each time they added a practice, they gained explicit know-how. Their knowledge
about software engineering grew.

Although teams adopt one new practice at a time, in reality they apply several
practices at the same time. In short, teams apply a composition of practices. In
this chapter, we will explain what composition is and how essentialized practices
facilitate the composition process, and thereby help teams to learn and apply
practices better.

18.1 What Is Composition?
As mentioned in Chapter 3, composition of practices is an operation merging two
or more practices to form a method. The composition operation has been defined
formally in the Essence Standard to achieve precision. The precision is achieved
through the essentialization of practices, i.e., describing practices using alphas,
work products, activity spaces, activities, competencies, and patterns as you have
observed in earlier chapters.

The merging operation can be understood intuitively like overlaying overhead
projector transparencies on top of one another to form a new image, as shown in
Figure 18.1. In the figure, we have a set of Christmas decoration transparencies,
which comprise the following images:

(a) an empty corner of a room,

(b) an undecorated Christmas tree,

(c) a Christmas star,

18.1 What Is Composition? 277

(a) (b) (c)

(d) (e) (f)

Figure 18.1 A set of transparency overlays.

(d) streamers,

(e) decorative balls, and

(f) three presents.

If you overlay the above transparencies in sequence, one on top of the other, you
will gradually form, in sequence, the pictures shown in Figure 18.2.

Now consider what will happen if you replace transparencies (c) and (e) with
transparencies (c2) and (e2) shown in Figure 18.3. What will happen now if you
overlay or compose them in sequence?

If you do this composition, you find the Christmas star on the floor, and the
decorative balls become red instead of yellow. Herein lie some important concepts
behind valid composition.

. Although the transparencies are physically separate, they must be drawn
such that their coordinates match; otherwise you will have the kind of situa-
tion as with (c2), where the Christmas star appears on the floor. The Christ-
mas tree in (b) anchors the position of all other images. The corollary to this
in composition of practices is that, while practices are separate, they are not
independent. They are dependent on the namespace within which they are
composed. The Essence kernel defines such a namespace by its alphas and
activity spaces. It acts as the unifying anchor.

278 Chapter 18 Putting the Practices Together: Composition

(a) (b) (c)

(d) (e) (f)

Figure 18.2 Composition as overlaying the transparencies in sequence.

(c2) (e2)

Figure 18.3 A different set of transparencies.

. As long as the namespace is adhered to, practices for the same purpose
can substitute for one another. In the transparency example above, we can
swap (e) with (e2) and get red balls instead of yellow balls as Christmas dec-
orations. Theoretically, you can substitute one sub-alpha with another—for
example, substituting the User Story alpha with the Use Case alpha under the
Requirements alpha. In this case, the Requirements alpha acts as an anchor.
However, when you replace an alpha, you will likely need to replace activities
as well. So, in general, the substitution happens by replacing practices. In
Smith’s story, you see his team replaced the User Story Lite practice with the
Use Case Lite practice. We call these “alternative practices.” With alternative
practices, you can usually replace one with the other.

18.1 What Is Composition? 279

There is another kind of practice, which we refer to as an “extension practice.”
For example, Smith found that there was value in having greater stakeholder partic-
ipation in their sprint review activity to help gather better feedback. (Initially, the
team only had the product owner present, but in some cases Smith decided more
people should be involved.) For this reason, Smith created a “Stakeholder Sprint Re-
view” practice that provided further guidelines. This included additional activities
to prepare the stakeholders for the review, preparing the team for the review, and
acting on review feedback. It comprised more than just adding simple guidelines
to the one single sprint review activity in that it included these many new activities.
These progressed the stakeholder alpha, as well as the sprint alpha. Such changes
did not, however, add any alphas. This is an example of an extension practice to
the Scrum Lite practice.

Alternative practices and extension practices are only two of the many kinds of
practices you can overlay on top of the kernel. In fact, there are many kinds and
combinations that we will not discuss in this book. Regardless, all practices must
conform to the namespace structure of the kernel, including the other practices
that have already been composed.

Just as you can overlay multiple transparencies in sequence to form a final
image, you can compose multiple practices in sequence to form a final method.
When composing two practices together, we compose their things to work with,
things to do, competencies, and patterns separately. The composition of things
to do best illustrates the composition operation. Activity spaces (see Figure 18.4)
provide a useful visualization tool with regard to how the two practices being
composed helped Smith’s team and where potential gaps could still occur in the
future. The figure shows all activity spaces in the kernel, and the activities that cover
them.

It is quite clear that a number of activity spaces are not populated, in particular
all activity spaces in the customer area of concerns. Not all activity spaces in the
solution and endeavor activity spaces are covered. In subsequent releases, when
Smith’s team dealt with larger user groups, they would need practices to fill the
gaps (i.e., those in the Deploy the System and Operate the System activity spaces).
Examples of such practices included Continuous Integration, Continuous Delivery,
and so on, about which we will not go into any further detail.

The composition of things to work with is a little more complicated. The compli-
cation lies in the relationships between alphas. Figure 18.5 shows the composition
of the alphas from the Scrum Lite, Use Case Lite, and Microservices practices.
The kernel alphas Work, Requirements, and Software System provide the top-level

280 Chapter 18 Putting the Practices Together: Composition

Prepare to Do
the Work

Coordinate
Activity

Support
the Team

Track
Progress

Stop the
Work

Endeavor

Daily
Scrum

Sprint
Planning

Sprint
Review

Sprint
Retrospective

Sprint
Planning

Understand the
Requirements

Shape the
System

Implement
the System

Test the
System

Deploy the
System

Operate the
System

Solution

Find Actors
and Use Cases

Find Actors
and Use Cases

Evolve
Microservice

Test a
Use-sase Slice

Prepare a
Use-case Slice

Slice the
Use Cases

Identify
Microservices

Make
Evolvable

Explore
Possibilities

Understand
Stakeholder

Needs

Ensure
Stakeholder
Satisfaction

Use the
System

Customer

Figure 18.4 Activity spaces populated with activities from Smith’s practices.

structure under which sub-alphas are grouped. The composition operation is like
hanging decorations on a Christmas tree. The kernel acts like the Christmas tree
on which you hang the decorations, which in this case are the sub-alphas Sprint,
Use Case, and Microservice, respectively.

There is additional work needed to relate sub-alphas from one practice with
sub-alphas from another practice. For example, there is a relationship between the

18.1 What Is Composition? 281

Product
Backlog Item

Scrum Lite
practice

Use Case Lite
practice

Microservices Lite
practice

Sprint

Work
(kernel)

Use-Case Slice

Use Case

Requirements
(kernel)

Microservice

Software
System
(kernel)

Figure 18.5 Composition of alphas in Smith’s Endeavor.

Microservice and Use Case sub-alphas. Likewise, the realization of a use case may
cut across several sprints; each sprint implements some use-case slices; a use case
or a use-case slice may be realized by more than one microservice. The composed
set of alphas generates a simple map of all the critical things that Smith’s team
must keep track of. It is also a map of checklists for the team.

At TravelEssence, in terms of progress and health, Smith relied on ensuring
his team members knew all the alphas, their states, and their checklists. He was
happy that these alphas had entered the team’s daily conversational vocabulary. For
example, during their sprint planning and daily scrums, team members would say
that they had moved a particular use-case slice to, say, the “Implemented” state,
and everyone would understand what was meant. When someone wasn’t that sure,
he/she could easily refer to the state cards.

When Smith’s team was first adopting the practices, team members had to learn
about how to conduct activities and which work products to produce. However,
gradually, as they got more familiar with the practices, what the team members still

282 Chapter 18 Putting the Practices Together: Composition

relied on were the alphas and their checklists. These were gentle self-reminders as
the team progressed through each state.

18.2 Reflecting on the Use of Essentialized Practices
As we have shown from the preceding chapters, Essence helps teams apply practices
more effectively in multiple ways. First, practices described on top of Essence give
practical guidance visible to development teams. Second, essentialization helps
teams translate agreed-on principles into practices. Third, essentialization sup-
ports regular team feedback and adaptation through its simple graphical language.
Fourth, practices described on top of Essence keep the relationship to kernel alphas
and states visible across all essential dimensions of software engineering (includ-
ing Opportunity, Stakeholders, Requirements, Software System, Team, Work, and
Way of Working). This helps teams stay focused on the most important things as
they go about their jobs, making daily decisions. This is because the essentialized
practices have been organized and streamlined through the use of the kernel. Fifth,
the kernel serves as a reminder, and substitute, for practices that may fall outside
the current scope of interest. For example, a team applying the Microservices Lite
practice may focus only on the Software System alpha and may become blind to-
ward other important software engineering dimensions such as Stakeholders and
Team. So, even though practices provide more direct guidance for teams, it is al-
ways useful to refer back to the kernel to evaluate the endeavor’s overall progress
and health, such as we saw with the radar diagram (Figure 11.2), back in Part II. In
this sense, the Essence kernel serves as a practice-agnostic lens that the team uses
to continuously be mindful of the progress and health of their overall endeavor. For
instance, the alpha state checklists provide vital reminders of necessary outcomes
to keep an endeavor healthy, such as the need to keep stakeholders involved and
the need to listen to their feedback, regardless of which practices are in use.

Overall, one of the goals of Essence is to enable team members to become mas-
ters of their craft practice-by-practice as they learn more and more. By explicitly
essentializing practices, novice practitioners have a guided ongoing path support-
ing their growth as professional software practitioners.

Now that you know what a practice comprises, you will know what to look for
when being introduced to a practice new to you. As an example, suppose you are
introduced to a new practice named Behavior Driven Development (BDD), which
we will not explain. By now, you know that a practice addresses a specific chal-
lenge in software engineering. You also know that a practice comprises alphas
(and their states), work products (and their levels of detail), activities, and patterns.

18.3 Powering Practices through Essentialization 283

Thus, when trying to learn about BDD, you will be thinking about these same fac-
tors. Once you understand the elements of the practice, you can understand how
it fits into and contributes to your development endeavor. It is from this discov-
ery that you will get a sound understanding of the practice and thereby achieve
mastery.

There are certainly many more practices than what we have touched upon. In
your software engineering career, you will encounter many practices, some of which
haven’t been invented yet. After all, software engineering is knowledge centric
and mastery is really about being able to apply appropriate practices effectively,
discovering improvements as you apply them—all of this leading to continuous
adaptation to the needs of your own environment. Essence helps teams achieve
this mastery by providing a common ground reference for them to use as they
continuously reflect on their way of working and improve. In Part IV, you will learn
how practices can help large teams collaborate better, and also how they can help
them work with a much larger set of practices.

18.3 Powering Practices through Essentialization
The value of Essence to teams is twofold: serving as a lens from which they can eval-
uate the progress and health of their development endeavor, and making practices
explicit through essentialization. We have seen the latter in action in Part II, when
Smith’s team did not use any practices explicitly, but found guidance through the
kernel. The kernel alphas help a team determine its overall progress and health.
When teams apply practices through the lens of Essence, both the strengths and
weaknesses of their approach become more visible to them all.

Essence uses the term “practices” in a way unlike how it has been used in
general. Rather than keeping this term a vague concept, Essence make practices
concrete and actionable by calling out each one’s alphas and work products. For
example, the essentialized Scrum Lite practice identifies alphas such as Sprint and
Product Backlog Item and work products like Product Backlog, Sprint Backlog, and
Increment. These come with alpha state checklists and level of detail checklists that
can help team members clarify the appropriate definition of done. These checklists
go above and beyond the checklists provided by the standard Scrum literature. They
also go above and beyond the kernel, as they are specific to a particular practice.
Moreover, we have seen in this part of the book how the Scrum Lite practice, User
Story Lite practice, Use Case Lite practice, and Microservices Lite practice can be
defined explicitly on top of Essence to give greater guidance to a team and to help
them see where they still may have weaknesses and need of improvement.

284 Chapter 18 Putting the Practices Together: Composition

The explicit structure of each practice supported by the use of the Essence lan-
guage provides the skeleton onto which additional team members can contribute
their experiences. For example, they can update the checklists in the cards, and
add other hints and tips to any practice elements. This, of course, depends to a
large degree on the policies and constraints within each organization. However,
the Essence language has been intentionally developed with the goal of being easily
used by practitioners, and not just method development professionals. By reusing
a consistent and widely accepted structure as we now have with the Essence ker-
nel language, team members can more easily evolve and share their knowledge not
only with other team members but also with other teams. We will elaborate more
on this in the next part of the book.

This finishes Part III of the book concluding our explanation of the use and
value of Essence for a single team as well as a single software system. We now look
at the situation when multiple teams develop more than one system at a time. This
is called “scaling up,” and it will be the topic and view we address in Part IV.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. give an example of practice composition and explain when it can and cannot
be performed;

. explain what the composition could look like for two specific practices;

. explain the concept of an anchor in the composition;

. explain the meaning of “alternative practices” and “extension practices”; and

. apply composition to alphas from different practices.

Recommended Additional Reading
. K. Schwaber and J. Sutherland, “The Scrum Guide. The Definitive Guide to

Scrum: The Rules of the Game” [Schwaber and Sutherland 2016]. This is the
latest version of the Scrum Guide (at the time of the initial publication of
this book) and should be read by anyone interested in learning more specific
details on the “official” rules of Scrum.

. E. Derby and E. Larsen, Agile Retrospectives: Making Good Teams Great [Derby
and Larsen 2006].

Recommended Additional Reading 285

. K. Beck, Extreme Programming Explained: Embrace Change [Beck 1999]. This
book should be read by those interested in learning more about Extreme
Programming.

. M. Cohn, User Stories Applied: For Agile Software Development [Cohn 2004].
This book should be read by those interested in learning more about the
User Story practice.

. I. Jacobson, Object-oriented software development in an industrial environ-
ment [Jacobson 1987]. This paper introduces the use-case construct to soft-
ware engineering.

. K. Bittner and I. Spence, Use Case Modeling [Bittner and Spence 2003]. This
book provides a comprehensive treatment of use case modeling.
Though the book was written before agile became the trend, it is still a valu-
able treatment of the subject.

. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide [Booch et al. 2005]. This book should be read by anyone interested in
learning more about the Unified Modeling Language.

. I. Jacobson, I. Spence, and K. Bittner, Use-Case 2.0: The Guide to Succeeding
with Use Cases [Jacobson et al. 2011]. This ebook provides detailed guidance
for applying Use Case 2.0 and should be read by anyone interested in learning
more about Use Case 2.0.

. I. Jacobson, I. Spence, B. Kerr, Use-Case 2.0: The hub of software develop-
ment [Jacobson et al. 2016]. This article is recommended for those interested
in learning more about Use-Case 2.0, and comparison of the user story and
use case practices.

. S. Newman, Building Microservices [Newman 2015]. This book should be
read by anyone interested in gaining a more in-depth understanding of the
microservices practice.

IVP A R T

LARGE-SCALE COMPLEX
DEVELOPMENT

Our journey in this part of the book proceeds to large-scale complex development.
In previous parts of this book, we looked at how a team can improve the way they
work through the help of explicit practices, such as Scrum, User Stories, Use Cases,
etc. Adopting these practices is relatively easy; the team learns the practice, tries
it out, and then adapts it to work better for them. The adoption of these practices
normally does not change how the team is organized (e.g., team size, team member
roles, team communication mechanisms).

In this part, we will continue the journey with TravelEssence and understand
how Smith’s development team operated as part of a much larger organization.
The objective here is to convey what it means to work with large-scale development
and how that is different from working with small-scale development. We wrote
this part of the book because many of you will work as part of large and complex
endeavors. It is not the objective here to equip you with the competency needed
to actually participate in large-scale development, but rather to let you have a
glimpse of what it is like. We also want to highlight the fact that Essence is scalable
to large-scale development, and that therefore what you have learned so far can
carry you many years into your profession. You will find in your work that large-
scale complex development encompasses many challenges, both collaboratively
and architecturally; we have chosen to focus here, though, only on the collaborative
aspects. The more advanced architectural aspects are out of the scope of this book.

Large-scale complex development involves more people. The way teams are or-
ganized, how they collaborate with one another toward a common goal, and the
way they support one another in achieving their mission all differ from small-scale

development. Large-scale complex development involves not just one team, but
many teams working in parallel and collaborating with each other. Although they
will all use the kernel, each team may have different practices for their way of
working, as well as following their organization’s practices to support the collab-
oration between teams. In large-scale development, there is not just one group of
stakeholders, but multiple groups of stakeholders, and there may be not just one
software system but multiple software systems.

19What It Means to Scale
The term “scale” can mean different things in different situations. In this chapter,
we clarify what we mean by scaling and how the kernel approach guides scaling in
different situations. Specifically, the reader will be shown

. that software engineering goes beyond just programming and what else it
involves;

. the various dimensions of scaling (for instance, increase of the software
complexity and the relevance of additional requirements);

. the challenges to scaling and dimensions to scaling (i.e., zooming in versus
scaling up or reaching out); and

. the role and importance of continuous learning within development teams.

19.1 The Journey Continued
Before we proceed further, let’s dive a little deeper into Smith’s development or-
ganization. Having gone this far into the book, you should now be familiar with
Smith’s development team. Let’s now see how that team fits within their larger de-
velopment context. Figure 19.1 shows TravelEssence’s development organization
chart.

Right at the top of the IT organization we find Cheryl the CIO (Chief Information
Officer). Cheryl reported to the CEO (Chief Executive Officer) and is responsible for
digitalization efforts within TravelEssence. Assisting her is Lim, the development
vice president (VP), who is responsible for developing IT systems, and Tan, the
operations VP, responsible for running the IT systems in their data centers. These
IT systems included the recommendation engine that Smith’s team is responsible
for. Jones is the development program manager responsible for the legacy Core
Hotel Management System (CHMS).

A program is a larger endeavor, which usually comprises several smaller, but
still potentially large, related endeavors. Different teams may work on different

290 Chapter 19 What It Means to Scale

Core hotel
management

system
Smith Jones

Jane Dev
Team B

.....

.....

Dev
Team A

Recommendation
engine

HR
system

Travel-
Essence

Lim TanOpsDev

CherylCIO

Finance
system

Figure 19.1 TravelEssence’s organization chart.

endeavors within the program. Sometimes, “the program” also refers to the teams
working on the program. This program comprises several teams, one of which is
led by Jane. In such a large organization, with many systems being developed and
operated in parallel, many challenges arise. Software engineering does not just
mean programming; it also involves analysis and design, collaboration between
teams and stakeholders, etc. Figure 19.1 shows some names for individuals that
will appear in our story in subsequent chapters.

Before we continue, we want to stress that large-scale complex development is
not just about having more people. The software system itself usually has more
complex and more stringent requirements for performance, reliability, security,
compliances and so on. For example, during peak season, TravelEssence’s CHMS
needed to handle many user requests at the same time. Users do not like having
anything broken, lost, or tampered with. Just imagine if someone were to hack into
the CHMS and steal user data. (Indeed, we do hear of such things happening in the
news.) Exactly how to satisfy such architecture-related qualities of performance,
reliability, security, etc. are advanced topics that we will not cover in this book. But
there definitely can be practices (built upon Essence) to address these qualities.
As an example, the microservices practice is an example of a technical practice

19.2 The Three Dimensions of Scaling 291

that enables teams to evolve software systems faster and handle performance (i.e.,
handling more requests at the same time) and reliability (i.e., reducing downtime)
requirements.

19.2 The Three Dimensions of Scaling
Looking at the large development organization exemplified by Figure 19.1, you
should be able to easily recognize several major challenges.

1. Members will often have diverse background and experiences. They may or
may not come into the team already possessing the needed competencies.
Some may need more explicit guidance than others to do their job, and to
collaborate with other team members.

2. With large-scale development, coordination of the work between members
becomes a challenge. This was particularly the case for Jones’s program.
Smith’s team did not experience this issue because it was small. But when
team size grows beyond about seven people as was the case for Jones, coor-
dination and communication often start to break down. One of the greatest
challenges with large-scale development endeavors is how to go about en-
suring that members discuss, share, and agree on their plans, progress, and
the results of their work.

3. Different kinds of software endeavors have different risks and constraints,
and therefore face different challenges. For example, Smith’s team and
Jones’s Core Hotel Management System will definitely have different chal-
lenges. Smith’s team’s major challenge was how to deliver quickly, whereas
Jones’s challenge was about maintaining quality while functionality was be-
ing added to the system.

The above are three distinct challenges to scaling. Accordingly, when consid-
ering what it means to scale, we need to address three corresponding dimensions
of scaling (see Figure 19.2), all of which may happen at the same time in specific
situations.

Zooming In. We call the first dimension “zooming in,” which involves provid-
ing guidance beyond what the kernel provides. This is necessary in several
cases. First, inexperienced team members need more guidance. Second,
larger teams whose members have different backgrounds need more spe-
cific details in order to ensure that they have a common understanding of
how to conduct development. This additional guidance comes in the form

292 Chapter 19 What It Means to Scale

Essence
kernel

Scaling up

To facilitate the coordination,
planning, and tracking when
conducting large software
development endeavors

Zooming in

To provide more guidance to
novice and large teams with
explicit practices

Reaching out

To meet the needs of different
kinds of development through
the use of appropriate practices

Figure 19.2 Important dimensions of scaling.

of what we refer to as practices, which are extensions to the kernel. As we
have demonstrated, Essence provides a way to describe and assemble prac-
tices together in a systematic manner. For team members it is a practical
way to understand how to apply practices, and how different practices work
together. Essence allows teams to zoom in through essentialization, which is
not only about making practices explicit but also about making them avail-
able through a practice architecture. We will elaborate on these two concepts
in Chapter 20. In Part III, we gave quite a number of examples of how Smith’s
team received explicit guidance through practices like Scrum, User Stories,
Use Cases, and Microservices. By making the alphas, alpha states, work prod-
ucts, activities, and patterns explicit, Smith’s team generated clear explicit
guidance on how to proceed and continuously improve. Chapter 20 will con-
tinue this story, but taking a larger view in the context of TravelEssence’s
organization chart.

Scaling Up. We call the second dimension “scaling up.” Scaling up is about
expanding the use of the kernel from a team with a small number of mem-
bers and low complexity to endeavors involving large numbers of people and
systems with high complexity. “Scaling up” happens in large development.
This is the case with Jones’s Core Hotel Management System (CHMS) de-
velopment program. Jones had to manage his development teams and also
interact with other development teams, such as Smith’s. This kind of large-
scale development is known as enterprise systems development. There are

19.2 The Three Dimensions of Scaling 293

other kinds of large-scale development such as building product lines (e.g.,
a smartphone series with various screen sizes and configurations) and large-
scale systems and software engineering (e.g., building an aircraft). These are
all extremely challenging development scenarios and are beyond the scope
of this book. However, the Essence kernel can be extended with practices for
such complex development. What we focus on here is providing a glimpse
into large-scale development, and how explicit practices can help, by div-
ing into Jones’s development program in Chapter 21 and comparing it with
Smith’s development team (which we saw earlier in Part III).

Reaching Out. The third dimension is “reaching out,” which means extending
the kernel with appropriate practices to meet the specific needs of different
kinds of development. At TravelEssence, Lim’s development organization
not only developed the hotel management system, but also other IT systems:
some small, some large. Small development included applications such as
automating spreadsheets to produce management reports. Large develop-
ment included applications such as the hotel management system, human
resource systems, and finance systems. Some of this development was con-
ducted in-house, while other development was outsourced to another com-
pany. (Outsourcing refers to contracting work to an external organization.)
Cheryl was responsible for leading the digitalization efforts, which included
applying facial and emotion recognition to authenticate users, capturing
user feedback and the results of data analytics, and artificial intelligence.
These required new technologies involving much research and exploration
as well as collaboration with expert organizations (i.e., organizations and
service providers who specialized in these technologies). Each development
endeavor had its own set of challenges, and often required its own set of
practices.

Reaching out is also about selecting appropriate practices and composing an
appropriate method to address the risks and challenges for a particular software
endeavor. A simple approach is to empower the team to build their own method.
For example, in Part III, we saw how Smith’s team selected practices to address
their challenges. Once it has been shown that a particular set of practices is useful
for a particular kind of endeavor, organizations may choose to make known to their
teams a selection of pre-composed practices. Thus, instead of composing their own
methods, teams can choose from pre-composed methods. For example, Smith’s
development organization had evolved a number of such pre-composed methods,
e.g., for small development, large enterprise enhancements, or exploratory devel-
opment. In most organizations, each pre-composed method comprises mandatory

294 Chapter 19 What It Means to Scale

practices on top of the kernel to jump-start teams through explicit guidance. These
practices can be about collaboration, or else about architecture and technical as-
pects of development. Teams are still permitted to add additional practices as
needed and they are encouraged to improve their practices as they continuously
learn through their development effort. Reaching out to different kinds of develop-
ment does not just mean making practices available, but also training and coaching
teams about those practices and transforming them into a learning organization.
This is the focus of Section 23.1.

In these more complex cases, it is important to provide tools and mecha-
nisms for teams to self-manage. Self-management means taking responsibility for
one’s own behavior. Self-management has been shown to be an essential manage-
ment approach for successful large-scale development. The kernel, with its alphas
and structured approach to explicit practices, provides the tools for team mem-
bers to design the practices needed. Examples of such practices include the way
teams collaborate with other teams (sometimes referred to as Team of Teams)
and the way teams ensure their work is aligned with that of other teams (some-
times referred to as Periodic Alignment). Traditional approaches to scaling often
rely on strengthening the command hierarchy (e.g., creating more managers that
direct team members rather than encouraging increased self-management) and
adding more checks, which can lead to bottlenecks and unnecessary conflicts.
Modern approaches emphasize self-management, self-organization, and even self-
governance. Essence supports whatever approach your case requires. All these
aspects are elaborated further in Chapter 21.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. list and explain the key challenges to scaling;

. explain with examples the meanings of zooming in, scaling up, and reaching
out as the three key dimensions of scaling;

. explain the importance to learn, modify, and enhance the chosen practices;
and

. compare the modern approach to scaling with the traditional approach to
scaling.

20Essentializing Practices

The goal of this chapter is to introduce the reader to how we arrive at practices
referenced in this book. Specifically, in this chapter the reader will be shown

. the ways practices are identified and essentialized;

. the important role of having practices described using a unified language,
which Essence provides;

. how the explicit state within an alpha naturally provides the teams with a
view of the whole process and keeps energy focused on full completion; and

. the concept of practice architecture as a layered composition of practices
(with more generic practices at the bottom and more specialized practices
at the top).

The first dimension of scaling, as presented in Chapter 19, is about zooming
in on details and providing the necessary explicit guidance to practitioners. Back
in Part III, we demonstrated how teams in TravelEssence took reusable practices
and adapted and applied them to the specific situation they faced in their own
endeavor. These practices were presented in their essential form, in terms of alphas,
work products, and activities (i.e., using the Essence language to facilitate the
understanding and use of the practices by the team). So, where do these practices
come from, and how do these practices end up in this essentialized form? Moreover,
how do we arrive at the practices like the ones we illustrated in Part III? We answer
these questions in this chapter.

20.1 Practice Sources
Let’s first discuss the variety of sources where practices come from. These prac-
tices are just good ways to deal with specific problems in certain contexts, which
practitioners in the industry have either discovered or invented.

296 Chapter 20 Essentializing Practices

Some of these practices are given names, while others are not. The popular
and more successful ones spread across the community through numerous soft-
ware engineering conferences and events. These practices have been presented,
debated, tried, and tested before ending up in papers and books and adopted by
fellow practitioners as practices within their methods. Examples include Scrum,
Use Cases, Extreme Programming (XP), and recently, at the time of our writing
this book, large-scale development frameworks—such as the Scaled Agile Frame-
work (SAFe), Disciplined Agile Delivery (DAD), Large-Scale Scrum (LeSS), and Scaled
Professional Scrum. These large-scale agile development methods have been devel-
oped based on original small-scale agile development methods such as Scrum and
XP. They have added higher layers of coordination between teams to meet business
objectives.

Practice sources are not limited to agile methods and include traditional ones
(often adapted to agile). Some of these address how to deal with systems engi-
neering, object-oriented analysis and design, and use cases. Moreover, each large
organization, due to its unique growth path, evolves its own unique set of prac-
tices. Since these practices are very domain specific, they are not as widespread as
the more generic and more popular ones.

Organizations typically evolve their own practices as they find better ways of
working. Lim, the development VP from our TravelEssence case, emphasized this
strongly. He would hold regular meetings with program managers and team leaders
to stimulate discussions leading to continuous improvement in their way of work-
ing. Through this effort, Lim drove the evolution of a number of practices related
to improving quality of TravelEssence’s products, delivering those products, and
improving collaboration between individual teams within his organization and op-
erations (which was led by Tan, the operations VP). These homegrown practices
initially appeared only in TravelEssence’s conversations and meetings. They were
not labeled with brand names, and were not made explicit through documentation.
(This often happens in many companies.) However, once his organization adopted
Essence, Lim understood that he had a solid architectural structure he could rely
on to coach his colleagues and sustain these improvements well into the future as
his enterprise continued to grow.

20.2 Monolithic Methods and Fragmented Practices
Because of the large number of methods, in the past people used different termi-
nology, or used the same word, but with different meanings, and organized their

20.2 Monolithic Methods and Fragmented Practices 297

practices in very different ways. This caused these methods to become either too
monolithic or too fragmented.

A method is “monolithic” when it is non-modular, making it difficult to add,
modify, or replace (substitute or exchange) a practice from outside (e.g., another
author’s practices or another group’s improvement ideas), or to replace an existing
practice with another one.

Methods like Rational Unified Process (RUP), Scalable Agile Framework (SAFe)
[Knaster and Leffingwell 2017], Disciplined Agile Delivery (DAD) [Ambler and Lines
2012], and Large Scale Scrum (LeSS) [Larman and Vodde 2016] are monolithic by
nature. RUP is an iterative software engineering method. SAFe is a lean software
and systems method. DAD is a process decision method. LeSS is Scrum applied to
many teams working together on one product. Since this book is for students new to
software engineering, we will not dive into these examples of monolithic methods.
Instead, we will consider the essence of how these methods organize practices.

Monolithic methods are an amalgam of practices that are not clearly distin-
guishable from one another. Practitioners rarely, if ever, apply any of these methods
in their entirety, but only parts of them. The question then is which part? How is a
part extracted and clearly defined so team members understand what is expected
of them? Another question you might be asking yourself is: How can we make it
easier for teams to reuse parts of a method that make sense just for their team? A
good answer to these questions is essentialization, as we will soon describe.

A method is “fragmented” when it is difficult to see or understand how its con-
stituent pieces fit into the whole. Fragmented practices are loose bits of guidance
with different concepts and jargon. They usually comprise some kind of summary
to address a certain challenge, such as product design or team collaboration, with
no regard for how they relate to other practices. Professionals who encounter these
practices need to spend the effort to link concepts and terminology.

Many times, different terms end up being used to denote the same thing. For ex-
ample, “iterations” and “sprints” have largely similar meanings. Some use the term
“squads” for teams, “tribes” for large teams, and “chapters” for communities. Al-
though it may be at times useful to use different descriptors to highlight certain
qualities, using different terms especially when there are so many practices con-
fuses software professionals who already have much to learn. For example, Scrum’s
use of the term “sprint” metaphorically emphasizes that a team should have every-
thing ready to achieve the iteration goals. A sprinter definitely doesn’t adjust his
shoes or detour during the 100 m race. No, he has absolute focus and will not be
distracted. Nevertheless, a sprint is still an iteration, a time-box when things get

298 Chapter 20 Essentializing Practices

done. Thus, there are two terms, “sprint” and “iteration,” to refer to essentially the
same thing. With fragmented practices, though, there are a lot more terms referring
to the same thing. Some terms may have overlapping meanings. They are similar
but somewhat different, creating much confusion to professionals. It is hence diffi-
cult if not impossible to understand how multiple practices fit together. You cannot
easily fit a practice from one source (method) with another practice from another
source. If you ever want to merge practices, the two practices must be described
using the same language. This is what Essence provides.

This, then, brings us to essentialization. From a methodology point of view, it
means identifying and scoping a practice from a practitioner’s perspective, describ-
ing it using the Essence language such that it is compatible with other practices.
In the larger picture, it is also about introducing such a practice to teams, teaching
and training them such that they can learn, apply, and adapt the practice to their
context.

20.3 Essentializing Practices
You have seen that essentialized practices can come from many sources. Essen-
tialized practices can come from explicitly calling out practices from well-known
practice sources (like SAFe, RUP, XP, etc.). By doing this, we make the practice more
precise, easier to teach and apply, even within different contexts. A natural conse-
quence of essentialization is that practices become easier for teams to compare
and choose.

The essentialization of a practice is the activity of making a practice explicit by
describing it using the Essence kernel and language as a platform. The practices
that we presented in Part III exemplify this.

In the past, practices have been implicitly described or described in a non-
standard way, and teams have found them difficult to understand and apply. Teams
also didn’t have an answer to the question of “How should we start describing a
practice?” However, with Essence, we now have a language—a well-defined, widely
accepted way to explicitly define practices.

The Essence standard tells us what a practice is and what a practice is intended
to be used for. By definition from this standard, “a practice is a repeatable approach
to doing something with a specific purpose in mind.” A practice expressed in the
Essence language provides explicit guidance to teams by clarifying the things to
work with, the things to do, the required competencies and patterns. In particular,
alpha state progression emphasizes a view from beginning to end—for example,

20.4 Establishing a Reusable Practice Architecture 299

from Requirements: Conceived to Requirements: Fulfilled, or from Use Cases: Goal
Established to Use Cases: Stories Fulfilled. This end-to-end view channels teams’
energy toward the goal of full completion. The other elements of an essentialized
practice (e.g., activities and patterns) provide guidance and approaches to make
alpha state progression more effective and hence faster. Appropriate competencies
are of course necessary and specified; without them, the team cannot achieve good
progress.

The size of an essentialized practice depends on the number of elements in the
practice (i.e., total number of alphas, work products, activities, competencies, and
patterns). In general, the smaller the number of elements in a practice, the easier
it is to understand and apply. There is no lower limit for how small a practice can
be, but there is a practical limit. This is because smaller practices result in a larger
number of practices, which places a cognitive load on teams who need to select and
compose them.

Given the nature of both the kernel and the language of Essence, we can describe
many practices using it as a vocabulary. Every such practice should be designed to
be reusable, meaning that it could be applied in different contexts and scope. This
will become more apparent as you read this chapter and the next.

20.4 Establishing a Reusable Practice Architecture
Having extracted practices this way, it is important to have a way to organize
and present them so that they can be reused by teams that select their own
method. Making a practice reusable means ensuring that each practice selected
is a proven practice and that the elements described for it are essential elements
only. This is one reason why essentialization is so important. Moreover, often
teams need many practices that are designed to be composed together in what
we call a practice architecture. Even if practices are separate elements, they are not
independent.

Let us take an example composing two practices: use cases and microservices.
When talking about use cases here, we talk about the more complete Use Case
2.0 practice (not the Use Case Lite practice we talked about in Part III); it also has
a part describing how a use case is realized by collaborating system elements, in
this case microservices. The microservice practice guides people to create small
rapidly evolvable and deployable microservices. These two practices have overlap-
ping elements—namely, use case, use-case slice, and microservice—the effect of
which has to be described when composing the two practices. A simple way to think

300 Chapter 20 Essentializing Practices

about practice composition is to think about a merge operation. For example, one
practice may require an alpha to have a certain group of checklist items and another
practice may require the same alpha to have a different group of checklist items.
The composition or merge operation will merge these two groups of checklist items
together into that single alpha. This same idea can be applied to the composition
of work products, activities, and so on.

One way to construct a practice architecture is in a layered form, with more
generic practices at the bottom and more specialized practices at the top.

In our TravelEssence story, Lim, the development VP, understood the need to
learn and share practices across teams. It was because of this continuous sharing
and evolving that he was able to build up a systematic knowledge base, allowing
the company to become a learning organization with a strong team of developers.

However, it wasn’t like that a few years previous, before Essence was intro-
duced to the company. Back then, TravelEssence was smaller, and team members
worked fervently to deliver the software systems. Teams used whatever practices
they deemed to be appropriate. Now as TravelEssence grew, with new applications,
and more members, their old way of working needed to be adapted to fit their cur-
rent size and organizational structure. It had to change.

Fortunately, Lim was immediately attracted to the work and the contributions of
Essence, including the essentialization of practices. He was able to reuse practices
and the language and terminology across teams, following an accepted standard.
Some members of the teams were skeptical at first, but became gradually convinced
when they saw how speaking the same language of practices reduced unnecessary
misunderstanding and helped them focus on what they needed to do (i.e., deliver
great quality software).

Smith supported what Lim was trying to achieve, which was why he strongly
backed the use of a practice-based approach to run his development team.

With some help from Smith, Lim developed a practice architecture to be used
for TravelEssence (shown in Figure 20.1). Lim needed practices not only for devel-
opment teams, but also for teams all across the IT organization. He organized the
practice architecture into two layers, separated in the figure by a dashed line.

20.4.1 Development Practices
At the bottom layer in the figure, there are practices for development teams. This
includes practices like User Story, Scrum, Use Case, and Microservices, the Lite
versions of which were presented and discussed in Part III. In addition, the figure
shows several other practices that Lim found important.

20.4 Establishing a Reusable Practice Architecture 301

MicroservicesUse CaseUser
Story

Scrum

Program
Retrospective

DevOpsProgram
Sprint

Program
Backlog

Product
Management

Program practices

Development practices

Team
Retrospective

Team
Sprint

Team
Backlog

Product
Ownership

Figure 20.1 Practice architecture for TravelEssence.

Product Ownership. This is a practice for deciding and prioritizing the kind of
requirements that a team would deliver. In Part III, we saw that Angela played
the role of a Product Owner. This practice provides more explicit guidance
to let those in her position do their jobs better.

Team Backlog. This practice provides guidance on how to manage and track
items in a team’s backlog.

Team Sprint. This practice provides guidance for how teams can work itera-
tively, from sprint planning to sprint delivery.

Team Retrospective. This practice provides guidance for how teams can con-
tinuously reflect on how they are working and making necessary improve-
ments.

If you think about it, Scrum, which we presented in Part III, does include product
ownership, team backlog, team sprint, and retrospective, so why list these four
practices instead of just Scrum? As we have just shown, Scrum can be represented as
a composition of four practices, so that teams can choose to use only some practices
in Scrum and not be forced to use all of Scrum. This makes the practice architecture
more reusable.

302 Chapter 20 Essentializing Practices

20.4.2 Program Practices
You can think of a “program” as a large “project” involving smaller “projects.”
Organizing the work within a program can be complicated because you need
to balance priorities from different stakeholders, and manage the dependencies
across the teams within the program. Moreover, the work may cut across different
departments.

In our story, Lim recognized the importance of having practices that go right
from business departments to development to operations. He called these “pro-
gram level practices.”

Product Management. This practice is about managing the source or require-
ments and analyzing them before they are placed in the program backlog for
development.

Program Backlog. Once the requirements are analyzed and agreed on for devel-
opment, their progress is tracked using the program backlog practice. Like
Team Backlog, this practice provides guidance on the prioritization and ac-
ceptance of the program backlog items.

Program Sprint. Programs under Lim applied an iterative cycle to deliver Pro-
gram Backlog Items. These are allocated to development teams. In the next
chapter, you will see how Jones, a program manager for the Core Hotel Man-
agement System (CHMS), used this practice with his subordinate teams.

Program Retrospective. Lim’s programs applied regular retrospective to ana-
lyze their way of working and seek improvements.

DevOps. After new requirements such as use-case slices have been imple-
mented and integrated, production-like test environments have to be up-
dated too. At TravelEssence, Tan managed the automated deployment pipe-
line that maintained these systems, and was responsible for making them
run smoothly, taking care of processor and disk capacities. Basically, an
automated deployment pipeline is a set of automated scripts and mech-
anisms that performs checks such as compilation checks, and testing to
ensure that the deployed software works not just on the developer’s ma-
chine, but everywhere the deployed software needs to run, even in the pro-
duction environment. DevOps is the practiced set of technologies used to
achieve this.

What Should You Now Be Able to Accomplish? 303

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. list and explain the sources from which practices might emerge;

. explain why organizations typically define their own practices;

. explain the term “monolithic method,” providing some examples;

. give examples of different terms that are used in software engineering to
denote the same thing, and explain why that is problematic;

. explain the term “alpha state progression” together with an example;

. give an example of a practice architecture; and

. describe the difference between development practices and program
practices.

21Scaling Up to Large and
Complex Development

The goal of this chapter is to demonstrate the need to evolve the development
method as the endeavor situation increases in complexity, and the strategies that
can be used to accomplish this. Specifically, after completing this chapter, the
reader will be shown

. the sources of complexity in a software endeavor;

. the bottlenecks that might appear in the endeavor if the management de-
pendencies among subsystems and teams are not reduced;

. how scaling was addressed in the past (when technology was the bottleneck)
compared to today (when human interaction is the bottleneck);

. the extended view of practice architecture, including the team layer;

. the important role of team alignment toward a common vision, supported
by clear responsibilities and division of work; and

. the important role of synchronization for team leads, to align their deadlines
and priorities.

When we talk here about “large-scale development,” we mean scaling to devel-
opment that involves 30 people or more. The number 30 is not a magic number.
Some consider 50 or more to indicate large-scale, some 100 or even more.

In large-scale development, the team members are often distributed across geo-
graphical locations. They may be in the same building, but we frequently encounter
large development teams being spread across different cities and even different
time zones. These teams will likely have multiple requirement sources coming from
different customers at any point in time. They may also be serving different oppor-
tunities from different stakeholder groups. Stakeholder groups might be related or

306 Chapter 21 Scaling Up to Large and Complex Development

independent of one another. Moreover, each team might have different skill sets
and competency levels.

One of this book’s authors has applied Essence practices to a large development
endeavor with several hundred people. The trick is to reduce and manage depen-
dencies among subsystems and teams. If this is not addressed, bottlenecks appear
quickly and collaboration becomes difficult.

21.1 Large-Scale Methods
There are many approaches to large-scale development. In the past, computers
were very expensive, and development endeavors took a long time. It wasn’t the
right environment for rapid prototyping. The Capability Maturity Model Integration
(CMMI), which helps teams improve processes, and the Rational Unified Process
(RUP), an iterative software engineering method, were both used mostly for large-
scale development. In today’s modern world, though, computing is becoming
cheaper, and technology is less of a bottleneck compared with human interactions.
Thus, we see the rise of the large-scale agile development methods we already
mentioned, like DAD, LeSS, SAFe, and so on. (It is outside the scope of this book to
further describe these methods.)

In our TravelEssence example, Lim, the development VP, organized his practices
into layers according to their scope of influence, as shown in Figure 21.1.

. The team layer at the top of the figure comprises practices useful for teams
to work effectively together to deliver great quality software. You have al-
ready seen how Smith’s team was able to work effectively throughout Parts II
and III. Jones heads the team for the core hotel management IT support.
Thus he faces the challenges we describe here.

. The program layer at the bottom of the figure comprises practices to help
coordinate the work across teams and across departments or IT systems.
At TravelEssence, for example, this might involve the collaboration between
Smith, Jones, and Jane to evolve the Core Hotel Management System (CHMS).

Note that all these practices are similar to those shown back in Figure 20.1. The
practice architecture had since been customized by Lim and his colleagues.

Before continuing our discussion, we would like to highlight the fact that the
team layer practices in Figure 21.1 are a decomposition of Scrum. Scrum is what
we call a composite practice (see Figure 21.2). Although we presented Scrum Lite
as a single practice in Part III, here we want to show how Scrum can be composed.

21.1 Large-Scale Methods 307

Program
Retrospective

Program
Sprint

Program
Backlog

Product
Management

Jane’s Team

Jones’ Program

What to
develop

Managing
work

Working
iteratively

Continuous
improvement

Team
Retrospective

Team
Sprint

Team
Backlog

Product
Ownership

Figure 21.1 Practice architecture organized into layers.

What to
develop

Managing
work

Working
iteratively

Continuous
improvement

Team
Retrospective

Team
Sprint

+++= Team
Backlog

Scrum
(Team)

Product
Ownership

Figure 21.2 Scrum as a composite practice.

It is in fact a composition of product ownership (what to develop), backlog man-
agement (managing the work), team sprint (working iteratively), and retrospectives
(continous development), all at the team level.

The upper layer, the program practices, uses the same notions, but applies them
at a larger scale. At the program layer, Jones was not working directly with individual
team members, but through representatives such as Jane. Other than that, the
concepts at the program layer are very similar to those at the team level, except
that they operate at a larger granularity, with a longer planning horizon.

The practice architecture shows how each practice contributes to helping the
organization work effectively at each level, as seen in Figure 20.1. Even though

308 Chapter 21 Scaling Up to Large and Complex Development

organizations have different problems at different organizational levels, they can
reuse the same principles to solve them.

In a similar way, Figure 21.1’s lines linking practices show a simple relationship
to indicate that these practices should be applied together to achieve synergy. For
example, the team sprint and program sprint share the same notion of having
teams working in a cyclic manner, with clear and periodic schedules for when
to conduct planning, reviews, and retrospectives. This periodic alignment worked
well for Smith’s team and Jane’s development team, who both worked on weekly
sprints. In particular, it helped coordinate dependencies between them, such as
when Smith’s use-case slices depended on Jane’s use-case slices.

Jones, the development manager for the Core Hotel Management System
(CHMS), was responsible for several development teams working collaboratively
to evolve and enhance the CHMS. The periodic cycles at the program level were
longer, due to cross-team dependencies. Jones and his colleagues concluded that
a monthly cycle would work well for his program. Lim, the development VP, would
review the progress of CHMS on a quarterly cycle to determine if budgets should
be extended or changed.

These practices all apply the same principle of repeating certain practices itera-
tively. It is natural, therefore, that their cycles should somehow match one another.
For example, it makes sense for team sprints to fit within program sprints. This also
means that these practices are best applied together to give the greatest benefit.

The same goes for each column in Figure 21.1, which will be described in the
next section. However, to keep within the scope of this book, we will restrict our
discussion to the program and team layers.

21.2 Large-Scale Development
TravelEssence was in fact operating in a large-scale manner. In Part III, we saw how
Smith’s team applied several practices to effectively run its endeavor. As the team
was part of a larger development organization, its recommendation engine drew
data from TravelEssence’s Core Hotel Management System (CHMS), discussed in
the previous section.

Recall that CHMS is an existing legacy system that provides critical functional-
ity for many customers within the hotel management business. The users of this
software were constantly requesting enhancements and it was Jones’s primary re-
sponsibility to assess those requests and manage the agreed-upon CHMS enhance-
ments. Because of the number of enhancements that were constantly being ap-
proved, the work required multiple teams to be making changes to the CHMS core

21.3 Kick-Starting Large-Scale Development 309

product at the same time. This obviously added a level of complexity to the manage-
ment of the work. We shall use the experiences of one of those teams, led by Jane,
to explain how the multiple development teams worked together as part of Jones’s
overall program. Because of the need for these teams to be working in parallel,
some additional practices were necessary to help ensure the work was coordinated
properly. Figure 21.1 depicts some of the practices that Jones and Jane’s team used.

Let’s start by discussing the two layers of practices identified in Figure 21.1,
referred to as Jones’s program layer and Jane’s team layer. The columns in each layer
highlight practices that are similar, but applied to a different target audience. Each
column represents a distinct concern of development, including agreeing on what
to develop, managing work (through backlogs), working iteratively, and making
continuous improvement (through retrospectives). It should be noted that these
four concerns are perspectives that Lim came up with, and not general concerns
from the Essence perspective. We will elaborate on each column, the practices
therein, and how Jones and Jane benefited from the practices they applied to help
them in their large-scale development challenge.

Large-scale development practices are not simple practices. They span beyond
the realm of the small team, and much that we encountered in Part III. It is not
an easy task in a classroom setting to replicate what happens in the real world of
large-scale development. It is also not easy for new students who work mostly alone
to visualize how large teams operate. Hence, for the rest of this chapter, we will
intersperse the explanation of the above practices with the TravelEssence story.
This will help you appreciate how large-scale teams actually collaborate, and the
dynamics involved.

21.3 Kick-Starting Large-Scale Development
Running large-scale development is not just about selecting and applying practices
as we have seen so far. There are also steps to kick-start the process, similar to those
we explained in Chapter 13 for small-scale development, except that we have more
practices (as mentioned above). The steps are as follows.

1. Understand the context through the lens of Essence.

2. Agree on development scope (where it begins and where it ends) and check-
points.

3. Agree on practices to apply.

4. Agree on the important things to watch.

We will review each of these steps in the following subsections.

310 Chapter 21 Scaling Up to Large and Complex Development

21.3.1 Understand the Context through the Lens of Essence
Understanding who is involved in the development, as well as the current health
and progress of the endeavor, can easily be found by walking through each kernel
alpha and assessing its state, along with providing rationale for each assessment;
see Table 21.1. In the interest of simplicity, we will just look at the alpha states
achieved for Jones’s program team.

21.3.2 Agree on Development Scope and Checkpoints
The scope of development context can be defined easily by agreeing on what should
be achieved before the beginning of each cycle (or sprint), so that the team or
program can start effectively, and by agreeing on what the team or program should
achieve by the end of each cycle. Again, these can be defined readily through alpha
states (see Table 21.2).

At TravelEssence, the criteria for the sprint to start served as a gentle reminder
regarding the health of Jones’s program. In particular, the team had been lacking
Stakeholder involvement. They also lacked the understanding of the value of the
Opportunity in preceding sprints (compare Tables 21.1 and 21.2). Jones pointed
out these challenges to Cheryl and the business departments. It wasn’t easy, but
they knew that these issues had dragged on for too long, and had to be fixed. To
solve them, some roles were assigned. Jones would act as the Scrum Master at
the program level, while Jane accepted the role as team-level Scrum Master. Work-
ing alongside them, respectively, were Samantha and Seet, who would function as
Product Manager and team Product Owner, respectively. This more explicit agree-
ment of roles overcame the chaotic nature of previous interactions. Now it became
clearer to the busy stakeholders who should attend which meetings. As a result,
stakeholder involvement improved.

21.3.3 Agree on Practices to Apply
The clearer indication of roles had led to expectations becoming clearer, and
Jones’s program was soon able to reach the Stakeholders: Involved state. But this
was just the beginning. The newly appointed Samantha and Seet still needed some
explicit guidance regarding how to do their jobs. This was where practices became
helpful.

This third step in kick-starting large-scale development is about agreeing on
which practices to apply at both the program level and the team level. Here, though,
we summarize just the practices that Samantha, Jones, Seet, and Jane applied
(see Table 21.3). The first column highlights the purpose of the practice selected

21.3 Kick-Starting Large-Scale Development 311

Table 21.1 Development context through the lens of Essence

State Achieved
by Jones’s

Alpha Program Rationale for Achieving the State

Stakeholders Recognized In Part III, Smith’s small TravelEssence team
identified just Cheryl, Dave, and Angela as
key stakeholders that needed to be involved.
But now that the endeavor had grown,
Jones’s team had to be concerned about
involving many more stakeholders, including
the representatives of the users who had
enhancement requests for CHMS. At the
start of the endeavor. Jones knew he had
not yet received the full commitment and
involvement of all of the needed stakeholder
representatives.

Opportunity Value
Established

The value of the system had been established
because the users of the CHMS were already
gaining great value, which is why they kept
asking for more enhancements, and the
successful demo of the recommendation
engine would just increase the value more.

Requirements Conceived Jones recognized that many of the user groups
had been making requests for enhancements
beyond the original scope of the CHMS.

Software System Architecture
Selected

The legacy CHMS system had an existing
architecture and the mobile app, through
the use of microservices, had been proven to
support the needs of the recommendation
engine.

Work Started Work was underway, as parts of Jones’s
teams were already successfully working on
enhancements to the CHMS system.

Way of Working Foundation
Established

Jones realized that the collaboration between
teams was sometimes more important than
collaboration within teams. Teams would
need to understand what other teams were
doing and give the necessary support. They
would need help to do this.

Team Formed Part of Jones’s team was already working on
enhancements to the CHMS systems.

312 Chapter 21 Scaling Up to Large and Complex Development

Table 21.2 Development scope for Jones’s program

Alpha State Before Sprint Starts State Before Sprint Ends

Stakeholders Involved Satisfied (for deployment)

Opportunity Value Established Addressed

Requirements Coherent Fulfilled

Software System Architecture Selected Ready

Work Prepared Concluded

Way of Working Principles Established Working Well

Team Formed Collaborating

Samantha
Product Manager

Jones
Program Scrum Master

Seet
Product Owner

Jane
Team Scrum Master

<collaborates with

<collaborates with

<d
ir

ec
ts

<d
ir

ec
ts

Figure 21.3 Participants in Jones’s program.

(agreeing what to develop, managing the work, working iteratively, and continuous
improvement). The practices in the next two columns have already been presented.
The last column indicates the kind of guidance that practices provide. For example,
both the product management and product ownership practices provide guidance
on how to advance Opportunity and Requirements alpha states at the program and
team level, respectively.

You might wonder why there are just four rows, one for each purpose. Is that
all we need? This question too can be easily answered by walking through the
kernel alphas. For example, agreeing what to develop is guided by Opportunity

21.3 Kick-Starting Large-Scale Development 313

Table 21.3 Practices selected

Program level Team level Kernel Alpha
Purpose Practices Practices Progression Guidance

Agreeing what
to develop

Product
management

Product
ownership

Opportunity,
Requirements

Managing the
work

Program
backlog

Team backlog Requirements,
Work

Working
iteratively

Program sprint Team sprint Work

Continuous
improvement

Program
retrospective

Team
retrospective

Way of Working

and Requirements alphas. Similarly, managing the work is guided by Requirements
and Work.

From Table 21.3, it is clear that there are no explicit practices to address chal-
lenges with Stakeholders, Software System, and Team. Of course, we can add prac-
tices to deal with these alphas, but in the TravelEssence situation they did not
present significant problems and challenges. Thus, in their case they dealt with
these practices without explicit guidance in the form of a practice description; they
dealt with these practices, then, with their tacit knowledge. However, in other or-
ganizations, these might be major challenges and in that case defining explicit
practices to monitor and progress Stakeholders, Software System, and Team may
be appropriate.

Note that beyond the practices listed in Table 21.3, development teams also ap-
ply more technical practices like use cases and microservices. We do not discuss
these practices here because we have done so in Part III. Here, we place more em-
phasis on collaboration between teams and team members and other challenges
that large-scale complex development needs to address.

21.3.4 Agree on the Important Things to Watch
The fourth and final step to kick-start development is to agree on the important
things to watch. The point of Table 21.4 is that in each endeavor, regardless of size,
there are alphas from the kernel and alphas from the practice level that teams agree
need to be watched to assess the progress of the endeavor accurately.

It is clear that running a large-scale development is not easy. There are just so
many things happening, and it is important for everyone to focus, and filter out the
noise. Everyone needs to do her/his job well and overall make sure that nothing is

314 Chapter 21 Scaling Up to Large and Complex Development

Table 21.4 Things to watch

Layer Program Team

Alphas from the
kernel

Opportunity, Stakeholders,
Requirements, Software
System, Work

Requirements, Software
System, Work

Alphas from the
practices

Program Backlog Item Team Backlog Item, Program
Backlog Item

missed. Jones would have his responsibilities and so would Jane. Figure 21.4 shows
the things that Jones and Jane would be watchful of. There would doubtless be some
overlap, albeit from different perspectives. Jones would have to look at the bigger
picture focusing on the Opportunity, whereas Jane would have focus on progressing
the Team Backlog Items, making sure the work her team was doing (Team Backlog
Items) stayed consistent with overall program requirements and the agreed-on

Stakeholders
(from the kernel)

Opportunity
(from the kernel)

Software
System

(from the kernel)

uses and consumes>

focuses>

<refines

<i
d

en
ti

fi
es

<f
u

lfi
ll

s

demands>

<helps to
 address

<realizes

com
prises>

<com
prises

realiz
es>

Program
Backlog Item

(from
Program Backlog)

Team
Backlog Item

(from Team Backlog)

Requirements
(from the kernel)

Work
(from the kernel)

Samantha and
Jones’ view

(Program Level)

Seet and
Jane’s view

(Team Level)

Figure 21.4 Things to watch in a particularly large-scale endeavor.

21.4 Running Large-Scale Development 315

program work (Program Backlog Items). They both would have to be concerned
with the Software System, Requirements, Work, and Program Backlog Items.

21.4 Running Large-Scale Development
To help the reader further understand what it means to run a large-scale develop-
ment, we will next organize the story around the rows in Table 21.3, beginning with
agreeing what to develop, then managing the work, working iteratively, and making
continuous improvement.

21.4.1 Agreeing What to Develop
The first set of practices is about building the right product, and getting the teams
to focus on a common vision, while being able to respond to customer change
requests. This is about product ownership and product management.

As we have seen in Part III, Angela was responsible for setting the priorities of
development for TravelEssence. She was playing the role of a Product Owner. Her
team was small and the scope of development equally small. Hence, a single person
playing the role of a Product Owner sufficed.

However, this was not the case for Jones’s program. Recall that Jones had many
requirements sources, and many enhancement requests coming from the many
customers of TravelEssence within the hotel management business. In this case,
due to the increased complexity of his requirements sources, he needed to make
sure that team members were aligned toward a common vision at the program
level. This would be best achieved through a product vision work product that
clarified the value of what they were developing, and the way requirements were to
be prioritized. As mentioned, Jones had also established a new product manager
role that was filled by Samantha. Her responsibilities now included evolving the
Product Vision and achieving acceptance at the program level. Second, Jones had
established Seet’s team product owner role, which included the corresponding
responsibilities at the team level (see Figure 21.5).

With these new responsibilities, Samantha and Seet, along with other Product
Owners, started to systematically agree on what to develop, and they started to
evolve the Product Vision, both at the program and team level.

They all agreed that the overall theme should be to provide great customer
experience over a robust software system. At the program level, Samantha and
Jones, then, updated the vision.

To achieve great customer and user experience, they first agreed to reduce the
number of user actions to complete a use case. Some CHMS functionality required

316 Chapter 21 Scaling Up to Large and Complex Development

Team
Layer

Product
Ownership

Program
Layer

Product
Management

Product
Manager

(Program)

Product
Vision

(Program)

Evolve
Product Vision

(Program)

Achieve
Acceptance
(Program)

Evolve
Product Vision

(Team)

Achieve
Acceptance

(Team)

Product
Owner
(Team)

coordinates

Figure 21.5 Product ownership and product management.

users to traverse through complicated form-filling steps. Because of that, the CHMS
lost some customers. Thus, an important goal for the next release was to explore
options for reducing the number of steps in all customer-facing use cases.

They also agreed to provide a waiting list functionality to deal with situations
when hotel rooms were fully booked. This provided a way for TravelEssence to keep
in contact with potential customers even when the rooms for a given destination
were full. In this way, they could follow up and notify customers when rooms
became available.

To achieve a robust software system, they agreed to split the monolithic data-
base. Over several years of operation, the CHMS database had grown large and
difficult to maintain, and slower. It was time to streamline it. Jones suggested that
it would be useful to separate the database into smaller parts, and archive historical
or unused data outside of the database.

Seet and Jane were responsible for the reservations-related part of the CHMS.
There were other parts of the CHMS that dealt with customer check-in and check-
out, customer relationship, sales, etc., but we will not discuss them in detail be-
cause they are not within the scope of this book.

Seet and Jane’s team updated their vision to include distinct goals:

1. Reduce the number of steps needed to complete a reservation, through the
use of default data or past user data entries.

21.4 Running Large-Scale Development 317

2. Provide waiting functionality as required by program level.

3. Move old and unused reservation records out of the existing database to
improve database performance.

21.4.2 Managing the Work
With a good understanding of what needed to be done, the next step was to work
toward their goals effectively and efficiently. The teams agreed on how they would
achieve the vision by identifying pieces of work they needed to achieve (i.e., spec-
ifying Product Backlog Items and prioritizing them). They made sure that these
Product Backlog Items were work that was open and transparent to everyone, so
that teams could understand each other’s priorities and workload. This also helped
in managing dependencies across teams. For this reason, Jones made sure that his
teams had a shared and transparent backlog, as depicted at the program level in
Figure 21.6.

When scaling to large and complex endeavors, individual smaller teams within
the overall program often have their own more detailed product backlogs. However,

Team
Backlog

Management

Backlog
Management

coordinates> comprised of>influences
priority of>

Program
Backlog

Management
Program
Product

Manager

(Program)
Backlog

(Program)
Backlog
Item

Maintain
Backlog

(Program)

Maintain
Backlog
(Team)

Team
Product
Owner

(Team)
Backlog

(Team)
Backlog
Item

prioritizes>

prioritizes>

Figure 21.6 Program and Team Backlog management.

318 Chapter 21 Scaling Up to Large and Complex Development

Table 21.5 Program and Team Backlog Items

Item Program Backlog Item Team Backlog Item (Seet’s and Jane’s team only)

1 Improve user
experience by
reducing number
of steps

Reduce the number of steps during reservation
by using cached data, and prediction based on
user’s location and other information.

2 Provide waiting list
functionality

1. Provide waiting list functionality when making
reservation.

2. Notify customers when rooms are available.
3. Handle the scenario when room becomes

available when customer checks out early.
4. Handle the case for VIP customers.

3 Improve database
performance

1. Move old reservation records out of existing
database (i.e., archive).

2. Provide administrative functionality to archive
records.

3. Update report generation functionality to use
archived records.

these need to align properly and be coordinated with the overall program backlog.
This is an example of why we need additional practices when software endeavors
scale up. In this case, a practice to help align and coordinate multiple detailed team
backlogs with the overall program backlog may be needed.

At TravelEssence, this program backlog management practice had a Maintain
Backlog periodic activity that Jones conducted. It was attended by all of the team
Product Owners with the purpose of ensuring that each individual team backlog
had the proper priority, given the overall program backlog priority.

Based on their agreed-on Program Vision of providing great customer experi-
ence over a robust software system, Samantha, Seet, Jones, Jane, and the rest of the
CHMS members collaborated to translate this vision into specific program backlog
items (see Table 21.5). These were then translated to team backlog items that Jane’s
team could work on.

There was, for example, a program backlog item for reducing the number of
steps to carry out a use case. Seet studied the reservation use case and found
that it indeed had too many steps. So he found ways to simplify it, and put the
improvements into Jane’s team product backlog.

Through discussions, Seet and Jane agreed on all the team backlog items for
Jane’s team, as shown in Table 21.5.

21.4 Running Large-Scale Development 319

Running
Sprints

Monthly
Cycle

Program
Sprint

Program
Layer

Program
Scrum
Master

Program
Sprint

Planning

Program
Sprint
Review

Scrum of
Scrums

Program
Representatives

Weekly
Cycle

Team
Sprint

Team
Layer

Team
Scrum
Master

Team
Sprint

Planning

Team
Sprint
Review

Daily
Scrum

Team
Members

Figure 21.7 Running Program and Team Sprints.

21.4.3 Working Iteratively
Having a good understanding of what needed to be done, as prioritized in the over-
all program backlog, Jones and Jane had to break that work down and determine
what they could complete in each sprint. To achieve this, they worked iteratively in
a synchronized way, as shown in Figure 21.7. This is really the application of Scrum
Lite (discussed in Part III) at both the team level and at the program level.

Jane’s team, as well as other teams in Jones’s program, agreed to run two-
week sprints. At the program level, Jones decided to run monthly sprints. It is not
uncommon in large-scale development that you might have multiple development
teams running shorter sprints than an overall program-level team. Usually, the
program sprints are multiples of team sprints. For example, if a team sprint is
two weeks, the program sprint can be 4 weeks, 6 weeks, or 8 weeks. This allows
the development team to reach internal checkpoints and verify their work prior to
integrating that work with other teams’ work at critical points agreed on, at the
overall program level.

Often in these cases, on large complex efforts, individual smaller teams find
that they cannot complete all the work that is part of the overall vision within
the proposed time frame. This is one reason why, in complex efforts, additional
practices are needed to communicate related issues and coordinate any changes
needed across development teams working in parallel.

320 Chapter 21 Scaling Up to Large and Complex Development

Table 21.6 Jones’s program activity

Activity Schedule Duration

Program Sprint
Planning

Last Friday afternoon of each
month

3 h

Team Sprint Planning Each Monday morning 2 h

Daily Scrum Every morning at 9 am 15 min

Scrum of Scrums Every Tuesday and Thursday
after Daily Scrum at 9:15 am

15 min

Team Sprint Review Every Friday morning 2 h

Program Sprint
Review

Last Wednesday afternoon of
each month

3 h

A common practice to help coordinate such issues across multiple Scrum teams
is referred to as a Scrum of Scrums (see Figure 21.7). A Scrum of Scrums can be
understood as a form of Daily Scrum (see Section 14.8.2) that is applied across teams
rather than among members within a single team. At a typical Scrum of Scrums,
representatives from the individual teams highlight issues that are hindering their
progress and creatively look for solutions. Just like the Daily Scrum, the Scrum
of Scrums meeting should be short to make efficient use of time. The idea is to
get teams moving as smoothly as possible. If there are any severe issues, affected
representatives can organize a separate problem-solving session.

Jones and his fellow colleagues agreed that they would run sprints according
to the rhythm and duration summarized in Table 21.6. With this settled, they
were able to mark their calendars, book meeting facilities, and make themselves
available for the activities.

Some team members did not see the value of having these meeting rituals at first,
but that changed soon. In the past the team had always resorted to ad hoc meetings,
which often disrupted the team members’ work. Having meetings at regular times
allowed the team members to maintain their work momentum. Moreover, over a
period of time, the meeting agenda items evolved and became more focused and
productive.

We now dive deeper to see how Jones and Jane benefitted from this way of
working.

Jane’s team was responsible for providing the waiting list functionality. This
functionality was related to room availability. Room availability in turn was affected
by guest check-in/out, which was the responsibility of another team. Moreover,

21.4 Running Large-Scale Development 321

since Jane was additionally responsible for room reservations, she was also respon-
sible for moving old reservation records to an archive as part of improving database
performance.

In the past, Jane had to persuade other teams, whose actions her team depended
upon, to conform to her deadlines and priorities. But of course, other teams had
their own deadlines and priorities, which were quite different from hers. This was
resolved through the Program Sprint Planning activity, which got all team represen-
tatives together to align their deadlines and priorities, and reach a healthy compro-
mise together with the program Product Manager and team Product Owners.

Both Jones and Jane, then, sorted out issues with dependencies across teams
through the Scrum of Scrums meetings. In particular, through the Scrum of Scrums
meetings, Jane could get other teams to collaborate with her team, which allowed
her team to complete integration earlier.

Finally, the review meetings were a highlight for everyone. Samantha partici-
pated as the program Product Manager and saw the value of having other stake-
holders involved. She gradually invited others from sales, marketing, and customer
service to attend the review meetings. This allowed people like Jane to understand
business needs. It also helped these business people understand what was required
to communicate requirements clearly to development teams.

21.4.4 Continuous Improvement
Continuous improvement is essential in all development endeavors, regardless of
scale. Jones knew that there would always be ideas his teams would come up with
that could lead to better ways of working. This would be true regardless of the
size and complexity of the development effort. Therefore, Jones made sure that
retrospectives were held at both the team level and the program level, as depicted
in Figure 21.8.

At the team level, the Scrum Master facilitates the Team Retrospective, in a
similar manner to that discussed in Section 14.8.4. The main difference when you
scale in size and complexity is that there will be issues and impediments that the
individual teams cannot fix on their own. This, then, is an example of why we need
additional practices when we scale up, in order to make it clear to individual devel-
opers how they can raise to the program level the issues they see for discussion and
proper attention. At the program level, there needs to be a program Scrum Master,
just as at the individual development team level there needs to be a team Scrum
Master. The program Scrum Master is responsible to conduct a retrospective that
is appropriate for the overall program. Experience has shown that program-level

322 Chapter 21 Scaling Up to Large and Complex Development

Retrospectives

Program
Retrospective

Program
Scrum
Master

Program
Representatives

Program
Retrospective

Team
Retrospective

Team
Scrum
Master

Team
Members

Team
Retrospective

Figure 21.8 Conducting program and team retrospectives.

retrospectives need to have representatives from each development team to prop-
erly express each team’s concerns.

In Jones’s program, these retrospective meetings were held in conjunction with
the review meetings both at the team level and at the program level, at weekly and
monthly cycles, respectively. Smaller improvements that teams could quickly put
into action got implemented quickly, while larger improvements that would impact
several teams, or even those beyond the CHMS, were deliberated in the Program
Retrospective. Retrospectives were an important part of Jones’s program. It was the
avenue through which team members saw that management took an active part
in understanding the problems they faced and cared enough to fix the problems.
These problems ranged from having the right computing resources, to having a
good working environment, to policies. They could be as mundane as moving a
printer to a more convenient location.

21.5 Value of Essence to Large-Scale Development
What we have just described is the way of working for Jones’s program and Jane’s
team. If you compare what Jane’s team did in this chapter and what Smith’s team
did in Parts II and III, you will notice that there were significant differences. Jane’s
team was using a decomposed Scrum in collaboration with the program practices.
Moreover, she was working on part of the legacy CHMS, whereas Smith’s team was

21.5 Value of Essence to Large-Scale Development 323

working on the new recommendation engine and using relatively new approach (at
least at the time when this book was written) such as microservices. This means that
the practices that are needed by one team are often different from another team,
even on the same endeavor, when you are working in large-scale development. This
is because the issues the teams have to face can be very different. For example, when
you are dealing with a legacy system, often the issues are related to understanding
the underlying design and legacy requirements. In contrast, when you are working
on new functionality, often the issues are related to the real need of the customer
that is driving the new functionality.

Even Jane’s peers, and other teams in Jones’s CHMS program, used somewhat
different practices. They had practices for testing legacy software, code reviews,
and so on, which we will not discuss in this book. Of course, Jones’s program
management team had other (program-layer) practices, which were different from
the development teams’ practices.

Regardless of whether they were working on the team level or the program level,
or what specific practices they applied, their practices were all defined on top of
the kernel (see Figure 21.9), and the progress and health of both programs and
teams could be based on kernel alphas and the alphas introduced via their chosen
practices.

Microservices

Kernel

Jones’ program

Program
Backlog

 Management

Product
Management

Jane’s team

Team
Retrospective

Smith’s team

Use CasesScrumProduct
Ownership

Program
Sprint

Team
Sprint

Program
Retrospective

Team
Backlog

 Management

Figure 21.9 Different practices for different teams.

324 Chapter 21 Scaling Up to Large and Complex Development

From what we have discussed thus far in this book, there are several important
benefits of using Essence for both small teams and large teams (i.e., a program with
subordinate teams):

1. Essence provides a lens to evaluate the way of working, what practices to use,
how to highlight risks, and so on.

2. It provides a means to make practices explicit.

3. It provides a way to evaluate the progress and health of each endeavor.

We have seen these benefits in action throughout the book with Smith’s story
and now in this part with Jones’s story.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain possible elements of endeavor complexity;

. explain the difference between the practices at the team layer and the pro-
gram layer;

. give an example of a practice architecture involving the team-layer practices;

. describe the team perspective on Scrum as a composition of smaller team
practices as applied to product ownership, team backlog, team sprint, and
team retrospectives;

. list additional steps needed when kick-starting large-scale development
(comparing to small-scale development);

. list roles that are employed in a large-scale development endeavor, together
with their descriptions; and

. explain the Scrum of Scrums.

22Reaching Out to Different
Kinds of Development

The goal of this chapter is to emphasize that one can often encounter different
kinds of development within each organization, as there is no one-size-fits-all
method for developing software. In this chapter, the reader will be shown

. the role of Essence in the context of the organization to promote communi-
cation regarding practice selection and composition;

. the role of a practice library, where practices can be added and evolved to
meet all required company needs;

. the concept and roles of coaches to mediate the discussion and agreements
to improve and update the practices in the practice library; and

. the important task of keeping track of different versions of practices.

In a large organization it is common to see different types of development cases:
new development, legacy migration, business process re-engineering, exploratory
development, enhancements to the core, mobile development; the list goes on.
Will a single method work for all these development cases? Definitely not! Will
an agreed-on set of practices work for an organization forever? Definitely not! The
industry evolves and new knowledge and technologies emerge daily. We do not live
in a static world, but a very dynamic one.

Our goal has been to make the life of practitioners easier so that discussions
about methods and practices become second nature, something that they do not
need to worry about and spend too much time considering. We want them to focus
on doing what they are best at doing, to produce high-quality software.

326 Chapter 22 Reaching Out to Different Kinds of Development

22.1 From a Practice Architecture to a Method Architecture
Let’s do a recap. So far in this book, we have introduced two different development
scenarios: a small-scale development led by Smith and a large-scale development
led by Jones. Each applies a different method. Instead of having each program and
team identify practices they need, it is oftentimes useful to provide pre-composed
methods. This implies the need for a method architecture.

Figure 22.1 shows TravelEssence’s method architecture. It is very similar to
the practice architecture shown back in Figure 20.1, with the addition of a pre-
composed method layer at the top. Each item in the method layer is a composition
of a set of practices to fulfill a specific purpose. For brevity, we only show two: one

MicroservicesUse-Case
2.0

Scrum

Program
Retrospective

DevOpsProgram
Iteration

Program
Backlog

Product
Management

Program practices

Development practices

Team
Retrospective

Team
Iteration

Team
Backlog

Product
Ownership

Large-scale
Development

Small-scale
Development

Pre-composed methods

User
Story

Figure 22.1 Method architecture with practice architecture and pre-composed methods.

22.1 From a Practice Architecture to a Method Architecture 327

Practice
Adoption and

Evolution
Practice
Coach

Way of Working
(organization)

Practice
Architecture

Evolve
Practice

Coach
Practice

Practice

Way of Working
(team)

<describes

Practice
Adoption
Progress

<describes

comprises><informs

<guides
adopts>

Practice
Description

<describes

Figure 22.2 Practice to adopt and evolve practices.

for small-scale development (exemplified in Parts II and III), and one for large-scale
development (exemplified in Chapter 21).

Having the method and practice architecture made explicit is not all there is to
software engineering, though it is an important step. It is also important, in fact
a lot more important, that members of an organization actually know how to find
and apply the practices in a deliberate and disciplined manner.

At TravelEssence, Jones recognized that in addition to capturing practices, the
practices must be made available to team members. Practice guidelines should not
be on the shelves collecting dust or hidden in some folder that nobody accesses.
Consequently, with assistance from Smith, Jones wrote a practice to help team
members adopt and evolve practices.

Using the language and notation of Essence, Figure 22.2 shows that an organiza-
tion’s Way of Working alpha can be described by a work product called the Practice
Architecture (such as the one for TravelEssence, shown in Figure 22.1). Each team’s
Way of Working, in turn, comprises a set of practices (each of which will be an alpha)

328 Chapter 22 Reaching Out to Different Kinds of Development

that the team has chosen to adopt. The Practice Description work product (such as
those we have provided throughout Parts III and IV) defines each such practice.
As an organization’s practices evolve, they in turn influence the future selection
and application of practices, resulting in activities such as Evolve Practice. An ex-
perienced person in the role of a Practice Coach can guide teams (using activities
such as Coach Practice) to select practices in keeping with both the team’s and the
organization’s needs. Essence provides a language and notation to describe these
practices in a composable and actionable way.

The adoption of each practice takes time, as team members learn. At Travel-
Essence, Jones used a Practice Adoption Progress work product to track how well
a team adopted a practice, and to record the lessons learned through it. Smith
played the role of a Practice Coach to facilitate this process. He helped teams select
practices to adopt and advised them to instill a continuous improvement cycle to
continuously evolve their way of working, using activities such as Coach Practice
and Evolve Practice.

22.2 Establishing a Practice Library within an Organization
In order to apply this, an organization will need to set up a practice library whereby
practices can be added, and adapted and evolved to address many different kinds
of endeavors. To continue learning, such an organization should be constantly re-
newing its way of working and its practice library. Figure 22.3 provides a simplified
view of this.

The practice library is made available to programs and teams. The coaching net-
work is a pool of coaches who help programs and teams select and apply practices
effectively. Programs and teams will, while using the practices, likely improvise

Practice
library

Programs,
teams

Coaching
network

Figure 22.3 An organization with a practice library to draw upon.

22.2 Establishing a Practice Library within an Organization 329

and adapt the practices to meet challenges in their specific contexts. Coaches will
then bring these experiences to discussions that in turn can lead to agreements to
improve and update the practices in the practice library. This completes the con-
tinuous cycle in such a learning organization.

To initialize this cycle and allow teams to easily select the practices they need,
organizations need to first essentialize practice candidates to set up the practice
library. Once several are available, teams can assemble the practices found in the
library into usable methods.

Anyone can essentialize a practice, but the best result is obviously achieved if an
experienced developer does it; in particular, someone experienced in the specific
practice concerned. Once an organization has essentialized their practices, they
will need to be maintained and improved. Improving essentialized practices can
be done by anyone in the organization. Since a changed practice may only be
used in some teams and the original practice may still be used by other teams,
an organization needs to keep track of different versions of practices and which
version has been used in which endeavor.

Whether first essentializing a practice or improving it, one must realize that
the objective of essentialization is to help an organization learn. Second, there
is a cost associated with essentialization decisions such as deciding on alphas
vs. work products, and deciding on exactly what should be an explicit practice
versus a pattern or a resource, or just a principle, such as simple design. In some
organizations, games or “mini-practices” are treated as resources that provide
references to previously published books on these subjects. Other organizations
may decide there is value in describing these smaller practices more explicitly to aid
their less experienced practitioners. Third, the level of detail for each practice has
to be worked out. In particular, the following steps help to establish these details:

1. Identify alphas, states, work products, checklists, and activities in practices.

2. Provide supporting material to supplement the practices, such as references
to published books about them.

The greater the level of detail, the more effort is required. An organization that
is growing with many new employees would probably need well-written practices.
This organization could essentialize their own practices, or they could draw from
the growing community of practice authors around the world. This book itself
represents the authors’ contribution of practices to the community (e.g., Use Case
Lite and Microservices Lite in Chapters 16 and 17). We encourage experts in the
industry to essentialize more practices. As students, when you learn something

330 Chapter 22 Reaching Out to Different Kinds of Development

new in software engineering and technologies, we encourage you to essentialize it
as a way to summarize and capture your understanding, for your own benefit and
for that of others.

22.3 Do Not Ignore Culture When Reaching Out
So far in this book we have not discussed cultural and social aspects of software
engineering. Yet culture is something not to be ignored. The adage “Culture eats
strategy for breakfast” (meaning that culture is critically important when it comes
to people’s behavior) has been attributed to management guru Peter Drucker.
Indeed, an organization’s culture has great impact on the success of introducing
and adopting new software engineering practices and methods. An organization’s
culture affects individuals’ and teams’ capacity and motivation to learn and grow.

Briefly, culture is the unspoken but acceptable norms and behaviors in an
organization. It influences the way people act in an organization. It also influences
what people readily accept or reject. Some people at TravelEssence for instance,
welcomed new ideas, but in general, most were not so ready. They liked the way
things were, as it was comfortable.

Smith did not know the impact culture had before accepting the role to reach
out to different parts of the organization that had different kinds of development
(new development, legacy development, experimental development, etc.).

Smith already understood that establishing a practice architecture would uplift
competency across his company. He was convinced and passionate, but persuading
his peers seemed to take forever. The successes that occurred in Jones’s program as
a result of adopting Essence were clearly visible, but people in other programs that
had not seen these successes were not so enthusiastic. Not wanting to try this new
approach, they gave all kinds of reasons, which Smith saw as excuses: they were
busy, they had more important things to do, and so on. Smith was gradually losing
his cool until he had a serious chat with Jones. Jones’s program had been applying
the practice shown in Figure 22.2, and had learned a trick or two.

Jones understood that the adoption of practices could not be achieved via a
top-down, command-and-control approach, but instead could be socialized across
the organization. Jones had earlier created opportunities and events for people
playing different roles or from different departments (e.g., from the business side
and the development side, or from the development side and the operations side)
to meet and discuss how to improve their way of working. After holding such
events several times, people participating in his program began opening up. They

What Should You Now Be Able to Accomplish? 331

gradually stopped insisting on traditional practices and instead opted for more
appropriate ones. These events that Jones held had the blessing of his department
head, and were always in an enjoyable and facilitated setting. Drinks and food were
provided, and there was a facilitator to prompt discussions and drive actions. Jones
suggested that Smith could do something similar.

After speaking with Cheryl, the CIO, Smith received the go-ahead to conduct
similar events. Slowly, gradually, Smith started to observe some movement. Pro-
grams and teams across the company started to become more open and requested
Smith and his coaching network to help them out. And the rest was history.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain the benefits and challenges of combining multiple methods or prac-
tices within a single organization;

. explain the role of a practice library;

. explain the role of coaches when mediating the discussion on updating
practices in the practice library; and

. explain the role of culture when reaching out to different parts of the orga-
nization.

23Reaching Out to the Future
The goal of this chapter is to outline the mindset needed to survive and thrive
as a software engineering professional in this digital age. Software engineering
professionals must not only know technology, design, and how to build products,
but also be able to contribute to their way of working, methods, and practices. They
may not have the expertise to design their team’s or organization’s way of working,
but they must participate in it because it affects them. In this chapter, the reader
will be shown

. the difference between agility as “doing agile” (with practices) compared to
“being agile” (with mindset) and explain why the latter is more important
than the former;

. important mindset changes to be aware of, including team ownership (in-
stead of selected-few ownership), a focus on method use rather than descrip-
tion, and embracing the evolution of the methods (instead of keeping them
fixed);

. important shortcomings in method descriptions, e.g., failing to communi-
cate what the team really needs—which might be a way to determine real
development progress, a means to plan, a system to organize their team
members, etc.; and

. the important role of continuous improvement and intentional creation of
an environment, in which continuous improvement of the employed method
can naturally happen.

The intent is to encourage readers to research and evolve a method that helps teams
and organizations deliver software much better.

This is an exciting day and age in which to be software professionals. We are at
the forefront of every transformation in every business and every nation. Businesses
are becoming digital. Nations are becoming digital. There are rapid technologi-
cal changes every day, with lowering costs of computing and bandwidth. We see

334 Chapter 23 Reaching Out to the Future

augmented and virtual reality applications becoming commonplace. Instead of
traveling to a new place, you can do it through your headset. Instead of merely
looking at a building design on paper, you can walk through and experience it using
virtual or augmented reality before confirming your wishes to the architect. Elec-
tric cars are common now, and we are at the advent of large-scale proliferation of
autonomous vehicles and a revolution in transportation. Artificial intelligence ap-
plications are also becoming popular, and they can do things that before we could
only have imagined in science fiction. We could go on forever talking about these
exciting advances, but we want to pause and ponder their implications for software
engineering.

In the midst of all this, software is at the forefront and at the core of this
change. It is not presumptuous to say that the world runs on software. With all these
changes, some very natural questions software professionals can ask are: What
will software engineering be like in the future? Will it be something revolutionary
and brand new, requiring complete overhaul? Or will it be an evolution of what we
already have established?

These were the same questions that plagued Smith, who had recently been pro-
moted to become the head of software engineering for TravelEssence. He needed‘
to build the competency of his teams and establish an effective way of working
to face rapid advancement and strong competition. His teams were adopting new
tools like advanced analytics, blockchain, AI, and many more, and they needed
to collaborate effectively. These advances entailed different kinds of development,
and Smith discovered that with all of them there would be something “old” and
something “new.”

There would be something “old” in the sense that there are timeless principles
and practices that were useful even with the newest advances. In particular, the
kernel was always helpful in evaluating the progress and health of teams’ endeav-
ors. Practices like Scrum Lite, Use-Case Lite, and Microservices Lite, presented in
Chapters 15–17, and the program and team practices discussed earlier in this part
of the book, were still applicable even for these new technologies.

Nevertheless, there would be something new, as expected. New applications,
such as advanced analytics, required new competencies and new practices. For ex-
ample, they required an Analytics Translator competency: someone able to take
vague goals like “I want to increase sales by 50%” and translate them into action-
able data requirements that could then be implemented by development teams.
Even the recommendation engine that Smith and his team had implemented (see
Part III) was already, in fact, an instance of an AI application, as that system could
intelligently recommend and guide users in their bookings and travels.

23.1 Be Agile with Practices and Methods 335

Because Smith and TravelEssence had their methods and practices essential-
ized, they were able to add new practices easily. Team members knew how the new
practices fit. This wouldn’t have been the case if TravelEssence had been using
monolithic methods. Their early investment into essentialization had paid off.

Breaking from our fictional TravelEssence story, in the larger scheme of things,
the authors of this book and the SEMAT community have been reaching out to
different kinds of development across the industry. An early result is the appli-
cation of Essence to enterprise IoT. In simplistic terms, enterprise IoT systems
comprise many smart devices (e.g., smart watches, wearables, light bulbs, sensors,
etc.) connected to and sending information to powerful enterprise backends to per-
form sophisticated computations. Enterprise IoT powers smart buildings and even
smart cities. What are software engineering practices like for these applications?
Interested readers may refer to [Jacobson et al. 2017] for details. At the same time,
the SEMAT community is also building a library of practices with participation
from industry leaders. Methods such as Scrum and Disciplined Agile have already
been essentialized and made available. All these efforts are designed to help soft-
ware teams and organizations deliver better software better, faster, cheaper, and
happier.

23.1 Be Agile with Practices and Methods
In this digital age, being agile with practices and methods is crucial. Even back in
the late 1990s, software engineering experts had recognized this fact: in our fast-
changing Darwinian world, survival is about the ability to adapt quickly. In 2001, a
group of software engineering pragmatists came together to discuss how to over-
come challenges faced by our industry. At that time, most development endeavors
were using a so-called “waterfall approach,” which took years to complete, and they
were not really delivering what customers or users needed. These experts had been
successful with their (at that time) new approaches and were constantly improvis-
ing and innovating. They summarized what they believed in as a manifesto:

“We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

336 Chapter 23 Reaching Out to the Future

That is, while there is value in the items on the right, we value the items on the
left more.“1

Perhaps the most agile statement in the manifesto is that “We are uncover-
ing better ways of developing software by doing it and helping others do it.” It is
this continuous striving to be better that spurs learning and advances in software
engineering, not just in the industry, but in every team. Essence has taken the ad-
ditional step to make the capturing, and communication—and hence the learning
and application—of appropriate practices better. But this is not enough.

We recognize that every team has its own unique development context; they are
engaged in different kinds of development, their members have different levels of
experience and backgrounds. They can be working on small- or large-scale develop-
ment. But in all these situations, a team can always collaborate and grow together
to become better. It is this continous adaptation to the development context and
continuous learning that being agile with practices and methods is fundamentally
about.

The authors of the Essence book [Jacobson et al. 2013a] take the values and
principles of the agile movement to another level by providing tools for teams to
explicitly evolve their way of working.

In contrast to many previous method initiatives, the focus of SEMAT is on
those who know best what works and what doesn’t work when building software
systems: that is, architects, analysts, designers, programmers, testers, and software
managers. This takes a change in mindset—changes in the ways you think about
methods—just as moving to agile development from traditional development (e.g.,
the waterfall lifecycle) requires a change in mindset on how to develop software.

What are the specific mindset changes you need to be aware of? To some extent
they differ from the Agile Manifesto, referenced above, but they are inspired by it:

1. The full team owns their method, rather than a select few.

2. The focus is on method use rather than on comprehensive method descrip-
tion.

3. The team’s method evolves, rather than staying fixed.

These mindsets are crucial in your journey as a software professional. Not only
must you understand technology, but you must also collaborate effectively with
your teammates and lead your teams effectively. To help you do this well, we delve
deeper into each of these mindset changes in the following sections.

1. Agile Manifesto, http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

23.3 Focus on Method Use 337

23.2 The Full Team Owns Their Method
Traditionally, there is a dichotomy between method engineers and method users
(i.e., developers):

1. Method engineers who define methods often do not use the methods them-
selves.

2. Method users who acquire real experiences with methods often are not
asked, or do not have time, to give feedback and refine the methods they use.

As a result, method users often find method discussions to be out of touch with
their real experiences and therefore a waste of time.

The kernel approach seeks to bridge this divide by placing a proper balance
on all stakeholder perspectives. It recognizes the value of every team member in
determining what ways of working are best for their team.

The Essence kernel can support this proper balancing through the use of the
alphas, states, checklists, and by describing a team’s own method as a composition
of practices. Examples include:

1. conducting retrospectives guided by the alphas and their states;

2. defining practices on top of alphas and their states;

3. using alphas and states to agree on team member involvement and team
responsibilities; and

4. using alphas and states to define lifecycles.

The alphas and their states and checklists provide a very simple but powerful
tool, which team members can employ to take ownership of their own method.

23.3 Focus on Method Use
Traditionally, when most people talk about methods they are thinking in terms of
method descriptions. Having a method description is a good thing in that it allows
new team members or even existing team members to familiarize themselves with
the team’s method. Too often, however, these method descriptions fall short in
communicating what team members really do in their day-to-day work. Unfortu-
nately, the method descriptions have often become too heavyweight. This has only
served to make the process description less useful, rather than more.

This dilemma is not best solved by more words, but rather by fewer words and
more use. How do teams and team members actually use methods, then, to help

338 Chapter 23 Reaching Out to the Future

them in their day-to-day jobs? Consider the following needs with respect to a team’s
methods.

1. Teams need a way to determine real development progress.

2. Teams need to plan their endeavors and their sprints, and they need to
discuss and agree upon what it means to be done.

3. Teams need to organize their team members, and agree on team member
involvement and responsibilities.

4. Teams need to do their work and adapt their way of working.

5. Teams need to scale to varying size endeavors to handle varying challenges
and complexity.

23.4 Evolve Your Team’s Method
There is no one-size-fits-all when it comes to methods. This implies the following:

1. You cannot simply take any method and follow it blindly. All methods must
be adapted to fit your situation.

2. Once adapted to your current situation, you are certain to learn more as your
endeavor proceeds, requiring more adaptations.

A team’s method is never fixed. Teams must constantly evolve their method as
long as there is work to do on the product. This implies two fundamentals:

1. Always be ready to embrace new and better ways of working.

2. Always consider your current development situation when considering a
change.

Evolving a method is straightforward with the kernel approach. You start with
the kernel, and evaluate the practices you already have. Practices that are inade-
quate are then refined or replaced with better ones. This is best done gradually so
continuous improvement becomes natural and not something you need to think
about at great length.

Making continuous improvement a natural habit is easier said than done. It
takes effort and proactive leadership and culture. So, on top of having a practice
architecture, great organizations invest in creating a conducive environment to pro-
mote continuous improvement. Our approach of decomposing complex methods
into much smaller practices helps teams take ownership of their methods and the
outcomes of using them.

Recommended Additional Reading 339

You have chosen a profession that is at the forefront of technological advances.
Not many other professions are changing at a similar pace. To face such challenges,
you need to be well prepared; what you have learned in this book, especially about
Essence, will help you go a long way. As a final and parting note, we urge you to
always be learning and growing, uncovering better ways of working all the time.

What Should You Now Be Able to Accomplish?
After studying this chapter, you should be able to

. explain the intent of the Agile Manifesto and its key principles;

. describe mindset changes that need to happen when becoming agile;

. explain what a team really needs from a method, by giving examples; and

. explain what it means to say there is no one-size-fits-all when it comes to
methods, and what this implies.

Recommended Additional Reading
. R. Knaster and D. Leffingwell, SAFe 4.0 Distilled: Applying the Scaled Agile

Framework for Lean Software and Systems Engineering [Knaster and Leffing-
well 2017]. This is a great resource for understanding the Scaled Agile Frame-
work (SAFe). It covers SAFe 4.0.

. S. W. Ambler and M. Lines, Disciplined Agile Delivery: A Practitioner’s Guide to
Agile Software Delivery in the Enterprise [Ambler and Lines 2012]. This is an
excellent resource for understanding Disciplined Agile Delivery (DAD).

. C. Larman and B. Vodde, Large-Scale Scrum: More with LeSS [Larman and
Vodde 2016]. A great overview of LeSS, a method to apply Scrum in large-scale
development.

. I. Jacobson, I. Spence, and P.-W. Ng. Is there a single method for the Internet
of Things? [Jacobson et al. 2017].

AAPPENDIX

A Brief History of Software
and Software Engineering

You are probably curious about why and how the profession of software engineering
arose. Thus, it is useful to briefly examine the evolution of software provisioning
and especially the awareness of the need for the structured approach provided by
software engineering.

While the forerunner of computing is often cited as the work of Charles Bab-
bage and Ada Lovelace in the 19th century, as well as the development of Hollerith
punched card equipment in the early part of the 20th century, it was the develop-
ments starting in the 1940s that provided the starting point for modern computing.
These early computers (some electrical-mechanical) were programmed in a very
primitive manner by switches, by punched paper tape, or by some form of plug
board wiring that directed the computers’ operation. The application of these early
machines focused upon numerical computation of mathematical functions, and
the programs were quite small.

A major breakthrough occurred when the notion of stored program comput-
ers was proposed by John von Neumann in the latter part of the 1940s and was
implemented, among other applications, for the first commercial computer, the
Univac I. At this stage, while numerical computation was still important, the focus
began to shift to data processing (being able to store and process large quantities
of data stored on magnetic tapes). In fact, the first Univac I delivery in 1951 was
to the United States Bureau of the Census, where processing of population and
production data as well as provisioning of statistics was the focus.

During the 1950s, a variety of stored program computers were produced and
marketed by several companies in the United States, Europe, the Soviet Union, and
Japan. Programming of these early computers was still a challenge since machines
were programmed at the machine instruction level. A major breakthrough occurred
in 1951 when Grace Murray Hopper introduced a means of compiling program code

342 Appendix A A Brief History of Software and Software Engineering

for numerical computations and called the program that did this a “compiler.” This
provided for easy re-use of program code in an effective manner, in particular the
code for mathematical functions.

During the 1950s, a number of programming languages and compilers evolved
for numerical computation—for example, Fortran—as well as the increasingly im-
portant area of data processing resulting in COBOL (which even today remains as
the most pervasive programming language for data processing). Further, in the
early 1960s, the utilization of computers for physical process control started to
evolve, and eventually languages that facilitated a higher-level means of program-
ming these devices were provided.

As these higher-level languages furnished a means to construct significantly
larger applications and the use of computers became more pervasive, it rapidly
became clear that developing and sustaining large suites of programs presented
an enormous intellectual and management challenge as described by Fred Brooks
[Brooks 1975]. During the 1960s it was recognized that there was a “software crisis”
as indicated in the following quotation.

“The major cause of the software crisis is that the machines have become several
orders of magnitude more powerful! To put it quite bluntly: as long as there were
no machines, programming was no problem at all; when we had a few weak
computers, programming became a mild problem, and now we have gigantic
computers, programming has become an equally gigantic problem.”
[Dijkstra 1972]

Thus, as computing technology advanced and as larger and larger software
suites evolved during the 1950s and 1960s, it became evident that a more struc-
tured approach to software was required. While the term “software engineering”
had been used by some authors in the mid-1960s, it was at a NATO-sponsored
meeting in Garmisch, Germany, in 1968 that the need for a software engineering
profession was clearly addressed [NATO 1968]. The conference was attended by in-
ternational software experts who agreed upon the need to define best practices for
developing and sustaining software systems that are grounded in the application
of an engineering approach.

There are a variety of brief definitions of software engineering; for example, the
Association for Computing Machinery (ACM) and the Institute of Electrical and
Electronic Engineering (IEEE), respectively, each still define the profession directly
in line with the 1968 Garmisch intentions. According to them, software engineering
entails: “systematic application of scientific and technological knowledge, meth-
ods, and experience to the design, implementation, testing, and documentation

Appendix A A Brief History of Software and Software Engineering 343

of software to optimize its production, support, and quality [ISO/IEC 2382 2015.]”
and “application of a systematic, disciplined, quantifiable approach to the devel-
opment, operation, and maintenance of software; that is, the application of engi-
neering to software [ISO/IEC/IEEE 24765 2017.].”

As the need for software engineering evolved, advances in hardware technology
in the 1960s and 1970s provided both more powerful large computers and a range
of smaller so-called mini-computers. A major hardware advance occurred in the
mid-1970s with the development of large-scale integrated circuits. Certainly, the
availability of inexpensive microprocessors, large primary and secondary memo-
ries, graphic processors, and communication via networks, including the Internet,
have been game changers leading eventually to desktop computers and today’s lap-
tops, mobile phones, and tablets as well as the pervasive use of embedded systems
in a variety of products.

So, in addition to the early application areas of numerical computation, data
processing, and process control, the software business has expanded to provide
a wide variety of new application products such as e-mail, chatting, games, voice
recognition, advanced graphics, smart phones, robotics, mobile communication,
intelligent embedded devices, and so on. Furthermore, more recent developments
have led to new infrastructure facilities in the form of cloud computing, the Internet
of things (IoT), and cyber-physical systems. All of these developments have had
a radical effect upon our society. While providing many new possibilities, the
“software crisis” that Dijkstra pointed to has definitely intensified and we live in an
era that raises important socio-technical issues as well as fundamental concerns
related to safety, security, and integrity. Thus, there is a definite need to improve
our capability to develop and sustain high-quality software.

Based upon this brief history of software evolution and the advances in hard-
ware leading to new software challenges, you now have an idea of why the software
engineering profession evolved, but there is much yet to do. It has become clear
that programming and coding are only one aspect of software engineering. As you
will have discovered in reading this book, there are many problems (technical, or-
ganizational, managerial, and social) that need to be dealt with in the provisioning
and sustainment of high-quality software. The presentation of software engineer-
ing through the lens of Essence in this book provides a generic yet substantive
definition of the profession far beyond the typical single-sentence definitions.

In the challenging environment that has evolved, there have been many discus-
sions of the best practice approach to deal with the multiplicity of factors involved
in providing sustainable and high-quality software systems. Is it a prescriptive engi-
neering approach or the more agile practice approach that is to be preferred? Or is

344 Appendix A A Brief History of Software and Software Engineering

it some combination of both approaches? In continuing this brief software history
story, then, focus is placed upon how various approaches to software engineering
evolved.

Some of the most important software engineering historical developments are
as follows.

. During the late 1960s and 1970s, most popular approaches were based on
the structure of programs emphasizing a function-data paradigm, so that
basically a software system had two parts—the program part and the data
part where the program part was organized to process a flow of data. One of
the most popular was Jackson Structured Programming (JSP) introduced
by Michael Jackson [Jackson 1975]. In another important development,
Douglas Ross developed SADT (Structured Analysis and Design Technique),
which also emphasized the flow of data (for program structures) as well as
the flow information and processing activities [Ross 1977].

. During this period, an approach to organizing work now called the “waterfall
method” evolved, in which activities were related to a sequential design pro-
cess where progress is seen as flowing steadily downward (like a waterfall)
through phases such as conception, initiation, analysis, design, construc-
tion, testing, production/implementation, and maintenance.

. During the same time period in the telecommunication business, another
program structure approach based on the component paradigm was
applied—a system here is a set of components interacting by sending mes-
sages to one another. Ivar Jacobson (an author of this book) was the original
developer of this new approach. His colleague Göran Hemdal refined it and
implemented it with programming language support and firmware to pro-
vide components “all the way down” to executable code. In 1976, Ericsson
AB used this approach and produced the AXE telecommunication switch-
ing system that became the world’s leading system and resulted in the
largest commercial success story ever in Sweden. At the same time, the visual
language of the approach inspired the development of an international stan-
dard in telecommunications called Specification and Description Language
(SDL). Sequence diagrams showing interactions among components, one of
Ivar’s ideas, were adopted in SDL.

. During the 1980s, object-oriented programming (with languages such as
Simula—which had appeared already in the late 1960s—plus Smalltalk,
Eiffel, Objective-C, C++, Ada, Java and so on) became mainstream and a

Appendix A A Brief History of Software and Software Engineering 345

large number of approaches to building object-oriented systems became
popular. Object-orientation took the idea of components to a level of much
finer granularity (everything was an object), so that the system was viewed
as a huge set of objects where program behavior was realized by the objects
interacting with one another.

. Eventually (in the late 1980s and 1990s) the component idea and the object
idea were merged and components became exchangeable packages; the
objects were then executable elements creating the functional behavior.

. During this period, an important abstraction called Use Cases, used to
model the requirements of a system, was introduced by Ivar Jacobson
[Jacobson et al. 1992].

. A more comprehensive set of abstractions were provided in the Unified Mod-
eling Language (UML) standard for design of software intensive systems,
which was adopted by Object Management Group in 1997. The three original
developers of UML were Grady Booch, Ivar Jacobson, and James Rumbaugh
[Booch et al. 2005].

. An international standard for Software Life Cycle Processes—namely,
ISO/IEC 12207—was developed in the early 1990s [ISO/IEC/IEEE 12207] and
was followed by the development of the ISO/IEC 15288 standard for System
Life Cycle Processes. This was in recognition that a software system always
exists in a wider system context. One of the authors of this book, Harold
“Bud” Lawson, was the architect of this system standard. More recently, Ivar
Jacobson and Bud Lawson contributed to and edited a book that provides var-
ious perspectives on software engineering in the systems context [Jacobson
and Lawson 2015]. The 12207 and 15288 standards are being harmonized
in recognition of the strong relationship between systems engineering and
software engineering [ISO/IEC/IEEE 15288].

. The most popular method for software engineering became the Unified
Process (UP), which was provided as Rational UP (RUP) in 1996. Ivar Jacobson
was a father of RUP, but many other people contributed to its development—
in particular, Philippe Kruchten and Walker Royce [Kruchten 2003]. RUP was
based upon some proven best practices still in use today, such as use cases,
components, and architecture. However, RUP was too large, too prescriptive,
and very difficult to adopt widely.

. Around 2000, as a counter-reaction to RUP and other document-heavy ap-
proaches, a new movement arose that promoted light and flexible methods

346 Appendix A A Brief History of Software and Software Engineering

combined with modern ideas for teamwork and fast delivery with feedback.
Agility became the word of the day, and agile methods became the way for-
ward. The most influential contributors to this movement were the following:

Extreme Programming with User Story and Test-Driven Development
(TDD), introduced by Kent Beck [Beck 1999, 2003]; and

Scrum by Ken Schwaber and Jeff Sutherland [Schwaber and Suther-
land 2016].

. Now in more recent years, new methods for scaling agile have arisen, such as:

Scaled Agile Framework (SAFe), introduced by Dean Leffingwell
[Leffingwell 2007];

Disciplined Agile Delivery (DAD), introduced by Scott Ambler and
Mark Lines [Ambler and Lines 2012];

Large Scale Scrum (LeSS), introduced by Craig Larman and Bas
Vodde [Larman and Vodde 2008];

Scaled Professional Scrum (SPS), introduced by Ken Schwaber
(see https://www.scrum.org/index.php/resources/scaling-scrum).

While various approaches have imparted structure and discipline in providing
software products, the number of these methods and practices has exploded. And,
while there are successes, there are far too many failed and very expensive software
endeavors. Many methods have become “religions” among enthusiastic creators
and their followers. In fact, the popularity of the methods seems to be more like in
the fashion industry, where differences are not well understood and artificially mag-
nified. Further, there is a lack of objective evaluation, comparison, and validation
of the methods and their composed practices.

So, given the multiplicity of methods that have arisen, a vital question is WHAT
method should YOU (and the team of which you are a member) learn to utilize? Fur-
ther, how well do the method and its practices that you select provide the multiple
capabilities required to perform effective team-based software engineering?

In the series of best practice and method churns, a new community woke up.
This community, called Software Engineering Method And Theory (SEMAT) and
founded by Ivar Jacobson, Bertrand Meyer, and Richard Soley, wanted to stop the
madness of throwing out all of what organizations and their teams had established
and constantly starting over with new methods. As a result of the diligent efforts of
a group of software engineering professionals, the Essence of Software Engineering
evolved as a method- and practice-independent approach that has become an
Object Management Group standard [OMG Essence Specification 2014]. This new

https://www.scrum.org/index.php/resources/scaling-scrum

Appendix A A Brief History of Software and Software Engineering 347

approach will certainly provide a basis for re-founding the profession of software
engineering [Jacobson and Seidewitz 2014].

So now you should have an appreciation of how software and in particular soft-
ware engineering have evolved. Essentializing software engineering as presented
in this book has provided, for the first time, a means of unifying the multiple per-
spectives of software engineering.

References

Alpha State Card Games. 2018. https://www.ivarjacobson.com/publications/brochure/
alpha-state-card-games. 99, 153

S. Ambler and M. Lines. 2012. Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software
Delivery in the Enterprise. IBM Press. 297, 339, 346

K. Beck. 1999. Extreme Programming Explained: Embrace Change. Addison-Wesley Longman.
203, 285, 346

K. Beck. 2003. Test-Driven Development by Example. Addison Wesley. 346

K. Bittner and I. Spence. 2003. Use Case Modeling. Addison-Wesley Professional, 2003. 222,
285

G. Booch, J. Rumbaugh, and I. Jacobson. 2005. The Unified Modeling Language User Guide.
2nd edition. Addison-Wesley. 222, 285, 345

F. Brooks. 1975. The Mythical Man-Month. Addison Wesley. 342

M. Cohn. 2004. User Stories Applied: For Agile Software Development. Addison-Wesley
Professional. 204, 247, 285

E. Derby and D. Larsen. 2006. Agile Retrospectives: Making Good Teams Great. Pragmatic
Bookshelf, Dallas, TX, and Raleigh, NC. 196, 198, 284

E. W. Dijkstra. 1972. “The Humble Programmer.” Turing Award Lecture, CACM 15 (10):
859–866. DOI: 10.1145/355604.361591. 342

D. Graziotin and P. Abrahamsson. 2013. A web-based modeling tool for the SEMAT Essence
theory of software engineering. Journal of Open Research Software, 1,1(e4); DOI:
10.5334/jors.ad. 147, 153

ISO/IEC/IEEE 2382. 2015. Information technology–Vocabulary. International Organiza-
tion/International Electrotechnical Commission, Geneva, Switzerland. https://www
.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en. 343

ISO/IEC/IEEE 12207. 2017. https://en.wikipedia.org/wiki/ISO/IEC_12207 345

ISO/IEC/IEEE 15288. 2002, 2008, 2015. Systems and software engineering—System
life cycle processes. International Standardization Organization/International
Electrotechnical Commission, 1 Rue de Varembe, CH-1211 Geneve 20, Switzerland.
345

https://www.ivarjacobson.com/publications/brochure/alpha-state-card-games
https://www.ivarjacobson.com/publications/brochure/alpha-state-card-games
http://dx.doi.org/10.1145/355604.361591
http://dx.doi.org/10.5334/jors.ad
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en.
https://www.iso.org/obp/ui/#iso:std:iso-iec:2382:ed-1:v1:en.
https://en.wikipedia.org/wiki/ISO/IEC_12207

350 References

ISO/IEC/IEEE 24765. 2017. Systems and software engineering–Vocabulary. International
Organization/International Electrotechnical Commission, Geneva, Switzerland.
https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24765:ed-2:v1:en. 343

M. Jackson. 1975. Principles of Program Design. Academic Press. 344

I. Jacobson. 1987. Object-oriented software development in an industrial environment.
Conference Proceedings of Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 87). DOI: 10.1145/38807.38824. 221, 285

I. Jacobson and H. Lawson, editors. 2015. Software Engineering in the Systems Context,
Systems Series, Volume 7. College Publications, London. 345

I. Jacobson and E. Seidewitz. 2014. A new software engineering. Communications of the ACM,
12(10). DOI: 10.1145/2685690.2693160. 347

I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. 1992. Object-Oriented Software
Engineering: A Use Case Driven Approach. ACM Press Addison-Wesley. 345

I. Jacobson, I. Spence, and K. Bittner. 2011. Use-Case 2.0: The Guide to Succeeding with Use
Cases. https://www.ivarjacobson.com/publications/whitepapers/use-case-ebook.
169, 222, 226, 233, 285

I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence, and S. Lidman. December 2012. The essence
of software engineering: The SEMAT kernel. Communications of the ACM, 55(12).
http://queue.acm.org/detail.cfm?id=2389616. DOI: 10.1145/2380656.2380670. 30, 95

I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence, and S. Lidman. 2013a. The Essence of
Software Engineering: Applying the SEMAT Kernel. Addison-Wesley. xxvi, 30, 90, 95, 336

I. Jacobson, I. Spence, and P.-W. Ng. (October) 2013b. Agile and SEMAT: Perfect partners.
Communications of the ACM, 11(9). http://queue.acm.org/detail.cfm?id=2541674.
DOI: 10.1145/2524713.2524723. 30, 96

I. Jacobson, I. Spence, and B. Kerr. 2016. Use-Case 2.0: The hub of software development.
Communications of the ACM, 59(5): 61–69. DOI: 10.1145/2890778. 169, 222, 226, 285

I. Jacobson, I. Spence, and P.-W. Ng. 2017. Is there a single method for the Internet of
Things? Queue, 15.3: 20. DOI: 10.1145/3106637. 335, 339

P. Johnson and M. Ekstedt. 2016. The Tarpit—A general theory of software engineering.
Information and Software Technology 70: 181–203. https://www.researchgate.net/
profile/Pontus_Johnson/publication/278743539_The_Tarpit_-_A_General_Theory_
of_Software_Engineering/links/55b4490008aed621de0114f5/The-Tarpit-A-General-
Theory-of-Software-Engineering.pdf. DOI: 10.1016/j.infsof.2015.06.001. 91, 92, 96

P. Johnson, M. Ekstedt, and I. Jacobson. September 2012. Where’s the theory for software
engineering? IEEE Software, 29(5). DOI: 10.1109/MS.2012.127. 84, 87, 96

R. Knaster and D. Leffingwell. 2017. SAFe 4.0 Distilled: Applying the Scaled Agile Framework
for Lean Software and Systems Engineering. Addison-Wesley Professional. 297, 339

P. Kruchten. 2003. The Rational Unified Process: An Introduction. 3rd edition. Addison-Wesley.
345

https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:24765:ed-2:v1:en.
http://dx.doi.org/10.1145/38807.38824
http://dx.doi.org/10.1145/2685690.2693160
https://www.ivarjacobson.com/publications/whitepapers/use-case-ebook
http://queue.acm.org/detail.cfm?id=2389616
http://dx.doi.org/10.1145/2380656.2380670
http://queue.acm.org/detail.cfm?id=2541674
http://dx.doi.org/10.1145/2524713.2524723
http://dx.doi.org/10.1145/2890778
http://dx.doi.org/10.1145/3106637
https://www.researchgate.net/profile/Pontus_Johnson/publication/278743539_The_Tarpit_-_A_General_Theory_of_Software_Engineering/links/55b4490008aed621de0114f5/The-Tarpit-A-General-Theory-of-Software-Engineering.pdf
https://www.researchgate.net/profile/Pontus_Johnson/publication/278743539_The_Tarpit_-_A_General_Theory_of_Software_Engineering/links/55b4490008aed621de0114f5/The-Tarpit-A-General-Theory-of-Software-Engineering.pdf
http://dx.doi.org/10.1016/j.infsof.2015.06.001
http://dx.doi.org/10.1109/MS.2012.127

References 351

C. Larman and B. Vodde. 2008. Scaling Lean & Agile Development: Thinking and Organizational
Tools for Large-Scale Scrum. Pearson Education, Inc. 346

C. Larman and B. Vodde. 2016. Large-Scale Scrum: More with LeSS. Addison-Wesley
Professional. 297, 339

D. Leffingwell. 2007. Scaling Software Agility: Best Practices for Large Enterprises. Addison-
Wesley. 346

P. E. McMahon. January/February 2015. A thinking framework to power software devel-
opment team performance. Crosstalk, The Journal of Defense Software Engineering.
http://www.crosstalkonline.org/. 96, 154

NATO. 1968. “Software Engineering: Report on a conference sponsored by the NATO Science
Committee.” P. Naur and B. Randell, editors. Garmisch, Germany, October 7–11. 342

S. Newman. 2015. Building Microservices. O’Reilly Media, Inc. 250, 285

P.-W. Ng. 2013. Making software engineering education structured, relevant and engaging
through gaming and simulation. Journal of Communication and Computer 10: 1365–
1373. 99, 153

P.-W. Ng. 2014. Theory based software engineering with the SEMAT kernel: Preliminary
investigation and experiences. Proceedings of the 3rd SEMAT Workshop on General
Theories of Software Engineering. ACM. DOI: 10.1145/2593752.2593756. 30, 96

P.-W. Ng. 2015. Integrating software engineering theory and practice using Essence: A
case study. Science of Computer Programming, 101: 66–78. DOI: 10.1016/j.scico.2014
.11.009. 96, 152, 154

Object Management Group. Essence—Kernel and Language for Software Engineering
Methods (Essence). http://www.omg.org/spec/Essence/1.1. 63

OMG Essence Specification. 2014. http://www.omg.org/spec/Essence/Current. 95, 346

D. Ross. 1977. Structured Analysis (SA): A language for communicating ideas. In IEEE
Transactions on Software Engineering, SE-3(1): 16–34. DOI: 10.1109/TSE.1977.229900.
344

K. Schwaber and J. Sutherland. 2016. “The Scrum Guide. The Definitive Guide to Scrum:
The Rules of the Game.” Scrum.org.

http://www.crosstalkonline.org/
http://dx.doi.org/10.1145/2593752.2593756
http://dx.doi.org/10.1016/j.scico.2014.11.009
http://dx.doi.org/10.1016/j.scico.2014.11.009
http://www.omg.org/spec/Essence/1.1
http://www.omg.org/spec/Essence/Current
http://dx.doi.org/10.1109/TSE.1977.229900

Index

201 Principles of Software Development,
84–85

Accept a User Story activity, 207, 214–215
Acceptable state in Requirements alpha, 57,

215–217
Acceptance Criteria Captured detail level

for Test Case, 209
Acceptance Criteria Listed detail level for

Story Card, 209
Achieving the Work alpha, 215
ACM (Association for Computing

Machinery), 342
Actionability in Essence kernel, 89
Activities

Essence, 55
Essence kernel, 72–75
Microservices Lite, 255–257, 267–270
Scrum, 175–176, 178
Scrum Lite, 188–197
thing to do, 62–63
Use Case Lite, 229, 238–244
User Story Lite, 207, 211–215, 217–218

Activity spaces
Essence kernel, 68, 72–73
essentializing practices, 63–65

Adapt in Plan-Do-Check-Adapt cycle, 132
Adaptability in microservices, 252
Adapts achievement level in Development

competency, 61–62
Addressed state in Requirements alpha, 57,

80

Agile Manifesto, 335–336
Agility and Agile methods

Agile methods era, 25–26
Essence kernel relationship to, 90–91
introduction, 346
practices and methods, 335–336

All Stories Fulfilled state in Use Case alpha,
231

Alphas
Chasing the State game, 105–108
Checkpoint Construction game, 112–113
composition of practices, 279–281
customer area of concern, 160–163
development, 128–132
development journey, 146–148
Essence, 54–55
Essence kernel, 68–72, 89, 151–152
kick-starting development, 122–123
large and complex development, 311
Microservices Lite, 257–259
Objective Go game, 108–111
overview, 56
Progress Poker game, 100–104
Scrum, 175–177
Scrum Lite, 179–182
states, 55–59
sub-alphas, 124
Use Case Lite, 229–233
User Story Lite, 207–209, 215–216

Alternative practices, 278–279
Ambler, Scott, 346
Analysis competency, 76

354 Index

Analyzed state in Use-Case Slice alpha, 233
Anomalies in development journey, 148
Application logic, definition, 251
Applies achievement level in Development

competency, 61–62
Architecture Selected state in Software

Systems, 59, 80, 311
Areas of concern in Essence kernel, 67–68
Assists achievement level in Development

competency, 61–62
Association for Computing Machinery

(ACM), 342
Attainable attribute in SMART criteria,

196–197
Automated detail level

Build and Deployment Script, 265
Test Case, 210

AXE telecommunication switching system,
344

Babbage, Charles, 341
Background in practices, 34
Backlog-Driven Development practice, 33
Beck, Kent, 86, 346
Booch, Grady, 345
Bounded state in Requirements alpha, 56,

80, 215–216
Briefly Described detail level in Use-Case

Narrative work product, 235
Brooks, Frederick P., 84, 342
Build and Deployment Script, 264–265
Building blocks, 10
Bulleted Outline detail level in Use-Case

Narrative work product, 235
Bureau of the Census, 341

Capabilities in practices, 33–34
Capability Maturity Model Integration

(CMMI), 306
Capacity Described work product, 183
Card games

Chasing the State, 105–108
Checkpoint Construction, 111–113
Objective Go, 108–111

overview, 97–99
Progress Poker, 99–105
reflection, 113

Cards
alphas, 57–58
Essence, 38
user stories, 204

Census, 341
Chasing the State game, 105–108
Check in Plan-Do-Check-Adapt cycle,

131–132
Checking in Essence, 138–139
Checkpoint Construction game, 111–113
Checkpoint pattern, 78–80
Checkpoints

kick-starting development, 122–123
kick-starting development with practices,

159–165
large and complex development, 310

Cloud computing for microservices, 252
CMMI (Capability Maturity Model

Integration), 306
COBOL programming language, 342
Code

thing to work with, 54, 56
work product cards, 60

Coder role pattern card, 79
Coherent state in Requirements alpha, 57,

215–216
Collaboration

importance, 11–12
Scrum, 165–166, 174

Collaborations and Interfaces Defined
detail level in Design Model work
product, 261

Common ground in Essence, 34–37
Competencies

Essence, 55
Essence kernel, 68, 75–77
programming, 61–62
testing in, 10

Compilers, 341–342
Complete state in Microservices alpha,

258–259

Index 355

Completed PBIs Listed work product, 184
Complex development. See Large and

complex development
Component methods, 22–25
Component paradigm, 344–345
Composition of practices

description, 276–282
Essence, 282–284
overview, 275–276
reflection, 282–283

Conceived state in Requirements alpha, 56,
311

Confirmation in user stories, 205
Consensus-based games

Chasing the State, 105–108
Checkpoint Construction, 111–113
Objective Go, 108–111
Progress Poker, 99–105
reflection, 113

Containers definition, 251
Context in kick-starting development,

118–121
Continual improvement in large and

complex development, 321–323
Continuous detail level in Build and

Deployment Script, 265
Conversation Captured detail level in Story

Card, 209
Conversations in user stories, 205
Coordination in activity space, 74
Culture issues, 330–331
Customer area of concern

alphas, 160–163
competencies, 76
development perspective, 119–120
development process, 139
Essence kernel, 68–70

Customer-related practices, 19
Customers

description, 42–43
value for, 43–44

DAD (Disciplined Agile Delivery)
agile scaling, 27

introduction, 346
monolithic methods, 297
practices from, 296

Daily Scrum activity
description, 173, 178
diagram, 175–176
overview, 192–193

Daily Standup practice in Scrum, 26, 33, 173
Data in structured methods era, 21–22
Data processing focus, 341
Data stores, definition, 251
Davis, Alan, 84–85
Definition of Done (DoD) in Scrum, 176–177
Demonstrable alpha state, 59, 100
Deployment in activity space, 74
Descriptive theory of software engineering,

87–88
Design Model work product, 254, 257,

260–263
Design overview, 14
Design Patterns Identified detail level in

Design Model work product, 262
Design phase

iterative method, 21
waterfall method, 19–20

Detail levels
Build and Deployment Script, 265
Microservice Design work product, 264
Story Card, 209
Test Case, 210
Use Case Lite work products, 233–236
Use-Case Narrative work product, 235
Use-Case Slice Test Case work product,

237
work products, 60–61

Developers
Scrum, 173
Tarpit theory, 92

Development
doing and checking, 138–139
kick-starting. See Kick-starting develop-

ment; Kick-starting development
with practices

overview, 127–132

356 Index

Development (continued)
Plan-Do-Check-Adapt cycle, 128–132
plans, 132–138
way of working, 140–142

Development competency, 61–62, 77
Development Complete checkpoint, 80
Development endeavor, 79–80
Development journey

anomalies, 148
overview, 145
progress and health, 146–148
visualizing, 145–146

Development types
culture issues, 330–331
overview, 325
practice and method architectures,

326–328
practice libraries, 328–330

DevOps practice, 302
Dijkstra, E. W., 86, 342–343
Disciplined Agile Delivery (DAD)

agile scaling, 27
introduction, 346
monolithic methods, 297
practices from, 296

Disciplined approach in software
engineering, 14–15

Do in Plan-Do-Check-Adapt cycle, 131
Document elements in Essence, 54
DoD (Definition of Done) in Scrum, 176–177
Doing alpha in PBIs, 181
Doing in development, 138–139
Done alpha in PBIs, 181
Done term, definition, 99–100

EA (enterprise architecture), 24
Endeavor area of concern

competencies, 77
development perspective, 120–121
development process, 136–139
Essence kernel, 68, 70–71
kick-starting development with practices,

163–165
practices, 19

Scrum, 199
Endeavors

description, 42–43
teams, 48–49
ways of working in, 49–50
work in, 49

Engaging user experiences, 37–38
Enterprise architecture (EA), 24
Ericsson AB, 344
Essence

common ground, 34–37
composition of practices, 282–284
development. See Development
development journey. See Development

journey
engaging user experiences, 37–38
essentializing practices, 63–65
essentials focus, 37
evolution, 346
insights, 32
kick-starting development. See Kick-

starting development
language, 54–61
large and complex development, 310–

311, 322–324
methods and practices, 32–34
microservices, 252–256
OMG standard, 29–30
overview, 31
practices, 298–299
purpose, 42
Scrum with, 174–179
serious games. See Serious games
theory of software engineering, 87–91
Use Case Lite practice, 227–230
User Story Lite practice, 207–208
work products, 60

Essence kernel
actionability, 89
activities, 72–75
alphas, 68–72
applying, 151–152
competencies, 75–77
extensibility, 90

Index 357

growth from, 93–94
observations, 151
organizing with, 67–69
overview, 67
patterns, 77–80
practicality, 88–89
relationship to other approaches, 90–91
User Story Lite practice, 215–218
validity, 151

Essential Outline detail level in Use-Case
Narrative work product, 235

Essentialized practices, 35–36
Essentializing practices

composition of practices, 283–284
description, 35–36
Essence, 298–299
for libraries, 329
monolithic methods and fragmented

practices, 296–298
overview, 63–65
reusable, 299–302
sources, 295–296

Estimatable criteria in user stories, 205–
206

Evolve Microservice activity, 255, 257,
269–270

Exchangeable packages, 345
Explicit approaches in Scrum, 173–174
Extensibility

Essence kernel, 90
software systems, 47

Extension practices, 279
Extreme Programming Explained, 86
Extreme Programming (XP)

introduction, 346
practices from, 296
user stories, 203

Feedback in Use Case Lite practice, 239
Find Actors and Use Cases activity, 229,

238–239
Find User Stories activity, 207, 212
Formed state in Teams, 311
Fortran programming language, 342

Foundation Established state in Way of
working, 311

Fragmented practices, 296–298
Fulfilled alpha state, 57
Fully Described detail level in Use-Case

Narrative work product, 235
Function-data paradigm, 344
Functionality in software systems, 46
Functions in structured methods era, 21–22
Future, dealing with

agility, 335–336
methods evolution, 338–339
methods use, 337–338
overview, 333–335
teams and methods, 337

Games
Chasing the State, 105–108
Checkpoint Construction, 111–113
Objective Go, 108–111
overview, 97–99
Progress Poker, 99–105
reflection, 113

General predictive theory of software
engineering, 91–92

“Go to statement considered harmful”
article, 86

Goal Established state in Use Case alpha,
230

Goals Specified work product, 183
Gregor, Shirley, 84–85

Hacking vs. programming, 6
Handle favorites use-case slice, 242–243
Happy day scenarios, 224
Health and progress

development journey, 146–148
Essence, 54
Microservices Lite, 271–272
use-case slices, 245–246

Hemdal, Göran, 344
Higher-level languages, 342
History of software and software

engineering, 341–347

358 Index

Hollerith punched card equipment, 341
Hopper, Grace Murray, 341–342

Identification of microservices, 251–252
Identified state

Microservices Lite, 258
user stories, 209

Identify Microservices activity, 255, 257,
267–268

IEEE (Institute of Electrical and Electronic
Engineering), 342

Implementation phase
activity space, 74
iterative method, 21
waterfall method, 19–20

Implemented state in Use-Case Slice alpha,
233

In Progress state in user stories, 209
Increment elements

description, 177
work products, 183–184

Increment Notes Described work product,
184

Incremental development in use cases
slices, 226–227

Independent criteria in user stories, 205
Innovates achievement level in Develop-

ment competency, 61–62
Institute of Electrical and Electronic

Engineering (IEEE), 342
Interfaces Specified detail level in

Microservice Design work product,
264

Internal Elements Designed detail level in
Microservice Design work product,
264

Internal Structure Defined detail level in
Microservice Design work product,
264

INVEST criteria for user stories, 205–206
ISO/IEC 12207 standard, 345
Items Ordered work product, 182
Iterative operations

development, 127

development journey, 147
large and complex development, 319–321
lifecycle methods, 20–21

Jackson, Michael, 344
Jackson Structured Programming (JSP), 344
Jacobson, Ivar

component paradigm, 344
method prison governing, 27
OMG, 345
RUP, 345
SEMAT, 28, 346
Use-Case Driven Development practice,

221
JSP (Jackson Structured Programming), 344

Kernel. See Essence kernel
Key elements of software engineering

basics, 41–43
endeavors, 48–50
overview, 41
value for customers, 43–45
value through solutions, 45–48

Kick-starting development
context, 118–121
overview, 117–118
scope and checkpoints, 122–123
things to watch, 124–126

Kick-starting development with practices
context, 158–159
overview, 157–158
practices to apply, 165–167
scope and checkpoints, 159–165
things to watch, 167–169

Kruchten, Philippe
method prison governing, 27
RUP, 345

Language of software engineering
competencies, 61–62
essentializing practices, 63–65
overview, 53
practice example, 53–54
things to do, 62–63

Index 359

things to work with, 54–61
Large and complex development

alphas, 311
common vision, 315–317
continual improvement, 321–323
Essence, 310–311, 322–324
iterative operations, 319–321
kick-starting, 309–315
large-scale development, 308–309
large-scale methods, 306–308
managing, 317–319
overview, 305–306
practices, 310–313
running, 315–322
scope and checkpoints, 310
things to watch, 313–315

Large-scale integrated circuits, 343
Large-Scale Scrum (LeSS)

agile scaling, 27
introduction, 346
monolithic methods, 297
practices from, 296

Larman, Craig, 346
Lawson, Harold “Bud,” 345
Leadership competency, 77
Leffingwell, Dean, 346
LeSS (Large-Scale Scrum)

agile scaling, 27
introduction, 346
monolithic methods, 297
practices from, 296

Levels of detail
Build and Deployment Script, 265
Microservice Design work product, 264
Story Card, 209
Test Case, 210
Use Case Lite work products, 233–236
Use-Case Narrative work product, 235
Use-Case Slice Test Case work product,

237
work products, 60–61

Libraries for practices, 328–330
Lifecycles, 19–21
Lines, Mark, 346

Lovelace, Ada, 341

Machine instruction level, 341
Make Evolvable activity, 255, 257, 268–269
Management competency, 77
Martin, Robert, 90
Masters achievement level in Development

competency, 61–62
Mayer, Bertrand, 28
Measurable attribute in SMART criteria,

196–197
Method prison, 27
Methods

agile methods era, 25
component methods era, 22–25
consequences, 26–28
definition, 19
Essence, 32–34
evolution, 338–339
large-scale, 306–308
lifecycles, 19–21
people practices, 25–26
rise of, 18–19
structured methods era, 21–22
team ownership, 337
technical practices, 21–25
use focus, 337–338

Methods war, 22, 26–27
Meyer, Bertrand, 346
Microprocessors, 343
Microservice alpha, 254, 257
Microservice Build and Deployment work

product, 254, 257
Microservice Design work product, 254,

257, 263–264
Microservice Test Case work product, 255,

257, 265–267
Microservices, 166–169

description, 250–252
Essence, 252–256
overview, 249–250

Microservices Lite practice
activities, 255–256, 267–270
alphas, 257–259

360 Index

Microservices Lite practice (continued)
Build and Deployment Script, 264–265
description, 256–257
design model, 260–263
impact, 270–271
Microservice Design work product,

263–264
Microservice Test Case work product,

265–267
overview, 253–256
progress and health, 271–272
reusable practices, 299–300
work products, 259–267

Mini-computers, 343
Mini-methods, 19
Minimal state in Microservices Lite, 258
Modular approaches in Scrum, 173–174
Monolithic methods, 296–298
Mythical Man-Month, 84

NATO-sponsored conference, 342
Negotiable criteria in user stories, 205
NZ Transport Agency, 18

Object Management Group (OMG) standard
Essence, 29–30, 346
Essence kernel, 71
notation, 23–24
UML standard, 345

Object-oriented programming
acceptance, 344–345
components in, 23

Objective Go game, 108–111
On the Criteria to Be Used in Decomposing

Systems into Modules, 86
Operational alpha state, 59
Opportunity

alpha state card, 72
customer area of concern, 69, 71
development context, 158
development endeavors, 42–43
development perspective, 119–120
development plans, 133–134
large and complex development, 311–312

scope and checkpoints, 161–162
value for customers, 43–44

Outlined detail level in Build and
Deployment Script, 265

Pair programming teams, 26
Paradigm shifts, 22–23
Paradigmatic theories, 85
Paths in use cases slices, 228
Patterns

Essence kernel, 68, 77–80
essentializing practices, 63–65
Scrum, 178–179, 184–186

PBIs. See Product Backlog Items (PBIs)
People practices, 25–26
Performance in software systems, 47
Perlis, Alan, 92
PLA (product-line architecture), 24
Plan-Do-Check-Adapt cycle, 128–132
Planned alpha in sprints, 179
Plans

development, 132–138
Plan-Do-Check-Adapt cycle, 128–131
Scrum Lite, 188–192

POs (product owners)
description, 178
pattern cards, 184–185
Scrum, 172–173, 175

Possibilities in activity space, 73
Post-development phase in development

endeavor, 79–80
Practicality in Essence kernel, 88–89
Practice separation in Essence kernel, 90
Practices

agile methods era, 25
background, 34
capabilities, 33–34
common ground, 34–37
component methods era, 22–25
composition of. See Composition of

practices
consequences, 26–28
definition, 174
Essence, 32–34, 298–299

Index 361

fragmented practices, 296–298
kick-starting development with. See

Kick-starting development with
practices

large and complex development, 310–313
libraries, 328–330
lifecycles, 19–21
people, 25–26
reusable, 299–302
rise of, 18–19
Scrum, 173–174, 177, 198–199
sources, 295–296
structured methods era, 21–22
technical, 21–25
types, 19

Pre-development phase in development
endeavor, 79–80

Precision in Scrum, 200–202
Preparation in activity space, 74
Prepare a Use-Case Slice activity, 229,

242–243
Prepare a user story activity, 207, 212–213
Prepared state

Use-Case Slice alpha, 232–233
Work alpha, 215

Priorities in Scrum, 172
Problems in kick-starting development, 118
Product Backlog Items (PBIs)

alphas, 181
description, 172, 177
example, 176
identifying, 173
Scrum, 168

Product Backlog practice, 302
Product Backlog work product

activity cards, 190–192
description, 177
Scrum Lite, 182–184

Product-line architecture (PLA), 24
Product Management practice, 302
Product owners (POs)

description, 178
pattern cards, 184–185
Scrum, 172–173, 175

Product Ownership practice, 301
Product Retrospective practice, 302
Product Sprint practice, 302
Program backlog management, 318
Program practices, 302–303
Programming, defined, 4
Programming and software engineering

differences, 6–8
intern view, 8–10
overview, 3–4
professional view, 10–12
programming, 4–6
software engineering, 12–15

Progress and health
activity space, 74–75
development journey, 146–148
Essence, 54
Microservices Lite practice, 271–272
use-case slices, 245–246

Progress Poker game
benefits, 102
example, 103–105
overview, 99–102

Progressing
use-case slices, 232–233
use cases, 230–232

Provided interface, UML notation for,
261

Quality in software systems, 47–48
Quantifiable approach in software

engineering, 14–15

Rapidly Deployable state in Microservices
Lite practice, 258

Rational Unified Process (RUP)
development of, 24, 345
large-scale development, 306
monolithic methods, 297

Reaching out in scaling, 293
Ready for Development checkpoint, 80
Ready for Development state in User Story,

209
Ready requirement, 80

362 Index

Ready state
PBIs, 181
Software Systems, 59

Recognized state for Stakeholders, 311
Relevant attribute in SMART criteria,

196–197
Reliability in software systems, 47
Required Behavior Defined detail level in

Microservice Design work product,
264

Required interface, UML notation for, 261
Requirements

activity space, 74
alpha state card, 72
alphas, 56–58
development context, 158
development perspective, 120
development plans, 134–135
large and complex development, 311–312
Ready for Development checkpoint, 80
scope and checkpoints, 161–162
solution area of concern, 70
in solutions, 42–43, 45–46
thing to work with, 54–56
User Story Lite practice, 225, 227, 230

Requirements alpha
Progress Poker game, 100–101
User Story Lite practice, 215–217

Requirements engineering, 13–14
Requirements phase

iterative method, 21
waterfall method, 19–20

Retired alpha state, 59
Retrospective practice in Scrum, 33
Reusable practices, 19, 299–302
Reviewed alpha in sprints, 179–180
Roles in Scrum Lite, 184–186
Roles pattern, 77–78
Ross, Douglas, 344
Royce, Walker, 345
Rumbaugh, James, 345
RUP (Rational Unified Process)

development of, 24, 345
large-scale development, 306

monolithic methods, 297

SA/SD (Structured Analysis/Structured
Design), 21

SaaS (Software as a Service), 8
SADT (Structured Analysis and Design

Technique)
description, 21–22
development of, 344

Scaled Agile Framework (SAFe)
agile scaling, 27
introduction, 346
monolithic methods, 297
practices from, 296

Scaled Professional Scrum (SPS)
agile scaling, 27
introduction, 346
practices from, 296

Scaling
challenges, 289–291
dimensions of, 291–294
large and complex development. See

Large and complex development
overview, 289
reaching out, 293
scaling up, 292–293
zooming in, 291–292

Scenario Chosen detail level in Use-Case
Slice Test Case work product, 237

Scenarios in use cases slices, 228
Scheduled alpha in sprints, 179
Schwaber, Ken, 346
Scope

kick-starting development, 122–123
kick-starting development with practices,

159–165
large and complex development, 310

Scoped state in Use-Case Slice alpha, 232
Scripted detail level in Test Case, 210
Scripted or Automated detail level in Use-

Case Slice Test Case work product,
237

Scrum
collaboration, 165–166, 174

Index 363

components, 33
composite practices, 306–307
description, 168
with Essence, 174–179
fragmented practices, 297
introduction, 346
overview, 171–173
practices, 173–174, 198–199, 296
precision, 200–202
reflections, 198–202

Scrum Lite
activities, 188–197
alphas, 179–182
overview, 174–177
planning, 188–192
roles, 184–186
usage, 187–188
work products, 182–184

Scrum Masters
description, 173, 178–179
large and complex development, 321–

322
pattern cards, 184–186
patterns, 175

Scrum of Scrums meetings, 320
Scrum Teams

description, 179
Essence, 175
pattern cards, 185–186

SDL (Specification and Description
Language), 344

Self-organizing teams, 26
SEMAT (Software Engineering Method And

Theory)
description, 28–29
founding, 346

Serious games
Chasing the State, 105–108
Checkpoint Construction, 111–113
Objective Go, 108–111
overview, 97–99
Progress Poker, 99–105
reflection, 113

Service-oriented architecture (SOA), 24

Simplest Story Fulfilled state in Use Case
alpha, 231

Simula 67 language, 23
Slice the Use Cases activity

description, 229
working with, 241–242

Slicing use cases, 226–227
Small attribute

SMART criteria, 196–197
user stories, 206

Smalltalk language, 23
SMART criteria, 196–197
“So that” clauses in user stories, 206
SOA (service-oriented architecture), 24
Social issues, 330–331
Software as a Service (SaaS), 8
Software crisis, 18, 343
Software development, defined, 4
Software Engineering Method And Theory

(SEMAT)
description, 28–29
founding, 346

Software engineering overview
challenges, 17–18
defined, 4–5, 14–15
history, 341–347
key elements. See Key elements of

software engineering
language. See Language of software

engineering
methods and practices, 18–28
OMG standard, 29–30
and programming. See Programming and

software engineering
SEMAT initiative, 28–29
Tarpit theory, 92
theory, 84–87

Software Life Cycle Processes, 345
Software Systems

alpha cards, 58, 72
Demonstrable alpha state card, 100
development context, 158
development perspective, 120
development plans, 135–136

364 Index

Software Systems (continued)
large and complex development, 311–312
Objective Go game, 109–111
scope and checkpoints, 161, 162
solutions, 42–43, 45–48, 70
thing to work with, 54–56

Soley, Richard, 28, 346
Solution area of concern

competencies, 76–77
development perspective, 120
development process, 139
Essence kernel, 68–70
kick-starting development with practices,

161
Solution-related practices, 19
Solutions

description, 42–43
value through, 45–48

Specification and Description Language
(SDL), 344

Splitting User Stories activity, 207, 213–214
Sprint Backlog

activity cards, 190–191
description, 177
PBIs, 172
work products, 183

Sprint Planning activity
activity cards, 188–192
description, 178

Sprint Retrospective activity
activity cards, 195–196
Scrum, 178

Sprint Review activity
activity cards, 193–195
description, 172, 178

Sprints
alphas, 179–181
description, 177
Scrum, 172–173

SPS (Scaled Professional Scrum)
agile scaling, 27
introduction, 346
practices from, 296

Stakeholder alpha in Chasing the State
game, 105–107

Stakeholder Representation competency,
76

Stakeholders
activity space, 74
alpha state card, 72
customer area of concern, 69, 71
as customers, 42–43
development context, 158
development perspective, 119
development plans, 133
large and complex development, 311–312
Objective Go game, 108–111
scope and checkpoints, 159–160
value for, 44–45

Started state in Work alpha, 311
States in alphas, 55–59
Stored program computers, 341
Story Card work product, 207, 209–210
Story practice, 166
Story Structure Understood state in Use

Case alpha, 231
Structure and Approach Described detail

level in Design Model work product,
260

Structured Analysis and Design Technique
(SADT)

description, 21–22
development of, 344

Structured Analysis/Structured Design
(SA/SD), 21

Structured detail level in Use-Case Model
work product, 235

Structured methods era, 21–22
Student Pairs pattern card, 78
Sub-alphas, 124
Subsystems in UML notation, 261
Sufficient Stories Fulfilled state in Use Case

alpha, 231
Support in activity space, 74–75
Sutherland, Jeff, 346
SWEBOK, 84–85
System Boundary Established detail level in

Use-Case Model work product, 234
Systematic approach in software engineer-

ing, 14–15

Index 365

Tarpit theory, 91–92
TD (test-driven development) in Essence, 36
TDD (Test-Driven Development) in Extreme

Programming, 346
Team Backlog practice, 301
Team Retrospective practice

description, 301
large and complex development, 321–322

Team Sprint practice, 301
Teams

activity space, 74–75
agile, 26
alpha state card, 72
development perspective, 120
development plans, 136–137
endeavor area of concern, 42–43, 48–49,

70–71
Essence, 36
large and complex development, 311–312
methods ownership, 337
need for, 12–13
scope and checkpoints, 163–164

Technical practices, 21–25
Technology stacks, 10
Test a Use-Case Slice activity

description, 229
working with, 243–244

Test Automated detail level in Microservice
Test Case work product, 267

Test Case work product, 207, 209–210
Test Dependencies Managed detail level

in Microservice Test Case work
product, 266

Test-driven development (TD) in Essence,
36

Test-Driven Development (TDD) in Extreme
Programming, 346

Test Scenarios Chosen detail level in
Microservice Test Case work
product, 266

Testable attribute
SMART criteria, 196–197
user stories, 206

Testing
activity space, 74

waterfall method phase, 19–20
Testing competency, 10, 77
Theory

arguments, 85–87
Essence, 87–91
general predictive theory, 91–92
growth from, 93–94
overview, 83–84
software engineering, 84–87
uses, 87

Things to do
activities, 62–63
backlogs, 49
composition, 279
Essence kernel, 72–75

Things to watch
kick-starting development, 124–126
kick-starting development with practices,

167–169
large and complex development, 313–315

Things to work with
alpha states, 56–59
alphas, 56
Essence kernel, 69–72, 89
overview, 54–56
Use Case Lite practice, 230–234
work products, 59–61

To Do alpha in PBIs, 181
Turing tar-pit, 92

UCDD (Use-Case Driven Development)
practice, 221–222

Unified Modeling Language (UML) standard
development of, 24
introduction, 345
Microservices Lite practice, 260–261
primer, 260
use cases, 222–223

Unified Process prison, 27
Unified Process (UP), 24, 345
Univac I computer, 341
University of Wisconsin, 18
UP (Unified Process), 24, 345
Usable alpha state, 59
Use Case alpha, 229–231

366 Index

Use-Case diagrams, 24
Use-Case Driven Development (UCDD)

practice, 221–222
Use Case Lite practice

activities, 238–244
alphas, 229–233
Essence, 227–230
impact, 244–245
kick-starting, 237–240
overview, 221–222
reusable practices, 299–300
use-case slices progress and health,

245–246
use cases description, 222–226
use cases slicing, 226–227
user stories vs. use cases, 246–248
work products, 233–236
working with, 240–244

Use-Case Model work product, 227, 229,
234–235

Use-Case Narrative work product, 227, 229,
235–236

Use-case narratives, 224–225
Use case practices, 166, 168–169
Use-Case Slice alpha, 229, 232–233
Use-Case Slice Test Case work product, 227,

229, 236–237
Use-case slices

process, 226–227
progress and health, 245–246

Use Cases
introduction, 345
practices from, 296

User experiences in Essence, 37–38
User interface, definition, 251
User stories

description, 204–207
Scrum teams, 166

User Stories practice
description, 168–169
vs. use cases, 246–248

User Story alpha in User Story Lite practice,
207–208

User Story for Extreme Programming, 346

User Story Lite practice
activities, 211–215
alphas, 207–209
Essence, 207–208
Essence kernel, 215–218
impact, 216–218
overview, 203
usage, 211
user story description, 204–207
work products, 209–210

Validity in Essence kernel, 151
Valuable criteria in user stories, 205
Value

for customers, 43–45
through solutions, 45–48

Value Established detail level in Use-Case
Model work product, 234

Value Established state in Opportunity,
311

Value Expressed detail level in Story Card,
209

Variables Identified detail level in Use-Case
Slice Test Case work product, 237

Variables Set detail level in Use-Case Slice
Test Case work product, 237

Verification phase
iterative method, 21
waterfall method, 19–20

Verified state
Use-Case Slice alpha, 233
user stories, 209

Vodde, Bas, 346
von Neumann, John, 341

Waterfall method
description, 19–20
development of, 344

Way of working
adapting, 140–141
alpha state card, 72
development context, 158
development perspective, 120–121
development plans, 138

Index 367

endeavor area of concern, 42–43, 49–50,
71

Essence kernel, 141–142
large and complex development, 311–312
scope and checkpoints, 163, 165

“Where’s the Theory for Software
Engineering?” paper, 84

Work activity
alpha state card, 72
development context, 158
development perspective, 120
development plans, 136–137
endeavor area of concern, 42–43, 49, 71
large and complex development, 311–312
scope and checkpoints, 163–164

Work alpha, 215–216
Work Forecast Described work product, 183

Work products
Essence, 54–55
Microservices Lite practice, 259–267
overview, 59–61
Scrum, 175, 177
Scrum Lite, 182–184
Use Case Lite practice, 229, 233–236
User Story Lite practice, 207, 209–

210
Write Code activity cards, 62–63

XP (Extreme Programming)
introduction, 346
practices from, 296
user stories, 203

Zooming in in scaling, 291–292

Author Biographies

Ivar Jacobson

Dr. Ivar Jacobson received his Ph.D. in computer
science from KTH Royal Institute of Technol-
ogy, was awarded the Gustaf Dalén medal from
Chalmers in 2003, and was made an honorary
doctor at San Martin de Porres University, Peru,
in 2009. Ivar has both an academic and an indus-
try career. He has authored ten books, published
more than a hundred papers, and is a frequent
keynote speaker at conferences around the world.

Ivar Jacobson is a key founder of components
and component architecture, work that was adopted by Ericsson and resulted in
the greatest commercial success story ever in the history of Sweden (and it still
is). He is the creator of use cases and Objectory—which, after the acquisition of
Rational Software around 2000, resulted in the Rational Unified Process, a popular
method. He is also one of the three original developers of the Unified Modeling
Language. But all this is history. His most recently founded company, Ivar Jacobson
International, has been focused since 2004 on using methods and tools in a smart,
superlight, and agile way. Ivar is also a founder and leader of a worldwide network,
SEMAT, whose mission is to revolutionize software development based on a kernel
of software engineering. This kernel has been realized as a formal standard called
Essence, which is the key idea described in this book.

370 Author Biographies

Harold “Bud” Lawson

Professor Emeritus Dr. Harold “Bud” Lawson
(The Institute of Technology at Linköping Univer-
sity) has been active in the computing and systems
arena since 1958 and has broad international ex-
perience in private and public organizations as
well as academic environments. Bud contributed
to several pioneering efforts in hardware and soft-
ware technologies. He has held professorial ap-
pointments at several universities in the USA, Eu-
rope, and the Far East. A Fellow of the ACM, IEEE,
and INCOSE, he was also head of the Swedish del-

egation to ISO/IEC JTC1 SC7 WG7 from 1996 to 2004 and the elected architect of
the ISO/IEC 15288 standard. In 2000, he received the prestigious IEEE Computer
Pioneer Charles Babbage medal award for his 1964 invention of the pointer variable
concept for programming languages. He has also been a leader in systems engi-
neering. In 2016, he was recognized as a Systems Engineering Pioneer by INCOSE.
He has published several books and was the coordinating editor of the “Systems
Series” published by College Publications, UK.

Tragically, Harold Lawson passed away after battling an illness for almost a year,
just weeks before the publication of this book.

Pan-Wei Ng
Dr. Pan-Wei Ng has been helping software teams
and organizations such as Samsung, Sony, and
Huawei since 2000, coaching them in the areas of
software development, architecture, agile, lean,
DevOps, innovation, digital, Beyond Budgetings,
and Agile People. Pan-Wei firmly believes that
there is no one-size-fits-all, and helps organiza-
tions find a way of working that suits them best.
This is why he is so excited about Essence and has
been working with it through SEMAT since their
inception in 2006, back when Essence was a mere

idea. He has contributed several key concepts to the development of Essence.
Pan-Wei coauthored two books with Dr. Ivar Jacobson and frequently shares his

views in conferences. He currently works for DBS Singapore, and is also an adjunct
lecturer in the National University of Singapore.

Author Biographies 371

Paul E. McMahon

Paul E. McMahon has been active in the software
engineering field since 1973 after receiving his
master’s degree in mathematics from the State
University of New York at Binghamton (now Bing-
hamton University). Paul began his career as a
software developer, spending the first twenty-
five years working in the US Department of De-
fense modeling and simulation domain. Since
1997, as an independent consultant/coach
(http://pemsystems.com), Paul helps organiza-

tions and teams using a hands-on practical approach focusing on agility and
performance.

Paul has taught software engineering at Binghamton University, conducted
workshops on software engineering and management, and has published more
than 50 articles and 5 books. Paul is a frequent speaker at industry conferences.
He is also a Senior Consulting Partner at Software Quality Center. Paul has been a
leader in the SEMAT initiative since its initial meeting in Zurich.

Michael Goedicke

Prof. Dr. Michael Goedicke is head of the work-
ing group Specification of Software Systems at the
University of Duisburg-Essen. He is vice president
of the GI (German National Association for Com-
puter Science), chair of the Technical Assembly
of the IFIP (International Federation for Informa-
tion Processing), and longtime member and steer-
ing committee chair of the IEEE/ACM conference
series Automated Software Engineering. His re-
search interests include, among others, software
engineering methods, technical specification and
realization of software systems, and software ar-

chitecture and modeling. He is also known for his work in views and viewpoints
in software engineering and has quite a track record in software architecture. He
has been involved in SEMAT activities nearly from the start, and assisted in the
standardization process of Essence—especially the language track.

http://pemsystems.com

ACM Books is a new series of high quality books
for the computer science community, published
by ACM in collaboration with Morgan & Claypool
Publishers. ACM Books publications are widely
distributed in both print and digital formats

through booksellers and to libraries (and library consortia) and
individual ACM members via the ACM Digital Library platform.

ABOUT ACM BOOKS

The first course in software engineering is the most critical. Education must start from
an understanding of the heart of software development, from familiar ground that is
common to all software development endeavors. This book is an in-depth introduction
to software engineering that uses a systematic, universal kernel to teach the essential
elements of all software engineering methods.
 This kernel, Essence, is a vocabulary for defining methods and practices.
Essence was envisioned and originally created by Ivar Jacobson and his colleagues,
developed by Software Engineering Method and Theory (SEMAT) and approved by
The Object Management Group (OMG) as a standard in 2014. Essence is a practice-
independent framework for thinking and reasoning about the practices we have and
the practices we need. Essence establishes a shared and standard understanding of
what is at the heart of software development. Essence is agnostic to any particular
method, lifecycle independent, programming language independent, concise,
scalable, extensible, and formally specified. Essence frees the practices from their
method prisons.
 The first part of the book describes Essence, the essential elements to work
with, the essential things to do and the essential competencies you need when
developing software. The other three parts describe more and more advanced use
cases of Essence. Using real but manageable examples, it covers the fundamentals of
Essence and the innovative use of serious games to support software engineering. It
also explains how current practices such as user stories, use cases, Scrum, and micro-
services can be described using Essence, and illustrates how their activities can be
represented using the Essence notions of cards and checklists. The fourth part of the
book offers a vision how Essence can be scaled to support large, complex systems
engineering.
 Essence is supported by an ecosystem developed and maintained by a
community of experienced people worldwide. From this ecosystem, professors and
students can select what they need and create their own way of working, thus learning
how to create ONE way of working that matches the particular situation and needs.

	Contents
	Foreword by Ian Sommerville
	Foreword by Grady Booch
	Preface
	PART I. THE ESSENCE OF SOFTWARE ENGINEERING
	1. From Programming to Software Engineering
	2. Software Engineering Methods and Practices
	3. Essence in a Nutshell
	4. Identifying the Key Elements of Software Engineering
	5. The Language of Software Engineering
	6. The Kernel of Software Engineering
	7. Reflection on Theory
	8. Applying Essence in the Small—Playing Serious Games
	PART II. DEVELOPING SOFTWARE WITH ESSENCE
	9. Kick-Starting Development Using Essence
	10. Developing with Essence
	11. The Development Journey
	12. Reflection on the Kernel
	PART III. SMALL-SCALE DEVELOPMENT WITH PRACTICES
	13. Kick-Starting Development with Practices
	14. Running with Scrum
	15. Running with User Story Lite
	16. Running with Use Case Lite
	17. Running with Microservices
	18. Putting the Practices Together: Composition
	PART IV. LARGE-SCALE COMPLEX DEVELOPMENT
	19. What It Means to Scale
	20. Essentializing Practices
	21. Scaling Up to Large and Complex Development
	22. Reaching Out to Different Kinds of Development
	23. Reaching Out to the Future
	Appendix A. A Brief History of Software and Software Engineering
	References
	Index
	Author Biographies

