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Data Management Technology
Kairometer: The Historical Context

The stories in this book recount significant events in the development of data
management technology relative to Michael Stonebraker’s achievements, over his
career, for which he received the 2014 ACM A.M. Turing Award. To appreciate
Mike’s contributions to data management technology, it helps to understand the
historical context in which the contributions were made. A Data Management
Technology Kairometer1 (available at http://www.morganclaypoolpublishers.com/
stonebraker/) answers the questions: What significant data management events were
going on at that time in research, in industry, and in Mike’s career?

Over the years covered by this book (1943 to 2018), the Data Management Tech-
nology Kairometer lays out, left to right, the significant events in data management
research and industry interspersed with the events of Mike’s career. Against these
timelines, it presents (top to bottom) the stories ordered by the book’s contents,
each with its own timeline. A glance at the kairometer tells you how the timelines
of the various stories relate in the context of data management research, industry,
and Stonebraker career events. When did that event occur relative to associated
events?

Our stories recount three types of event (color-coded): data management re-
search events (blue), such as the emergence of in-memory databases; data man-
agement industry events (green), such as the initial release of IBM’s DB2; and

1. While a chronometer records the passage of all events, a kairometer records the passage
of significant events. “Kairos (καιρóς ) is an Ancient Greek word meaning the right, critical, or
opportune moment. The ancient Greeks had two words for time: chronos (χρóνoς ) and kairos.
The former refers to chronological or sequential time, while the latter signifies a proper or
opportune time for action. While chronos is quantitative, kairos has a qualitative, permanent
nature.” (source: http://en.wikipedia.org/wiki/Kairos) We welcome ideas to extend the kairometer;
contact michaelbrodie@michaelbrodie.com.

http://www.morganclaypoolpublishers.com/stonebraker/
http://en.wikipedia.org/wiki/Kairos


xxviii Data Management Technology Kairometer: The Historical Context

milestones in Mike Stonebraker’s career (red), such as his appointment as an assis-
tant professor at UC Berkeley. Stories in black involve multiple event types. Events
are separated into the four data management eras described in the book’s intro-
duction (purple): navigational, relational, one-size-does-not-fit-all, and Big Data.
The data management kairometer provides an historical context for each story rel-
ative to the significant data management research and industry events and Mike’s
career.

Chronological Years 1943 2018 1943 1965 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Event Years 1943 2017 1943 1965 1965 1965 1967 1968 1970 1970 1971 1971 1971 1972 1973 1974 1974 1975 1975 1976 1976 1977 1977 1977 1978 1978 1979 1980 1980 1981 1982 1983 1983 1985 1986 1987 1988 1988 1989 1990 1991 1992 1992 1993 1994 1995 1996 1997 1997 1997 1998 1998 1998 2000 2000 2001 2002 2003 2003 2004 2004 2005 2005 2005 2006 2006 2007 2007 2007 2008 2008 2008 2008 2009 2009 2009 2010 2010 2010 2011 2011 2012 2012 2013 2014 2014 2014 2014 2017

Events 
Stonebraker 
Data management research 
Data management industry

S
to

ne
b

ra
ke

r 
b

o
rn

,  
N

ew
b

ur
yp

o
rt

, M
A

S
to

ne
b

ra
ke

r, 
B

.S
.E

.E
. P

ri
nc

et
o

n

N
av

ig
at

io
na

l d
at

ab
as

e 
er

a

ID
S

 r
el

ea
se

d
, 1

st
 c

o
m

m
er

ci
al

 
ne

tw
o

rk
 D

B
M

S
, G

E

S
to

ne
b

ra
ke

r, 
 

M
.S

c.
 in

 E
E

, U
 M

ic
hi

g
an

IM
S

 r
el

ea
se

d
, 1

st
 c

o
m

m
er

ci
al

 
hi

er
ar

ch
ic

al
 D

B
M

S
, I

B
M

R
el

at
io

na
l d

at
ab

as
e 

er
a

re
la

tio
na

l d
at

a 
m

o
d

el
 

S
to

ne
b

ra
ke

r, 
P

h.
D

., 
U

 M
ic

hi
g

an

S
to

ne
b

ra
ke

r, 
 A

ss
t.

 P
ro

f 
U

C
 

B
er

ke
le

y

C
O

D
A

S
Y

L 
D

at
ab

as
e 

Ta
sk

  
G

ro
up

 R
ep

o
rt

In
g

re
s 

p
ro

je
ct

 s
ta

rt
s,

 U
C

 
B

er
ke

le
y

C
. W

. B
ac

hm
an

 T
ur

ni
ng

 A
w

ar
d

C
O

D
A

S
Y

L-
R

el
at

io
na

l D
eb

at
e,

 
S

IG
F

ID
E

T,
 A

nn
 A

rb
o

r, 
M

I

S
ys

te
m

 R
 p

ro
je

ct
 s

ta
rt

s,
 IB

M

U
ni

ve
rs

ity
 In

g
re

s 
re

le
as

ed
 f

o
r 

fr
ee

1s
t 

V
LD

B
 c

o
nf

er
en

ce
, V

LD
B

 
F

o
un

d
at

io
n 

fo
rm

ed

E
R

 m
o

d
el

 d
efi

ne
d

, P
et

er
 C

he
n

A
C

M
 S

IG
M

O
D

 f
o

un
d

ed

U
ni

ve
rs

ity
 In

g
re

s 
co

p
yr

ig
ht

ed
, 

o
p

en
-s

o
ur

ce
d

 b
y 

U
C

B

D
is

tr
ib

ut
ed

 d
at

ab
as

es
 

(D
is

tr
ib

ut
ed

 In
g

re
s)

O
ra

cl
e 

C
o

rp
 f

o
un

d
ed

M
ul

tic
s 

R
el

at
io

na
l D

at
a 

S
to

re
 1

st
 

co
m

m
er

ci
al

 R
D

B
M

S
, H

o
ne

yw
el

l

B
er

ke
le

y 
S

o
ft

w
ar

e 
D

is
tr

ib
ut

io
n 

(B
S

D
) a

ka
 B

er
ke

le
y 

U
ni

x 
re

le
as

ed

O
ra

cl
e 

D
B

M
S

 r
el

ea
se

d

S
tr

uc
tu

re
d

 Q
ue

ry
 la

ng
ua

g
e 

(S
Q

L)
 

in
tr

o
d

uc
ed

R
el

at
io

na
l T

ec
hn

o
lo

g
y,

 In
c.

 
fo

un
d

ed

E
.F

. C
o

d
d

 T
ur

in
g

 A
w

ar
d

G
em

st
o

ne
, 1

st
 o

b
je

ct
-o

ri
en

te
d

 
D

B
M

S
, S

er
vi

o
 L

o
g

ic

D
B

2 
D

B
M

S
 r

el
ea

se
d

, I
B

M

10
0+

 R
D

B
M

S
s 

im
p

le
m

en
te

d

P
o

st
g

re
s 

p
ro

je
ct

 s
ta

rt
s,

 U
C

 
B

er
ke

le
y

S
Q

L 
st

an
d

ar
d

iz
ed

, A
N

S
I (

U
S

A
)

S
Q

L 
st

an
d

ar
d

iz
ed

, I
S

O
 

(in
te

rn
at

io
na

l)

S
to

ne
b

ra
ke

r 
A

C
M

 S
o

ft
w

ar
e 

S
ys

te
m

 A
w

ar
d

X
P

R
S

 p
ro

je
ct

 la
un

ch
ed

, U
C

 
B

er
ke

le
y 

S
Q

L 
S

er
ve

r 
re

le
as

ed
, M

ic
ro

so
ft

A
ca

d
em

ic
 P

o
st

g
re

s 
re

le
as

ed

B
er

ke
le

y 
D

B
 r

el
ea

se
d

, 1
st

  
ke

y-
va

lu
e/

N
o

S
Q

L 
D

B
M

S

P
ar

al
le

l d
at

a 
p

ro
ce

ss
in

g
  

(D
eW

itt
, G

ra
y)

Ill
us

tr
a 

In
fo

rm
at

io
n 

Te
ch

no
lo

g
ie

s 
fo

un
d

ed
, I

llu
st

ra
 r

el
ea

se
d

S
to

ne
b

ra
ke

r, 
A

C
M

 F
el

lo
w

S
to

ne
b

ra
ke

r, 
A

C
M

 S
IG

M
O

D
 

In
no

va
tio

n 
A

w
ar

d

In
-m

em
o

ry
 D

B
M

S
 (T

im
es

Te
n)

E
xt

en
si

b
le

 M
ar

ku
p

 L
an

g
ua

g
e 

(X
M

L)
 p

ub
lis

he
d

 

P
o

st
g

re
S

Q
L 

o
p

en
so

ur
ce

 
re

le
as

ed

C
o

he
ra

 C
o

rp
o

ra
tio

n 
fo

un
d

ed
, 

C
o

he
ra

 r
el

ea
se

d

S
to

ne
b

ra
ke

r 
A

C
M

 S
IG

M
O

D
  

“T
es

t 
o

f 
tim

e”
 A

w
ar

d

S
to

ne
b

ra
ke

r 
N

at
io

na
l A

ca
d

em
y 

o
f 

E
ng

in
ee

ri
ng

Ji
m

 G
ra

y 
Tu

ri
ng

 A
w

ar
d

N
o

S
Q

L 
te

rm
 u

se
d

 f
o

r 
R

D
B

M
S

s 

O
ne

-s
iz

e-
d

o
es

-n
o

t-
fit

-a
ll 

er
a

X
M

L 
D

B
M

S
s

A
ur

o
ra

 p
ro

je
ct

 s
ta

rt
s,

 B
ro

w
n 

B
o

re
al

is
 p

ro
je

ct
 s

ta
rt

s,
 M

IT

T
he

 G
o

o
g

le
 F

ile
 S

ys
te

m
 (G

F
S

) 

S
tr

ea
m

B
as

e 
fo

un
d

ed

C
-S

to
re

 p
ro

je
ct

 s
ta

rt
s,

 M
IT

, 
B

ro
w

n,
 U

M
as

s,
 a

nd
 B

ra
nd

ei
s

M
ap

R
ed

uc
e 

p
ap

er

G
o

o
g

le
 B

ig
Ta

b
le

 r
el

ea
se

d

S
to

ne
b

ra
ke

r 
IE

E
E

 J
o

hn
 v

o
n 

N
eu

m
an

n 
M

ed
al

Ve
rt

ic
a 

fo
un

d
ed

 

H
ad

o
o

p
/M

ap
R

ed
uc

e 
re

le
as

ed

H
-S

to
re

 p
ro

je
ct

 s
ta

rt
s,

 M
IT

, 
B

ro
w

n,
 Y

al
e

D
yn

am
o

 –
 e

ve
nt

ua
l c

o
ns

is
te

nc
y 

at
 s

ca
le

A
p

ac
he

 H
B

as
e 

re
le

as
ed

G
ri

G
ai

n,
 1

st
 N

ew
S

Q
L 

D
B

M
S

, 
G

ri
d

G
ai

n 
S

ys
te

m
s

G
o

b
y 

fo
un

d
ed

, G
o

b
y 

re
le

as
ed

X
Q

ue
ry

 p
ub

lis
he

d

A
p

ac
he

 P
ig

 r
el

ea
se

d
 

S
ci

D
B

 p
ro

je
ct

 s
ta

rt
s,

 M
IT

Vo
ltD

B
 f

o
un

d
ed

cu
rr

en
t 

us
e

A
p

ac
he

 H
iv

e 
re

le
as

e

B
ig

 D
at

a 
er

a

P
ar

ad
ig

m
4 

fo
un

d
ed

Vo
ltD

B
 r

el
ea

se
d

, V
o

ltD
B

S
to

ne
b

ra
ke

r, 
A

m
er

ic
an

 A
ca

d
em

y 
o

f 
A

rt
s 

an
d

 S
ci

en
ce

s

N
ew

S
Q

L 
te

rm
 in

tr
o

d
uc

ed

S
p

ar
k 

(R
D

D
s)

D
at

a 
Ta

m
er

 p
ro

je
ct

 s
ta

rt
, M

IT
 

an
d

 Q
C

R
I

Ta
m

r 
fo

un
d

ed

Ta
m

r 
la

un
ch

ed

S
to

ne
b

ra
ke

r 
Tu

ri
ng

 A
w

ar
d

B
ig

D
A

W
G

 p
ro

je
ct

 s
ta

rt
s,

 M
IT

, 
U

W
, N

W
, B

ro
w

n

D
at

a 
C

iv
ili

ze
r 

p
ro

je
ct

 s
ta

rt
s,

  
M

IT
 a

nd
 Q

C
R

I

S
to

ne
b

ra
ke

r 
A

C
M

 S
IG

M
O

D
  

“T
es

t 
o

f 
tim

e”
 A

w
ar

d

Start End

Preface 2018 2018

Introduction 1971 2018

I. 2014 ACM A. M. Turing Award Paper and Lecture

The Land Sharks Are on the Squawk Box 1984 2016

II. Mike Stonebraker’s Career

1. Make It Happen: The Life of Michael Stonebraker 1943 2018

The Career of Mike Stonebraker: The Chart: A. Pavlo 1970 2015

Mike Stonebraker’s Student Genealogy 1973 2018

III. Mike Stonebraker Speaks Out:  

An interview by Marianne Winslett

2. Mike Stonebraker Speaks Out: An Interview 1965 2017

Interview Video 1965 2017

IV. The Big Picture

3. Leadership and Advocacy 1973 2018

4. Perspectives: The 2014 ACM Turing Award 2015

5. Birth of an Industry; Path to the Turing Award 1973 2018

6. A Perspective of Mike from a 50-Year Vantage Point 1970 2018

V. Startups

7. How to Start a Company in Five (Not so Easy) Steps 2013 2018

8. How to Create and Run a Stonebraker Startup:  
The Real Story

2004 2018

9. Getting Grownups in the Room: A VC Perspective 2002 2018

VI. Database Systems Research

10. Where Good Ideas Come From and How to Exploit Them 1971 2017

11. Where We Have Failed 1971 2017

12. Stonebraker and Open Source 1979 1993

13. The Relational Database Management Systems 
Genealogy

1970 2018

 VII. Contributions By System

14. Research Contributions of Michael Stonebraker:  
 An Overview

1971 2018

VII.1 Research Contributions by System (Ch. 15–23)

15. The Later Ingres Years 1971 1984

16. Looking Back at Postgres 1983 1993

17. Databases Meet the Stream Processing Era 2000 2017

18. C-Store: Through the Eyes of a Ph.D. Student 2002 2011

19. In-Memory, Horizontal, and Transactional:  
The H-Store OLTP DBMS Project

2007 2016

20. Scaling Mountains: SciDB and Scientific 
1992 2017

21. Data Unification at Scale: Data Tamer 2012 2018

22. BigDAWG Polystore System 2012 2017

23. Data Civilizer: End-to-End Support for Data Discovery, 
Integration, and Cleaning

2014 2018

VII.2 Contributions From Building Systems (Ch. 24–31)

24. The Commerical Ingres Codeline 1980 1990

25. The Postgres and Illustra Codelines 1989 1997

26. The Aurora/Borealis/StreamBase Codelines:  
A Tale of Three Systems

2000 2018

27. The Vertica Codeline 2005 2013

28. The VoltDB Codeline 2008 2014

29. The SciDB Codeline: Crossing the Chasm 2013 2016

30. The Tamr Codeline 2013 2018

31. The BigDAWG Codeline 2014 2018

VIII. Perspectives

32. IBM Relational Database Code Bases 1991 1997

33. Aurum: A Story About Research Taste 2016 2018

34. Nice: Or What It Was Like to Be Mike’s Student 1983 1994

35. Michael Stonebraker: Competitor, Collaborator, Friend 1970 2015

36. The Changing of the Database Guard 1974 1986

IX. Seminal Works of Michael Stonebraker and his 

Collaborators

OLTP Through the Looking Glass, and What We  
Found There

1980 2008

“One Size Fits All”: An Idea Whose Time Has Come  
and Gone

1970 2005

The End of an Architectural Era (It’s Time for a  
Complete Rewrite)

1970 2007

C-store: A Column-Oriented DBMS 1990 2005

The Implementation of Postgres 1984 1989

The Design and Implementation of Ingres 1971 1976

Bibliographies

The Collected Works of Michael Stonebraker 1972 2018

References



Foreword

The A.M. Turing Award is ACM’s most prestigious technical award and is given for
major contributions of lasting importance to computing. Sometimes referred to as
the “Nobel Prize of computing,” the Turing Award was named in honor of Alan M.
Turing (1912–1954), a British mathematician and computer scientist. Alan Turing
is a pioneer of computing who made fundamental advances in various aspects of
the field including computer architecture, algorithms, formalization, and artificial
intelligence. He was also instrumental in British code-breaking work during World
War II.

The Turing Award was established in 1966, and 67 people have won the award
since then. The work of each of these awardees has influenced and changed com-
puting in fundamental ways. Reviewing the award winners’ work gives a historical
perspective of the field’s development.

ACM Books has started the Turing Award Series to document the developments
surrounding each award. Each book is devoted to one award and may cover one or
more awardees. We have two primary objectives. The first is to document how the
award-winning works have influenced and changed computing. Each book aims to
accomplish this by means of interviews with the awardee(s), their Turing lectures,
key publications that led to the award, and technical discussions by colleagues
on the work’s impact. The second objective is to celebrate this phenomenal and
well-deserved accomplishment. We collaborate with the ACM History Committee
in producing these books and they conduct the interviews.

Our hope is that these books will allow new generations to learn about key
developments in our field and will provide additional material to historians and
students.

M. Tamer Özsu
Editor-in-Chief





Preface

The ACM A.M. Turing Award
This book celebrates Michael Stonebraker’s accomplishments that led to his 2014
ACM A.M. Turing Award “For fundamental contributions to the concepts and practices
underlying modern database systems.” [ACM 2016]

When Barbra Liskov, Turing Award committee chair, informed Mike that he
had been awarded the 2014 Turing Award, he “. . . teared up. The recognition and
validation for my lifetime work was incredibly gratifying.” [Stonebraker 2015b]

The book describes, for the broad computing community, the unique nature,
significance, and impact of Mike’s achievements in advancing modern database
systems over more than 40 years. Today, data is considered the world’s most valu-
able resource,1 whether it is in the tens of millions of databases used to manage
the world’s businesses and governments, in the billions of databases in our smart-
phones and watches, or residing elsewhere, as yet unmanaged, awaiting the elu-
sive next generation of database systems. Every one of the millions or billions of
databases includes features that are celebrated by the 2014 Turing Award and are
described in this book.

Why should I care about databases? What is a database? What is data management?
What is a database management system (DBMS)? These are just some of the ques-
tions that this book answers, in describing the development of data management
through the achievements of Mike Stonebraker and his over 200 collaborators. In
reading the stories in this book, you will discover core data management concepts
that were developed over the two greatest eras—so far—of data management tech-
nology. Why do we need database systems at all? What concepts were added? Where
did those concepts come from? What were the drivers? How did they evolve? What failed
and why? What is the practice of database systems? And, why do those achievements
warrant a Turing Award?

1. The Economist, May 6, 2017.
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While focus of this book is on Michael Stonebraker, the 2014 Turing Award
winner, the achievements that the award honors are not just those of one person,
no matter how remarkable s/he may be. The achievements are also due to hundreds
of collaborators—researchers, students, engineers, coders, company founders and
backers, partners, and, yes, even marketing and sales people. Did all of the ideas
come from Mike? Read on, especially Mike’s chapter “Where Good Ideas Come from
and How to Exploit Them” (chapter 10).

I have had the great privilege of working with more than my fair share of Turing
Award recipients starting as an undergraduate taking complexity theory from Steve
Cook of P = NP fame. No two Turing Award winners are alike in topic, approach,
methods, or personality. All are remarkably idiosyncratic. Mike is, to say the least,
idiosyncratic, as you will discover in these pages.

This book answers questions, like those in italics, in 30 stories, each by story-
tellers who were at the center of the story. The stories involve technical concepts,
projects, people, prototype systems, failures, lucky accidents, crazy risks, startups,
products, venture capital, and lots of applications that drove Mike Stonebraker’s
achievements and career. Even if you have no interest in databases at all,2 you’ll
gain insights into the birth and evolution of Turing Award-worthy achievements
from the perspectives of 39 remarkable computer scientists and professionals.

Making Databases Work: The Pragmatic Wisdom of
Michael Stonebraker
The theme of this book is modern database systems. The 2014 A.M. Turing Award
was conferred “For fundamental contributions to the concepts and practices underlying
modern database systems.” It is 1 of only 4 Turing Awards given for databases, and
1 of only 2 out of 51 given for computer systems.

Mike addressed the systems theme in his Turing Award lecture (typically in-
tended to summarize Turing-worthy achievements) in terms of the challenges that
he faced and the approach he took to systems research, in four steps. “The first was
to try to explain why system software is so hard to build, and why good teams screw
it up on a regular basis. Second, it takes real perseverance to “stick it out” and make
something actually work. The third was to talk about the start-up experience, and
why venture capitalists usually deserve their reputation as “land sharks.” Lastly, it is
clear that luck plays a significant role in successful startups, and I wanted to explain
that. The overarching theme was to use a significant physical challenge as a meta-

2. Is that possible?
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phor for system software development. Over the years, the physical challenge has
varied between our cross-country bike ride in 1988, and my climbing all forty-eight
4,000-foot mountains in New Hampshire.” [Stonebraker 2015b]

This description contains the seeds of answers to the previous italicized ques-
tions that are elaborated throughout the book.

The computer systems theme is pursued in the book by stories told from the
research perspective: What were the core database concepts? How did they develop?
Why were they significant? And stories told from the computer systems perspective:
What are the development or engineering challenges? What challenges arise in imple-
menting a research idea? How are they overcome? Do essential research contributions
arise from systems engineering? As you read these stories ask yourself: What is the
relationship between research and systems engineering? Why build prototype systems
at all? Having proven concepts in research and in a prototype system, why build a
product? (Spoiler alert: While money plays a significant role, it was by no means the
goal.)

Acknowledging 39 Remarkable Contributors
This book is a collection of 36 stories written by Mike3 and 38 of his collaborators:
23 world-leading database researchers, 11 world-class systems engineers, and 4
business partners. They were aided by an editor and 4 professional publishers and
editors.

It is my great pleasure to acknowledge the fascinating contributions of all of
these remarkable people. They responded with enthusiasm to recount their collab-
orations with Mike, looking for the essential contributions and how they emerged,
all mixed with concern for accurately remembering the crucial facts for you, the
reader—in some cases reaching back four decades. What was important? What
seemed to matter vs. what really mattered? Each contributor, like Mike, is idiosyn-
cratic and strongly opinionated, as you will see. Their achievements reflect the state
of the technology and data management demands of the time. Everyone had to be
reminded to reflect disagreements with Mike (showing the normal give-and-take of
computing research and product development), as well as to state why Mike’s con-
tributions warranted the Turing Award. Interestingly, few authors felt comfortable
praising Mike, perhaps reflecting the personalities of computer scientists.

3. Mike wrote some of the most interesting chapters; he did not review other chapters so as not
to influence the authors’ voices.
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Mike can be intimidating. He has made a career of making bold, black-and-
white statements to challenge and to inspire himself and the database community
to greater accomplishments, as Phil Bernstein recounts so well.4 It’s a sign of
maturity for a Ph.D., postdoc, or collaborator of any kind to stand up and refute
Mike—and such a pleasure to experience, by Mike included. You will see, in each
story, the efforts of the contributors to pass this benchmark.

A theme of Mike’s career has been to question conventional wisdom, specifically
as it ages and as new challenges and concepts arise or as it is undermined by poor
practices. The most obvious example is Mike’s claim that “one-size-does-not-fit-
all” in databases, which is a complete contradiction of the claims of the Elephants,
Mike’s affectionate term for the DBMSs that dominate their market. Yet, Mike was
the chief proponent of “one-size-fits-all” in the relational database era. It has been
fascinating to watch Mike’s contributions become conventional wisdom, which
Mike then questions toward the next level of achievement.

If you are an aspiring researcher, engineer, or entrepreneur you might read these
stories to find these turning points as practice to tilt at your own computer-science
windmills, to spur yourself to your next step of innovation and achievement.

Janice Brown, Our Amanuensis
My greatest acknowledgement, for her contributions to this book, is for Janice L.
Brown, technology writer/editor, startup consultant, and frequent Stonebraker col-
laborator, of Janice Brown & Associates, Inc. In many ways this is Janice’s book. (If
you dream about the book, it’s yours.) Janice was our amanuensis: editor, copy-
writer, enthusiast, critic,5 and berger du chats (cat herder) extraordinaire et mal-
heureusement, très necessaire.

Michael Brodie
October 2018

4. See Chapter 3, “Leadership and Advocacy.”

5. “Truly a great story, yet perhaps you didn’t really mean that; how about . . . ”



Introduction
Michael L. Brodie

Our story begins at University of California, Berkeley in 1971, in the heat of the Viet-
nam War. A tall, ambitious, newly minted assistant professor with an EE Ph.D. in
Markov chains asks a seasoned colleague for direction in shaping his nascent career
for more impact than he could imagine possible with Markov chains.1 Professor
Eugene Wong suggests that Michael Stonebraker read Ted Codd’s just-published
paper on a striking new idea: relational databases. Upon reading the paper, Mike
is immediately convinced of the potential, even though he knows essentially noth-
ing about databases. He sets his sights on that pristine relational mountaintop. The
rest is history. Or rather, it is the topic of this book. Ted’s simple, elegant, relational
data model and Mike’s contributions to making databases work in practice helped
forge what is today a $55 billion industry. But, wait, I’m getting ahead of myself.

A Brief History of Databases

What’s a database? What is data management? How did they evolve?

Imagine accelerating by orders of magnitude the discovery of cancer causes and the
most effective treatments to radically reduce the 10M annual deaths worldwide. Or
enabling autonomous vehicles to profoundly reduce the 1M annual traffic deaths
worldwide while reducing pollution, traffic congestion, and real estate wasted on
vehicles that on average are parked 97% of the time. These are merely two exam-
ples of the future potential positive impacts of using Big Data. As with all techni-
cal advances, there is also potential for negative impacts, both unintentional—in
error—and intentional such as undermining modern democracies (allegedly well

1. “I had to publish, and my thesis topic was going nowhere.” —Mike Stonebraker



2 Introduction

under way). Using data means managing data efficiently at scale; that’s what data
management is for.

In its May 6, 2017 issue, The Economist declared data to be the world’s most
valuable resource. In 2012, data science—often AI-driven analysis of data at scale—
exploded on the world stage. This new, data-driven discovery paradigm may be
one of the most significant advances of the early 21st century. Non-practitioners
are always surprised to find that 80% of the resources required for a data science
project are devoted to data management. The surprise stems from the fact that
data management is an infrastructure technology: basically, unseen plumbing. In
business, data management “just gets done” by mature, robust database manage-
ment systems (DBMSs). But data science poses new, significant data management
challenges that have yet to be understood, let alone addressed.

The above potential benefits, risks, and challenges herald a new era in the
development of data management technology, the topic of this book. How did it
develop in the first place? What were the previous eras? What challenges lie ahead?
This introduction briefly sketches answers to those questions.

This book is about the development and ascendancy of data management tech-
nology enabled by the contributions of Michael Stonebraker and his collaborators.
Novel when created in the 1960s, data management became the key enabling tech-
nology for businesses of all sizes worldwide, leading to today’s $55B2, 3 DBMS mar-
ket and tens of millions of operational databases. The average Fortune 100 company
has more than 5,000 operational databases, supported by tens of DBMS products.

Databases support your daily activities, such as securing your banking and credit
card transactions. So that you can buy that Starbucks latte, Visa, the leading global
payments processor, must be able to simultaneously process 50,000 credit card
transactions per second. These “database” transactions update not just your ac-
count and those of 49,999 other Visa cardholders, but also those of 50,000 creditors
like Starbucks while simultaneously validating you, Starbucks, and 99,998 others
for fraud, no matter where your card was swiped on the planet. Another slice of your
financial world may involve one of the more than 3.8B trade transactions that occur
daily on major U.S. market exchanges. DBMSs support such critical functions not
just for financial systems, but also for systems that manage inventory, air traffic
control, supply chains, and all daily functions that depend on data and data trans-
actions. Databases managed by DBMSs are even on your wrist and in your pocket

2. http://www.statista.com/statistics/724611/worldwide-database-market/

3. Numbers quoted in this chapter are as of mid-2018.

http://www.statista.com/statistics/724611/worldwide-database-market/
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if you, like 2.3B others on the planet, use an iPhone or Android smartphone. If
databases stopped, much of our world would stop with them.

A database is a logical collection of data, like your credit card account infor-
mation, often stored in records that are organized under some data model, such as
tables in a relational database. A DBMS is a software system that manages databases
and ensures persistence—so data is not lost—with languages to insert, update, and
query data, often at very high data volumes and low latencies, as illustrated above.

Data management technologies have evolved through four eras over six decades,
as is illustrated in the Data Management Technology Kairometer (see page xxvii).

In the inaugural navigational era (1960s), the first DBMSs emerged. In them,
data, such as your mortgage information, was structured in hierarchies or networks
and accessed using record-at-a-time navigation query languages. The navigational
era gained a database Turing Award in 1973 for Charlie Bachman’s “outstanding
contributions to database technology.”

In the second, relational era ( 1970s–1990s), data was stored in tables accessed
using a declarative, set-at-a-time query language, SQL: for example, “Select name,
grade From students in Engineering with a B average.” The relational era ended
with approximately 30 commercial DBMSs dominated by Oracle’s Oracle, IBM’s
DB2, and Microsoft’s SQL Server. The relational era gained two database Turing
Awards: one in 1981 for Codd’s “fundamental and continuing contributions to the the-
ory and practice of database management systems, esp. relational databases” and one
in 1998 for Jim Gray’s “seminal contributions to database and transaction processing
research and technical leadership in system implementation.”

The start of Mike Stonebraker’s database career coincided with the launch of
the relational era. Serendipitously, Mike was directed by his colleague, UC Berke-
ley professor Eugene Wong, to the topic of data management and to the relational
model via Ted’s paper. Attracted by the model’s simplicity compared to that of nav-
igational DBMSs, Mike set his sights, and ultimately built his career, on making
relational databases work. His initial contributions, Ingres and Postgres, did more
to make relational databases work in practice than those of any other individual. Af-
ter more than 30 years, Postgres—via PostgreSQL and other derivatives—continues
to have a significant impact. PostgreSQL is the third4 or fourth5 most popular (used)
of hundreds of DBMSs, and all relational DBMSs, or RDBMSs for short, implement
the object-relational data model and features introduced in Postgres.

4. http://www.eversql.com/most-popular-databases-in-2018-according-to-stackoverflow-survey/

5. http://db-engines.com/en/ranking

http://www.eversql.com/most-popular-databases-in-2018-according-to-stackoverflow-survey/
http://db-engines.com/en/ranking
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In the first relational decade, researchers developed core RDBMS capabilities in-
cluding query optimization, transactions, and distribution. In the second relational
decade, researchers focused on high-performance queries for data warehouses
(using column stores) and high-performance transactions and real-time analysis
(using in-memory databases); extended RDBMSs to handle additional data types
and processing (using abstract data types); and tested the “one-size-fits-all” princi-
ple by fitting myriad application types into RDBMSs. But complex data structures
and operations—such as those in geographic information, graphs, and scientific
processing over sparse matrices—just didn’t fit. Mike knew because he pragmat-
ically exhausted that premise using real, complex database applications to push
RDBMS limits, eventually concluding that “one-size-does-not-fit-all” and moving
to special-purpose databases.

With the rest of the database research community, Mike turned his attention
to special-purpose databases, launching the third, “one-size-does-not-fit-all” era
(2000–2010). Researchers in the “one-size-does-not-fit-all” era developed data man-
agement solutions for “one-size-does-not-fit-all” data and associated processing
(e.g., time series, semi- and un-structured data, key-value data, graphs, documents)
in which data was stored in special-purpose forms and accessed using non-SQL
query languages, called NoSQL, of which Hadoop is the best-known example. Mike
pursued non-relational challenges in the data manager but, claiming inefficiency
of NoSQL, continued to leverage SQL’s declarative power to access data using SQL-
like languages, including an extension called NewSQL.

New DBMSs proliferated, due to the research push for and application pull of
specialized DBMSs, and the growth of open-source software. The “one-size-does-
not-fit-all” ended with more than 350 DBMSs, split evenly between commercial and
open source and supporting specialized data and related processing including (in
order of utilization): relational, key-values, documents, graphs, time series, RDF,
objects (object-oriented), search, wide columns, multi-value/dimensional, native
XML, content (e.g., digital, text, image), events, and navigational. Despite the choice
and diversity of DBMSs, the market remained dominated by five relational DBMSs:
the original three plus Microsoft Access and Teradata, which Mike came to call
collectively “the Elephants.” Although the Elephants all supported Mike’s object-
relational model, they had become “conventional wisdom” that lagged new data
management capabilities. A hallmark of Mike’s career is to perpetually question
conventional wisdom, even of his own making. At the end of the “one-size-does-
not-fit-all” era, there was a significant shift in the DBMS market away from the
RDBMS Elephants and to less-expensive open-source DBMSs.

The relational and “one-size-does-not-fit-all” eras gained a database Turing
Award for Stonebraker’s “concepts and practices underlying modern database sys-
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tems.” It is the stories of these relational and “one-size-does-not-fit-all” develop-
ments that fill these pages. You will find stories of their inception, evolution,
experimentation, demonstration, and realization by Mike and his collaborators
through the projects, products, and companies that brought them to life.

This brings us to the fourth and current Big Data era (2010–present), charac-
terized by data at volumes, velocities, and variety (heterogeneity) that cannot be
handled adequately by existing data management technology. Notice that, oddly,
“Big Data” is defined in terms of data management technology rather than in
terms of the typically real-world phenomena that the data represents. Following
the previous eras, one might imagine that the Big Data era was launched by the
database research community’s pursuit of addressing future data management re-
quirements. That is not what happened. The database community’s focus remained
on relational and “one-size-does-not-fit-all” for three decades with little concern for
a grander data management challenge—namely managing all data as the name
“data management” suggests. The 2012 annual IDC/EMC Digital Universe study
[Gantz and Reinsel 2013] estimated that of all data in the expanding digital uni-
verse, less than 15% was amenable to existing DBMSs. Large enterprises like Yahoo!
and Google faced massive data management challenges for which there were no
data management solutions in products or research prototypes. Consequently, the
problem owners built their own solutions, thus the genesis of Hadoop, MapRe-
duce, and myriad NoSQL Big Data managers. In 2009, Mike famously criticized
MapReduce to the chagrin of the Big Data community, only to be vindicated five
years later when its creators disclosed that Mike’s criticism coincided with their
abandonment of MapReduce and Hadoop for yet another round of Big Data man-
agement solutions of their own making. This demonstrates the challenges of the
Big Data era and that data management at scale is hard to address without the
data management underpinnings established over six decades. Retrospectively, it
illustrates the challenges faced in the previous database eras and validates that the
solutions warranted database Turing Awards.

We appear to be entering a golden age of data, largely due to our expectations
for Big Data: that data will fuel and accelerate advances in every field for which
adequate data is available. Although this era started in 2010, there has been lit-
tle progress in corresponding data management solutions. Conventional DBMS
“wisdom,” as Stonebraker loves to say, and architectures do not seem to apply.
Progress, at least progress Stonebraker-style (as we will see throughout the book),
is hindered by a paucity of effective use cases. There are almost no (1) reasonably
well-understood Big Data management applications that are (2) owned by some-
one with a pain that no one else has addressed, with (3) the willingness to provide
access to their data and to be open to exploring new methods to resolve the pain.
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The bright side of this is the explosion of data-intensive applications leading to,
as Michael Cafarella and Chris Ré of Stanford University say in Cafarella and Ré
[2018], a “blindingly bright future” for database research. The dominant class of
data-intensive processing is data science, itself just emerging as a domain; thus,
its use above as an example of the need for effective new database management
technologies. As the data management technology evolution story continues, the
overwhelming interest in data requires a distinction between core data manage-
ment technology, the topic of this book, and its development to support activities
in every human endeavor.

If you are a young researcher or engineer contemplating your future in data man-
agement or in computer systems, you now find yourself at the dawn of the Big Data
era, much as Mike found himself at the beginning of the relational era. Just as Mike
was new to the then-new idea of relational databases, so too you must be new to
the as-yet-undefined notion of a Big Data system and data manager. These pages
tell the stories of Mike’s career as seen from the many different perspectives of his
primary collaborators. These stories may give you a historical perspective and may
provide you guidance on your path: what issues to pursue, how to select them, how
to pursue them, how to collaborate with people who complement your knowledge,
and more. These stories recount not only challenges, technology, methods, and
collaboration styles, but also people’s attitudes that, perhaps more so than tech-
nology, contributed to the state of data management today, and specifically to the
achievements of Mike Stonebraker and his collaborators. However, the world now
is not as it was in 1971 as Mike launched his career, as Mike discusses in Chapter 11,
“Where We Have Failed.”

Preparing to Read the Stories and What You Might Find There
To explore and understand Lithuania on a trip, few people would consider visiting
every city, town, and village. So how do you choose what to see? Lonely Planet’s or
Eyewitness’ travel guides to Estonia, Latvia, and Lithuania are fine, but they are 500
pages each. It’s better to be motivated and have worked out the initial questions that
you would like answered. Here is a method for visiting Lithuania and for reading
the stories in this book.

The book was written by computer systems researchers, engineers, developers,
startup managers, funders, Silicon Valley entrepreneurs, executives, and investors
for people like themselves and for the broad computing community. Let’s say you
aspire to a career in, or are currently in, one of those roles: What would you like to
learn from that perspective?
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Say, for example, that you are a new professor in Udine, Italy, planning your
career in software systems research. As Mike Stonebraker was at UC Berkeley in
1971, you ask: What do I want to do in my career? How do I go about realizing that
career? Develop a list of questions you would like to pursue such as the 20 or so
italicized questions in this Introduction and the Preface. Select the stories that
appear to offer answers to your questions in a context in which you have some
passion. Each story results in significant successes, perhaps on different topics
that interest you, or in a different culture and a different time. Nonetheless, the
methods, the attitudes, and the lessons are generally independent of the specific
story. The contributors have attempted to generalize the stories with the hindsight
and experience of as much as 40 years.

Choose your role, figure out the questions on which you would like guidance,
choose your own perspective (there are 30 in the book), and set off on your journey,
bailing when it is not helpful. Become your own software systems ciceroni.6

A Travel Guide to Software Systems Lessons in Nine Parts
The 30 stories in this book are arranged into 9 parts.

Part I, “2014 ACM A.M. Turing Award Paper and Lecture,” contains the paper in
which Turing awardees typically describe the achievements for which the award was
conferred. The paper is given as a lecture at ACM conferences during the award year.
True to Mike’s idiosyncratic nature, he used the paper and lecture as a platform
for what he considered his most important message for the community, as op-
posed to the already published technical achievements. Mike writes of challenges
posed by software systems, the theme of this book, as explained in the Preface.
Mike described the nature of the challenges by analogy with significant physical
challenges—something most audiences can understand—from Mike’s own per-
sonal life. The paper is reproduced from the Communications of the ACM. The
lecture was given initially at the Federated Computing Research Conference, June
13, 2015, and can be viewed online.7

Part II, “Mike Stonebraker’s Career,” lays out Mike’s career in Sam Madden’s bi-
ography and in two graphic depictions. Chart 1 lists chronologically Mike’s Ph.D.
students and postdocs. Chart 2 illustrates the academic projects and awards and

6. Expert tourist guide, who makes the trip worthwhile, derived from Marcus Tullius Cicero,
Roman politician and orator known for guiding through complex political theses, diminished
today to restaurants.

7. http://www.youtube.com/watch?v=BbGeKi6T6QI

http://www.youtube.com/watch?v=BbGeKi6T6QI
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the creation and acquisition of his companies. On April 12, 2014, Mike Carey (Uni-
versity of California, Irvine), David DeWitt (then at University of Wisconsin), Joe
Hellerstein (University of California, Berkeley), Sam Madden (MIT), Andy Pavlo
(Carnegie Mellon University), and Margot Seltzer (Harvard University) organized
a Festschrift for Mike: a day-long celebration of Mike Stonebraker at 70.8 More
than 200 current and former colleagues, investors, collaborators, rivals, and stu-
dents attended. It featured speakers and discussion panels on the major projects
from Mike’s 40-plus year career. Chart 2, “The Career of Mike Stonebraker,” was
produced for the Festschrift by Andy Pavlo and his wife.

Part III, “Mike Stonebraker Speaks Out: An Interview with Marianne Winslett,”
is a post-Turing-Award interview in the storied series of interviews of database
contributors by Marianne Winslett. A video of the interview can be seen online
http://www.gmrtranscription.com.

In Part IV, “The Big Picture,” world-leading researchers, engineers, and entre-
preneurs reflect on Mike’s contributions in the grander scope of things. Phil Bern-
stein, a leading researcher and big thinker, reflects on Mike’s leadership and advo-
cacy. James Hamilton, a world-class engineer and former lead architect of DB2—an
Elephant—reflects on the value of Turing contributions. Jerry Held, Mike’s first
Ph.D. student, now a leading Silicon Valley entrepreneur, recounts experiences col-
laborating and competing with Mike. Dave DeWitt, comparable to Mike in his data
management contributions, reflects on 50 years as a mentee, colleague, and com-
petitor.

Part V, “Startups,” tells one of the 21st century’s hottest stories: how to create,
fund, and run a successful technology startup. As the Data Management Technology
Kairometer (see page xxvii) illustrates, Mike has co-founded nine startups. The
startup story is told from three distinctly different points of view: from that of
the technical innovator and Chief Technology Officer (Mike), from that of the
CEO, and from that of the prime funder. These are not mere get rich quick or get
famous quick stories. Startups and their products are an integral component of
Mike Stonebraker’s database technology research and development methodology,
to ensure that the results have impact. This theme of industry-driven and industry-
proven database technology research pervades these pages. If you get only one thing
from this book, let this be it.

Part VI, “Database Systems Research,” takes us into the heart of database sys-
tems research. Mike answers: Where do ideas come from? How to exploit them? Take a

8. For photographs see http//stonebraker70.com.

http://www.gmrtranscription.com
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master class with a Turing Award winner on how to do database systems research.
Mike’s invitation to write the “Failures” chapter was: So, Mike, what do you really
think? His surprising answers lay out challenges facing database systems research
and the database research community. Mike Olson, a Ph.D. student of Mike and
an extremely successful co-founder and Chief Strategy Officer of Cloudera (which
has data management products based on Hadoop), lays out Mike’s contributions
relative to the open-source movement that was launched after Ingres was already
being freely distributed. Part VI concludes with Felix Naumann’s amazing Rela-
tional Database Management Genealogy, which graphically depicts the genealogy
of hundreds of RDBMSs from 1970 to the present showing how closely connected
RDBMSs are in code, concepts, and/or developers.

Part VII, “Contributions by System,” describes the technical contributions for
which the Turing award was given. They are presented chronologically in the con-
text of the nine projects, each centered on the software system in which the contri-
butions arose. Each system is described from a research perspective in Part VII.A,
“Research Contributions by System,” and from a systems perspective, in a com-
panion story in Part VII.B, “Contributions from Building Systems.” Chapter 14
synopsizes the major technical achievements and offers a map to contributions
and their stories.

The stories in “Research Contributions by System” focus on the major techni-
cal achievements that arose in each specific project and system. They do not repeat
the technical arguments from the already published papers that are all cited in the
book. The research chapters explain the technical accomplishments: their signifi-
cance, especially in the context of the technology and application demands of the
time; and their value and impact in the resulting technology, systems, and prod-
ucts that were used to prove the ideas and in those that adopted the concepts. Most
stories, like Daniel Abadi’s Chapter 18 tell of career decisions made in the grips
of challenging and rewarding research. The first seven systems—Ingres, Postgres,
Aurora, C-Store, H-Store, SciDB, and Data Tamer—span 1972–2018, including the
relational, “one-size-does-not-fit-all”, and now the Big Data eras of data manage-
ment. All seven projects resulted in successful systems, products, and companies.
Not included in the book are two systems that Mike does not consider successful.
(But if some didn’t fail, he wasn’t trying hard enough.) The final two projects, Big-
DAWG and Data Civilizer, are under way at this writing as two of Mike’s visions in
the Big Data world.

The stories in “Contributions from Building Systems” are a little unusual in that
they tell seldom-told stories of heroism in software systems engineering. The de-
velopment of a software system, e.g., a DBMS, is a wonderful and scary experience
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for individuals, the team, and the backers! There is a lot of often-unsung drama: in-
evitable disasters and unbelievable successes, and always discoveries, sometimes
new but often repeated for the umpteenth time. Key team members of some of the
best-known DBMSs in the world (DB2, Ingres, Postgres) tell tales of the develop-
ment of the codelines we have come to know as DB2, Ingres, StreamBase, Vertica,
VoltDB, and SciDB, and the data unification system Tamr.

These stories were motivated, in part, by an incidental question that I asked
James Hamilton, former lead architect, IBM DB2 UDB, which (with Stonebraker’s
Ingres) was one of the first relational DBMSs and became an Elephant. I asked
James: “Jim Gray told me some fascinating stories about DB2. What really hap-
pened?” What unfolded was a remarkable story told in Chapter 32, “IBM Relational
Database Code Bases,” which made it clear that all the codeline stories must be told.
One sentence that got me was: “Instead of being a punishing or an unrewarding
‘long march,’ the performance improvement project was one of the best experi-
ences of my career.” This came from one of the world’s best systems architects,
currently, Vice President and Distinguished Engineer, Amazon Web Services.

But, more importantly, these stories demonstrate the theme of the book and
Mike’s observation that “system software is so hard to build, and why good teams screw
it up on a regular basis.”

From the beginning of Mike’s database career, the design, development, testing,
and adoption of prototype and commercial systems have been fundamental to his
research methodology and to his technical contributions. As he says in Chapter 9
“Ingres made an impact mostly because we persevered and got a real system to
work.” Referring to future projects, he says, “In every case, we built a prototype to
demonstrate the idea. In the early days (Ingres/Postgres), these were full-function
systems; in later days (C-Store/H-Store) the prototypes cut a lot of corners.” These
systems were used to test and prove or disprove research hypotheses, to understand
engineering aspects, to explore details of real use case, and to explore the adoption,
hence impact, of the solutions. As a result, research proceeded in a virtuous cycle
in which research ideas improved systems and, in turn, systems and application
challenges posed research challenges.

Part VIII, “Perspectives,” offers five personal stories. James Hamilton recounts
developing one of the world’s leading DBMSs, which included the highlights of his
storied engineering career. Raul Castro Fernandez recounts how, as a Stonebraker
postdoc, he learned how to do computer systems research—how he gained research
taste. Marti Hearst tells an engaging story of how she matured from a student
to a researcher under a seemingly intimidating but actually caring mentor. Don
Haderle, a product developer on IBM’s Systems R, the alleged sworn enemy of the



A Travel Guide to Software Systems Lessons in Nine Parts 11

Ingres project, speaks admiringly of the competitor who became a collaborator
and friend. In the final story of the book, I recount meeting Mike Stonebraker for
the first time in 1974. I had not realized until I reflected for this story that the
1974 pre-SIGMOD (Special Interest Group on Management of Data) conference
that hosted the much anticipated CODASYL-Relational debate marked a changing
of the database guard: not just shifting database research leadership from the
creators of navigational DBMSs to new leaders, such as Mike Stonebraker, but also
foreshadowing the decline of navigational database technology and the rise of the
relational and subsequent eras of database technology.

Part IX, “Seminal Works of Michael Stonebraker and His Collaborators,” re-
prints the six papers that, together with the 2014 ACM A.M. Turing Award Paper
in Chapter 1, constitute the papers that present Mike’s most significant technical
achievements. Like most of the stories in this book, these seminal works should be
read in the context of the technology and challenges at the time of their publica-
tion. That context is exactly what the corresponding research and systems stories
in Part VII provide. Until now, those papers lacked that context, now given by con-
tributors who were central to those contributions and told from the perspective of
2018.

Mike’s 7 seminal papers were chosen from the approximately 340 that he has
authored or co-authored in his career. Mike’s publications are listed in “Collected
Works of Michael Stonebraker,” page 607.
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The Land Sharks Are
on the Squawk Box
Michael Stonebraker

It turns out riding across America is more than a handy metaphor for building
system software.

—Michael Stonebraker

KENNEBAGO, ME, SUMMER 1993. The “Land Sharks” are on the squawk box, Illustra
(the company commercializing Postgres) is down to fumes, and I am on a confer-
ence call with the investors to try to get more money. The only problem is I am in
Maine at my brother’s fishing cabin for a family event while the investors are on
a speakerphone (the squawk box) in California. There are eight of us in cramped
quarters, and I am camped out in the bathroom trying to negotiate a deal. The
conversation is depressingly familiar. They say more-money-lower-price; I say less-
money-higher-price. We ultimately reach a verbal handshake, and Illustra will live
to fight another day.

Negotiating with the sharks is always depressing. They are superb at driving a
hard bargain; after all, that is what they do all day. I feel like a babe in the woods by
comparison.

This article interleaves two stories (see Figure 1). The first is a cross-country bike
ride my wife Beth and I took during the summer of 1988; the second is the design,
construction, and commercialization of Postgres, which occurred over a 12-year

Originally published in Communications of the ACM, 59(2): 74–83, 2016. Original DOI: 10.1145/
2869958
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Key Insights

. Explained is the motivation behind Postgres design decisions, as are “speed-
bumps” encountered.

. Riding a bicycle across America and building a computer software system
are both long and difficult affairs, constantly testing personal fortitude along
the way.

. Serendipity played a major role in both endeavors.

period, from the mid-1980s to the mid-1990s. After telling both stories, I will draw
a series of observations and conclusions.

Off to a Good Start
Anacortes, WA, June 3, 1988. Our car is packed to the gills, and the four of us (Beth;
our 18-month-old daughter Leslie; Mary Anne, our driver and babysitter; and me)
are squished in. It has been a stressful day. On the roof is the cause of it all—our
brand-new tandem bicycle. We spent the afternoon in Seattle bike shops getting it
repaired. On the way up from the Bay Area, Mary Anne drove into a parking structure
lower than the height of the car plus the bike. Thankfully, the damage is repaired,
and we are all set to go, if a bit frazzled. Tomorrow morning, Beth and I will start
riding east up the North Cascades Scenic Highway; our destination, some 3,500
miles away, is Boston, MA. We have therefore christened our bike “Boston Bound.”

It does not faze us that we have been on a tandem bike exactly once, nor that we
have never been on a bike trip longer than five days. The fact we have never climbed
mountains like the ones directly in front of us is equally undaunting. Beth and I are
in high spirits; we are starting a great adventure.

Berkeley, CA, 1984. We have been working on Ingres for a decade. First, we
built an academic prototype, then made it fully functional, and then started a
commercial company. However, Ingres Corporation, which started with our open
source code base four years ago in 1980, has made dramatic progress, and its code is
now vastly superior to the academic version. It does not make any sense to continue
to do prototyping on our software. It is a painful decision to push the code off a cliff,
but at that point a new DBMS is born. So what will Postgres be?

One thing is clear: Postgres will push the envelope on data types. By now I have
read a dozen papers of the form: “The relational model is great, so I tried it on [pick
a vertical application]. I found it did not work, and to fix the situation, I propose we
add [some new idea] to the relational model.”
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Anacortes, WA: Day 1 – June 4, 1988

Some chosen verticals were geographic information systems (GISs), computer-
aided design (CAD), and library information systems. It was pretty clear to me that
the clean, simple relational model would turn into a complete mess if we added
random functionality in this fashion. One could think of this as “death by 100
warts.”

The basic problem was the existing relational systems—specifically Ingres and
System R—were designed with business data processing users in mind. After all,
that was the major DBMS market at the time, and both collections of developers
were trying to do better than the existing competition, namely IMS and Codasyl, on
this popular use case. It never occurred to us to look at other markets, so RDBMSs
were not good at them. However, a research group at the University of California
at Berkeley, headed by Professor Pravin Varaiya, built a GIS on top of Ingres, and
we saw firsthand how painful it was. Simulating points, lines, polygons, and line
groups on top of the floats, integers, and strings in Ingres was not pretty.

It was clear to me that one had to support data types appropriate to an appli-
cation and that required user-defined data types. This idea had been investigated
earlier by the programming language community in systems like EL1, so all I had
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to do was apply it to the relational model. For example, consider the following SQL
update to a salary, stored as an integer

Update Employee set (salary = salary + 1000) where name = ‘George’

To process it, one must convert the character string 1000 to an integer using
the library function string-to-integer and then call the integer + routine from the C
library. To support this command with a new type, say, foobar, one must merely
add two functions, foobar-plus and string-to-foobar, and then call them
at the appropriate times. It was straightforward to add a new DBMS command,
ADDTYPE, with the name of the new data type and conversion routines back and
forth to ASCII. For each desired operator on this new type, one could add the name
of the operator and the code to call to apply it.

The devil is, of course, always in the details. One has to be able to index the new
data type using B-trees or hashing.

Indexes require the notion of less-than and equality. Moreover, one needs com-
mutativity and associativity rules to decide how the new type can be used with other
types. Lastly, one must also deal with predicates of the form:

not salary < 100

This is legal SQL, and every DBMS will flip it to

salary ≥ 100

So one must define a negator for every operator, so this optimization is possible.
We had prototyped this functionality in Ingres [8], and it appeared to work, so

the notion of abstract data types (ADTs) would clearly be a cornerstone of Postgres.
Winthrop, WA, Day 3. My legs are throbbing as I lay on the bed in our motel

room. In fact, I am sore from the hips down but elated. We have been riding since
5 a.m. this morning; telephone pole by telephone pole we struggled uphill for 50
miles. Along the way, we rose 5,000 feet into the Cascades, putting on every piece
of clothing we brought with us. Even so, we were not prepared for the snowstorm
near the top of the pass. Cold, wet, and tired, we finally arrived at the top of the
aptly named Rainy Pass. After a brief downhill, we climbed another 1,000 feet to
the top of Washington Pass. Then it was glorious descent into Winthrop. I am now
exhausted but in great spirits; there are many more passes to climb, but we are over
the first two. We have proved we can do the mountains.

Berkeley, CA, 1985–1986. Chris Date wrote a pioneering paper [1] on referential
integrity in 1981 in which he defined the concept and specified rules for enforcing
it. Basically, if one has a table
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Figure 1 The two timelines: Cross-country bike ride and Illustra/Postgres development.

Employee (name, salary, dept, age) with primary key "name"

and a second table

Dept (dname, floor) with a primary key "dname"

then the attribute dept in Employee is a foreign key; that is, it references a primary
key in another table; an example of these two tables is shown in Figure 2. In this
case, what happens if one deletes a department from the dept table?

For example, deleting the candy department will leave a dangling reference in
the Employee table for everybody who works in the now-deleted department. Date
identified six cases concerning what to do with insertions and deletions, all of which
can be specified by a fairly primitive if-then rule system. Having looked at programs
in Prolog and R1, I was very leery of this approach. Looking at any rule program with
more than 10 statements, it is very difficult to figure out what it does. Moreover,
such rules are procedural, and one can get all kinds of weird behavior depending
on the order in which rules are invoked. For example, consider the following two
(somewhat facetious) rules:

If Employee.name = ‘George’

Then set Employee.dept = ‘shoe’

If Employee.salary > 1000 and Employee.dept = ‘candy’
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dname floor sq. ft. budget

Shoe 3 500 40,000

Candy 2 800 50,000

name dept salary age

Bill Shoe 2,000 40

Art Candy 3,000 35

Sam Shoe 1,500 25

Tom Shoe 1,000 23

Figure 2 Correlated data illustrating why data users need referential integrity.

Then set Employee.salary = 1000

Consider an update that moves George from the shoe department to the candy
department and updates his salary to 2000. Depending on the order the two rules
are processed, one will get different final answers. Notably, if the rules are executed
in the order here, then George will ultimately have a salary of 2000; if the rule
order is reversed, then his ending salary will be 1000. Having order-dependent rule
semantics is pretty awful.

A fundamental tenet of the relational model is the order of evaluation of a query,
including the order in which records are accessed, is up to the system. Hence,
one should always give the same final result, regardless of the query plan chosen
for execution. As one can imagine, it is trivial to construct collections of rules
that give different answers for different query plans—obviously undesirable system
behavior.

I spent many hours over a couple of years looking for something else. Ultimately,
my preferred approach was to add a keyword always to the query language. Hence,
any utterance in the query language should have the semantics that it appears to be
continually running. For example, if Mike must have the same salary as Sam, then
the following always command will do the trick

Always update Employee, E

set salary = E.salary

where Employee.name = ‘Mike’ and E.name = ‘Sam’

Whenever Mike receives a salary adjustment, this command will kick in and
reset his salary to that of Sam. Whenever Sam gets a raise, it will be propagated to
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Marias Pass, MT: Day 15

Mike. Postgres would have this always command and avoid (some of) the ugliness
of an if-then rules system. This was great news; Postgres would try something
different that has the possibility of working.

Marias Pass, MT, Day 15. I cannot believe it. We round a corner and see the sign
for the top of the pass. We are at the Continental Divide! The endless climbs in the
Cascades and the Rockies are behind us, and we can see the Great Plains stretching
out in front of us. It is now downhill to Chicago! To celebrate this milestone, we pour
a small vial of Pacific Ocean water we have been carrying since Anacortes to the east
side of the pass where it will ultimately flow into the Gulf of Mexico.

Berkeley, CA, 1986. My experience with Ingres convinced me a database log
for recovery purposes is tedious and difficult to code. In fact, the gold standard
specification is in C. Mohan et al. [3]. Moreover, a DBMS is really two DBMSs,
one managing the database as we know it and a second one managing the log,
as in Figure 3. The log is the actual system of record, since the contents of the
DBMS can be lost. The idea we explored in Postgres was to support time travel.
Instead of updating a data record in place and then writing both the new contents
and the old contents into the log, could we leave the old record alone and write
a second record with the new contents in the actual database? That way the log
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Data Log

DBMS

Figure 3 Traditional DBMS crash recovery.

Data + Log

DBMS

Figure 4 Postgres picture: No overwrite.

would be incorporated into the normal database and no separate log processing
would be required, as in Figure 4. A side benefit of this architecture is the ability to
support time travel, since old records are readily queryable in the database. Lastly,
standard accounting systems use no overwrite in their approach to record keeping,
so Postgres would be compatible with this tactic.

At a high level, Postgres would make contributions in three areas: an ADT sys-
tem, a clean rules system based on the always command, and a time-travel storage
system. Much of this functionality is described in Stonebraker and Rowe [6,7]. For
more information on the scope of Postgres, one can consult the video recording of
the colloquium celebrating my 70th birthday [2]. We were off and running with an
interesting technical plan.

First Speedbumps
Drake, ND, Day 26. We are really depressed. North Dakota is bleak. The last few days
have been the following monotony:
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Drake, ND: Day 26

See the grain elevator ahead that signifies the next town

Ride for an hour toward the elevator

Pass through the town in a few minutes

See the next grain elevator . . .

However, it is not the absence of trees (we joke the state tree of North Dakota is
the telephone pole) and the bleak landscape that is killing us. Normally, one can
simply sit up straight in the saddle and be blown across the state by the prevailing
winds, which are typically howling from west to east. They are howling all right, but
the weather this summer is atypical. We are experiencing gale-force winds blowing
east to west, straight in our faces. While we are expecting to be blown along at 17–
18 miles per hour, we are struggling hard to make 7. We made only 51 miles today
and are exhausted. Our destination was Harvey, still 25 miles away, and we are not
going to make it. More ominously, the tree line (and Minnesota border) is still 250
miles away, and we are not sure how we will get there. It is all we can do to refuse
a ride from a driver in a pickup truck offering to transport us down the road to the
next town.
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The food is also becoming problematic. Breakfast is dependable. We find a town,
then look for the café (often the only one) with the most pickup trucks. We eat from
the standard menu found in all such restaurants. However, dinner is getting really
boring. There is a standard menu of fried fare; we yearn for pasta and salad, but it
is never on the menu.

We have established a routine. It is in the 80s or 90s Fahrenheit every day, so
Beth and I get on the road by 5 a.m. Mary Anne and Leslie get up much later; they
hang around the motel, then pass us on the road going on to the town where we
will spend the night. When we arrive at the new motel, one of us relieves Mary Anne
while the other tries to find someplace with food we are willing to eat. Although we
have camping equipment with us, the thought of an air mattress after a hard day on
the road is not appealing. In fact, we never camp. Leslie has happily accommodated
to this routine, and one of her favorite words, at 18-months old, is “ice machine.”
Our goal is 80 miles a day in the flats and 60 miles a day in the mountains. We ride
six days per week.

Berkeley, CA, 1986. I had a conversation with an Ingres customer shortly after
he implemented date and time as a new data type (according to the American
National Standards Institute specification). He said, “You implemented this new
data type incorrectly.” In effect, he wanted a different notion of time than what
was supported by the standard Gregorian calendar. More precisely, he calculated
interest on Wall Street-type financial bonds, which give the owner the same amount
of interest, regardless of how long a month is. That is, he wanted a notion of bond
time in which March 15 minus February 15 is always 30 days, and each year is
divided into 30-day months. Operationally, he merely wanted to overload temporal
subtraction with his own notion. This was impossible in Ingres, of course, but easy
to do in Postgres. It was a validation that our ADTs are a good idea.

Berkeley, CA, 1986. My partner, the “Wine Connoisseur,” and I have had a run-
ning discussion for nearly a year about the Postgres data model. Consider the
Employee-Dept database noted earlier. An obvious query is to join the two ta-
bles, to, say, find the names and floor number of employees, as noted in this SQL
command:

Select E.name, D.floor

From Employee E, Dept D

Where E.dept = D.dname

In a programming language, this task would be coded procedurally as some-
thing like (see code section 1).
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A programmer codes an algorithm to find the desired result. In contrast, one
tenet of the relational model is programmers should state what they want without
having to code a search algorithm. That job falls to the query optimizer, which must
decide (at scale) whether to iterate over Employee first or over Dept or to hash both
tables on the join key or sort both tables for a merge or . . .

My Ingres experience convinced me optimizers are really difficult, and the brain
surgeon in any database company is almost certainly the optimizer specialist. Now
we were considering extending the relational model to support more complex types.
In its most general form, we could consider a column whose fields were pointers
to arrays of structures of . . . I could not wrap my brain around designing a query
optimizer for something this complex. On the other hand, what should we discard?
In the end, The Wine Connoisseur and I are depressed as we choose a design point
with rudimentary complex objects. There is still a lot of code to support the notion
we select.

Berkeley, CA, 1987. The design of time travel in Postgres is in Stonebraker [5].
Although this is an elegant construct in theory, making it perform well in practice
is tricky. The basic problem is the two databases in the traditional architecture of
Figure 3 are optimized very differently. The data is “read-optimized” so queries are
fast, while the log is “write-optimized” so one can commit transactions rapidly.
Postgres must try to accomplish both objectives in a single store; for example, if
10 records are updated in a transaction, then Postgres must force to disk all the
pages on which these records occurred at commit time. Otherwise, the DBMS can
develop “amnesia,” a complete no-no. A traditional log will group all the log records
on a small collection of pages, while the data records remain read-optimized.
Since we are combining both constructs into one storage structure, we have to
address a tricky record placement problem to try to achieve both objectives, and
our initial implementation is not very good. We spend a lot of time trying to fix this
subsystem.

Berkeley, CA, 1987. The Wine Connoisseur and I had written Ingres in C and
did not want to use it again. That sounded too much like déjà vu. However, C++

Code Section 1.

For E in Employee {

For D in Dept {

If (E.dept = D.dname) then add-to-result;

}

}
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was not mature enough, and other language processors did not run on Unix. By
this time, any thought of changing operating systems away from Unix was not an
option; all the Berkeley students were being trained on Unix, and it was quickly
becoming the universal academic operating system. So we elected to drink the
artificial intelligence Kool-Aid and started writing Postgres in Lisp.

Once we had a rudimentary version of Postgres running, we saw what a dis-
astrous performance mistake this was—at least one-order-of-magnitude perfor-
mance penalty on absolutely everything. We immediately tossed portions of the
code base off the cliff and converted everything else to C. We were back to déjà vu
(coding in C), having lost a bunch of time, but at least we had learned an important
lesson: Do not jump into unknown water without dipping your toe in first. This was
the first of several major code rewrites.

Berkeley, CA, 1988. Unfortunately, I could not figure out a way to make our
always command general enough to at least cover Chris Date’s six referential
integrity cases. After months of trying, I gave up, and we decided to return to a more
conventional rule system. More code over the cliff, and more new functionality to
write.

In summary, for several years we struggled to make good on the original Postgres
ideas. I remember this time as a long “slog through the swamp.”

Another High
Carrington, ND, the next afternoon. It is really hot, and I am dead tired. I am on
“Leslie duty,” and after walking though town, we are encamped in the ubiquitous
(and air-conditioned) local Dairy Queen. I am watching Leslie slurp down a soft
serve, feeling like “God is on our side,” as serendipity has intervened in a big way
today. No, the wind is still blowing at gale force from east to west. Serendipity came
in the form of my brother. He has come from Maine to ride with us for a week. Mary
Anne picked him and his bicycle up at the Minot airport yesterday afternoon. He is
fresh and a very, very strong rider. He offers to break the wind for us, like you see in
bicycle races. With some on-the-job training (and a couple of excursions into the
wheat fields when we hit his rear wheel), Beth and I figure out how to ride six inches
behind his rear wheel. With us trying to stay synchronized with a faster-slower-faster
dialog, we rode 79 miles today. It is now clear we are “over the hump” and will get
out of North Dakota, a few inches behind my brother’s wheel, if necessary.

Battle Lake, MN, July 4, 1988, Day 30. We are resting today and attending the
annual 4th of July parade in this small town. It is quite an experience—the local
band, clowns giving out candy, which Leslie happily takes, and Shriners in their
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little cars. It is a slice of Americana I will never forget. Rural America has taken very
good care of us, whether by giving our bike a wide berth when passing, willingly
cashing our travelers checks, or alerting us to road hazards and detours.

Berkeley, CA, 1992. In my experience, the only way to really make a difference in
the DBMS arena is to get your ideas into the commercial marketplace. In theory, one
could approach the DBMS companies and try to convince them to adopt something
new. In fact, there was an obvious “friendly” one—Ingres Corporation—although
it had its own priorities at the time.

I have rarely seen technology transfer happen in this fashion. There is a won-
derful book by Harvard Business School professor Clayton Christiansen called The
Innovators Dilemma.His thesis is technology disruptions are very challenging for the
incumbents. Specifically, it is very difficult for established vendors with old tech-
nology to morph to a new approach without losing their customer base. Hence,
disruptive ideas do not usually find a receptive audience among the established
vendors, and launching a startup to prove one’s ideas is the preferred option.

By mid-1992 I had ended my association with Ingres and a sufficient amount of
time had passed that I was free of my non-compete agreement with the company. I
was ready to start a commercial Postgres company and contacted my friend the
“Tall Shark.” He readily agreed to be involved. What followed was a somewhat
torturous negotiation of terms with the “Head Land Shark,” with me getting on-
the-job training in the terms and conditions of a financing contract. Finally, I
understood what I was being asked to sign. It was a difficult time, and I changed
my mind more than once. In the end, we had a deal, and Postgres had $1 million
in venture capital to get going.

Right away two stars from the academic Ingres team—“Quiet” and “EMP1”—
moved over to help. They were joined shortly thereafter by “Triple Rock,” and we
had a core implementation team. I also reached out to “Mom” and her husband,
the “Short One,” who also jumped on board, and we were off and running, with the
Tall Shark acting as interim CEO. Our initial jobs were to whip the research code
line into commercial shape, convert the query language from QUEL to SQL, write
documentation, fix bugs, and clean up the “cruft” all over the system.

Emeryville, CA, 1993. After a couple of naming gaffes, we chose Illustra, and our
goal was to find customers willing to use (and hopefully pay for) a system from
a startup. We had to find a compelling vertical market, and the one we chose to
focus on was geographic data. Triple Rock wrote a collection of abstract data types
for points, lines, and polygons with the appropriate functions (such as distance
from a point to a line).



28 The Land Sharks Are on the Squawk Box

After an infusion of capital from new investors, including the “Entrepreneur-
Turned-Shark,” we again ran out of money, prompting the phone call from Ken-
nebago noted earlier. Soon thereafter, we were fortunate to be able to hire the
“Voice-of-Experience” as the real CEO, and he recruited “Smooth” to be VP of sales,
complementing “Uptone,” who was previously hired to run marketing. We had a
real company with a well-functioning engineering team and world-class executives.
The future was looking up.

Luddington, MI, Day 38. We walk Boston Bound off the Lake Michigan ferry and
start riding southeast. The endless Upper Midwest is behind us; it is now less than
1,000 miles to Boston! Somehow it is reassuring that we have no more more water
to cross. We are feeling good. It is beginning to look like we might make it.

The High Does Not Last
Ellicottville, NY, Day 49. Today was a very bad day. Our first problem occurred while I
was walking down the stairs of the hotel in Corry, PA, in my bicycle cleats. I slipped
on the marble floor and wrenched my knee. Today, we had only three good legs
pushing Boston Bound along. However, the bigger problem is we hit the Alleghany
Mountains. Wisconsin, Michigan, and Ohio are flat. That easy riding is over, and
our bicycle maps are sending us up and then down the same 500 feet over and over
again. Also, road planners around here do not seem to believe in switchbacks; we
shift into the lowest of our 21 gears to get up some of these hills, and it is exhausting
work. We are not, as you can imagine, in a good mood. While Beth is putting Leslie
to bed, I ask the innkeeper in Ellicottville a simple question, “How do we get to
Albany, NY, without climbing all these hills?”

Emeryville, CA, 1993. Out of nowhere comes our first marketing challenge. It was
clear our “sweet spot” was any application that could be accelerated through ADTs.
We would have an unfair advantage over any other DBMS whenever this was true.
However, we faced a Catch-22 situation. After a few “lighthouse” customers, the
more cautious ones clearly said they wanted GIS functionality from the major GIS
vendors (such as ArcInfo and MapInfo). We needed to recruit application compa-
nies in specific vertical markets and convince them to restructure the inner core
of their software into ADTs—not a trivial task. The application vendors naturally
said, “Help me understand why we should engage with you in this joint project.”
Put more bluntly, “How many customers do you have and how much money can
I expect to make from this additional distribution channel for my product?” That
is, we viewed this rearchitecting as a game-changing technology shift any reason-
able application vendor should embrace. However, application vendors viewed it as
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merely a new distribution channel. This brought up the Catch-22: Without ADTs we
could not get customers, and without customers we could not get ADTs. We were
pondering this depressing situation, trying to figure out what to do, when the next
crisis occurred.

Oakland, CA, 1994. We were again out of money, and the Land Sharks announced
we were not making good progress toward our company goals. Put more starkly,
they would put up additional capital, but only at a price lower than the previous
financing round. We were facing the dreaded “down round.” After the initial (often
painful) negotiation, when ownership is a zero-sum game between the company
team and the Land Sharks, the investors and the team are usually on the same
side of the table. The goal is to build a successful company, raising money when
necessary at increasing stock prices. The only disagreement concerns the “spend.”
The investors naturally want you to spend more to make faster progress, since
that would ensure them an increasing percentage ownership of the company. In
contrast, the team wants to “kiss every nickel” to minimize the amount of capital
raised and maximize their ownership. Resolving these differences is usually pretty
straightforward. When a new round of capital is needed, a new investor is typically
brought in to set the price of the round. It is in the team’s interest to make this
as high as possible. The current investors will be asked to support the round, by
adding their pro-rata share at whatever price is agreed on.

However, what happens if the current investors refuse to support a new round at
a higher price? Naturally, a new investor will follow the lead of the current ones, and
a new lower price is established. At this point, there is a clause in most financing
agreements that the company must ex post facto reprice the previous financing
round (or rounds) down to the new price. As you can imagine, a down round is
incredibly dilutive financially to the team, who would naturally say, “If you want
us to continue, you need to top up our options.” As such, the discussion becomes
a three-way negotiation among the existing investors, the new investors, and the
team. It is another painful zero-sum game.

When the dust settled, the Illustra employees were largely made whole through
new options, the percentage ownership among the Land Sharks had changed only
slightly, and the whole process left a bitter taste. Moreover, management had been
distracted for a couple of months. The Land Sharks seemed to be playing some sort
of weird power game with each other I did not understand. Regardless, Illustra will
live to fight another day.
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The Future Looks Up (Again)
Troy, NY, Day 56. The innkeeper in Ellicottville tells us what was obvious to anybody
in the 19th century moving goods between the eastern seaboard and the middle of
the country. He said, “Ride north to the Erie Canal and hang a right.” After a pleasant
(and flat) ride down the Mohawk Valley, we arrive at Troy and see our first road sign
for Boston, now just 186 miles away. The end is three days off! I am reminded of a
painted sign at the bottom of Wildcat Canyon Road in Orinda, CA, at the start of
the hill that leads back to Berkeley from the East Bay. It says simply “The Last Hill.”
We are now at our last hill. We need only climb the Berkshires to Pittsfield, MA. It
is then easy riding to Boston.

Oakland, CA, 1995. Shortly after our down round and the Catch-22 on ADTs,
serendipity occurred once more. The Internet was taking off, and most enterprises
were trying to figure out what to do with it. Uptone executes a brilliant repositioning
of Illustra. We became the “database for cyberspace,” capable of storing Internet
data like text and images. He additionally received unbelievable airtime by volun-
teering Illustra to be the database for “24 Hours in Cyberspace,” a worldwide effort
by photojournalists to create one Web page per hour, garnering a lot of positive pub-
licity. Suddenly, Illustra was “the new thing,” and we were basking in reflected glory.
Sales picked up and the future looked bright. The Voice-of-Experience stepped on
the gas and we hired new people. Maybe this was the beginning of the widely envied
“hockey stick of growth.” We were asked to do a pilot application for a very large
Web vendor, a potentially company-making transaction. However, we were also in
a bake-off with the traditional RDBMSs.

The Good Times Do Not Last Long
Oakland, CA, 1995.Reality soon rears its ugly head. Instead of doing a benchmark on
a task we were good at (such as geographic search or integrating text with structured
data and images), the Web vendor decided to compare us on a traditional bread-
and-butter transaction-processing use case, in which the goal is to perform as many
transactions per second as you can on a standard banking application. It justified
its choice by saying, “Within every Internet application, there is a business data-
processing sub-piece that accompanies the multimedia requirements, so we are
going to test that first.”

There was immediately a pit in my stomach because Postgres was never en-
gineered to excel at online transaction processing (OLTP). We were focused on
ADTs, rules, and time travel, not on trying to compete with current RDBMSs on
the turf for which they had been optimized. Although we were happy to do trans-
actions, it was far outside our wheelhouse. Our performance was going to be an
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order-of-magnitude worse than what was offered by the traditional vendors we were
competing against. The problem is a collection of architectural decisions I made
nearly a decade earlier that are not easy to undo; for example, Illustra ran as an
operating system process for each user. This architecture was well understood to
be simple to implement but suffers badly on a highly concurrent workload with
many users doing simple things. Moreover, we did not compile query plans aggres-
sively, so our overhead to do simple things was high. When presented with complex
queries or use cases where our ADTs were advantageous, these shortcomings are
not an issue. But when running simple business data processing, we were going to
lose, and lose badly.

We were stuck with the stark reality that we must dramatically improve
transaction-processing performance, which will be neither simple nor quick. I
spent hours with the Short One trying to find a way to make it happen without a
huge amount of recoding, energy, cost, and delay. We drew a blank. Illustra would
have to undergo a costly rearchitecting.

The Stories End
Sutton, MA, Day 59. Massachusetts roads are poorly marked, and we have never seen
more discourteous drivers. Riding here is not pleasant, and we cannot imagine
trying to navigate Boston Bound into downtown Boston, let alone find someplace
where we can access the ocean. We settle instead for finishing at Wollaston Beach in

Wollaston Beach, MA: Day 59
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Quincy, MA, approximately 10 miles south of Boston. After the perfunctory dragging
of our bike across the beach and dipping the front wheel in the surf, we are done.
We drink a glass of champagne at a beachside café and ponder what happens next.

Oakland, CA, February 1996. Serendipity occurs yet again. One of the vendors we
competed against on the Web vendor’s benchmark has been seriously threatened
by the benchmark. It saw Illustra would win a variety of Internet-style benchmarks
hands-down, and Web vendors would have substantial requirements in this area. As
a result, it elected to buy Illustra. In many ways, this was the answer to all our issues.
The company had a high-performance OLTP platform into which we could insert
the Illustra features. It was also a big company with sufficient “throw-weight” to get
application vendors to add ADTs to its system. We consummated what we thought
was a mutually beneficial transaction and set to work putting Illustra features into
its engine.

I will end the Illustra story here, even though there is much more to tell, most of it
fairly dark—a shareholder lawsuit, multiple new CEOs, and ultimately a sale of the
company. The obvious takeaway is to be very careful about the choice of company
you agree to marry.

Why a Bicycle Story?
You might wonder why I would tell this bicycling story. There are three reasons.
First, I want to give you an algorithm for successfully riding across America.

Until (Ocean) {

Get up in the morning;

Ride east;

Persevere, and overcome any obstacles that arise;

}

It is clear that following this algorithm will succeed. Sprinkle in some serendip-
ity if it occurs. Now abstract it a bit by substitutinggoal forOceanandAppropriate
Action for Ride east

Until (Goal) {

Get up in the morning;

Appropriate action;

Persevere, and overcome any obstacles that arise;

}

Since I will be using this algorithm again, I will make it a macro

Make-it-happen (Goal);



Why a Bicycle Story? 33

With this preamble, I can give a thumbnail sketch of my résumé, circa 1988.

Make-it-happen (Ph.D.);

Make-it-happen (Tenure);

Make-it-happen (Ocean);

In my experience, getting a Ph.D. (approximately five years) is an example of
this algorithm at work. There are ups (passing prelims), downs (failing quals the
first time), and a lot of slog through the swamp (writing a thesis acceptable to my
committee). Getting tenure (another five years) is an even less pleasant example of
this algorithm at work.

This introduces the second reason for presenting the algorithm. The obvious
question is, “Why would anybody want to do this bicycle trip?” It is long and
very difficult, with periods of depression, elation, and boredom, along with the
omnipresence of poor food. All I can say is, “It sounded like a good idea, and I
would go again in a heartbeat.” Like a Ph.D. and tenure, it is an example of make-
it-happen in action. The obvious conclusion to draw is I am programmed to search
out make-it-happen opportunities and get great satisfaction from doing so.

I want to transition here to the third reason for telling the bicycle story. Riding
across America is a handy metaphor for building system software. Let me start by
writing down the algorithm for building a new DBMS (see code section 2).

The next question is, “How do I come up with a new idea?” The answer is, “I
don’t know.” However, that will not stop me from making a few comments. From
personal experience, I never come up with anything by going off to a mountaintop
to think. Instead, my ideas come from two sources: talking to real users with real
problems and then trying to solve them. This ensures I come up with ideas that
somebody cares about and the rubber meets the road and not the sky. The second
source is to bounce possibly good (or bad) ideas off colleagues that will challenge
them. In summary, the best chance for generating a good idea is to spend time in
the real world and find an environment (like MIT/CSAIL and Berkeley/EECS) where
you will be intellectually challenged.

Code Section 2.

Until (it works) {

Come up with a new idea;

Prototype it with the help of superb computer scientists;

Persevere, fixing whatever problems come up; always

remembering that it is never too late to throw everything

away;

}
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Code Section 3.

Until (first few customers) {

With shoe leather, find real world users who will say,

"If you build this for real, I will buy it";

}

Recruit seasoned start-up executives;

Recruit crack engineers;

Until (success or run-out-of-money) {

Persevere, fixing whatever problems come up;

}

If your ideas hold water and you have a working prototype, then you can proceed
to phase two, which has a by-now-familiar look (see code section 3).

As with other system software, building a new DBMS is difficult, takes a decade
or so, and involves periods of elation and depression. Unlike bicycling across
America, which takes just muscles and perseverance, building a new DBMS involves
other challenges. In the prototype phase, one must figure out new interfaces, both
internal and to applications, as well as to the operating system, networking, and
persistent storage. In my experience, getting them right the first time is unusual.
Unfortunately, one must often build it first to see how one should have built
it. You will have to throw code away and start again, perhaps multiple times.
Furthermore, everything influences everything else. Ruthlessly avoiding complexity
while navigating a huge design space is a supreme engineering challenge. Making
the software fast and scalable just makes things more difficult. It is a lot like riding
across America.

Commercialization adds its own set of challenges. The software must really
work, generating the right answer, never crashing, and dealing successfully with all
the corner cases, including running out of any computer resource (such as main
memory and disk). Moreover, customers depend on a DBMS to never lose their
data, so transaction management must be bulletproof. This is more difficult than
it looks, since DBMSs are multi-user software. Repeatable bugs, or “Bohrbugs,”
are easy to knock out of a system, leaving the killers, nonrepeatable errors, or
“Heisenbugs.” Trying to find nonrepeatable bugs is an exercise in frustration. To
make matters worse, Heisenbugs are usually in the transaction system, causing
customers to lose data. This reality has generated a severe pit in my stomach
on several occasions. Producing (and testing) system software takes a long time
and costs a lot of money. The system programmers who are able to do this have
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my admiration. In summary, building and commercializing a new DBMS can be
characterized by

Have a good idea (or two or three);

Make-it-happen--for a decade or so;

This brings up the obvious question: “Why would anybody want to do something
this difficult?” The answer is the same as with a Ph.D., getting tenure, or riding
across America. I am inclined to accept such challenges. I spent a decade struggling
to make Postgres real and would do it again in a heartbeat. In fact, I have done it
multiple times since Postgres.

The Present Day
I will finish this narrative by skipping to 2016 to talk about how things ultimately
turned out. For those of you who were expecting this article to be a commen-
tary on current good (and not-so-good) ideas, you can watch my IEEE Interna-
tional Conference on Data Engineering 2015 talk on this topic at http://kdb.
snu.ac.kr/data/stonebraker_talk.mp4 or the video that accompanies this article
in the ACM Digital Library.

Moultonborough, NH, present day. Boston Bound arrived in California the same
way it left, on the roof of our car. It now sits in our basement in New Hampshire
gathering dust. It has not been ridden since that day at Wollaston Beach.

I am still inclined to accept physical challenges. More recently, I decided to
climb all 48 mountains in New Hampshire that are over 4,000 feet. In a softer
dimension, I am struggling to master the five-string banjo.

Leslie is now Director of Marketing for an angel-investor-backed startup in New
York City, whose software incidentally runs on Postgres. She refused to major in
computer science.

Illustra was successfully integrated into the Informix code base. This system is
still available from IBM, which acquired Informix in 2001. The original Illustra code
line still exists somewhere in the IBM archives. The academic Postgres code line
got a huge boost in 1995 when “Happy” and “Serious” replaced the QUEL query
language with a SQL interface. It was subsequently adopted by a dedicated pick-
up team that shepherd its development to this day. This is a shining example of
open source development in operation. For a short history of this evolution, see
Momjian [4]. This open source code line has also been integrated into several
current DBMSs, including Greenplum and Netezza. Most commercial DBMSs have
extended their engines with Postgres-style ADTs.
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I now want to conclude with three final thoughts. First, I want to mention the
other DBMSs I have built—Ingres, C-Store/Vertica, H-Store/VoltDB, and SciDB—
all have development stories similar to that of Postgres. I could have picked any
one of them to discuss in this article. All had a collection of superstar research
programmers, on whose shoulders I have ridden. Over the years, they have turned
my ideas into working prototypes. Other programming superstars have converted
the prototypes into bulletproof working code for production deployment. Skilled
startup executives have guided the small fragile companies with a careful hand.
I am especially indebted to my current business partner, “Cueball,” for careful
stewardship in choppy waters. Moreover, I want to acknowledge the Land Sharks,
without whose capital none of this would be possible, especially the “Believer,” who
has backed multiple of my East Coast companies.

I am especially indebted to my partner, Larry Rowe, and the following 39 Berke-
ley students and staff who wrote Postgres: Jeff Anton, Paul Aoki, James Bell, Jennifer
Caetta, Philip Chang, Jolly Chen, Ron Choi, Matt Dillon, Zelaine Fong, Adam Glass,
Jeffrey Goh, Steven Grady, Serge Granik, Marti Hearst, Joey Hellerstein, Michael
Hirohama, Chin-heng Hong, Wei Hong, Anant Jhingren, Greg Kemnitz, Marcel
Kornacker, Case Larsen, Boris Livshitz, Jeff Meredith, Ginger Ogle, Mike Olson,
Nels Olsen, LayPeng Ong, Carol Paxson, Avi Pfeffer, Spyros Potamianos, Sunita
Surawagi, David Muir Sharnoff, Mark Sullivan, Cimarron Taylor, Marc Teitelbaum,
Yongdong Wang, Kristen Wright, and Andrew Yu.

Second, I want to acknowledge my wife, Beth. Not only did she have to spend
two months looking at my back as we crossed America, she also gets to deal with
my goal orientation, desire to start companies, and, often, ruthless focus on “the
next step.” I am difficult to live with, and she is long-suffering. I am not sure she
realizes she is largely responsible for keeping me from falling off my own personal
cliffs.

Third, I want to acknowledge my friend, colleague, and occasional sounding
board, Jim Gray, recipient of the ACM A.M. Turing Award in 1998. He was lost at sea
nine years ago on January 28, 2007. I think I speak for the entire DBMS community
when I say: Jim: We miss you every day.
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Make it happen.

—Michael Stonebraker

Synopsis
Michael Stonebraker is an American computer scientist, teacher, inventor, tech-
nology entrepreneur, and intellectual leader of the database field for the last nearly
40 years. With fellow professor Eugene Wong of the University of California at
Berkeley, he developed the first relational database management system (RDBMS)
prototype (Ingres) that, together with IBM’s System R and Oracle’s Oracle database,
proved the viability of the RDBMS market, and made many lasting contributions
to the design of RDBMS systems, most notably developing the Object-Relational
model that became the de facto way of extending database systems with abstract
data types (ADTs), as a part of his post-Ingres Postgres project.

A leading contributor to both research and industry, Stonebraker took a distinc-
tively different approach to database research: He emphasized targeting real-life
problems over more abstract, theoretical research. His research is notable for its
focus on open, working academic prototypes and on his repeated efforts to prove
out his ideas through commercialization: founding or co-founding nine compa-
nies based on his research. Stonebraker has of this book produced more than 300
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research papers1 (see “The Collected Works of Michael Stonebraker,” p. 607), in-
fluenced hundreds of students, and advised 31 Ph.D. students (see “Michael Stone-
braker’s Student Genealogy,” p. 52), many of whom went on to successful academic
careers or to found successful startup companies on their own.

More than any other person, Stonebraker made Edgar (Ted) Codd’s vision [Codd
1970] of data independence and the relational database model a reality, leading to
the $55 billion-plus market that exists today. Stonebraker-originated ideas appear
in virtually every relational database product on the market, as he and others have
taken his open-source code, refined it, built on it, and extended it. As a result of
this, Stonebraker has had a multiplier effect on the relational database market.
For his pioneering ideas, Stonebraker received the 2014 ACM A.M. Turing Award
citing his “fundamental contributions to the concepts and practices underlying
modern database systems,” many of which were developed as a part of the Ingres
and Postgres projects.

Early Years and Education2

Michael “Mike” Stonebraker was born on October 11, 1943, in Newburyport, Mas-
sachusetts, the middle of three sons born to an engineer and a schoolteacher. He
grew up in Milton Mills, New Hampshire, near the Maine border. His parents placed
a high emphasis on education; when Stonebraker was ten, his father moved the
family to Newbury, Massachusetts, home to the prestigious Governor’s Academy
(formerly Governor Dummer Academy). As Newbury had no local high school at
the time, the town would pay day-student tuition for any local residents who could
qualify academically, resulting in all three Stonebraker boys attending the school.

Stonebraker excelled at mathematics and the sciences in high school, and upon
graduating in 1961, enrolled in Princeton University. He graduated with a bache-
lor’s degree in Electrical Engineering from Princeton in 1965. There were no com-
puter classes at Princeton nor a computer science major at the time.

As a young man graduating college in 1965 during the Vietnam War, Stonebraker
recalls in the “Oral History of Michael Stonebraker” [Grad 2007] that he had four
life choices: “go to Vietnam, go to Canada, go to jail, or go to graduate school.” The
decision was obvious: backed by a National Science Foundation (NSF) fellowship,
he enrolled in graduate school at the University of Michigan at Ann Arbor, joining

1. Source: DBLP (http://dblp.uni-trier.de/pers/hd/s/Stonebraker:Michael. Last accessed April 8,
2018.

2. This section and the next draw on the excellent resource by Grad [2007].

http://dblp.uni-trier.de/pers/hd/s/Stonebraker:Michael
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Table 1.1 The academic positions of Michael Stonebraker

Assistant Professor of
Computer Science

University of California at Berkeley 1971–1976

Associate Professor University of California at Berkeley 1976–1982

Professor University of California at Berkeley 1982–1994

Professor of the
Graduate School

University of California at Berkeley 1994–1999

Senior Lecturer Massachusetts Institute of Technology 2000–2001

Adjunct Professor Massachusetts Institute of Technology 2002–Present

the Computer Information and Control Engineering (CICE) program, a joint pro-
gram in engineering focused on computer science. He received a M.Sc. in CICE in
1967.

With his options no better in 1967, he decided to stay on at Ann Arbor to get
his Ph.D., which he received in 1971 for his doctoral dissertation “The Reduction
of Large Scale Markov Models for Random Chains” [Stonebraker 1971c]—which
he describes as theoretical research with limited applications. (Indeed, one won-
ders if his focus on applicability in his later work wasn’t a reaction to the lack of
applicability of his early research.)

Academic Career and the Birth of Ingres
In 1971, Stonebraker was hired as an assistant professor at the University of Cal-
ifornia at Berkeley to work on the application of technology to public systems in
the Electrical Engineering and Computer Science (EECS) Department. He would
go on to spend the next 28 years as an influential and highly productive profes-
sor at UC Berkeley (see “Michael Stonebraker’s Student Genealogy,” p. 52), retiring
as professor of the graduate school in 1999 before moving east to join MIT (see
Table 1.1).

As a new assistant professor, he soon discovered that getting data for his public-
systems work was very hard, and that his interest in Urban Dynamics—modeling
and applying data to predicting growth in urban areas—wasn’t going to help him
“get famous.” [Grad 2007]

While Stonebraker was casting around for more fame-carrying material, Profes-
sor Eugene Wong suggested that he read Ted Codd’s seminal paper. Stonebraker
also read the CODASYL (Conference on Data Systems Languages) report [Metaxides
et al. 1971] but dismissed the latter as far too complicated. He had a better idea.
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In the “Oral History of Michael Stonebraker” [Grad 2007], he recalled:

. . . I couldn’t figure out why you would want to do anything that complicated
and Ted’s work was simple, easy to understand. So it was pretty obvious that the
naysayers were already saying nobody who didn’t have a Ph.D. could understand
Ted Codd’s predicate calculus or his relational algebra. And even if you got past
that hurdle, nobody could implement the stuff efficiently.

And even if you got past that hurdle, you could never teach this stuff to COBOL
programmers. So it was pretty obvious that the right thing to do was to build a
relational database system with an accessible query language. So Gene [Wong]
and I set out to do that in 1972. And you didn’t have to be a rocket scientist to
realize that this was an interesting research project.

This project eventually became the Ingres system (see Chapters 5 and 15).
The challenges faced by Stonebraker in the Ingres project were daunting: they
amounted to nothing less than developing automatic programming techniques
to convert declarative query specifications into executable algorithms that could
be evaluated as efficiently as code written by skilled programmers on the lead-
ing commercial systems of the day—all of this over a new, unproven data model.
Remarkably, Stonebraker at the time was an assistant professor at UC Berkeley,
starting the project just two years after completing his Ph.D., and, along with the
System R team at IBM (see Chapter 35), developing the ideas and approaches that
made relational databases a reality. Many of the Ingres ideas and approaches are
still used by every relational database system today, including the use of views and
query rewriting for data integrity and access control, persistent hash tables as a
primary access method, primary-copy replication control, and the implementa-
tion of rules/triggers in database systems. Additionally, experimental evaluation
within the Ingres project provided critical insights into issues involved in building
a locking system that could provide satisfactory transaction performance.

Because the Ingres and System R teams communicated closely during the de-
velopment of these systems, it is sometimes difficult to tease apart the individual
contributions; they both received the ACM Software System Award in 1988 for their
pioneering work. One of the central ideas invented by Stonebraker in Ingres was
the use of query modification to implement views. A view is a virtual table in a data-
base that is not physically present but is instead defined as a database query. The
idea of views appears nearly concurrently in papers from Ingres and the System
R project, but Stonebraker developed the algorithms that made their implemen-
tation practical and that are still the way databases support them today. He also
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showed that these techniques could be used for preserving database access control
and integrity.

Stonebraker’s ideas first appear in his 1974 paper “Access Control in a Rela-
tional Database Management System By Query Modification” [Stonebraker and
Wong 1974b] and are later developed in his 1976 paper “Implementation of In-
tegrity Constraints and Views By Query Modification” [Stonebraker 1975]. His key
idea is to implement views using the rewriting technique he called “interaction
modification”—essentially rewriting queries over views into queries over the phys-
ical tables in the database. This is an extremely powerful and elegant implementa-
tion idea that has been adopted for many other features besides views, including
authorization, integrity enforcement, and data protection.

The Post-Ingres Years
After Ingres, Stonebraker and his students began working on the follow-on Postgres
project in the 1980s (see Chapter 16). Like Ingres, Postgres was hugely influential.
It was the first system to support the Object-Relational data model, which allows
the incorporation of abstract data types into the relational database model. This
enabled programmers to “move code to data,” embedding sophisticated abstract
data types and operations on them directly inside of the database.

Stonebraker described this model, including extensions to the language and
necessary modifications to the database implementation, in his 1986 paper “Object
Management in Postgres Using Procedures” [Stonebraker 1986c], which included
insights learned through earlier experiments with “user-defined functions” in In-
gres in the early 1980s. In contrast to the prevailing ideas of the time that proposed
integrating persistent objects into object-oriented programming languages, Stone-
braker’s idea allowed the relational model to thrive while obtaining the benefits
of a variety of rich new data types. Again, this idea is used in every modern data-
base system. It has also become increasingly important in recent years, with all
the buzz about “Big Data” as database vendors have grown their systems into “an-
alytic platforms” that support complex statistics, machine learning, and inference
algorithms. These features are provided using the Object-Relational interfaces pio-
neered by Stonebraker. Like Ingres, the Postgres system explored a number of other
radical ideas that were well before their time, including notions of immutable data
and historical “time travel” queries in databases, and the use of persistent memory
to implement lightweight transaction schemes.

In both Ingres and Postgres, the impact of Stonebraker’s ideas was amplified
tremendously by the fact that they were embodied in robust implementations that
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were widely used. These systems were so well engineered that they form the basis of
many modern database systems. For example, Ingres was used to build Sybase SQL
Server, which then became Microsoft SQL Server, and Postgres has been used as the
basis for many of the new commercial databases developed over the last 20 years,
including those from Illustra, Informix, Netezza, and Greenplum. For a complete
view of Ingres’ impact on other DBMSs, see the RDBMS genealogy in Chapter 13.

Industry, MIT, and the New Millennium
After the Postgres project, Stonebraker became heavily involved in industry, most
notably at Illustra Information Technologies, Inc., turning ideas from the Postgres
project into a major commercial database product. In 1997, Illustra was acquired by
Informix, Inc., which brought on Stonebraker as CTO until his departure in 2000.

In 1999, Stonebraker moved to New Hampshire, and in 2001 started as an ad-
junct professor at MIT. Despite already having compiled an impressive array of
academic and commercial successes, Stonebraker launched a remarkable string of
research projects and commercial companies at the start of the millennium, begin-
ning with the Aurora and StreamBase projects (see Chapter 17), which he founded
with colleagues from Brandeis University, Brown University, and MIT. The projects
explored the idea of managing streams of data, using a new data model and query
language where the focus was on continuously arriving sequences of data items
from external data sources such as sensors and Internet data feeds. Stonebraker
co-founded StreamBase Systems in 2003 to commercialize the technology devel-
oped in Aurora and Borealis. StreamBase was acquired by TIBCO Software Inc. in
2013.

In 2005, again with colleagues from Brandeis, Brown, and MIT, Stonebraker
launched the C-Store project, where the aim was to develop a new type of database
system focused on so-called data analytics, where long-running, scan-intensive
queries are run on large, infrequently updated databases, as opposed to trans-
actional workloads, which focus on many small concurrent reads and writes to
individual database records. C-Store was a shared-nothing, column-oriented data-
base designed for these workloads (see Chapter 18). By storing data in columns,
and accessing only the columns needed to answer a particular query, C-Store was
much more input/output-efficient (I/O-efficient) than conventional systems that
stored data in rows, offering order-of-magnitude speedups vs. leading commer-
cial systems at the time. That same year, Stonebraker co-founded Vertica Systems,
Inc., to commercialize the technology behind C-Store; Vertica Systems was acquired
in 2011 by Hewlett-Packard, Inc. Although Stonebraker wasn’t the first to propose
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column-oriented database ideas, the success of Vertica led to a proliferation of com-
mercial systems that employed column-oriented designs, including the Microsoft
Parallel Data Warehouse project (now subsumed into Microsoft SQL Server as Col-
umn Store indexes) and the Oracle In-Memory Column Store.

After C-Store, Stonebraker continued his string of academic and industrial en-
deavors, including the following.

. In 2006, the Morpheus project, which became Goby, Inc., focused on a data
integration system to transform different web-based data sources into a
unified view with a consistent schema.

. In 2007, the H-Store project, which became VoltDB, Inc., focused on online
transaction processing (see Chapter 19).

. In 2008, the SciDB project, which became Paradigm4, Inc., focused on array-
oriented data storage and scientific applications (see Chapter 20).

. In 2011, the Data Tamer project, which became Tamr Inc., focused on
massive-scale data integration and unification (see Chapter 21).

Stonebraker’s Legacy
Stonebraker’s systems have been so influential for two reasons.

First, Stonebraker engineered his systems to deliver performance and usability
that allowed them to still live on 40 years later. The engineering techniques nec-
essary to achieve this are succinctly described in two extremely influential systems
papers, the 1976 paper “The Design and Implementation of Ingres” [Stonebraker
et al. 1976b] and the 1986 paper “The Implementation of Postgres” [Stonebraker
et al. 1990b]. These papers have taught many generations of students and practi-
tioners how to build database systems.

Second, Stonebraker systems were built on commodity Unix platforms and
released as open source. Building these systems on “low end” Unix machines
required careful thinking about how database systems would use the operating
system. This is in contrast to many previous database systems that were built as
vertical stacks on “bare metal.” The challenges of building a database system on
Unix, and a number of proposed solutions, were described in Stonebraker’s 1986
paper “Operating System Support for Data Management” [Stonebraker and Kumar
1986]. The Ingres and Postgres prototypes and this seminal paper pushed both
OS implementers and database designers toward a mutual understanding that has
become key to modern OS support of the long-running, I/O-intensive services that
underpin many modern scalable systems. Furthermore, by releasing his systems
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as open source, Stonebraker enabled innovation in both academia and industry, as
many new databases and research papers were based on these artifacts. For more
on the impact of Stonebraker’s open-source systems, see Chapter 12.

In summary, Stonebraker is responsible for much of the software foundation
of modern database systems. Charlie Bachman, Ted Codd, and Jim Gray made
monumental contributions to data management, earning each of them the Turing
Award. Like them, Stonebraker developed many of the fundamental ideas used in
every modern relational database system. However, more than any other individual,
it was Stonebraker who showed that it was possible to take the relational model
from theory to practice. Stonebraker’s software artifacts continue to live on as
open-source and commercial products that contain much of the world’s important
data. His ideas continue to impact the design and features of many new data
processing systems—not only relational databases but also the “Big Data” systems
that have recently gained prominence. Remarkably, Stonebraker continues to be
extremely productive and drive the research agenda for the database community
(see Chapter 3), contributing innovative research (see Chapters 22 and 23), and
having massive intellectual and commercial impact through his work on stream
processing, column stores, scientific databases, and transaction processing. These
are the reasons Stonebraker won the ACM A.M. Turing Award.

Companies
As of this writing, Stonebraker had founded/co-founded nine startup companies to
commercialize his academic systems.

. Relational Technology, Inc., founded 1980; became Ingres Corporation
(1989); acquired by Ask (1990), acquired by Computer Associates (1994);
spun out as a private company Ingres Corp. (2005); acquired VectorWise
(2010); name change to Actian (2011); acquired Versant Corporation (2012);
acquired Pervasive Software (2013); acquired ParAcceJ (2013). In 2016, Actian
phased out ParAccel, VectorWise, and DataFlow, retaining Ingres.

. Illustra Information Technologies, founded 1992; acquired in 1996 by In-
formix, where Stonebraker was Chief Technology Officer 1996–2000, and was
later acquired by IBM.

. Cohera Corporation, founded 1997 (acquired by PeopleSoft).

. StreamBase Systems, founded 2003 (acquired by TIBCO in 2013).

. Vertica Systems, founded 2005 (acquired by HP in 2011).
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. Goby, founded in 2008 (acquired by Telenauv in 2011).

. VoltDB, founded in 2009.

. Paradigm4, founded in 2010.

. Tamr, founded in 2013.

Awards and Honors
See Table 1.2 for further information on Michael Stonebraker’s awards and honors.

Service
See Table 1.3 for further details on Michael Stonebraker’s service.

Table 1.2 Awards and honors of Michael Stonebraker

ACM Software System Award 1988

ACM SIGMOD Innovation Award 1994

ACM Fellow 1993

ACM SIGMOD “Test of Time” Award (best paper, 10 years later) 1997, 2017

National Academy of Engineering Elected 1998

IEEE John von Neumann Medal 2005

American Academy of Arts and Sciences 2011

Alan M. Turing Award 2014

Table 1.3 Service of Michael Stonebraker

Chairman of ACM SIGMOD 1981–1984

General Chairperson, SIGMOD 1987 1987

Program Chairperson SIGMOD 1992 1992

Organizer, the Laguna Beach Workshop 1988

Organizer, the Asilomar DBMS Workshop 1996

SIGMOD Awards Committee 2001–2005

Co-founder, CIDR Conference on Visionary DBMS Research
(with David J. DeWitt and Jim Gray)

2002

ACM System Software Awards Committee 2006–2009



Advocacy
In addition to his academic and industrial accomplishments, Stonebraker has been
a technical iconoclast, acted as the de facto leader of the database community, and
served as a relentless advocate for relational databases. Sometimes controversially,
he’s been unafraid to question the technical direction of a variety of data-oriented
technologies, including:

. Advocated in favor of the Object-Relational data model over the object-
oriented approach pursued by many other research groups and companies
in the mid-1980s.

. Argued against the traditional idea of the “one-size-fits-all” database in favor
of domain specific designs like C-Store, H-Store, and SciDB [Stonebraker and
Çetintemel 2005].

. Criticized weaker data management solutions in the face of vocal opposi-
tion, including NoSQL [Stonebraker 2010a, Stonebraker 2011b], MapReduce
[DeWitt and Stonebraker 2008, Stonebraker et al. 2010], and Hadoop [Barr
and Stonebraker 2015a].

. Co-founded the biennial Conference on Innovative Data Systems Research
(CIDR) to address shortcomings of existing conferences, and created many
special-purpose workshops.

Personal Life
Stonebraker is married to Beth Stonebraker,3 née Rabb. They have two grown
daughters, Lesley and Sandra. They have homes in Boston’s Back Bay (where he
bicycles between home, MIT CSAIL, and his Cambridge startups) and on Lake
Winnipesaukee in New Hampshire, where he has climbed all forty-eight 4,000-foot
mountains and plies the lake waters in his boat. They are contributors to many
causes in both communities. He plays the five-string banjo and (if you ask nicely) he
may arrange a performance of his bluegrass pickup band, “Shared Nothing,” with
fellow musicians and computer scientists John “JR” Robinson and Stan Zdonik (the
latter of Brown University).
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Lehman, Tobin
   (UW, 1986)
McAuliffe, Mark
   (UW, 1996)
Richardson, Joel
   (UW, 1989)
Shafer, John
   (UW, 1998)
Shekita, Eugene
   (UW, 1990)
Srinivasan,
   Venkatachary
   (UW, 1992)
Zaharioudakis,
   Markos
   (UW, 1997)

Carey, Michael
(UCB, 1983)

Michael Ralph Stonebraker
(University of Michigan, 1971)

Hanson, Eric
(UCB, 1987)

Duchin, Faye
(UCB, 1973)

Jiang, Haifeng
   (HKUST, 2004)
Liu, Guimei
   (HKUST, 2005)
Lou, Wenwu
   (HKUST, 2005)
Meretakis, Dimitrios
   (HKUST, 2002)
Wang, Wei 
   (HKUST, 2004)

Bedathur,
   Srikanta
   (IISc, 2006)
George, Binto
   (IISc, 1998)
Kumaran, A.
   (IISc, 2005)
Pudi, Vikram
   (IISc, 2003)
Ramanath, Maya
   (IISc, 2006)
Suresha
   (IISc, 2007)

Zhou, Xuan
   (NUS, 2005)

Pang, Hwee Hwa
(UW, 1994)

Lu, Hong Jun
(UW, 1985)

Franklin, Michael
(UW, 1993)

Haritsa, Jayant
(UW, 1991)

Aksoy, Demet
   (UMD, 2000)
Altinel, Mehmet
   (METU, 2000)
Chandrasekaran, Sirish
   (UCB, 2005)
Denny, Matthew
   (UCB, 2006)
Diao, Yanlei
   (UCB, 2005)
Jeffery, Shawn
   (UCB, 2008)
Jonsson, Bjorn
   (UMD, 1999)
Krishnamurthy, Sailesh
   (UCB, 2006)
Liu, David
   (UCB, 2007)
Urhan, Tolga
   (UMD, 2002)
Wang, Zhe
   (UCB, 2011)

Madden, Samuel*
(UCB, 2003)

Jones, Evan
   (MIT, 2011)
Marcus, Adam
   (MIT, 2012)
Thiagarajan,
   Arvind
   (MIT, 2011)

Thomson,
   Alexander
   (Yale, 2013)

Kuper,
   Lindsey
   (IU, 2015)

Abadi, Daniel
(MIT, 2008)

Newton, Ryan
(MIT, 2009)

Al-Fayoumi, Nabeel (UF, 1998)
Bodagala, Sreenath (UF, 1998)
Carnes, Tony (UF, 1999)
Kandil, Mokhtar (UF, 1998)
Park, Jongbum (UF, 1999)

He, Lining (RPI, 2007)
Julia, Roxana (RPI, 2004)
Kugelmass, Sharon
    (NYU, 1989)
Vazquez, Jose (RPI, 2001)

Post-Doctoral Fellows
Jennie Rogers (Duggan)
   (MIT, 2013–2015)
Dong Deng
   (MIT, 2016–present)
Raul Castro Fernandez
   (MIT, 2016–present, 
   co-supervised with
   Sam Madden)

Mike Stonebraker’s Student Genealogy Chart



Ellard, Daniel
   (Harv, 2004)
Endo, Yasuhiro
   (Harv, 2000)
Fedorova,
   Alexandra
   (Harv, 2006)
Fischer, Robert
   (Harv, 2003)
Ledlie, Jonathan
   (Harv, 2007)
Magoutis,
   Konstantinos
   (Harv, 2003)
Muniswamy-Reddy,
   Kiran-Kumar
   (Harv, 2010)
Shneidman, Jeffrey
   (Harv, 2008)
Small, Christopher
   (Harv, 1998)
Smith, Keith
   (Harv, 2001)
Sullivan, David
   (Harv, 2003)
Weber, Griffin
   (Harv, 2005)
Zhang, Xiaolan
   (Harv, 2001)

Alvaro, Peter
   (UCB, 2015)
Bailis, Peter
   (UCB, 2015)
Chen, Kuang
   (UCB, 2011)
Chu, David
   (UCB, 2009)
Condie, Tyson
   (UCB, 2011)
Conway, Neil
   (UCB, 2014)
Huebsch, Ryan
   (UCB, 2008)
Kornacker, Marcel
   (UCB, 2000)
Matthews, Jeanna
   (UCB, 1999)
Meliou, Alexandra
   (UCB, 2009)
Raman, Vijayshankar
   (UCB, 2001)
Reiss, Frederick
   (UCB, 2006)
Shah, Mehul
   (UCB, 2004)
Thomas, Megan
   (UCB, 2003)
Wang, Zhe
   (UCB, 2011)

Seltzer, Margo
(UCB, 1992)

Sellis, Timos
(UCB, 1986)

Sarawagi, Sunita
(UCB, 1996)

Koubarakis,
Manolis

(NTUA, 1994)

Papadias,
Dimitris
(NTUA)

Hellerstein, Joseph
(UW, 1995)

Lin, Chih-Chen
    (UMD, 1990)
Shim, Kyuseok
    (UMD, 1993)
Simitsis, Alkis
    (NTUA, 2004)
Skiadopoulos, 
    Spiros
    (NTUA, 2002)

Kalnis,
    Panagiotis
    (HKUST, 2002)
Mamoulis,
  Nikos
    (HKUST, 2000)
Papadopoulos,
  Stavros
    (HKUST, 2011)

Kotsifakos,
   Evangelos
   (UniPi, 2010)
Marketos,
   Gerasimos
   (UniPi, 2009)

Tryfonopoulos,
   Christos
   (UoC, 2006)

Kumar, Ashwin
   (UMD, 2014)
Shamanna,
   Bhargav
   (UMD, 2011)

Jones, Evan
   (MIT, 2011)
Marcus, Adam
   (MIT, 2012)
Thiagarajan,
   Arvind
   (MIT, 2011)

Thomson,
   Alexander
   (Yale, 2013)

Kuper,
   Lindsey
   (IU, 2015)

Lin, Dong
   (UPenn, 2015)
Liu, Changbin
   (UPenn, 2012)
Liu, Mengmeng
   (UPenn, 2016)
Mao, Yun
   (UPenn, 2008)
Sherr, Micah
   (UPenn, 2009)
Wang, Anduo
   (UPenn, 2013)
Yuan, Yifei
   (UPenn, 2016)
Zhang, Zhuoyao
   (UPenn, 2014)
Zhou, Wenchao
   (UPenn, 2012)

Theodoridis,
Yannis

(NTUA, 1996)

Deshpande, Amol
(UCB, 2004)

Madden, Samuel*
(UCB, 2003)

Abadi, Daniel
(MIT, 2008)

Newton, Ryan
(MIT, 2009)

Loo, Boon Thau
(UCB, 2006)

Godbole,
   Shantanu
   (IITB, 2006)
Gupta, Rahul
   (IITB, 2011)

Notes: Names in blue boxes have no descendants.
*Samuel Madden is a descendent of both Michael Franklin and Joseph Hellerstein. 
Harv = Harvard University; HKUST = Hong Kong University of Science and Technology; IISc = Indian Institute of Science; 
IITB = Indian Institute of Technology, Bombay; IU = Indiana University; METU = Middle East Technical University; 
MIT = Massachusetts Institute of Technology; NTUA = National Technical University of Athens; NUS = National University 
of Singapore; NYU = New York University; RPI = Rensselaer Polytechnic Institute; UCB = University of California, Berkeley; 
UF = University of Florida; UMD = University of Maryland, College Park; UniPi = University of Piraeus; UoC = University 
of Crete; UPenn = University of Pennsylvania; UW = University of Wisconsin, Madison; Yale = Yale University.
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Five generations of database researchers from the Stonebraker Student Genealogy chart
are captured in this photo, taken at UC Irvine’s Beckman Center (NAE West) in 2013. From
left are Michael Stonebraker; Michael J. Carey of UC Irvine (Ph.D. student of Stonebraker
when he was at UC Berkeley); Michael J. Franklin, Chairman of the University of Chicago’s
Department of Computer Science (Ph.D. student of Carey when he was at University of
Wisconsin); Samuel Madden of MIT CSAIL (Ph.D. student of Franklin when he was at
UC Berkeley); and Daniel Abadi of the University of Maryland, College Park (former Ph.D.
student of Madden). The first three plan to work their way down the chain to get the
others to legally change their names to “Mike.”
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2Mike Stonebraker Speaks
Out: An Interview
Marianne Winslett

Welcome to ACM SIGMOD Record’s series of interviews with distinguished mem-
berstex of the database community.1 I’m Marianne Winslett, and today we are at
Lake Winnipesaukee in New Hampshire, USA. I have here with me Michael Stone-
braker, who is a serial entrepreneur and a professor at MIT, and before that for
many years at Berkeley. Mike won the 2014 Turing Award for showing that the rela-
tional model for data was not just a pipe dream, but feasible and useful in the real
world. Mike’s Ph.D. is from the University of Michigan. So, Mike, welcome!

Michael Stonebraker: Thank you, Marianne.

Marianne Winslett: Thirty-five years ago, you told a friend that winning the Turing
Award would be your proudest moment. While ambition was hardly the only factor
in your success, I think that being so ambitious would have made a huge difference
from day one.

Stonebraker: I think that if you decide to become an assistant professor, you’ve
got to be fanatically ambitious, because it’s too hard otherwise. If you’re not just
driven—people who aren’t really driven fail. The professors I know are really driven
to achieve. Those who aren’t go do other things.

Winslett: Would that be specific to Berkeley and MIT? Or you think for computer
science professors in general?

Stonebraker: I think that if you’re at any big-name university—Illinois is no
exception—that it’s publish or perish, and the only way to get tenure is to really
be driven. Otherwise it’s just too hard.

1. A video version of this conversation is also available at www.gmrtranscription.com.
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Winslett: That’s true, but publishing is not the same thing as having impact, and
you’ve had a lot of impact. Are there other character traits that you see in students,
like competitiveness, that have been a big factor in the impact they’ve had in their
careers?

Stonebraker: My general feeling is that you have to be really driven. Furthermore, I
think if you’re not at one of two or three dozen big-name universities, it’s hard to
really have impact because the graduate students you have aren’t that good. I think
you’ve got to have good graduate students or it’s very difficult to succeed.

Anyone who works for me has to learn how to code, even though I’m horrible at
coding, because I make everybody actually do stuff rather than just write theory. In
our field, it’s really hard to have an impact just doing paper-and-pencil stuff.

Winslett: You couched your advice in terms of advice for professors. Would it be
different for people in industry or at a research lab in industry?

Stonebraker: There are some exceptions, but I think by and large, the people who’ve
made the biggest impact have been at universities.

Industrial research labs have two main problems. The first one is that the best
way to build prototypes is with a chief and some Indians, and that generally doesn’t
exist at industrial research labs. I think it’s a marvel that System R managed to put
together nearly a dozen chiefs and get something to work.

Problem two is that if you’re at a big-name university, if you don’t bring in
money you can’t get anything done. You have to be entrepreneurial, you’ve got to
be a salesman, you’ve got to raise money, and those are characteristics you don’t
have to have at an industrial research lab. The really aggressive people self-select
themselves into universities.

Winslett: As one of my other jobs (co-editor-in-chief of ACM Transactions on the
Web), I go through the major conferences that are related in any way to the Web
and look at the best paper prize winners. It is amazing how many of those now come
from industry.

Stonebraker: Essentially all the contributions to Web research involve big data, and
the Internet companies have all the data and they don’t share it with academia. I
think it’s very difficult to make significant contributions in Web research without
being at a Web company. In hardware, in the Web—there are definitely areas where
it’s hard to make a contribution in academia.

Winslett: But in the infrastructure side of databases, you think it’s still possible
to have strong impact as an academic researcher. You don’t have to go where the
data is.
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Stonebraker: Right. The thing I find really interesting is that if you look at the
contributions that have come from the database companies, they’re few and far
between. Good ideas still come primarily from universities. However, there are
storm clouds on the horizon. For whatever reason, companies are happy to let
the vendor look at their data, but they don’t want to share it with anybody else.
My favorite example is that I was looking for data on database crashes—why do
database systems crash?

I had a very large whale who was willing to share their logs of database crashes.
That went down the tubes because number one, the company didn’t want people to
know how low their uptime was, and number two, their vendor didn’t want people
to know how often they crashed. I think the trouble with operational data is that it
tends to put egg on somebody’s face and that makes it difficult.

Winslett: I agree completely, so how do you still manage to have an impact coming
from the academic side?

Stonebraker: I think that the easiest way to have an impact is to do something
interesting and then get venture capital backing to turn it into something real.
Ingres actually really worked. Postgres really worked, but every system I’ve built
since then just barely limped along because it got too difficult. You get a prototype
that just barely works and then you get VC money to make it real and then you go
and compete in the marketplace against the elephants.

There’s a fabulous book by Clayton Christensen called The Innovator’s Di-
lemma. Basically, it says that if you’re selling the old technology, it’s very difficult to
morph selling the new technology without losing your customer base. This makes
the large database companies not very interested in new ideas, because new ideas
would cannibalize their existing base. If you want to make a difference, you either
try to interest a database company in what you’re doing, or you do a startup. If you
don’t do one or the other, then I think your impact is limited. Everyone I know is
interested in starting a company to make a difference. To get your ideas really into
the world, that’s the only way to do it.

Winslett: With the Turing Award already in hand, what else would you like to
accomplish in your career?

Stonebraker: At this point I’m 73 years old. I don’t know of any 80-year-old re-
searchers who are still viable, and so my objective is very simple, to stay viable as
long as I can, and to hopefully realize when I’ve fallen off the wagon and gracefully
retire to the sidelines. I’m just interested in staying competitive.
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Winslett: Regarding staying competitive: One of your colleagues says that “Mike is
notorious for only liking his own ideas, which is certainly justifiable because he
is often right.” Tell me about a time you changed your mind on a major technical
matter.

Stonebraker: I think my biggest failure was that I was a huge fan of distributed data-
bases in the 1970s and the ’80s and even in the ’90s, and there’s no commercial
market for that stuff. Instead there’s a gigantic market for parallel database sys-
tems, which are distributed database systems with a different architecture, and I
didn’t realize that that was where the big market was. I just missed that completely.
I could’ve written Gamma, but I didn’t. That was a major theme that I missed com-
pletely, and it took me a very long time to realize that there really is no market for
distributed database systems for all kinds of good reasons. At the end of the day,
the real world is the ultimate jury and I was slow to realize that there was no market.

Winslett: You spent decades pooh-poohing specialized data management tools
such as object databases and vertical stores. Then in the 2000s, you started arguing
that one size does not fit all. Why did you change your mind?

Stonebraker: In the 1980s, there was only one market for databases. It was business
data processing, and for that market the relational model seems to work very well.
After that, what happened was that all of a sudden there were scientific databases.
All of a sudden there were Web logs. These days, everyone on the planet needs
a database system. I think the market has broadened incredibly since the ’80s
and in the non-business-data-processing piece of the market, sometimes relational
databases are a good idea and sometimes they’re not. That realization was market-
driven. I changed my mind based on the market being very different.

Winslett: Was there a particular moment when that happened? Something you saw
that made you think, “We have to diversify?”

Stonebraker: Let me generalize that question a bit: Where do good ideas come
from? I have no clue. They just seem to happen. I think the way to make them
happen best is to hang around smart people, talk to lots and lots of people, listen
to what they say. Then slowly something sinks in and then something happens.

For example, a couple of years before we wrote H-Store, I had talked to a VC
who said, “Why don’t you propose a main memory database system for OLTP?”
And I said, “Because I don’t have a good idea for how to do it.” But that generated
the seed, the realization that somebody was interested in that topic. Eventually the
ideas came, and we built H-Store.
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I don’t know when this happens or how it happens. I live in terror of not having
any more good ideas.

Winslett: How many different forms of data platform would be too many?

Stonebraker: There will certainly be main memory OLTP systems that are mostly
going to be row stores, and there will certainly be column stores for the data
warehouse market.

My suspicion is that the vast majority of scientific databases are array-oriented
and they’re doing complex codes on them. My suspicion is that relational database
systems are not going to work out very well there and that it would be something
else, maybe an array store, who knows? In complex analytics, singular value de-
composition, linear regression, all that stuff, which is the operations those kinds
of folks want to do on largely array-oriented data, the jury is out as to how that’s
going to be supported.

I’m not a huge fan of graph-based database systems, because it’s not clear to me
that a graph-based system is any faster than simulating a graph either on a tabular
system or an array system. I think we’ll see whether graph-based systems make it.
XML is yesterday’s big idea and I don’t see that going anywhere, so I don’t see doing
an XML store as a worthwhile thing to try.

Winslett: What about specialized stores for log data?

Stonebraker: It seems to me that most of the log processing works fine with data
warehouses. But there’s no question that stream processing associated with the
front end of the log will either be specialized stream processing engines like Kafka
or main memory database systems like VoltDB. The jury is out as to whether
there’s going to be a special category called streaming databases that’s different
from OLTP.

We might need half a dozen specialized data stores, but I don’t think we need
20. I don’t even think we need ten.

Winslett: You say that there’s no query Esperanto. If so, why have you been working
on polystores and BigDAWG?

Stonebraker: Polystores to me mean support for multiple query languages, and
BigDAWG has multiple query languages, because I don’t think there is a query
language Esperanto. Among the various problems with distributed databases: First,
there isn’t a query language Esperanto. Second, the schemas are never the same
on independently constructed data. Third, the data is always dirty, and everybody
assumes that it’s clean. You’ve got to have much more flexible polystores that
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support multiple query languages and integrate data cleaning tools and can deal
with the fact that schemas are never the same.

Winslett: That’s a good lead-in to talking about your project Data Civilizer, which
aims to automate the grunt work of finding, preparing, integrating, and cleaning
data. How well can we solve this problem?

Stonebraker: The Data Civilizer project comes from an observation made by lots of
people who talk to a data scientist who is out in the wild doing data science. No one
claims to spend less than 80% of their time on the data munging that has to come
in advance of any analytics. A data scientist spends at most one day a week doing
the job for which she was hired, and the other four days doing grunt work. Mark
Schreiber, who’s the chief data scientist for Merck, claims it’s 98% time in grunt
work, not 80%! So, the overwhelming majority of your time, if you’re a data scientist,
is spent doing mung work. In my opinion, if you worry about data analytics, you’re
worrying about the spare-change piece of the problem.

If you want to make a difference, you have to worry about automating the mung
work. That’s the purpose of Data Civilizer. Mark Schreiber’s using the system that
we have, and he likes what he sees, so at least we can make some difference. How
much we can cut down this 80 to 90% remains to be seen. As a research community,
we worked on data integration 20 years ago and then it got kind of a bad name, but
the problems in the wild are still there and if anything, they’re much, much worse.
I’d encourage anybody who wants to make a difference to go work in that area.

Winslett: You said that your Merck guy likes what he sees. Can you quantify that?

Stonebraker: At the top level, Merck has about 4,000 Oracle databases. They don’t
actually know how many they’ve got. That’s in addition to their data lake, on top
of uncountable files, on top of everything imaginable. For a starter, if you were to
say, “I’m interested in finding a dataset that can be used to figure out whether
Ritalin causes weight gain in mice,” your first problem is to identify a dataset
or datasets that actually might have the data you’re interested in. So, there’s a
discovery problem.

Merck is running the discovery component of Data Civilizer, which lets you ask
questions like, “I’m interested in Ritalin, tell me about some datasets that contain
Ritalin.” They’re using that and they like what they see.

Beyond discovery, data cleaning is a huge problem. We’re working on that using
Merck and others as a test case. This ties back to what we said earlier: To make a
difference in data integration and data cleaning, you’ve got to find a real-world
problem, find an enterprise that actually wants your problem solved.
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For instance, in doing data integration, the overwhelming majority of the prod-
ucts I’ve seen have Table 1 over here, Table 2 over here, you draw some lines to hook
stuff up. That doesn’t help anybody that I know of. For example, in the commercial-
ization of the original Data Tamer system, GlaxoSmithKline is a customer. They’ve
got 100,000 tables and they want to do data integration at that scale, and anything
that manually draws lines is a non-starter.

As a research community, it absolutely behooves us to do the shoe leather, to go
out and talk to people in the wild and figure out exactly what their data problems
are and then solve them, as opposed to solving problems that we make up.

Winslett: Definitely, but data integration has been on that top ten list of problems
of those Laguna Beach-type reports . . .

Stonebraker: Forever.

Winslett: Always.

Stonebraker: Yes.

Winslett: How have things changed that we can finally get some traction?

Stonebraker: Let me give you a quick example. I assume you know what a procure-
ment system is?

Winslett: Sure.

Stonebraker: How many procurement systems do you think General Electric has?

Winslett: Maybe 500?

Stonebraker: They have 75, which is bad enough. Let’s suppose you’re one of these
75 procurement officers and your contract with Staples comes up for renewal. If
you can figure out the terms and conditions negotiated by your other 74 counter-
parts and then just demand most-favored-nation status, you’ll save General Electric
something like $500 million a year.

Winslett: Sure, but that was already true 25 years ago, right?

Stonebraker: Yeah, but enterprises are in more pain now than they were back then,
and modern machine learning can help.

The desire of corporations to integrate their silos is going up and up and up,
either because they want to save money, or they want to do customer integration.
There’s a bunch of things that companies want to do that all amount to data
integration. If you realize that there’s $500 million on the table, then it leads you
to not be very cautious, to try wild and crazy ideas. The thing about Tamr that just
blows me away is that GE was willing to run what I would call a pre-alpha product
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just because they were in so much pain. Generally, no one will even run version 1.0
of a database system. If you’re in enough pain, then you’ll try new ideas.

In terms of data integration, it’s very, very simple. You apply machine learn-
ing and statistics to do stuff automatically because anything done manually, like
drawing lines, is just not going to work. It’s not going to scale, which is where the
problem is. Data integration people hadn’t applied machine learning, but it works
like a charm . . . well, it works well enough that the return on investment is good!

Winslett: You’ve said many harsh words about AI in the past. Was there a moment
when AI finally turned a corner and became useful?

Stonebraker: I think machine learning is very useful, and it’s going to have a gigantic
impact. Whether it’s conventional or deep learning, the stuff works. I’m much less
interested in other kinds of AI. Google pioneered deep learning in a way that actually
works for image analysis, and I think it works for natural language processing too.
There’s a bunch of areas where it really does work. Conventional machine learning,
based on naive Bayes models, decision trees, whatever, also works well enough in
a large number of fields to be worth doing.

The standard startup idea, at least from three or four years ago, was to pick some
area, say choosing pricing for hotel rooms. One startup said, “Okay, that’s what I
want to do. I’ll try it in the Las Vegas market first,” and they got all the data they
could find on anything that might relate to hotel rooms. They ran an ML model
and they found out that you should set hotel prices based on arrivals at McCarran
Airport, which sounds like a perfectly reasonable thing to do. If you apply this kind
of technology to whatever your prediction problem is, chances are some version of
ML is going to work, unless of course there’s no pattern at all.

But in lots of cases there is a pattern, it’s just fairly complicated and not obvious
to you and I. ML will probably find it. I think applications of ML are going to have
a big impact.

Winslett: From your perspective as a database researcher, what are the smartest
and dumbest things you’ve seen a hardware vendor do in the last few years?

Stonebraker: A million years ago, Informix was losing the relational database wars
to Oracle. A succession of CEOs thought the solution to the problem was to buy
some startup, so they bought Illustra, which was the company I worked for. After
that they bought a company called Red Brick Systems, and after that they bought
a company whose name I can’t remember who built Java database systems. They
thought that the salvation was going to be to buy somebody.
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I think that’s almost always a dumb idea, because in all these cases, the company
really didn’t have a plan for how to integrate what they were buying, how to train
their sales force on how to sell it, how to sell it in conjunction with stuff they already
had. When the rubber meets the road, I read somewhere that three-quarters of the
acquisitions that companies make fail. So, my recommendation is to be a lot more
careful about what you decide to acquire, because lots of times it doesn’t work
out very well. Getting value from an acquisition means integrating the sales force,
integrating the product, etc., etc., and lots and lots of companies screw that up.

When HP bought Vertica, the biggest problem was that HP really couldn’t in-
tegrate the Vertica sales force with the HP sales force, because the HP sales force
knew how to sell iron and iron guys couldn’t sell Vertica. It was a totally different
skill set.

Winslett: Are there advances in hardware in recent years that you think have been
really good for the database world?

Stonebraker: I think GPUs for sure will be interesting for a small subset of database
problems. If you want to do a sequential scan, GPUs do great. If you want to do
singular value decomposition, that’s all floating-point calculations, and GPUs are
blindingly fast at floating point calculations. The big caveat, though, is that your
dataset has to fit into GPU memory, because otherwise you’re going to be network-
bound on loading it. That will be a niche market.

I think non-volatile RAM is definitely coming. I’m not a big fan of how much
impact it’s going to have, because it’s not fast enough to replace main memory and
it’s not cheap enough to replace solid-state storage or disk. It will be an extra level
in the memory hierarchy that folks may or may not choose to make use of. I think
it’s not going to be a huge game changer.

I think RDMA and InfiniBand will be a huge, huge, huge deal. Let me put it
generally: Networking is getting faster at a greater rate than CPUs and memory
are getting beefier. We all implemented distributed systems such as Vertica with
the assumption that we were network-bound, and that’s not true anymore. That’s
going to cause a fair amount of rethinking of most distributed systems. Partitioning
databases either makes no sense anymore or it makes only limited sense. Similarly,
if you’re running InfiniBand and RDMA, then Tim Kraska demonstrated that new
kinds of concurrency control systems are perhaps superior to what we’re currently
doing, and that is going to impact main memory database systems.

The networking advances make a big difference, but I think on top of this, James
Hamilton, who is one super smart guy, currently estimates that Amazon can stand
up a server node at 25% of your own cost to do it. Sooner or later that’s going
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to cause absolutely everybody to use cloud-based systems, whether you’re letting
Amazon run your dedicated hardware or you’re using shared hardware or whatever.
We’re all going to move to the cloud. That’s going to be the end of raised floor
computer rooms at all universities and most enterprises. I think that’s going to
have an unbelievable impact and sort of brings us back to the days of time-sharing.
What goes around comes around.

I think that that in turn is going to make it difficult to do computer architecture
research, because if there are half a dozen gigantic cloud vendors running 10
million nodes, and the rest of us have a few nodes here and there, then you pretty
much have to work for one of the giants to get the data to make a difference.

Winslett: What do you wish database theory people would work on now?

Stonebraker: Here’s something that I would love somebody to work on. We profes-
sors write all the textbooks, and on the topic of database design, all the textbooks
say to build an entity relationship model, and when you’re happy with it, push a
button and it gets converted to third normal form. Then code against that third
normal form set of tables, and that’s the universal wisdom. It turns out that in the
real world, nobody uses that stuff. Nobody. Or if they use it, they use it for the green-
field initial design and then they stop using it. As near as I can tell, the reason is
that the initial schema design #1 is the first in an evolution of schemas as business
conditions change.

When you move from schema #1 to schema #2, the goal is never to keep the
database as clean as possible. Our theory says, “Redo your ER model, get a new set
of tables, push the button.” That will keep the schema endlessly in third normal
form, a good state. No one uses that because their goal is to minimize application
maintenance, and so they let the database schema get as dirty as required in order
to keep down the amount of application maintenance.

It would be nice if the theory guys could come up with some theory of database
application coevolution. That’s clearly what the real world does. My request to the
theory guys is that they find a real-world problem that somebody’s interested in
that your toolkit can be used to address. Please don’t make up artificial problems
and then solve them.

Winslett: That’s good advice for any researcher.
What lessons can the database community learn from MapReduce’s success in

getting a lot of new people excited about big data?

Stonebraker: I view MapReduce as a complete and unmitigated disaster. Let me
be precise. I’m talking about MapReduce, the Google thing where there’s a map
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and a reduce operation that was rewritten by Yahoo and called Hadoop. That’s
a particular user interface with a map operation and a reduce operation. That’s
completely worthless. The trouble with it is that no one’s problem is simple enough
that those two operations will work.

If you’re Cloudera, you’ve now got a big problem because you’ve been peddling
MapReduce and there’s no market for it. Absolutely no market. As a result, Cloudera
very carefully applied some marketing and said, “Hadoop doesn’t mean Hadoop
anymore. It means a three-level stack with HDFS at the bottom, MapReduce in the
middle, and SQL at the top. That’s what Hadoop means now: it’s a stack.” However,
you still have a problem because there is no market for the MapReduce piece of the
Cloudera stack. So, the next Cloudera action was to deprecate the MapReduce piece
by implementing a relational SQL engine, Impala, which drops out MapReduce
completely and does SQL on top of HDFS. In effect, Cloudera realized that 75% of
the “Hadoop market” is SQL and that MapReduce is irrelevant.

In an SQL implementation, there is no place for a MapReduce interface. None
of the data warehouse products use anything like that, and Cloudera Impala looks
exactly like the other data warehouse guys’ products. In my opinion, the “Hadoop
market” is actually a SQL data warehouse market. May the cloud guys and the
Hadoop guys and the traditional database vendors duke it out for who’s got the
best implementation.

Winslett: But didn’t MapReduce get a lot of potential users excited about what they
might be able to do with their data?

Stonebraker: Yes.

Winslett: It’s a gateway drug, but you still don’t approve of it.

Stonebraker: Lots of companies drank the MapReduce Kool-Aid, went out and spent
a lot of money buying 40-node Hadoop clusters, and they’re now trying to figure out
what the heck to do with them. Some poor schmuck has to figure out what in the
world to do with an HDFS file system running on a 40-node cluster, because nobody
wants MapReduce.

Never to be denied a good marketing opportunity, the Hadoop vendors said,
“Data lakes are important.” A data lake is nothing but a junk drawer where you
throw all of your data into a common place, and that ought to be a good thing to
do. The trouble with data lakes is that if you think they solve your data integration
problem, you’re sadly mistaken. They address only a very small piece of it. I’m not
opposed to data lakes at all, if you realize that they are just one piece of your toolkit
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to do data integration. If you think that all data integration needs are a MapReduce
system, you’re sadly mistaken.

If you think that the data lake is your data warehouse solution, the problem
is that right now, the actual truth that Cloudera doesn’t broadcast is that Impala
doesn’t really run on top of HDFS. The last thing on the planet you want in a data
warehouse system is a storage engine like HDFS that does triple-redundancy but
without transactions, and that puts your data all over everywhere so that you have
no idea where it is. Impala actually drills through HDFS to read and write the
underlying Linux files, which is exactly what all the warehouse products do.

In effect, the big data market is mostly a data warehouse market, and may the
best vendor win. We talked about ML earlier, and I think that complex analytics
are going to replace business intelligence. Hopefully that will turn this whole dis-
cussion into how to support ML at scale, and whether database systems have a big
place in that solution. Exactly what that solution is going to be, I think, is a very
interesting question.

Winslett: What do you think of the database technology coming out of Google, like
Cloud Spanner?

Stonebraker: Let’s start way back when. The first thing Google said was that MapRe-
duce was a purpose-built system to support their Web crawl for their search engine,
and that MapReduce was the best thing since sliced bread. About five years went by
and all the rest of us said, “Google said MapReduce is terrific, so it must be good, be-
cause Google said so,” and we all jumped on the MapReduce bandwagon. At about
the same time Google was getting rid of MapReduce for the application for which it
was purpose-built, namely, Web search. MapReduce is completely useless, and so
Google has done a succession of stuff. There’s BigTable, BigQuery, there’s Dremel,
there’s Spanner . . . I think, personally, Spanner is a little misguided.

For a long time, Google was saying eventual consistency is the right thing to do.
All their initial systems were eventual consistency. They figured out maybe in 2014
what the database folks had been saying forever, which is that eventual consistency
actually creates garbage. Do you want me to explain why?

Winslett: No.

Stonebraker: Okay. Essentially everybody has gotten rid of eventual consistency
because it gives no consistency guarantee at all. Eventual consistency was another
piece of misdirection from Google that just was a bad idea. These were bad ideas
because Google didn’t have any database expertise in house. They put random
people on projects to build stuff and they built whatever they wanted to without
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really learning the lessons that the database folks had learned over many, many
years.

Google takes the point of view in Spanner of, “We’re not going to do eventual
consistency. We’re going to do transactional consistency, and we’re going to do it
over wide area networks.” If you control the end-to-end network, meaning you own
the routers, you own the wires, you own everything in between here and there, then
I think Spanner very, very cleverly figured out that you could knock down the latency
to where a distributed commit worked over a wide area network.

The problem is that you and I don’t control the end-to-end network. We have no
way to knock the latency down to what Google can do. I think the minute you’re not
running on dedicated end-to-end iron, the Spanner ideas don’t knock the latency
down enough to where real-world people are willing to use it.

I will be thrilled when distributed transactions over the wide area networks that
you and I can buy will be fast enough that we’re willing to run them. I think that
will be great. In a sense, Spanner leads the way on totally dedicated iron.

Winslett: What low-hanging fruit is there for machine learning in solving database
problems?

Stonebraker: We’ve been building a database for supporting autonomous vehicles.
Right now, AV folks want to keep track of whether there’s a pedestrian in a particular
image, whether there’s a bicycle in a particular image. So far, they want to keep
track of half a dozen things, but the number of things you might want to keep track
of is at least 500. Stop signs, free parking spaces, emergency vehicles, unsafe lane
changes, sharp left-hand turns . . . Assume there are 500 things you might want
to index and then figure out which ones to actually index. For instance, you might
want to index cornfields. In Urbana, that’s probably a really good idea.

Winslett: Because the corn might get up and walk in front of the car?

Stonebraker: Well, because . . .

Winslett: I’d rather see deer indexed. And kangaroos, because they seem to have a
death wish too.

Stonebraker: That’d be fine. I’m just saying there’s a lot of things that might be
worth indexing, and they’re very situational. Cornfields are a good example because
there are lots of them in Illinois, but there aren’t hardly any inside Route 128 in
Massachusetts. You’ve got to figure out what’s actually worth indexing. You can
probably apply machine learning to watch the queries that people do and start by
indexing everything and then realize that some things are just so rarely relevant
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that it isn’t worth continuing to index them. Applying ML to do that, rather than
have it be a manual thing, probably makes a lot of sense.

Winslett: Do you see a broader role for ML in query optimization, or has it just
become a kind of black art?

Stonebraker: It’s certainly worth a try. It’s perfectly reasonable to run a plan, record
how well it did, choose a different plan next time, build up a plan database with
running times and see if you can run ML on that to do better. I think it’s an
interesting thing to try.

Winslett: You’ve been stunningly successful in pulling together a bunch of universi-
ties to work on an integrated project. Was this your solution to the lone gunslinger
mentality that you found when you moved to MIT?

Stonebraker: I had no choice. I was alone. There were no faculty, no students, no
courses, no nothing. The only strategy was to reach out to the other universities
in the Boston area. That strategy wouldn’t work very well in Urbana because there
aren’t enough close-by universities, but in major metropolitan areas it’s different.
In Boston, there are six or eight universities, each with one or two database people.
In aggregate, you can be a very, very strong distributed group.

Winslett: It’s very hard to make a distributed collaboration work, but you made it
work. It seems like physical proximity still played a role. How often did you get
together?

Stonebraker: I drove to Brown once a week. In effect, we held real group meetings
once a week and people drove to them. That only works if you have geographic
proximity.

Winslett: Other key ingredients in making the distributed collaboration work?

Stonebraker: I think I had the great advantage that people were willing to listen
to me and pretty much do what I suggested. The general problem is that there’s a
cacophony of ideas with no way to converge. There’s got to be some way to converge,
and either that takes a lead gunslinger, or it takes a program monitor from DARPA
who’s willing to knock heads. There’s got to be some way to converge people, and
I’ve managed to do that, pretty much.

Winslett: Any other ingredients worth mentioning, beyond those two?

Stonebraker: I also have a big advantage that I don’t need any more publications,
and so I’m happy to write papers that other people are the first author on. It helps
to be willing to have no skin in the publication game. It generates a lot of goodwill
to make sure that you’re the last author and not the first author.
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Winslett: One of the great joys of Postgres is that it allowed people to experi-
ment with database components—join algorithms, index structures, optimization
techniques—without having to build the rest of the system. What would be an
equally open software system for today?

Stonebraker: A distributed version of Postgres.

Winslett: Who’s going to build that?

Stonebraker: I know! There is no open source multi-node database system I’m aware
of that’s really good, and how one could be built remains to be seen. The big
problem is that building it is a tremendous amount of work. It could come from
Impala over time. It could come from one of the commercial vendors. The trouble
with the commercial vendors is that the standard wisdom is to have a teaser piece
of the system that’s open-source and then the rest of the system is proprietary.
It’s exactly the distributed layer that tends to be proprietary. The vendors all want
freemium pricing models and that makes a bunch of their system proprietary.

I don’t think such a system can come from academia, it’s just too hard. I think
the days of building systems like Ingres and Postgres in universities are gone. The
average Ph.D. student or postdoc has to publish a huge amount of stuff in order to
get a job, and they’re not willing to code a lot and then write just one paper, which
was the way Ingres and Postgres got written. We had grad students who coded a lot
and published a little, and that’s no longer viable as a strategy.

Winslett: Could you do it with master’s students?

Stonebraker: Maybe. Let’s assume in round numbers that getting this distribution
layer to be fast, reliable, and really work takes 10 man-years’ worth of work. Maybe
it’s more, but the point is that it’s a lot of work. A master’s student is around for a
maximum of two years, and you get maybe one year of productive work out of that
person, assuming that they’re good (the average may be six months). So that means
you need 20 of these people. That means it occurs over a decade. It isn’t like a cadre
of 20 of them show up and say, “Here, manage me.”

Ingres and Postgres were both written with one full-time person and three or
four or five grad students, no postdocs. Back then, you could get something built
in a few years with that scope of a team. Today it’s just much harder to get stuff
to work.

Winslett: The big data world has startup fever. We get it: often, it’s easier to raise
money from the investment community than from traditional sources of academic
funding. How can we maintain the transparency required to move a field forward
scientifically if so many ideas are hidden inside the IP of startups?
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Stonebraker: I know! I find it distressing that the success rate for National Science
Foundation proposals is down to something like 7%. It’s getting incredibly hard to
raise money in the traditional open-source, open-IP kinds of worlds. I think it’s a
huge problem.

The way I look at it is that the number of faculty in any given discipline of
computer science is up by an order of magnitude over what it was 20 years ago.
The number of mouths to feed is up by at least that same amount, and funding has
not kept pace at all. I think we’re starving.

The solution when you get disgusted with trying to raise money is that you leave
the university and go to Google or another company. I wouldn’t be surprised if the
brain-drain out of universities gets to be significant.

Winslett: Why is it a bad idea to bootstrap a startup using your own money?

Stonebraker: Look at Vertica, Illustra, any of the companies that I’ve started. In
round numbers, they required $20 or $30 million to get a reliable, stable, sellable
product out the door. If you’re writing an iPhone app, that’s a different situation.
But writing enterprise software takes a lot of money, and getting to something that
you can release as version 1 is usually $5 to $10 million. Unless you’re independently
wealthy, that’s not possible with self-funding.

The self-funded companies I’ve seen that have succeeded have had a sugar
daddy, a corporation that said, “I’ll pay for version 1 because I need it as an
application, as long as you write something that I want.” If you have that, you’re
basically having the customer fund the development.

If you’re actually going to fund it out of your own checking account, the trouble
is that you and five of your friends agree to write code at nights and weekends,
because you’ve got to have day jobs to keep the bill collectors away. It just takes
forever if you’re writing code nights and weekends.

Another trouble with self-funding is that if your own money is invested, you
make very, very cautious decisions relative to what VCs would make. In other words,
they’re much better businessmen than you are and will make much better decisions
about money than you will. Mortgaging your house to fund a startup is something
I would never do . . . that’s a clear way to break up your marriage.

Winslett: You recommend that startup founders focus on great engineering, but
when I consider the giant corporations in the data world, I get the impression that
focusing on great marketing has been a more effective route to build market share.

Stonebraker: All true. You don’t have to look any further than Oracle and Ingres.
One had great engineering, one had great marketing, and look who won.
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The trouble is that your first objective must be to build something that’s reliable
enough that your first five customers will buy it. If you don’t have really good
engineering, chances are you’re not going to get to that milestone. If you just threw
stuff together, chances are it’s going to have serious reliability problems, which are
going to be very expensive to fix. Chances are that’s going to impact whether you
can get revenue out of your first five customers.

So, worrying about superb engineering at the beginning is a really good idea.
After that, making sure you have the world’s best VP of marketing is a terrific
strategy.

Winslett: Your research group has often implemented full DBMSs, and Andy Pavlo
has written about the challenges this raises. Do you still feel that this is the best
way to advance the state of the art?

Stonebraker: Calling them full DBMSs is a big stretch. As has been pointed out by
Martin Kersten, C-Store ran about 10 queries. It was not a complete implementation
at all. We marketed it as a complete system, but it really didn’t have an optimizer. It
hard-coded how to do the queries in our benchmarks. We cut a lot of corners on it.

H-Store was more complete than C-Store, but the academic version didn’t have
a replication system. What Andy Pavlo did was heave most of the H-Store executor
and replace it by the open source of the VoltDB executor. H-Store got better mostly
because he swiped open-source commercial code. Since Postgres, we really haven’t
produced what you would call a full-function well-functioning system. I think we’ve
written pieces of such a system.

Winslett: Software is often free now, and not just phone apps. For example, when
was the last time you bought a compiler? Will database software go the same route?

Stonebraker: I think that’s an interesting question, because right now, the model
used by most of the recent DBMS startups is freemium. It isn’t really open source. It
has a teaser piece that’s open source, but anyone who’s going to run it in production
is going to get the non-free piece, and support only comes with the non-free piece. I
think that the freemium model works fine, but it isn’t really a complete open-source
system.

I think it will be interesting to see whether the big cloud vendors will have
complete free open-source systems, which probably will only run on their hardware
so they can get the rental income from their iron. Right now, I’m hard pressed to
think of a complete open-source system that you’d actually put into production use.

Winslett: You biked across the country and climbed all forty-eight 4,000-plus foot
mountains in New Hampshire. How has athletics affected your professional life?
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Stonebraker: I’m wired to aggressively attempt to achieve what’s hard. That’s true in
physical stuff, that’s true in professional stuff. That’s just the way I’m wired. There’s
nothing purposeful there.

Winslett: You were one of the founders of CIDR. Has CIDR been a success or a
failure?

Stonebraker: We started CIDR because SIGMOD was turning down practical papers.
I think CIDR has proved to be a great venue for practical stuff over the years.
The major conferences have attempted with some success to get more pragmatic
papers, through their industrial tracks. But they still turn down my papers that are
pragmatic, and that still pisses me off.

CIDR has caused the major conferences to change some, but in my opinion not
enough. So I think CIDR continues to be a great outlet for practical papers that the
major conferences won’t touch. As long as we stick to our knitting, CIDR will be
very viable long-term. Every time it’s held, we have to close registration because it’s
over-subscribed.

Winslett: Are minimum publishable units still a big issue in our community?

Stonebraker: That’s my favorite pet peeve. When I graduated with a Ph.D., I had zero
publications. When I came up for tenure five years later, I had a handful, maybe six,
and that was the norm. David DeWitt was the same way. That was typical back then.
Now you have to have an order of magnitude more to get an assistant professor job
or get tenure. That forces everybody to think in terms of Least Publishable Units
(LPUs), which create a dizzying sea of junk that we all have to read. I think it’s awful.
I don’t know how anybody keeps up with the deluge of publications. All of us tell
our grad students to go read this or that paper and tell us what it says, because no
one can physically read all that stuff.

My favorite strategy which might work is to get the top, say, 20 U.S. universities to
say, “If you send us an application for an assistant professor position in computer
science, list three publications. We’re not going to look at any more. Pick three. We
don’t care if you have more. Pick three. When you come up for tenure, pick ten. If
you publish more, we don’t want to look at them.” If you got the top universities to
enforce that discipline, it might knock down the publication rates and start getting
people to consolidate more LPUs into bigger and better papers.

Winslett: You might have the biggest family tree in the database field. Has that been
an important factor in your success?

Stonebraker: I don’t think so. I think success is determined by having good ideas
and having good graduate students and postdocs to realize them. I think the fact
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that I know a lot of people, some of whom are my students and some of whom are
other people’s students, is not all that significant.

Winslett: When you pick a new problem to work on, how do you balance intellectual
satisfaction, your industry buddies’ depth of desire for a solution, and the gut
feeling that you might be able to turn it into a startup?

Stonebraker: I don’t think in those terms at all. I think mostly in terms of finding a
problem that somebody has in the real world, and working on it. If you solve it in a
way that’s commercializable, that’s downstream. You don’t get any brownie points
at my university for doing startups.

I think the biggest mistakes I’ve made have been when we had a prototype and
a student really wanted to do a startup, but I was very reluctant. Usually I was right.
I’ve created startups that have failed and usually I didn’t think it would work at the
beginning. I find it hard to resist when you have a Ph.D. student pleading with you,
“Please do a startup.”

Winslett: Were you more productive at Berkeley or at MIT?

Stonebraker: I think I’ve been much more productive at MIT.

Winslett: And why is that?

Stonebraker: I have no idea. If you look at the data, I did 3 startups in 25 years at
Berkeley, and I did 6 startups in 16 years at MIT.

Winslett: Which set do you think had more impact, though?

Stonebraker: Number one was probably Postgres and number two was probably
Vertica, so it’s not obvious one way or the other.

Winslett: What successful research idea do you most wish had been your own?

Stonebraker: Parallel databases, like we talked about earlier.

Winslett: If you had the chance to do one thing over again, what would it be?

Stonebraker: I would have worked on parallel databases in the ’70s.

Winslett: A recurring theme! Did you ever have an idea that the research community
rejected but that you still believe in fervently and may pursue again?

Stonebraker: If a paper gets rejected, as near as I can tell, everybody, including me,
rewrites it until it gets accepted. I don’t know of any papers that actually went onto
the cutting room floor. We all modify them until they get accepted.

Winslett: If you were a first-year data-oriented graduate student, what would you
pick to work on?
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Stonebraker: If you have a good idea on how to do cloud stuff . . . everybody’s going
to move to the cloud. That’s going to be a huge amount of disruption. We’re going
to run database systems where we share a million nodes.

If you have a good idea on how to make data integration work, it’s an unbe-
lievably hard problem, and unbelievably important. If you have a good idea about
database design, I would work on that. If you have a good idea on data cleaning,
by all means, work on that. Find some problem in the wild that you can solve and
solve it.

Winslett: Are there any hot topics in database research right now that you think are
a waste of time?

Stonebraker: What we used to think of as database core competency is now a very
minuscule portion of what appears in SIGMOD and VLDB. The field is basically
fragmented beyond recognition. Very few papers on core database stuff appear
these days. I think we’re doing a lot of non-cutting-edge research in all these
fragmented different fields, and I wonder what the long-term impact of that is going
to be.

I’m kind of a little bit worried, because the database guys are all publishing
ML papers under the guise of scalability. That isn’t our community. There is an
ML community that worries about ML. Database people don’t publish in pure ML
conferences, mostly I suspect because we’re second-rate researchers there.

As near as I can tell, SIGMOD and VLDB are 300 or so researchers, and everything
they and their grad students are doing is a huge spectrum of stuff. Deciding what’s
workable and what’s not workable becomes very, very diffuse.

Winslett: Isn’t that inevitable in an expanding field like ours?

Stonebraker: Yeah, but I think if you look at the operating system guys, they’re start-
ing to write database papers in their venues. When you get a lot of fragmentation, at
some point it seems to me that we probably ought to reorganize computer science.
CMU and Georgia Tech have schools of computer science that seem much better
able to organize around this diffuse nature of things. MIT doesn’t. The universi-
ties that don’t have schools of computer science will be disadvantaged long-run,
long-term. That’s a political hot potato at MIT and elsewhere.

Winslett: Which of your technical projects have given you the most personal satis-
faction?

Stonebraker: Vertica and Postgres. I think Vertica was the most satisfying because
Postgres we rewrote and then we rewrote it again. We started off implementing
Postgres in LISP, which was the biggest disaster on the planet. That’s probably my
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biggest technical mistake ever. Postgres eventually got it more or less right. Vertica
got it pretty much right the first time, which I thought was remarkable. Usually, you
rewrite everything when you realize you screwed it up, and then you rewrite it again
when you realize you still screwed it up. Vertica did pretty well the first time, which
I thought was pretty remarkable.

Winslett: What was the most difficult part of your cross-country bike trip?

Stonebraker: The Turing Award lecture is set in North Dakota, and North Dakota
was awful. Absolutely awful. Not so much because it’s flat and boring and you
spend your day looking up ahead 10 miles, seeing the grain elevator in the next
town, riding toward it for three-quarters of an hour, passing through the town
in a couple of minutes, and then 10 miles up ahead is the next grain elevator.
That’s really monotonous and boring, but what made it impossibly hard was that
we were fighting impossible headwinds all the way across North Dakota. It is so
demoralizing when you’re struggling to make seven miles an hour and you realize
that it’s a 500-mile-wide state.

Winslett: What was the North Dakota of your career?

Stonebraker: I think it was by no means a slam dunk that I was going to get tenure at
Berkeley. I think the department probably went out on a limb to make that happen.
At the time, databases were this little backwater, and somebody had enough vision
to promote me.

The stress associated with getting tenure I think is awful for everybody, univer-
sally, and the year that you’re up for tenure is horrible, no matter who you are. I
personally think we shouldn’t subject assistant professors to that kind of stress.
We should invent a better tenure system or gradual tenure system or something
else. The stress level we subject assistant professors to is awful.

Winslett: If you were retired now, what would you be doing?

Stonebraker: That’s equivalent to the question, “What do I do when I’m no longer
competitive as a researcher?”

Winslett: The definition of “retired” is when you’re no longer competitive as a
researcher?

Stonebraker: Yeah. I’m going to work. I’m going to do what I’m doing until I’m not
competitive doing it. I wake up in the morning and I like what I do. The only aspect
of my job that I hate is editing student papers. Students by and large can’t write
worth a darn. Like everybody else, I’m stuck fixing their papers. I hate that.
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The real question you youngsters don’t really have to face, or you probably don’t
think about, is what the state of my physical health is when I retire. If I’m impaired,
then life’s in a whole different ballpark. If I’m full function, I will hike a lot more,
I will bike a lot more. I always threaten to do woodworking. Dave DeWitt laughs at
me because I have a woodworking shop that is essentially unused. I would spend
more time with my wife. I would spend more time up here in New Hampshire.

I think the real answer is that I would probably become a venture capitalist of
sorts if I’m not viable with my own ideas. I’m very good at helping people start
companies, so I would probably do a whole bunch of that.

Winslett: I’m told that I should ask you to sing “The Yellow Rose of Texas.”

Stonebraker: Only after many, many beers or glasses of wine.
I don’t know where that question came from . . . the only place that question

could have come from was from when the Illustra guys invited me to one of their
sales reward meetings, and everybody had to get up and do karaoke. I don’t think
I did “The Yellow Rose of Texas,” but maybe I did. That’s the only time I can
remember . . . I wonder, where did that question come from?

Winslett: I would never give away my sources, even if I remembered who contributed
that one, which I don’t.

Stonebraker: Anyway, I’m the world’s worst singer. I sing in a great monotone.

Winslett: I hear you play the banjo for a bluegrass band. What got you interested in
the banjo and bluegrass music?

Stonebraker: When my first wife and I separated in 1975, I went out and bought
a banjo within a couple months, then asked the guy who sold the banjo, “What
kind of music do you play with this?” I have no idea why I chose the banjo. There’s
nowhere in my history that anybody ever had a banjo, so I don’t have any idea why
I decided to take it up.

Having kids got in the way of having time to play, but after the kids were adults,
then I started playing again. I’m now in a band of sorts, called Shared Nothing. Not
Shared Nothings (plural), it’s Shared Nothing (singular), exactly like the technical
distributed database term shared nothing. We jam every couple of weeks but calling
us a band is a bit of a stretch. Our goal is to start playing at assisted living centers
because those places are always looking for something for their residents to do.

Winslett: Have you reached that level of expertise yet?

Stonebraker: I know a friend whose father is in an assisted living facility, and he
pointed me to their entertainment director. I said, “Can we come play for your
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folks?” She said to send her a tape. So, we made a tape, but that was the last we
heard from her. We’re not yet at the level of playing at assisted living centers.

Winslett: It’s something to aspire to.
We’re good enough to play in front of my Ph.D. students, who are a captive

audience.

Winslett: I hear that you wear a lot of red shirts.
Yep.

Winslett: Why, and how many do you own?

Stonebraker: Approximately 15. I like red. I have a red boat. For a long time, I drove a
red car. Red is my favorite color for whatever reason and I wear red shirts, although
not today.

Winslett: To avoid the draft for the Vietnam War, you had to go straight to grad
school after college. You have said that this forced you into a career path prema-
turely, without time to explore other options. In hindsight, what path do you think
you would have taken if there hadn’t been a draft?

Stonebraker: When I graduated from college in 1965, my choices were go to gradu-
ate school, go to Vietnam, go to jail, or go to Canada. Those were the exact choices.
If I went to graduate school, it was right at the time of the post-Sputnik science
craze, so I would have a full-ride fellowship to sit out the war in graduate school.
Why wouldn’t you do that? You had to sit in graduate school until you were 26 and
the government didn’t want you for the war anymore. That forced me to get a Ph.D.
that I don’t think I ever would have gotten without that kind of pressure. The threat
of the draft was a powerful motivator.

You’re probably not old enough to remember the TV show called Route 66. You
ever heard of that?

Winslett: Yes, but I haven’t watched it.

Stonebraker: It’s these two guys who drive around the country in a Corvette and have
great experiences. When I graduated from college, I had no idea what I wanted to
do, and so I would have done the Route 66 thing if I could. I have no idea where
that would have led, but my life would have certainly been very different.

Winslett: Do young computer scientists even need a computer science degree to-
day?

Stonebraker: In my opinion, yes. We talked about Google earlier. Google had a
bunch of database projects that they assigned to people who were skilled at other
stuff, and they screwed them up. They implemented short-term systems that
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weren’t viable long-term. There’s a lot of theory and pragmatics that we’ve accumu-
lated over the years that is useful to know. I don’t know a better way to do it than
by studying computer science.

By and large, if you look at people in surrounding disciplines who actually end
up doing computer science, like students in most of the physical sciences, and you
ask what contribution they have really made to computer science, the answer is it’s
not very dramatic. For whatever reason, computer science advances tend to come
from people who are trained as computer scientists.

Winslett: Do you have a philosophy for advising graduate students?

Stonebraker: The simple answer is that as a faculty member, your charge is to make
your students successful. When you take someone on, it’s basically an agreement
to make them successful, and if they drop out then you’re a failure. I try very, very
hard to make my students successful. Usually that means feeding them good ideas
when they don’t have any of their own, and pushing them hard, saying, “The VLDB
deadline is in three weeks, and you can, in fact, get a paper in. Progress will have
to be exponential in the distance to the deadline, but you can do it.”

Be a cheerleader and push your students to get stuff done at a rate much faster
than they think they can. When they go off the rails, as they always do, pull them
back onto the rails. This does take a lot of time. I meet with all my students once a
week or more. My job is to be the cheerleader, idea generator, and encourager.

Winslett: If you magically had enough extra time to do one additional thing at work
that you’re not doing now, what would it be?

Stonebraker: If I have a good idea I start working on it, even if I don’t have any extra
time. I fit it in. So, I don’t have a good idea just sitting, waiting for some time to
work on it. I don’t know what I’d do if I had extra time. Getting up in the morning
and having nothing that I have to do drives me crazy. I stay very busy, and I don’t
know what I would do with free time.

Winslett: If you could change one thing about yourself as a computer science re-
searcher, what would it be?

Stonebraker: I’d learn how to code.

Winslett: That’s what you said the last time we did an interview, but obviously, since
you’ve achieved high success without being able to code, it must not be necessary.

Stonebraker: I know, but it’s embarrassing. It’s something that takes a lot of time
to learn, time that I don’t have. If I could magically create a lot of time, I’d learn
how to code.
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Winslett: Maybe while you were going across North Dakota in the headwinds, you
could have been practicing on a little keyboard on the handlebars. That would have
made it less painful.

Stonebraker: I don’t think you’ve ever been to North Dakota.

Winslett: I have, I have. And from your description, it sounds a lot like Illinois. The
secret is to ride with the wind behind you. Maybe you could have gone to the far
end of the state and ridden across it in the reverse direction. You still would have
crossed North Dakota, but the wind would have been helping you.

Stonebraker: There you go.

Winslett: Thank you very much for talking with me today.
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3Leadership and Advocacy
Philip A. Bernstein

More than anyone else, Mike Stonebraker has set the research agenda for database
system implementation architecture for the past 40 years: relational databases,
distributed databases, object-relational databases, massively distributed federated
databases, and specialized databases. In each of these cases, his was the ground-
breaking research effort, arguing for a different system-level architecture type of
database system. He proposed the architecture system type, justified its impor-
tance, evangelized the research agenda to create a new topic within the database
community, and built a successful prototype that he later moved into the com-
mercial world as a product, Ingres and Postgres being the most well known and
influential examples. It is for these efforts that he richly deserves the ACM Turing
Award.

I have been following Mike’s work since we first met at the 1975 SIGMOD
Conference. Despite having crossed paths a few times per year ever since then,
we’ve never collaborated on a research project. So, unlike most authors of chapters
of this book, I don’t have personal experiences of project collaborations to recount.
Instead, I will focus on his ideas, roughly in chronological order. I will first describe
the systems, then mechanisms, and finally his advocacy for the database field.

Systems
The story starts with the Ingres project. At the project’s outset in 1973, the first
generation of database system products were already well established. They used
record-at-a-time programming interfaces, many of which followed the proposed
CODASYL database standard, for which Charles Bachman received the 1973 Turing
Award. Vendors of these products regarded the relational model as infeasible, or
at least too difficult to implement—especially targeting a 16-bit minicomputer (a
PDP-11/40), as the Ingres project did. Moreover, database management was a topic
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for business schools, not computer science departments. It was loosely associated
with COBOL programming for business data processing, which received no respect
in the academic computer science research community. In those days, IBM had a
dominant share of the computer market and was heavily promoting its hierarchical
database system, IMS. The only ray of hope that the relational model was worth
implementing was that IBM Research had spun up the IBM System R project (see
Chapter 35). In the world of 1973, Mike Stonebraker and Gene Wong were very brave
in making Ingres the focus of their research.

As they say, the rest is history. The Ingres project (see Chapter 15) was a big
research success, generating early papers on many of the main components of a
database system: access methods, a view and integrity mechanism, a query lan-
guage, and query optimization. Many of the students who worked on the system
became leading database researchers and developers. Moreover, Ingres was unique
among academic research projects in that its prototype was widely distributed and
was used by applications (see Chapter 12). Ultimately, Ingres itself became a suc-
cessful commercial product.

In 1984, Mike and his UC Berkeley colleague Larry Rowe started a follow-on
project, Postgres (see Chapter 16), to correct many of the functional limitations in
Ingres. By that time, it was apparent to the database research community that the
first generation of relational databases was not ideal for engineering applications,
such as computer-aided design and geographical information systems. To extend
the reach of relational systems to these applications, Mike and Larry proposed
several new features for Postgres, the most important of which was user-defined
datatypes.

The notion of abstract data type was a well-understood concept at that time,
having been pioneered by Barbara Liskov and Stephen Zilles in the mid-1970s
[Liskov and Zilles 1974]. But it had not yet found its way into relational systems.
Mike had his students prototype an abstract data type plugin for Ingres, which
he then reapplied in Postgres [Stonebraker 1986b, Stonebraker 1986c]. This was
among the earliest approaches to building an extensible database system, and it has
turned out to be the dominant one, now commonly called a user-defined datatype.
It led to another startup company, which developed the Illustra system based on
Postgres. Illustra’s main feature was extensibility using abstract data types, which
they called “data blades.” Illustra was acquired in 1996 by Informix, which was later
acquired by IBM.

In the mid-1990s, Mike led the development of his next big system, Mariposa,
which was a geo-distributed database system for heterogeneous data. It was layered
on a network of independently managed database systems whose resources Mari-
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posa could not control. Therefore, Mariposa introduced an economic model where
each database bids to execute part of a query plan. The global optimizer selects bids
that optimize the query and fit within the user’s budget. It is a novel and conceptu-
ally appealing approach. However, unlike Ingres and Postgres, Mariposa was not a
major commercial success and did not create a new trend in database system de-
sign. It did lead to a startup company, Cohera Corporation, which ultimately used
Mariposa’s heterogeneous query technology for catalog integration, which was a
pressing problem for business-to-business e-commerce.

Starting in 2002, Mike embarked on a new wave of work on database systems
specialized for particular usage patterns: stream databases for sensors and other
real-time data sources, column stores for data warehousing, main memory data-
bases for transaction processing, and array databases for scientific processing.
With this line of work, he again set the agenda for both the research field and prod-
ucts. He argued that relational database products had become so large and difficult
to modify that it was hopeless to expect them to respond to the challenges presented
by each of these workloads. His tag line was that “one size does not fit all.” In each
case, he showed that a new system that is customized for the new workload would
outperform existing systems by orders of magnitude.

For each of these workloads, he followed the same playbook. First, there were
research papers showing the potential of a system optimized for the workload.
Next, he led a project to develop a prototype. Finally, he co-founded a startup
company to commercialize the prototype. He founded startups in all of these ar-
eas. The Aurora research prototype led to the founding of StreamBase Systems
for stream processing. The C-Store research prototype led to the founding of Ver-
tica Systems (acquired by HP and now owned by Micro Focus) for column stores.
The H-Store research prototype led to the founding of VoltDB (http://www.voltdb
.com/) for main memory transaction processing. And the SciDB project, a database
system for array processing, started as an open-source project with contributions
by researchers at many different institutions, and led to the founding of Paradigm4
(http://www.paradigm4.com/).

Some vendors have picked up the gauntlet and shown how to modify existing
products to handle these workloads. For example, Microsoft now offers a column
store component of SQL Server (“Apollo”), and a main memory transactional data-
base component of SQL Server (“Hekaton”). Perhaps the changes of workload and
improvements in hardware made it inevitable that vendors would have developed
these new features for existing products. But there is no doubt that Mike greatly ac-
celerated the development of this functionality by pushing the field to move these
challenges to the top of its priority list.

http://www.voltdb.com/
http://www.paradigm4.com/
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One of the most difficult problems in database management is integration of
heterogeneous data. In 2006, he started the Morpheus project in collaboration with
Joachim Hammer, which developed a repertoire of data transformations for use
in data integration scenarios. This led to the Goby startup, which used such data
transformations to integrate data sources in support of local search; the company
was acquired by Telenauv in 2011. Also in 2011, he started the Data Tamer project,
which proposed an end-to-end solution to data curation. This project became the
basis for another startup, Tamr, which is solving data integration problems for
many large enterprises (http://tamr.com), especially unifying large numbers of data
sources into a consistent dataset for data analytics.

Mechanisms
In addition to making the above architectural contributions as a visionary, Mike
also invented important and innovative approaches to building the system compo-
nents that enable those architectures and that are now used in all major database
products. There are many examples from the Ingres system, such as the following.

. Query modification (1975)—The implementation of views and integrity con-
straints can be reduced to ordinary query processing by expressing them
as queries and substituting them into queries as part of query execution
[Stonebraker 1975]. This technique, now known as view unfolding, is widely
used in today’s products.

. Use of B-trees in relational databases (1976–1978)—A highly influential tech-
nical report listed problems with using B-trees in relational database sys-
tems. This problem-list defined the research agenda for B-tree research for
the following several years, which contributed to its use as today’s standard
access method for relational database systems. Given the multi-year delay of
journal publication in those days, by the time the paper appeared in CACM
(Communications of the ACM) [Held and Stonebraker 1978], many of the
problems listed there had already been solved.

. Primary-copy replication control (1978)—To implement replicated data, one
copy of the data is designated as the primary to which all updates are applied
[Stonebraker 1978]. These updates are propagated to read-only replicas. This
is now a standard replication mechanism in all major relational database
system products.

. Performance evaluation of locking methods (1977–1984)—Through a se-
quence of Ph.D. theses at UC Berkeley, he showed the importance of fine-

http://tamr.com
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tuning a locking system to gain satisfactory transaction performance [Ries
and Stonebraker 1977a, Ries and Stonebraker 1977b, Ries and Stonebraker
1979, Carey and Stonebraker 1984, Bhide and Stonebraker 1987, Bhide and
Stonebraker 1988].

. Implementing rules in a relational database (1982–1988, 1996)—He showed
how to implement rules in a database system and advocated this approach
over the then-popular rule-based AI systems. He initially built it into Ingres
[Stonebraker et al. 1982a, Stonebraker et al. 1983c, Stonebraker et al. 1986]
and incorporated a more powerful design into Postgres [Stonebraker et al.
1987c, Stonebraker et al. 1988a, Stonebraker et al. 1989, Stonebraker 1992a,
Chandra et al. 1994, Potamianos and Stonebraker 1996]. He later extended
this to larger-scale trigger systems, which are popular in today’s database
products.

. Stored procedures (1987)—In the Postgres system, he demonstrated the im-
portance of incorporating application-oriented procedures inside the data-
base system engine to avoid context-switching overhead. This became the key
feature that made Sybase successful, led by his former student Bob Epstein,
and is an essential feature in all database system products.

Advocacy
In addition to the above architectural efforts that resulted in new database system
product categories, Mike was an early advocate—often the leading advocate—for
focusing attention on other critical system-level data management problems and
approaches. These included the integration of legacy applications, ensuring dis-
tributed database systems will scale out, avoiding the inefficiency of too many layers
of database middleware, enabling relational databases to be customized for vertical
applications, and circumventing the inflexibility of one-size-fits-all database sys-
tems. For his entire career, he has been the database field’s technical conscience, an
iconoclast who continually asks whether we are working on the right problems and
using the best system architectures to address the most expensive data engineering
problems of the day. Examples include shared-nothing distributed database ar-
chitecture (today’s dominant approach) [Stonebraker 1985d, Stonebraker 1986d],
adopting object-relational databases in preference over object-oriented databases
[Stonebraker et al. 1990c, Stonebraker et al. 1990d], an incremental approach to mi-
grating legacy applications [Brodie and Stonebraker 1995a], merging application
servers and enterprise application integration (EAI) systems [Stonebraker 2002],
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and replacing one-size-fits-all database systems with more specialized database en-
gines [Stonebraker and Çetintemel 2005, Stonebraker 2008b].

In 2002, Mike, David DeWitt, and Jim Gray lamented the difficulty of publishing
novel ideas with a system focus in database conferences. To address this problem,
they created the Conference on Innovative Data Systems Research (http://cidrdb
.org/), with Mike as program committee chair of the first conference in 2003, co-PC
chair of the second, and co-general chair of the third. As its website says, “CIDR
especially values innovation, experience-based insight, and vision.” It’s my favorite
database conference for two reasons: it has a very high density of interesting ideas
that are major breaks from the past, and it is single-track, so I hear presentations
in all areas of data management, not just topics I’m working on.

In 1989, Mike and Hans Schek led a workshop attended by many leaders of
the database research community to review the state of database research and
identify important new areas [Bernstein et al. 1998a]. Since then, Mike has been
instrumental in ensuring such workshops run periodically, by convening an orga-
nizing committee and securing funding. There have been eight such workshops,
originally convened every few years and, since 1998, every five years. Each work-
shop produces a report [Silberschatz et al. 1990, Bernstein et al. 1989, Bernstein
et al. 1998b, Abiteboul et al. 2003, Gray et al. 2003, Abiteboul et al. 2005, Agrawal
et al. 2008, 2009, Abadi et al. 2014, 2016]. The report is intended to help database
researchers choose what to work on, help funding agencies understand why it’s
important to fund database research, and help computer science departments de-
termine in what areas they should hire database faculty. In aggregate, the reports
also provide a historical record of the changing focus of the field.

Mike is always thinking about ways that the database research field can improve
by looking at new problems and changing its processes. You can read about many
of his latest concerns in his chapter (Chapter 11 in this book. But I’d bet money
that by the time this book is published, he’ll be promoting other new issues that
should demand our attention.

http://cidrdb.org/
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Academic researchers work on problems they believe to be interesting and then
publish their results. Particularly good researchers listen carefully to industry prob-
lems to find real problems, produce relevant work, and then publish the results.
True giants of academia listen carefully to find real problems, produce relevant
results, build real systems that actually work, and then publish the results.

The most common mistake in academic research is choosing the wrong prob-
lem to solve. Those that spend time with practitioners, and listen to the prob-
lems they face, produce much more relevant results. Even more important and
much more time-consuming, those that build real systems have to understand
the problems at an even deeper level and have to find solutions that are practical,
can actually be implemented by mortals, and aren’t exponential in computational
complexity. It’s much harder and significantly more time-consuming to build real
implementations, but running systems are where solutions are really proven. My
favorite researchers are both good listeners and great builders.

Michael Stonebraker takes it a step further. He builds entire companies on the
basis of the systems research he’s done. We’ve all been through the experience of
having a great idea where “nobody will listen.” Perhaps people you work with think
they tried it back in 1966 and it was a failure. Perhaps some senior engineer has
declared that it is simply the wrong approach. Perhaps people just haven’t taken
the time to understand the solution well enough to fully understand the value. But,
for whatever reason, there are times when the industry or the company you work
for still doesn’t implement the idea, even though you know it to be a good one and
good papers have been published with detailed proofs. It can be frustrating, and
I’ve met people who end up a bit bitter from the process.
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In the database world, there was a period when the only way any good research
idea could ever see the light of day was to convince one of the big three database
companies to implement it. This group has millions of lines of difficult-to-maintain
code written ten years ago, and customers are paying them billions every year
whether they implement your ideas or not. Unsurprisingly, this was a very incre-
mental period when a lot of good ideas just didn’t see the light of day.

Stonebraker lovingly calls this group of three innovation gatekeepers “the Ele-
phants.” Rather than wasting time ranting and railing at the Elephants (although
he did some of that as well), he just built successful companies that showed the
ideas worked well enough that they actually could sell successfully against the Ele-
phants. Not only did he build companies but he also helped break the lock of the
big three on database innovation and many database startups have subsequently
flourished. We’re again going through a golden age of innovation in the database
world. And, to a large extent, this new period of innovation has been made possible
by work Stonebraker did. To be sure, other factors like the emergence of cloud com-
puting also played a significant part in making change possible. But the approach
of building real systems and then building real companies has helped unlock the
entire industry.

Stonebraker’s ideas have been important for years, his lack of respect for the
status quo has always been inspirational, and the database research and indus-
try community have all changed greatly due to his influence. For this and a long
history of innovation and contribution back to the database industry and research
communities, Michael Stonebraker has won the 2014 ACM Turing Award, the most
prestigious and important award in computer science. From the ACM announce-
ment:

Michael Stonebraker is being recognized for fundamental contributions to the
concepts and practices underlying modern database systems. Stonebraker is the
inventor of many concepts that were crucial to making databases a reality and
that are used in almost all modern database systems. His work on INGRES in-
troduced the notion of query modification, used for integrity constraints and
views. His later work on Postgres introduced the object-relational model, effec-
tively merging databases with abstract data types while keeping the database
separate from the programming language.

Stonebraker’s implementations of Ingres and Postgres demonstrated how
to engineer database systems that support these concepts; he released these
systems as open software, which allowed their widespread adoption and incor-
poration of their code bases into many modern database systems. Since the
path-breaking work on INGRES and Postgres, Stonebraker has continued to be
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a thought leader in the database community and has had a number of other in-
fluential ideas including implementation techniques for column stores and sci-
entific databases and for supporting on-line transaction processing and stream
processing.

This chapter was previously published in James Hamilton’s Perspectives blog
in June 2015. http://perspectives.mvdirona.com/2015/06/2014-acm-turing-award/.
Accessed February 5, 2018.

http://perspectives.mvdirona.com/2015/06/2014-acm-turing-award/




5Birth of an Industry;
Path to the Turing Award
Jerry Held

The year was 1973. Having started my career at RCA Sarnoff Labs in New Jersey
a few years earlier, I was working in the field of computer-aided design (CAD) for
semiconductors. I was very fortunate to win a Sarnoff Fellowship to pursue a Ph.D.
for two years at the university of my choice. My search eventually landed me at UC
Berkeley with a plan to do research in CAD (or so I thought).

Although I didn’t realize it at the time, it also landed me in the delivery room
for the birth of the relational database industry, where the ambition, insatiable
curiosity, and almost uncanny luck1 of an audacious assistant professor named
Michael Stonebraker changed computer science and would earn him computing’s
highest honor, the A.M. Turing Award, 42 years later.

For me, this is the story of a dynamic professional collaboration and friendship
that persists to this day and one of the more unique entrepreneurship stories in
my nearly 50 years of helping build technology companies. It’s also the story of
someone who has managed to couple sustained academic curiosity with unending
entrepreneurship, which has led to a huge collection of academic work, a long line
of successful students, and the creation of numerous companies.

Birth of an Industry (1970s)
In support of my CAD work at RCA, we decided to use a new database system based
on work emanating from an industry/government consortium formed to promote
standardized ways to access data: CODASYL (short for “Conference on Data Systems
Languages”). BFGoodrich, the tire company, had done a huge project to create

1. As Mike himself will tell you.
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an early implementation of CODASYL.2 RCA was one of the first to purchase the
software (which later became Cullinet). Part of my job was to dig into the guts of it
and learn how these database systems really worked.

At Berkeley, I was looking for a Ph.D. advisor under whom I could do research in
CAD. I was close to picking another professor when I was introduced to Mike, who
was just starting his work in databases with a more senior professor, Eugene Wong.
As I recall, it took only one meeting to realize that Mike and Gene were starting a
very exciting project (dubbed Ingres3) and I wanted to be part of it.

I now had my thesis advisor. Mike’s ambition (and audacity) were blossoming,
as he turned from his own, self-described obscure Ph.D. thesis and area of expertise
(applied operations research) to more famous and tenure-making material. Gene
was brilliant and also knew the ropes of getting things done at Berkeley—the
beginning of what would be an uncanny run of luck for Mike.

There were four keys to the success of the Ingres project:

. timing

. team

. competition

. platform

Ingres—Timing
Gene had introduced Mike to Ted Codd’s seminal 1970 paper [Codd 1970] applying
a relational model to databases. In Codd’s paper, Mike had found his Good Idea4

(more on this below). At that point, everyone was buzzing about Ted’s paper and
its potential, particularly when compared to CODASYL and IBM’s IMS. Mike had
of course read the CODASYL report but dismissed the specification as far too com-
plicated. In the “Oral History of Michael Stonebraker,” [Grad 2007] Mike recalled:

. . . I couldn’t figure out why you would want to do anything that complicated
and Ted’s work was simple, easy to understand. So it was pretty obvious that the
naysayers were already saying nobody who didn’t have a Ph.D. could understand
Ted Codd’s predicate calculus or his relational algebra. And even if you got past
that hurdle, nobody could implement the stuff efficiently.

2. CODASYL was supposed to be the industry standard to compete against IMS, IBM’s market-
dominant, hierarchical database system.

3. For its originally intended application, an INteractive Graphics REtrieval System.

4. For more information on how Mike finds his ideas, see Chapter 10.
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And even if you got past that hurdle, you could never teach this stuff to COBOL
programmers. So it was pretty obvious that the right thing to do was to build a
relational database system with an accessible query language. So Gene [Wong]
and I set out to do that in 1972. And you didn’t have to be a rocket scientist to
realize that this was an interesting research project.

In a headiness that today reminds me of the early days of the commercial Inter-
net (at that point 20-plus years in the future), there was a lot going on. There wasn’t
just our project, Ingres, and IBM’s System R project 5 the two that turned out to
be the most prominent, but a dozen other projects going on at universities around
the world (see Chapter 13. There were conferences and papers. There was debate.
There was excitement. People were excited about the possibilities of databases with
a relational model and accessible query languages, and all the things one might be
able to do with these.

It was a brave new world. Little did we know that we were all taking the first steps
to build a huge new database industry and that it would be thriving some 50 years
later. Had we started a little earlier, we might have chosen to do research around
the CODASYL model and reached a dead end. By starting later, we likely would have
missed the chance to be pioneers. Timing (again) was luckily just right.

Ingres—Team
In my first conversations with Mike and Gene, we discussed my experiences with
commercial database systems and agreed to build Ingres with underpinnings that
might support real-world database applications.

Mike and Gene put together a small team of students. At the time, there were
three Ph.D. students: Nancy MacDonald, Karel Youseffi, and me. There were two
master’s students: Peter Kreps and Bill Zook. And four undergraduate students: Eric
Allman, Richard Berman, Jim Ford, and Nick Whyte. Given my industry experience,
I ended up being the chief programmer/project lead on this ragtag group’s race to
build the first implementation of Codd’s vision.

It was a great group of people with diverse skills who really came together as a
team. The good fortune of building this team should not be underestimated since,
unlike today, most students then had no exposure to computer programming prior
to entering university-level study.

5. For more on the IBM System R project, read Chapter 35 by IBM Fellow and “father of DB2” Don
Haderle.
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Of course, had we any idea what we were undertaking, we would never have done
it; it was far too big and challenging for a group of students.6 But that’s how many
great things happen: you don’t think about possible failure, you just go for it. (Or,
in Mike-speak: “Make it happen.”)

Because we were dealing with a completely new space, none of us really knew
what relational databases could do. Fortunately, Mike’s academic curiosity kept
constantly pushing us to think about the possibilities. In parallel with writing code
and building the system, the team would have regular meetings in which Mike
would lead a discussion, for example, on data integrity or data security. We explored
many ideas, wrote concept papers, and laid the groundwork for future years of
implementations while concentrating on getting the first version working.

Ingres—Competition
Although there were many other good research projects going on at universities
around the world, they were almost entirely academically focused and therefore
didn’t create much competition for a system that could support real applications.

Meanwhile, just an hour’s drive from Berkeley, IBM had created the System R
project and assembled a stellar, well-funded team of researchers and computer
scientists including the late, wildly talented Jim Gray: a terrific guy with whom
both Mike and I later became lifelong friends and collaborators. This was real
competition!

Although Ted Codd worked for IBM, he spent time with both teams and kept
up with the rapid progress being made. The whole IBM System R team was very
collaborative with us even though we were clearly competing.

So why is it that Ingres was built and widely distributed before the System R
work saw the light of day? Again, it was our good luck that IBM suffered from
“the innovator’s dilemma,” as described in the famous book of the same name
by Clayton Christensen [Christensen 1997].

At the time, IBM dominated every aspect of computing—computer systems,
software, operating systems and, yes, databases. IBM had IMS, which was THE
database system in the industry, period. If you didn’t need a database system, they
had ISAM and VSAM, file systems to store everything else. IBM clearly believed that
it was not in its interest for this new “relational” database model to take hold and
possibly disrupt its dominant position.

6. As Mike affirmed in an interview with Marianne Winslett [M. Winslett. June 2003. Michael
Stonebraker speaks out. ACM SIGMOD Record, 32(2)].
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And so, between the many university projects and the very well-funded IBM
project, Ingres wound up as the first widely available relational database capable
of supporting real-world applications.

Ingres—Platform
Maybe our greatest stroke of luck was the choice of platform for building Ingres.
Mike and Gene were able to obtain one of the first copies of UNIX, which at the time
was a completely unknown operating system. Little did we know that UNIX would
become wildly popular; Ingres followed UNIX around the world, and lots of people
started using our work. We acquired lots of users, which provided great feedback
and accelerated our progress.

Mike made two other key decisions that would change Ingres’ fortunes. First, he
put the academic code into the public domain using a license that broadly enabled
others to use the code and build on it (making him an accidental pioneer in the
“open source” movement.)7 Second, in 1980, he, Gene, and Larry Rowe created a
company, Relational Technology, Inc. (RTI) to commercialize Ingres, believing that
the best way to ensure that Ingres continued to prosper and work at scale for users
was to back it with commercial development.

The Ingres model—open-source academic work leading to a commercial entity
—became the formula for the rest of Mike’s career (Chapter 7).

Adolescence with Competition (1980s and 1990s)
Meanwhile, I had left Berkeley in 1975 with my newly minted Ph.D. I went on
to help start Tandem Computers, taking a lot of what I learned at Berkeley and
building out a commercial database with some unique new properties (leading
to NonStop SQL8). His commercial curiosity piqued, Mike came and did some
consulting for us—his first exposure to seeing a startup in action. We had built a
great team at Tandem, including people like Jim Gray, Franco Putzolu, Stu Schuster,
and Karel Youssefi, and were exploring other aspects of the database world like
transactions, fault tolerance, and shared nothing architectures. I think that this
experience helped Mike get a taste of entrepreneurship, for which he would later
become well known.

7. For more on this topic, see Chapter 12.

8. http://en.wikipedia.org/wiki/NonStop_SQL (Last accessed January 4, 2018).

http://en.wikipedia.org/wiki/NonStop_SQL
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Competing with Oracle
As a part of the Ingres project, we had created the QUEL language [Held et al. 1975]
to allow users to query and update the database. The IBM team had defined a dif-
ferent language originally called SEQUEL but later shortened to SQL. A few years
before Mike had co-founded RTI to commercialize Ingres, Larry Ellison had started
Oracle Corporation with the idea of implementing IBM’s SQL query language be-
fore IBM brought a product to market.

With IBM’s great technology stuck behind the wall, RTI (with Ingres’ QUEL lan-
guage) and Oracle (with SQL) were the leading contenders to provide a commercial
relational database system. In the early days of competition, many observers would
say that Ingres had the best technology; however, a major lesson for Mike to learn
was that “the best technology doesn’t always win.” Oracle ended up with a signifi-
cant advantage by adopting IBM’s SQL query language; it might not have been as
good as QUEL,9 but IBM’s reputation and ability to create both de facto and indus-
try standards won the day. Also, Mike had (and probably still has) a heavy focus on
technology, while Ellison was able to win over many customers with strong sales
and marketing.

Many more details of the commercial Ingres effort are well documented
throughout this book.10

Competing with Oracle (Again)
In the meantime, back at Berkeley, Mike’s academic curiosity continued post-
Ingres. He started the Postgres project to explore complex and user-defined data
types—a decade-long project that Stonebraker student/collaborator Joe Hellerstein
calls “Stonebraker’s most ambitious project—his grand effort to build a one-size-
fits-all database system.”11

Following the five-step model he had used for Ingres, Mike in 1992 formed
Illustra Information Technologies, Inc., a company to commercialize Postgres,
becoming its Chief Technology Officer. After a few years, Illustra was acquired by
Informix, whose major competitor was Oracle.

9. For an interesting view on this, read Chapter 35 by Don Haderle, who worked on the IBM System
R research project.

10. In particular, see Chapter 15.

11. For details about Postgres—including its many enduring contributions to the modern RDBMS
industry and its code lines—read Joe Hellerstein’s detailed Chapter 16.
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In 1993, I had left Tandem and gone to what Mike would call “the Dark Side”:
Oracle, where I ran the database group. With the Illustra acquisition, Mike had
become CTO of Informix and we became competitors. During this time, the press
was full of articles covering our often-heated debates on the best way to extend
the relational database model. Although the Postgres/Illustra Object-Relational
technology may have been better than the Oracle 8 Object-Relational technology,
Mike again learned that the best technology doesn’t always win.

Through it all, Mike and I remained friends—which queued up the next phase
of our relationship: commercial collaborators.

Maturity with Variety (2000s and 2010s)
The 1980s and 1990s had been a period of building general-purpose database
systems (Ingres and Postgres) and competing across a broad front with Oracle and
other general-purpose systems. As the new millennium dawned, however, Mike
entered into a long period of focus on special-purpose database systems that would
excel at performing specific tasks. This is his “one size does not fit all” period
[Stonebraker and Çetintemel 2005, Stonebraker et al. 2007a].

Streaming data, complex scientific data, fast analytics, and high-speed transac-
tional processing were just a few of the areas crying out for Mike’s five-step approach
to system ideation, development, and technology transfer—and his continued am-
bition to build companies.

In 2000, Mike retired from Berkeley and headed east to a new base of operations
at MIT CSAIL (yet another new frontier, as MIT had no database research group to
speak of at the time) and a new home for his family in the Greater Boston area (close
to his beloved White Mountains in New Hampshire).

As described elsewhere in this book,12 Mike proceeded to help create a world-
class database research group at MIT while leading research into each of these
specialty areas. He also drew on the formidable database expertise at other area uni-
versities, such as Brandeis (Mitch Cherniack) and Brown University (Stan Zdonik).

Around the same time that Mike was moving east, I left Oracle to concentrate
on what I (finally) realized I loved to do most: help companies get off the ground.
I spent a year at Kleiner Perkins and got a world-class education in the venture
capital world. After helping to start a couple of Kleiner-backed companies, I set

12. See Chapter 1, Research Contributions by System; and Part 7.1 Contributions from building
systems describing more than a half-dozen special-purpose systems in current or emerging use.
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out on my own as a board member and mentor to a long list of startups (and large
public companies). This eventually led me back to Mike.

Vertica
Both Mike and I had separately done some consulting with a startup that was at-
tempting to build a special-purpose database system for high-speed analytics. The
consulting engagements were both very short, as neither of us was enamored with
the company’s approach. Mike, however, was intrigued with the general problem
and started the C-Store project at MIT [Stonebraker et al. 2005a] to investigate
the possible use of column stores for high-speed analytic databases (versus the
traditional row store approach). As usual, Mike turned the academic project into
a company (Vertica Systems, Inc.) with the help of Andy Palmer as the founding
CEO.13 In 2006, I joined them as chairman of Vertica. Mike and Andy were able to
build a great team and the Vertica product was able to produce 100× performance
advantage over general-purpose database systems and demonstrate that “one size
doesn’t fit all.” Vertica had a reasonably good outcome as it was acquired by HP in
2011, becoming the company’s “Big Data” analytics platform.14

VoltDB
While we were building Vertica, Mike started the H-Store research project at MIT
with the idea of building a high-performance row store specialized for transaction
processing (see Chapter 19 “H-Store/VoltDB”). To get a commercial version off the
ground, we incubated a team inside of Vertica. Although there were clear benefits
to a specialized system for transaction processing, the market for a very high-
performance transaction system was much more limited than on the analytics side
and it was significantly more difficult for a startup to pursue these typically mission-
critical applications.

VoltDB, Inc. was spun out of Vertica in 2009 and has continued with moderate
success. Interestingly, over the past three years, I have been chairman of MemSQL,
a company that started with an in-memory row store (à la VoltDB), added a column
store (à la Vertica), and has had significant success going after the emerging real-
time database market.

13. See Chapter 18, for more on the company’s successful commercial implementation of the
technology.

14. For an inside look at a Stonebraker startup, read Andy Palmer’s Chapter 8.
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Tamr
Mike realized that the effectiveness of all of the database systems that he had
worked on over the decades depended on the quality of the data going into them.
He started the Data Tamer project at MIT [Stonebraker et al. 2013b]—with collab-
orators at QCRI, (Qatar Computing Research Institute) Brandeis University, and
Brown University—to investigate how a combination of Machine Intelligence and
human data experts could efficiently unify the disparate data sources that feed
ever-expanding databases. When it came time to start commercialization of the
technology, Mike turned again to Andy Palmer as CEO and me as chairman. Tamr,
Inc., was founded in 2013.

Tamr is similar but also very different from previous Stonebraker startups.
The Tamr system15 is similar in that it followed Mike’s basic formula for turning
academic research into a commercial operation, but modified for a product that
prepares data for a DBMS instead of being the DBMS. It differs from all but the
original Ingres project in that it explored a completely new problem (enterprise data
unification) instead of being an incremental investigation of different aspects of
database technology. We’re still in the middle of the Tamr journey; however, many
large enterprises are realizing great results and the company is growing nicely.

The Bottom Line
Beyond his ambition to help keep the relational database industry vibrant, “hon-
est,” and focused on customers’ evolving data management problems, Mike (in my
view) was long driven by the ambition to win the Turing Award—the pre-eminent
award in the computer science world. In exploring so many different research areas
in an academic setting and then proving these ideas in a commercial setting, he
steadily built his résumé in a most unique manner to achieve this goal.

In all of his commercial ventures, Mike has taken the role of Chief Technical
Officer and led the high-level product architecture. But as importantly, in that CTO
role, he has had the opportunity to have many deep interactions with customers
and gain an understanding of what the products can and cannot do. This insight
has led not only to improvements in the current company’s products but also to
ideas for new academic research, completing a virtuous circle leading to his next
entrepreneurial efforts.

Mike continues to imagine, inquire, investigate, innovate, inspire, and (yes)
irritate today, even after having received the 2014 Turing Award and having just

15. For more on the Tamr system platform, read Chapter 21.
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entered his 74th year (at the time I write this). Although there are others who have
been more successful in building large, extremely successful database companies
(especially Mike’s “buddy” Larry Ellison), and there may be someone who has
written more academic database papers (but I’m not sure who), there is certainly
no one who comes close to Mike as a combined academic and entrepreneur in what
has been one of the most important parts of the software world: database systems.

So, Mike, what’s next?



6A Perspective of Mike from
a 50-Year Vantage Point
David J. DeWitt

Fall 1970—University of Michigan
When I arrived in Ann Arbor in September 1970 to start a graduate degree in
computer engineering, the city was just months removed from a series of major
protests against the Vietnam War that would continue until the war was finally
ended. Having spent the previous year at various protest marches in Chicago and
Washington, D.C., I felt right at home. I was actually fortunate to be in graduate
school at all because military deferments for graduate school had been terminated
by then and my lottery number was sufficiently low to pretty much guarantee that
I was headed for the rice paddies of Vietnam. Had I not failed my Army physical, I
could easily have been headed to Vietnam instead of Michigan.

In the late 1960s, very few universities offered undergraduate degrees in com-
puter science (CS). I was actually a chemistry major but had taken three or four CS
seminars as an undergraduate. I was definitely not well prepared to undertake a
rigorous graduate program. One of the classes I took my first semester as a grad-
uate student was an introductory computer architecture course. So, there I was,
a scared, ill-prepared first-year graduate student with this towering guy as our TA
(teaching assistant). That TA turned out to be a guy named Mike Stonebraker who
would turn out to have a huge impact on my professional career over the next 48
years. It was eye opening to discover that my TA knew less about the subject than I
did as an incoming graduate student, despite his height. This gave me hope that I
could successfully make the transition to graduate school.

The following Spring, Mike finished his thesis under Arch Naylor and headed
off to Berkeley. Among the graduate students, there were rumors of epic battles
between Mike and Arch over his thesis. I never learned whether those battles were
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over content or style (Arch was a real stickler when it came to writing). However,
Arch never took on another graduate student between then and when he retired in
1994. Looking back, it is still hard to fathom how a graduate student whose thesis
explored the mathematics of random Markov chains and who had no experience
building software artifacts and limited programming ability (actually none, I be-
lieve) was going to end up helping to launch an entire new area of CS research as
well as a $50B/year industry.

From 1971–1976 while I was working on my Ph.D., Mike and I lost contact with
one another, but it turned out that both of us had discovered database systems dur-
ing the intervening period. I took an incredibly boring class that covered the IMS
and CODASYL data models and their low-level procedural manipulation languages.
As far as I can recall the class never mentioned the relational data model. Almost
simultaneously, in 1973 Mike and Gene Wong started the Ingres project—clearly
a huge risk since (a) Mike was an untenured assistant professor in an EE (electri-
cal engineering) department, (b) the techniques for building a relational database
system were totally unknown, and (c) he really did not know anything about build-
ing large software artifacts. Furthermore, the target platform for the first version of
Ingres was a PDP 11/45 whose 16-bit address space required building the system
as four separate processes. The highly successful outcome of Mike’s first “big” bet
clearly laid the groundwork for the other big bets he would make over the course
of the next 50 years.

In the Spring of 1976, I finished my Ph.D. in computer architecture and took a
job as an assistant professor at Wisconsin. A month before classes were to start,
I was assigned to design and teach a new class on database systems and strongly
encouraged to switch the focus of my research program from computer architecture
to database systems even though I knew nothing about this new area of relational
database systems. Fortunately, I knew the “tall guy” who, in the intervening six
years, had established Berkeley as the academic leader of this new field of research.

Fall 1976—Wisconsin
While Mike and I had not been good friends at Michigan, for reasons I still do
not understand Mike decided to become my mentor once we reconnected. He
provided me with an early copy of Ingres to use in the classroom and invited
me to attend the Second Berkeley Workshop on Distributed Data Management
and Computer Networks in May 1977 (Chapter 12). where he introduced me to
what was then a very small community of researchers in the database systems
field. It was my first exposure to the database research community. It was also
the venue where Mike published his first paper on a distributed version of Ingres
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[Stonebraker and Neuhold 1977]. Given that Mike and Gene had just gotten Ingres
to work, attempting to build a distributed version of Ingres in that timeframe was
a huge challenge (there were no “off-the-shelf” networking stacks in Unix until
Bill Joy released BSD Unix for the VAX in the early 1980s). While this project did
not turn out to have the same commercial impact that Ingres did (nor did R*,
the IBM competitor), the numerous technical challenges in access control, query
processing, networking, and concurrency control provided a rich set of challenges
for the academic research community to tackle. The impact of these two projects,
and that of System R, on our field cannot be underestimated. By demonstrating
the viability of a DBMS based on the relational data model and through technical
leadership at SIGMOD and VLDB conferences, the Ingres and System R projects
provided a framework for the nascent database research community to explore, a
voyage that continues to this day.

With the tenure clock ticking and bored with the line of research from my Ph.D.
thesis (exploitation of functional-level parallelism at the processor level), I decided
to try to build a parallel database system and launched the DIRECT project in
early 1978 [DeWitt 1979a, 1979b]. While others had started to explore this idea of
processing relational queries in parallel—notably the RAP project at Toronto, the
RARES project at Utah, the CASSM project at Florida and the DBC project at Ohio
State University—I had one critical advantage: I knew the “tall” guy and had, by that
time, studied the Ingres source code extensively.

Since obtaining a copy of Ingres required signing a site license and paying a
small fee ($50) to cover the cost of producing a tape, some will dispute whether or
not Ingres was the first open source piece of software (Chapter 12. My recollection
is that the copy of Ingres that I received in the Fall of 1976 included the source
code for Ingres—predating the first release of Berkeley Unix by at least two years
[Berkeley Software Distribution n.d., BSD licenses n.d.]. Apparently lost to history
is what copyright, if any, the early Ingres releases had. We do, however, still have
access to the source code for Ingres Version 7.1 (dated February 5, 1981), which
was distributed as part of the BSD 4.2 Unix release.1 Only two files have copyright
notices in them: parser.h and tutorial.nr. The copyright notice in these two files is
reproduced below:

/*

** COPYRIGHT

**

** The Regents of the University of California

**

1. http://highgate.comm.sfu.ca/pups/4BSD/Distributions/4.2BSD/ingres.tar.gz

http://highgate.comm.sfu.ca/pups/4BSD/Distributions/4.2BSD/ingres.tar.gz
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** 1977

**

** This program material is the property of the

** Regents of the University of California and

** may not be reproduced or disclosed without

** the prior written permission of the owner.

*/

While this copyright is more restrictive than the BSD copyright used by Ingres in
later releases, one could argue that, since none of the other .h or .c files contained
any copyright notice, the early versions of Ingres were truly open source.

Whether or not Ingres should be considered as the very first example of open-
source software, it was truly the first database system to be released in source-code
form and hence provided the nascent database community the first example of a
working DBMS that academic researchers could study and modify. The source code
for Ingres played a critical role in the implementation of DIRECT, our first effort to
build a parallel database system.

As mentioned above, the initial versions of Ingres were implemented as four
processes, as shown in Figure 6.1.

Process 1 served as a terminal monitor. Process 2 contained a parser, catalog
support, concurrency control, and code to implement query modification to en-
force integrity constraints. Once a query had been parsed it was passed to Process 3
for execution. Utility commands to create/drop tables and indices were executed by
Process 4.

Since we had access to the Ingres source code, our strategy for implementing
DIRECT was to reuse as much of the Ingres code as possible. Other than process 3,
we were able to use the other Ingres processes with little or no modification. Our
version of process 3 took the query, translated it into a form that DIRECT could
execute, and then sent it DIRECT’s backend controller for parallel execution on a
collection of four PDP 11/23s.

While access to Ingres source code was essential to the project, Mike went
much further and made the entire Ingres team available to help me with questions
about how Ingres worked, including Bob Epstein (who went on to start Britton

Terminal
monitor Parser Query

executor
Utility

commands

Figure 6.1 Ingres process structure.
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Lee and then Sybase) and Eric Allman (of Unix BSD and Sendmail fame). While
DIRECT was largely a failure (it ran QUEL queries in parallel but not very effectively;
[Bitton et al. 1983]), without Mike’s generous support it would not have succeeded
at all. Not only would I have not gotten tenure, but also the lessons learned from
doing DIRECT were critical to being able to be more successful when I started the
Gamma project in early 1984 [DeWitt et al. 1986].

Fall 1983—Berkeley
Having been tenured in the Spring of 1983, it was time for me to take a sabbatical.
Mike invited me to come to Berkeley for the Fall 1983 semester, found us a house
to rent in Berkeley Hills, and even lent us some speakers for the stereo system
that came with the house. While I spent a lot of the semester continuing the
Wisconsin benchmarking effort that had started a year earlier, Mike organized a
weekly seminar to study novel database algorithms that could take advantage of
large amounts of main memory. The resulting SIGMOD 1984 publication [DeWitt
et al. 1984] made a number of seminal contributions, including the hybrid hash
join and group commit algorithms.

This was also the time that the first commercial version of Ingres (RTI Ingres) ap-
peared and Mike graciously let us benchmark it on one of RTI’s computers running
VMS. While he had some minor quibbles about the results, he was more than pla-
cated by the fact that the commercial version of Ingres was significantly faster than
its commercial rival Oracle for essentially all the queries in the benchmark—results
that launched a sequence of benchmark wars between the two rival products.

1988–1995—No Object Oriented DBMS Detour for Mike
Frustrated by the impedance mismatch between the limited type system of the
relational model and the languages used to develop database applications and
inspired by the 1984 SIGMOD paper titled “Making Smalltalk a Database System” by
Copeland and Maier [1984], the academic database and startup communities took
a detour in an attempt to develop a new generation of database systems based on
an object-oriented data model. Mike, unconvinced that a switch in data models was
either wise or warranted, crushed the rebellion with a combination of Postgres, the
quad chart shown in Figure 6.2, a book to explain the quad chart (Object-Relational
DBMSs: Tracking the Next Great Wave, with Paul Brown) [Stonebraker and Moore
1996], and a fantastic bumper sticker: “The database for cyber space.”

Following the same approach that he had used so successfully with Ingres (and
would continue to use numerous times in the future), Mike used the Postgres
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Figure 6.2 One of Mike’s more famous quad charts.

code to start Illustra Information Technologies, Inc., which he sold to Informix
in early 1996. The thing I remember most about the sale was that Jim Gray, having
discovered the sale price in some SEC EDGAR report, called me about 2 A.M. to tell
me. Seems the quad chart was worth about $200M.

One interesting thing to reflect on is that the Illustra acquisition began the long
slow decline of Informix, as integrating the two code bases proved to be technically
much more difficult than originally assumed. The other interesting outcome is that
Postgres to this day remains one of the most popular open-source database systems.
In recent years, while Mike has pushed the “one size fits none” mantra to justify a
series of application-specific database systems (Vertica, Paradigm4, and VoltDB), I
always remind myself that Postgres, by far his most successful DBMS effort, mostly
definitely falls into the “one-size-fits-all camp.”

2000—Project Sequoia
In the mid-1990s, NASA launched an effort to study the earth called “Mission
to Planet Earth” (MTPE) using a series of remote sensing satellites designed to
obtain “data on key parameters of global climate change.” As part of this effort,
NASA issued an RFP for alternative designs for the data storage and processing
components that would be needed to store and analyze the terabytes of data that
the satellites were expected to generate over their lifetimes. This RFP inspired Mike,
along with Jim Gray, Jeff Dozier, and Jim Frew, to start a project called Sequoia 2000
to design and implement a database-centric approach (largely based on Postgres).
While NASA eventually rejected their approach (instead they picked a design based
on CORBA—remember CORBA?), the effort inspired Gray to work with Alex Szalay
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to use SQL Server for the Sloan Digital Sky Survey, which proved to be a huge success
in the space science community.

The Sequoia 2000 project also inspired myself and Jeff Naughton to start the
Paradise project at Wisconsin. While we were convinced of the merits of a database-
centric approach, we did not believe that a single Postgres instance would be
sufficient and set out to build a parallel database system from scratch targeted at
the technical challenges of the MTPE data storage and processing pipeline. While
Paradise reused many of the parallel database techniques that we had developed
as part of the Gamma project, it had several unique features, including a full suite
of parallel algorithms for spatial operations (e.g., spatial selections and joins) and
integrated support for storing and processing satellite imagery on tertiary storage.

2003—CIDR Conference Launch
In June 2002, having had all our papers rejected by Mike Franklin, the program
committee chair of the 2002 SIGMOD conference, Mike, Jim Gray, and I decided to
start a new database system conference. We felt strongly that SIGMOD had lost its
way when it came to evaluating and accepting systems-oriented database research
papers (a situation we find ourselves in again in 2018 (see Chapter 11). We felt the
only solution that was going to work was to start a new conference with an objective
of accepting only papers that had the potential to advance the state of the art. We
specifically did not want people to submit polished pieces of research, preferring
instead half-baked ideas. To this day, CIDR, the Conference on Innovative Data
Systems Research, continues to thrive as an outlet with far more submissions than
a single-track conference can accept.

2005—Sabbatical at MIT
I was fortunate to spend the 2005–2006 academic year at MIT. This was soon after
Mike had started Vertica to build a scalable data warehousing platform based on a
column store paradigm. While the idea of storing tables in a column-oriented for-
mat dates back to Raymond Lorie’s XRM project at IBM and had been explored for
use in main memory database systems by the MonetDB project at CWI, Vertica was
the first parallel database system that used tables stored as columns exclusively in
order to dramatically improve the performance of decision-support queries operat-
ing against large data warehouses. It was an amazing opportunity to have a close-up
look at Mike launching and running one of his numerous startups. While Vertica
has had modest commercial success, it has had a huge impact on the DBMS field.
Every major database platform today either uses a columnar layout exclusively or



114 Chapter 6 A Perspective of Mike from a 50-Year Vantage Point

offers a columnar layout as a storage option. ORC and Parquet, the two major HDFS
file formats for “big data,” also both use columnar storage layout.

2008—We Blog about “MapReduce”
In 2007, the CS field was abuzz about MapReduce, Google’s paradigm for pro-
cessing large quantities of data. Frankly, we were amazed about the hype it was
generating and decided to write a blog post for the Vertica website with our reac-
tions [DeWitt and Stonebraker 2008]. The key point we were trying to make was that
while the fault tolerant aspects of MapReduce were novel, the basic processing par-
adigm had been in use by parallel database systems for more than 25 years. We also
argued abandoning the power of a declarative language like SQL, however flawed
the language might be, for a procedural approach to querying was a really bad idea.
The blog post would probably not have attracted much attention except that it got
“slashdotted.” The reaction of the non-database community was incredible hostile.
“Idiots” was one of the kinder adjectives applied to us.

It is interesting to reflect on this blog post ten years later. While perhaps a
few hardcore hackers use MR today, every major big data platform (Hive, Presto,
Impala, Cloudera, Red Shift, Spark, Google BigQuery, Microsoft SQL DW, Cos-
mos/Scope, etc.) all use SQL as their interface. While early versions of Hive used
MapReduce as its execution engine, Tez, the current Hive executor, uses a vec-
torized executor in combination with standard parallel query mechanisms first
developed as part of the Gamma project in the early 1980s.

Where are the MR fan boys today? They owe us an apology.

2014—Finally, a Turing Award
In 1998, I led the effort to nominate Jim Gray for a Turing Award. When I started
that effort, I spent a fair amount of time debating with myself whether to nominate
Jim or Mike first. By that time, both had had a huge impact on our field and
it was not at all obvious to me who should be nominated first (System R and
Ingres had been jointly recognized with the ACM Software Systems Award in 1988).
While Mike’s publication record was clearly broader, Jim’s pioneering work on
transactions [Eswaran et al. 1976] seemed to me to be ideal to base a Turing
Award nomination on. I still recall thinking that a successful nomination for Mike
would follow shortly after Jim. Soon after Jim received the Turing Award, he was
appointed to join the Turing Award selection committee and, while serving, felt
it inappropriate to support a nomination for Mike. He kept promising that once
he was off the committee he would strongly support a nomination for Mike but
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unfortunately was lost at sea in January 2007 before that came to pass. It is sad that
the Turing Award process is so political that it took 16 years to recognize Mike’s
major contributions to both the research and industrial database communities. It
was never my intention for it to turn out this way. Had I known in 1998 what I know
now, I probably would have done things differently.

2016—I Land at MIT
Almost 50 years since we first met at Michigan, Mike and I again find ourselves at
the same place, this time at MIT. While we are both nearing the end of our careers
(well, at least I am) our hope is that this will be an opportunity to do one last project
together.

2017
At every important juncture of my career, Mike was there to give me assistance
and advice. I owe him a huge debt of gratitude. But I also owe thanks to whoever
scheduled Mike to be the TA for that introductory computer architecture class in
the Fall of 1970. That chance encounter with Mike turned out to have a profound
impact on both my career and my life.
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7How to Start a Company in
Five (Not So) Easy Steps
Michael Stonebraker

Introduction
This chapter describes the methodology I have used in starting nine venture capital-
backed companies. It assumes the following.

(a) I have experience in starting system software companies. The procedure is
quite different for hardware companies and applications such as those in
biotech. Nothing herein applies outside of system software.

(b) It occurs in a university context, whereby one is trying to commercialize an
idea from a university research project.

(c) One requires capital from the venture capital (VC) community. I have no
experience with angel investors. I am not a fan of self-funded startups. Unless
you are independently wealthy, you will need a day job, and your startup will
be nights and weekends only. In system software, a part-time effort is really
difficult because of the amount of code that typically needs to be written.

This chapter is divided into five steps, to be performed in order. At the end, there
are some miscellaneous comments. Along with each step, I present, as an example,
how we accomplished the step in the formation of my latest company, Tamr, Inc.

Step 1: Have a Good Idea
The first step in starting a company is to have a good idea. A good idea is specific—in
other words, it is capable of prototype implementation, without further specifica-
tion. An idea like “I would like to do something in medical wearables” is not specific
enough. At MIT, where I hang out, good ideas are presented in many of the fac-
ulty lunches. Hence, my advice is to situate yourself at a research institution like
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CSAIL/MIT or CS/Berkeley or . . . . Good ideas seem to flow out of such environ-
ments.

So what do you do if you are not in an idea-fertile place? The answer is: travel!
For example, one of my collaborators is a CS professor and researcher at another
university. However, he spends a considerable amount of time at CSAIL, where he
interacts with the faculty, students, and postdocs at MIT. Most universities welcome
such cross-fertilization. If you are in the hinterlands, then find a fertile place and
spend airplane tickets to hang out there.

How does one decide if an idea is worthy of commercialization? The answer is
“shoe leather.” Talk to prospective users and get their reaction to your proposal.
Use this feedback to refine your ideas. The earlier you can reinforce or discard an
idea, the better off you are because you can focus your energy on ideas that have
merit.

If you come up with an “idea empty hole,” then consider joining somebody else
who has a good idea. Startups are always a team effort, and joining somebody else’s
team is a perfectly reasonable thing to do.

Once you have a good idea, you are ready to advance to step 2.
In the case of Tamr, Joey Hellerstein of UC Berkeley was spending a sabbatical

at Harvard, and we started meeting to discuss possible projects. We quickly de-
cided we wanted to explore data integration. In a previous company (Goby), I had
encountered the issue of data integration of very large amounts of data, a topic that
arises in large enterprises that want to combine data from multiple business units,
which typically do not obey any particular standards concerning naming, data for-
matting, techniques for data cleaning, etc. Hence, Joey and I quickly homed in
on this. Furthermore, MIT was setting up a collaboration with the Qatar Comput-
ing Research Institute (QCRI). Ihab Ilyas and George Beskales from QCRI started
collaborating with us. Goby’s major problem was deduplicating data records from
multiple sources that represented the same entity, for example deduplicating the
various public data sources with information about Mike Stonebraker. The QCRI
team focused on this area, leaving MIT to work on schema matching. Last, Stan
Zdonik (from Brown) and Mitch Cherniack (from Brandeis) were working with Alex
Pagan (an MIT graduate student) on expert sourcing (i.e., crowdsourcing, but ap-
plied inside the enterprise and assuming levels of expertise). They agreed to apply
their model to the Goby data. Now we had the main ideas and could focus on build-
ing a prototype.

Step 2: Assemble a Team and Build a Prototype
By now, you hopefully have a few friends who have agreed to join you in your
endeavor. If not, then recruit them. Where should you look? At the idea factory
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where you hang out! If you cannot find competent programmers to join your team,
then you should question whether you have a good idea or not.

This initial team should divide up the effort to build a prototype. This effort
should be scoped to take no more than three months of your team’s effort. If it
takes more than three months, then revise the scope of the effort to make your
prototype simpler. It is perfectly OK to hard-code functionality. For example, the C-
Store prototype that turned into Vertica ran exactly seven queries, whose execution
plans were hard-coded!

In other words, your prototype does not need to do much. However, make sure
there is a graphical user interface (GUI); command line interfaces will make the
eyes of the VCs glaze over.

VCs need to see something that demonstrates your idea. Remember that they
are business people and not technologists. Your prototype should be simple and
crisp and take no more than five minutes to demonstrate the idea. Think “Shark
Tank,” not a computer science graduate class.

Your prototype will almost certainly be total throwaway code, so don’t worry
about making the code clean and maintainable. The objective is to get a simple
demo running as quickly as possible.

In the case of Tamr, we merely needed to whack out the code for the ideas
discussed above, which was a team effort between QCRI and MIT. Along the way,
we found two more use cases.

First, Novartis had been trying to integrate the electronic lab notebooks for
about 10,000 bench scientists. In effect, they wanted to integrate 10,000 spread-
sheets and had been trying various techniques over the previous 3 years. They were
happy to make their data structures available for us to work on. This gave us a
schema integration use case. Last, through the MIT Industrial Liaison Program
(ILP), we got in touch with Verisk Health. They were integrating insurance claim
data from 30-plus sources. They had a major entity consolidation problem, in that
they wanted to aggregate claims data by unique doctor. However, there was substan-
tial ambiguity: two doctors with the same last name at the same address could be
a father-and-son practice or a data error. We had another, “in the wild,” entity con-
solidation problem. In Data Tamer, we did not focus on repair, only on detection.
Verisk Health had a human-in-the-loop to correct these cases.

Our prototype worked better than the Goby handcrafted code and equaled the
results from the automatic matching of a professional data integration service on
Verisk Health data. Last, the prototype appeared to offer a promising approach
to the Novartis data. Hence, we had a prototype and three use cases for which it
appeared to work.

With a prototype, you can move to step 3.
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Step 3: Find a Lighthouse Customer
The first question a VC will ask you is, “Who is your customer?” It helps a lot to have
an answer. You should go find a couple of enterprises that will say, “If you build this
for real, then I will consider buying it.” Such lighthouse customers must be real,
that is, they cannot be your mother-in-law. VCs will ask to talk to them, to make
sure that they see the same value proposition that you do.

What should you do if you can’t find a lighthouse customer? One answer is to
“try harder.” Another answer is to start questioning whether you have a good idea.
If nobody wants your idea, then, by definition, it is not a good idea.

If you lack contacts with business folks, then try hanging out at “meetups.”
There is no substitute for network, network, network. After trying hard, if you still
can’t find a lighthouse customer, then you can continue to the next step of the
process, but it will make things much harder.

In the case of Tamr, we had three lighthouse customers, as noted in the previous
section. All were happy to talk to interested people, which is what the next step is
all about.

Step 4: Recruit Adult Supervision
VCs will look askance at a team composed of 23-year-old engineers. In general,
VCs will want some business acumen on your team. In other words, they will
want somebody who has “done it before.” Although there are exceptions (such as
Mark Zuckerberg and Facebook), as a general rule a team must have a business
development or sales executive. In other words, somebody has to be available to run
the company, and the VCs will not entrust that to somebody with no experience.
Although your team may have an MBA type, VCs will look askance at a 23-year-
old. VCs are risk-averse and want to entrust execution to somebody who has “been
around the block a few times.”

So how do you find a seasoned executive? The answer is simple: shoe leather.
You will need to network extensively. Make sure you find somebody you can get
along with. If the dynamics of your relationship are not terrific on Day 1, they are
likely just to get worse. You will be spending a lot of time with this person, so make
sure it is going to work.

Also, make sure this person has a business development or sales pedigree. You
are not particularly looking for a VP/Engineering, although one of those would
be nice. Instead, you are looking for someone who can construct a go-to-market
strategy, write a business plan, and interact with the VCs.
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What happens if you can’t find such a person? Well, do not despair; you can
continue to the next step without adult supervision. However, the next step will be
tougher . . . .

In the case of Tamr, I reached out to Andy Palmer, who had been the CEO
of a previous company (Vertica) that we co-founded. Andy worked at Novartis at
the time and verified the importance of data integration with Novartis engineers.
In addition, he invited Informatica (a dominant player in the data-integration
software market) to talk about how they could solve the Novartis problem. It became
clear that Novartis really wanted to solve its data integration challenge and that
Informatica could not do so. Armed with that information, Andy agreed to become
CEO of Tamr.1

Step 5: Prepare a Pitch Deck and Solicit the VCs
By this point in the process, you hopefully will have one or more lighthouse cus-
tomers and a team that includes software developers and at least one “adult.” You
are now ready to pitch the VCs. Your adult should be in charge of the presentation;
however, you should remember that VCs have a short attention span—no more
than 30 minutes. Your deck should not have more than 15 slides, and your pitch
should include a 5-minute demo.

How do you find VCs to pitch? Ask around: in other words, network. In the
hotspots (Silicon Valley, Seattle, Boston, New York, etc.), VCs are literally on every
street corner. If you are in the hinterlands, then you should consider moving to a
hotspot. Moreover, it is unlikely that you can find good adult supervision in the
hinterlands.

Check out the reputation of any VC with whom you interact. Each VC has a
reputation that precedes him or her, good or bad. Run away from anybody who
does not have a stellar reputation for fairness. I have heard enough horror stories
of entrepreneurs getting taken advantage of by VCs or by CEOs brought in by the
VCs, and I have had one painful experience myself in this area. My strong advice:
If it doesn’t feel right, you should run the other way.

Now, try out your pitch on a couple of “friendly” VCs. They will trash your pitch
for sure, and you can now do the first of what will probably be several iterations.
After a while your pitch deck will get better. Expect to pitch several-to-many VCs
and to spend months on this process.

Every VC will give you one of three reactions.

1. See Chapter 21 for the story of this system.
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. “I will get back to you.” This is code for, “I am not interested.”

. “I am not interested, because [insert some usually irrelevant reason].” This
is a slightly more genuine way of saying, “I am not interested.”

. A “rock fetch.” The VC will ask you to try out your pitch on:

possible executives (to beef up step 4)

possible customers (to beef up step 3)

their friends—to help them evaluate your proposal

companies in their portfolios—again to help them evaluate your
proposal

In each case, the VC is gathering information on the validity of your business
proposal. You should expect several-to-many rock fetches and the process to go
on for weeks. Although rock fetches are very frustrating, you really have only two
choices.

1. Do the i+1st2 rock fetch.

2. Tell the VC you are not interested.

In general, you may have to turn over a lot of rocks to find a diamond. Enjoy the
process as best you can. Hopefully, this ends with a VC saying he or she wants to
give you a term sheet (details of his proposed investment). If this happens, then
there may well be a “pile on.” Previous VCs who were not interested may suddenly
become very interested. In other words, there is a “follow the crowd” mentality.
Unfortunately, this will not usually result in the price of the deal rising; there will
just be more people around the table to split the deal. The above statements do not
apply to “unicorns” (companies like Facebook or Uber), which have valuations in
the stratosphere. The rest of us are stuck with down-to-earth values.

When you receive a term sheet, it is crucial that you find somebody who has
“done it before” to help you negotiate the deal. The non-financial terms are prob-
ably more important than the financial ones, so pay close attention.

The most onerous term is “liquidation preference.” VCs will routinely demand
that they get their money back in any liquidity event before the common stock-
holders get anything. This is known as a 1× preference. However, I have seen term
sheets that propose a 3× preference. Suppose you accept $20M of venture capital
over multiple financing rounds. With a 3× preference, the VCs get the first $60M
before the founders and employees get anything. If the VCs have 60% of the stock

2. Where “i” is some big number and “+1” is yet another. In other words, a LOT of rock fetches.
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and a 3× preference, then a liquidity event of $80M will mean the VCs get $72M
and others get $8M. As you can see, this is not a terrific outcome. Hence, pay careful
attention to this and similar terms.

The other thing about negotiating with the VCs is that they do deals on a regular
basis and you don’t. It is reminiscent of the automobile market before the Internet.
VCs will throw around statements like “this salary is not market” or “this stock
position is not market.” It is difficult to argue since they have all the data and you
don’t. My only suggestion is to get somebody who has done it before to help with
the negotiation, and to keep you out of all the assorted sand traps that you would
otherwise encounter.

Expect the negotiation with the VC (or VCs) to be a back-and-forth process. My
advice is to settle all the non-financial terms first. Second, make sure you have
the amount that you want to raise. In general, this should be enough money to
get your product into production use at one of your lighthouse customers. Don’t
forget that quality assurance (QA) and documentation must be included. When you
think you have a number, then double it, because entrepreneurs are notoriously
optimistic. Then, the negotiation boils down to a raise of $X in exchange for Y% of
the company. In addition, the remainder must be split between the founders and
an option pool for other employees to be hired in the first year. Hence, the only
things to be negotiated are Y and the size of the option pool. My advice is to fix
essentially everything and then negotiate the price of the deal (Y above).

In the case of Tamr, Andy and I pitched a friendly VC from New Enterprise
Associates, who took the deal on the spot, as long as the terms were within what
he could accept without asking his partners. He had the advantage that he knew
the data integration space and the importance of what we were trying to do. Armed
with his acceptance, we found it relatively easy to recruit another VC to supply the
other half of the capital we needed.

Assuming you can come to terms with the VC (or VCs), you are off to the races. In
the next section, I make a collection of random comments on topics not discussed
above.

Comments

Spend No Money
Companies fail when they run out of money, and in no other way. Do not spend your
capital on Class A office space, a receptionist, office furniture (buy from Ikea if you
can’t scrounge it from somewhere else), a car service, or somebody to make travel
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arrangements. Also, do not hire a salesperson—that is the job of the adult on your
team. Your team should be as lean as possible! The adage is “kiss every nickel.”

Intellectual Property
I am routinely asked, “What about intellectual property?” I am a huge fan of open-
source software. If you did development at a university, then declare your efforts
open source, and make a clean “toss the code over the wall” into your company.
Otherwise, you are stuck negotiating with the Technology Licensing Office (TLO)
of your university. I have rarely seen this negotiation go well. Your company can be
open or closed source, and can submit patent applications on work done after the
wall toss. I am also a fan of reserving a block of stock for your university, so they
get a windfall if your company does well. Also, dictate the stock go to Computer
Science, not to the general university coffers.

Your VCs will encourage you to submit patent applications. This is totally so you
can say “patented XXX” to prospective customers, who think this means something.
It costs about $25K to submit an application and a month of your time. Go along
with the VCs on this one.

I have rarely seen a software patent stand up to scrutiny. There is always prior
art or the company you are suing for patent infringement is doing something a bit
different. In any case, startups never initiate such suits. It costs too much money.
In my experience, software patents are instead used by big companies for business
advantage.

In the case of Vertica, a large company against which we were competing (and
routinely winning) sued us for patent infringement of one of their old patents. In
round numbers, it cost us $1M to defend ourselves and it cost them $1M to push
the suit. Their $1M was chump change since they were a large company; our $1M
was incredibly valuable capital. Moreover, they told all of our prospects, “Don’t
buy Vertica, since they are being sued.” Although we ultimately won, they certainly
slowed us down and distracted management. In my opinion, the patent process is
routinely abused and desperately needs a massive overhaul.

First Five Customers
It is the job of your adult to close the first five customers. Do not worry about getting
lots of money from them. Instead, you just need them to say nice things to other
prospective customers about your product.
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Raising More Money
The general adage is “raise more money only when you don’t need it.” In other
words, whenever you pass an oasis, stock up on water. In general, you can get
the best price for your stock when you don’t need the money. If you can’t get a
reasonable deal, then turn down the deal. If you are in danger of running out of
money (say within six months of “cash out”), the VCs will hammer you on price or
string you along until you are desperate and then hammer you on price. You can
avoid this by raising money well before you run out.

Two VCs
In my opinion, if you have a single VC funding your company, you get a boss. If you
have two, you get a Board of Directors. I much prefer two, if you can swing it.

Company Control
Unless you are a unicorn, the VCs will control the company. They invariably make
sure they can outvote you if push comes to shove. Hence, get used to the fact that
you serve at their pleasure. Again, I can’t overemphasize the importance of having
a VC you can work with. Also, fundamentally your adult is running the company, so
the VCs are actually backing that person. If you have a falling out with your adult,
you will get thrown under the bus.

The worst problems will occur if (or when) your adult tires of the grind of running
a startup. If he or she exits, then you and the VCs will recruit a new CEO. My
experience is that this does not always go well. In two cases, the VCs essentially
insisted on a new CEO with whom I did not get along. In both cases, this resulted
in my departure from the company.

Secrecy
Some companies are very secretive about how their products work. In my opinion,
this is usually counterproductive. Your company wins by innovating faster than the
competition. If you ever fail to do this, you are toast. In my opinion, you should fear
other startups, who are generally super smart and don’t need to learn from you.
Large companies typically move slowly, and your competitive advantage is moving
more quickly than they do. In my opinion, secrecy is rarely a good idea, because
it doesn’t help your competitive position and keeps the trade press from writing
about you.
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Sales
It never ceases to gall me that the highest-priced executive in any startup is invari-
ably the VP of Sales. Moreover, he or she is rarely a competent technologist, so you
have to pair this person with a technical sales engineer (the so-called four-legged
sales team). The skill this person brings to the table is an ability to read the political
tea leaves in the companies of potential customers and to get customer personnel
to like them. That is why they make the big bucks!

The most prevalent mistake I see entrepreneurs make is to build out a sales
organization too quickly. Hire sales people only when your adult is completely
overloaded and hire them very, very slowly. It is rare for a sales person to make
quota in Year One, so the expense of carrying salespeople who are not delivering is
dramatic.

Other Mistakes
There are two other mistakes I would like to mention.

First, entrepreneurs often underestimate how hard it is to get stuff done. Hence,
they are often overoptimistic about how long it will take to get something done.
As I noted above, double the amount of money you request as a way to mitigate
this phenomenon. Also, system software (where I have spent all of my career,
essentially) is notoriously hard to debug and make “production-ready.” As a result,
startups often run out of money before they manage to produce a saleable product.
This is usually catastrophic. In the best case, you need to raise more money under
very adverse circumstances.

The second mistake is trying to sell the product before it is ready. Customers
will almost always throw out a product that does not work well. Hence, you spend
effort in the sales process, and the net result is an unhappy customer!

Summary
Although doing a startup is nerve-racking, requires a lot of shoe leather and a lot of
work, and has periods of extreme frustration, I have found it to be about the most
rewarding thing I have done. You get to see your ideas commercialized, get to try
your hand at everything from sales to recruiting executives, and get to see the joy
of sales and the agony of sales failures firsthand. It is a very broadening experience
and a great change from writing boring research papers for conferences.



8How to Create and Run
a Stonebraker Startup—
The Real Story
Andy Palmer1

If you have aspirations to start a systems software company, then you should
consider using the previous chapter as a guide.

In “How to Start a Company in Five (Not So) Easy Steps,” (see Chapter 7). Michael
Stonebraker has distilled the wisdom gained from founding 9 (so far) database
startups over the last 40 years.

As the “designated adult supervision” (business co-founder and CEO) in two
Stonebraker database startups (Vertica Systems and Tamr) and a founding BoD
member/advisor to three others (VoltDB, Paradigm4,2 Goby), I have lived and de-
veloped this approach with Mike through more than a dozen years marked by
challenging economic climates and sweeping changes in business, technology, and
society.

I am privileged to have had the opportunity to partner with Mike on so many
projects. Our relationship has had a profound effect on me as a founder, as a
software entrepreneur, and as a person.

In this chapter, I’ll try to answer the question: “What’s it like running a company
with Mike Stonebraker?”

1. As acknowledged by Mike Stonebraker in his Turing lecture, “The land sharks are on the squawk
box.” [Stonebraker 2016]

2. See Chapters 27–30 on the research and development involving C-Store/Vertica, Tamr, H-
Store/VoltDB, and SciDB/Paradigm4.
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Figure 8.1 Andy Palmer and Mike Stonebraker at the 2014 Turing Award Ceremony, June 20, 2015.
Photo credit: Amy Palmer.

An Extraordinary Achievement. An Extraordinary Contribution.
Founding nine startup companies is an extraordinary achievement for a computer
scientist. As the 2014 ACM Turing Award citation noted:

“Stonebraker is the only Turing award winner to have engaged in serial entrepre-
neurship on anything like this scale, giving him a distinctive perspective on the
academic world. The connection of theory to practice has often been controver-
sial in database research, despite the foundational contribution of mathematical
logic to modern database management systems.”

All of these companies were at the intersection of the academic and commercial
worlds: Mike’s tried-and-true formula [Palmer 2015b]. They involved convincing
businesses across industries to provide their large working datasets—an achieve-
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ment in itself—to help turn academic research and theory into breakthrough soft-
ware that would work at scale.

Mike broke new ground not just in starting these companies, but also in how he
has started them. Mike’s methods are uniquely suited to bringing the best academic
ideas into practice.

He focused on solving big “unsolvable” real-life problems versus making incremen-
tal improvements on current solutions. Incrementalism has all too often been the
status quo among database software vendors, to the detriment of business and
industry. A great example of how incrementalism plagued commercial database
systems was the perpetuation of “row-oriented” database systems and incremental
enhancements, such as materialized views, in the 1980s and 1990s. It took Mike’s
“One size does not fit all in database systems” paper [Stonebraker and Çetintemel
2005] to help shake things up and inspire the proliferation of innovation in data-
base systems, including Vertica’s column-oriented analytics database (acquired by
HP (Hewlett-Packard) and now part of Micro Focus’ software portfolio). The sheer
number and variety of purpose-oriented databases on the market today is a testa-
ment to Mike’s reluctance to settle for incrementalism.

He takes a disciplined, engineering-driven approach to systems software design and
development. Mike always had a clear understanding of the differences between an
academic code line, startup first release code, startup second release code, and
code that would actually work at scale very broadly. He recognized how hard it
was to build something rock solid, reliable, and scalable. He was able to suspend
much of his academic hubris when it came time to build commercial product,
respecting the requirements and costs of building real systems. He also recruited
great people who had the patience and discipline to spend the years of engineering
required to build a great system (even if he didn’t have the patience himself). Mike
is notorious for referring to SMOC, or “a Simple Matter of Code.” But he always knew
that it took many person-years (or decades) to write the code after working out the
core design/algos—and how to achieve this optimally through strategic hiring and
sticking to the right approach.

He takes a partnership approach to leadership. During the time I’ve worked with
him, Mike has embraced a partnership approach, believing that success depends
on both great technology and great business/sales—skills that don’t typically co-
exist in one leader. I’ve always found him to actively want to be a partner, to work
together to build something great. He believed that, through partnership and the
open exchange of strong opinions, partners can get to the best answers for the
project or company. Mike and I love to argue with each other. It’s fun to go at a
hard problem together. It doesn’t matter if it’s a business problem or a technical
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problem, we love to hash it out. I think that each of us secretly likes talking about
the other’s area of expertise.

Mike’s track record in starting new companies is better than most venture capi-
talists. Of his startups to date, three have delivered greater than 5× returns to their
investors (Ingres, Illustra/Postgres, and Vertica), three delivered less, and three are
still “in flight.” Blue-chip and leading technology companies—such as Facebook
[Palmer 2013], Uber, Google, Microsoft, and IBM as well as cutting-edge main-
stream industrial companies—such as GE and Thomson Reuters—use products
from Stonebraker companies/projects. Stonebraker-inspired products have been
in use for every second of every day across the world for nearly three decades.3

For these reasons, Mike’s footprint extends far beyond the companies he
founded, the students he taught, and the academic collaborators he inspired. The
technology industry and the business world have learned a lot from him.

A Problem of Mutual Interest
A Happy Discovery
Mike and I were introduced in 2004 by Jo Tango,4 a venture capitalist who was
at Highland Capital Partners at the time. We were at a Highland event at the
Greenbrier resort in West Virginia. Our wives met first and hit it off: so much so
that they told us that we had to start a company together. Our meeting surfaced a
problem of mutual interest, followed by a happy discovery that we really got along
and saw startup stuff the same way. (Good thing for the preservation of marital
bliss.)

I was then chief information and administrative officer for Infinity Pharmaceu-
ticals, and we had just finished trying to implement a large data warehouse using
Oracle RAC (an effort that essentially failed). Mike was working on the C-Store
project at MIT [Stonebraker et al. 2005a], a scale-out column-oriented database. I
had experienced firsthand the problems that Mike was trying to address with C-
Store and was starting to think about doing another startup.

What really sealed the deal, however, is that Mike and I shared the same core
values, particularly the partnership approach to founding a company. We both
believed that the best companies are often made through partnerships between
people who appreciate each other, have a sense of humility in their own areas, and

3. For visual proof, see Chapter 13, by Naumann and Chart 2 of Part 1 by Pavlo

4. Read Tango’s Chapter 9.
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Questions We Asked at Vertica’s Founding

■ Does the world really need another DB engine?
– Yes, “One Size Does Not Fit All” paper by Stonebraker

■ What do we need to successfully build a significant new 
 enterprise software company in today’s market?

– Both business and technical talent
– 10x performance of Oracle

■ How can we create a functional culture where engineers
 and businesspeople deeply trust each other?

– Focus on the talent of these people
■ Could we have fun in the process?

– Yes!

Figure 8.2 In founding Vertica, we asked ourselves several questions.

look to others to help them make the best decisions to achieve the best outcomes.
We founded Vertica in 2005 (see Figure 8.2).

The Power of Partnership
Our partnership has worked over the years because our principles and core val-
ues are aligned. Our approach to starting companies is based in pragmatism and
empirics, including:

1. a focus on great engineering, first and foremost;

2. build products designed to solve real customer problems [Palmer 2013];

3. deliver thoughtful system architecture: work in the “white space” instead of
incrementally reinventing the proverbial wheel;

4. hire the best people (including “looking beyond the resume”) and treat
people respectfully (check titles and degrees at the door);

5. test all assumptions with many real customers, early and often;

6. take a capital-efficient approach, even in “flush” times, and consider the
full lifecycle when seeking initial capital (think beyond the first round/next
milestone); and

7. have fun in the process.



134 Chapter 8 How to Create and Run a Stonebraker Startup— The Real Story

Vertica’s success derived from our adherence to those core values and the hard
work of many people over many years—most notably Colin Mahony, who still leads
Vertica at Micro Focus; Shilpa Lawande, who led engineering for 10-plus years, and
Chuck Bear, who was the core architect.

Many of Vertica’s early prospective customers had expressed interest in a spe-
cific feature (materialized views). This was a classic example of customers asking
for things that aren’t in their own long-term best interests. Mike said that there
was no way we were going to build materialized views; his exact words were “over
my dead body”—another Mike-ism. A startup with a top-down, sales-oriented CEO
would have probably just directed engineering to build materialized views as re-
quested by customers. Instead, we had a healthy debate about it, but decided not
to do it, which turned out to be absolutely the right thing. Another way to view
this is that Vertica’s entire system is a collection of materialized views—what we
called “projections.” And over time, our customers came to appreciate the fact
that they didn’t need to implement materialized views: they just needed to use
Vertica.

Another example was pricing: I believed that we needed an innovative pricing
model to differentiate our product. Instead of the conventional pricing model
(which was then based on per-server or per-CPU), we went with a pricing model tied
to the amount of data that people loaded into the system (per-terabyte). (Credit goes
to product marketing pro Andy Ellicott for this idea.) This was counterintuitive at
the time. Mike probably would have said, “Let’s choose something that’s easy for
the customers.” But I was really confident that we could pull this off and that it was
right thing to do, and we talked it through. Mike supported the idea and in the end
it was right. Much of the analytical database market subsequently migrated toward
the per-terabyte pricing model.

The partnership model of entrepreneurship5 takes work, but it’s proven well
worth it in the companies that we’ve co-founded.

After finding the right partner, it’s vital to have a simple but firm partnership
agreement, including: (1) a mutual understanding of the entire journey to build the
company; (2) a willingness to challenge assumptions at each stage of its develop-
ment; (3) a mutual appreciation and respect for both the technical and business
sides of the company to prevent fingerpointing; and (4) and explicit alignment on
core values. You should accept and plan for the overhead associated with effective

5. Read more about the importance of a partnership model Chapter 7 “How to Start a Company in
Five (Not So) Easy Steps” (Stonebraker) and 9 “Getting Grownups in the Room: A VC Perspective”
(Tango).
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shared leadership, including the time for healthy debates and navigating disagree-
ments. Mike and I have gotten into some pretty heated discussions over the years,
all of which made for better companies and an ever-stronger relationship.

Great co-founder relationships are more flexible—and more fun. Startups are
inherently hard: a partner can help you through the tough times, and it’s definitely
more fun to celebrate with someone during the good times. Startups are also
constantly changing, but with a complementary co-founder, it’s much easier to roll
with the changes. It’s like a built-in support group.

At the same time, Mike and I aren’t joined at the hip. We both have lots of
interests and are always looking at lots of different things in our areas of interest.
I have extracurricular interests in a whole bunch of different businesses, and Mike
has interests in all kinds of different projects and technology. This brings invaluable
outside perspective into our relationship and the projects we work on together.
This is why—coupled with our deep trust in each other—we can do many different
separate projects but always come back together and pick up exactly where we left
off on our joint projects.

We’re alike in that we both want to get lots of data and we appreciate external
feedback. We’re open to better ideas, regardless of where they come from.

Shared values and deep trust in each other saves a lot of time. Early in the history
of Vertica, we were out raising money. Our financing terms were aggressive, but we
were confident that we were on to something. We were in the offices of a large,
well-known venture capital firm. There was a junior venture partner who wanted
us to commit to certain revenue and growth numbers, but it was really early in the
lifecycle of the company. Mike and I glanced at each other and then said, “No, we’re
not going to make commitments to numbers that are pure fiction. If you don’t like
it, then don’t invest. We’ll go right across Sand Hill Road and take money from
somebody else.” That’s exactly what we did.

Fierce Pragmatism, Unwavering Clarity, Boundless Energy
There’s a fierce pragmatism to Mike, which I share and which permeates our
projects. While we like to work on really sophisticated, complex, technical prob-
lems, we pair that with a very pragmatic approach to how we start and run these
companies. For example, from the beginning of Vertica, we agreed that our sys-
tem had to be at least 10× faster and 50-plus% cheaper than the alternatives. If
at any point in the project we hadn’t been able to deliver on that, we would have
shut it down. As it turned out, the Vertica system was 100× faster, a credit to the
engineering team at Vertica. (You guys rock.)
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Mike also sees things in a very clear way. For example: It’s relatively easy for
companies to go out and build new technology, but that doesn’t mean they should.
When Mike famously criticized MapReduce back in the late 2000s [DeWitt and
Stonebraker 2008, Stonebraker et al. 2010], it was controversial. But at that point,
there was a whole generation of engineers rebuilding things that had already been
worked out either academically or commercially: they just had to do a bit more
research. It’s frustrating to watch people make the same mistakes over and over
again. Today, because of Mike, there are a whole bunch of people doing things
commercially who are not making the same mistakes twice. I always tell young
engineers starting out in databases to read the Big Red Book (Readings in Database
Systems, 5th ed.)

Mike’s energy—physical and intellectual—is boundless. He’s always pushing
me hard, and I’m still struggling to keep up even though I’m 20 years younger. This
energy, clarity, and pragmatism infuses the principles of our businesses at every
level. Here are some more examples.

Our #1 principle (see list) is “focus on great engineering.” This doesn’t mean
hiring a seasoned engineering VP from a big company who hasn’t written code
in decades. It starts and ends with real engineers who understand why things work
and how they should work in great systems. We like hiring engineering leaders who
want to write code first and manage second, and we don’t get hung up on titles or
resumes. (If they are reluctant managers, that’s a good sign; if they want to manage
rather than write code, that’s usually a bad sign.)

After successfully resisting BoD pressure at Vertica to “hire a real VP of engineer-
ing,” we promoted the amazing Shilpa Lawande to run engineering. Shilpa had a
more integrated view of what needed to be built at Vertica than anyone. Promot-
ing Shilpa was a risk as it was her first leadership opportunity, but we knew she
was going to kill it. She kept writing code for the core system, but eventually (when
the engineering team got to critical mass), she stepped up to the plate—and killed
it, as predicted, leading the entire engineering team at Vertica for over a decade.
(As of August 2017, Shilpa had started her own new company, an AI healthcare
startup.)

Another pivotal “Mike moment” in Vertica’s engineering-driven strategy was
when Mike brought in noted computer scientist David DeWitt. Dave provided in-
valuable advice in system design and got right down in the trenches with our engi-
neering team.

Another core principle is thoughtful system architecture, and Mike is our ace in
the hole on this one. By knowing to the bits-on-disks level how systems work and
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having seen design patterns (good and bad) over and over again for the past 40-plus
years, Mike knows almost instinctively how a new system should work.

Case in point: A lot of Vertica competitors building high-performance database
systems believed that they needed to build their own operating systems (or at least
methods to handle I/O). Early on, we made a decision to go with the Linux file
system. The academic founding team led by Mike believed that Linux had evolved
to be “good enough” to serve as a foundation for next-generation systems.

On the surface, it seemed like a big risk: Now, we were not only running on
commodity hardware (Netezza was building its own hardware), but also running
on a commodity (open source) operating system. Mike knew better: an instinctive
decision for him, but the right one and highly leveraged. Had we gone the other
way, the outcome of Vertica would be very different.

Fortunately, Mike talked me down from positioning Vertica as an alternative
high-performance/read-oriented storage engine for MySQL. The idea was that, fol-
lowing InnoDB’s acquisition by Oracle,6 the MySQL community was looking for an
alternative high-performance, read-oriented storage engine that would sit under-
neath the rest of the MySQL stack for SQL parsing, optimization, and so on. Mike
said it would never work: high-performance applications wouldn’t work without
control from the top of the stack (the declarative language) on down. (Right again,
Mike.)

But Mike isn’t always right and he’s not afraid of being wrong. His batting
average is pretty good, though. He was famously early in embracing distributed
systems, basing his early, early work (1970s) on his belief. It’s taken 40-plus years
for the industry to come around to these kinds of things. He was never a fan of using
high-performance memory architectures, and he was wrong on that. A hallmark of
Mike—and a key to his success—is that he’s never afraid to have strong opinions
about things (often things he knows nothing about) just to encourage debate.
Sometimes very fruitful debates.

Mike’s a great example of the belief that smart people are smart all the time.
Venture capitalists and others who have tended to pigeonhole him as “just an
academic” vastly underestimated him. Like MIT’s Robert Langer in biotech, one
doesn’t start this many companies and have this kind of success commercially and
academically without being really, really smart on many levels.

6. InnoDB, which built the storage component of MySQL, had been acquired by Oracle, causing
a temporary crisis in the open-source community.
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Figure 8.3 Mike Stonebraker and his bluegrass band, “Shared Nothing” (what else?), entertain at the
Tamr Summer Outing on Lake Winnipesaukee in July 2015. From left are Mike, software
engineer John “JR” Robinson (of Vertica), and Professor Stan Zdonik (of Brown University).
Photo Credit: Janice Brown.

A Final Observation: Startups are Fundamentally about People
Companies come and go; good relationships can last forever. Partnership extends
to the people who work “with” you—whether it’s the graduate students or Ph.D.s
who help build early research systems or the engineers who develop and deploy
commercial systems.

As a Mike Stonebraker co-founder, I believe that I work for the people who work
with me, giving them (1) better career development opportunities than they could
find elsewhere, by aligning their professional interests with “whatever it takes” to
make the startup successful, and (2) a healthier, more productive and more fun work
environment [Palmer 2015a] than they can find elsewhere.

One of the reasons Mike has such a broad and diverse “academic family” is that
he invests tremendous time, energy, and effort in developing young people, giving
them opportunities both academically as well as commercially. This may be his
biggest gift to the world.
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Room: A VC Perspective
Jo Tango1

My First Meeting
“Your website’s directions are all wrong,” Mike said. “It led me to take the wrong
freeway exit.”

In the Summer of 2002 I was looking into new developments in the database
space, and Sybase co-founder Bob Epstein suggested that I look up Mike Stone-
braker, who had just moved from California to the Boston area.

So, I found Mike’s email and reached out, proposing a meeting. Our receptionist
showed Mike to the conference room. I walked in and said, “Hello.”

I saw a tall man with penetrating eyes. A wrinkled shirt and shorts completed
the ensemble.

Mike’s first words (above) made me think: “This is going to be a different
meeting!”

It turned out to be the start of what has been a long working relationship across
a number of companies: Goby (acquired by NAVTEQ), Paradigm4, StreamBase Sys-
tems (TIBCO), Vertica Systems (Hewlett-Packard), and VoltDB. Most importantly,
Mike and I have become friends.

Context
Venture capital is an interesting business. You raise money from institutions
such as college endowments and pension funds, and you then strive to find

1. Acknowledged as “Believer” by Mike Stonebraker in his Turing lecture, “The land sharks are on
the squawk box” [Stonebraker 2016].
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entrepreneurs to back. Being an early-stage VC, I look for entrepreneurs in emerg-
ing technologies just forming companies that warrant seed capital.

There are two interesting facets to venture capital.
First, it is the ultimate Trust Game. Institutional investors commit to a fund that

is ten years in duration. There are very few ways for them to get out of a commitment,
and there is no Board of Directors, as venture firms are run as private partnerships.
So, they will invest only if they trust you.

You, as the VC, in turn invest in entrepreneurs, many of whom are quirky, like
Mike. You go to board meetings, you try to influence strategy, but for 99% of the
time, you and the entrepreneur are not in the same room. A founder can golf every
day or engage in nefarious behavior, and you’re often the last to know. So, you only
invest in someone whom you trust.

Mike is someone I trust. Yes, I believe in him.
Second, you’re paid to peer into the future with all the risks and imperfection

that that entails. In 2002, I spent a lot of time thinking about, “What’s next?”
Through my work, I had built relationships with the CIOs and CTOs at Goldman
Sachs, Morgan Stanley, Fidelity, Putnam, and MMC (Marsh & McLennan Compa-
nies).

In numerous one-on-one conversations with these industry leaders, we talked
about the pressing problems facing their companies and what they would have
liked to see if they could “wave the magic wand.” Based on such insights, I started
some seed projects with their sponsorship, often after getting Mike’s take.

I noticed that there was a great deal going on with storage subsystems and
networking technologies. But, there wasn’t much going on in the database layer.
Oracle seemed to have a lock on the space.

Hence, the call to Bob Epstein. I’m grateful that Bob suggested that I con-
tact Mike.

StreamBase
A few months after our first meeting, Mike emailed me in “characteristic Mike”
fashion: “I have a new idea—wanna take a look?” This time, Mike was wearing
slacks, which I found to be a good sign!

He had a hypothesis that the database world was going to splinter, that “one
size doesn’t fit all.” He proposed raising a small round, a “seed” financing for a
company called “Grassy Brook.” I proposed that we find a better name, to which
Mike responded with a loud and hearty laugh. I love that laugh, and I’ve heard it
many times since.
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After doing some due diligence, Grassy Brook’s founding team moved into some
free space downstairs from my office. An early engineering team assembled.

Mike and I, in a way, started to “live together.” We started to bump into each
other at the office fairly often. We learned to work together.

Early in the investment, Mike suggested that we and our spouses grab dinner
up near Lake Winnipesaukee, where I was renting a summer place for two weeks
and where Mike had decided to buy a house on Grassy Pond Road. It was great to
meet Beth, his spouse.

A bit later, Mike had the whole founding team and his board up that summer.
It was great to meet Mike’s daughters, Leslie and Sandy. Leslie did the first com-
pany logo.

Some months later, I found for Mike a business-oriented CEO through my
personal network.

I do remember early on some “email flame wars.” I was part of many group
email discussions, and, sometimes, someone would say something with which
Mike would disagree. Then, the terse emails, sometimes in all caps, would come.

At other times, Mike was suspicious of what I or the other VCs were saying or
doing, and he would react strongly. But, over time, I found that Mike was very
consistent. He wanted to hear the truth, pure and simple. He wanted to test people’s
motivations and whether they were really saying what they meant and whether they
would do what they said.

I was very comfortable with this. Mike was a lot like my father. He was a Truth
Teller. And, he certainly expected others to do the same.

Now, don’t get me wrong. Being at the end of a “Mike Firehose Email” dousing
can be unpleasant. But, if you felt you were right and presented data, he would be
the first to change his thinking.
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“Color my face red,” one email from Mike started, when he realized that he was
incorrect in one of his assumptions and assertions.

Yes, a Truth Teller, one even willing to speak truth to himself and to have truth
spoken to him. It was then that I respected Mike even more. It made me want to
work even harder on the company, which was renamed StreamBase Systems.

A Playbook Is Set
By the time Mike started to think up Vertica, I felt he and I were in a groove. He
would keep me informed of his ideas, and I would give him feedback. If I met good
people, I introduced them to Mike.

You see, an early-stage VC is very much like an executive recruiter in a company’s
life. It is an extremely rewarding part of the job to connect together good people and
watch a match happen. Key founding executives, including CEOs, joined Stream-
Base, Vertica, Goby, Paradigm4, and VoltDB in this way. Those are the Stonebraker
companies with which it has been a pleasure to be involved as a VC.

When like-minded people with shared values partner together, such as Mike
and Andy Palmer, good things tend to happen.2

So, our playbook is:

. Mike has good ideas.

. I invest in the ones that make me excited and make personal introductions
to executives and potential customers.

. He hosts a kickoff party at his summer house.

. We work hard together, as partners, to do what is right for the company.

2. See Mike and Andy’s views in the other chapters in this section, Chapter 7 (by Michael Stone-
braker) and Chapter 8 (by Andy Palmer).
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This is the embryonic version of what Mike refined over nine startups to become
what he described in a previous chapter as “five (not so) easy steps” (see Chapter 7.

I’m happy to state that over time, the email flame wars have become largely non-
existent. When we have conflict, Mike and I pick up the phone and talk it out. But,
it is a lot easier now, in this Trust Game, for I believe that each of us has earned the
other’s trust.

Mike’s Values
Before and after board meetings and calls, and over some dinners, I talked about
personal things with Mike. I learned that he was from a low-income background,
but that his life changed when Princeton gave him a spot.

I learned that he and Beth were very serious about supporting good causes, and
they intentionally lived quite below their means. They wanted to be careful with
how their children perceived money’s role in life.

I still chuckle when Mike in the summer wears shorts to board meetings. “Mike
is Mike,” I often say to others. He is one-of-a-kind—and, in a very good way.

Through many interactions, Mike affected my style, too. He appreciates people
being blunt and transparent, and so, in our interactions, I no longer filter. I just tell
him what I think and why. It can be a bit intimidating to go toe-to-toe with Mike
on difficult issues, but I have found that he is eminently reasonable, and, if you’re
armed with data, he is very open minded.

So, like a pair of old friends, there is a give and take and mutual respect. We
really do work well together, and there’s much trust there.

Why does one win the Turing Award? Honestly, I do not know. But, I feel I do
know that Mike has unique abilities. He is comfortable with taking risks, working
with a diverse group of people, and striving for something bold and interesting. He
is a true entrepreneur.

A Coda
Sam Madden3 called me up in 2014. He was throwing Mike a Festschrift—a 70th
birthday celebration for a professor—at MIT. I rushed to be a personal sponsor, as
did Andy Palmer, Intel, and Microsoft.

Sam did his usual job of leading the program, gathering a lineup of speakers
and even handing out T-shirts in bright red.

3. Read Sam Madden’s biography of Michael Stonebraker (Chapter 1) and his introduction to
Mike’s research contributions by system (Chapter 14.)
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It was a joyous event, with some great talks, many smiles, and a personal
realization that I was in the midst of so many great people with large brains and
sound values.

In particular, it was great to see Beth, as well as Leslie and Sandy, who had been
young girls when I had met them the first time many years ago.

A Great Day
One time after a board meeting for Vertica, we somehow got to talking about the
Turing Award. Being a liberal arts major, I asked: “So, what is it?’

“It is the greatest honor,” Mike said. “I’ve been up for it in the past, from what I
hear, but it’s not something I like to think about. It is a crowning achievement for
someone in computer science.” He suddenly became quiet and looked down at the
table.

I didn’t dare ask any more questions.
Years later, when the world heard that Mike won the Turing Award, I was elated.

I wasn’t able to attend the ceremony, but I read his speech online. At the end, he
referred to two people, “Cue Ball” and “The Believer.” People told me that he was
referring to Andy Palmer and me.

What an honor . . . .

That was a very kind and greatly appreciated gesture, Mike. You’ve been a great
business partner and friend. You are a great role model for me as a parent. I love
you and am so happy for you!
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10Where Good Ideas
Come From and
How to Exploit Them
Michael Stonebraker

Introduction
I often get the question: “Where do good ideas come from?” The simple answer is
“I don’t know.”

In my case, they certainly don’t come from lying on the beach or communing
with nature on a mountaintop. As near as I can tell, there are two catalysts. The first
is hanging around institutions that have a lot of smart, combative people. They have
ideas that they want you to critique, and they are available to critique your ideas.
Out of this back-and-forth, good ideas sometimes emerge. The second catalyst is
talking to a lot of real-world users of DBMS technology. They are happy to tell you
what they like and don’t like and the problems that they are losing sleep over. Out
of talking to a lot of users often come problems to work on. From such problems,
sometimes good ideas emerge.

However, I think these are often secondary effects. I will spend this chapter going
through my career indicating where my ideas (both good and bad) came from. In a
lot of cases, it was pure serendipity.

The Birth of Ingres
I arrived at Berkeley in 1971 as a new assistant professor. I knew my thesis was
a bad idea or at best irrelevant. Berkeley hired me because I agreed to work on
something called “urban systems.” This was around the time that the National Sci-
ence Foundation (NSF) started a program called Research Applied to the National
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Needs (RANN), and Rand Corporation was making headlines applying Operations
Research (OR) ideas to locating firehouses and allotting police officers. For a while
I tried to work in this area: I studied the Berkeley Municipal Court system and then
built a land-use model for Marin County, California. I learned quickly how difficult
these studies were and how bogged down they became because of bad data.

At about this time Gene Wong suggested we take a look at databases. In short
order, we decided the CODASYL proposal was incomprehensible, and IMS was far
too restrictive. Ted Codd’s papers, of course, made perfect sense to us, and it was
a no-brainer to start an implementation. We were not dissuaded by the fact that
neither of us had ever written any software before nor managed a complex project.
Several other research groups embarked on similar projects around the same time.
Most (including us) got enough running so they could write a paper [Stonebraker
et al. 1976b]. For totally unknown reasons, we persevered and got Ingres to work
reasonably well, and it became widely used in the mid-1970s as the only RDBMS
that researchers could get their hands on.1 In effect, Ingres made an impact mostly
because we persevered and got a real system to work. I view this decision as pure
serendipity.

Abstract Data Types (ADTs)
The main internal user of the Ingres prototype was an urban economics group led
by Pravin Varaiya, which were interested in Geographic Information Systems (GIS).
Angela Go implemented a GIS system on top of Ingres, but it didn’t work very well.
Varaiya wanted polygon maps and operations like point-in-polygon and polygon-
intersects-polygon. These are horrific to code in languages like QUEL and SQL and
execute with dismal performance.

By this time, we understood how integers, floats, and strings worked in Ingres;
however, simulating points, lines, and polygons on the Ingres-type system was very
painful. It seemed natural at the time to ask, “Why not extend the built-in types in
Ingres?” We built such a system (OngFS84) into Ingres in 1982–1983, and it seemed
to work very well. Therefore, we used the same idea in Postgres. In my opinion, this
was the major innovation (a good idea) in Postgres, to which we turn next.2

1. See Ingres’ impact in Chapter 13

2. The use of Abstract Data Types, considered one of my most important contributions, is dis-
cussed in Chapters 3, 12, 15, and 16
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Postgres3

Visitors to Berkeley always asked, “What is the biggest database that uses Ingres?”
We always had to mumble, “Not very big at all.” The reason can be illustrated by
an example. In 1978, Arizona State University seriously considered running Ingres
for its student records system, which covered 40,000 students. The project team
could get around the fact that they had to run an unsupported operating system
(Unix) and an unsupported DBMS (Ingres), but the project faltered when ASU found
that there was no COBOL available for Unix (they were a COBOL shop). For these
reasons, essentially anybody serious would not consider Ingres, and it was relegated
to modest applications. At about the same time, Larry Ellison started claiming that
Oracle was ten times faster than Ingres, a strange claim given that Oracle didn’t
even work yet.

It became obvious that, to make a difference, we had to move Ingres to a sup-
ported operating system, offer support, improve the documentation, implement a
report writer, and so on. In short, we had to start a commercial company. I had no
idea how to do this, so I went to talk to Jon Nakerud, then the Western Region sales
manager for Cullinet Corp., which marketed IDMS (a CODASYL system). With Jon’s
help as CEO, we raised venture capital and started what turned into Ingres Corp.

This was a “trial by fire” on how to start a company, and I certainly learned a lot.
Very quickly, the commercial version of Ingres became far better than the academic
version. Although we implemented abstract data types (ADTs) in the academic
version, the handwriting was on the wall: it made no sense to continue prototyping
on the academic version. It was time to start a new DBMS codeline, and Postgres
was born.

In my opinion, Postgres [Stonebraker and Rowe 1986] had one very good idea
(ADTs) and a bunch of forgettable ideas (inheritance, rules using an “always” com-
mand, and initial implementation in Lisp, to name a few). Commercialization (as
Illustra Corporation) fixed a lot of the problems; however, ADTs were somewhat
ahead of their time, and Illustra struggled to get real-world users to adopt them. As
such, Illustra was sold to Informix in 1996.

The bright legacy of Postgres was purely serendipitous. Two Berkeley grad stu-
dents, Wei Hong and Jolly Chen, converted the academic version of Postgres in
1995 from QUEL to SQL. Then a dedicated pickup team of volunteers, with no
relationship to me or Berkeley, shepherded the codeline over time. That is the

3. See Postgres’ impact in Chapter 13.
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open source version of Postgres that you can download today off the Web from
https://www.postgresql.org.

Distributed Ingres, Ingres*, Cohera, and Morpheus
My love affair with distributed databases occurred over 25 years (from the mid-
1980s to the late 2000s). It started with Distributed Ingres, which federated the
academic Ingres codeline. This system assumed that the schemas at multiple lo-
cations were identical and that the data was perfectly clean and could be pasted
together. The code sort of worked, and the main outcome was to convince me that
the commercial Ingres codeline could be federated in the same way. This project
turned into Ingres* in the mid-1980s. There were essentially zero users for either
system.

Undaunted, we built another distributed database prototype, Mariposa, in the
early 1990s, which based query execution on an economic model. In effect, Mari-
posa still assumed that the schemas were identical and the data was clean, but
relaxed the Ingres* assumption that the multiple sites were in the same admin-
istrative domain. There was little interest in Mariposa, but a couple of the Mari-
posa students really wanted to start a company. Against my better judgment, Co-
hera was born and it proved yet again that there was no market for distributed
databases.

Still undaunted, we built another prototype, Morpheus. By talking to real-world
users, we realized that the schemas were never the same. Hence, Morpheus focused
on translating one schema into another. However, we retained the distributed data-
base model of performing the translation on the fly. Again, we started a company,
Goby, which focused on integration of Web data, using essentially none of the Mor-
pheus ideas. Goby was in the business-to-consumer (B2C) space, in other words,
our customer was a consumer. In B2C, one has to attract “eyeballs” and success
depends on word-of-mouth and buying Google keywords. Again, Goby was not a
great success. However, it finally made me realize that federating databases is not
a big concern to enterprises; rather, it’s performing data integration on indepen-
dently constructed “silos” of data. Ultimately, this led to a prototype, Data Tamer
[Stonebraker et al. 2013b], that actual users wanted to try.

In summary, I spent a lot of time on distributed/federated databases without
realizing that there is no market for this class of products. Whether one will develop
in the future remains to be seen. Not only did this consume a lot of cycles with
nothing to show for it except a collection of academic papers, but it also made me
totally miss a major multi-node market, which we turn to next.
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Parallel Databases
I wrote a paper in 1979 proposing Muffin [Stonebraker 1979a], a shared-nothing
parallel database. However, I did not pursue the idea further. A couple of years
later, Gary Kelley, then an engineer at Sequent Computers, approached Ingres
and suggested working together on a parallel database system. Ingres, which was
working on Ingres* at the time, did not have the resources to pursue the project
more than half-heartedly. Gary then went to Informix, where he built a very good
parallel database system. All in all, I completely missed the important version
of distributed databases where tightly coupled nodes have the same schema—
namely parallel partitioned databases. This architecture enables much higher SQL
performance, especially in the data warehouse marketplace.

Data Warehouses
Teradata pioneered commercial parallel database systems in the late 1980s with
roughly the same architecture as the Gamma prototype built by Dave DeWitt
[DeWitt et al. 1990] In both cases, the idea was to add parallelism to the domi-
nant single-node technology of the time, namely row stores. In the late 1990s and
early 2000s, Martin Kersten proposed using a column store and started building
MonetDB [Boncz et al. 2008]. I realized the importance of column stores in the
data warehouse market through a consulting gig around 2002. When the gig ended
I started thinking seriously about C-Store [Stonebraker et al. 2005a], which turned
into Vertica.4 This codeline supported parallel databases, with an LSM-style (Log
Structure Merge) storage infrastructure, a main memory row store to assemble tu-
ples to be loaded, a sort engine to turn the row store into compressed columns,
and a collection of so-called projections to implement indexes. Most of my other
startups rewrote everything to fix the stuff that I got wrong the first time around.
However, C-Store pretty much got it right, and I feel very proud of the Vertica code-
line. To this day, it is nearly unbeatable in bakeoffs.

In summary, it was serendipitous to get the consulting gig, which got me to
understand the true nature of the data warehouse performance problem. Without
that, it is doubtful I would have ever worked in this area.

H-Store/VoltDB
David Skok, a VC with Matrix Partners, suggested one day that it would be great
to work on a new OLTP architecture, different from the disk-based row stores of

4. For the Vertica story, see Chapter 18.
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the time. C-Store had convinced me that “one size does not fit all” [Stonebraker
and Çetintemel 2005], so I was open to the general idea. Also, it was clear that the
database buffer pool chews up a lot of cycles in a typical DBMS. When Dave DeWitt
visited MIT, we instrumented his prototype, Shore [Carey et al. 1994], to see exactly
where all the cycles went. This generated the “OLTP: Through the Looking Glass”
paper [Harizopoulos et al. 2008]; all of us were shocked that multi-threading, the
buffer pool, concurrency control, and the log consumed an overwhelming fraction
of the CPU cycles in OLTP. This, coupled with the increasing size of main memory,
led to H-Store and then to a company, VoltDB.5

The offhand remark from David Skok certainly stuck in my memory and caused
me to look seriously a year or two later. Certainly, there was serendipity involved.

Data Tamer
Joey Hellerstein decided to visit Harvard in 2010–2011, and we agreed to brainstorm
about possible research. This quickly evolved into a data integration project called
Data Tamer. In a previous company, Goby, we had been trying to integrate the
contents of 80,000 websites and had struggled with a custom code solution. Goby
was willing to supply its raw data, that is, their crawl of the 80,000 sites. We
decided to work on their data, and the project quickly evolved to trying to do
scalable data integration. Goby data needed schema integration, data cleaning, and
entity consolidation, which we started addressing. Talks on our project brought us
two additional enterprise clients, Verisk Health and Novartis. Both were focused
primarily on entity consolidation.

At about this time, MIT was setting up a relationship with the Qatar Computing
Research Institute (QCRI), and Data Tamer became an early project in this collabo-
ration. In effect, Data Tamer was focused on solving the data integration presented
by Goby, Verisk Health, and Novartis. In a way, I think this is an ideal startup tem-
plate: find some clients with a problem and then try to solve it.6

Again, there was much serendipity involved. Data Tamer would not have hap-
pened without Joey visiting Harvard and without Goby being willing to provide
its data.

5. See Chapter 19 for the VoltDB story.

6. See Chapter 7 (Stonebraker) for a detailed description.
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How to Exploit Ideas
In every case, we built a prototype to demonstrate the idea. In the early days (In-
gres/Postgres), these were full-function systems; in later days (C-Store/H-Store), the
prototypes cut a lot of corners. In the early days, grad students were happy to write
a lot of code; these days, big implementations are dangerous to the publication
health of grad students. In other words, the publication requirements of getting a
good job are contrary to getting full-function prototypes to work!

In both cases, happy grad students are a requirement for success. I have only two
points to make in this direction. First, I view it as my job to make sure that a grad
student is successful, in other words, gets a good position following grad school.
Hence, I view it as my job to spend as much time as necessary helping students
be successful. To me, this means feeding good ideas to students to work on until
they can get the hang of generating their own. In contrast, some professors believe
in letting their students flounder until they get the hang of research. In addition, I
believe in treating students fairly, spending as much time with them as necessary,
teaching them how to write technical papers, and, in general, doing whatever it
takes to make them successful. In general, this philosophy has produced energetic,
successful, and happy students who have gone on to do great things.

Closing Observations
Good ideas are invariably simple; it is possible to explain the idea to a fellow
researcher in a few sentences. In other words, good ideas seem to always have a
simple “elevator pitch.” It is wise to keep in mind the KISS adage: “Keep it Simple,
Stupid.” The landscape is littered with unbuildable ideas. In addition, never try to
“boil the ocean.” Make sure your prototypes are ultra-focused. Lastly, good ideas
come whenever they come. Don’t despair if you don’t have a good idea today. This
adage is especially true for me: At 74 years old, I keep worrying that I have “lost it.”
However, I still seem to get good ideas from time to time . . .
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Michael Stonebraker

In this chapter, I suggest three areas where we have failed as a research community.
In each case, I indicate the various ramifications of these failures, which are sub-
stantial, and propose mitigations. In all, these failures make me concerned about
the future of our field.

The Three Failures

Failure #1: We Have Failed to Cope with an Expanding Field
Our community spearheaded the elevation of data sublanguages from the record-
at-a-time languages of the IMS and CODASYL days (1970s) to the set-at-a-time rela-
tional languages of today. This change, which occurred mostly in the 1980s along
with the near-universal adoption of the relational model, allowed our community
to investigate query optimizers, execution engines, integrity constraints, security,
views, parallelism, multi-mode capabilities, and the myriad of other capabilities
that are features of modern DBMSs.

SQL was adopted as the de facto DBMS interface nearly 35 years ago with the
introduction of DB2 in 1984. At the time, the scope of the DBMS field was essentially
business data processing. Pictorially, the state of affairs circa 1985 is indicated in
Figure 11.1, with the expansion of scope in the 1980s indicated. The net result was
a research community focused on a common set of problems for a business data
processing customer. In effect, our field was unified in its search for better data
management for business data processing customers.

Since then, to our great benefit, the scope of DBMSs has expanded dramatically
as nearly everyone has realized they need data management capabilities. Figure 11.2
indicates our universe 30 years later. Although there is some activity in business
data processing (data warehouses, OLTP), a lot of the focus has shifted to a variety
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1980s

1970s

Figure 11.1 Our universe circa 1985: business data processing.
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Figure 11.2 Our universe now.

of other application areas. Figure 11.2 lists two of them: machine learning and
scientific databases. In these areas, the relational data model is not popular, and
SQL is considered irrelevant. The figure lists some of the tools researchers are
focused on. Note clearly that the important topics and tools in the various areas are
quite different. In addition, there is minimal intersection of these research thrusts.

As a result of the expanding scope of our field, the cohesiveness of the 1980s is
gone, replaced by sub-communities focused on very different problems. In effect,
our field is now composed of a collection of subgroups, which investigate sepa-
rate topics and optimize application-specific features. Connecting these domain-
specific features to persistent storage is done with domain-specific solutions. In
effect, we have decomposed into a collection of N domain-specific groups with lit-
tle interaction between them.

One might hope that these separate domains might be unified through some
higher-level encompassing query notation. In other words, we might hope for a
higher level of abstraction that would reunify the field. In business data process-
ing, there have been efforts to develop higher-level notations, whether logic-based
(Prolog, Datalog) or programming-based (Ruby on Rails, LINQ). None have caught
on in the marketplace.

Unless we can find ways to generate a higher-level interface (which I consider
unlikely at this point), we will effectively remain a loose coalition of groups with
little research focus in common.
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This state of affairs can be described as “the hollow middle.” I did a quick survey
of the percentage of ACM SIGMOD papers that deal with our field as it was defined
in 1977 (storage structures, query processing, security, integrity, query languages,
data transformation, data integration, and database design). Today, I would call
this the core of our field. Here is the result:

1977 100% (21/21)

1987 93% (40/43)

1998 68% (30/44)

2008 52% (42/80)

2017 47% (42/90)

I include only research papers, and not papers from the industrial or demo
tracks, when these tracks came into existence. Notice that the core is being “hol-
lowed out,” as our researchers drift into working on what would have been called
applications 40 years ago. In my opinion, the reason for this shift is that the histor-
ical uses of DBMS technology (OLTP, business data warehouses) are fairly mature.
As a result, researchers have largely moved on to other challenges.

However, the fact remains that there is little or no commonality across the
various applications areas. What is important in Natural Language Processing
(NLP) is totally different from what is important in machine learning (ML) or
scientific data processing. The net effect is that we have essentially “multi-furcated”
into subgroups that don’t communicate with each other. This is reminiscent of the
1982 bifurcation that occurred when ACM SIGMOD and ACM PODS split.

My chief complaint is that we have failed to realize this, and our conference
structures (mostly minor tweaks on 30-year-old ideas) are not particularly appropri-
ate for the current times. In my opinion, the best solution is to recognize the hollow
middle, and decompose the major DBMS conferences (SIGMOD, VLDB, ICDE) into
multiple (say five or six) separate tracks with independent program committees.
These can be co-located or organized separately. In other words, multi-furcate along
the lines of the SIGMOD/PODS division many years ago.

If this does not happen, then the current conferences will remain “zoos” where
it is difficult to impossible to find like-minded researchers. Also, reviewing will
be chaotic (as discussed below), which frustrates researchers. The “systems folks”
seem particularly upset by the current state of affairs. They are on the verge of
declaring a divorce and starting their own conference. Other subgroups may follow.
The result will be a collapse of the field as we know it.
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You might ask, “Where is there room for cross-cultural research?” I have not
seen people from other fields at SIGMOD conferences in quite a while. Equally,
program committees do not have such multi-culturalism. The obvious answer is to
have more cross-cultural conferences. In olden times, we used to have such things,
but they have fallen out of favor in recent years.

Failure #2: We Have Forgotten Who Our Customer Is
Forty years ago, there was a cadre of “industry types” who came to our conferences.
They were early users (evangelists) of DBMS technology and came from financial
services, insurance, petroleum exploration, and so on. As such, they provided a
handy reality check on whether any given idea had relevance in the real world. In
effect, they were surrogates for our “customer.” Hence, our mission was to provide
better DBMS support for the broad customer base of DBMS technology, represented
by the evangelists.

Over the years, these evangelists have largely disappeared from our conferences.
As such, there is no customer-facing influence for our field. Instead, there are
representatives of the large Internet vendors—I call them “the whales”—who have
their own priorities and represent the largest 0.01% of DBMS users. Hence, they
hardly represent the real world. In effect, our customer has vanished and been
replaced by either the whales or a vacuum.

This loss of our customer has resulted in a collection of bad effects. First, there
are no “real world” clients to keep us focused. As such, we are prone to think
the next “silver marketing bullet” from the whales is actually a good idea. Our
community has embraced and then rejected (when it became apparent that the
idea was terrible) OLEDB, MapReduce, the Semantic WEB, Object Databases, XML,
and data lakes, just to name a few.

We are very uncritical of systems created by the large Internet vendors to that
solve application-specific problems, which have been written, until recently, by
development teams with little background in DBMSs. As such, they have tended to
reinvent the wheel. I am especially amused by Google’s adoption and then rejection
of MapReduce and eventual consistency.

Our community needs to become more assertive at pointing out flawed ideas
and “reinventions of the wheel.” Otherwise, the mantra “people who do not under-
stand history will be condemned to repeat it” will continue to be true.

We desperately need to reconnect with the “real world.” This could be done by
giving free conference registrations to real-world users, organizing panels of real
users, inviting short problem commentaries from real users, etc. I am also amused
at the number of attendees at our conferences who have no practical experience in



The Three Failures 159

applying DBMS technology to real problems. Our field exists to serve a customer. If
the customer is “us,” then we have totally lost our way.

Failure #3: We Have Not Addressed the Paper Deluge
When I graduated from Michigan in 1971 with a Ph.D., my resume consisted of
zero papers. Five years later, I was granted tenure at Berkeley with a resume of
half a dozen papers. Others from my age cohort (e.g., Dave DeWitt) report similar
numbers. Today, to get a decent job with a fresh Ph.D., one needs around 10 papers;
to get tenure more like 40 is the goal. It is becoming common to take a two-year
postdoc to build up one’s resume before hitting the academic job market. Another
common tactic these days is to accept an academic job and then delay starting the
tenure clock by taking a postdoc for a year. This was done recently, for example, by
Peter Bailis (now at Stanford) and Leilani Battle (now at Maryland). The objective
in both situations is to get a head start on the paper deluge required for tenure.

Put differently, there has been an order of magnitude escalation in desired paper
production. Add to this fact that there are (say) an order of magnitude more DBMS
researchers today than 40 years ago, and we get paper output rising by two orders
of magnitude. There is no possible way to cope with this deluge. There are several
implications of this escalation.

First, the only way that I would ever read a paper is if somebody else said it was
very good or if it was written by one of a handful of researchers that I routinely
follow. As a result, we are becoming a “word of mouth” distribution system. That
makes it nearly impossible for somebody from the hinterlands to get well known.
In other words, you either work with somebody from the “in crowd” or you are in
“Outer Siberia.” This makes for an un-level tenure-track playing field.

Second, everybody divides their ideas into Least Publishable Units (LPUs) to
generate the kind of volume that a tenure case requires. Generally, this means
there is no seminal paper on a particular idea, just a bunch of LPUs. This makes it
difficult to follow the important ideas in the field. It also ups the number of papers
researchers must read, which makes us all grumpy.

Third, few graduate students are willing to undertake significant implementa-
tion projects. If you have to write ten papers in (say) four productive years, that is
a paper every five months. You cannot afford the time for significant implementa-
tions. This results in graduate students being focused on “quickies” and tilts paper
production toward theory papers. More on this later.

So how did this paper explosion occur? It is driven by a collection of universities,
mostly in the Far East, whose deans and department chairpeople are too lazy to
actually evaluate the contribution of a particular researcher. Instead they just count
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papers as a surrogate. This laziness also appears to exist at some second- and third-
rate U.S. and European universities.

Our failure to deal with the deluge will allow this phenomenon to get worse off
into the future. Hence, we should actively put a stop to it, and here is a simple idea.
It would be fairly straightforward to get the department chairpeople of (say) the 25
best U.S. universities to adopt the following principle:

Any DBMS applicant for an Assistant Professor position would be required to
submit a resume with at most three papers on it. Anybody coming up for tenure
could submit a resume with at most ten papers. If an applicant submitted a
longer resume, it would be sent back to the applicant for pruning. Within a few
years, this would radically change publication patterns. Who knows, it might
even spread to other disciplines in computer science.

Consequences of Our Three Failures

Consequence #1: Reviewing Stinks
A consequence of the paper deluge and the “hollow middle” is the quality of
reviewing, which, in general, stinks. In my experience, about half of the comments
from reviewers are way off the mark. Moreover, the variance of reviews is very high.
Of course, the problem is that a program committee has about 200 members, so
it is a hit-or-miss affair. The biases and predispositions of the various members
just increase the variance. Given the “hollow middle,” the chances of getting three
reviewers who are experts in the application domain of any given paper is low,
thereby augmenting the variance. Add to this the paper deluge and you get very
high volume and low reviewing quality.

So, what happens? The average paper is rewritten and resubmitted multiple
times. Eventually, it generally gets accepted somewhere. After all, researchers have
to publish or perish!

In ancient times, the program chairperson read all the papers and exerted at
least some uniformity on the reviewing process. Moreover, there were face-to-face
program committee meetings where differences were hashed out in front of a
collection of peers. This is long gone—overrun by the size (some 800 papers) of
the reviewing problem. In my opinion, the olden times strategy produced far better
results.

The obvious helpful step would be to decompose the major DBMS conferences
into subconferences as noted in Failure #1. Such subconferences would have (say)
75 papers. This would allow “old school” reviewing and program committees. This
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subdivision could be adopted easily by putting the current “area chairperson”
concept on steroids. These subconferences could be co-located or not; there are
pros and cons to both possibilities.

Another step would be to dramatically change the way paper selection is done.
For example, we could simply accept all papers, and make reviews public, along
with reviewers’ scores. A researcher could then put on his or her resume his or her
paper and the composite score he or she received. Papers would get exposure at
a conference (long slot, short slot, poster) based on the scores. However, the best
solution would be to solve Failure #3 (the paper deluge).

If the status quo persists, variance will just increase, resulting in more and more
overhead for poorer and poorer results.

Consequence #2: We Have Lost our Research Taste
Faced with required paper production, our field has drifted into solving artificial
problems, and especially into making 10% improvements on previous work (Least
Publishable Units). The number of papers at major DBMS conferences that seem
completely irrelevant to anything real seems to be increasing over time. Of course,
the argument is that it is impossible to decide whether a paper will have impact
at some later point in time. However, the number of papers that make a 10%
improvement over previous work seems very large. A complex algorithm that makes
a 10% improvement over an existing, simpler one is just not worth doing. Authors
of such papers are just exhibiting poor engineering taste. I have generally felt that
we were polishing a round ball for about the last decade. I would posit the following
question: “What was the last paper that made a dramatic contribution to our field?”
If you said a paper written in the last ten years, I would like to know what it is.

A possible strategy would be to require every assistant professor to spend a year
in industry, pre-tenure. Nothing generates a reality check better than some time
spent in the real world. Of course, implementing this tactic would first require a
solution to Failure #3. In the current paper climate, it is foolhardy to spend a year
not grinding out papers.

Consequence #3: Irrelevant Theory Is Taking Over
Given that our customer has vanished and given the required paper production, the
obvious strategy is to grind out “quickies.” The obvious way to optimize quickies is
to include a lot of theory, whether relevant to the problem at hand or not. This has
two major benefits. First, it makes for quicker papers, and therefore more volume.
Second, it is difficult to get a major conference paper accepted without theorems,
lemmas, and proofs. Hence, this optimizes acceptance probability.
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This focus on theory, relevant or not, effectively guarantees that no big ideas will
ever be presented at our conferences. It also guarantees that no ideas will ever be
accepted until they have been polished to be pretty round.

My personal experience is that experimental papers are difficult to get by ma-
jor conference reviewers, mostly because they have no theory. Once we move to
polishing a round ball, then the quality of papers is not measured by the quality
of the ideas, but by the quality of the theory. To put a moniker on this effect, I
call this “excessive formalism,” which is lemmas and proofs that do nothing to
enhance a paper except to give it theoretical standing. Such “irrelevant theory” es-
sentially guarantees that conference papers will diverge from reality. Effectively,
we are moving to papers whose justification has little to nothing to do with solv-
ing a real-world problem. Because of this attitude, our community has moved from
serving a customer (some real-world person with a problem) to serving ourselves
(with interesting math). Of course, this is tied to Failure #3: Getting tenure is opti-
mized by “quickies.” I have nothing against theoretical papers, just a problem with
irrelevant theory.

Of course, our researchers will assert that it is too difficult to get access to real-
world problems. In effect, the community has been rendered sterile by the refusal
of real enterprises to partner with us in a deep way. The likes of Google, Amazon, or
Microsoft also refuse to share data with our community. In addition, my efforts to
obtain data on software faults from a large investment bank were stymied because
the bank did not want to make its DBMS vendor look bad, given the frequency of
crashes. I have also been refused access to software evolution code by several large
organizations, which apparently have decided that their coding techniques, their
code, or both were proprietary (or perhaps may not stand up to scrutiny).

As a result, we deal primarily with artificial benchmarks (such as YCSB1) or
benchmarks far outside the mainstream (such as Wikipedia). I am particularly
reminded of a thread of research that artificially introduced faults into a dataset
and then proved that the algorithms being presented could find the faults they
injected. In my opinion, this proves absolutely nothing about the real world.

Until (and unless) the community finds a way to solve Failure #2 and to engage
real enterprises in order to get real data on real problems, then we will live in the
current theory warp. The wall between real enterprises and the research community
will have to come down!

1. Yahoo Cloud Serving Benchmark (https://research.yahoo.com/news/yahoo-cloud-serving-
benchmark/). Last accessed March 2, 2018.
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Consequence #4: We Are Ignoring the Hardest Problems
A big problem facing most enterprises is the integration of disparate data sources
(data silos). Every large enterprise divides into semi-independent business units so
business agility is enabled. However, this creates independently constructed “data
silos.” It is clearly recognized that data silo integration is hugely valuable, for cross-
selling, social networking, single view of a customer, etc. But data silo integration is
the Achilles’ heel of data management, and there is ample evidence of this fact. Data
scientists routinely say that they spend at least 80% of their time on data integration,
leaving at most 20% for the tasks for which they were hired. Many enterprises report
data integration (data curation) is their most difficult problem.

So, what is our community doing? There was some work on data integration in
the 1980s as well as work on federated databases over the last 30 years. However,
federating datasets is of no value unless they can be cleaned, transformed, and
deduplicated. In my opinion, insufficient effort has been directed at this problem
or at data cleaning, which is equally difficult.

How can we claim to have the research mandate of management of data if
we are ignoring the most important management problem? We have become a
community that looks for problems with a clean theoretical foundation that beget
mathematical solutions, not one that tries to solve important real-world problems.
Obviously, this attitude will drive us toward long-term irrelevance.

Of course, this is an obvious result of the necessity of publishing mountains
of papers, in other words, don’t work on anything hard, whose outcome is not
guaranteed to produce a paper. It is equally depressing that getting tenure does not
stop this paper grind, because your students still need to churn out the required
number of papers to get a job. I would advise everybody to take a sabbatical year in
industry and delve into data quality or data integration issues. Of course, this is a
hollow suggestion, given the current publication requirements on faculty.

Data integration is not the only incredibly important issue facing our customers.
Evolution of schemas as business conditions change (database design) is horribly
broken, and real customers don’t follow our traditional wisdom. It is also widely
reported that new DBMS products require some $20M in capital to get to produc-
tion readiness, as they did 20 years ago. For a mature discipline this is appalling.
Database applications still require a user to understand way too much about DBMS
internals to effectively perform optimization.

In other words, there is no shortage of very important stuff to work on. However,
it often does not make for good theory or quickies and often requires massaging
a lot of ugly data that is hard to come by. As a community, we need to reset our
priorities!
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Summary
I look out at our field with its hollow middle and increasing emphasis on applica-
tions with little commonality to each other. Restructuring our publication system
seems desperately needed. In addition, there is increasing pressure to be risk averse
and theoretical, so as to grind out the required number of publications. This is an
environment of incrementalism, not one that will enable breakthrough research.
In my opinion, we are headed in a bad direction.

Most of my fears are rectifiable, given enlightened leadership by the elders of
our community. The paper deluge is addressable in a variety of ways, some of which
were noted above. The hollow middle is best addressed in my opinion by multi-
furcating our conferences. Recruiting the real world, first and foremost, demands
demonstrating that we’re relevant to their needs (working on the right problems).
Secondarily, it is a recruitment problem, which is easily addressed with some elbow
grease.

This chapter is a plea for action, and quickly! If there is no action, I strongly
suspect the systems folks will secede, which will not be good for the unity of the
field. In my opinion, the “five-year assessment of our field,” which is scheduled for
the Fall of 2018 and organized by Magda Balazinska and Surajit Chaudhuri, should
focus primarily on the issues in this chapter.
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The Origins of the BSD License
In 1977, Professor Bob Fabry at Berkeley began working with a graduate student,
Bill Joy, on operating systems. Fabry and his colleagues created the Computer Sys-
tems Research Group (CSRG) to explore ideas like virtual memory and networking.
Researchers at Bell Labs had created an operating system called UNIX™ that could
serve as a good platform for testing out their ideas. The source code for UNIX was
proprietary to the Labs’ parent, AT&T, which carefully controlled access.

Because it wanted to enhance UNIX, CSRG depended on the Bell Labs source
code. The group wanted to share its work with collaborators, so would somehow
have to publish any new code it created. Anyone who got a copy of the Berkeley
software needed to purchase a source code license from AT&T as well.

CSRG worked with the university’s intellectual property licensing office to craft
the “Berkeley Software Distribution (BSD)” license. This license allowed anyone
to receive, modify, and further share the code they got from CSRG, encouraging
collaboration. It placed no additional restrictions on the AT&T source code—that
could continue to be covered by the terms of the AT&T source code license.

The BSD license was a really nifty hack. It protected the interests of AT&T, main-
taining the good relationship Berkeley had with Bell Labs. It allowed the Berkeley
researchers to share their innovative work broadly, and to take back contributions
from others. And, significantly, it gave everyone a way to work together to build on
the ideas in UNIX, making it a much better system.
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BSD and Ingres
In 1976, before CSRG began working on UNIX, Mike Stonebraker had launched a
research project with Eugene Wong (and, later, Larry Rowe) to test out some ideas
published by Ted Codd [Codd 1970] and Chris Date. Codd and Date developed
a “relational model,” a way to think about database systems that separated the
physical layout and organization of data on computers from operations on them.
You could, they argued, describe your data, and then say what you wanted to do
with it. Computers could sort out all the plumbing, saving people a lot of trouble
and time.

The new project was called Ingres, short for INteractive Graphics REtrieval
System.

Mike and his collaborators began to share their code with other institutions
before CSRG finished its work on the BSD license. The earliest copies were shipped
on magnetic tape with essentially no oversight by the university; the recipient would
cover the cost of the tapes and shipping, and a grad student would mail a box of
source code. There was no explicit copyright or licensing language attached.

The intellectual property office at Berkeley soon learned of this and insisted that
Ingres adopt a new practice. Bob Epstein, a leader on the project at the time, sent
a regretful email to the Ingres mailing list explaining that the software now carried
a UC Berkeley copyright, and that further sharing or distribution of the software
required written permission of the university. The Ingres team was disappointed
with the change: they wanted widespread adoption and collaboration, and the new
legal language interfered with both.

Notwithstanding that limitation, Ingres thrived for several years as a purely
academic project. The research team implemented ideas, shipped code to collab-
orators, and got useful feedback. By 1980, the project had matured enough to be a
credible platform for real query workloads. Companies that had been using older
database systems were getting interested in Ingres as a possible alternative.

Mike and several of his colleagues decided to capitalize on the opportunity and
created Relational Technology, Inc. (RTI) to commercialize the research they had
done. The software, unfortunately, was under the restrictive UC Berkeley copyright,
which required written permission by the university to reproduce or distribute.
Mike made an audacious decision: he unilaterally declared the software to be in
the public domain. RTI picked up the research code and used it as the foundation
for its commercial offering.

In retrospect, it is hard to believe that it worked. Young professors do not
often contradict the legal departments of their employers, especially for their own
financial benefit. Mike has no clear explanation himself for how he got away with
it. Most likely, quite simply, no one noticed.
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Very soon afterward, the CSRG team finished its work with the university’s legal
department and published the BSD license. Once it existed, Mike quickly adopted
it for the Ingres project source code as well. It satisfied all their goals—freely
available to use, extend and enhance, and share further; no discrimination against
commercial use or redistribution. Best of all, CSRG had already gotten the Berkeley
lawyers to agree to the language, so there was no reasonable objection to its use for
Ingres. This forestalled any challenge to Mike’s brief public-domain insurrection.

Nobody remembers exactly when the first Ingres source code tapes went out
under the BSD license, but it was an important day. It made Ingres the world’s first
complete, standalone substantial piece of systems software distributed as open
source. CSRG was shipping BSD code, but it needed the AT&T-licensed code to
build on; Ingres compiled and ran without recourse to third-party, proprietary
components.

The Impact of Ingres
The Ingres project helped to create the relational database industry, which provided
a foundation for all sorts of other technological innovations. Along with System R
at IBM, Ingres turned the theory that Codd and Date espoused into practice. The
history and detail of the Ingres project are available in Chapter 15, “The Ingres
Years.”

My own work was on the Postgres project (see Chapter 16 for more information).
Like Ingres, Postgres used the BSD license for source code distributions. Postgres
was a reaction to the success of Ingres in three important ways.

First, Ingres was a remarkably successful research project and open source data-
base. By the mid- to late-1980s, however, it was clear that the interesting questions
had pretty much been asked and answered. Researchers aim to do original work
on tough problems. There just wasn’t a lot more Ph.D.-worthy work to be done in
Ingres.

Second, Mike had started RTI to bring the research project to the commercial
market. The company and the research project coexisted for a while, but that could
not continue forever. Neither the university nor the National Science Foundation
was likely to fund development for the company. Mike had to separate his research
from his commercial interests. The Ingres project had to end, and that meant Mike
needed something new to work on.

Finally, and more fundamentally, Ingres had constrained Codd and Date’s re-
lational theory in important ways. The project team chose the data types and the
operations most interesting to them, and those easiest to implement in the C pro-
gramming language on UNIX. Together, Ingres and IBM’s System R had served as



168 Chapter 12 Stonebraker and Open Source

reference implementations for all the relational database vendors that cropped up
in the 1980s and 1990s (Chapter 13). They mostly chose the same datatypes, oper-
ations, and languages that those two research projects had implemented.

Post-Ingres
Mike argued that the relational model supported more than just those early data
types and operations, and that products could do more. What if you could store
graphs and maps, not just integers and dates? What if you could ask questions
about “nearby” not just “less than?” He argued that the software itself could be
smarter and more active. What if you could see not just current information, but
the whole history of a database? What if you could define rules about data in tables,
and the software enforced them?

Features like that are commonplace in database products today, but in the
middle 1980s none of the commercial vendors were thinking about them. Mike
created the Postgres project—for “post-Ingres,” because college professors aren’t
always great at brand names—to explore those and other ideas.

As a research vehicle and as an engine for graduate degrees, Postgres was phe-
nomenally successful. Like any real research project, it tried out some things that
failed: The “no-overwrite” storage system and “time travel” [Stonebraker et al.
1990b, Stonebraker and Kemnitz 1991, Stonebraker 1987] were interesting, but
never found a commercial application that pulled them into widespread use in
industry. Other ideas did take hold, but not always in the way that Postgres did
them: Mike’s students implemented rules [Potamianos and Stonebraker 1996,
Stonebraker et al. 1988a, Stonebraker et al. 1989] that applied to tables in a couple
of different ways (the “query rewrite” rules system and the “tuple-level” rules sys-
tem). Most databases support rules today, but they’re built on the foundations of
those systems, and not often in the ways that Postgres tried out. Some ideas, how-
ever, did get widespread adoption, much in the way that Postgres designed them.
Abstract data types (ADTs) and user-defined functions (UDFs) in database systems
today are based expressly on the Postgres architecture; support for spatial data and
other complex types is commonplace.

In the early 1990s, the Ingres cycle repeated itself with Postgres. Most of the
fundamental new research ideas had been explored. The project had been suc-
cessful enough to believe that there would be commercial demand for the ideas.
Mike started Montage (soon renamed Miro, then renamed again Illustra) in 1992 to
build a product based on the project, and moved his research focus elsewhere. Illus-
tra was acquired by Informix in 1996, and the bigger company integrated many of
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Postgres’ features into its Universal Database product. Informix was, in turn, later
acquired by IBM.

The Impact of Open Source on Research
If you ask Mike today, he will tell you that the decision to use the BSD license for
Ingres was just dumb luck. He was there at the time, so we should take him at his
word. Whether he was an open-source visionary or not in the late 1970s, however,
it’s clear that he was an important figure in the early open-source movement. Ingres’
success as open source changed the way that research is done. It helped, besides,
to shape the technology industry. Mike now endorses using open source in both
research (Chapter 10) and in startups (Chapter 7).

Just like the Ingres team did, those of us working on Postgres had an advantage
that most graduate students lacked: we had real users. We’d publish a build on
the project FTP site (no World Wide Web back then, youngsters!) and we’d watch
people download it from all over the planet. We didn’t offer any formal support,
but we had a mailing list people could send questions and problems to, and we’d
try to answer them. I still remember the blend of pride and angst we felt when we
got a bug report from a Russian nuclear power facility—shouldn’t they have been
running code that had a quality assurance team?

The decision to publish research as open source established Berkeley as the first-
class systems school it still is today. Grad students at other schools wrote papers.
We shipped software. Oh, sure, we wrote papers, too, but ours were improved
tremendously because we shipped that software. We could collaborate easily with
colleagues around the globe. We learned how our ideas worked not just in theory,
but also in practice, in the real world.

Code is a fantastic vector for the scientific method. Code makes it incredibly
easy for others to test your hypothesis and reproduce your results. Code is easy for
collaborators to enhance and extend, building on your original ideas with new ones
of their own.

Ingres’ success as the first large open-source systems software project influ-
enced the thinking of faculty at universities around the world, but especially at
Berkeley. Virtually all systems work at Berkeley today is open source. It’s as funda-
mental to the university as free speech and Top Dog.1

1. A long-standing (since 1966), not-so-healthy diner at Berkeley.
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Stonebraker himself learned the lesson, of course. He had seen the benefits
of the BSD license with Ingres and used it again on Postgres. Open source gave
Postgres a tremendous impact on the industry.

For example, unlike Ingres, the project survived its shutdown by the university.
Two former students, Jolly Chen and Andrew Yu, launched a personal project to
replace Postgres’ “postquel” query language with the by-then-industry-standard
SQL. They rewrote the query parser and put up a new project page. In a nod to history
and to the hard work they’d done, they named the new package “PostgreSQL.”

Their work attracted the attention of folks outside the university. Today, Post-
greSQL has a vibrant developer and user community around the world. PostgreSQL
remains a proudly independent project, deployed widely, creating value and oppor-
tunity for an ecosystem of contributors, users, support organizations, consultants,
and others. At the time I am writing this chapter, the project’s development hub
shows 44,000 commits against more than one million lines of code. At least two
standalone companies ship commercial versions of it today. Besides that, virtually
every version of Linux bundles a copy, and Amazon offers a hosted version for use
in the cloud. All of that is just a sampling. There’s a whole lot of PostgreSQL out
there.

Getting taxpayer-funded research out of the university so that it can benefit
citizens is important. Open source makes that easier. Mike, with Ingres, was the
first person to create a substantial and innovative piece of open-source systems
software with government funding, and then to start a company to commercialize
precisely the IP created inside the university. The model worked well. He repeated
it with Postgres and many other projects at Berkeley and other universities since.

That showed professors at Berkeley and elsewhere that they could work in the
academy and still participate in the marketplace. Professors and grad students
have long taken risks in research, and then started companies to bring products to
market. Open source eliminates friction: the code is there, all set to go, permission
granted. Whether we attract better young people to careers in research because of
this is unknowable; certainly, we give those who choose to advance the state of the
art a way to participate in the value that they create.

And it is not only Mike and colleagues like him who benefit financially.
Because of the permissive BSD license, Postgres and PostgreSQL were available

to anyone who wanted to start a company based on the project. Many did. Netezza,
Greenplum, Aster Data, and others adopted and adapted the code. Pieces of it—the
query parser, for example—have found their way into other products. That saved
many millions in upfront research and development costs. It made companies
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possible that might never have started otherwise. Customers, employees, and the
investors of all those companies benefited tremendously.

My own career owes a great deal to the innovation in software licensing and
the relational database industry that descended from the Ingres project. I have
been part of two startups, Illustra and Sleepycat, created expressly to commercialize
open-source UC Berkeley databases. My current company, Cloudera, builds on the
lessons I’ve learned from Mike, using open-source data management technology
from the consumer internet: the Apache Hadoop project for big data, and the rich
ecosystem it has spawned.

More broadly, the entire database community—industry and academia—owes a
great deal to Ingres, and to its implementation in open-source software. The ready
availability of a working system meant that others—at universities that couldn’t
afford to build or buy their own systems, and at companies that couldn’t afford to
fund the blue-sky research that Mike did at Berkeley—could explore a real working
system. They could learn from its innovations and build on its strengths.

In 2015, Dr. Michael Stonebraker won the 2014 A.M. Turing Award for lifetime
contributions to the relational database community. There’s no question that the
very specific, very direct work that Mike led at Berkeley and elsewhere on Ingres,
Postgres, columnar storage, and more deserves that award. The relational database
market exists in no small part because of his work. That market generates hundreds
of billions of dollars in commercial activity every year. His innovative use of a per-
missive open-source license for every meaningful project he undertook in his career
amplified that work enormously. It allowed everyone—the commercial sector, the
research community, and Mike himself—to create value on top of his innovation.

The choice of BSD for Ingres may well have been lucky, but in my experience,
luck comes soonest to those who put themselves in its path. So much of research,
so much of innovation, is just hard work. The inspired laziness of choosing the BSD
license for Ingres—getting all the benefits of broad distribution, all the power of
collaboration, without the trouble of a fight with the UC Berkeley legal team—put
Ingres smack in the way of lucky.

We all learned a great deal from that first, hugely impactful, open-source systems
project.
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The history of database systems, in particular the relational kind, reaches far back
to the beginnings of the computer science discipline. Few other areas of computer
science can look back as many decades and show how concepts, systems, and ideas
have survived and flourished to the present day. Inspired by the database lectures
of my Ph.D. advisor Christoph Freytag, who always included a short section on the
history of DBMS in his courses, I included some such material in my own slides
for undergraduate students (see Figure 13.1 from 2010). My limited view of DBMS
history (and slide layout) is apparent.

Later, in the first week of my first database course as a professor, I had presented
much introductory material, but lacked hard content to fill the exercise sheets and
occupy the students. Thus, I let students choose a system from a long list of well-
known DBMSs and asked them to research its history and collect data about its
origin, dates, versions, etc. Together with my teaching assistants, I established an
initial more-complete timeline, which anticipated the design of the latest version
(see Figure 13.2). A graphic designer suggested that we apply a subway-map met-
aphor and in 2012 created the first poster version of the genealogy, as it appears
today (Figure 13.3). Many years and versions later, and many systems and nodes
more, the current 2017 genealogy is shown in Figure 13.4. Clearly, it has grown
much denser for the present time (at the right of the chart), but also much more
informative for the beginnings of RDBMS (at left), based on various discoveries of
early RDBMSs.
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RDBMS Timeline
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Figure 13.1 Genealogy slide from database lecture (2010).

Overall, the genealogy contains 98 DBMS nodes, 48 acquisitions, and 34
branches and 6 mergers. Many of the DBMSs are no longer in existence—19 are
marked as discontinued.

Creating a genealogy like this is a somewhat unscientific process: the concrete
start date for a system is usually undefined or difficult to establish. The same is also
true for the points in time of almost all other events shown in the chart. Thus, time
is treated vaguely—nodes are placed only approximately within their decades. Even
more difficult is the treatment of branches, a feature that makes the chart especially
interesting. We were very generous in admitting a branch: it could signify an actual
code fork, a licensing agreement, or a concrete transfer of ideas, or it could simply
reflect researchers and developers relocating to a new employer and re-establishing
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Figure 13.2 First poster version of the genealogy (2012).

the DBMS or its core ideas there. There is no structured source from which this chart
is automatically created. Every node and every line are manually placed, carefully
and thoughtfully.

Another important question was and remains which database systems to in-
clude. We have been strict about including only relational systems supporting at
least some basic SQL capabilities. Hierarchical and object-oriented systems are ex-
cluded, as are XML or graph-databases or key-value stores. Another criterion for
inclusion is that the system has at least some degree of distribution or some user
base. A simple research prototype that was used only for research experiments
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would not fit that description. That being said, we took some liberty in admitting
systems and still welcome any feedback for or against specific systems.

In fact, after the initial design and publication of the genealogy in 2012, the
main source for additions, removals, and corrections was email feedback from ex-
perts, researchers, and developers after the announcement of each new version.
Over the years, more than 100 persons contacted me, in parts with very many sug-
gestions and corrections. The shortest email included nothing but a URL to some
obscure DBMS; the most input by far came from David Maier. Especially for the
early history of RDBMS, I relied on feedback from many other leading experts in
database research and development, including (in chronological order of their in-
put) Martin Kersten, Gio Wiederhold, Michael Carey, Tamer Öszu, Jeffrey Ullman,
Erhard Rahm, Goetz Graefe, and many others. Without their experience and recol-
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lection, the genealogy would not exist in its current form, showing the impressive
development of our field. For the most recent version, which is included in this
book, Michael Brodie of MIT CSAIL initiated conversations with Joe Hellerstein,
Michael Carey, David DeWitt, Kapali Eswaran, Michael Stonebraker, and several
others, unearthing various new systems and new connections (sometimes scrib-
bled on classroom notes), with a slight bias towards the numerous ones that can
be traced back to Michael Stonebraker’s work. These DBMSs can be found all over
the genealogy, making Michael the great-great-grandfather of some of them. Start-
ing from Ingres at the top left of that chart, you not only can reach many commercial
and non-commercial systems, but also find smaller projects hidden in the geneal-
ogy, such as Mariposa, H-Store, and C-Store.

While I do not have download statistics, I have occasionally seen the printed
poster in the background during television interviews with IT experts who had hung
it on their office walls. Downloading, printing, and using the chart is free. Please
find the latest version at http://hpi.de/naumann/projects/rdbms-genealogy.html.
And, as always, additions and corrections are welcome.

http://hpi.de/naumann/projects/rdbms-genealogy.html
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led to systems results (Postgres) described in Chapter 25; and so forth.





14Research Contributions
of Mike Stonebraker:
An Overview
Samuel Madden

As preceding chapters make clear, Mike Stonebraker has had a remarkable career,
with at least (depending on how one counts) eight incredibly influential database
systems, many of which were backed by commercial companies, spanning five
decades of work. In the chapters in this section, Mike’s collaborators on these
projects and systems look at their technical contributions to computing. For each
of his major systems, there are two chapters: one highlighting the intellectual,
research, and commercial impact and Mike’s role in crafting these ideas, and the
other describing the software artifacts and codelines themselves. Like all large
software systems, these projects were not Mike’s alone, but in all cases their success
and influence were magnified by Mike’s involvement. Our goal in these writings
is not to exhaustively recap the research contributions of the work, but instead
capture a bit of what it was like to be there with Mike when the ideas emerged and
the work was done.

Technical Rules of Engagement with Mike
Before diving into the technical details, it’s worth reflecting a bit on the general
technical rules of engagement when working with Mike.

First, Mike is an incredible collaborator. Even at 74, he comes to every meeting
with new ideas to discuss and is almost always the first to volunteer to write up ideas
or draft a proposal. Despite being the CTO of at least two companies, he fires off
these research drafts seemingly instantaneously, leaving everyone else scrambling
to keep up with him and his thinking.
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Second, in research, Mike has a singular focus on database systems—he is not
interested in other areas of computer science or even computer systems. This focus
has served him well, magnifying his impact within the area and defining the scope
of the systems he builds and companies he founds.

Third, Mike values simple, functional ideas above all else. Like all good sys-
tems builders, he seeks to eliminate complexity in favor of practicality, simplicity,
and usability—this is part of the reason for his success, especially in commercial
enterprises. He tends to dismiss anything that he perceives as complicated, and
often prefers simple heuristics over complex algorithms. Frequently this works out,
but it is not without pitfalls. For example, as described in Chapter 18 and Chap-
ter 27, Mike felt strongly that C-Store and its commercial offspring should not use
a conventional dynamic-programming-based algorithm for join ordering; instead,
he believed in a simpler method that assumed that all tables were arranged in a
“star” or “snowflake” schema, and only allowed joins between tables arranged in
this way. Such schemas were common in the data warehouse market that Vertica
was designed for, and optimizing such queries could be done effectively with simple
heuristics. Ultimately, however, Vertica had to implement a real query optimizer,
because customers demanded it, that is, the complicated design was actually the
right one!

Fourth, Mike tends to see ideas in black and white: either an idea is great or it
is awful, and more than one researcher has been taken aback by his willingness
to dismiss their suggestions as “terrible” (see Chapter 21). But Mike is malleable:
even after dismissing an idea, he can be convinced of alternative viewpoints. For
example, he recently started working in the area of automated statistical and AI
approaches to data integration and founded the company, Tamr (see Chapter 30),
despite years of arguing that this problem was impractical to solve with AI tech-
niques due to their complexity and inability to scale, as some of his collaborators
describe later in this introduction.

Fifth, although Mike does form opinions quickly and doesn’t shy away from
sharing them—sometimes in controversial fashion—he’s usually right. A classic
example is his quip (in a 2008 blog post with David DeWitt [DeWitt and Stonebraker
2008]) that Hadoop was “a major step backwards,” which resulted in some on the
Internet declaring that Mike had “jumped the shark.” However, the point of that
post—that most data processing was better done with SQL-like languages—was
prescient. Hadoop was rather quickly displaced. Today, most users of post-Hadoop
systems, like Spark, actually access their data through SQL or an SQL-like language,
rather than programming MapReduce jobs directly.
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Finally, Mike is not interested in (to use a famous phrase of his) “zero-billion-
dollar” ideas. Mike’s research is driven by what real-world users (typically commer-
cial users) want or need, and many of his research projects are inspired by what
business users have told him are their biggest pain points.1 This is a great strategy
for finding problems, because it guarantees that research matters to someone and
will have an impact.

Mike’s Technical Contributions
In the rest of this introduction, we discuss technical contributions and anec-
dotes from collaborators on Mike’s “big systems.” The chapters in this section
go in chronological order, starting with his time at UC Berkeley, with the Ingres
and Postgres/Illustra projects and companies, and then going on to his time at
MIT and the Aurora and Borealis/StreamBase, C-Store/Vertica, H-Store/VoltDB,
SciDB/Paradigm4, and Data Tamer/Tamr projects/companies. Amazingly, this in-
troduction actually leaves out two of his companies (Mariposa and Goby), because
they are less significant both commercially and academically than many of his
research projects, some of which you’ll find mentioned elsewhere in the book. Fi-
nally, some of his current collaborators talk about what Mike has been doing in his
most recent research.

The Berkeley Years
For the Ingres project, which Mike began when he got to Berkeley in 1971, Mike
Carey writes about the stunning audacity of the project and its lasting impact (Chap-
ter 15). Mike Carey was one of Mike’s early Ph.D. students, earning his Ph.D. in
1983 and becoming one of the most influential database systems builders in his
own right. He shares his perspective on how a junior professor with a background
in math (thesis title: “The Reduction of Large Scale Markov Models for Random
Chains”) decided that building an implementation of Ted Codd’s relational alge-
bra was a good idea, and describes how Mike Stonebraker held his own competing
against a team of 10-plus Ph.D.s at IBM building System R (Chapter 35). As Mike
Carey describes, the Ingres project had many significant research contributions:
a declarative language (QUEL) and query execution, query rewrites and view sub-
stitution algorithms, hashing, indexing, transactions, recovery, and many other
ideas we now take for granted as components of relational databases. Like much

1. Mike describes the use of such pain points that became the source of innovation and value in
Ingres and other projects; see Chapter 7.



186 Chapter 14 Research Contributions of Mike Stonebraker: An Overview

of Mike’s work, Ingres was equally influential as an open-source project (Chap-
ter 12) that became the basis of several important commercial database systems
(illustrated in living color in Chapter 13).

In his write-up about Mike’s next big Berkeley project, Postgres (“Post-Ingres”),
Joe Hellerstein (Chapter 16) (who did his Master’s work with Mike during the Post-
gres era and is another leading light in the database system area) describes Post-
gres as “Stonebraker’s most ambitious research project.” And indeed, the system
is packed full of important and influential ideas. Most important and lastingly is
support for abstract data types (aka user-defined types) in databases through the
so-called “Object-Relational” model, as an alternative to the then-popular “Object-
Oriented Database” model (which has since fallen out of favor). ADTs are now the
standard way all database systems implement extensible types and are critically
important to modern systems. Other important ideas included no-overwrite stor-
age/time travel (the idea a database could store its entire history of deltas and
provide a view as of any historical point in time) and rules/triggers (actions that
could be performed whenever the database changed). As Joe describes, Postgres
also led to the development of Mike’s first big commercial success, Illustra (Chap-
ter 25), as well as (eventually) the release of the hugely influential PostgreSQL open-
source database, which is one of the “big two” open-source RDBMS platforms (with
MySQL) still in use today (Chapter 12).

The Move to MIT
Mike left Berkeley in the late 1990s and a few years later moved to MIT as an
adjunct professor. Even though he had already achieved more academically and
commercially than most academics do in a career, he enthusiastically embarked
on a remarkable series of research projects, beginning with the stream processing
projects Aurora and Borealis (Chapter 17). These projects marked the beginning
of a long series of collaborations among MIT, Brown, and Brandeis, which I would
join when I came to MIT in 2004. In their chapter about Aurora/Borealis, Magda
Balazinska (now a professor at the University of Washington and then a student
on the projects) and Stan Zdonik (a professor at Brown and one of Mike’s closest
collaborators) reflect on the breadth of ideas from the Borealis project, which
considered how to re-engineer a data processing system that needs to process
“streams”: continuously arriving sequences of data that can be looked at only once.
Like many of Mike’s projects, Aurora eventually became StreamBase (Chapter 26), a
successful startup (sold to TIBCO a few years ago) focused on this kind of real-time
data, with applications in finance, Internet of Things, and other areas.
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The “One Size Doesn’t Fit All” Era
In the 2000s, the pace of Mike’s research accelerated, and he founded compa-
nies at a breakneck pace, with five companies (Vertica, Goby, Paradigm4, VoltDB,
Tamr) founded between 2005 and 2013. Two of these—Vertica and Goby—ended
with acquisitions, and the other three are still active today. As inspiration for Ver-
tica, Paradigm4, and VoltDB, Mike drew on his famous quip that “one size does
not fit all,” meaning that although it is technically possible to run massive-scale
analytics, scientific data, and transaction processing workloads, respectively, in a
conventional relational database, such a database will be especially good at none of
these workloads. In contrast, by building specialized systems, order-of-magnitude
speedups are possible. With these three companies and their accompanying re-
search projects, Mike set out to prove this intuition correct.

In the case of C-Store, our idea was to show that analytics workloads (comprising
read-intensive workloads that process many records at a time) are better served by a
so-called “column-oriented” approach, where data from the same column is stored
together (e.g., with each column in a separate file on disk). Such a design is sub-
optimal for workloads with lots of small reads or writes but has many advantages
for read-intensive workloads including better I/O efficiency and compressibility.
Daniel Abadi (now a professor at the University of Maryland) writes about his early
experiences as a grad student on the project (Chapter 18) and how Mike helped
shape his way of thinking about system design through the course of the project.
C-Store was classic “systems research”: no new deep theoretical ideas, but a lot
of design that went into making the right decisions about which components
to use and how to combine them to achieve a working prototype and system.
Mike commercialized C-Store as the Vertica Analytic Database, which was quite
successful and continues to be one of the more widely used commercial analytic
database systems. Vertica was acquired by HP in 2011 and is now owned by Micro
Focus, Int’l PLC.

In the H-Store project, the idea was to see how “one size does not fit all” could be
applied to transaction processing systems. The key observation was that general-
purpose database systems—which assume that data doesn’t fit into memory and
use standard data structures and recovery protocols designed to deal with this
case—give up a great deal of efficiency compared to a system where data is assumed
to be memory-resident (generally the case of transaction processing systems on
modern large main-memory machines). We designed a new transaction process-
ing system; Andy Pavlo (who writes about H-Store in Chapter 19) and several other
graduate students built the prototype system, which pushed the boundaries of
transaction processing several orders of magnitude beyond what general-purpose
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databases could achieve. The H-Store design became the blueprint for Mike’s
founding of VoltDB (Chapter 28), which is still in business today, focused on a va-
riety of low-latency and real-time transaction processing use cases. More recently,
Mike has extended the H-Store design with support for predictive load balancing
(“P-Store” [Taft et al. 2018]) and reactive, or elastic, load balancing (“E-Store”; [Taft
et al. 2014a].

After H-Store, a group of academics (including me) led by Mike and David
DeWitt went after another community not well served by current “one size fits
all” databases: scientists (Chapters 20 and 29). In particular, many biologists and
physicists have array-structured data that, although it can be stored in databases as
relations, is not naturally structured as such. The academic project, called SciDB,
looked at a number of problems, including data models and query languages
for array data, how to build storage systems that are good for sparse and dense
arrays, and how to construct systems with built-in versioning of data appropriate
for scientific applications. In prototypical fashion, Mike quickly started a company,
Paradigm4, in this area as well. In an entertaining essay, Paul Brown, the chief
architect of the product, describes the journey from conception to today in terms
of a mountain-climbing expedition, replete with all of the thrills and exhaustion
that both expeditions and entrepreneurship entail (Chapter 20). The development
of the SciDB codeline is described in Chapter 29.

The 2010s and Beyond
After his sequence of one-size-does-not-fit-all projects in the 2000s, around the
turn of the decade, Mike turned to a new area of research: data integration, or
the problem of combining multiple related data sets from different organizations
together into a single unified data set. First, in the Data Tamer project, Mike and
a group of researchers set out to work on the problem of record deduplication
and schema integration—that is, how to take a collection of datasets describing
the same types of information (e.g., employees in two divisions of a company) and
create a single, unified, duplicate-free dataset with a consistent schema. This is a
classic database problem, traditionally solved through significant manual effort. In
the Data Tamer project, the idea was to automate this process as much as possible,
in a practical and functional way. This led to the creation of Tamr Inc. in 2013.
In his write-up (Chapter 21), Ihab Ilyas talks about his experience on the academic
project and as a co-founder of the company and relates some of the valuable lessons
he learned while building a real system with Mike. The development of the Tamr
codeline is described in Chapter 30.
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This section concludes with a discussion of one of Mike’s most recent projects,
which centers on the idea of polystores: “middleware” that allows users to query
across multiple existing databases without requiring the data to be ingested into
a single system called BigDAWG, which we built as a part of the Intel Science and
Technology Center for Big Data (Chapter 22). The chapter is written by Timothy
Mattson, Intel Technical Fellow and a co-developer of one of the first polystore
systems, with co-authors Jennie Rogers (now a professor at Northwestern) and
Aaron Elmore (now a professor at the University of Chicago), both of whom were
postdocs working on the BigDAWG project. BigDAWG is available as open source
code (Chapter 31).

In a related project, Mourad Ouzzani, Nan Tang, and Raul Castro Fernandez talk
about working with Mike on data integration problems that go beyond schema in-
tegration toward a complete system for finding, discovering, and merging related
datasets, possibly collected from diverse organizations or sub-groups (Chapter 23).
For example, a data scientist at a pharmaceutical company may wish to relate his
or her local drug database to a publically available database of compounds, which
requires finding similar columns and data, eliminating noisy or missing data, and
merging datasets together. This project, called Data Civilizer, is a key part of a re-
search collaboration with the Qatar Center for Research and Innovation (QCRI),
and is noteworthy for the fact that it has moved Mike away from some of the typical
“systems” problems he has worked on toward much more algorithmic work focused
on solving a number of nitty-gritty problems around approximate duplicate detec-
tion, data cleaning, approximate search, and more. The development of Aurum, a
component of the yet-to-be-developed Data Civilizer, is described in Chapter 33.

In summary, if you make purchases with a credit card, check your bank balance
online, use online navigation data from your car or use data to make decisions on
the job, you’re likely touching technologies that originated with Mike Stonebraker
and were perfected by him with his many students and collaborators over the last
40-plus years. We hope that you enjoy the following “under the hood” looks at the
many innovations that made databases work for us all.
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PART VII.A

Research Contributions
by System





15The Later Ingres Years
Michael J. Carey

This chapter is an attempt, albeit by a fairly latecomer to the Ingres party, to
chronicle the era when it all started for Mike Stonebraker and databases: namely,
the Ingres years! Although my own time at UC Berkeley was relatively short (1980–
1983), I will attempt to chronicle many of the main activities and results from the
period 1971–1984 or thereabouts.

How I Ended Up at the Ingres Party
The path that led me to Berkeley, and specifically to Mike Stonebraker’s database
classes and research doorstep, was entirely fortuitous. As an electrical engineering
(EE) math undergraduate at Carnegie Mellon University (CMU) trying to approxi-
mate an undergraduate computer engineering or computer science major before
they existed at CMU, I took a number of CS classes from Professor Anita Jones. At
the time Anita was building one of the early distributed operating systems (StarOS)
for a 50-node NUMA multiprocessor (Cm*). She also co-supervised my master’s
degree thesis (for which I wrote a power system simulator that ran on Cm*). I de-
cided to pursue a Ph.D. in CS, and I sought Anita’s sage advice when it came time
to select a program and potential advisors to target. I was inclined to stay closer
to home (East Coast), but Anita “made me” go to the best school that admitted
me, which was Berkeley. When I asked her for advice on potential systems-oriented
research advisors—because I wanted to work on “systems stuff,” preferably par-
allel or distributed systems—Anita suggested checking out this guy named Mike
Stonebraker and his work on database systems (Ingres and Distributed Ingres).
CMU’s CS courses didn’t cover databases and, with parents who worked in business
and accounting, I thought that working on databases sounded boring: possibly the
CS equivalent of accounting. But I mentally filed away her advice nonetheless and
headed off to Berkeley.
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Once at Berkeley, it was time to explore the course landscape in CS to prepare
for the first layer of Ph.D. exams as well as to explore areas to which I had not yet
been exposed. Somewhat grudgingly following Anita’s advice, I signed up for an
upper-division database systems class taught by Mike. By that time (academic year
1980–81), Mike and his faculty colleague Professor Eugene Wong had built and
delivered to the world the Ingres relational DBMS—more on that shortly—and it
was the basis for the hands-on assignments in my first database class.

That first class completely changed my view of things. It turned out to be really
interesting, and Mike (despite what he will say about himself as a teacher) did a
great job of teaching it and making it interesting, thereby luring me down a path
toward databases. I went on to take Mike’s graduate database class next. By then
I was hooked: very cool stuff. I learned that this newly emerging database systems
field was really a vertical slice of all of CS—including aspects of languages, theory,
perating systems, distributed systems, AI (rule systems), and so on—but with an
emphasis on “doing it for data” and in a declarative way.

Databases weren’t so boring after all. In fact, they were interesting and now on
my list of possible Ph.D. subareas. By the time I passed the preliminary exams and
it was time to seek an advisor, I had three or four possibilities on my list: computer
architecture (Dave Patterson), operating systems/distributed systems (John Ouster-
hout or perhaps Mike Powell), and of course databases (Mike). I talked to each one
about the road to a Ph.D. in their view, and for the most part what I heard was a
five-year hike up the Ph.D. mountain. But not from Mike! He had various poten-
tial topics in mind, convinced me that transaction management was like operating
systems (it is), and told me he could have me out in three years. Sold to the lowest
bidder! It also didn’t hurt that, at the time, Mike had created a fun and inviting
database group culture, insisting that interested students join the Ingres team at
La Val’s Pizza up the street from Cory Hall (a.k.a. Ingres HQ) for periodic outings
for pizza and pitchers of beer (Where, I seem to recall, Mike always had adverse
reactions to empty glasses).

Ingres: Realizing (and Sharing!) a Relational DBMS
Mike’s database story begins with Ingres [Held and Stonebraker 1975], short for
INteractive Graphics REtrieval System. It was one of the world’s two high-impact
early relational DBMSs; the other was System R from IBM, a concurrent project at
the IBM San Jose Research Center. The Ingres system was co-developed by Mike and
Gene (ten years his senior, and the person who talked Mike into reading Ted Codd’s
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seminal paper and into converting to be a “database guy”). I missed the early years of
Ingres, as I arrived in 1980 and started hanging out in Ingres territory only in 1981,
by which time the initial Ingres project was over and Distributed Ingres was also
mostly winding down (Chapter 5). A number of the early Ingres system heroes had
already come and gone—e.g., Jerry Held, Karel Youssefi, Dan Ries, Bob Epstein—
and the single-system version of Ingres had been distributed to over 1,000 sites
(prehistoric open source!). The Distributed Ingres project was also largely “done”:
there was a prototype that ran distributed queries over geographically distributed
data, but it was never hardened or shared like Ingres. I overlapped for a year with
team member Dale Skeen, who worked on distributed commit protocols and who
mentored me (thanks, Dale!) and then left for academia before starting several
notable companies, including TIBCO, the birthplace of pub/sub (publish/subscribe
messaging). I did get to meet Eric Allman; he was the backbone (staff member) for
the Ingres group.

In my day as a graduate student and in my “first career” as an academic at the
University of Wisconsin-Madison, Ingres was tremendously well known and highly
regarded (Chapter 6). I fear that the same is not true today, with the commercial
success of IBM’s DB2 system—the main competitor for Ingres—which has made
System R much more visible in today’s rear-view mirror for students. In reality,
Ingres—Mike and Gene’s first gift to the database world—was truly a remarkable
achievement that helped shape the field today in ways that are well worth reiterat-
ing here.

Ingres made a number of contributions, both technically and socially. In my
view, it is still Mike’s finest database achievement, which is obviously saying a lot
given the many things that Mike has done over the course of his career.

So, what was the big deal about Ingres? Let’s have a look at what Ingres showed
us . . .

1. One of the foremost contributions of Ingres—likewise for System R—was
showing that Ted Codd wasn’t out of his mind when he introduced the re-
lational model in 1970, i.e., that it was indeed possible to build a relational
DBMS. Ingres was a complete system: It had a query language, a query exe-
cution system, persistent data storage, indexing, concurrency control, and
recovery—and even a C language embedding (EQUEL [Allman et al. 1976])—
all assembled by a team of faculty, students, and a few staff at a university
[Stonebraker 1976b]. This in and of itself is a truly remarkable achievement.
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range of s is supply

range of p is parts

retrieve (s.snum) where s.pnum=p.pnum and p.pname=’’central processor’’

\g

Figure 15.1 A simple Quel join query, by Mike Stonebraker circa 1975. Source: [Stonebraker 1975].

2. Ingres showed how one could design a clean, declarative query language—
Quel—based on Codd’s declarative mathematical language ideas. Quel was
the language used in the database class that converted me. It was a very
clean language and easy to learn—so easy in fact that I taught my mother
a little bit of Quel during one of my visits home from Berkeley and she
“got it.” Quel’s design was based on the tuple relational calculus—adding
aggregates and grouping—and (in my opinion) it should have won the query
language wars in the 1980s. SQL is less concise and an odd mix of the
relational calculus (FROM) and algebra (JOIN, UNION). In my view, it won
largely because Larry Ellison read the System R papers (one of which Oracle
actually cites in its new-employee training!) and joined IBM in deciding to
commercialize and popularize SQL.1 As an example for the historical record,
the following (see Figure 15.1) is a simple Quel join query from the original
user manual that Mike himself wrote (as an Electronics Research Lab (ERL)
memo [Stonebraker 1975]).

3. Ingres showed that one could create an efficient implementation of a declar-
ative query language. Ingres included a query optimizer that (a) reordered
joins based on their input sizes and connecting predicates and (b) accessed
relations by picking from among the access paths supported by the avail-
able indexes. Interestingly, the Ingres optimizer worked together with the
query executor incrementally—alternately picking off the next “best” part of
the query, running it, seeing the result size, and then proceeding to the next
step [Wong and Youssefi 1976]. System R took a more static, pre-compilation-
based approach. System R is (rightly) famous for teaching the world how to
use statistics and cost functions and dynamic programming to compile a
query. However, today there is renewed interest in more runtime-oriented
approaches—not unlike the early Ingres approach—that do not rely as heav-
ily on a priori statistics and costing.

1. It’s a little-known fact that Teradata, the big gorilla system in high-performance relational data
warehousing, was initially based on Quel before converting to SQL.
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4. Ingres showed that one could build a full storage manager, including heap
files and a variety of indexes (ISAM (Indexed Sequential Access Method) and
hashing) that an optimizer could see and use, and with support for con-
current transactions and crash recovery. Being a smaller, university-based
project, Ingres took a simpler approach to transactions (e.g., relation-level
locks and sorting by relation name before locking to avoid deadlocks). But
the Ingres system was nevertheless complete, delivered, and used! As a his-
torical sidebar, one of my favorite forgotten Mike papers was a Communica-
tions of the Association for Computing Machinery (CACM) article (“B-Trees
Re-examined” [Held and Stonebraker 1978]) in which Mike and Jerry Held ex-
plained why B+ trees might never work, due to then-unsolved challenges of
dealing with concurrency control and recovery for dynamic index structures,
and why static indexes like those used in Ingres were preferable.

5. Ingres was built for AT&T Unix and led to a full-featured system that was
shared and used (again, think “prehistoric open source”) by many folks
at other universities and labs to actually store and query their data. As an
example, when I landed in Wisconsin after leaving Berkeley, I discovered that
University of Wisconsin-Madison economics professor Martin David and
several of his colleagues were using Ingres to store and query U.S. government
Survey of Income and Program Participation (SIPP) data [Flory et al. 1988].
As another example as a graduate student at CMU Rick Snodgrass used
Ingres to store and query software events coming from parallel Cm* program
executions for debugging [Snodgrass 1982], which is what inspired Rick’s
later temporal database career (see Chapter 12 for more on Mike and his
open-source impact(s)).

6. Ingres was used for teaching. Many students in the 1980s were able to get
their hands on relational database technology solely because the Ingres sys-
tem was so widely distributed and used in introductory database system
classes. It helped to create a whole new generation of relational-database-
savvy computer scientists!

7. Ingres was a sufficiently complete and solid software system that it became
the basis for a very successful commercial RDBMS of its day, namely RTI (Re-
lational Technology, Inc.) Ingres. See Chapter 24 by Paul Butterworth and
Fred Carter for a very interesting discussion of the birth and subsequent de-
velopment of Commercial Ingres, including how it began, what was changed
from the university version, and how it evolved over time (and remained in-
formed by university research).
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Distributed Ingres: One Was Good, So More Must be Better
As I alluded to earlier, the next step for Mike, after Ingres, was to launch the Dis-
tributed Ingres project [Stonebraker and Neuhold 1977]. The distributed DBMS
vision circa 1980—a vision shared by essentially the entire DB research community
at that time—was of a single-image relational DBMS that could manage geograph-
ically distributed data (e.g., a database with sites in Berkeley, San Jose, and San
Francisco) while making it look as though all the data was stored in a single, local
relational DBMS. While the Distributed Ingres effort didn’t lead to another widely
shared “open source” system, it did produce a very interesting prototype as well
as many technical results related to distributed query processing and transaction
management. Major competing projects at the time were R* at IBM (i.e., distributed
System R), SDD-1 at CCA (in Cambridge, MA), and a small handful of European ef-
forts (e.g., SIRIUS). Among the contributions of the Distributed Ingres effort were
the following.

1. Results by Bob Epstein, working with Mike (and also Gene), on distributed
data storage and querying [Epstein et al. 1978]. Relations could be distributed
in whole or as fragments with associated predicates. (See Figure 15.2, bor-
rowed directly from Stonebraker and Neuhold [1977] in all of its late 1970s
graphical glory.) The supply relation might be in San Jose, which might also
store a fragment of supplier where supplier.city = “San Jose,” with other
supplier fragments being stored in Berkeley and elsewhere.) The project pro-
duced some of the first results, implemented in the prototype, on query
processing in a geographically distributed setting. Distributed Ingres gen-
eralized the iterative runtime-oriented approach of Ingres and considered
how and when to move data in order to run distributed queries involving
multiple relations and fragments thereof.

2. Results by Dan Ries on concurrency control—particularly locking—in such
an environment, based on simulations informed by the Distributed Ingres
prototype [Ries and Stonebraker 1977a]. This was among the earliest work
on distributed locking, considering centralized vs. distributed approaches
to lock management in a distributed DBMS; studying the impact of lock
granularity on such a system; and investigating alternative strategies for
handling deadlocks (including methods based on prevention, preemption,
and detection).

3. The birth of “shared nothing!” As the Distributed Ingres prototype effort
was winding down, Mike threatened to create a new and different Ingres-
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The users view: supplier (sno, sname, city)
                project (jno, jname, city)
                supply (sno, jno, amount)

The distribution of Fragments:

project
supplier where supplier.city = “Berkeley”

supply
supplier where
supplier.city = “San Jose”

supplier where
supplier.city != “Berkeley”
and supplier.city != “San Jose”

Figure 1
(A sample distribution data base)

site
1

site
2

site
3

network

Figure 15.2 A simple example of an early (1977) distributed database. Source: [Stonebraker and
Neuhold 1977].

based distributed DBMS prototype, which he named “MUFFIN” [erl-m79-28].
In this visionary 1979 ERL memo (which was never published as a paper
nor realized as a system after all), Mike proposed to harness the combined
power of a set of Ingres’ (“D-CELLs”) in parallel by organizing them in a
shared-nothing fashion, much as was done later in the Teradata, Gamma,
and GRACE database machines [DeWitt and Gray 1992].

4. Theoretical results by Dale Skeen on commit and recovery protocols for dis-
tributed DBMSs, again inspired by the Distributed Ingres context [Skeen and
Stonebraker 1983]. This work provided a formal model for analyzing such



200 Chapter 15 The Later Ingres Years

distributed protocols in the face of failures and applied the model to analyze
existing protocols and to synthesize new ones as well. Both centralized and
decentralized (e.g., quorum-based) schemes were considered.

5. Experimental, mostly simulation-based, results by yours truly, on concur-
rency control alternatives and their performance [Carey and Stonebraker
1984]. I undertook this work as a follow-on to what Dan Ries had started,
since by the early 1980s a gazillion different approaches to concurrency con-
trol were starting to appear based on a diverse set of mechanisms (locks,
timestamps, optimism followed by certification, and, orthogonally, version-
ing). This brilliant work provided some initial insight into the algorithmic
design space’s dimensions and their performance implications.

In spite of the database community’s hopes and dreams, the homogeneous
(single-site image) approach to distributed databases never took hold. It was just
too early at that time. Nevertheless, the research results from those days have
lived on in new contexts, such as parallel database systems and heterogeneous
distributed databases. The Distributed Ingres project definitely bore a significant
amount of (practical) fruit in the orchard of distributed database management.

Ingres: Moving Beyond Business Data
In the early Ingres era that I walked into, Mike was thinking about how to take Ingres
to new levels of data support. This was something of a “between systems” study time
in Ingres-land. Mike was looking around at a variety of domains: geographical in-
formation systems (one of the early motivating areas for Ingres), office automation
systems, VLSI CAD (Very Large-Scale Integration Computer-Aided Design) systems
(Berkeley was a hotbed in that field at the time), and so on. At the time, a number of
folks in the DB research community were in a “Business data solved! What’s next?”
mindset (e.g., see the collection of papers in Katz [1982]). Noting that all these do-
mains had serious data management needs, Mike and Ingres came to the rescue!
To address these needs, Mike began to orchestrate his graduate students, many of
them master’s students, to tackle different facets of the looming “next-generation
data management” problem. In usual Mike fashion, these projects were not simply
paper designs, but designs accompanied by working prototypes based on experi-
mentally changing the Ingres code base in different ways. Many interesting ideas
and papers resulted, including the following.

1. A notion of “hypothetical relations” for Ingres [Stonebraker and Keller 1980].
The idea was to provide the ability to create a hypothetical branch of a rela-
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tion: a differential version of a relation that could be updated and explored
without impacting the source relation. The aim was to provide out-of-the-box
database support for “what if” database use cases.

2. The addition of features to Ingres to enable it to be a viable platform for doc-
ument data management [Stonebraker 1983a]. Features added in this line
of work included support for variable-length strings (which Ingres didn’t ini-
tially have), a notion of ordered relations, various new substring operators for
Quel, a new break operator for decomposing string fields, and a generalized
concatenate operator (an aggregate function) for doing the reverse.

3. The addition of features to Ingres in support of CAD data management
[Guttman and Stonebraker 1982]. The best-known result of that effort, by
far, was due to my now famous (but soft-spoken) officemate Toni Guttman:
the invention of the R-Tree index structure [Stonebraker and Guttman 1984].
Toni was studying the problem of storing VLSI CAD data from the emerging
Caltech Mead-Conway VLSI design era. To simplify the problem of designing
very large-scale integrated circuit chips, a new approach had emerged—thus
filling the world with millions of rectangles to be managed! In order to index
the 2-D geometry of a VLSI design, Toni generalized the ideas from Bayer’s B+
Tree structure, and R-Trees were thus born. Note that “R” stood for rectangle,
and the first use case was for actually indexing rectangles. Of course, R-Trees
are also widely used today to index other spatial objects by indexing their
bounding boxes.

4. The foundation for what would later become a major feature of object-
relational databases: support for user-defined extensions to Ingres based on
Abstract Data Types (ADTs) [Ong et al. 1984], inspired by requirements for
potentially adding spatial data support to Ingres. (For other views on Mike’s
object-relational contributions, see Chapter 3 by Phil Bernstein, Chapter 12
by Mike Olson, Chapter 16 by Joe Hellerstein, and Chapter 6 by David De-
Witt.) Developed by a pair of master’s students [Fogg 1982, Ong 1982], the
ADT-Ingres prototype—which never became part of the public university re-
lease of Ingres—allowed Ingres users to declare new types whose instances
could then be stored as attribute values in relational attributes declared to
be “of” those types. Each such ADT definition needed to specify the name
of the ADT, its upper bound sizes in binary and serialized string form, and
string-to-binary (input) and binary-to-string (output) function names and
their implementation file. New operators could also be defined, in order to
operate on ADT instances, and they could involve either known primitive
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DEFINE ADT (TYPENAME   IS “complex”,
            BYTESIN    IS 16,
            BYTESOUT   IS 27,
            INPUTFUNC  IS “tointernal”,
            OUTPUTFUNC IS “toexternal”,
            FILENAME   IS “/ja/guest/fogg/complex”)

DEFINE ADTOP (OPNAME   IS “Magnitude”,
              FUNCNAME IS “magnitude”,
              FILENAME IS “/ja/guest/fogg/complex”,
              RESULT   IS f8,
              ARG      IS ADT:complex)

RANGE OF C IS ComplexNums,
RETRIEVE (C.field1)
        WHERE Magnitude C,field1 > Magnitude “3,4”

CREATE ComplexNums (field1 = ADT:complex, field2 = f4

Figure 15.3 ADT-Ingres support for ADTs: Example of adding a data type to handle complex number
data. Source: Ong et al. [1984].

types or (this or other) ADTs in their signatures. Based on lessons from that
work, Mike himself developed a design for indexing on ADT values, and his
paper on that topic [Stonebraker 1986b] eventually earned him a Test-of-
Time award from the IEEE International Conference on Data Engineering.
Again, for the historical record, the following sequence of Quel statements
(see Figure 15.3) taken directly from [Ong et al. 1984] illustrates the nature
of the ADT-Ingres support for ADTs using an example of adding a data type
to handle complex number data.

5. Several Ingres-oriented takes on “AI and databases” or “expert database
systems” (e.g., Stonebraker et al. [1982a], Stonebraker et al. [1983c], and
Stonebraker [1985b]). This came in the form of several rule system designs—
triggers and beyond—that Mike proposed as machinery that could be added
to a relational DBMS for use in adding knowledge in addition to data for
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advanced applications. Mike actually spent quite a few years looking in part
at rules in databases from different angles.

6. A “Mike special” response to the database community’s desire to extend
relational databases to support the storage and retrieval of complex ob-
jects. Instead of extending Ingres in the direction of supporting objects and
identity—“pointer spaghetti!” in Mike’s opinion—he proposed adding a ca-
pability to “simply” add Quel queries to the list of things that one could store
in an attribute of a relation in Ingres [Stonebraker 1984]. To refer to an ob-
ject, one could write a query to fetch it, and could then store that query as a
value of type Quel in an attribute of the referring object. (Scary stuff, in my
view at the time: essentially “query spaghetti!”) Mike also proposed allowing
such queries to be defined but customized per tuple by specifying the Quel
query at the schema level but letting it be parameterized for a given tuple
using values drawn from the tuple’s other attributes. (Better!)

Out of this last phase of “proof-of-concept efforts”—now informed by these
experiences and inspired by their relative successes and failures—rose the Next Big
Project for Mike: namely, Postgres [Stonebraker and Rowe 1986]. As I was living
through the final phase of my thesis work, the “Postgres guys” started to arrive.
Soon thereafter, this time with Mike working with Larry Rowe, another big Berkeley
database system adventure (described in the next chapter!) got under way . . .

Looking back now, I realize that I was incredibly fortunate: An essentially ran-
dom walk led me to Mike’s doorstep and his door was open when I got there. (That’ll
teach you, Mike! Never, ever work with your door open . . . ) The Ingres system was
my educational on ramp to databases, and I got to be at Berkeley at a time when
Mike and others around me were laying many of the foundations that would stand
the test of time and be recognized for their significance now as part of the much-
deserved presentation of the 2014 Turing Award to Mike.

Being in Ingres-land and being advised by Mike at that time has influenced my
own career tremendously. I have since always sought to impart the same message
about the database systems field in my teaching (database systems boring? not!!).
I was also incurably infected with the “systems building bug” (due to double expo-
sure to Mike and later to my Wisconsin colleague and mentor David DeWitt), which
persists to this day.
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Postgres was Michael Stonebraker’s most ambitious project—his grand effort to
build a one-size-fits-all database system. A decade long, it generated more papers,
Ph.Ds., professors, and companies than anything else he did. It also covered more
technical ground than any other single system he built. Despite the risk inherent
in taking on that scope, Postgres also became the most successful software artifact
to come out of Stonebraker’s research groups, and his main contribution to open
source. As of the time of writing, the open-source PostgreSQL system is the most
popular, independent open-source database system in the world, and the fourth
most popular database system in the world. Meanwhile, companies built from a
Postgres base have generated a sum total of over $2.6 billion in acquisitions. By any
measure, Stonebraker’s Postgres vision resulted in enormous and ongoing impact.

Context
Stonebraker had enormous success in his early career with the Ingres research
project at Berkeley (see Chapter 15), and the subsequent startup he founded with
Larry Rowe and Eugene Wong: Relational Technology, Inc. (RTI).

As RTI was developing in the early 1980s, Stonebraker began working on data-
base support for data types beyond the traditional rows and columns of Codd’s
original relational model. A motivating example current at the time was to pro-
vide database support for CAD tools for the microelectronics industry. In a 1983
paper, Stonebraker and students Brad Rubenstein and Antonin Guttman explained
how that industry-needed support for “new data types such as polygons, rectangles,
text strings, etc.,” “efficient spatial searching,” “complex integrity constraints,”
and “design hierarchies and multiple representations” of the same physical con-
structions [Stonebraker 1983a]. Based on motivations such as these, the group
started work on indexing (including Guttman’s influential R-trees for spatial in-
dexing; [Guttman 1984]), and on adding Abstract Data Types (ADTs) to a relational
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database system. ADTs were a popular new programming language construct at
the time, pioneered by subsequent Turing Award winner Barbara Liskov and ex-
plored in database application programming by Stonebraker’s new collaborator,
Larry Rowe. In a paper in SIGMOD Record in 1984 [Ong et al. 1984], Stonebraker
and students James Ong and Dennis Fogg describe an exploration of this idea as
an extension to Ingres called ADT-Ingres, which included many of the representa-
tional ideas that were explored more deeply—and with more system support—in
Postgres.

Postgres: An Overview
As indicated by the name, Postgres was “Post-Ingres”: a system designed to take
what Ingres could do and go beyond. The signature theme of Postgres was the in-
troduction of what he eventually called Object-Relational database features: support
for object-oriented programming ideas within the data model and declarative query
language of a database system. But Stonebraker also decided to pursue a number
of other technical challenges in Postgres that were independent of object-oriented
support, including active database rules, versioned data, tertiary storage, and par-
allelism.

Two papers were written on the design of Postgres: an early design in SIGMOD
1986 [Stonebraker and Rowe 1986] and a “mid-flight” design description in CACM
1991 [Stonebraker and Kemnitz 1991]. The Postgres research project ramped down
in 1992 with the founding of Stonebraker’s Illustra startup, which involved Stone-
braker, key Ph.D. student Wei Hong, and then-chief programmer Jeff Meredith (see
Chapter 25). Below, the features mentioned in the 1986 paper are marked with an
asterisk (*); those from the 1991 paper that were not in the 1986 paper are marked
with a plus sign (+). Other goals listed below were tackled in the system and the
research literature, but not in either design paper:

1. Supporting ADTs in a Database System

(a) Complex Objects (i.e., nested or non-first-normal form data)*

(b) User-Defined Abstract Data Types and Functions*

(c) Extensible Access Methods for New Data Types*

(d) Optimizer Handling of Queries with Expensive User-Defined Func-
tions

2. Active Databases and Rules Systems (Triggers, Alerts)*

(a) Rules implemented as query rewrites+

(b) Rules implemented as record-level triggers+
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3. Log-centric Storage and Recovery

(a) Reduced-complexity recovery code by treating the log as data,* using
non-volatile memory for commit status+

(b) No-overwrite storage and time travel queries+

4. Support for querying data on new deep storage technologies, notably optical
disks*

5. Support for multiprocessors or custom processors*

6. Support for a variety of language models

(a) Minimal changes to the relational model and support for declarative
queries*

(b) Exposure of “fast path” access to internal APIs, bypassing the query
language+

(c) Multi-lingual support+

Many of these topics were addressed in Postgres well before they were studied
or reinvented by others; in many cases, Postgres was too far ahead of its time and
the ideas caught fire later, with a contemporary twist.

We briefly discuss each of these Postgres contributions, and connections to
subsequent work in computing.

Supporting ADTs in a Database System
The signature goal of Postgres was to support new Object-Relational features: the
extension of database technology to support a combination of the benefits of rela-
tional query processing and object-oriented programming. Over time the Object-
Relational ideas pioneered in Postgres have become standard features in most
modern database systems.

A. Complex Objects
It is quite common for data to be represented in the form of nested bundles or
“objects.” A classic example is a purchase order, which has a nested set of products,
quantities, and prices in the order. Relational modeling religion dictated that such
data should be restructured and stored in an unnested format, using multiple
flat entity tables (orders, products) with flat relationship tables (product_in_order)
connecting them. The classic reason for this flattening is that it reduces duplication
of data (a product being described redundantly in many purchase orders), which
in turn avoids complexity or errors in updating all redundant copies. But in some
cases, you want to store the nested representation, because it is natural for the
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application (say, a circuit layout engine in a CAD tool), and updates are rare. This
data modeling debate is at least as old as the relational model.

A key aspect of Postgres was to “have your cake and eat it too” from a data
modeling perspective: Postgres retained tables as its “outermost” data type but
allowed columns to have “complex” types including nested tuples or tables. One
of its more esoteric implementations, first explored in the ADT-Ingres prototype,
was to allow a table-typed column to be specified declaratively as a query definition:
“Quel as a data type” [Stonebraker et al. 1984a].

The “post-relational” theme of supporting both declarative queries and nested
data has recurred over the years—often as an outcome of arguments about which is
better. At the time of Postgres in the 1980s and 1990s, some of the object-oriented
database groups picked up the idea and pursued it to a standard language called
OQL, which has since fallen from use.

Around the turn of the millennium, declarative queries over nested objects be-
came a research obsession for a segment of the database community in the guise
of XML databases; the resulting XQuery language (headed by Don Chamberlin of
SQL fame) owes a debt to the complex object support in Postgres’ PostQuel lan-
guage. XQuery had broad adoption and implementation in industry, but never
caught on with users. The ideas are being revisited yet again today in query lan-
guage designs for the JSON data model popular in browser-based applications. Like
OQL, these languages are in many cases an afterthought in groups that originally re-
jected declarative queries in favor of developer-centric programming (the “NoSQL”
movement), only to want to add queries back to the systems post hoc. In the mean-
time, as Postgres has grown over the years (and shifted syntax from PostQuel to
versions of SQL that reflect many of these goals), it has incorporated support for
nested data like XML and JSON into a general-purpose DBMS without requiring
any significant rearchitecting. The battle swings back and forth, but the Postgres
approach of extending the relational framework with extensions for nested data has
shown time and again to be a natural end-state for all parties after the arguments
subside.

B. User-defined Abstract Data Types and Functions
In addition to offering nested types, Postgres pioneered the idea of having opaque,
extensible Abstract Data Types (ADTs), which are stored in the database but not
interpreted by the core database system. In principle, this was always part of Codd’s
relational model: integers and strings were traditional, but really any atomic data
types with predicates can be captured in the relational model. The challenge was to
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provide that mathematical flexibility in software. To enable queries that interpret
and manipulate these objects, an application programmer needs to be able to
register User-Defined Functions (UDFs) for these types with the system and be able
to invoke those UDFs in queries. User-Defined Aggregate (UDA) functions are also
desirable to summarize collections of these objects in queries. Postgres was the
pioneering database system supporting these features in a comprehensive way.

Why put this functionality into the DBMS, rather than the applications above?
The classic answer was the significant performance benefit of “pushing code to
data,” rather than “pulling data to code.” Postgres showed that this is quite natural
within a relational framework: It involved modest changes to a relational metadata
catalog, and mechanisms to invoke foreign code, but the query syntax, semantics,
and system architecture all worked out simply and elegantly.

Postgres was a bit ahead of its time in exploring this feature. In particular, the
security implications of uploading unsafe code to a server were not an active con-
cern in the database research community at the time. This became problematic
when the technology started to get noticed in industry. Stonebraker commercial-
ized Postgres in his Illustra startup, which was acquired by Informix in large part
for its ability to support extensible “DataBlades” (extension packages) including
UDFs. Informix’s Postgres-based technology, combined with its strong parallel
database offering, made Informix a significant threat to Oracle. Oracle invested
heavily in negative marketing about the risks of Informix’s ability to run “unpro-
tected” user-defined C code. Some trace the demise of Informix to this campaign,
although Informix’s financial shenanigans (and subsequent federal indictment of
its then-CEO) were certainly more problematic. Now, decades later, all the ma-
jor database vendors support the execution of user-defined functions in one or
more languages, using newer technologies to protect against server crashes or data
corruption.

Meanwhile, the Big Data stacks of the 2000s—including the MapReduce phe-
nomenon that gave Stonebraker and DeWitt such heartburn [DeWitt and Stone-
braker 2008]–are a re-realization of the Postgres idea of user-defined code hosted
in a query framework. MapReduce looks very much like a combination of software
engineering ideas from Postgres combined with parallelism ideas from systems
like Gamma and Teradata, with some minor innovation around mid-query restart
for extreme-scalability workloads. Postgres-based start-ups Greenplum and Aster
showed around 2007 that parallelizing Postgres could result in something much
higher function and practical than MapReduce for most customers, but the mar-
ket still wasn’t ready for any of this technology in 2008. By now, in 2018, nearly every
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Big Data stack primarily serves a workload of parallel SQL with UDFs—very much
like the design Stonebraker and team pioneered in Postgres.

C. Extensible Access Methods for New Data Types
Relational databases evolved around the same time as B-trees in the early 1970s,
and B-trees helped fuel Codd’s dream of “physical data independence”: B-tree in-
dexes provide a level of indirection that adaptively reorganizes physical storage
without requiring applications to change. The main limitation of B-trees and re-
lated structures was that they only support equality lookups and one-dimensional
range queries. What if you have two-dimensional range queries of the kind typical
in mapping and CAD applications? This problem was au courant at the time of Post-
gres, and the R-tree developed by Antonin Guttman in Stonebraker’s group was one
of the most successful new indexes developed to solve this problem in practice. Still,
the invention of an index structure does not solve the end-to-end systems problem
of DBMS support for multi-dimensional range queries. Many questions arise. Can
you add an access method like R-trees to your DBMS easily? Can you teach your
optimizer that said access method will be useful for certain queries? Can you get
concurrency and recovery correct?

This was a very ambitious aspect of the Postgres agenda: a software architecture
problem affecting most of a database engine, from the optimizer to the storage
layer and the logging and recovery system. R-trees became a powerful driver and the
main example of the elegant extensibility of Postgres’ access method layer and its
integration into the query optimizer. Postgres demonstrated—in an opaque ADT
style—how to register an abstractly described access method (the R-tree, in this
case), and how a query optimizer could recognize an abstract selection predicate
(a range selection in this case) and match it to that abstractly described access
method. Questions of concurrency control were less of a focus in the original
effort: The lack of a unidimensional ordering on keys made B-tree-style locking
inapplicable.1

PostgreSQL today leverages both the original software architecture of extensible
access methods (it has B-tree, GiST, SP-GiST, and Gin indexes) and the extensibility
and high concurrency of the Generalized Search Tree (GiST) interface as well.

1. The Postgres challenge of extensible access methods inspired one of my first research projects
at the end of graduate school: the Generalized Search Trees (GiST) [Hellerstein et al. 1995] and
subsequent notion of Indexability theory [Hellerstein et al. 2002]. I implemented GiST in Postgres
during a postdoc semester, which made it even easier to add new indexing logic in Postgres. Marcel
Kornacker’s thesis at Berkeley solved the difficult concurrency and recovery problems raised by
extensible indexing in GiST in a templated way [Kornacker et al. 1997].
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GiST indexes power the popular PostgreSQL-based PostGIS geographic information
system; Gin indexes power PostgreSQL’s internal text indexing support.

D. Optimizer Handling of Queries with Expensive UDFs
In traditional query optimization, the challenge was generally to minimize the
amount of tuple-flow (and hence I/O) you generate in processing a query. This
meant that operators that filter tuples (selections) are good to do early in the query
plan, while operators that can generate new tuples (join) should be done later. As
a result, query optimizers would “push” selections below joins and order them
arbitrarily, focusing instead on cleverly optimizing joins and disk accesses. UDFs
changed this: if you have expensive UDFs in your selections, the order of executing
UDFs can be critical to optimizing performance. Moreover, if a UDF in a selection is
really time consuming, it’s possible that it should happen after joins (i.e., selection
“pullup”). Doing this optimally complicated the optimizer space.

I took on this problem as my first challenge in graduate school and it ended
up being the subject of both my M.S. with Stonebraker at Berkeley and my Ph.D.
at Wisconsin under Jeff Naughton, with ongoing input from Stonebraker. Postgres
was the first DBMS to capture the costs and selectivities of UDFs in the database
catalog. We approached the optimization problem by coming up with an optimal
ordering of selections, and then an optimal interleaving of the selections along
the branches of each join tree considered during plan search. This allowed for
an optimizer that maintained the textbook dynamic programming architecture
of System R, with a small additional sorting cost to get the expensive selections
ordered properly.2

The expensive function optimization feature was disabled in the PostgreSQL
source trees early on, in large part because there weren’t compelling use cases at
that time for expensive user-defined functions.3 The examples we used revolved
around image processing and are finally becoming mainstream data processing
tasks in 2018. Of course, today in the era of Big Data and machine learning work-
loads, expensive functions have become quite common, and I expect this problem
to return to the fore. Once again, Postgres was well ahead of its time.

2. When I started grad school, this was one of three topics that Stonebraker wrote on the board
in his office as options for me to think about for a Ph.D. topic. I think the second was function
indexing, but I cannot remember the third.

3. Ironically, my code from grad school was fully deleted from the PostgreSQL source tree by a
young open-source hacker named Neil Conway, who some years later started a Ph.D. with me at
UC Berkeley and is now one of Stonebraker’s Ph.D. grandchildren.
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Active Databases and Rule Systems
The Postgres project began at the tail end of the AI community’s interest in rule-
based programming as a way to represent knowledge in “expert systems.” That line
of thinking was not successful; many say it led to the much discussed “AI winter”
that persisted through the 1990s.

However, rule programming persisted in the database community in two forms.
The first was theoretical work around declarative logic programming using Data-
log. This was a bugbear of Stonebraker’s; he really seemed to hate the topic and
famously criticized it in multiple “community” reports over the years.4 The second
database rules agenda was pragmatic work on what was eventually dubbed Active
Databases and Database Triggers, which evolved to be a standard feature of rela-
tional databases. Stonebraker characteristically voted with his feet to work on the
more pragmatic variant.

Stonebraker’s work on database rules began with Eric Hanson’s Ph.D., which
initially targeted Ingres but quickly transitioned to the new Postgres project. It
expanded to the Ph.D. work of Spyros Potamianos on PRS2: Postgres Rules System 2.
A theme in both implementations was the potential to implement rules in two
different ways. One option was to treat rules as query rewrites, reminiscent of the
work on rewriting views that Stonebraker pioneered in Ingres. In this scenario, a
rule logic of “on condition then action” is recast as “on query then rewrite to a
modified query and execute it instead.” For example, a query like “append a new
row to Mike’s list of awards” might be rewritten as “raise Mike’s salary by 10%.”
The other option was to implement a more physical “on condition then action,”
checking conditions at a row level by using locks inside the database. When such
locks were encountered, the result was not to wait (as in traditional concurrency
control), but to execute the associated action.5

4. Datalog survived as a mathematical foundation for declarative languages and has found applica-
tion over time in multiple areas of computing including software-defined networks and compilers.
Datalog is declarative querying “on steroids” as a fully expressive programming model. I was even-
tually drawn into it as a natural design choice and have pursued it in a variety of applied settings
outside of traditional database systems.

5. The code for row-level rules in PRS2 was notoriously tricky. A bit of searching in the Berke-
ley Postgres archives unearthed the following source code comment—probably from Spyros
Potamianos—in Postgres version 3.1, circa 1991:
* DESCRIPTION:

* Take a deeeeeeep breath & read. If you can avoid hacking the code

* below (i.e. if you have not been ‘‘volunteered’’ by the boss to do this

* dirty job) avoid it at all costs. Try to do something less dangerous

* for your (mental) health. Go home and watch horror movies on~TV.
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In the end, neither the query rewriting scheme nor the row-level locking scheme
was declared a “winner” for implementing rules in Postgres—both were kept in
the released system. Eventually all of the rules code was scrapped and rewritten in
PostgreSQL, but the current source still retains both the notions of per-statement
and per-row triggers.

The Postgres rules systems were very influential in their day and went “head
to head” with research from IBM’s Starburst project and MCC’s HiPac project.
Today, “triggers” are part of the SQL standard and implemented in many of the
major database engines. They are used somewhat sparingly, however. One problem
is that this body of work never overcame the issues that led to AI winter: The
interactions within a pile of rules can become untenably confusing as the rule set
grows even modestly. In addition, triggers still tend to be relatively time consuming
in practice, so database installations that have to run fast tend to avoid the use of
triggers. But there has been a cottage industry in related areas like materialized
view maintenance, Complex Event Processing, and stream queries, all of which are
in some way extensions of ideas explored in the Postgres rules systems.

Log-centric Storage and Recovery
Stonebraker described his design for the Postgres storage system this way:

“When considering the POSTGRES storage system, we were guided by a mission-
ary zeal to do something different. All current commercial systems use a storage
manager with a write-ahead log (WAL), and we felt that this technology was well
understood. Moreover, the original Ingres prototype from the 1970s used a sim-
ilar storage manager, and we had no desire to do another implementation.”
[Stonebraker and Kemnitz 1991]

While this is cast as pure intellectual restlessness, there were technical motiva-
tions for the work as well. Over the years, Stonebraker repeatedly expressed distaste
for the complex write-ahead logging schemes pioneered at IBM and Tandem for
database recovery. One of his core objections was based on a software engineering
intuition that nobody should rely upon something that complicated—especially for
functionality that would only be exercised in rare, critical scenarios after a crash.

* Read some Lovecraft. Join the Army. Go and spend a few nights in

* people’s park. Commit suicide ...

* Hm, you keep reading, eh? Oh, well, then you deserve what you~get.

* Welcome to the gloomy labyrinth of the tuple level rule system, my

* poor hacker...
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The Postgres storage engine unified the notion of primary storage and his-
torical logging into a single, simple disk-based representation. At base, the idea
was to keep each record in the database in a linked list of versions stamped with
transaction IDs—in some sense, this is “the log as data” or “the data as a log,”
depending on your point of view. The only additional metadata required is a list of
committed transaction IDs and wall-clock times. This approach simplifies recov-
ery enormously since there’s no “translating” from a log representation back to a
primary representation. It also enables “time travel” queries: You can run queries
“as of” some wall-clock time and access the versions of the data that were commit-
ted at that time. The original design of the Postgres storage system—which reads
very much as if Stonebraker wrote it in one creative session of brainstorming—
contemplated a number of efficiency problems and optimizations to this basic
scheme, along with some wet-finger analyses of how performance might play
out [Stonebraker 1987]. The resulting implementation in Postgres was somewhat
simpler.

Stonebraker’s idea of “radical simplicity” for transactional storage was deeply
countercultural at the time when the database vendors were differentiating them-
selves by investing heavily in the machinery of high-performance transaction pro-
cessing. Benchmark winners at the time achieved high performance and recover-
ability via highly optimized, complex write-ahead logging systems. Once they had
write-ahead logs working well, the vendors also began to innovate on follow-on
ideas such as transactional replication based on log shipping, which would be
difficult in the Postgres scheme. In the end, the Postgres storage system never ex-
celled on performance; versioning and time travel were removed from PostgreSQL
over time and replaced by write-ahead logging.6 But the time-travel functionality
was interesting and remained unique. Moreover, Stonebraker’s ethos regarding

6. Unfortunately, PostgreSQL still isn’t particularly fast for transaction processing: Its embrace
of write-ahead logging is somewhat half-hearted. Oddly, the PostgreSQL team kept much of the
storage overhead of Postgres tuples to provide multiversion concurrency control, something that
was never a goal of the Berkeley Postgres project. The result is a storage system that can emulate
Oracle’s snapshot isolation with a fair bit of extra I/O overhead, but one that does not support
Stonebraker’s original idea of time travel or simple recovery.

Mike Olson notes that his original intention was to replace the Postgres B-tree implementation
with his own B-tree implementation from the BerkeleyDB project, which developed at Berkeley
during the Postgres era. But Olson never found the time. When Berkeley DB got transactional
support years later at Sleepycat Corp., Olson tried to persuade the (then-) PostgreSQL community
to adopt it for recovery, in place of no-overwrite. They declined; there was a hacker on the project
who desperately wanted to build an multi-version currency control system, and as that hacker was
willing to do the work, he won the argument.
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simple software engineering for recovery has echoes today both in the context of
NoSQL systems (which choose replication rather than write-ahead logging) and
main-memory databases (which often use multi-versioning and compressed com-
mit logs). The idea of versioned relational databases and time-travel queries are
still relegated to esoterica today, popping up in occasional research prototypes and
minor open-source projects. It is an idea that is ripe for a comeback in our era of
cheap storage and continuously streaming data.

Queries over New Deep Storage Technologies
In the middle of the Postgres project, Stonebraker signed on as a co-principal
investigator on a large grant for digital earth science called Project Sequoia. Part of
the grant proposal was to handle unprecedented volumes of digital satellite imagery
requiring up to 100 terabytes of storage, far more data than could be reasonably
stored on magnetic disks at the time. The center of the proposed solution was
to explore the idea of a DBMS (namely Postgres) facilitating access to near-line
“tertiary” storage provided by robotic “jukeboxes” for managing libraries of optical
disks or tapes.

A couple different research efforts came out of this. One was the Inversion file
system: an effort to provide a UNIX filesystem abstraction above an RDBMS. In an
overview paper for Sequoia, Stonebraker described this in his usual cavalier style as
“a straightforward exercise” [Stonebraker 1995]. In practice, this kept Stonebraker
student (and subsequent Cloudera founder) Mike Olson busy for a couple years,
and the final result was not exactly straightforward [Olson 1993], nor did it survive
in practice.7

The other main research thrust on this front was the incorporation of tertiary
storage into a more typical relational database stack, which was the subject of
Sunita Sarawagi’s Ph.D. thesis. The main theme was to change the scale at which
you think about managing space (i.e., data in storage and the memory hierarchy)
and time (coordinating query and cache scheduling to minimize undesirable I/Os).
One of the key issues in that work was to store and retrieve large multidimensional

Although the PostgreSQL storage engine is slow, that is not intrinsic to the system. The Greenplum
fork of PostgreSQL integrated an interesting alternative high-performance compressed storage
engine. It was designed by Matt McCline—a veteran of Jim Gray’s team at Tandem. It also did not
support time travel.

7. Some years after Inversion, Bill Gates tilted against this same windmill with WinFS, an effort to
rebuild the most widely used filesystem in the world over a relational database backend. WinFS
was delivered in developer releases of Windows but never made it to market. Gates later called
this his greatest disappointment at Microsoft.
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arrays in tertiary storage—echoing work in multidimensional indexing, the basic
ideas included breaking up the array into chunks and storing chunks together that
are fetched together—including replicating chunks to enable multiple physical
“neighbors” for a given chunk of data. A second issue was to think about how disk
becomes a cache for tertiary storage. Finally, query optimization and scheduling
had to take into account the long load times of tertiary storage and the importance
of “hits” in the disk cache—this affects both the plan chosen by a query optimizer,
and the time at which that plan is scheduled for execution.

Tape and optical disk robots are not widely used at present. But the issues of
tertiary storage are very prevalent in the cloud, which has deep storage hierarchies
in 2018: from attached solid-state disks to reliable disk-like storage services (e.g.,
AWS EBS) to archival storage (e.g., AWS S3) to deep storage (e.g., AWS Glacier). It
is still the case today that these storage tiers are relatively detached, and there is
little database support for reasoning about storage across these tiers. I would not
be surprised if the issues explored on this front in Postgres are revisited in the
near term.

Support for Multiprocessors: XPRS
Stonebraker never architected a large parallel database system, but he led many
of the motivating discussions in the field. His “Case for Shared Nothing” paper
[Stonebraker 1986d] documented the coarse-grained architectural choices in the
area; it popularized the terminology used by the industry and threw support be-
hind shared-nothing architectures like those of Gamma and Teradata, which were
rediscovered by the Big Data crowd in the 2000s.

Ironically, Stonebraker’s most substantive contribution to the area of parallel
databases was a “shared memory” architecture called XPRS, which stood for eX-
tended Postgres on RAID and Sprite. XPRS was the “Justice League” of Berkeley
systems in the early 1990s: a brief combination of Stonebraker’s Postgres system,
John Ousterhout’s Sprite distributed OS, and Dave Patterson’s and Randy Katz’s
RAID storage architectures. Like many multi-faculty efforts, the execution of XPRS
was actually determined by the grad students who worked on it. The primary con-
tributor ended up being Wei Hong, who wrote his Ph.D. thesis on parallel query
optimization in XPRS. Hence, the main contribution of XPRS to the literature and
industry was parallel query optimization, with no real consideration of issues in-
volving RAID or Sprite.8

8. Of the three projects, Postgres and RAID both had enormous impact. Sprite is best remembered
for Mendel Rosenblum’s Ph.D. thesis on Log Structured File Systems (LFS), which had nothing of
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In principle, parallelism “blows up” the plan space for a query optimizer by
making it multiply the traditional choices made during query optimization (data
access, join algorithms, join orders) against all possible ways of parallelizing each
choice. The basic idea of what Stonebraker called “The Wei Hong Optimizer” was to
cut the problem in two: Run a traditional single-node query optimizer in the style of
System R, and then “parallelize” the resulting single-node query plan by scheduling
the degree of parallelism and placement of each operator based on data layouts
and system configuration. This approach is heuristic, but it makes parallelism an
additive cost to traditional query optimization, rather than a multiplicative cost.

Although “The Wei Hong Optimizer” was designed in the context of Postgres,
it became the standard approach for many of the parallel query optimizers in
industry.

Support for a Variety of Language Models
One of Stonebraker’s recurring interests since the days of Ingres was the program-
mer API to a database system. In his Readings in Database Systems series, he fre-
quently included work like Carlo Zaniolo’s GEM language as important topics for
database system aficionados to understand. This interest in language undoubtedly
led him to partner up with Larry Rowe on Postgres, which in turn deeply influ-
enced the design of the Postgres data model and its Object-Relational approach.
Their work focused largely on data-centric applications they saw in the commer-
cial realm, including both business processing and emerging applications like
CAD/CAM computer-aided design (and manufacturing) and Geographic Informa-
tion System (GIS).

One issue that was forced upon Stonebraker at the time was the idea of “hiding”
the boundary between programming language constructs and database storage.
Various competing research projects and companies exploring Object-Oriented
Databases (OODBs) were targeting the so-called “impedance mismatch” between
imperative object-oriented programming languages like Smalltalk, C++, and Java,
and the declarative relational model. The OODB idea was to make programming
language objects be optionally marked “persistent,” and handled automatically by

note to do with distributed operating systems. All three projects involved new ideas for disk storage
beyond mutating single copies in place. LFS and the Postgres storage manager are rather similar,
both rethinking logs as primary storage, and requiring expensive background reorganization. I
once gently probed Stonebraker about rivalries or academic scoops between LFS and Postgres,
but I never got any good stories out of him. Maybe it was something in the water in Berkeley at
the time.



218 Chapter 16 Looking Back at Postgres

an embedded DBMS. Postgres supported storing nested objects and ADTs, but its
relational-style declarative query interface meant that each round trip to the data-
base was unnatural for the programmer (requiring a shift to declarative queries) and
expensive to execute (requiring query parsing and optimization). To compete with
the OODB vendors, Postgres exposed a so-called “Fast Path” interface: basically, a
C/C++ API to the storage internals of the database. This enabled Postgres to be mod-
erately performant in academic OODB benchmarks, but never really addressed the
challenge of allowing programmers in multiple languages to avoid the impedance
mismatch problem. Instead, Stonebraker branded the Postgres model as “Object-
Relational” and simply sidestepped the OODB workloads as a “zero-billion-dollar”
market. Today, essentially all commercial relational database systems are “Object-
Relational” database systems.

This proved to be a sensible decision. Today, none of the OODB products exist
in their envisioned form, and the idea of “persistent objects” in programming lan-
guages has largely been discarded. By contrast, there is widespread usage of object-
relational mapping layers (fueled by early efforts like Java Hibernate and Ruby on
Rails) that allow declarative databases to be tucked under nearly any imperative
object-oriented programming language as a library, in a relatively seamless way.
This application-level approach is different than both OODBs and Stonebraker’s
definition of Object-Relational DBs. In addition, lightweight persistent key-value
stores have succeeded as well, in both non-transactional and transactional forms.
These were pioneered by Stonebraker’s Ph.D. student Margo Seltzer, who wrote
BerkeleyDB as part of her Ph.D. thesis at the same time as the Postgres group, which
presaged the rise of distributed “NoSQL” key-value stores like Dynamo, MongoDB,
and Cassandra.

Software Impact

Open Source
Postgres was always an open-source project with steady releases, but in its first
many years it was targeted at usage in research, not in production.

As the Postgres research project was winding down, two students in Stone-
braker’s group—Andrew Yu and Jolly Chen—modified the system’s parser to accept
an extensible variant of SQL rather than the original PostQuel language. The first
Postgres release supporting SQL was Postgres95; the next was dubbed PostgreSQL.

A set of open-source developers became interested in PostgreSQL and “adopted”
it even as the rest of the Berkeley team was moving on to other interests. Over
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time, the core developers for PostgreSQL have remained fairly stable, and the open-
source project has matured enormously. Early efforts focused on code stability and
user-facing features, but over time the open-source community made significant
modifications and improvements to the core of the system as well, from the opti-
mizer to the access methods and the core transaction and storage system. Since the
mid-1990s, very few of the PostgreSQL internals came out of the academic group
at Berkeley—the last contribution may have been my GiST implementation in the
latter half of the 1990s—but even that was rewritten and cleaned up substantially
by open-source volunteers (from Russia, in that case). The open source community
around PostgreSQL deserves enormous credit for running a disciplined process
that has soldiered on over decades to produce a remarkably high-impact and long-
running project.

While many things have changed in 25 years, the basic architecture of Post-
greSQL remains quite similar to the university releases of Postgres in the early
1990s, and developers familiar with the current PostgreSQL source code would have
little trouble wandering through the Postgres3.1 source code (c. 1991). Everything
from source code directory structures to process structures to data structures re-
main remarkably similar. The code from the Berkeley Postgres team had excellent
bones.

PostgreSQL today is without question the most high-function open-source
DBMS, supporting features that are often missing from commercial products. It
is also (according to one influential rankings site) the most popular widely used
independent open-source database in the world9 and its impact continues to grow:
In 2017 it was the fastest-growing database system in the world in popularity.10

PostgreSQL is used across a wide variety of industries and applications, which is
perhaps not surprising given its ambition of broad functionality; the PostgreSQL
website catalogs some of the uses at http://www.postgresql.org/about/users/. (Last
accessed January 22, 2018.)

Heroku is a cloud SaaS provider that is now part of Salesforce. Postgres was
adopted by Heroku in 2010 as the default database for its platform. Heroku chose

9. According to DB Engines (http://db-engines.com/en/ranking. Last accessed January 22, 2018),
PostgreSQL today is the fourth most popular DBMS in the world, after Oracle, MySQL and MS SQL
Server, all of which are corporate offerings (MySQL was acquired by Oracle many years ago). See
http://db-engines.com/en/ranking_definition (Last accessed January 22, 2018) for a discussion of
the rules for this ranking.

10. “PostgreSQL is the DBMS of the Year 2017,” DB Engines blog, January 2, 2018. http://db-engines
.com/en/blog_post/76. Last accessed January 18, 2018.

http://www.postgresql.org/about/users/
http://db-engines.com/en/ranking
http://db-engines.com/en/ranking_definition
http://db-engines.com/en/blog_post/76
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Postgres because of its operational reliability. With Heroku’s support, more major
application frameworks such as Ruby on Rails and Python for Django began to
recommend Postgres as their default database.

PostgreSQL today supports an extension framework that makes it easy to add
additional functionality to the system via UDFs and related modifications. There
is now an ecosystem of PostgreSQL extensions—akin to the Illustra vision of Data-
Blades, but in open source. Some of the more interesting extensions include the
Apache MADlib library for machine learning in SQL, and the Citus library for
parallel query execution.

One of the most interesting open-source applications built over Postgres is the
PostGIS Geographic Information System, which takes advantage of many of the
features in Postgres that originally inspired Stonebraker to start the project.

Commercial Adaptations
PostgreSQL has long been an attractive starting point for building commercial
database systems, given its permissive ope- source license, its robust codebase, its
flexibility, and breadth of functionality. Summing the acquisition prices listed be-
low, Postgres has led to over $2.6 billion in acquisitions.11 Many of the commercial
efforts that built on PostgreSQL have addressed what is probably its key limitation:
the ability to scale out to a parallel, shared-nothing architecture.12

1. Illustra was Stonebraker’s second major start-up company, founded in 1992,
seeking to commercialize Postgres as RTI had commercialized Ingres.13 The

11. Note that this is a measure in real transaction dollars and is much more substantial than
the values often thrown around in high tech. Numbers in the billions are often used to describe
estimated value of stock holdings but are often inflated by 10× or more against contemporary
value in hopes of future value. The transaction dollars of an acquisition measure the actual market
value of the company at the time of acquisition. It is fair to say that Postgres has generated more
than $2.6 billion of real commercial value.

12. Parallelizing PostgreSQL requires a fair bit of work, but is eminently doable by a small,
experienced team. Today, industry-managed open-source forks of PostgreSQL such as Greenplum
and CitusDB offer this functionality. It is a shame that PostgreSQL wasn’t parallelized in a true
open-source way much earlier. If PostgreSQL had been extended with shared-nothing features in
open source in the early 2000s, it is quite possible that the open-source Big Data movement would
have evolved quite differently and more effectively.

13. Illustra was actually the third name proposed for the company. Following the painterly theme
established by Ingres, Illustra was originally called Miró. For trademark reasons the name was
changed to Montage, but that also ran into trademark problems.
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founding team included some of the core Postgres team including recent
Ph.D. alumnus Wei Hong and then-chief programmer Jeff Meredith, along
with Ingres alumni Paula Hawthorn and Michael Ubell. Postgres M.S. student
Mike Olson joined shortly after the founding, and I worked on the Illustra
handling of optimizing expensive functions as part of my Ph.D. work. There
were three main efforts in Illustra: to extend SQL92 to support user-defined
types and functions as in PostQuel, to make the Postgres code base robust
enough for commercial use, and to foster the market for extensible database
servers via examples of “DataBlades,” domain-specific plug-in components
of data types and functions (see Chapter 25). Illustra was acquired by In-
formix in 1997 for an estimated $400M,14 and its DataBlade architecture was
integrated into a more mature Informix query processing codebase as In-
formix Universal Server.

2. Netezza was a startup founded in 1999, which forked the PostgreSQL code-
base to build a high-performance parallel query processing engine on cus-
tom field-programmable-gate-array-based hardware. Netezza was quite suc-
cessful as an independent company and had its IPO in 2007. It was eventually
acquired by IBM, with a value of $1.7B.15

3. Greenplum was the first effort to offer a shared-nothing parallel, scale-out
version of PostgreSQL. Founded in 2003, Greenplum forked from the pub-
lic PostgreSQL distribution, but maintained the APIs of PostgreSQL to a
large degree, including the APIs for user-defined functions. In addition to
parallelization, Greenplum extended PostgreSQL with an alternative high-
performance compressed columnar storage engine and a parallelized rule-
driven query optimizer called Orca. Greenplum was acquired by EMC in 2010
for an estimated $300M; in 2012, EMC consolidated Greenplum into its sub-
sidiary, Pivotal. In 2015, Pivotal chose to release Greenplum and Orca back
into open source. One of the efforts at Greenplum that leveraged its Post-
gres API was the MADlib library for machine learning in SQL; MADlib runs
single-threaded in PostgreSQL and in parallel over Greenplum. MADlib lives
on today as an Apache project. Another interesting open-source project based

14. “Informix acquires Illustra for complex data management,” Federal Computer Week, January
7, 1996. http://fcw.com/Articles/1996/01/07/Informix-acquires-Illustra-for-complex-data-manage
ment.aspx. Last accessed January 22, 2018.

15. http://en.wikipedia.org/wiki/Netezza. Last accessed January 22, 2018.

http://fcw.com/Articles/1996/01/07/Informix-acquires-Illustra-for-complex-data-management.aspx
http://fcw.com/Articles/1996/01/07/Informix-acquires-Illustra-for-complex-data-management.aspx
http://en.wikipedia.org/wiki/Netezza
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on Greenplum is Apache HAWQ, a Pivotal design that runs the “top half” of
Greenplum (i.e., the parallelized PostgreSQL query processor and extensibil-
ity APIs) in a decoupled fashion over Big Data stores such as the Hadoop File
System.

4. EnterpriseDB was founded in 2004 as an open-source-based business, sell-
ing PostgreSQL in both a vanilla and enhanced edition with related services
for enterprise customers. A key feature of the enhanced EnterpriseDB Ad-
vanced Server is a set of database compatibility features with Oracle to allow
application migration off of Oracle.

5. Aster Data was founded in 2005 by two Stanford students to build a parallel
engine for analytics. Its core single-node engine was based on PostgreSQL.
Aster focused on queries for graphs and on analytics packages based on
UDFs that could be programmed with either SQL or MapReduce interfaces.
Aster Data was acquired by Teradata in 2011 for $263M.16 While Teradata
never integrated Aster into its core parallel database engine, it still maintains
Aster as a standalone product for use cases outside the core of Teradata’s
warehousing market.

6. ParAccel was founded in 2006, selling a shared-nothing parallel version
of PostgreSQL with column-oriented, shared-nothing storage. ParAccel en-
hanced the Postgres optimizer with new heuristics for queries with many
joins. In 2011, Amazon invested in ParAccel, and in 2012 announced AWS
Redshift, a hosted data warehouse as a service in the public cloud based on
ParAccel technology. In 2013, ParAccel was acquired by Actian (which also
had acquired Ingres) for an undisclosed amount—meaning it was not a ma-
terial expense for Actian. Meanwhile, AWS Redshift has been an enormous
success for Amazon—for many years it was the fastest-growing service on
AWS, and many believe it is poised to put long-time data warehousing prod-
ucts like Teradata and Oracle Exadata out of business. In this sense, Postgres
may achieve its ultimate dominance in the cloud.

7. CitusDB was founded in 2010 to offer a shared-nothing parallel implemen-
tation of PostgreSQL. While it started as a fork of PostgreSQL, as of 2016
CitusDB is implemented via public PostgreSQL extension APIs and can be

16. “Big Pay Day For Big Data. Teradata Buys Aster Data For $263 Million,” TechCrunch, May 3, 2011.
(http://techcrunch.com/2011/03/03/teradata-buys-aster-data-263-million/. Last accessed January
22, 2018.

http://techcrunch.com/2011/03/03/teradata-buys-aster-data-263-million/
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installed into a vanilla PostgreSQL installation. Also, as of 2016, the CitusDB
extensions are available in open source.

Lessons
You can draw a host of lessons from the success of Postgres, a number of them
defiant of conventional wisdom.

The highest-order lesson I draw comes from the fact that Postgres defied Fred
Brooks’ “Second System Effect.” Brooks argued that designers often follow up on a
successful first system with a second system that fails due to being overburdened
with features and ideas. Postgres was Stonebraker’s second system, and it was
certainly chock full of features and ideas. Yet the system succeeded in prototyping
many of the ideas while delivering a software infrastructure that carried a number
of the ideas to a successful conclusion. This was not an accident—at base, Postgres
was designed for extensibility, and that design was sound. With extensibility as an
architectural core, it is possible to be creative and stop worrying so much about
discipline: You can try many extensions and let the strong succeed. Done well, the
“second system” is not doomed; it benefits from the confidence, pet projects, and
ambitions developed during the first system. This is an early architectural lesson
from the more “server-oriented” database school of software engineering, which
defies conventional wisdom from the “component oriented” operating systems
school of software engineering.

Another lesson is that a broad focus—“one size fits many”—can be a winning
approach for both research and practice. To coin some names, “MIT Stonebraker”
made a lot of noise in the database world in the early 2000s that “one size doesn’t
fit all.” Under this banner he launched a flotilla of influential projects and startups,
but none took on the scope of Postgres. It seems that “Berkeley Stonebraker” defies
the later wisdom of “MIT Stonebraker,” and I have no issue with that.17 Of course
there’s wisdom in the “one size doesn’t fit all” motto (it’s always possible to find
modest markets for custom designs!), but the success of “Berkeley Stonebraker’s”
signature system—well beyond its original intents—demonstrates that a broad
majority of database problems can be solved well with a good general-purpose ar-
chitecture. Moreover, the design of that architecture is a technical challenge and
accomplishment in its own right. In the end—as in most science and engineer-
ing debates—there isn’t only one good way to do things. Both Stonebrakers have

17. As Emerson said, “a foolish consistency is the hobgoblin of little minds.”
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lessons to teach us. But at the base, I’m still a fan of the broader agenda that “Berke-
ley Stonebraker” embraced.

A final lesson I take from Postgres is the unpredictable potential that can come
from open-sourcing your research. In his Turing talk, Stonebraker speaks about the
“serendipity” of PostgreSQL succeeding in open source, largely via people outside
Stonebraker’s own sphere. It’s a wonderfully modest quote:

[A] pick-up team of volunteers, none of whom have anything to do with me or
Berkeley, have been shepherding that open-source system ever since 1995. The
system that you get off the web for Postgres comes from this pick-up team. It is
open source at its best and I want to just mention that I have nothing to do with
that and that collection of folks we all owe a huge debt of gratitude to.18

I’m sure all of us who have written open source would love for that kind of
“serendipity” to come our way. But it’s not all serendipity—the roots of that good
luck were undoubtedly in the ambition, breadth, and vision that Stonebraker had
for the project, and the team he mentored to build the Postgres prototype. If there’s
a lesson there, it might be to “do something important and set it free.” It seems to
me (to use a Stonebrakerism) that you can’t skip either part of that lesson.
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18. Transcript by Jolly Chen, http://www.postgresql.org/message-id/A4BA155B-E762-4022-B7D1-
6F4791014851@chenfamily.com. Last accessed January 22, 2018.
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Origins of the Aurora and Borealis Projects
In the early 2000s, sensors and sensor networks became an important focus in the
systems, networking, and database communities. The decreasing cost of hardware
was creating a technology push, while the excitement about pervasive computing,
exemplified by projects such as MIT’s “Project Oxygen,”1 was in part responsible
for an application pull. In most areas, dramatic improvements in software were
needed to support emerging applications built on top of sensor networks, and this
need was stimulating research in all these three fields.

In the database community, as many observed, traditional database manage-
ment systems (DBMSs) were ill-suited for supporting this new type of stream-
processing application. Traditional DBMSs were designed for business data, which
is stored on disk and modified by transaction-processing applications. In the new
stream processing world, however, data sources such as sensors or network mon-
itors were instead pushing data to the database. Applications2 that needed to
process data streams wanted to receive alerts when interesting events occurred.
This switch from active users querying a passive database to passive users receiv-
ing alerts from an active database [Abadi et al. 2003a] was a fundamental paradigm

1. http://oxygen.csail.mit.edu. Last accessed May 16, 2018.

2. “It’s largely forgotten now but RFID (radio frequency identification) tagging was then a huge
area of investment. Walmart and the USAF had purchased a lot of RFID hardware and software
to manage their supply chains in real time, initially at the palette level and planned eventually
at the item level. Those streams of RFID telemetry data cried out for a good application devel-
opment platform like StreamBase’s.—John Partridge, StreamBase Co-Founder and VP Business
Development

http://oxygen.csail.mit.edu. Last accessed May 16
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shift in the database community. The other paradigm shift was that data no longer
resided on disk but was being continuously pushed by applications at high, and
often variable, rates.

At the time when the above technology and application changes were occurring,
Mike Stonebraker was moving from the West Coast to the East Coast. He left
Berkeley in 2000 and joined MIT in 2001. At that time, MIT had no database faculty
and Mike found himself collaborating with systems and networking groups. Some
of the closest database groups were at Brown University and Brandeis University,
and Mike would go on to create a successful and long-term collaboration across
the three institutions. The collaboration would span multiple research trends and
projects (starting with stream processing and the Aurora and Borealis projects)
and, following Mike’s model (see Chapter 7), would generate several purpose-built
DBMS-engine startup companies (starting with StreamBase Systems).

Mike and his team, together with others in the database community, identified
the following key limitations of traditional DBMSs with regard to stream processing
applications.

. Insufficient data ingest rates: When data streams from multiple sources con-
tinuously, traditional DBMSs struggle to write the data to disk before making
it available for processing.

. Disk orientation: In traditional DBMSs, data is stored on disk and only cached
in memory as a result of query activity. Stream processing applications need
to process data fast. They need the data to stay in memory as it arrives and
be directly processed by applications.

. Scalability and performance limitations of triggers: It is possible to create alerts
in a classical relational DBMS by using what is called a trigger. Triggers
monitor tables and take actions in response to events that make changes
to these tables. Triggers, however, were added to DBMSs as an after thought
and were never designed to scale to the needs of streaming applications.

. Difficulty of accessing past data: Unlike relational queries, which focus on
the current state of the database, stream processing queries are time-series-
focused. They need to easily access past data, and at least a window of
recent data.

. Missing language constructs: To support streaming applications, SQL must be
extended with language constructs such as different types of window-based
operations (windowed-aggregation and windowed-joins).
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. Precise query answers: In traditional business applications, queries process
data stored on disk and return precise answers. In a stream processing
world, input data can get delayed, dropped, or reordered. Stream processing
engines must capture these inaccuracies with clear language constructs and
semantics. They need a way to ensure computation progress in the face of
delayed data, clear semantics in the case of reordered data, and a way to
handle data arriving after the corresponding windows of computation have
closed.

. Near real-time requirements: Finally, stream processing applications require
near real-time query results. In particular, queries that generate alerts based
on data in streams cannot fall arbitrarily behind even when load conditions
vary or data sources generate data at different rates.

These requirements3—which were initially motivated by military application
scenarios where soldiers, equipment, and missiles are continuously tracked—
formed the foundation of the new class of stream-processing engines that would
emerge in the database community over the coming years.

The Aurora and Borealis Stream-Processing Systems4

The MIT-Brown-Brandeis researchers were on the “bleeding edge” with their Aurora
and Borealis projects.

Soon after Mike moved from California to New Hampshire, he attended a Na-
tional Science Foundation (NSF) meeting. While there, he gathered other partici-
pants who also were database researchers in New England computer science de-
partments. Mike had an idea to set databases on their ear by moving from the
traditional passive data/active query model to an active data/passive query model
that defined stream processing. As was Mike’s style, he had already had discus-
sions with his many industrial connections and determined their common “pain
points.” The stream processing model he envisioned could soothe many of them,

3. “One insight not listed here is that Aurora offered a workflow-based diagrammatic “language”
that was much better suited to real-time application development than a traditional declarative
language like SQL. Basically, it exposed the query planner that usually is hidden (or mostly hidden)
from application developers and turned it into an expressive and powerful language in its own
right. Developers liked it because it made them more productive—it was the right tool for the job.
It gave them direct control over the processing of each tuple, rather than leaving them to worry
what a capricious query optimizer might decide to do.”—John Partridge

4. See Chapter 26.
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but he needed collaborators and an army of students to build a workable prototype
of the system he had in mind.

Under Mike’s leadership, the three-institution research group embarked on an
ambitious project to build not one but two stream-processing systems. The first sys-
tem, called Aurora [Balakrishnan et al. 2004, Abadi et al. 2003b, Abadi et al. 2003a,
Zdonik et al. 2003, Carney et al. 2002], was a single-node system that focused on
the fundamental aspects of data model, query language, and query execution for
stream processing. The second system, called Borealis [Abadi et al. 2005, Cherniack
et al. 2003, Zdonik et al. 2003], was a distributed system that focused on aspects of
efficient stream processing across local and wide-area networks including distri-
bution, load balance, and fault-tolerance challenges. Borealis was built on top of
the single-node Aurora system.

Both systems were widely successful and released as open-source projects. They
led to many publications on various aspects of streaming from the fundamental
data model and architecture to issues of load shedding, revision processing, high
availability, and fault tolerance, load distribution, and operator scheduling [Tatbul
and Zdonik 2006, Ryvkina et al. 2006, Xing et al. 2005, Abadi et al. 2005, Cherniack
et al. 2003, Tatbul et al. 2007, Hwang et al. 2005, Balakrishnan et al. 2004, Carney
et al. 2003, Abadi et al. 2003b, Tatbul et al. 2003, Abadi et al. 2003a, Zdonik et al.
2003, Carney et al. 2002, Balazinska et al. 2004a, Balazinska et al. 2005]. A large,
five-year, multi-institution NSF grant awarded in 2003 allowed the team to scale
and aggressively pursue such a broad and ambitious research agenda.

Aurora was an innovative and technically deep system. The fundamental data
model remained the relational model with some extensions, namely that relations
were unbounded in terms of size (i.e., continuously growing), pushed by remote
data sources (and thus append-only), and included a timestamp attribute that the
system added to each input tuple in a stream. Queries took the form of boxes and ar-
rows diagrams, where operators were connected by streams into direct acyclic query
execution graphs. The operators themselves were also relational but extended with
windowing constructs to ensure non-blocking processing in the face of unbounded
inputs.

Aurora’s programming model and language was based on boxes-and-arrows.
The boxes were built-in operators (e.g., SELECT, JOIN, MAP), and the arrows were
data flows that would trigger downstream operators. A program was constructed by
literally wiring up a boxes-and-arrows diagram using a GUI. For simple problems,
this was a compelling way to visualize the data-flow logic. For more difficult prob-
lems, the boxes-and-arrows approach became hard to manage. Customers com-
plained that there was no standard. Mike convened a group consisting of Jennifer
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Widom from Stanford, the designer of STREAM [Motwani et al. 2003]; a few engi-
neers from Oracle who had decided to use the stream language in Oracle’s middle-
ware product; and some designers from StreamBase (the product based on Aurora)
to come up with a single textual language that the group could salute. Mike said
that this should be easy since both the boxes-and-arrows language and STREAM
supported features like Windows, and it should just be an exercise in merging the
two. This would solve both problems. Upon further investigation, the committee
decided that the underlying processing model was significantly different, and a
merge would be too complex to be practical. The details are in the Proceedings of
the VLDB Endowment (PVLDB) article [Jain et al 2008].

Interestingly, from its inception, Aurora’s design included constructs to connect
with persistent storage by using what we called connection points. A connection
point could buffer a stream on disk. As such, it could serve as a location where new
queries could be added and could re-process recent data that had accumulated in
the collection point. A connection point could also represent a static relation on
disk and serve to help join that relation with streaming data. The connection point
design, while interesting, was somewhat ahead of its time and for many years, most
focus was purely on processing data streams without connection points. In modern
stream-processing systems, as we discuss below, the ability to persist and reprocess
streams is an important function.5

Aurora included additional innovative features such as constructs and seman-
tics for out-of-order or late data and corrections on streams, and novel methods for
query scheduling, quality of service, load shedding and fault-tolerance [Tatbul and
Zdonik 2006, Tatbul et al. 2007, Tatbul et al. 2003, Balakrishnan et al. 2004, Abadi
et al. 2003b, Abadi et al. 2003a, Carney et al. 2003, Carney et al. 2002].

Following Aurora, the Borealis system tackled the distributed nature and re-
quirements of streaming applications. In Borealis, operators in a query plan could
be distributed across multiple machines in a cluster or even over wide area net-
works, as illustrated in Figure 17.1. Distribution is important for applications where
sources send data at high rates from remote locations, such as network monitor-
ing applications and sensor-based applications, for example. Borealis provided
fundamental abstractions for distributed stream processing and included load

5. “This insight is an example of Mike’s foresight and it was a good thing he thought of it.
Conversations with our early potential customers (trading desks at investment banks and hedge
funds) quickly revealed that they wanted a clean way of integrating their real-time processing
with querying historical data (sometimes years old, sometimes hours or minutes old). Connection
points functionality matured quickly as a result.”—John Partridge
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Figure 17.1 Example of a distributed stream-processing application in Borealis. This application
labels as a potential network intruder any source IP that establishes more than 100
connections and connects over 10 different ports within a 1-min time window. Source:
[Balazinska et al. 2004a]

management [Xing et al. 2005, Balazinska et al. 2004a] and different types of high-
availability and fault-tolerance features [Hwang et al. 2005, Balazinska et al. 2005].

Incredibly, Mike was involved in the design of all system components in both
systems. He seemed to possess infinite amounts of time to read through long de-
sign documents and provide detailed comments. He would attend meetings and
listen to everyone’s ideas and discussions. Importantly, he had infinite patience
to coordinate all Ph.D. students working on the system and ensure regular publi-
cations at SIGMOD and VLDB and highly visible system demonstrations at those
conferences [Ahmad et al. 2005, Abadi et al. 2003a].

By working with Mike, the team learned several important lessons. First, it is
important to examine all problems from either 10,000 or 100,000 feet. Second,
all problems should be captured in a quad chart and the top right corner always
wins, for example, see the Grassy Brook quad chart in Figure 17.2. Third, new
benchmarks shall be crafted in a way that makes the old technology look terrible.
Fourth, database people deeply worry about employees in New York and employees
in Paris and the differences in how their salaries are computed. (While this example
never made it into any paper, it was the first example that Mike would draw on a
board when explaining databases to systems people.) Fifth, stream processing was
the killer technology that can stop people stealing overhead projectors.

Finally—and most importantly—the team learned that one could take graduate
students and faculty from different institutions, with different backgrounds, with-
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Figure 17.2 High-performance stream processing. Spirce: StreamBase (Grassy Brook) Pitch Deck
(2003)

out any history of collaboration, put them in one room, and get them to build a
great system together!

Concurrent Stream-Processing Efforts
At the same time as Mike’s team was building the Aurora and Borealis systems,
other groups were also building stream-processing prototypes. Most prominent
projects included the STREAM [Motwani et al. 2003] processing system from Stan-
ford, the TelegraphCQ [Chandrasekaran et al. 2003] project from Berkeley, Nia-
garaCQ [Chen et al. 2000] from Wisconsin, and the Gigascope [Cranor et al. 2003]
project from AT&T. Other projects were also under development and many pa-
pers started appearing at SIGMOD and VLDB conferences on various aspects of
streaming technologies. There was intense friendly competition, which moved the
research forward quickly.

Overall, the community was focused on fundamental issues behind effectively
processing data streams in database management systems. These issues included
the development of new data models and query languages with constructs for
basic data stream processing but also for processing data revisions and out-of-
order data and to perform time-travel operations on streams. The community also
developed new query optimization techniques including methods to dynamically
change query plans without stopping execution. Finally, several papers contributed
techniques for operator scheduling, quality of service and load shedding, and fault-
tolerant distributed and parallel stream processing.
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Aurora and Borealis were among the leaders in almost all aspects of stream
processing at that time.

Founding StreamBase Systems6

The Aurora academic prototype was demonstrated at SIGMOD 2003 [Abadi et al.
2003a], and we had Aurora/Borealis ball caps made for the team members in
attendance. (They are now collectors’ items.) Not long after that, Mike decided
that it was time to commercialize the system by founding a company with Stan
Zdonik, Hari Balakrishnan, Ugur Cetintemel, Mitch Cherniack, Richard Tibbetts,
Jon Salz, Don Carney, Eddie Galvez, and John Partridge. The initial name for the
company was Grassy Brook, Inc.,7 after Grassy Pond Road, the location of Mike’s
house on Lake Winnipesaukee in New Hampshire. We prepared a slide deck with
the business plan that was to be presented to Boston-area venture capitalists. The
slide deck included a famous Stonebraker Quad chart (see Figure 17.2) that argued
that the StreamBase (then Grassy Brook) sweet spot was high-performance stream
processing—something that no conventional data management platforms could
accommodate and at the time coming into high demand by customers. We got
halfway through the presentation when it was clear that the VCs wanted to invest.
It helped that Mike was a “serial entrepreneur,” and thus a relatively safe bet.

The company’s first office was in Wellesley, Massachusetts, in the space of one
of our investors, Bessemer Venture Partners. Later, Highland Capital, another in-
vestor, gave Grassy Brook some space in their Lexington, Massachusetts, facility
(see Chapter 9). Soon the name was changed to StreamBase, which required buy-
ing the name from a previous owner. Mike and John Partridge developed a pitch
deck for the VCs, and then Mike did most of the work and all of the presenting.
Once they closed on the small initial financing, Mike and John met with potential
early customers, mainly financial services people. When they had enough market
feedback to substantiate their claims about customer demand, they went back to
Bessemer and Highland to get the larger investment.

With fresh funding in hand, we hired a management team including Barry
Morris as CEO, Bobbi Heath to run Engineering, and Bill Hobbib to run Marketing.
Mike served as CTO. The venture capitalists helped enormously in connecting
us with potential customers. We were able to get an audience with many CTOs

6. See Chapter 26.

7. The initial company name would have been “Grassy Pond” except that the domain name was
taken at the time. So I bought grassybrook.com.—John Partridge
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from Wall Street investment banks and hedge funds, a first target market for the
StreamBase engine: Their need for extremely low latency seemed like a perfect
match. This need led to many train trips to New York City, opening an opportunity to
tune StreamBase for a demanding and concrete application. The company engaged
in many proof-of-concept (POC) applications that, while an expensive way to make
sales, helped sharpen the StreamBase engineers.8

The company tried to open a new market with government systems. In particu-
lar, it hired a Washington-based sales team that tried to penetrate the intelligence
agencies. StreamBase made a big effort to sell to “three letter agencies” and In-Q-
Tel (the CIA’s venture capital arm) later invested in StreamBase. One partnership
was with a Washington, D.C., Value Added Reseller (VAR) that built applications on
top of StreamBase for government customers. StreamBase had a sales representa-
tive and a sales engineer in D.C. to sell directly to the government, but that never
became a meaningful part of the business.

After some years, StreamBase was acquired by TIBCO Software, Inc. TIBCO is
still in operation today in Waltham, Massachusetts., and sells TIBCO StreamBase®.

Stream Processing Today
In recent years, industry has been transformed by the wave of “Big Data” and “Data
Science,” where business decisions and product enhancements are increasingly
based on results of the analysis of massive amounts of data. This data includes
search logs, clickstreams, and other “data exhaust” from planetary-scale Web 2.0
applications. In many of these applications, the data of interest is generated in a
continuous fashion and users increasingly seek to analyze the data live as it is gen-
erated. As a result, stream processing has emerged as a critical aspect of data pro-
cessing in industry and many systems are being actively developed. Modern stream-
processing systems include Apache Kafka, Heron, Trill, Microsoft StreamInsight,
Spark Streaming, Apache Beam, and Apache Flink.

Interestingly, the stream-processing systems being developed in industry today
are fundamentally the same as the ones as we and others in the database com-
munity built all those years ago. The goal is to process unbounded streams of
tuples. Tuples are structured records and include timestamps. Processing involves
grouping data into windows for aggregation and ensuring high availability and fault
tolerance. Recent systems, however, do have a somewhat different emphasis than

8. Following Mike’s by now well-established pattern for starting a company, described in Chap-
ter 7.
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our original work from the database community. In particular, they seek a single
programming model for batch data processing and stream processing. They focus
significantly more on parallel, shared-nothing stream processing, and they seek
to provide powerful APIs in Python and Java as well as seamless support for user-
defined functions.

All first-generation streaming systems ignored the need for transactions. The
MIT-Brown-Brandeis research continues in a project called S-Store [Çetintemel
et al. 2014],9 which attempts to integrate transactions into a streaming engine
[Meehan et al. 2015a, Meehan et al. 2015b].

It is a testament to Mike’s vision and leadership that our original Aurora/Borealis
work stood the test of time and that today’s streaming engines so naturally build
on those past ideas. One of our papers, on fault tolerance in Borealis at SIGMOD’05
[Balazinska et al. 2005], won a “test of time” award at SIGMOD’17.
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18C-Store: Through the Eyes
of a Ph.D. Student
Daniel J. Abadi

I first met Mike Stonebraker when I was an undergraduate. Before I met Mike, I
had no intention of going into a career in computer science, and certainly not into
a career of computer science research.

I always knew that I wanted to go into a career that made an impact on people’s
lives and I had come to the conclusion that becoming a doctor would be the optimal
way to achieve this career goal. At the time I met Mike, I was three quarters of the
way through the pre-med undergraduate course requirements and was working in
John Lisman’s lab researching the biological causes of memory loss. However, to
earn some extra income, I was also working in Mitch Cherniack’s lab on query
optimization. Mitch included me in the early research meetings for the Aurora
project (see Chapter 17), through which I met Mike.

How I Became a Computer Scientist
At the time I met Mike, my only experience with computer science research involved
writing tools that used automated theorem provers to validate the correctness of
query rewrite rules during query optimization in database systems. I found the
project to be intellectually stimulating and technically deep, but I was conscious
of the fact that in order for my research to have an impact, the following chain of
events would have to occur.

1. I would have to write a research paper that described the automated correct-
ness proofs that we were working on.

2. This paper would have to be accepted for publication in a visible publication
venue for database system research.
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3. Somebody who was building a real system would have to read my paper and
decide that the techniques introduced by the paper were a better way to
ensure correctness of rewrite rules than alternative options, and therefore
integrate our techniques into their system.

4. The real system would then have to be deployed by real people for a real
application.

5. That real application would have to submit a query to the system for which a
generic database system would have produced the wrong answer, but since
they were using a system that integrated our techniques, the correct answer
was produced.

6. The difference between the wrong answer and the correct answer had to be
large enough that it would have led to an incorrect decision to be made in
the real world.

7. This incorrect decision needed to have real-world consequences.

If any link in this chain failed to come to fruition, the impact of the research
would be severely limited. Therefore, my belief at the time was that computer
science research was mostly mathematical and theoretical, and that real-world
impact was possible but had long-shot probability.

My early interactions with Mike very quickly disabused me of this notion. Any
attempt to include math or theory in a meeting with Mike would either be brushed
aside with disdain, or (more commonly) after completing the process of writing
down the idea on the white board, we would glance at Mike and notice that he had
lost consciousness, fast asleep with his face facing the ceiling. Any idea that we
would introduce would be responded to with questions about feasibility, practical-
ity, and how were we going to test the idea on real-world datasets and workloads.
I learned the following rules of thumb from Mike regarding achieving real-world
impact.

1. Complexity must be avoided at all costs. The most impactful ideas are simple
ideas for the following reasons.

(a) Complex ideas require more effort for somebody to read and un-
derstand. If you want people to read the papers that you write, you
should minimize the effort you ask them to go through in reading
your paper.

(b) Complex ideas are hard to communicate. Impact spreads not only
through your own communication of your ideas via papers and pre-
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sentations, but also through other people summarizing and refer-
ring to your ideas in their papers and presentations. The simpler the
idea, the more likely someone else will be able to describe it to a third
party.

(c) Complex ideas are hard to implement. To get an idea published, you
generally have to implement it in order to run experiments on it. The
harder it is to implement, the longer it takes to build, which reduces
the overall productivity of a research group.

(d) Complex ideas are hard to reproduce. One way of achieving impact
is for other people to take your ideas and implement them in their
system. But if that process is complicated, they are less likely to do so.

(e) Complex ideas are hard to commercialize. At the end of the day, com-
mercialization of the idea requires communication (often to non-
technical people) and rapid implementation. Therefore, the com-
munication and implementation barriers of the complex ideas men-
tioned above also serve as barriers to commercialization.

2. It is better to build a complete system than it is to focus your research on just
a single part of a system. There are three main reasons for this.

(a) Narrow ideas on isolated parts of the system risk being irrelevant
because a different part of the system may be the bottleneck in real-
world deployments. Mike would always be asking about “high poles
in the tent”—making sure that our research efforts were on real
bottlenecks of the system.

(b) System components interact with each other in interesting ways. If
research focuses on just a single part of the system, the research will
not observe these important interactions across components.

(c) It is generally easier to commercialize an entire system than just
a single component. The commercialization of individual compo-
nents requires deep partnership with existing software vendors,
which a young, fledging startup usually struggles to achieve. A com-
plete system can be built from scratch without relying on third
parties during the implementation effort.

3. Impact can be accelerated via commercialization. There have been many
great ideas that have been published in computer science venues that have
made important impact via somebody else reading the paper and imple-
menting the idea. However, the vast majority of ideas that are published in
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academic venues never see the light of day in the real world. The ones that do
make it to the real world are almost never immediate—in some cases there
is a delay of a decade or two before the technology is transferred and applied.
The best way to increase both the probability and speed of transferring an
idea to the real world is to go to the effort of raising money to form a com-
pany around the idea, build a prototype that includes at least the minimal
set of features (including the novel features that form the central thesis of
the research project) that enable the prototype to be used in production for
real applications, and release it to potential customers and partners.

A second advantage to direct commercialization of research technology is
exposure to real-world ramifications of a particular technology. This experi-
ence can often be fed back into a research lab for successful future research
projects.

In short, Mike taught me that computer science research could be far more
direct than I had realized. Furthermore, the impact is much more scalable than
the localized professions I had been considering. In the end, I decided to apply to
graduate school and pursue a career in research.

The Idea, Evolution, and Impact of C-Store
At the time I applied to MIT (for admission in the fall of 2003), there were no
database system faculty at MIT aside from Mike (who had recently joined MIT as
an adjunct professor). Nonetheless, Mike helped to ensure that my application to
MIT would be accepted, even though he had no intention of taking on the role of
advising Ph.D. students in his early years at MIT. Mike matched me up with Hari
Balakrishnan as my temporary official advisor, while he continued to advise me
unofficially. Shortly thereafter, Sam Madden joined MIT, and Sam, Mike, and I,
along with teams from Brown, UMass, and Brandeis, began to work on the C-Store
project [Stonebraker et al. 2005a] in 2004.

The early days of the research on the C-Store project have formed my approach
to performing research ever since that point. C-Store was never about innovating
just for the sake of innovating. C-Store started with Mike taking his experience and
connections in industry and saying, “There’s a major pain point here. None of the
‘Big Three’ database systems—Oracle, IBM’s DB2, and Microsoft’s SQL Server—
scale queries to the degree that the upcoming ‘Big Data’ era will require, and other
existing solutions are wildly inefficient. Let’s build a system that will scale and
process queries efficiently.”
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We can see from this example two key things that Mike did that are instructive
about making impact.

1. He found a source of existing pain. If you want to make impact, you have to do
research in areas where there is so much existing pain that people will pay
the switching costs to adopt your solution if it becomes available to them.

2. He identified a trend that would magnify the pain before it took off . “Big Data”
was only just emerging as an industry term in 2004 when the project started.

The C-Store project involved creating a scalable database system that is opti-
mized for read-mostly workloads, such as those found in data warehousing envi-
ronments (i.e., workloads that are almost entirely read queries, with occasional
batch appends of new records and rare updates of previously inserted records).
The project included two components to the storage layer: a read-only component
(where most of the data was stored) and a writable component. Updates to exist-
ing records were handled by deleting from the read-only component and inserting
a new record into the writable component. By virtue of being read-only, the read-
only component was able to make several optimizations, including dense-packing
the data and indexes, keeping data in strictly sorted order (including redundantly
storing different materialized views or “projections” in different sort orders), com-
pressing the data, reading data in large blocks from disk, and using vastly simplified
concurrency control and recovery protocols.

In contrast to the read-only component, the writable component was generally
stored in-memory and optimized for inserting new records. These inserts can hap-
pen slowly over a period of time (they were known as “trickle updates”) or they
can happen in batch (e.g., when a previous day’s log of data is written to the data
warehouse overnight). All queries would include data from both the read-only and
writable component (data from the two components would be dynamically merged
on the fly at query time). However, it was important that the writable component
fit entirely in main memory. Therefore, a “tuple mover” would move data from the
writable component to the read-only component in batches as a background pro-
cess.

C-Store was most famous for storing data in “columns.” In general, a database
table is a two-dimensional object and needs to be serialized to a one-dimensional
storage interface when the data is written to storage. Most (but not all) database sys-
tems at the time performed this serialization process data row by row. First, they
would store the first row, and then the second, and so on. In contrast, column-
oriented systems such as C-Store stored data column by column. Storing columns
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separately helped to optimize the system for read-only queries that scan through
many rows, since by storing columns separately, the system only needs to expend
I/O time reading from storage the specific columns necessary to answer the query.
For queries that accessed a small percentage of the columns in a table, the perfor-
mance benefits would be large. However, inserting a new tuple can be slow since
the different attributes in the tuple have to written to separate locations. This is why
it was critical to have a separate writable component that was in-memory. Indeed,
in some of the early designs of C-Store, only the read-only component stored data
in columns, while the writable component used a traditional row-oriented design.

Building C-Store with Mike
My job within the C-Store project was to collaborate on the design and write code
to implement both the core read-optimized storage later and the query execution
engine. I therefore had the opportunity to spend many hours with Mike and Sam at
the whiteboard, discussing the tradeoffs of some of the different design decisions
of these parts of the system. When I look back at my time in graduate school, I
think of this time very fondly: the excitement surrounding preparing for one of
these meetings, the back and forth during these meetings, and then the process of
replaying the meeting in my head afterward, reviewing the highlights and lowlights
and planning for what I would do differently next time to try to do a better job
convincing Mike of an idea that I had tried to present during the meeting.

In general, Mike has a tremendous instinct for making decisions on the design
of a system. However, as a result, any idea that runs counter to his instinct has
almost no chance of seeing the light of day without somebody actually going to the
effort of building the idea and generating incontrovertible proof (which, given that
fact that the idea runs counter to Mike’s instinct, is unlikely to be possible).

One example of this is a discussion around the compression methods that
should be used in the storage later. Column-stores present a tremendous oppor-
tunity for revisiting database compression under a new lens: Not only do column-
stores, by virtue of storing data from the same attribute domain contiguously,
observe much smaller data entropy (and therefore are more amenable to compres-
sion in general), but also, they make it possible to compress each column of a table
using a different compression scheme. Mike had created a quad chart (see Fig-
ure 18.1) for what compression scheme should be used for each column. The two
dimensions of the quad chart were: (1) is the column sorted and (2) how high is the
cardinality of the column (the number of unique values).
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Figure 18.1 A Stonebraker quad chart for choosing compression algorithms in C-Store.

I had made a proposal that instead of using Bit-vector encoding for unsorted,
low-cardinality columns, we should instead use arithmetic encoding. This led to
the following email conversation that I found in my email history from graduate
school:

Mike wrote to me:

I don’t see the advantage of arithmetic coding. At best it would break even (space-
wise) compared to what we have and adds decoding cost. Moreover, it gets in the
way of passing columns between operators as bit maps. Also, coding scheme
would have to “learn” alphabet, which would have to be “per column.” Adding
new values would be a problem.

I wrote back:

The anticipated advantage would be the space savings (and thus i/o cost). I’m
not sure why you’re saying we will break even at best. We’re seeing about 4×
compression for the [unsorted, low cardinality columns] we have now, which is
about what dictionary would get. Depending on the data probabilities, arithmetic
would get about an additional 2× beyond that.

To which he responded:

I don’t believe you. Run length encoding (sic. RLE) of the bit map should do the
same or better than arithmetic. However, this question must get settled by real
numbers.

Also, arithmetic has a big problem with new values. You can’t change the code
book on the fly, without recoding every value you have seen since time zero . . . .
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This conversation was typical of the “prove it” requirement of convincing Mike
of anything. I went ahead and spent time carefully integrating arithmetic encoding
into the system. In the end, Mike was right: Arithmetic coding was not a good idea
for database systems. We observed good compression ratios, but the decompres-
sion speed was too slow for viability in a performance-oriented system.1

A few more lessons from the C-Store project about systems research in general.

1. None of the ideas of the paper were new. Column-stores had already been in
existence (Sybase IQ was the first widely deployed commercial implementa-
tion of a column-store). Shared-nothing database systems had already been
in existence. C-Store’s main contribution was the combination of several dif-
ferent ideas in a way that made the whole more than the sum of its parts.

2. Although the idea of column-stores had been around for over two decades
before the C-Store paper, they were held back by several limiting design de-
cisions. Sometimes, innovations within an existing idea can turn it from not
really widely practical, to being so practical that the idea becomes ubiqui-
tous. Once column-stores caught on, all major DBMSs developed column-
store extensions, either by storing data column by column within a page (e.g.,
Oracle) or in some cases with real column-store storage managers (such as
IBM Blu and Microsoft SQL Server Apollo).

Founding Vertica Systems
As mentioned above, a great way to accelerate research impact is to start a company
that commercializes the research.2 Mike’s career is perhaps the quintessential
example of this approach, with Mike repeatedly transferring technology from his
lab into commercialization efforts. In the case of C-Store, the transition from
research project to startup (Vertica) was extremely rapid. Vertica’s first CEO and VP
of Engineering were already in place in March 2005, the same month in which we
submitted the original C-Store VLDB paper [Stonebraker et al. 2005a] to be reviewed
by the VLDB program committee.

I was privileged to have the opportunity to work closely with Mike and Vertica’s
first CEO (Andy Palmer) in the technology transfer process.3 The typical process

1. I did, however, eventually convince Mike that we should move away from bit-vector compression
and use dictionary compression for unsorted, low cardinality columns.

2. For the story of the development of the Vertica product, see Chapter 27.

3. For more on the founding of Vertica, read Chapter 8.
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for any technology startup of this kind is to begin the commercialization effort
in search of use cases. Although we were confident that the C-Store technology
was widely applicable across many application spaces, different domains will have
different existing solutions to handle their data and query workload. In the case
of some domains, the existing solution is good enough, or close enough to being
good enough that they are not in significant pain. In other domains, the current
solutions are so insufficient, they would be willing to risk trying out a new and
unproven technology from a tiny startup. Obviously, it is those domains that the first
versions of a technology startup should focus on. Therefore, we spent many hours
on the phone (sometimes together, sometimes independently) with CIOs, CTOs,
and other employees at companies from different domains that were in charge of
the data infrastructure and data warehousing solutions, trying to gauge how much
pain they were currently in, and how well our technology could alleviate that pain.

Indeed, my longest continuous time with Mike was a road trip we took in the
early days of Vertica. I took a train to Exeter, New Hampshire, and spent a night in
Andy Palmer’s house. The next morning, we picked up Mike in Manchester, and the
three of us drove to central Connecticut to meet with a potential alpha customer, a
large online travel company. The two things about this meeting that I remember:

1. Being in awe as Mike was able to predict the various pain points that the data
infrastructure team was in before the CIO mentioned them. Interestingly,
there were some pain points that were so prevalent in the industry that the
CIO did not even realize that he was in pain.

2. C-Store/Vertica’s main initial focus was on the storage layer and had a very
basic first version of the optimizer that worked only with star schemas.4 I
remember an amusing exchange between Mike and a member of their team
in which Mike tried to convince him that even though they didn’t actually
have a star schema, if they would squint and look at their schema from 10,000
ft, it was indeed a star schema.

In the end, Vertica was a huge success. It was acquired by Hewlett-Packard
in 2011 for a large sum and remained successful through the acquisition. Today,
Vertica has many thousands of paying customers, and many more using the free
community edition of the software.

4. For more about the significance of star schemas, read Chapter 14.
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More importantly, the core design of C-Store’s query execution engine, with
direct operation on compressed, column-oriented data, has become prevalent in
the industry. Every major database vendor now has a column-oriented option, with
proven performance improvements for read-mostly workloads. I feel very fortunate.
I will forever be grateful to Mike Stonebraker for believing in me and giving me the
opportunity to collaborate with him on C-Store, and for supporting my career as a
database system researcher ever since.



19In-Memory, Horizontal,
and Transactional:
The H-Store
OLTP DBMS Project
Andy Pavlo

I remember the first time that I heard the name Mike Stonebraker. After I finished
my undergraduate degree, I was hired as a systems programmer at the University
of Wisconsin in 2005 to work on the HTCondor, a high-throughput job execution
system project, for Miron Livny. My colleague (Greg Thain) in the office next to me
was responsible for porting a version of HTCondor called CondorDB1 from David
DeWitt’s research group. The gist of CondorDB was that it used Postgres as its
backing data store instead of its custom internal data files. Although my friend was
never a student of Mike’s, he regaled me with stories about all of Mike’s research
accomplishments (Ingres, Postgres, Mariposa).

I left Wisconsin in 2007 and enrolled at Brown University for graduate school.
My original intention was to work with another systems professor at Brown. The
first couple of weeks I dabbled in a couple of project ideas with that professor,
but I was not able to find good traction with anything. Then the most fortuitous
thing in my career happened after about the second week of classes. I was in Stan
Zdonik’s database class when suddenly he asked me if my name was Andy Pavlo. I
said “yes.” Stan then said that he had had a phone call with Mike Stonebraker and
David DeWitt the previous night about ramping up development for the H-Store

1. http://dl.acm.org/citation.cfm?id=1453856.1453865 (Last accessed March 26, 2018.)

http://dl.acm.org/citation.cfm?id=1453856.1453865
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project and that DeWitt recommended me as somebody that Stan should recruit to
join the team.

At first, I was hesitant to do this. After I decided to leave Wisconsin to start
graduate school at Brown, I had a parting conversation with DeWitt. The last thing
that he said to me was that I should not work with Stan Zdonik. He never told me
why. I later learned it was because Stan was traveling a lot to visit companies on
behalf of Vertica with Mike. At the time, however, I did not know this, and thus I
was not sure about switching to have Stan as my adviser. But I was curious to see
what all the fuss was about regarding Stonebraker, so I agreed to at least attend the
first kick-off meeting. That was when I met Mike.

As I now describe, there were several incarnations of the H-Store system as an
academic project and eventually the VoltDB commercial product (see Chapter 28).

System Architecture Overview
The H-Store project was at the forefront of a new movement in DBMS architectures
called NewSQL [Pavlo and Aslett 2016]. During the late 2000s, the hottest trend in
DBMSs were the so-called NoSQL systems that forego the ACID (Atomicity, Con-
sistency, Isolation, Durability) guarantees of traditional DBMSs (e.g., Oracle, DB2,
Postgres) in exchange for better scalability and availability. NoSQL supporters ar-
gued that SQL and transactions were limitations to achieving the high performance
needed in modern operational, on line transaction processing (OLTP) applications.
What made H-Store different was that it sought to achieve the improved perfor-
mance of NoSQL systems without giving up the transactional guarantees of tradi-
tional DBMSs.

Mike’s key observation was that existing DBMSs at that time were based on the
original system architectures from the 1970s that were too heavyweight for these
workloads [Harizopoulos et al. 2008]. Such OLTP applications are characterized as
comprising many transactions that (1) are short-lived (i.e., no user stalls), (2) touch a
small subset of data using index lookups (i.e., no full table scans or large distributed
joins), and (3) are repetitive (i.e., executing the same queries with different inputs).

H-Store is a parallel, row-storage relational DBMS that runs on a cluster of
shared-nothing, main memory executor nodes. Most OLTP applications are small
enough to fit entirely in memory. This allowed the DBMS to use architectural
components that were more lightweight because they did not assume that the
system would ever have to stall to read data from disk. The database is partitioned
into disjoint subsets that are assigned to a single-threaded execution engine that
is assigned to one and only one core on a node. Each engine has exclusive access
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to all the data in its partition. Because it is single-threaded, only one transaction at
a time can access the data stored at its partition. Thus, there are no logical locks
or low-level latches in the system, and no transaction will stall waiting for another
transaction once it is started. This also means that all transactions had to execute
as stored procedures to avoid delays due to network round trips between the DBMS
and the application.

Another idea in the original design of H-Store was classifying transactions into
different groups based on what data they accessed during execution. A single-sited
transaction (later relabeled as single-partition) was one that only accessed data at
a single partition. This was the ideal scenario for a transaction under the H-Store
model as it did not require any coordination between partitions. It requires that the
application’s database be partitioned in such a way that all the data that is used to-
gether in a transaction reside in the same partition (called a constrained tree schema
in the original H-Store paper [Kallman et al. 2008]). Another transaction type, called
one shot, is where a transaction is decomposed into multiple single-partition trans-
actions that do not need to coordinate with each other. The last type, known as a
general transaction, is when the transaction accesses an arbitrary number of parti-
tions. These transactions can contain either a single query that accesses multiple
partitions or multiple queries that each access disparate partitions. General trans-
actions are the worst-case scenario for the H-Store model.

First Prototype (2006)
The first version of the H-Store system was a prototype built by Daniel Abadi and
Stavros Harizopoulos with Sam Madden and Stonebraker at MIT for their VLDB
2007 paper “The End of an Architectural Era: (It’s Time for a Complete Rewrite”
[Stonebraker et al. 2007b]. This early system was built to only execute a hardcoded
version of TPC-C over arrays of data. It used a simple B+Tree for indexes. It did not
support any logging or SQL.

The MIT H-Store prototype was able to achieve 82× better throughput than an
Oracle installation tuned by a professional. This was evidence that H-Store’s design
of eschewing the legacy architecture components of disk-oriented systems was a
promising approach for OLTP workloads.

Second Prototype (2007–2008)
Given the success of the first prototype, Mike decided to continue with the H-Store
idea and build a new, full-featured system as part of a collaboration among MIT,
Brown, and Yale (which Dan had since joined as a new faculty member). This was
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when I had just started graduate school and gotten involved in the project. The first
H-Store meeting was held at MIT in November 2007.

My recollection from that first meeting was that Mike “held court” in what I now
understand is his typical fashion. He leaned back in his chair with his long legs
stretched out and his hands placed behind his head. He then laid out his entire
vision for the system: what components that we (i.e., the students) needed to build
and how we should build them. As a new graduate student, I thought that this was
gospel and proceeded to write down everything that he said.

One thing that still stands out for me even to this day about this meeting was
how Mike referred to DBMS components by the names of their inventors or paper
authors. For example, Mike said that we should build a “Selinger-style” query
optimizer and that we should avoid using a “Mohan-style” recovery scheme. This
was intimidating: I knew of these concepts from my undergraduate database course
but had never read the original papers and thus did not know who the concepts’
inventors were. I made sure after that meeting that I read all the papers that he
mentioned.

Our team of Brown and MIT students started building this second version of
the system in late 2007. There was nothing that we could reuse from the original
prototype since it was a proof-of-concept (i.e., it was hardcoded to only execute
TPC-C transactions and store all tuples in long arrays), so we had to write the entire
system from scratch. I was tasked with building the in-memory storage manager
and execution engine. Hideaki Kimura was am M.S. student at Brown (later a Ph.D.
student) who was helping me. Evan Jones was also a new Ph.D. student at MIT who
joined the team to implement the system’s networking layer.

There were several meetings between the Brown and MIT contingents in these
early months of the project. I remember that there were multiple times when
the students and other professors would squabble about certain design details of
the system. Mike would remain silent during these discussions. Then, after some
time, he would interrupt with a long speech that started with the phrase “seems
to me . . . .” He would proceed to clarify everything and get the meeting back on
track. Mike has this great ability to cut through complex problems and come up
with a pithy solution. And he was correct almost every time.

To help reduce the amount of code that we had to write, Mike and the other
professors suggested that we try to borrow components from other open-source
DBMSs. Hideaki and I looked at SQLite, MySQL, and Postgres. For reasons that I
do not remember, we were leaning toward using MySQL. I remember that I talked
to somebody at the inaugural New England Database Day at MIT about my plans to
do this. This person then later wrote an impassioned blog article where he pleaded
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for us not to use MySQL due to certain issues with its design. Given this, we then
decided to borrow pieces from Postgres. Our plan was to use Postgres to parse the
SQL queries and then extract the query plans. We would then execute those plans
in our engine (this was before Postgres’ Foreign Data Wrappers). Dan Abadi had an
M.S. student at Yale implement the ability to dump out a Postgres plan to XML. As I
describe below, we would later abandon the idea of using Postgres code in H-Store.

In March 2008, Evan and I wrote the H-Store VLDB demo paper. We still did not
have a fully functioning system at that point. The single screenshot in that paper
was a mock-up of a control panel for the system that we never ended up imple-
menting. Around this time, John Hugg was hired at Vertica to start building the
commercial version of H-Store (see Chapter 28). This was originally called Hori-
zontica. John was building a Java-based front-end layer. He modified the HSQLDB
(Hyper SQL Database) DBMS to emit XML query plans, and then he defined the
stored procedure API. He did not have an execution engine.

The VLDB demo paper got accepted in late Spring 2008 [Kallman et al. 2008].
At this point we still only had separate components that were not integrated. Mike
said something to the effect that given that the paper was going to be published, we
had better build the damn thing. Thus, it was decided that the H-Store academic
team would join forces with the Horizontica team (which at this point was just John
Hugg and Bobbi Heath). We mashed together John’s Java layer in Horizontica with
our H-Store C++ execution engine. We ended up not using Evan’s C++ networking
layer code.

There were several people working on the system during Summer 2008 to pre-
pare for the VLDB demo in New Zealand at the end of August. John, Hideaki, and
I worked on the core system. Hideaki and I were hired as Vertica interns to deal
with IP issues, but we still worked out of our graduate student offices at Brown.
Evan worked with an undergrad at MIT to write the TPC-C benchmark implemen-
tation. Bobbi Heath was brought in as an engineering manager for the team; she
was a former employee at Mike’s previous startup (StreamBase). Bobbi eventually
hired Ariel Weisberg and Ryan Betts2 to help with development, but that was later
in the year.

By the end of the summer, we had a functioning DBMS that supported SQL and
stored procedures using a heuristic-based query optimizer (i.e., not the “Selinger-
style” optimizer that Mike wanted!). John Hugg and I were selected to attend
the conference to demonstrate the H-Store system. Although I do not remember

2. Ryan later went on to become to the CTO of VoltDB after Mike stepped down in 2012.
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whether the system at this time could support larger cluster sizes, our demo had
only two nodes because we had to fly with the laptops to New Zealand. The con-
ference organizers sent an email about a month before the conference confirming
that each demo attendee would be provided a large screen. Before this, we had
not decided what we were going to show in the demo. John and I quickly built a
simple visualization tool that would show a real-time speedometer of how many
transactions per second the system could execute.

I remember that John and I were debugging the DBMS the night before the demo
in his hotel room. We got such a thrill when we were finally able to get the system
to run without crashing for an extended period. I believe that our peak throughput
was around 6,000 TPC-C transactions per second. This certainly does not sound
like a lot by today’s standards, but back then MySQL and Oracle could do about
300 and 800 transactions per second, respectively. This was fast enough that the
laptops would run out of memory in about a minute because TPC-C inserts a lot of
new records into the database. John had to write a special transaction that would
periodically go through and delete old tuples.

VoltDB (2009–Present)
After the successful VLDB demo, we had a celebration dinner in September 2008.
It was here that Mike announced that they were going to form a new company to
commercialize H-Store. John Hugg and the company engineers forked the H-Store
code and set about removing the various hacks that we had for the VLDB demo.
I remember that they had a long discussion about what to name the new system.
They hired a marketing firm. I think the first name they came up with was “The
Sequel”. Supposedly everyone hated it except for Mike. He thought that it would be
a good punny jab at Oracle. Then they hired another marketing firm that came up
with VoltDB (“Vertica On-Line Transaction Database”). Everyone liked this name.

My most noteworthy memory of the early VoltDB days was when I visited PayPal
in San Jose with Mike, Evan, John, and Bobbi in October 2009 after the High
Performance Transaction Systems conference. PayPal was interested in VoltDB
because they were reaching the limits of their monolithic Oracle installation. Evan
and I were there just as observers. Our host at PayPal was an ardent Mike supporter.
Before the large meeting with the other engineering directors, this person went on
for several minutes about how he had read all of Mike’s papers and how much he
loved every word in them. Mike did not seem concerned by this in the least. I now
realize that this is probably how I reacted the first time I met Mike.
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H-Store/VoltDB Split (2010–2016)
After a brief hiatus to work on a MapReduce evaluation paper with Mike and DeWitt
in 2009 [Stonebraker et al. 2010], I went back to work on H-Store. My original plan
was to use VoltDB as the target platform for my research for the rest of my time in
graduate school, as VoltDB had several people working on the system by then and
it was open-source.

The enhancements to the original H-Store codebase added by the VoltDB team
were merged back into the H-Store repository in the summer of 2010. Over time,
various components of VoltDB have been removed and rewritten in H-Store to meet
my research needs. But I ended up having to rewrite a lot of the VoltDB code because
it did not do the things that I needed. Most notable was that it did not support
arbitrary multi-partition transactions.

Mike was always pushing me to port my work to VoltDB during this period, but
it just was not feasible for me to do this. But in 2012, Mike came back to want to
work on H-Store for the anti-caching project [Harizopoulos et al. 2008]. We then
extended the H-Store code for the elastic version of the system (E-Store [Taft et al.
2014a]) and the streaming version (S-Store [Çetintemel et al. 2014]).

Conclusion
The H-Store project ended in 2016 after ten years of development. Compared to
most academic projects, its impact on the research community and the careers of
young people was immense. There were many students (three undergraduates, nine
master’s, nine Ph.Ds.) who contributed to the project from multiple universities
(MIT, Brown, CMU, Yale, University of California Santa Barbara). Some of the
Ph.D. students went off to get faculty positions at top universities (CMU, Yale,
Northwestern, University of Chicago). It also had collaborators from research labs
as well (Intel Labs, QCRI). During this time Mike won the Turing Award.

After working on the system for a decade, I am happy to say that Mike was
(almost) correct about everything he envisioned for the system’s design. More
important is that his prediction that SQL and transactions are an important part of
operational DBMSs was correct. When the H-Store project started, the trend was to
use a NoSQL system that did not support SQL or transactions. But now almost all
the NoSQL systems have switched over to SQL and/or added basic support for SQL.
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Because it’s there.

—George Mallory

“Serial summiteer” isn’t an achievement many people aspire to.
The idea is simple enough. Pick a set of mountain peaks all sharing some

defining characteristic—the tallest mountains on each of the seven continents, the
14,000-ft mountains of Colorado, the 282 “Munros” in Scotland, or even just the
highest peaks in New England—and climb them, one after the other, until there
are none left to climb. “Serial entrepreneur,” by contrast, is a label at the opposite
end of the aspirational spectrum. Any individual responsible for founding a series
of companies, each with its own technical and business goals, is worth at least a
book. Somewhere between the relative popularity of “serial summiteer” and “serial
entrepreneur” we might find “successful academic”: a career measured in terms
of research projects, high-achieving graduates, and published papers. What all of
these endeavors share is the need for planning, careful preparation, considerable
patience, and stamina, but above all, stoic determination.

Mike Stonebraker has lived all of them. There are 48 mountains in New Hamp-
shire over 4,000 ft in height and he’s climbed them all. He’s founded many start-up
companies. And he won a Turing Award. In this chapter, we tell the story of one
“journey up a mountain”: a project I had the privilege to be a member of. Our expe-
dition was conceived as a research project investigating scientific data management
but was obliged to transform itself into a commercial start-up. The climb’s not over.
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No one knows what the climbers will find as they continue their ascent. Yet today,
the company Paradigm4 continues to build and sell the SciDB Array DBMS with
considerable success.

Selecting Your Mountain1

What are men to rocks and mountains?

—Jane Austen

What makes a mountain interesting? This is a surprisingly difficult question. And
to judge by the sheer number of technology startups that set off annually, each
trudging to its own carefully selected base camp, opinions about what problems are
worth solving vary tremendously. For some climbers, it’s the technical challenge.
For others, it’s the satisfaction of exploring new terrain, or the thrill of standing on
the peak. And, of course, because any expedition needs funding, for some members
it’s the prospect that a glint of light on some remote mountaintop is actually a rich
vein of gold.

No expedition ever really fails. Or, at least, they’re rarely a failure for everyone.
Sometimes the technical challenge proves too difficult—in which case the expedi-
tion falls short of its goals—or too easy—in which case it arrives to find a summit
crowded with sprawled picnickers enjoying sandwiches and sherry. Sometimes, the
new terrain reveals itself to be dull, barren, and featureless—in which case the expe-
dition finds itself in possession of something of no interest or intrinsic value. Other
times, the glint of gold turns out to be just a flash of sun on snow, and even though
every technical challenge has been met and in spite of the climbers’ heroism, the
expedition descends dead broke.

Therefore, a successful serial entrepreneur or career academic must have very
good taste in mountains. It is interesting, when reflecting on Mike’s choices over
the years, just how good his taste has been. With a regularity that has become
a standing joke in the data management industry, every few years a fresh face
comes along with a “great and novel” idea that will upend the industry. But on
examination, the “great” bits aren’t novel and the “novel” bits don’t turn out to be
all that great. Mike’s career is a testament to picking the right problems. Given a
choice between bolting a relational super-structure on a hierarchical or network
storage layer or confronting the challenge of building something entirely new, we

1. Chapter 7 by Michael Stonebraker is a must-read companion to this chapter, either before or
after.
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got InGReS. When the brave new world of object-oriented languages challenged
SQL with talk of an “impedance mismatch” and promised performance magic
with “pointer swizzling,” Mike went instead with adapting the basic relational
model to serve new requirements by developing on the relational model’s concept
of a domain to encompass new types (user-defined types—UDTs), user-defined
functions (UDFs), and aggregates (UDAs). With Hadoop vendors all well along
the path of abandoning their HDFS and MapReduce roots in favor of parallelism,
column stores, and SQL, Mike’s vocal aversion to MapReduce now seems justified.

The interesting thing about the mountain represented by SciDB was the man-
agement of “scientific” data. As far back at the early 1990s, when Mike served as
co-PI of the Sequoia 2000 Project [Stonebraker 1995], it was clear that the challenges
of storing, organizing, and querying data generated by things like atmospheric
computer models, satellites, and networks of sensors indicated that there were
profound gaps between the data management technology on offer and what sci-
entific analysts and end users wanted. Many science databases were degenerate
“write once” tape repositories. Users were on their own when it came to data ac-
cess. Data objects were assigned semantically meaningless labels, forcing users to
struggle through catalog files on FTP servers to identify what they wanted. Since
the 1990s, Mike’s friend, the late Jim Gray, had also devoted considerable portions
of his considerable energy to the problem of scientific data management and had
met with success in the design and implementation of the Sloan Digital Sky Sur-
vey (SDSS) [Szalay 2008]. SDSS had considerable impact in terms of how astronomy
data was modeled and managed and indeed, on how the science of astronomy was
conducted.

We stand today on the threshold of vast changes in the character of the data we
are being called on to manage and the nature of what we do with it. Digital signal
data—the kind of machine-generated or sensor-driven data commonly associated
with the Internet of Things (IoT)—is utterly different from the human-centered,
event-driven business data that drove the last great waves of DBMS technology. A
modern precision medicine application brings together genomics data, biomedical
imaging data, wearables data (the Medical IoT), medical monitoring data from
MRIs and EKGs, and free text annotations alongside more regularly structured
patient clinical data, and demographics details. But the bulk of the data and the
analytic methods applied to it, the aspects of the application that utterly dominate
the workload, can all be thought of as “scientific.” Modern data analysis involves
generating hypotheses, modeling the data to test them, deriving actionable insights
from these models, and then starting the process over again with fresh ideas.
Indeed, this change has yielded an entirely new class of computer users: the “data
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scientist,” who employs methods that would be familiar to any working scientist to
tease out insight from what the machines record.

Managing and analyzing scientific data was “interesting.” It had immediate
application to scientific research. And it constituted a set of technical challenges
and requirements with future commercial uses. It was a mountain worthy of an
expedition.

Planning the Climb
When you’re doing mountain rescue, you don’t take a doctorate in mountain
rescue; you look for someone who knows the terrain.

—Rory Stewart

You never know exactly what dangers and surprises you’re going to find on the
mountain. So, it really helps to learn everything you can about it before you set out.

To understand the problems of scientific data management, the people to ask
are working scientists. By the late 2000s, several ideas were coming together.

First, the coalface of science had shifted from being lab-coats-and-test-tubes-
driven to becoming utterly dependent on computers for modeling, data manage-
ment, and analysis. Scientific projects of any size always included a cohort of pro-
grammers who served as Sherpas.

Second, as a consequence of developments in sensor technology, the scale of
data produced by the next generation of scientific projects could reasonably be
characterized as an explosion. At CERN—currently the world’s largest generator
of raw scientific data—the detectors generate about 100 terabytes a day and store
tens of petabytes of recent history. But just one of the telescopes proposed for
deployment in the next decade—the Large Synoptic Survey Telescope—will collect
about 20 terabytes of raw data per night and must store every bit of it for ten years,
eventually accumulating about 100 petabytes.

Third, the success of the SDSS project—which relied heavily on Microsoft SQL
Server—seemed to suggest that it was possible to use general-purpose data manage-
ment tools and technologies to support specialized scientific tasks. Given a choice
between building something from scratch or reusing someone else’s components
or even entire systems, the “lived preference” of working scientists had always been
to roll their own—an expensive and risk-prone approach. Sponsors of large-scale
public science projects were interested in new thinking.

All of these ideas were being explored at new conferences such as the Extremely
Large Data Bases (XLDB) conference and workshop: a gathering of “real” scientists
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and computer scientists held at the Stanford Linear Accelerator (SLAC) facility.
Through a mix of formal survey methods—interviews, presentations, panels—and
informal interrogations—talking late into the night over beer and wine in the best
mountaineering tradition—a group of academics and practitioners arrived at a list
of what scientists required from data management technology [Stonebraker et al.
2009]. In summary, these requirements were as follows:

. a data model and query language organized around arrays and based on the
methods of linear algebra;

. an extensible system capable of integrating new operators, data types, func-
tions, and other algorithms;

. bindings with new languages like Python, “R,” and MATLAB, rather than the
traditional languages of business data processing;

. no-overwrite storage to retain the full history (lineage or provenance) of the
data as it evolved through multiple, time-stamped versions;

. open source to encourage community contributions and to broaden the
range of contributions as widely as possible;

. massively parallel or cluster approach to storage and computation;

. automatic, n-dimensional block data storage (rather than hashing or range
partitioning);

. access to in-situ data (rather than requiring all data be loaded before query);

. integrated pipeline processing with storage and analytics; and

. first-class support for uncertainty and statistical error.

In more detailed design terms, we planned to implement SciDB using the following
techniques.

. We decided to build SciDB in C/C++ using a suite of Linux open-source
tools and made the code freely available. We did this to optimize for run-
time performance, to make it easy to integrate with a number of freely
available binary libraries that performed the mathematical “heavy lifting,”
and because Linux had become the operating system of choice in scientific
data management.

. We adopted a shared-nothing storage and compute model. This is a common
approach for systems that have high scalability and fault-tolerant require-
ments. Each SciDB node (we refer to them as instances) is a pure peer within a
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cluster of computers. Data in the SciDB arrays, and the computational work-
load applied to the data, are distributed in a balanced fashion across the
nodes [Stonebraker 1986b].

. Each instance implements a multi-threaded parsing, planning, and execu-
tion engine and a multi-version concurrency control (MVCC) approach to
transactions similar to the one employed in Postgres [Stonebraker 1987].

. We opted for a conventional, ACID-compliant distributed transaction model.
Read and write operations are all globally atomic, consistent, isolated, and
durable.

. We decided to adopt a column-store approach to organizing records (each
cell in a SciDB array can hold a multi-attribute record) and a pipelined or vec-
torized executor along the same lines as C-Store and MonetDB [Stonebraker
et al. 2005a, Idreos et al. 2012].

. To achieve distributed consensus for the transactions and to support the
metadata catalog we relied initially on a single (or replicated for failover)
installation of the PostgreSQL DBMS. Eventually we planned to use a Paxos
[Lamport 2001] distributed consensus algorithm to allow us to eliminate this
single point of failure.

. Because the kinds of operations we needed to support included matrix oper-
ations such as matrix/matrix and matrix/vector product, as well as singular
value decomposition, we adopted and built on the ScaLAPACK distributed
linear algebra package [Blackford et al. 2017].

. We decided to support Postgres style user-defined types, functions and ag-
gregates [Rowe and Stonebraker 1987]. In addition, we decided to implement
a novel mode of parallel operator extensibility that was closer to how High
Performance Computing dealt with such problems.

Our mountaintop goal was to build a new kind of DBMS: one tailored to the
requirements of scientific users. We talked to a lot of scientists in an effort to
understand how to get there. We took advice on what methods worked and heeded
warnings about what wouldn’t. And we decided to explore some new terrain and
develop new techniques. While I was working at IBM, some even grayer beards had
mentioned in passing that Ted Codd had fiddled around with a matrix algebra as
the basis of his abstract data model before settling on the simpler, set theoretic,
Relational Model. But while this fact served as evidence as to the wisdom of our
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thinking, it wasn’t at all clear whether it was evidence for, or against, our strategic
approach.

Expedition Logistics
Men[sic] Wanted: For hazardous journey. Small wages, bitter cold, long months
of complete darkness, constant danger, safe return doubtful.

—Ernest Shackleton

By the end of 2008, the SciDB development team had a clear view of the moun-
tain. We had agreed on our plans. Immediately before us was a straightforward,
ACID transactional storage layer unified within an orthodox massively parallel com-
pute framework. Superimposed upon this, instead of SQL tables, joins, and ag-
gregates, we were thinking in terms of arrays, dot products, cross products, and
convolutions.

Still, the path ahead wasn’t completely obvious. We deferred important deci-
sions for later. What query language? What client APIs? What about the vast number
of numerical analytic methods our customers might want? Once established on the
climb, we reasoned, we would have more information on which to base our deci-
sions. But there remained one glaring problem. Money.

Scientific data processing was notoriously characterized—and the attribution
is vague; some say Jim Gray, others Michael Stonebraker—as a “zero-billion-dollar
problem.” A successful pitch to venture capitalists must include the lure of lucre.
What they want to hear is, “When we build it, users will come—carrying check-
books.” SciDB, unique among Mike’s companies, seemed to be about something
else. The pitch we made to potential funding partners emphasized the social and
scientific importance of the expedition. Unlocking the mysteries of the universe,
curing cancer, or understanding climate change: All of these noble efforts would
be greatly accelerated with a tool like SciDB! It was pure research. A new data model!
New kinds of queries! New kinds of requirements! Academic gold! Disappointingly,
the research agencies who usually provide financial support to this kind of thing
took one look at our ideas and disagreed with us about their potential merits.

Something else was afoot. In late 2008 a series of high-profile failures in the
finance sector, combined with rapidly deteriorating economic conditions, caused
many potential SciDB funders to pull in their horns. Early on, parties interested
in backing an open-source DBMS that focused on array processing included some
heavy hitters in e-commerce, bioinformatics, and finance. But once Bear Stearns
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and AIG died of hubris-induced cerebral hypoxia on their own respective moun-
tains, enthusiasm for risk grew . . . thin. So, as we hunkered down to sit out the
12-month storm, the SciDB expedition was obliged to turn to the usual collection
of “land sharks” [Stonebraker 2016].

By 2010 the clouds had cleared and SciDB had secured seed funding. But the
finances were so strained that for the first few years of its life, the company con-
sisted of Mike as CTO, an architect/chief plumber (the author), a CEO shouldering
immense responsibilities, a couple of U.S.-based developers, a pick-up team of four
Russians, and two or three part-time Ph.D. candidates. Our advisory board con-
sisted of the very great and the very good—a dozen of them. Yet as the discerning
and knowledgeable reader will have noted, our tiny expedition was embarking with
a vast train of bag and baggage. To a first approximation, every one of the bullet
points in our “techniques” list above implies about 30,000 lines of code: 20,000 to
implement the functionality, another 5,000 for interfaces, and another 5,000 for
testing. Such an undertaking implies about 2,000,000 lines of code. To be written
by six people. In a year.

It’s one thing to be ambitious. Mountains are there to be climbed, even ac-
knowledging that the overly optimistic risk disaster. Yet in the end . . . if prudence
governed every human decision? There would be no adventures.

Base Camp
One may walk over the highest mountain one step at a time.

—Barbara Walters

So, we began. How the world has changed since the early days of Unix (or “open
systems”) development! Where once the first order of a start-up’s business was to
find a convenient office to co-locate programmers, their computers, management,
and sales staff, the engineers working on SciDB were scattered across Moscow
suburbs; Waltham, Massachusetts; and a New Delhi tower block. The virtual space
we all shared involved check-in privileges to a source code trunk and a ticketing
system, both running on a server in Texas.

Among our first tasks as we began the climb was to come up with the kind of
data model that gave our working scientists what they said they wanted: something
based around arrays, appropriate for the application of numerical methods like
linear algebra, image filtering, and fast region selection and aggregation.

All data models begin with some notion of logical structure. We sketch the basics
of the SciDB array in Figure 20.1. In SciDB, each n dimensional array organizes
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Dimensions

(‘foo’, 1.0, 100)

Tuple of attributes

Array A has:
  two dimensions,
  three attributes.  

ARRAY A
<
  a1 : string,
  a2 : double,
  a3 : int64
>
[I, J];  

Cell

Figure 20.1 Structural outline of SciDB array data model.

data into a space defined by the array’s n dimensions. In Figure 20.1, the array A
has two dimensions, I and J. An array’s dimensions each consist of an (ordered)
list of integer index values. In addition, an array’s dimensions have a precedence
order. For example, if an array B is declared with dimensions [I, J, K], the shape of
B is determined by the order of its dimension. So, if another array C uses the same
dimensions but in a different order—for instance, C [K, I, J]—then we say the shape
of B differs from C.

From this definition you can address each cell in an array by using an array’s
name, and a list (vector) consisting of one index value per dimension. For example,
the labeled cell in Figure 20.1 can be addressed as A [I=3, J=4] (or more tersely, A
[3,4] as the association between the index values and dimensions is inferred from
the order of the array’s dimensions). A cell in the three-dimensional array B would
be addressed as B [I=5, J=5, K=5] (or B [5,5,5]). You can specify sub-regions of an
array—and any region of an array is itself an array—by enumerating ranges along
each dimension: A [I= 3 to 6, J= 4 to 6].

SciDB arrays have constraint rules. Some are implicit to the model. The combi-
nation of an array name and dimension values uniquely determines a cell, and that
cell cannot be addressed in any other way. Some constraints can be made explicit
as part of an array’s definition. For example, the list of index values in array’s di-
mensions can be limited to some range. If an application requires an array to hold
1024 × 1024-sized images as they changed over time, a user might limit two of the
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regrid (

filter (

between ( A, 1, 1, 10, 10 ),

not regex ( A.a1, ‘(.*)maybe(.*)’ )

),

2, 2,

AVG ( R.a3 ) AS Mean_A3

);

Figure 20.2 Example functional language SciDB query.

array’s dimensions to values between 1 and 1024—suggestively naming these di-
mensions X and Y—and leave the last dimension—named T—as unbound. SciDB
would then reject any attempt to insert a cell into this array at a location outside
its allowed area: say at X=1025, Y=1025, for any T. We envisioned other kinds of
constraint rules: two arrays sharing a dimension, or a rule to say that an array must
be dense, which would reject data where a cell within the array’s dimensions space
was “missing.”

And, as with the relational model, the SciDB array data model defines a closed
algebra of operators. Simple, unary operators filter an array by dimension index
range or cell attribute values. Grouping operators would break an array up into
(sometimes overlapping) sub-arrays and compute some aggregate per group. Binary
operators would combine two arrays to produce an output with a new shape and
with new data. Output of one operator can become input to another, allowing
endless, flexible combinations. In Figure 20.2, we illustrate what a simple SciDB
query combining multiple operators looks like. The inner filter() and between()
operators specify what cells of the input array are to be passed on as output based on
their logical location and the values in the cell’s attributes. The regrid() partitions
the filtered data—now a sparse array—into 2-by-2 sized regions and computes an
aggregate per region.

The list of these array operators is extensive. The most recent SciDB community
version—the code for which is made available under the Affero GPL license—ships
with about 100 of them built in, while Paradigm4’s professional services group
have created another 30–40 that plug into the basic framework—although they
are not open source because they sometimes use proprietary third-party libraries.
In fact, several SciDB users have even created their own customized and applica-
tion specific extensions. Operators run the gamut from providing simple selection,
projection, and grouping functionality to matrix multiplication and singular value
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decomposition to image processing operations such as Connected Component La-
beling [Oloso et al. 2016]. Every operator is designed to exploit the shared-nothing
architecture to function at massive scale. And as with relational operators, it is pos-
sible to explore a number of ways to reorganize a tree of operators to find logically
equivalent but computationally more efficient access paths to answer compound
queries.

It’s perhaps worth emphasizing just how novel this territory was. Since Codd’s
original Relational Model from 1971, DBMS data models have tended to be rather
ad hoc. They would start with a programming language idea—such as object-
oriented programming’s notions of class, class hierarchy, inter-class references,
and “messages” between classes—and would bolt on features such as transac-
tional storage or data change. XML databases, to point to another example, started
with a notion of a hierarchical markup language and then came up with syntax
for specifying search expressions over the hierarchy—Xpath and XQuery. SciDB
shared with Codd’s Relational Model the idea of starting with an abstract math-
ematical framework—vectors, matrices, and the linear algebra—and fleshed out a
data model by building from these first principles.

In the same way that Postgres solved the problem of non-standard data by
exploiting the neglected notion of relational domains through the provision of
user-defined types, functions, and aggregates, SciDB set about solving the very
practical problems of scientific data processing by revisiting the mathematical
fundamentals. New mountains can necessitate new climbing methods.

Plans, Mountains, and Altitude Sickness
No plan survives contact . . .

—Helmuth von Moltke the Elder

After about nine months of mania we had a code base we could compile into an
executable, an executable we could install as a DBMS, and a DBMS we could load
data into and run queries against. Time for our first users!

We decided to focus our energies on the bioinformatics market because of the
vast increase in data volumes generated by new sequencing technologies, the scien-
tific requirement to integrate multiple lines of evidence to validate more complex
systems models, and the need to provide systems software with analytic capabili-
ties that scaled beyond the desktop tools popular with individual scientists. Plus,
Cambridge, Massachusetts, is home to two of the world’s great universities, to labs
operated by several of the world’s largest pharmaceutical makers and research
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institutions, and any number of startups, all home to scientists and researchers
seeking to understand how our genes and our environment combine and interact
to make us sick or well. The underlying methods these researchers used appeared
well-suited to SciDB’s data model and methods. A chromosome is an ordered list
of nucleotides. Teasing out causal relationships between genetic variants and pa-
tient outcomes involves methods like extremely large-scale statistical calculations.
Even minor features like SciDB’s no-overwrite storage were interesting in bioin-
formatics because of the need to guarantee the reproducibility of analytic query
results.

SciDB had also attracted interest from a number of more “pure” science projects.
We worked with a couple of National Labs on projects as diverse as spotting weakly
interacting massive particles in the bottom of a mine in South Dakota, tracking
stormy weather patterns in RADAR data over the USA with a NASA team, and look-
ing for evidence of climate change in satellite images of the Brazilian rainforest.
Interestingly, a pattern that emerged from these early engagements saw SciDB ea-
gerly embraced by smaller, more poorly funded project teams. Given abundant
resources scientists still preferred “rolling their own.” SciDB proved useful when
resources were constrained.

It didn’t take long, working with these early adopters, to realize that once we got
above base camp, the mountain we were on didn’t match the one we’d seen while
approaching over distant plains.

First, an implicit assumption almost universal to the scientists we talked to held
that all array data was dense. In their view, scientific data consisted of collections
of rectilinear images captured at regular intervals. While it might be ragged in the
sense that the right-angled corners of a satellite’s camera don’t mold exactly to
the contours of a spherical planet, image data itself doesn’t have “holes.” What
we found out quite quickly was that the biomedical, and even much of the “pure”
science data we were handed, was actually sparse. It was characterized by gaps in
space and time and position rather than continuity. Of course, the matrices derived
from the sparse data and used to perform the mathematical and numerical analysis
were dense, as was much of the image and sensor data.

So, we had to rethink aspects of our approach. Instead of simply breaking the
data up into blocks, serializing each block and writing serialized blocks to disk,
we were obliged to come up with a method for associating each serialized value
with its logical position in the array. We accomplished this with a kind of bit-mask.
Given a logical array, we would first generate a list of the logical positions for each
cell that occurred in the data, and then compress and encode this list. Thus, for
dense data, the Run Length Encoding (RLE) representation of “all cells are present”
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could be very terse: 48 bytes of metadata per megabyte data chunk. Alternatively,
for very sparse data, the same method yielded a terse entry per valid cell. And the
most common case, long runs of values with the occasional run of empty cells, also
compressed well.

Making this change required inflicting considerable violence on our storage
layer, executor, and operator logic. But it made SciDB equally proficient at both
dense and sparse arrays. Our query language and, therefore, SciDB’s users, did not
need to know which kind of array data they were dealing with.

Second, where we expected to get data from external applications already orga-
nized into matrix rows and columns, we found that the more usual organization
was highly “relational.” Instead of a file that listed all values in the first row, then
all values in the second, and so on, the more usual presentation was a { row #, col-
umn #, values . . . } file. This meant that we had to reorganize data on load into the
SciDB array form. Not a conceptually difficult task. But it meant that, in addition to
keeping up with our planned development schedule, we had to implement a highly
efficient, massively parallel sort operation. Without additional staff.

Third, we learned that the kinds of data encoding methods familiar to anyone
who has worked on column-store DBMSs were a very poor substitute for more
specialized encoding methods used for digital audio and video. Several of SciDB’s
initial customers wanted to combine video data with sensor data from wearables.
They wanted to know, for example, what physical movement in a video could be
temporally associated with accelerometer changes. But when we tried to pull video
data into SciDB using column-store encodings, we found ourselves bloating data
volumes. Video and audio data is best managed using specialized formats that,
unlike techniques such as Adaptive Huffman or RLE, pay attention to regions of
data rather than a simple serialization of values. To accommodate audio and video,
we were obliged to retrofit these specialized methods into SciDB by storing blocks
of audio and video data separately from the array data.

These early surprises were the consequence of not talking to enough people
before designing SciDB. No bioinformatics researchers were included on the list of
scientists we consulted.

Another set of requirements we had not fully appreciated revolved around the
questions of elasticity and high availability. In several SciDB applications, we found
the data and workload scale required that we run across dozens of physical com-
pute nodes. This, combined with the fact that many of the linear algebra routines
we were being asked to run were quadratic in their computational complexity, sug-
gested that we needed to confront the prospect of dynamically expanding compute
resources and the certainty of hardware faults and failures in our design.
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Adding (and subtracting) computers from a running cluster without shutting it
down involves some pretty sophisticated software engineering. But over time, we
were able to support users running read queries while the overall system had some
physical nodes faulted out, and we were even able to add new physical nodes to
a running cluster without requiring that the overall system be shut down or even
quiesced. With the emergence of cloud computing, we expect such functionality
will become what Mike Stonebraker refers to as “table stakes.”

Expeditions also measure progress by the thing they leave behind. We had
learned about new requirements on the climb. But our aspirations exceeded our
staffing. So, as we began to get feedback about what our priorities ought to be
by talking to Paradigm4’s early SciDB customers, we trimmed our ambition and
deferred features that were not required immediately.

First to go was lineage support. Although simple enough in principle—the com-
bination of our no-overwrite, versioning storage layer and the way we maintained
a comprehensive log of every user query gave us all the information we needed—it
was difficult to nail down the precise list of requirements. For some users it would
have been enough to record data loading operations and the files that served as data
sources. For others there was a need to track where every cell’s value came from.
Others mentioned that they would like to track the precise versions of data used
in every read query to ensure that any interesting result could be reproduced. Yet
provenance support was never anyone’s highest priority. Performance or stability
or some analytic feature always took precedence.

We also never managed to embed probabilistic reasoning or to make managing
uncertainty a first-class feature of the data model. For one user we went so far as
to implement a full probability distribution function as a basic data type applied
in conjunction with a very large-scale Monte Carlo calculation: 128 gigabytes of
input data, a 2-gigabyte static distribution, and 10,000 simulation runs. But this
was accomplished through user-defined type and function extensibility. As with
provenance, supporting uncertainty was no one’s highest priority.

Our SQL-like query language was another casualty at this time. We had focused
considerable effort on language bindings to client languages like “R” and Python—
as these were the languages preferred by bioinformaticians, quants, and data scien-
tists. In neither of these languages was the kind of Connection/Query/Result/Row-
at-a-Time procedural interface designed for languages like COBOL, C/C++, or Java
appropriate. Instead, the idea was to embed data management operations at a
higher level of abstraction directly within the language. For example, “R” has a
notion of a data frame, which is logically similar to a SciDB array. So, in addition
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to mechanisms to pull data out of a SciDB array to place it in a client side “R” pro-
gram, we tried to design interfaces that would obscure the physical location of the
data frame data. A user might interact with an object that behaved exactly as an
“R” data frame behaved. But under the covers, the client interface passed the user
action through to SciDB where a logically equivalent operation was performed—in
parallel, at scale, and subject to transactional quality of service guarantees—before
handing control back to the end user. A SQL-like language was therefore superflu-
ous. So, we prioritized the Array Functional Language (AFL).

Sometimes it’s the things you say “no” to that end up being critical to your
success. Our engineering constraints led us to defer a large list of line-item level
features: non-integer dimensions, additional data encodings, orthodox memory
management, and a fully featured optimizer, among others. Given such limitations,
the climb ahead looked daunting. Nevertheless, we persisted.

On Peaks
“The top of one mountain is always the bottom of another.”

—Marianne Williamson

“What a deepity!”

—Daniel Dennett

“It is not the mountains that we conquer, but ourselves.”

—Edmund Hillary

“That’s better.”

—Daniel Dennett

Six years into the project, we can look back over the ground we’ve covered with
considerable satisfaction.

As of late 2017 SciDB is used in production in well over a dozen “industrial”
applications, mostly in bioinformatics, but with a mixed bag of other use cases for
good measure. SciDB is the engine behind public data sites like the National Insti-
tutes of Health’s 1000 Genomes Browser and the Stanford Medical School’s Global
Biobank Engine. As we mentioned earlier, many of these production systems are
characterized by the way SciDB proved itself the best, least expensive option—in
terms of application development time and capital investment—among alterna-
tives. What we’ve learned from our users is that there are significant hidden costs
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in developing applications when your “database” is really just a “big swamp of
files.” SciDB applications run the gamut from very large databases containing the
sequenced genomes of thousands of human beings, to applications that use video
and motion sensor data to analyze fine-grained details of how different kinds of hu-
man body respond in different circumstances, to financial applications with very
high data throughput and sophisticated analytic workloads.

But perhaps the most exciting thing, for a platform built with the intention of
furthering scientific study, is the number of pure science research projects that
have come to rely on SciDB as their data management tool and analytic platform.
The SciDB solutions team are collaborating with researchers from institutions
such as Harvard Medical School, Purdue University, NASA, and Brazil’s INPE, as
well as continuing historical collaborations with national laboratories. SciDB’s
unprecedented extensibility and flexibility has allowed researchers to perfect new
techniques and methods and then make them available to a broader academic
community [Gerhardt et al. 2015].

Mike Stonebraker was there at the beginning. He recognized the importance
of the work, and the fundamental interest of the climb. Without his influence and
reputation our expedition might never have even begun: Through some of the most
difficult economic times of the last 50 years he managed to move us ahead until
we were fortunate enough to secure the funding to start our work. Throughout
the climb he has been a steady and congenial companion, an opinionated but
invaluable guide, a wise and pragmatic Sherpa, and a constant reminder of the
importance of just putting one foot in front of the other.
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21Data Unification at Scale:
Data Tamer
Ihab Ilyas

In this chapter, I describe Mike Stonebraker’s latest start-up, Tamr, which he and
I co-founded in 2013 with Andy Palmer, George Beskales, Daniel Bruckner, and
Alexander Pagan. Tamr is the commercial realization of the academic prototype
“Data Tamer” [Stonebraker et al. 2013b]. I describe how we started the academic
project in 2012, why we did it, and how it evolved into one of the main commercial
solution providers in data integration and unification at the time of writing this
chapter.

Mike’s unique and bold vision targeted a problem that many academics had
considered “solved” and still provides leadership in this area through Tamr.

How I Got Involved
In early 2012, Mike and I, with three graduate students (Mike’s students, Daniel
Bruckner and Alex Pagan, and my student, George Beskales), started the data tamer
project to tackle the infamous data-integration and unification problems, mainly
record deduplication and schema mapping. At the time, I was on leave from the
University of Waterloo, leading the data analytics group at the Qatar Computing
Research Institute, and collaborating with Mike at MIT on another joint research
project.

Encouraged by industry analysts, technology vendors, and the media, “big data”
fever was reaching its peak. Enterprises were getting much better at ingesting
massive amounts of data, with an urgent need to query and analyze more diverse
datasets, and do it faster. However, these heterogeneous datasets were often accu-
mulated in low-value “data lakes” with loads of dirty and disconnected datasets.
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Somewhat lost in the fever was the fact that analyzing “bad” or “dirty” data (al-
ways a problem) was often worse than not analyzing data at all—a problem now
multiplied by the variety of data that enterprises wanted to analyze. Traditional
data-integration methods, such as ETL (extract, transform load), were too manual
and too slow, requiring lots of domain experts (people who knew the data and could
make good integration decisions). As a result, enterprises were spending an esti-
mated 80% of their time preparing to analyze data, and only 20% actually analyzing
it. We really wanted to flip this ratio.

At the time, I was working on multiple data quality problems, including data
repair and expressive quality constraints [Beskales et al. 2013, Chu et al. 2013a,
Chu et al. 2013b, Dallachiesa et al. 2013]. Mike proposed the two fundamental
unsolved data-integration problems: record linkage (which often refers to linking
records across multiple sources that refer to the same real-world entity) and schema
mapping (mapping columns and attributes of different datasets). I still remember
asking Mike: “Why deduplication and schema mapping?” Mike’s answer: “None
of the papers have been applied in practice. . . . We need to build it right.” Mike
wanted to solve a real customer problem: integrating diverse datasets with higher
accuracy and in a fraction of the time. As Mike describes in Chapter 7, this was the
“Good Idea” that we needed! We were able to obtain and use data from Goby, a
consumer web site that aggregated and integrated about 80,000 URLs, collecting
information on “things to do” and events.

We later acquired two other real-life “use cases”: for schema integration (from
pharmaceutical company Novartis, which shared its data structures with us) and
for entity consolidation (from Verisk Health, which was integrating insurance claim
data from 30-plus sources).

Data Tamer: The Idea and Prototype
At this point we had validated our good idea, and we were ready to move to Step
Two: assembling the team and building the prototype. Mike had one constraint:
“Whatever we do, it better scale!” In the next three months, we worked on integrat-
ing two solutions: (1) scalable schema mapping, led by Mike, Daniel, and Alex, and
(2) record deduplication, led by George and me. Building the prototype was a lot
of fun and we continuously tested against the real datasets. I will briefly describe
these two problems and highlight the main challenges we tackled.

Schema Mapping. Different data sources might describe the same entities (e.g.,
customers, parts, places, studies, transactions, or events) in different ways and
using different vocabularies and schemas (a schema of a dataset is basically a
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Item
O-Ring Gasket

Part
27-00091

Part Description
O-Ring Gasket

Part Number
27-00091

Description
Gasket, O-Ring 

PN
27-00091

Item Descrip
Gasket

Part #
27-00091

<Part Number>

Figure 21.1 Schema mapping is needed to link all different columns describing the part number.
(Source: Tamr Inc.)

formal description of the main attributes and the type of values they can take). For
example: While one source might refer to a part of a product as two attributes (Part
Description and Part Number), a second source might use the terms Item Descrip
and Part #, and a third might use Desc. and PN to describe the same thing (cf.
Figure 21.1). Establishing a mapping among these attributes is the main activity
in schema mapping. In the general case, the problem can be more challenging
and often involves different conceptualizations, for example when relationships
in one source are represented as entities in another, but we will not go through
these here.

Most commercial schema mapping solutions (usually part of an ETL suite)
traditionally focused on mapping a small number of these schemas (usually fewer
than ten), and on providing users with suggested mappings taking into account
similarity among columns’ names and their contents. However, as the big data
stack has matured, enterprises can now easily acquire a large number of data
sources and have applications that can ingest data sources as they are generated.

A perfect example is clinical studies in the pharmaceutical industry, where
tens of thousands of studies/assays are conducted by scientists across the globe,
often using different terminologies and a mix of standards and local schemas.
Standardizing and cross-mapping collected data is essential to the companies’
businesses, and is often mandated by laws and regulations. This changed the
main assumption of most schema mapping solutions: suggestions curated by users
in a primarily manual process. Our main challenges were: (1) how to provide an
automated solution that required reasonable interaction with the user, while being
able to map thousands of schemas; and (2) how to design matching algorithms
robust enough to accommodate different languages, formats, reference master
data, and data units and granularity.
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Fname Lname Occupation Institution Number Students

Michael Stonebraker Professor UC Berkeley 5

Mike Stonebraker PI MIT-CSAIL 4+2 postdocs

M Stonebreaker Adjunct
Professor

MIT 16

Mike
Stonebraker

Faculty Massachusetts
Institute of
Technology

n/a

Figure 21.2 Many representations for the same Mike!

Record Deduplication. Record linkage, entity resolution, and record deduplication
are a few terms that describe the need to unify multiple mentions or database
records that describe the same real-world entity. For example, “Michael Stone-
braker” information can be represented in different ways. Consider the example
in Figure 21.2 (which shows a single schema for simplicity). It’s easy to see that the
four records are about Mike, but they look very different. In fact, except for the typo
in Mike’s name in the fourth record, all these values are correct or were correct at
some point in time. While it’s easy for humans to judge if such a cluster refers to
the same entity, it’s hard for a machine. Therefore, we needed to devise more ro-
bust algorithms that could find such matches in the presence of errors, different
presentations, and mismatches of granularity and time references.

The problem is an old one. Over the last few decades, the research commu-
nity came up with many similarity functions, supervised classifiers to distinguish
matches from non-matches, and clustering algorithms to collect matching pairs in
the same group. Similar to schema mapping, current algorithms can deal with a few
thousands of records (or millions of records but partitioned in disjointed groups of
thousands of records!) However, given the massive amount of dirty data collected—
and in the presence of the aforementioned schema-mapping problem—we now
faced multiple challenges, including:

1. how to scale the quadratic problem (we have to compare every record to all
other records, so computational complexity is quadratic in the number of
records);

2. how to train and build machine learning classifiers that handle the subtle
similarities as in Figure 21.2;
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3. how to involve humans and domain experts in providing training data, given
that matches are often rare; and

4. how to leverage all domain knowledge and previously developed rules and
matchers in one integrated tool.

Mike, Daniel, and Alex had started the project focusing on schema mapping,
while George and I had focused on the deduplication problem. But it was easy to
see how similar and correlated these two problems were. In terms of similarity,
both problems are after finding matching pairs (attributes in the case of schema
mapping, records in the case of deduplication).

We quickly discovered that most building blocks we created could be reused and
leveraged for both problems. In terms of correlation, most record matchers depend
on some known schema for the two records they compare (in order to compare ap-
ples to apples); however, unifying schemas requires some sort of schema mapping,
even if not complete.

For this and many other reasons, Data Tamer was born as our vision for consol-
idating these activities and devising core matching and clustering building blocks
for data unifications that could: (1) be leveraged for different unification activities
(to avoid piecemeal solutions); (2) scale to a massive number of sources and data;
and (3) have human in the loop as a driver to guide the machine in building classi-
fiers and applying the unification at large scale, in a trusted and explainable way.

Meanwhile, Stan Zdonik (from Brown University) and Mitch Cherniack (from
Brandeis University) were simultaneously working with Alex Pagan on expert sourc-
ing: crowdsourcing, but applied inside the enterprise and assuming levels of ex-
pertise. The idea was to use a human in the loop to resolve ambiguities when the
algorithm’s confidence on a match falls below a threshold. They agreed to apply
their model to the Goby data to unify entertainment events for tourists.

Our academic prototype worked better than the Goby handcrafted code and
equaled the results from a professional service on Verisk Health data. And it ap-
peared to offer a promising approach to curate and unify the Novartis data (as
mentioned in Chapter 7).

The vision, prototype, and results were described in the paper “Data Curation
at Scale: The Data Tamer System,” presented at CIDR 2013, the Sixth Biennial
Conference on Innovative Data Systems Research in California [Stonebraker 2013].

The Company: Tamr Inc.
Given Mike’s history with system-building and starting companies, it wasn’t hard to
see where he was going with Data Tamer. While we were building the prototype, he
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clearly indicated that the only way to test “this” was to take it to market and to start
a VC-backed company to do so. And Mike knew exactly who would run it as CEO: his
long-term friend and business partner, Andy Palmer, who has been involved with
multiple Stonebraker start-ups (see Chapter 8). Their most recent collaboration at
the time was the database engine start-up Vertica (acquired in 2011 by Hewlett-
Packard (HP) and now part of Micro Focus).

Tamr was founded in 2013 in Harvard Square in Cambridge, Massachusetts,
with Andy and the original Data Tamer research team as co-founders. The year 2013
was also when I finished my leave and went back to the University of Waterloo and
George moved to Boston to start as the first full-time software developer to build the
commercial Tamr product, with Daniel and Alex leaving grad school to join Tamr1

as full-time employees.
Over the years, I have been involved in few start-ups. I witnessed all the hard work

and the amount of anxiety and stress sometimes associated with raising the seed
money. But things were different at Tamr: The credibility of the two veterans, Mike
and Andy, played a fundamental role in a fast, solid start, securing strong backing
from Google Ventures and New Enterprise Associates (NEA). Hiring a world-class
team to build the Tamr product was already under way.

True to Mike’s model described in his chapter on how to build start-ups, our
first customer soon followed. The problem Tamr tackled, data unification, was a
real pain point for many large organizations, with most IT departments spending
months trying to solve it for any given project. However, a fundamental problem
with data integration and data quality is the non-trivial effort required to show
return on investment in starting these large-scale projects, like Tamr. With Tamr
living much further upstream (close to the silo-ed data sources scattered all over
the enterprise), we worked hard to show the real benefit of unifying all the data
on an enterprise’s final product or main line of business—unless the final product
is the curated data itself, as in the case of one of Tamr’s early adopters, Thomson
Reuters, which played a key role in the early stages of Tamr creation.

Thomson Reuters (TR), a company in which curated and high-quality business
data is the business, was thus a natural early adopter of Tamr. The first deployment
of Tamr software in TR focused on deduplicating records in multiple key datasets
that drive multiple businesses. Compared to the customer’s in-house, rule-based
record matchers, Tamr’s machine learning-based approach (which judiciously in-
volves TR experts in labeling and verifying results) proved far superior. The quality of

1. The commercial name was changed from Data Tamer to Tamr, as Data Tamer had already been
taken.



The Company: Tamr Inc. 275

results matched those of human curators on a scale that would have taken humans
literally years to finish [Collins 2016].

With the success of the first deployment, the first product release was shaping
up nicely. Tamr officially launched in May 2014 with around 20 full-time employees
(mostly engineers, of course), and a lineup of proofs of concepts for multiple
organizations.

As Mike describes in Chapter 8, with TR as the “Lighthouse Customer,” Andy
Palmer the “adult supervisor,” and the strong support of Google Ventures and NEA,
Steps 3, 4, and 5 of creating Tamr the company were complete.

More enterprises soon realized that they faced the same problem—and business
opportunity—with their data as TR. As I write this, Tamr customers include GE,
HP, Novartis, Merck, Toyota Motor Europe, Amgen, and Roche. Some customers—
including GE, HP, Massachusetts Mutual Insurance, and TR—went on to invest in
our company through their venture-capital arms, further validating the significance
of our software for many different industries.

In February 2017, the United States Patent and Trademark Office issued Tamr a
patent (US9,542,412) [Tamr 2017] covering the principles underlying its enterprise-
scale data unification platform. The patent, entitled “Method and System for Large
Scale Data Curation,” describes a comprehensive approach for integrating a large
number of data sources by normalizing, cleaning, integrating, and deduplicat-
ing them using machine learning techniques supplemented by human expertise.
Tamr’s patent describes several features and advantages implemented in the soft-
ware, including:

. the techniques used to obtain training data for the machine learning algo-
rithms;

. a unified methodology for linking attributes and database records in a holis-
tic fashion;

. multiple methods for pruning the large space of candidate matches for
scalability and high data volume considerations; and

. novel ways to generate highly relevant questions for experts across all stages
of the data curation lifecycle.

With our technology, our brand-name customers, our management team, our
investors, and our culture, we’ve been able to attract top talent from industry and
universities. In November 2015, our company was named the #1 small company to
work for by The Boston Globe.
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Mike’s Influence: Three Lessons Learned.
I learned a lot from Mike over the last five years collaborating with him. Here are
three important lessons that I learned, which summarize his impact on me and are
indicative of how his influence and leadership have shaped Tamr’s success.

Lesson 1: Solve Real Problems with Systems
A distinctive difference of Tamr (as compared to Mike’s other start-ups) is how old
and well-studied the problem was. This is still the biggest lesson I learned from
Mike: It doesn’t really matter how much we think the problem is solved, how many
papers were published on the subject, or how “old” the subject is, if real-world
applications cannot effectively and seamlessly use a system that solves the problem,
it is the problem to work on. In fact, it is Mike’s favorite type of problem. Indeed,
we’re proud that, by focusing on the challenge of scale and creating reusable
building blocks, we were able to leverage and transfer the collective effort of the
research community over the last few decades, for practical adoption by industry—
including a large number of mega enterprises.

Lesson 2: Focus, Relentlessly
Mike’s influence on the type of challenges Tamr will solve (and won’t) was strong
from Day One. In the early days of Tamr, a typical discussion often went as follows.

Team: “Mike, we have this great idea on how to enable Feature X using this clever
algorithm Y .”

Mike (often impatiently): “Too complicated . . . Make it simpler . . . Great for Version
10 . . . Can we get back to scale?”

I have often measured our progress in transferring ideas to product by the
version number Mike assigns to an idea for implementation! (Lower being better,
of course). His impressive skill in judging the practicality and the probability of
customer adoption is one of Mike’s strongest skills in guiding the construction of
adoptable and truly useful products.

Lesson 3: Don’t Invent Problems. Ever
Mike simply hates inventing problems. If it isn’t somebody’s pain point, it is not im-
portant. This can be a controversial premise for many of us, especially in academia.
Far too often in academia, the argument is about innovation and solutions to fun-
damental theoretical challenges that can open the door for new practical problems,
and so on.

In identifying problems, my lesson from Mike was not to be convinced one way
or another. Instead, simply take an extreme position and make the biggest tangible
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impact with it. Mike spends a lot of his time listening to customers, industry
practitioners, field engineers, and product managers. These are Mike’s sources
of challenges, and his little secret is to always look to deliver the biggest bang
for the buck. As easy as it sounds, talking to this diverse set of talents, roles, and
personalities is an art, requiring a good mix of experience and “soft” skills.

Watching Mike has greatly influenced the way I harvest, judge, and approach
research problems, not only at Tamr but also in my research group at Waterloo.
These lessons also explain the long list of his own contributions to both academia
and industry to deserve computing’s highest honor.
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Tim Mattson, Jennie Rogers, Aaron J. Elmore

The BigDAWG polystore system is for many of us the crowning achievement of
our collaboration with Mike Stonebraker during the years of the Intel Science
and Technology Center (ISTC) for Big Data. Perhaps the best way to explain this
statement is to break it down into its constituent components.

Big Data ISTC
The Intel Science and Technology Center (ISTC) for Big Data was a multi-university
collaboration funded over five years (2012–2017) by Intel. The idea was that certain
problems are so big and so complex that they need a focused investigation free
from the constraints of industry product cycles or academic NSF grant-chasing.
When faced with such problems, Intel steps in and funds a group of professors
over a three- to five-year period to address those problems. The research is open-
IP or, in the language of industry, pre-competitive research designed to further the
state of the art in a field rather than create specific products.

Big Data, whatever that pair of words means to you, clearly falls into this category
of problem. In 2012, Intel worked with Sam Madden and Mike Stonebraker of MIT
to launch the ISTC for Big Data. This center included research groups at MIT, the
University of Washington, Brown University, Portland State University, UC Santa
Barbara, and the University of Tennessee. Over time the cast of characters changed.
We lost the UC Santa Barbara team and added research groups at Carnegie Mellon,
Northwestern University, and the University of Chicago.

The authors of this chapter came together as part of this ISTC: one of us (Tim
Mattson) as the Intel Principal Investigator (PI) for the ISTC, and the others (Jennie
Rogers and Aaron Elmore) as postdocs at MIT. By the end of the project, Tim was
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still at Intel, but Jennie and Aaron, in part due to the success of our work in the
ISTC, were assistant professors at Northwestern and the University of Chicago,
respectively.

The Origins of BigDAWG
BigDAWG started as a concept in the mind of the Intel PI for the Big Data ISTC.
The center was one year old when the Intel PI was drafted into that role. It was
an awkward role since his background was in high-performance computing (HPC)
and computational physics. Data was something other people worried about. The
I/O systems on supercomputers were generally so bad that in HPC you went out of
your way to pick problems that didn’t depend on lots of data. Hence, HPC people,
almost by design, know little of data management.

Collaborations and how to make them work, however, is something anyone well
into a research career learns. Getting professors to work together toward a common
goal is an unnatural act. It happens only with deliberate focus, and to create that
focus we needed a common target for everyone to rally around. It wasn’t called
BigDAWG yet, but this initial seed—common Big Data solution stack into which
many projects would connect—was there. In Figure 22.1, we reproduce the earliest
PowerPoint slide representing what later became BigDAWG. At the top level were
the visualization and applications-oriented projects. Underneath were various data
stores ranging from pure storage engines to full-fledged database management
systems. Underneath those data stores were math libraries tightly coupled to them
to support big data analytics. And in the middle, a “narrow waist” that would create
a common middleware to tie everything together.

That narrow waist was a simple API everyone could use to connect their systems
together. It would, at least in the mind of the HPC guy on the team, be a simple
software layer to create. We just needed a messaging-based API so the different
packages would know how to connect to each other. It would take a few graduate
students under the direction of a wise professor a quarter or two to pull it together.

Mike quickly picked up on how näıve the HPC guy was. Because of Mike’s
experience building real systems over the years, he immediately recognized that the
real contribution of this work was that “narrow waist.” Getting that right would be a
project of massive scale. Hence, with each successive meeting and each successive
version of this grand solution PowerPoint stack, the narrow waist grew and the other
parts of the figure shrank. We eventually ended up with the picture in Figure 22.2,
where the “narrow waist” had now become the API, islands, shims, and casts that
dominate the system (and which will be explained later).
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Figure 22.1 The original BigDAWG concept.

Getting professors to work so closely together is akin to “herding cats.” It’s
difficult if the glue holding them together is a nebulous “solution stack.” You
need a name that people can connect to, and Mike came up with that name. Sam
Madden, Mike, and the humble Intel PI were sitting in Mike’s office at MIT. We
were well aware of the attention the Big Data group from UC Berkeley was getting
from its BDAS system (pronounced “bad ass”). Mike said something to the effect
“they may be bad asses, but we’re the big dog on the street.” This was offered in
a tone of a friendly rivalry since most of us have long and ongoing connections to
the data systems research groups at UC Berkeley. The name, however, had the right
elements. It was light-hearted and laid down the challenge of what we hoped to
do: ultimately create the system that would leap past current state of the art (well-
represented by BDAS).

It took a while for the name to stick between the three of us. Names, however,
take on a life of their own once they appear in PowerPoint. Hence, within a few ISTC
meetings and a recurring PowerPoint presentation or two, the name stuck. We were
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Figure 22.2 The final BigDAWG concept.

creating the BigDAWG solution stack for Big Data. What exactly that meant in terms
of a long-term contribution to computer science, however, wasn’t clear to anyone.
That required yet another term that Mike coined: polystore.

One Size Does Not Fit All and the Quest for Polystore Systems
“One size does not fit all” embodies the idea that the structure and organization
of data is so diverse that you cannot efficiently address the needs of data with
a single data store. This famous slogan emerged from Mike’s career of building
specialized systems optimized for a particular use case. He first explored this topic
with Ugur Çetintemel in an ICDE 2005 paper [Stonebraker et al. 2005b], which later
won the Test of Time Award (2015). Mike further validated this bold assertion with
benchmarking results in CIDR 2007 [Stonebraker et al. 2007a].

The design of these specialized “Stonebraker Stores” favored simplicity and
elegance. Mike would use the heuristic that it was not worth building a specialized
store unless he thought he could get at least an order of magnitude of performance
improvement over “the elephants.”1

1. Mike’s term for the dominant RDBMS products.
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A decade later, we have seen an explosion in specialized data management
systems, each with its own performance strengths and weaknesses. Further com-
plicating this situation, many of these systems introduced their own data models,
such as array stores, graph stores, and streaming engines. Each data model had its
own semantics and most had at least one domain-specific language.

At least two problems arose from this plethora of data stores. First, this en-
couraged organizations to scatter their data across multiple data silos with distinct
capabilities and performance profiles. Second, programmers were deluged with
new languages and data models to learn.

How could the “narrow waist” make these many disparate systems work together
(relatively) seamlessly? How could we take advantage of the performance strengths
of each data store in an ecosystem? How could we meet the data where it was and
meet the programmers where they were? In an age where new data management
systems are becoming available all the time, is this attempt at unifying them all a
fool’s errand?

These questions dominated our work on BigDAWG, with the dream of bringing
together many data management systems behind a common API. Mike coined
the name “polystore” to describe what we hoped to build. At the simplest level,
a polystore is a data management system that exposes multiple data stores behind
a single API. We believe, however, that to fully realize the direction implied by
“one size does not fit all,” we need to take the definition further: to distinguish a
polystore from related concepts such as data federation. A data federation system
unifies multiple database engines behind a single data model, most commonly
the relational model. In the classic idea of a data federation system, however,
the database engines contained in the system are completely independent and
autonomous. The data federation layer basically creates a virtual single system
without fundamentally changing anything inside the individual engines or how
data is mapped to them.

When we use the term polystore, we refer to single systems composed of data
stores that are tightly integrated. A data store may be a fully featured DBMS or a
specialized storage engine (such as the TileDB array-based storage engine). Data
can be moved between data stores and therefore transformed between data mod-
els attached to each engine. Queries provide location independence through an
“island” in other words, a virtual data model that spans data stores. Alternatively,
when a specific feature of one of the data stores is needed, a query can be directed
to a particular engine. Hence, we see that the fundamental challenge of a polystore
system is to balance location independence and specificity.

While we first heard the word “polystore” from Mike—who coined the term in
the first place—this term is descriptive of systems people have been building for
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a while (as recently surveyed in [Tan et al. 2017]). Early polystore systems, such as
Polybase [DeWitt et al. 2013] and Miso [LeFevre et al. 2014], focused on mixing
big data systems and relational databases to accelerate analytic queries. In addi-
tion, IBM’s Garlic project [Carey et al. 1995] investigated support for multiple data
models in a single federated system. The Myria project [Halperin et al. 2014] at
the University of Washington is a polystore system that emphasizes location inde-
pendence by making all of the data stores available through an extended relational
model.

Mike took a more pragmatic point and stressed that he believed there is no
“Query Esperanto.” The very reason to go with a polystore system is to expose the
special features of the underlying data stores instead of limiting functionality based
on the common interface. Hence, we built a query interface for BigDAWG that
encapsulated the distinct query languages of each of the underlying data stores.
This approach offered the union of the semantics of the underlying data stores
and enabled clients to issue queries in the languages of their choice.

Putting it All Together
BigDAWG embraced the “one size does not fit all” mantra so people could benefit
from the features of specialized storage engines. Choosing the right storage engines
and physically integrating the systems is extremely complex. Our goal in designing
BigDAWG was to simplify the lives of users and administrators without limiting the
expressiveness or functionality of the data stores within BigDAWG. We introduced
this novel architecture in SIGMOD Record [Duggan et al. 2015a].

We started by defining how we’d manage the abstractions specific to each class
of storage engines. We did so by defining the concept of an island. An island is an
abstract data model and a set of operators with which clients may query a poly-
store. We implemented shims to translate “island statements” into the language
supported by each system. In a BigDAWG query, the user denotes the island he or
she are invoking by specifying a scope. For example, a client invokes the relational
scope in the following query:

RELATIONAL(SELECT avg(temperature) FROM sensor)

Scopes are composable, so one might combine the relational scope with an array
scope such as the following:

ARRAY(multiply(A, RELATIONAL(SELECT avg(temperature) FROM sensor))

An island offers location independence; in other words, a single query using the
island’s model and operators returns the same answer for a given query/data pair
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regardless of which data store connected to the island holds the data. This may
require data to move between data stores, which is accomplished through cast
operators that map the storage layer of one store to that of another.

Query Modeling and Optimization
Polystore systems execute workloads comprising diverse queries that span multiple
islands. If we can find and exploit “sweet spots” in a workload, where execution
is significantly faster if specialized to a particular storage engine, we can realize
potentially dramatic performance benefits. In other words, we needed to build
into BigDAWG a capability to model the performance characteristics of distinct
storage engines and capture the strengths and weaknesses of their query processing
systems.

To match queries with storage engines, we took in a user’s BigDAWG workload
and observed the performance of its queries when they execute in different systems.
Here our goal was to establish a set of query classes each of which would have an
expected performance profile across engines. Hence, when new queries arrived, we
would identify the class to which they belonged and be able to make better decisions
about where they would run.

To learn a query’s class, we execute the queries in an expansive mode, a process
akin to the training phase of machine learning applications. This expansive mode
executes the query on all of the associated storage engines that match the query and
BigDAWG records the performance in each case. Expansive execution may be done
all at once—when the query is initially submitted by the use—or opportunistically
when slack resources arise in individual databases. The statistics collected during
training are paired with a signature summarizing the query’s structure and the data
accessed. These results are compared to other queries the system has monitored to
maintain an up-to-date, dynamic representation of the performance of the system
for a given query class.

Armed with these query models, BigDAWG enumerates query plans over the dis-
parate storage engines to identify those that will deliver the highest performance.
Like traditional federated databases, BigDAWG’s query optimizer represents its
query plans using a directed acyclic graph. Planning polystore queries, however,
is more complicated than for data federation systems since, depending on the pat-
tern of shims and casts, BigDAWG supports engines with overlapping capabilities.

When the BigDAWG optimizer receives a query, it first parses the query to ex-
tract its signature. The planner then compares the signature to ones it has seen
before and assigns it to a predicted performance profile. BigDAWG then uses this
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profile paired with the presently available hardware resources on each database
to assign the query to one or more data stores. As BigDAWG executes a work-
load, it accumulates measurements about the query’s performance. This allows
the BigDAWG optimizer to incrementally refine its signature classification and per-
formance estimates. This feature of the system was particularly complicated to
implement since BigDAWG supports such diverse data models with a distributed
execution plan.

Data Movement
To effectively query among multiple storage engines, a polystore system must be
able to transform and migrate data between its systems. This data movement may
be temporary to accelerate some portion of a query or to leverage functionality
required by the user via a cast operator. Alternatively, the move may be permanent
to account for load balancing or other workload-driven optimizations. Regardless
of the reason, efficient just-in-time data migration is critical for BigDAWG.

To address data migration, BigDAWG includes a data migration framework to
transform data between all member storage engines. The shims and cast opera-
tors between engines and islands of information provide the migration framework
and logical transformations required to change data models. BigDAWG’s migra-
tion framework is responsible for doing efficient extraction, transformation, move-
ment, and loading of data, which is an example of differentiating component from
federated systems. All storage engines in a BigDAWG system have a local migration
agent running that listens to the query controller for when to move data. This infor-
mation includes the destination engine, logical transformation rules, and required
metadata about how the data is locally stored.

As most storage engines support a näıve CSV export and import functionality,
the initial prototype utilized this common text-based representation to move data.
However, this format requires a great deal of work to parse and convert data into the
destination binary format. We explored having each engine support the ability to
directly generate the destination binary format of other engines, which we found to
be as much as 400% faster than the CSV-based approach. However, for a BigDAWG
system that supports N database engines, writing custom connectors means writ-
ing N2 connectors for the systems, which results in significant code maintenance
requirements. Instead, the migrator settled on a concise binary intermediate rep-
resentation that is still 300% faster than CSV-based migration and only requires
N connectors to be maintained. In a related ISTC project, researchers from the
University of Washington developed a system that used program-synthesis to au-
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tomatically generate connectors by examining source code for CSV importers and
exporters [Haynes et al. 2016].

Significant effort went into optimizing the migration framework for efficient
data transfer. We explored parallelization, SIMD (single instruction multiple data)
based data transformation, lightweight compression, and adaptive ingestion when
multiple methods exist for getting data into the destination system.

BigDAWG Releases and Demos2

Early in the project Mike realized that we needed a public demo as a “forcing
function” to get the teams distributed across the ISTC to make progress quickly on
our BigDAWG system. Many ISTC participants worked together for a demonstration
at VLDB 2015 that coupled relational, array, and text-based databases for a series
of workflows using a medical-based dataset (the MIMIC II dataset3).

Mike was instrumental in managing this ambitious project with a distributed
and diverse team. The team outlined the initial prototype to support the demo, and
a roadmap was constructed to force the march forward. Mike played a leadership
role to help balance ambition with reality and made sure that unnecessary scope
creep did not hinder the chances of assembling a system that was greater than its
individual parts. Mike and Vijay Gadepally from MIT Lincoln Laboratory organized
regular hackathons where team members from Seattle, Chicago, Providence, and
Cambridge assembled at MIT to help glue the team and code together.

The experimental results from the demo system (summarized in Figure 22.3)
was presented as a demo at VLDB [Elmore et al. 2015] and later published in a
paper at the IEEE High Performance Extreme Computing Conference [Gadepally
et al. 2016a]. This showed that leaving array data in an array-based DBMS (SciDB)
and relational data in a relational DBMS (MyriaX) resulted in better performance
compared to moving all the data into one DBMS or the other. This result demon-
strated the benefits of the polystore concept.

For our second demo, we wanted data that was free from the privacy considera-
tions connected to medical data. We settled on data from the Chisholm Laboratory
at MIT (http://chisholmlab.mit.edu). This group works with metagenomics data
collected from the ocean to understand the biology of Prochlorococcus, a tiny ma-
rine cyanobacteria responsible for 15–20% of all oxygen in earth’s atmosphere. This

2. For a description of the sequence of demonstrations, see Chapter 31.

3. A medical dataset available at https://physionet.org/mimic2.

http://chisholmlab.mit.edu


288 Chapter 22 The BigDAWG Polystore System

Better Worse

0

SciDB

Myria

Hybrid

50 100 150
Time taken (seconds)

200 250 300

Discrete wavelet transform

Term frequency-inverse
document frequency

K-nearest neighbors

Figure 22.3 Performance of a complex analytic workflow over the MIMIC II dataset showing the
benefit of matching different parts of the workflow to the data store best suited to the
operation/data.

data was more heterogeneous than the medical datasets in our first demo and in-
cluded a new streaming data island, S-Store [Meehan et al. 2015b], to represent
real-time data from a moving data collection platform. This demo was presented
at the Conference on Innovative Data Systems Research (CIDR) in 2017 [Mattson et
al. 2017].

With two completed demo milestones, Mike and the ISTC PI drove toward
another open-source “feather in Mike’s cap.” In 2017, the ISTC released BigDAWG
0.10 to the general public [Gadepally et al. 2017] (see Chapter 31). Vijay Gadepally
and Kyle O’Brien of MIT Lincoln Laboratory played a major role in integrating the
components that make up BigDAWG into a coherent package (see Chapter 31).
Our job moving forward is to build a community around BigDAWG and hopefully
participate in its growth as researchers download the software and build on it.

Closing Thoughts
We realized several important research goals with BigDAWG. It came at a time when
the storage engine landscape was extremely fractured and offered a way to unify
many disparate systems in a simple-to-use interface. Mike led us to explore how to
get the most out of these diverse data management offerings. BigDAWG itself also
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served as a common project that the members of the ISTC could rally around to
integrate their work into a larger system. The two demos showed that polystores
make their underlying storage engines greater than the sum of their parts. The
bigger question, however, is whether BigDAWG and the polystore concept will have
a long-term impact that lives beyond the ISTC, and on that count it is too early to
say. We are hopeful that an open-source community will emerge around the system.
It is used at Lincoln Laboratory and we hope to attract other users. To help grow
the polystore community, a group of us (Vijay Gadepally, Tim Mattson, and Mike
Stonebraker) have joined forces to organize a workshop series on polystore systems
at the IEEE Big Data Conference.

One of the biggest problems unaddressed by BigDAWG was the quest for a Query
Esperanto. We believe such a quest is worthwhile and important. The current Big-
DAWG query language requires that the user specify the islands for each component
of a query and that the query contents match the data model for an island. This gives
us maximum flexibility to take advantage of the full features of any single island.
It sacrifices “location independence” and the convenience of writing queries that
work regardless of how data is distributed between storage engines. We avoided
this quest since we choose to build a working system first. The quest, however, is
important and could have a profound impact on the usability of polystore systems.

We already mentioned the work by the Myria team at the University of Wash-
ington. They have built a working system that uses an extended relational algebra
to join multiple storage engine data models. A closely related project at Lincoln
Laboratory and the University of Washington is exploring how linear algebra can
be used to define a unifying high-level abstraction that can unify SQL, NoSQL, and
NewSQL databases [Kepner et al. 2016]. It’s too early to say if this approach will lead
to useful systems, but early theoretical results are promising and point to a bright
future for polystores exposed behind a common query language.
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Mike Stonebraker was intrigued by the problem of how to ease the pain data
scientists face getting their data ready for advanced data analytics: namely, finding,
preparing, integrating, and cleaning datasets from thousands of disparate sources.
At the time, Mark Schreiber was a director of information architecture at Merck
Research Laboratories, a research lab for a large pharmaceutical company where he
oversaw approximately 100 data scientists. Mark told Mike that the data scientists
spend 98% of their time on grunt work preparing datasets of interest and only
one hour per week on useful work for running their analyses. This is well beyond
the 60–80% usually reported in the literature [Brodie 2015]. In 2015, Laura Haas,
who then led IBM’s Accelerated Discovery Lab, described how they addressed this
problem when building specialized solutions for different customers. In addition,
Mike had heard numerous similar war stories from customers of Tamr, his startup
that provides solutions for curating data at scale (see Chapters 21 and 30).

This chapter describes our journey with Mike in building Data Civilizer, an
end-to-end platform to support the data integration needs of data scientists and
enterprise applications with components for data discovery, data cleaning, data
transformation, schema integration, and entity consolidation, together with an ad-
vanced workflow system that allows data scientists to author, execute, and retrofit
these components in a user-defined order. Our journey explored different scenar-
ios, addressed different challenges, and generated cool ideas to clean, transform,
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and otherwise prepare data for serious data analytics, which resulted in Data Civi-
lizer.

We Need to Civilize the Data
For some time, data in enterprise data repositories, databases, data warehouses,
and data lakes have been rapidly turning into data swamps, a collection of unstruc-
tured, ungoverned, and out-of-control datasets where data is hard to find, hard to
use, and may be consumed out of context.1 Enterprise and public data repositories
(e.g., data.gov) are rapidly becoming Big Data swamps. For example, data swamps
have many materialized views with no lineage information (i.e., multiple redun-
dant copies without their method of generation) and are used as a place to dump
data with a vague intent to do something with them in the future. In this context,
the future never comes. Data owners quickly lose track of the data that goes into
these swamps, causing nightmares for anyone needing to extract valuable insights
from them. To convert data swamps into well-governed data repositories so that
valuable insights could be discovered, we decided to build Data Civilizer, in order
to civilize the data. Before exploring the requirements of such a system, we illustrate
a common problem using an example representative of many that we encountered
during the project.

The Day-to-Day Life of an Analyst
To determine if a particular variable is correlated with an activity of interest, you de-
cide to use the Pearson Correlation Coefficient (PCC) to calculate that correlation.
At this point, the task seems pretty obvious: just get the data for the variable and
evidence of the activity and run a small PCC program on the data. In fact, you can
use an algorithm in many existing libraries with no need to write your own imple-
mentation. It is not even 10 AM and you are already wondering how you will spend
the rest of your day. After all, as soon as you get this PCC, you just need to write a
couple of paragraphs justifying whether there is indeed a correlation or not, based
on the result of the PCC analysis. It’s an easy task. Of course, at this point reality
hits you. Where is the data? Where can you find the data about the variable and the
activity? In principle, this seemed obvious, but now, how do you know in which of
the multiple databases, lakes, and spreadsheets you can find the necessary data?
You decide to get to it ASAP and call Dave, an employee who has been working with
similar data in the past. Dave, who is visibly upset by your unsolicited visit, does

1. http://www.nvisia.com/insights/data-swamp. Last accessed March 22, 2018.

http://www.nvisia.com/insights/data-swamp
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not know where the data is, but fortunately he points you to Lisa, who according
to him, has been doing “some kind of analysis” with the indicator. In your next
interaction, you decide to avoid a bad look and instead pick up the phone to call
Lisa. Lisa points you to exactly the place where you can find the data. After wasting
a few more minutes with different passwords, you find the right credentials and
access the database. After a few more minutes needed to edit the right SQL query
and voilà! You found the indicator data, so you are almost done. Right? No. That
was wishful thinking.

The data is incomplete. As it stands, you cannot make any statistically significant
conclusions. You need to join this data with another table, but joining the two tables
is not obvious. It would be obvious if you knew that the column “verse_id” is an ID
that you can use in a mapping table that exists somewhere else and gives you the
mapping to the “indicator_id”. This is the column you must use to join the tables.
Of course, the problems do not end here. The formats of those indicators—which
were dumped to the database by different people at different times and for different
purposes—are different. So before using the data, one solution is to transform them
to a common representation. It’s a simple transformation, but it becomes a painful
process in which you must first make sure you deal with any missing values in the
column, or otherwise your PCC Python program will complain. But, oh well, it is
dinner time, so at this point you decide to deal with this tomorrow.

Welcome to the unsexy, unrewarding, and complex problem of data discovery
and preparation: how to find, prepare, stitch (i.e., join and integrate different
datasets), and clean your data so that your simple PCC analysis can be done quickly
and efficiently. It turns out that these tasks take most of the time analysts routinely
spend in their day-to-day jobs. Of course, there are point solutions for some of the
tasks. For example, you can definitely find outliers in a column, clean some data
with custom transformations helped by software, and so on. However, the problem
is that all of these stages are interconnected, and there is no tool that assists you
end to end through the process and helps you understand what needs to be done
next. Of course, the quality of many of the tools may be unsatisfactory and not meet
your specific needs.

The Data Civilizer team, led by Mike, is looking into new ways of attacking these
problems. In particular, Data Civilizer [Deng et al. 2017a, Fernandez et al. 2017a]
is being developed to:

. profile datasets to discover both syntactic and semantic linkage between
columns and uncover data lineage between the datasets;
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. discover datasets relevant to the task at hand—the indicator and the activity
in the example above (see Chapter 33);

. obtain access to these datasets;

. unite datasets, put duplicate data records in clusters, and create golden
records out of the clusters;

. stitch together datasets through join paths;

. clean datasets with a limited budget;

. query datasets that live across different systems; and

. use a workflow engine to compose the above components in arbitrary ways.

Each of these tasks has received considerable attention on its own resulting in
point solutions. Point solutions would help a data scientist with the data prepara-
tion task; however, an end-to-end system could better support the data scientist
in solving each problem in context and benefit from synergies and optimization
across the functions.

Designing an End-to-End System
If you have the sense that the example above is insurmountable, let us just say
it is vastly oversimplified. How would you attack the problem? Well, as computer
scientists, you would start thinking of how to slice the large problem into smaller
chunks. By defining smaller problems very well, you can come up with technically
sound solutions, and even write an evaluation and publish a paper! The problem
is that successfully solving the smaller problems does not necessarily lead to an
effective solution to the larger problem. Mike’s approach is to attack the prob-
lem vertically—just find an end-to-end example—and at the same time, “keep it
simple.” End-to-end examples with simple prototypes have been a key guiding prin-
ciple. Mike started with this proposal, which then became our roadmap for the
project.

To design a system, or a quick end-to-end prototype, one needs to understand
the requirements first, and that requires use cases. Mike would never accept testing
ideas on synthetic data because “it’s not realistic.” So, Mike’s principles include:
contextualize your ideas and understand the real problems and the scope of your
contributions. Based on that, our plan was to address the needs of real users, in
other words, a “user’s pain,” as Mike puts it. So, Mike brought in several real-
world use cases. One example came from Mark Schreiber of Merck and Faith Hill
of the MIT data warehouse team. These individuals are faced with the challenge
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of sifting through a very large number of datasets (often in the thousands) to
find data relevant to a particular task. He or she must find the data of interest
and then curate it, i.e., generate a coherent output dataset from this massive
pool of potentially relevant source data by putting it through a curation process
that involves combining related datasets, removing outliers, finding duplicates,
normalizing values, and so on. Another example was of a professional IT person,
typified by Nabil Hachim of Novartis. He has an enterprise-wide integration task
to perform. He must continuously put a collection of known datasets through a
similar curation pipeline to generate a final collection of datasets for Novartis’ data
scientists.

The approach of seeking external users with real problems to give feedback
on working prototypes is what eventually shaped the Data Civilizer project into
its current direction. Only after numerous interactions and hours of collaboration
does one get to learn what is the “highest pole of the tent” and design the system so
as to avoid surprises when the “rubber hits the road” (both popular Mike phrases).

Data Civilizer has to be designed and built so that it meets the needs of such
people and to “ease their pain.” These are some of the modules that we have built
so far:

1. a module to build an enterprise knowledge graph that summarizes and
indexes the data as well as uncovers all possible syntactic and semantic
relationships, via available ontologies;

2. a flexible data discovery system with several queries to find relevant data and
possible ways to join them;

3. various ways to transform and clean the data through automatically discov-
ering abbreviations and disguised, i.e., default value, missing values; and

4. a user-guided module to consolidate records found to be duplicates into one
canonical representation or golden record.

Data Civilizer Challenges
In this section, we discuss in some detail certain challenges we have been working
on to build Data Civilizer.

The Data Transformation Challenge
When integrating data from multiple sources there is often a need to perform
different kinds of transformations. These transformations entail converting a data
element from one representation to another, e.g., unit, currency, and date format
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conversions, and generating a semantically different but related value, e.g., airport
code to city name, and ISBN to book title. While some transformations can be
computed via a formula, such as pounds to kilograms, others require looking up in
a dictionary or other data sources. For such semantic transformations, we could not
find an adequate automatic system or tool. It is clear that semantic transformations
cannot be computed solely by looking at the input values, for example, and applying
a formula or a string operation. Rather, the required transformations are often
found in a mapping table that is either explicitly available to the application (e.g.,
as a dimension table in a data warehouse) or is hidden behind a transformation
service or a Web form.

So, the challenge was to find sources of data that are readily available and
that could help to automate this process. So, Mike said: “Why don’t you try Web
tables?” Indeed, many Web tables, such as airport code to city, SWIFT code to
bank, and symbol to company, may contain just the transformations we are after,
either entirely or partially. So, we started working on ways to automatically discover
transformations given some input and output examples.

Mike also suggested looking at how to automatically exploit Web forms, as
many of them, such as currency converters, can help in the transformation task.
We further extended the work to exploit knowledge bases for covering more trans-
formations, mostly prominent head-topic transformations, such as soccer player
to birthplace, soccer player to birth date, or country to head of state. Another ex-
tension was to find non-functional transformations such as books to authors and
teams to players. To evaluate our tool, Mike’s idea was to simply collect transfor-
mation tasks, mostly from engineers at Tamr, and then see how much coverage
we could achieve using the different sources. As it turned out, the coverage was
quite high. We were able to cover 101 transformation tasks out of 120. Preliminary
ideas of our tool were first described in a vision paper in CIDR 2015 [Abedjan et al.
2015b]. We then presented a full demo in SIGMOD 2015 [Morcos et al. 2015] and
a full paper at ICDE 2016 [Abedjan et al. 2016b]. Most importantly, we won a best
demo award in SIGMOD 2015!

The Data Cleaning Challenge
Mike had introduced us to Recorded Future, an intelligence company that moni-
tors more than 700,000 Web sources looking for threats and other intelligence. The
idea was to get some of its event data and see how clean or dirty it was and whether
existing or to-be-discovered approaches could help in detecting and repairing er-
rors in this kind of data. While Mike was convinced that the data was dirty and that
something ought to be done to clean it, he was skeptical about being able to “auto-
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matically” clean the data. In fact, he threw the following challenge at us: “If you can
automatically clean 50% of the data, I will license the technology for my company,”
and “I believe you can clean 2% of the data.” The challenge was daunting.

Mike helped secure a three-month snapshot of data extracted by Recorded
Future: about 188M JSON documents with a total size of about 3.9 TB. Each JSON
document contained extracted events defined over entities and their attributes. An
entity can be an instance of a person, a location, a company, and so on. Events also
have attributes. In total, there were 150M unique event instances.

Looking at the data using different profilers and through eyeballing, it was clear
that it contained many errors. One major observation was that some of the reported
events did not fit well together when putting them on a time scale. For example,
we saw that within less than an hour Barack Obama was in Italy and in South
Africa. We discovered several similar cases for people traveling around as well for
other events such as insider transactions and employment changes. To capture this
kind of error, we introduced a new type of temporal dependency, namely Temporal
Functional Dependencies. The key challenges in discovering such rules stem from
the very nature of Web data: extracted facts are (1) sparse over time, (2) reported
with delays, and (3) often reported with errors over the values because of inaccurate
sources or non-robust extractors.

Details of the actual techniques can be found in our PVLDB 2016 paper [Abedjan
et al. 2015a]. More importantly, our experimental results turned out to be quite
positive; we showed that temporal rules improve the quality of the data with an
increase of the average precision in the cleaning process from 0.37 to 0.84, and a
40% relative increase in the average F-measure.

Continuing with the data cleaning challenge, Mike wanted to see what would
really happen when the rubber hit the road with the many existing data cleaning
techniques and systems, such as rule-based detection algorithms [Abedjan et al.
2015a, Chu et al. 2013a, Wang and Tang 2014, Fan et al. 2012, Dallachiesa et al.
2013, Khayyat et al 2015]; pattern enforcement and transformation tools such as
OpenRefine, Data Wrangler [Kandel et al. 2011], and its commercial descendant
Trifacta, Katara [Chu et al. 2015], and DataXFormer [Abedjan et al. 2015b]; quanti-
tative error detection algorithms [Dasu and Loh 2012, Wu and Madden 2013, Vartak
et al 2015, Abedjan et al. 2015, Prokoshyna et al 2015]; and record linkage and de-
duplication algorithms for detecting duplicate data records, such as the Data Tamer
system [Stonebraker et al. 2013b] and its commercial descendant, Tamr.

So, do these techniques and systems really work when run on data from the
real world? One key observation was that there was no established benchmarking
for these techniques and systems using real data. So, Mike assembled a team
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of scientists, Ph.D. students, and postdocs from MIT, QCRI, and University of
Waterloo, with each site tasked to work on one or more datasets and run one or
more data cleaning tools on them. One reason for such a setting was not only for
the division of labor but also because some of the datasets could not be moved from
one site to another due to restrictions imposed by their owners. We had several
meetings and it was imperative that the different experiments be performed in a
way that results were comparable. Mike played a great role in coordinating all of
these efforts and making sure that we stayed focused to meet the deadline for the
last submission for VLDB 2016. One important ingredient was a “marching order”
statement from Mike at the end of each meeting on the specific tasks that needed
to be accomplished within a well-defined timeframe.

A key conclusion was that there is no single dominant tool. In essence, various
tools worked well on different datasets. Obviously, a holistic “composite” strategy
must be used in any practical environment. This is not surprising since each tool
has been designed to detect errors of a certain type. The details and results can be
found in our PVLDB 2016 paper [Abedjan et al. 2016a].

The Data Discovery Challenge
We say an analyst has a data discovery problem when he or she spends more time
finding relevant data than solving the actual problem at hand. As it turns out, most
analysts in data-rich organizations—that’s almost everybody—suffer this problem
to varying degrees. The challenge is daunting for several reasons.

1. Analysts may be interested in all kinds of data relevant to their goal. Relevant
data may be waiting for them in a single relation in an often-used database,
but it may also be in a CSV file copied from a siloed RDBMS and stored in a
lake, or it may become apparent only after joining two other tables.

2. Analysts may have a strong intuition about the data they need, but not always
a complete knowledge of what it contains. If I want to answer: “What’s the
gender gap distribution per department in my company?” I have a strong
intuition of the schema I’d like to see in front of me, but I may have no clue
on where to find such data, in what database, with what schema, etc.

3. The amount of data in organizations is humongous, heterogeneous, always
growing, and continuously changing. We have a use case that has on the
order of 4,000 RDBMSs, another one that has a lake with 2.5 PB of data plus
a few SQL Server instances, and a use case where the organization does not
know exactly the amount of data it has because “it’s just split into multiple
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systems, but it’s a whole lot of data we have in here.” Of course, this data is
always changing.

4. Different analysts will have very different discovery needs. While an analyst
in the sales department may be interested in having fresh access to all com-
plaints made by customers, an analyst in the marketing department may
want wide access to any data that could be potentially useful to assemble
the features needed to build a prediction model. As part of their day-to-day
jobs, analysts will have very different data discovery needs, and that will be
changing continuously and naturally.

The good news is that we have built a prototype that helps in all of the above four
points. In general, the reasoning is to recognize that discovery needs will change
over time, and what is relevant today will not be relevant tomorrow. However,
the observation is that for X to be relevant to Y, there must be a “relationship”
between X and Y. So the idea is to extract all possible relationships from the data.
Relationships may include aspects such as similarity of columns, similarity of
schemas, functional dependencies (such as PK/FK; primary key/foreign key), and
even semantic relationships. All relationships are then materialized in what we
have named an “enterprise knowledge graph (EKG),” which is a graph structure
that represents the relationships between data sources within an organization. This
EKG is central to approach the data discovery challenges, as we explain next, but it
comes with its own challenge: It must be built first!

Aurum is a system for building, maintaining, and querying the EKG. It builds it
by applying a lot of techniques from systems, sketching and profiling, so as to avoid
the huge scalability bottleneck one would find otherwise when trying to read and
compute complex relationships among thousands of data sources. It maintains the
EKG by understanding when the underlying data changes and updating the EKG
accordingly, so as to ensure it always has fresh data. Last, we built a collection
of discovery primitives, which can be composed arbitrarily to write complex data
discovery queries. This is in turn the interface analysts will have to query the EKG
and to find relevant data.

Data discovery is not a solved problem, but the approach sketched above has
led us to explore more in depth the open problems—and is helping a handful of
collaborators with their own discovery needs. Following Mike’s vertical approach
(get an end-to-end system working early, then figure the “highest pole in the tent,”
and keep it simple), has helped us refine the biggest issues yet to solve in the
larger Data Civilizer project. Having a way of discovering data with Aurum has
helped us understand the challenges of joining across repositories; it has made
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us think hard about what to do when the data quality of two seemingly equivalent
sources is different, and it has helped us to understand the importance of data
transformation, which ultimately enables more opportunities for finding more
relevant data.

We are just at the beginning of the road on this research, but we have built a
reasonable car and are going full speed—hopefully—in the right direction!

Concluding Remarks
It is very different to comment on Mike’s contributions on well-established projects
that have already had clear impacts, such as Ingres and Vertica, rather than on an
ongoing project, such as Data Civilizer. However, from our five-year-old collabora-
tion with Mike, we can distill what we think are the constant characteristics of such
collaboration, the ones that have largely shaped the project.

1. What was seemingly a too-big problem for a reasonably small group of col-
laborators ended up being manageable after finding an attack strategy. The
attack was to have one or two clear, precise, end-to-end use cases early on.

2. If you want to make the research relevant and work on problems that matter
beyond academia, then base that end-to-end use case on real problems
people suffer from in the wild, and only then design a quick prototype.

3. Try out the prototype in the wild and understand what fails so that you can
move forward from there.
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PART VII.B

Contributions from
Building Systems





24The Commercial Ingres
Codeline
Paul Butterworth, Fred Carter

Mike Stonebraker’s earliest success in the software business was Relational Tech-
nology, Inc. (RTI), later renamed Ingres Corporation, which was formed by Mike,
Gene Wong, and Larry Rowe in 1980 to commercialize the Ingres research proto-
type.

As context, we (Paul and Fred) had no involvement with the Ingres academic
research projects. Paul was brought on specifically to manage the day-to-day effort
of creating the commercial Ingres product starting in 1980, and Fred joined RTI in
1982 to boost RTI’s industrial expertise in network and distributed computing.

The Ingres project produced one the first relational databases, functioning as
both a prototype/proof of concept and an operational system. The Ingres system
was based on a declarative query language (QUEL) with an optimizer that was in-
dependent of the query statement itself. This was a first, the only such optimizer
for relational databases around—for quite a while. Based on the working research
codeline (which had been provided to and used by various research partners), com-
mercial Ingres delivered a relational database system that became the cornerstone
of many customers’ businesses.

In his chapter “Where Good Ideas Come from and How to Exploit Them” (Chap-
ter 10), Mike states: “Ingres made an impact mostly because we persevered and got
a real system to work.” This working system was tremendously important to the
commercial Ingres success. (We’ll explore this a bit more in the next section.)

Moreover, the research project continued. From this, although a number of
features were added to the commercial Ingres product. These include, but are not
limited to, distributed Ingres (Ingres Star), user-defined types (see below), and an
improved optimizer.
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Mike’s continuing work, both on the research system and his work as part of RTI,
allowed us to move forward quickly. We were very fortunate to have that knowledge
and vision as we forged ahead.

The following sections look into some of this work in more detail.

Research to Commercial
The first commercial effort was taking the Ingres research DBMS code and con-
verting it into a commercial product. This activity involved converting the research
prototype from Unix on PDP-11s to VAX/VMS on the VAX. This conversion was done
by Paul and Derek Frankforth, a truly gifted systems programmer, producing a set
of VAX/VMS adaptations on which the Ingres prototype was hosted. The prototype
code—bound to Unix and designed to make a large system run on PDP-11s—had to
be reworked or eliminated. Since we had no Unix/PDP-11, we had no running ver-
sion of the Ingres code available, making this a very interesting forensic exercise.
In some cases, it was unclear what the intent of various modules was and what
correct results should look like. Many times, we would get something running and
then simply run queries through the system to try to figure out if what we thought
the module should do is really what it did. Backtracking was not unusual! Having
worked on the conversion effort, we give a huge amount of credit to the university
research team because the core database code was solid. Thus, we didn’t have to
worry about maintaining the correctness of the DBMS semantics.

It is interesting to note that the conversion effort and subsequent development
activities were performed without direct communication with the Ingres research
team, and it’s an interesting coincidence that none of the members of the research
team joined RTI. The commercial Ingres effort significantly predated the contem-
porary notion of open source (see Chapter 12) and started with the publicly available
code developed at the University of California, Berkeley. Without a known process
and in an effort to make sure we were not putting anyone at the university in an
awkward position, we worked without the benefit of their much deeper knowledge
of the code base. It is also interesting to note the original research prototype was
the only code developed by the Ingres research team used in commercial Ingres, as
the two codelines quickly diverged.

Other major changes in the initial release of commercial Ingres were removing
the code that drove communication in the multi-process version of Ingres that ran
on the PDP-11 (since that was just extra overhead on the VAX); hardening many of
the system components so that errors were dealt with in a more graceful fashion;
and adding a few tools to make Ingres a more complete commercial offering.
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Although not working closely with the Ingres research teams, commercial Ingres
engineering benefited from continuous updates on Mike’s, Larry’s, and Gene’s re-
search efforts, and many of those efforts were quickly implemented in commercial
Ingres. Examples include: Distributed Ingres, which was introduced in the com-
mercial product Ingres Star [Wallace 1986]; abstract datatypes,1 investigated in later
Ingres research activities and Postgres, which were introduced into commercial In-
gres as Universal Data Types (discussed in detail below); a simplified form of the
Postgres rule system; and the development of a comprehensive suite of developer
and end-user tools that made commercial Ingres attractive to the business com-
munity. Since the code bases diverged immediately, these features and others were
implemented without any knowledge of the research implementations. The next
few paragraphs discuss some of the synergies and surprises we encountered when
incorporating research ideas into the commercial product.

Producing a Product
Once the system was running on VAX/VMS, the next problem was how to increase
its commercial attractiveness. This required improving robustness, scalability, and
performance, and providing the comprehensive set of tools required to make the
system accessible to corporate development teams. When we first brought commer-
cial Ingres up, we measured performance in seconds per query rather than queries
per second!

Improving performance involved basic engineering work to make the system
more efficient as well as applying ongoing research from various Ingres research
efforts to the problem. Much improvement came from improving code efficiency
throughout the system, caching frequently used metadata as well as the database
pages, and improving the efficiency with which operating system resources were
used. Within two years, the efficiency of the system increased by a factor of 300
due to such engineering improvements. A number of these improvements were
suggested by Mike and Larry as thoughts they had previously considered as perfor-
mance improvements in the research prototype but could not justify as research
investments.

In addition, we leveraged ongoing research efforts to both good and bad effects.
At one point the Ingres research team came up with a new version of the Ingres
dynamic optimizer. We implemented the algorithm within commercial Ingres only
to find that the Ingres query processing system was now so much faster that the
additional overhead from the more sophisticated optimizer actually reduced the

1. This major contribution of Mike’s is discussed in Chapters 1, 3, 12, and 15).
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performance of many queries rather than improving it. This effort was abandoned
before being released. Soon thereafter we took on the effort of converting to query
optimization based on other Ingres research (not from Berkeley) into statistics-
based optimization. In fact, Mike helped us recruit the author of the research, Bob
Kooi, to RTI to implement a commercial version of this work. This effort was very
successful as Ingres was acknowledged to have the best complex query optimization
throughout the life of the company, as shown by a number of benchmarks.

In contrast to DBMS performance work at the university, performance work
on commercial Ingres was rarely driven by formal performance models. Much of
the work involved just measuring the performance of the system, identifying the
highest cost modules, and then improving the code or eliminating the use of high
cost resources.

Lesson. From this work, we can distill a few lessons. The fact that we started
with a complete and working code base made our lives much easier. As noted, we
did not have to spend time worrying about the database semantics, as those were
correct in the research system. Instead, we could focus on building a commercial
system. Error handling, internal operations, etc., are critical. Turning the project
into a commercial system involves a lot of work to ensure that recovery is always
complete and consistent. As part of building any prototype, this is an important
consideration. We were very fortunate to have someone with Mike’s knowledge
and vision as we moved forward. Mike drove the technical agenda for Ingres, and,
consequently, Ingres was recognized for a long time as the technical leader and
visionary database.

Storage Structures
As Michael Carey has noted (see Chapter 15), one of the Ingres contributions was
that a full storage manager could be integrated with the optimizer to improve the
performance of the database manager. As we moved Ingres into the commercial
world, one of the issues that we encountered involved this storage manager.

Specifically, the index structures (HASH and ISAM [indexed sequential access
method]) in Ingres were static. The index structures (be they number of hash
buckets or ISAM key structure) were fixed to the data (specifically key) set at the
time the relation was indexed. A HASH structure had a fixed number of buckets
(based on data at the time of indexing), and an ISAM table had a fixed key tree
(again, based on the key set at the time of indexing). QUEL had a command to
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remedy this, modify relation to ISAM, but this reorganized the entire table, locking
the entire table with the corresponding impact on concurrent access.

This was acceptable in many scientific uses, but for highly concurrent and 24-
hr use cases, this type of maintenance activity became increasingly difficult for
customers to manage. Moreover, to newer users of the system, the static nature of
these structures was not obvious. I cannot count the number of times when a user
would complain about performance issues; our first question was “Did you modify
to ISAM and then load the data?” (This would have created a 0-level index, with a
lot of overflow pages.) The answer was often yes, and the solution was to modify the
table again (that is, recreate the index). While happy to have a solution, customers
were often somewhat disappointed that things were that easy. What seemed like
a hard problem had a trivial fix. Of course, not all performance issues were this
simple.

To address this problem, we added a BTREE storage structure. This structure
was a B+ Tree, incorporating various additions from concurrent research (R-trees,
etc.). BTREEs, of course, provided a dynamic key organization that allowed users’
data to shrink and grow with appropriate search performance. This was, of course,
a big improvement for many types and uses of data.

That said, we did find that keeping the static data structures around was of
value. For some datasets, the ability to fix the key structure was perfectly acceptable.
Indeed, in some cases, these provided better performance—partly due to the nature
of the data, and partly due to the lower concurrency costs because the index need
not (indeed, could not) be updated.

The “Ingres Years” produced a system that functioned and had the notion of
a flexible storage manager. Indices could be created for specific purposes, and
the underlying keying structure made this very efficient. HASH-structured tables
provided excellent query performance when the complete key was known at query
time. ISAM and, later, BTREEs, did so with range queries. This flexibility provided
by the variety of storage structures, extended from the research system to the
commercial one, served our customers well.

Lesson. Moving from a research project (used primarily by research consumers) to
a commercial system that often had very near 24-hr access requirements required
us to approach software development differently. The need for the BTREE structure
was a manifestation of this, requiring a product feature set change to make the
Ingres database viable in some environments. As our customers increased their
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usage of Ingres throughout their organizations, RTI had to step up to the 24-7 use
cases.

User-Defined Types
Later, we began to see that a number of customers had a need to perform queries on
non-traditional data types. The reasons are well documented in the literature, but
primary among them is the ability for the optimizer and/or query processors to use
domain-specific information. This may take the form of data storage capabilities
or domain-specific functions.

In any case, we set out to provide this capability. Again, as Michael Carey notes,
ADT-Ingres had approached this problem. We looked at what they had done and
incorporated similar functionality (see Chapter 15).

By this time, of course, the commercial Ingres code base had a vastly different
structure from the prototype code—the code base had diverged, and the optimizer
had been replaced. We needed to fully support these user-defined data types in the
optimizer to fully enable performant query processing. As one might imagine, this
added a certain complexity.

As with ADT-Ingres and Postgres, each user-defined type (UDT) had a name, con-
versions to/from external forms (typically strings of some form), and comparison
functions. To provide for more generic input and error processing, there was a set
of functions to aid in parsing, as well as various functions to aid in key construction
and optimization.

While we needed to be able to convey information about hash functions and
optimizer statistics to the Ingres runtime code, requiring them before anything
would work made it a daunting task for our customers. (If our memory serves,
somewhere in the neighborhood of 18 C-language functions were required to fully
implement a UDT.) To support incremental development, we added the ability to
restrict the functionality: UDTs could be defined that precluded keying or statistics
generation for the optimizer.

Eventually, these capabilities became known as the Object Management Exten-
sion.

A good deal of work was done here to succinctly express the needs of the opti-
mizer and storage manager into relatively simple things that our users (albeit the
more sophisticated ones) could do without an in-depth knowledge of the intricacies
of the statistics-based optimizer. The requirement here was to continue to support
the high-performance, high-concurrency operations in which the commercial In-
gres system was used while still providing the capabilities that our customer base
required.
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The model used in commercial Ingres was similar to that used in ADT-Ingres
and Postgres. We definitely tried to build on the concepts, although our code and
customer bases were different. It was most definitely a help to build on some of the
thinking from that closely related research community.

Lesson. As Ingres moved from research to business-critical use cases, the need
for reliable data access increased. When allowing Ingres users (albeit system pro-
grammers, not end users) to alter the Ingres server code, this presented a number of
challenges, specifically with respect to data integrity. The C language, in which In-
gres is implemented, did not provide much protection here. We looked at building
the UDT system in a separate process, but that really wasn’t feasible for perfor-
mance reasons. Consequently, we checked and protected all data access as much as
possible and placed very close to red flashing warning lights in the documentation.
Given the state of the software at the time, that was the best that could be done. In
the intervening years, there have been numerous advancements in language and
system design, so we might do things differently today. But writing “user exten-
sions” is always a tradeoff. These tradeoffs must be carefully considered by anyone
providing these in a commercial environment.

Conclusions
The shared beginning in separate code bases allowed us to make direct use of the
ongoing research. There were always differences for many reasons, of course, but
we were able to make good use of the work and adapt it to the commercial system.

Mike’s knowledge and vision helped drive the commercial effort, resulting in
Ingres’ being recognized as the visionary leader. Mike’s leadership, in the form
of the ongoing research efforts and his insight into the product direction, were
tremendously important to the Ingres product and company and to us personally.

We were and are very grateful for our ongoing relationship.

Open Source Ingres
Today, Ingres is one of the world’s most widely downloaded and used open-source
DBMSs. There are multiple versions (different codelines) of open-source Ingres.
The Ingres Database (see below) is the original open-source Ingres, based on a
software donation by Computer Associates (CA). Ingres Corporation (formerly RTI)
was acquired by ASK, which was subsequently acquired by Computer Associates.
After a time, CA spun out a separate enterprise for Ingres, and that enterprise was
involved in a number of acquisitions and name changes including VectorWise BV,
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Versant, Pervasive, and ParAccel (see Wikipedia). That enterprise is now Actian.
Actian released an open-source version of Ingres, called Ingres Database 10.

The following was copied from the open source web page: Ingres Database,
BlackDuck OpenHub (http://openhub.net/p/ingres) on March 14, 2018. The data
was subsequently deleted.

Project Summary

Ingres Database is the open source database management system that can re-
duce IT costs and time to value while providing the strength and features ex-
pected from an enterprise class database. Ingres Database is a leader in sup-
porting business critical applications and helping manage the most demanding
enterprise applications of Fortune 500 companies. Focused on reliability, se-
curity, scalability, and ease of use, Ingres contains features demanded by the
enterprise while providing the flexibility of open source. Core Ingres technology
forms the foundation, not only of Ingres Database, but numerous other industry-
leading RDBMS systems.

In a Nutshell, Ingres Database . . .

. has had 3,978 commits made by 74 contributors representing 3,761,557
lines of code;

. is mostly written in C with a very well-commented source code;

. has a well-established, mature codebase maintained by one developer
with decreasing Y-O-Y commits; and

. took an estimated 1,110 years of effort (COCOMO model) starting with its
first commit in March, 2008 ending with its most recent commit about 2
years ago.



25The Postgres and
Illustra Codelines
Wei Hong

I worked on Postgres from 1989–1992, on Illustra from 1992–1997, and then on off-
shoots of Postgres on and off for several years after that. Postgres was such a big part
of my life that I named my cats after nice-sounding names in it: Febe (Frontend-
Backend, pronounced Phoebe) and Ami (Access Method Interface, pronounced
Amy). I first learned RDBMS at Tsinghua University in China with the Ingres code-
base in 1985. At the time, open-source software was not allowed to be released
to China. Yet, my advisor and I stumbled across a boxful of line-printer printouts
of the entire Ingres codebase. We painstakingly re-entered the source code into a
computer and managed to make it work, which eventually turned into my master’s
thesis. Most of the basic data structures in Postgres evolved from Ingres. I felt at
home with Postgres code from the beginning. The impact of open-source Ingres
and Postgres actually went well beyond the political barriers around the world for
that era.

Postgres: The Academic Prototype
I joined Michael Stonebraker’s research group in the summer of 1989, the sum-
mer after his now-famous cross-America coast-to-coast bike trip.1 At the time, the
group’s entire focus was on eliminating Lisp from the codebase. The group had
been “seduced by the promise of AI,” as Mike puts it, and opted to implement Post-
gres in a combination of Lisp and C. The result was a horrendously slow system

1. This is the story behind the Turing Award lecture “The land sharks are on the squawk box.”
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suffering from massive memory leaks around the language boundaries2 and un-
predictable performance due to untimely garbage collection. The team was drawn
to Lisp partially because of its nice development environment. However, the lack
of any symbolic debugging below the Lisp/C interface (as the C object files were
dynamically loaded into the running image of a stripped commercial Lisp binary)
forced the team to debug with the primitive “advanced” debugger (adb) with only
function names from the stack and raw memory/machine code! So, we spent the
whole summer converting Lisp to C and achieving performance gains by an order
of magnitude. I can still vividly remember the cheers in Evans Hall Room 608-3 on
the UC Berkeley campus and how pleased Mike was to see the simplest PostQuel
statement “retrieve (1)” work end to end in our new Lisp-free system. It was a big
milestone.

One secret to Stonebraker’s success in open-source software was that he always
hired a full-time chief programmer for each project. Like Ingres, Postgres was devel-
oped by groups of undergraduate part-time programmers and graduate students
who ultimately want to publish papers on their work on the systems. The chief pro-
grammers were the key to hold the whole system together and to support the user
base around the world through mailing lists. Postgres had groups of very talented
programmers, both undergraduate and graduate students. However, they came
and went and lacked consistency. Their motivations were mostly around playing
with Mike’s latest and greatest workstations, hanging around cool people/projects,
and/or prototyping ideas for publications.3 The chief programmers had a huge chal-
lenge on their hands. Even though the system was great for demos and academic
experiments, it was nowhere near robust, reliable, or easy to use.

In 1991, in came the young chief programmer Jeff Meredith (“Quiet” in Mike’s
Turing Award lecture). For whatever reasons at the time, most of the undergraduate
programmers disappeared and most of Mike’s graduate students either graduated
or were working on unrelated topics. The system Postgres v3.1 was not in good
shape, with lots of glaring bugs. Jeff was tasked to produce v4.0 to make it much

2. “Not to mention the lack of any symbolic debugging below the Lisp/C interface, as the C
object files were dynamically loaded into the running image of a stripped commercial Lisp binary.
Debugging with adb, with only the function names from the stack and raw memory/machine
code—good times!”—Paul Aoki, Postgres team member.

3. “I doubt many undergrads were primarily motivated by money since the hourly pay for an
undergrad programmer was exactly the same as the people who worked at the dining hall or
shelved books at the library. For a long time, the draw was access to better hardware (your own
Unix workstation!) and working with cool people on something cool. But except for the hackers
on the “six-year plan,” they’d all churn in a year or so . . . .”—Paul Aoki
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more usable and reliable. I was recruited to help along with fellow Stonebraker
students Joe Hellerstein and Mike Olson (“Triple Rock” in Mike’s Turing lecture).

We spent many long days and nights cleaning up and rewriting many sections
of flaky code, with only occasional breaks to play a primitive online game of Hearts
together. The most memorable area that I fixed is in the buffer manager. At the
time, Postgres suffered from major buffer page leaks because many parts of the
code were careless in releasing buffers. It was a painstaking process to fix all the
leaks. In the end, I was so sure that I got all the leaks plugged that I put in an error
message telling people to contact me if a leak were ever detected again. I also put
comments all over the code to make sure that people would follow my convention of
releasing buffers or else! I don’t dare to search for my name in the Postgres codebase
today. I certainly hope that no one ever saw the error message and those comments
containing my name! Postgres v4.0 was finally released with much improved query
semantics and overall reliability and robustness.

Stonebraker pointed out at the end of his Turing lecture that all the successful
systems he created had “a collection of superstar research programmers.” I think
that one of the key ingredients to Mike’s successful career is his ability to attract
and retain such talent. Despite the messy codebase, mounting number of bugs, and
high pressure from Mike’s usual “3 lines of code” estimates for our schedules, we
managed to have a lot of fun together as post_hackers.4 Mike always took us out for
beer and pizza whenever there was a milestone to celebrate or an external visitor in
town. He would hang out with us for a while and then leave behind a fistful of $20
dollar bills for us to continue “exchanging research ideas.” We fondly called these
sessions “study groups.” Some of us still continue this tradition around Berkeley.
The Postgres experience built lifelong friendships among us.

Illustra: “Doing It for Dollars”
By Spring 1992, Postgres was already a successful open-source5 project, with a few
hundred downloads and a few thousand users around the world. We were always

4. post_hackers@cs.berkeley.edu was the mailing list for everyone actively developing Postgres at
UC Berkeley.

5. “Open source factoid: Every port of the Postgres from Sun/SPARC to something else (Solaris/x86,
Linux/x86, HP-UX/PRISM, AIM/power) other than Ultrix/mips and OSF1/Alpha, was first done by
external users. This wasn’t just doing an ‘autoconf’; to do so, most had to hand-implement mutex
(spinlock) primitives in assembly language, because these were the days before stable thread
libraries. They also had to figure out how to do dynamic loading of object files on their OS, since
that was needed for the extensibility (function manager, DataBlade) features.”—Paul Aoki
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Figure 25.1 The Miro team. Back row, left to right: Cimarron Taylor, Donna Carnes, Jeff Meredith
(“Quiet”), Jim Shankland, Wei Hong (“EMP1”), Gary Morgenthaler (“Tall Shark”); middle
row: Mike Ubell (“Short One”), Ari Bowes, Jeff Anton; front row: Mike Stonebraker, Paula
Hawthorn (“Mom”), and Richard Emberson.

curious about what some of the users from Russia were doing with Postgres. There
was also a user of the rule systems with rules involving Tomahawk missiles.6 We
certainly hoped that it was not real!

Developing Postgres aside, I also managed to make good progress on my re-
search on parallel query processing and was getting ready to graduate. Mike was
wrapping up Postgres as a research project and contemplating its commercializa-
tion. When he first approached me and Jeff Meredith to join him in the commercial-
ization effort, I managed to beat Jeff to Mike’s office by half an hour and became
employee #1 of Illustra the company. Hence my nickname of “EMP1” in Mike’s
Turing Award lecture. When faced with design decisions, Mike often lectured us
on what “people who do it for dollars” would do. . . . We were so excited to finally
get to do it for dollars ourselves!

Illustra Information Technologies, Inc., (then called Miro Systems, Inc.,
[Stonebraker 1993c]) was up and running in the summer of 1992.

Our main mission at the beginning of Illustra was to (1) make Postgres
production-ready, (2) replace PostQuel with SQL (see Chapter 35), and (3) figure
out a go-to-market plan.

6. See http://www.paulaoki.com/.admin/pgapps.html for more details.

http://www.paulaoki.com/.admin/pgapps.html
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1. Productionize Postgres. Despite our best efforts as post_hackers, Postgres
was nowhere near production-ready. Luckily Mike was able to recruit a few
former graduate students—Paula Hawthorn and Mike Ubell (“Mom” and
“Short One,” respectively, in Mike’s Turing lecture)—and chief programmer
Jeff Anton from the Ingres days, who had all grown into accomplished indus-
try veterans by then. Somehow the two generations of Stonebraker students
and chief programmers were able to bond as a team immediately. The vet-
erans played a huge role in the productization of Postgres. They instilled
in us that a production database system must never, ever corrupt or lose cus-
tomers’ data. They brought in tools like Purify to help eradicate memory
corruptions. They fixed or rewrote critical but often neglected commands
like vacuum which could easily cause data corruption or permanent loss.
They also taught us how to patch corrupted disk pages with all but disserta-
tion when dealing with elusive heisenbugs7 that were impossible to catch.
They also taught us the importance of testing. Before Illustra, Postgres was
only tested by running demos or benchmarks for paper writing. When we
started the first regression test suite, someone brought a chicken mask to
the office. We made whoever broke the regression test wear the chicken mask
for a day. This test suite became known as the “Chicken Test.” Eventually we
built a substantial quality assurance team with tests ranging from synthetic
coverage tests and SQL92 compliance tests to standard benchmark tests,
customer-specific tests, and more. Finally, we were ready to sell Illustra as
a production-worthy DBMS!

2. SQLize Postgres. Stonebraker famously called SQL the “Intergalactic Data
Speak. “It was clear from the beginning that we had to replace PostQuel
with SQL. This primarily means to extend SQL92 with Postgres’ extensible
type system and the support for composite types. It was not hard to extend
SQL. What took us the most time was to catch up on the vanilla SQL92
features which Postgres lacked. For example, integrity constraints and views
were implemented by the Postgres rule system, which was not compliant
with SQL92. We had to rewrite them completely from scratch. The Postgres
rule systems were incredibly complex and buggy anyway. So, we “pushed
them off a cliff,” as Mike would say. Other SQL features that took us a
long time to complete included nested subqueries, localized strings, and

7. A heisenbug is a software bug that seems to disappear or alter its behavior when one attempts
to study it.
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date/time/decimal/numeric types. Finally, we were able to pass all SQL92
entry-level tests, which was a huge milestone.

3. Go-to-Market. As Joe Hellerstein points out in Chapter 16, Postgres was jam-
packed with great research ideas, most of which were far ahead of their time.
In addition to the technical challenges, we had a huge challenge on our
hands to figure out a go-to-market plan. We went over each unique feature
in Postgres and discussed how to market it “for dollars”:

(a) ADTs: a great extension to the relational model, easy for the market
to digest, but sounded way too “abstract”! As researchers, we would
proudly market how “abstract,” “complex,” and “extensible” our type
system was, but customers needed something concrete and simple
to relate to.

(b) Rules, Active/Deductive Databases: It was an easy decision to push
both Postgres rule systems “off a cliff” because this was an “AI Win-
ter” at the time, as Joe puts it.

(c) Time Travel. The market couldn’t care less that Postgres’ crash re-
covery code was much simpler thanks to Stonebraker’s no-overwrite
storage system. The additional benefit of the Time Travel feature
was also too esoteric for the mass-market customers. We kept the
no-overwrite storage system, but no customers ever time-traveled to
anywhere but NOW.

(d) Parallel DBMS: This was near and dear to my heart because it was
my dissertation. Unfortunately, the market for any form of shared
something or nothing parallel DBMS was too small for a start-up to
bet on at the time.

(e) Fast Path: This was our secret weapon to combat the performance
claims by OODBMS (Object-Oriented DBMS) vendors on bench-
marks by bypassing the SQL overhead. Ultimately this was too low
level an interface for customers to adopt. It just remained as our
secret weapon to win benchmarking battles.

It became clear to us that we must capitalize on Postgres’ ADT system in our go-
to-market strategy. Stonebraker quickly applied his legendary quad chart analysis
(see Chapter 6, Figure 6.2) to map out the market, which put us dominantly at the
upper-right quadrant (always!) as the new breed of DBMS: Object-Relational DBMS
(ORDBMS), the best of both worlds of OO and Relational DBMS. It was still difficult
for people to wrap their heads around such a generic system without concrete ap-
plications. We used the razor-and-blade analogy and coined the term “DataBlade,”
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which is a collection of data types, methods, and access methods. We knew that we
must build some commercially compelling datablades to jump-start the market. So,
in 1995 the company was reorganized into three business units: Financial, targeting
Wall Street with TimeSeries DataBlade; Multimedia, targeting media companies
with text and image search DataBlade; and Web, targeting the then-emerging World
Wide Web. Even though there were three business units, most of the codeline de-
velopment was concentrated on supporting the TimeSeries DataBlade because the
company expected most of the revenues from the Financial business unit, and
TimeSeries was an incredibly challenging DataBlade to implement. Doing time se-
ries well can be an entire company of its own. Wall Street customers are notoriously
savvy and demanding. Even though we made inroads to most of the major firms on
Wall Street, each pilot deal was hard fought by our top engineers. I did my time on
Wall Street trying to optimize our system so that our performance would come close
to their proprietary time series systems. I remember having to stay up all night to
rewrite our external sorting module to meet some customer’s performance require-
ment. Despite all our heroics on Wall Street, the company had very little revenue to
show for from the efforts.

In the meantime, the Multimedia business unit limped along by partnering
with text and image search vendors while the Web business unit—with only some
simple data types for handling web pages and few engineers—made huge traction
marketing-wise. We became the “Database for Cyberspace” and eventually were
acquired by Informix.

All active development on the Illustra codeline essentially stopped after the In-
formix acquisition. Illustra engineers were teamed up with Informix counterparts
to start a new codeline called Informix Universal Server. It was based on the In-
formix Dynamic Server line with extensive changes throughout the codebase to
support Object-Relational features. Aside from the organizational challenges in
merging teams with completely different cultures, the main technical challenge
for the Illustra engineers was to go from Illustra’s multi-process single-thread en-
vironment to Informix’s homegrown, non-preemptive multithreaded environment.
Despite Informix’s management and financial woes, the combined team ultimately
succeeded. That codeline still lives today powering IBM’s Informix Universal Server
product.

PostgreSQL and Beyond
While we were busy building and selling DataBlades at Illustra, back on the Berkeley
campus, Stonebraker students Jolly Chen and Andrew Yu (Happy and Serious, re-
spectively, in Mike’s Turing lecture) decided that they had had enough of PostQuel
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and did their own SQLization project on the open-source codebase. They released
it as Postgres95. This turned out to be the tipping point for open-source Postgres to
really take off.8 Even though Postgres was always open source,9 its core was devel-
oped exclusively by UC Berkeley students and staff. In April 1996, Jolly Chen sent
out a call for volunteers to the public.10 An outsider, unrelated to Berkeley, Marc
Fournier, stepped up to maintain the Concurrent Version Systems (CVS) repository
and run the mailing lists. Then a “pickup team of volunteers” magically formed
around it on its own to take over Postgres from Berkeley students to this randomly
distributed team around the world. Postgres became PostgreSQL and the rest is
history. . . .

Open Source PostgreSQL
PostgreSQL is one of the world’s most widely downloaded and used open-source
DBMSs. It is impossible to estimate how many copies are in use since PostgreSQL
ships with almost every distribution of Linux. The Linux Counter estimates that
over 165,000 machines currently run Linux with over 600,000 users (last accessed
March 14, 2018).

The following is from its open-source web page: PostgreSQL Database Server,
BlackDuck OpenHub. Last accessed March 7, 2018.

“Project Summary
PostgreSQL is a powerful, open source relational database system. It has more

than 15 years of active development and a proven architecture that has earned it a
strong reputation for reliability, data integrity, and correctness. It runs on all major
operating systems, including Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X,
Solaris, Tru64), and Windows.

In a nutshell, PostgreSQL Database Server . . .

8. “Postgres has always been open source in the sense that the source code is available but up
to this point, the contributors are all UC Berkeley students. The biggest impact that contributed
to the longevity of PostgreSQL is transitioning the development to an open source community
beyond Berkeley.”—Andrew Yu, Postgres team member

9. “Mike supported its general release as well as releasing it under BSD. Postgres95 would have
taken a very different historical path if it was GPL or dual-licensed (a la MySQL).”—Jolly Chen,
Postgres team member

10. “I sent out the email in April 1996. The thread is still archived by PostgreSQL historians. Often
open-source projects die when initial contributors lose interest and stop working on it.”—Jolly
Chen
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. has had 44,391 commits made by 64 contributors representing 936,916 lines
of code;

. is mostly written in C with a well-commented source code;

. has a well-established, mature codebase maintained by a large development
team with stable Y-O-Y commits; and

. took an estimated 262 years of effort (COCOMO model) starting with its first
commit in July, 1996 ending with its most recent commit 4 days ago” http://
www.postgresql.org. Last accessed April 12, 2018.

Final Thoughts
Stonebraker spent a decade “struggling to make Postgres real” [Stonebraker 2016].
I have been lucky enough to be a large part of this “struggle.” As Postgres/Illustra
developers, we had a general rule of not letting Mike anywhere near the code
repositories. However, the codelines throughout were heavily influenced by his
vision, ideas, and relentless push to dominate in the “upper-right quadrant” in the
market sector. In his Turing lecture, Mike gave a lot of credit to the collection of
superstar programmers “on whose shoulders I’ve ridden” [Stonebraker 2016]. On
the flip side, so many of these programmers have also ridden on Mike’s shoulders
and grown into new generations of leaders in both industry and academia.

http://www.postgresql.org




26The Aurora/Borealis/
StreamBase Codelines:
A Tale of Three Systems
Nesime Tatbul

StreamBase Systems, Inc. (now TIBCO StreamBase) was the first startup company
that Michael Stonebraker co-founded after moving from UC Berkeley to MIT in
the early 2000s. Like Mike’s other start-ups, StreamBase originated as an academic
research project, called Aurora.1 One of the first data stream processing systems
built, Aurora was the result of close collaboration among the database research
groups of three Boston-area universities: MIT, Brown, and Brandeis. It also marked
the beginning of a highly productive, long-lasting period of partnership among
these groups that has continued to this day, with several successful joint research
projects and startup companies (see Figure 26.1; Chapters 27 and 28).

As Aurora was transferred to the commercial domain, the academic research
continued full steam ahead with the Borealis2 distributed stream processing sys-
tem. Based on a merger of the Aurora codebase (providing core stream processing
functionality) with the Medusa3 codebase from MIT’s networking research group
(providing distribution functionality), Borealis drove five more years of strong col-
laboration under Mike’s leadership. Years later, around the same time as Stream-
Base was being acquired by TIBCO Software, the usual suspects would team up

1. http://cs.brown.edu/research/aurora/. Last accessed May 14, 2018.

2. http://cs.brown.edu/research/borealis/. Last accessed May 14, 2018.

3. http://nms.csail.mit.edu/projects/medusa/. Last accessed May 14, 2018.

http://cs.brown.edu/research/aurora/
http://cs.brown.edu/research/borealis/
http://nms.csail.mit.edu/projects/medusa/
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Figure 26.1 Michael Stonebraker’s Streaming Systems Timeline.

again to build a novel system for transactional stream storage and processing, S-
Store.4

This chapter provides a collection of stories from members of the Aurora/
Borealis and StreamBase teams, who were first-hand witnesses to the research and
development behind Stonebraker’s streaming systems and his invaluable contri-
butions.

Aurora/Borealis: The Dawn of Stream Processing Systems
Developing under Debian Linux, XEmacs, CVS, Java, and C++: free
Gas for a round-trip, two-hour commute from New Hampshire to Rhode
Island: $15
Funding 4 professors, 14 graduate students, and 4 undergrads for six
months: $250,000
Getting a data stream processing system to process 100 gigabytes in six
months: priceless!

—Brown University [2002]

This opening quote from a Brown departmental newsletter article about the Aurora
project captures in a nutshell how it all got started. Shortly after Mike had arrived on
the East Coast, started living in New Hampshire, and working at MIT, he and Stan
Zdonik of Brown got in touch to discover their joint research interests. This was way
before everything from phones to refrigerators got so smart and connected, but

4. http://sstore.cs.brown.edu/. Last accessed May 14, 2018.

http://sstore.cs.brown.edu/
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futurists had already been talking about things like pervasive computing, sensor
networks, and push-based data. Mike and Stan realized that traditional database
systems would not be able to scale to the needs of an emerging class of applications
that would require low-latency monitoring capabilities over fast and unpredictable
streams of data. In no time, they set up a project team that included two young
database professors, Ugur Çetintemel and Mitch Cherniack, as well as several grad
students from Brown and Brandeis. I was a second-year Ph.D. student in the Brown
Database Group at the time, just finishing off my coursework, in search of a good
thesis topic to work on, and not quite realizing yet that I was one lucky grad student
who happened to be in the right place at the right time.

The first brainstorming meeting at Brown kicked off a series of others for de-
signing and prototyping a new data management system from scratch and tackling
novel research issues along the way. One of the fundamental things to figure out
was the data and query model. What was a data stream and how would one express
queries over it? Everyone had a slightly different idea. After many hot debates, we fi-
nally converged on SQuAl (the Aurora [S]tream [Qu]ery [Al]gebra). SQuAl essentially
consisted of streaming analogs of relational operators and several stream-specific
constructs (e.g., sliding windows) and operators (e.g., resample), and supported
extensibility via user-defined operators. In Aurora terminology, operators were rep-
resented with “boxes,” which were connected with “arrows” representing queues of
tuples (like database rows), together making up “query networks.” We were ready
to start implementing our first continuous queries. Well, almost . . .

As systems students, we were all confident coders and highly motivated for the
project, but building a whole new database system from the ground up looked
way more complex than anything we had ever done before. Where does one even
start? Mike knew. The first thing to do was to implement the catalog that would
hold the metadata needed by systems components, using BerkeleyDB. We then
implemented the data structures for basic primitives such as streams, tuple queues,
and windows as well as the boxes for SQuAl operators. The scheduler to execute the
boxes was implemented next. These core systems components were implemented
in C++. Initially, system settings and workloads to run (i.e., query networks) were
simply specified by means of an XML-based, textual configuration file. Later we
added a Java-based GUI for making it easier for users to construct query networks
and manage their execution using a drag-and-drop boxes-and-arrows interface. The
graphical specification would also be converted into the textual one under the
covers. Our procedural approach to visually defining dataflows was what set Aurora
apart from other systems that had SQL-based, declarative front-ends. Other visual
tools were added over time to facilitate system monitoring and demonstration of



324 Chapter 26 The Aurora/Borealis/ StreamBase Codelines: A Tale of Three Systems

Figure 26.2 Aurora research meeting in the Brown Computer Science Library Room, Fall 2002. Left
to right, top row: Adam Singer, Alex Rasin, Matt Hatoun, Anurag Maskey, Eddie Galvez,
Jeong-Hyon Hwang, and Ying Xing; bottom row: Christina Erwin, Christian Convey,
Michael Stonebraker, Robin Yan, Stan Zdonik, Don Carney, and Nesime Tatbul.

various advanced features, (e.g., Quality of Service [QoS] specification and tracking,
monitoring tuple queues and system load).

During the first year, we were both building the initial system prototype and
trying to identify the key research issues. The highest priority was to build a func-
tional system and publish our first design paper. At first, the grad students did not
know which research problems each would be working on. Everyone focused on
engineering the first working version of the system. This was well worth the effort,
since we learned a great deal along the way about what it took to build a real data
management system, how to figure out where the key systems problems lay, as well
as creating a platform for experimental research. After about six months into the
project, I remember a brainstorming session at Brown where major research topics
were listed on the board and grad students were asked about their interests. After
that day, I focused on load shedding as my research topic, which eventually became
the topic of my Ph.D. dissertation.

By the end of year one, our first research paper got into VLDB’02 [Carney et al.
2002]. I remember an enthusiastic email from one of the professors saying some-
thing like, “Congratulations folks, we are on the map!” This paper was later selected
to appear in a special issue of the VLDB Journal with best papers from that year’s
VLDB [Abadi et al. 2003b]. According to a subsequent publication shortly thereafter,
Aurora was already an “operational system with 75K lines of C++ code and 30K lines
of Java code” by this time [Zdonik et al. 2003]. By the end of the second year, grad
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students started publishing the first papers on their individual research topics (e.g.,
load shedding, scheduling), we presented a demo of the system at SIGMOD’03,5 and
did our first public code release. At some point, probably shortly before the release,
a full-time software engineer was hired to the project to help us manage the growing
codebase, organize and clean up the code, create proper documentation, etc.

As Aurora moved to the commercial space, the university team switched atten-
tion to its distributed version, Borealis. We explored new research topics such as
high availability, fault tolerance, and dynamic load balancing, and published a se-
ries of SIGMOD/VLDB/ICDE papers [Ahmad et al. 2005, Balazinska et al. 2004b,
2005, Hwang et al. 2005, Xing et al. 2005]. Within a couple of years, we built a
comprehensive system prototype for Borealis, which won the best demo award at
SIGMOD’056 (this was the same year as Mike’s IEEE John von Neumann Medal cel-
ebration event). Further details on the research work behind Aurora/Borealis can
be found in Chapters 17 and 26.

We were not the only team working on streaming research in those days. There
were several other leading groups, including the STREAM Team at Stanford (led
by Jennifer Widom), the Telegraph Team at UC Berkeley (led by Mike Franklin and
Joe Hellerstein), and the Punctuated Streams Team at Oregon Graduate Institute
(led by Dave Maier). We interacted with these teams very closely, competing with
one another on friendly terms but also getting together at joint events to exchange
updates and ideas on the general direction of the field. I remember one such event
that was broadly attended by most of the teams: the Stream Winter Meeting (SWiM)
held at Stanford in 2003, right after the CIDR’03 Conference in Asilomar, CA.7 Such
interactions helped form a larger community around streaming as well as raised
the impact of our collective research.

Aurora/Borealis was a major team effort that involved a large number of student
developers and researchers with different skills, goals, and levels of involvement in
the project across multiple universities. Under the vision and leadership of Mike
and the other professors, these projects represent unique examples of how large

5. Photos from the Aurora SIGMOD’03 demo are available at: http://cs.brown.edu/research/aurora/
Sigmod2003.html. Last accessed May 14, 2018.

6. Photos from the Borealis SIGMOD’05 demo are available at: http://cs.brown.edu/research/db/
photos/
BorealisDemo/index.html. Last accessed May 14, 2018.

7. See the “Stream Dream Team” page maintained at http://infolab.stanford.edu/sdt/. (Last ac-
cessed May 14, 2018) and detailed meeting notes from the SWiM 2003 Meeting at http://telegraph
.cs.berkeley.edu/swim/. (Last accessed May 14, 2018).

http://cs.brown.edu/research/aurora/Sigmod2003.html
http://cs.brown.edu/research/db/photos/BorealisDemo/index.html
http://cs.brown.edu/research/db/photos/BorealisDemo/index.html
http://infolab.stanford.edu/sdt/
http://telegraph.cs.berkeley.edu/swim/
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systems research teams can work together and productively create a whole that is
much bigger than the sum of its parts. Mike’s energy and dedication was a great
source of inspiration for all of us on the team. He continuously challenged us
toward building novel but also practical solutions, never letting us lose sight of
the real world.

By the final public release of Borealis in summer 2008, all Aurora/Borealis Ph.D.
students had graduated, with seven of them undertaking faculty positions, Mitch
and Ugur had been promoted to tenured professors, and StreamBase had already
closed its Series C funding and started generating revenue. Mike and Stan? They
had long been working on their next big adventure (see Chapters 18 and 27).

From 100K+ Lines of University Code to a Commercial Product
Richard Tibbetts, one of Mike’s first grad students at MIT, witnessed the complete
StreamBase period from its inception to the TIBCO acquisition. After finishing his
M.Eng. thesis with Mike on developing the Linear Road Stream Data Management
Benchmark [Arasu et al. 2004], Richard got involved in the commercialization of
Aurora, first as one of the four engineer co-founders, and later on as the CTO of
StreamBase. He reminisces here about the early days of the company:

Initially, we called the company ‘DBstream,’ but then the trademark attorneys
complained. Then inspired by the pond near Mike’s vacation house in NH where
we did an offsite, we wanted to call it ‘Grassy Pond.’ Oops, there was a computer
company in Arkansas with that name! Could we pick some other body of water?
We were going to change it later anyway . . . And so became the first official
name of the company: ‘Grassy Brook.’ Mike’s daughter [Lesley] created the logo.
Later in 2004, Bill Hobbib [VP of marketing] would rename it to ‘StreamBase,’ a
stronger name which he and others would build into a very recognizable brand.

We put together very rough pitch decks and presented them to a handful
of Boston-area VCs. We had hardly anything in there about commercialization,
really much more a solution in search of a problem, but we did have a UI (user in-
terface) we could demonstrate. The visual tool really won people over. It took me
years to really be a fan of the visual programming environment. But it was the case
that graph-structured applications were a more correct way to look at what we
were doing: a natural, “whiteboard” way of representing application logic. Even-
tually, most of the competitors in the space copied what we were doing, adding
visual languages to their SQL-like approaches. Even in tools that didn’t have a vi-
sual environment, APIs became graph-topology-oriented. StreamBase invested
deeply in visual programming, adding modularity, diff/merge, debugging, and
other capabilities in ways that were always visual native. Users, sometimes skep-
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tical at first, fell in love with the visual environment. Years later, after we had sold
the company, integrated the tech, and I had left, that visual environment lived
on as a major capability and selling point for StreamBase.

For the first four months, from September 2003 to January 2004, we were in
the same codebase as academia, making things better and building around. But
at some point, needs diverged and it was appropriate to fork the code. We BSD-
licensed a dump of the code and published it at MIT, then downloaded a copy at
the company, and went from there with our own code repository.

One of the first things we did was to build a test harness. Regressions and
right answers matter a lot to industry—even more than performance and archi-
tecture. Most of the academic code wouldn’t survive in the long term. It would get
replaced incrementally, ‘Ship of Theseus’ style. Some of the architecture and data
structures would remain. We had to make sure we liked them, because they would
get harder to change over time. Ph.D. theses typically represented areas of code
where complexity exceeded what was strictly necessary, so we started deleting
them. Also, anything with three to five distinct implementations of a component
was highly suspect, due to the redundant level of flexibility and higher cost to
maintain all of those implementations. We either picked the simplest one or the
one that was a key differentiator. Deleting code while maintaining functional-
ity was the best way to make the codebase more maintainable and the company
more agile.

Encounters with StreamBase Customers
John Partridge was a co-founder of StreamBase and its initial VP of marketing. Hav-
ing been on the business development and product marketing side of the company,
John shares the following anecdote about Mike’s interaction with StreamBase cus-
tomers:

We knew that investment banks and hedge funds cared a lot about processing
real-time market data with minimal latency and so we targeted all the obvious
big-name banks: Goldman Sachs, Morgan Stanley, etc. Those banks were always
looking for competitive advantage and their appetite for new technology was
widely known. What was also widely known was that the egos of the managing
directors who managed the trading desks were enormous, but these were the
people we were trying to meet. Getting four of them in the same room for a one-
hour presentation took weeks, sometimes months, to schedule because they all
wanted to be viewed as the scarcest, and hence most valuable, person to attend.

Anyhow, at last we had four of the top people from a leading investment bank
scheduled to hear Mike give the StreamBase pitch. Mike and I show up for the
meeting and three of them are there; no one knows where the fourth guy is.
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They’re all wearing the impeccable tailored suits, power ties, and ludicrously
expensive analog watches. I’m wearing one of the two business suits I own
and feeling completely outgunned. Mike is wearing his red fleece jacket, polo
shirt underneath, and open-toed sandals. There’s no small talk with these guys;
they are all business. I do the customary five minutes of introductions, then
Mike takes over with his pitch. The technical questions start and, coming from
business people, the questions are pretty insightful. They’re also pretty pointed,
probably because Mike likes to frame alternative approaches, including this
bank’s, as things ‘only an idiot would do.’ So it’s a real grilling they’re giving
Mike. Then, 20 minutes into it, the fourth managing director walks in, doesn’t
say hello, doesn’t apologize for being late, doesn’t even introduce himself; he
just takes a seat and looks at the screen, ignoring the guy in the sandals. Mike,
without missing a beat, turns on the late arrival and declaims, ‘You’re late.’
There’s something about the way a tenured professor can say those words that
strikes terror in the heart of anyone who has ever graduated college. Not only
did the late arrival flinch and reflexively break away from Mike’s withering stare,
but you could see the other three managing directors grinning through a wave of
shared schadenfreude. At that moment, what had been a tough business meeting
became a college lecture where the professor explained how the world worked
and everyone else just listened.

“Over My Dead Body” Issues in StreamBase
Richard Tibbetts reminds us of the infamous phrase from Mike that whoever
worked with him has probably heard him say at least once:

Mike was fond of taking very strongly held positions, based on experience, and
challenging people to overcome them. Occasionally these would elicit the famil-
iar phrase ‘Over My Dead Body (OMDB).’ However, it turned out that Mike could
be swayed by continued pressure and customer applications.

John Partridge remembers one such OMDB issue from the early days of Stream-
Base:

The StreamBase stream processing engine was originally implemented as an
interpreter. This was the standard way to build database query executors at
the time, and it made it easier to add new operators and swap in alternative
implementations of operators. I think we were about eight or nine months in
when the lead engineers on the engine, Jon Salz and Richard Tibbetts, began
to realize that the performance hit for running the interpreter was disastrous.
The more they looked at the problem, the more they believed that using a just-
in-time Java compiler would run much faster and still provide a mechanism for
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swapping out chunks of application logic on the fly. Mike would have none of
this and it became an ‘Over My Dead Body’ issue for months. Finally, our CEO
resolved the debate by giving Jon Salz and Richard Tibbetts two months to get
an experimental version up and running. Mike viewed this as a complete waste
of precious developer time, but agreed just to keep the peace. Jon and Richard
finished it a week early and the performance advantages were overwhelming.
Mike was hugely impressed with the results and, of course, with Jon and Richard.
We switched over to the Java JIT compiler and never looked back.

Richard Tibbetts adds the following details from the same time period, and
how taking up the challenge raised by Mike led the engineering team to a new and
improved version of the StreamBase engine to be shipped to the customers:

Professors spend a lot of time challenging graduate students to do impossible
things, expecting them to be successful only a fraction of the time, and this yields
a lot of scientific advancement. At StreamBase, the Architecture Committee was
where Mike, some of the other professors, the engineering founders, and some of
the other senior engineers came together to discuss what was being built and how
it was being built. These meetings regularly yielded challenges to Engineering to
build something impossible or to prove something.

The first instance I recall came very early in the life of the company, when
Jon Salz wanted to completely replace the user interface for editing graphical
queries that had been developed in the university. Mike and Hari [Balakrishnan]
thought it would be lower risk to begin modifying it and incrementally improve it
over time. Jon asserted he could build a better UI that would be easier to improve
going forward, and they challenged him to do it in two weeks. He delivered, and
that became the basis for our commercial GUI, and also our move into Eclipse-
based development environments, which enabled a vast array of capabilities in
later versions. It was also the first Java code in the company.

Another instance, possibly even more impactful, came as it became clear that
the original architecture wasn’t a fit for what the market needed. StreamBase
1.0, like Aurora, managed queries as collections of processing nodes and queues,
with a scheduler optimizing multi-threaded execution by dispatching work based
on queue sizes and available resources. The processing nodes were implemented
in C++, making this system a sort of interpreter for queries.

It turned out that execution performance was dominated by the cost of queu-
ing and scheduling. Jon Salz proposed an alternative approach, codenamed
“SB2” for being the second version of StreamBase. In Jon’s proposal, queries
would be compiled to Java byte-code and executed by the system without re-
quiring any queuing or scheduling. This would also dramatically change the
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execution semantics of the graphical queries, making them much easier to rea-
son about, since data would flow in the same path every time.

Of course, it would also make the system completely different from the aca-
demic approach to high performance streaming. And Mike was appalled at the
idea of building database tech in Java, which he believed was slow. Jon was confi-
dent that he could make it faster, much faster. So, Mike challenged him to prove
it. In a couple of months Jon and I had a prototype, which was 3–10 times higher
throughput than the existing implementation, and even more dramatically lower
latency. Mike happily conceded the point, and StreamBase 3.0 shipped with the
new faster engine, with a nearly seamless customer upgrade.

Richard Tibbetts recalls two additional OMDB situations, where customer re-
quirements and hard work of engineers overcame oppositions from Mike: adding
looping and nested data support to StreamBase.

Within a processing graph, it made computational sense to have cycles: loops
where messages might feed back on one another. However, this was at odds with
the SQL model of processing, and made our system less declarative, as well as
admitting the possibility of queries that would ‘spin loop,’ consuming lots of
CPU and never terminating. There were discussions of ways to enable some of
this while maintaining declarative semantics, but in the end, customer use cases
(for example, handling a partially filled order by sending the unfilled part back
to match again) demanded loops, and they became a core part of the system.

For nested data, the relational database model said it was a bad thing. That
XML had been a horrible idea as a data representation, just a retread of CODASYL
(the Conference/Committee on Data Systems Languages) from the 1970s. This
may be true for data at rest. But data in motion is more like self-contained
messages. Many of the other systems and protocols StreamBase had to integrate
with had nested structures in their messages. Over time, StreamBase handled
more and more of these message structures, and at no point was Mike’s health
adversely affected . . .

An April Fool’s Day Joke, or the Next Big Idea?
Both Eddie Galvez of TIBCO StreamBase (a former grad student from the Au-
rora Brandeis team and one of the four engineer co-founders of StreamBase) and
Richard Tibbetts fondly remember how the StreamBase engineers tried to fool Mike
several times with their April Fool’s Day jokes about some technical topic around
StreamBase. Richard retells one story that I have found especially interesting:

StreamBase Engineering had a tradition of announcing major new product ca-
pabilities to the company, usually with an enthusiastic mass email, on April 1st.
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One year, Jon announced that he had rewritten the whole system in Haskell and
it was another ten times faster. On more than one occasion, Mike responded to
these in good faith. One occurrence in particular comes to mind:

Very early versions of StreamBase had embedded a MySQL query engine
to manage stored data. This software never shipped, and had many technical
flaws. It also offended Mike, because MySQL was just not a very good database.
However, it was designed to be embeddable (today SQLite would be the logical
choice), and so we tried it out. Eventually, we switched to our own, more limited
stored data management, in memory and on disk using Sleepycat. But MySQL
did come up again.

On Sunday, April 1, 2007, Hayden Schultz and I had worked through the
weekend integrating with a MySQL-based system at Linden Lab, a prospective
customer. I sent an email to the whole company, announcing that in addition to
succeeding at the customer integration, we had had an epiphany about MySQL,
enumerating its many wonderful capabilities. The email concluded, ‘The sum of
all these benefits is that MySQL is the obvious choice for all StreamBase persis-
tence. We should begin exploring a MySQL-based architecture for StreamBase
5.0, and also look at how we can bring this technology to bear in existing engage-
ments.’

Mike quickly responded saying that he had a superior proposal, based on a
planned research system called ‘Horizontica,’ and we should table any decision
until the next Architecture Committee meeting. I laughed out loud at the pun on
Vertica. Mike had clearly gotten in on the April 1st activities. But then I opened
the attachment, which was a 13-page preprint of a VLDB paper. In fact, this was an
actually interesting alternative approach for StreamBase persistence, and some
pretty cool research. That system would later become H-Store/VoltDB.

As an interesting note to add to Richard’s story, exactly six years later on Monday,
April 1, 2013, I joined the Intel Science and Technology Center for Big Data based
at MIT as a senior research scientist to work with Mike and the old gang again,
on a new research project that we named “S-Store.” The idea behind S-Store was
to extend the H-Store in-memory OLTP database engine with stream processing
capabilities, creating a single, scalable system for processing stored and streaming
data with transactional guarantees [Meehan et al. 2015b]. S-Store was publicly
released in 2017.

Next time you make an April Fool’s Day joke to Mike, think twice!

Concluding Remarks
Stream processing has matured into an industrial-strength technology over the
past two decades. Current trends and predictions in arenas such as the Internet
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Figure 26.3 The Aurora/Borealis/StreamBase reunion on April 12, 2014 at MIT Stata Center for
Mike’s 70th Birthday Celebration (Festschrift). From left to right, front row: Barry Morris,
Nesime Tatbul, Magda Balazinska, Stan Zdonik, Mitch Cherniack, Ugur Çetintemel; back
row: John Partridge, Richard Tibbetts, and Mike Stonebraker. (Photo courtesy of Jacek
Ambroziak and Sam Madden.)

of Things, real-time data ingestion, and data-driven decision-making indicate that
the importance of this field will only continue to grow in the future. Stonebraker’s
streaming systems have been immensely influential in defining the field and setting
its direction early on, all the way from university research to the software market.
These systems have also been great examples of productive collaboration and team-
work at its best, not to mention the fact that they shaped many people’s careers
and lives. The codeline stories retold in this chapter provide only a glimpse of this
exciting era of Mike’s pioneering contributions.
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27The Vertica Codeline
Shilpa Lawande

The Vertica Analytic Database unequivocally established column-stores as the su-
perior architecture for large-scale analytical workloads. Vertica’s journey started
as a research project called C-Store, a collaboration by professors at MIT, Brown,
Brandeis, and UMass Boston. When Michael Stonebraker and his business partner
Andy Palmer decided to commercialize it in 2005, C-Store existed in the form of a
research paper that had been sent for publication to VLDB (but not yet accepted)
and a C++ program that ran exactly seven simple queries from TPC-H out of the
box—it has no SQL front-end or query optimizer, and in order to run additional
queries, you had to code the query plan in C++ using low level operators! Six years
later (2011), Vertica was acquired by Hewlett-Packard Enterprise (HPE). The Vertica
Analytics Engine—its code and the engineers behind it—became the foundation of
HPE’s “big data” analytics solution.

What follows are some highlights from the amazing Vertica journey, as retold by
members of its early engineering team. And some lessons we learned along the way.

Building a Database System from Scratch
My involvement with Vertica started in March 2005 when I came across a job
ad on Monster.com that said Stonebraker Systems: “Building some interesting
technology for data warehousing.” As someone who was getting bored at Oracle
and had studied Mike’s Red Book1 during my DB classes at University of Wisconsin-
Madison, I was intrigued, for sure. My homework after the first interview was—
you guessed it—read the C-Store paper [Stonebraker et al. 2005a] and be ready to
discuss it with Mike (a practice we continued to follow, except eventually the paper
was replaced with the C-Store Seven Years Later paper [Lamb et al. 2012], and the

1. Readings in Database Systems http://www.redbook.io/.

http://www.redbook.io/
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interview conducted by one or more senior developers). I do not recall much of that
first interview but came away inspired by Mike’s pitch: “It doesn’t matter whether
we succeed or fail. You would have built an interesting system. How many people
in the world get to build a database system from scratch?” And that’s why I joined
Vertica (see Chapter 18).

The early days were filled with the usual chaos that is the stuff of startups: hard
stuff like getting the team to jell, easier stuff like writing code, more hard stuff like
sorting through disagreements on whether to use push- or pull-based data-flow
operators (and whether the building was too hot for the guys or too cold for me),
writing some more code, and so on.

In the summer of 2005, we hired Chuck Bear, who at the time was living out
of his last company’s basement and working his way down the Appalachian Trail.
After Chuck’s interview, Mike barged into the engineering meeting saying, “We
must do whatever it takes to hire this guy!” And since the team was fully staffed,
Chuck got asked to do “performance testing.” It did not take long for everyone to
realize that Chuck’s talents were underutilized as a “tester” (as Mike called quality
assurance engineers). There was one occasion where Chuck couldn’t convince one
of the engineers that we could be way faster than C-Store, so, over the next few
nights, while his tests were running, he wrote a bunch of code that ran 2× faster
than what was checked in!

The first commercial version of Vertica was already several times faster than C-
Store, and we were only just getting going, a fantastic feat of engineering! From
here on, C-Store and Vertica evolved along separate paths. Vertica went on to build
a full-fledged petabyte-scale distributed database system, but we did keep in close
touch with the research team, sharing ideas, especially on query execution with
Daniel Abadi and Sam Madden, on query optimization with Mitch Cherniack at
Brandeis, and on automatic database design with Stan Zdonik and Alex Rasin at
Brown. Vertica had to evolve many of the ideas in the C-Store paper from real-world
experience, but the ideas in Daniel Abadi’s Ph.D. thesis on compressed column
stores still remained at the heart of Vertica’s engine, and we should all be glad he
chose computer science over medicine.

Lesson. In effective software engineering organizations, the best ideas win. Shared
ownership of the code base is essential. And, if you can’t resolve a disagreement
with words, do it with code.

Code Meets Customers
The codeline journey of Vertica was a good example of what is called a “Lean
Startup” these days—again Mike was ahead of his time (see Chapter 7). The first
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version “Alpha” was supposed to only do the seven C-Store queries, but with an
SQL front-end, not C++ and run on a single node. To do this, the decision was to
use a “brutalized Postgres” (see Chapter 16), throwing away everything except its
parser and associated data structures (why reinvent the wheel?) and converting it
from a multi-process model to a single-process multi-threaded model. Also left out
by choice: a lot of things that you can’t imagine a database not being able to do!

Omer Trajman was one of the early engineers. He later went on to run the
Field Engineering team (charged with helping deploy Vertica in customer sites).
He recalls:

One of these choices was pushing off the implementation of delete, a crazy
limitation for a new high-performance database. In the first commercial versions
of Vertica, if a user made a mistake loading data, the data couldn’t be changed,
updated, or even deleted. The only command available to discard data was to
drop the database and start over. As a workaround to having to reload data from
flat files, the team later added INSERT/SELECT to order to create a copy of loaded
data with some transformation applied, including removing rows. After adding
the ability to rename and drop tables, the basic building blocks to automate
deletes were in place. As it turns out, this was the right decision for Vertica’s
target market.

The Vertica team found that there were two types of ideal early customers:
those whose data almost never changed, and those whose data changed all the
time. For people with relatively static data, Vertica provided the fastest and most
efficient response times for analytics. For people whose data changed all the
time, Vertica was able to go from raw data to fast queries more quickly than
any other solution in the market. To get significant value from Vertica, neither
customer type needed to delete data beyond dropping tables. Customers with
data that rarely changed were able to prepare it and make sure it was properly
loaded. Customers with rapidly changing data did not have the time to make
corrections. Mike and the team had a genuine insight that at the time seemed
ludicrous: a commercial database that can’t delete data.

Lesson. Work with customers, early and often. Listen carefully. Don’t be con-
strained by conventional wisdom.

Don’t Reinvent the Wheel (Make It Better)
Discussions about what to build and what not weren’t without a share of haggling
between the professors who wrote the academic C-Store paper [Stonebraker et al.
2005a] and engineers who were building the real world Vertica. Here’s Chuck Bear
recounting those days.
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Back in 2006, the professors used to drop by Vertica every week to make sure
we (the engineers) were using good designs and otherwise building the system
correctly. When we told Mike and Dave DeWitt2 that we were mulling approaches
to multiple users and transactions, maybe some sort of optimistic concurrency
control or multi-versioning, they yelled at us and said, in so many words, “Just
do locking! You don’t understand locking! We’ll get you a copy of our textbook
chapter on locking!” Also, they told us to look into the Shore storage manager
[Carey et al. 1994], thinking maybe we could reuse its locking implementation.

We read the photocopy of the chapter on locking that they provided us, and
the following week we were prepared. First, we thanked the professors for their
suggested reading material. But then we hit them with the hard questions . . .
“How does locking work in a system like Vertica where writers don’t write to the
place where readers read? If you have a highly compressed table, won’t a page-
level lock on an RLE3 column essentially lock the whole table?”

In the end, they accepted our compromise idea, that we’d “just do locking”
for transaction support, but at the table level, and additionally readers could take
snapshots so they didn’t need any locks at all. The professors agreed that it was a
reasonable design for the early versions, and in fact it remains this way over ten
years later.

That’s the way lots of things worked. If you could get a design that was both
professor-approved and that the engineers figured they could build, you had a
winner.

Lesson. This decision is a great case study for “Keep it simple, stupid,” (aka KISS
principle) and “Build for the common case,” two crucial systems design principles
that are perhaps taught in graduate school but can only be cemented through the
school of hard knocks.

Architectural Decisions: Where Research Meets Real Life
The decision about locking was an example of something we learned over and over
during Vertica’s early years: that “professors aren’t always right” and “the customer
always wins.”

The 2012 paper “The Vertica Analytic Database: C-Store 7 years later “ [Lamb et
al. 2012] provides a comprehensive retrospective on the academic proposals from
the original C-Store paper that survived the test of real-world deployments—and
others that turned out to be spectacularly wrong.

2. Dave DeWitt (see Chapter 6), on Vertica’s technical advisory board, often visited the Vertica team.

3. Run Length Encoding
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For instance, the idea of permutations4 was a complete disaster. It slowed the
system down to the point of being useless and was abandoned very early on. Late
materialization of columns worked to an extent, for predicates and simple joins,
but did not do so well once more complex joins were introduced. The original as-
sumption that most data warehouse schemas [Kimball and Ross 2013] were “Star”
or “Snowflake” served the system well in getting some early customers but soon
had to be revisited. The optimizer was later adapted for “almost star” or “inverted
snowflake” schemas and then was ultimately completely rewritten to be a general
distributed query optimizer. Eventually, Vertica’s optimizer and execution engine
did some very clever tricks, including leveraging information on data segmentation
during query optimization (vs. building a single node plan first and then paralleliz-
ing it, as most commercial optimizers tend to do); delaying optimizer decisions
like type of join algorithm until runtime; and so on.

Another architectural decision that took several iterations and field experience
to get right was the design of the Tuple Mover. Here’s Dmitry Bochkov, the early
lead engineer for this component, reminiscing about his interactions with Mike
during this time.

The evolution of the Tuple Mover design in the first versions of Vertica demon-
strated to me Mike’s ability to support switching from academic approach to
“small matters of engineering” and back. What started as a simple implemen-
tation of an LSM (log-structured merge-tree) quickly degenerated into a compli-
cated, low-performance component plagued by inefficient multiple rewrites of
the same data and a locking system that competed with the Execution Engine
and Storage Access Layer locking mechanisms.

It took a few rounds of design sessions that looked more like thesis defense,
and I will forever remember the first approving nod I received from Mike. What
followed was that the moveout and mergeout algorithms ended up using “our
own dog food.” Our own Execution Engine was used for running the Tuple
Mover operations to better handle transactions, resources planning, failover,
and reconciliation among other tasks. And while it added significant pressure
on other components, it allowed the Tuple Mover to become an integral part of
Dr. Stonebraker’s vision of a high-performance distributed database.

Anyone who has worked with Mike knows he is a man of few words, and if
you listen carefully, you can learn a massive amount from his terseness. If you

4. The idea that multiple projections in different sort orders could be combined at runtime to
recreate the full table. Eventually, it was replaced by the notion of a super projection that contains
all the columns.
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worked at Vertica in the early days, you often heard Mike-isms, such as “buying a
downstream farm” (referring to “engineering debt”)5 and the famous “over Mike’s
dead body” (OMDB). These phrases referred to all the “bells and whistles” that
database systems are filled with that Vertica would never build, perfectly capturing
the tension between “research” and “real-life” choices that Vertica faced repeatedly
over its life.

Min Xiao,6 founding engineer turned sales engineer, describes an OMDB en-
counter with Mike.

One day in 2008, I came back to the office after visiting a global bank customer. I
saw that Mike, wearing a red shirt, sat in a small corner conference room working
on his laptop. I stepped in and told him that the bank needed the feature of
disaster recovery (DR) from Vertica. In the past, Mike had always wanted me
to let him know the product requests from the customers. For this customer,
their primary Vertica instance was in Manhattan and they wanted a DR instance
in New Jersey. They had used Oracle for the same project prior to Vertica and
therefore also hoped to have a statement-by-statement-via-change-data-capture
type of DR. Mike listened to me for a minute. Apparently, he had heard the
request from someone else and didn’t look surprised at all. He looked at me and
calmly said “They don’t need that type of DR solution. All they need is an active
replication thru parallel loading.” As always, the answer was concise as well as
precise. While I took a moment to digest his answer, he noticed my hesitation
and added “over my dead body.” I went back to the customer and communicated
with them about the proposal of having a replicated copy. The bank wasn’t overly
excited but didn’t raise the DR request anymore. Meanwhile, one of our largest
(non-bank) customers, who had never used Oracle, implemented exactly what
Mike had proposed and was very happy with it. They loaded into two 115-node
clusters in parallel and used them to recover from each other.

Lesson. Complexity is often the Achilles’ heel of large-scale distributed systems,
and as Daniel Abadi describes in vivid detail in Chapter 18, Mike hated complexity.
With the liberally used phrase, OMDB, Mike forced us to think hard about every
feature we added, to ensure it was truly required, a practice that served us well as our
customer base grew. One of the reasons for Vertica’s success was that we thought
very hard about what NOT to add, even though there was a ton of pressure from

5. A farm downstream along a river will always be flooded and may appear to be cheaper. This is
an analogy for engineering debt, decisions made to save short-term coding work that required a
ton of time and effort (i.e., cost) in the long run.

6. Min Xiao followed Mike and Andy Palmer to join the founding team of Tamr, Inc.
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customers. Sometimes we had to relent on some earlier decisions as the system
evolved to serve different classes of customers, but we still always thought long
and hard about taking on complexity.

Customers: The Most Important Members of the Dev Team
Just as we thought hard about what features to add, we also listened very care-
fully to what customers were really asking for. Sometimes customers would ask
for a feature, but we would dig into what problem they faced instead and often
find that several seemingly different requests could often be fulfilled with one “fea-
ture.” Tight collaboration between engineering and customers became a key aspect
of our culture from early on. Engineers thrived from hearing about the problems
customers were having. Engineering, Customer Support, and Field Engineers all
worked closely together to determine solutions to customer problems and the feed-
back often led to improvements, some incremental, but sometimes monumental.

The earliest example of such a collaboration was when one of the largest algo-
rithm trading firms became a customer in 2008. Min Xiao recalls a day trip by the
founders of this trading firm to our office in Billerica, Massachusetts, one Thursday
afternoon.

Their CTO was a big fan of Mike. After several hours of intense discussions with
us, we politely asked if they needed transportation to the airport. (This was before
the days of Uber.) Their CEO casually brushed aside our request. Only later we
found out that they had no real schedule constraints because they had flown in
their own corporate jet. Not only that, but once he found out that Mike played
the banjo, the next day he brought his bass guitar to the Vertica office. Mike, Stan
Zdonik (a professor in Brown University), and John “JR” Robinson (a founding
engineer of Vertica) played bluegrass together for several hours. This wasn’t
an isolated “Mike fan”: customers loved and respected Mike for his technical
knowledge and straight talk. We often joked that he was our best salesperson
ever. :-)

Over time, this customer became a very close development partner to Vertica.
They voluntarily helped us build Time-series Window functions, a feature-set
that was originally on the “OMDB” list. Due to Vertica’s compressed and sorted
columnar data storage, many of the windowing functions, which often take a
long time to execute in other databases, could run blazingly fast in Vertica.

I recall the thrill that engineers felt to see the fruits of their work in practice.
It was a day of great celebration for the engineering team when this customer

reached a milestone running sub-second queries on 10 trillion rows of historical
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trading data! These time-series functions later become one of the major perfor-
mance differentiators for Vertica, and enabled very sophisticated log analytics to
be expressed using rather simple SQL commands.

A big technical inflection point for Vertica came around 2009, when we started to
land customers in the Web and social gaming areas. These companies really pushed
Vertica’s scale to being able to handle petabytes of data in production. It took many
iterations to really get “trickle loads” to work, but in the end this customer had an
architecture where every click from all their games went into the database, and yet
they were able to update analytical models in “near real-time.”

Another inflection point came when a very high profile social media customer
decided to run Vertica on 300 nodes of very cheap and unreliable hardware. Imagine
our shock when we got the first support case on a cluster of this size! This customer
forced the team to really think about high availability and the idea that nodes could
be down any time. As result, the entire system—from the catalog to recovery to
cluster expansion—had to be reviewed for this use case. By this time, more and
more customers wanted to run on the cloud, and all this work proved invaluable to
support that use case.

Lesson. Keep engineers close to customers. Maybe make some music together.
Listen carefully to their problems. Collaborate with them on solutions. Don’t be
afraid to iterate. There is no greater motivator for an engineer than to find out his
or her code didn’t work in the real world, nor greater reward than seeing their code
make a difference to a customer’s business!

Conclusion
Vertica’s story is one of a lot of bold bets, some of which worked right from academic
concept, and others that took a lot of hard engineering to get right. It is also a story
of fruitful collaboration between professors and engineers. Most of all, it is a story of
how a small startup, by working closely with customers, can change the prevailing
standard of an industry, as Vertica did to the practices of data warehousing and big
data analytics.
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John Hugg

I was hired by Mike Stonebraker to commercialize the H-Store1 research
[Stonebraker et al. 2007b] in early 2008. For the first year, I collaborated with
academic researchers building the prototype, with close oversight from Mike Stone-
braker.2 Andy Pavlo and I presented our early results at VLDB 2008 [Kallman et al.
2008] in August of that year. I then helped lead the efforts to commercialize VoltDB,
ultimately spending the next ten years developing VoltDB with a team I was privi-
leged to work with. In my time at VoltDB, Inc., Mike Stonebraker served as our CTO
and then advisor, offering wisdom and direction for the team.

VoltDB was conceived after the success of Vertica3; if, Vertica, a system dedicated
to analytical data, could beat a general-purpose system by an order of magnitude
at analytical workloads, could a system dedicated to operational data do the same
for operational workloads? This was the next step in Mike Stonebraker’s crusade
against the one-size-fits-all database.

VoltDB was to be a shared-nothing, distributed OLTP database. Rethinking as-
sumptions about traditional systems, VoltDB threw out shared-memory concur-
rency, buffer pools and traditional disk persistence, and client-side transaction
control. It assumed that high-volume OLTP workloads were mostly horizontally par-
titionable, and that analytics would migrate to special-purpose systems, keeping
queries short.

The proposed system would dramatically reduce scaling issues, support native
replication and high availability, and reduce costs for operational workloads with-
out sacrificing transactions and strong consistency.

1. For more on H-Store see Chapter 19: H-Store/VoltDB.

2. See https://dl.acm.org/citation.cfm?id=1454211 for the list of collaborators.

3. For more on Vertica see Chapters 18 and 27.



342 Chapter 28 The VoltDB Codeline

VoltDB 1.0 was originally released in April 2010, after nearly two years of internal
development. Work on the H-Store academic project continued in parallel. Over the
years, many ideas and experimental results were shared between the researchers
and the VoltDB engineering team, but code diverged as the two systems had differ-
ent purposes. VoltDB also hired a number of graduate students who worked on the
H-Store project.

Compaction4

In the Fall of 2010, the very first customer, who was equal parts brave and foolish,
was using VoltDB 1.x in production and was running into challenges with memory
usage.

This customer was using the resident set size (RSS) for the VoltDB process as
reported by the OS as the key metric. While memory usage monitoring is more
complex than disk usage monitoring, this is a good metric to use in most cases.

The problem was that the RSS was increasing with use, even though the data
was not growing. Yes, records were being updated, deleted, and added, but the
total number of records and the size of the logical data they represented was not
growing. However, eventually, VoltDB would use all of the memory on the machine.
This early customer was forced to restart VoltDB on a periodic basis—not great for
a system designed for uptime. Needless to say, this was unacceptable for an in-
memory database focused on operational workloads.

The problem was quickly identified as allocator fragmentation. Under it all,
VoltDB was using GNU LibC malloc, which allocated big slabs of virtual address
space and doled out smaller chunks on request. Allocator fragmentation happens
when a slab is logically only half used, but the “holes” that can be used to service
new allocations are too small to be useful.

There are two main ways to deal with this problem. The most common approach
is to use a custom allocator. The two most common alternatives are JEMalloc and
TCMalloc. Both are substantially more sophisticated at avoiding fragmentation
waste than the default GLibC malloc.

The VoltDB team tried these options first but ran into challenges because VoltDB
mixed C++ and Java in the same process. Using these allocators with the in-process
JVM was challenging at the time.

4. Compaction, which is critical to running VoltDB for more than a few hours, didn’t come up in
the initial design or research because academics don’t always run things the way one might in
production. It ended up being critical to success.
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The second approach, which is both more challenging and more effective, is do
all the allocation yourself. You don’t actually have to manage 100% of allocations.
Short-lived allocations and permanent allocations tend not to contribute to allo-
cator fragmentation. You primarily have to worry about data with unknown and
variable life cycles, which is really critical for any in-memory database.

The team focused on three main types of memory usage that fit this profile.

. Tuple storage—a logical array of fixed size tuples per table.

. Blob storage—a set of variable-sized binary objects linked from tuples.

. Index storage—trees and hash tables that provide fast access to tuples by key.

Two teams set about implementing two different approaches to see which might
work best.

The first team took on indexes and blob storage. The plan was to remake these
data structures in such a way that they never had any “holes” at all. For indexes, all
allocations for a specific index with a specific key width would be done sequentially
into a linked list of memory-mapped slabs. Whenever a tree node or hash entry was
deleted, the record at the very end of the set of allocations would be moved into
the hole, and the pointers in the data structure would be reconfigured for the new
address. Blob storage was managed similarly, but with pools for various size blobs.

There was a concern that the extra pointer fixups would impact performance,
but measurements showed this was not significant. Now indexes and blobs could
not fragment. This came at an engineering cost of several engineer-months, but
without much performance impact to the product.

Tuple storage took a different approach. Tuples would be allocated into a linked
list of memory-mapped slabs, much like index data, but holes from deletion would
be tracked, rather than filled. Whenever the number of holes exceeded a threshold
(e.g., 5%), a compaction process would be initiated that would rearrange tuples
and merge blocks. This would bind fragmentation to a fixed amount, which met
the requirements of VoltDB and the customer.

In the end, we didn’t pick a winner; we used both schemes in different places.
Both prototypes were sufficient and with an early product, there were many other
things to improve. The anti-fragmentation work was a huge success and is consid-
ered a competitive advantage of VoltDB compared to other in-memory stores that
often use memory less efficiently.5 Without it, it would be hard to use VoltDB in any
production workloads.

5. The competition catch-up is a long story. Most systems can’t do what VoltDB does because they
use shared-memory multi-threading and even lock-free or wait-free data structures. These are
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These kinds of problems can really illustrate the gulf between research and
production.

It turns out compaction is critical to running VoltDB for more than a few hours,
but this didn’t come up because of the research results. We previously assumed
that if a steady state workload worked for an hour, it would work forever, but this
is absolutely not the case.

Lesson. Memory usage should closely track the actual data stored, and systems
should be tested for much longer periods of time.

Latency
Version 1.0 of the VoltDB database, like the H-Store prototype it was based on,
used a transaction ordering and consensus scheme that was based on the ideas
described in the original H-Store paper [Stonebraker et al. 2007b], but with addi-
tional safety. Oversimplifying a bit, nodes would collect all candidate work in a 5
ms epoch and then exchange between all nodes the work inside the cluster for
that 5 ms. This work would then be ordered based on a scheme similar to Twitter
Snowflake.6

This scheme guaranteed a total, global pre-order for all submitted transactions.
That is, before a transaction was run, its serializable order with respect to all other
transactions was known.

Compared to contemporary transaction ordering schemes, VoltDB offered more
fault tolerance than two-phase-commit and was dramatically simpler than using a
schema like Paxos for ordering. It also supported significantly higher throughput
than either.

Having a global pre-ordering of all transactions required less coordination be-
tween cluster nodes when the work itself was being done [Stonebraker et al. 2007b].
In theory, participants have broad leeway to re-order work, so it can be executed
more efficiently, provided it produces results effectively equivalent to the specified
order. This was all part of the original H-Store research [Stonebraker et al. 2007b].

So, what’s the catch? This scheme used wall clocks to order transactions. That
meant transactions must wait up to 5 ms for the epoch to close, plus network round
trip time, plus any clock skew. In a single data center, Network Time Protocol (NTP)

much harder to compact. Other systems can use TCMalloc or JEMalloc because they don’t embed
the JVM.

6. “Announcing Snowflake,” the Twitter blog, June 1, 2010. https://blog.twitter.com/engineering/
en_us/a/2010/announcing-snowflake.html. Last accessed March 29, 2018.
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is capable of synchronizing clocks to about 1 ms, but that configuration isn’t trivial
to get right. Network skew is also typically low but can be affected by common things
like background network copies or garbage collections.

To put it more clearly, on a single-node VoltDB instance, client operations
would take at least 5 ms even if it did no actual work. That means a synchronous
benchmark client could do 200 trivial transactions per second, substantially slower
than MySQL for most workloads.

In a cluster, it was worse. Getting NTP set up well in order to evaluate VoltDB was
a stumbling block, especially in the new world of the cloud. This meant the delay
might be 10–20 ms. The original VoltDB paper assumes achieving clock synchro-
nization is trivial, but we found that to be just false enough to cause problems. We
didn’t just need synced-clocks, we needed them to stay synced for days, months, or
even years without issue.

None of this affected throughput. The VoltDB client was fully asynchronous by
design and could processes responses in the order they arrived. A proper parallel
workload could achieve millions of transactions per second on the right cluster,
but asking prospective users to build fully asynchronous apps proved too much of
a challenge. Users were not used to developing that way and changing user habits
is difficult.

VoltDB needed to be faster than MySQL without application wizardry.
Many months of disagreement and thought from the engineering team culmi-

nated in a small meeting where a decision had to be made.
A rough plan was hashed out to replace VoltDB consensus with a post-order

system that would slash latency to near zero while keeping throughput. The new
system would limit some performance improvements to cross-partition transac-
tions (which are typically rare for VoltDB use cases) and it would require several
engineers working for almost a year, time that could be spent on more visible fea-
tures.

Engineering came out of that meeting resolved to fix the latency issues. As part
of the plan, the VoltDB 1.0 consensus scheme would be kept, but only to bootstrap
a new system of elected partition leaders that serialized all per-partition work
and a single, global cross-partition serializer that determined the order of cross-
partition work.

This scheme was launched with version 3.0, and average cluster latency was re-
duced to nearly nothing now that we did not have to hold transactions for clock skew
and the all-to-all exchange. Typical response latencies were less than a millisecond
with a good network.
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This directly led to VoltDB use in low-latency industries like ad-tech and person-
alization.

Lesson. Response time is as important as throughput.

Disk Persistence
When VoltDB launched, the high-availability story was 100% redundancy through
clustering. There were periodic disk snapshots, so you would see data loss only if
you lost multiple nodes, and then you might only lose minutes of recent data. The
argument was that servers were more reliable, and per-machine UPSs (uninterrup-
tive power supplies) were increasingly common, so multiple failures weren’t a likely
occurrence.

The argument didn’t land.
VoltDB technical marketing and sales spent too much time countering the idea

that VoltDB wouldn’t keep your data safe. Competitors reinforced this narrative. In
early 2011, it got to the point where lack of disk persistence was severely limiting
customer growth.

VoltDB needed per-transaction disk persistence without compromising the per-
formance it was known for. Part of the original H-Store/VoltDB thesis was that
logging was one of the things holding traditional RDBMSs back when they moved
to memory [Harizopoulos et al. 2008], so this posed quite a challenge.

To address this problem, Engineering added an inter-snapshot log to VoltDB but
broke with the ARIES (Algorithms for Recovery and isolation Exploiting Semantics)
style logs used by traditional RDBMSs. VoltDB already heavily relied on determin-
ism and logical descriptions of operations to replicate between nodes. Engineering
chose to leverage that work to write a logical log to disk that described procedure
calls and SQL statements, rather than mutated data.

This approach had a huge technical advantage for VoltDB. As soon as transac-
tions were ordered for a given partition (but before they were executed), they could
be written to disk. This meant disk writes and the actual computation could be
done simultaneously. As soon as both were completed, the transaction could be
confirmed to the caller. Other systems performed operations and then wrote bi-
nary change-logs to disk. The logical approach and VoltDB implementation meant
disk persistence didn’t have substantial impact on throughput, and only minimal
impact on latency.

Per-transaction disk-persistence was added in VoltDB 2.5 in Fall 2011 and al-
most immediately silenced persistence-based criticism of VoltDB. It’s clear that
without this feature, VoltDB would have seen much more limited use.
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As an addendum, we have a lot more data today about how common complete
cluster failure is with VoltDB. Cluster failures for well-run VoltDB instances are
rare, but not always 100% unavoidable, and not all VoltDB clusters are well run.
Disk persistence is a feature that not only cut off a line of criticism, but also gets
exercised by users from time to time.

Lesson. People don’t trust in-memory systems as system of record.

Latency Redux
In 2013, within a year of reducing average latency in VoltDB to nil, VoltDB was
courted by a major telecommunications OEM (original equipment manufacturer)
looking to replace Oracle across their stack. Oracle’s pricing made it hard for them
to compete with upstart Asian vendors who had built their stacks without Oracle,
and Oracle’s deployment model was poorly suited to virtualization and data-center
orchestration.

Replacing Oracle would be a substantial boost to competitiveness.
During the OEM’s VoltDB evaluation, latency quickly became an issue. While

average latency met requirements, long tail latency did not. For a typical call autho-
rization application, the service level agreement might dictate that any decision not
made in 50 ms can’t be billed to the customer, forcing the authorization provider
to pay the call cost.

VoltDB created a new automated test to measure long tail latency. Rather than
measure average latency or measure at the common 99th percentile or even the
99.999th percentile, Engineering set out to specifically count the number of trans-
actions that took longer than 50 ms in a given window. The goal was to reduce
that number to zero for a long-term run in our lab so the customer could support
P99.999 latency under 50 ms in their deployments.

Once you start measuring the right things, the problem is mostly solved, but
there was still code to write. We moved more of the statistics collection and health
monitoring code out of blocking paths. We changed how objects were allocated
and used to nearly eliminate the need for stop-the-world garbage collection events.
We also tuned buffer sizes and Java virtual machine parameters to get everything
running nice and “boring.”

If there’s one thing VoltDB Engineering learned over the course of ten years of
development, it’s that customers want their operational databases to be as boring
and unsurprising as possible. This was the final piece of the puzzle that closed the
first major telecommunications customer, with more coming right on their heels.
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Today, a significant portion of the world’s mobile calls and texts are authorized
through a VoltDB-based system.

Lesson. P50 is a bad measure—P99 is better—P99.999 is best.

Conclusion
Of course, the incidents described here are just a tiny sliver of the challenges and
adventures we encountered building VoltDB into the mature and trusted system it
is today. Building a system from a research paper, to a prototype, to a 1.0, and to a
robust platform deployed around the world is an unparalleled learning experience.
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Crossing the Chasm
Kriti Sen Sharma, Alex Poliakov, Jason Kinchen

Mike’s a database guy, so his academic innovations get spun out and branded as
database products. But SciDB—in contrast to PostgreSQL, Vertica, and VoltDB—is
a rather different kind of beast: one that blurs the line between a database and HPC.
As a computational database for scientific applications, it’s actually two products
in one tightly architected package: a distributed database and a massively parallel
processing (MPP), elastically scalable analytics engine. Along with its support for
a new kind of efficiently stored and accessible n-dimensional data model, the
hybrid design made development triply challenging. As a lean team under intense
pressure to produce revenue early on, we1 had to make many tough tradeoffs
between long-term vision and short-term deliverables. Some worked out; some had
to be ripped out. Here are a few tales from the trek up Mike’s SciDB mountain, in
keeping with Paul Brown’s story line, “Scaling Mountains: SciDB and Scientific Data
Management” (see Chapter 20).

Playing Well with Others
SciDB ships with an extensive set of native analytics capabilities including
ScaLAPACK—scalable linear algebra neatly integrated into SciDB by James Mc-
Queston. But given the scope of SciDB’s mission—enabling scientists and data
scientists to run their advanced array data workflows at scale—it would be impos-
sible to provide all the functionality to cover the myriad of potential use cases. One
of the core design decisions allowed users to add user-defined types, functions, and

1. The authors and their colleagues mentioned in this chapter are with Paradigm4, the company
that develops and sells SciDB.
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aggregates (UDTs, UDFs, and UDAs, respectively) in a fashion very similar to other
databases. SciDB went one step further by supporting a much more powerful user-
defined operator (UDO) abstraction. This decision proved to be successful as many
user-defined extensions (UDXs) were developed by users of SciDB. Noteworthy ex-
amples include NASA’s connected-component labeling of MERRA satellite image
data spatially and temporally aligned with ground-based sensor data to identify
storms [Oloso et al. 2016], and a GPU-accelerated convolution running in SciDB for
solar flare detection [Marcin and Csillaghy 2016].

However, the limitations of relying solely on a UDX approach became apparent
as many customers already had their analytics coded in R/Python/MATLAB (MaRPy
languages). They turned to SciDB to scale up their work to run the same algorithm
on larger datasets or to execute an expensive computation in a shorter amount
of time using elastic computing resources. But they did not want to incur the
development costs to re-implement or revalidate their algorithms as UDXs. More-
over, writing UDXs required sufficient understanding about details of the SciDB
architecture (e.g., tile-mode, chunking strategy, SciDB array-API, etc.). Quite often,
researchers we spoke to had a “favorite package” in mind, asking us to help run
exactly that package on terabytes of data. We realized that while UDXs were a pow-
erful way to customize SciDB, the market needed to develop, iterate, and deploy
faster.

In the Spring of 2016, Bryan Lewis and Alex Poliakov decided to take this up.
They were under intense time pressure as the demonstration date for a prospect was
looming. Thus began a three-week long collaborative programming frenzy in which
Bryan and Alex first sketched out the design, divvied up the work, and produced a
working implementation.

The overall architecture of SciDB streaming is similar to Hadoop streaming or
the Apache RDD.pipe. The implementation they chose was to use pipes: standard-
in and standard-out for data transfer. The SciDB chunk—already a well-formed
segment of data that was small enough to fit in memory—would be used as the
unit of data transfer. Existing SciDB operators were used to move arrays between
instances for “reduce” or “summarize” type workflows. The first implementation
shipped with a custom R package offering an easy API to R specifically.

Customers liked this capability immediately. One could now connect SciDB
with the vast universe of open-source libraries in MaRPy languages and C++. SciDB
streaming spares the user from doing the plumbing by serving up the data to each
instance and orchestrating the parallelism. Specialized Python support and inte-
gration with Apache Arrow was subsequently added by SciDB customer solutions
architects Jonathan Rivers and Rares Vernica. SciDB streaming is now an important
part of the SciDB user’s toolkit.
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As Mike likes to say, one database does not fit all. Similarly, one data distribution
format does not fit all algorithms for high-performance computing. So, James Mc-
Queston is adding support to preserve data in alternate distributions—like “block-
cyclic” for matrix operations and “replicated” for certain kinds of joins—to notch
up performance by making broader sets of algorithms more highly efficient in a
distributed system. This will boost both embarrassingly parallel (streaming) and
non-embarrassingly parallel execution, such as large-scale linear algebra.

SciDB streaming is currently deployed successfully for a wearables project at a
top 5 pharma company where 7 TB of data from 63 streams of data from 13 dif-
ferent devices are time-aligned and analyzed, and for the Stanford Global Biobank
Engine to evaluate gene-level effect models on the UK Biobank genotype-phenotype
association data.

You Can’t Have Everything (at Once)
When implementing an elastic, scalable, multi-dimensional, multi-attribute array
MPP distributed database, the Paradigm4 team quickly realized that this was very
much uncharted territory, requiring us to build many components from the ground
up. In such a scenario, it was important to pick out which features to focus on first,
and which capabilities to defer until later in the product roadmap. While a multi-
dimensional array database with ACID properties had been the development focus
from very early on, it was decided that full elasticity support would be designed in
from the start, but rolled out in phases.

The very earliest implementations of SciDB did not fully adhere to shared-
nothing architecture2 principles. User queries had to be sent to a special coordi-
nator node rather than to any instance in a cluster. This was not ideal, and also
introduced a single point of failure in the system. This initial compromise simpli-
fied the coding effort and was good enough for most of the early users who queried
SciDB only via one instance.

Around the end of 2015, the implementation of true elasticity was completed.
Now, all instances in a cluster could accept incoming queries—there was no single
coordinator instance (even though the term “coordinator” continues to be com-
monly used among SciDB users). More importantly, instances could go online and

2. A shared-nothing architecture prescribes that all participating nodes of a multi-node distributed
computing architecture are self-sufficient. In SciDB parlance, the unit of participation in a cluster
is the “instance,” while the term “node” is reserved for one physical (or virtual) computer within
a multi-computer cluster.
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offline at any moment as SciDB could detect node failures and still keep function-
ing properly. This required significant architectural changes which were led by Igor
Tarashansky and Paul Brown.

The new implementation removed some of the exposure to the single point
of failure. That architectural change also supported another important capability:
ERGs, or elastic resource groups. As customer installations grew in data volume
or computational needs, elasticity and ERGs allow users to add more instances to
the cluster either permanently (e.g., to handle more storage), or on an as-required
basis (e.g., only while running an expensive computation routine).

In business as in life, one cannot have everything at once. But with time, persis-
tence, and a clear focus, we are able to deliver many of the product goals that we
had planned early on.

In Hard Numbers We Trust
Typical queries on SciDB involve both large and small data. For example, a user
might want to retrieve the gene-expression values at certain loci for patients aged
50–65 from within a large clinical trial dataset. To slice the appropriate “sub-array”
from the larger gene-expression array, one must infer necessary indices from at
least three other metadata arrays (corresponding to sets of studies, patients, and
genes). SciDB is remarkably fast at slicing data from multi-TB arrays—after all,
this is what SciDB was designed and optimized for. However, it turned out that
the initial design and implementation had not focused sufficiently on optimizing
query latency on “smaller” arrays.

Initially, we thought this slower performance might be because small arrays
that could fit on one machine were being treated the same as large arrays that had
to be distributed across multiple machines. We hypothesized that an unnecessary
redistribution step was slowing down the query. If that were the case, the engineer-
ing team thought a sizable rewrite of the codebase would be required to achieve a
significant speedup. With immediate customer deliverables pressing, we deferred
tackling this specific performance shortfall for a while.

In a separate project, James McQueston had spent time building powerful and
very granular profiling tools for SciDB. His engineering mantra was that develop-
ers must look at hard numbers before devising any theory about why something
goes as slow (or as fast) as it does. The profiling tool had previously been useful in
certain other optimization scenarios. However, its true value shone when revealing
the actual cause of the slowness on small-array queries. Dave Gosselin and James
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painstakingly replicated anonymized customer data and queries in the profiling
environment. Armed with those tools, they discovered that the major bottleneck
was not the redistribution step that everyone suspected. Instead, the delay was
caused by inefficient querying of the system catalog, something that was imple-
mented eons ago in the product’s history but had never been revisited. This fix was
relatively easy.

Our initial hypothesis had been incorrect; careful performance analysis pointed
us to the correct root cause. Happily, we were able to achieve significant speedup
for the small-array queries without a major rewrite of the codebase.

Language Matters
Scientists and data scientists prefer statistical analysis languages like R and Python,
not SQL. We knew that writing intuitive interfaces to SciDB in these languages
would be important if we wanted these folks to start using our system. Thus, we
developed SciDB-R and SciDB-Py as R and Python connectors to SciDB, respectively.
One could use these connectors to dispatch queries to the multi-TB data on SciDB
while also utilizing the programming flexibility and vast open-source libraries of
their favorite programming language. Today, almost all customers who use SciDB
in production use one of these interfaces to work with SciDB.

The journey of these two connector libraries reflects our evolving understand-
ing of the user experience. Initial implementations of these connectors (SciDB-R by
Bryan Lewis and SciDB-Py by Jake VanderPlas and Chris Beaumont) shared the com-
mon philosophy that we should overload the target language to compose/compile
SciDB queries. For example, R’s subset functionality was overridden to call SciDB
operators between and filter underneath. In the SciDB-Py package, Pythonic syn-
tax like transform and reshape were implemented that actually invoked differently
named SciDB operators underneath. We thought that this kind of R- / Python- level
abstraction would be preferred by the users. However, when we trained customers,
we found that the user experience was not ideal, especially for advanced users. Some
corner cases could not be covered—the abstracted layer did not always produce the
most optimal SciDB query.

A complete rewrite of SciDB-R (Bryan Lewis) and SciDB-Py (Rares Vernica) was
carried out recently where the interface language mapped more closely to SciDB’s
internal array functional language (AFL). However, we concluded that one can-
not resolve language issues in the abstraction or translation layer. Instead we are
now investing the time and effort to improve the user experience by redesigning
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the SciDB AFL language itself. We have made significant progress on this front:
Donghui Zhang unified three operators (filter, between, and cross_between) into a
more user-friendly filter syntax; Mike Leibensperger introduced auto-chunking to
spare the user from having to think about physical details. More language improve-
ments are on the roadmap to improve the user experience and to align SciDB’s
language more closely with R and Python.

Security is an Ongoing Process
Our first-pass on security for SciDB involved separation of arrays via named do-
mains or “namespaces” (e.g., users A and B might have access to arrays in name-
space NS_1, but only A has access to arrays in NS_2). Access was authorized locally
by SciDB.

This implementation of security was a first pass and we knew we would have
to improve it. The opportunity came when one of our pharma customers required
an industry-standard authorization protocol (e.g., LDAP [Lightweight Direct Access
Protocol]), and more fine-grained access control such as different access control
privileges for each user across hundreds of their clinical studies.

Two short-term security projects were spun off simultaneously. The implemen-
tation of study-level access control was implemented by Rares Vernica and Kriti Sen
Sharma using SciDB’s UDX capability. SciDB-R and SciDB-Py also required major
plumbing changes. In tandem, integration with pluggable authentication modules
(PAM, an industry standard for secure authorization control) enabled SciDB’s uti-
lization of LDAP. Mike Leibensperger rewrote the entire security implementation
to achieve these new capabilities, with which we won the contract.

Despite “security is an ongoing process” being a cliché, we understand the truth
of the statement. We also realize that there is more ground to cover for us in this
realm and are embarked on continuous improvements.

Preparing for the (Genomic) Data Deluge
The deluge of genomic data has been long anticipated [Schatz and Langmead 2013].
With the advent of sub-$1,000 DNA sequencing, the drive toward personalized
medicine, and the push for discovering and validating new therapies to deliver
more effective outcomes, more and more people are getting their DNA sequenced
via nationalized data collection efforts like the UK Biobank program, the 1 Million
Veterans program, and the AllofUs program. While marketing and selling SciDB,
we heard claims from competitors that they were already capable of handling data
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at these scales. Our engineering team decided to tackle these claims head on and
to produce hard data about SciDB’s ability to deliver that scalability today.

Using genomics data available in the public domain, our VP of Engineering Ja-
son Kinchen, along with consulting engineer James McQueston, generated and
loaded 100K, 250K, 500K, and 1M exomes (the coding regions of the genome)
into SciDB. We showed that common genomics queries scaled linearly with the
size of the data. For example, given a particular set of genomics coordinates, the
search for variants overlapping the regions, including long insertions and dele-
tions, took 1 sec on a 100K exome dataset and 5 sec on a 500K dataset. The growth
was linear, thanks to SciDB’s multidimensional indexing capabilities. Further, hav-
ing arrived at the “500K point,” adding more SciDB instances would speed the
query up. Apart from greatly enhancing the marketing message with hard data
proving SciDB’s scalability, this benchmark work also pointed to opportunities for
significant performance improvements, many of which have been tackled. More
are planned.

By setting up test scripts with benchmarks from real-world use cases, our en-
gineering team regression-tests and profiles each software release. This relentless
focus on real-world performance and usability is fundamental to our development
culture and keeps us focused improving our customers’ experience and their use
cases.

Crossing the Chasm: From Early Adopters to Early Majority
Paradigm4 develops and makes available both an open-source Community Edition
of the core SciDB software (available at http://forum.paradigm4.com/ under an Af-
fero GPL license) and an Enterprise Edition (Paradigm4 license) that adds support
for faster math, high availability, replication, elasticity, system admin tools, and
user access controls.

While Mike set a grand vision for a scientific computational database that
would break new ground providing storage, integration, and computing for n-
dimensional, diverse datasets, he left many of the engineering details as an exercise
for the Paradigm4 development team. It has been an ambitious and challenging
climb, especially given that we are creating a new product category, requiring both
technical innovations and missionary selling. Mike remains actively engaged with
SciDB and Paradigm4, providing incomparable and invaluable guidance along the
trek. But the critical lessons for the product and the company—new features, per-
formance enhancements, improving the user experience—have come in response
to our experiences selling and solving real customer applications.

http://forum.paradigm4.com/
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Volume, velocity, and variety: Among the three Vs of Big Data [Laney 2001], there are
well-established patterns for handling volume and velocity, but not so for variety.
The state of the art in dealing with data variety is manual data preparation, which
is currently estimated to account for 80% of the effort of most data science projects
[Press 2016]. Bringing this cost down would be a huge benefit to modern, data-
driven organizations, so it is an active area of research and development. The Data
Tamer project [Stonebraker et al. 2013b] introduced a pattern for handling data
variety, but nobody had ever put such a system into production. We knew there
would be challenges, but not what they would be, so we put together a team with
experience, talent, drive, and the audacity to assume we would overcome whatever
got in our way.

I joined Tamr in April 2013 as employee #3. My first tour of duty was to recruit
the core engineering team and build the first release of our commercial product
for data unification (see Chapter 21). My personal motivation to join Tamr was that
tackling the challenge of data variety would be the culmination of a decades-long
career working with data at large scale, at companies such as Thinking Machines
(on the Darwin Data Mining platform), Torrent Systems (a parallel ETL [extract,
transform, load] system) and Endeca (on the MDEX parallel analytic database). I’ve
seen messy data foil far too many projects and, after talking to Tamr co-founders
Mike Stonebraker and Andy Palmer about their aspirations, I concluded that Tamr
would provide the opportunity to apply those decades of experience and thinking
to fundamentally change the way we approach big data.

Because we were breaking new ground with Tamr, we faced a number of unusual
challenges. The rest of this chapter looks at some of the most vexing challenges,
how we overcame them, lessons learned, and some surprising opportunities that
emerged as a result.
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Neither Fish nor Fowl
From the start, the Tamr codeline has been a kind of chimera, combining intense
technical demands with intense usability demands. The first board meeting I at-
tended was about a week after I joined, and Andy announced that we were well on
our way to building a Java replacement for the Python academic system. The system
also included large amounts of PL-SQL used to do the back-end computation, and
large amounts of JavaScript used for the user interface. The fact that we used SQL
to express our backend computation reveals one of the earliest and most enduring
principles of Tamr: We are not building a custom database. At times, this has made
things exceptionally difficult: We needed to get deep into database-specific table
and query optimization to get the system to perform. But it enabled us to keep our
focus on expanding our functionality and to lean on other systems for things like
data movement speed, high availability, and disaster recovery.

There is no list of functions and performance benchmarks for Data Unification.
It doesn’t have a Transaction Processing Performance Council (TPC) benchmark
where you can run the queries from the benchmark and say you’ve got a working
system. The closest domains are MDM (master data management), with a history
of massive budget overruns and too little value delivered, and ETL, a generic data
processing toolkit with a bottomless backlog and massive consulting support. We
didn’t know exactly what we wanted to be, but we knew it wasn’t either of those.
We believed that our codeline needed to enable data engineers to use the machine
to combine the massive quantities of tabular data inside a large enterprise (see
[Stonebraker et al. 2013b] Sec. 3.2). We also believed that the dogma of traditional
MDM and ETL toolkits was firmly rooted in the deterministic role of the data
engineer, and that highly contextual recommenders—subject matter experts (or
SMEs)—would have to be directly engaged to enable a new level of productivity in
data delivery.

This begged the question of who our users would be. Data is traditionally deliv-
ered by data engineers, and patterns and semantics of data are traditionally derived
by data scientists. But both data engineering and data science organizations are al-
ready overloaded with work, so putting either of those on the path to delivery would
entangle delivery of results from Tamr with the IT backlog and slow things down
too much. It would also hold the subject matter experts one level removed, making
it dramatically harder to achieve our goals for productivity in data delivery.

This set up a long-standing tension within the company. On the one hand,
much of what needs to happen in a data unification project is pretty standard data
engineering: join these tables; aggregate that column; parse this string into a date,
etc. Mike, in particular, consistently advocated that we have a “boxes and arrows”
interface to support data engineers in defining the data engineering workflows



Taming the Beast of Algorithmic Complexity 359

necessary for data unification. The argument is that these interfaces are ubiquitous
and familiar from existing ETL tools, and there is no need for us to innovate
there.

On the other hand, the very ubiquity of this kind of tool argues strongly against
building another one. Rather than building and delivering what by all appearances
is yet another way to move data from system A to system B, with transformations
along the way, we should focus on our core innovations—schema mapping, record
matching, and classification—and leave the boxes and arrows to some other tool.

We had seen in early deployments that enormous portions of data unification
projects could be distilled to a few simple activities centered around a dashboard
for managing assignment and review of expert feedback. This could be managed
by a data curator, a non-technical user who is able to judge the quality of data
and to oversee a project to improve its quality. To keep this simple case simple,
we made it easy to deploy with this pre-canned workflow. However, many projects
required more complex workflows, especially as teams started to incorporate the
results into critical operations. To ensure that the needs of these deployments
would also be met, we built good endpoints and APIs so the core capabilities
could be readily integrated into other systems. As a result, many of our projects
delivered initial results in under a month, with incremental, weekly deliveries after
that. This built a demand for the results within the customer organization, helping
to motivate integration into standard IT infrastructure. This integration became
another project deliverable along the way rather than a barrier to delivering useful
results.

Lesson. Building for the users who benefit from the results is essential when we
can’t just point to an existing standard and say, “Look, we’re so much better!”

Taming the Beast of Algorithmic Complexity
In the summer of 2013, we were engaged with a large information services provider
to match information on organizations—corporations, non-profits, government
agencies, etc.—against a master list of 35 million organizations. A given input was
expected to have 1–2 million listings, for a total of 70 trillion comparisons. This is
the core N2 challenge of entity resolution that is as old as time for enterprise data
professionals.

The broadly accepted technique to address this is blocking: identifying one or
a few attributes that can be used to divide the data into non-overlapping blocks of
records, then doing the N2 comparisons only within each block. Blocking requires
insight into the data to know which attributes to use, and high-quality data to
ensure that each record ends up in the correct block.
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We had discussed at great length our desire to build a platform that would be
able to address many entity types. We already had a data-independent method
of breaking the problem down, but the academic implementation didn’t work
well enough at the scale of 35 million records: Queries would take days, and our
customer wanted them in minutes for batch queries and in a few milliseconds for
single-record queries. Even though the original system was far from being able to
meet these targets—and we barely had a design that would let us meet them—
we agreed to the goals and to the follow-up goal of being able to perform entity
resolution at the scale of 70 million on parallel hardware within a year or so after
delivering at the scale of 35 million. The customer’s requirements were entirely
reasonable from a business perspective and embodied goals that we believed would
be appealing to other customers. So we set out to build something better than what
had been attempted in the previous systems.

Tamr co-founder George Beskales, who did much of the pioneering work on
deduplication in the academic prototype, came up with a promising approach that
combined techniques from information retrieval, join optimization, and machine
learning. When Ihab Ilyas, co-founder and technical advisor to the company for
all things machine learning, reviewed the initial definition of this approach, he
identified multiple challenges that would cause it to fail in realistic scenarios.
This kicked off several weeks of intense design iteration on how to subdivide the
N2 problem to get us to the performance required. We ultimately developed an
approach that is data-independent and delivers excellent pruning for batch jobs,
with which we have demonstrated scaling up to 200 million records with no sign
of hitting any hard limits. It is also very amenable to indexed evaluation, which
provided a foundation on which we built the low-latency, single-record match also
desired by many customers.

In the winter of 2016, we were working with another large information ser-
vices provider to perform author disambiguation on scientific papers. While our
pairwise match worked as desired, we ran into real problems with clustering. The
project was deduplicating the authors of articles published in scholarly journals,
and many journals use only author first initial and last name, leading to massive
connected subgraphs for authors’ names such as “C. Chen.” Since clustering is
even worse than N2 in the number of edges in the connected component, even
on distributed hardware we weren’t able to complete clustering of a 4 million-
node, 47 million-edge-connected component. Again, George Beskales and Ihab
Ilyas, in conjunction with field engineers/data scientists Eliot Knudsen and Claire
O’Connell, spent weeks iterating on designs to convert this massive problem into
something tractable. By arranging the data to support good invariants and tuning
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the clustering algorithm to take advantage of those invariants, we were able to de-
rive a practical approach to clustering that is predictable, stable, distributes well,
and has complexity of approximately Nlog(N) in the number of edges in a connected
component. This let us tackle the clustering challenges for the large information
services provider, as well as similar problems that had arisen with clients who were
attempting to integrate customer data and master supplier data that included many
subsidiaries.

Lesson. Pushing to meet customers’ seemingly unreasonable demands can lead
to dramatic innovation breakthroughs.

Putting Users Front and Center
The original goal of the Data Tamer academic system was to learn whether machine
learning could address the challenge of data variety—the third “V” in big data,
after volume and velocity. The early work on the project showed that machine
learning could help quite a bit, but the quality of results wasn’t good enough that
enterprises would be willing to put the results into production. When we engaged
with one of the academic collaborators at the Novartis Institute for Biomedical
Research (NIBR) on a schema mapping project, we had an opportunity to involve
subject matter experts directly in the central machine learning cycle, and this was
transformative for results quality. Having subject matter experts directly review
the machine learning results, and having the platform learn directly from their
feedback, got us into the high 90th percentile of results quality, which was good
enough for enterprises to work with. Mark Schreiber (at NIBR at the time) was a
key contributor to the academic effort as well as later commercial efforts to artfully
and actively integrate human subject matter expertise into our machine learning
models for schema mapping.

We knew from the beginning that the product would succeed or fail based on our
ability to carefully integrate human expertise through thoughtful user experience
(UX) design and implementation. Building thoughtful UX is not a natural skill
set for a bunch of database system and machine-learning-algorithms folks, so we
set out to hire great UX and design people and set up our product development
practices to keep UX front and center.

Early versions of the platform did not incorporate active learning. Customers
always want to know how much SME time they will need to invest before the system
will deliver high-quality results. The answer can’t be 10% coverage: In the example
of mastering 35 million organizations, this would mean 3.5 million labels, which is
orders of magnitude too many for humans to produce. SMEs are people with other
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jobs; they can’t spend all their time labeling data, especially when the answers seem
obvious. We thus incorporated active learning to dramatically reduce the amount of
training data the system needs. With these changes, entity mastering projects are
able to deliver high-quality results with a few days of subject matter experts’ time
to train an initial model, and very low ongoing subject matter expert engagement
to keep the system tuned.

SMEs are very sensitive to having their time wasted. In addition to the system
not asking questions with “obvious” answers, SMEs don’t want to be asked the
same question, or even very similar questions, multiple times. We also need to
prioritize the questions we’re asking of SMEs, and the most effective method is
by “anticipated impact”: How much impact will answering this question have on
the system? To calculate this, we need both an estimate of how many “similar”
questions the system will be able to answer automatically and a metric for impact of
each question. Very early on, we incorporated a value metric, often labeled “spend,”
that the system can use to assess value. We use coarse clustering to estimate the
overall impact of a question and can prioritize that way. The Tamr system provides a
facility for SMEs to provide feedback on questions, and they have not been shy about
using this facility to complain when they feel like the system is wasting their time.
When we incorporated these changes, the rate of that kind of feedback plummeted.

Data curators need visibility into the SME labeling workflow, so we built dash-
boards showing who is involved, how engaged they are, what outstanding work they
have, etc. Some of the early feedback we received is that SMEs will not use a system
if they believe it can be used against them in a performance review, e.g., if it shows
how they perform relative to some notion of “ground truth.” To overcome this im-
pediment to engagement, we worked with curators to identify ways to give them
the insight they need without providing performance scores on SMEs. The result is
that curators have the visibility and tools they need to keep a project on track, and
SME engagement is consistently high.

Lesson. Building a system around direct interaction with non-engineers is very
challenging, but it enables us to deliver on a short timeline not otherwise possible.
Humans were going to be primary in our system and we needed to have human
factors engineering and design on our core team.

Scaling with Respect to Variety
The academic system was built on Postgres (of course) (see Chapter 16), and the
first versions of the commercial platform were also built on Postgres, taking advan-
tage of some Postgres-specific features—like arbitrary length “text” data type—that
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make design relatively straightforward. But using Postgres as the backend had two
disadvantages: first, most IT departments will not take responsibility for business
continuity and disaster recovery (BCDR) or high availability (HA) for Postgres; and
second, it limited us to the scale practical with single-core query evaluation. We
knew we needed to take advantage of multi-core, and eventually of scale-out, archi-
tecture, but we also knew building a large distributed system would be hard, with
many potential pitfalls and gotchas.

We therefore evaluated a few different options.
Option #1 was explicit parallelism: Since Postgres could parallelize at the con-

nection level, we could rewrite our queries so that each partition of a parallel query
was run in a separate connection. We would need to manage transactions, con-
sistency, etc., ourselves. This would be tantamount to building a parallel RDBMS
ourselves, an option that, in Mike’s words, we should pursue “over my dead body.”

Option #2 was to migrate to a platform that supported parallelism internal to a
query, in theory making parallelism invisible to us at the SQL level. Systems such as
Vertica and Oracle provide this. This option had the advantage that IT organizations
would already be familiar with how to provide BCDR and HA for these platforms.
But it also had multiple downsides: It would require customers to carry an expensive
database license along with their Tamr license; it would require us to support many
different databases and all their idiosyncrasies; and its longevity was questionable,
as we had heard from many of our customers that they were moving away from
traditional proprietary relational databases and embracing much less-expensive
alternatives.

Option #3 was to embrace one of the less-expensive alternatives our customers
were considering and rewrite the backend to run on a scale-out platform that didn’t
carry the burden of a separate license. Impala and Spark were serious candidates
on this front. The disadvantage of this option was that IT organizations probably
wouldn’t know any time soon how to provide BCDR or HA for these systems, but
many organizations were building data lake teams to do exactly that, so it seemed
like this option would be riding a positive wave.

After a lot of intense debate, we decided to take option #2, and build plug-
ability to support multiple backends, hopefully reducing the cost of eventually
pursuing option #3. Our early customers already had Oracle licenses and DBAs
in place, so we started there. Our initial estimate was that it would take about three
months to port our backend code to run on Oracle. That estimate ended up about
right for a functionally complete system, although the capabilities of the product
ended up being different with an Oracle backend, and it took six more months
to get the performance we expected. Once we had the Oracle port ironed out, we
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started prototyping a Vertica port for the backend. We quickly determined that,
because the behavior of Vertica is even more different from Postgres than Oracle’s,
we would get very little leverage from the Oracle port and estimated another six
to nine months for the Vertica port, which was exorbitantly expensive for a small,
early-stage company.

The reason the ports were so difficult lies at the core of what the Tamr platform
is and does. A simplified version is that it takes customer data in whatever form,
uses schema mapping to align it to a unified schema of our customer’s design, and
then runs entity resolution on the data, delivering the results in that user-defined
schema. To support this workflow, the backend needs to accommodate data in a
large variety of schemas. For example, a customer doing clinical trial warehousing
had 1,500 studies they wanted to reformat. Each study spans 30 domains, and the
source for each domain averages 5 tables. To represent these in source format, two
versions of SDTM (Study Data Tabulation Model—a regulatory data model for data
on clinical trials of pharmaceuticals), and their own internal clinical trial format—
results in 1,500 × 30 × 8 = 360,000 tables. Another customer has 15,000 studies,
for 3.6 million tables. This kind of data scale—scale in the number of tables—is
not something that existing RDBMSs are designed to handle.

The academic Data Tamer system chose a particular approach to address this
problem, and the early versions of the Tamr platform used the same approach.
Rather than represent each logical table as a separate database table, all the data
was loaded as entity, attribute, value (E, A, V) triples in a single-source table—
actually, (Table, E, A, V) quads—with a second (E, A, V) table for the unified data of
all tables. The platform could then define the logical tables as temporary views that
first filtered the EAV table, then used a crosstab to convert from EAV to rectangular
table. This way, the number of tables visible to the RDBMS was limited to the tables
actually in use by running queries, keeping the total number of tables visible at any
one time within the limits of what the RDBMS could handle.

The downfall of this approach was that all data processing workflows needed to
load, update, and read from the same two tables, so, although it scales with respect
to variety of input sources, it does not scale with respect to source activity. Although
we could meet customer requirements for latency in propagation of changes in one
workflow, meeting those requirements in multiple workflows required additional
Tamr backends. This was antithetical to our goal of having a system that scales
smoothly with data variety, or the number of input tables.

This motivated us to curtail our investment in supporting additional RDBMS
backends and accelerate our pursuit of option #3, embracing a backend that does
not have issues with hundreds of thousands or even millions of tables and that
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Figure 30.1 Particularly when architecting and building a data unification software system, technology
and business strategy must evolve together. Standing, from left, are consulting software
engineer John “JR” Robinson; Tamr co-founders Andy Palmer, Michael Stonebraker, and
George Beskales; me (technical lead Nik Bates-Haus); and solution developer Jason Liu.
Technical co-founders Alex Pagan, Daniel Bruckner, and Ihab Ilyas appear below via
Google Hangout (on the screen).

supports scale-out query evaluation. This platform is a combination of Spark for
whole-data queries and HBase for indexed queries.

Lesson. Scaling a system or platform hits limits in unexpected places; in our case,
limits in the number of tables a backend can handle. We are pushing the limits of
what traditional data management systems are able to do. Technology and business
strategy are entangled and need to evolve together.

Conclusion
The Data Tamer system ventured out of Mike’s well-established domain of data-
bases and into the domain of data integration. In keeping with Mike’s assertion
that commercialization is the only way to validate technology, Tamr was formed to
commercialize the ideas developed in the Data Tamer system. In part, customers
judge how well the Tamr system works using clear metrics, such as performance
and scalability, and our customers themselves are the best guides to the metrics
that matter, however unreasonable those metrics might seem to us. But much of
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Figure 30.2 Tamr founders, employees, and their families enjoy the 2015 Tamr summer outing at
Mike and Beth Stonebraker’s lake house on Lake Winnipesaukee in New Hampshire.

Tamr’s approach to data integration can only be assessed by more abstract mea-
sures, such as time to deliver data, or subject matter expert engagement. As we
continue to work closely with Mike to realize his vision and guidance, the ultimate
validation is in the vast savings our customers attribute to our projects1 and the
testimonials they give to their peers, describing how what they have long known to
be impossible has suddenly become possible.2

1. “$100+ millions of dollars of ROI that GE has already realized working with Tamr” https://www
.tamr.com/case-study/tamrs-role-ges-digital-transformation-newest-investor/. Last accessed April
22, 2018.

2. “GSK employed Tamr’s probabilistic matching approach to combine data across the organiza-
tion and across three different initial domains (assays, clinical trial data, and genetic data) into a
single Hadoop-based data within 3 months—‘an unheard-of objective using traditional data man-
agement approaches.’” https://www.tamr.com/forbes-tamr-helping-gsk-bite-data-management-
bullet/. Last accessed April 22, 2018.
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Introduction
For those involved in the Intel Science and Technology Center (ISTC) for Big Data,1

releasing the prototype polystore, BigDAWG, was the culmination of many years of
collaboration led by Mike Stonebraker. I joined the project as a researcher from MIT
Lincoln Laboratory early in 2014 and have since helped lead the development of the
BigDAWG codeline and continue to champion the concept of polystore systems.

For many involved in the development of BigDAWG, releasing the software as
an open-source project in 2017 was a major step in their careers. The background
behind BigDAWG—such as architecture, definitions and performance results—is
given in Chapter 22. This chapter gives a behind-the-scenes look at the development
of the BigDAWG codeline.

The concept of polystores and BigDAWG, in particular, has been an ambi-
tious idea from the start. Mike’s vision of the future, discussed in his ICDE paper
[Stonebraker and Çetintemel 2005], involves multiple independent and heteroge-
neous data stores working together, each working on those parts of the data for
which they are best suited. BigDAWG is an instantiation of Mike’s vision.

Looking back at the timeline of Mike’s numerous contributions to the world
of database systems, BigDAWG is one of the more recent projects. Mike’s vision
and leadership were critical in all stages of the project. Mike’s vision of a polystore
system was one of the large drivers behind the creation of the ISTC. Mike’s honest,
straightforward communication and attitude kept the geographically distributed
team moving towards a common goal. Mike’s leadership, pragmatic experience,

1. “MIT’s ‘Big Data’ Proposal Wins National Competition to Be Newest Intel Science and
Technology Center,” May 30, 2012. http://newsroom.intel.com/news-releases/mits-big-data-
proposal-wins-national-competition-to-be-newest-intel-science-and-technology-center/. Last ac-
cessed March 23, 2018.

http://newsroom.intel.com/news-releases/mits-big-data-proposal-wins-national-competition-to-be-newest-intel-science-and-technology-center/
http://newsroom.intel.com/news-releases/mits-big-data-proposal-wins-national-competition-to-be-newest-intel-science-and-technology-center/
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and deep theoretical knowledge were invaluable as a group of researchers spread
across MIT, University of Washington, Northwestern University, Brown University,
University of Chicago, and Portland State University worked together to not only
advance their own research, but also integrate their contributions into the larger
BigDAWG codeline.

One of the greatest strengths of the BigDAWG project has been the contributions
from a diverse set of contributors across some of the best database groups in the
country. While this was helpful in developing the theory, one practical challenge
was working around the geographic distance. Thus, from very early on in the project
we realized that, instead of weekly telecons and Skype sessions, it would be most
efficient to have major code integrations done during hackathons and sprints. To
keep ourselves in line with cutting-edge research, we also made sure that these
hackathons led to demonstrations and publications.

The process of development (borrowing terminology from Mike’s Turing lec-
ture2) was:

Until (software release) {

1. Meeting (often at MIT) amongst PIs and students to decide target

demonstration and scope of code development -- Mike ends

meetings with ‘‘Make it happen’’;

2. Distributed code development towards individual goals;

3. Regular meetings and teleconferences to discuss and overcome

technical challenges;

4. Hackathon to integrate various pieces;

5. Demonstration and paper;

}

As you can see, BigDAWG was developed in parts, with each new version a closer
representation of the Mike polystore vision than the previous. The development
of the codeline was unique in many ways: (1) individual components were built
by different research groups, each with their own research agenda; (2) hackathons
were used to bring these individual contributions into a coherent system; and (3)

2. Stonebraker, M., The land sharks are on the squawk box, ACM Turing Award Lecture (video),
Federated Computing Research Conference, June 13, 2015.
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Figure 31.1 Timeline of BigDAWG milestones.

we worked closely with end users to create relevant demonstrations. BigDAWG
today [Gadepally et al. 2017] is a software package that allows users to manage
heterogeneous database management systems. The BigDAWG codeline3 is made up
of middleware, connectors (shims) to databases such as Postgres and SciDB, and
software that simplifies getting started with BigDAWG such as an administrative
interface and scripts to simplify data loading. The middleware enables distributed
query planning, optimization and execution, data migration, and monitoring. The
database connectors allow users to take data in existing databases and quickly
register them with the middleware so that queries can be written through the
BigDAWG middleware. We also have an API that can be used to issue queries,
develop new islands, and integrate new database systems. The latest news and
status on the BigDAWG project can be found at http://bigdawg.mit.edu.

A few major milestones in the project are shown in Figure 31.1.
Based on external observations, the BigDAWG project has been a major success

on many fronts.

1. It has brought together some of the leading minds in database systems.

2. It has developed a codebase that serves as a prototype implementation of the
“polystore” concept.

3. http://github.com/bigdawg-istc/bigdawg. Last accessed March 23, 2018.

http://bigdawg.mit.edu
http://github.com/bigdawg-istc/bigdawg
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3. It has effectively created a new area of data management research. For exam-
ple, Dr. Edmon Begoli (Chief Data Architect, Oak Ridge National Laboratory)
says: “We recognized in the late 2000s, and through our work on large health-
care data problems, that the heterogeneity in data management and related
data analysis is going to be a challenge for quite some time. After working
with Mike, we learned about the polystore concept, and the BigDAWG work
being led by his team. We got involved with early adoption, and it has become
one of our major focus areas of database research.”

While still a relatively young codeline, we are very excited about where BigDAWG
is headed.

BigDAWG Origins
The first “BigDAWG” proof of concept was demonstrated during the ISTC Retreat
in Portland, Oregon, in August 2014. At this time, Mike postulated that a medical
application would be the perfect use-case for a polystore system. Fortunately, fellow
MIT researchers Peter Szolovits and Roger Mark had developed and released a rich
medical dataset called MIMIC (short for Multiparameter Intelligent Monitoring in
Intensive Care). You can find more information about the dataset at Johnson et al.
[2016].

So, we had a dataset but no application in mind, no middleware, or anything,
really. We promised to demonstrate “BigDAWG” well before we had any idea what
it would be. As I look back, the ready-fire-aim approach to development seems to
be a central theme to most of the major BigDAWG developments.

We put together the first prototype of the BigDAWG system at the University of
Washington (UW) by drawing heavily upon their experience building the Myria sys-
tem [Halperin et al. 2014] and our work developing D4M [Gadepally et al. 2015].
Over a two-day sprint, Andrew Whittaker, Bill Howe, and I (with remote support
from Mike, Sam Madden, and Jeremy Kepner of MIT) were able to give a very sim-
ple demonstration that allowed us to perform a simple medical analysis—heart
rate variability—using SciDB (see Chapter 20) and Postgres/Myria. In this demon-
stration, patient metadata such as medications administered was stored in Post-
gres/Myria and SciDB was used to compute the actual heart rate variability. While
this was a bare-bones implementation, this demonstration gave us the confidence
that it would be possible to build a much more robust system that achieved Mike’s
grander polystore vision [Stonebraker 2015c]. Funny enough, after days of careful
and successful testing, the actual demo at Intel failed due to someone closing the
demonstration laptop right before the demo and subsequent complications recon-
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Figure 31.2 Screenshots for MIMIC II demonstration using BigDAWG, presented for the Intel Retreat.

necting to Intel’s Wi-Fi. However, we were able to get the demo running again and
this initial demonstration, while hanging by a thread, was important in the devel-
opment of polystore systems.

First Public BigDAWG Demonstration
The initial prototype of BigDAWG at the ISTC demonstration proved, to us and oth-
ers, that it was possible for East and West Coast researchers to agree on a concept
and work together and that Mike’s polystore vision could be huge. However, we also
realized that our initial prototype, while useful in showcasing a concept, was not
really a true polystore system.

During a meeting at Intel’s Santa Clara office in January 2015, we decided to
push forward, use lessons learned from the first demonstration, and develop a poly-
store that adhered to the tenets laid out by Mike in his ACM SIGMOD blog post
[Stonebraker 2015c]. Further, since Mike wanted an end application, we also de-
cided to focus this development around the MIMIC dataset mentioned earlier. Dur-
ing this January 2015 meeting, BigDAWG researchers and Intel sponsors charted
out what the prototype system would look like along with an outline for a demon-
stration to showcase the polystore in action (we eventually demonstrated BigDAWG
for medical analytics at VLDB 2015 [Elmore et al. 2015], Intel, and many other
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Figure 31.3 Hackathon pictures. (Top left) initial demonstration wireframes, (top right) initial Big-
DAWG architecture, (bottom left) hackathon in action, and (bottom right) demonstration
in action at VLDB 2015.

venues). The proposed demonstration would integrate nearly 30 different tech-
nologies being developed by ISTC researchers. While individual researchers were
developing their own research and code, we led the effort in pulling all these great
technologies together. The goal was to allow ISTC researchers to push the bound-
aries of their own work while still contributing to the larger polystore vision.

Keeping track of the status of various projects was done via regular meetings and
a very large spreadsheet. We also fixed the dataset and expressed to the various col-
laborators that a particular MIT cluster would be used for the software integration
and demonstration. This helped us avoid some of the compatibility issues that can
arise in large software integration efforts. In July 2017, we held a hackathon at MIT
that brought together researchers from MIT, University of Washington, Brown, Uni-
versity of Chicago, Northwestern University, and Portland State University. Lots of
long nights and pizza provided the fuel needed to develop the first BigDAWG code-
line. By the end of this hackathon, we had our first BigDAWG codeline [Dziedzic
et al. 2016], a snazzy demonstration, and a very long list of missing features.

Lesson. Integrating multiple parallel research projects can be a challenge; how-
ever, clear vision from the beginning and fixing certain parameters such as datasets
and development environments can greatly simplify integration.
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After a number of successful demonstrations, it was clear to a number of us
that polystore systems would have their day in the sun. However, even with a suc-
cessful demonstration, the underlying system still had no principled way of doing
important tasks such as query optimization and data migration, and no clear query
language. With the help of talented graduate students at MIT, Northwestern Uni-
versity, and University of Chicago (and further help from University of Washington
and Brown University), over the next six months we developed these essential com-
ponents.

Putting these pieces together was a complicated task that involved a number
of very interesting technical challenges. One feature we wanted to include in the
system was a monitoring system that could store information about queries, their
plans, and related performance characteristics [Chen et al. 2016]. At the same time,
Zuohao (Jack) She at Northwestern was working on a technique to develop query
plans across multiple systems and determine semantic equivalences across het-
erogeneous systems [She et al. 2016]. Jack and Peinan Chen (MIT) worked together
to develop a signature for each unique query, store the performance information
of that query, and store these results for future use. Then, when a similar new
query came in, they could leverage a pre-run query plan in order to execute the
query across multiple systems (if a dissimilar query came in, the middleware would
attempt to run as many query plans as possible to get a good understanding of per-
formance characteristics that could be used for future queries). Another key feature
was the ability to migrate data across multiple systems either explicitly or implic-
itly. Adam Dziedzic (University of Chicago) did a lot of the heavy lifting to make this
capability a reality [She et al. 2016]. Ankush Gupta (MIT) also developed an execu-
tion engine that is skew-aware [Gupta et al. 2016]. These pieces formed the first real
implementation of the BigDAWG middleware [Gadepally et al. 2016a].

Lesson. A layered approach to software development can be advantageous: The
first steps prove an idea and subsequent steps improve the quality of the solution.

Refining BigDAWG
The VLDB and subsequent demonstrations exhibited to the wider community that
the concept of a polystore was not only feasible, but also full of potential. While the
medical dataset was a great use-case, it did not show the scale at which BigDAWG
could work. Thus, we set about searching for an interesting use-case that showcased
all the great developments since VLDB 2015 as well as a real-world large-scale
problem. After months of searching for large, heterogeneous datasets without too
many sharing caveats, we were introduced to a research group at MIT led by Sallie
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Figure 31.4 Hackathon 3 at MIT Strata Center.

(Penny) Chisholm, Steve Biller, and Paul Berube. The Chisholm Lab specializes
in microbial oceanography and biological analysis of organisms. During research
cruises around the world, the Chisholm Lab collects samples of water with the goal
of understanding the ocean’s metabolism. These samples are then analyzed by a
variety of means. Essentially, seawater is collected from various parts of the ocean,
and then the microbes in each water sample are collected on a filter, frozen, and
transported to MIT. Back in the lab, the scientists break open the cells and randomly
sequence fragments of DNA from those organisms. The dataset contains billions
of FASTQ-format [Cock et al. 2009] sequences along with associated metadata such
as the location, date, depth, and chemical composition of the water samples. Each
of these pieces is stored in disparate data sources (or flat files). This seemed like
the perfect large-scale use-case for BigDAWG. Over the course of four months, we
were able to refine BigDAWG and develop a set of dashboards that the Chisholm
team could use to further their research. As before, the majority of the integration
work was done in a hackathon hosted at MIT over the summer of 2016. With
the help of Chisholm Lab researchers, we were able to use the BigDAWG system
to efficiently process their large datasets. One of the largest challenges with this
particular dataset was that, due to the volume and variety, very little work had been
done in analyzing the full dataset. Putting our analytic hats on, and with significant
help from Chisholm Lab researchers, we were able to develop a set of dashboards
they could use to better analyze their data. By the end of this hackathon, we had
integrated a number of new technologies such as S-Store [Meehan et al. 2015b],
Macrobase [Bailis et al. 2017], and Tupleware [Crotty et al. 2015]. We also had a
relatively stable BigDAWG codebase along with a shiny new demonstration! These
results were presented at Intel and eventually formed the basis of a paper at CIDR
2017 [Mattson et al. 2017].

Lesson. Working closely with end users is invaluable. They provide domain exper-
tise and can help navigate tricky issues that may come up along the way.
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BigDAWG Official Release
By the end of the CIDR demonstration, there were now loud requests for a formal
software release. This was certainly one of the larger challenges of the overall
project. While developing demonstrations and code that was to be mainly used
by insiders was challenging enough, we now had to develop an implementation
that could be used by outsiders! This phase had a number of goals: (1) make
code that is robust and usable by outsiders; (2) automate test/build processes
for BigDAWG (until now, that was handled manually by graduate students), (3)
develop unit tests and regression tests, and (4) documentation, documentation,
and more documentation. Fortunately, we were able to leverage the experience
of MIT Lincoln Laboratory researcher Kyle O’Brien, who was knowledgeable in
developing software releases. He quickly took charge of the code and ensured
that the geographically distributed developers would have to answer to him before
making any code changes.

We ran into a number of technical and non-technical issues getting this re-
lease ready. Just to illustrate some of the complications, I recall a case where
we spent many hours wondering why data would not migrate correctly between
Postgres and SciDB. Going from system A to system B worked great, as did the
reverse when independently done. Finally, we realized that SciDB represents di-
mensions as 64-bit signed integers and Postgres allows many different datatypes.
Thus, when migrating data represented by int32 dimensions, SciDB would auto-
matically cast them to int64 integers; migrating back would lose uniqueness of
IDs. There were also many instances when we regretted our choice to use Docker
as a tool to simplify test, build, and code distribution. We learned the hard way
that Docker, while a great lightweight virtualization tool, has many known net-
working issues. Since we were using Docker to launch databases, middleware, and
many other components, we definitely had a number of long telecons trying to
debug where errors were coming up. These telecons were so frequent that Adam
Dziedzic remembers a call where someone was looking up the conference line num-
ber and Mike just rattled the conference number and access code off the top of
his head.

Beyond technical issues, licensing open-source software can be a nightmare.
After tons of paperwork, we realized about a week before our code release that one
of the libraries we were using at a very core level (computing tree edit distances in
the query planner) had an incompatible license with the BSD license we intended
to use. Thus, overnight, we had to rewrite this component, and test and retest
everything before the code release! Finally, however, the code was released almost
on schedule (with documentation).
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Since this first release, we’ve had a number of contributors: Katherine Yu (MIT)
developed connectors with MySQL and Vertica [Yu et al. 2017]; Matthew Mucklo
(MIT) developed a new UI and is building a new federation island; and John Meehan
and Jiang Du at Brown University have created a streaming island with support for
the open-source streaming database S-Store [Meehan et al. 2017].

Lesson. There is often a big gap between research code and production code. It is
very helpful to leverage the experience of seasoned developers in making this leap.

BigDAWG Future
Compared to many of Mike’s projects, BigDAWG has a relatively young codeline.
While it is currently difficult to judge the long-term impact of this project, in the
short term, there are many encouraging signs. BigDAWG was selected as a final-
ist for the prestigious R&D 100 Award, and we have started to form a research
community around the concept of polystore systems [Tan et al. 2017] as well as
workshops and meetings. For example, we have organized polystore-themed work-
shops at IEEE BigData 2016 and 2017 and will be organizing a similar workshop
(Poly’18) at VLDB 2018. We’ve used BigDAWG as the source for tutorials at con-
ferences, and several groups are investigating BigDAWG for their work. Looking
further into the future, it is difficult to predict where BigDAWG will go technically,
but it is clear that it has helped inspire a new era in database systems.
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32IBM Relational Database
Code Bases1

James Hamilton

Why Four Code Bases?
Few server manufacturers have the inclination and the resources needed to develop
a relational database management system. Yet IBM has internally developed and
continues to support four independent, full-featured relational database products.
A production-quality RDBMS with a large customer base typically is well over a
million lines of code and represents a multi-year effort of hundreds and, in some
cases, thousands of engineers. These are massive undertakings requiring special
skills, so I’m sometimes asked: How could IBM possibly end up with four different
RDBMS systems that don’t share components?

Mike Stonebraker often refers to the multiple code base problem as one of IBM’s
biggest mistakes in the database market, so it’s worth looking at how it came to be,
how the portable code base evolved at IBM, and why the portable version of DB2
wasn’t ever a strong option to replace the other three.

At least while I was at IBM, there was frequent talk of developing a single RDBMS
code base for all supported hardware and operating systems. The reasons this
didn’t happen are at least partly social and historical, but there are also many strong
technical challenges that would have made it difficult to rewind the clock and use
a single code base. The diversity of the IBM hardware and operating systems would
slow this effort; the deep exploitation of unique underlying platform characteristics
like the single-level store on the AS/400 or the Sysplex Data Sharing on System z
would make it truly challenging; the implementation languages used by many of

1. A version of this chapter was previously published in James Hamilton’s Perspectives blog in
December 2017. http://perspectives.mvdirona.com/2017/12/1187. Last accessed March 5, 2018.

http://perspectives.mvdirona.com/2017/12/1187
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the RDBMS code bases don’t exist on all platforms; and differences in features and
functionality across the four IBM database code bases make it even less feasible.
After so many years of diverse evolution and unique optimizations, releasing a
single code base to rule them all would almost certainly fail to be feature- and
performance-compatible with prior releases. Consequently, IBM has four different
relational database management system codelines, maintained by four different
engineering teams.

DB2/MVS, now called Db2 for z/OS, is a great product optimized for the z/OS op-
erating system, supporting unique System z features such as the Sysplex Coupling
Facility. Many of IBM’s most important customers still depend on this database
system, and it would be truly challenging to port to another operating system such
as Windows, System i, UNIX or Linux. It would be even more challenging to replace
Db2 for z/OS with one of the other IBM relational code bases. Db2 for z/OS will
live on for the life of the IBM mainframe and won’t likely be ported to any other
platform or ever be replaced by another RDBMS codeline from within IBM.

DB2/400, now called Db2 for i, is the IBM relational database for the AS/400.
This hardware platform, originally called the System/38, was released way back in
1979 but continues to be an excellent example of many modern operating system
features. Now called System i, this server hosts a very advanced operating system
with a single-level store where memory and disk addresses are indistinguishable
and objects can transparently move between disk and memory. It’s a capability-
based system where pointers, whether to disk or memory, include the security
permissions needed to access the object referenced. The database on the System
i exploits these system features, making Db2 for i another system-optimized and
non-portable database. As with Db2 for z/OS, this code base will live on for the life
of the platform and won’t likely be ported to any other platform or ever be replaced
by another RDBMS codeline.

There actually is a single DB2 code base for the VM/CMS and DOS/VSE operating
systems. Originally called SQL/Data System or, more commonly, SQL/DS (now
officially Db2 for VSE & VM), it is the productization of the original System R research
code base. Some components such as the execution engine have changed fairly
substantially from System R, but most parts of the system evolved directly from
the original System R code base developed at the IBM San Jose Research Center
(later to become IBM Almaden Research Center). This database is not written in
a widely supported or portable programming language, and recently it hasn’t had
the deep engineering investment of the other IBM RDBMS code bases. But it does
remain in production use and continues to be fully supported. It wouldn’t be a good
choice to port to other IBM platforms and it would be very difficult to replace while
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maintaining compatibility with the previous releases in production on VM/CMS
and DOS/VSE.

The Portable Code Base Emerges
For the OS/2 system, IBM wrote yet another relational database system but this
time it was written in a portable language and with fewer operating system and
hardware dependencies. When IBM needed a fifth RDBMS for the RS/6000, many
saw porting the OS/2 DBM code base as the quickest and most efficient option. As
part of this plan, in early 1992 the development of OS/2 Database Manager (also
called OS/2 DBM) was transferred from the OS/2 development team to the IBM
Software Solutions development lab in Toronto. The Toronto mission was both to
continue supporting and enhancing OS/2 DBM and to port the code base to AIX on
the RS/6000. We also went on to deliver this code base on Linux, Windows, HP/UX,
and Sun Solaris.

My involvement with this project started in January 1992 shortly after we began
the transfer of the OS/2 DBM code base to the Toronto lab. It was an exciting time.
Not only were we going to have a portable RDBMS code base and be able to support
multiple platforms but, in what was really unusual for IBM at the time, we would
also support non-IBM operating systems. This really felt to me like “being in the
database business” rather than being in the systems business with a great database.

However, we soon discovered that our largest customers were really struggling
with OS/2 DBM and were complaining to the most senior levels at IBM. I remember
having to fly into Chicago to meet with an important customer who was very upset
with OS/2 Database Manager stability. As I pulled up in front of their building,
a helicopter landed on the lawn with the IBM executives who had flown in from
headquarters for the meeting. I knew that this was going to be a long and difficult
meeting, and it certainly was.

We knew we had to get this code stable fast, but we also had made commit-
ments to the IBM Software Solutions leadership to be in production quickly on the
RS/6000. The more we learned about the code base, the more difficult the challenge
looked. The code base wasn’t stable and didn’t perform well, nor did it scale well
in any dimension. It became clear we either had to choose a different code base or
make big changes to this one quickly.

There was a lot to be done and very little time. The pressure was mounting and
we were looking at other solutions from a variety of sources when the IBM Almaden
database research team jumped in. They offered to put the entire Almaden database
research team on the project, with the goal of replacing the OS/2 DBM optimizer
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and execution engine with Starburst research database components and helping
to solve scaling and stability problems we were currently experiencing in the field.
Accepting a research code base is a dangerous step for any development team, but
this proposal was different in that the authors would accompany the code base. Pat
Selinger of IBM Almaden Research essentially convinced us that we would have
a world-class optimizer and execution engine and the full-time commitment of
Pat, Bruce Lindsay, Guy Lohman, C. Mohan, Hamid Pirahesh, John McPherson,
Don Chamberlin, the co-inventor of the Structured Query Language, and the rest
of the IBM Almaden database research team. This entire team worked shoulder to
shoulder with the Toronto team to make this product successful.

The decision was made to take this path. At around the same time we were
making that decision, we had just brought the database up on the RS/6000 and
discovered that it was capable of only six transactions per second (TPS) measured
using TPC-B. The performance leader on that platform at the time, Informix, was
able to deliver 69 TPS. This was incredibly difficult news in that the new Starburst
optimizer, although vital for more complex relational workloads, would have virtu-
ally no impact on the simple transactional performance of the TPC-B benchmark.

I remember feeling like quitting as I thought through where this miserable
performance would put us as we made a late entrance to the UNIX database market.
I dragged myself up out of my chair and walked down the hall to Janet Perna’s
office. Janet was the leader of IBM Database at the time and responsible for all IBM
database products on all platforms. I remember walking into Janet’s office—more
or less without noticing she was already meeting with someone—and blurting out,
“We have a massive problem.” She asked for the details. Janet, typical of her usual
“just get it done” approach to all problems, said, “Well, we’ll just have to get it
fixed then. Bring together a team of the best from Toronto and Almaden and report
weekly.” Janet is an incredible leader and, without her confidence and support, I’m
not sure we would have even started the project. Things just looked too bleak.

Instead of being a punishing or an unrewarding “long march,” the performance
improvement project was one of the best experiences of my career. Over the course
of the next six months, the joint Toronto/Almaden team transformed the worst
performing database management system to the best. When we published our
audited TPC-B performance later that year, it was the best-performing database
management system on the RISC System/6000 platform.

It was during this performance work that I really came to depend upon Bruce
Lindsay. I used to joke that convincing Bruce to do anything was nearly impossible,
but, once he believed it was the right thing to do, he could achieve as much by
himself as any mid-sized engineering team. I’ve never seen a problem too big for
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Bruce. He’s saved my butt[SK1][MLB2] multiple times over the years and, although
I’ve bought him a good many beers, I still probably owe him a few more.

The ad hoc Toronto/Almaden performance team did amazing work and that
early effort not only saved the product in the market but also cemented the trust
between the two engineering teams. Over subsequent years, many great features
were delivered and much was achieved together.

Many of the OS/2 DBM quality and scaling problems were due to a process model
where all connected users ran in the same database address space. We knew that
needed to change. Matt Huras, Tim Vincent, and the teams they led completely
replaced the database process model to one where each database connection had
its own process and each could access a large shared buffer pool. This gave us
the fault isolation needed to run reliably. The team also kept the ability to run in
operating system threads, and put in support for greater than 4GB addressing even
though all the operating systems we were using at the time were 32-bit systems.
This work was a massive improvement in database performance and stability. And,
it was a breath of fresh air to have the system stabilized at key customer sites so
we could focus on moving the product forward and functionally improving it with
a much lower customer support burden.

Another problem we faced with this young code base, originally written for OS/2,
was that each database table was stored in its own file. There are some downsides to
this model, but it can be made to work fairly well. What was absolutely unworkable
was that no table could be more than 2GB. Even back then, a database system where
a table could not exceed 2GB would have been close to doomed in the Unix database
market.

At this point, we were getting close to our committed delivery date. The collective
Toronto and Almaden teams had fixed all the major problems with the original OS/2
DBM code base and we had it running well on both the OS/2 and AIX platforms.
We also could support other operating systems and platforms fairly easily. But the
one problem we just hadn’t found a way to address was the 2GB table size limit.

At the time I was lead architect for the product and felt very strongly that we
needed to address the table size limitation of 2GB before we shipped. I was making
that argument vociferously, but the excellent counter argument was we were simply
out of time. Any reasonable redesign would have delayed us significantly from our
committed product ship dates. Estimates ranged from 9–12 months, and many felt
bigger slips were likely if we made changes of this magnitude to the storage engine.

I still couldn’t live with the prospect of shipping a UNIX database product
with this scaling limitation, so I ended up taking a long weekend and writing
support for a primitive approach to supporting greater-than-2GB tables. It wasn’t
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a beautiful solution, but the beautiful solutions had been investigated extensively
and just couldn’t be implemented quickly enough. What I did was implement a
virtualization layer below the physical table manager that allowed a table to be
implemented over multiple files. It wasn’t the most elegant of solutions, but it
certainly was the most expedient. It left most of the storage engine unchanged
and, after the files were opened, it had close to no negative impact on performance.
Having this code running and able to pass our full regression test suite swung the
argument the other way and we decided to remove the 2GB table size limit before
shipping.

When we released the product, we had the world’s fastest database on AIX
measured using TPC-B. We also had the basis for a very available system, and the
customers that were previously threatening legal action became happy reference
customers. Soon after, we shipped the new Starburst optimizer and query engine
further strengthening the product.

Looking Forward
This database became quite successful and I enjoyed working on it for many re-
leases. It remains one of the best engineering experiences of my working life. The
combined Toronto and Almaden teams are among the most selfless and talented
group of engineers with which I’ve ever worked. Janet Perna, who headed IBM Data-
base at the time, was a unique leader who made us all better, had incredibly high
standards, and yet never was that awful boss you sometimes hear about. Matt Huras,
Tim Vincent, Al Comeau, Kathy McKnight, Richard Hedges, Dale Hagen, Berni Schi-
effer, and the rest of the excellent Toronto DB2 team weren’t afraid of a challenge
and knew how to deliver systems that worked reliably for customers. Pat Selinger
is an amazing leader who helped rally the world-class IBM Almaden database re-
search team and kept all of us on the product team believing. Bruce Lindsay, C.
Mohan, Guy Lohman, John McPherson, Hamid Pirahesh, Don Chamberlin, and
the rest of the Almaden database research team are all phenomenal database re-
searchers who were always willing to roll up their sleeves and do the sometimes
monotonous work that seems to be about 90% of what it takes to ship high-quality
production systems. For example, Pat Selinger, an IBM Fellow and inventor of the
relational database cost-based optimizer, spent vast amounts of her time writing
the test plan and some of the tests used to get the system stable and ready to deploy
into production with confidence.

IBM continues to earn billions annually from its database offerings, so it’s hard
to refer to these code bases as anything other than phenomenal successes. An ar-
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Figure 32.1 Many leaders from DB2 Toronto. Standing, from left to right, are Jeff Goss, Mike Winer,
Sam Lightstone, Tim Vincent, and Matt Hura. Sitting, from left to right, are Dale Hagen,
Berni Schiefer, Ivan Lew, Herschel Harris, and Kelly Schlamb.

gument might be made that getting to a single code base could have allowed the
engineering resources to be applied more efficiently. I suppose that is true, but
market share is even more important than engineering efficiency. To grow market
share faster, it would have been better to focus database engineering, marketing,
and sales resources to selling DB2 on non-IBM platforms earlier and with more fo-
cus. It’s certainly true that Windows has long been on the DB2-supported platforms
list, but IBM has always been most effective selling on its own platforms. That’s still
true today. DB2 is available on the leading cloud computing platform but, again,
most IBM sales and engineering resources are still invested in their own compet-
itive cloud platform. IBM Platform success is always put ahead of IBM database
success. With this model, IBM database success will always be tied to IBM server
platform market share. Without massive platform success, there can’t be database
market share growth at IBM.





33Aurum: A Story about
Research Taste
Raul Castro Fernandez

Most chapters in this section, Contributions from Building Systems, describe systems
that started in the research laboratory and became the foundation for successful
companies. This chapter focuses on an earlier stage in the research lifecycle: the
period of uncertainty when it is still unclear whether the research ideas will make
it out of the laboratory into the real world. I use as an example Aurum, a data
discovery system that is part of the Data Civilizer project (see Chapter 23). I do not
give a technical overview of Aurum or explain the purpose of the system—only the
minimum necessary to provide some context. Rather, this is a story about research
taste in the context of systems. Concretely, it’s a summary of what I have learned
about research taste in the two-and-a-half-plus years that I have worked with Mike
Stonebraker at MIT.

Of the many research directions one can take, I focus on what I call “new
systems,” that is, how to envision artifacts to solve ill-specified problems for which
there is not a clear success metric. Aurum falls in this category. Within this category
we can further divide the space of systems research. At one extreme, one can make
up a problem, write an algorithm, try it with some synthetically generated data,
and call it a system. I don’t consider this to be an interesting research philosophy
and, in my experience, neither does Mike (see Chapters 10 and 11); good luck to
anyone who comes into Mike’s office and suggests something along those lines.
Let’s say the minimum requirement of a “new system” is that the resulting artifact
is interesting to someone other than the researchers who design the system or other
academic researchers in the same research community.

Research on “new systems” starts by identifying an existing problem or user pain
point. The next step is usually to identify why the problem exists, and come up with
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a hypothesis for how to solve it. The system should help test the hypothesis in a real
scenario, in such a way that if the system works well, it should alleviate the identi-
fied problem. With Aurum, we were trying to test ideas for helping organizations
discover relevant data in their databases, data lakes, and cloud repositories. It turns
out that “data discovery” is a very common problem in many companies that store
data across many different storage systems. This hurts the productivity of employ-
ees that need access to data for their daily tasks, e.g., filling in a report, checking
metrics, or finding data necessary for populating the features of a machine learning
model.

So the story of Aurum started with this “data discovery” problem. The first steps
involved setting up meetings with different organizations to understand how they
were thinking about their data discovery problem and what they were doing to
solve or avoid it. This stage is “crucial” if one cares about actually helping in a
real use-case. Often, you find research papers that claim some problem area and
cite another research paper. This is perfectly fine; lots of research results are built
directly on top of previous research. However, many times the claims are vague
and dubious, e.g., “In the era of big data, organizations need systems that can
operate underwater without electricity.” Then, the researchers cite some existing
paper. They probably have not talked to the people who would use the system
that they are designing, but rather rely on the motivation of some previous paper
to ground their contributions. It’s easy to see how this quickly gets out of hand.
Citing previous contributions is OK, citing previous results is OK. Citing previous
motivations should raise eyebrows, but it often does not. In any case, it turns out
that if you talk to real customers, they have a ton of problems. These problems
may not be the ones you expect, but they are hard enough to motivate interesting
research directions.

With an initial list of requirements motivated by the problem at hand, one moves
on to design a system. What then follows is an aggressive back and forth of ideas
and implementations that are quickly prototyped, built, and then discarded. This
is because at the beginning the requirements are vague. One must always challenge
the assumptions and adjust the prototype as new requirements emerge and existing
ones become more and more defined. This is remarkably difficult.

Another challenge in this first stage is that the technical requirements are in-
termingled with business rules or idiosyncrasies of specific organizations. Often,
it helps to distill the fundamental problems by talking to many different compa-
nies. Initially I wrongly assumed that as long as Aurum had read-only access to the
original data sources, it would be possible to design a system that could repeatedly
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read that data. It turns out that reading data only once is a very desirable property
of a system that is going to access many data sources within an organization—it
reduces overhead on the end systems, it reduces costs in the cloud, etc. If you can-
not read the same data more than once, the way you design your data structures
and how you put together the system change fundamentally. As a result, the system
would be completely different. Of course, this process is far from perfect, so you
typically finish a first prototype of the system and find many necessary features are
missing.

A lot of noise is introduced while designing the prototype as well, from simplify-
ing assumptions to pieces that are not optimized and pose serious usability issues.
On top of that, it is easy to prioritize the more interesting technical challenges in-
stead of those that may have more of an impact for end users. This noisy process is
the whole reason why it’s so important to release prototypes soon, showing them
to the people who have the real problem, and receiving feedback and impressions
as early as possible. This is why it’s so important to be open to challenging one’s
assumptions relentlessly. Getting continuous feedback is key to steering the system
in the right direction.

What then is the right direction? One may argue, if you are in research, that
the right direction in computer science in the 21st century is to optimize the least
publishable unit (LPU) grain. In other words, define small problems, do thorough
technical work, and write lots of papers that are necessary to progress in one’s
career. These days, this approach increases your chances of getting the paper pub-
lished while minimizing the amount of effort that goes into the research. This,
however, is generally at odds with doing impactful research. Focusing on real prob-
lems is a riskier path; just because one aims to build a system to solve a real problem
does not mean the process will be successful, and it is definitely incompatible with
the research community’s expectation of publishing many papers. This brings to
the table two different philosophies for systems research: make it easy or make it
relevant.

The “right” style is a matter of research taste. My research taste is aligned with
making research relevant. This is one of the main things you learn working with
Mike. The major disadvantage of making research relevant is that it is a painful
process. It involves doing a lot of work you know won’t have a significant impact in
the resulting research paper. It brings a handful of frustrations that have no connec-
tion with either the research or the system. It exposes you to uncountable sources
of criticism, from your mentors, your collaborators, and the users of the system.
When you show your prototype to the public, there are always many ruminating
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thoughts: Will the prototype be good enough? Will their interests be aligned or will
they think this is irrelevant and disconnected? On top of those imagined frustra-
tions and fears, there are real ones.

I still remember clearly a meeting with an analyst from a large company. We
had been collaborating for a while and discussing different data discovery problems
within the company. I had showed him multiple demos of Aurum, so I was confident
that the interests were well aligned. After some back and forth we agreed to try
Aurum in some of their internal databases. This is a painful process for industrial
collaborators because they have to deal with internal challenges, such as obtaining
the right permissions to the data, getting the legal team to set up appropriate
agreements, and a myriad of other hurdles that I could not have imagined. This
was the first real test for Aurum. When I arrived in the office, we made coffee—that
is always the first step. I always have a long espresso, so that’s what I brought to
the meeting room. We sat in our desks and started the job right away; we wanted to
minimize the deployment time to focus on what we would do next. I had pre-loaded
two public databases, which I had access to, so the only remaining bit was to include
the internal database. I started the instance, connected to the database with the
credentials they gave me, and fired up the process. A couple of minutes into our
meeting, Aurum was already reading data from the internal database at full speed.
We started chatting about some ideas, discussing other interesting technologies
while enjoying our coffee. I had barely taken a sip of my espresso when I looked
at the screen and saw that something was obviously very wrong. A variable which
should have been ranging in the single-digit millions was tens of millions and
growing!

Previously, I had tested Aurum using large datasets that I found in the field,
under different test scenarios and using more complex queries than I expected to
find in the company. However, I had overlooked a basic parameter, the vocabulary
size. I knew that the deployment was poised to break. The gist of the problem
was that Aurum was building an internal vector proportional to the size of the
vocabulary. As long as the vector fits in memory, there is no problem. Although I
had tried Aurum with large datasets, I did not account for the vocabulary size. The
database that we were processing had tens of millions of different domain-specific
terms. Ten minutes into the meeting the process had failed. The analyst, very
graciously, proposed to rerun the process, but knowing the internal issue, I said that
it would not help. There was something fundamental that I would need to change.
The feeling of having wasted everybody’s time and resources was discouraging.

When you see a project fail in front of your eyes, a lot of questions come to mind:
Did I waste this opportunity? Am I going to be able to try this again? Even if it had
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worked, would it have helped the research? The only way forward, though, is to
get back to the office and power through the storm. Building research systems is
arduous. There is a constant pressure to understand whether what you are working
on is contributing to the research question you are trying to solve. There is a voice
that keeps asking: Is somebody going to care about this anyway? It is a painful
experience to demonstrate prototypes; naturally people focus on the things that
do not work as expected—such things may not have been on your radar, but are
the important points that should be handled. You receive all kinds of feedback, the
type you are interested in and other types that may not be immediately relevant, but
that people will deliver, trying to be helpful. On top of these frustrations, there are
other kinds of external pressures that add to the mix. Today, if you are in research,
building systems and taking the time to make them relevant is not necessarily
aligned with an academic value system that tends to value higher paper counts
(see Chapter 11). This makes you continually challenge your decisions, and wonder
whether the pain is necessary.

Mike’s unperturbed belief that “make it relevant” is the only way forward has
helped me stay on track despite setbacks. The story above has a happy ending. We
redeployed the system a few months later and loaded the database successfully.
We learned a lot during the process and, more importantly, we made the research
relevant to a real problem. Making research relevant is not easy, but the pain is
worth it. Hearing a new customer echoing the problems you’ve been dealing with
before, and noting how quickly you can empathize and help, is satisfying. Creating
something with the potential of having an impact beyond the research lab is even
more satisfying. Ultimately, it all boils down to research taste: make it easy or make
it relevant. I’ve chosen my path.





34Nice: Or What It Was Like
to Be Mike’s Student
Marti Hearst

There are three people who were pivotal to my success as a researcher, and Mike
Stonebraker was the first of these—and also the tallest! I am very pleased to be able
to share in this tribute to Mike, from my perspective as one of his former students.

Mike truly is a visionary. He not only led the way in the systems end of databases,
but he was also always trying to bring other fields into DBMSs. He tried to get AI
and databases to work together (OK, that wasn’t the most successful effort, but it
turned into the field of database triggers, which was enormously successful). He
led early efforts to bring economic methods to DBMSs, and was a pioneer in the
area of user interfaces and databases. I remember him lamenting back around 1993
that the database conferences would not accept papers on user interfaces when the
work on Tioga [Stonebraker et al. 1993b, 1993c] was spurned by that community.
That work eventually led to the Informix visualization interface, which again was
ahead of its time. Shortly after that, Oracle had more than 100 people working in
its visualization group.

Not only is Mike a visionary, but he is also inspirational to those around him.
Back around 1989, when I was a graduate student who didn’t find databases inter-
esting enough for my dissertation and instead wanted to work on natural language
processing (NLP), Mike said to me: “If you’re going to work with text, think BIG
text.” I took that on as a challenge, despite the strange looks I got from my NLP
colleagues, and as a result, was one of the first people to do computational linguis-
tics work on large text corpora. That approach now dominates in the field, but was
nearly unheard of at the time.
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Another time, after I’d obtained significant research results with big text, Mike
said something to the effect of, “What we need are keyboardless interfaces for text—
why don’t you solve that?” This led me to start thinking about visualization for
interfaces for text search, which in turn led to several inventions for which I am
now well known, and eventually to my writing the very first academic book on the
topic, Search User Interfaces [Hearst 2009]. Again, it was Mike’s vision and his special
form of encouragement that led me down that path.

Mike also taught me that a world-famous professor wasn’t too important to help
a student with annoying logistical problems that were blocking research. In 1989, it
was very difficult to get a large text collection online. I still remember Mike helping
me download a few dozen Sacramento Bee articles from some archaic system in
some musty room in the campus library, and paying the $200 to allow this to
happen.

I first met Mike when I was a UC Berkeley undergraduate who wandered into
his seminar on next-generation databases. I needed a senior honors project, and
even though he had just met me and I hadn’t taken the databases course, Mike
immediately suggested I work with him on a research project. He was the first
and only CS professor I’d encountered who simply assumed that I was smart and
capable. In retrospect, I think that Mike’s attitude toward me is what made it
possible for me to believe that I could be a CS Ph.D. student. So even though I
suspect that sometimes Mike comes across as brusque or intimidating to others,
toward students, he is unfailingly supportive.

As further evidence of this, in terms of number of female Ph.D. students advised
and graduated from the UC Berkeley CS department, in 1995 Mike was tied for
first with eight female Ph.D.s graduated (and he’d have been first if I’d stuck with
databases rather than switching to NLP). I don’t think this is because Mike had
an explicit desire to mentor female students, but rather that he simply supported
people who were interested in databases, and helped them be the very best they
could be, whoever they were and whatever skills they brought with them. As a result,
he helped elevate many people to a level they would never have reached without
him, and I speak from direct experience.

Mike’s enormous generosity is reflected in other ways. I still remember that
when he converted the research project Postgres into a company (Illustra Corpora-
tion), he made a big effort to ensure that every person who had contributed code
to the Postgres project received some shares in the company before it went public,
even though he had no obligation whatsoever to do that. Although a few of us who
contributed small amounts of code were overlooked until almost the very end, he
insisted that the paperwork be modified right before the IPO so that a few more
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Figure 34.1 Logo from the Postgres’95 t-shirt.

people would get shares. I find it hard to imagine anyone else who would do that,
but Mike is extraordinarily fair and generous.

Mike is also very generous with assigning research credit. The aforementioned
undergraduate research thesis had to do with the Postgres rules system. After I
joined his team as a graduate student in 1987, Mike wrote up a couple of thought
pieces on the topic [Stonebraker and Hearst 1988, Stonebraker et al. 1989] and
insisted on including my name on the papers even though I don’t believe I added
anything substantive.

Mike’s projects were very much in the tradition of the UC Berkeley Computer
Science Department’s research teams, consisting of many graduate students, some
postdoctoral researchers, and some programming staff. Mike fostered a feeling
of community, with logos and T-shirts for each project (see Figure 34.1 for one
example) and an annual party at his house in the Berkeley hills at which he gave out
goofy gifts. Many of his former students and staff stay in touch to various degrees,
and, as is common in graduate school, many romantic relationships blossomed
into eventual marriages.

So that’s Mike Stonebraker in a nutshell: visionary, inspirational, egalitarian,
and generous. But surely you are thinking: “Hey, that can’t be the whole story!
Wasn’t Mike kind of scary as a research advisor?” Well, OK, the answer is yes.

I still remember the time when I was waffling around, unable to decide on a
thesis topic with my new advisor, and so I made an appointment to talk with my
now former advisor Mike. For some reason, we’d scheduled it on a Saturday, and
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it was pouring outside. I still remember Mike appearing at the office and looking
down at me from his enormous height and basically saying something like, “What’s
wrong with you? Just pick a topic and do it!” From that day on, I was just fine and
had no problem doing research. I have found that for most Ph.D. students, there is
one point in their program where they need this “just do it” speech; I’d otherwise
never have had the guts to give it to students without seeing how well this speech
worked on me.

I also remember the extreme stances Mike would take about ideas—mainly that
they were terrible. For instance, I was there for the ODBMS wars. I remember Mike
stating with great confidence that object-oriented was just not going to cut it with
databases: that you needed this hybrid object-relational thing instead. He had a
quad chart to prove it. Well, he hadn’t been right about putting expert systems into
databases, but he certainly ended up being right about this object-relational thing
(see Chapter 6).

As with many great intellects, Mike very much wants people to push back on
his ideas to help everyone arrive at the best understanding. I remember several
occasions in which Mike would flatly state, “I was utterly and completely wrong
about that.” This is such a great lesson for graduate students. It shows them that
they have the opportunity to be the one to change the views of the important
professor, even if those views are strongly held. And that of course is a metaphor for
being able to change the views of the entire research community, and by extension,
the world (see Chapter 3).

As I mentioned, Mike is a man of few words, at least over email. This made it easy
to tell when you’d done something really, truly great. Those of you who’ve worked
with him know that treasured response that only the very best ideas or events can
draw out of Mike. You’d send him an email and what you’d see back would be, on
that very rare occasion, the ultimate compliment:

neat.
/mike



35Michael Stonebraker:
Competitor, Collaborator,
Friend
Don Haderle

I became acquainted with Mike in the 1970s through his work on database
technology and came to know him personally in the 1990s. This is the perspective
of a competitor, a collaborator, and a friend. Mike is a rare individual who has made
his mark equally as an academic and an entrepreneur. Moreover, he stands out as
someone who’s always curious, adventurous, and fun.

What follows are my recollections of Mike from the early days of the database
management industry through today.

After IBM researcher Ted Codd proposed the relational model of data in 1969
[Codd 1970], several academic and industry research laboratories launched
projects that created language and supporting technologies, including transac-
tion management and analytics. IBM’s System R [Astrahan et al. 1976] and UC
Berkeley’s Ingres [Held et al. 1975] emerged as the two most influential projects
(see Chapter 13). By the mid-1970s, both efforts produced concrete prototypes. By
the early 1980s, various relational database management systems had reached the
commercial market.

In the early 1970s, I was an IBM product developer focusing on real-time op-
erating systems and process control, file systems, point-of-sales systems, security
systems, and more. In 1976, I joined a product development team in IBM that
was exploring new database technology that responded to intense customer de-
mands to dramatically speed up the time it took them to provide solutions for their
fast-moving business requirements. This was my baptism in database and my first
acquaintance with Mike. I devoured his writings on nascent database technology.
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In the 1970s, Mike and the Ingres team developed seminal work in concurrency
control [Stonebraker 1978, 1979b] indexing, security [Stonebraker and Rubinstein
1976], database language, and query optimization for the distributed relational
database Ingres [Stonebraker et al. 1976b]. Ingres targeted DEC minicomputers,
combining a set of those machines to address large database operations. By con-
trast, IBM System R targeted mainframes, which had adequate power for most
enterprise work of the era; it was this research project that formed the basis of
IBM’s DB2 [Saracco and Haderle 2013] mainframe database.

In the early 1980s, Mike formed Relational Technology, Inc. with Larry Rowe
and Gene Wong, and delivered a commercial version of Ingres to the market. This
made Mike our indirect competitor (Ingres addressed a different market than DB2
and competed directly against Oracle). Mike remained unchanged. He shared what
he learned and was a willing collaborator.

Mike impressed me not only as an academic but also as a commercial entrepre-
neur. The trio of Mike, Larry, and Gene had to learn how to create and operate a
business while still maintaining their professorial positions at UC Berkeley. This
was no small feat, struggling through financing, staffing, and day-to-day operations
while still advancing technology and publishing at the university. They pioneered
open source through Berkeley Software Distribution (BSD) licensing of the uni-
versity Ingres code, which overcame the commercial restrictions of the university
licensing arrangement of the time. They came to the conclusion that the value was
in their experiences, not in the Ingres code itself. This enlightenment was novel at
the time and paved the way for widespread use of open source in the industry (see
Chapter 12).

The trio made some rookie missteps in their commercial endeavor. Mike and
Gene had developed the QUEL language for relational operations as part of Ingres
while IBM had developed SQL for System R [Chamberlin et al. 1976]. There were
academic debates on which was better. In 1982, serious work began by the American
National Standards Institute (ANSI) to standardize a relational database language.
SQL was proposed and strongly supported by IBM and Oracle. Mike did not submit
QUEL, rationalizing that putting it in the hands of a standards committee would
limit the Ingres team’s ability to innovate. While that was a reasonable academic
decision, it was not a good commercial decision. By 1986, the industry standardized
on SQL, making it a requirement for bidding on relational database contracts with
most enterprises and governments around the world. As a result, Ingres had to
quickly support SQL or lose out to Oracle, their primary competitor. At first the
Ingres team emulated SQL atop the native QUEL database but with undesirable
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results. The true SQL version required major reengineering and debuted in the early
1990s. This misstep cost the team five-plus years in the market.

Beyond the database, the Ingres team developed fantastic tools for creating data-
bases and applications using those databases (see Chapter 15). They recognized
that a database needed an ecosystem to be successful in the market. Oracle cre-
ated popular applications (business financials) for their database, responding to a
changing market wherein customers wanted to buy generic business applications
rather than build the applications themselves. Unfortunately, Mike and the team
couldn’t convince their investors to fund the development of applications for In-
gres, and they had a difficult time convincing application vendors to support their
nascent database, especially since the team did not support the standard interface
of SQL. The trio had more to learn to succeed commercially.

Commerce rapidly adopted relational databases and all manner of information
technology in the early 1980s, digitizing their businesses. With this came demand
to include new types of data beyond the tabular bookkeeping data supported by
the first-generation relational databases. In the mid-1980s, object-oriented data-
bases appeared to take on this challenge. Researchers explored ways to extend
the relational data model to manage and operate on new data types (e.g., time se-
ries, spatial, and multimedia data). Chief among such researchers was Mike, who
launched the Postgres project at UC Berkeley to explore new and novel ways to ex-
tend Ingres to solve more problems. (IBM Research did similarly with the Starburst
project [Haas et al. 1989]). Indeed, a presentation [Stonebraker 1986c] delivered
by Larry Rowe and Mike in 1986 at an object-oriented conference in Asilomar, CA,
inspired the rest of us in the relational community to step it up.

Mike led the way in defining the Object-Relational model, drove the early in-
novations, and brought it to market. In the early 1990s, Mike started his second
company, Illustra Corporation, to commercialize Postgres object-relational. Illus-
tra1 offered superb tools with their “data blades” for creating data types, building
functions on these types, and specifying the use of storage methods created by third
parties for those objects that would yield great performance over and above the
storage methods provided by the base Illustra server. Once again, Mike’s company
demonstrated that a good database needs a great ecosystem of tools and applica-
tions. This technology would extend the relational database to handle geophysical
data, multimedia, and more.

1. Illustra was acquired by Informix in 1997, which was in turn acquired by IBM.
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When Mike created Postgres in 1986, QUEL was the database language to which
he added extensibility operators (PostQuel). SQL was added to Postgres in the mid-
1990s, creating PostgreSQL, which has since become one of the most popular
databases on the planet.2 The Illustra team had to re-engineer their database to
provide native SQL support. At the same time, SQL was being extended in ANSI
for object-relational. This would manifest in standard language extensions to SQL
in 1999 (SQL3), covering object abstraction (data types and methods), and not
covering any implementation extensions (e.g., storage methods). The Illustra team
didn’t participate in the standardization committees, which set them back a bit
to reconcile the different models. Illustra had the best technology, database, and
tools for this market, but skipped a couple of steps to conform to SQL.

The rest of us would lag behind another couple of years, focusing our energies
on the evolving distributed computing complex and the insatiable demands for
performance and availability for transaction and analytics (parallelism). In the
relational arena, Tandem set the bar for highly available transaction processing,
and Teradata set the bar for high-performance query processing. By the late 1980s,
thanks to Moore’s Law, the minicomputers of the 1970s were growing powerful
enough to be combined to do the work of a mainframe, only increasingly cheaper.
To compete on cost, the mainframe was reengineered to use CMOS, the technology
underlying the minis, resulting in IBM’s Parallel Sysplex [IBM 1997, Josten et
al. 1997], a cluster of IBM mainframes acting together as a single-system image
delivered to market in 1995.

The client-server architecture emerged on the back of the growing popular-
ity and capabilities of personal computers and workstations in business environ-
ments. Sybase debuted in the late 1980s, pioneering client-server. With the evolu-
tion of Sun and other network computers, enterprise architectures evolved from
single-tier to multi-tier computing. Distributed computing had arrived. We har-
vested the work of IBM’s System R* [Lindsay 1987], Mike’s Ingres, and David De-
Witt’s Gamma [DeWitt et al. 1990] to deliver distributed database technology for
transaction processing and highly parallelized query processing. In the early 1990s,
with a change in IBM leadership, we were funded to construct DB2 on open systems
(UNIX, etc.) on popular hardware platforms (IBM, HP, Sun). The combination of
open systems, distributed database, and massive parallelism would occupy most

2. In my view, Mike’s most significant achievement commercially was perhaps unintentional: the
development of and open sourcing of Postgres. PostgreSQL is one of the most popular database
management systems on the planet and paved the way for the open-source movement.
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of our development energies through the mid-1990s along with mobile and embed-
ded databases.

The volume of data and number of databases within enterprises grew rapidly
through the 1980s across the spectrum of database vendors. Customers separated
their transactional systems from their analytical systems to better manage perfor-
mance. And they discovered that they needed to analyze data across multiple data
sources. This gave rise to data warehousing, which extracted data from multiple
sources, curated it, and stored it in a database designed and tuned for analytics.
An alternative architecture, federation, was proposed, which allowed for analytics
across disparate data sources without copying the data into a separate store. This
architecture was well suited for huge data, where copying was a prohibitive cost,
as well as near real-time requirements. IBM Research’s Garlic project [Josifovski
2002] and Mike’s Mariposa project [Stonebraker et al. 1994a] explored this archi-
tecture, spurring technology in semantic integration and performance in queries
on disparate databases by taking advantage of the unique performance characteris-
tics of the underlying stores. Mariposa became the basis for Cohera Corporation’s3

application system and was later incorporated in PeopleSoft in the early 1990s.
Garlic was incorporated in DB2 as the Federated Server in 2002. Neither reached
widespread popularity because of the complexity in managing heterogeneous, fed-
erated topologies. As of 2018, we’re seeing the evolution of multi-model databases
and Mike’s polystore (see Chapter 22), which draw on the federated technology
and the modeling capabilities of object-relational to integrate a set of data models
(relational, graph, key value) while providing best-of-breed capability for the indi-
vidual data model—a bit of a snap back to OSFA (One Size Fits All) [Stonebraker
and Çetintemel 2005].

In the late 1990s, the executive team for database management within IBM
viewed the company as too inward-focused. We needed external perspective on
technology directions as well as business directions and to assess ourselves against
the best industry practices. I asked Mike to present an external perspective on
technology to the IBM database management product executives, led by Janet
Perna. Although he was competing with IBM at the time, Mike agreed. And he did
a stellar job. His message was clear: “You need to step it up and look beyond IBM
platforms.” And it had the intended effect. We stepped it up.

In 2005 I retired from IBM. I worked as little as possible, consulting with ven-
ture capitalists and startups. Mike started Vertica Systems, Inc., the column-store

3. Founded in 1997 and acquired by PeopleSoft in 2001.
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database based on C-Store [Stonebraker et al. 2005a]. He asked me to present the
Vertica technology to prospective customers on the West Coast so he could focus
more on the development teams on the East Coast and the customers in that ge-
ography. I was impressed with C-Store and Vertica for dramatically improving the
performance of analytical systems (see Chapter 18). I agreed. And I worked as little
as possible. Vertica was sold to HP in 2011.

In 2015 Mike received the Turing Award and spoke at IBM on analytics. Mike
was working on SciDB (see Chapter 20) at the time and he was not enamored of
Apache Spark, the analytical framework that IBM was pushing in the market. I was
asked to attend the talk along with a few other retired IBM Fellows. Mike asked if
one of us would defend Spark. He wanted a lively discussion and needed someone
to provide counterpoint. I agreed. It was fun. That was Mike. He won. Then we went
out for a drink.

Mike and I orbited the database universe on different paths. Mike was an
innovator-academic who created commercial products, whereas I created com-
mercial products and did some innovation [Mohan et al. 1992]. They sound alike,
but they’re not. We shared our knowledge of customer needs from our different
perspectives and ideas on technology to serve them better. And, as I said, Mike was
a competitor, a collaborator, and always a friend.



36The Changing of the
Database Guard
Michael L. Brodie

You can be right there at a historic moment and yet not see its significance for
decades. I now recount one such time when the leadership of the database com-
munity and its core technology began to change fundamentally.

Dinner with the Database Cognoscenti
After spending the summer of 1972 with Ted Codd at IBM’s San Jose Research Lab,
Dennis Tsichritzis, a rising database star, returned to the University of Toronto
to declare to Phil Bernstein and myself that we would start Ph.Ds. on relational
databases under his supervision. What could possibly go wrong?

In May 1974, I went with Dennis to the ACM SIGFIDET (Special Interest Group on
File Description and Translation) conference in Ann Arbor, Michigan, my first inter-
national conference, for the Great Relational-CODASYL Debate where Dennis would
fight for the good guys. After the short drive from Toronto, we went to a “strategy
session” dinner for the next day’s debate. Dinner, at the Cracker Barrel Restau-
rant in the conference hotel, included the current and future database cognoscenti
and me (a database know-nothing). It started inauspiciously with Cracker Barrel’s
signature, neon orange cheese dip with grissini (‘scuse me, breadsticks).

I was quiet in the presence of the cognoscenti—Ted Codd, Chris Date of IBM
UK Lab, and Dennis—and this tall, enigmatic, and wonderfully confident guy,
Mike something, a new UC Berkeley assistant professor and recent University of
Michigan Ph.D. According to him, he had just solved the database security problem
with QUEL, his contrarian query language. During dinner, Mike sketched a few
visionary ideas. This was further evidence for me to be quiet since I could barely
spell datakbase [sic].
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The Great Relational-CODASYL Debate
The cognoscenti who lined up for the debate were, on the relational side, Ted
Codd, Dennis Tsichritzis, and Kevin Whitney, from General Motors, who had im-
plemented RDMS [Kevin and Whitney 1974], one of the first RDBMSs. On the CO-
DASYL side were Charlie Bachman, who was awarded the 1973 Turing Award “for
his outstanding contributions to database technology”; J. R. Lucking, International
Computers Limited, UK; and Ed Sibley, University of Maryland and National Bureau
of Standards.

The much-ballyhooed debate was less than three years after Codd’s landmark
paper [Codd 1970]; one year after Charlie’s Turing Award; one year into Mike’s
and Eugene Wong’s pioneering Ingres project (see Chapter 15) at UC Berkeley;
coincident with the beginning of the System R project (see Chapter 35) at IBM
Research, San Jose; five years before the release of Oracle, the first commercial
RDBMS, in 1979, followed in 1983 by IBM’s DB2 (see Chapter 32); and almost
a decade before Ted was awarded the 1981 Turing Award “for his fundamental
and continuing contributions to the theory and practice of database management
systems,” specifically relational databases.

SIGFIDET 1974 focused largely on record-oriented hierarchical and network
databases. Relational technology was just emerging. Most significantly, SEQUEL
(now SQL) was introduced [Chamberlin and Boyce 1974]. Three papers discussed
concepts and six1 RDBMS implementations: IBM Research’s XRM-An Extended
(N-ary) Relational Memory, The Peterlee IS/1 System, and Rendezvous; Whitney’s
RDMS; and ADMINS and the MacAIMS Data Management System. Mike’s paper
[Stonebraker 1974b] on a core relational concept, like those of Codd, Date, and
Whitney, showed a succinct and deep understanding of the new relational con-
cepts, in contrast to the debate.

The much-anticipated debate was highly energized yet, in hindsight, pretty ho-
hum, more like a tutorial as people grappled with new relational ideas that were so
different from those prevalent at the time. The 23-page debate transcript [SIGFIDET
1974] should be fascinating to current database folks given the emergent state of
database technology and the subsequent relational vs. CODASYL history. Ted, some
IBMers, Whitney, Mike, and about five others were the only people in the crowded
room that had any RDBMS implementation experience. Of that number, only Ted
and Kevin Whitney spoke in the debate. Everyone else was living in a different world.

1. Amazingly, approximately 10 RDBMSs were implemented or under way within three years of
Ted’s landmark paper.
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From the transcript, Mike seemed curiously quiet.2 Truth was he had his hand up
the whole time but was never called upon.3

In hindsight, most questions/comments seem weird. “Why were ownerless sets
better than navigating data?” “Why is the network model worse than the relational
model as a target for English?” “I couldn’t find many examples of the relational sub-
language compared to CODASYL subschemas.” “I can think of many systems that I
have had in which questions would come up so that it was almost impossible, and
certainly impractical, to automate a way of coming up with the answer. To me, it
boils down to a question of economics. Is it worth spending the money and taking
the time to be able to provide this kind of availability to anybody?” In contrast, Ted’s
clear focus was on “applications programming, support of non-programmers, . . .
and implementation” and on the logical and physical data independence that
remain the cornerstones of the relational model [Codd 1970, Date and Codd 1975],
emphasized succinctly by Mike [Stonebraker 1974b] and in sharp contrast to the
network approach and most of what was said in the debate. The relational side was
casting pearls [Matthew 7:6].

For all the fireworks projected for the debate, it was bland. So, my mind wan-
dered to J.R. Lucking, who smoked a cigarette throughout. It was, after all, 1974.
Why pay attention? It was distracting. Smoke never came out. We imagined that
J.R. periodically left the room to empty an otherwise hollow leg of smoke and ash.

The debate had little impact outside the room. The real debate was resolved
in the marketplace in the mid-1980s after the much-doubted adoption of Oracle
and DB24 and as SQL became, as Mike called it, “intergalactic data speak.” The
elegance of Codd’s model would never have succeeded had it not been for RDBMS
performance due to Pat Selinger’s query optimization, enabled by Ted’s logical and
physical data independence,5 plus tens of thousands of development hours spent
on query and performance optimization.

2. Holding back like that didn’t last long for Mike.

3. The database cognoscenti who were running the debate may not have foreseen that in 40 years
the tall, new guy with the unanswered hand would receive the Turing Award for the very issues
being debated.

4. DB2 was IBM’s #2 DBMS product after its #1 DBMS product, IMS.

5. Mike was already at the heart of the performance issue [Stonebraker 1974b] described so
eloquently by Date and Codd [1975] in the same conference and missed by debate questioners.
Mike has generalized this as the key requirement of any new data model and its data manager.
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The debate and conference had a huge impact . . . on me. Ted Codd became
a mentor and friend, calling me almost daily throughout the Falklands War to
review the day’s efforts of Britain’s Royal Air Force (RAF).6 Charlie, who lived up
the street from me in Lexington, MA, later offered me a CTO job. I declined but
gained sartorial knowledge about buttons that I didn’t know I had. Ed Sibley,
my first academic boss at the University of Maryland, got me appointed chair of
the ANSI/SPARC (American National Standards Institute, Standards Planning and
Requirements Committee) Relational Standards Committee, where I proposed,
with other academics, to standardize the relational calculus and algebra, to allow
multiple syntaxes, e.g., SQL, QUEL, and QBE. I lost that job to an IBMer who came
with a 200-page SQL specification. (Who knew that standards were a business and
not a technical thing? Nobody tells me anything.)

While the debate had little impact on the community at the time, it marked
the changing of the guard from the leaders of the hierarchal and network period of
database research and product development. In the debate, they had posed the odd
questions presumably trying to understand the new ideas relative to what they knew
best. The torch was being passed to those who would lead the relational period that
is still going strong almost half a century later. As the 1981, 1998, and 2014 Turing
Awards attest, the new leaders were Ted Codd, Jim Gray, and Michael Stonebraker.
With more than ten relational DBMSs built at the time of the debate and the three
most significant relational DBMSs in the works, the database technology shift to
relational databases was under way.

Mike: More Memorable than the Debate, and Even the Cheese
Apart from the neon orange cheese, SQL, and being awed by database cognoscenti,
there was little memorable about SIGFIDET 1974, except meeting Mike Stone-
braker. Mike Something became a colleague and friend for life. Although a stranger
and the most junior academic at the strategy dinner (I don’t count), Mike was un-
forgettable, more so as time went on. Me: “Hey, Mike, remember that dinner before
the Relational-CODASYL Debate?” Mike: “Sorry, I don’t remember.” Maybe it’s like
a fan meeting Paul McCartney: Only one of the two remembers. For this chapter, I
asked Dennis Tsichritzis and other database cognoscenti for memorable moments
at this event, to a uniform response of “not really.” Don Chamberlain and Ray Boyce,

6. In World War II, Ted trained as a pilot in Canada with the British Royal Air Force. I am Canadian,
and my mother, an Englishwoman, had been in the British Women’s Royal Air Force.
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SQL inventors, were there [Chamberlin and Boyce 1974]. But most future relational
cognoscenti had not even joined the database party. Bruce Lindsay and Jim Gray
were at UC Berkeley and would move that year to the System R project at IBM. The
instrumental Pat Selinger was at Harvard (Ph.D. 1975) and wouldn’t join System R
until after her Ph.D. SIGFIDET 1974 was a milestone that marked the end of the old
guard and emergence of the relational era with most of the relational cognoscenti
still wet behind the relational model, and Mike Stonebraker, unwittingly, taking
the lead.

To this day, Mike is succinct in the extreme, intense, visionary, and superbly
confident. Yet at the debate, he was strangely quiet (not called upon) especially as
he was in the 1% who understood Ted’s model and had implementation experience.
Perhaps he was gaining his sea legs. He had been an assistant professor for about
three years. Forty years later, at his Festschrift, Mike recalled those tenure-grinding
years as the worst of his career due to the pressures of an academic life—teaching
and tenure, in a new domain, developing one of the most significant database sys-
tems from scratch, while, as Don Haderle says in Chapter 35, having to learn “how
to create and operate a business.” At SIGFIDET he was new to databases, having
learned what a database was two years earlier when, while Mike was wondering what
to do at UC Berkeley, Gene Wong had suggested that he read Codd’s paper [Codd
1970]. Mike’s first Ph.D. student, Jerry Held, had already implemented a DBMS. By
May 1974, Mike had already impressed the relational cognoscenti, the then-future
of databases. Today at conferences, people universally wait to hear Mike’s opin-
ions. Or in his absence, as at VLDB 2017, Mike’s opinions tend to be quoted in
every keynote speech. On issues critical to him, he speaks out with succinct obser-
vations and questions that get right to the heart of the matter. For example, he might
ask, “What use-case and workload do you envisage?” Answer: Rhubarb, rhubarb,
rhubarb. Mike replies: “Interesting. VoltDB is in that space but in seven years has
never encountered a single customer asking for those features.”

A Decade Later: Friend or Foe?
At the First International Conference on Expert Database Systems, Kiawah Island,
South Carolina [van de Riet 1986], I debated with Mike on the topic “Are Data
Models Dead?” I do not recall the content nor the tone, which must have appeared
confrontational because I do recall a look of utter surprise from Larry Kerschberg,
the program committee chair, as Mike and I hugged off stage. Mike had arrived
just before the debate, so we had not yet greeted each other. When it matters,
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Mike speaks his mind pithier than most. His directness and honesty may seem
confrontational to some. I have never seen such an intent; rather, he is getting to
the heart of the matter quickly. That enriches the discussion for some and can end
it for others.

My first meeting with Mike over 40 years ago was memorable. There were others
at the strategy dinner, but I do not recall them. Mike was quiet, calm, succinct,
scary smart, and contrarian. He was a Turing laureate in the making. My impression
was that he was the smartest man in the room. My impression, like data in Ingres,
Postgres, and his many other DBMSs, persists.
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Abstract
Online Transaction Processing (OLTP) databases include a suite of features—
disk-resident B-trees and heap files, locking-based concurrency control, support
for multi-threading—that were optimized for computer technology of the late
1970’s. Advances in modern processors, memories, and networks mean that to-
day’s computers are vastly different from those of 30 years ago, such that many
OLTP databases will now fit in main memory, and most OLTP transactions can be
processed in milliseconds or less. Yet database architecture has changed little.

Based on this observation, we look at some interesting variants of conventional
database systems that one might build that exploit recent hardware trends, and
speculate on their performance through a detailed instruction-level breakdown
of the major components involved in a transaction processing database system
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(Shore) running a subset of TPC-C. Rather than simply profiling Shore, we pro-
gressively modified it so that after every feature removal or optimization, we had a
(faster) working system that fully ran our workload. Overall, we identify overheads
and optimizations that explain a total difference of about a factor of 20x in raw per-
formance. We also show that there is no single “high pole in the tent” in modern
(memory resident) database systems, but that substantial time is spent in logging,
latching, locking, B-tree, and buffer management operations.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—transaction processing; concurrency.

General Terms
Measurement, Performance, Experimentation.

Keywords
Online Transaction Processing, OLTP, main memory transaction processing,
DBMS architecture.

1 Introduction
Modern general purpose online transaction processing (OLTP) database systems
include a standard suite of features: a collection of on-disk data structures for
table storage, including heap files and B-trees, support for multiple concurrent
queries via locking-based concurrency control, log-based recovery, and an efficient
buffer manager. These features were developed to support transaction processing
in the 1970’s and 1980’s, when an OLTP database was many times larger than the
main memory, and when the computers that ran these databases cost hundreds of
thousands to millions of dollars.

Today, the situation is quite different. First, modern processors are very fast,
such that the computation time for many OLTP-style transactions is measured in
microseconds. For a few thousand dollars, a system with gigabytes of main mem-
ory can be purchased. Furthermore, it is not uncommon for institutions to own
networked clusters of many such workstations, with aggregate memory measured
in hundreds of gigabytes—sufficient to keep many OLTP databases in RAM.

Second, the rise of the Internet, as well as the variety of data intensive applica-
tions in use in a number of domains, has led to a rising interest in database-like
applications without the full suite of standard database features. Operating systems
and networking conferences are now full of proposals for “database-like” storage
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systems with varying forms of consistency, reliability, concurrency, replication, and
queryability [DG04, CDG+06, GBH+00, SMK+01].

This rising demand for database-like services, coupled with dramatic perfor-
mance improvements and cost reduction in hardware, suggests a number of inter-
esting alternative systems that one might build with a different set of features than
those provided by standard OLTP engines.

1.1 Alternative DBMS Architectures
Obviously, optimizing OLTP systems for main memory is a good idea when a
database fits in RAM. But a number of other database variants are possible; for
example:

. Logless databases. A log-free database system might either not need recovery,
or might perform recovery from other sites in a cluster (as was proposed in
systems like Harp [LGG+91], Harbor [LM06], and C-Store [SAB+05]).

. Single threaded databases. Since multi-threading in OLTP databases was
traditionally important for latency hiding in the face of slow disk writes,
it is much less important in a memory resident system. A single-threaded
implementation may be sufficient in some cases, particularly if it provides
good performance. Though a way to take advantage of multiple processor
cores on the same hardware is needed, recent advances in virtual machine
technology provide a way to make these cores look like distinct processing
nodes without imposing massive performance overheads [BDR97], which
may make such designs feasible.

. Transaction-less databases. Transactional support is not needed in many
systems. In particular, in distributed Internet applications, eventual con-
sistency is often favored over transactional consistency [Bre00, DHJ+07].
In other cases, lightweight forms of transactions, for example, where all
reads are required to be done before any writes, may be acceptable [AMS+07,
SMA+07].

In fact, there have been several proposals from inside the database community
to build database systems with some or all of the above characteristics [WSA97,
SMA+07]. An open question, however, is how well these different configurations
would perform if they were actually built. This is the central question of this paper.
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1.2 Measuring the Overheads of OLTP
To understand this question, we took a modern open source database system
(Shore—see http://www.cs.wisc.edu/shore/) and benchmarked it on a subset of the
TPC-C benchmark. Our initial implementation—running on a modern desktop
machine—ran about 640 transactions per second (TPS). We then modified it by
removing different features from the engine one at a time, producing new bench-
marks each step of the way, until we were left with a tiny kernel of query processing
code that could process 12700 TPS. This kernel is a single-threaded, lock-free, main
memory database system without recovery. During this decomposition, we identi-
fied four major components whose removal substantially improved the throughput
of the system:

Logging. Assembling log records and tracking down all changes in database struc-
tures slows performance. Logging may not be necessary if recoverability is not a
requirement or if recoverability is provided through other means (e.g., other sites
on the network).

Locking. Traditional two-phase locking poses a sizeable overhead since all ac-
cesses to database structures are governed by a separate entity, the Lock Manager.

Latching. In a multi-threaded database, many data structures have to be latched
before they can be accessed. Removing this feature and going to a single-threaded
approach has a noticeable performance impact.

Buffer management. A main memory database system does not need to access
pages through a buffer pool, eliminating a level of indirection on every record
access.

1.3 Results
Figure 1 shows how each of these modifications affected the bottom line perfor-
mance (in terms of CPU instructions per TPC-C New Order transaction) of Shore.
We can see that each of these subsystems by itself accounts for between about 10%
and 35% of the total runtime (1.73 million instructions, represented by the total
height of the figure). Here, “hand coded optimizations” represents a collection of
optimizations we made to the code, which primarily improved the performance of
the B-tree package. The actual instructions to process the query, labelled “useful
work” (measured through a minimal implementation we built on top of a hand-
coded main-memory B-tree package) is only about 1/60th of that. The white box
below “buffer manager” represents our version of Shore after we had removed ev-
erything from it—Shore still runs the transactions, but it uses about 1/15th of the
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Figure 1 Breakdown of instruction count for various DBMS components for the New Order
transaction from TPC-C. The top of the bar-graph is the original Shore performance
with a main memory resident database and no thread contention. The bottom dashed
line is the useful work, measured by executing the transaction on a no-overhead kernel.

instructions of the original system, or about 4 times the number of instructions
in the useful work. The additional overheads in our implementation are due to
call-stack depth in Shore and the fact that we could not completely strip out all
references to transactions and the buffer manager.

1.4 Contributions and Paper Organization
The major contributions of this paper are to 1) dissect where time goes inside
of a modern database system, 2) to carefully measure the performance of various
stripped down variants of a modern database system, and 3) to use these measure-
ments to speculate on the performance of different data management systems—for
example, systems without transactions or logs—that one could build.

The remainder of this paper is organized as follows. In Section 2 we discuss
OLTP features that may soon become (or are already becoming) obsolete. In Sec-
tion 3 we review the Shore DBMS, as it was the starting point of our exploration, and
describe the decomposition we performed. Section 4 contains our experimentation
with Shore. Then, in Section 5, we use our measurements to discuss implications
on future OLTP engines and speculate on the performance of some hypothetical
data management systems. We present additional related work in Section 6 and
conclude in Section 7.
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2 Trends in OLTP
As mentioned in the introduction, most popular relational RDBMSs trace their
roots to systems developed in the 1970’s, and include features like disk-based
indexing and heap files, log-based transactions, and locking-based concurrency
control. However, 30 years have passed since these architectural decisions were
made. At the present time, the computing world is quite different from when these
traditional systems were designed; the purpose of this section is to explore the
impact of these differences. We made a similar set of observations in [SMA+07].

2.1 Cluster Computing
Most current generation RDBMSs were originally written for shared memory multi-
processors in the 1970’s. Many vendors added support for shared disk architectures
in the 1980’s. The last two decades have seen the advent of Gamma-style shared
nothing databases [DGS+90] and the rise of clusters of commodity PCs for many
large scale computing tasks. Any future database system must be designed from
the ground up to run on such clusters.

2.2 Memory Resident Databases
Given the dramatic increase in RAM sizes over the past several decades, there is
every reason to believe that many OLTP systems already fit or will soon fit into main
memory, especially the aggregate main memory of a large cluster. This is largely
because the sizes of most OTLP systems are not growing as dramatically as RAM
capacity, as the number of customers, products, and other real world entities they
record information about does not scale with Moore’s law. Given this observation, it
makes sense for database vendors to create systems that optimize for the common
case of a memory resident system. In such systems, optimized indices [RR99, RR00]
as well as eschewing disk-optimized tuple formats and page layouts (or lack thereof)
[GS92] are important to consider.

2.3 Single Threading in OLTP Systems
All modern databases include extensive support for multi-threading, including
a collection of transactional concurrency control protocols as well as extensive
infiltration of their code with latching commands to support multiple threads
accessing shared structures like buffer pools and index pages. The traditional
motivations for multi-threading are to allow transaction processing to occur on
behalf of one transaction while another waits for data to come from disk, and to
prevent long-running transactions from keeping short transactions from making
progress.
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We claim that neither of these motivations is valid any more. First, if databases
are memory resident, then there are never any disk waits. Furthermore, produc-
tion transaction systems do not include any user waits—transactions are executed
almost exclusively through stored procedures. Second, OLTP workloads are very
simple. A typical transaction consists of a few index lookups and updates, which,
in a memory resident system, can be completed in hundreds of microseconds.
Moreover, with the bifurcation of the modern database industry into a transaction
processing and a warehousing market, long running (analytical) queries are now
serviced by warehouses.

One concern is that multi-threading is needed to support machines with mul-
tiple processors. We believe, however, that this can be addressed by treating one
physical node with multiple processors as multiple nodes in a shared-nothing clus-
ter, perhaps managed by a virtual machine monitor that dynamically allocates
resources between these logical nodes [BDR97].

Another concern is that networks will become the new disks, introducing latency
into distributed transactions and requiring the re-introduction of transactions.
This is certainly true in the general case, but for many transaction applications,
it is possible to partition the workload to be “single-sited” [Hel07, SMA+07], such
that all transactions can be run entirely on a single node in a cluster.

Hence, certain classes of database applications will not need support for multi-
threading; in such systems, legacy locking and latching code becomes unnecessary
overhead.

2.4 High Availability vs. Logging
Production transaction processing systems require 24x7 availability. For this rea-
son, most systems use some form of high availability, essentially using two (or
more) times the hardware to ensure that there is an available standby in the event
of a failure.

Recent papers [LM06] have shown that, at least for warehouse systems, it is
possible to exploit these available standbys to facilitate recovery. In particular,
rather than using a REDO log, recovery can be accomplished by copying missing
state from other database replicas. In our previous work we have claimed that this
can be done for transaction systems as well [SMA+07]. If this is in fact the case, then
the recovery code in legacy databases becomes also unnecessary overhead.

2.5 Transaction Variants
Although many OLTP systems clearly require transactional semantics, there have
recently been proposals—particularly in the Internet domain—for data manage-
ment systems with relaxed consistency. Typically, what is desired is some form of
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eventual consistency [Bre00, DHJ+07] in the belief that availability is more impor-
tant than transactional semantics. Databases for such environments are likely to
need little of the machinery developed for transactions (e.g., logs, locks, two-phase
commit, etc.).

Even if one requires some form of strict consistency, many slightly relaxed mod-
els are possible. For example, the widespread adoption of snapshot isolation (which
is non-transactional) suggests that many users are willing to trade transactional se-
mantics for performance (in this case, due to the elimination of read locks).

And finally, recent research has shown that there are limited forms of trans-
actions that require substantially less machinery than standard database transac-
tions. For example, if all transactions are “two-phase”—that is, they perform all of
their reads before any of their writes and are guaranteed not to abort after complet-
ing their reads—then UNDO logging is not necessary [AMS+07, SMA+07].

2.6 Summary
As our references suggest, several research groups, including Amazon [DHJ+07], HP
[AMS+07], NYU [WSA97], and MIT [SMA+07] have demonstrated interest in build-
ing systems that differ substantially from the classic OTLP design. In particular, the
MIT H-Store [SMA+07] system demonstrates that removing all of the above features
can yield a two-order-of-magnitude speedup in transaction throughput, suggesting
that some of these databases variants are likely to provide remarkable performance.
Hence, it would seem to behoove the traditional database vendors to consider pro-
ducing products with some of these features explicitly disabled. With the goal of
helping these implementers understand the performance impact of different vari-
ants they may consider building, we proceed with our detailed performance study
of Shore and the variants of it we created.

3 Shore
Shore (Scalable Heterogeneous Object Repository) was developed at the University
of Wisconsin in the early 1990’s and was designed to be a typed, persistent object
system borrowing from both file system and object-oriented database technologies
[CDF+94]. It had a layered architecture that allowed users to choose the appropri-
ate level of support for their application from several components. These layers
(type system, unix compatibility, language heterogeneity) were provided on top of
the Shore Storage Manager (SSM). The storage manager provided features that are
found in all modern DBMS: full concurrency control and recovery (ACID transaction
properties) with two-phase locking and write-ahead logging, along with a robust im-
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plementation of B-trees. Its basic design comes from ideas described in Gray’s and
Reuter’s seminal book on transaction processing [GR93], with many algorithms
implemented straight from the ARIES papers [MHL+92, Moh89, ML89].

Support for the project ended in the late 1990’s, but continued for the Shore
Storage Manager; as of 2007, SSM version 5.0 is available for Linux on Intel x86
processors. Throughout the paper we use “Shore” to refer to the Shore Storage
Manager. Information and source code of Shore is available online.1 In the rest
of this section we discuss the key components of Shore, its code structure, the
characteristics of Shore that affect end-to-end performance, along with our set of
modifications and the effect of these modifications to the code line.

3.1 Shore Architecture
There are several features of Shore that we do not describe as they are not relevant
to this paper. These include disk volume management (we pre-load the entire
database in main memory), recovery (we do not examine application crashes),
distributed transactions, and access methods other than B-trees (such as R-trees).
The remaining features can be organized roughly into the components shown in
Figure 2.

Shore is provided as a library; the user code (in our case, the implementation of
the TPC-C benchmark) is linked against the library and must use the threads library
that Shore also uses. Each transaction runs inside a Shore thread, accessing both
local user-space variables and Shore-provided data structures and methods. The
methods relevant to OLTP are those needed to create and populate a database file,
load it into the buffer pool, begin, commit, or abort a transaction, and perform
record-level operations such as fetch, update, create, and delete, along with the
associated operations on primary and secondary B-tree indexes.

Inside the transaction body (enclosed by begin and commit statements) the
application programmer uses Shore’s methods to access the storage structures:
the file and indexes, along with a directory to find them. All the storage structures
use slotted pages to store information. Shore’s methods run under the transaction
manager which closely interacts with all other components. Accessing the storage
structures involves calls to the Log Manager, the Lock Manager, and the Buffer Pool
Manager. These invocations always happen through a concurrency control layer,
which oversees shared and mutually exclusive accesses to the various resources.
This is not a separate module; rather, throughout the code, all accesses to shared
structures happen by acquiring a latch. Latches are similar to database locks (in that

1. http:// www.cs.wisc.edu/shore/

http:// www.cs.wisc.edu/shore/
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Figure 2 Basic components in Shore (see text for detailed description).

they can be shared or exclusive), but they are lightweight and come with no deadlock
detection mechanisms. The application programmers need to ensure that latching
will not lead to deadlock.

Next, we discuss the thread architecture and give more details on locking,
logging, and the buffer pool management.

Thread support. Shore provides its own user-level, non-preemptive thread package
that was derived from NewThreads (originally developed at the University of Wash-
ington), providing a portable OS interface API. The choice of the thread package
had implications for the code design and behavior of Shore. Since threads are user-
level, the application runs as a single process, multiplexing all Shore threads. Shore
avoids blocking for I/O by spawning separate processes responsible for I/O devices
(all processes communicate through shared memory). However, applications can-
not take direct advantage of multicore (or SMP) systems, unless they are built as
part of a distributed application; that, however, would add unnecessary overhead
for multicore CPUs, when simple, non-user level threading would be sufficient.

Consequently, for the results reported throughout this paper, we use single-
threaded operation. A system that uses multithreaded operation would consume
a larger number of instructions and CPU cycles per transaction (since thread code
would need to be executed in addition to transactional code). Since the primary goal
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of the paper is to look at the cost in CPU instructions of various database system
components, the lack of a full multi-threading implementation in Shore only affects
our results in that we begin at a lower starting point in total CPU instructions when
we begin removing system components.

Locking and logging. Shore implements standard two-phase locking, with transac-
tions having standard ACID properties. It supports hierarchical locking with the
lock manager escalating up the hierarchy by default (record, page, store, volume).
Each transaction keeps a list of the locks it holds, so that the locks can be logged
when the transaction enters the prepared state and released at the end of the trans-
action. Shore also implements write ahead logging (WAL), which requires a close
interaction between the log manager and the buffer manager. Before a page can
be flushed from the buffer pool, the corresponding log record might have to be
flushed. This also requires a close interaction between the transaction manager
and the log manager. All three managers understand log sequence numbers (LSNs),
which serve to identify and locate log records in the log, timestamp pages, identify
the last update performed by a transaction, and find the last log record written by
a transaction. Each page bears the LSN of the last update that affected that page. A
page cannot be written to disk until the log record with that page’s LSN has been
written to stable storage.

Buffer Manager. The buffer manager is the means by which all other modules
(except the log manager) read and write pages. A page is read by issuing a fix method
call to the buffer manager. For a database that fits in main memory, the page is
always found in the buffer pool (in the non-main memory case, if the requested
page is not in the buffer pool, the thread gives up the CPU and waits for the process
responsible for I/O to place the page in the buffer pool). The fix method updates
the mapping between page IDs and buffer frames and usage statistics. To ensure
consistency there is a latch to control access to the fix method. Reading a record
(once a record ID has been found through an index lookup) involves

1. locking the record (and page, per hierarchical locking),

2. fixing the page in the buffer pool, and

3. computing the offset within the page of the record’s tag.

Reading a record is performed by issuing a pin / unpin method call. Updates to
records are accomplished by copying out part or all of the record from the buffer
pool to the user’s address space, performing the update there, and handing the
new data to the storage manager.
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Table 1 Possible set of optimizations for OLTP.

OLTP Properties
and New Platforms DBMS Modification

logless architectures remove logging

partitioning, commutativity remove locking (when applicable)

one transaction at a time single thread, remove locking, remove latching

main memory resident remove buffer manager, directory

transaction-less databases avoid transaction bookkeeping

More details on the architecture of Shore can be found at the project’s web
site. Some additional mechanisms and features are also described in the following
paragraphs, where we discuss our own modifications to Shore.

3.2 Removing Shore Components
Table 1 summarizes the properties and characteristics of modern OLTP systems
(left column) that allow us to strip certain functionality from a DBMS (right col-
umn). We use these optimizations as a guideline for modifying Shore. Due to the
tight integration of all managers in Shore, it was not possible to cleanly separate all
components so that they could be removed in an arbitrary order. The next best thing
was to remove features in an order dictated by the structure of the code, allowing
for flexibility whenever possible. That order was the following:

1. Removing logging.

2. Removing locking OR latching.

3. Removing latching OR locking.

4. Removing code related to the buffer manager.

In addition, we found that the following optimizations could be performed at any
point:

. Streamline and hardcode the B-tree key evaluation logic, as is presently done
in most commercial systems.

. Accelerate directory lookups.

. Increase page size to avoid frequent allocations (subsumed by step 4 above).

. Remove transactional sessions (begin, commit, various checks).
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Our approach to implementing the above-mentioned actions is described next. In
general, to remove a certain component from the system, we either add a few if-
statements to avoid executing code belonging to that component, or, if we find
that if-statements add a measurable overhead, we rewrite entire methods to avoid
invoking that component altogether.

Remove logging. Removing logging consists of three steps. The first is to avoid
generating I/O requests along with the time associated to perform these requests
(later, in Figure 7, we label this modification “disk log”). We achieve this by allowing
group commit and then increasing the log buffer size so that it is not flushed to
disk during our experiments. Then, we comment out all functions that are used to
prepare and write log records (labeled “main log” in Figure 7). The last step was to
add if-statements throughout the code to avoid processing Log Sequence Numbers
(labeled “LSN” in Figure 7).

Remove locking (interchangeable with removing latching). In our experiments we
found that we could safely interchange the order of removing locking and latch-
ing (once logging was already removed). Since latching is also performed inside
locking, removing one also reduces the overhead of the other. To remove locking
we first changed all Lock Manager methods to return immediately, as if the lock
request was successful and all checks for locks were satisfied. Then, we modified
methods related to pinning records, looking them up in a directory, and access-
ing them through a B-tree index. In each case, we eliminated code paths related to
ungranted lock requests.

Remove latching (interchangeable with removing locking). Removing latching was
similar to removing locking; we first changed all mutex requests to be immediately
satisfied. We then added if-statements throughout the code to avoid requests for
latches. We had to replace B-tree methods with ones that did not use latches, since
adding if-statements would have increased overhead significantly because of the
tight integration of latch code in the B-tree methods.

Remove buffer manager calls. The most widespread modification we performed
was to remove the buffer manager methods, once we knew that logging, locking,
and latching were already disabled. To create new records, we abandoned Shore’s
page allocation mechanism and instead used the standard malloc library. We call
malloc for each new record (records no longer reside in pages) and use pointers
for future accesses. Memory allocation can potentially be done more efficiently,
especially when one knows in advance the sizes of the allocated objects. However,
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further optimization of main memory allocation is an incremental improvement
relative to the overheads we are studying, and is left for future work. We were not
able to completely remove the page interface to buffer frames, since its removal
would invalidate most of the remaining Shore code. Instead, we accelerated the
mappings between pages and buffer frames, reducing the overhead to a minimum.
Similarly, pinning and updating a record will still go through a buffer manager
layer, albeit a very thin one (we label this set of modifications “page access” in
Figure 7).

Miscellaneous optimizations. There were four optimizations we made that can be
invoked at any point during the process of removing the above-mentioned compo-
nents. These were the following. (1) Accelerating the B-tree code by hand-coding
node searches to optimize for the common case that keys are uncompressed inte-
gers (labeled “Btree keys” in Figures 5-8). (2) Accelerating directory lookups by using
a single cache for all transactions (labeled “dir lookup” in Figure 7). (3) Increas-
ing the page size from the default size of 8KB to 32KB, the maximum allowable
in Shore (labeled “small page” in Figure 7). Larger pages, although not suitable for
disk-based OLTP, can help in a main-memory resident database by reducing the
number of levels in a B-tree (due to the larger node size), and result in less frequent
page allocations for newly created records. An alternative would be to decrease the
size of a B-tree node to the size of a cache line as proposed in [RR99], but this would
have required removing the association between a B-tree node and a Shore page, or
reducing a Shore page below 1KB (which Shore does not allow). (4) Removing the
overhead of setting up and terminating a session for each transaction, along with
the associated monitoring of running transactions, by consolidating transactions
into a single session (labeled “Xactions” in Figure 7).

Our full set of changes/optimizations to Shore, along with the benchmark suite
and documentation on how to run the experiments are available online.2 Next, we
move to the performance section of the paper.

4 Performance Study
The section is organized as follows. First we describe our variant of the TPC-C
benchmark that we used (Section 4.1). In Section 4.2 we provide details of the
hardware platform, the experimental setup, and the tools we used for collecting

2. http://db.cs.yale.edu/hstore/

http://db.cs.yale.edu/hstore/
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Figure 3 TPC-C Schema

the performance numbers. Section 4.3 presents a series of results, detailing Shore
performance as we progressively apply optimizations and remove components.

4.1 OLTP Workload
Our benchmark is derived from TPC-C [TPCC], which models a wholesale parts sup-
plier operating out of a number of warehouses and their associated sales districts.
TPC-C is designed to represent any industry that must manage, sell, or distribute
a product or service. It is designed to scale as the supplier expands and new ware-
houses are created. The scaling requirement is that each warehouse must supply 10
sales districts, and each district must serve 3000 customers. The database schema
along with the scaling requirements (as a function of the number of warehouses W)
is shown in Figure 3. The database size for one warehouse is approximately 100 MB
(we experiment with five warehouses for a total size of 500MB).

TPC-C involves a mix of five concurrent transactions of different types and com-
plexity. These transactions include entering orders (the New Order transaction),
recording payments (Payment), delivering orders, checking the status of orders,
and monitoring the level of stock at the warehouses. TPC-C also specifies that
about 90% of the time the first two transactions are executed. For the purposes



426 OLTP Through the Looking Glass, and What We Found There

New Order Payment

begin begin

for loop(10) Btree lookup(D), pin

.....Btree lookup(I), pin Btree lookup (W), pin

Btree lookup(D), pin Btree lookup (C), pin

Btree lookup (W), pin update rec (C)

Btree lookup (C), pin update rec (D)

update rec (D) update rec (W)

for loop (10) create rec (H)

.....Btree lookup(S), pin commit

.....update rec (S)

.....create rec (O-L)

.....insert Btree (O-L)

create rec (O)

insert Btree (O)

create rec (N-O)

insert Btree (N-O)

insert Btree 2ndary(N-O)

commit

Figure 4 Calls to Shore’s methods for New Order and Payment transactions.

of the paper, and for better understanding the effect of our interventions, we ex-
perimented with a mix of only the first two transactions. Their code structure (calls
to Shore) is shown in Figure 4. We made the following small changes to the original
specifications, to achieve repeatability in the experiments:

New Order. Each New Order transaction places an order for 5-15 items, with 90%
of all orders supplied in full by stocks from the customer’s “home” warehouse (10%
need to access stock belonging to a remote warehouse), and with 1% of the provided
items being an invalid one (it is not found in the B-tree). To avoid variation in the
results we set the number of items to 10, and always serve orders from a local
warehouse. These two changes do not affect the throughput. The code in Figure
4 shows the two-phase optimization mentioned in Section 2.5, which allows us to
avoid aborting a transaction; we read all items at the beginning, and if we find an
invalid one we abort without redoing changes in the database.

Payment. This is a lightweight transaction; it updates the customer’s balance and
warehouse/district sales fields, and generates a history record. Again, there is a
choice of home and remote warehouse which we always set to the home one.
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Another randomly set input is whether a customer is looked up by name or ID,
and we always use ID.

4.2 Setup and Measurement Methodology
All experiments are performed on a single-core Pentium 4 3.2GHz, with 1MB L2
cache, hyperthreading disabled, 1GB RAM, running Linux 2.6. We compiled with
gcc version 3.4.4 and O2 optimizations. We use the standard linux utility iostat to
monitor disk activity and verify in the main memory-resident experiments there
is no generated disk traffic. In all experiments we pre-load the entire database
into the main memory. Then we run a large number of transactions (40,000).
Throughput is measured directly by dividing wall clock time by the number of
completed transactions.

For detailed instruction and cycle counts we instrument the benchmark applica-
tion code with calls to the PAPI library [MBD+99] http://icl.cs.utk.edu/papi/, which
provides access to the CPU performance counters. Since we make a call to PAPI after
every call to Shore, we have to compensate for the cost of PAPI calls when report-
ing the final numbers. These had an instruction count of 535-537 and were taking
between 1350 and 1500 cycles in our machine. We measure each call to Shore for
all 40,000 transactions and report the average numbers.

Most of the graphs reported in the paper are based on CPU instruction counts
(as measured through the CPU performance counters) and not wall clock time. The
reason is that instruction counts are representative of the total run-time code path
length, and they are deterministic. Equal instruction counts among different com-
ponents can of course result in different wall clock execution times (CPU cycles),
because of different microarchitectural behavior (cache misses, TLB misses, etc.).
In Section 4.3.4 we compare instruction counts to CPU cycles, illustrating the com-
ponents where there is high micro-architectural efficiency that can be attributed to
issues like few L2 cache misses and good instruction-level parallelism.

Cycle count, however, is susceptible to various parameters, ranging from CPU
characteristics, such as cache size/associativity, branch predictors, TLB operation,
to run-time variables such as concurrent processes. Therefore it should be treated
as indicative of relative time breakdown. We do not expand on the issue of CPU
cache performance in this paper, as our focus is to identify the set of DBMS compo-
nents to remove that can produce up to two orders of magnitude better performance
for certain classes of OLTP workloads. More information on the micro-architectural
behavior of database workloads can be found elsewhere [Ail04].

Next, we begin the presentation of our results.

http://icl.cs.utk.edu/papi/
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4.3 Experimental Results
In all experiments, our baseline Shore platform is a memory-resident database that
is never flushed to disk (the only disk I/O that might be performed is from the
Log Manager). There is only a single thread executing one transaction at a time.
Masking I/O (in the case of disk-based logging) is not a concern as it only adds to
overall response time and not to the instructions or cycles that the transaction has
actually run.

We placed 11 different switches in Shore to allow us to remove functionality (or
perform optimizations), which, during the presentation of the results, we organize
into six components. For a list of the 11 switches (and the corresponding compo-
nents) and the order we apply them, see Figure 7. These switches were described in
more detail in Section 3.2 above. The last switch is to bypass Shore completely and
run our own, minimal-overhead kernel, which we call “optimal” in our results. This
kernel is basically a memory-resident, hand-built B-tree package with no additional
transaction or query processing functionality.

4.3.1 Effect on Throughput
After all of these deletions and optimizations, Shore is left with a code residue,
which is all CPU cycles since there is no I/O whatsoever; specifically, an average of
about 80 microseconds per transaction (for a 50-50 mix of New Order and Payment
transactions), or about 12,700 transactions per second.

In comparison, the useful work in our optimal system was about 22 microsec-
onds per transaction, or about 46,500 transactions per second. The main causes
of this difference are a deeper call stack depth in our kernel, and our inability
to remove some of the transaction set up and buffer pool calls without breaking
Shore. As a point of reference, “out of the box” Shore, with logging enabled but
with the database cached in main memory, provides about 640 transactions per
second (1.6 milliseconds per transaction), whereas Shore running in main mem-
ory, but without log flushing provides about 1,700 transactions per second, or about
588 microseconds per transaction. Hence, our modifications yield a factor of 20
improvement in overall throughput.

Given these basic throughput measurements, we now give detailed instruction
breakdowns for the two transactions of our benchmark. Recall that the instruction
and cycle breakdowns in the following sections do not include any impact of disk
operations, whereas the throughput numbers for baseline Shore do include some
log write operations.
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Figure 5 Detailed instruction count breakdown for Payment transaction.

4.3.2 Payment
Figure 5 (left side) shows the reductions in the instruction count of the Payment
transaction as we optimized B-tree key evaluations and removed logging, locking,
latching, and buffer manager functionality. The right part of the figure shows, for
each feature removal we perform, its effect on the number of instructions spent in
various portions of the transaction’s execution. For the Payment transaction, these
portions include a begin call, three B-tree lookups followed by three pin/unpin
operations, followed by three updates (through the B-tree), one record creation and
a commit call. The height of each bar is always the total number of instructions
executed. The right-most bar is the performance of our minimal-overhead kernel.

Our B-tree key evaluation optimizations are reportedly standard practice in high-
performance DBMS architectures, so we perform them first because any system
should be able to do this. Removing logging affects mainly commits and updates,
as those are the portions of the code that write log records, and to a lesser degree
B-tree and directory lookups. These modifications remove about 18% of the total
instruction count.

Locking takes the second most instructions, accounting for about 25% of the
total count. Removing it affects all of the code, but is especially important in the
pin/unpin operations, the lookups, and commits, which was expected as these are
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the operations that must acquire or release locks (the transaction already has locks
on the updated records when the updates are performed).

Latching accounts for about 13% of the instructions, and is primarily important
in the create record and B-tree lookup portions of the transaction. This is because
the buffer pool (used in create) and B-trees are the primary shared data structures
that must be protected with latches.

Finally, our buffer manager modifications account for about 30% of the total in-
struction count. Recall that with this set of modifications, new records are allocated
directly with malloc, and page lookups no longer have to go through the buffer pool
in most cases. This makes record allocation essentially free, and substantially im-
proves the performance of other components that perform frequent lookups, like
B-tree lookup and update.

At this point, the remaining kernel requires about 5% (for a 20x performance
gain!) of the total initial instruction count, and is about 6 times the total instruc-
tions of our “optimal” system. This analysis leads to two observations: first, all six
of the major components are significant, each accounting for 18 thousand or more
instructions of the initial 180 thousand. Second, until all of our optimizations are
applied, the reduction in instruction count is not dramatic: before our last step of
removing the buffer manager, the remaining components used about a factor of
three fewer instructions than the baseline system (versus a factor of 20 when the
buffer manager is removed).

4.3.3 New Order
A similar breakdown of the instruction count in the New Order transaction is shown
in Figure 6; Figure 7 shows a detailed accounting of all 11 modifications and opti-
mizations we performed. This transaction uses about 10 times as many instructions
as the Payment transaction, requiring 13 B-tree inserts, 12 record creation op-
erations, 11 updates, 23 pin/unpin operations, and 23 B-tree lookups. The main
differences in the allocation of instructions to major optimizations between New
Order and Payment are in B-tree key code, logging, and locking. Since New Order
adds B-tree insertions in the mix of operations, there is more relative benefit to be
had by optimizing the key evaluation code (about 16%). Logging and locking now
only account for about 12% and 16% of the total instructions; this is largely because
the total fraction of time spent in operations where logging and locking perform a
lot of work is much smaller in this case.

The buffer manager optimizations still represent the most significant win here,
again because we are able to bypass the high overhead of record creation. Look-
ing at the detailed breakdown in Figure 7 for the buffer manager optimization
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reveals something surprising: changing from 8K to 32K pages (labelled “small
page”) provides almost a 14% reduction in the total instruction count. This sim-
ple optimization—which serves to reduce the frequency of page allocations and
decrease B-tree depth—offers a sizeable gain.

4.3.4 Instructions vs. Cycles
Having looked at the detailed breakdown of instruction counts in the Payment and
New Order transactions, we now compare the fraction of time (cycles) spent in each
phase of the New Order transaction to the fraction of instructions used in each
phase. The results are shown in Figure 8. As we noted earlier, we do not expect these
two fractions to be identical for a given phase, because cache misses and pipeline
stalls (typically due to branches) can cause some instructions to take more cycles
than others. For example, B-tree optimizations reduce cycles less than they reduce
instructions, because the Shore B-tree code overhead we remove is mainly offset
calculations with few cache misses. Conversely, our residual “kernel” uses a larger
fraction of cycles than it does instructions, because it is branch-heavy, consisting
mostly of function calls. Similarly, logging uses significantly more cycles because
it touches a lot of memory creating and writing log records (disk I/O time is not
included in either graph). Finally, locking and the buffer manager consume about
the same percentage of cycles as they do instructions.
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5 Implications for Future OLTP Engines
Given the performance results in the previous section, we revisit our discussion of
future OLTP designs from Section 2. Before going into the detailed implications of
our results for the design of various database subsystems, we make two high level
observations from our numbers:

. First, the benefit of stripping out any one of the components of the system
has a relatively small benefit on overall performance. For example, our main
memory optimizations improved the performance of Shore by about 30%,
which is significant but unlikely to motivate the major database vendors to
re-engineer their systems. Similar gains would be obtained by eliminating
just latching or switching to a single-threaded, one-transaction-at-a-time
approach.

. The most significant gains are to be had when multiple optimizations are
applied. A fully stripped down system provides a factor of twenty or more
performance gain over out-of-the-box Shore, which is truly significant. Note
that such a system can still provide transactional semantics, if only one
transaction is run at a time, all transactions are two phase, and recovery
is implemented by copying state from other nodes in the network. Such a
system is very, very different from what any of the vendors currently offers,
however.

5.1 Concurrency Control
Our experiments showed a significant contribution (about 19% of cycles) of dy-
namic locking to total overhead. This suggests that there is a large gain to be had
by identifying scenarios, such as application commutativity, or transaction-at-a-
time processing, that allow concurrency control to be turned off. However, there
are many DBMS applications which are not sufficiently well-behaved or where run-
ning only one transaction at a time per site will not work. In such cases, there is
an interesting question as to what concurrency control protocol is best. Twenty
years ago, various researchers [KR81, ACL87] performed exhaustive simulations
that clearly showed the superiority of dynamic locking relative to other concurrency
control techniques. However, this work assumed a disk-based load with disk stalls,
which obviously impacts the results significantly. It would be highly desirable to
redo these sorts of simulation studies with a main memory workload. We strongly
suspect that some sort of optimistic concurrency control would be the prevailing
option.
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5.2 Multi-core Support
Given the increasing prevalence of many-core computers, an interesting question
is how future OLTP engines should deal with multiple cores. One option is to run
multiple transactions concurrently on separate cores within a single site (as it is
done today); of course, such parallelism requires latching and implies a number of
resource allocation issues. Our experiments show that although the performance
overhead of latching is not particularly high (10% of cycles in the dominant transac-
tion, New Order), it still remains an obstacle in achieving significant performance
improvements in OLTP. As technologies (such as transactional memory [HM93])
for efficiently running highly concurrent programs on multicore machines mature
and find their way into products, it will be very interesting to revisit new implemen-
tations for latching and reassess the overhead of multithreading in OLTP.

A second option is to use virtualization, either at the operating system or DBMS
level, to make it appear that each core is a single-threaded machine. It is unclear
what the performance implications of that approach would be, warranting a careful
study of such virtualization. A third option, complementary to the other two, is to
attempt to exploit intra-query parallelism, which may be feasible even if the system
only runs one transaction at a time. However, the amount of intra-query parallelism
available in a typical OLTP transaction is likely to be limited.

5.3 Replication Management
The traditional database wisdom is to support replication through a log-shipping
based active-passive scheme; namely, every object has an “active” primary copy,
to which all updates are first directed. The log of changes is then spooled over the
network to one or more “passive” backup sites. Recovery logic rolls the remote data-
base forward from the log. This scheme has several disadvantages. First, unless a
form of two-phase commit is used, the remote copies are not transactionally con-
sistent with the primary. Hence, reads cannot be directed to replicas if transaction-
consistent reads are required. If reads are directed to replicas, nothing can be said
about the accuracy of the answers. A second disadvantage is that failover is not in-
stantaneous. Hence, the stall during failures is longer than it needs to be. Third, it
requires the availability of a log; our experiments show that maintaining a log takes
about 20% of total cycles. Hence, we believe it is interesting to consider alternatives
to active-passive replication, such as an active-active approach.

The main reason that active-passive replication with log shipping has been
used in the past is that the cost of rolling the log forward has been assumed
to be far lower than the cost of performing the transaction logic on the replica.
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However, in a main memory DBMS, the cost of a transaction is typically less than
1 msec, requiring so few cycles that it is likely not much slower than playing back
a log. In this case, an alternate active-active architecture appears to make sense. In
this case, all replicas are “active” and the transaction is performed synchronously
on all replicas. The advantage of this approach is nearly instantaneous failover
and there is no requirement that updates be directed to a primary copy first. Of
course, in such a scenario, two-phase commit will introduce substantial additional
latency, suggesting that techniques to avoid it are needed—perhaps by performing
transactions in timestamp order.

5.4 Weak Consistency
Most large web-oriented OLTP shops insist on replicas, usually over a WAN, to
achieve high availability and disaster recovery. However, seemingly nobody is will-
ing to pay for transactional consistency over a WAN. As noted in Section 2, the
common refrain in web applications is “eventual consistency” [Bre00, DHJ+07].
Typically, proponents of such approach advocate resolving inconsistencies through
non-technical means; for example, it is cheaper to give a credit to a customer who
complains than to ensure 100% consistency. In other words, the replicas eventually
become consistent, presumably if the system is quiesced.

It should be clear that eventual consistency is impossible without transaction
consistency under a general workload. For example, suppose transaction 1 com-
mits at site 1 and aborts or is lost at site 2. Transaction 2 reads the result of
transaction 1 and writes into the database, causing the inconsistency to propa-
gate and pollute the system. That said, clearly, there must be workloads where
eventual consistency is achievable, and it would be an interesting exercise to look
for them, since, as noted above, our results suggest that removing transactional
support—locking and logging—from a main memory system could yield a very high
performance database.

5.5 Cache-conscious B-trees
In our study we did not convert Shore B-trees to a “cache-conscious” format [RR99,
RR00]. Such an alteration, at least on a system without all of the other optimiza-
tions we present, would have only a modest impact. Cache-conscious research on
B-trees targets cache misses that result from accessing key values stored in the
B-tree nodes. Our optimizations removed between 80% to 88% of the time spent
in B-tree operations, without changing the key access pattern. Switching from a
stripped-down Shore to our minimal-overhead kernel—which still accesses the
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same data—removed three quarters of the remaining time. In other words, it ap-
pears to be more important to optimize other components, such as concurrency
control and recovery, than to optimize data structures. However, once we strip a
system down to a very basic kernel, cache misses in the B-tree code may well be
the new bottleneck. In fact, it may be the case that other indexing structures, such
as hash tables, perform better in this new environment. Again, these conjectures
should be carefully tested.

6 Related Work
There have been several studies of performance bottlenecks in modern database
systems. [BMK99] and [ADH+99] show the increasing contribution of main memory
data stalls to database performance. [MSA+04] breaks down bottlenecks due to
contention for various resources (such as locks, I/O synchronization, or CPU) from
the client’s point of view (which includes perceived latency due to I/O stalls and
preemptive scheduling of other concurrent queries). Unlike the work presented
here, these papers analyze complete databases and do not analyze performance
per database component. Benchmarking studies such as TPC-B [Ano85] in the
OLTP space and the Wisconsin Benchmark [BDT83] in general SQL processing,
also characterize the performance of complete databases and not that of individual
OLTP components.

Additionally, there has been a large amount of work on main memory data-
bases. Work on main memory indexing structures has included AVL trees [AHU74]
and T-trees [LC86]. Other techniques for main memory applicability appear in
[BHT87]. Complete systems include TimesTen [Tim07], DataBlitz [BBK+98], and
MARS [Eic87]. A survey of this area appears in [GS92]. However, none of this work
attempts to isolate the components of overhead, which is the major contribution
of this paper.

7 Conclusions
We performed a performance study of Shore motivated by our desire to understand
where time is spent in modern database systems, and to help understand what the
potential performance of several recently proposed alternative database architec-
tures might be. By stripping out components of Shore, we were able to produce a
system that could run our modified TPC-C benchmark about 20 times faster than
the original system (albeit with substantially reduced functionality!). We found that
buffer management and locking operations are the most significant contributors
to system overhead, but that logging and latching operations are also significant.
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Based on these results, we make several interesting observations. First, unless one
strips out all of these components, the performance of a main memory-optimized
database (or a database without transactions, or one without logging) is unlikely to
be much better than a conventional database where most of the data fit into RAM.
Second, when one does produce a fully stripped down system—e.g., that is single
threaded, implements recovery via copying state from other nodes in the network,
fits in memory, and uses reduced functionality transactions—the performance is
orders of magnitude better than an unmodified system. This suggests that recent
proposals for stripped down systems [WSA97, SMA+07] may be on to something.
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An Idea Whose Time
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Abstract
The last 25 years of commercial DBMS development can be summed up in a single
phrase: “One size fits all”. This phrase refers to the fact that the traditional DBMS
architecture (originally designed and optimized for business data processing) has
been used to support many data-centric applications with widely varying character-
istics and requirements.

In this paper, we argue that this concept is no longer applicable to the data-
base market, and that the commercial world will fracture into a collection of in-
dependent database engines, some of which may be unified by a common front-
end parser. We use examples from the stream-processing market and the data-
warehouse market to bolster our claims. We also briefly discuss other markets for
which the traditional architecture is a poor fit and argue for a critical rethinking of
the current factoring of systems services into products.

1 Introduction
Relational DBMSs arrived on the scene as research prototypes in the 1970’s, in
the form of System R [10] and INGRES [27]. The main thrust of both prototypes
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was to surpass IMS in value to customers on the applications that IMS was used
for, namely “business data processing”. Hence, both systems were architected for
on-line transaction processing (OLTP) applications, and their commercial coun-
terparts (i.e., DB2 and INGRES, respectively) found acceptance in this arena in the
1980’s. Other vendors (e.g., Sybase, Oracle, and Informix) followed the same basic
DBMS model, which stores relational tables row-by-row, uses B-trees for indexing,
uses a cost-based optimizer, and provides ACID transaction properties.

Since the early 1980’s, the major DBMS vendors have steadfastly stuck to a
“one size fits all” strategy, whereby they maintain a single code line with all DBMS
services. The reasons for this choice are straightforward—the use of multiple code
lines causes various practical problems, including:

. a cost problem, because maintenance costs increase at least linearly with the
number of code lines;

. a compatibility problem, because all applications have to run against every
code line;

. a sales problem, because salespeople get confused about which product to try
to sell to a customer; and

. a marketing problem, because multiple code lines need to be positioned
correctly in the marketplace.

To avoid these problems, all the major DBMS vendors have followed the adage
“put all wood behind one arrowhead”. In this paper we argue that this strategy has
failed already, and will fail more dramatically off into the future.

The rest of the paper is structured as follows. In Section 2, we briefly indicate
why the single code-line strategy has failed already by citing some of the key charac-
teristics of the data warehouse market. In Section 3, we discuss stream processing
applications and indicate a particular example where a specialized stream process-
ing engine outperforms an RDBMS by two orders of magnitude. Section 4 then turns
to the reasons for the performance difference, and indicates that DBMS technology
is not likely to be able to adapt to be competitive in this market. Hence, we expect
stream processing engines to thrive in the marketplace. In Section 5, we discuss
a collection of other markets where one size is not likely to fit all, and other spe-
cialized database systems may be feasible. Hence, the fragmentation of the DBMS
market may be fairly extensive. In Section 6, we offer some comments about the
factoring of system software into products. Finally, we close the paper with some
concluding remarks in Section 7.
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2 Data Warehousing
In the early 1990’s, a new trend appeared: Enterprises wanted to gather together
data from multiple operational databases into a data warehouse for business intel-
ligence purposes. A typical large enterprise has 50 or so operational systems, each
with an on-line user community who expect fast response time. System administra-
tors were (and still are) reluctant to allow business-intelligence users onto the same
systems, fearing that the complex ad-hoc queries from these users will degrade re-
sponse time for the on-line community. In addition, business-intelligence users
often want to see historical trends, as well as correlate data from multiple opera-
tional databases. These features are very different from those required by on-line
users.

For these reasons, essentially every enterprise created a large data warehouse,
and periodically “scraped” the data from operational systems into it. Business-
intelligence users could then run their complex ad-hoc queries against the data
in the warehouse, without affecting the on-line users. Although most warehouse
projects were dramatically over budget and ended up delivering only a subset of
promised functionality, they still delivered a reasonable return on investment. In
fact, it is widely acknowledged that historical warehouses of retail transactions pay
for themselves within a year, primarily as a result of more informed stock rotation
and buying decisions. For example, a business-intelligence user can discover that
pet rocks are out and Barbie dolls are in, and then make appropriate merchandise
placement and buying decisions.

Data warehouses are very different from OLTP systems. OLTP systems have been
optimized for updates, as the main business activity is typically to sell a good or
service. In contrast, the main activity in data warehouses is ad-hoc queries, which
are often quite complex. Hence, periodic load of new data interspersed with ad-hoc
query activity is what a typical warehouse experiences.

The standard wisdom in data warehouse schemas is to create a fact table,
containing the “who, what, when, where” about each operational transaction. For
example, Figure 1 shows the schema for a typical retailer. Note the central fact table,
which holds an entry for each item that is scanned by a cashier in each store in its
chain. In addition, the warehouse contains dimension tables, with information on
each store, each customer, each product, and each time period. In effect, the fact
table contains a foreign key for each of these dimensions, and a star schema is the
natural result. Such star schemas are omnipresent in warehouse environments, but
are virtually nonexistent in OLTP environments.

It is a well known homily that warehouse applications run much better using
bit-map indexes while OLTP users prefer B-tree indexes. The reasons are straight-
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Store (dimension table) Time  (dimension table) 

Figure 1 A typical star schema

forward: bit-map indexes are faster and more compact on warehouse workloads,
while failing to work well in OLTP environments. As a result, many vendors support
both B-tree indexes and bit-map indexes in their DBMS products.

In addition, materialized views are a useful optimization tactic in warehouse
worlds, but never in OLTP worlds. In contrast, normal (“virtual”) views find accep-
tance in OLTP environments.

To a first approximation, most vendors have a warehouse DBMS (bit-map in-
dexes, materialized views, star schemas and optimizer tactics for star schema
queries) and an OLTP DBMS (B-tree indexes and a standard cost-based optimizer),
which are united by a common parser, as illustrated in Figure 2.

Although this configuration allows such a vendor to market his DBMS product
as a single system, because of the single user interface, in effect, she is selling
multiple systems. Moreover, there will considerable pressure from both the OLTP
and warehouse markets for features that are of no use in the other world. For
example, it is common practice in OLTP databases to represent the state (in the
United States) portion of an address as a two-byte character string. In contrast, it
is obvious that 50 states can be coded into six bits. If there are enough queries and
enough data to justify the cost of coding the state field, then the later representation
is advantageous. This is usually true in warehouses and never true in OLTP. Hence,
elaborate coding of fields will be a warehouse feature that has little or no utility in
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Figure 2 The architecture of current DBMSs

OLTP. The inclusion of additional market-specific features will make commercial
products look increasingly like the architecture illustrated in Figure 2.

The illusion of “one size fits all” can be preserved as a marketing fiction for
the two different systems of Figure 2, because of the common user interface. In
the stream processing market, to which we now turn, such a common front end is
impractical. Hence, not only will there be different engines but also different front
ends. The marketing fiction of “one size fits all” will not fly in this world.

3 Stream Processing
Recently, there has been considerable interest in the research community in stream
processing applications [7, 13, 14, 20]. This interest is motivated by the upcoming
commercial viability of sensor networks over the next few years. Although RFID has
gotten all the press recently and will find widespread acceptance in retail applica-
tions dealing with supply chain optimization, there are many other technologies as
well (e.g., Lojack [3]). Many industry pundits see a “green field” of monitoring ap-
plications that will be enabled by this “sea change” caused by networks of low-cost
sensor devices.

3.1 Emerging Sensor-based Applications
There are obvious applications of sensor network technology in the military do-
main. For example, the US Army is investigating putting vital-signs monitors on all
soldiers, so that they can optimize medical triage in combat situations. In addition,
there is already a GPS system in many military vehicles, but it is not connected yet
into a closed-loop system. Instead, the army would like to monitor the position of all
vehicles and determine, in real time, if they are off course. Additionally, they would
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like a sensor on the gun turret; together with location, this will allow the detection
of crossfire situations. A sensor on the gas gauge will allow the optimization of re-
fueling. In all, an army battalion of 30,000 humans and 12,000 vehicles will soon
be a large-scale sensor network of several hundred thousand nodes delivering state
and position information in real time.

Processing nodes in the network and downstream servers must be capable of
dealing with this “firehose” of data. Required operations include sophisticated
alerting, such as the platoon commander wishes to know when three of his four
vehicles cross the front line. Also required are historical queries, such as “Where
has vehicle 12 been for the last two hours?” Lastly, requirements encompass lon-
gitudinal queries, such as “What is the overall state of readiness of the force right
now?”

Other sensor-based monitoring applications will also come over time in many
non-military applications. Monitoring traffic congestion and suggesting alternate
travel routes is one example. A related application is variable, congestion-based
tolling on highway systems, which was the inspiration behind the Linear Road
benchmark [9]. Amusement parks will soon turn passive wristbands on customers
into active sensors, so that rides can be optimized and lost children located. Cell
phones are already active devices, and one can easily imagine a service whereby
the closest restaurant to a hungry customer can be located. Even library books
will be sensor tagged, because if one is mis-shelved, it may be lost forever in a big
library.

There is widespread speculation that conventional DBMSs will not perform well
on this new class of monitoring applications. In fact, on Linear Road, traditional
solutions are nearly an order of magnitude slower than a special purpose stream
processing engine [9]. The inapplicability of the traditional DBMS technology to
streaming applications is also bolstered by an examination of the current appli-
cation areas with streaming data. We now discuss our experience with such an
application, financial-feed processing.

3.2 An Existing Application: Financial-Feed Processing
Most large financial institutions subscribe to feeds that deliver real-time data on
market activity, specifically news, consummated trades, bids and asks, etc. Reuters,
Bloomberg and Infodyne are examples of vendors that deliver such feeds. Financial
institutions have a variety of applications that process such feeds. These include
systems that produce real-time business analytics, ones that perform electronic
trading, ones that ensure legal compliance of all trades to the various company
and SEC rules, and ones that compute real-time risk and market exposure to
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fluctuations in foreign exchange rates. The technology used to implement this class
of applications is invariably “roll your own”, because application experts have not
had good luck with off-the-shelf system software products.

In order to explore feed processing issues more deeply, we now describe in
detail a specific prototype application, which was specified by a large mutual fund
company. This company subscribes to several commercial feeds, and has a current
production application that watches all feeds for the presence of late data. The
idea is to alert the traders if one of the commercial feeds is delayed, so that the
traders can know not to trust the information provided by that feed. This company
is unhappy with the performance and flexibility of their “roll your own” solution
and requested a pilot using a stream processing engine.

The company engineers specified a simplified version of their current appli-
cation to explore the performance differences between their current system and
a stream processing engine. According to their specification, they were looking
for maximum message processing throughput on a single PC-class machine for
a subset of their application, which consisted of two feeds reporting data from two
exchanges.

Specifically, there are 4500 securities, 500 of which are “fast moving”. A stock
tick on one of these securities is late if it occurs more than five seconds after the
previous tick from the same security. The other 4000 symbols are slow moving, and
a tick is late if 60 seconds have elapsed since the previous tick.

There are two feed providers and the company wished to receive an alert message
each time there is a late tick from either provider. In addition, they wished to
maintain a counter for each provider. When 100 late ticks have been received from
either provider, they wished to receive a special “this is really bad” message and
then to suppress the subsequent individual tick reports

The last wrinkle in the company’s specification was that they wished to accu-
mulate late ticks from each of two exchanges, say NYSE and NASD, regardless of
which feed vendor produced the late data. If 100 late messages were received from
either exchange through either feed vendor, they wished to receive two additional
special messages. In summary, they want four counters, each counting to 100, with
a resulting special message. An abstract representation of the query diagram for
this task is shown in Figure 3.

Although this prototype application is only a subset of the application logic
used in the real production system, it represents a simple-to-specify task on which
performance can be readily measured; as such, it is a representative example. We
now turn to the speed of this example application on a stream processing engine
as well as an RDBMS.
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Figure 3 The Feed Alarm application in StreamBase

4 Performance Discussion
The example application discussed in the previous section was implemented in the
StreamBase stream processing engine (SPE) [5], which is basically a commercial,
industrial-strength version of Aurora [8, 13]. On a 2.8Ghz Pentium processor with
512 Mbytes of memory and a single SCSI disk, the workflow in Figure 3 can be
executed at 160,000 messages per second, before CPU saturation is observed. In
contrast, StreamBase engineers could only coax 900 messages per second from an
implementation of the same application using a popular commercial relational
DBMS.

In this section, we discuss the main reasons that result in the two orders of mag-
nitude difference in observed performance. As we argue below, the reasons have
to do with the inbound processing model, correct primitives for stream process-
ing, and seamless integration of DBMS processing with application processing. In
addition, we also consider transactional behavior, which is often another major
consideration.
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4.1 “Inbound” versus “Outbound” Processing
Built fundamentally into the DBMS model of the world is what we term “outbound”
processing, illustrated in Figure 4. Specifically, one inserts data into a database as
a first step (step 1). After indexing the data and committing the transaction, that
data is available for subsequent query processing (step 2) after which results are
presented to the user (step 3). This model of “process-after-store” is at the heart
of all conventional DBMSs, which is hardly surprising because, after all, the main
function of a DBMS is to accept and then never lose data.

In real-time applications, the storage operation, which must occur before pro-
cessing, adds significantly both to the delay (i.e., latency) in the application, as well
as to the processing cost per message of the application. An alternative processing
model that avoids this storage bottleneck is shown graphically in Figure 5. Here,
input streams are pushed to the system (step 1) and get processed (step 2) as they
“fly by” in memory by the query network. The results are then pushed to the client
application(s) for consumption (step 3). Reads or writes to storage are optional and
can be executed asynchronously in many cases, when they are present. The fact
that storage is absent or optional saves both on cost and latency, resulting in sig-
nificantly higher performance. This model, called “inbound” processing, is what is
employed by a stream processing engine such as StreamBase.

One is, of course, led to ask “Can a DBMS do inbound processing?” DBMSs
were originally designed as outbound processing engines, but grafted triggers onto
their engines as an afterthought many years later. There are many restrictions on
triggers (e.g., the number allowed per table) and no way to ensure trigger safety
(i.e., ensuring that triggers do not go into an infinite loop). Overall, there is very
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little or no programming support for triggers. For example, there is no way to
see what triggers are in place in an application, and no way to add a trigger to a
table through a graphical user interface. Moreover, virtual views and materialized
views are provided for regular tables, but not for triggers. Lastly, triggers often have
performance problems in existing engines. When StreamBase engineers tried to
use them for the feed alarm application, they still could not obtain more than 900
messages per second. In summary, triggers are incorporated to the existing designs
as an afterthought and are thus second-class citizens in current systems.

As such, relational DBMSs are outbound engines onto which limited inbound
processing has been grafted. In contrast, stream processing engines, such as Aurora
and StreamBase are fundamentally inbound processing engines. From the ground
up, an inbound engine looks radically different from an outbound engine. For
example, an outbound engine uses a “pull” model of processing, i.e., a query is
submitted and it is the job of the engine to efficiently pull records out of storage to
satisfy the query. In contrast, an inbound engine uses a “push” model of processing,
and it is the job of the engine to efficiently push incoming messages through the
processing steps entailed in the application.

Another way to view the distinction is that an outbound engine stores the data
and then executes the queries against the data. In contrast, an inbound engine
stores the queries and then passes the incoming data (messages) through the
queries.

Although it seems conceivable to construct an engine that is either an inbound
or an outbound engine, such a design is clearly a research project. In the meantime,
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DBMSs are optimized for outbound processing, and stream processing engines for
inbound processing. In the feed alarm application, this difference in philosophy
accounts for a substantial portion of the performance difference observed.

4.2 The Correct Primitives
SQL systems contain a sophisticated aggregation system, whereby a user can run
a statistical computation over groupings of the records from a table in a database.
The standard example is:

Select avg (salary)

From employee

Group by department

When the execution engine processes the last record in the table, it can emit the
aggregate calculation for each group of records. However, this construct is of little
benefit in streaming applications, where streams continue forever and there is no
notion of “end of table”.

Consequently, stream processing engines extend SQL (or some other aggrega-
tion language) with the notion of time windows. In StreamBase, windows can be
defined based on clock time, number of messages, or breakpoints in some other
attribute. In the feed alarm application, the leftmost box in each stream is such an
aggregate box. The aggregate groups stocks by symbol and then defines windows
to be ticks 1 and 2, 2 and 3, 3 and 4, etc. for each stock. Such “sliding windows” are
often very useful in real-time applications.

In addition, StreamBase aggregates have been constructed to deal intelligently
with messages which are late, out-of-order, or missing. In the feed alarm applica-
tion, the customer is fundamentally interested in looking for late data. StreamBase
allows aggregates on windows to have two additional parameters. The first is a time-
out parameter, which instructs the StreamBase execution engine to close a window
and emit a value even if the condition for closing the window has not been satisfied.
This parameter effectively deals with late or missing tuples. The second parameter
is slack, which is a directive to the execution engine to keep a window open, after
its closing condition has been satisfied. This parameter addresses disorder in tu-
ple arrivals. These two parameters allow the user to specify how to deal with stream
abnormalities and can be effectively utilized to improve system resilience.

In the feed alarm application each window is two ticks, but has a timeout of
either 5 or 60 seconds. This will cause windows to be closed if the inter-arrival
time between successive ticks exceeds the maximum defined by the user. This



452 “One Size Fits All”: An Idea Whose Time Has Come and Gone

is a very efficient way to discover late data; i.e., as a side effect of the highly-
tuned aggregate logic. In the example application, the box after each aggregate
discards the valid data and keeps only the timeout messages. The remainder of the
application performs the necessary bookkeeping on these timeouts.

Having the right primitives at the lower layers of the system enables very high
performance. In contrast, a relational engine contains no such built-in constructs.
Simulating their effect with conventional SQL is quite tedious, and results in a
second significant difference in performance.

It is possible to add time windows to SQL, but these make no sense on stored
data. Hence, window constructs would have to be integrated into some sort of an
inbound processing model.

4.3 Seamless Integration of DBMS Processing and Application Logic
Relational DBMSs were all designed to have client-server architectures. In this
model, there are many client applications, which can be written by arbitrary people,
and which are therefore typically untrusted. Hence, for security and reliability
reasons, these client applications are run in a separate address space from the
DBMS. The cost of this choice is that the application runs in one address space
while DBMS processing occurs in another, and a process switch is required to move
from one address space to the other.

In contrast, the feed alarm application is an example of an embedded system.
It is written by one person or group, who is trusted to “do the right thing”. The
entire application consists of (1) DBMS processing—for example the aggregation
and filter boxes, (2) control logic to direct messages to the correct next processing
step, and (3) application logic. In StreamBase, these three kinds of functionality
can be freely interspersed. Application logic is supported with user-defined boxes,
the Count100 box in our example financial-feed processing application. The actual
code, shown in Figure 6, consists of four lines of C++ that counts to 100 and sets a
flag that ensures that the correct messages are emitted. Control logic is supported
by allowing multiple predicates in a filter box, and thereby multiple exit arcs. As
such, a filter box performs “if-then-else” logic in addition to filtering streams.

In effect, the feed alarm application is a mix of DBMS-style processing, con-
ditional expressions, and user-defined functions in a conventional programming
language. This combination is performed by StreamBase within a single address
space without any process switches. Such a seamless integration of DBMS logic with
conventional programming facilities was proposed many years ago in Rigel [23]
and Pascal-R [25], but was never implemented in commercial relational systems.
Instead, the major vendors implemented stored procedures, which are much more
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Count 100 same as

Map

F.evaluate
   cnt++

   if (cnt% 100 != 0) if !suppress emit lo-alarm
                           else emit drop-alarm
   else emit hi-alarm, set suppress = true

Figure 6 “Count100” Logic

limited programming systems. More recently, the emergence of object-relational
engines provided blades or extenders, which are more powerful than stored proce-
dures, but still do not facilitate flexible control logic.

Embedded systems do not need the protection provided by client-server DBMSs,
and a two-tier architecture merely generates overhead. This is a third source of the
performance difference observed in our example application.

Another integration issue, not exemplified by the feed alarm example, is the
storage of state information in streaming applications. Most stream processing ap-
plications require saving some state, anywhere from modest numbers of megabytes
to small numbers of gigabytes. Such state information may include (1) reference
data (i.e., what stocks are of interest), (2) translation tables (in case feeds use dif-
ferent symbols for the same stock), and (3) historical data (e.g., “how many late
ticks were observed every day during the last year?”). As such, tabular storage of
data is a requirement for most stream processing applications.

StreamBase embeds BerkeleyDB [4] for state storage. However, there is approxi-
mately one order of magnitude performance difference between calling BerkeleyDB
in the StreamBase address space and calling it in client-server mode in a different
address space. This is yet another reason to avoid process switches by mixing DBMS
and application processing in one address space.

Although one might suggest that DBMSs enhance their programming models
to address this performance problem, there are very good reasons why client-server
DBMSs were designed the way they are. Most business data processing applications
need the protection that is afforded by this model. Stored procedures and object-
relational blades were an attempt to move some of the client logic into the server
to gain performance. To move further, a DBMS would have to implement both an
embedded and a non-embedded model, with different run time systems. Again,
this would amount to giving up on “one size fits all”.

In contrast, feed processing systems are invariably embedded applications.
Hence, the application and the DBMS are written by the same people, and driven
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from external feeds, not from human-entered transactions. As such, there is no
reason to protect the DBMS from the application, and it is perfectly acceptable
to run both in the same address space. In an embedded processing model, it is
reasonable to freely mix application logic, control logic and DBMS logic, which is
exactly what StreamBase does.

4.4 High Availability
It is a requirement of many stream-based applications to have high availability (HA)
and stay up 7x24. Standard DBMS logging and crash recovery mechanisms (e.g.,
[22]) are ill-suited for the streaming world as they introduce several key problems.

First, log-based recovery may take large number of seconds to small numbers
of minutes. During this period, the application would be “down”. Such behavior is
clearly undesirable in many real-time streaming domains (e.g., financial services).
Second, in case of a crash, some effort must be made to buffer the incoming data
streams, as otherwise this data will be irretrievably lost during the recovery process.
Third, DBMS recovery will only deal with tabular state and will thus ignore operator
states. For example, in the feed alarm application, the counters are not in stored in
tables; therefore their state would be lost in a crash. One straightforward fix would
be to force all operator state into tables to use DBMS-style recovery; however, this
solution would significantly slow down the application.

The obvious alternative to achieve high availability is to use techniques that rely
on Tandem-style process pairs [11]. The basic idea is that, in the case of a crash,
the application performs failover to a backup machine, which typically operates as
a “hot standby”, and keeps going with small delay. This approach eliminates the
overhead of logging. As a case in point, StreamBase turns off logging in BerkeleyDB.

Unlike traditional data-processing applications that require precise recovery for
correctness, many stream-processing applications can tolerate and benefit from
weaker notions of recovery. In other words, failover does not always need to be
“perfect”. Consider monitoring applications that operate on data streams whose
values are periodically refreshed. Such applications can often tolerate tuple losses
when a failure occurs, as long as such interruptions are short. Similarly, if one loses
a couple of ticks in the feed alarm application during failover, the correctness would
probably still be preserved. In contrast, applications that trigger alerts when certain
combinations of events happen, require that no tuples be lost, but may tolerate
temporary duplication. For example, a patient monitoring application may be able
to tolerate duplicate tuples (“heart rate is 79”) but not lost tuples (“heart rate has
changed to zero”). Of course, there will always be a class of applications that require
strong, precise recovery guarantees. A financial application that performs portfolio
management based on individual stock transactions falls into this category.
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As a result, there is an opportunity to devise simplified and low overhead failover
schemes, when weaker correctness notions are sufficient. A collection of detailed
options on how to achieve high availability in a streaming world has recently been
explored [17].

4.5 Synchronization
Many stream-based applications rely on shared data and computation. Shared data
is typically contained in a table that one query updates and another one reads. For
example, the Linear Road application requires that vehicle-position data be used
to update statistics on highway usage, which in turn are read to determine tolls
for each segment on the highway. Thus, there is a basic need to provide isolation
between messages.

Traditional DBMSs use ACID transactions to provide isolation (among others
things) between concurrent transactions submitted by multiple users. In stream-
ing systems, which are not multi-user, such isolation can be effectively achieved
through simple critical sections, which can be implemented through light-weight
semaphores. Since full-fledged transactions are not required, there is no need to
use heavy-weight locking-based mechanisms anymore.

In summary, ACID properties are not required in most stream processing appli-
cations, and simpler, specialized performance constructs can be used to advantage.

5 One Size Fits All?
The previous section has indicated a collection of architectural issues that result
in significant differences in performance between specialized stream processing
engines and traditional DBMSs. These design choices result in a big difference
between the internals of the two engines. In fact, the run-time code in StreamBase
looks nothing like a traditional DBMS run-time. The net result is vastly better
performance on a class of real-time applications. These considerations will lead
to a separate code line for stream processing, of course assuming that the market
is large enough to facilitate this scenario.

In the rest of the section, we outline several other markets for which specialized
database engines may be viable.

5.1 Data Warehouses
The architectural differences between OLTP and warehouse database systems dis-
cussed in Section 2 are just the tip of the iceberg, and additional differences will
occur over time. We now focus on probably the biggest architectural difference,
which is to store the data by column, rather than by row.
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All major DBMS vendors implement record-oriented storage systems, where the
attributes of a record are placed contiguously in storage. Using this “row-store”
architecture, a single disk write is all that is required to push all of the attributes
of a single record out to disk. Hence, such a system is “write-optimized” because
high performance on record writes is easily achievable. It is easy to see that write-
optimized systems are especially effective on OLTP-style applications, the primary
reason why most commercial DBMSs employ this architecture.

In contrast, warehouse systems need to be “read-optimized” as most workload
consists of ad-hoc queries that touch large amounts of historical data. In such
systems, a “column-store” model where the values for all of the rows of a single
attribute are stored contiguously is drastically more efficient (as demonstrated by
Sybase IQ [6], Addamark [1], and KDB [2]).

With a column-store architecture, a DBMS need only read the attributes required
for processing a given query, and can avoid bringing into memory any other irrel-
evant attributes. Given that records with hundreds of attributes (with many null
values) are becoming increasingly common, this approach results in a sizeable
performance advantage for warehouse workloads where typical queries involve ag-
gregates that are computed on a small number of attributes over large data sets. The
first author of this paper is engaged in a research project to explore the performance
benefits of a column-store system.

5.2 Sensor Networks
It is not practical to run a traditional DBMS in the processing nodes that manage
sensors in a sensor network [21, 24]. These emerging platforms of device networks
are currently being explored for applications such as environmental and medical
monitoring, industrial automation, autonomous robotic teams, and smart homes
[16, 19, 26, 28, 29].

In order to realize the full potential of these systems, the components are
designed to be wireless, with respect to both communication and energy. In this
environment, bandwidth and power become the key resources to be conserved.
Furthermore, communication, as opposed to processing or storage access, is the
main consumer of energy. Thus, standard DBMS optimization tactics do not apply
and need to be critically rethought. Furthermore, transactional capabilities seem
to be irrelevant in this domain.

In general, there is a need to design flexible, light-weight database abstractions
(such as TinyDB [18]) that are optimized for data movement as opposed to data
storage.
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5.3 Text Search
None of the current text search engines use DBMS technology for storage, even
though they deal with massive, ever-increasing data sets. For instance, Google
built its own storage system (called GFS [15]) that outperforms conventional DBMS
technology (as well as file system technology) for some of the reasons discussed in
Section 4.

A typical search engine workload [12, 15] consists of a combination of inbound
streaming data (coming from web crawlers), which needs to be cleaned and in-
corporated into the existing search index, and ad hoc look-up operations on the
existing index. In particular, the write operations are mostly append-only and read
operations sequential. Concurrent writes (i.e., appends) to the same file are neces-
sary for good performance. Finally, the large number of storage machines, made
up of commodity parts, ensure that failure is the norm rather than the exception.
Hence, high availability is a key design consideration and can only be achieved
through fast recovery and replication.

Clearly, these application characteristics are much different from those of con-
ventional business-processing applications. As a result, even though some DBMSs
has built-in text search capabilities, they fall short of meeting the performance and
availability requirements of this domain: they are simply too heavy-weight and in-
flexible.

5.4 Scientific Databases
Massive amounts of data are continuously being gathered from the real-world by
sensors of various types, attached to devices such as satellites and microscopes, or
are generated artificially by high-resolution scientific and engineering simulations.

The analysis of such data sets is the key to better understanding physical phe-
nomena and is becoming increasingly commonplace in many scientific research
domains. Efficient analysis and querying of these vast databases require highly-
efficient multi-dimensional indexing structures and application-specific aggrega-
tion techniques. In addition, the need for efficient data archiving, staging, lineage,
and error propagation techniques may create a need for yet another specialized
engine in this important domain.

5.5 XML Databases
Semi-structured data is everywhere. Unfortunately, such data does not immediately
fit into the relational model. There is a heated ongoing debate regarding how to best
store and manipulate XML data. Even though some believe that relational DBMSs
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(with proper extensions) are the way to go, others would argue that a specialized
engine is needed to store and process this data format.

6 A Comment on Factoring
Most stream-based applications require three basic services:

. Message transport: In many stream applications, there is a need to trans-
port data efficiently and reliably among multiple distributed machines. The
reasons for these are threefold. First, data sources and destinations are typ-
ically geographically dispersed. Second, high performance and availability
requirements dictate the use of multiple cooperating server machines. Third,
virtually all big enterprise systems consist of a complicated network of busi-
ness applications running on a large number of machines, in which an SPE
is embedded. Thus, the input and outputs messages to the SPE need to be
properly routed from and to the appropriate external applications.

. Storage of state: As discussed in Section 4.3, in all but the most simplistic
applications, there is a need to store state, typically in the form of read-only
reference and historical tables, and read-write translation (e.g., hash) tables.

. Execution of application logic: Many streaming applications demand domain-
specific message processing to be interspersed with query activity. In general,
it is neither possible nor practical to represent such application logic using
only the built-in query primitives (e.g., think legacy code).

A traditional design for a stream-processing application spreads the entire appli-
cation logic across three diverse systems: (1) a messaging system (such as MQSeries,
WebMethods, or Tibco) to reliably connect the component systems, typically using
a publish/subscribe paradigm; (2) a DBMS (such as DB2 or Oracle) to provide per-
sistence for state information; and (3) an application server (such as WebSphere or
WebLogic) to provide application services to a set of custom-coded programs. Such
a three-tier configuration is illustrated in Figure 7.

Unfortunately, such a design that spreads required functionality over three
heavyweight pieces of system software will not perform well. For example, every
message that requires state lookup and application services will entail multiple
process switches between these different services.

In order to illustrate this per message overhead, we trace the steps taken when
processing a message. An incoming message is first picked up by the bus and
then forwarded to the custom application code (step 1), which cleans up and then
processes the message. If the message needs to be correlated with historical data or
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Figure 7 A multi-tier stream processing architecture

requires access to persistent data, then a request is sent to the DB server (steps 2-3),
which accesses the DBMS. The response follows the reverse path to the application
code (steps 4-5). Finally, the outcome of the processed message is forwarded to the
client task GUI (step 6). Overall, there are six “boundary crossings” for processing
a single message. In addition to the obvious context switches incurred, messages
also need to transformed on-the-fly, by the appropriate adapters, to and from the
native formats of the systems, each time they are picked up from and passed on
to the message bus. The result is a very low useful work to overhead ratio. Even if
there is some batching of messages, the overhead will be high and limit achievable
performance.

To avoid such a performance hit, a stream processing engine must provide
all three services in a single piece of system software that executes as one multi-
threaded process on each machine that it runs. Hence, an SPE must have elements
of a DBMS, an application server, and a messaging system. In effect, an SPE should
provide specialized capabilities from all three kinds of software “under one roof”.

This observation raises the question of whether the current factoring of system
software into components (e.g., application server, DBMS, Extract-Transform-Load
system, message bus, file system, web server, etc.) is actually an optimal one. After
all, this particular decomposition arose partly as a historical artifact and partly from
marketing happenstance. It seems like other factoring of systems services seems
equally plausible, and it should not be surprising to see considerable evolution of
component definition and factoring off into the future.
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7 Concluding Remarks
In summary, there may be a substantial number of domain-specific database en-
gines with differing capabilities off into the future. We are reminded of the curse
“may you live in interesting times”. We believe that the DBMS market is entering a
period of very interesting times. There are a variety of existing and newly-emerging
applications that can benefit from data management and processing principles
and techniques. At the same time, these applications are very much different from
business data processing and from each other—there seems to be no obvious way
to support them with a single code line. The “one size fits all” theme is unlikely to
successfully continue under these circumstances.
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Abstract
In previous papers [SC05, SBC+07], some of us predicted the end of “one size fits all”
as a commercial relational DBMS paradigm. These papers presented reasons and
experimental evidence that showed that the major RDBMS vendors can be outper-
formed by 1–2 orders of magnitude by specialized engines in the data warehouse,
stream processing, text, and scientific database markets.

Assuming that specialized engines dominate these markets over time, the cur-
rent relational DBMS code lines will be left with the business data processing
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(OLTP) market and hybrid markets where more than one kind of capability is re-
quired. In this paper we show that current RDBMSs can be beaten by nearly two
orders of magnitude in the OLTP market as well. The experimental evidence comes
from comparing a new OLTP prototype, H-Store, which we have built at M.I.T. to a
popular RDBMS on the standard transactional benchmark, TPC-C.

We conclude that the current RDBMS code lines, while attempting to be a “one
size fits all” solution, in fact, excel at nothing. Hence, they are 25 year old legacy code
lines that should be retired in favor of a collection of “from scratch” specialized
engines. The DBMS vendors (and the research community) should start with a clean
sheet of paper and design systems for yesterday’s needs.

1 Introduction
The popular relational DBMSs all trace their roots to System R from the 1970s. For
example, DB2 is a direct descendent of System R, having used the RDS portion of
System R intact in their first release. Similarly, SQL Server is a direct descendent of
Sybase System 5, which, borrowed heavily from System R. Lastly, the first release of
Oracle implemented the user interface from System R.

All three systems were architected more than 25 years ago, when hardware
characteristics were much different than today. Processors are thousands of times
faster and memories are thousands of times larger. Disk volumes have increased
enormously, making it possible to keep essentially everything, if one chooses to.
However, the bandwidth between disk and main memory has increased much more
slowly. One would expect this relentless pace of technology to have changed the
architecture of database systems dramatically over the last quarter of a century,
but surprisingly the architecture of most DBMSs is essentially identical to that of
System R.

Moreover, at the time relational DBMSs were conceived, there was only a single
DBMS market, business data processing. In the last 25 years, a number of other
markets have evolved, including data warehouses, text management, and stream
processing. These markets have very different requirements than business data
processing.

Lastly, the main user interface device at the time RDBMSs were architected was
the dumb terminal, and vendors imagined operators inputting queries through an
interactive terminal prompt. Now it is a powerful personal computer connected
to the World Wide Web. Web sites that use OLTP DBMSs rarely run interactive
transactions or present users with direct SQL interfaces.
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In summary, the current RDBMSs were architected for the business data pro-
cessing market in a time of different user interfaces and different hardware char-
acteristics. Hence, they all include the following System R architectural features:

. Disk oriented storage and indexing structures

. Multithreading to hide latency

. Locking-based concurrency control mechanisms

. Log-based recovery

Of course, there have been some extensions over the years, including support for
compression, shared-disk architectures, bitmap indexes, support for user-defined
data types and operators, etc. However, no system has had a complete redesign
since its inception. This paper argues that the time has come for a complete rewrite.

A previous paper [SBC+07] presented benchmarking evidence that the major
RDBMSs could be beaten by specialized architectures by an order of magnitude or
more in several application areas, including:

. Text (specialized engines from Google, Yahoo, etc.)

. Data Warehouses (column stores such as Vertica, Monet [Bon02], etc.)

. Stream Processing (stream processing engines such as StreamBase and
Coral8)

. Scientific and intelligence databases (array storage engines such as MATLAB
and ASAP [SBC+07])

Based on this evidence, one is led to the following conclusions:

1. RDBMSs were designed for the business data processing market, which is
their sweet spot

2. They can be beaten handily in most any other market of significant enough
size to warrant the investment in a specialized engine

This paper builds on [SBC+07] by presenting evidence that the current architec-
ture of RDBMSs is not even appropriate for business data processing. Our method-
ology is similar to the one employed in [SBC+07]. Specifically, we have designed a
new DBMS engine for OLTP applications. Enough of this engine, H-Store, is run-
ning to enable us to conduct a performance bakeoff between it and a popular
commercial RDBMSs. Our experimental data shows H-Store to be a factor of 82
faster on TPC-C (almost two orders of magnitude).
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Because RDBMSs can be beaten by more than an order of magnitude on the
standard OLTP benchmark, then there is no market where they are competitive.
As such, they should be considered as legacy technology more than a quarter of a
century in age, for which a complete redesign and re-architecting is the appropriate
next step.

Section 2 of this paper explains the design considerations that can be exploited
to achieve this factor of 82 on TPC-C. Then, in Section 3, we present specific ap-
plication characteristics which can be leveraged by a specialized engine. Following
that, we sketch some of the H-store design in Section 4. We then proceed in Sec-
tion 5 to present experimental data on H-Store and a popular RDBMS on TPC-C.
We conclude the paper in Section 6 with some radical suggestions for the research
agenda for the DBMS community.

2 OLTP Design Considerations
This section presents five major issues, which a new engine such as H-Store can
leverage to achieve dramatically better performance than current RDBMSs.

2.1 Main Memory
In the late 1970’s a large machine had somewhere around a megabyte of main
memory. Today, several Gbytes are common and large machines are approaching
100 Gbytes. In a few years a terabyte of main memory will not be unusual. Imagine
a shared nothing grid system of 20 nodes, each with 32 Gbytes of main memory
now, (soon to be 100 Gbytes), and costing less than $50,000. As such, any database
less than a terabyte in size, is capable of main memory deployment now or in the
near future.

The overwhelming majority of OLTP databases are less than 1 Tbyte in size
and growing in size quite slowly. For example, it is a telling statement that TPC-
C requires about 100 Mbytes per physical distribution center (warehouse). A very
large retail enterprise might have 1000 warehouses, requiring around 100 Gbytes
of storage, which fits our envelope for main memory deployment.

As such, we believe that OLTP should be considered a main memory market,
if not now then within a very small number of years. Consequently, the current
RDBMS vendors have disk-oriented solutions for a main memory problem. In sum-
mary, 30 years of Moore’s law has antiquated the disk-oriented relational architec-
ture for OLTP applications.
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Although there are some main memory database products on the market, such
as TimesTen and SolidDB, these systems inherit the baggage of System R as well.
This includes such features as a disk-based recovery log and dynamic locking,
which, as we discuss in the following sections, impose substantial performance
overheads.

2.2 Multi-threading and Resource Control
OLTP transactions are very lightweight. For example, the heaviest transaction in
TPC-C reads about 200 records. In a main memory environment, the useful work
of such a transaction consumes less than one millisecond on a low-end machine. In
addition, most OLTP environments we are familiar with do not have “user stalls”.
For example, when an Amazon user clicks “buy it”, he activates an OLTP transaction
which will only report back to the user when it finishes. Because of an absence of
disk operations and user stalls, the elapsed time of an OLTP transaction is minimal.
In such a world it makes sense to run each SQL command in a transaction to
completion with a single-threaded execution model, rather than paying for the
overheads of isolation between concurrently executing statements.

Current RDBMSs have elaborate multi-threading systems to try to fully utilize
CPU and disk resources. This allows several-to-many queries to be running in
parallel. Moreover, they also have resource governors to limit the multiprogram-
ming load, so that other resources (IP connections, file handles, main memory for
sorting, etc.) do not become exhausted. These features are irrelevant in a single
threaded execution model. No resource governor is required in a single threaded
system.

In a single-threaded execution model, there is also no reason to have multi-
threaded data structures. Hence the elaborate code required to support, for exam-
ple, concurrent B-trees can be completely removed. This results in a more reliable
system, and one with higher performance.

At this point, one might ask “What about long running commands?” In real-
world OLTP systems, there aren’t any for two reasons: First, operations that appear
to involve long-running transactions, such as a user inputting data for a purchase
on a web store, are usually split into several transactions to keep transaction time
short. In other words, good application design will keep OLTP queries small. Sec-
ond, longer-running ad-hoc queries are not processed by the OLTP system; instead
such queries are directed to a data warehouse system, optimized for this activity.
There is no reason for an OLTP system to solve a non-OLTP problem. Such thinking
only applies in a “one size fits all” world.
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2.3 Grid Computing and Fork-lift Upgrades
Current RDBMSs were originally written for the prevalent architecture of the 1970s,
namely shared-memory multiprocessors. In the 1980’s shared disk architectures
were spearheaded by Sun and HP, and most DBMSs were expanded to include capa-
bilities for this architecture. It is obvious that the next decade will bring domination
by shared-nothing computer systems, often called grid computing or blade com-
puting. Hence, any DBMS must be optimized for this configuration. An obvious
strategy is to horizontally partition data over the nodes of a grid, a tactic first inves-
tigated in Gamma [DGS+90].

In addition, no user wants to perform a “fork-lift” upgrade. Hence, any new
system should be architected for incremental expansion. If N grid nodes do not
provide enough horsepower, then one should be able to add another K nodes,
producing a system with N+K nodes. Moreover, one should perform this upgrade,
without a hiccup, i.e. without taking the DBMS down. This will eliminate every
system administrator’s worst nightmare; a fork-lift upgrade with a requirement for
a complete data reload and cutover.

To achieve incremental upgrade without going down requires significant ca-
pabilities, not found in existing systems. For example, one must be able to copy
portions of a database from one site to another without stopping transactions. It
is not clear how to bolt such a capability onto most existing systems. However, this
can be made a requirement of a new design and implemented efficiently, as has
been demonstrated by the existence of exactly this feature in the Vertica1 codeline.

2.4 High Availability
Relational DBMSs were designed in an era (1970s) when an organization had a
single machine. If it went down, then the company lost money due to system
unavailability. To deal with disasters, organizations typically sent log tapes off site.
If a disaster occurred, then the hardware vendor (typically IBM) would perform
heroics to get new hardware delivered and operational in small numbers of days.
Running the log tapes then brought the system back to something approaching
where it was when the disaster happened.

A decade later in the 1980’s, organizations executed contracts with disaster
recovery services, such as Comdisco, for backup machine resources, so the log tapes
could be installed quickly on remote backup hardware. This strategy minimized the
time that an enterprise was down as a result of a disaster.

1. http://www.vertica.com

http://www.vertica.com
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Today, there are numerous organizations that run a hot standby within the
enterprise, so that real-time failover can be accomplished. Alternately, some com-
panies run multiple primary sites, so failover is even quicker. The point to be made
is that businesses are much more willing to pay for multiple systems in order to
avoid the crushing financial consequences of down time, often estimated at thou-
sands of dollars per minute.

In the future, we see high availability and built-in disaster recovery as essential
features in the OLTP (and other) markets. There are a few obvious conclusions to be
drawn from this statement. First, every OLTP DBMS will need to keep multiple repli-
cas consistent, requiring the ability to run seamlessly on a grid of geographically
dispersed systems.

Second, most existing RDBMS vendors have glued multi-machine support onto
the top of their original SMP architectures. In contrast, it is clearly more efficient
to start with shared-nothing support at the bottom of the system.

Third, the best way to support shared nothing is to use multiple machines in a
peer-to-peer configuration. In this way, the OLTP load can be dispersed across mul-
tiple machines, and inter-machine replication can be utilized for fault tolerance.
That way, all machine resources are available during normal operation. Failures
only cause degraded operation with fewer resources. In contrast, many commer-
cial systems implement a “hot standby”, whereby a second machine sits effectively
idle waiting to take over if the first one fails. In this case, normal operation has only
half of the resources available, an obviously worse solution. These points argue for
a complete redesign of RDBMS engines so they can implement peer-to-peer HA in
the guts of a new architecture.

In an HA system, regardless of whether it is hot-standby or peer-to-peer, logging
can be dramatically simplified. One must continue to have an undo log, in case
a transaction fails and needs to roll back. However, the undo log does not have
to persist beyond the completion of the transaction. As such, it can be a main
memory data structure that is discarded on transaction commit. There is never
a need for redo, because that will be accomplished via network recovery from a
remote site. When the dead site resumes activity, it can be refreshed from the data
on an operational site.

A recent paper [LM06] argues that failover/rebuild is as efficient as redo log
processing. Hence, there is essentially no downside to operating in this manner. In
an HA world, one is led to having no persistent redo log, just a transient undo one.
This dramatically simplifies recovery logic. It moves from an Aries-style [MHL+92]
logging system to new functionality to bring failed sites up to date from operational
sites when they resume operation.
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Again, a large amount of complex code has been made obsolete, and a different
capability is required.

2.5 No Knobs
Current systems were built in an era where resources were incredibly expensive,
and every computing system was watched over by a collection of wizards in white
lab coats, responsible for the care, feeding, tuning and optimization of the system.
In that era, computers were expensive and people were cheap. Today we have the
reverse. Personnel costs are the dominant expense in an IT shop.

As such “self-everything” (self-healing, self-maintaining, self-tuning, etc.) sys-
tems are the only answer. However, all RDBMSs have a vast array of complex tuning
knobs, which are legacy features from a bygone era. True; all vendors are trying to
provide automatic facilities which will set these knobs without human intervention.
However, legacy code cannot ever remove features. Hence, “no knobs” operation
will be in addition to “human knobs” operation, and result in even more system
documentation. Moreover, at the current time, the automatic tuning aids in the
RDBMSs that we are familiar with do not produce systems with anywhere near the
performance that a skilled DBA can produce. Until the tuning aids get vastly better
in current systems, DBAs will turn the knobs.

A much better answer is to completely rethink the tuning process and produce
a new system with no visible knobs.

3 Transaction, Processing and Environment Assumptions
If one assumes a grid of systems with main memory storage, built-in high avail-
ability, no user stalls, and useful transaction work under 1 millisecond, then the
following conclusions become evident:

1. A persistent redo log is almost guaranteed to be a significant performance
bottleneck. Even with group commit, forced writes of commit records can
add milliseconds to the runtime of each transaction. The HA/failover system
discussed earlier dispenses with this expensive architectural feature.

2. With redo gone, getting transactions into and out of the system is likely
to be the next significant bottleneck. The overhead of JDBC/ODBC style
interfaces will be onerous, and something more efficient should be used.
In particular, we advocate running application logic—in the form of stored
procedures—“in process” inside the database system, rather than the inter-
process overheads implied by the traditional database client / server model.
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3. An undo log should be eliminated wherever practical, since it will also be a
significant bottleneck.

4. Every effort should be made to eliminate the cost of traditional dynamic
locking for concurrency control, which will also be a bottleneck.

5. The latching associated with multi-threaded data structures is likely to
be onerous. Given the short runtime of transactions, moving to a single
threaded execution model will eliminate this overhead at little loss in per-
formance.

6. One should avoid a two-phase commit protocol for distributed transactions,
wherever possible, as network latencies imposed by round trip communica-
tions in 2PC often take on the order of milliseconds.

Our ability to remove concurrency control, commit processing and undo logging
depends on several characteristics of OLTP schemas and transaction workloads, a
topic to which we now turn.

3.1 Transaction and Schema Characteristics
H-Store requires the complete workload to be specified in advance, consisting of
a collection of transaction classes. Each class contains transactions with the same
SQL statements and program logic, differing in the run-time constants used by
individual transactions. Since there are assumed to be no ad-hoc transactions
in an OLTP system, this does not appear to be an unreasonable requirement.
Such transaction classes must be registered with H-Store in advance, and will be
disallowed if they contain user stalls (transactions may contain stalls for other
reasons—for example, in a distributed setting where one machine must wait for
another to process a request.) Similarly, H-Store also assumes that the collec-
tion of tables (logical schema) over which the transactions operate is known in
advance.

We have observed that in many OLTP workloads every table except a single one
called the root, has exactly one join term which is a 1-n relationship to its ancestor.
Hence, the schema is a tree of 1-n relationships. We denote this class of schemas as
tree schemas. Such schemas are popular; for example, customers produce orders,
which have line items and fulfillment schedules. Tree schemas have an obvious
horizontal partitioning over the nodes in a grid. Specifically, the root table can
be range or hash partitioned on the primary key(s). Every descendent table can
be partitioned such that all equi-joins in the tree span only a single site. In the
discussion to follow, we will consider both tree and non-tree schemas.
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In a tree schema, suppose every command in every transaction class has equality
predicates on the primary key(s) of the root node (for example, in an e-commerce ap-
plication, many commands will be rooted with a specific customer, so will include
predicates like customer_id = 27). Using the horizontal partitioning discussed
above, it is clear that in this case every SQL command in every transaction is lo-
cal to one site. If, in addition, every command in each transaction class is limited
to the same single site, then we call the application a constrained tree application
(CTA). A CTA application has the valuable feature that every transaction can be run
to completion at a single site. The value of such single-sited transactions, as will
be discussed in Section 4.3, is that transactions can execute without any stalls for
communication with another grid site (however, in some cases, replicas will have
to synchronize so that transactions are executed in the same order).

If every command in every transaction of a CTA specifies an equality match on
the primary key(s) of one or more direct descendent nodes in addition to the equal-
ity predicate on the root, then the partitioning of a tree schema can be extended
hierarchically to include these direct descendent nodes. In this case, a finer gran-
ularity partitioning can be used, if desired.

CTAs are an important class of single-sited applications which can be executed
very efficiently. Our experience with many years of designing database applications
in major corporations suggests that OLTP applications are often designed explic-
itly to be CTAs, or that decompositions to CTAs are often possible [Hel07]. Besides
simply arguing that CTAs are prevalent, we are also interested in techniques that
can be used to make non-CTA applications single-sited; it is an interesting re-
search problem to precisely characterize the situations in which this is possible. We
mention two possible schema transformations that can be systematically applied
here.

First, consider all of the read-only tables in the schema, i.e. ones which are not
updated by any transaction class. These tables can be replicated at all sites. If the
application becomes CTA with these tables removed from consideration, then the
application becomes single-sited after replication of the read-only tables.

Another important class of applications are one-shot. These applications have
the property that all of their transactions can be executed in parallel without requir-
ing intermediate results to be communicated among sites. Moreover, the result of
previous SQL queries are never required in subsequent commands. In this case,
each transaction can be decomposed into a collection of single-site plans which
can be dispatched to the appropriate sites for execution.

Applications can often be made one-shot with vertical partitioning of tables
amongst sites (columns that are not updated are replicated); this is true of TPC-C,
for example (as we discuss in Section 5.)
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Some transaction classes are two-phase (or can be made to be two phase.) In
phase one there are a collection of read-only operations. Based on the result of these
queries, the transaction may be aborted. Phase two then consists of a collection
of queries and updates where there can be no possibility of an integrity violation.
H-Store will exploit the two-phase property to eliminate the undo log. We have
observed that many transactions, including those in TPC-C, are two-phase.

A transaction class is strongly two-phase if it is two-phase and additionally has the
property that phase 1 operations on all replicas result in all replica sites aborting
or all continuing.

Additionally, for every transaction class, we find all other classes whose mem-
bers commute with members of the indicated class. Our specific definition of com-
mutativity is:

Two concurrent transactions from the same or different classes commute when
any interleaving of their single-site sub-plans produces the same final database
state as any other interleaving (assuming both transactions commit).

A transaction class which commutes with all transaction classes (including
itself) will be termed sterile.

We use single-sited, sterile, two-phase, and strong two-phase properties in the
H-Store algorithms, which follow. We have identified these properties as being par-
ticularly relevant based on our experience with major commercial online retail
applications, and are confident that they will be found in many real world envi-
ronments.

4 H-Store Sketch
In this section, we describe how H-Store exploits the previously described proper-
ties to implement a very efficient OLTP database.

4.1 System Architecture
H-Store runs on a grid of computers. All objects are partitioned over the nodes of
the grid. Like C-Store [SAB+05], the user can specify the level of K-safety that he
wishes to have.

At each site in the grid, rows of tables are placed contiguously in main memory,
with conventional B-tree indexing. B-tree block size is tuned to the width of an L2
cache line on the machine being used. Although conventional B-trees can be beaten
by cache conscious variations [RR99, RR00], we feel that this is an optimization
to be performed only if indexing code ends up being a significant performance
bottleneck.



474 The End of an Architectural Era (It’s Time for a Complete Rewrite)

Every H-Store site is single threaded, and performs incoming SQL commands to
completion, without interruption. Each site is decomposed into a number of logical
sites, one for each available core. Each logical site is considered an independent
physical site, with its own indexes and tuple storage. Main memory on the physical
site is partitioned among the logical sites. In this way, every logical site has a
dedicated CPU and is single threaded.

In an OLTP environment most applications use stored procedures to cut down
on the number of round trips between an application and the DBMS. Hence, H-
Store has only one DBMS capability, namely to execute a predefined transaction
(transactions may be issued from any site):

Execute transaction (parameter_list)

In the current prototype, stored procedures are written in C++, though we have sug-
gestions on better languages in Section 6. Our implementation mixes application
logic with direct manipulation of the database in the same process; this provides
comparable performance to running the whole application inside a single stored
procedure, where SQL calls are made as local procedure calls (not JDBC) and data is
returned in a shared data array (again not JDBC). Like C-Store there is no redo log,
and an undo log is written only if required, as discussed in Section 4.4. If written,
the undo log is main memory resident, and discarded on transaction commit.

4.2 Query Execution
We expect to build a conventional cost-based query optimizer which produces query
plans for the SQL commands in transaction classes at transaction definition time.
We believe that this optimizer can be rather simple, as 6 way joins are never done
in OLTP environments. If multi-way joins occur, they invariably identify a unique
tuple of interest (say a purchase order number) and then the tuples that join to this
record (such as the line items). Hence, invariably one proceeds from an anchor tuple
through a small number of 1-to-n joins to the tuples of ultimate interest. GROUP BY

and aggregation rarely occur in OLTP environments. The net result is, of course, a
simple query execution plan.

The query execution plans for all commands in a transaction may be:

Single-sited: In this case the collection of plans can be dispatched to the appro-
priate site for execution.

One shot: In this case, all transactions can be decomposed into a set of plans
that are executed only at a single site.
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General: In the general case, there will be commands which require intermedi-
ate results to be communicated among sites in the grid. In addition, there
may be commands whose run-time parameters are obtained from previous
commands. In this case, we need the standard Gamma-style run time model
of an execution supervisor at the site where the transaction enters the system,
communicating with workers at the sites where data resides.

For general transactions, we compute the depth of the transaction class to be the
number of times in the collection of plans, where a message must be sent between
sites.

4.3 Database Designer
To achieve no-knobs operation, H-Store will build an automatic physical database
designer which will specify horizontal partitioning, replication locations, and in-
dexed fields.

In contrast to C-Store which assumed a world of overlapping materialized views
appropriate in a read-mostly environment, H-Store implements the tables speci-
fied by the user and uses standard replication of user-specified tables to achieve
HA. Most tables will be horizontally partitioned across all of the nodes in a grid.
To achieve HA, such table fragments must have one or more buddies, which contain
exactly the same information, possibly stored using a different physical represen-
tation (e.g., sort order).

The goal of the database designer is to make as many transaction classes as
possible single-sited. The strategy to be employed is similar to the one used by
C-Store [SAB+05]. That system constructed automatic designs for the omnipresent
star or snowflake schemas in warehouse environments, and is now in the process of
generalizing these algorithms for schemas that are “near snowflakes”. Similarly, H-
Store will construct automatic designs for the common case in OLTP environments
(constrained tree applications), and will use the previously mentioned strategy of
partitioning the database across sites based on the primary key of the root table
and assigning tuples of other tables to sites based on root tuples they descend
from. We will also explore extensions, such as optimizations for read-only tables
and vertical partitioning mentioned in Section 3. It is a research task to see how far
this approach can be pushed and how successful it will be.

In the meantime, horizontal partitioning and indexing options can be specified
manually by a knowledgeable user.
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4.4 Transaction Management, Replication and Recovery
Since H-Store implements two (or more) copies of each table, replicas must be
transactionally updated. This is accomplished by directing each SQL read com-
mand to any replica and each SQL update to all replicas.

Moreover, every transaction receives a timestamp on entry to H-Store, which
consists of a (site_id, local_unique_timestamp) pair. Given an ordering of sites,
timestamps are unique and form a total order. We assume that the local clocks
which generate local timestamps are kept nearly in sync with each other, using an
algorithm like NTP [Mil89].

There are multiple situations which H-Store leverages to streamline concurrency
control and commit protocols.

Single-sited/one shot. If all transaction classes are single-sited or one-shot, then
individual transaction can be dispatched to the correct replica sites and executed
to completion there. Unless all transaction classes are sterile, each execution site
must wait a small period of time (meant to account for network delays) for transac-
tions arriving from other initiators, so that the execution is in timestamp order. By
increasing latency by a small amount, all replicas will by updated in the same order;
in a local area network, maximum delays will be sub-millisecond. This will guaran-
tee the identical outcome at each replica. Hence, data inconsistency between the
replicas cannot occur. Also, all replicas will commit or all replicas will abort. Hence,
each transaction can commit or abort locally, confident that the same outcome will
occur at the other replicas. There is no redo log, no concurrency control, and no
distributed commit processing.

Two-phase. No undo-log is required. Thus, if combined with the above properties,
no transaction facilities are required at all.

Sterile. If all transaction classes are sterile, then execution can proceed normally
with no concurrency control. Further, the need to issue timestamps and execute
transactions in the same order on all replicas is obviated. However, if multiple sites
are involved in query processing, then there is no guarantee that all sites will abort
or all sites will continue. In this case, workers must respond “abort” or “continue”
at the end of the first phase, and the execution supervisor must communicate
this information to worker sites. Hence, standard commit distributed processing
must be done at the end of phase one. This extra overhead can be avoided if the
transaction is strongly two-phase.

Other cases. For other cases (non-sterile, non-single-sited, non one-shot), we need
to endure the overhead of some sort of concurrency control scheme. All RDBMSs we
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are familiar with use dynamic locking to achieve transaction consistency. This de-
cision followed pioneering simulation work in the 1980’s [ACL87] that showed that
locking worked better than other alternatives. However, we believe that dynamic
locking is a poor choice for H-Store for the following reasons:

1. Transactions are very short-lived. There are no user-stalls and no disk activity.
Hence, transactions are alive for very short time periods. This favors opti-
mistic methods over pessimistic methods, like dynamic locking. Others, for
example architects and programming language designers using transactions
in memory models [HM93], have reached the same conclusion.

2. Every transaction is decomposed into collections of sub-commands, which
are local to a given site. As noted earlier, the collection of sub commands
are run in a single threaded fashion at each site. Again, this results in no
latch waits, smaller total execution times, and again favors more optimistic
methods.

3. We assume that we receive the entire collection of transaction classes in
advance. This information can be used to advantage, as has been done
previously by systems such as the SDD-1 scheme from the 1970’s [BSR80]
to reduce the concurrency control overhead.

4. In a well designed system there are very few transaction collisions and very
very few deadlocks. These situations degrade performance and the workload
is invariably modified by application designers to remove them. Hence, one
should design for the “no collision” case, rather than using pessimistic
methods.

The H-Store scheme takes advantage of these factors.
Every (non-sterile, non single-sited, non one-shot) transaction class has a col-

lection of transaction classes with which it might conflict and arrives at some site
in the grid and interacts with a transaction coordinator at that site. The transac-
tion coordinator acts as the execution supervisor at the arrival site and sends out
the subplan pieces to the various sites. A worker site receives a subplan and waits
for the same small period of time mentioned above for other possibly conflicting
transactions with lower timestamps to arrive. Then, the worker:

. Executes the subplan, if there is no uncommitted, potentially conflicting
transaction at his site with a lower timestamp, and then sends his output data
to the site requiring it, which may be an intermediate site or the transaction
coordinator.

. Issues an abort to the coordinator otherwise
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If the coordinator receives an “ok” from all sites, it continues with the transaction
by issuing the next collection of subplans, perhaps with C++ logic interspersed. If
there are no more subplans, then it commits the transaction. Otherwise, it aborts.

The above algorithm is the basic H-Store strategy. During execution, a trans-
action monitor watches the percentage of successful transactions. If there are
too many aborts, H-Store dynamically moves to the following more sophisticated
strategy.

Before executing or aborting the subplan, noted above, each worker site stalls by
a length of time approximated by MaxD * average_round_trip_message_delay

to see if a subplan with an earlier timestamp appears. If so, the worker site correctly
sequences the subplans, thereby lowering the probability of abort. MaxD is the
maximum depth of a conflicting transaction class.

This intermediate strategy lowers the abort probability, but at a cost of some
number of msecs of increased latency. We are currently running simulations to
demonstrate the circumstances under which this results in improved performance.

Our last advanced strategy keeps track of the read set and write set of each trans-
action at each site. In this case, a worker site runs each subplan, and then aborts the
subplan if necessary according to standard optimistic concurrency control rules. At
some extra overhead in bookkeeping and additional work discarded on aborts, the
probability of conflict can be further reduced. Again, simulations are in progress
to determine when this is a winning strategy.

In summary, our H-Store concurrency control algorithm is:

. Run sterile, single-sited and one-shot transactions with no controls

. Other transactions are run with the basic strategy

. If there are too many aborts, escalate to the intermediate strategy

. If there are still too many aborts, further escalate to the advanced strategy.

It should be noted that this strategy is a sophisticated optimistic concurrency
control scheme. Optimistic methods have been extensively investigated previously
[KR81, ACL87]. Moreover, the Ants DBMS [Ants07] leverages commutativity to lower
locking costs. Hence, this section should be considered as a very low overhead
consolidation of known techniques.

Notice that we have not yet employed any sophisticated scheduling techniques
to lower conflict. For example, it is possible to run examples from all pairs of
transaction classes and record the conflict frequency. Then, a scheduler could take
this information into account, and try to avoid running transactions together with
a high probability of conflict.
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Figure 1 TPC-C Schema (reproduced from the TPC-C specification version 5.8.0, page 10)

The next section shows how these techniques and the rest of the H-Store design
works on TPC-C.

5 A Performance Comparison
TPC-C runs on the schema diagramed in Figure 1, and contains 5 transaction
classes (new_order, payment, order status, delivery, and stock_level).

Because of space limitations, we will not include the code for these transac-
tions; the interested reader is referred to the TPC-C specification [TPCC]. Table 1
summarizes their behavior.

There are three possible strategies for an efficient H-Store implementation
of TPC-C. First, we could run on a single core, single CPU machine. This au-
tomatically makes every transaction class single-sited, and each transaction can
be run to completion in a single-threaded environment. The paired-HA site will
achieve the same execution order, since, as will be seen momentarily, all trans-
action classes can be made strongly two-phase, meaning that all transactions will
either succeed at both sites or abort at both sites. Hence, on a single site with a
paired HA site, ACID properties are achieved with no overhead whatsoever. The
other two strategies are for parallel operation on multi-core and/or multi-CPUs sys-
tems. They involve making the workload either sterile or one-shot, which, as we
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Table 1 TPC-C Transaction Classes

new_order Place an order for a customer. 90% of all orders can be
supplied in full by stocks from the customer’s “home”
warehouse; 10% need to access stock belonging to
a remote warehouse. Read/write transaction. No
minimum percentage of mix required, but about 50%
of transactions are new_order transactions.

payment Updates the customer’s balance and warehouse/district
sales fields. 85% of updates go to customer’s home
warehouse; 15% to a remote warehouse. Read/write
transaction. Must be at least 43% of transaction mix.

order_ status Queries the status of a customer’s last order. Read only.
Must be at least 4% of transaction mix.

delivery Select a warehouse, and for each of 10 districts “deliver”
an order, which means removing a record from the
new-order table and updating the customer’s account
balance. Each delivery can be a separate transaction;
Must be at least 4% of transaction mix.

stock_level Finds items with a stock level below a threshold; read
only, must read committed data but does not need
serializability. Must be at least 4% of transaction mix.

discussed in the previous section, are sufficient to allow us to run queries with-
out conventional concurrency control. To do this, we will need to perform some
trickery with the TPC-C workload; before describing this, we first address data
partitioning.

TPC-C is not a tree-structured schema. The presence of the Item table as well
as the relationship of Order-line with Stock make it a non-tree schema. The Item
table, however, is read-only and can be replicated at each site. The Order-line table
can be partitioned according to Warehouse to each site. With such replication and
partitioning, the schema is decomposed such that each site has a subset of the
records rooted at a distinct partition of the warehouses. This will be termed the
basic H-Store strategy for partitioning and replication.

5.1 Query Classes
All transaction classes except new_order are already two-phase since they never
need to abort. New_order may need to abort, since it is possible that its input con-
tains invalid item numbers. However, it is permissible in the TPC-C specification
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to run a query for each item number at the beginning of the transaction to check
for valid item numbers. By rearranging the transaction logic, all transaction classes
become two-phase. It is also true that all transaction classes are strongly two-phase.
This is because the Item table is never updated, and therefore all new_order trans-
actions sent to all replicas always reach the same decision of whether to abort or
not.

All 5 transaction classes appear to be sterile when considered with the basic
partitioning and replication strategy. We make three observations in this regard.

First, the new_order transaction inserts a tuple in both the Orders table and
New_Orders table as well as line items in the Line_order table. At each site, these
operations will be part of a single sub-plan, and there will be no interleaved oper-
ations. This will ensure that the order_status transaction does not see partially
completed new orders. Second, because new_order and payment transactions in
TPC-C are strongly two-phase, no additional coordination is needed between sites
in the event that one of these transactions updates a “remote” warehouse relative
to the customer making the order or payment.

Third, the stock_level transaction is allowed to run as multiple transactions
which can see stock levels for different items at different points in time, as long
as the stock level results from committed transactions. Because new_orders are
aborted, if necessary, before they perform any updates, any stock information
read comes from committed transactions (or transactions that will be committed
soon).

Hence, all transaction classes can be made sterile and strongly two-phase. As
such, they achieve a valid execution of TPC-C with no concurrency control. Although
we could have tested this configuration, we decided to employ additional manip-
ulation of the workload to also make all transaction classes one-shot, doing so
improves performance.

With the basic strategy, all transaction classes, except new_order and payment

are single-sited, and therefore one-shot. Payment is already one shot, since there
is no need to exchange data when updating a remote warehouse. New_order,
however, needs to insert in Order-line information about the district of a stock
entry which may reside in a remote site. Since that field is never updated, and there
are no deletes/inserts into the Stock table, we can vertically partition Stock and
replicate the read-only parts of it across all sites. With this replication trick added
to the basic strategy, new_order becomes one shot.

As a result, with the basic strategy augmented with the tricks described above,
all transaction classes become one-shot and strongly two-phase. As long as we
add a short delay as mentioned in Section 4.4, ACID properties are achieved with
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no concurrency control overhead whatsoever. This is the configuration on which
benchmark results are reported in Section 5.3

It is difficult to imagine that an automatic program could figure out what is
required to make TPC-C either one-shot or sterile. Hence, a knowledgeable human
would have to carefully code the transactions classes. It is likely, however, that most
transaction classes will be simpler to analyze. As such, it is an open question how
successful automatic transaction class analysis will be.

5.2 Implementation
We implemented a variant of TPC-C on H-Store and on a very popular commercial
RDBMS. The same driver was used for both systems and generated transactions
at the maximum rate without modeling think time. These transactions were de-
livered to both systems using TCP/IP. All transaction classes were implemented as
stored procedures. In H-Store the transaction logic was coded in C++, with local
procedure calls to H-Store query execution. In contrast, the transaction logic for
the commercial system was written using their proprietary stored procedure lan-
guage. High availability and communication with user terminals was not included
for either system.

Both DBMSs were run on a dual-core 2.8GHz CPU computer system, with 4
Gbytes of main memory and four 250 GB SATA disk drives. Both DBMSs used
horizontal partitioning to advantage.

5.3 Results
On this configuration, H-Store ran 70,416 TPC-C transactions per second. In con-
trast, we could only coax 850 transactions per second from the commercial system,
in spite of several days of tuning by a professional DBA, who specializes in this
vendor’s product. Hence, H-Store ran a factor of 82 faster (almost two orders of
magnitude).

Per our earlier discussion, the bottleneck for the commercial system was logging
overhead. That system spent about 2/3 of its total elapsed time inside the logging
system. One of us spent many hours trying to tune the logging system (log to a
dedicated disk, change the size of the group commit; all to no avail). If logging
was turned off completely, and assuming no other bottleneck creeps up, then
throughput would increase to about 2,500 transactions per second.

The next bottleneck appears to be the concurrency control system. In future
experiments, we plan to tease apart the overhead contributions which result from:

. Redo logging

. Undo logging



6 Some Comments about a “One Size Does Not Fit All” World 483

. Latching

. Locking

Finally, though we did not implement all of the TPC-C specification (we did
not, for example, model wait times), it is also instructive to compare our partial
TPC-C implementation with TPC-C performance records on the TPC website.2

The highest performing TPC-C implementation executes about 4 million new-
order transactions per minute, or a total of about 133,000 total transactions per
second. This is on a 128 core shared memory machine, so this implementation
is getting about 1000 transactions per core. Contrast this with 400 transactions
per core in our benchmark on a commercial system on a (rather pokey) desktop
machine, or 35,000 transactions per core in H-Store! Also, note that H-Store is
within a factor of two of the best TPC-C results on a machine costing around
$1000.00

In summary, the conclusion to be reached is that nearly two orders of magnitude
in performance improvement are available to a system designed along the lines of
H-Store.

6 Some Comments about a “One Size Does Not Fit All” World
If the results of this paper are to be believed, then we are heading toward a world
with at least 5 (and probably more) specialized engines and the death of the “one
size fits all” legacy systems. This section considers some of the consequences of
such an architectural shift.

6.1 The Relational Model Is not Necessarily the Answer
Having survived the great debate of 1974 [Rus74] and the surrounding arguments
between the advocates of the Codasyl and relational models, we are reluctant to
bring up this particular “sacred cow”. However, it seems appropriate to consider
the data model (or data models) that we build systems around. In the 1970’s the
DBMS world contained only business data processing applications, and Ted Codd’s
idea of normalizing data into flat tables has served our community well over the
subsequent 30 years. However, there are now other markets, whose needs must
be considered. These include data warehouses, web-oriented search, real-time
analytics, and semi-structured data markets.

We offer the following observations.

2. http://www.tcp.org/tpcc/results/tpcc_perf_results.asp

http://www.tcp.org/tpcc/results/tpcc_perf_results.asp
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1. In the data warehouse market, nearly 100% of all schemas are stars or
snowflakes, containing a central fact table with 1-n joins to surrounding
dimension tables, which may in turn participate in further 1-n joins to sec-
ond level dimension tables, and so forth. Although stars and snowflakes
are easily modeled using relational schemas, in fact, an entity-relationship
model would be simpler in this environment and more natural. Moreover,
warehouse queries would be simpler in an E-R model. Lastly, warehouse op-
erations that are incredibly expensive with a relational implementation, for
example changing the key of a row in a dimension table, might be made
faster with some sort of E-R implementation.

2. In the stream processing market, there is a need to:

(a) Process streams of messages at high speed

(b) Correlate such streams with stored data

To accomplish both tasks, there is widespread enthusiasm for Stream-
SQL, a generalization of SQL that allows a programmer to mix stored tables
and streams in the FROM clause of a SQL statement. This work has evolved
from the pioneering work of the Stanford Stream group [ABW06] and is be-
ing actively discussed for standardization. Of course, StreamSQL supports
relational schemas for both tables and streams.

However, commercial feeds, such as Reuters, Infodyne, etc., have all cho-
sen some data model for their messages to obey. Some are flat and fit nicely
into a relational schema. However, several are hierarchical, such as the FX
feed for foreign exchange. Stream processing systems, such as StreamBase
and Coral8, currently support only flat (relational) messages. In such sys-
tems, a front-end adaptor must normalize hierarchical objects into several
flat message types for processing. Unfortunately, it is rather painful to join
the constituent pieces of a source message back together when processing
on multiple parts of a hierarchy is necessary.

To solve this problem, we expect the stream processing vendors to move
aggressively to hierarchical data models. Hence, they will assuredly deviate
from Ted Codd’s principles.

3. Text processing obviously has never used a relational model.

4. Any scientific-oriented DBMS, such as ASAP [SBC+07], will probably imple-
ment arrays, not tables as their basic data type.

5. There has recently been considerable debate over good data models for semi-
structured data. There is certainly fierce debate over the excessive complexity
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of XMLSchema [SC05]. There are fans of using RDF for such data [MM04],
and some who argue that RDF can be efficiently implemented by a relational
column store [AMM+07]. Suffice it to say that there are many ideas on which
way to go in this area.

In summary, the relational model was developed for a “one size fits all” world. The
various specialized systems which we envision can each rethink what data model
would work best for their particular needs.

6.2 SQL is Not the Answer
SQL is a “one size fits all” language. In an OLTP world one never asks for the em-
ployees who earn more than their managers. In fact, there are no ad-hoc queries,
as noted earlier. Hence, one can implement a smaller language than SQL. For per-
formance reasons, stored procedures are omni-present. In a data warehouse world,
one needs a different subset of SQL, since there are complex ad-hoc queries, but
no stored procedures. Hence, the various storage engines can implement vertical-
market specific languages, which will be simpler than the daunting complexity
of SQL.

Rethinking how many query languages should exist as well as their complexity
will have a huge side benefit. At this point SQL is a legacy language with many known
serious flaws, as noted by Chris Date two decades ago [Dat84]. Next time around,
we can do a better job.

When rethinking data access languages, we are reminded of a raging discussion
from the 1970’s. On the one-hand, there were advocates of a data sublanguage,
which could be interfaced to any programming language. This has led to high
overhead interfaces, such as JDBC and ODBC. In addition, these interfaces are very
difficult to use from a conventional programming language.

In contrast, some members of the DBMS community proposed much nicer em-
bedding of database capabilities in programming languages, typified in the 1970s
by Pascal R [Sch80] and Rigel [RS79]. Both had clean integration with program-
ming language facilities, such as control flow, local variables, etc. Chris Date also
proposed an extension to PL/1 with the same purpose [Dat76].

Obviously none of these languages ever caught on, and the data sublanguage
camp prevailed. The couplings between a programming language and a data sub-
language that our community has designed are ugly beyond belief and are low
productivity systems that date from a different era. Hence, we advocate scrapping
sublanguages completely, in favor of much cleaner language embeddings.
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In the programming language community, there has been an explosion of “little
languages” such as Python, Perl, Ruby and PHP. The idea is that one should use
the best language available for any particular task at hand. Also little languages
are attractive because they are easier to learn than general purpose languages.
From afar, this phenomenon appears to be the death of “one size fits all” in the
programming language world.

Little languages have two very desirable properties. First, they are mostly open
source, and can be altered by the community. Second they are less daunting to
modify than the current general purpose languages. As such, we are advocates of
modifying little languages to include clean embeddings of DBMS access.

Our current favorite example of this approach is Ruby-on-Rails.3 This system is
the little language, Ruby, extended with integrated support for database access and
manipulation through the “model-view-controller” programming pattern. Ruby-
on-Rails compiles into standard JDBC, but hides all the complexity of that interface.

Hence, H-Store plans to move from C++ to Ruby-on-Rails as our stored procedure
language. Of course, the language run-time must be linked into the DBMS address
space, and must be altered to make calls to DBMS services using high performance
local procedure calls, not JDBC.

7 Summary and Future Work
In the last quarter of a century, there has been a dramatic shift in:

1. DBMS markets: from business data processing to a collection of markets,
with varying requirements

2. Necessary features: new requirements include shared nothing support and
high availability

3. Technology: large main memories, the possibility of hot standbys, and the
web change most everything

The result is:

1. The predicted demise of “one size fits all”

2. The inappropriateness of current relational implementations for any seg-
ment of the market

3. http://www.rubyonrails.org

http://www.rubyonrails.org
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3. The necessity of rethinking both data models and query languages for the
specialized engines, which we expect to be dominant in the various vertical
markets

Our H-Store prototype demonstrates the performance gains that can be had
when this conventional thinking is questioned. Of course, beyond these encour-
aging initial performance results, there are a number of areas where future work is
needed. In particular:

. More work is needed to identify when it is possible to automatically identify
single-sited, two-phase, and one-shot applications. “Auto-everything” tools
that can suggest partitions that lead to these properties are also essential.

. The rise of multi-core machines suggests that there may be interesting op-
timizations related to sharing of work between logical sites physically co-
located on the same machine.

. A careful study of the performance of the various transaction management
strategies outlined in Section 3 is needed.

. A study of the overheads of the various components of a OLTP system—
logging, transaction processing and two-phase commit, locking, JDBC/
ODBC, etc—would help identify which aspects of traditional DBMS design
contribute most to the overheads we have observed.

. After stripping out all of these overheads, our H-Store implementation is now
limited by the performance of in-memory data structures, suggesting that
optimizing these structures will be important. For example, we found that
the simple optimization of representing read-only tables as arrays offered
significant gains in transaction throughput in our H-Store implementation.

. Integration with data warehousing tools—for example, by using no-overwrite
storage and occasionally dumping records into a warehouse—will be essen-
tial if H-Store-like systems are to seamlessly co-exist with data warehouses.

In short, the current situation in the DBMS community reminds us of the period
1970-1985 where there was a “group grope” for the best way to build DBMS engines
and dramatic changes in commercial products and DBMS vendors ensued. The
1970-1985 period was a time of intense debate, a myriad of ideas, and considerable
upheaval.

We predict the next fifteen years will have the same feel.
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Abstract
This paper presents the design of a read-optimized relational DBMS that contrasts
sharply with most current systems, which are write-optimized. Among the many
differences in its design are: storage of data by column rather than by row, care-
ful coding and packing of objects into storage including main memory during
query processing, storing an overlapping collection of column-oriented projec-
tions, rather than the current fare of tables and indexes, a non-traditional imple-
mentation of transactions which includes high availability and snapshot isolation
for read-only transactions, and the extensive use of bitmap indexes to complement
B-tree structures.
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We present preliminary performance data on a subset of TPC-H and show that
the system we are building, C-Store, is substantially faster than popular commercial
products. Hence, the architecture looks very encouraging.

1 Introduction
Most major DBMS vendors implement record-oriented storage systems, where the
attributes of a record (or tuple) are placed contiguously in storage. With this row
store architecture, a single disk write suffices to push all of the fields of a single
record out to disk. Hence, high performance writes are achieved, and we call a
DBMS with a row store architecture a write-optimized system. These are especially
effective on OLTP-style applications.

In contrast, systems oriented toward ad-hoc querying of large amounts of data
should be read-optimized. Data warehouses represent one class of read-optimized
system, in which periodically a bulk load of new data is performed, followed by a
relatively long period of ad-hoc queries. Other read-mostly applications include cus-
tomer relationship management (CRM) systems, electronic library card catalogs,
and other ad-hoc inquiry systems. In such environments, a column store archi-
tecture, in which the values for each single column (or attribute) are stored con-
tiguously, should be more efficient. This efficiency has been demonstrated in the
warehouse marketplace by products like Sybase IQ [FREN95, SYBA04], Addamark
[ADDA04], and KDB [KDB04]. In this paper, we discuss the design of a column store
called C-Store that includes a number of novel features relative to existing systems.

With a column store architecture, a DBMS need only read the values of col-
umns required for processing a given query, and can avoid bringing into memory
irrelevant attributes. In warehouse environments where typical queries involve ag-
gregates performed over large numbers of data items, a column store has a sizeable
performance advantage. However, there are several other major distinctions that
can be drawn between an architecture that is read-optimized and one that is write-
optimized.

Current relational DBMSs were designed to pad attributes to byte or word
boundaries and to store values in their native data format. It was thought that it
was too expensive to shift data values onto byte or word boundaries in main mem-
ory for processing. However, CPUs are getting faster at a much greater rate than
disk bandwidth is increasing. Hence, it makes sense to trade CPU cycles, which
are abundant, for disk bandwidth, which is not. This tradeoff appears especially
profitable in a read-mostly environment.
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There are two ways a column store can use CPU cycles to save disk bandwidth.
First, it can code data elements into a more compact form. For example, if one is
storing an attribute that is a customer’s state of residence, then US states can be
coded into six bits, whereas the two-character abbreviation requires 16 bits and
a variable length character string for the name of the state requires many more.
Second, one should densepack values in storage. For example, in a column store it
is straightforward to pack N values, each K bits long, into N * K bits. The coding and
compressibility advantages of a column store over a row store have been previously
pointed out in [FREN95]. Of course, it is also desirable to have the DBMS query
executor operate on the compressed representation whenever possible to avoid the
cost of decompression, at least until values need to be presented to an application.

Commercial relational DBMSs store complete tuples of tabular data along with
auxiliary B-tree indexes on attributes in the table. Such indexes can be primary,
whereby the rows of the table are stored in as close to sorted order on the specified
attribute as possible, or secondary, in which case no attempt is made to keep the
underlying records in order on the indexed attribute. Such indexes are effective in
an OLTP write-optimized environment but do not perform well in a read-optimized
world. In the latter case, other data structures are advantageous, including bit map
indexes [ONEI97], cross table indexes [ORAC04], and materialized views [CERI91].
In a read-optimized DBMS one can explore storing data using only these read-
optimized structures, and not support write-optimized ones at all.

Hence, C-Store physically stores a collection of columns, each sorted on some
attribute(s). Groups of columns sorted on the same attribute are referred to as “pro-
jections”; the same column may exist in multiple projections, possibly sorted on a
different attribute in each. We expect that our aggressive compression techniques
will allow us to support many column sort-orders without an explosion in space.
The existence of multiple sort-orders opens opportunities for optimization.

Clearly, collections of off-the-shelf “blade” or “grid” computers will be the
cheapest hardware architecture for computing and storage intensive applications
such as DBMSs [DEWI92]. Hence, any new DBMS architecture should assume a
grid environment in which there are G nodes (computers), each with private disk
and private memory. We propose to horizontally partition data across the disks of
the various nodes in a “shared nothing” architecture [STON86]. Grid computers in
the near future may have tens to hundreds of nodes, and any new system should
be architected for grids of this size. Of course, the nodes of a grid computer may be
physically co-located or divided into clusters of co-located nodes. Since database
administrators are hard pressed to optimize a grid environment, it is essential to
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allocate data structures to grid nodes automatically. In addition, intra-query par-
allelism is facilitated by horizontal partitioning of stored data structures, and we
follow the lead of Gamma [DEWI90] in implementing this construct.

Many warehouse systems (e.g. Walmart [WEST00]) maintain two copies of their
data because the cost of recovery via DBMS log processing on a very large (terabyte)
data set is prohibitive. This option is rendered increasingly attractive by the de-
clining cost per byte of disks. A grid environment allows one to store such replicas
on different processing nodes, thereby supporting a Tandem-style highly-available
system [TAND89]. However, there is no requirement that one store multiple copies
in the exact same way. C-Store allows redundant objects to be stored in different
sort orders providing higher retrieval performance in addition to high availability.
In general, storing overlapping projections further improves performance, as long
as redundancy is crafted so that all data can be accessed even if one of the G sites
fails. We call a system that tolerates K failures K-safe. C-Store will be configurable
to support a range of values of K.

It is clearly essential to perform transactional updates, even in a read-mostly
environment. Warehouses have a need to perform on-line updates to correct errors.
As well, there is an increasing push toward real-time warehouses, where the delay
to data visibility shrinks toward zero. The ultimate desire is on-line update to data
warehouses. Obviously, in read-mostly worlds like CRM, one needs to perform
general on-line updates.

There is a tension between providing updates and optimizing data structures
for reading. For example, in KDB and Addamark, columns of data are maintained
in entry sequence order. This allows efficient insertion of new data items, either
in batch or transactionally, at the end of the column. However, the cost is a less-
than-optimal retrieval structure, because most query workloads will run faster with
the data in some other order. However, storing columns in non-entry sequence will
make insertions very difficult and expensive.

C-Store approaches this dilemma from a fresh perspective. Specifically, we com-
bine in a single piece of system software, both a read-optimized column store and
an update/insert-oriented writeable store, connected by a tuple mover, as noted in
Figure 1. At the top level, there is a small Writeable Store (WS) component, which
is architected to support high performance inserts and updates. There is also a
much larger component called the Read-optimized Store (RS), which is capable of
supporting very large amounts of information. RS, as the name implies, is opti-
mized for read and supports only a very restricted form of insert, namely the batch
movement of records from WS to RS, a task that is performed by the tuple mover
of Figure 1.
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Writable Store (WS)

Read-optimized Store (WS)

Tuple mover

Figure 1 Architecture of C-Store

Of course, queries must access data in both storage systems. Inserts are sent
to WS, while deletes must be marked in RS for later purging by the tuple mover.
Updates are implemented as an insert and a delete. In order to support a high-speed
tuple mover, we use a variant of the LSM-tree concept [ONEI96], which supports a
merge out process that moves tuples from WS to RS in bulk by an efficient method
of merging ordered WS data objects with large RS blocks, resulting in a new copy
of RS that is installed when the operation completes.

The architecture of Figure 1 must support transactions in an environment of
many large ad-hoc queries, smaller update transactions, and perhaps continuous
inserts. Obviously, blindly supporting dynamic locking will result in substantial
read-write conflict and performance degradation due to blocking and deadlocks.

Instead, we expect read-only queries to be run in historical mode. In this mode,
the query selects a timestamp, T, less than the one of the most recently committed
transactions, and the query is semantically guaranteed to produce the correct an-
swer as of that point in history. Providing such snapshot isolation [BERE95] requires
C-Store to timestamp data elements as they are inserted and to have careful pro-
gramming of the runtime system to ignore elements with timestamps later than T.

Lastly, most commercial optimizers and executors are row-oriented, obviously
built for the prevalent row stores in the marketplace. Since both RS and WS are
column-oriented, it makes sense to build a column-oriented optimizer and execu-
tor. As will be seen, this software looks nothing like the traditional designs prevalent
today.

In this paper, we sketch the design of our updatable column store, C-Store, that
can simultaneously achieve very high performance on warehouse-style queries and
achieve reasonable speed on OLTP-style transactions. C-Store is a column-oriented
DBMS that is architected to reduce the number of disk accesses per query. The
innovative features of C-Store include:
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1. A hybrid architecture with a WS component optimized for frequent insert
and update and an RS component optimized for query performance.

2. Redundant storage of elements of a table in several overlapping projections
in different orders, so that a query can be solved using the most advantageous
projection.

3. Heavily compressed columns using one of several coding schemes.

4. A column-oriented optimizer and executor, with different primitives than in
a row-oriented system.

5. High availability and improved performance through K-safety using a suffi-
cient number of overlapping projections.

6. The use of snapshot isolation to avoid 2PC and locking for queries.

It should be emphasized that while many of these topics have parallels with things
that have been studied in isolation in the past, it is their combination in a real
system that make C-Store interesting and unique.

The rest of this paper is organized as follows. In Section 2 we present the data
model implemented by C-Store. We explore in Section 3 the design of the RS portion
of C-Store, followed in Section 4 by the WS component. In Section 5 we consider the
allocation of C-Store data structures to nodes in a grid, followed by a presentation
of C-Store updates and transactions in Section 6. Section 7 treats the tuple mover
component of C-Store, and Section 8 presents the query optimizer and executor. In
Section 9 we present a comparison of C-Store performance to that achieved by both
a popular commercial row store and a popular commercial column store. On TPC-H
style queries, C-Store is significantly faster than either alternate system. However,
it must be noted that the performance comparison is not fully completed; we have
not fully integrated the WS and tuple mover, whose overhead may be significant.
Finally, Sections 10 and 11 discuss related previous work and our conclusions.

2 Data Model
C-Store supports the standard relational logical data model, where a database con-
sists of a collection of named tables, each with a named collection of attributes
(columns). As in most relational systems, attributes (or collections of attributes) in
C-Store tables can form a unique primary key or be a foreign key that references a
primary key in another table. The C-Store query language is assumed to be SQL,
with standard SQL semantics. Data in C-Store is not physically stored using this
logical data model. Whereas most row stores implement physical tables directly
and then add various indexes to speed access, C-Store implements only projections.



2 Data Model 497

Table 1 Sample EMP data

Name Age Dept Salary

Bob 25 Math 10K

Bill 27 EECS 50K

Jill 24 Biology 80K

Specifically, a C-Store projection is anchored on a given logical table, T, and con-
tains one or more attributes from this table. In addition, a projection can contain
any number of other attributes from other tables, as long as there is a sequence of
n:1 (i.e., foreign key) relationships from the anchor table to the table containing an
attribute.

To form a projection, we project the attributes of interest from T, retaining any
duplicate rows, and perform the appropriate sequence of value-based foreign-key
joins to obtain the attributes from the non-anchor table(s). Hence, a projection
has the same number of rows as its anchor table. Of course, much more elaborate
projections could be allowed, but we believe this simple scheme will meet our needs
while ensuring high performance. We note that we use the term projection slightly
differently than is common practice, as we do not store the base table(s) from which
the projection is derived.

We denote the ith projection over table t as ti, followed by the names of the
fields in the projection. Attributes from other tables are prepended with the name
of the logical table they come from. In this section, we consider an example for the
standard EMP(name, age, salary, dept) and DEPT(dname, floor) relations. Sample
EMP data is shown in Table 1. One possible set of projections for these tables could
be as shown in Example 1.

EMP1 (name, age)

EMP2 (dept, age, DEPT.floor)

EMP3 (name, salary)

DEPT1 (dname, floor)

Example 1: Possible projections for EMP and DEPT.

Tuples in a projection are stored column-wise. Hence, if there are K attributes in
a projection, there will be K data structures, each storing a single column, each of
which is sorted on the same sort key. The sort key can be any column or columns in
the projection. Tuples in a projection are sorted on the key(s) in left to right order.

We indicate the sort order of a projection by appending the sort key to the
projection separated by a vertical bar. A possible ordering for the above projections
would be:
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EMP1 (name, age| age)

EMP2 (dept, age, DEPT.floor| DEPT.floor)

EMP3 (name, salary| salary)

DEPT1 (dname, floor| floor)

Example 2: Projections in Example 1 with sort orders.

Lastly, every projection is horizontally partitioned into 1 or more segments, which
are given a segment identifier, Sid, where Sid > 0. C-Store supports only value-
based partitioning on the sort key of a projection. Hence, each segment of a given
projection is associated with a key range of the sort key for the projection. Moreover,
the set of all key ranges partitions the key space.

Clearly, to answer any SQL query in C-Store, there must be a covering set of
projections for every table in the database such that every column in every table is
stored in at least one projection. However, C-Store must also be able to reconstruct
complete rows of tables from the collection of stored segments. To do this, it
will need to join segments from different projections, which we accomplish using
storage keys and join indexes.

Storage Keys. Each segment associates every data value of every column with a
storage key, SK. Values from different columns in the same segment with matching
storage keys belong to the same logical row. We refer to a row of a segment using
the term record or tuple. Storage keys are numbered 1, 2, 3, . . . in RS and are not
physically stored, but are inferred from a tuple’s physical position in the column
(see Section 3 below.) Storage keys are physically present in WS and are represented
as integers, larger than the largest integer storage key for any segment in RS.

Join Indices. To reconstruct all of the records in a table T from its various projec-
tions, C-Store uses join indexes. If T1 and T2 are two projections that cover a table
T , a join index from the M segments in T1 to the N segments in T2 is logically a
collection of M tables, one per segment, S, of T1 consisting of rows of the form:

(s: SID in T2, k: Storage Key in Segment s)

Here, an entry in the join index for a given tuple in a segment of T1 contains the
segment ID and storage key of the corresponding (joining) tuple in T2. Since all
join indexes are between projections anchored at the same table, this is always a
one-to-one mapping. An alternative view of a join index is that it takes T1, sorted in
some order O, and logically resorts it into the order, O’ of T2.



2 Data Model 499

SalaryName

Bob

Bill

Jill

EMP3

10K

50K

80K

AgeName

Jill

Bob

Bill

EMP1

24

25

27 KeySID

1

1

1

Join index

2

3

1

Figure 2 A join index from EMP3 to EMP1.

In order to reconstruct T from the segments of T1, . . . , Tk it must be possible
to find a path through a set of join indices that maps each attribute of T into some
sort order O*. A path is a collection of join indexes originating with a sort order
specified by some projection, T i, that passes through zero or more intermediate
join indices and ends with a projection sorted in order O*. For example, to be able
to reconstruct the EMP table from projections in Example 2, we need at least two
join indices. If we choose age as a common sort order, we could build two indices
that map EMP2 and EMP3 to the ordering of EMP1. Alternatively, we could create
a join index that maps EMP2 to EMP3 and one that maps EMP3 to EMP1. Figure
2 shows a simple example of a join index that maps EMP3 to EMP1, assuming a
single segment (SID = 1) for each projection. For example, the first entry of EMP3,
(Bob, 10K), corresponds to the second entry of EMP1, and thus the first entry of
the join index has storage key 2. In practice, we expect to store each column in
several projections, thereby allowing us to maintain relatively few join indices. This
is because join indexes are very expensive to store and maintain in the presence
of updates, since each modification to a projection requires every join index that
points into or out of it to be updated as well.

The segments of the projections in a database and their connecting join indexes
must be allocated to the various nodes in a C-Store system. The C-Store administra-
tor can optionally specify that the tables in a database must be K-safe. In this case,
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the loss of K nodes in the grid will still allow all tables in a database to be recon-
structed (i.e., despite the K failed sites, there must exist a covering set of projections
and a set of join indices that map to some common sort order.) When a failure oc-
curs, C-Store simply continues with K-1 safety until the failure is repaired and the
node is brought back up to speed. We are currently working on fast algorithms to
accomplish this.

Thus, the C-Store physical DBMS design problem is to determine the collection
of projections, segments, sort keys, and join indices to create for the collection
of logical tables in a database. This physical schema must give K-safety as well
as the best overall performance for a given training workload, provided by the C-
Store administrator, subject to requiring no more than a given space budget, B.
Additionally, C-Store can be instructed to keep a log of all queries to be used
periodically as the training workload. Because there are not enough skilled DBAs
to go around, we are writing an automatic schema design tool. Similar issues are
addressed in [PAPA04]

We now turn to the representation of projections, segments, storage keys, and
join indexes in C-Store.

3 RS
RS is a read-optimized column store. Hence any segment of any projection is broken
into its constituent columns, and each column is stored in order of the sort key for
the projection. The storage key for each tuple in RS is the ordinal number of the
record in the segment. This storage key is not stored but calculated as needed.

3.1 Encoding Schemes
Columns in the RS are compressed using one of 4 encodings. The encoding chosen
for a column depends on its ordering (i.e., is the column ordered by values in that
column (self-order) or by corresponding values of some other column in the same
projection (foreign-order), and the proportion of distinct values it contains. We
describe these encodings below.

Type 1: Self-order, few distinct values. A column encoded using Type 1 encoding is
represented by a sequence of triples, (v , f , n) such that v is a value stored in the
column, f is the position in the column where v first appears, and n is the number
of times v appears in the column. For example, if a group of 4’s appears in positions
12-18, this is captured by the entry, (4, 12, 7). For columns that are self-ordered, this
requires one triple for each distinct value in the column. To support search queries
over values in such columns, Type 1-encoded columns have clustered B-tree indexes
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over their value fields. Since there are no online updates to RS, we can densepack
the index leaving no empty space. Further, with large disk blocks (e.g., 64-128K),
the height of this index can be kept small (e.g., 2 or less).

Type 2: Foreign-order, few distinct values. A column encoded using Type 2 encoding
is represented by a sequence of tuples, (v , b) such that v is a value stored in the
column and b is a bitmap indicating the positions in which the value is stored. For
example, given a column of integers 0,0,1,1,2,1,0,2,1, we can Type 2-encode this as
three pairs: (0, 110000100), (1, 001101001), and (2,000010010). Since each bitmap
is sparse, it is run length encoded to save space. To efficiently find the i-th value of
a type 2-encoded column, we include “offset indexes”: B-trees that map positions
in a column to the values contained in that column.

Type 3: Self-order, many distinct values. The idea for this scheme is to represent
every value in the column as a delta from the previous value in the column. Thus,
for example, a column consisting of values 1,4,7,7,8,12 would be represented by the
sequence: 1,3,3,0,1,4, such that the first entry in the sequence is the first value in
the column, and every subsequent entry is a delta from the previous value. Type-3
encoding is a block-oriented form of this compression scheme, such that the first
entry of every block is a value in the column and its associated storage key, and every
subsequent value is a delta from the previous value. This scheme is reminiscent of
the way VSAM codes B-tree index keys [VSAM04]. Again, a densepack B-tree tree at
the block-level can be used to index these coded objects.

Type 4: Foreign-order, many distinct values. If there are a large number of values,
then it probably makes sense to leave the values unencoded. However, we are still
investigating possible compression techniques for this situation. A densepack B-
tree can still be used for the indexing.

3.2 Join Indexes
Join indexes must be used to connect the various projections anchored at the same
table. As noted earlier, a join index is a collection of (sid, storage_key) pairs. Each
of these two fields can be stored as normal columns.

There are physical database design implications concerning where to store join
indexes, and we address these in the next section. In addition, join indexes must
integrate RS and WS; hence, we revisit their design in the next section as well.
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4 WS
In order to avoid writing two optimizers, WS is also a column store and implements
the identical physical DBMS design as RS. Hence, the same projections and join in-
dexes are present in WS. However, the storage representation is drastically different
because WS must be efficiently updatable transactionally.

The storage key, SK, for each record is explicitly stored in each WS segment.
A unique SK is given to each insert of a logical tuple in a table T. The execution
engine must ensure that this SK is recorded in each projection that stores data for
the logical tuple. This SK is an integer, larger than the number of records in the
largest segment in the database.

For simplicity and scalability, WS is horizontally partitioned in the same way as
RS. Hence, there is a 1:1 mapping between RS segments and WS segments. A (sid,
storage_key) pair identifies a record in either of these containers.

Since we assume that WS is trivial in size relative to RS, we make no effort
to compress data values; instead we represent all data directly. Therefore, each
projection uses B-tree indexing to maintain a logical sort-key order.

Every column in a WS projection is represented as a collection of pairs, (v , sk),
such that v is a value in the column and sk is its corresponding storage key. Each
pair is represented in a conventional B-tree on the second field. The sort key(s)
of each projection is additionally represented by pairs (s , sk) such that s is a sort
key value and sk is the storage key describing where s first appears. Again, this
structure is represented as a conventional B-tree on the sort key field(s). To perform
searches using the sort key, one uses the latter B-tree to find the storage keys of
interest, and then uses the former collection of B-trees to find the other fields in the
record.

Join indexes can now be fully described. Every projection is represented as a
collection of pairs of segments, one in WS and one in RS. For each record in the
“sender,” we must store the sid and storage key of a corresponding record in the
“receiver.” It will be useful to horizontally partition the join index in the same way
as the “sending” projection and then to co-locate join index partitions with the
sending segment they are associated with. In effect, each (sid, storage key) pair is
a pointer to a record which can be in either the RS or WS.

5 Storage Management
The storage management issue is the allocation of segments to nodes in a grid
system; C-Store will perform this operation automatically using a storage allocator.
It seems clear that all columns in a single segment of a projection should be co-
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located. As noted above, join indexes should be co-located with their “sender”
segments. Also, each WS segment will be co-located with the RS segments that
contain the same key range.

Using these constraints, we are working on an allocator. This system will per-
form initial allocation, as well as reallocation when load becomes unbalanced. The
details of this software are beyond the scope of this paper.

Since everything is a column, storage is simply the persistence of a collection of
columns. Our analysis shows that a raw device offers little benefit relative to today’s
file systems. Hence, big columns (megabytes) are stored in individual files in the
underlying operating system.

6 Updates and Transactions
An insert is represented as a collection of new objects in WS, one per column
per projection, plus the sort key data structure. All inserts corresponding to a
single logical record have the same storage key. The storage key is allocated at
the site where the update is received. To prevent C-Store nodes from needing to
synchronize with each other to assign storage keys, each node maintains a locally
unique counter to which it appends its local site id to generate a globally unique
storage key. Keys in the WS will be consistent with RS storage keys because we set
the initial value of this counter to be one larger than the largest key in RS.

We are building WS on top of BerkeleyDB [SLEE04]; we use the B-tree structures
in that package to support our data structures. Hence, every insert to a projection
results in a collection of physical inserts on different disk pages, one per column
per projection. To avoid poor performance, we plan to utilize a very large main
memory buffer pool, made affordable by the plummeting cost per byte of primary
storage. As such, we expect “hot” WS data structures to be largely main memory
resident.

C-Store’s processing of deletes is influenced by our locking strategy. Specifically,
C-Store expects large numbers of ad-hoc queries with large read sets interspersed
with a smaller number of OLTP transactions covering few records. If C-Store used
conventional locking, then substantial lock contention would likely be observed,
leading to very poor performance.

Instead, in C-Store, we isolate read-only transactions using snapshot isolation.
Snapshot isolation works by allowing read-only transactions to access the database
as of some time in the recent past, before which we can guarantee that there are
no uncommitted transactions. For this reason, when using snapshot isolation,
we do not need to set any locks. We call the most recent time in the past at
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which snapshot isolation can run the high water mark (HWM) and introduce a low-
overhead mechanism for keeping track of its value in our multi-site environment.
If we let read-only transactions set their effective time arbitrarily, then we would
have to support general time travel, an onerously expensive task. Hence, there is
also a low water mark (LWM) which is the earliest effective time at which a read-
only transaction can run. Update transactions continue to set read and write locks
and obey strict two-phase locking, as described in Section 6.2.

6.1 Providing Snapshot Isolation
The key problem in snapshot isolation is determining which of the records in WS
and RS should be visible to a read-only transaction running at effective time ET. To
provide snapshot isolation, we cannot perform updates in place. Instead, an update
is turned into an insert and a delete. Hence, a record is visible if it was inserted
before ET and deleted after ET. To make this determination without requiring a
large space budget, we use coarse granularity “epochs,” to be described in Section
6.1.1, as the unit for timestamps. Hence, we maintain an insertion vector (IV) for
each projection segment in WS, which contains for each record the epoch in which
the record was inserted. We program the tuple mover (described in Section 7) to
ensure that no records in RS were inserted after the LWM. Hence, RS need not
maintain an insertion vector. In addition, we maintain a deleted record vector (DRV)
for each projection, which has one entry per projection record, containing a 0 if the
tuple has not been deleted; otherwise, the entry contains the epoch in which the
tuple was deleted. Since the DRV is very sparse (mostly zeros), it can be compactly
coded using the type 2 algorithm described earlier. We store the DRV in the WS,
since it must be updatable. The runtime system can now consult IV and DRV to
make the visibility calculation for each query on a record-by-record basis.

6.1.1 Maintaining the High Water Mark
To maintain the HWM, we designate one site the timestamp authority (TA) with the
responsibility of allocating timestamps to other sites. The idea is to divide time into
a number of epochs; we define the epoch number to be the number of epochs that
have elapsed since the beginning of time. We anticipate epochs being relatively
long – e.g., many seconds each, but the exact duration may vary from deployment
to deployment. We define the initial HWM to be epoch 0 and start current epoch
at 1. Periodically, the TA decides to move the system to the next epoch; it sends a
end of epoch message to each site, each of which increments current epoch from e to
e + 1, thus causing new transactions that arrive to be run with a timestamp e + 1.
Each site waits for all the transactions that began in epoch e (or an earlier epoch)
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Figure 3 Illustration showing how the HWM selection algorithm works. Gray arrows indicate
messages from the TA to the sites or vice versa. We can begin reading tuples with
timestamp e when all transactions from epoch e have committed. Note that although
T4 is still executing when the HWM is incremented, read-only transactions will not see
its updates because it is running in epoch e + 1.

to complete and then sends an epoch complete message to the TA. Once the TA has
received epoch complete messages from all sites for epoch e, it sets the HWM to be
e, and sends this value to each site. Figure 3 illustrates this process.

After the TA has broadcast the new HWM with value e, read-only transactions
can begin reading data from epoch e or earlier and be assured that this data has
been committed. To allow users to refer to a particular real-world time when their
query should start, we maintain a table mapping epoch numbers to times, and start
the query as of the epoch nearest to the user-specified time.

To avoid epoch numbers from growing without bound and consuming extra
space, we plan to “reclaim” epochs that are no longer needed. We will do this
by “wrapping” timestamps, allowing us to reuse old epoch numbers as in other
protocols, e.g., TCP. In most warehouse applications, records are kept for a specific
amount of time, say 2 years. Hence, we merely keep track of the oldest epoch in any
DRV, and ensure that wrapping epochs through zero does not overrun.

To deal with environments for which epochs cannot effectively wrap, we have
little choice but to enlarge the “wrap length” of epochs or the size of an epoch.

6.2 Locking-based Concurrency Control
Read-write transactions use strict two-phase locking for concurrency control
[GRAY92]. Each site sets locks on data objects that the runtime system reads or
writes, thereby implementing a distributed lock table as in most distributed data-
bases. Standard write-ahead logging is employed for recovery purposes; we use a
NO-FORCE, STEAL policy [GRAY92] but differ from the traditional implementa-
tion of logging and locking in that we only log UNDO records, performing REDO
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as described in Section 6.3, and we do not use strict two-phase commit, avoiding
the PREPARE phase as described in Section 6.2.1 below.

Locking can, of course, result in deadlock. We resolve deadlock via timeouts
through the standard technique of aborting one of the deadlocked transactions.

6.2.1 Distributed COMMIT Processing
In C-Store, each transaction has a master that is responsible for assigning units of
work corresponding to a transaction to the appropriate sites and determining the
ultimate commit state of each transaction. The protocol differs from two-phase
commit (2PC) in that no PREPARE messages are sent. When the master receives a
COMMIT statement for the transaction, it waits until all workers have completed all
outstanding actions and then issues a commit (or abort) message to each site. Once a
site has received a commit message, it can release all locks related to the transaction
and delete the UNDO log for the transaction. This protocol differs from 2PC because
the master does not PREPARE the worker sites. This means it is possible for a site
the master has told to commit to crash before writing any updates or log records
related to a transaction to stable storage. In such cases, the failed site will recover
its state, which will reflect updates from the committed transaction, from other
projections on other sites in the system during recovery.

6.2.2 Transaction Rollback
When a transaction is aborted by the user or the C-Store system, it is undone by
scanning backwards in the UNDO log, which contains one entry for each logical
update to a segment. We use logical logging (as in ARIES [MOHA92]), since physical
logging would result in many log records, due to the nature of the data structures
in WS.

6.3 Recovery
As mentioned above, a crashed site recovers by running a query (copying state) from
other projections. Recall that C-Store maintains K-safety; i.e. sufficient projections
and join indexes are maintained, so that K sites can fail within t , the time to recover,
and the system will be able to maintain transactional consistency. There are three
cases to consider. If the failed site suffered no data loss, then we can bring it up to
date by executing updates that will be queued for it elsewhere in the network. Since
we anticipate read-mostly environments, this roll forward operation should not be
onerous. Hence, recovery from the most common type of crash is straightforward.
The second case to consider is a catastrophic failure which destroys both the RS
and WS. In this case, we have no choice but to reconstruct both segments from
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other projections and join indexes in the system. The only needed functionality is
the ability to retrieve auxiliary data structures (IV, DRV) from remote sites. After
restoration, the queued updates must be run as above. The third case occurs if WS
is damaged but RS is intact. Since RS is written only by the tuple mover, we expect it
will typically escape damage. Hence, we discuss this common case in detail below.

6.3.1 Efficiently Recovering the WS
Consider a WS segment, Sr , of a projection with a sort key K and a key range R on a
recovering site r along with a collection C of other projections, M1, . . . , Mb which
contain the sort key of Sr . The tuple mover guarantees that each WS segment, S,
contains all tuples with an insertion timestamp later than some time tlastmove(S),
which represents the most recent insertion time of any record in S’s corresponding
RS segment.

To recover, the recovering site first inspects every projection in C for a collection
of columns that covers the key range K with each segment having tlastmove(S) ≤
tlastmove(Sr). If it succeeds, it can run a collection of queries of the form:

SELECT desired_fields,

insertion_epoch,

deletion_epoch

FROM recovery_segment

WHERE insertion_epoch > tlastmove(Sr)

AND insertion_epoch <= HWM

AND deletion_epoch = 0

OR deletion_epoch >= LWM

AND sort_key in K

As long as the above queries return a storage key, other fields in the segment can
be found by following appropriate join indexes. As long as there is a collection of
segments that cover the key range of Sr , this technique will restore Sr to the current
HWM. Executing queued updates will then complete the task.

On the other hand, if there is no cover with the desired property, then some of
the tuples in Sr have already been moved to RS on the remote site. Although we can
still query the remote site, it is challenging to identify the desired tuples without
retrieving everything in RS and differencing against the local RS segment, which is
obviously an expensive operation.

To efficiently handle this case, if it becomes common, we can force the tuple
mover to log, for each tuple it moves, the storage key in RS that corresponds to
the storage key and epoch number of the tuple before it was moved from WS. This
log can be truncated to the timestamp of the oldest tuple still in the WS on any
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site, since no tuples before that will ever need to be recovered. In this case, the
recovering site can use a remote WS segment, S, plus the tuple mover log to solve
the query above, even though tlastmove(S) comes after tlastmove(Sr).

At r , we must also reconstruct the WS portion of any join indexes that are stored
locally, i.e. for which Sr is a “sender.” This merely entails querying remote “re-
ceivers,” which can then compute the join index as they generate tuples, transfer-
ring the WS partition of the join index along with the recovered columns.

7 Tuple Mover
The job of the tuple mover is to move blocks of tuples in a WS segment to the
corresponding RS segment, updating any join indexes in the process. It operates as
a background task looking for worthy segment pairs. When it finds one, it performs
a merge-out process, MOP on this (RS, WS) segment pair.

MOP will find all records in the chosen WS segment with an insertion time at
or before the LWM, and then divides them into two groups:

. Ones deleted at or before LWM. These are discarded, because the user cannot
run queries as of a time when they existed.

. Ones that were not deleted, or deleted after LWM. These are moved to RS.

MOP will create a new RS segment that we name RS’. Then, it reads in blocks from
columns of the RS segment, deletes any RS items with a value in the DRV less than
or equal to the LWM, and merges in column values from WS. The merged data is
then written out to the new RS’ segment, which grows as the merge progresses.
The most recent insertion time of a record in RS’ becomes the segment’s new
tlastmove and is always less than or equal to the LWM. This old-master/new-master
approach will be more efficient than an update-in-place strategy, since essentially
all data objects will move. Also, notice that records receive new storage keys in
RS’, thereby requiring join index maintenance. Since RS items may also be deleted,
maintenance of the DRV is also mandatory. Once RS’ contains all the WS data and
join indexes are modified on RS’, the system cuts over from RS to RS’. The disk
space used by the old RS can now be freed.

Periodically the timestamp authority sends out to each site a new LWM epoch
number. Hence, LWM “chases” HWM, and the delta between them is chosen to
mediate between the needs of users who want historical access and the WS space
constraints.
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8 C-Store Query Execution
The query optimizer will accept a SQL query and construct a query plan of execution
nodes. In this section, we describe the nodes that can appear in a plan and then
the architecture of the optimizer itself.

8.1 Query Operators and Plan Format
There are 10 node types and each accepts operands or produces results of type
projection (Proj), column (Col), or bitstring (Bits). A projection is simply a set
of columns with the same cardinality and ordering. A bitstring is a list of zeros
and ones indicating whether the associated values are present in the record subset
being described. In addition, C-Store query operators accept predicates (Pred), join
indexes (JI), attribute names (Att), and expressions (Exp) as arguments.

Join indexes and bitstrings are simply special types of columns. Thus, they also
can be included in projections and used as inputs to operators where appropriate.

We briefly summarize each operator below.

1. Decompress converts a compressed column to an uncompressed (Type 4)
representation.

2. Select is equivalent to the selection operator of the relational algebra (σ ), but
rather than producing a restriction of its input, instead produces a bitstring
representation of the result.

3. Mask accepts a bitstring B and projection Cs, and restricts Cs by emitting
only those values whose corresponding bits in B are 1.

4. Project equivalent to the projection operator of the relational algebra (π ).

5. Sort sorts all columns in a projection by some subset of those columns (the
sort columns).

6. Aggregation Operators compute SQL-like aggregates over a named column,
and for each group identified by the values in a projection.

7. Concat combines one or more projections sorted in the same order into a
single projection

8. Permute permutes a projection according to the ordering defined by a join
index.

9. Join joins two projections according to a predicate that correlates them.

10. Bitstring Operators BAnd produces the bitwise AND of two bitstrings. BOr
produces a bitwise OR. BNot produces the complement of a bitstring.
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A C-Store query plan consists of a tree of the operators listed above, with access
methods at the leaves and iterators serving as the interface between connected
nodes. Each non-leaf plan node consumes the data produced by its children via
a modified version of the standard iterator interface [GRAE93] via calls of “get_
next.” To reduce communication overhead (i.e., number of calls of “get_next”)
between plan nodes, C-Store iterators return 64K blocks from a single column. This
approach preserves the benefit of using iterators (coupling data flow with control
flow), while changing the granularity of data flow to better match the column-based
model.

8.2 Query Optimization
We plan to use a Selinger-style [SELI79] optimizer that uses cost-based estimation
for plan construction. We anticipate using a two-phase optimizer [HONG92] to
limit the complexity of the plan search space. Note that query optimization in this
setting differs from traditional query optimization in at least two respects: the need
to consider compressed representations of data and the decisions about when to
mask a projection using a bitstring.

C-Store operators have the capability to operate on both compressed and un-
compressed input. As will be shown in Section 9, the ability to process compressed
data is the key to the performance benefits of C-Store. An operator’s execution
cost (both in terms of I/O and memory buffer requirements) is dependent on the
compression type of the input. For example, a Select over Type 2 data (foreign
order/few values, stored as a delta-encoded bitmaps, with one bitmap per value)
can be performed by reading only those bitmaps from disk whose values match
the predicate (despite the column itself not being sorted). However, operators that
take Type 2 data as input require much larger memory buffer space (one page of
memory for each possible value in the column) than any of the other three types
of compression. Thus, the cost model must be sensitive to the representations of
input and output columns.

The major optimizer decision is which set of projections to use for a given query.
Obviously, it will be time consuming to construct a plan for each possibility, and
then select the best one. Our focus will be on pruning this search space. In addition,
the optimizer must decide where in the plan to mask a projection according to a
bitstring. For example, in some cases it is desirable to push the Mask early in the
plan (e.g, to avoid producing a bitstring while performing selection over Type 2
compressed data) while in other cases it is best to delay masking until a point where
it is possible to feed a bitstring to the next operator in the plan (e.g., COUNT) that
can produce results solely by processing the bitstring.
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9 Performance Comparison
At the present time, we have a storage engine and the executor for RS running. We
have an early implementation of the WS and tuple mover; however they are not at
the point where we can run experiments on them. Hence, our performance analysis
is limited to read-only queries, and we are not yet in a position to report on updates.
Moreover, RS does not yet support segments or multiple grid nodes. As such, we
report single-site numbers. A more comprehensive performance study will be done
once the other pieces of the system have been built.

Our benchmarking system is a 3.0 Ghz Pentium, running RedHat Linux, with 2
Gbytes of memory and 750 Gbytes of disk.

In the decision support (warehouse) market TPC-H is the gold standard, and we
use a simplified version of this benchmark, which our current engine is capable
of running. Specifically, we implement the lineitem, order, and customer tables as
follows:

CREATE TABLE LINEITEM (

L_ORDERKEY INTEGER NOT NULL,

L_PARTKEY INTEGER NOT NULL,

L_SUPPKEY INTEGER NOT NULL,

L_LINENUMBER INTEGER NOT NULL,

L_QUANTITY INTEGER NOT NULL,

L_EXTENDEDPRICE INTEGER NOT NULL,

L_RETURNFLAG CHAR(1) NOT NULL,

L_SHIPDATE INTEGER NOT NULL);

CREATE TABLE ORDERS (

O_ORDERKEY INTEGER NOT NULL,

O_CUSTKEY INTEGER NOT NULL,

O_ORDERDATE INTEGER NOT NULL);

CREATE TABLE CUSTOMER (

C_CUSTKEY INTEGER NOT NULL,

C_NATIONKEY INTEGER NOT NULL);

We chose columns of type INTEGER and CHAR(1) to simplify the implemen-
tation. The standard data for the above table schema for TPC-H scale_10 totals
60,000,000 line items (1.8GB), and was generated by the data generator available
from the TPC website.

We tested three systems and gave each of them a storage budget of 2.7 GB
(roughly 1.5 times the raw data size) for all data plus indices. The three systems
were C-Store as described above and two popular commercial relational DBMS
systems, one that implements a row store and another that implements a column
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C-Store Row Store Column Store

1.987 GB 4.480 GB 2.650 GB

store. In both of these systems, we turned off locking and logging. We designed the
schemas for the three systems in a way to achieve the best possible performance
given the above storage budget. The row-store was unable to operate within the
space constraint so we gave it 4.5 GB which is what it needed to store its tables
plus indices. The actual disk usage numbers are shown below. Obviously, C-Store
uses 40% of the space of the row store, even though it uses redundancy and the
row store does not. The main reasons are C-Store compression and absence of
padding to word or block boundaries. The column store requires 30% more space
than C-Store. Again, C-Store can store a redundant schema in less space because
of superior compression and absence of padding.

We ran the following seven queries on each system:
Q1. Determine the total number of lineitems shipped for each day after day D.

SELECT l_shipdate, COUNT (*)

FROM lineitem

WHERE l_shipdate > D

GROUP BY l_shipdate

Q2. Determine the total number of lineitems shipped for each supplier on day D.

SELECT l_suppkey, COUNT (*)

FROM lineitem

WHERE l_shipdate = D

GROUP BY l_suppkey

Q3. Determine the total number of lineitems shipped for each supplier after day D.

SELECT l_suppkey, COUNT (*)

FROM lineitem

WHERE l_shipdate > D

GROUP BY l_suppkey

Q4. For every day after D, determine the latest shipdate of all items ordered on that day.

SELECT o_orderdate, MAX (l_shipdate)

FROM lineitem, orders

WHERE l_orderkey = o_orderkey AND

o_orderdate > D

GROUP BY o_orderdate
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Q5. For each supplier, determine the latest shipdate of an item from an order that was
made on some date, D.

SELECT l_suppkey, MAX (l_shipdate)

FROM lineitem, orders

WHERE l_orderkey = o_orderkey AND

o_orderdate = D

GROUP BY l_suppkey

Q6. For each supplier, determine the latest shipdate of an item from an order made after
some date, D.

SELECT l_suppkey, MAX (l_shipdate)

FROM lineitem, orders

WHERE l_orderkey = o_orderkey AND

o_orderdate > D

GROUP BY l_suppkey

Q7. Return a list of identifiers for all nations represented by customers along with their
total lost revenue for the parts they have returned. This is a simplified version of query
10 (Q10) of TPC-H.

SELECT c_nationkey, sum(l_extendedprice)

FROM lineitem, orders, customers

WHERE l_orderkey=o_orderkey AND

o_custkey=c_custkey AND

l_returnflag=’R’

GROUP BY c_nationkey

We constructed schemas for each of the three systems that best matched our seven-
query workload. These schema were tuned individually for the capabilities of each
system. For C-Store, we used the following schema:

D1: (l_orderkey, l_partkey, l_suppkey,

l_linenumber, l_quantity,

l_extendedprice, l_returnflag, l_shipdate

| l_shipdate, l_suppkey)

D2: (o_orderdate, l_shipdate, l_suppkey |

o_orderdate, l_suppkey)

D3: (o_orderdate, o_custkey, o_orderkey |

o_orderdate)

D4: (l_returnflag, l_extendedprice,

c_nationkey | l_returnflag)

D5: (c_custkey, c_nationkey | c_custkey)
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D2 and D4 are materialized (join) views. D3 and D5 are added for completeness
since we don’t use them in any of the seven queries. They are included so that we
can answer arbitrary queries on this schema as is true for the product schemas.

On the commercial row-store DBMS, we used the common relational schema
given above with a collection of system-specific tuning parameters. We also
used system-specific tuning parameters for the commercial column-store DBMS.
Although we believe we chose good values for the commercial systems, obviously,
we cannot guarantee they are optimal.

The following table indicates the performance that we observed. All measure-
ments are in seconds and are taken on a dedicated machine.

Query C-Store Row Store Column Store

Q1 0.03 6.80 2.24

Q2 0.36 1.09 0.83

Q3 4.90 93.26 29.54

Q4 2.09 722.90 22.23

Q5 0.31 116.56 0.93

Q6 8.50 652.90 32.83

Q7 2.54 265.80 33.24

As can be seen, C-Store is much faster than either commercial product. The main
reasons are:

. Column representation – avoids reads of unused attributes (same as compet-
ing column store).

. Storing overlapping projections, rather than the whole table – allows storage of
multiple orderings of a column as appropriate.

. Better compression of data – allows more orderings in the same space.

. Query operators operate on compressed representation – mitigates the storage
barrier problem of current processors.

In order to give the other systems every possible advantage, we tried running
them with the materialized views that correspond to the projections we used with
C-Store. This time, the systems used space as follows (C-Store numbers, which did
not change, are included as a reference):
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C-Store Row Store Column Store

1.987 GB 11.900 GB 4.090 GB

The relative performance numbers in seconds are as follows:

Query C-Store Row Store Column Store

Q1 0.03 0.22 2.34

Q2 0.36 0.81 0.83

Q3 4.90 49.38 29.10

Q4 2.09 21.76 22.23

Q5 0.31 0.70 0.63

Q6 8.50 47.38 25.46

Q7 2.54 18.47 6.28

As can be seen, the performance gap closes, but at the same time, the amount
of storage needed by the two commercial systems grows quite large.

In summary, for this seven query benchmark, C-Store is on average 164 times
faster than the commercial row-store and 21 times faster than the commercial
column-store in the space-constrained case. For the case of unconstrained space,
C-Store is 6.4 times faster than the commercial row-store, but the row-store takes
6 times the space. C-Store is on average 16.5 times faster than the commercial
column-store, but the column-store requires 1.83 times the space.

Of course, this performance data is very preliminary. Once we get WS running
and write a tuple mover, we will be in a better position to do an exhaustive study.

10 Related Work
One of the thrusts in the warehouse market is in maintaining so-called “data
cubes.” This work dates from Essbase by Arbor software in the early 1990’s, which
was effective at “slicing and dicing” large data sets [GRAY97]. Efficiently building
and maintaining specific aggregates on stored data sets has been widely studied
[KOTI99, ZHAO97]. Precomputation of such aggregates as well as more general ma-
terialized views [STAU96] is especially effective when a prespecified set of queries
is run at regular intervals. On the other hand, when the workload cannot be an-
ticipated in advance, it is difficult to decide what to precompute. C-Store is aimed
entirely at this latter problem.
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Including two differently architected DBMSs in a single system has been studied
before in data mirrors [RAMA02]. However, the goal of data mirrors was to achieve
better query performance than could be achieved by either of the two underlying
systems alone in a warehouse environment. In contrast, our goal is to simultane-
ously achieve good performance on update workloads and ad-hoc queries. Conse-
quently, C-Store differs dramatically from a data mirror in its design.

Storing data via columns has been implemented in several systems, including
Sybase IQ, Addamark, Bubba [COPE88], Monet [BONC04], and KDB. Of these,
Monet is probably closest to C-Store in design philosophy. However, these systems
typically store data in entry sequence and do not have our hybrid architecture nor
do they have our model of overlapping materialized projections.

Similarly, storing tables using an inverted organization is well known. Here,
every attribute is stored using some sort of indexing, and record identifiers are
used to find corresponding attributes in other columns. C-Store uses this sort of
organization in WS but extends the architecture with RS and a tuple mover.

There has been substantial work on using compressed data in databases; Roth
and Van Horn [ROTH93] provide an excellent summary of many of the techniques
that have been developed. Our coding schemes are similar to some of these tech-
niques, all of which are derived from a long history of work on the topic in the
broader field of computer science [WITT87]. Our observation that it is possible to
operate directly on compressed data has been made before [GRAE91, WESM00].

Lastly, materialized views, snapshot isolation, transaction management, and
high availability have also been extensively studied. The contribution of C-Store
is an innovative combination of these techniques that simultaneously provides
improved performance, K-safety, efficient retrieval, and high performance trans-
actions.

11 Conclusions
This paper has presented the design of C-Store, a radical departure from the archi-
tecture of current DBMSs. Unlike current commercial systems, it is aimed at the
“read-mostly” DBMS market. The innovative contributions embodied in C-Store
include:

. A column store representation, with an associated query execution engine.

. A hybrid architecture that allows transactions on a column store.

. A focus on economizing the storage representation on disk, by coding data
values and dense-packing the data.
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. A data model consisting of overlapping projections of tables, unlike the
standard fare of tables, secondary indexes, and projections.

. A design optimized for a shared nothing machine environment.

. Distributed transactions without a redo log or two phase commit.

. Efficient snapshot isolation.
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I Introduction
Current relational DBMS’s are oriented toward efficient support for business data
processing applications where large numbers of instances of fixed format records
must be stored and accessed. Traditional transaction management and query fa-
cilities for this application area will be termed data management.

To satisfy the broader application community outside of business applications,
DBMS’s will have to expand to offer services in two other dimensions, namely
object management and knowledge management. Object management entails effi-
ciently storing and manipulating nontraditional data types such as bitmaps, icons,
text, and polygons. Object management problems abound in CAD and many other
engineering applications. Object-oriented programming languages and databases
provide services in this area.

Knowledge management entails the ability to store and enforce a collection of
rules that are part of the semantics of an application. Such rules describe integrity
constraints about the application, as well as allowing the derivation of data that are
not directly stored in the database.

We now indicate a simple example which requires services in all three dimen-
sions. Consider an application that stores and manipulates text and graphics to
facilitate the layout of newspaper copy. Such a system will be naturally integrated
with subscription and classified advertisement data. Billing customers for these
services will require traditional data management services. In addition, this appli-
cation must store nontraditional objects including text, bitmaps (pictures), and
icons (the banner across the top of the paper). Hence, object management services
are required. Lastly, there are many rules that control newspaper layout. For ex-
ample, the ad copy for two major department stores can never be on facing pages.
Support for such rules is desirable in this application.

We believe that most real world data management problems are three dimen-
sional. Like the newspaper application, they will require a three-dimensional solu-
tion. The fundamental goal of POSTGRES [26], [35] is to provide support for such
three-dimensional applications. To the best of our knowledge it is the first three-
dimensional data manager. However, we expect that most DBMS’s will follow the
lead of POSTGRES into these new dimensions.

To accomplish this objective, object and rule management capabilities were
added to the services found in a traditional data manager. In the next two sections,
we describe the capabilities provided and comment on our implementation deci-
sions. Then, in Section IV we discuss the novel no-overwrite storage manager that
we implemented in POSTGRES. Other papers have explained the major POSTGRES
design decisions in these areas, and we assume that the reader is familiar with [21]
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on the data model, [30] on rule management, and [28] on storage management.
Hence, in these three sections we stress considerations that led to our design, what
we liked about the design, and the mistakes that we felt we made. Where appropri-
ate we make suggestions for future implementors based on our experience.

Section V of the paper comments on specific issues in the implementation of
POSTGRES and critiques the choices that we made. In this section, we discuss how
we interfaced to the operating system, our choice of programming languages, and
some of our implementation philosophy.

The final section concludes with some performance measurements of POST-
GRES. Specifically, we report the results of some of the queries in the Wisconsin
benchmark [7].

II The POSTGRES Data Model and Query Language

II.A Introduction
Traditional relational DBMS’s support a data model consisting of a collection of
named relations, each attribute of which has a specific type. In current commer-
cial systems, possible types are floating point numbers, integers, character strings,
and dates. It is commonly recognized that this data model is insufficient for non-
business data processing applications. In designing a new data model and query
language, we were guided by the following three design criteria.

1) Orientation toward database access from a query language: We expect POST-
GRES users to interact with their databases primarily by using the set-oriented
query language, POSTQUEL. Hence, inclusion of a query language, an optimizer,
and the corresponding run-time system was a primary design goal.

It is also possible to interact with a POSTGRES database by utilizing a naviga-
tional interface. Such interfaces were popularized by the CODASYL proposals of
the 1970’s and are enjoying a renaissance in recent object-oriented proposals such
as ORION [6] or O2 [34). Because POSTGRES gives each record a unique identifier
(OID), it is possible to use the identifier for one record as a data item in a second
record. Using optionally definable indexes on OID’s, it is then possible to navigate
from one record to the next by running one query per navigation step. In addition,
POSTGRES allows a user to define functions (methods) to the DBMS. Such functions
can intersperse statements in a programming language, a query language, and di-
rect calls to internal POSTGRES interfaces. The ability to directly execute functions
which we call fast path is provided in POSTGRES and allows a user to navigate the
database by executing a sequence of functions.
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However, we do not expect this sort of mechanism to become popular. All
navigational interfaces have the same disadvantages of CODASYL systems, namely
the application programmer must construct a query plan for each task he wants
to accomplish and substantial application maintenance is required whenever the
schema changes.

2) Orientation toward multilingual access: We could have picked our favorite
programming language and then tightly coupled POSTGRES to the compiler and
run-time environment of that language. Such an approach would offer persistence
for variables in this programming language, as well as a query language integrated
with the control statements of the language. This approach has been followed
in ODE [l] and many of the recent commercial startups doing object-oriented
databases.

Our point of view is that most databases are accessed by programs written in sev-
eral different languages, and we do not see any programming language Esperanto
on the horizon. Therefore, most application development organizations are mul-
tilingual and require access to a database from different languages. In addition,
database application packages that a user might acquire, for example to perform
statistical or spreadsheet services, are often not coded in the language being used
for developing applications. Again, this results in a multilingual environment.

Hence, POSTGRES is programming language neutral, that is, it can be called
from many different languages. Tight integration of POSTGRES to a particular
language requires compiler extensions and a run-time system specific to that pro-
gramming language. One of us has built an implementation of persistent CLOS
(Common LISP Object System) on top of POSTGRES. Persistent CLOS (or persistent
X for any programming language X) is inevitably language specific. The run-time
system must map the disk representation for language objects, including pointers,
into the main memory representation expected by the language. Moreover, an ob-
ject cache must be maintained in the program address space, or performance will
suffer badly. Both tasks are inherently language specific.

We expect many language specific interfaces to be built for POSTGRES and
believe that the query language plus the fast path interface available in POSTGRES
offer a powerful, convenient abstraction against which to build these programming
language interfaces.

3) Small number of concepts: We tried to build a data model with as few concepts
as possible. The relational model succeeded in replacing previous data models in
part because of its simplicity. We wanted to have as few concepts as possible so
that users would have minimum complexity to contend with. Hence, POSTGRES
leverages the following three constructs:
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types

functions

inheritance.

In the next subsection, we briefly review the POSTGRES data model. Then, we turn
to a short description of POSTQUEL and fast path. We conclude the section with
a discussion of whether POSTGRES is object-oriented followed by a critique of our
data model and query language.

II.B The POSTGRES Data Model
As mentioned in the previous section, POSTGRES leverages types and functions as
fundamental constructs. There are three kinds of types in POSTGRES and three
kinds of functions and we discuss the six possibilities in this section.

Some researchers, e.g., [27], [19], have argued that one should be able to con-
struct new base types such as bits, bit-strings, encoded character strings, bitmaps,
compressed integers, packed decimal numbers, radix 50 decimal numbers, money,
etc. Unlike most next-generation DBMS’s which have a hardwired collection of base
types (typically integers, floats, and character strings), POSTGRES contains an ab-
stract data type facility whereby any user can construct an arbitrary number of new
base types. Such types can be added to the system while it is executing and require
the defining user to specify functions to convert instances of the type to and from
the character string data type. Details of the syntax appear in [35].

The second kind of type available in POSTGRES is a constructed type.1 A user
can create a new type by constructing a record of base types and instances of other
constructed types. For example,

create DEPT (dname = c10, floor = integer, floor-
space = polygon)

create EMP (name = c12, dept = DEPT, salary =
float)

Here, DEPT is a type constructed from an instance of each of three base types: a
character string, an integer, and a polygon. EMP, on the other hand, is fabricated
from base types and other constructed types.

1. In this section, the reader can use the words constructed type, relation, and class interchange-
ably. Moreover. the words record, instance, and tuple are similarly interchangeable. This section
has been purposely written with the chosen notation to illustrate a point about object-oriented
databases which is discussed in Section II-E.
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A constructed type can optionally inherit data elements from other constructed
types. For example, a SALESMAN type can be created as follows:

create SALESMAN (quota = float) inherits (EMP)

In this case, an instance of SALESMAN has a quota and inherits all data elements
from EMP, namely name, dept, and salary. We had the standard discussion about
whether to include single or multiple inheritance and concluded that a single
inheritance scheme would simply be too restrictive. As a result, POSTGRES allows a
constructed type to inherit from an arbitrary collection of other constructed types.

When ambiguities arise because an object has multiple parents with the same
field name, we elected to refuse to create the new type. However, we isolated the res-
olution semantics in a single routine, which can be easily changed to track multiple
inheritance semantics as they unfold over time in programming languages.

We now turn to the POSTGRES notion of functions. There are three different
classes of POSTGRES functions:

normal functions

operators

POSTQUEL functions

and we discuss each in turn.
A user can define an arbitrary collection of normal functions whose operands

are base types or constructed types. For example, he can define a function, area,
which maps an instance of a polygon into an instance of a floating point number.
Such functions are automatically available in the query language as illustrated in
the following example:

retrieve (DEPT.dname)
where area (DEPT.floorspace) > 500

Normal functions can be defined to POSTGRES while the system is running and are
dynamically loaded when required during query execution.

Functions are allowed on constructed types, e.g.,

retrieve (EMP.name) where overpaid (EMP)

In this case, overpaid has an operand of type EMP and returns a Boolean. Functions
whose operands are constructed types are inherited down the type hierarchy in the
standard way.

Normal functions are arbitrary procedures written in a general purpose pro-
gramming language (in our case C or LISP). Hence, they have arbitrary semantics
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and can run other POSTQUEL commands during execution. Therefore, queries with
normal functions in the qualification cannot be optimized by the POSTGRES query
optimizer. For example, the above query on overpaid employees will result in a se-
quential scan of all employees.

To utilize indexes in processing queries, POSTGRES supports a second class
of functions, called operators. Operators are functions with one or two operands
which use the standard operator notation in the query language. For example, the
following query looks for departments whose floor space has a greater area than
that of a specific polygon:

retrieve (DEPT.dname) where DEPT. floorspace AGT
polygon[“(0,0), (1, 1), (0,2)”].

The “area greater than” operator AGT is defined by indicating the token to use in
the query language as well as the function to call to evaluate the operator. Moreover,
several hints can also be included in the definition which assist the query optimizer.
One of these hints is that ALE is the negator of this operator. Therefore, the query
optimizer can transform the query:

retrieve (DEPT.dname) where not (DEPT.floorspace
ALE polygon[ “(0,0), (1,1), (0,2)”])

which cannot be optimized into the one above which can be optimized. In addi-
tion, the design of the POSTGRES access methods allows a B+-tree index to be
constructed for the instances of floorspace appearing in DEPT records. This index
can support efficient access for the class of operators {ALT, ALE, AE, AGT , AGE}.
Information on the access paths available to the various operators is recorded in
the POSTGRES system catalogs.

As pointed out in [29], it is imperative that a user be able to construct new access
method s lO provide efficient access to instances of nontraditional base types. For
example, suppose a user introduces a new operator “!!” defined on polygons that
returns true if two polygons overlap. Then, he might ask a query such as

retrieve (DEPT.dname) where DEPT.floorspace !!
polygon[“(0,0), (1, 1), (0,2)”]

There is no B+-tree or hash access method that will allow this query to be rapidly
executed. Rather, the query must be supported by some multidimensional access
method such as R-trees, grid files, K-D-B trees, etc. Hence, POSTGRES was de-
signed to allow new access methods to be written by POSTGRES users and then
dynamically added to the system. Basically, an access method to POSTGRES is a
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collection of 13 normal functions which perform record level operations such as
fetching the next record in a scan, inserting a new record, deleting a specific record,
etc. All a user need do is define implementations for each of these functions and
make a collection of entries in the system catalogs.

Operators are only available for operands which are base types because access
methods traditionally support fast access to specific fields in records. It is unclear
what an access method for a constructed type should do, and therefore POSTGRES
does not include this capability.

The third kind of function available in POSTGRES is POSTQUEL functions. Any
collection of commands in the POSTQUEL query language can be packaged to-
gether and defined as a function. For example, the following function defines the
overpaid employees:

define function high-pay as retrieve (EMP.all) where
EMP.salary > 50000

POSTQUEL functions can also have parameters, for example,

define function ret-sal as retrieve (EMP.salary) where
EMP.name = $1

Notice that ret-sal has one parameter in the body of the function, the name of the
person involved. Such parameters must be provided at the time the function is
called. A third example POSTQUEL function is

define function set-of-DEPT as retrieve (DEPT.all)
where DEPT.floor = $.floor

This function has a single parameter “$.floor.” It is expected to appear in a record
and receives the value of its parameter from the floor field defined elsewhere in the
same record.

Each POSTQUEL function is automatically a constructed type. For example, one
can define a FLOORS type as follows:

create FLOORS (floor = i2, depts = set-of-DEPT)

This constructed type uses the set-of-DEPT function as a constructed type. In this
case, each instance of FLOORS has a value for depts which is the value of the
function set-of-DEPT for that record.

In addition, POSTGRES allows a user to form a constructed type, one or more
of whose fields has the special type POSTQUEL. For example, a user can construct
the following type:
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create PERSON (name = c12, hobbies = POST-
QUEL)

In this case, each instance of hobbies contains a different POSTQUEL function,
and therefore each person has a name and a POSTQUEL function that defines
his particular hobbies. This support for POSTQUEL as a type allows the system to
simulate nonnormalized relations as found in NF**2 [11].

POSTQUEL functions can appear in the query language in the same manner as
normal functions. The following example ensures that Joe has the same salary as
Sam:

replace EMP (salary = ret-sal(“Joe”)) where
EMP.name = “Sam”

In addition, since POSTQUEL functions are a constructed type, queries can
be executed against POSTQUEL functions just like other constructed types. For
example, the following query can be run on the constructed type, high-pay:

retrieve (high-pay.salary) where high-pay.name =
“george”

If a POSTQUEL function contains a single retrieve command, then it is very similar
to a relational view definition, and this capability allows retrieval operations to be
performed on objects which are essentially relational views.

Lastly, every time a user defines a constructed type, a POSTQUEL function is au-
tomatically defined with the same name. For example, when DEPT is constructed,
the following function is automatically defined:

define function DEPT as retrieve (DEPT.all) where DEPT.OID = $1

When EMP was defined earlier in this section, it contained a field dept which
was of type DEPT. In fact, DEPT was the above automatically defined POSTQUEL
function. As a result, an instance of a constructed type is available as a type because
POSTGRES automatically defines a POSTQUEL function for each such type.

POSTQUEL functions are a very powerful notion because they allow arbitrary
collections of instances of types to be returned as the value of the function. Since
POSTQUEL functions can reference other POSTQUEL functions, arbitrary struc-
tures of complex objects can be assembled. Lastly, POSTQUEL functions allow
collections of commands such as the five SQL commands that make up TP1 [3]
to be assembled into a single function and stored inside the DBMS. Then, one can
execute TP1 by executing the single function. This approach is preferred to having
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to submit the five SQL commands in TP1 one by one from an application program.
Using a POSTQUEL function, one replaces five roundtrips between the application
and the DBMS with 1, which results in a 25% performance improvement in a typical
OLTP application.

II.C The POSTGRES Query Language
The previous section presented several examples of the POSTQUEL language. It
is a set-oriented query language that resembles a superset of a relational query
language. Besides user-defined functions and operators which were illustrated
earlier, the features which have been added to a traditional relational language
include

path expressions

support for nested queries

transitive closure

support for inheritance

support for time travel.

Path expressions are included because POSTQUEL allows constructed types
which contain other constructed types to be hierarchically referenced. For example,
the EMP type defined above contains a field which is an instance of the constructed
type, DEPT. Hence, one can ask for the names of employees who work on the first
floor as follows:

retrieve (EMP.name) where EMP.dept.floor = 1

rather than being forced to do a join, e.g.,

retrieve (EMP.name) where EMP.dept = DEPT.OID
and DEPT.floor = l

POSTQUEL also allows queries to be nested and has operators that have sets of
instances as operands. For example to find the departments which occupy an entire
floor, one would query

retrieve (DEPT.dname)
where DEPT.floor NOTIN {D.floor using D in DEPT

where D.dname ! = DEPT.dname}

In this case, the expression inside the curly braces represents a set of instances and
NOTIN is an operator which takes a set of instances as its right operand.
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The transitive closure operation allows one to explode a parts or ancestor hier-
archy. Consider for example the constructed type

parent (older, younger)

One can ask for all the ancestors of John as follows.

retrieve* into answer (parent.older)
using a in answer
where parent.younger = “John”
or parent.younger = a.older

In this case, the * after retrieve indicates that the associated query should be run
until the answer fails to grow.

If one wishes to find the names of all employees over 40, one would write

retrieve (E.name) using E in EMP
where E.age > 40

On the other hand, if one wanted the names of all salesmen or employees over 40,
the notation is

retrieve (E.name) using E in EMP*
where E.age > 40

Here the * after the constructed type EMP indicates that the query should be run
over EMP and all constructed types under EMP in the inheritance hierarchy. This
use of * allows a user to easily run queries over a constructed type and all its
descendents.

Lastly, POSTGRES supports the notion of time travel. This feature allows a user
to run historical queries. For example to find the salary of Sam at time T one would
query

retrieve (EMP.salary)
using EMP [T ]
where EMP.name = “Sam”

POSTGRES will automatically find the version of Sam’s record valid at the correct
time and get the appropriate salary.

Like relational systems, the result of a POSTQUEL command can be added to
the database as a new constructed type. In this case, POSTQUEL follows the lead
of relational systems by removing duplicate records from the result. The user who
is interested in retaining duplicates can do so by ensuring that the OID field of
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some instance is included in the target list being selected. For a full description of
POSTQUEL the interested reader should consult [35].

II.D Fast Path
There are three reasons why we chose to implement a fast path feature. First, a user
who wishes to interact with a database by executing a sequence of functions to nav-
igate to desired data can use fast path to accomplish his objective. Second, there
are a variety of decision support applications in which the end user is given a spe-
cialized query language. In such environments, it is often easier for the application
developer to construct a parse tree representation for a query rather than an ASCII
one. Hence, it would be desirable for the application designer to be able to directly
call the POSTGRES optimizer or executor. Most DBMS’s do not allow direct access
to internal system modules.

The third reason is a bit more complex. In the persistent CLOS layer of Picasso,
it is necessary for the run-time system to assign a unique identifier (OID) to every
constructed object that is persistent. It is undesirable for the system to synchro-
nously insert each object directly into a POSTGRES database and thereby assign a
POSTGRES identifier to the object. This would result in poor performance in exe-
cuting a persistent CLOS program. Rather, persistent CLOS maintains a cache of
objects in the address space of the program and only inserts a persistent object into
this cache synchronously. There are several options which control how the cache
is written out to the database at a later time. Unfortunately, it is essential that a
persistent object be assigned a unique identifier at the time it enters the cache,
because other objects may have to point to the newly created object and use its OID
to do so.

If persistent CLOS assigns unique identifiers, then there will be a complex
mapping that must be performed when objects are written out to the database
and real POSTGRES unique identifiers are assigned. Alternately, persistent CLOS
must maintain its own system for unique identifiers, independent of the POSTGRES
one, an obvious duplication of effort. The solution chosen was to allow persistent
CLOS to access the POSTGRES routine that assigns unique identifiers and allow
it to preassign N POSTGRES object identifiers which it can subsequently assign
to cached objects. At a later time, these objects can be written to a POSTGRES
database using the preassigned unique identifiers. When the supply of identifiers
is exhausted, persistent CLOS can request another collection.

In all of these examples, an application program requires direct access to a
user-defined or internal POSTGRES function, and therefore the POSTGRES query
language has been extended with
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function-name (param-list)

In this case, besides running queries in POSTQUEL, a user can ask that any func-
tion known to POSTGRES be executed. This function can be one that a user has
previously defined as a normal, operator, or POSTQUEL function or it can be one
that is included in the POSTGRES implementation.

Hence, the user can directly call the parser, the optimizer, the executor, the
access methods, the buffer manager, or the utility routines. In addition, he can
define functions which in turn make calls on POSTGRES internals. In this way,
he can have considerable control over the low-level flow of control, much as is
available through a DBMS toolkit such as Exodus [20], but without all the effort
involved in configuring a tailored DBMS from the toolkit. Moreover, should the user
wish to interact with his database by making a collection of function calls (method
invocations), this facility allows the possibility. As noted in the Introduction, we do
not expect this interface to be especially popular.

The above capability is called fast path because it provided direct access to spe-
cific functions without checking the validity of parameters. As such, it is effectively
a remote procedure call facility and allows a user program to call a function in
another address space rather than in its own address space.

II.E Is POSTGRES Object-Oriented?
There have been many next-generation data models proposed in the last few years.
Some are characterized by the term “extended relational,” others are considered
“object-oriented,” while yet others are termed “nested relational.” POSTGRES could
be accurately described as an object-oriented system because it includes unique
identity for objects, abstract data types, classes (constructed types), methods (func-
tions), and inheritance for both data and functions. Others (e.g., [2]) are suggesting
definitions for the word “object-oriented,” and POSTGRES satisfies virtually all of
the proposed litmus tests.

On the other hand, POSTGRES could also be considered an extended relational
system. As noted in a previous footnote, Section II could have been equally well
written with the word “constructed type” and “instance” replaced by the words
“relation” and “tuple.” In fact, in previous descriptions of POSTGRES [26], this
notation was employed. Hence, others, e.g., [18], have characterized POSTGRES
as an extended relational system.

Lastly, POSTGRES supports the POSTQUEL type, which is exactly a nested rela-
tional structure. Consequently, POSTGRES could be classified as a nested relational
system as well.
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As a result, POSTGRES could be described using any of the three adjectives
above. In our opinion, we can interchangeably use the words relations, classes, and
constructed types in describing POSTGRES. Moreover, we can also interchangeably
use the words function and method. Lastly, we can interchangeably use the words
instance, record, and tuple. Hence, POSTGRES seems to be either object-oriented
or not object-oriented, depending on the choice of a few tokens in the parser. As
a result, we feel that most of the efforts to classify the extended data models in
next-generation database systems are silly exercises in surface syntax.

In the remainder of this section, we comment briefly on the POSTGRES im-
plementation of OID’s and inheritance. POSTGRES gives each record a unique
identifier (OID), and then allows the application designer to decide for each con-
structed type whether he wishes to have an index on the OID field. This decision
should be contrasted with most object-oriented systems which construct an OID in-
dex for all constructed types in the system automatically. The POSTGRES scheme
allows the cost of the index to be paid only for those types of objects for which it is
profitable. In our opinion, this flexibility has been an excellent decision.

Second, there are several possible ways to implement an inheritance hierar-
chy. Considering the SALESMEN and EMP example noted earlier, one can store
instances of SALESMAN by storing them as EMP records and then only storing
the extra quota information in a separate SALESMAN record. Alternately, one can
store no information on each salesman in EMP and then store complete SALESMAN
records elsewhere. Clearly, there are a variety of additional schemes.

POSTGRES chose one implementation, namely storing all SALESMAN fields in
a single record. However, it is likely that applications designers will demand several
other representations to give them the flexibility to optimize their particular data.
Future implementations of inheritance will likely require several storage options.

II.F A Critique of the POSTGRES Data Model
There are five areas where we feel we made mistakes in the POSTGRES data model:

union types

access method interface

functions

large objects

arrays.

We discuss each in turn.



II The POSTGRES Data Model and Query Language 533

A desirable feature in any next-generation DBMS would be to support union
types, i.e., an instance of a type can be an instance of one of several given types. A
persuasive example (similar to one from [10]) is that employees can be on loan to
another plant or on loan to a customer. If two base types, customer and plant, exist,
one would like to change the EMP type to

create EMP (name = c12, dept = DEPT, salary =
float, on-loan-to = plant or customer)

Unfornately including union types makes a query optimizer more complex. For
example, to find all the employees on loan to the same organization one would
state the query

retrieve (EMP.name, E.name)
using E in EMP
where EMP.on-loan-to = E.on-loan-to

However, the optimizer must construct two different plans, one for employees on
loan to a customer and one for employees on loan to a different plant. The reason
for two plans is that the equality operator may be different for the two types. In
addition, one must construct indexes on union fields, which entails substantial
complexity in the access methods.

Union types are highly desirable in certain applications, and we considered three
possible stances with respect to union types:

1) support only through abstract data types

2) support through POSTQUEL functions

3) full support.

Union types can be easily constructed using the POSTGRES abstract data type fa-
cility. If a user wants a specific union type, he can construct it and then write
appropriate operators and functions for the type. The implementation complexity
of union types is thus forced into the routines for the operators and functions and
onto the implementor of the type. Moreover, it is clear that there are a vast number
of union types and an extensive type library must be constructed by the applica-
tion designer. The Picasso team stated that this approach placed an unacceptably
difficult burden on them, and therefore position 1) was rejected.

Position 2) offers some support for union types but has problems. Consider the
example of employees and their hobbies from [26].

create EMP (name = c12, hobbies = POSTQUEL)
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Here the hobbies field is a POSTQUEL function, one per employee, which retrieves
all hobby information about that particular employee. Now consider the following
POSTQUEL query:

retrieve (EMP.hobbies.average)
where EMP.name = “Fred”

In this case, the field average for each hobby record will be returned whenever
it is defined. Suppose, however, that average is a float for the softball hobby and
an integer for the cricket hobby. In this case, the application program must be
prepared to accept values of different types.

The more difficult problem is the following legal POSTQUEL query:

retrieve into TEMP (result = EMP.hobbies.average)
where EMP.name = “Fred”

In this case, a problem arises concerning the type of the result field, because it is a
union type. Hence, adopting position 2) leaves one in an awkward position of not
having a reasonable type for the result of the above query.

Of course, position 3) requires extending the indexing and query optimization
routines to deal with union types. Our solution was to adopt position 2) and to add
an abstract data type, ANY, which can hold an instance of any type. This solution
which turns the type of the result of the above query from

one-of {integer, float}

into ANY is not very satisfying. Not only is information lost, but we are also forced
to include with POSTGRES this universal type.

In our opinion, the only realistic alternative is to adopt position 3), swallow the
complexity increase, and that is what we would do in any next system.

Another failure concerned the access method design and was the decision to
support indexing only on the value of a field and not on a function of a value. The
utility of indexes on functions of values is discussed in [17], and the capability was
retrofitted, rather inelegantly, into one version of POSTGRES [4].

Another comment on the access method design concerns extendibility. Because
a user can add new base types dynamically, it is essential that he also be able
to add new access methods to POSTGRES if the system does not come with an
access method that supports efficient access to his types. The standard example of
this capability is the use of R-trees [15] to speed access to geometric objects. We
have now designed and/or coded three access methods for POSTGRES in addition
to B+-trees. Our experience has consistently been that adding an access method
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is very hard. There are four problems that complicate the situation. First, the
access method must include explicit calls to the POSTGRES locking subsystem
to set and release locks on access method objects. Hence, the designer of a new
access method must understand locking and how to use the particular POSTGRES
facilities. Second, the designer must understand how to interface to the buffer
manager and be able to get, put, pin, and unpin pages. Next, the POSTGRES
execution engine contains the “state” of the execution of any query and the access
methods must understand portions of this state and the data structures involved.
Last, but not least, the designer must write 13 nontrivial routines. Our experience
so far is that novice programmers can add new types to POSTGRES; however, it
requires a highly skilled programmer to add a new access method. Put differently,
the manual on how to add new data types to POSTGRES is two pages long, the one
for access methods is 50 pages.

We failed to realize the difficulty of access method construction. Hence, we
designed a system that allows end users to add access methods dynamically to a
running system. However, access methods will be built by sophisticated system
programmers who could have used a simpler interface.

A third area where our design is flawed concerns POSTGRES support for
POSTQUEL functions. Currently, such functions in POSTGRES are collections of
commands in the query language POSTQUEL. If one defined budget in DEPT as a
POSTQUEL function, then the value for the shoe department budget might be the
following command:

retrieve (DEPT.budget) where DEPT.dname =
“candy”

In this case, the shoe department will automatically be assigned the same budget
as the candy department. However, it is impossible for the budget of the shoe
department to be specified as

if floor = 1 then
retrieve (DEPT.budget) where DEPT.dname =

“candy”
else

retrieve (DEPT.budget) where DEPT.dname =
“toy”

This specification defines the budget of the shoe department to the candy depart-
ment budget if it is on the first floor. Otherwise, it is the same as the toy department.
This query is not possible because POSTQUEL has no conditional expressions. We
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had extensive discussions about this and other extensions to POSTQUEL. Each such
extension was rejected because it seemed to turn POSTQUEL into a programming
language and not a query language.

A better solution would be to allow a POSTQUEL function to be expressible
in a general purpose programming language enhanced with POSTQUEL queries.
Hence, there would be no distinction between normal functions and POSTQUEL
functions. Put differently, normal functions would be able to be constructed types
and would support path expressions.

There are three problems with this approach. First, path expressions for normal
functions cannot be optimized by the POSTGRES query optimizer because they
have arbitrary semantics. Hence, most of the optimizations planned for POSTQUEL
functions would have to be discarded. Second, POSTQUEL functions are much
easier to define than normal functions because a user need not know a general
purpose programming language. Also, he need not specify the types of the function
arguments or the return type because POSTGRES can figure these out from the
query specification. Hence, we would have to give up ease of definition in moving
from POSTQUEL functions to normal functions. Lastly, normal functions have
a protection problem because they can do arbitrary things, such as zeroing the
database. POSTGRES deals with this problem by calling normal functions in two
ways:

trusted—loaded into the POSTGRES address space
untrusted—loaded into a separate address space.

Hence, normal functions are either called quickly with no security or slowly in a
protected fashion. No such security problem arises with POSTQUEL functions.

A better approach might have been to support POSTQUEL functions written in
the fourth generation language (4GL) being designed for Picasso [22]. This pro-
gramming system leaves type information in the system catalogs. Consequently,
there would be no need for a separate registration step to indicate type information
to POSTGRES. Moreover, a processor for the language is available for integration
in POSTGRES. It is also easy to make a 4GL “safe,” i.e., unable to perform wild
branches or malicious actions. Hence, there would be no security problem. Also, it
seems possible that path expressions could be optimized for 4GL functions.

Current commercial relational products seem to be moving in this direction
by allowing database procedures to be coded in their proprietary fourth genera-
tion languages (4GL’s). In retrospect, we probably should have looked seriously at
designing POSTGRES to support functions written in a 4GL.
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Next, POSTGRES allows types to be constructed that are of arbitrary size. Hence,
large bitmaps are a perfectly acceptable POSTGRES data type. However, the current
POSTGRES user interface (portals) allows a user to fetch one or more instances of
a constructed type. It is currently impossible to fetch only a portion of an instance.
This presents an application program with a severe buffering problem; it must be
capable of accepting an entire instance, no matter how large it is. We should extend
the portal syntax in a straightforward way to allow an application to position a portal
on a specific field of an instance of a constructed type and then specify a byte count
that he would like to retrieve. These changes would make it much easier to insert
and retrieve big fields.

Lastly, we included arrays in the POSTGRES data model. Hence, one could have
specified the SALESMAN type as

create SALESMAN (name = c12, dept = DEPT, sal-
ary = float, quota = float[12])

Here, the SALESMAN has all the fields of EMP plus a quota which is an array of 12
floats, one for each month of the year. In fact, character strings are really an array
of characters, and the correct notation for the above type is

create SALESMAN (name = c[12], dept = DEPT,
salary = float, quota = float[12])

In POSTGRES, we support fixed and variable length arrays of base types, along with
an array notation in POSTQUEL. For example, to request all salesmen who have an
April quota over 1000, one would write

retrieve (SALESMAN.name) where SALES-
MAN.quota[4] > 1000

However, we do not support arrays of constructed types; hence, it is not possible
to have an array of instances of a constructed type. We omitted this capability only
because it would have made the query optimizer and executor somewhat harder.
In addition, there is no built-in search mechanism for the elements of an array. For
example, it is not possible to find the names of all salesmen who have a quota over
1000 during any month of the year. In retrospect, we should have included general
support for arrays or no support at all.
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III The Rules System

III.A Introduction
It is clear to us that all DBMS’s need a rules system. Current commercial systems
are required to support referential integrity [12], which is merely a simple-minded
collection of rules. In addition, most current systems have special purpose rules
systems to support relational views, protection, and integrity constraints. Lastly,
a rules system allows users to do event-driven programming as well as enforce
integrity constraints that cannot be performed in other ways. There are three high-
level decisions that the POSTGRES team had to make concerning the philosophy
of rule systems.

First, a decision was required concerning how many rule syntaxes there would
be. Some approaches, e.g., [13], [36], propose rule systems oriented toward appli-
cation designers that would augment other rule systems present for DBMS internal
purposes. Hence, such systems would contain several independently functioning
rules systems. On the other hand, [25] proposed a rule system that tried to support
user functionality as well as needed DBMS internal functions in a single syntax.

From the beginning, a goal of the POSTGRES rules system was to have only
one syntax. It was felt that this would simplify the user interface, since application
designers need learn only one construct. Also, they would not have to deal with
deciding which system to use in the cases where a function could be performed by
more than one rules system. It was also felt that a single rules system would ease
the implementation difficulties that would be faced.

Second, there are two implementation philosophies by which one could sup-
port a rule system. The first is a query rewrite implementation. Here, a rule would
be applied by converting a user query to an alternate form prior to execution. This
transformation is performed between the query language parser and the optimizer.
Support for views [24] is done this way along with many of the proposals for recur-
sive query support [5], [33]. Such an implementation will be very efficient when
there are a small number of rules on any given constructed type and most rules
cover the whole constructed type. For example, a rule such as

EMP [dept] contained-in DEPT[dname]

expresses the referential integrity condition that employees cannot be in a nonexis-
tent department and applies to all EMP instances. However, a query rewrite imple-
mentation will not work well if there are a large number of rules on each constructed
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type, each of them covering only a few instances. Consider, for example, the follow-
ing three rules:

employees in the shoe department have a steel desk

employees over 40 have a wood desk

employees in the candy department do not have a desk.

To retrieve the kind of a desk that Sam has, one must run the following three
queries:

retrieve (desk = “steel”) where EMP.name = “Sam”
and EMP.dept = “shoe”

retrieve (desk = “wood”) where EMP.name= “Sam”
and EMP.age > 40

retrieve (desk = null) where EMP.name = “Sam” and
EMP.dept = “candy”

Hence, a user query must be rewritten for each rule, resulting in a serious degra-
dation of performance unless all queries are processed as a group using multiple
query optimization techniques [23].

Moreover, a query rewrite system has great difficulty with exceptions [8]. For
example, consider the rule “all employees have a steel desk” together with the
exception “Jones is an employee who has a wood desk.” If one asks for the kind
of desk and age for all employees over 35, then the query must be rewritten as the
following two queries:

retrive (desk = “steel,” EMP.age) where EMP.age
> 35 and EMP.name ! = “Jones”

retrieve (desk = “wood,” EMP.age) where EMP.age
> 35 and EMP.name = “Jones”

In general, the number of queries as well as the complexity of their qualifications in-
creases linearly with the number of rules. Again, this will result in bad performance
unless multiple query optimization techniques are applied.

Lastly, a query rewrite system does not offer any help in resolving situations
when the rules are violated. For example, the above referential integrity rule is silent
on what to do if a user tries to insert an employee into a nonexistent department.

On the other hand, one could adopt a trigger implementation based on individ-
ual record accesses and updates to the database. Whenever a record is accessed,
inserted, deleted, or modified, the low-level execution code has both the old record
and the new record readily available. Hence, assorted actions can easily be taken
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by the low-level code. Such an implementation requires the rule firing code to be
placed deep in the query execution routines. It will work well if there are many
rules each affecting only a few instances, and it is easy to deal successfully with
conflict resolution at this level. However, rule firing is deep in the executor, and
it is thereby impossible for the query optimizer to construct an efficient execution
plan for a chain of rules that are awakened.

Hence, this implementation complements a query rewrite scheme in that it ex-
cels where a rewrite scheme is weak and vice-versa. Since we wanted to have a single
rule system, it was clear that we needed to provide both styles of implementation.

A third issue that we faced was the paradigm for the rules system. A conventional
production system consisting of collections of if-then rules has been explored in the
past [13], [25] and is a readily available alternative. However, such a scheme lacks
expressive power. For example, suppose one wants to enforce a rule that Joe makes
the same salary as Fred. In this case, one must specify two different if-then rules.
The first one indicates the action to take if Fred receives a raise, namely to propagate
the change on to Joe. The second rule specifies that any update to Joe’s salary must
be refused. Hence, many user rules require two or more if-then specifications to
achieve the desired effect.

The intent in POSTGRES was to explore a more powerful paradigm. Basically,
any POSTGRES command can be turned into a rule by changing the semantics of
the command so that it is logically either always running or never running. For
example, Joe may be specified to have the same salary as Fred by the rule

always replace EMP (salary = E.salary)
using E in EMP
where EMP.name = “Fred” and E.name = “Joe”

This single specification will propagate Joe’s salary on to Fred as well as refuse
direct updates to Fred’s salary. In this way, a single “always” rule replaces the two
statements needed in a production rule syntax.

Moreover, to efficiently support the triggering implementation where there are
a large number of rules present for a single constructed type, each of which ap-
plies to only a few instances, the POSTGRES team designed a sophisticated marking
scheme whereby rule wakeup information is placed on individual instances. Con-
sequently, regardless of the number of rules present for a single constructed type,
only those which actually must fire will be awakened. This should be contrasted to
proposals without such data structures, which will be hopelessly inefficient when-
ever a large number of rules are present for a single constructed type.
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Lastly, the decision was made to support the query rewrite scheme by escalating
markers to the constructed type level. For example, consider the rule

always replace EMP (age = 40) where name ! =
“Bill”

This rule applies to all employees except Bill and it would be a waste of space to
mark each individual employee. Rather, one would prefer to set a single marker in
the system catalogs to cover the whole constructed type implicitly. In this case, any
query, e.g.,

retrieve (EMP.age) where EMP.name = “Sam”

will be altered prior to execution by the query rewrite implementation to

retrieve (age = 40) where EMP.name = “Sam” and
EMP.name ! = “Bill”

At the current time, much of the POSTGRES rules system (PRS) as described
in [30] is operational, and there are three aspects of the design which we wish to
discuss in the next three subsections, namely,

complexity

absence of needed function

efficiency.

Then, we close with the second version of the POSTGRES rules system (PRS II) which
we are currently designing. This rules system is described in more detail in [31],
[32].

III.B Complexity
The first problem with PRS is that the implementation is exceedingly complex. It
is difficult to explain the marking mechanisms that cause rule wakeup even to a
sophisticated person. Moreover, some of us have an uneasy feeling that the imple-
mentation may not be quite correct. The fundamental problem can be illustrated
using the Joe–Fred example above. First, the rule must be awakened and run when-
ever Fred’s salary changes. This requires that one kind of marker be placed on the
salary of Fred. However, if Fred is given a new name, say Bill, then the rule must
be deleted and reinstalled. This requires a second kind of marker on the name of
Fred. Additionally, it is inappropriate to allow any update to Joe’s salary; hence, a
third kind of marker is required on that field. Furthermore, if Fred has not yet been
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hired, then the rule must take effect on the insertion of his record. This requires
a marker to be placed in the index for employee names. To support rules that deal
with ranges of values, for example,

always replace EMP (age = 40)
where EMP.salary > 50000 and EMP.salary < 60000

we require that two “stub” markers be placed in the index to denote the ends of the
scan. In addition, each intervening index record must also be marked. Ensuring
that all markers are correctly installed and appropriate actions taken when record
accesses and updates occur has been a challenge.

Another source of substantial complexity is the necessity to deal with priorities.
For example, consider a second rule:

always replace EMP (age = 50) where EMP.dept =
“shoe”

In this case, a highly paid shoe department employee would be given two different
ages. To alleviate this situation, the second rule could be given a higher priority,
e.g.,

always replace EMP (age = 50) where EMP.dept =
”shoe”

priority = 1

The default priority for rules is 0; hence, the first rule would set the age of highly
paid employees to 40 unless they were in the shoe department, in which case their
age would be set to 50 by the second rule. Priorities, of course, add complications
to the rules system. For example, if the second rule above is deleted, then the first
rule must be awakened to correct the ages of employees in the shoe department.

Another aspect of complexity is our decision to support both early and late
evaluation of rules. Consider the example rule that Joe makes the same salary as
Fred. This rule can be awakened when Fred gets a salary adjustment, or activation
can be delayed until a user requests the salary of Joe. Activation can be delayed
as long as possible in the second case, and we term this late evaluation while the
former case is termed early evaluation. This flexibility also results in substantial
extra complexity. For example, certain rules cannot be activated late. If salaries of
employees are indexed, then the rule that sets Joe’s salary to that of Fred must be
activated early because the index must be kept correct. Moreover, it is impossible
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for an early rule to read data that are written by a late rule. Hence, additional
restrictions must be imposed.

Getting PRS correct has entailed uncounted hours of discussion and consider-
able implementation complexity. The bottom line is that the implementation of a
rule system that is clean and simple to the user is, in fact, extremely complex and
tricky. Our personal feeling is that we should have embarked on a more modest
rules system.

III.C Absence of Needed Function
The definition of a useful rules system is one that can handle at least all of the
following problems in one integrated system:

support for views

protection

referential integrity

other integrity constraints.

We focus in this section on support for views. The query rewrite implementation
of a rules system should be able to translate queries on views into queries on real
objects. In addition, updates to views should be similarly mapped to updates on
real objects.

There are various special cases of view support that can be performed by PRS,
for example materialized views. Consider the following view definitions:

define view SHOE-EMP (name = EMP.name, age =
EMP.age, salary = EMP.salary)

where EMP.dept = “shoe”

The following two PRS rules specify a materialization of this view:

always append to SHOE-EMP (name = EMP.name,
salary = EMP.salary) where EMP.dept = “shoe”

always delete SHOE-EMP where SHOE-EMP.name
NOTIN {EMP.name where EMP.dept = “shoe”)

In this case, SHOE-EMP will always contain a correct materialization of the shoe
department employees, and queries can be directed to this materialization.

However, there seemed to be no way to support updates on views that are
not materialized. One of us has spent countless hours attempting to support this
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function through PRS and failed. Hence, inability to support operations provided
by conventional views is a major weakness of PRS.

III.D Implementation Efficiency
The current POSTGRES implementation uses markers on individual fields to sup-
port rule activation. The only escalation supported is to convert a collection of field
level markers to a single marker on the entire constructed type. Consequently, if a
rule covers a single instance, e.g.,

always replace EMP (salary = 1000) where EMP.name
= “Sam”

then a total of three markers will be set, one in the index, one on the salary field,
and one on the name field. Each marker is composed of

rule-id 6 bytes
priority 1 byte
marker-type 1 byte.

Consequently, the marker overhead for the rule is 24 bytes. Now consider a more
complex rule:

always replace EMP (salary = 1000) where EMP.dept
= “shoe”

If 1000 employees work in the shoe department, then 24K bytes of overhead will
be consumed in markers. The only other option is to escalate to a marker on the
entire constructed type, in which case the rule will be activated if any salary is
read or written and not just for employees in the shoe department. This will be
an overhead intensive option. Hence, for rules which cover many instances but not
a significant fraction of all instances, the POSTGRES implementation will not be
very space efficient.

We are considering several solutions to this problem. First, we have generalized
B+-trees to efficiently store interval data as well as point data. Such “segmented
B+-trees” are the subject of a separate paper [16]. This will remove the space
overhead in the index for the dominant form of access method. Second, to lower
the overhead on data records, we will probably implement markers at the physical
block level as well as at the instance and constructed type levels. The appropriate
extra granularities are currently under investigation.
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III.E The Second POSTGRES Rules System
Because of the inability of the current rules paradigm to support views and to a
lesser extent the fundamental complexity of the implementation, we are convert-
ing to a second POSTGRES rules system (PRS II). This rules system has much in
common with the first implementation, but returns to the traditional production
rule paradigm to obtain sufficient control to perform view updates correctly. This
section outlines our thinking, and a complete proposal appears in [32].

The production rule syntax we are using in PRS II has the form

ON event TO object
WHERE POSTQUEL-qualification

THEN DO POSTQUEL-command(s)

Here, event is RETRIEVE, REPLACE, DELETE, APPEND, UPDATE, NEW (i.e., re-
place or append) or old (i.e., delete or replace). Moreover, object is either the name
of a constructed type or constructed-type.column. POSTQUEL-qualification is a
normal qualification, with no additions or changes. Lastly, POSTQUEL-commands
is a set of POSTQUEL commands with the following two changes:

NEW, OLD, or CURRENT can appear instead of the
name of a constructed type in front of any attribute

refuse (target-list) is added as a new POSTQUEL command

In this notation, we would specify the “Fred-Joe” rule as

on NEW EMP.salary where EMP.name = “Fred”
then do

replace E (salary = CURRENT.salary)
using E in EMP
where E.name = “Joe”

on NEW EMP.salary where EMP.name = “Joe”
then do

refuse

Notice, that PRS II is less powerful than the “always” system because the Fred–Joe
rule requires two specifications instead of one.

PRS II has both a query rewrite implementation and a trigger implementation,
and it is an optimization decision which one to use as noted in [32]. For example,
consider the rule
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on RETRIEVE to SHOE-EMP
then do
retrieve (EMP.name, EMP.age, EMP.salary)

where EMP.dept = “shoe”

Any query utilizing such a rule, e.g.,

retrieve (SHOE-EMP.name) where SHOE-EMP.age
< 40

would be processed by the rewrite implementation to

retrieve (EMP.name) where EMP.age < 40 and
EMP.dept = “shoe”

As can be seen, this is identical to the query modification performed in relational
view processing techniques [24]. This rule could also be processed by the trigger-
ing system, in which case the rule would materialize the records in SHOE-EMP
iteratively.

Moreover, it is straightforward to support additional functionality, such as al-
lowing multiple queries in the definition of a view. Supporting materialized views
can be efficiently done by caching the action part of the above rule, i.e., executing
the command before a user requests evaluation. This corresponds to moving the
rule to early evaluation. Lastly, supporting views that are partly materialized and
partly specified as procedures as well as views that involve recursion appears fairly
simple. In [32], we present details on these extensions.

Consider the following collection of rules that support updates to SHOE-EMP:

on NEW SHOE-EMP
then do

append to EMP (name = NEW.name, salary =
NEW.salary)

on OLD SHOE-EMP
then do

delete EMP where EMP.name = OLD.name and
EMP.salary = OLD.salary

on update to SHOE-EMP
then do

replace EMP (name = NEW.name, salary =
NEW.salary)

where EMP.name = NEW.name
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If these rules are processed by the trigger implementation, then an update to SHOE-
EMP, e.g.,

replace SHOE-EMP (salary = 1000) where SHOE-
EMP.name = “Mike”

will be processed normally until it generates a collection of

[new-record, old-record]

pairs. At this point the triggering system can be activated to make appropriate up-
dates to underlying constructed types. Moreover, if a user wishes nonstandard view
update semantics, he can perform any particular actions he desires by changing the
action part of the above rules.

PRS II thereby allows a user to use the rules system to define semantics for
retrievals and updates to views. In fact, we expect to build a compiler that will
convert a higher level view notation into the needed collection of PRS II rules. In
addition, PRS II retains all the functionality of the first rules system, so protection,
alerters, integrity constraints, and arbitrary triggers are readily expressed. The only
disadvantage is that PRS II requires two rules to perform many tasks expressible as
a single PRS rule. To overcome this disadvantage, we will likely continue to support
the PRS syntax in addition to the PRS II syntax and compile PRS into PRS II support.

PRS II can be supported by the same implementation that we proposed for the
query rewrite implementation of PRS, namely marking instances in the system
catalogs. Moreover, the query rewrite algorithm is nearly the same as in the first
implementation. The triggering system can be supported by the same instance
markers as in PRS. In fact, the implementation is bit simpler because a couple
of the types of markers are not required. Because the implementation of PRS II is
so similar to our initial rules system, we expect to have the conversion completed
in the near future.

IV Storage System

IV.A Introduction
When considering the POSTGRES storage system, we were guided by a mission-
ary zeal to do something different. All current commercial systems use a storage
manager with a write-ahead log (WAL), and we felt that this technology was well un-
derstood. Moreover, the original INGRES prototype from the 1970’s used a similar
storage manager, and we had no desire to do another implementation.
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Hence, we seized on the idea of implementing a “no-overwrite” storage manager.
Using this technique, the old record remains in the database whenever an update
occurs, and serves the purpose normally performed by a write-ahead log. Conse-
quently, POSTGRES has no log in the conventional sense of the term. Instead the
POSTGRES log is simply 2 bits per transaction indicating whether each transaction
committed, aborted, or is in progress.

Two very nice features can be exploited in a no-overwrite system. First, aborting
a transaction can be instantaneous because one does not need to process the
log undoing the effects of updates; the previous records are readily available in
the database. More generally, to recover from a crash, one must abort all the
transactions in progress at the time of the crash. This process can be effectively
instantaneous in POSTGRES.

The second benefit of a no-overwrite storage manager is the possibility of time
travel. As noted earlier, a user can ask a historical query and POSTGRES will auto-
matically return information from the record valid at the correct time.

This storage manager should be contrasted with a conventional one where the
previous record is overwritten with a new one. In this case, a write-ahead log is
required to maintain the previous version of each record. There is no possibility
of time travel because the log cannot be queried since it is in a different format.
Moreover, the database must be restored to a consistent state when a crash occurs
by processing the log to undo any partially completed transactions. Hence, there is
no possibility of instantaneous crash recovery.

Clearly a no-overwrite storage manager is superior to a conventional one if it can
be implemented at comparable performance. There is a brief hand-wave argument
in [28] that alleges this might be the case. In our opinion, the argument hinges
around the existence of stable main memory. In the absence of stable memory, a
no-overwrite storage manager must force to disk at commit time all pages written
by a transaction. This is required because the effects of a committed transaction
must be durable in case a crash occurs and main memory is lost. A conventional
data manager, on the other hand, need only force to disk at commit time the log
pages for the transaction’s updates. Even if there are as many log pages as data
pages (a highly unlikely occurrence), the conventional storage manager is doing
sequential I/O to the log while a no-overwrite storage manager is doing random
I/O. Since sequential I/O is substantially faster than random I/O, the no-overwrite
solution is guaranteed to offer worse performance.

However, if stable main memory is present, then neither solution must force
pages to disk. In this environment, performance should be comparable. Hence,
with stable main memory it appears that a no-overwrite solution is competitive. As
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computer manufacturers offer some form of stable main memory, a no-overwrite
solution may become a viable storage option.

In designing the POSTGRES storage system, we were guided by two philosoph-
ical premises. First, we decided to make a clear distinction between current data
and historical data. We expected access patterns to be highly skewed toward cur-
rent records. In addition, queries to the archive might look very different from those
accessing current data. For both reasons, POSTGRES maintains two different phys-
ical collections of records, one for the current data and one for historical data, each
with its own indexes.

Second, our design assumes the existence of a randomly addressable archive
device on which historical records are placed. Our intuitive model for this archive
is an optical disk. Our design was purposely made consistent with an archive that
has a write-once-read-many (WORM) orientation. This characterizes many of the
optical disks on the market today.

In the next subsection, we indicate two problems with the POSTGRES design.
Then, in Section 1.5.3 we make additional comments on the storage manager.

IV.B Problems in the POSTGRES Design
There are at least two problems with our design. First, it is unstable under heavy
load. An asynchronous demon, known as vacuum cleaner, is responsible for moving
historical records from the magnetic disk structure holding the current records
to the archive where historical records remain. Under normal circumstances, the
magnetic disk portion of each constructed type is (say) only 1.1 times the minimum
possible size of the constructed type. Of course, the vacuum cleaner consumes CPU
and I/O resources running in background achieving this goal. However, if the load
on a POSTGRES database increases, then the vacuum cleaner may not get to run.
In this case, the magnetic disk portion of a constructed type will increase, and
performance will suffer because the execution engine must read historical records
on the magnetic disk during the (presumably frequent) processing of queries to the
current database. As a result, performance will degrade proportionally to the excess
size of the magnetic disk portion of the database. As load increases, the vacuum
cleaner gets less resources, and performance degrades as the size of the magnetic
disk database increases. This will ultimately result in a POSTGRES database going
into meltdown.

Obviously, the vacuum cleaner should be run in background if possible so that
it can consume resources at 2:00 A.M. when there is little other activity. However,
if there is consistent heavy load on a system, then the vacuum cleaner must be
scheduled at the same priority as other tasks, so the above instability does not occur.



550 The Implementation of POSTGRES

The bottom line is that scheduling the vacuum cleaner is a tricky optimization
problem.

The second comment which we wish to make is that future archive systems
are likely to be read/write, and rewritable optical disks have already appeared on
the market. Consequently, there is no reason for us to have restricted ourselves to
WORM technology. Certain POSTGRES assumptions were therefore unnecessary,
such as requiring the current portion of any constructed type to be on magnetic
disk.

IV.C Other Comments
Historical indexes will usually be on a combined key consisting of a time range
together with one or more keys from the record itself. Such two-dimensional in-
dexes can be stored using the technology of R-trees [15], R+-trees [14], or perhaps
in some new way. We are not particularly comfortable that good ways to index time
ranges have been found, and we encourage additional work in this area. A possible
approach is segmented R-trees which we are studying [16].

Another comment concerns POSTGRES support for time travel. There are many
tasks that are very difficult to express with our mechanisms. For example, the query
to find the time at which Sam’s salary increased from $5000 to $6000 is very tricky
in POSTQUEL.

A last comment is that time travel can be implemented with a conventional
transaction system using a write ahead log. For example, one need only have an
“archive” constructed type for each physical constructed type for which time travel
is desired. When a record is updated, its previous value is written in the archive with
the appropriate timestamps. If the transaction fails to commit, this archive insert
and the corresponding record update is unwound using a conventional log. Such an
implementation may well have substantial benefits, and we should have probably
considered such a possibility. In making storage system decisions, we were guided
by a missionary zeal to do something different than a conventional write ahead log
scheme. Hence, we may have overlooked other intriguing options.

V The POSTGRES Implementation

V.A Introduction
POSTGRES contains a fairly conventional parser, query optimizer, and execution
engine. Two aspects of the implementation deserve special mention,
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dynamic loading and the process structure
choice of implementation language

and we discuss each in turn.

V.B Dynamic Loading and Process Structure
POSTGRES assumes that data types, operators, and functions can be added and
subtracted dynamically, i.e., while the system is executing. Moreover, we have de-
signed the system so that it can accommodate a potentially very large number
of types and operators. Consequently, the user functions that support the imple-
mentation of a type must be dynamically loaded and unloaded. Hence, POSTGRES
maintains a cache of currently loaded functions and dynamically moves functions
into the cache and then ages them out of the cache. Moreover, the parser and op-
timizer run off of a main memory cache of information about types and operators.
Again this cache must be maintained by POSTGRES software. It would have been
much easier to assume that all types and operators were linked into the system
at POSTGRES initialization time and have required a user to reinstall POSTGRES
when he wished to add or drop types. Moreover, users of prototype software are not
running systems which cannot go down for rebooting. Hence, the function is not
essential.

Second, the rules system forces significant complexity on the design. A user can
add a rule such as

always retrieve (EMP.salary)
where EMP.name = “Joe”

In this case, his application process wishes to be notified of any salary adjustment
to Joe. Consider a second user who gives Joe a raise. The POSTGRES process that
actually does the adjustment will notice that a marker has been placed on the salary
field. However, in order to alert the first user, one of four things must happen.

1. POSTGRES could be designed as a single server process. In this case, within
the current process the first user’s query could simply be activated. However,
such a design is incompatible with running on a shared memory multipro-
cessor, where a so-called multiserver is required. Hence, this design was
discarded.

2. The POSTGRES process for the second user could run the first user’s query
and then connect to his application process to deliver results. This requires
that an application process be coded to expect communication from random
other processes. We felt this was too difficult to be a reasonable solution.
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3. The POSTGRES process for the second user could connect to the input socket
for the first user’s POSTGRES and deliver the query to be run. The first POST-
GRES would run the query and then send results to the user. This would
require careful synchronization of the input socket among multiple indepen-
dent command streams. Moreover, it would require the second POSTGRES
to know the portal name on which the first user’s rule was running.

4. The POSTGRES process for the second user could alert a special process
called the POSTMASTER. This process would in turn alert the process for
the first user where the query would be run and the results delivered to the
application process.

We have adopted the fourth design as the only one we thought was practical.
However, we have thereby constructed a process through which everybody must
channel communications. If the POSTMASTER crashes, then the whole POSTGRES
environment must be restarted. This is a handicap, but we could think of no better
solution. Moreover, there are a collection of system demons, including the vacuum
cleaner mentioned above, which need a place to run. In POSTGRES, they are run
as subprocesses managed by the POSTMASTER.

A last aspect of our design concerns the operating system process structure.
Currently, POSTGRES runs as one process for each active user. This was done as an
expedient to get a system operational as quickly as possible. We plan on converting
POSTGRES to use lightweight processes available in the operating systems we are
using. These include PRESTO for the Sequent Symmetry and threads in Version 4
of Sun/OS.

V.C Programming Language Used
At the beginning of the project, we were forced to make a commitment to a program-
ming language and machine environment. The machine was an easy one, since
SUN workstations were nearly omnipresent at Berkeley, and any other choice would
have been nonstandard. However, we were free to choose any language in which to
program. We considered the following:

C

C++
MODULA 2+
LISP

ADA

SMALLTALK.
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We dismissed SMALLTALK quickly because we felt it was too slow and compilers
were not readily available for a wide variety of platforms. We felt it desirable to keep
open the option of distributing our software widely. We felt ADA and MODULA 2+
offered limited advantages over C++ and were not widely used in the Berkeley envi-
ronment. Hence, obtaining pretrained programmers would have been a problem.
Lastly, we were not thrilled to use C, since INGRES had been coded in C and we were
anxious to choose a different language, if only for the sake of doing something dif-
ferent. At the time we started (10/85), there was not a stable C++ compiler, so we
did not seriously consider this option.

By a process of elimination, we decided to try writing POSTGRES in LISP. We
expected that it would be especially easy to write the optimizer and inference engine
in LISP, since both are mostly tree processing modules. Moreover, we were seduced
by AI claims of high programmer productivity for applications written in LISP.

We soon realized that parts of the system were more easily coded in C, for
example the buffer manager which moves 8K pages back and forth to the disk
and uses a modified LRU algorithm to control what pages are resident. Hence,
we adopted the policy that we would use both C and LISP and code modules of
POSTGRES in whichever language was most appropriate. By the time Version 1 was
operational, it contained about 17K lines in LISP and about 63K lines of C.

Our feeling is that the use of LISP has been a terrible mistake for several reasons.
First, current LISP environments are very large. To run a “nothing” program in LISP
requires about 3 mbytes of address space. Hence, POSTGRES exceeds 4 mbytes in
size, all but 1 mbyte is the LISP compiler, editor and assorted other nonrequired
(or even desired) functions. Hence, we suffer from a gigantic footprint. Second, a
DBMS never wants to stop when garbage collection happens. Any response time
sensitive program must therefore allocate and deallocate space manually, so that
garbage collection never happens during normal processing. Consequently, we
spent extra effort ensuring that LISP garbage collection is not used by POSTGRES.
Hence, this aspect of LISP, which improves programmer productivity, was not
available to us. Third, LISP execution is slow. As noted in the performance figures
in the next section, our LISP code is more than twice as slow as the comparable
C code. Of course, it is possible that we are not skilled LISP programmers or do
not know how to optimize the language; hence, our experience should be suitably
discounted.

However, none of these irritants was the real disaster. We have found that
debugging a two-language system is extremely difficult. The C debugger, of course,
knows nothing about LISP while the LISP debugger knows nothing about C. As a
result, we have found debugging POSTGRES to be a painful and frustrating task.
Memory allocation bugs were among the most painful since LISP and C have very
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different models of dynamic memory. Of course, it is true that the optimizer and
inference engine were easier to code in LISP. Hence, we saved some time there.
However, this was more than compensated by the requirement of writing a lot of
utility code that would convert LISP data structures into C and vice versa. In fact, our
assessment is that the primary productivity increases in LISP come from the nice
programming environment (e.g., interactive debugger, nice workstation tools, etc.)
and not from the language itself. Hence, we would encourage the implementors
of other programming languages to study the LISP environment carefully and
implement the better ideas.

As a result we have just finished moving our 17K lines of LISP to C to avoid the
debugging hassle and secondarily to avoid the performance and footprint problems
in LISP. Our experience with LISP and two-language systems has not been positive,
and we would caution others not to follow in our footsteps.

VI Status and Performance
At the current time (October 1989) the LISP-less Version 1 of POSTGRES has been
in the hands of users for a short time, and we are shaking the last bugs out of the
C port. In addition, we have designed all of the additional functionality to appear
in Version 2. The characteristics of Version 1 are the following.

1) The query language POSTQUEL runs except for aggregates, functions, and set
operators.

2) All object management capabilities are operational except POSTQUEL types.
3) Some support for rules exists. Specifically, replace always commands are

operational; however, the implementation currently only supports early evaluation
and only with markers on whole columns.

4) The storage system is complete. However, we are taking delivery shortly on
an optical disk jukebox, and so the archive is currently not implemented on a real
optical disk. Moreover, R-trees to support time travel are not yet implemented.

5) Transaction management runs.
The focus has been on getting the function in POSTGRES to run. So far, only

minimal attention has been paid in performance. Figure 1 shows assorted queries
in the Wisconsin benchmark and gives results for three systems running on a Sun
3/280. All numbers are run on a nonquiescent system so there may be significant
fluctuations. The first two are the C and LISP versions of POSTGRES. These are
functionally identical systems with the same algorithms embodied in the code. The
footprint of the LISP system is about 4.5 megabytes while the C system is about I
megabyte. For comparison purposes we also include the performance numbers for
the commercial version of INGRES in the third column. As can be seen, the LISP
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POSTGRES POSTGRES INGRES
C-based LISP-based RTI 5.0

nullqry 0.4 0.3 0.2

scan 10Ktups 36. 180. 5.2

retrieve into query
1% selectivity

38. n/a 9.9

append to 10Ktup 4.7 180. 0.4

delete from 10Ktup 37. n/a 5.7

replace in 10Ktup 42. 280. 5.7

Figure 1 Comparison of INGRES and POSTGRES (times are listed in seconds per query).

system is several times slower than the C system. In various other benchmarks, we
have never seen the C system less than twice as fast as the LISP system. Moreover,
the C system is several times slower than a commercial system. The public domain
version of INGRES that we worked on the mid 1970’s is about a factor of two slower
than commercial INGRES. Hence, it appears that POSTGRES is about one-half the
speed of the original INGRES. There are substantial inefficiencies in POSTGRES,
especially in the code which checks that a retrieved record is valid. We expect that
subsequent tuning will get us somewhere in between the performance of public
domain INGRES and RTI INGRES.

VII Conclusions
In this section, we summarize our opinions about certain aspects of the design
of POSTGRES. First, we are uneasy about the complexity of the POSTGRES data
model. The comments in Section II all contain suggestions to make it more com-
plex. Moreover, other research teams have tended to construct even more complex
data models, e.g., EXTRA [9]. Consequently, a simple concept such as referential
integrity, which can be done in only one way in existing commercial systems, can be
done in several different ways in POSTGRES. For example, the user can implement
an abstract data type and then do the required checking in the input conversion
routine. Alternately, he can use a rule in the POSTGRES rules system. Lastly, he
can use a POSTQUEL function for the field that corresponds to the foreign key
in a current relational system. There are complex performance tradeoffs between
these three solutions, and a decision must be made by a sophisticated application
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designer. We fear that real users, who have a hard time with database design for ex-
isting relational systems, will find the next-generation data models, such as the one
in POSTGRES, impossibly complex. The problem is that applications exist where
each representation is the only acceptable one. The demand for wider application
of database technology ensures that vendors will produce systems with these more
complex data models.

Another source of uneasiness is the fact that rules and POSTQUEL functions
have substantial overlap in function. For example, a POSTQUEL function can be
simulated by one rule per record, albeit at some performance penalty. On the other
hand, all rules, except retrieve always commands, can be alternately implemented
using POSTQUEL functions. We expect to merge the two concepts in Version 2, and
our proposal appears in [32].

In the areas of rules and storage management, we are basically satisfied with
POSTGRES capabilities. The syntax of the rule system should be changed as noted
in Section III; however, this is not a significant issue and it should be available
easily in Version 2. The storage manager has been quite simple to implement.
Crash recovery code has been easy to write because the only routine which must
be carefully written is the vacuum cleaner. Moreover, access to past history seems
to be a highly desirable capability.

Furthermore, the POSTGRES implementation certainly erred in the direction
of excessive sophistication. For example, new types and functions can be added
on-the-fly without recompiling POSTGRES. It would have been much simpler to
construct a system that required recompilation to add a new type. Second, we
have implemented a complete transaction system in Version 1. Other prototypes
tend to assume a single user environment. In these and many other ways, we
strove for substantial generality; however, the net effect has been to slow down the
implementation effort and make the POSTGRES internals much more complex.
As a result, POSTGRES has taken us considerably longer to build than the original
version of INGRES. One could call this the “second system” effect. It was essential
that POSTGRES be more usable than the original INGRES prototype in order for us
to feel like we were making a contribution.

A last comment concerns technology transfer to commercial systems. It appears
that the process is substantially accelerating. For example, the relational model was
constructed in 1970, first prototypes of implementations appeared around 1976–
1977, commercial versions first surfaced around 1981 and popularity of relational
systems in the marketplace occurred around 1985. Hence, there was a 15 year
period during which the ideas were transferred to commercial systems. Most of the
ideas in POSTGRES and in other next-generation systems date from 1984 or later.
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Commercial systems embodying some of these ideas have already appeared and
major vendors are expected to have advanced systems within the next year or two.
Hence, the 15 year period appears to have shrunk to less than half that amount. This
acceleration is impressive, but it will lead to rather short lifetimes for the current
collection of prototypes.
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The currently operational (March 1976) version of the INGRES database manage-
ment system is described. This multiuser system gives a relational view of data,
supports two high level nonprocedural data sublanguages, and runs as a collection
of user processes on top of the UNIX operating system for Digital Equipment Corpo-
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one command language in a general purpose programming language, (3) the algo-
rithms implemented to process interactions, (4) the access methods implemented,
(5) the concurrency and recovery control currently provided, and (6) the data struc-
tures used for system catalogs and the role of the database administrator.

Also discussed are (1) support for integrity constraints (which is only partly
operational), (2) the not yet supported features concerning views and protection,
and (3) future plans concerning the system.

Key Words and Phrases: relational database, nonprocedural language, query
language, data sublanguage, data organization, query decomposition, database
optimization, data integrity, protection, concurrency
CR Categories: 3.50, 3.70, 4.22, 4.33, 4.34

1 Introduction
INGRES (Interactive Graphics and Retrieval System) is a relational database system
which is implemented on top of the UNIX operating system developed at Bell Tele-
phone Laboratories [22] for Digital Equipment Corporation PDP 11/40, 11/45, and
11/70 computer systems. The implementation of INGRES is primarily programmed
in C, a high level language in which UNIX itself is written. Parsing is done with the
assistance of YACC, a compiler-compiler available on UNIX [19].

The advantages of a relational model for database management systems have
been extensively discussed in the literature [7, 10, 11] and hardly require further
elaboration. In choosing the relational model, we were particularly motivated by
(a) the high degree of data independence that such a model affords, and (b) the
possibility of providing a high level and entirely procedure free facility for data def-
inition, retrieval, update, access control, support of views, and integrity verification.

1.1 Aspects Described in This Paper
In this paper we describe the design decisions made in INGRES. In particular we
stress the design and implementation of: (a) the system process structure (see Sec-
tion 2 for a discussion of this UNIX notion); (b) the embedding of all INGRES com-
mands in the general purpose programming language C; (c) the access methods
implemented; (d) the catalog structure and the role of the database administrator;
(e) support for views, protection, and integrity constraints; (f) the decomposition
procedure implemented; (g) implementation of updates and consistency of sec-
ondary indices; (h) recovery and concurrency control.

In Section 1.2 we briefly describe the primary query language supported, QUEL,
and the utility commands accepted by the current system. The second user inter-
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face, CUPID, is a graphics oriented, casual user language which is also operational
[20, 21] but not discussed in this paper. In Section 1.3 we describe the EQUEL (Em-
bedded QUEL) precompiler, which allows the substitution of a user supplied C pro-
gram for the “front end” process. This precompiler has the effect of embedding all
of INGRES in the general purpose programming language C. In Section 1.4 a few
comments on QUEL and EQUEL are given.

In Section 2 we describe the relevant factors in the UNIX environment which
have affected our design decisions. Moreover, we indicate the structure of the four
processes into which INGRES is divided and the reasoning behind the choices
implemented.

In Section 3 we indicate the catalog (system) relations which exist and the
role of the database administrator with respect to all relations in a database. The
implemented access methods, their calling conventions, and, where appropriate,
the actual layout of data pages in secondary storage are also presented.

Sections 4, 5, and 6 discuss respectively the various functions of each of the three
“core” processes in the system. Also discussed are the design and implementation
strategy of each process. Finally, Section 7 draws conclusions, suggests future
extensions, and indicates the nature of the current applications run on INGRES.

Except where noted to the contrary, this paper describes the INGRES system
operational in March 1976.

1.2 QUEL and the Other INGRES Utility Commands
QUEL (QUEry Language) has points in common with Data Language/ALPHA [8],
SQUARE [3], and SEQUEL [4] in that it is a complete query language which frees the
programmer from concern for how data structures are implemented and what algo-
rithms are operating on stored data [9]. As such it facilitates a considerable degree
of data independence [24].

The QUEL examples in this section all concern the following relations.

EMPLOYEE (NAME, DEPT, SALARY, MANAGER, AGE)
DEPT (DEPT, FLOOR#)

A QUEL interaction includes at least one RANGE statement of the form

RANGE OF variable-list IS relation-name

The purpose of this statement is to specify the relation over which each variable
ranges. The variable-list portion of a RANGE statement declares variables which
will be used as arguments for tuples. These are called tuple variables.

An interaction also includes one or more statements of the form
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Command [result-name] (target-list)
[WHERE Qualification]

Here Command is either RETRIEVE, APPEND, REPLACE, or DELETE. For RE-
TRIEVE and APPEND, result-name is the name of the relation which qualifying
tuples will be retrieved into or appended to. For REPLACE and DELETE, result-
name is the name of a tuple variable which, through the qualification, identifies
tuples to be modified or deleted. The target-list is a list of the form

result-domain = QUEL Function . . . .

Here the result-domains are domain names in the result relation which are to be
assigned the values of the corresponding functions.

The following suggest valid QUEL interactions. A complete description of the
language is presented in [15].

Example 1 Compute salary divided by age-18 for employee Jones.

RANGE OF E IS EMPLOYEE
RETRIEVE INTO W
(COMP = E.SALARY/(E.AGE-18))
WHERE E.NAME = “Jones”

Here E is a tuple variable which ranges over the EMPLOYEE relation, and all tuples
in that relation are found which satisfy the qualification E.NAME = “Jones.” The
result of the query is a new relation W, which has a single domain COMP that has
been calculated for each qualifying tuple.

If the result relation is omitted, qualifying tuples are written in display format
on the user’s terminal or returned to a calling program.

Example 2 Insert the tuple (Jackson,candy,13000,Baker,30) into EMPLOYEE.

APPEND TO EMPLOYEE(NAME = “Jackson”, DEPT = “candy”,
SALARY = 13000, MGR = “Baker”, AGE = 30)

Here the result relation EMPLOYEE is modified by adding the indicated tuple to
the relation. Domains which are not specified default to zero for numeric domains
and null for character strings. A shortcoming of the current implemenation is that
0 is not distinguished from “no value” for numeric domains.

Example 3 Fire everybody on the first floor.
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RANGE OF E IS EMPLOYEE
RANGE OF D IS DEPT
DELETE E WHERE E.DEPT = D.DEPT

AND D.FLOOR# = 1

Here E specifies that the EMPLOYEE relation is to be modified. All tuples are to be
removed which have a value for DEPT which is the same as some department on
the first floor.

Example 4 Give a 10-percent raise to Jones if he works on the first floor.

RANGE OF E IS EMPLOYEE
RANGE OF D IS DEPT
REPLACE E(SALARY = 1.1*E.SALARY)
WHERE E.NAME = “Jones” AND

E.DEPT = D.DEPT AND D.FLOOR# = I

Here E.SALARY is to be replaced by 1.1*E.SALARY for those tuples in EMPLOYEE
where the qualification is true.

In addition to the above QUEL commands, INGRES supports a variety of utility
commands. These utility commands can be classified into seven major categories.

(a) Invocation of INGRES:
INGRES data-base-name

This command executed from UNIX “logs in” a user to a given database. (A database
is simply a named collection of relations with a given database administrator who
has powers not available to ordinary users.) Thereafter the user may issue all other
commands (except those executed directly from UNIX) within the environment of
the invoked database.

(b) Creation and destruction of databases:
CREATEDB data-base-name
DESTROYDB data-base-name

These two commands are called from UNIX. The invoker of CREATEDB must be
authorized to create databases (in a manner to be described presently), and he auto-
matically becomes the database administrator. DESTROYDB successfully destroys
a database only if invoked by the database administrator.
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(c) Creation and destruction of relations:
CREATE relname(domain-name IS format, domain-name IS format, . . . )
DESTROY relname

These commands create and destroy relations within the current database. The
invoker of the CREATE command becomes the “owner” of the relation created. A
user may only destroy a relation that he owns. The current formats accepted by
INGRES are 1-, 2-, and 4-byte integers, 4- and 8-byte floating point numbers, and 1-
to 255-byte fixed length ASCII character strings.

(d) Bulk copy of data:
COPY relname(domain-name IS format, domain-name IS format, . . . )

direction “file-name”
PRINT relname

The command COPY transfers an entire relation to or from a UNIX file whose
name is “filename.” Direction is either TO or FROM. The format for each domain
is a description of how it appears (or is to appear) in the UNIX file. The relation
relname must exist and have domain names identical to the ones appearing in the
COPY command. However, the formats need not agree and COPY will automatically
convert data types. Support is also provided for dummy and variable length fields
in a UNIX file.

PRINT copies a relation onto the user’s terminal, formatting it as a report. In
this sense it is stylized version of COPY.

(e) Storage structure modification:
MODIFY relname TO storage-structure ON (key1, key2, . . . )
INDEX ON relname IS indexname(key1, key2, . . . )

The MODIFY command changes the storage structure of a relation from one access
method to another. The five access methods currently supported are discussed in
Section 3. The indicated keys are domains in relname which are concatenated left
to right to form a combined key which is used in the organization of tuples in all
but one of the access methods. Only the owner of a relation may modify its storage
structure.

INDEX creates a secondary index for a relation. It has domains of key1, key2,
. . . , pointer. The domain “pointer” is the unique identifier of a tuple in the indexed
relation having the given values for key1, key2, . . . . An index named AGEINDEX
for EMPLOYEE might be the following binary relation (assuming that there are six
tuples in EMPLOYEE with appropriate names and ages).
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Age Pointer

25 identifier for Smith’s tuple

32 identifier for Jones’s tuple

AGEINDEX 36 identifier for Adams’s tuple

29 identifier for Johnson’s tuple

47 identifier for Baker’s tuple

58 identifier for Harding’s tuple

The relation indexname is in turn treated and accessed just like any other
relation, except it is automatically updated when the relation it indexes is updated.
Naturally, only the owner of a relation may create and destroy secondary indexes
for it.

(f) Consistency and integrity control:
INTEGRITY CONSTRAINT is qualification
INTEGRITY CONSTRAINT LIST relname
INTEGRITY CONSTRAINT OFF relname
INTEGRITY CONSTRAINT OFF (integer, . . . , integer)
RESTORE data-base-name

The first four commands support the insertion, listing, deletion, and selective
deletion of integrity constraints which are to be enforced for all interactions with a
relation. The mechanism for handling this enforcement is discussed in Section 4.
The last command restores a database to a consistent state after a system crash.
It must be executed from UNIX, and its operation is discussed in Section 6. The
RESTORE command is only available to the database administrator.

(g) Miscellaneous:
HELP [relname or manual-section]
SAVE relname UNTIL expiration-date
PURGE data-base-name

HELP provides information about the system or the database invoked. When
called with an optional argument which is a command name, HELP returns the
appropriate page from the INGRES reference manual [31]. When called with a rela-
tion name as an argument, it returns all information about that relation. With no
argument at all, it returns information about all relations in the current database.
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SAVE is the mechanism by which a user can declare his intention to keep a
relation until a specified time. PURGE is a UNIX command which can be invoked
by a database administrator to delete all relations whose “expiration-dates” have
passed. This should be done when space in a database is exhausted. (The database
administrator can also remove any relations from his database using the DESTROY
command, regardless of who their owners are.)

Two comments should be noted at this time.
(a) The system currently accepts the language specified as QUEL1 in [15]; exten-

sion is in progress to accept QUELn. (b) The system currently does not accept views or
protection statements. Although the algorithms have been specified [25, 27], they
are not yet operational. For this reason no syntax for these statements is given in
this section; however the subject is discussed further in Section 4.

1.3 EQUEL
Although QUEL alone provides the flexibility for many data management require-
ments, there are applications which require a customized user interface in place
of the QUEL language. For this as well as other reasons, it is often useful to have the
flexibility of a general purpose programming language in addition to the database
facilities of QUEL. To this end, a new language, EQUEL (Embedded QUEL), which con-
sists of QUEL embedded in the general purpose programming language C, has been
implemented.

In the design of EQUEL the following goals were set: (a) The new language must
have the full capabilities of both C and QUEL. (b) The C program should have the
capability for processing each tuple individually, thereby satisfying the qualifica-
tion in a RETRIEVE statement. (This is the “piped” return facility described in Data
Language/ALPHA [8].)

With these goals in mind, EQUEL was defined as follows:

(a) Any C language statement is a valid EQUEL statement.

(b) Any QUEL statement (or INGRES utility command) is a valid EQUEL statement
as long as it is prefixed by two number signs (##).

(c) C program variables may be used anywhere in QUEL statements except as
command names. The declaration statements of C variables used in this
manner must also be prefixed by double number signs.

(d) RETRIEVE statements without a result relation have the form

RETRIEVE (target-list)
[WHERE qualification]
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##{
C-block
##}

which results in the C-block being executed once for each qualifying tuple.

Two short examples illustrate EQUEL syntax.

Example 5 The following program implements a small front end to INGRES which performs
only one query. It reads in the name of an employee and prints out the employee’s
salary in a suitable format. It continues to do this as long as there are names to be
read in. The functions READ and PRINT have the obvious meaning.

main()
{
## char EMPNAME[20];
## int SAL;
while (READ(EMPNAME))

{
## RANGE OF X IS EMP
## RETRIEVE (SAL = X.SALARY)
## WHERE X.NAME = EMPNAME

##{
PRINT(“The salary of”, EMPNAME, “is”, SAL);
##}

}
}

In this example the C variable EMPNAME is used in the qualification of the QUEL

statement, and for each qualifying tuple the C variable SAL is set to the appropriate
value and then the PRINT statement is executed.

Example 6 Read in a relation name and two domain names. Then for each of a collection of
values which the second domain is to assume, do some processing on all values
which the first domain assumes. (We assume the function PROCESS exists and has
the obvious meaning.) A more elaborate version of this program could serve as a
simple report generator.

main()
{
## int VALUE;
## char RELNAME[13], DOMNAME[13], DOMVAL[80];
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## char DOMNAME 2[13];
READ(RELNAME);
READ(DOMNAME);
READ(DOMNAME 2);
## RANGE OF X IS RELNAME
while (READ(DOMVAL))

{
## RETRIEVE (VALUE= X.DOMNAME)
## WHERE X.DOMNAME 2 = DOMVAL

##{
PROCESS(VALUE);
##}

}
}

Any RANGE declaration (in this case the one for X) is assumed by INGRES to hold
until redefined. Hence only one RANGE statement is required, regardless of the
number of times the RETRIEVE statement is executed. Note clearly that anything
except the name of an INGRES command can be a C variable. In the above example
RELNAME is a C variable used as a relation name, while DOMNAME and DOMNAME 2
are used as domain names.

1.4 Comments on QUEL and EQUEL
In this section a few remarks are made indicating differences between QUEL and
EQUEL and selected other proposed data sublanguages and embedded data sub-
languages.

QUEL borrows much from Data Language/ALPHA. The primary differences are:
(a) Arithmetic is provided in QUEL; Data Language/ALPHA suggests reliance on a host
language for this feature. (b) No quantifiers are present in QUEL. This results in a
consistent semantic interpretation of the language in terms of functions on the
crossproduct of the relations declared in the RANGE statements. Hence, QUEL is
considered by its designers to be a language based on functions and not on a first
order predicate calculus. (c) More powerful aggregation capabilities are provided
in QUEL.

The latest version of SEQUEL [2] has grown rather close to QUEL. The reader
is directed to Example 1(b) of [2], which suggests a variant of the QUEL syntax.
The main differences between QUEL and SEQUEL appear to be: (a) SEQUEL allows
statements with no tuple variables when possible using a block oriented notation.
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(b) The aggregation facilities of SEQUEL appear to be different from those defined in
QUEL.

System R [2] contains a proposed interface between SEQUEL and PL/1 or other
host language. This interface differs substantially from EQUEL and contains explicit
cursors and variable binding. Both notions are implicit in EQUEL. The interested
reader should contrast the two different approaches to providing an embedded
data sublanguage.

2 The INGRES Process Structure
INGRES can be invoked in two ways: First, it can be directly invoked from UNIX
by executing INGRES database-name; second, it can be invoked by executing a
program written using the EQUEL precompiler. We discuss each in turn and then
comment briefly on why two mechanisms exist. Before proceeding, however, a few
details concerning UNIX must be introduced.

2.1 The UNIX Environment
Two points concerning UNIX are worthy of mention in this section.

(a) The UNIX file system. UNIX supports a tree structured file system similar to
that of MULTICS. Each file is either a directory (containing references to descendant
files in the file system) or a data file. Each file is divided physically into 512-byte
blocks (pages). In response to a read request, UNIX moves one or more pages from
secondary memory to UNIX core buffers and then returns to the user the actual byte
string desired. If the same page is referenced again (by the same or another user)
while it is still in a core buffer, no disk I/O takes place.

It is important to note that UNIX pages data from the file system into and out
of system buffers using a “least recently used” replacement algorithm. In this way
the entire file system is managed as a large virtual store.

The INGRES designers believe that a database system should appear as a user
job to UNIX. (Otherwise, the system would operate on a nonstandard UNIX and
become less portable.) Moreover the designers believe that UNIX should manage
the system buffers for the mix of jobs being run. Consequently, INGRES contains
no facilities to do its own memory management.

(b) The UNIN process structure. A process in UNIX is an address space (64K
bytes or less on an 11/40, 128K bytes or less on an 11/45 or 11/70) which is as-
sociated with a user-id and is the unit of work scheduled by the UNIX scheduler.
Processes may “fork” subprocesses; consequently a parent process can be the root
of a process subtree. Furthermore, a process can request that UNIX execute a file
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Figure 1 INGRES process structure

in a descendant process. Such processes may communicate with each other via an
interprocess communication facility called “pipes.” A pipe may be declared as a
one direction communication link which is written into by one process and read
by a second one. UNIX maintains synchronization of pipes so no messages are lost.
Each process has a “standard input device” and a “standard output device.” These
are usually the user’s terminal, but may be redirected by the user to be files, pipes
to other processes, or other devices.

Last, UNIX provides a facility for processes executing reentrant code to share
procedure segments if possible. INGRES takes advantage of this facility so the core
space overhead of multiple concurrent users is only that required by data segments.

2.2 Invocation from UNIX
Issuing INGRES as a UNIX command causes the process structure shown in Figure 1
to be created. In this section the functions in the four processes will be indicated.
The justification of this particular structure is given in Section 2.4.

Process 1 is an interactive terminal monitor which allows the user to formulate,
print, edit, and execute collections of INGRES commands. It maintains a workspace
with which the user interacts until he is satisfied with his interaction. The contents
of this workspace are passed down pipe A as a string of ASCII characters when exe-
cution is desired. The set of commands accepted by the current terminal monitor
is indicated in [31].

As noted above, UNIX allows a user to alter the standard input and output devices
for his processes when executing a command. As a result the invoker of INGRES may
direct the terminal monitor to take input from a user file (in which case he runs a
“canned” collection of interactions) and direct output to another device (such as
the line printer) or file.

Process 2 contains a lexical analyzer, a parser, query modification routines
for integrity control (and, in the future, support of views and protection), and
concurrency control. Because of size constraints, however, the integrity control



2 The INGRES Process Structure 573

routines are not in the currently released system. When process 2 finishes, it passes
a string of tokens to process 3 through pipe B. Process 2 is discussed in Section 4.

Process 3 accepts this token string and contains execution routines for the
commands RETRIEVE, REPLACE, DELETE, and APPEND. Any update is turned into
a RETRIEVE command to isolate tuples to be changed. Revised copies of modified
tuples are spooled into a special file. This file is then processed by a “deferred
update processor” in process 4, which is discussed in Section 6.

Basically, process 3 performs two functions for RETRIEVE commands. (a) A
multivariable query is decomposed into a sequence of interactions involving only a
single variable. (b) A one-variable query is executed by a one-variable query proces-
sor (OVQP). The OVQP in turn performs its function by making calls on the access
methods. These two functions are discussed in Section 5; the access methods are
indicated in Section 3.

All code to support utility commands (CREATE, DESTROY, INDEX, etc.) resides
in process 4. Process 3 simply passes to process 4 any commands which process 4
will execute. Process 4 is organized as a collection of overlays which accomplish the
various functions. Some of these functions are discussed in Section 6.

Error messages are passed back through pipes D, E, and F to process 1, which
returns them to the user. If the command is a RETRIEVE with no result relation
specified, process 3 returns qualifying tuples in a stylized format directly to the
“standard output device” of process 1. Unless redirected, this is the user’s terminal.

2.3 Invocation from EQUEL
We now turn to the operation of INGRES when invoked by code from the pre-
compiler.

In order to implement EQUEL, a translator (precompiler) was written to convert
an EQUEL program into a valid C program with QUEL statements converted to ap-
propriate C code and calls to INGRES. The resulting C program is then compiled
by the normal C compiler, producing an executable module. Moreover, when an
EQUEL program is run, the executable module produced by the C compiler is used
as the front end process in place of the interactive terminal monitor, as noted in
Figure 2.

During execution of the front end program, database requests (QUEL statements
in the EQUEL program) are passed through pipe A and processed by INGRES. Note
that unparsed ASCII strings are passed to process 2; the rationale behind this
decision is given in [1]. If tuples must be returned for tuple at a time processing,
then they are returned through a special data pipe set up between process 3 and the
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C program. A condition code is also returned through pipe F to indicate success or
the type of error encountered.

The functions performed by the EQUEL translator are discussed in detail in [1].

2.4 Comments on the Process Structure
The process structure shown in Figures 1 and 2 is the fourth different process
structure implemented. The following considerations suggested this final choice:

(a) Address space limitations. To run on an 11/40, the 64K address space limi-
tation must be adhered to. Processes 2 and 3 are essentially their maximum size;
hence they cannot be combined. The code in process 4 is in several overlays because
of size constraints.

Were a large address space available, it is likely that processes 2, 3, and 4
would be combined into a single large process. However, the necessity of 3 “core”
processes should not degrade performance substantially for the following reasons.

If one large process were resident in main memory, there would be no necessity
of swapping code. However, were enough real memory available (∼300K bytes) on
a UNIX system to hold processes 2 and 3 and all overlays of process 4, no swapping
of code would necessarily take place either. Of course, this option is possible only
on an 11/70.

On the other hand, suppose one large process was paged into and out of main
memory by an operating system and hardware which supported a virtual memory.
It is felt that under such conditions page faults would generate I/O activity at
approximately the same rate as the swapping/overlaying of processes in INGRES
(assuming the same amount of real memory was available in both cases).

Consequently the only sources of overhead that appear to result from multiple
processes are the following: (1) Reading or writing pipes require system calls which
are considerably more expensive than subroutine calls (which could be used in a
single-process system). There are at least eight such system calls needed to execute
an INGRES command. (2) Extra code must be executed to format information for
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transmission on pipes. For example, one cannot pass a pointer to a data structure
through a pipe; one must linearize and pass the whole structure.

(b) Simple control flow. The grouping of functions into processes was motivated
by the desire for simple control flow. Commands are passed only to the right; data
and errors only to the left. Process 3 must issue commands to various overlays in
process 4; therefore, it was placed to the left of process 4. Naturally, the parser must
precede process 3.

Previous process structures had a more complex interconnection of processes.
This made synchronization and debugging much harder.

The structure of process 4 stemmed from a desire to overlay little-used code in
a single process. The alternative would have been to create additional processes 5,
6, and 7 (and their associated pipes), which would be quiescent most of the time.
This would have required added space in UNIX core tables for no real advantage.

The processes are all synchronized (i.e. each waits for an error return from the
next process to the right before continuing to accept input from the process to
the left), simplifying the flow of control. Moreover, in many instances the various
processes must be synchronized. Future versions of INGRES may attempt to ex-
ploit parallelism where possible. The performance payoff of such parallelism is
unknown at the present time.

(c) Isolation of the front end process. For reasons of protection the C program
which replaces the terminal monitor as a front end must run with a user-id different
from that of INGRES. Otherwise it could tamper directly with data managed by
INGRES. Hence, it must be either overlayed into a process or run in its own process.
The latter was chosen for efficiency and convenience.

(d) Rationale for two process structures. The interactive terminal monitor could
have been written in EQUEL. Such a strategy would have avoided the existence of
two process structures which differ only in the treatment of the data pipe. Since
the terminal monitor was written prior to the existence of EQUEL, this option could
not be followed. Rewriting the terminal monitor in EQUEL is not considered a high
priority task given current resources. Moreover, an EQUEL monitor would be slightly
slower because qualifying tuples would be returned to the calling program and then
displayed rather than being displayed directly by process 3.

3 Data Structures and Access Methods
We begin this section with a discussion of the files that INGRES manipulates and
their contents. Then we indicate the five possible storage structures (file formats)
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for relations. Finally we sketch the access methods language used to interface
uniformly to the available formats.

3.1 The INGRES File Structure
Figure 3 indicates the subtree of the UNIX file system that INGRES manipulates.
The root of this subtree is a directory made for the UNIX user “INGRES.” (When
the INGRES system is initially installed such a user must be created. This user is
known as the “superuser” because of the powers available to him. This subject
is discussed further in [28].) This root has six descendant directories. The AUX
directory has descendant files containing tables which control the spawning of
processes (shown in Figures 1 and 2) and an authorization list of users who are
allowed to create databases. Only the INGRES superuser may modify these files (by
using the UNIX editor). BIN and SOURCE are directories indicating descendant files
of respectively object and source code. TMP has descendants which are temporary
files for the workspaces used by the interactive terminal monitor. DOC is the root
of a subtree with system documentation and the reference manual. Last, there
is a directory entry in DATADIR for each database that exists in INGRES. These
directories contain the database files in a given database as descendants.

These database files are of four types:
(a) Administration file. This contains the user-id of the database administrator

(DBA) and initialization information.
(b) Catalog (system) relations. These relations have predefined names and are

created for every database. They are owned by the DBA and constitute the system
catalogs. They may be queried by a knowledgeable user issuing RETRIEVE state-
ments; however, they may be updated only by the INGRES utility commands (or
directly by the INGRES superuser in an emergency). (When protection statements
are implemented the DBA will be able to selectively restrict RETRIEVE access to
these relations if he wishes.) The form and content of some of these relations will
be discussed presently.

(c) DBA relations. These are relations owned by the DBA and are shared in that
any user may access them. When protection is implemented the DBA can “autho-
rize” shared use of these relations by inserting protection predicates (which will be
in one of the system relations and may be unique for each user) and deauthorize
use by removing such predicates. This mechanism is discussed in [28].

(d) Other relations. These are relations created by other users (by RETRIEVE
INTO W or CREATE) and are not shared.

Three comments should be made at this time.
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(a) The DBA has the following powers not available to ordinary users: the ability
to create shared relations and to specify access control for them; the ability to
run PURGE; the ability to destroy any relations in his database (except the system
catalogs).

This system allows “one-level sharing” in that only the DBA has these powers,
and he cannot delegate any of them to others (as in the file systems of most time
sharing systems). This strategy was implemented for three reasons: (1) The need for
added generality was not perceived. Moreover, added generality would have created
tedious problems (such as making revocation of access privileges nontrivial). (2) It
seems appropriate to entrust to the DBA the duty (and power) to resolve the policy
decision which must be made when space is exhausted and some relations must be
destroyed or archived. This policy decision becomes much harder (or impossible)
if a database is not in the control of one user. (3) Someone must be entrusted with
the policy decision concerning which relations are physically stored and which are
defined as “views.” This “database design” problem is best centralized in a single
DBA.
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(b) Except for the single administration file in each database, every file is treated
as a relation. Storing system catalogs as relations has the following advantages:
(1) Code is economized by sharing routines for accessing both catalog and data
relations. (2) Since several storage structures are supported for accessing data
relations quickly and flexibly under various interaction mixes, these same storage
choices may be utilized to enhance access to catalog information. (3) The ability to
execute QUEL statements to examine (and patch) system relations where necessary
has greatly aided system debugging.

(c) Each relation is stored in a separate file, i.e. no attempt is made to “cluster”
tuples from different relations which may be accessed together on the same or on
a nearby page.

Note clearly that this clustering is analogous to DBTG systems in declaring a
record type to be accessed via a set type which associates records of that record
type with a record of a different record type. Current DBTG implementations usually
attempt to physically cluster these associated records.

Note also that clustering tuples from one relation in a given file has obvious
performance implications. The clustering techniques of this nature that INGRES
supports are indicated in Section 3.3.

The decision not to cluster tuples from different relations is based on the follow-
ing reasoning. (1) UNIX has a small (512-byte) page size. Hence it is expected that
the number of tuples which can be grouped on the same page is small. Moreover,
logically adjacent pages in a UNIX file are not necessarily physically adjacent. Hence
clustering tuples on “nearby” pages has no meaning in UNIX; the next logical page
in a file may be further away (in terms of disk arm motion) than a page in a different
file. In keeping with the design decision of not modifying UNIX, these considera-
tions were incorporated in the design decision not to support clustering. (2) The
access methods would be more complicated if clustering were supported. (3) Clus-
tering of tuples only makes sense if associated tuples can be linked together using
“sets” [6], “links” [29], or some other scheme for identifying clusters. Incorporating
these access paths into the decomposition scheme would have greatly increased its
complexity.

It should be noted that the designers of System R have reached a different
conclusion concerning clustering [2].

3.2 System Catalogs
We now turn to a discussion of the system catalogs. We discuss two relations in
detail and indicate briefly the contents of the others.
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The RELATION relation contains one tuple for every relation in the database
(including all the system relations). The domains of this relation are:

relid the name of the relation.

owner the UNIX user-id of the relation owner; when appended to relid it
produces a unique file name for storing the relation.

spec indicates one of five possible storage schemes or else a special
code indicating a virtual relation (or “view”).

indexd flag set if secondary index exists for this relation. (This flag and
the following two are present to improve performance by avoiding
catalog lookups when possible during query modification and
one variable query processing.)

protect flag set if this relation has protection predicates.

integ flag set if there are integrity constraints.

save scheduled lifetime of relation.

tuples number of tuples in relation (kept up to date by the routine
“closer” discussed in the next section).

atts number of domains in relation.

width width (in bytes) of a tuple.

prim number of primary file pages for this relation.

The ATTRIBUTE catalog contains information relating to individual domains of
relations. Tuples of the ATTRIBUTE catalog contain the following items for each
domain of every relation in the database:

relid name of relation in which attribute appears.

owner relation owner.

domain_name domain name.

domain_no domain number (position) in relation. In processing
interactions INGRES uses this number to reference this
domain.

offset offset in bytes from beginning of tuple to beginning of
domain.

type data type of domain (integer, floating point, or character
string).

length length (in bytes) of domain.

keyno if this domain is part of a key, then “keyno” indicates the
ordering of this domain within the key.
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These two catalogs together provide information about the structure and con-
tent of each relation in the database. No doubt items will continue to be added
or deleted as the system undergoes further development. The first planned exten-
sions are the minimum and maximum values assumed by domains. These will be
used by a more sophisticated decomposition scheme being developed, which is dis-
cussed briefly in Section 5 and in detail in [30]. The representation of the catalogs
as relations has allowed this restructuring to occur very easily.

Several other system relations exist which provide auxiliary information about
relations. The INDEX catalog contains a tuple for every secondary index in the
database. Since secondary indices are themselves relations, they are independently
cataloged in the RELATION and ATTRIBUTE relations. However, the INDEX catalog
provides the association between a primary relation and its secondary indices and
records which domains of the primary relation are in the index.

The PROTECTION and INTEGRITY catalogs contain respectively the protection
and integrity predicates for each relation in the database. These predicates are
stored in a partially processed form as character strings. (This mechanism exists
for INTEGRITY and will be implemented in the same way for PROTECTION.) The
VIEW catalog will contain, for each virtual relation, a partially processed QUEL-like
description of the view in terms of existing relations. The use of these last three
catalogs is described in Section 4. The existence of any of this auxiliary informa-
tion for a given relation is signaled by the appropriate flag(s) in the RELATION
catalog.

Another set of system relations consists of those used by the graphics subsystem
to catalog and process maps, which (like everything else) are stored as relations in
the database. This topic has been discussed separately in [13].

3.3 Storage Structures Available
We will now describe the five storage structures currently available in INGRES.
Four of the schemes are keyed, i.e. the storage location of a tuple within the file
is a function of the value of the tuple’s key domains. They are termed “hashed,”
“ISAM,” “compressed hash,” and “compressed ISAM.” For all four structures the
key may be any ordered collection of domains. These schemes allow rapid access
to specific portions of a relation when key values are supplied. The remaining
nonkeyed scheme (a “heap”) stores tuples in the file independently of their values
and provides a low overhead storage structure, especially attractive in situations
requiring a complete scan of the relation.
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The nonkeyed storage structure in INGRES is a randomly ordered sequential file.
Fixed length tuples are simply placed sequentially in the file in the order supplied.
New tuples added to the relation are merely appended to the end of the file. The
unique tuple identifier for each tuple is its byte-offset within the file. This mode
is intended mainly for (a) very small relations, for which the overhead of other
schemes is unwarranted; (b) transitional storage of data being moved into or out of
the system by COPY; (c) certain temporary relations created as intermediate results
during query processing.

In the remaining four schemes the key-value of a tuple determines the page of
the file on which the tuple will be placed. The schemes share a common “page-
structure” for managing tuples on file pages, as shown in Figure 4.

A tuple must fit entirely on a single page. Its unique tuple identifier (TID)
consists of a page number (the ordering of its page in the UNIX file) plus a line
number. The line number is an index into a line table, which grows upward from
the bottom of the page, and whose entries contain pointers to the tuples on the
page. In this way the physical arrangement of tuples on a page can be reorganized
without affecting TIDs.

Initially the file contains all its tuples on a number of primary pages. If the
relation grows and these pages fill, overflow pages are allocated and chained by
pointers to the primary pages with which they are associated. Within a chained
group of pages no special ordering of tuples is maintained. Thus in a keyed access
which locates a particular primary page, tuples matching the key may actually
appear on any page in the chain.

As discussed in [16], two modes of key-to-address transformation are used—
randomizing (or “hashing”) and order preserving. In a “hash” file tuples are dis-
tributed randomly throughout the primary pages of the file according to a hashing
function on a key. This mode is well suited for situations in which access is to be
conditioned on a specific key value.

As an order preserving mode, a scheme similar to IBM’s ISAM [18] is used. The
relation is sorted to produce the ordering on a particular key. A multilevel directory
is created which records the high key on each primary page. The directory, which is
static, resides on several pages following the primary pages within the file itself. A
primary page and its overflow pages are not maintained in sort order. This decision
is discussed in Section 4.2. The “ISAM-like” mode is useful in cases where the
key value is likely to be specified as falling within a range of values, since a near
ordering of the keys is preserved. The index compression scheme discussed in [16]
is currently under implementation.
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Figure 4 Page layout for keyed storage structures

In the above-mentioned keyed modes, fixed length tuples are stored. In ad-
dition, both schemes can be used in conjunction with data compression tech-
niques [14] in cases where increased storage utilization outweighs the added cost of
encoding and decoding data during access. These modes are known as “com-
pressed hash” and “compressed ISAM.”

The current compression scheme suppresses blanks and portions of a tuple
which match the preceding tuple. This compression is applied to each page inde-
pendently. Other schemes are being experimented with. Compression appears to
be useful in storing variable length domains (which must be declared their maxi-
mum length). Padding is then removed during compression by the access method.
Compression may also be useful when storing secondary indices.

3.4 Access Methods Interface
The Access Methods Interface (AMI) handles all actual accessing of data from
relations. The AMI language is implemented as a set of functions whose calling
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conventions are indicated below. A separate copy of these functions is loaded with
each of processes 2, 3, and 4.

Each access method must do two things to support the following calls. First, it
must provide some linear ordering of the tuples in a relation so that the concept of
“next tuple” is well defined. Second, it must assign to each tuple a unique tuple-id
(TID).

The nine implemented calls are as follows:

(a) OPENR(descriptor, mode, relation_name)
Before a relation may be accessed it must be “opened.” This function opens
the UNIX file for the relation and fills in a “descriptor” with information
about the relation from the RELATION and ATTRIBUTE catalogs. The de-
scriptor (storage for which must be declared in the calling routine) is used in
subsequent calls on AMI routines as an input parameter to indicate which
relation is involved. Consequently, the AMI data accessing routines need
not themselves check the system catalogs for the description of a relation.
“Mode” specifies whether the relation is being opened for update or for re-
trieval only.

(b) GET(descriptor, tid, limit_tid, tuple, next_flag)
This function retrieves into “tuple,” a single tuple from the relation indicated
by “descriptor.” “Tid” and “limit_tid” are tuple identifiers. There are two
modes of retrieval, “scan” and “direct.” In “scan” mode GET is intended to
be called successively to retrieve all tuples within a range of tuple-ids. An
initial value of “tid” sets the low end of the range desired and “limit_tid”
sets the high end. Each time GET is called with “next-flag” = TRUE, the tuple
following “tid” is retrieved and its tuple-id is placed into “tid” in readiness for
the next call. Reaching “limit_ tid” is indicated by a special return code, The
initial settings of “tid” and “limit_tid“ are done by calling the FIND function.
In ”direct“ mode (”next_flag“ = FALSE), GET retrieves the tuple with tuple-id
= “tid.”

(c) FIND(descriptor, key, tid, key_type)
When called with a negative “key-type,” FIND returns in “tid” the lowest
tuple-id on the lowest page which could possibly contain tuples matching the
key supplied. Analogously, the highest tuple-id is returned when “key-type” is
positive. The objective is to restrict the scan of a relation by eliminating tuples
from consideration which are known from their placement not to satisfy a
given qualification.
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“Key-type” also indicates (through its absolute value) whether the key, if
supplied, is an EXACTKEY or a RANGEKEY. Different criteria for matching
are applied in each case. An EXACTKEY matches only those tuples containing
exactly the value of the key supplied. A RANGEKEY represents the low (or
high) end of a range of possible key values and thus matches any tuple with a
key value greater than or equal to (or less than or equal to) the key supplied.
Note that only with an order preserving storage structure can a RANGEKEY
be used to successfully restrict a scan.

In cases where the storage structure of the relation is incompatible with
the “key-type,” the “tid” returned will be as if no key were supplied (that is,
the lowest or highest tuple in the relation). Calls to FIND invariably occur in
pairs, to obtain the two tuple-ids which establish the low and high ends of
the scan done in subsequent calls to GET.

Two functions are available for determining the access characteristics of the
storage structure of a primary data relation or secondary index, respectively.

(d) PARAMD (descriptor, access_characteristics_structure)

(e) PARAMI (index-descriptor, access_characteristics_structure)
The “access-characteristics-structure” is filled in with information regarding
the type of key which may be utilized to restrict the scan of a given relation:
It indicates whether exact key values or ranges of key values can be used,
and whether a partially specified key may be used. This determines the “key-
type” used in a subsequent call to FIND. The ordering of domains in the
key is also indicated. These two functions allow the access optimization rou-
tines to be coded independently of the specific storage structures currently
implemented.

Other AMI functions provide a facility for updating relations.

(f) INSERT(descriptor, tuple)
The tuple is added to the relation in its “proper” place according to its key
value and the storage mode of the relation.

(g) REPLACE(descriptor, tid, new_tuple)

(h) DELETE(descriptor, tid)
The tuple indicated by “tid” is either replaced by new values or deleted from
the relation altogether. The tuple-id of the affected tuple will have been
obtained by a previous GET.

Finally, when all access to a relation is complete it must be closed:
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(i) CLOSER(descriptor)
This closes the relation’s UNIX file and rewrites the information in the de-
scriptor back into the system catalogs if there has been any change.

3.5 Addition of New Access Methods
One of the goals of the AMI design was to insulate higher level software from the
actual functioning of the access methods, thereby making it easier to add different
ones. It is anticipated that users with special requirements will take advantage of
this feature.

In order to add a new access method, one need only extend the AMI routines to
handle the new case. If the new method uses the same page layout and TID scheme,
only FIND, PARAMI, and PARAMD need to be extended. Otherwise new procedures
to perform the mapping of TIDs to physical file locations must be supplied for use
by GET, INSERT, REPLACE, and DELETE.

4 The Structure of Process 2
Process 2 contains four main components:

(a) a lexical analyzer;

(b) a parser (written in YACC [19]);

(c) concurrency control routines;

(d) query modification routines to support protection, views, and integrity con-
trol (at present only partially implemented).

Since (a) and (b) are designed and implemented along fairly standard lines,
only (c) and (d) will be discussed in detail. The output of the parsing process is
a tree structured representation of the input query used as the internal form in
subsequent processing. Furthermore, the qualification portion of the query has
been converted to an equivalent Boolean expression in conjunctive normal form.
In this form the query tree is then ready to undergo what has been termed “query
modification.”

4.1 Query Modification
Query modification includes adding integrity and protection predicates to the origi-
nal query and changing references to virtual relations into references to the appro-
priate physical relations. At the present time only a simple integrity scheme has
been implemented.
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In [27] algorithms of several levels of complexity are presented for performing
integrity control on updates. In the present system only the simplest case, involv-
ing single-variable, aggregate free integrity assertions, has been implemented, as
described in detail in [23].

Briefly, integrity assertions are entered in the form of QUEL qualification clauses
to be applied to interactions updating the relation over which the variable in the
assertion rangrs. A parse tree is created for the qualification and a representation
of this tree is stored in the INTEGRITY catalog together with an indication of the
relation and the specific domains involved. At query modification time, updates
are checked for any possible integrity assertions on the affected domains. Relevant
assertions are retrieved, rebuilt into tree form, and grafted onto the update tree so
as to AND the assertions with the existing qualification of the interaction.

Algorithms for the support of views are also given in [27]. Basically a view is a
virtual relation defined in terms of relations which physically exist. Only the view
definition will be stored, and it will be indicated to INGRES by a DEFINE command.
This command will have a syntax identical to that of a RETRIEVE statement. Thus
legal views will be those relations which it is possible to materialize by a RETRIEVE
statement. They will be allowed in INGRES to support EQUEL programs written for
obsolete versions of the database and for user convenience.

Protection will be handled according to the algorithm described in [25]. Like
integrity control, this algorithm involves adding qualifications to the user’s inter-
action. The details of the implementation (which is in progress) are given in [28],
which also includes a discussion of the mechanisms being implemented to phys-
ically protect INGRES files from tampering in any way other than by executing the
INGRES object code. Last, [28] distinguishes the INGRES protection scheme from
the one based on views in [5] and indicates the rationale behind its use.

In the remainder of this section we give an example of query modification at
work.

Suppose at a previous point in time all employees in the EMPLOYEE relation
were under 30 and had no manager recorded. If an EQUEL program had been written
for this previous version of EMPLOYEE which retrieved ages of employees coded
into 5 bits, it would now fail for employees over 31.

If one wishes to use the above program without modification, then the following
view must be used:

RANGE OF E IS EMPLOYEE
DEFINE OLDEMP (E.NAME, E.DEPT, E.SALARY, E.AGE)
WHERE E.AGE < 30
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Suppose that all employees in the EMPLOYEE relation must make more than
$8000. This can be expressed by the integrity constraint:

RANGE OF E IS EMPLOYEE
INTEGRITY CONSTRAINT IS E.SALARY > 8000

Last, suppose each person is only authorized to alter salaries of employees whom
he manages. This is expressed as follows:

RANGE OF E IS EMPLOYEE
PROTECT EMPLOYEE FOR ALL (E.SALARY; E.NAME)
WHERE E.MANAGER = *

The * is a surrogate for the logon name of the current UNIX user of INGRES. The
semicolon separates updatable from nonupdatable (but visible) domains.

Suppose Smith through an EQUEL program or from the terminal monitor issues
the following interaction:

RANGE OF L IS OLDEMP
REPLACE L(SALARY = .9*L.SALARY)
WHERE L.NAME = “Brown”

This is an update on a view. Hence the view algorithm in [27] will first be applied
to yield:

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY = .9*E.SALARY)
WHERE E.NAME = “Brown”
AND E.AGE < 30

Note Brown is only in OLDEMP if he is under 30. Now the integrity algorithm in [27]
must be applied to ensure that Brown’s salary is not being cut to as little as $8000.
This involves modifying the interaction to:

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY = .9*E.SALARY)
WHERE E.NAME = “Brown”

AND E.AGE < 30
AND .9*E.SALARY > $8000

Since .9*E.SALARY will be Brown’s salary after the update, the added qualification
ensures this will be more than $8000.

Last, the protection algorithm of [28] is applied to yield:
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RANGE OF E IS EMPLOYEE
REPLACE E(SALARY = .9*E.SALARY)
WHERE E.NAME = “Brown”

AND E.AGE < 30
AND .9*E.SALARY > $8000
AND E.MANAGER = “Smith”

Notice that in all three cases more qualification is ANDed onto the user’s inter-
action. The view algorithm must in addition change tuple variables.

In all cases the qualification is obtained from (or is an easy modification of)
predicates stored in the VIEW, INTEGRITY, and PROTECTION relations. The tree
representation of the interaction is simply modified to AND these qualifications
(which are all stored in parsed form).

It should be clearly noted that only one-variable, aggregate free integrity asser-
tions are currently supported. Moreover, even this feature is not in the released
version of INGRES. The code for both concurrency control and integrity control
will not fit into process 2 without exceeding 64K words. The decision was made to
release a system with concurrency control.

The INGRES designers are currently adding a fifth process (process 2.5) to hold
concurrency and query modification routines. On PDP 11/45s and 11/70s that have
a 128K address space this extra process will not be required.

4.2 Concurrency Control
In any multiuser system provisions must be included to ensure that multiple con-
current updates are executed in a manner such that some level of data integrity can
be guaranteed. The following two updates illustrate the problem.

RANGE OF E IS EMPLOYEE
U1 REPLACE E(DEPT = “toy”)

WHERE E.DEPT = “candy”

RANGE OF F IS EMPLOYEE
U2 REPLACE F(DEPT = “candy”)

WHERE F.DEPT = “toy”

If U1 and U2 are executed concurrently with no controls, some employees may
end up in each department and the particular result may not be repeatable if the
database is backed up and the interactions reexecuted.

The control which must be provided is to guarantee that some database opera-
tion is “atomic” (occurs in such a fashion that it appears instantaneous and before



4 The Structure of Process 2 589

or after any other database operation). This atomic unit will be called a “transac-
tion.”

In INGRES there are five basic choices available for defining a transaction:

(a) something smaller than one INGRES command;

(b) one INGRES command;

(c) a collection of INGRES commands with no intervening C code;

(d) a collection of INGRES commands with C code but no system calls;

(e) an arbitrary EQUEL program.

If option (a) is chosen, INGRES could not guarantee that two concurrently executing
update commands would give the same result as if they were executed sequentially
(in either order) in one collection of INGRES processes. In fact, the outcome could
fail to be repeatable, as noted in the example above. This situation is clearly unde-
sirable.

Option (e) is, in the opinion of the INGRES designers, impossible to support.
The following transaction could be declared in an EQUEL program.

BEGIN TRANSACTION
FIRST QUEL UPDATE
SYSTEM CALLS TO CREATE AND DESTROY FILES
SYSTEM CALLS TO FORK A SECOND COLLECTION OF INGRES PROCESSES

TO WHICH COMMANDS ARE PASSED
SYSTEM CALLS TO READ FROM A TERMINAL
SYSTEM CALLS TO READ FROM A TAPE
SECOND QUEL UPDATE (whose form depends on previous two system calls)

END TRANSACTION

Suppose T1 is the above transaction and runs concurrently with a transaction
T2 involving commands of the same form. The second update of each transaction
may well conflict with the first update of the other. Note that there is no way
to tell a priori that T1 and T2 conflict, since the form of the second update is
not known in advance. Hence a deadlock situation can arise which can only be
resolved by aborting one transaction (an undesirable policy in the eyes of the
INGRES designers) or attempting to back out one transaction. The overhead of
backing out through the intermediate system calls appears prohibitive (if it is
possible at all).
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Restricting a transaction to have no system calls (and hence no I/O) cripples
the power of a transaction in order to make deadlock resolution possible. This was
judged undesirable.

For example, the following transaction requires such system calls:

BEGIN TRANSACTION
QUEL RETRIEVE to find all flights on a particular day from San Francisco to Los

Angeles with space available.
Display flights and times to user.
Wait for user to indicate desired flight.
QUEL REPLACE to reserve a seat on the flight of the user’s choice.

END TRANSACTION

If the above set of commands is not a transaction, then space on a flight may not
be available when the REPLACE is executed even though it was when the RETRIEVE
occurred.

Since it appears impossible to support multi-QUEL statement transactions (ex-
cept in a crippled form), the INGRES designers have chosen Option (b), one QUEL

statement, as a transaction.
Option (c) can be handled by a straightforward extension of the algorithms to

follow and will be implemented if there is sufficient user demand for it. This option
can support “triggers” [2] and may prove useful.

Supporting Option (d) would considerably increase system complexity for what
is perceived to be a small generalization. Moreover, it would be difficult to enforce
in the EQUEL translator unless the translator parsed the entire C language.

The implementation of (b) or (c) can be achieved by physical locks on data items,
pages, tuples, domains, relations, etc. [12] or by predicate locks [26]. The current
implementation is by relatively crude physical locks (on domains of a relation) and
avoids deadlock by not allowing an interaction to proceed to process 3 until it can
lock all required resources. Because of a problem with the current design of the
REPLACE access method call, all domains of a relation must currently be locked
(i.e. a whole relation is locked) to perform an update. This situation will soon be
rectified.

The choice of avoiding deadlock rather than detecting and resolving it is made
primarily for implementation simplicity.

The choice of a crude locking unit reflects our environment where core storage
for a large lock table is not available. Our current implementation uses a LOCK
relation into which a tuple for each lock requested is inserted. This entire relation
is physically locked and then interrogated for conflicting locks. If none exist, all
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needed locks are inserted. If a conflict exists, the concurrency processor “sleeps”
for a fixed interval and then tries again. The necessity to lock the entire relation and
to sleep for a fixed interval results from the absence of semaphores (or an equivalent
mechanism) in UNIX. Because concurrency control can have high overhead as
currently implemented, it can be turned off.

The INGRES designers are considering writing a device driver (a clean extension
to UNIX routinely written for new devices) to alleviate the lack of semaphores. This
driver would simply maintain core tables to implement desired synchronization
and physical locking in UNIX.

The locks are held by the concurrency processor until a termination message is
received on pipe E. Only then does it delete its locks.

In the future we plan to experimentally implement a crude (and thereby low
CPU overhead) version of the predicate locking scheme described in [26]. Such an
approach may provide considerable concurrency at an acceptable overhead in lock
table space and CPU time, although such a statement is highly speculative.

To conclude this section, we briefly indicate the reasoning behind not sorting
a page and its overflow pages in the “ISAM-like” access method. This topic is also
discussed in [17].

The proposed device driver for locking in UNIX must at least ensure that read-
modify-write of a single UNIX page is an atomic operation. Otherwise, INGRES
would still be required to lock the whole LOCK relation to insert locks. Moreover,
any proposed predicate locking scheme could not function without such an atomic
operation. If the lock unit is a UNIX page, then INGRES can insert and delete a
tuple from a relation by holding only one lock at a time if a primary page and its
overflow page are unordered. However, maintenance of the sort order of these pages
may require the access method to lock more than one page when it inserts a tuple.
Clearly deadlock may be possible given concurrent updates, and the size of the lock
table in the device driver is not predictable. To avoid both problems these pages
remain unsorted.

5 Process 3
As noted in Section 2, this process performs the following two functions, which will
be discussed in turn:

(a) Decomposition of queries involving more than one variable into sequences
of one-variable queries. Partial results are accumulated until the entire query is
evaluated. This program is called DECOMP. It also turns any updates into the
appropriate queries to isolate qualifying tuples and spools modifications into a
special file for deferred update.
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(b) Processing of single-variable queries. The program is called the one-variable
query processor (OVQP).

5.1 DECOMP
Because INGRES allows interactions which are defined on the crossproduct of per-
haps several relations, efficient execution of this step is of crucial importance in
searching as small a portion of the appropriate crossproduct space as possible.
DECOMP uses three techniques in processing interactions. We describe each tech-
nique, and then give the actual algorithm implemented followed by an example
which illustrates all features. Finally we indicate the role of a more sophisticated
decomposition scheme under design.

(a) Tuple substitution. The basic technique used by DECOMP to reduce a query
to fewer variables is tuple substitution. One variable (out of possibly many) in the
query is selected for substitution. The AMI language is used to scan the relation as-
sociated with the variable one tuple at a time. For each tuple the values of domains
in that relation are substituted into the query. In the resulting modified query, all
previous references to the substituted variable have now been replaced by values
(constants) and the query has thus been reduced to one less variable. Decomposi-
tion is repeated (recursively) on the modified query until only one variable remains,
at which point the OVQP is called to continue processing.

(b) One-variable detachment. If the qualification Q of the query is of the form

Q1(V1) AND Q2(V1, . . . , Vn)

for some tuple variable V1, the following two steps can be executed:

1. Issue the query

RETRIEVE INTO W (TL[V1])
WHERE Q1[V1]

Here TL[V1] are those domains required in the remainder of the query. Note
that this is a one-variable query and may be passed directly to OVQP.

2. Replace R1, the relation over which V1 ranges, by W in the range declaration
and delete Q1[V1] from Q.

The query formed in step 1 is called a “one-variable, detachable subquery,” and
the technique for forming and executing it is called “one-variable detachment”
(OVD). This step has the effect of reducing the size of the relation over which V1



5 Process 3 593

ranges by restriction and projection. Hence it may reduce the complexity of the
processing to follow.

Moreover, the opportunity exists in the process of creating new relations
through OVD, to choose storage structures, and particularly keys, which will prove
helpful in further processing.

(c) Reformatting. When a tuple variable is selected for substitution, a large
number of queries, each with one less variable, will be executed. If (b) is a possible
operation after the substitution for some remaining variable V1, then the relation
over which V1 ranges, R1, can be reformatted to have domains used in Q1(V1) as a
key. This will expedite (b) each time it is executed during tuple substitution.

We can now state the complete decomposition algorithm. After doing so, we
illustrate all steps with an example.

Step 1. If the number of variables in the query is 0 or 1, call OVQP and then
return; else go on to step 2.

Step 2. Find all variables, {V1, . . . , Vn}, for which the query contains a one-
variable clause.

Perform OVD to create new ranges for each of these variables. The new
relation for each variable Vi is stored as a hash file with key Ki chosen as
follows:
2.1. For each j select from the remaining multivariable clauses in the query
the collection, Cij , which have the form Vi

. di = Vj
. dj , where di , dj are

domains of Vi and Vj .
2.2. From the key Ki to be the concatenation of domains di1, di2, . . . of Vi

appearing in clauses in Cij .
2.3. If more than one j exists, for which Cij is nonempty, one Cij is chosen
arbitrarily for forming the key. If Cij is empty for all j , the relation is stored
as an unsorted table.

Step 3. Choose the variable Vs with the smallest number of tuples as the next
one for which to perform tuple substitution.

Step 4. For each tuple variable Vj for which Cjs is nonnull, reformat if necessary
the storage structure of the relation Rj over which it ranges so that the key of
Rj is the concatenation of domains dj1, . . . appearing in Cjs. This ensures
that when the clauses in Cjs become one-variable after substituting for Vs,
subsequent calls to OVQP to restrict further the range of Vj will be done as
efficiently as possible.



594 The Design and Implementation of INGRES

Step 5. Iterate the following steps over all tuples in the range of the variable
selected in step 3 and then return:
5.1. Substitute values from tuple into query.

5.2. Invoke decomposition algorithm recursively on a copy of resulting
query which now has been reduced by one variable.

5.3. Merge the results from 5.2 with those of previous iterations.

We use the following query to illustrate the algorithm:

RANGE OF E, M IS EMPLOYEE
RANGE OF D IS DEPT
RETRIEVE (E.NAME)
WHERE E.SALARY > M.SALARY AND

E.MANAGER = M.NAME AND
E.DEPT = D.DEPT AND
D.FLOOR# = 1 AND
E.AGE > 40

This request is for employees over 40 on the first floor who earn more than their
manager.

LEVEL 1.

Step 1. Query is not one variable.

Step 2. Issue the two queries:

RANGE OF D IS DEPT
RETRIEVE INTO T1(D.DEPT) (1)
WHERE D.FLOOR# = 1

RANGE OF E IS EMPLOYEE
RETRIEVE INTO T2(E.NAME, E.SALARY, E.MANAGER, E.DEPT) (2)
WHERE E.AGE > 40

T1 is stored hashed on DEPT; however, the algorithm must choose arbitrarily
between hashing T2 on MANAGER or DEPT. Suppose it chooses MANAGER.
The original query now becomes:

RANGE OF D IS TI
RANGE OF E IS T2
RANGE OF M IS EMPLOYEE
RETRIEVE (E.NAME)
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WHERE E.SALARY > M.SALARY AND
E.MANAGER = M.NAME AND
E.DEPT = D.DEPT

Step 3. Suppose T1 has smallest cardinality. Hence D is chosen for substitution.

Step 4. Reformat T2 to be hashed on DEPT; the guess chosen in step 2 above
was a poor one.

Step 5. Iterate for each tuple in T1 and then quit:
5.1 Substitute value for D. DEPT yielding

RANGE OF E IS T1
RANGE OF M IS EMPLOYEE
RETRIEVE (E.NAME)
WHERE E.SALARY > M.SALARY AND

E.MANAGER = M.NAME AND
E.DEPT = value

5.2. Start at step 1 with the above query as input (Level 2 below).
5.3. Cumulatively merge results as they are obtained.

LEVEL 2.

Step 1. Query is not one variable.

Step 2. Issue the query

RANGE OF E IS T2
RETRIEVE INTO T3 (E.NAME, E.SALARY, E.NAME) (3)
WHERE E.DEPT = value

T3 is constructed hashed on MANAGER. T2 in step 4 in Level 1 above is
reformatted so that this query (which will be issued once for each tuple in
T1) will be done efficiently by OVQP. Hopefully the cost of reformatting is
small compared to the savings at this step. What remains is

RANGE OF E IS T3
RANGE IF M IS EMPLOYEE
RETRIEVE (E.NAME)
WHERE E.SALARY > M.SALARY AND

E.MANAGER = M.NAME

Step 3. T3 has less tuples than EMPLOYEE; therefore choose T3.
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Step 4. [unnecessary]

Step 5. Iterate for each tuple in T3 and then return to previous level:
5.1. Substitute values for E.NAME, E.SALARY, and E.MANAGER, yielding

RANGE OF M IS EMPLOYEE
RETRIEVE (VALUE 1) (4)
WHERE Value2 > M.SALARY AND

Value3 = M.NAME

5.2. Start at step 1 with this query as input (Level 3 below).
5.3. Cumulatively merge results as obtained.

LEVEL 3.

Step 1. Query has one variable; invoke OVQP and then return to previous level.

The algorithm thus decomposes the original query into the four prototype,
one-variable queries labeled (1)–(4), some of which are executed repetitively with
different constant values and with results merged appropriately. Queries (1) and (2)
are executed once, query (3) once for each tuple in T1, and query (4) the number of
times equal to the number of tuples in T1 times the number of tuples in T3.

The following comments on the algorithm are appropriate.
(a) OVD is almost always assured of speeding processing. Not only is it possible

to choose the storage structure of a temporary relation wisely, but also the cardi-
nality of this relation may be much less than the one it replaces as the range for a
tuple variable. It only fails if little or no reduction takes place and reformatting is
unproductive.

It should be noted that a temporary relation is created rather than a list of
qualifying tuple-id’s. The basic tradeoff is that OVD must copy qualifying tuples
but can remove duplicates created during the projection. Storing tuple-id’s avoids
the copy operation at the expense of reaccessing qualifying tuples and retaining
duplicates. It is clear that cases exist where each strategy is superior. The INGRES
designers have chosen OVD because it does not appear to offer worse performance
than the alternative, allows a more accurate choice of the variable with the smallest
range in step 3 of the algorithm above, and results in cleaner code.

(b) Tuple substitution is done when necessary on the variable associated with the
smallest number of tuples. This has the effect of reducing the number of eventual
calls on OVQP.
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(c) Reformatting is done (if necessary) with the knowledge that it will usually
replace a collection of complete sequential scans of a relation by a collection of
limited scans. This almost always reduces processing time.

(d) It is believed that this algorithm efficiently handles a large class of interac-
tions. Moreover, the algorithm does not require excessive CPU overhead to perform.
There are, however, cases where a more elaborate algorithm is indicated. The fol-
lowing comment applies to such cases.

(e) Suppose that we have two or more strategies ST0, ST1, . . . , STn, each one
being better than the previous one but also requiring a greater overhead. Suppose
further that we begin an interaction on ST0 and run it for an amount of time equal
to a fraction of the estimated overhead of ST1. At the end of that time, by simply
counting the number of tuples of the first substitution variable which have already
been processed, we can get an estimate for the total processing time using ST0.
If this is significantly greater than the overhead of ST1, then we switch to ST1.
Otherwise we stay and complete processing the interaction using ST0. Obviously,
the procedure can be repeated on ST1 to call ST2 if necessary, and so forth.

The algorithm detailed in this section may be thought of as ST0. A more sophis-
ticated algorithm is currently under development [30].

5.2 One-Variable Query Processor (OVQP)
This module is concerned solely with the efficient accessing of tuples from a single
relation given a particular one-variable query. The initial portion of this program,
known as STRATEGY, determines what key (if any) may be used profitably to access
the relation, what value(s) of that key will be used in calls to the AMI routine FIND,
and whether access may be accomplished directly through the AMI to the storage
structure of the primary relation itself or if a secondary index on the relation should
be used. If access is to be through a secondary index, then STRATEGY must choose
which one of possibly many indices to use.

Tuples are then retrieved according to the access strategy selected and are
processed by the SCAN portion of OVQP. These routines evaluate each tuple against
the qualification part of the query, create target list values for qualifying tuples, and
dispose of the target list appropriately.

Since SCAN is relatively straightforward, we discuss only the policy decisions
made in STRATEGY.

First STRATEGY examines the qualification for clauses which specify the value
of a domain, i.e. clauses of the form

V.domain op constant
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or

constant op V.domain

where “op” is one of the set {=, <, >, ≤, ≥}. Such clauses are termed “simple”
clauses and are organized into a list. The constants in simple clauses will determine
the key values input to FIND to limit the ensuing scan.

Obviously a nonsimple clause may be equivalent to a simple one. For example,
E.SALARY/2 = 10000 is equivalent to E.SALARY = 20000. However, recognizing and
converting such clauses requires a general algebraic symbol manipulator. This
issue has been avoided by ignoring all nonsimple clauses.

STRATEGY must select one of two accessing strategies: (a) issuing two AMI FIND
commands on the primary relation followed by a sequential scan of the relation
(using GET in “scan” mode) between the limits set, or (b) issuing two AMI FIND
commands on some index relation followed by a sequential scan of the index
between the limits set. For each tuple retrieved the “pointer” domain is obtained;
this is simply the tuple-id of a tuple in the primary relation. This tuple is fetched
(using GET in “direct” mode) and processed.

To make the choice, the access possibilities available must be determined. Key-
ing information about the primary relation is obtained using the AMI function
PARAMD. Names of indices are obtained from the INDEX catalog and keying in-
formation about indices is obtained with the function PARAMI.

Further, a compatability between the available access possibilities and the spec-
ification of key values by simple clauses must be established. A hashed relation
requires that a simple clause specify equality as the operator in order to be useful;
for combined (multidomain) keys, all domains must be specified. ISAM structures,
on the other hand, allow range specifications; additionally, a combined ISAM key
requires only that the most significant domains be specified.

STRATEGY checks for such a compatability according to the following priority
order of access possibilities: (1) hashed primary relation, (2) hashed index, (3) ISAM
primary relation, (4) ISAM index. The rationale for this ordering is related to the
expected number of page accesses required to retrieve a tuple from the source
relation in each case. In the following analysis the effect of overflow pages is ignored
(on the assumption that the four access possibilities would be equally affected).

In case (1) the key value provided locates a desired source tuple in one access
via calculation involving a hashing function. In case (2) the key value similarly
locates an appropriate index relation tuple in one access, but an additional access
is required to retrieve the proper primary relation tuple. For an ISAM-structured
scheme a directory must be examined. This lookup itself incurs at least one access
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but possibly more if the directory is multilevel. Then the tuple itself must be
accessed. Thus case (3) requires at least two (but possibly more) total accesses. In
case (4) the use of an index necessitates yet another access in the primary relation,
making the total at least three.

To illustrate STRATEGY, we indicate what happens to queries (1)–(4) from Sec-
tion 5.1.

Suppose EMPLOYEE is an ISAM relation with a key of NAME, while DEPT is
hashed on FLOOR#. Moreover a secondary index for AGE exists which is hashed
on AGE, and one for SALARY exists which uses ISAM with a key of SALARY.

Query (1): One simple clause exists (D.FLOOR# = 2). Hence Strategy (a) is applied
against the hashed primary relation.

Query (2): One simple clause exists (E.AGE > 40). However, it is not usable to
limit the scan on a hashed index. Hence a complete (unkeyed) scan of EMPLOYEE
is required. Were the index for AGE an ISAM relation, then Strategy (b) would be
used on this index.

Query (3): One simple clause exists and T1 has been reformatted to allow Strategy
(a) against the hashed primary relation.

Query (4): Two simple clauses exist (value2 > M.SALARY; value3 = M.NAME).
Strategy (a) is available on the hashed primary relation, as is Strategy (b) for the
ISAM index. The algorithm chooses Strategy (a).

6 Utilities in Process 4

6.1 Implementation of Utility Commands
We have indicated in Section 1 several database utilities available to users. These
commands are organized into several overlay programs as noted previously. Bring-
ing the required overlay into core as needed is done in a straightforward way.

Most of the utilities update or read the system relations using AMI calls. MODIFY
contains a sort routine which puts tuples in collating sequence according to the
concatenation of the desired keys (which need not be of the same data type). Pages
are initially loaded to approximately 80 percent of capacity. The sort routine is a
recursive N -way merge-sort where N is the maximum number of files process 4 can
have open at once (currently eight). The index building occurs in an obvious way.
To convert to hash structures, MODIFY must specify the number of primary pages
to be allocated. This parameter is used by the AMI in its hash scheme (which is a
standard modulo division method).
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It should be noted that a user who creates an empty hash relation using the
CREATE command and then copies a large UNIX file into it using COPY creates
a very inefficient structure. This is because a relatively small default number of
primary pages will have been specified by CREATE, and overflow chains will be
long. A better strategy is to COPY into an unsorted table so that MODIFY can
subsequently make a good guess at the number of primary pages to allocate.

6.2 Deferred Update and Recovery
Any updates (APPEND, DELETE, REPLACE) are processed by writing the tuples to
be added, changed, or modified into a temporary file. When process 3 finishes, it
calls process 4 to actually perform the modifications requested and any updates
to secondary indices which may be required as a final step in processing. Deferred
update is done for four reasons.

(a) Secondary index considerations. Suppose the following QUEL statement is
executed:

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY = 1.1*E.SALARY)
WHERE E.SALARY > 20000

Suppose further that there is a secondary index on the salary domain and the
primary relation is keyed on another domain.

OVQP, in finding the employees who qualify for the raise, will use the secondary
index. If one employee qualifies and his tuple is modified and the secondary index
updated, then the scan of the secondary index will find his tuple a second time since
it has been moved forward. (In fact, his tuple will be found an arbitrary number
of times.) Either secondary indexes cannot be used to identify qualifying tuples
when range qualifications are present (a rather unnatural restriction), or secondary
indices must be updated in deferred mode.

(b) Primary relation considerations. Suppose the QUEL statement

RANGE OF E, M IS EMPLOYEE
REPLACE E(SALARY = .9*E.SALARY)
Where E.MGR = M.NAME AND

E.SALARY > M.SALARY

is executed for the following EMPLOYEE relation:
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NAME SALARY MANAGER
Smith 10K Jones
Jones 8K
Brown 9.5K Smith

Logically Smith should get the pay cut and Brown should not. However, if Smith’s
tuple is updated before Brown is checked for the pay cut, Brown will qualify. This
undesirable situation must be avoided by deferred update.

(c) Functionality of updates. Suppose the following QUEL statement is executed:

RANGE OF E, M IS EMPLOYEE
REPLACE E(SALARY = M.SALARY)

This update attempts to assign to each employee the salary of every other em-
ployee, i.e. a single data item is to be replaced by multiple values. Stated differently,
the REPLACE statement does not specify a function. In certain cases (such as a
REPLACE involving only one tuple variable) functionality is guaranteed. However,
in general the functionality of an update is data dependent. This nonfunctionality
can only be checked if deferred update is performed.

To do so, the deferred update processor must check for duplicate TIDs in
REPLACE calls (which requires sorting or hashing the update file). This poten-
tially expensive operation does not exist in the current implementation, but will be
optionally available in the future.

(d) Recovery considerations. The deferred update file provides a log of updates
to be made. Recovery is provided upon system crash by the RESTORE command.
In this case the deferred update routine is requested to destroy the temporary file
if it has not yet started processing it. If it has begun processing, it reprocesses the
entire update file in such a way that the effect is the same as if it were processed
exactly once from start to finish.

Hence the update is “backed out” if deferred updating has not yet begun; oth-
erwise it is processed to conclusion. The software is designed so the update file
can be optionally spooled onto tape and recovered from tape. This added feature
should soon be operational.

If a user from the terminal monitor (or a C program) wishes to stop a command
he can issue a “break” character. In this case all processes reset except the deferred
update program, which recovers in the same manner as above.

All update commands do deferred update; however the INGRES utilities have not
yet been modified to do likewise. When this has been done, INGRES will recover
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from all crashes which leave the disk intact. In the meantime there can be disk-
intact crashes which cannot be recovered in this manner (if they happen in such a
way that the system catalogs are left inconsistent).

The INGRES “superuser” can checkpoint a database onto tape using the UNIX
backup scheme. Since INGRES logs all interactions, a consistent system can always
be obtained, albeit slowly, by restoring the last checkpoint and running the log of
interactions (or the tape of deferred updates if it exists).

It should be noted that deferred update is a very expensive operation. One
INGRES user has elected to have updates performed directly in process 3, cognizant
that he must avoid executing interactions which will run incorrectly. Like checks
for functionality, direct update may be optionally available in the future. Of course,
a different recovery scheme must be implemented.

7 Conclusion and Future Extensions
The system described herein is in use at about fifteen installations. It forms the
basis of an accounting system, a system for managing student records, a geodata
system, a system for managing cable trouble reports and maintenance calls for a
large telephone company, and assorted other smaller applications. These applica-
tions have been running for periods of up to nine months.

7.1 Performance
At this time no detailed performance measurements have been made, as the current
version (labeled Version 5) has been operational for less than two months. We have
instrumented the code and are in the process of collecting such measurements.

The sizes (in bytes) of the processes in INGRES are indicated below. Since the
access methods are loaded with processes 2 and 3 and with many of the utilities,
their contribution to the respective process sizes has been noted separately.

access methods (AM) 11K

terminal monitor 10K

EQUEL 30K + AM

process 2 45K + AM

process 3 (query processor) 45K + AM

utilities (8 overlays) 160K + AM

7.2 User Feedback
The feedback from internal and external users has been overwhelmingly positive.
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In this section we indicate features that have been suggested for future systems.

(a) Improved performance. Earlier versions of INGRES were very slow; the cur-
rent version should alleviate this problem.

(b) Recursion. QUEL does not support recursion, which must be tediously pro-
grammed in C using the precompiler; recursion capability has been sug-
gested as a desired extension.

(c) Other language extensions. These include user defined functions (especially
counters), multiple target lists for a single qualification statement, and if-
then-else control structures in QUEL; these features may presently be pro-
grammed, but only very inefficiently, using the precompiler.

(d) Report generator. PRINT is a very primitive report generator and the need for
augmented facilities in this area is clear; it should be written in EQUEL.

(e) Bulk copy. The COPY routine fails to handle easily all situations that arise.

7.3 Future Extensions
Noted throughout the paper are areas where system improvement is in progress,
planned, or desired by users. Other areas of extension include: (a) a multicomputer
system version of INGRES to operate on distributed databases; (b) further perfor-
mance enhancements; (c) a higher level user language including recursion and user
defined functions; (d) better data definition and integrity features; and (e) a data-
base administrator advisor.

The database administrator advisor program would run at idle priority and issue
queries against a statistics relation to be kept by INGRES. It could then offer advice
to a DBA concerning the choice of access methods and the selection of indices. This
topic is discussed further in [16].
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D. Maier, A. Pavlo, M. Stonebraker, K. Tufte, and H. Wang. 2015a. S-store: Streaming
meets transaction processing. CoRR, abs/1503.01143. DOI: 10.14778/2831360
.2831367. 234

J. Meehan, N. Tatbul, S. Zdonik, C. Aslantas, U. Çetintemel, J. Du, T. Kraska, S. Madden,
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and IBM. Alliterative ennui setting in, Paul joined Paradigm4 as SciDB’s Chief Ar-
chitect. He has since moved on to work for Teradata. Paul likes dogs, DBMSs, and
(void *). He hopes he might have just picked up sufficient gravitas in this industry
to pull off the beard.
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Paul Butterworth

Paul Butterworth served as Chief Systems Architect
at Ingres from 1980–1990. He is currently co-founder
and Chief Technology Officer (CTO) at VANTIQ, Inc.
His past roles include Executive Vice President, En-
gineering at You Technology Inc., and co-founder
and CTO of Emotive Communications, where he con-
ceived and designed the Emotive Cloud Platform for
enterprise mobile computing. Before that, Paul was
an architect at Oracle and a founder & CTO at Am-
berPoint, where he directed the technical strategy for

the AmberPoint SOA governance products. Prior to AmberPoint, Paul was a Dis-
tinguished Engineer and Chief Technologist for the Developer Tools Group at Sun
Microsystems and a founder, Chief Architect, and Senior Vice President of Forte
Software. Paul holds undergraduate and graduate degrees in Computer Science
from UC Irvine.

Michael J. Carey

Michael J. Carey received his B.S. and M.S. from
Carnegie-Mellon University and his Ph.D. from the
University of California, Berkeley, in 1979, 1981, and
1983, respectively. He is currently a Bren Professor of
Information and Computer Sciences at the University
of California, Irvine (UCI) and a consulting architect
at Couchbase, Inc. Before joining UCI in 2008, Mike
worked at BEA Systems for seven years and led the de-
velopment of BEA’s AquaLogic Data Services Platform
product for virtual data integration. He also spent a

dozen years teaching at the University of Wisconsin-Madison, five years at the IBM
Almaden Research Center working on object-relational databases, and a year and
a half at Propel Software, an e-commerce platform startup, during the infamous
2000–2001 Internet bubble. He is an ACM Fellow, an IEEE Fellow, a member of the
National Academy of Engineering, and a recipient of the ACM SIGMOD E.F. Codd
Innovations Award. His current interests center on data-intensive computing and
scalable data management (a.k.a. Big Data).
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Fred Carter

Fred Carter , a software architect in a variety of soft-
ware areas, worked at Ingres Corporation in several
senior positions, including Principal Scientist/Chief
Architect. He is currently a principal architect at VAN-
TIQ, Inc. Prior to VANTIQ, Fred was the runtime ar-
chitect for AmberPoint, which was subsequently pur-
chased by Oracle. At Oracle, he continued in that role,
moving the AmberPoint system to a cloud-based, ap-
plication performance monitoring service. Past roles
included architect for EAI products at Forte (contin-

uing at Sun Microsystems) and technical leadership positions at Oracle, where he
designed distributed object services for interactive TV, online services, and content
management, and chaired the Technical Committee for the Object Definition Al-
liance to foster standardization in the area of network-based multimedia systems.
Fred has an undergraduate degree in Computer Science from Northwestern Uni-
versity and received his M.S. in Computer Science from UC Berkeley.

Raul Castro Fernandez

Raul Castro Fernandez is a postdoc at MIT, work-
ing with Samuel Madden and Michael Stonebraker
on data discovery—how to help people find relevant
data among databases, data lakes, and the cloud.
Raul built Aurum, a data discovery system, to iden-
tify relevant data sets among structured data. Among
other research lines, he is looking at how to incor-
porate unstructured data sources, such as PDFs and
emails. More generally, he is interested in data-related
problems, from efficient data processing to machine

learning engineering. Before MIT, Raul completed his Ph.D. at Imperial College
London, where he focused on designing new abstractions and building systems
for large-scale data processing.
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Ugur Çetintemel

Ugur Çetintemel is a professor in the department of
Computer Science at Brown University. His research is
on the design and engineering of high-performance,
user-friendly data management and processing sys-
tems that allow users to analyze large data sets interac-
tively. Ugur chaired SIGMOD ’09 and served on the ed-
itorial boards of VLDB Journal, Distributed and Parallel
Databases, and SIGMOD Record. He is the recipient of
a National Science Foundation Career Award and an
IEEE 10-year test of time award in Data Engineering,

among others. Ugur was a co-founder and a senior architect of StreamBase, a com-
pany that specializes in high-performance data processing. He was also a Brown
Manning Assistant Professor and has been serving as the Chair of the Computer
Science Department at Brown since July 2014.

Xuedong Chen
Xuedong Chen is currently an Amazon.com Web Services software developer in An-
dover, Massachusetts. From 2002–2007 he was a Ph.D. candidate at UMass Boston,
advised by Pat and Betty O’Neil. He, along with Pat O’Neil and others, were co-
authors with Mike Stonebraker.

Mitch Cherniack

Mitch Cherniack is an Associate Professor at Bran-
deis University. He is a previous winner of an NSF
Career Award and co-founder of Vertica Systems and
StreamBase Systems. His research in Database Sys-
tems has focused on query optimization, streaming
data systems, and column-based database architec-
tures. Mitch received his Ph.D. from Brown University
in 1999, an M.S. from Concordia University in 1992,
and a B.Ed. from McGill University in 1984.
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David J. DeWitt

David J. DeWitt joined the Computer Sciences De-
partment at the University of Wisconsin in September
1976 after receiving his Ph.D. from the University of
Michigan. He served as department chair from July
1999 to July 2004. He held the title of John P. Mor-
gridge Professor of Computer Sciences when he re-
tired from the University of Wisconsin in 2008. In
2008, he joined Microsoft as a Technical Fellow to
establish and manage the Jim Gray Systems Lab in
Madison. In 2016, he moved to Boston to join the MIT

Computer Science and AI Laboratory as an Adjunct Professor. Professor DeWitt is
a member of the National Academy of Engineering (1998), a fellow of the American
Academy of Arts and Sciences (2007), and an ACM Fellow (1995). He received the
1995 Ted Codd SIGMOD Innovations Award. His pioneering contributions to the
field of scalable database systems for “big data” were recognized by ACM with the
2009 Software Systems Award.

Aaron J. Elmore

Aaron J. Elmore is an assistant professor in the De-
partment of Computer Science and the College of the
University of Chicago. Aaron was previously a postdoc-
toral associate at MIT working with Mike Stonebraker
and Sam Madden. Aaron’s thesis on Elasticity Prim-
itives for Database-as-a-Service was completed at the
University of California, Santa Barbara under the su-
pervision of Divy Agrawal and Amr El Abbadi. Prior to
receiving a Ph.D., Aaron spent several years in industry
and completed an M.S. at the University of Chicago.

Miguel Ferreira
Miguel Ferreira is an alumnus of MIT. He was coauthor of the paper, “Integrat-
ing Compression and Execution in Column-Oriented Database Systems,” while
working with Samuel Madden and Daniel Abadi, and “C-store: A Column-Oriented
DBMS,” with Mike Stonebraker, Daniel Abadi, and others.
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Vijay Gadepally

Vijay Gadepally is a senior member of the techni-
cal staff at the Massachusetts Institute of Technol-
ogy (MIT) Lincoln Laboratory and works closely with
the Computer Science and Artificial Intelligence Lab-
oratory (CSAIL). Vijay holds an M.Sc. and Ph.D. in
Electrical and Computer Engineering from The Ohio
State University and a B.Tech in Electrical Engineer-
ing from the Indian Institute of Technology, Kanpur.
In 2011, Vijay received an Outstanding Graduate Stu-
dent Award at The Ohio State University. In 2016, Vijay

received the MIT Lincoln Laboratory’s Early Career Technical Achievement Award
and in 2017 was named to AFCEA’s inaugural 40 under 40 list. Vijay’s research in-
terests are in high-performance computing, machine learning, graph algorithms,
and high-performance databases.

Nabil Hachem

Nabil Hachem is currently Vice President, Head of
Data Architecture, Technology, and Standards at
MassMutual. He was formerly Global Head of Data
Engineering at Novartis Institute for Biomedical Re-
search, Inc. He also held senior data engineering
posts at Vertica Systems, Inc., Infinity Pharmaceuti-
cals, Upromise Inc., Fidelity Investments Corp., and
Ask Jeeves Inc. Nabil began his career as an electri-
cal engineer and operations department manager for
a data telecommunications firm in Lebanon. In ad-

dition to his commercial career, Nabil taught computer science at Worcester
Polytechnic Institute. He co-authored dozens of papers on scientific databases,
file structures, and join algorithms, among others. Nabil received a degree in Elec-
trical Engineering from the American University of Beirut and earned his Ph.D. in
Computer Engineering from Syracuse University.
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Don Haderle

Don Haderle joined IBM in 1968 as a software de-
veloper and retired in 2005 as the software executive
operating as Chief Technology Officer (CTO) for In-
formation Management. He consulted with venture
capitalists and advised startups. He currently sits on
technical advisory boards for a number of companies
and consults independently. Considered the father
of commercial high-performance, industrial-strength
relational database systems, he was the technical
leader and chief architect of DB2 from 1977–1998. He

led DB2’s overall architecture and development, making key personal contribu-
tions to and holding fundamental patents in all key elements, including: logging
primitives, memory management, transaction fail-save and recovery techniques,
query processing, data integrity, sorting, and indexing. As CTO, Haderle collab-
orated with researchers to incubate new product directions for the information
management industry. Don was appointed an IBM Fellow in 1989 and Vice Presi-
dent of Advanced Technology in 1991; named an ACM Fellow in 2000; and elected
to the National Academy of Engineering in 2008. He is a graduate of UC Berkeley
(B.A., Economics, 1967).

James Hamilton

James Hamilton is Vice President and Distinguished
Engineer on the Amazon Web Services team, where
he focuses on infrastructure efficiency, reliability, and
scaling. He has spent more than 20 years working on
high-scale services, database management systems,
and compilers. Prior to joining AWS, James was ar-
chitect on the Microsoft Data Center Futures team
and the Windows Live Platform Services team. He was
General Manager of the Microsoft Exchange Hosted
Services team and has led many of the SQL Server en-

gineering teams through numerous releases. Before joining Microsoft, James was
Lead Architect on the IBM DB2 UDB team. He holds a B.Sc. inComputer Science
from the University of Victoria and a Master’s in Math, Computer Science from the
University of Waterloo.
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Stavros Harizopoulos

Stavros Harizopoulos is currently a Software Engineer
at Facebook, where he leads initiatives on Realtime
Analytics. Before that, he was a Principal Engineer at
AWS Redshift, a petabyte-scale columnar Data Ware-
house in the cloud, where he was leading efforts on
performance and scalability. In 2011, he co-founded
Amiato, a fully managed real-time ETL cloud service,
which was later acquired by Amazon. In the past,
Stavros has held research-scientist positions at HP
Labs and MIT CSAIL, working on characterizing the

energy efficiency of database servers, as well as dissecting the performance char-
acteristics of modern in-memory and column-store databases. He is a Carnegie
Mellon Ph.D. and a Y Combinator alumnus.

Marti Hearst

Marti Hearst is a professor in the School of Informa-
tion and the EECS Department at UC Berkeley. She
was formerly a member of the research staff at Xe-
rox PARC and received her Ph.D. from the CS Divi-
sion at UC Berkeley. Her primary research interests
are user interfaces for search engines, information vi-
sualization, natural language processing, and improv-
ing education. Her book Search User Interfaces was
the first of its kind in academics. Prof. Hearst was
named a Fellow of the ACM in 2013 and a member

of the CHI Academy in 2017, and is president of the Association for Computa-
tional Linguistics. She has received four student-initiated Excellence in Teaching
Awards.
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Jerry Held

Jerry Held has been a successful Silicon Valley entre-
preneur, executive, and investor for over 40 years. He
has managed all growth stages of companies, from
conception to multi-billion-dollar global enterprise.
He is currently chairman of Tamr and Madaket Health
and serves on the boards of NetApp, Informatica, and
Copia Global. His past board service includes roles as
executive chairman of Vertica Systems and MemSQL
and lead independent director of Business Objects.
Previously, Dr. Held was “CEO-in-residence” at ven-

ture capital firm Kleiner Perkins Caufield & Byers. He was senior vice president of
Oracle Corporation’s server product division and a member of the executive team
that grew Tandem Computers from pre-revenue to multi-billion-dollar company.
Among many other roles, he led pioneering work in fault-tolerant, shared-nothing,
and scale-out relational database systems. He received his Ph.D. in Computer Sci-
ence from the University of California, Berkeley, where he led the initial develop-
ment of the Ingres relational database management system.

Pat Helland

Pat Helland has been building databases, transac-
tion systems, distributed systems, messaging sys-
tems, multiprocessor hardware, and scalable cloud
systems since 1978. At Tandem Computers, he was
Chief Architect of the transaction engine for NonStop
SQL. At Microsoft, he architected Microsoft Transac-
tion Server, Distributed Transaction Coordinator, SQL
Service Broker, and evolved the Cosmos big data in-
frastructure to include optimizing database features
as well as petabyt-scale transactionally correct event

processing. While at Amazon, Pat contributed to the design of the Dynamo even-
tually consistent store and also the Product Catalog. Pat attended the University of
California, Irvine from 1973–1976 and was in the inaugural UC Irvine Information
and Computer Science Hall of Fame. Pat chairs the Dean’s Leadership Council of
the Donald Bren School of Information and Computer Sciences (ICS), UC Irvine.
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Joseph M. Hellerstein

Joseph M. Hellerstein is the Jim Gray Professor of
Computer Science at the University of California,
Berkeley, whose work focuses on data-centric systems
and the way they drive computing. He is an ACM Fel-
low, an Alfred P. Sloan Research Fellow, and the re-
cipient of three ACM-SIGMOD “Test of Time” awards
for his research. In 2010, Fortune Magazine included
him in their list of 50 smartest people in technology,
and MIT’s Technology Review magazine included his
work on their TR10 list of the 10 technologies “most

likely to change our world.” Hellerstein is the co-founder and Chief Strategy Offi-
cer of Trifacta, a software vendor providing intelligent interactive solutions to the
messy problem of wrangling data. He serves on the technical advisory boards of a
number of computing and Internet companies including Dell EMC, SurveyMonkey,
Captricity, and Datometry, and previously served as the Director of Intel Research,
Berkeley.

Wei Hong

Wei Hong is an engineering director in Google’s Data
Infrastructure and Analysis (DIA) group, responsi-
ble for the streaming data processing area including
building and maintaining the infrastructure for some
of Google’s most revenue-critical data pipelines in
Ads and Commerce. Prior to joining Google, he co-
founded and led three startup companies: Illustra and
Cohera with Mike Stonebraker in database systems
and Arch Rock in Internet of Things. He also held
senior engineering leadership positions at Informix,

PeopleSoft, Cisco, and Nest. He was a senior researcher at Intel Research Berkeley
working on sensor networks and streaming database systems and won an ACM
SIGMOD Test of Time Award. He is a co-inventor of 80 patents. He received his
Ph.D. from UC Berkeley and hos ME, BE, and BS from Tsinghua University.
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John Hugg

John Hugg has had a deep love for problems relating to
data. He’s worked at three database product startups
and worked on database problems within larger orga-
nizations as well. Although John dabbled in statistics
in graduate school, Dr. Stonebraker lured him back to
databases using the nascent VoltDB project. Working
with the very special VoltDB team was an unmatched
opportunity to learn and be challenged. John received
an M.S in 2007 and a B.S. in 2005 from Tufts University.

Ihab Ilyas

Ihab Ilyas is a professor in the Cheriton School of
Computer Science at the University of Waterloo, where
his main research focuses on the areas of big data
and database systems, with special interest in data
quality and integration, managing uncertain data,
rank-aware query processing, and information extrac-
tion. Ihab is also a co-founder of Tamr, a startup
focusing on large-scale data integration and clean-
ing. He is a recipient of the Ontario Early Researcher
Award (2009), a Cheriton Faculty Fellowship (2013),

an NSERC Discovery Accelerator Award (2014), and a Google Faculty Award (2014),
and he is an ACM Distinguished Scientist. Ihab is an elected member of the VLDB
Endowment board of trustees, elected SIGMOD vice chair, and an associate ed-
itor of ACM Transactions on Database Systems (TODS). He holds a Ph.D. in Com-
puter Science from Purdue University and a B.Sc. and an M.Sc. from Alexandria
University.
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Jason Kinchen

Jason Kinchen , Paradigm4’s V.P. of Engineering, is a
software professional with over 30 years’ experience
in delivering highly complex products to life science,
automotive, aerospace, and other engineering mar-
kets. He is an expert in leading technical teams in all
facets of a project life cycle from feasibility analysis
to requirements to functional design to delivery and
enhancement, and experienced in developing quality-
driven processes improving the software development
life cycle and driving strategic planning. Jason is an

avid cyclist and a Red Cross disaster action team volunteer.

Moshe Tov Kreps
Moshe Tov Kreps (formerly known as Peter Kreps) is a former researcher at the
University of California at Berkeley and the Lawrence Berkeley National Laboratory.
He was coauthor, with Mike Stonebraker, Eugene Wong, and Gerald Held, of the
seminal paper, “The Design and Implementation of INGRES,” published in the
ACM Transactions on Database Systems in September 1976.

Edmond Lau

Edmond Lau is the co-founder of Co Leadership,
where his mission is to transform engineers into lead-
ers. He runs leadership experiences, multi-week pro-
grams, and online courses to bridge people from
where they are to the lives and careers they dream
of. He’s the author of The Effective Engineer, the now
the de facto onboarding guide for many engineer-
ing teams. He’s spent his career leading engineering
teams across Silicon Valley at Quip, Quora, Google,
and Ooyala. As a leadership coach, Edmond also works

directly with CTO’s, directors, managers, and other emerging leaders to unlock
what’s possible for them. Edmond has been featured in the New York Times, Forbes,
Time, Slate, Inc., Fortune, and Wired. He blogs at coleadership.com, has a website
(www.theeffectiveengineer.com), and tweets at @edmondlau.
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Shilpa Lawande

Shilpa Lawande is CEO and co-founder of postscript
.us, an AI startup on a mission to free doctors from
clinical paperwork. Previously, she was VP/GM HPE
Big Data Platform, including its flagship Vertica An-
alytics Platform. Shilpa was a founding engineer at
Vertica and led its Engineering and Customer Success
teams from startup through the company’s acquisi-
tion by HP. Shilpa has several patents and books on
data warehousing to her name, and was named to the
2012 Mass High Tech Women to Watch list and Rev

Boston 20 in 2015. Shilpa serves as an advisor at Tamr, and as mentor/volunteer
at two educational initiatives, Year Up (Boston) and CSPathshala (India). Shilpa
has a M.S. in Computer Science from the University of Wisconsin-Madison and a
B.S in Computer Science and Engineering from the Indian Institute of Technology,
Mumbai.

Amerson Lin

Amerson Lin received his B.S. and M.Eng both in Com-
puter Science at MIT, the latter in 2005. He returned
to Singapore to serve in the military and government
before returning to the world of software. He was a
consultant at Pivotal and then a business develop-
ment lead at Palantir in both Singapore and the U.S.
Amerson currently runs his own Insurtech startup—
Gigacover—which delivers digital insurance to South-
east Asia.
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Samuel Madden

Samuel Madden is a professor of Electrical Engineer-
ing and Computer Science in MIT’s Computer Science
and Artificial Intelligence Laboratory. His research in-
terests include databases, distributed computing, and
networking. He is known for his work on sensor net-
works, column-oriented database, high-performance
transaction processing, and cloud databases. Madden
received his Ph.D. in 2003 from the University of Cal-
ifornia at Berkeley, where he worked on the TinyDB
system for data collection from sensor networks. Mad-

den was named one of Technology Review’s Top 35 Under 35 (2005), and is the
recipient of several awards, including an NSF CAREER Award (2004), a Sloan Foun-
dation Fellowship (2007), VLDB best paper awards (2004, 2007), and a MobiCom
2006 best paper award. He also received “test of time” awards in SIGMOD 2013 and
2017 (for his work on Acquisitional Query Processing in SIGMOD 2003 and on Fault
Tolerance in the Borealis system in SIGMOD 2007), and a ten-year best paper award
in VLDB 2015 (for his work on the C-Store system).

Tim Mattson

Tim Mattson is a parallel programmer. He earned his
Ph.D. in Chemistry from the University of California,
Santa Cruz for his work in molecular scattering the-
ory. Since 1993, Tim has been with Intel Corporation,
where he has worked on High Performance Comput-
ing: both software (OpenMP, OpenCL, RCCE, and
OCR) and hardware/software co-design (ASCI Red,
80-core TFLOP chip, and the 48 core SCC). Tim’s
academic collaborations include work on the funda-
mental design patterns of parallel programming, the

BigDAWG polystore system, the TileDB array storage manager, and building blocks
for graphs “in the language of linear algebra” (the GraphBLAS). Currently, he leads
a team of researchers at Intel working on technologies that help application pro-
grammers write highly optimized code that runs on future parallel systems. Outside
of computing, Tim fills his time with coastal sea kayaking. He is an ACA-certified
kayaking coach (level 5, advanced open ocean) and instructor trainer (level three,
basic coastal).
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Felix Naumann

Felix Naumann studied Mathematics, Economics,
and Computer Science at the University of Technology
in Berlin. He completed his Ph.D. thesis on “Quality-
driven Query Answering” in 2000. In 2001 and 2002,
he worked at the IBM Almaden Research Center on
topics of data integration. From 2003–2006, he was
assistant professor for information integration at the
Humboldt-University of Berlin. Since then, he has
held the chair for information systems at the Hasso
Plattner Institute at the University of Potsdam in Ger-

many. He is Editor-in-Chief of Information Systems, and his research interests are
in data profiling, data cleansing, and text mining.

Mike Olson

Mike Olson co-founded Cloudera in 2008 and served
as its CEO until 2013 when he took on his current
role of chief strategy officer (CSO). As CSO, Mike is
responsible for Cloudera’s product strategy, open-
source leadership, engineering alignment, and di-
rect engagement with customers. Prior to Cloudera,
Mike was CEO of Sleepycat Software, makers of Berke-
ley DB, the open-source embedded database engine.
Mike spent two years at Oracle Corporation as Vice
President for Embedded Technologies after Oracle’s

acquisition of Sleepycat in 2006. Prior to joining Sleepycat, Mike held technical
and business positions at database vendors Britton Lee, Illustra Information Tech-
nologies, and Informix Software. Mike has a B.S. and an M.S. in Computer Science
from the University of California, Berkeley. Mike tweets at @mikeolson.

Elizabeth O’Neil
Elizabeth O’Neil (Betty) is a Professor of Computer Science at the University of
Massachusetts, Boston. Her focus is research, teaching, and software development
in database engines: performance analysis, transactions, XML support, Unicode
support, buffering methods. In addition to her work for UMass Boston, she was,
among other pursuits, a long-term (1977–1996) part-time Senior Scientist for Bolt,
Beranek, and Newman, Inc., and during two sabbaticals was a full-time consultant
for Microsoft Corporation. She is the owner of two patents owned by Microsoft.
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Patrick O’Neil
Patrick O’Neil is Professor Emeritus at the University of Massachusetts, Boston.
His research has focused on database system cost-performance, transaction iso-
lation, data warehousing, variations of bitmap indexing, and multi-dimensional
databases/OLAP. In addition to his research, teaching, and service activities, he
is the coauthor—with his wife Elizabeth (Betty)—of a database management text-
book, and has been active in developing database performance benchmarks and
corporate database consulting. He holds several patents.

Mourad Ouzzani

Mourad Ouzzani is a principal scientist with the Qatar
Computing Research Institute, HBKU. Before joining
QCRI, he was a research associate professor at Purdue
University. His current research interests include data
integration, data cleaning, and building large-scale
systems to enable science and engineering. He is the
lead PI of Rayyan, a system for supporting the creation
of systematic reviews, which had more than 11,000
users as of March 2017. He has extensively published
in top-tier venues including SIGMOD, PVLDB, ICDE,

and TKDE. He received Purdue University Seed for Success Awards in 2009 and
2012. He received his Ph.D. from Virginia Tech and his M.S. and B.S. from USTHB,
Algeria.

Andy Palmer

Andy Palmer is co-founder and CEO of Tamr, Inc.,
the enterprise-scale data unification company that he
founded with fellow serial entrepreneur and 2014 Tur-
ing Award winner Michael Stonebraker, Ph.D., and
others. Previously, Palmer was co-founder and found-
ing CEO of Vertica Systems (also with Mike Stone-
braker), a pioneering analytics database company (ac-
quired by HP). He founded Koa Labs, a seed fund
supporting the Boston/Cambridge entrepreneurial
ecosystem, is a founder-partner at The Founder Col-

lective, and holds a research affiliate position at MIT CSAIL. During his career as
an entrepreneur, Palmer has served as Founder, founding investor, BoD member,
or advisor to more than 60 startup companies in technology, healthcare, and the
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life sciences. He also served as Global Head of Software and Data Engineering at
Novartis Institutes for BioMedical Research (NIBR) and as a member of the start-up
team and Chief Information and Administrative Officer at Infinity Pharmaceuticals
(NASDAQ: INFI). Previously, he held positions at innovative technology companies
Bowstreet, pcOrder.com, and Trilogy. He holds a BA from Bowdoin (1988) and an
MBA from the Tuck School of Business at Dartmouth (1994).

Andy Pavlo

Andy Pavlo is an assistant professor of Databaseol-
ogy in the Computer Science Department at Carnegie
Mellon University. He also used to raise clams. Andy
received a Ph,D, in 2013 and an M.Sc. in 2009, both
from Brown University, and an M.Sc. in 2006 and a
B.Sc., both from Rochester Institute of Technology.

Alex Poliakov

Alex Poliakov has over a decade of experience develop-
ing distributed database internals. At Paradigm4, he
helps set the vision for the SciDB product and leads
a team of Customer Solutions experts who help re-
searchers in scientific and commercial applications
make optimal use of SciDB to create new insights,
products, and services for their companies. Alex previ-
ously worked at Netezza, after graduating from MIT’s
Course 6. Alex is into flying drones and producing
drone videos.
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Alexander Rasin

Alexander Rasin is an Associate Professor in the Col-
lege of Computing and Digital Media (CDM) at DePaul
University. He received his Ph.D. and M.Sc. in Com-
puter Science from Brown University, Providence, RI.
He is a co-Director of Data Systems and Optimization
Lab at CDM and his primary research interest is in
database forensics and cybersecurity applications of
forensic analysis. Dr. Rasin’s other research projects
focus on building and tuning performance of domain-
specific data management systems—currently in the

areas of computer-aided diagnosis and software analytics. Several of his current
research projects are supported by NSF.

Jennie Rogers

Jennie Rogers is the Lisa Wissner-Slivka and Benjamin
Slivka Junior Professor in Computer Science and an
Assistant Professor at Northwestern University. Before
that she was a postdoctoral associate in the Database
Group at MIT CSAIL where she worked with Mike
Stonebraker and Sam Madden. She received her Ph.D.
from Brown University under the guidance of Ugur
Çetintemel. Her research interests include the man-
agement of science data, federated databases, cloud
computing, and database performance modeling. Her

Erdös number is 3.
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Lawrence A. Rowe

Lawrence A. Rowe is an Emeritus Professor of Electri-
cal Engineering and Computer Science at U.C. Berke-
ley. His research interests are software systems and ap-
plications. His group developed the Berkeley Lecture
Webcasting System that produced 30 course lecture
webcasts each week viewed by over 500,000 people per
month. His publications received three “best paper”
and two “test of time” awards. He is an investor/
advisor in The Batchery a Berkeley-based seed-stage
incubator. Rowe is an ACM Fellow, a co-recipient of

the 2002 U.C. Technology Leadership Council Award for IT Innovation, the recipi-
ent of the 2007 U.C. Irvine Donald Bren School of ICS Distinguished Alumni Award,
the 2009 recipient of the ACM SIGMM Technical Achievement Award, and a co-
recipient of the Inaugural ACM SIGMOD Systems Award for the development of
modern object-relational DBMS. Larry and his wife Jean produce and sell award-
winning premium wines using Napa Valley grapes under the Greyscale Wines
brand.

Kriti Sen Sharma

Kriti Sen Sharma is a Customer Solutions Architect
at Paradigm4. He works on projects spanning multi-
ple domains (genomics, imaging, wearables, finance,
etc.). Using his skills in collaborative problem-solving,
algorithm development, and programming, he builds
end-to-end applications that address customers’ big-
data needs and enable them to gain business insights
rapidly. Kriti is an avid blogger and also loves biking
and hiking. Kriti received a Ph.D. in 2013 and an M.Sc.
in 2009, both from Virginia Polytechnic Institute and

State University, and an a B.Tech. from Indian Institute of Technology, Kharagpur,
in 2005.
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Nan Tang

Nan Tang is a senior scientist at Qatar Computing
Research Institute, HBKU, Qatar Foundation, Qatar.
He received his Ph.D. from the Chinese University of
Hong Kong in 2007. He worked as a research staff
member at CWI, the Netherlands, from 2008–2010.
He was a research fellow at University of Edinburgh
from 2010–2012. His current research interests in-
clude data curation, data visualization, and intelligent
and immersive data analytics.

Jo Tango

Jo Tango founded Kepha Partners. He has invested in
the e-commerce, search engine, Internet ad network,
wireless, supply chain software, storage, database, se-
curity, on-line payments, and data center virtualiza-
tion spaces. He has been a founding investor in many
Stonebraker companies: Goby (acquired by NAVTEQ),
Paradigm4, StreamBase Systems (acquired by TIBCO),
Vertica Systems (acquired by Hewlett-Packard), and
VoltDB. Jo previously was at Highland Capital Part-
ners for nearly nine years, where he was a General

Partner. He also spent five years with Bain & Company, where he was based in Sin-
gapore, Hong Kong, and Boston, and focused on technology and startup projects.
Jo attended Yale University (B.A., summa cum laude and Phi Beta Kappa) and Har-
vard Business School (M.B.A., Baker Scholar). He writes a personal blog at jtan-
goVC.com.
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Nesime Tatbul

Nesime Tatbul is a senior research scientist at the
Intel Science and Technology Center at MIT CSAIL.
Before joining Intel Labs, she was a faculty member
at the Computer Science Department of ETH Zurich.
She received her B.S. and M.S. in Computer Engineer-
ing from the Middle East Technical University (METU)
and her M.S. and Ph.D. in Computer Science from
Brown University. Her primary research area is data-
base systems. She is the recipient of an IBM Faculty
Award in 2008, a Best System Demonstration Award

at SIGMOD 2005, and the Best Poster and the Grand Challenge awards at DEBS
2011. She has served on the organization and program committees for various con-
ferences including SIGMOD (as an industrial program co-chair in 2014 and a group
leader in 2011), VLDB, and ICDE (as a PC track chair for Streams, Sensor Networks,
and Complex Event Processing in 2013).

Nga Tran
Nga Tran is currently the Director of Engineering in the server development team at
Vertica, where she has worked for the last 14 years. Previously, she was a Ph.D. can-
didate at Brandeis University, where she participated in research that contributed
to Mike Stonebraker’s research.

Marianne Winslett

Marianne Winslett has been a professor in the Depart-
ment of Computer Science at the University of Illinois
since 1987, and served as the Director of Illinois’s re-
search center in Singapore, the Advanced Digital Sci-
ences Center, from 2009–2013. Her research interests
lie in information management and security, from the
infrastructure level on up to the application level. She
is an ACM Fellow and the recipient of a Presidential
Young Investigator Award from the U.S. National Sci-
ence Foundation. She is the former Vice-Chair of ACM

SIGMOD and the former co-Editor-in-Chief of ACM Transactions on the Web, and
has served on the editorial boards of ACM Transactions on Database Systems, IEEE



Biographies 695

Transactions on Knowledge and Data Engineering, ACM Transactions on Information
and System Security, The Very Large Data Bases Journal, and ACM Transactions on
the Web. She has received two best paper awards for research on managing regula-
tory compliance data (VLDB, SSS), one best paper award for research on analyzing
browser extensions to detect security vulnerabilities (USENIX Security), and one for
keyword search (ICDE). Her Ph.D. is from Stanford University.

Eugene Wong

Eugene Wong is Professor Emeritus at the University
of California, Berkeley. His distinguished career in-
cludes contributions to academia, business, and pub-
lic service. As Department Chair of EECS, he led the
department through its greatest period of growth and
into one of the highest ranked departments in its field.
In 2004, the Wireless Foundation was established in
Cory Hall upon completion of the Eugene and Joan C.
Wong Center for Communications Research. He au-
thored or co-authored over 100 scholarly articles and

published 4 books, mentored students, and supervised over 20 dissertations. In
1980, he co-founded (with Michael Stonebraker and Lawrence A. Rowe) the INGRES
Corporation. He was the Associate Director of the Office of Science and Technology
Policy, under George H. Bush; from 1994–1996, he was Vice President for Research
and Development for Hong Kong University of Science and Technology. He received
the ACM Software System Award in 1988 for his work on INGRES, and was awarded
the 2005 IEEE Founders Medal, with the apt citation: “For leadership in national
and international engineering research and technology policy, for pioneering con-
tributions in relational databases.”
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Stan Zdonik

Stan Zdonik is a tenured professor of Computer Sci-
ence at Brown University and a noted researcher in
database management systems. Much of his work in-
volves applying data management techniques to novel
database architectures, to enable new applications.
He is co-developer of the Aurora and Borealis stream
processing engines, C-Store column store DBMS, and
H-Store NewSQL DBMS, and has contributed to other
systems including SciDB and the BigDAWG polystore
system. He co-founded (with Michael Stonebraker)

two startup companies: StreamBase Systems and Vertica Systems. Earlier, while
at Bolt Beranek and Newman Inc., Dr. Zdonik worked on the Prophet System, a
data management tool for pharmacologists. He has more than 150 peer-reviewed
papers in the database field and was named an ACM Fellow in 2006. Dr. Zdonik
has a B.S in Computer Science and one in Industrial Management, an M.S. in Com-
puter Science, and the degree of Electrical Engineer, all from MIT, where he went
on to receive his Ph.D. in database management under Prof. Michael Hammer.
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