

Ray Rischpater

Beginning Java™ ME
Platform

www.allitebooks.com

http://www.allitebooks.org

Beginning Java™ ME Platform

Copyright © 2008 by Ray Rischpater

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1061-0

ISBN-10 (pbk): 1-4302-1061-3

ISBN-13 (electronic): 978-1-4302-1062-7

ISBN-10 (electronic): 1-4302-1062-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in
the US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was
written without endorsement from Sun Microsystems, Inc.

Lead Editor: Steve Anglin
Technical Reviewer: Christopher King
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan

Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Nicole Abramowitz
Associate Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Patrick Cunningham
Proofreader: Liz Welch
Indexer: Brenda Miller
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

www.allitebooks.com

http://www.allitebooks.org

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

PART 1 ■ ■ ■ Getting Started
■CHAPTER 1 Mapping the Java Jungle . 3

■CHAPTER 2 Shrinking Java to Fit . 19

■CHAPTER 3 Getting Started with the NetBeans IDE . 33

Intermezzo
PART 2 ■ ■ ■ CLDC Development with MIDP
■CHAPTER 4 Introducing MIDlets . 83

■CHAPTER 5 Building User Interfaces . 97

■CHAPTER 6 Storing Data Using the Record Store . 133

■CHAPTER 7 Accessing Files and Other Data . 161

■CHAPTER 8 Using the Java Mobile Game API . 193

Intermezzo
PART 3 ■ ■ ■ CDC Development
■CHAPTER 9 Introducing Xlets and the Personal Basis Profile 223

■CHAPTER 10 Introducing Applets and the Advanced Graphics
and User Interface . 253

■CHAPTER 11 Using Remote Method Invocation . 273

iv

Contents at a Glance

www.allitebooks.com

http://www.allitebooks.org

Intermezzo
PART 4 ■ ■ ■ Communicating with the

Rest of the World
■CHAPTER 12 Accessing Remote Data on the Network . 293

■CHAPTER 13 Accessing Web Services . 331

■CHAPTER 14 Messaging with the Wireless Messaging API 373

Intermezzo
PART 5 ■ ■ ■ Other Java ME Interfaces
■CHAPTER 15 Securing Java ME Applications. 413

■CHAPTER 16 Rendering Multimedia Content . 447

■CHAPTER 17 Finding Your Way . 499

■CHAPTER 18 Seeking a Common Platform . 523

■APPENDIX Finding Java APIs. 539

■INDEX . 543

v

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author . xvii

About the Technical Reviewer . xix

Acknowledgments . xxi

Introduction . xxiii

PART 1 ■ ■ ■ Getting Started

■CHAPTER 1 Mapping the Java Jungle. 3

Introducing the Market for Java ME. 3

Looking from the Device Manufacturers’ Perspective. 3

Looking from the Operators’ Perspective . 4

Looking from the Consumers’ Perspective . 5

Looking Inside the Java ME Platform. 6

Justifying the Need for a Mobile Edition of Java 6

Making Java Work on Mobile Devices . 7

Understanding Configurations . 10

Introducing the Connected Limited Device Configuration. 10

Introducing the Connected Device Configuration 12

Understanding Profiles . 12

Introducing the Mobile Information Device Profile 13

Introducing the Foundation Profile . 14

Introducing the Personal Basis Profile . 14

Introducing the Personal Profile . 15

Understanding Packages . 15

Planning Your Approach to Java ME Development 16

Selecting Appropriate Device Targets . 16

Marketing and Selling Your Application . 17

Wrapping Up. 18

vii

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 2 Shrinking Java to Fit. 19

Making It Fit: The CLDC . 19

Understanding the Present: CLDC 1.1 . 20

Looking Back at CLDC 1.0 . 22

Looking Toward the Future of the CLDC . 22

Making It Fit: The CDC . 23

Changing the Java Class Library to Fit the CLDC. 24

Changes to the java.lang Package . 24

Changes to the java.util Package . 28

Changes to the java.io Package . 29

Introducing Classes in the CLDC. 30

Changing the Java Class Library to Fit the CDC. 31

Wrapping Up. 31

■CHAPTER 3 Getting Started with the NetBeans IDE . 33

Selecting the NetBeans IDE . 33

Finding Your Way Around the NetBeans IDE. 35

Creating Your First CLDC/MIDP Application . 37

Walking Through the Creation of WeatherWidget 38

Building CLDC/MIDP Applications . 52

Packaging and Executing CLDC/MIDP Applications. 53

Creating Your First CDC Application . 57

Walking Through the Creation of WeatherApplet 57

Packaging and Executing CDC Applications . 75

Wrapping Up. 77

Intermezzo

PART 2 ■ ■ ■ CLDC Development with MIDP
■CHAPTER 4 Introducing MIDlets . 83

Looking at the Simplest MIDlet . 83

Understanding the MIDlet Life Cycle . 85

Packaging MIDlets. 87

Obtaining Properties and Resources . 89

Managing Startup Events and Alarms . 90

Wrapping Up. 96

■CONTENTSviii

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 5 Building User Interfaces . 97

Understanding the Relationship Between the Display and
Visible Item Objects . 97

Using Commands to Control Application Flow . 101

Introducing Basic Visible Items . 104

Introducing Items . 106

Managing Choices . 112

Introducing the Screen and Its Subclasses. 114

Collecting Visible Items Using the Form Class 114

Alerting the User . 116

Accepting Copious Amounts of Text. 119

Showing Lists of Choices . 120

Working with the Canvas and Custom Items . 122

Controlling Drawing Behavior with a Custom Canvas 122

Creating a Custom Item for a Screen . 125

Implementing a Custom Item. 127

Wrapping Up. 131

■CHAPTER 6 Storing Data Using the Record Store . 133

Peeking Inside the Record Store. 133

Using the Record Store. 135

Opening and Closing a Record Store . 136

Removing a Record Store. 137

Obtaining Information About a Record Store. 137

Accessing Records in the Record Store. 138

Adding a Record. 141

Retrieving a Record . 142

Enumerating a Record . 142

Updating a Record . 144

Removing a Record . 144

Counting Records. 145

Listening for Record Store Changes . 145

Understanding Platform Limitations of Record Stores. 145

Putting the Record Store to Work . 146

Wrapping Up. 160

■CONTENTS ix

www.allitebooks.com

http://www.allitebooks.org

■CONTENTSx

■CHAPTER 7 Accessing Files and Other Data . 161

Introducing the FCOP . 161

Using the FCOP . 163

Determining If the FCOP Is Present . 164

Obtaining a FileConnection Instance . 164

Creating a New File or Directory . 165

Opening a File. 166

Tweaking File Attributes . 166

Deleting a File or Directory. 167

Enumerating a Directory’s Contents. 167

Listening for File System Changes . 168

Putting the FCOP to Work. 169

Introducing the PIM Package. 174

Using the PIM Package. 175

Ensuring the PIM Package Is Available . 176

Opening a PIM Database . 176

Reading Records from a PIM Database . 177

Reading Fields from a PIM Record . 177

Modifying a PIM Record . 182

Adding a PIM Record. 183

Removing a PIM Entry. 184

Managing PIM Database Categories. 184

Putting the PIM Package to Work . 185

Understanding the Role Code Signing and Verification Can Play 190

Wrapping Up. 191

■CHAPTER 8 Using the Java Mobile Game API . 193

Looking Inside the Mobile Game API . 193

Managing Events and Drawing . 195

Polling for Keystrokes . 196

Managing Game Execution. 197

Tying Your GameCanvas to Your MIDlet . 199

Layering Visual Elements . 200

Managing Layers . 201

Optimizing Visual Layers Using Tiling. 202

Producing Animations . 205

www.allitebooks.com

http://www.allitebooks.org

Putting the Mobile Game API to Work . 207

Implementing the Game MIDlet. 209

Implementing the Game Canvas . 210

Wrapping Up. 218

Intermezzo

PART 3 ■ ■ ■ CDC Development

■CHAPTER 9 Introducing Xlets and the Personal Basis Profile 223

Understanding the Xlet . 223

Looking at the Xlet Life Cycle . 224

Extending the Xlet Interface . 225

Using the Xlet Context. 226

Writing a Simple Xlet. 227

Looking at a Simple Xlet . 227

Understanding Xlet Dependencies . 230

Developing Lightweight User Interfaces Using the PBP 233

Implementing Your Own Components for a Window Toolkit 234

Writing a Simple, Lightweight Component . 236

Understanding Window Toolkit Limitations of the PBP 240

Obtaining Xlet Properties and Resources . 242

Communicating with Other Xlets . 243

Implementing a Shared Object . 244

Sharing an Object for Other Xlets to Find . 246

Using a Shared Object. 249

Wrapping Up. 251

■CHAPTER 10 Introducing Applets and the Advanced Graphics
and User Interface . 253

Writing Applets for Java ME . 253

Looking at the Applet Life Cycle . 254

Presenting the Applet’s User Interface. 256

Accessing an Applet’s Context . 257

Communicating Between Applets . 258

■CONTENTS xi

www.allitebooks.com

http://www.allitebooks.org

Developing User Interfaces with the AWT . 260

Using AWT Containers. 262

Using AWT Components . 263

Handling AWT Events . 264

Developing User Interfaces with the AGUI. 266

Understanding Restrictions on Top-Level Windows 269

Using the AGUI’s Added Input Support . 269

Understanding Changes to the Drawing Algorithm 270

Wrapping Up. 271

■CHAPTER 11 Using Remote Method Invocation . 273

Understanding Java RMI . 273

Understanding the Architecture of Java RMI. 274

Introducing the Java RMI Interfaces . 277

Understanding the Java RMI Optional Package . 278

Looking at the Requirements for the Java RMI

Optional Package . 278

Seeing What’s Provided by the Java RMI

Optional Package . 279

Applying Java RMI. 280

Writing the Java Interfaces for the Service . 282

Implementing the Service Using Java SE . 283

Generating the Stub Classes for Java SE. 284

Writing the Remote Service Host Application 285

Invoking the Remote Object from the Client 286

Wrapping Up. 286

■CONTENTSxii

www.allitebooks.com

http://www.allitebooks.org

Intermezzo

PART 4 ■ ■ ■ Communicating with the
Rest of the World

■CHAPTER 12 Accessing Remote Data on the Network 293

Introducing the Generic Connection Framework . 293

Communicating with Sockets and Datagrams . 300

Using Sockets with the GCF. 300

Using Datagrams with the GCF . 304

Communicating with HTTP . 306

Reviewing HTTP . 306

Using HTTP with the GCF . 309

Putting HTTP to Work . 315

Securing Your HTTP Transaction with HTTPS. 325

Granting Permissions for Network Connections. 327

Wrapping Up. 328

■CHAPTER 13 Accessing Web Services. 331

Looking at a Web Service from the Client Perspective 331

Considering the Architecture . 333

Exchanging Data over the Network . 334

Using XML for Data Representation . 336

Exploring XML Support for Web Services in Java ME 341

Generating XML in Java ME Applications . 343

Introducing the J2ME Web Services Specification. 355

Introducing the kXML Parser . 365

Wrapping Up. 372

■CHAPTER 14 Messaging with the Wireless Messaging API 373

Introducing Wireless Messaging Services. 373

Introducing Short Message Service . 374

Introducing Multimedia Messaging Service 374

Introducing the Cell Broadcast Service . 375

■CONTENTS xiii

Introducing Wireless Messaging API . 375

Creating Messages . 379

Sending Messages . 380

Receiving Messages . 385

Managing Message Headers . 385

Understanding Required Privileges When Using the WMA 386

Using the Push Registry . 387

Registering Dynamically for Incoming Messages. 390

Using PushRegistry APIs. 390

Applying the Wireless Messaging API . 391

Sending and Receiving SMS Messages. 391

Sending and Receiving MMS Messages . 398

Wrapping Up. 407

Intermezzo

PART 5 ■ ■ ■ Other Java ME Interfaces

■CHAPTER 15 Securing Java ME Applications . 413

Understanding the Need for Security . 413

Looking at Java ME’s Security and Trust Services 416

Communicating with Cryptographic Hardware

Using the APDU API . 417

Communicating with Java Smart Cards Using JCRMI. 420

Leveraging the SATSA High-Level APIs for Cryptography. 422

Exploring the Bouncy Castle Solution to Security Challenges 425

Creating Message Digests Using the Bouncy Castle API 428

Encrypting and Decrypting Using the Bouncy Castle API 429

Creating Secure Commerce with Contactless Communications 431

Discovering Contactless Targets. 432

Communicating with Contactless Targets . 435

Recognizing and Generating Visual Tags. 440

Wrapping Up. 444

■CONTENTSxiv

■CHAPTER 16 Rendering Multimedia Content. 447

Introducing the MMAPI . 448

Understanding Basic Multimedia Concepts. 448

Understanding the Organization of the MMAPI. 450

Starting the Rendering Process. 454

Controlling the Rendering Process . 458

Capturing Media. 461

Playing Individual Tones . 466

Introducing the Java Scalable 2D Vector Graphics API 470

Understanding Basic SVG Concepts . 470

Understanding the Organization of the SVGAPI 472

Rendering SVG Images . 474

Modifying SVG Images . 480

Using NetBeans with SVG Images. 483

Putting the MMAPI and the SVGAPI to Work . 484

Playing Audio and Video . 493

Capturing Images. 494

Playing SVG Content . 496

Wrapping Up. 497

■CHAPTER 17 Finding Your Way . 499

Understanding Location-Based Services. 499

Introducing the Location API . 501

Understanding the Location API . 502

Using the Location API to Determine Device Location. 503

Using the Location API to Manage Landmarks 507

Understanding the Role That Security Plays in LBS. 508

Using the Location API . 509

Locating the User. 518

Simulating Location API Data in the Sun Java

Wireless Toolkit. 518

Wrapping Up. 520

■CONTENTS xv

■CONTENTSxvi

■CHAPTER 18 Seeking a Common Platform . 523

Understanding the Role JSRs Play in Fragmentation 523

Contributing to Fragmentation and Unification 524

Reading a JSR . 525

Dealing with Fragmentation on Your Own. 527

Understanding the JTWI . 528

Examining the JTWI Required Elements . 529

Examining the JTWI Optional Elements . 529

Understanding the MSA . 530

Understanding MSA 1.0 . 531

Evolving for the Future: MSA2 . 534

Wrapping Up. 537

■APPENDIX Finding Java APIs . 539

■INDEX . 543

About the Author

■RAY RISCHPATER is an engineer and
author with more than 15 years of expe-
rience writing about and developing for
mobile-computing platforms. During
this time, Ray has participated in the
development of Internet technologies
for Java ME, Qualcomm BREW, Palm OS,
Apple Newton, and General Magic’s
Magic Cap, as well as several proprietary
platforms. Presently, Ray is employed as
the chief architect at Rocket Mobile, a
wholly owned subsidiary of Buongiorno

Group. When not writing for or about mobile platforms, Ray enjoys hiking with his
family and participating in public service through amateur radio in and around the
San Lorenzo Valley in northern California. Ray holds a bachelor’s degree in pure mathe-
matics from the University of California, Santa Cruz and is a member of the Institute of
Electrical and Electronics Engineers (IEEE), the Association for Computing Machinery
(ACM), and the American Radio Relay League (ARRL). Ray’s previous books include
Software Development for the QUALCOMM BREW Platform (Apress, 2003), Wireless Web
Development, Second Edition (Apress, 2002), and eBay Application Development
(Apress, 2004).

xvii

About the Technical
Reviewer

■CHRIS KING has been writing software since childhood; today he focuses on the
challenges and joys of mobile development. In recent years, he has specialized in
technologies such as Java ME, Qualcomm BREW, and Android. His recent projects
include messaging software that has been preloaded on millions of phones, consumer
entertainment devices, middleware libraries, community organizing tools, and
lifestyle applications. Chris currently serves as a lead engineer for Gravity Mobile
in San Francisco.

Since moving to California, Chris has become an avid hiker, cyclist, and home cook.
With any free time that remains, Chris programs for fun, writes, and devours books.

xix

Acknowledgments

Any book today is the collaborative effort of numerous people; technical books such as
this one even more so. In helping me produce this book, I owe thanks to numerous peo-
ple, including some who don’t realize how much they helped, and others whose names I
may never know.

My son Jarod has been part of my writing career since it started; my first book and his
birth nearly coincided. He is now old enough that he is writing both prose and programs
on his own, giving us valuable opportunities to share in learning together. His respect for
the craft of writing—shown through his asking me questions about what I am doing and
how I do it—is precious to me. His ability to help me wholly forget the frustrations inher-
ent in any large project when he and I are together is just one of the many priceless gifts
he gives me.

My wife Meg embraced and encouraged this project from the beginning, despite
knowing it would mean that I would spend countless hours apart from her as I researched
and wrote the examples and text for this book. Her patience with my absence—extending
to when I was physically present yet mumbling about some minutia of mobile-application
development—bordered on the heroic at times. I cherish our relationship, and it moves
me to reflect how each of us supports the other to grow and succeed.

The entire Apress staff was indispensible in bringing this book to you. Steve Anglin and
Richard Dal Porto were crucial in helping start the project and shepherd it to completion.
Richard was especially helpful in keeping all of the different parts of production running
smoothly, even when I found myself missing the occasional deadline. Nicole Abramowitz,
my copy editor, was both thorough and patient, and made innumerable improvements to
this book. Katie Stence, my production editor, made the production review process pain-
less as I saw how the book would appear in print for the first time. I also must thank those
at Apress whom I have not met personally, because without their contributions, Apress
would not be the successful company with which I find it so easy to work.

Chris King, this book’s technical editor, is also my colleague and friend. His attention
to detail frequently transcended errors of program syntax and improved my exposition of
many of the concepts you encounter in this book. He fearlessly ran—and read—every
example in this book and helped improve even the pseudocode that I use in many places
as examples. I have always enjoyed working with Chris professionally, and this project
cements my professional respect for him.

xxi

My colleagues at Rocket Mobile (now part of Buongiorno Group) deserve recognition
not only for providing additional Java ME experience on which to draw for several exam-
ples in the book, but also for their patience and support. I must apologize to Erik Browne,
Levon Dolbakian, Graham Darcy, Jonathan Jackson, and Rajiv Ramanasankaran for
enduring my frequent C and Java transpositions as I wrote C code for the office during
the day and Java code for the book at night. The management staff—including Young
Yoon, Scott Sumner, Jim Alisago, and Wayne Yurtin—has given me the privilege of com-
bining software engineering and writing, and has provided a climate in which both can
succeed. Thank you, each and every one of you.

Many people close to me contributed additional support, whether or not they knew
they were doing so. Brad Holden, Connie Rockosi, Chris Haseman, and Shane Conder are
at the top of this list for giving me much-needed space, time to work, and positive
encouragement during the many times when I wondered if it were possible to write a
book while working full-time and having an active life outside my technical career. I am
indebted to these and others for their contributions as well.

■ACKNOWLEDGMENTSxxii

Introduction

When I set out to write this book, I was often surprised by the comments I received
from friends and colleagues. Many asked me if some other platform, such as Android
or the iPhone, would render Java Platform, Micro Edition (Java ME) obsolete (and non-
existent, some posited) by the time the book is published. Still others pointed to the
growing convergence between different lines of Java as rendering the need for separate
information about Java ME obsolete. And a few remarked scathingly that the market
for Java books was saturated, so investing the time to write another was an exercise in
futility. You, too, may ask these questions as you decide whether or not to read this book.
Perhaps you’re interested in Java ME as a specific platform on which to deploy an exist-
ing product, or perhaps you’re just curious as to whether you should include Java ME
skills in your professional portfolio.

The Java ME platform is a highly successful one. Billions—yes, that’s with a b—of
devices that run Java ME are in the hands of consumers right now. Still more are on the
way, including mobile phones, set-top boxes, and other devices you can’t even imagine
that are now in development. Java ME is deeply entrenched in the market, and yet
through the Java Community Process (JCP), it evolves rapidly to address challenges
raised by existing and new competing platforms, including Qualcomm BREW, Android,
and the Apple iPhone.

The cross-pollination between Java ME, Java Platform, Standard Edition (Java SE),
and Java Platform, Enterprise Edition (Java EE) is well recognized and will continue.
Members of the JCP work carefully to introduce APIs that can be shared across these Java
platforms, and many Java ME APIs are subsets of APIs proposed or developed for Java SE.
In some cases, the opposite is true: Java ME APIs are being introduced into Java SE, such
as the Java ME framework for communications and networking. As devices become more
capable, you will see more convergence between the various Java lines, but the specific
constraints on mobile devices—including ubiquitous network access, a small form fac-
tor, and scarce power, memory, and processor resources—will drive the need for specific
accommodations within the Java platform. Java ME and the JCP provide a framework for
vendors to make those accommodations.

There are many excellent books about Java 2 Platform, Micro Edition (J2ME)—the
predecessor to Java ME—and several good books about facets of Java ME as well. How-
ever, the Java ME platform evolves and advances at a truly awe-inspiring rate, and this
fact and the sheer size of Java ME make it difficult to find a good book for beginners that
provides a broad foundation on which to build Java ME competency. In this book, I’ve
worked to balance the presentation of the two profiles that comprise Java ME, because I

xxiii

believe that for you to be successful, you need to understand both. At the same time, I’ve
made explicit choices about the required and optional Java ME APIs I present, because I
believe that in building this foundation, you need to understand some basic principles
that arise again and again in the Java ME world, but you don’t necessarily need to be able
to recall from memory every method from every optional Java ME class. Given the time
you have, I believe it is important for you to master the platform fundamentals, so that
you’re better equipped to specialize in the areas that interest you later. In short, what I
don’t present here may be as important to you as what I do present.

Why Should You Read This Book?
I’ve already partially answered this question, but it’s worth recapping: Java ME is an inte-
gral part of the mobile-computing marketplace, and it’s a platform that every software
developer who works with mobile devices should be familiar with. Whether you need to
use it daily in your job, see it as competition, or are simply curious about how it’s differ-
ent from the platforms for which you presently develop applications, understanding Java
ME fundamentals will make you a better mobile software developer.

Whether you’re new to mobile-application development or have written mobile
applications for other platforms and are interested in learning what you need to know to
be a Java ME developer, you should read this book. By turning equal attention to the two
Java ME configurations—the Connected Limited Device Configuration (CLDC) and the
Connected Device Configuration (CDC)—I prepare you to write software for either the
booming mobile-phone market or the nascent market for set-top boxes and high-end
mobile phones with advanced user interfaces and other capabilities. Because Java ME
devices at their core are network-enabled devices, I spend a great deal of time explaining
to you the APIs that Java ME uses to enable applications to communicate, and I prepare
you to understand new communication schemes that Java ME may use in the coming
years. Once you finish this book, you can expect to have a grasp of the most important
APIs that Java ME developers use, as well as an understanding of the fundamental think-
ing behind the design and approach of the Java ME platform and the dynamics of the
mobile-software marketplace as a whole.

However, I have some expectations of you as well. I assume you have at least some
previous exposure to Java SE—both the language and some of the major classes that it
supports. You may not know the difference between a HashMap and a TreeMap, but you
should at least have a nodding acquaintance with Java syntax, the Java package system,
and some of the basic foundation classes that you can find in the java.lang and java.util
packages. Because it’s an important communication tool, you should also have at least a
nodding acquaintance with Unified Modeling Language (UML), as I frequently use UML
class, state machine, and sequence diagrams to help illustrate the relationship between
various Java ME components.

■INTRODUCTIONxxiv

www.allitebooks.com

http://www.allitebooks.org

Don’t worry, though, if you’re new to mobile-software development. One primary
aim of this book is to help you understand the dynamics of the mobile software–
development marketplace, because those dynamics have and continue to influence
Java ME. I firmly believe that a good software developer understands not just the plat-
form, but the business behind the market as well. I also don’t expect you to be a Java
expert: you can write solid code clearly using a minimum of Java-specific language fea-
tures. If I throw a closure or anonymous inner class your way, I’ll let you know; my goal
here is for you to learn to write mobile applications, not become the office Java guru.

In the interest of full disclosure, there may be reasons why this book isn’t for you. I
don’t discuss every optional Java ME API in detail—for example, I omit discussions of
both the Java Mobile 3D Graphics API and Java ME support for Bluetooth—because
they’re well covered by other texts and because they’re not necessary material that every
Java ME developer must know. In a similar vein, if you already have a great deal of Java
ME experience under your belt, you may still learn something from this book, but your
time may be better spent with a more in-depth exploration of a specific set of optional
APIs that interest you. For example, another source, such as a Java Specification Request
(JSR) that describes a particular API or a book on a specific topic, may be better for you. I
intend this book to be a survey for beginners new to the platform that calls out the rules
of the road and relevant landmarks, not an atlas of every intersection, hilltop, creek,
island, and bay.

How Should You Read This Book?
Presenting Java ME to newcomers poses particular challenges, because in many ways,
Java ME is really two platforms: one that’s wildly successful for mobile phones, and a
second that’s deployed in other consumer-electronics markets. As an engineer myself, I
recognize how busy you are and how you may be looking to me to give you only the infor-
mation you need to solve a set of problems on a specific platform, such as a set-top box
running the Java ME CDC. Consequently, I’ve split this book into five parts, so that you
can pick and choose the information that’s relevant to you.

• Part 1, “Getting Started”: Exposes you to the information that every Java ME devel-
oper should know: how Java ME is organized, which APIs are common across all
Java ME platforms, and which tools are available. I strongly recommend you read
the three chapters in this part to orient yourself to the Java ME market and mindset.

• Part 2, “CLDC Development with MIDP”: Explores the Java ME Connected Limited
Device Configuration (CLDC) and Mobile Information Device Profile (MIDP) in
detail. This configuration and associated profile comprise the most widely
deployed mobile-application platform in the world, and if you’re interested in
writing software for mobile phones or other wireless terminals, you’ll need to have
a good grasp of what it offers.

■INTRODUCTION xxv

• Part 3, “CDC Development”: Explores the Java ME Connected Device Configuration
(CDC), which underpins many consumer devices today, including television set-top
boxes and some advanced mobile phones. The CDC even plays a part in the Blu-ray
Disc standard. The information you’ll find here is often overlooked in other intro-
ductory Java ME materials, but it plays an increasing role in Java ME development.

• Part 4, “Communicating with the Rest of the World”: Explains how Java ME enables
the applications that you write to communicate with the rest of the Web. You’ll
learn about the Generic Connection Framework (GCF)—a key addition to the Java
world—as well as how Java ME enables you to work with both Internet protocols
and wireless-messaging protocols.

• Part 5, “Other Java ME Interfaces”: Shows you a few optional APIs that every Java
ME developer should know about. These interfaces are important for you to
understand both because they provide capabilities nearly every application will
tap (such as security and trust interfaces), and because the interfaces provide a
fundamental framework that other optional Java APIs extend (such as the Mobile
Media API). This part closes with a chapter examining how optional APIs frag-
ment the Java ME platform and how the Java community works together to
address this fragmentation.

A short “Intermezzo” precedes each part, helping orient you in the book.
Eighteen chapters await you in the five parts:

• Chapter 1, “Mapping the Java Jungle”: Introduces some key vocabulary and busi-
ness concepts you must understand before becoming a Java ME developer.

• Chapter 2, “Shrinking Java to Fit”: Describes the key transformation Java under-
goes between Java SE and Java ME. If you’re a seasoned Java SE developer, you
should read this chapter closely, as it tells you which language features and
classes you already know that are available to you in Java ME. If you’re fairly new
to Java, you should skim this chapter, but don’t be worried if you have to flip back
to it occasionally.

• Chapter 3, “Getting Started with the NetBeans IDE”: Enables you to build your first
Java ME applications using the leading software development kit (SDK) for Java ME
development. You’ll learn why NetBeans is the environment of choice for develop-
ing Java ME applications, and you’ll learn how to build two simple applications
from scratch using NetBeans. These sample applications are the starting points for
many of the examples in subsequent chapters. Even if you decide later to switch to
another SDK, this chapter will help you understand how the development tools for
Java ME fit together. In the process, you’ll also get a quick overview of the major
features of Java ME as you build these simple applications.

■INTRODUCTIONxxvi

• Chapter 4, “Introducing MIDlets”: Begins your exploration of one of the software
world’s most successful application platforms. You’ll learn about the MIDlet, which
is the unit of application execution on most Java ME devices.

• Chapter 5, “Building User Interfaces”: Describes the hierarchy of user-interface
components that are available only to Java ME developers. You’ll learn how the Java
ME–provided components work and interact, as well as how to extend the Java ME
component hierarchy.

• Chapter 6, “Storing Data Using the Record Store”: Describes the Java ME record-
store model that your applications can use for persistent storage. The record store
is available even on devices without a traditional file system, and it gives you the
ability to store records of similar data in a searchable, persistent manner.

• Chapter 7, “Accessing Files and Other Data”: Provides your first exposure to an
optional Java ME API—that is, an API that may not be available on all platforms. It
is such an important API, however, that it’s one you should master early. You’ll
need to understand how it and the record-store model presented in the previous
chapter work.

• Chapter 8, “Using the Java Mobile Game API”: Describes the Java Mobile Game API
and shows you how to write simple platform-independent games using Java ME.
Game development is a complex subject; rather than get bogged down in details
about game development that may not interest some readers, I emphasize the fun-
damentals of Java ME as they interrelate with game-development concerns.

• Chapter 9, “Introducing Xlets and the Personal Basis Profile”: Describes the parts of
Java ME that to date have largely applied to fixed consumer electronics, such as
set-top boxes. You’ll learn about the application model these devices support, as
well as the interfaces they offer.

• Chapter 10, “Introducing Applets and the Advanced Graphics and User Interface”:
Describes additional execution models available on Java ME platforms, plus sup-
port for legacy Java applets and an adaptation of Swing available on some Java ME
devices.

• Chapter 11, “Using Remote Method Invocation”: Shows you how some Java ME
devices can use Remote Method Invocation (RMI) to interact with other Java-
provided services on the network.

• Chapter 12, “Accessing Remote Data on the Network”: Begins your foray into the
communication framework supported by all Java ME devices, and shows you how
to use it with Internet protocols to access data and services over the network.

■INTRODUCTION xxvii

• Chapter 13, “Accessing Web Services”: Builds on what you learn in Chapter 12 to
show you how Java ME’s optional APIs and open source packages enable your
applications to access web services using Extensible Markup Language (XML)
and HTTP.

• Chapter 14, “Messaging with the Wireless Messaging API”: Shows you how to use the
wireless messaging interfaces available on many Java ME devices. These interfaces
enable you to send and receive messages with protocols such as Short Message
Service (SMS).

• Chapter 15, “Securing Java ME Applications”: Looks at optional Java ME interfaces
that provide extensions such as cryptography and access to smart cards, as well as
interfaces that enable mobile commerce, such as the optional API for reading
radio-frequency identification (RFID) cards and bar codes.

• Chapter 16, “Rendering Multimedia Content”: Describes Java ME’s approach to
providing support for multimedia content rendering. I show you both the Mobile
Media API that Java ME devices may provide, as well as an optional API for display-
ing and animating Scalable Vector Graphics (SVG) images.

• Chapter 17, “Finding Your Way”: Describes the optional Java ME interfaces that let
your application determine the device location.

• Chapter 18, “Seeking a Common Platform”: Closes the book with a discussion of
how the optional APIs that Java ME devices may provide challenge application
developers like you to find sufficient devices that provide the features your appli-
cations require. I also explain how the Java community is addressing that challenge
through additional device profiles such as the Java Technology for the Wireless
Industry and Mobile Service Architecture (MSA).

• Appendix, “Finding Java APIs”: Provides you with a table of interesting mobile tech-
nologies and the JSRs that define support for those technologies. When you’re
finished reading this book and want to learn more about a specific technology and
how it interacts with Java ME, you can use this table to determine where to start
your research.

Ideally, I’d encourage you to read all of Parts 1–4 and then whatever parts of Part 5
interest you, especially if this is your first exposure to Java ME. However, you can tackle
this material in other ways as well. If you’re interested in a specific Java ME configuration,
you can first read Part 1, then either Part 2 or Part 3, and then Part 4 and parts of Part 5,
for example. Regardless, because some material requires you to master the material that
precedes it, you should read material earlier in the book even if you skip around before
you dive in to material that comes later in the book.

■INTRODUCTIONxxviii

How Do You Get Started?
Of course, sample applications in this book are all available electronically at the Apress
web site, http://www.apress.com. Begin by reading Chapters 1 and 2, and then download
the NetBeans SDK at http://www.netbeans.org; if you’re really in a hurry, download the
SDK now and work through Chapter 3, so you can get a feel for what Java ME application
development is all about.

I encourage you to build on what you learn here by consulting other sources; one
excellent source is the Java Community Process web site at http://www.jcp.org, where
you can find the JSRs that describe the Java ME platform (and other Java platforms and
extensions to Java platforms as well). If you prefer working on the bleeding edge, the wiki
for NetBeans at http://wiki.netbeans.org is another excellent resource, especially if you
find yourself enamored with the NetBeans environment. Finally, I’ll make more resources
available as necessary on my web site at http://www.lothlorien.com.

■INTRODUCTION xxix

Getting Started

Before you begin writing code for Java Platform, Micro Edition (Java ME), you should

have a good grip on the fundamentals. That’s what this part is all about: helping you get a

handle on why Java ME is relevant, how to start out writing code for Java ME using Net-

Beans, and how Java ME differs from traditional Java programming.

P A R T 1

Mapping the Java Jungle

Although at its heart Java ME is really just an adaptation of the Java language, class
libraries, and concepts to fit constrained devices, the business behind Java ME is in fact
quite different. A firm grasp of the Java ME market, platform, and terminology will put
you in good stead to developing successful products using Java ME.

In this chapter, I begin by introducing the market for Java ME. Next, I take you on a
tour of the Java ME platform, showing you how Sun identified and defined the basic
requirements for mobile platforms, and how manufacturers, carriers, and others have
extended this basic platform. Finally, I discuss how the process of application develop-
ment for Java ME is different, and I show you how important it is to know your audience,
target devices, and distribution channel.

After reading this chapter, you will understand why Java ME differs from Java. You
will see how device manufacturers, wireless operators, and consumers view Java ME, and
how Java ME meets the needs of all of these parties. Armed with this knowledge, you’ll be
able to better manage a Java ME development project.

Introducing the Market for Java ME
A trio of forces dominates the Java ME market: device manufacturers looking to differenti-
ate their products in the marketplace, wireless operators seeking to differentiate services
and raise the average revenue per user (ARPU), and consumers personalizing their
devices in new and novel ways.

Looking from the Device Manufacturers’ Perspective

The interplay between device manufacturers and wireless operators is complex. Manu-
facturers are in constant competition with each other to differentiate their products,
while at the same time, in many markets they are beholden to wireless operators to meet
stringent requirements for features and functionality.

Device manufacturers can be broadly separated into two categories: original equip-
ment manufacturers (OEMs) and original design manufacturers (ODMs). OEMs build

3

C H A P T E R 1

devices under their own label and sell devices to consumers (either directly or via the
operator, or most often both), while ODMs design and build hardware on behalf of oth-
ers. While both ODMs and OEMs must differentiate their product on the basis of price,
quality, and features, for OEMs brand and marketing also become key concerns.

Many of today’s wireless operators simply require a Java ME runtime on most of the
phones that they provide to subscribers. As I discuss in the next section, “Looking from
the Operators’ Perspective,” operators are seeking ways to raise revenue per subscriber,
and data services are one way to do this. Today, data services consist of more than just
wireless web services; many Java ME applications rely on the network for their content.
Requiring handset manufacturers to include Java ME on their devices leaves an open
door for developers to create new applications that provide operators with new sources
of revenue.

Providing Java ME on devices is more than just an operator requirement for many
manufacturers. Some manufacturers, including Research In Motion (RIM), offer Java
ME runtimes that both meet Java ME standards as well as include additional classes in
their implementation, enabling developers to build novel applications atop the phone’s
fundamental platform. More frequently, however, you’ll find the baseline Java ME
implementation on a device. In either case, Java ME enables device manufacturers to
build and bundle applications for their products more quickly than with existing
embedded toolkits.

This is especially true for the growing number of dedicated devices that connect via
home or municipal wired and wireless networks where the use of Java ME may not be a
mandate. Java ME provides a ready alternative to closed, proprietary platforms for writing
application software for wireless Internet devices, set-top boxes, and other embedded sys-
tems. Even when the end platform is closed to third-party developers, selecting Java ME
can help device manufacturers bring their product to market by providing a more powerful
and well-understood platform than an internally defined or purely embedded alternative.

Whether chosen because of a customer requirement, as an opportunity for differen-
tiation, or to speed product development, Java ME provides important advantages over
other platforms. Unlike its larger cousins, Java Platform, Standard Edition (Java SE) and
Java Platform, Enterprise Edition (Java EE), Java ME has been carefully tuned to run on
small devices, important for meeting the cost and power constraints of most devices
today. It’s an open platform, encouraging contributions of technologies through the Java
Community Process (JCP). Finally, Java ME brings with it the entire community of Java
developers, providing a pool of talented engineers, designers, and project managers from
which to draw.

Looking from the Operators’ Perspective

Wireless operators today face challenges, too. While differentiation on the basis of quality
and brand remain important, chief among challenges is the drive for higher ARPU. Rev-
enue from voice activity has largely leveled off, making data services an obvious area in

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE4

which to drive growth. This is especially true in some countries, including the United
States, where carriers have spent huge sums of money obtaining the rights to new parts
of the wireless spectrum.

While arguably the wireless Web, Short Message Service (SMS), and Multimedia
Messaging Service (MMS) all play a role in contributing to the bottom line for data serv-
ices, mobile applications play a growing role as well. Java ME applications can contribute
in two ways: by driving data use itself and by providing revenue when an operator acts as
the channel for application distribution. Increasingly, just as you can buy a ring tone or
wallpaper for your handset via the operator’s wireless web portal, you can now buy Java
ME applications as well. As you will learn later in this chapter (in “Marketing and Selling
Your Application”), partnerships between developers and operators establish important
channels for application sales, bringing revenue to both parties.

While the bottom line drives business decisions, marketing and brand image play an
increasing role in Java ME’s importance for operators. By opening their network to third-
party developers such as yourself, operators bring your creativity to the table. Moreover,
Java ME enables operators additional ways to partner with key brands around the globe,
helping the operators differentiate themselves and giving brands far removed from the
mobile computing market an opportunity to interact with consumers in new ways.

Looking from the Consumers’ Perspective

Today’s consumers demand more from their devices. Whether using a cell phone, set-top
box, or dedicated appliance, consumers expect clear value. Reliability, ease of use, per-
sonalization, and network awareness are features becoming increasingly important even
for traditionally isolated devices. Java ME fits the bill as a platform on which to base these
devices, because it’s small, highly portable, and powerful.

In the wireless telecommunications market, consumer demand for reliability, ease of
use, personalization, and network awareness has already begun and continues to grow.
As I write this, Sun estimates that more than two billion wireless terminals have shipped
with a Java runtime since the initial launch of Java for handsets. These devices support
communication, entertainment, multimedia, and other applications bringing customiza-
tion and choice to mobile device users around the world.

Java is poised to repeat this success within the set-top box market after years of
persistent effort. With Java on every Blu-ray player as well as countless set-top boxes
for personal entertainment, the potential for new applications is almost boundless. This
market will be more diverse than the mobile market, with room for both small players
and large application development houses as well as the traditional entertainment
content partners (many of whom were latecomers to the wireless telecommunications
marketplace).

Through all of this, Java ME enables developers to provide subscribers with greater
choice, freedom, and flexibility. The fundamental platform enables developers to create
stand-alone applications as well as network-aware applications and games, while

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE 5

enabling manufacturers to add more interfaces to tap the custom features of the
underlying platform.

Some pundits have accused the Java ME marketplace of “wagging the dog” to some
extent—that is, driving consumer demand for applications for the sake of technology itself.
While this claim is not wholly unwarranted, it’s also the nature of a fast-paced market in
which new products are tested on the market, and only those with successful business
cases and clear value to consumers will survive. Java ME accelerates this process by provid-
ing an open standard on which to base the development of new products and services.

Looking Inside the Java ME Platform
The Java ME platform isn’t really one platform, but rather a collection of platforms and
libraries that work on a host of mobile devices. Even more confusing, Java ME began as a
mobile environment for cell phones and personal digital assistants (PDAs), but has since
expanded to include devices with similar constraints, including industrial devices, set-
top boxes, Internet appliances, and other constrained platforms.

Justifying the Need for a Mobile Edition of Java

At first, the need for a mobile edition of Java may not be apparent. After all, today’s cell
phones are more powerful than the PCs that ran the first commercially available ver-
sions of Java more than a decade ago. However, a key feature of Java ME is its size and
performance footprint. This is especially important for the constraints common to
mobile and embedded devices. The constraints that mobility puts on size, power con-
sumption, and cost mean that less capable processors and less memory will be found in
devices for the foreseeable future. These constraints apply to less-mobile devices such
as set-top boxes, too; in designing a commodity consumer device, every penny counts,
so frequently low-cost (slower) processors and less memory are available. Moreover, as
green manufacturing increasingly comes into play, fixed consumer devices will be sub-
ject to the same sorts of power constraints as mobile devices.

But Java ME isn’t just about footprint. It’s also about a new way of looking at comput-
ing. Many of the differences between Java SE and Java ME are about functionality, not
footprint. The Java Application Descriptor (JAD) file is one example; it describes an appli-
cation, including its name, icon, publisher, and other information. Or take Java ME’s
security model, which includes the notion of privileges and permissions for interfaces.
Using Java ME, running applications may require individual privileges to perform sensi-
tive operations, such as sending an SMS message, requesting the position of the handset
via the location-based interface, or exchanging data using Bluetooth. Privileges are speci-
fied in the JAD file of a Java ME application and may be granted or denied depending on
the origin of the application. (I discuss this in more detail in the “Packaging and Execut-
ing CLDC/MIDP Applications” section in Chapter 3.)

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE6

www.allitebooks.com

http://www.allitebooks.org

It’s important to realize that the ultimate goal for Java ME is to provide an extensi-
ble yet highly portable, minimum-footprint, Java implementation that can run on a
wide variety of network devices with constant or intermittent network connectivity.
The platform emphasis is on application-level, not system-level, programming, and
the application programming interfaces (APIs) that are supported reflect this distinc-
tion. Extensibility is another distinction, especially for one flavor of Java ME: the
Connected Limited Device Configuration, which I discuss in the “Introducing
the Connected Limited Device Configuration” section later in this chapter. Extensibility
is a key differentiator between the platform, other Java platforms, and other computing
platforms as a whole.

Making Java Work on Mobile Devices

Chapter 2 looks at the changes made to Java and its base classes for Java ME in close
detail, but it’s worth summarizing these changes now:

• The Java runtime must have the ability to reject invalid Java class files to ensure
system security and integrity.

• The Java runtime controls an application’s access to specific parts of the system
(such as the file system, network access, and so forth).

• Applications run within a sandbox that prevents unauthorized access to other
applications and libraries.

• The environment must support the ability to download new applications, but
cannot use this mechanism to modify or override protected system classes in any
way (including changing the order in which classes are looked up).

• The platform libraries may lack specific interfaces for performance and memory
use reasons; for example, one configuration of Java ME doesn’t support object
finalization, nor does it have support for the Java Abstract Window Toolkit (AWT)
or Swing user-interface libraries.

• The platform may or may not have support for floating-point mathematical
operations, depending on the version.

For brevity, I’ve painted this list with a broad brush; not all of these changes apply to
all flavors of Java in the Java ME family, as you’ll learn in the next section and Chapter 2.

Because of the immense variety in devices supported by Java ME, there are actually
different implementations of Java for different devices. Specifically, how Java ME func-
tionality is defined for a specific device is based on three concepts:

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE 7

• Configuration: Defines the basic set of libraries and Java virtual machine (VM) for
a broad range of devices

• Profile: Defines a set of APIs for a narrower range of devices

• Package: A set of optional APIs that pertain to a specific technology, such as
multimedia or Bluetooth access

Figure 1-1 shows how these abstractions stack to define the software characteristics
of a device.

Figure 1-1. The relationship between configurations, profiles, and packages in Java ME

Each instance of a configuration, profile, or package should have as its basis one or
more Java Specification Requests (JSRs) that document the purpose and interface for the
Java extension in question. Appendix A summarizes the JSRs relevant to Java ME that
define functionality discussed in this book.

Today, there are two configurations within Java ME: the Connected Limited Device
Configuration (CLDC) and the Connected Device Configuration (CDC). There are a
handful of profiles that sit atop either of these configurations, and many, many pack-
ages. (In the next section, I explore these configurations in greater detail.)

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE8

The most commonly known tuple of configuration, profile, and package is based
on the CLDC package, including the Mobile Information Device Profile (MIDP) accom-
panied by optional packages, powering billions of the world’s mobile phones today. In
fact, this configuration is so common that many think of it as the only version of Java ME.
Figure 1-2 shows a typical mobile-phone configuration with a few common optional
packages. I discuss the MIDP in depth in the “Introducing the Mobile Information Device
Profile” section later in this chapter.

Figure 1-2. The relationship between configurations, profiles, and a few of the packages in a
typical cell phone

Another, increasingly common tuple is based on the CDC package and powers
set-top boxes and other devices. Such a digital media configuration is for higher-end
connected devices, and it incorporates the Foundation Profile as well as the Personal
Profile, and perhaps additional optional packages. Unlike the CLDC-MIDP configuration,
this configuration defines a subset of the Java AWT, bringing a well-understood graphics
library to mobile devices. Figure 1-3 shows a typical configuration based on the CDC for
today’s consumer electronics devices.

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE 9

Figure 1-3. The relationship between configurations, profiles, and packages in a typical set-
top box or other digial media hardware

Understanding Configurations
The fundamental building block of the Java ME architecture is the configuration.
A configuration defines the Java Virtual Machine (JVM), basic language support, and
fundamental classes for the widest possible set of devices, such as all mobile wireless
terminals or all set top box–like devices. A specific device must meet the requirements
of at least one configuration, such as the CLDC, in order to qualify as a Java ME device.

Introducing the Connected Limited Device Configuration

The CLDC is explicitly designed for memory-constrained devices that may be always or
intermittently connected to the network. It defines a Java environment based on the Java
K virtual machine (KVM), a modified version of the JVM that has been specially tuned to
operate on low-power devices with a 16- or 32-bit processor and as little as 192KB of
RAM. The most common deployment of the CLDC, as I’ve already noted, is in the billions
of Java-enabled cell phones that have shipped in the last several years.

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE10

A device with the CLDC is quite primitive; it’s missing many of the classes you’d
expect to find that permit application development (such as user-interface widgets,
network connectivity, and the like). Instead, the implementation leaves those details
to profiles atop the CLDC, and focuses instead on reducing memory and CPU foot-
print to the absolute minimum necessary for the Java environment. One area
obviously affected is the nature of the libraries included in the CLDC; many Java SE
classes are simply not available in the CLDC, and of those that are available, not all
methods may be available. This is especially true for collections, where only three
classes and one interface are available. (For more details on exactly what is supported,
see Chapter 2.)

While the JVM historically absorbs the entire burden of Java bytecode verification,
this is not the case for the CLDC. Because bytecode verification is expensive both in
terms of processor and memory, the responsibility of bytecode verification is shared
between the developer and the KVM running on the mobile device. As part of the build
process, you run a tool called preverify that inlines subroutines in each class file (remov-
ing certain bytecodes in the process) and adds information about variables on the stack
and their types. At runtime, the KVM uses this additional information to complete the
bytecode verification prior to execution.

■Note Two-pass preverification obviously brings with it potential security issues, because a malicious
developer could inject code that appears to be preverified but does not meet all of the standards required by
the CLDC. To address this, CLDC applications are typically downloaded from trusted sources; moreover, the
profile used with the CLDC—the MIDP—adds code signing, so that a Java implementation can verify the
originator of the code being executed and provide an appropriate level of trust.

But security changes don’t end there. The sandbox model, familiar to applet
developers from the early days of Java, plays a much greater role in the CLDC, where
applications are sandboxed from each other as well as the host operating system. Each
application runs in an environment where the only facilities it can access are those
classes in its own distribution and the local classes provided by the device’s configura-
tion, profile, and optional packages. The download, installation, and management of
other Java applications are also inaccessible, preventing one application from affecting
another. Finally, there is no facility for creating native methods, closing potential holes
between the sandbox and the native platform.

Another key feature of the CLDC is the Generic Connection Framework (GCF),
which defines a hierarchy of interfaces that generalize port connections. The resulting
hierarchy provides a single set of classes you use to connect to any network or remote
port, including Transmission Control Protocol over IP (TCP/IP), User Datagram
Protocol (UDP), and serial ports, just to name a few. The GCF is defined in the
javax.microedition.io package.

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE 11

Due to processor and power constraints, CLDC 1.0 did not support floating-point
mathematics; CLDC 1.0 devices could only perform integer math. This changed with
the advent of CLDC 1.1, as CLDC 1.1 devices must support floating-point operations.
However, as a developer, you should be aware that floating-point mathematics remains
computationally expensive. Be careful when choosing to use them, as they can cause
performance issues within your applications.

Introducing the Connected Device Configuration

The CDC is for devices that are more capable than those used by the CLDC, such as
high-end PDAs, set-top boxes, and other Internet appliances. As such, the goals of the
CDC are slightly different than those of the CLDC. Instead of targeting the largest possi-
ble number of low-cost hardware, the CDC focuses on leveraging developer and
technology skills from the existing Java SE platform while respecting the needs of
resource-constrained devices.

Unlike the CLDC, the CDC virtual machine meets the same requirements as the JVM
that powers Java SE. In fact, if you add to the CDC the profile and packages usually found
on a media-capable device, you’ll find little that distinguishes the environment from a
Java SE platform except the extra APIs that additional packages may provide. This is the
strength of Java, and especially the more robust CDC: you can leverage your Java skills
across the entire product family line. In addition, the CDC includes all of the Java lan-
guage APIs required of the CLDC, including the GCF.

Packages containing classes defined by the CDC include java.lang, java.io, java.net,
java.security, java.text, and java.util. Devices running the CDC must also support
CLDC APIs and packages; this enables the fullest possible support for all Java applica-
tions. While such devices are rare on the market today, it’s an obvious future direction for
Java, as the majority of devices continue to become more and more powerful.

Understanding Profiles
Profiles collect essential APIs for building the most fundamental of applications across
a family of devices. The most well known profile by far is the MIDP, which powers
mobile phones and sits atop the CLDC. Equally important is the Foundation Profile,
which is analogous to the MIDP for providing application support classes. Unlike
CLDC-based devices, however, CDC-based devices typically also include either the
Personal Basis Profile or the Personal Profile, or both, to provide user-interface support
for applications.

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE12

Introducing the Mobile Information Device Profile

The MIDP is the foundation of today’s mobile-phone Java revolution (Part 2 of this book
is dedicated to the MIDP). Defining a number of new interfaces, it enables you to develop
MIDlets, which are applications that run atop the CLDC. The MIDP defines these other
interfaces, as well:

• The application life cycle via the MIDlet

• Networking

• Persistent storage

• Sound

• Timers

• The user interface (including the portable display and input as well as support for
games)

However, the MIDP defines more than just interfaces and the classes that support
those interfaces. It also describes how applications are installed on a device. While the
actual implementation may differ from device to device, the general requirement is that
from the device you’re able to browse applications, select one for download using
HTTP/1.1, and have the device install the MIDP and present it in its application manager.
Applications are accompanied by an application descriptor (see the “Packaging and Exe-
cuting CLDC/MIDP Applications” section in Chapter 3) that includes information about
the application, such as the application vendor, application name, and application size.

The MIDP defines the notion of permissions, which indicate that a MIDlet can
access a restricted API. The only permission defined by the MIDP pertains to network
connections, but packages are free to introduce other permissions. A permission is a
name using the same prefix and class or interface name as the name of the restricted
API. For example, to use a network socket, a MIDlet needs the permission javax.
microedition.io.Connector.socket. This permission accompanies the application in the
descriptor file, and a MIDlet can test for the presence of a privilege using the MIDlet
method checkPermission, which returns 1 if the permission is granted, 0 if it is not, and
–1 if the result is indeterminate, such as a requirement that the user be asked to grant
permission manually.

The MIDP also defines the notion of a trusted application, which is permitted to use
a restricted API, such as the file connection package, to access the file system. An applica-
tion gains trust by virtue of the domain from which it came; typically the application
carries this information through a cryptographic signature applied by a certification
authority or carrier. As a result, even when bearing privilege, applications must be pre-
pared for security exceptions, which may occur when an application is untrusted and
attempts to access a restricted API.

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE 13

Introducing the Foundation Profile

The Foundation Profile, targeted for CDC-enabled devices, runs on devices with less than
256KB of ROM (of course, a Foundation Profile device can have more ROM, but that’s the
minimum supported by the profile), a minimum of 512KB of RAM, and a persistent net-
work connection. In many ways, the Foundation Profile is far less ambitious than the
MIDP. In conjunction with the CDC, it provides network and input/output (I/O) support,
but no classes for application development; those are relegated instead to the Personal
Basis Profile and the Personal Profile.

Classes augmented by the Foundation Profile include those in the java.lang, java.io,
java.net, java.security, java.text, and java.util packages. These classes are based on classes
found in the Java SE 1.4 class hierarchy, as well as additional javax.microedition.io classes
that provide HTTP and HTTP-over-Transport Layer Security (TLS) network operations.

Introducing the Personal Basis Profile

Most CDC-based devices have at least some user-interface requirements. The most highly
embedded devices may use only the Foundation Profile with a custom package atop that
to provide support for a custom-made liquid-crystal or light-emitting diode (LED) display,
but by far the most common are devices with raster displays that need rich graphical user
interfaces (GUIs). To accommodate this in a standard way, two profiles are available. The
smaller of the two, the Personal Basis Profile, actually provides two class hierarchies for
applications: the applet model, and a new hierarchy for media devices that defines the
Xlet programming model. Xlets are similar to applets, except they have a life cycle that
supports being paused and resumed, which is important for media devices in which mul-
tiple applications and media streams may interrupt an application’s execution at any time.

The Personal Basis Profile also defines a subset of the AWT for GUI development.
Unlike the traditional AWT, the Personal Basis Profile defines a lightweight control facil-
ity, in which user-interface components draw themselves rather than have peer controls
derived from the native platform. (The Java Swing implementation takes the same
approach of having the Java environment draw its own controls.) Consequently, the
Personal Basis Profile only includes support for java.awt.Window and java.awt.Frame
(which hook to the native platform’s windowing manager and contain lightweight
components), and java.awt.Component and java.awt.Container (which are lightweight
components used to create all of the other components in the hierarchy). Note that the
Personal Basis profile does not define traditional AWT controls, including buttons, lists,
and other items, because these would have connections to peer components from the
native platform. Instead, you can create your own components or import a package on a
specific platform that provides the components you need.

Finally, the Personal Basis Profile also includes classes that support communication
between Xlets, using a subset of Java’s Remote Method Invocation (RMI) API. It’s important
to remember, though, that while parts of the java.rmi package are included in the Personal

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE14

Basis Profile, the profile does not support RMI; just enough of the RMI implementation is
included to facilitate communication between two Xlets running on the same device.

Introducing the Personal Profile

The Personal Profile is a superset of the Personal Basis Profile that provides support
for the entire AWT, as well as limited JavaBean support. Some readers may remember
PersonalJava, the predecessor to Java ME that was targeted for higher-end Internet
appliances and set-top boxes; the Personal Profile atop the CDC is the forward migra-
tion path for applications running on PersonalJava.

In fact, the Personal Profile is almost the same as Java SE 1.4.2, with these differences:

• Support for RMI is available through an optional package (java.rmi).

• Support for SQL is available through an optional package (java.sql).

• Support for Java Swing is available through an optional package (java.swing).

• Support for Object Management Group (OMG) interfaces, including Common
Object Request Broker Architecture (CORBA), is available through an optional
package (org.omg).

• There is no support at present for the Java Accessibility API (javax.accessibility).

• There is no support at present for the Java Naming and Directory Interface (JNDI)
in java.naming.

• There is no support for the Java Sound API (java.sound).

• Support for JavaBeans is limited to runtime support; there is no support for bean
editors running directly on a CDC environment.

• The applet API getAccessibleContext is not supported.

• Applet and AWT methods deprecated from Java SE have been removed from all
supported classes.

Understanding Packages
A package, as its name implies, is an object or group of objects in a common container.
As important as platforms and profiles are to the modularity of the Java ME platform,
packages are arguably the key to Java ME’s continued success, as they permit Sun and
third-party vendors to extend the Java ME platform for specific families of devices.

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE 15

There are countless packages for Java ME; many of the now-standard interfaces that
are part of successful MIDP-based devices are in fact packages. In this book, you will
learn how to use several packages, including

• The GCF, documented in JSR 30

• The FileConnect interface, which provides local file access on MIDP and is
documented in JSR 75

• The Java Bluetooth API, documented in JSR 82

• The Wireless Messaging API, documented in JSR 120

• The Web Services API, documented in JSR 172

• The Java Advanced Graphics and User Interface (AGUI) API, for CDC devices,
documented in JSR 209

• The Java Mobile Service Architecture (MSA), documented in JSR 248

Planning Your Approach to Java ME Development
Java ME’s strength is rooted in the ubiquity of Java today. However, with this ubiquity
comes challenges. The multitude of APIs and the diversity of distribution channels make
planning the technical and business aspects of your application equally important.

Selecting Appropriate Device Targets

As you’ve seen, the triad of configurations, profiles, and packages means managing a
lot of different APIs. For many kinds of applications, this may not be a serious problem—
most productivity and network applications need just a network layer, some GUI
elements, and a persistent store, which is available under just about any combination
of configuration and profile you might encounter.

That’s not always the case, however. Your application might depend on functional-
ity present in only a specific package, perhaps, either by design (say, a Bluetooth-
derived application for proximity detection) or product differentiation. There’s always
the temptation of using an optional package to speed time to market, too, only to find
later that it’s not available on the next target for your product.

Consequently, if portability is important, you should base your application on as
few Java ME packages as you possibly can. Obviously, this doesn’t mean creating your
own control framework from scratch or implementing your own web services frame-
work from scratch if you don’t have to. But it does mean understanding what APIs are

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE16

www.allitebooks.com

http://www.allitebooks.org

available on the devices you’re targeting, and performing regular surveys of the market.
I find it best to keep track of what APIs I plan to use as I design and implement my
application, and correlate them against the JSRs that define those APIs. Then, when it’s
time to bring my application to market on a different device, I can check to see which
packages are offered by the new hardware and scope my porting effort accordingly.
Sites like the Wireless Universal Resource File (WURFL) device description repository
at http://wurfl.sourceforge.net and the support database for J2ME Polish (a library
originally targeted at Java ME’s predecessor, J2ME, that simplifies cross-device devel-
opment) at http://devices.j2mepolish.org/ are invaluable in planning your product
launch or porting efforts. A little research as you design your application can pay big
dividends when rolling it out to consumers.

Marketing and Selling Your Application

There are a myriad of channels for Java ME applications today, each with their own set
of business challenges. Many readers see wireless operators as the logical channel for
application distribution, given the popularity of the MIDP today. Still others target web
distribution to hardware directly or bundle applications with hardware at manufactur-
ing time. A small percentage of you may be working directly with platform or hardware
manufacturers, and so your channel to the consumer (and the notion of a consumer
itself!) is quite different.

You can distribute your application to consumers in a number of ways. Certainly
direct distribution is a possibility, by publishing a link to your application (see Chapter 3
for how to package your application for the different configurations). This may sound
simple, but it poses an obvious business question: How will you get paid for your applica-
tion? Free distribution, advertising, and per-download or subscriptions via credit card or
PayPal fulfillment are all possibilities.

Because of the need for privilege by most applications and revenue by most
developers, a typical deployment for a mobile application involves both third-party
certification and business negotiations. The process of third-party certification typi-
cally involves a business program such as Java Verified, which tests your application,
and assuming it passes testing, cryptographically signs your application for distribu-
tion. Usually accompanying this signed endorsement is access to additional privileges;
for example, most MIDP implementations won’t permit HTTP transactions without
prior user approval unless a member of the Java Verified testing authority has signed
the application. Once signed, you can distribute your application through aggregators,
who broker the carrier relationship on behalf of you and many other developers, reim-
bursing you for sales (typically via a premium-SMS push or direct billing). Another
distribution path is to negotiate with one or more wireless operators to distribute your
application. This involves crafting the business relationship—how much will con-
sumers pay for your application, and how will it be obtained?—as well as additional
testing, which usually results in a second cryptographic signature for your application.

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE 17

With this signature may come additional privileges, such as access to location-based
APIs. Negotiating operator partnerships can be an expensive and time-consuming task,
but without the help of an intermediate aggregator, you need to perform these negotia-
tions for each operator’s network on which you want to deliver your application.

This issue of privileges and cryptographic signatures isn’t just a business issue, but
can be a functional issue as well. This may very well affect the functional requirements
for your application; for example, Acme Wireless (a fictitious operator) might only permit
applications access to location-based interfaces for applications it signs and distributes.
If your application needs positioning data (say, to locate the user to recommend restau-
rants or services), that requirement won’t be just a technical requirement but a business
requirement to establish the necessary operator relationship to ensure the required privi-
lege. This admittedly adds risk to your business model, because it’s difficult to ascertain
in advance whether or not specific operators will carry your application, and obtaining
this information in advance can involve significant business investment. It does, how-
ever, give you certain assurances if you can bridge the gap and obtain operator signing
and distribution for your application, because this gives significant placement and mar-
keting clout for your application. While all of these comments apply primarily to Java ME
MIDP applications, due to the large number of MIDP applications and MIDP-capable
devices on the market, I suspect that the landscape for Java CDC applications will be sim-
ilar, given the rampant success of the MIDP distribution model.

Of course, if you’re a developer involved in planning your business strategy, don’t for-
get other avenues for distribution, too. Direct-to-manufacturer deals, while difficult to
obtain, are potentially lucrative sources of long-term revenue. Moreover, providing serv-
ices for Java consulting remains an important mainstay for many developers. Thinking
creatively, a host of business models can support your application’s development and
distribution.

Wrapping Up
Java ME meets needs for operators, device manufacturers, and consumers. By providing
a rich set of platforms across devices from low-end mobile phones to high-end set-top
boxes, and from embedded devices to high-end PDAs, Java ME enables software develop-
ers like you to leverage your skills to bring new applications to market.

The Java ME platform is divided up into configurations, platforms, and profiles. Two
configurations are presently available: the CLDC, which is targeted for constrained
devices, and the CDC, which is targeted for more robust devices. Atop these configura-
tions are one or more profiles, such as MIDP for the CLDC, or the Foundation, Personal
Basis, and Personal Profiles for the CDC. These provide additional APIs in a standard way
that let you write your application for a family of devices. Finally, packages allow Sun and
third parties to extend the APIs on a device or suite of devices in a standard way, giving
access to new functionality in portable ways.

CHAPTER 1 ■ MAPPING THE JAVA JUNGLE18

Shrinking Java to Fit

Making Java run on constrained devices remains a challenge, even nearly a decade
after the first attempts to do so. However, the configurations provided by Java ME are
helping to meet this challenge by bringing the Java platform to the widest possible selec-
tion of devices. By splitting Java into separate configurations—the CLDC for devices with
the lowest possible throughput, and the CDC for constrained mobile devices with mod-
erate memory and processing power—Java ME can provide a computing environment
for nearly every mobile device.

In this chapter, I show you the explicit differences between Java ME and Java SE.
I begin with the CLDC, showing you just what’s different between past and present
versions of the CLDC’s virtual machine and the virtual machine running the Java SE.
Next I look at the CDC the same way. Finally, I turn your attention to the class libraries
accompanying each of these configurations, showing you precisely which classes both
the CLDC and the CDC support.

Making It Fit: The CLDC
To understand the limitations of the Java ME CLDC, it’s important to understand a bit
about the history of the CLDC itself. The CLDC stems from early in the history of Java
when mobile devices were veritable cripples by today’s standards. Mobile phones had
well under a megabyte of heap and were powered by processors that would be consid-
ered anemic by today’s standards. The initial release of the CLDC was based on an
entirely new virtual machine for small devices, the Java KVM. Consequently, it lacked a
lot of what Java developers were used to. CLDC 1.0, which was documented in JSR 30 in
2000, was the starting point for what has become the Java ME platform.

To keep pace with developments in hardware capabilities and manufacturing costs,
an expert working group of more than 20 companies revised the CLDC standard, result-
ing in JSR 139, which is the standard that defines CLDC 1.1. This standard, completed in
2002, took into account the growing capabilities and markets for mobile devices, and it
added back some features stripped from Java to make Java fit on mobile devices during
the brief period that CLDC 1.0 was available.

19

C H A P T E R 2

The distinction between the CLDC 1.0 and 1.1 releases may or may not affect your
development approach, as the overwhelming majority of new devices sold today support
CLDC 1.1 (or the CDC, in fact, for some higher-end devices). For example, as I write this,
virtually all wireless operators’ Java-enabled feature phones—those phones subsidized by
operators to provide a mix of features at a low cost to drive both voice and data uses—are
CLDC 1.1–compliant. Even accounting for device churn (the rate at which users buy new
devices), there are countless CLDC 1.0 devices on the market, and a savvy developer may
well be able to wring revenue from these users. On the other hand, many of the com-
pelling features of the Java ME platform (available through packages documented by the
JSR process, as I discuss in Chapter 1), such as multimedia and 3D graphics, are only
available on relatively new handsets, which typically run CLDC 1.1 and MIDP 2.0 or 2.1.
As a result, when you plan your application, you should balance the need for APIs pro-
vided by a later version of the CLDC or MIDP with the business case provided. You’ll need
to answer this question: do the technology requirements for your application so drasti-
cally reduce the number of devices on which you can deliver your application that your
business case becomes invalid? This is a common theme for cutting-edge Java ME devel-
opers, but less so now than in years past, and over time (as I discuss in the section
“Looking Toward the Future of the CLDC” in this chapter) it should diminish entirely.

Understanding the Present: CLDC 1.1

Cost and power consumption significantly limit the capabilities of even today’s mobile
devices. While consumer demand for high-capability personalizable devices remains
high, manufacturing cost remains a key factor and drives the selection of low-cost com-
ponents (meaning less memory, slower processors, and so forth). While Moore’s law has
driven ever-faster and ever-cheaper devices in the hands of consumers, power sources
have been unable to keep up, making power management another key challenge for
mobile devices. Consequently, there continues to be constrained devices and a role for
the CLDC on those devices.

Specifically, CLDC 1.1 differs from Java SE in the following ways:

• CLDC 1.1 offers no finalization of object instances: CLDC libraries, by definition,
do not include the method Object.finalize.

• CLDC 1.1 doesn’t support asynchronous exceptions: The virtual machine does not
throw asynchronous exceptions, and you cannot invoke Thread.stop, as it doesn’t
exist in the CLDC.

• CLDC 1.1 supports only a limited number of the java.lang.Error subclasses:
For other errors, the CLDC either halts the virtual machine in an implementation-
specific manner or throws the nearest defined java.lang.Error subclass. (See the
“Changes to java.lang.Exception” section later in this chapter.)

CHAPTER 2 ■ SHRINKING JAVA TO F IT20

• CLDC 1.1 doesn’t support thread groups or daemon threads: The CLDC does sup-
port multithreading, but if you need to manage a group of threads, you must use
individual thread operations on members of a collection.

• Class file verification is a two-step process in CLDC 1.1: As I discuss in the “Building
CLDC/MIDP Applications” section in Chapter 3, the CLDC requires a preverifica-
tion step during application development and a subsequent completion of
verification after downloading.

• For security reasons, CLDC 1.1 doesn’t support user-defined class loaders: The CLDC
must have an internal class loader that other code cannot override, replace, or
reconfigure in any way.

With the possible exception of CLDC 1.1 lacking class finalization and thread groups,
these differences are unlikely to affect your approach to application development. Larger
in scope, however, is the reduction of the CLDC class library itself, which I explore later in
the chapter (in the section “Changing the Java Class Library to Fit the CLDC”).

MOORE’S LAW AND MOBILE DEVICES

Moore’s law—the observation that the number of transistors that can be fit on the die of an integrated
circuit is increasing exponentially—has driven many facets of the computing revolution, including the
increases in computing speed and memory density for more than 50 years. Documented by Gordon
Moore in an article in Electronics Magazine in 1965, the law isn’t one of nature, but rather a recognition
of the economies of scale provided by integrated circuit production.

For mobile devices, Moore’s law brings two key points: the ever-dropping cost of each transistor
means that more computing power can be purchased for less money, and that the increased transistor
density brings faster devices with more memory in portable form factors at the same exponential pace
as it brings to desktop users. That is not to say, however, that the capabilities of mobile and desktop
devices will converge, as Moore’s law is in play for larger computing platforms as well.

Moreover, one area remaining largely untouched by Moore’s law is in providing energy for mobile
devices. While the battery industry has seen many improvements in technology over the last two
decades, these advancements have not been exponential in nature, leading to aggressive work on the
part of hardware and software developers to manage power consumption at the hardware and soft-
ware levels. This has a direct impact on computational resources, of course, which consume power
while operating.

These factors are likely to persist into the future, meaning that while mobile devices continue to
get increasingly powerful, it’s unlikely that mobile devices and desktops will ever truly converge.
Instead, it’s likely that mobile devices will become sufficient to support the majority of operations per-
formed by yesterday’s desktops—something I talk more about in the “Looking Toward the Future of the
CLDC” section later in this chapter.

CHAPTER 2 ■ SHRINKING JAVA TO F IT 21

Looking Back at CLDC 1.0

CLDC 1.0 had significantly more limitations than CLDC 1.1, as you can imagine when
you consider the time in which it was developed. When developing a CLDC 1.0–
compliant application, you must consider the following limitations:

• No floating-point operations: CLDC 1.0–compliant virtual machines have no
support for floating-point byte codes, nor do they have library APIs that perform
floating-point math. These limitations mirror the capabilities of the processors
typically targeted by CLDC 1.0.

• No support for weak references: The WeakReference declaration is not supported by
CLDC 1.0–compliant virtual machines.

• No support for named threads: The CLDC-compliant virtual machines have no
support for naming threads.

• Different uses of java.util.Calendar, java.util.Date, and java.util.TimeZone classes:
These classes differ significantly from their Java SE counterparts.

Looking Toward the Future of the CLDC

Although I believe that true convergence of capability between mobile devices and
fixed devices remains a long way off (see the “Moore’s Law and Mobile Devices” side-
bar), mobile devices are arguably reaching parity with desktop devices in terms of basic
usability for many applications, including data processing, multimedia, entertainment,
social networking, and user-generated content. Already, some high-end wireless termi-
nals, such as those sold by Nokia and Sony Ericsson, offer CDC-compliant runtimes
as well as CLDC-compliant runtimes. Looking into the future, representatives of Sun
have already stated that eventually the Java ME and Java SE interfaces will merge into
a single platform.

Does this make the CLDC less relevant? Certainly not, as literally billions of
devices running the CLDC are already in consumers’ hands, and billions more are to
be shipped in the coming years. Instead, expect to see a filling in of the gaps between
the CLDC and the full Java SE platform, much as the transition from CLDC 1.0 to
CLDC 1.1 filled in gaps.

CHAPTER 2 ■ SHRINKING JAVA TO F IT22

Making It Fit: The CDC
In some ways, the CDC has had a more tumultuous history than its smaller cousin, the CLDC.
Beginning life as PersonalJava and based on Java 1.1.8, the CDC is actually quite old, dating
back to the late nineties. PersonalJava consisted of a heavily optimized Java VM and an associ-
ated class library that incorporated most of the Java stack, including a GUI, for application
developers on set-top boxes, high-end connected wireless terminals, and other products.

A few years ago, Sun announced the trio of flavors for Java: Java 2 Platform, Micro
Edition (J2ME), Java 2 Platform, Standard Edition (J2SE), and Java 2 Platform, Enterprise
Edition (J2EE). While PersonalJava remained, it was subsumed into Java ME and later
reached its end of life, meaning that Sun withdrew support for the platform.

At the same time, Sun introduced JSR 36, defining the CDC. The CDC targets devices
requiring an entire virtual machine for hardware that, through optional extensions, may
run the entire Java 2 platform. JSR 36 bases its implementation on Java SE 1.3, and it
includes all additional interfaces defined by the CLDC, providing a migration path for-
ward from CLDC devices. JSR 218, defining CLDC 1.1.2, normalized the interfaces
provided against Java SE 1.4.2, helping ensure parity going forward between the CDC
and larger Java environments.

It does little good to identify each and every class in the CDC, because the list is the
same as the list of classes for Java SE. It is, however, worth your while for me to call out
the packages included in the CDC, because while the CDC provides a baseline for com-
patibility, it does not provide the user-interface classes necessary to build a full
application. Table 2-1 shows the packages provided by the CDC.

Table 2-1. Packages Provided by CDC 1.1.2

java.io

java.lang

java.lang.ref

java.lang.reflect

java.math

java.net

java.security

java.security.cert

java.text

java.util

java.util.jar

java.util.zip

javax.microedition.io

CHAPTER 2 ■ SHRINKING JAVA TO F IT 23

The CDC is a more restrictive environment than Java SE. Be aware of the following:

• If the CDC implementation with which you’re working supports invoking native
methods, you must use Java Native Interface (JNI) 1.1 to interface with those native
methods.

• If the CDC implementation with which you’re working supports a debugging
interface, you must use the Java Virtual Machine Debug Interface (JVMDI) for
debugging.

• The CDC doesn’t support secure code signing, certificates, the key store, and the
JDK 1.1 java.security.Identity and java.security.IdentityScope interfaces.

Typically, any CDC implementation you encounter is accompanied by one or
more profiles, such as the Foundation Profile, giving you support for GUIs and other
capabilities.

Changing the Java Class Library to Fit the CLDC
Shrinking the Java virtual machine was only part of the trick to making the CLDC fit
on mobile devices. One of Java’s key benefits to developers is its robust class library.
However, all of that code is also in Java and consumes precious read-only memory
space on constrained devices, and some classes may not even be appropriate because
of their runtime memory consumption. Of course, without its class hierarchy, Java
wouldn’t be nearly as compelling a platform, so the architects of the CLDC struck a
balance, establishing an environment with relatively few Java interfaces that can run
on the widest possible variety of devices while supporting a great number of applica-
tions. (And of course, device manufacturers are free to add—and have added—a great
number of additional interfaces.)

Besides the obvious—as you know, neither the AWT nor Java Swing are part of the
CLDC—many other classes, and some methods of other classes, are omitted from the
CLDC. In the following sections, I show you which parts of the java.lang, java.util, and
java.io hierarchies are different between CLDC 1.0, CLDC 1.1, and Java SE, as well as the
additions made by the CLDC to the Java family of libraries.

Changes to the java.lang Package

Table 2-2 lists the classes inherited from the java.lang package. Many of these classes are
a subset of the implementation found in Java SE.

CHAPTER 2 ■ SHRINKING JAVA TO F IT24

Table 2-2. java.lang Classes Supported by CLDC Version

CLDC 1.0 CLDC 1.1

ArithmeticException ArithmeticException

ArrayIndexOutOfBoundsException ArrayIndexOutOfBoundsException

ArrayStoreException ArrayStoreException

Boolean Boolean

Byte Byte

Character Character

Class Class

ClassCastException ClassCastException

ClassNotFoundException ClassNotFoundException

Error Error

Exception Exception

IllegalAccessException IllegalAccessException

IllegalArgumentException IllegalArgumentException

IllegalMonitorStateException IllegalMonitorStateException

IllegalThreadStateException IllegalThreadStateException

IndexOutOfBoundsException IndexOutOfBoundsException

InstantiationException InstantiationException

InterruptedException InterruptedException

Integer Integer

Long Long

Math Math

NegativeArraySizeException NegativeArraySizeException

NumberFormatException NumberFormatException

NullPointerException NullPointerException

Object Object

OutOfMemoryError OutOfMemoryError

Runnable Runnable (interface)

Runtime Runtime

RuntimeException RuntimeException

SecurityException SecurityException

Short Short

Continued

CHAPTER 2 ■ SHRINKING JAVA TO F IT 25

Table 2-2. Continued

CLDC 1.0 CLDC 1.1

String String

StringBuffer StringBuffer

StringIndexOutOfBoundsException StringIndexOutOfBoundsException

System System

Thread Thread

Throwable Throwable

VirtualMachineError VirtualMachineError

Double

Float

NoClassDefFoundError

Reference

WeakReference

Changes to java.lang.Exception

As I stated previously, the exception hierarchy for the java.lang package is significantly
smaller than the hierarchy for Java SE.

Changes to java.lang.Object

The key change to the Object class—and therefore the entire Java hierarchy—is the
absence of the finalize method. As you know, the memory manager invokes a method’s
finalize method just before garbage collection; in the CLDC, there’s no way to hook the
garbage-collection process in this manner. This is as it should be: memory is often a pre-
cious commodity on Java ME devices anyway, so you should explicitly clean up resources
when you’re finished using them.

The Reflection API is also not part of the CLDC; the memory footprint it demands
just isn’t feasible. Of course, without reflection, there’s no RMI, and without RMI, there’s
no Jini—Sun’s platform for Java-based distributed computing.

Changes to java.lang.Math

As you might imagine, with the removal of floating-point support in CLDC 1.0, the
java.math class was stripped of floating-point operations, leaving only operations with
all-integer signatures such as min and max. With the reintroduction of floating-point

CHAPTER 2 ■ SHRINKING JAVA TO F IT26

www.allitebooks.com

http://www.allitebooks.org

support in CLDC 1.1, the library was again brought to parity with Java SE, and these
methods returned to the library.

Changes to Multithreading

The core essence of multithreading remains unchanged between the CDLC and the
implementations of Java for larger-footprint devices. However, some key differences exist:

• CLDC 1.0 doesn’t support thread naming and the interrupt method; however, you
can find them in CLDC 1.1.

• The suspend, resume, and stop methods, now deprecated in Java SE, are wholly
absent from the CLDC.

• The CLDC doesn’t support thread groups and daemon threads.

Changes to java.lang.Runtime

The runtime facility is vastly changed between Java SE and Java ME for both security and
memory reasons. It provides five methods:

• getRuntime: This static method returns the global runtime.

• exit: Although you can invoke this method, it won’t exit the runtime; the entire
application life cycle is managed by the application manager and MIDlets
(see Chapter 3 for more details).

• totalMemory: You can use this method to determine the amount of total memory
that’s available.

• freeMemory: You can use this method to determine the amount of free memory
that’s available.

• gc: You use this method to invoke a garbage-collection operation.

Changes to java.lang.System

The System class has been heavily modified as well. There’s no input stream, because
CLDC devices don’t have a traditional console (in fact, there is no way to obtain infor-
mation written to System.out and System.err on most devices, either). The System class
also provides a property accessor called getProperty to obtain information such as the
name of the device host, the character-encoding scheme used by the device, the CLDC
platform version, the MIDP version, and so forth.

CHAPTER 2 ■ SHRINKING JAVA TO F IT 27

Changes to java.lang.String and java.lang.StringBuffer

The key difference between these classes in Java SE and the CLDC is that CLDC 1.0 omits
the methods that take floating-point arguments.

Changes to the java.util Package

Table 2-3 lists the supported classes in the java.util package.

Table 2-3. java.util Classes Supported by CLDC Version

CLDC 1.0 CLDC 1.1

Calendar Calendar

Date Date

EmptyStackException EmptyStackException

Enumeration Enumeration (interface)

Hashtable Hashtable

NoSuchElementException NoSuchElementException

Random Random

Stack Stack

Timer Timer

TimerTask TimerTask

TimeZone TimeZone

Vector Vector

Changes to Collections

The Java SE Collections API is a shadow of its former self, but the most-used collections—
vectors, hashtables, and stacks—still remain.

Changes to Time Utilities

The CLDC time APIs are considerably streamlined as well. The notion of date formats is
hidden entirely, having been wrapped in UI classes provided by the MIDP; the only facili-
ties provided let you manage instances in time (Date) and time zones (TimeZone). Calendar
provides the ability to get the current calendar, a millisecond timer, and other utilities.

CHAPTER 2 ■ SHRINKING JAVA TO F IT28

Changes to Timer Behavior

Although not part of the CLDC proper, it’s worth calling out the Timer and TimerTask
classes here, as they’re the only MIDP classes in the java.util hierarchy. Drawn from Java
SE, the Timer class lets you schedule a TimerTask to be performed at some time in the
future. As with Java SE, simply subclass TimerTask overriding run, and then use a Timer
instance to schedule the operation. Of course, your MIDlet must be running; for back-
ground wake-up behavior, consider using an alarm (see the “Managing Startup Events
and Alarms” section in Chapter 4).

Changes to the java.io Package

Table 2-4 lists the supported classes in the java.io package.

Table 2-4. java.io Classes Supported by CLDC Version

CLDC 1.0 CLDC 1.1

ByteArrayInputStream ByteArrayInputStream

ByteArrayOutputStream ByteArrayOutputStream

DataInput DataInput (interface)

DataInputStream DataInputStream

DataOutput DataOutput (interface)

DataOutputStream DataOutputStream

EOFException EOFException

InputStream InputStream

InputStreamReader InputStreamReader

InterruptedIOException InterruptedIOException

IOException IOException

OutputStream OutputStream

OutputStreamWriter OutputStreamWriter

PrintStream PrintStream

Reader Reader

UnsupportedEncodingException UnsupportedEncodingException

UTFDataFormatException UTFDataFormatException

Writer Writer

CHAPTER 2 ■ SHRINKING JAVA TO F IT 29

Heavily streamlined, this package omits access to the native file system, but it offers
limited internationalization through the InputStreamReader and OutputStreamWriter
classes, which accept an optional string indicating the character-encoding method.

Introducing Classes in the CLDC

The key introduction of the CLDC—which found its way into the CDC as well—is the
GCF, which was described first in the CLDC 1.0 documentation and later provided with a
migration path to Java SE in JSR 197.

The GCF provides a unified means to interact with networks over a variety of
protocols, including but not limited to HTTP, TCP, and UDP. Using a URL schema
for connection definition, clients obtain instances of a Connection subclass from the
Connector factory and perform I/O over the Connection subclass. Table 2-5 lists the
classes available. Chapter 12 describes the GCF in more detail, including examples of
its use. In addition to these classes, packages such as the MIDP, the Foundation Profile
for CDC, and the GCF for Java SE include additional connections, such as a connection
that implements support for HTTP.

Table 2-5. The javax.microedition.io Classes Supported by CLDC Version

CLDC 1.0 CLDC 1.1

Connection Connection

ConnectionNotFoundException ConnectionNotFoundException

Connector Connector

ContentConnection ContentConnection

Datagram Datagram

StreamConnectionNotifier StreamConnectionNotifier

InputConnection InputConnection

OutputConnection OutputConnection

DatagramConnection DatagramConnection

StreamConnection StreamConnection

Besides its importance in providing CLDC applications with a path to communicat-
ing with the outside world, the GCF provides an object lesson in where Java ME is
headed: into Java SE. As portable devices continue to become more full-featured, the
innovations necessary to bring Java to those devices will likely become mainstream parts
of the Java SE interface.

CHAPTER 2 ■ SHRINKING JAVA TO F IT30

Changing the Java Class Library to Fit the CDC
The joy of working with the CDC is that there are no changes to fit the Java SE class hier-
archy—what you see in Java SE is what you get in the Java ME CDC. As previously noted,
however, the CDC is a superset of the CLDC; the GCF is included in the CDC as well.
Table 2-6 shows the classes provided by the CDC in the javax.microedition.io package.

Table 2-6. javax.microedition.io Library Additions to the CDC

Connection

ConnectionNotFoundException

Connector

ContentConnection

Datagram

HttpConnection

HttpsConnection*

SecureConnection*

StreamConnectionNotifier

InputConnection

OutputConnection

DatagramConnection

StreamConnection

*Only if the device supports HTTPS.

Note that the CDC supports HTTP out of the box, as opposed to the CLDC, which
does not include HTTP except as provided by the MIDP.

Wrapping Up
If you take away one thing from this chapter, it’s that the key difference between the
CLDC and the CDC is what’s included in terms of classes. The CLDC contains far fewer
classes than the CDC, which is at parity with Java SE 1.4.2. Notable classes missing in the
CLDC include most of the java.util hierarchy. Specifically, all of the collections except
vectors, hashtables, and stacks are missing. Also, the CLDC provides streamlined time-
management APIs, including a subset of java.util.Date, java.util.Calendar, and
java.util.TimeZone. Finally, it possesses a simplified java.io hierarchy.

CHAPTER 2 ■ SHRINKING JAVA TO F IT 31

The CDC merges Java SE with the CLDC, meaning that both the CDC and the CLDC
include the GCF, a media-independent hierarchy of interfaces that provide a factory of
connections such as sockets, files, or other entities. The CLDC defers the definition of
which protocols are supported by the GCF to the MIDP, while the CDC requires support
for HTTP and HTTPS by default.

Neither the CLDC nor the CDC provides support for GUI development. For that, you
need a profile such as the MIDP atop the configuration, which is the subject of Parts 2
and 3 of this book.

CHAPTER 2 ■ SHRINKING JAVA TO F IT32

Getting Started with the
NetBeans IDE

Numerous tools are available for building Java ME applications, but the NetBeans
integrated development environment (IDE) stands out as providing the best-of-breed
support for the platform while remaining open for changes and extensions. If you’re just
starting out, the NetBeans software development kit (SDK) is the place to begin; if you’re
exploring the Java ME platform with thoughts of doing your work in another environ-
ment, many of the concepts you’ll learn in this chapter still apply.

In this chapter, I begin with an introduction to the NetBeans IDE and explain how to
install it for both Microsoft Windows and Linux. Next, I present a whirlwind tour of the
NetBeans IDE; this is very brief, as the best way to learn the IDE is by using it. As a result,
I spend considerable time using the IDE in two step-by-step tutorials: one to build your
first CLDC/Java ME application, and the other to build your first CDC/AGUI application.
After reading this chapter, you will understand the basics of laying out, editing, compil-
ing, and packaging CLDC/Java ME and CDC applications using NetBeans. You’ll also gain
an understanding of the technology that you can bring to other environments, such as
EclipseME, should you choose a different tool chain.

Selecting the NetBeans IDE
While a bevy of tools is available for doing Java ME work, it’s a good idea to begin learning
Java ME with the NetBeans IDE, for several reasons:

• It’s free.

• It includes a GUI builder that lets you lay out complex screens quickly and with
little effort, autogenerating the code behind the scenes.

• It includes full support for source-level debugging of your application.

33

C H A P T E R 3

• It supports round-trip development from source-code editing through deployment
to a server for on-device testing.

• With the Mobility Pack (also free), it includes full support for Java and Java ME,
including a handset emulator on which you can test your application before
deploying to a device.

Of course, other IDEs for Java ME are available, including the also-free EclipseME.
However, the NetBeans IDE with the Mobility Pack provides all you need to get started,
but piecing together EclipseME requires that you download Eclipse and a specific version
of the Sun Java Wireless Toolkit (also a free download) before downloading, installing,
and configuring EclipseME. Moreover, EclipseME’s resulting environment isn’t quite as
full-featured or well integrated as the NetBeans SDK, so I recommend starting with the
NetBeans SDK instead.

Assuming you have Java SE Java Development Kit (JDK) version 4, 5, or 6 installed,
installing the NetBeans IDE couldn’t be easier—just head on over to the NetBeans web
site at http://www.netbeans.org/ and click the Download NetBeans IDE link. If you don’t
have the required Java SE JDK installed, you have two choices—surf over to Sun at
http://java.sun.com/ and download one, or download the NetBeans IDE bundled with
the required JDK.

Once you’ve downloaded and installed the NetBeans IDE (the download provides a
double-clickable installer), go back to http://www.netbeans.org/ and find the Mobility
Packs for both the CLDC/MIDP and the CDC. Download either, or both, depending on
whether you want to target the CLDC/MIDP or the CDC, and run the installers provided.

However, there’s one catch for Mac OS X developers—while NetBeans will run
happily on your operating system of choice, the Mobility Pack will not. Fortunately,
there’s nothing to keep you from running the NetBeans IDE with the Mobility Pack
under a virtual machine or Boot Camp with another operating system. (In fact, I
created all of the examples in this book that way.) Simply consult the virtual machine
provider’s documentation to install Linux or Windows, and then proceed with these
instructions inside the operating system of your choice.

■Note I created all of the examples in this book using the NetBeans IDE version 5.5.1; later versions are
available as this book goes to press. If you’re using a later version of the NetBeans IDE than this, the screens
and instructions that follow may be slightly different.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE34

Finding Your Way Around the NetBeans IDE
The first time you launch the NetBeans IDE can be an overwhelming experience,
especially if you’re used to a different (or no) IDE. Figure 3-1 shows the NetBeans IDE
while working on a typical project. Fortunately, the frustration quickly passes once you
actually start using the environment, as the things you use frequently become natural,
and the features you don’t regularly use fade from your attention.

Figure 3-1. The NetBeans IDE at work

The NetBeans IDE is divided up into several windows. The following are some of the
most important:

• Projects/Files/Runtime: Lets you inspect the package and file-system layout for your
application

• Navigator: Lets you browse the members or class hierarchy of the class you’re
currently editing

• Editor: Lets you edit the design, layout, and source code of your application

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 35

• Palette: Visible when using the visual GUI designer (often referred to as Matisse in
older documentation for the NetBeans IDE) with items you can drop onto the
visual GUI editor window

• Properties: Lets you edit various properties of the item you have selected when
working in the visual GUI designer

• Output: Shows the results of builds, the system log during execution, and so forth

Like other IDEs, one of the things you’ll have to get used to is that these windows can
come and go; for example, during application debugging, the region for the Output window
is smaller, and the liberated space is used to contain another window with tabs showing
watchpoints, local variables, and the call stack when the application is stopped at a break-
point. Similarly, the Palette window may come and go depending on whether you’re editing
a visual layout (when it should be visible) or source code (when it may disappear). If you
can’t find a window you’re looking for—a common experience, especially at first—just
mouse on up to the Window menu bar and choose the window you’re looking for.

The NetBeans IDE manages your source code as a project—that is, a collection of
files within directories, including your source files and an input to Apache Ant for build-
ing your project. It’s best not to fool with the directory hierarchy set out by the NetBeans
SDK, but it helps to understand the purpose of each file and directory:

• build.xml: This file contains the build scripts for Ant that the NetBeans SDK uses
to build your application.

• nbproject: This directory contains the files used by the IDE to manage your
project itself.

• src: This directory contains the source code you write for your application.

• test: This optional directory contains the code for any unit tests you write.

• resources: This optional directory contains any binary resources for your
application.

• build: This directory is used by the NetBeans IDE to contain your application’s
interbuild products, which consist of classes and other files.

• dist: This directory, generated by the NetBeans IDE, contains the generated Java
executable files for your application.

If you’re using revision-control software such as Concurrent Versions System (CVS)
or Subversion (SVN)—and for any serious work, you should—you will want to have all of
these under change control except the build and dist directories, which are generated at
runtime by the NetBeans IDE when you perform builds. One slick feature of the IDE is

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE36

www.allitebooks.com

http://www.allitebooks.org

integrated support for both CVS and Subversion; CVS is built in, while SVN is available
from the Update Center (choose Update Center from the Tools menu) as an optional
module to install.

Creating Your First CLDC/MIDP Application
Assuming you’ve installed the CLDC Mobility Pack for the NetBeans IDE, you’re ready to
create your first CLDC application. The application you’ll create in this section is the user
interface for a simple weather display widget I call WeatherWidget; as you work through
the book, you’ll extend this application with features such as network support (to fetch
real-time weather data) and persistence (to store the user’s preferences). Figure 3-2
shows the application.

Figure 3-2. The WeatherWidget application running in emulation

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 37

The application consists of two screens: the main screen, which shows the current
weather as obtained from a server, and a settings screen, which lets you enter a city and
state in the United States. For this chapter, the weather data and location data are static;
in Chapter 6, you will learn how to persist user settings, and in Chapters 12 and 13, you’ll
see various ways of interfacing with the Web (including using web services) to obtain
real-time data for your application.

Walking Through the Creation of WeatherWidget

To create the WeatherWidget application, follow the steps in this section.

■Note If you’d rather skim these steps before looking at the resulting project, you can find the source code
that results from this sequence of steps in the WeatherWidget directory of the sample code for Chapter 3,
found in the Source Code/Download area of the Apress web site (http://www.apress.com).

Creating the Project and Forms for the Screen

In this section, you’ll learn how to create the project containing the application, as well as
the forms that implement the screens of the application.

1. Within the NetBeans IDE, choose CREATE NEW PROJECT from the Welcome tab
of the editor.

2. From the dialog that appears, choose Mobile from the Categories column, and
choose Mobile Application from the Projects column. Click Next.

3. Enter WeatherWidget for the application name, and select a location for the
project directory. Leave both Set as Main Project and Create Hello MIDlet ticked.
Click Next.

4. Leave the defaults set, and click Finish to finish the New Project wizard.

5. With the wizard complete, the NetBeans IDE brings you to the Flow Designer (in
the Editor window), which Figure 3-3 shows. Here you map out the flow between
the screens of your application. Begin by selecting and renaming the helloForm
instance you created to wxForm in the Flow Designer.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE38

Figure 3-3. The Flow Designer after renaming the first form

6. Drag another Form screen to the Flow Designer; rename it to settingForm.

Wiring the Screen Transitions

In this section, you’ll learn how to add screen transitions to the application. Follow
these steps:

1. Now add and wire up the commands that transition between screens. From the
Palette window on the right-hand side, drag an item named Ok Command to the
wxForm screen in the Flow Designer.

2. From the Palette window, drag a Back Command item to the settingForm form.

3. Select the wxForm form and choose the Screen Designer by selecting Screen
Design near the top of the Editor window. You will see the Screen Designer for the
first form, similar to Figure 3-4.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 39

Figure 3-4. The Screen Designer for the first form

4. Click okCommand1 on the right side of the Editor window; edit the name to be
okCommand in the Properties window. Also, in Properties, change its label to be
Settings.

5. Click Edit in the okCommand box in the Editor window. In the window that
appears, change its action to “Switch to screen” and set the settingForm form as its
target (see Figure 3-5). Click OK.

Figure 3-5. The Action window, linking an item to a new screen

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE40

6. Choose the settingForm form in the Edited Screen: combo box to transition to the
other screen.

7. Rename the backCommand1 command to backCommand and set its action to
“Switch to screen” with the wxForm form as the target.

8. Return to the Flow Designer. You should now have the flow as shown in Figure 3-6.

Figure 3-6. The completed application flow in the Flow Designer

9. While still in the Flow Designer, double-click the wxForm form icon to return to
the Screen Designer.

Designing the Screens

In this section, you’ll design the application’s screens, adding components with which
the user will interact. Follow these steps:

1. Click the helloStringItem item (the only widget on the screen in the Editor
window). In the Properties window, make its label Location and its text Berkeley,
CA, and change its name to locationItem.

2. Click Spacer from the Palette window’s Form Items group to drag a spacer to the
screen.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 41

3. Adjust the spacer’s height to ten pixels by clicking the button labeled “…” next to
Minimum Size in the Editor window and changing its width in the pop-up window
that appears.

4. Click StringItem from the Palette window’s Form Items group to drag a string item
to the screen.

5. Click the new StringItem item, and in the Properties pane, change its name to
wxItem, its label to Forecast, and its contents to simply the word Sunny. The
Screen Designer should now look like Figure 3-7.

Figure 3-7. The completed widget screen in the Screen Designer

6. Now add the items to the Settings screen. To begin, choose settingForm from the
Edit Screen menu.

7. Click TextField to drag a text field to the screen. In the Properties pane, name it
cityField, change its label to City, and change its contents to Berkeley.

8. Click Spacer to drag a spacer to the screen, and adjust its height to ten pixels.

9. Click TextField again to drag a second text field to the screen. In the Properties
pane, name it stateField, change its label to State, and change its contents to CA.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE42

10. Now set the name of the widget itself. Select the project, go to the top-level File
menu, and choose WeatherWidget Properties.

11. Choose MIDlets from the right-hand pane, and rename the MIDlet to Weather.

Building and Running for the First Time

Build and run your application by clicking the green arrow. In a few seconds, you’ll see
the Sun Java Wireless Toolkit emulator. You can launch the application and explore the UI
you created, or you can quit the application.

■Tip If the emulator launches and then immediately exits, check your antivirus and firewall applications to
ensure that it’s not blocking the execution of the emulator.

Let’s take a look at your handiwork. Listing 3-1 shows the code you created, largely
through manipulating the Flow Designer and Screen Designer.

Listing 3-1. Code Generated by Using the Flow Designer and Screen Designer

/*

* HelloMIDlet.java

*

* Created on November 19, 2007, 7:58 PM

*/

package com.apress.rischpater.weatherwidget;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

/**

*

* @author Ray Rischpater

*/

public class HelloMIDlet extends MIDlet implements CommandListener {

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 43

/**

* Creates a new instance of HelloMIDlet

*/

public HelloMIDlet() {

}

private Form wxForm;//GEN-BEGIN:MVDFields

private StringItem locationItem;

private Command exitCommand;

private Form settingForm;

private Command okCommand;

private Command backCommand;

private Spacer spacer1;

private StringItem wxItem;

private StringItem stringItem1;

private Spacer spacer2;

private StringItem stringItem2;//GEN-END:MVDFields

//GEN-LINE:MVDMethods

/** This method initializes UI of the application.//GEN-BEGIN:MVDInitBegin

*/

private void initialize() {//GEN-END:MVDInitBegin

// Insert pre-init code here

getDisplay().setCurrent(get_wxForm());//GEN-LINE:MVDInitInit

// Insert post-init code here

}//GEN-LINE:MVDInitEnd

/** Called by the system to indicate that a command has been invoked on➥

a particular displayable.//GEN-BEGIN:MVDCABegin

* @param command the Command that ws invoked

* @param displayable the Displayable on which the command was invoked

*/

public void commandAction(Command command, Displayable displayable) {➥

//GEN-END:MVDCABegin

// Insert global pre-action code here

if (displayable == wxForm) {//GEN-BEGIN:MVDCABody

if (command == exitCommand) {//GEN-END:MVDCABody

// Insert pre-action code here

exitMIDlet();//GEN-LINE:MVDCAAction3

// Insert post-action code here

} else if (command == okCommand) {//GEN-LINE:MVDCACase3

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE44

// Insert pre-action code here

getDisplay().setCurrent(get_settingForm());➥

//GEN-LINE:MVDCAAction12

// Insert post-action code here

}//GEN-BEGIN:MVDCACase12

} else if (displayable == settingForm) {

if (command == backCommand) {//GEN-END:MVDCACase12

// Insert pre-action code here

getDisplay().setCurrent(get_wxForm());➥

//GEN-LINE:MVDCAAction14

// Insert post-action code here

}//GEN-BEGIN:MVDCACase14

}//GEN-END:MVDCACase14

// Insert global post-action code here

}//GEN-LINE:MVDCAEnd

/**

* This method should return an instance of the display.

*/

public Display getDisplay() {//GEN-FIRST:MVDGetDisplay

return Display.getDisplay(this);

}//GEN-LAST:MVDGetDisplay

/**

* This method should exit the midlet.

*/

public void exitMIDlet() {//GEN-FIRST:MVDExitMidlet

getDisplay().setCurrent(null);

destroyApp(true);

notifyDestroyed();

}//GEN-LAST:MVDExitMidlet

/** This method returns instance for wxForm component and should be called➥

instead of accessing wxForm field directly.//GEN-BEGIN:MVDGetBegin2

* @return Instance for wxForm component

*/

public Form get_wxForm() {

if (wxForm == null) {//GEN-END:MVDGetBegin2

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 45

// Insert pre-init code here

wxForm = new Form(null, new Item[] {//GEN-BEGIN:MVDGetInit2

get_locationItem(),

get_spacer1(),

get_wxItem()

});

wxForm.addCommand(get_exitCommand());

wxForm.addCommand(get_okCommand());

wxForm.setCommandListener(this);//GEN-END:MVDGetInit2

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd2

return wxForm;

}//GEN-END:MVDGetEnd2

/** This method returns instance for locationItem component and should➥

be called instead of accessing locationItem field directly.➥

//GEN-BEGIN:MVDGetBegin4

* @return Instance for locationItem component

*/

public StringItem get_locationItem() {

if (locationItem == null) {//GEN-END:MVDGetBegin4

// Insert pre-init code here

locationItem = new StringItem("Location", "Berkeley, CA");➥

//GEN-LINE:MVDGetInit4

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd4

return locationItem;

}//GEN-END:MVDGetEnd4

/** This method returns instance for exitCommand component and should ➥

be called instead of accessing exitCommand field directly.➥

//GEN-BEGIN:MVDGetBegin5

* @return Instance for exitCommand component

*/

public Command get_exitCommand() {

if (exitCommand == null) {//GEN-END:MVDGetBegin5

// Insert pre-init code here

exitCommand = new Command("Exit", Command.EXIT, 1);➥

//GEN-LINE:MVDGetInit5

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd5

return exitCommand;

}//GEN-END:MVDGetEnd5

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE46

www.allitebooks.com

http://www.allitebooks.org

/** This method returns instance for settingForm component and should ➥

be called instead of accessing settingForm field directly.➥

//GEN-BEGIN:MVDGetBegin10

* @return Instance for settingForm component

*/

public Form get_settingForm() {

if (settingForm == null) {//GEN-END:MVDGetBegin10

// Insert pre-init code here

settingForm = new Form(null, new Item[] {//GEN-BEGIN:MVDGetInit10

get_stringItem1(),

get_spacer2(),

get_stringItem2()

});

settingForm.addCommand(get_backCommand());

settingForm.setCommandListener(this);//GEN-END:MVDGetInit10

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd10

return settingForm;

}//GEN-END:MVDGetEnd10

/** This method returns instance for okCommand component and should be➥

called instead of accessing okCommand field directly.➥

//GEN-BEGIN:MVDGetBegin11

* @return Instance for okCommand component

*/

public Command get_okCommand() {

if (okCommand == null) {//GEN-END:MVDGetBegin11

// Insert pre-init code here

okCommand = new Command("Settings", Command.OK, 1);➥

//GEN-LINE:MVDGetInit11

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd11

return okCommand;

}//GEN-END:MVDGetEnd11

/** This method returns instance for backCommand component and should ➥

be called instead of accessing backCommand field directly.➥

//GEN-BEGIN:MVDGetBegin13

* @return Instance for backCommand component

*/

public Command get_backCommand() {

if (backCommand == null) {//GEN-END:MVDGetBegin13

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 47

// Insert pre-init code here

backCommand = new Command("Back", Command.BACK, 1);➥

//GEN-LINE:MVDGetInit13

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd13

return backCommand;

}//GEN-END:MVDGetEnd13

/** This method returns instance for spacer1 component and should be ➥

called instead of accessing spacer1 field directly.➥

//GEN-BEGIN:MVDGetBegin15

* @return Instance for spacer1 component

*/

public Spacer get_spacer1() {

if (spacer1 == null) {//GEN-END:MVDGetBegin15

// Insert pre-init code here

spacer1 = new Spacer(1000, 10);//GEN-LINE:MVDGetInit15

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd15

return spacer1;

}//GEN-END:MVDGetEnd15

/** This method returns instance for wxItem component and should be called ➥

instead of accessing wxItem field directly.//GEN-BEGIN:MVDGetBegin16

* @return Instance for wxItem component

*/

public StringItem get_wxItem() {

if (wxItem == null) {//GEN-END:MVDGetBegin16

// Insert pre-init code here

wxItem = new StringItem("Forecast", "Sunny.");//GEN-LINE:MVDGetInit16

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd16

return wxItem;

}//GEN-END:MVDGetEnd16

/** This method returns instance for stringItem1 component and should ➥

be called instead of accessing stringItem1 field directly.➥

//GEN-BEGIN:MVDGetBegin23

* @return Instance for stringItem1 component

*/

public StringItem get_stringItem1() {

if (stringItem1 == null) {//GEN-END:MVDGetBegin23

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE48

// Insert pre-init code here

stringItem1 = new StringItem("Location", "Berkeley, CA");➥

//GEN-LINE:MVDGetInit23

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd23

return stringItem1;

}//GEN-END:MVDGetEnd23

/** This method returns instance for spacer2 component and should be called ➥

instead of accessing spacer2 field directly.//GEN-BEGIN:MVDGetBegin24

* @return Instance for spacer2 component

*/

public Spacer get_spacer2() {

if (spacer2 == null) {//GEN-END:MVDGetBegin24

// Insert pre-init code here

spacer2 = new Spacer(1000, 10);//GEN-LINE:MVDGetInit24

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd24

return spacer2;

}//GEN-END:MVDGetEnd24

/** This method returns instance for stringItem2 component and should ➥

be called instead of accessing stringItem2 field directly.➥

//GEN-BEGIN:MVDGetBegin25

* @return Instance for stringItem2 component

*/

public StringItem get_stringItem2() {

if (stringItem2 == null) {//GEN-END:MVDGetBegin25

// Insert pre-init code here

stringItem2 = new StringItem("Forecast\n", "Sunny");➥

//GEN-LINE:MVDGetInit25

// Insert post-init code here

}//GEN-BEGIN:MVDGetEnd25

return stringItem2;

}//GEN-END:MVDGetEnd25

public void startApp() {

initialize();

}

public void pauseApp() {

}

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 49

public void destroyApp(boolean unconditional) {

}

}

Wow! That’s a lot of code for so little typing. As you browse the NetBeans IDE,
you’ll notice two things. First, large swaths of the code are on a blue background; the
IDE autogenerates and maintains these blocks of code. Second, if you compare the
appearance of these lines with the code shown in Listing 3-1, you’ll notice that the list-
ing has many lines with comments like //GEN-BEGIN, //GEN_LINE, and //GEN_END, followed
by unique identifiers. The NetBeans IDE inserts these comments and uses them to tag
the code it creates and maintains; if you edit the source code, be careful not to edit
these lines, as you will lose your changes when you go back to use the Screen Designer
and Flow Designer again.

While I go into more detail about the structure of MIDlets in Chapter 4, it’s worth
your time for me to point out now a few things about the code the NetBeans IDE gener-
ated for us. Just like traditional applets and applications, MIDlets have a specific life
cycle, although it’s a little different than for applets:

• Construction: When the application management system launches a MIDlet, an
instance is created, resulting in the runtime invoking the MIDlet’s constructor. The
MIDlet is now said to be paused.

• Active: When the application manager calls the MIDlet’s startApp method, the
MIDlet is active and running normally.

• Paused: At any time, the application manager can pause the MIDlet to permit
another application access to the handset (such as for an incoming call) by invok-
ing pauseApp. Alternatively, a MIDlet can place itself in the same state by invoking
notifyPaused. From this state, the application manager can resume the application
by invoking startApp again.

• Destroyed: The application manager can terminate the MIDlet’s execution at any
time by calling destroyApp. Alternatively, the MIDlet can destroy itself by calling
notifyDestroyed.

Figure 3-8 shows the MIDlet life cycle.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE50

Figure 3-8. The MIDlet life cycle

As is generally the case, WeatherWidget doesn’t do any object creation at construc-
tion time; instead, object creation is deferred until the application starts. The application
manager–invoked startApp delegates the creation of items for the GUI to initialize and
sets the display’s current form to the wxForm field. The application does nothing on appli-
cation pause or destruction, instead relying on the Java garbage collector upon
destruction to reclaim the memory used by the application forms.

The MIDP environment provides a generalized notion of events; instead of
handling events such as specific key presses, the runtime provides abstractions such
as OK, back, and help. This abstraction permits the MIDP to run on a wide variety of
devices, from touchscreen-only devices, to traditional phones with a four-way naviga-
tion pad and two soft keys, to speech-driven user interfaces. The system sends these
commands to the MIDlet using the commandAction method, which simply switches
on the incoming command to determine what screen to show or whether to exit
completely (on an exitCommand).

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 51

Building CLDC/MIDP Applications

The NetBeans IDE uses the same Java compiler to build CLDC applications and other
applications; behind the scenes, it uses a special option (–bootpathoption) to redirect the
compiler to use different fundamental classes for the CLDC. This is important, because
as you remember from the first chapter (and learned in detail in the previous chapter),
not all classes and methods in the base hierarchy are provided as part of the CLDC.

Build options—especially optimization and obfuscation—play a big part in building
for Java ME devices, for two reasons. First, these are commercial applications, distributed
to a wide audience, so of course you want to keep your intellectual property away from
the prying eyes of a decompiler. Second, and more important, optimization and obfusca-
tion result in a smaller application, meaning that it takes less time to transfer to the target
hardware and uses less memory on the target hardware. This is because obfuscation
renames classes, member variables, and method names to shorter names, removing
unused classes, methods, and member variables in the process. The NetBeans IDE
includes the popular open source ProGuard obfuscator, which you can control using the
Obfuscating panel in the Project Properties window. When compiling, you might want to
test both optimized and nonoptimized builds for memory and time performance, too; go
to the “Compile with Optimization” item in the Compiling panel of your project’s proper-
ties. Finally, get in the habit of shipping release builds with no debugging information;
doing so will lead to smaller binaries.

To manage all of this, the NetBeans SDK provides the notion of a project configura-
tion, which is a collection of project options that includes the target platform, the
application description and packaging (see the next section), and the build options.
You create new project configurations in the Project Properties window by clickin the
Manage Configurations button in the upper-right corner. Doing this brings you to a list
of configurations from which you can add and remove configurations; in turn, project
properties are keyed by the configuration you select in the Project Configuration window,
shown in Figure 3-9. As you can tell from the figure, I like to have three project configura-
tions: one for debugging, one for release, and one for a default configuration. More
complex projects may require additional configurations to manage specific builds for
particular hardware targets or other variables.

If you’re familiar with the Java build process, you may have seen an additional step
during the build you performed in the previous section. Take a close look at the output
log, and you’ll see lines after the obfuscation step labeled pre-preverify, preverify, and
post-preverify.

As you recall from the first chapter, unlike the CDC or the standard JVM, the virtual
machine used by the CLDC delegates some of the more expensive bytecode verification
to the build process. This occurs after code obfuscation, and it’s the last step prior to
packaging your application. The preverify tool inlines subroutines in each class file and
adds information to each stack frame to make it easier for the runtime virtual machine to
perform necessary type checking and other bytecode verification.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE52

Figure 3-9. The Project Properties dialog, titled WeatherWidget (left), and the Project Configuration
Manager dialog (right)

If you want to build your application using a tool chain other than the NetBeans IDE,
you will need this preverify tool. Simply install a copy of the Sun Java Wireless Toolkit
(available from http://java.sun.com/). Other tool chains, such as EclipseME, leverage the
preverify tool from the Sun Java Wireless Toolkit or provide their own.

Packaging and Executing CLDC/MIDP Applications

On a device, an application manager provides services to MIDlets; for example, it down-
loads MIDlets, launches and terminates MIDlets, shares system resources with MIDlets,
and so forth. A MIDlet presents itself to the application manager as two files: a JAD file
that describes the application, and a Java Archive (JAR) file that contains the bytecodes
for the application along with any required resources. In fact, more than one MIDlet can
be packaged in a JAD/JAR pair; this is called a suite, and you must have entries in the JAD
for each MIDlet in the suite.

A JAD file is a name-value pair of attributes, such as the one generated by the
NetBeans IDE for the WeatherWidget application that you see in Listing 3-2.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 53

Listing 3-2. The WeatherWidget JAD File

MIDlet-1: Weather,,com.apress.rischpater.weatherwidget.WeatherWidget

MIDlet-Jar-Size: 2858

MIDlet-Jar-URL: WeatherWidget.jar

MIDlet-Name: WeatherWidget

MIDlet-Vendor: Ray Rischpater

MIDlet-Version: 1.0

MicroEdition-Configuration: CLDC-1.1

MicroEdition-Profile: MIDP-2.1

This is a bare-bones JAD file, built by the NetBeans IDE from the project properties I
defined when creating the application. Relevant fields include

• MIDlet-n: The name, the path in the JAR file to the icon, and the class name for the
nth MIDlet in the MIDlet suite.

• MIDlet-Jar-Size: The size in bytes of the MIDlet suite’s JAR file. This must match the
actual size of the JAR file, or many devices won’t accept the JAR file.

• MIDlet-Jar-URL: The URL of the JAR file for the MIDlet.

• MIDlet-Name: The name of the MIDlet suite.

• MIDlet-Vendor: The name of the vendor of the MIDlet suite.

• MIDlet-Version: The version number of the MIDlet suite.

• MicroEdition-Configuration: The version of the Java ME VM (CDC or CDLC and
version number) required by the MIDlet suite.

• MicroEdition-Profile: The profile used by the MIDlet, including its version number.

You set these attributes in the Project Properties window in the Applet Descriptor
section. The Applet Descriptor section has separate subsections for generic attributes
and MIDlet attributes. As part of the JAD file, you also specify items for the push registry
and API permissions—two kinds of information new to MIDP 2.0 (JSR 118).

The push registry and the corresponding Push API let the application manager acti-
vate your MIDlet based on incoming events such as an inbound network connection, an
SMS message, or a timer alarm. The information you provide for a push-registry entry is
a tuple consisting of the inbound endpoint, the class name to receive the push, and a fil-
ter indicating valid originators of the push. I discuss this in more detail in Chapter 14.
Push-registry entries are specified using the name MIDlet-Push-n, where n is an integer
indicating a unique push entry.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE54

API permissions indicate that a specific permission is required when using a restricted
API, such as the socket connection interface. To do this, your MIDlet must have the per-
mission javax.microedition.io.Connector.socket, which indicates permission to use this
API. Note that this is a necessary but not sufficient requirement to actually use the API; the
runtime may prompt the user for approval or deny the operation on the basis of the origin
of the application. API permissions are strings named after the package and class of the
restricted API. (As I introduce APIs in subsequent chapters, I note the permissions
required for restricted APIs.) Two JAD fields indicate permissions: MIDlet-Permissions and
MIDlet-Permissions-Opt. The first names are the required permissions, and the second
names are the optional permissions that MIDlets in the suite may use.

■Caution Just providing permission in your JAD file doesn’t entitle you to access the restricted APIs that
require that permission. As I note in Chapter 1 in the section titled “Marketing and Selling Your Application,”
your application may also require a signature from a third party, such as Java Verified or a wireless operator,
to use the API you require.

A final aspect of packaging your application is signing—that is, the process of crypto-
graphically signing your application to prove that you’re the originator of the application.
Signing is the final link in the chain of the Java ME permission mechanism; signatures
indicate that applications come from sources with a particular level of trust, and depend-
ing on the signatures an application bears, the application may be granted additional
permissions to operate. Begin with a certificate provided by a well-known provider such
as VeriSign, and import this into the NetBeans keystore using the Security Manager. To do
this, follow these steps:

1. Obtain a certificate from an authority trusted by the operators on which you’ll be
deploying your application.

2. Import the certificate into your keystore using the keytool application included
with the JDK. Enter this command from a command line:

% keytool –import –alias your_alias_for_certificate

–file your_certificate_file

-keystore your_keystore.ks

3. In the NetBeans IDE, add your keystore to the IDE by going to Project Properties ➤
Signing ➤ Security Manager ➤ Add Keystore.

4. Still in the Signing pane, tick the Sign Distribution box and select the alias of the
certificate you just imported.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 55

To test access to APIs, you can often use a self-signed JAR file by exporting your cer-
tificate to your handset. However, how you import the certificate depends on the device
and the network you’re using, so you should consult with the documentation that
accompanies the device with which you’re working.

Some devices let you transfer the JAD and JAR files via Bluetooth or a cable, but
by far the most common way to get your code to a handset is over the Web. To do this,
you should have access to a web server on the same network as your test device (in
other words, don’t rely on a corporate web server behind a firewall and a wireless
terminal on an operator’s network outside your firewall). Using the NetBeans IDE,
you can transfer your JAD and JAR files to the server using Secure Copy Protocol
(SCP) or another mechanism by right-clicking your application and choosing Deploy
Project. From there, you can navigate to the URL of your JAD file using your device’s
application manager or the web browser. Next, on the device, download the JAD file,
which triggers the installation of your application. Figure 3-10 shows the NetBeans
Deployment Settings panel.

Figure 3-10. Selecting how your application will be deployed by the NetBeans SDK

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE56

Creating Your First CDC Application
As with your first CLDC application, writing your first CDC application requires that you
install the NetBeans Mobility Pack for CDC before you begin working. WeatherApplet, the
sample application you create here (shown in Figure 3-11), is the CDC analogue of the
CDLC WeatherWidget application you created in the previous section. As you did with
WeatherWidget, in this section you build only the UI, using the AGUI APIs described in
JSR 209. A subset of Java Swing, you’ll learn more about these APIs in Chapter 10.

Figure 3-11. The WeatherApplet application

Walking Through the Creation of WeatherApplet

Perform the steps in the following sections to create WeatherApplet using the
NetBeans IDE.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 57

Creating the Project

Follow these steps to create the project for WeatherApplet:

1. Click CREATE NEW PROJECT in the Welcome pane.

2. Choose CDC from the Categories pane, and choose CDC Application from the
Projects pane. Click Next.

3. Accept the default settings by clicking Next.

4. Enter the name WeatherApplet in the Project Name and Application Name fields.
If Create Main Class is selected, uncheck it. Click Finish.

Creating the User Interface

Follow these steps to create the user interface:

1. In the Projects pane, right-click the Source Packages item and choose New ➤
AGUI Xlet Form, as shown in Figure 3-12.

Figure 3-12. Inserting a new Xlet form

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE58

2. In the dialog that appears, name the form WeatherXlet. Place the form in a pack-
age if you like, too. Click Finish.

3. From the Palette pane on the right-hand side, click the JPanel item to drag out
a JPanel control. Inside, place two JLabels and two JTextFields, along with two
JButton controls, so that the form resembles Figure 3-13.

Figure 3-13. Layout of the main form’s components

4. Change the fields and buttons and their contents to match Figure 3-14. You can do
this by double-clicking and right-clicking items, or by using the Properties pane
(by default, on the lower-right side of the display).

5. Change the name of jTextField1 to location and the name of jTextField2 to
forecast using the Navigator panel on the lower-left side.

6. Make the two JTextField controls you just renamed neither focusable nor editable
by unticking those attributes in the Properties pane for each item.

7. Now create the Settings panel. In the Projects pane, right-click the Source
Packages item and choose New ➤ JPanel Form again.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 59

Figure 3-14. Layout of the main form’s components after you have renamed them

8. In the dialog that appears, name the form SettingPanel. Place the form in the
same package as the one you created (if any) in step 6.

9. Drag out and and name a JPanel, two JLabels, two JTextFields, and a JButton
control to make the settings dialog shown in Figure 3-15.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE60

Figure 3-15. Layout of the setting form’s components

Adding Actions to Wire the User Interface

Follow these steps to wire up the user interface:

1. Return to the WeatherXlet editor by selecting the WeatherXlet tab. Right-click
the Settings button, and add an event by choosing Events ➤ Action ➤
actionPerformed. The code editor will open. Add the snippet in Listing 3-3 to
the actionPerformed method.

Listing 3-3. The actionPerformed Method for the Settings Button

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

org.jdesktop.layout.GroupLayout layout =

(org.jdesktop.layout.GroupLayout)getContentPane().getLayout();

layout.replace(jPanel1, new SettingPanel());

}

2. Return to the Design view and add the actionPerformed event handler, shown in
Listing 3-4, to the Exit button.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 61

Listing 3-4. The actionPerformed Method for the Exit Button

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {

exit();

}

3. Test the application by choosing Build Main Project from the Build menu. When
the build is complete, you can run the application by choosing Run Main Project
from the Run menu. When prompted for the main class, choose WeatherXlet.

Listing 3-5 shows the WeatherXlet class.

Listing 3-5. The WeatherXlet Class

/*

* WeatherXlet.java

*

* Created on November 24, 2007, 6:57 AM

*

* To change this template, choose Tools | Template Manager

* and open the template in the editor.

*/

package com.apress.rischpater.weatherxlet;

import java.awt.Container;

import java.awt.EventQueue;

import javax.microedition.xlet.UnavailableContainerException;

import javax.microedition.xlet.XletContext;

import javax.microedition.xlet.XletStateChangeException;

/**

*

* @author Ray Rischpater

*/

public class WeatherXlet extends javax.swing.JInternalFrame implements➥

javax.microedition.xlet.Xlet {

private XletContext context; // our Xlet application context.

private Container rootContainer; // the root container of our screen.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE62

/** Creates new form WeatherXlet */

public WeatherXlet() {

initComponents();

}

/** This method is called from within the constructor to

* initialize the form.

* WARNING: Do NOT modify this code. The content of this method is

* always regenerated by the Form Editor.

*/

// <editor-fold defaultstate="collapsed" desc=" Generated Code ">➥

//GEN-BEGIN:initComponents

private void initComponents() {

jPanel1 = new javax.swing.JPanel();

jLabel1 = new javax.swing.JLabel();

location = new javax.swing.JTextField();

jLabel2 = new javax.swing.JLabel();

forecast = new javax.swing.JTextField();

jButton1 = new javax.swing.JButton();

jButton2 = new javax.swing.JButton();

setFocusable(false);

jLabel1.setText("Location");

location.setEditable(false);

location.setText("Berkeley, CA");

location.setFocusable(false);

location.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

locationActionPerformed(evt);

}

});

jLabel2.setText("Forecast");

forecast.setEditable(false);

forecast.setText("Partly cloudy");

forecast.setFocusable(false);

forecast.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

forecastActionPerformed(evt);

}

});

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 63

jButton1.setText("Exit");

jButton1.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

jButton1ActionPerformed(evt);

}

});

jButton2.setText("Settings");

jButton2.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

jButton2ActionPerformed(evt);

}

});

org.jdesktop.layout.GroupLayout jPanel1Layout = new org.jdesktop.➥

layout.GroupLayout(jPanel1);

jPanel1.setLayout(jPanel1Layout);

jPanel1Layout.setHorizontalGroup(

jPanel1Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.➥

LEADING)

.add(jPanel1Layout.createSequentialGroup()

.add(jPanel1Layout.createParallelGroup(org.jdesktop.layout➥

.GroupLayout.LEADING)

.add(jLabel1)

.add(jLabel2))

.addContainerGap(179, Short.MAX_VALUE))

.add(forecast, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,➥

228, Short.MAX_VALUE)

.add(jPanel1Layout.createSequentialGroup()

.add(jButton1)

.addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED,➥

96, Short.MAX_VALUE)

.add(jButton2))

.add(location, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,➥

228, Short.MAX_VALUE)

);

jPanel1Layout.setVerticalGroup(

jPanel1Layout.createParallelGroup(org.jdesktop.layout.GroupLayout.➥

LEADING)

.add(jPanel1Layout.createSequentialGroup()

.add(jLabel1)

.addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE64

.add(location, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,➥

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layou➥

t.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

.add(jLabel2)

.addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

.add(forecast, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,➥

151, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE)

.addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED,➥

10, Short.MAX_VALUE)

.add(jPanel1Layout.createParallelGroup(org.jdesktop.layout➥

.GroupLayout.BASELINE)

.add(jButton1)

.add(jButton2)))

);

org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.➥

GroupLayout(getContentPane());

getContentPane().setLayout(layout);

layout.setHorizontalGroup(

layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

.add(org.jdesktop.layout.GroupLayout.TRAILING, layout.create➥

SequentialGroup()

.addContainerGap()

.add(jPanel1, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,➥

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addContainerGap())

);

layout.setVerticalGroup(

layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

.add(org.jdesktop.layout.GroupLayout.TRAILING, layout.createSe➥

quentialGroup()

.addContainerGap()

.add(jPanel1, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,➥

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)

.addContainerGap())

);

pack();

}// </editor-fold>//GEN-END:initComponents

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 65

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {➥

//GEN-FIRST:event_jButton1ActionPerformed

exit();

}//GEN-LAST:event_jButton1ActionPerformed

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {➥

//GEN-FIRST:event_jButton2ActionPerformed

controller.showSettingPanel();

}//GEN-LAST:event_jButton2ActionPerformed

private void forecastActionPerformed(java.awt.event.ActionEvent evt) {➥

//GEN-FIRST:event_forecastActionPerformed

// TODO add your handling code here:

}//GEN-LAST:event_forecastActionPerformed

private void locationActionPerformed(java.awt.event.ActionEvent evt) {➥

//GEN-FIRST:event_locationActionPerformed

// TODO add your handling code here:

}//GEN-LAST:event_locationActionPerformed

// Variables declaration - do not modify//GEN-BEGIN:variables

private javax.swing.JTextField forecast;

private javax.swing.JButton jButton1;

private javax.swing.JButton jButton2;

private javax.swing.JLabel jLabel1;

private javax.swing.JLabel jLabel2;

private javax.swing.JPanel jPanel1;

private javax.swing.JTextField location;

// End of variables declaration//GEN-END:variables

private WeatherController controller;

private javax.swing.JPanel jPanel2;

public void initXlet(final XletContext xletContext) throws XletStateChange➥

Exception {

context = xletContext;

if(rootContainer == null) {

try {

//This call to getContainer() tells the OS we want to be a➥

graphical app.

rootContainer = context.getContainer();

} catch (UnavailableContainerException e) {

System.out.println("Ouch ! could not get our container!")

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE66

// If we can't get the root container,

// abort the initialization

throw new XletStateChangeException("Start aborted -- no➥

container: "

+ e.getMessage());

}

}

}

public void startXlet() throws XletStateChangeException {

// Note: Swing thread constraints still apply in an Xlet... most➥

operations

// need to be on the event thread, and this invokeLater does that.

try {

// using invokeAndWait to avoid writing synchronization code.

// invokeLater would work just as well in most cases.

EventQueue.invokeAndWait(new Runnable() {

public void run() {

WeatherXlet.this.setVisible(true);

rootContainer.add(WeatherXlet.this);

// This is needed - or nothing will be displayed.

rootContainer.setVisible(true);

}

});

} catch (Exception e) {

System.out.println("Ouch - exception in invokeAndWait()");

e.printStackTrace();

exit();

}

}

public void pauseXlet() {

//This is pure overkill for this application, but is done to demonstate➥

the point.

//We are freeing up our only resources (the screen), and we will rebuild➥

it when

//we get started again. If you took out this block - the application➥

should still

//run perfectly, and the screen should only be created once.

try {

// using invokeAndWait to avoid writing synchronization code.

// invokeLater would work just as well in most cases.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 67

EventQueue.invokeAndWait(new Runnable() {

public void run() {

rootContainer.remove(WeatherXlet.this);

}

});

} catch (Exception e) {

System.out.println("Ouch - exception in invokeAndWait()");

e.printStackTrace();

exit();

}

}

public void destroyXlet(boolean b) throws XletStateChangeException {

System.out.println("HelloXet.destroylet() - goodbye");

}

public void exit(){

rootContainer.setVisible(false);

context.notifyDestroyed();

}

}

Listing 3-6 shows the SettingPanel class.

Listing 3-6. The SettingPanel Class

/*

* SettingPanel.java

*

* Created on November 24, 2007, 7:55 AM

*/

package com.apress.rischpater.weatherxlet;

/**

*

* @author Ray Rischpater

*/

public class SettingPanel extends javax.swing.JPanel {

/** Creates new form SettingPanel */

public SettingPanel() {

initComponents();

}

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE68

/** This method is called from within the constructor to

* initialize the form.

* WARNING: Do NOT modify this code. The content of this method is

* always regenerated by the Form Editor.

*/

// <editor-fold defaultstate="collapsed" desc=" Generated Code ">➥

//GEN-BEGIN:initComponents

private void initComponents() {

jLabel1 = new javax.swing.JLabel();

jTextField1 = new javax.swing.JTextField();

jLabel2 = new javax.swing.JLabel();

jTextField2 = new javax.swing.JTextField();

jButton1 = new javax.swing.JButton();

jLabel1.setText("City");

jTextField1.setText("Berkeley");

jLabel2.setText("State");

jTextField2.setText("CA");

jButton1.setText("Back");

jButton1.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {

jButton1ActionPerformed(evt);

}

});

org.jdesktop.layout.GroupLayout layout = new org.jdesktop.layout.➥

GroupLayout(this);

this.setLayout(layout);

layout.setHorizontalGroup(

layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

.add(layout.createSequentialGroup()

.add(layout.createParallelGroup(org.jdesktop.layout.Group➥

Layout.LEADING)

.add(jLabel1)

.add(jLabel2))

.addContainerGap(199, Short.MAX_VALUE))

.add(jTextField1, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,➥

229, Short.MAX_VALUE)

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 69

.add(jTextField2, org.jdesktop.layout.GroupLayout.DEFAULT_SIZE,➥

229, Short.MAX_VALUE)

.add(layout.createSequentialGroup()

.add(jButton1)

.addContainerGap())

);

layout.setVerticalGroup(

layout.createParallelGroup(org.jdesktop.layout.GroupLayout.LEADING)

.add(layout.createSequentialGroup()

.add(jLabel1)

.addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

.add(jTextField1, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,➥

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.➥

GroupLayout.PREFERRED_SIZE)

.addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

.add(jLabel2)

.addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED)

.add(jTextField2, org.jdesktop.layout.GroupLayout.PREFERRED_SIZE,➥

org.jdesktop.layout.GroupLayout.DEFAULT_SIZE, org.jdesktop.layout.➥

GroupLayout.PREFERRED_SIZE)

.addPreferredGap(org.jdesktop.layout.LayoutStyle.RELATED,➥

139, Short.MAX_VALUE)

.add(jButton1))

);

}// </editor-fold>//GEN-END:initComponents

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {➥

//GEN-FIRST:event_jButton1ActionPerformed

controller.showMainPanel();

}//GEN-LAST:event_jButton1ActionPerformed

// Variables declaration - do not modify//GEN-BEGIN:variables

private javax.swing.JButton jButton1;

private javax.swing.JLabel jLabel1;

private javax.swing.JLabel jLabel2;

private javax.swing.JTextField jTextField1;

private javax.swing.JTextField jTextField2;

// End of variables declaration//GEN-END:variables

WeatherController controller;

}

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE70

For each of these classes, the bulk of the implementation is in the initComponents
method, which is responsible for creating the various user-interface controls and posi-
tioning them in the layout. Mercifully, all of this code is generated automatically, so you
don’t need to concern yourself with it in detail here.

The WeatherApplet application itself is an Xlet, similar to a MIDlet. Like MIDlets,
Xlets have a well-defined life cycle in which the application can pass through five states,
as shown in Figure 3-16. The NetBeans-generated code includes reference implementa-
tions for the Xlet method that implement the state transitions, saving you the need to
write anything as you first get things going. You’ll learn all about Xlets in Chapter 9.

Figure 3-16. The life cycle of an Xlet

Wiring up the Back button in the SettingPanel class is trickier; to do this, create a
controller that’s responsible for managing transitions between the different panels of
the user interface. The controller is responsible for hiding and showing each form in
response to button clicks; both the Settings button and the Back button delegate screen

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 71

transitions to the controller. To create the controller class and hook it to the buttons,
follow these steps:

1. Add the Java class WeatherController to the package (right-click the Source
Packages item and choose New ➤ Java Class). Change its contents to read as shown
in Listing 3-7. While you’re there, you should change the package name, too.

Listing 3-7. The WeatherController Class

/*

* WeatherController.java

*

* Created on November 24, 2007, 8:03 AM

*

* To change this template, choose Tools | Template Manager

* and open the template in the editor.

*/

package com.apress.rischpater.weatherxlet;

import javax.swing.JPanel;

import org.jdesktop.layout.GroupLayout;

/**

*

* @author Ray Rischpater

*/

public class WeatherController {

private JPanel mainPanel, settingPanel;

WeatherXlet xlet;

GroupLayout layout;

/** Creates a new instance of WeatherController */

public WeatherController(WeatherXlet x) {

xlet = x;

layout = (GroupLayout)xlet.getContentPane().getLayout();

}

public void setMainPanel(JPanel m) {

mainPanel = m;

}

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE72

public void setSettingPanel(JPanel s) {

settingPanel = s;

}

public void showMainPanel() {

layout.replace(settingPanel, mainPanel);

xlet.pack();

}

public void showSettingPanel() {

layout.replace(mainPanel, settingPanel);

xlet.pack();

}

}

2. Add the instance variables shown in Listing 3-8 to WeatherXlet.

Listing 3-8. Declarations in WeatherXlet to Support the Controller

private WeatherController controller;

private javax.swing.JPanel jPanel2;

3. Change WeatherXlet’s constructor to read as shown in Listing 3-9.

Listing 3-9. Revising WeatherXlet’s Constructor to Support the Controller

public WeatherXlet() {

initComponents();

controller = new WeatherController(this);

jPanel2 = new SettingPanel(controller);

controller.setMainPanel(jPanel1);

controller.setSettingPanel(jPanel2);

}

■Tip Don’t actually compile this code yet; you need to make the changes to the constructor in step 6
before your code is complete. You’ll get an error if you attempt to build this code now.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 73

4. Change the actionPerformed method for the Settings button to read as shown in
Listing 3-10.

Listing 3-10. The actionPerformed Method for the Settings Button

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {➥

//GEN-FIRST:event_jButton2ActionPerformed

controller.showSettingPanel();

}

5. Add the following instance variable to SettingPanel:

WeatherController controller;

6. Change the SettingPanel’s constructor to read as shown in Listing 3-11.

Listing 3-11. Revising the SettingPanel’s Constructor

public SettingPanel(WeatherController c) {

controller = c;

initComponents();

}

7. Change the SettingPanel’s Back button’s actionPerformed method to read as shown
in Listing 3-12.

Listing 3-12. Revising the SettingPanel’s Back Button’s actionPerformed Method

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {➥

//GEN-FIRST:event_jButton1ActionPerformed

controller.showMainPanel();

}

To see this working, you can simply build and run the application again, but this
time, try using the source-level debugger by placing a breakpoint on the line that reads

layout.replace(mainPanel, settingPanel);

in the showSettingPanel of the WeatherController class. To do this, place the cursor on the
line and click in the window margin on the left, or select Run ➤ Toggle Breakpoint from

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE74

the menu bar (or press Ctrl+F8). The line of code with the breakpoint will be highlighted
in red, and a red square will appear in the window’s left margin, indicating that execution
will pause at that line during debugging. You can begin execution by choosing Run ➤
Debug Main Project (or pressing F5, or clicking the second of the three arrows in the tool-
bar). When you do this, execution will begin normally, but when you click the Settings
button in the emulator, execution will stop at the breakpoint, letting you single-step
through the showSettingPanel, examine variables and the call stack using the inspector
windows in the lower right, and so forth (see Figure 3-17). I encourage you to experiment
with these options on your own.

Figure 3-17. Execution paused at a breakpoint for debugging

Packaging and Executing CDC Applications

How you package and execute your Java ME applications on CDC-enabled devices will
vary from device to device, but Java Web Start and the Java Network Launching Protocol
(JNLP) let you work the same way you do with desktop applications. Like packaging for
the CLDC/MIDP, using one of these means for packaging your application involves creat-
ing both a JAR file for your application and an accompanying descriptor file, as well as an
additional policy file that indicates the permissions required by the application. Unlike

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 75

the CLDC/MIDP, the descriptor is an XML file with three main sections: a <resources>
section specifying the required runtime and the location of the JAR file for the applica-
tion, an <information> section indicating the title and vendor of the application, and an
<application-desc> entry indicating the main class of the application. All are wrapped in
a <jnlp> XML tag. Listing 3-13 shows an example.

Listing 3-13. The Descriptor File for WeatherApplet

<?xml version="1.0" encoding="utf-8" ?>

<jnlp codebase="sb:///WeatherApplet/">

<resources>

<Java SE version="1.4+"/>

<jar href="lib/classes.jar"/>

</resources>

<information>

<title>WeatherApplet</title>

<vendor>Ray Rischpater</vendor>

</information>

<application-desc main-class="com.apress.rischpater.weatherxlet.Weather➥

Xlet">

</application-desc>

</jnlp>

You can write this by hand, or you can have the NetBeans IDE roll a deployment for
you, much as it would a CDC/MIDP deployment. When it does this, it creates a deploy-
ment image suitable for a SavaJe device, with the following directory hierarchy:

bundle.jnlp

bundle.policy

lib/

lib/classes.jar

The bundle.jnlp file is the descriptor you see in Listing 3-13; the bundle.policy file
requests the permissions for the application, like this:

grant codeBase "sb:/WeatherApplet/lib/classes.jar" {

permission java.security.AllPermission;

};

This example requests all permissions; in practice, you may want to apply the princi-
ple of least privilege, which requires that only the permissions required by the
applications be listed in the grant block.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE76

■Note The codeBase attribute in the permissions block should match the codebase attribute in the JNLP
file. Note the difference in capitalization, too!

To use NetBeans to create a suitable deployment image, make sure you have
selected a destination path for the image in the project’s properties (under the Deploy-
ment tab), such as the path to a Secure Digital (SD) card for the target hardware. Then
simply right-click the project and choose Deploy Target Bundle. When the build and
deployment are complete, you can transfer the media to the target hardware and exe-
cute your application.

Wrapping Up
Various tools are available for developing Java ME applications, but if you’re just start-
ing out, one of the best is the NetBeans IDE for Java ME. Through the addition of two
optional packages—the NetBeans Mobility Pack for CLDC and the NetBeans Mobility
Pack for CDC—you can write Java ME applications on Linux or Windows platforms (or,
through virtualization, on other Intel-based platforms as well). The IDE provides a
visual editor for developing your application GUI as well as integrated build tools to
compile and build your CLDC or CDC applications.

CLDC/MIDP applications are called MIDlets and have a well-defined life cycle
that permits you to pause applications at any point during execution. CDC applica-
tions also have the same life cycle and are called Xlets. While you can use a subset of
Java Swing for many CDC-based applications, the same is not true of the CLDC/MIDP,
which requires you to use a GUI and event hierarchy developed expressly for con-
strained mobile devices.

While both the CLDC and the CDC use the same basic build process and build tool
chain, later steps of the build and packaging process diverge between the two environ-
ments. Both use the JDK’s compiler, and you should be sure to use an obfuscator when
generating production code for either the CLDC or the CDC to save space. However, the
CLDC/MIDP splits bytecode verification into two phases, so CLDC/MIDP build environ-
ments must preverify the compiled byte code after obfuscation before packaging. Finally,
the mechanics of packaging differ between the two platforms; CLDC/MIDP devices use a
combination of a flat text file that describes the application and a JAR file, while CDC
applications generally use the same JNLP (consisting of an XML file and a class file)
mechanism used by desktop applications.

Despite the differences, the NetBeans IDE provides a unified visual development
environment with consistent tools for editing, debugging, building, and packaging Java
ME applications.

CHAPTER 3 ■ GETTING STARTED WITH THE NETBEANS IDE 77

Intermezzo

Until now, you’ve been learning generalities about Java ME and the two configura-

tions that comprise it, focusing largely on the underlying profiles. In the next two parts

of the book, I turn your attention to the key libraries that support application develop-

ment. Part 2 focuses on the MIDP for the CLDC, and Part 3 discusses the Foundation

and Personal Profiles for the CDC. Where you go from here depends largely on your

interests. If you’d like to learn the most about Java ME as a platform, then start with

Part 2 and read through Part 3, recognizing that what’s discussed is complementary,

yet few devices on the market offer all the capabilities you’re learning about. If you’re

interested in targeting a particular configuration, read just Part 2 or Part 3 for the con-

figuration and profiles that interest you.

CLDC Development
with MIDP

For the average developer, Java ME is synonymous with the MIDP, and for good reason.

For more than half a decade, developers have been successfully delivering games, enter-

tainment, productivity, and other applications atop the MIDP—the first commercial

success for mobile Java in the marketplace. In this part, you learn what it takes to build

successful MIDP applications.

P A R T 2

Introducing MIDlets

The MIDlet is at the heart of the Java ME CLDC execution model. MIDlets are the
equivalent of applications in the CLDC/MIDP domain, processing input from the user
and presenting output. MIDlets also manage interactions with the system, responding
to requests for resources by pausing and yielding control of the system to the interrupt-
ing application.

In this chapter, I discuss the MIDlet interface that you must implement within
your application. I begin by showing you the source code for the simplest MIDlet, and
I discuss the methods you must implement to satisfy the MIDlet interface. I discuss the
life cycle of MIDlets, and I give you more information on packaging MIDlets. Next, I
show you how a MIDlet loads properties and resources from its accompanying JAR file.
Finally, I show you the various ways you can start MIDlets.

Looking at the Simplest MIDlet
Listing 4-1 shows a simple Hello World MIDlet, which implements the methods required
of all MIDlets. This MIDlet presents a single (editable) text box with the message “Hello
World.”

Listing 4-1. The Hello World MIDlet

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class HelloMidlet extends MIDlet {

public HelloMidlet() {

}

public void startApp() {

Display.getDisplay(this).setCurrent(

new TextBox("", "Hello World", 20, 0));

} 83

C H A P T E R 4

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

Figure 4-1 shows the Hello World MIDlet and its message.

Figure 4-1. The Hello World MIDlet’s interface

CHAPTER 4 ■ INTRODUCING MIDLETS84

All MIDlets must implement four methods:

• HelloMidlet (the MIDlet constructor): The system invokes this method when it
needs to construct an instance of the MIDlet. The constructor typically does noth-
ing, deferring initialization to the startApp method.

• startApp: The Application Management Software (AMS) invokes this method when
your application is launched or resumed. startApp should perform any necessary
bootstrapping to initialize your application and present the application’s first
screen. Simple applications may choose to do this within the confines of this
method; more sophisticated applications may chain to a separate method.

• pauseApp: The AMS invokes this method when the system must interrupt the MIDlet
for any reason, such as an incoming call or message, or the launch of another appli-
cation. Your MIDlet should release any unneeded resources at this point.

• destroyApp: The AMS invokes this method when the application must exit, either as
a result of user or system input.

■Tip Technically, a MIDlet doesn’t need to have a constructor; if you don’t supply one, Java will create one
for you. It’s a good practice to declare one, however.

On creation, this MIDlet sets a new text box—which implements the Displayable
interface—as the current display, and it returns control to the MIDlet GUI framework.
Because it’s so simple, the MIDlet does nothing when the application is paused, and it
relies on the native garbage collection when the application exits.

Understanding the MIDlet Life Cycle
I introduced the MIDlet life cycle in Chapter 3, so Figure 4-2 should look familiar to you.
At any time, a MIDlet may be in one of three states:

• Paused: A paused application does not receive events from the system and is
awaiting activation or destruction.

• Active: An active application receives events from the system and can interact with
the user.

• Destroyed: A destroyed application has completed its execution and is awaiting
garbage collection by the virtual machine’s garbage collector.

CHAPTER 4 ■ INTRODUCING MIDLETS 85

Figure 4-2. The MIDlet application life cycle

When the AMS creates a MIDlet, the MIDlet begins its life in the paused state. Only
once the AMS invokes the MIDlet’s startApp method does the MIDlet enter the active
state; at this point, you can interact with it. This method isn’t just the MIDlet’s entry
point, however; the AMS invokes startApp whenever the MIDlet is about to enter the
active state.

At any point, the AMS can interrupt the MIDlet, forcing it to again enter the paused
state. The most common example of this is on wireless terminals when an incoming call
is received; of course, it also may happen on behalf of another event, such as an incom-
ing message, insufficient resources to perform a system task, and so on. Regardless of the
cause, the AMS invokes your MIDlet’s pauseApp method. The pauseApp method should
release any shared resources and leave your MIDlet in a quiescent state, because the AMS
or device operating system will be bringing another application to the foreground.

CHAPTER 4 ■ INTRODUCING MIDLETS86

At any point, the AMS may signal to your MIDlet that it should terminate by invoking
its destroyApp method. When the AMS invokes destroyApp, the AMS passes a flag indicat-
ing the MIDlet has a choice to exit or not to exit. When this flag is false, your application
can signal the AMS not to exit by throwing a MIDletStateChangeException. It’s up to the
platform provider to determine under what conditions a MIDlet exit is unconditional, so
your MIDlet design shouldn’t rely on being able to control when it terminates.

Of course, you can trigger these state changes programmatically, too. If your MIDlet
wants to relinquish control to the AMS and enter the paused state, simply invoke
notifyPaused. In turn, the AMS will place your MIDlet in the paused state, although it will
do so without invoking your pauseApp method, because it will assume that you were pre-
pared to pause execution before you invoked notifyPaused. If you need to return to the
active state from the paused state, invoke resumeRequest; the AMS will process your
request to resume and invoke your startApp method when it’s ready to return your
MIDlet to the active state. In a similar vein, you can invoke notifyDestroyed to exit your
MIDlet; like notifyPaused, this does not signal your MIDlet through the destroyApp
method, but instead immediately terminates your MIDlet.

■Caution Do not invoke System.exit from your MIDlet! The only way to exit your MIDlet is by calling
notifyDestroyed, which signals to the AMS that you wish to exit. Invoking System.exit from a MIDlet
generates a SecurityException.

Packaging MIDlets
As you learned in Chapter 3, devices obtain MIDlets through two files: JAD and JAR. The
JAD file contains a summary of the MIDlet’s requirements for execution, and devices may
download this file to determine the suitability of the MIDlet for execution within the
device’s Java ME environment. However, only the JAR file is actually required.

Within the JAR file is a manifest, named manfest.mf. The manifest exists at the root of
the JAR file and contains a detailed description of the contents of the JAR file. It consists
of name-value pairs, called MIDlet attributes, which are separated by colons and delim-
ited by newlines. Table 4-1 shows the attributes defined by the Java ME specifications. In
addition to the attributes shown in Table 4-1, you can pass additional attributes to the
MIDlet in the manifest; these are available by calling the MIDlet method getAppProperty
and passing the name of the attribute.

CHAPTER 4 ■ INTRODUCING MIDLETS 87

Table 4-1. MIDlet Attributes

Attribute Required? Purpose

MicroEdition-Configuration Y The name and version of the Java ME configuration
required by the MIDlet

MicroEdition-Profile Y The name and version of the MIDP required by the
MIDlet

MIDlet-Data-Size N The minimum number of bytes of persistent
storage used by the MIDlet suite

MIDlet-Delete-Confirm N A message to display when the AMS confirms the
deletion of the MIDlet suite

MIDlet-Delete-Notify N A URL to notify when the MIDlet suite is deleted

MIDlet-Description N A textual description of the MIDlet suite

MIDlet-Icon N The absolute path of a Portable Network Graphics
(PNG) file in the JAR file that represents the MIDlet
suite

MIDlet-Info-URL N A URL that points to further information about the
MIDlet suite

MIDlet-Install-Notify N A URL to notify when the MIDlet suite is installed

MIDlet-Jar-Size N The size (in bytes) of the MIDlet suite’s JAR file

MIDlet-Jar-URL N The URL from which the AMS can obtain the
JAR file

MIDlet-n Y The name, the path to the icon, and the class of
the nth MIDlet in the suite

MIDlet-Name Y The name of the MIDlet suite

MIDlet-Permissions N A list of permissions required by the MIDlet suite

MIDlet-Permissions-Opt N A list of permissions that are used but not critical to
the operation of the MIDlet suite

MIDlet-Push-n N A list of push registry entries to cause this MIDlet to
autostart

MIDlet-Vendor Y The name of the organization that provides the
MIDlet suite

MIDlet-Version Y The version number of the MIDlet suite

As the table indicates, the AMS requires six of these attributes in order for the AMS to
install your application:

• MIDlet-Name: Specifies the name of your MIDlet suite as a catalog entry when
displaying memory use and so forth. The AMS may present this name to the user
during installation.

CHAPTER 4 ■ INTRODUCING MIDLETS88

• MIDlet-Version: Specifies the version of your MIDlet suite, which is used to deter-
mine the currently installed version when upgrading a MIDlet suite. The AMS may
present the version to the user. The version must be in the form major-version.
minor-version.micro-version, where major-version, minor-version, and micro-
version are all integers. (The micro-version value is optional.)

• MIDlet-Vendor: Specifies your institution’s name, which is the publisher of the
MIDlet suite.

• MIDlet-n: Specifies the name, icon, and entry class (delimited by commas) for the
nth MIDlet in the suite. There must be at least one of these (MIDlet-1) to specify a
single MIDlet in the suite.

• MicroEdition-Configuration: Specifies the version of the Java ME configuration (for
example, CLDC 1.0) required by the suite.

• MicroEdition-Profile: Specifies the version of the Java ME profile (for example,
MIDP 2.0) required by the suite.

In addition to the manifest, which describes the JAR file to the AMS, the AMS can use
the JAD file to determine the suitability of the MIDlet suite for the target device prior to
downloading and installing the suite itself.

■Caution Most platforms require you to provide a JAD file as well as a JAR file. If you do so, make sure
that the entries in your JAD file match the manifest exactly, or else the AMS may not install your application.

Obtaining Properties and Resources
The MIDlet properties from the manifest and JAD file are available to your application at
runtime. The MIDlet method getAppProperty takes the name of a property to return, and
returns the value of the property if it is set, or null if it’s not. Note that attribute names are
case sensitive, so MyProperty is not the same as myProperty or Myproperty. When searching
for a property, getAppProperty follows these rules:

• If the MIDlet suite’s JAR file is cryptographically signed, getAppProperty searches
the manifest first and then searches the JAD file. If it finds values in both files, it
knows they must match.

• If the MIDlet suite’s JAR file is not signed, getAppProperty searches the JAD file first.
It searches the manifest for the property only if it doesn’t find an entry for the
property in the JAD file.

CHAPTER 4 ■ INTRODUCING MIDLETS 89

Of course, JAR files can contain more than just classes. You can obtain a named resource
in your JAR file using java.lang.Class.getResourceAsStream, which returns an InputStream to
the file in JAR file. The javax.microedition.lcdui.Image class, which is responsible for draw-
ing bitmap images in PNG format, also includes the createImage class method, which takes a
path to an image and returns an Image instance that’s ready to display.

Managing Startup Events and Alarms
In addition to user input, external events such as incoming messages and alarms can
trigger the activation of your MIDlet. To use an external event to trigger the activation of
your MIDlet, your MIDlet must register with the AMS to indicate that it wants to receive
push events, and it must have the privilege to do so.

When the MIDlet is not running, the AMS and the MIDlet share responsibility for
handling an incoming event, whether it’s an alarm or an incoming connection request
(see Figure 4-3). The AMS monitors registered push events on behalf of inactive MIDlets,
and it starts MIDlets in response to incoming events. On the other hand, when the
MIDlet is running, the push directory sends the push event directly to the MIDlet.

Figure 4-3. The relationship between the AMS and the MIDlets awaiting startup events

CHAPTER 4 ■ INTRODUCING MIDLETS90

I save the details of how to use the push registry for incoming messages until Chapter 14
when I discuss the Wireless Messaging API in detail. For now, you just need to know that
the MIDlet alarm mechanism also operates through the same mechanism, with one
exception: MIDlets can only register for alarms through the push registry at runtime, not
via the manifest.

To register for an alarm, you use the PushRegistry.registerAlarm method, which is
available from the javax.microedition.io package. This method takes the name of a
MIDlet to which the alarm should be sent, along with the time at which the alarm should
fire. A MIDlet may have at most one active alarm; the registerAlarm method returns the
last scheduled launch time; to cancel the alarm, pass 0 for the time.

You should only use an alarm when an application is not running. When an appli-
cation is running, you should use the Timer and TimerTask classes provided by the MIDP
instead. The java.util.Timer class manages a single java.util.TimerTask subclass; to
use it, create a subclass of java.util.TimerTask that overrides its run method with the
code that must be performed. Then schedule the subclass’s execution using the timer’s
schedule method. Listing 4-2 shows the relationship between alarms and timers for a
simple MIDlet that notifies the user 15 seconds after it is launched, even if you termi-
nate the MIDlet before the notification appears.

Listing 4-2. Using Alarms and Timers Together

package com.apress.rischpater.alarmtimer;

import java.io.*;

import java.util.*;

import java.lang.*;

import javax.microedition.io.*;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.rms.*;

public class AlarmTimerMidlet extends MIDlet implements CommandListener {

private Form infoForm;

private StringItem helloStringItem;

private Command exitCommand;

private Alert alarmAlert;

private long DELAY = 15 * 1000;

private Timer timer;

private MyTask task;

private long whenLaunched = new Date().getTime();

private String storeName = "AlarmTimerStore";

private RecordStore store;

CHAPTER 4 ■ INTRODUCING MIDLETS 91

public AlarmTimerMidlet() {

}

class MyTask extends TimerTask {

private AlarmTimerMidlet owner;

void setOwner(AlarmTimerMidlet o) {

owner = o;

}

public void run() {

owner.alarmFired();

}

}

private void initialize() {

try {

Date d = new Date();

long whenToFire = d.getTime() + DELAY;

store = RecordStore.openRecordStore(storeName, true);

if (store.getNumRecords()>0){

byte b[] = store.getRecord(1);

ByteArrayInputStream bais = new ByteArrayInputStream(b);

DataInputStream dis = new DataInputStream(bais);

whenToFire = dis.readLong();

if (whenToFire < whenLaunched) {

alarmFired();

}

store.deleteRecord(1);

store.closeRecordStore();

return;

}

store.closeRecordStore();

String me = this.getClass().getName();

PushRegistry.registerAlarm(me, 0);

timer = new Timer();

task = new MyTask();

task.setOwner(this);

timer.schedule(task, whenToFire - d.getTime());

getDisplay().setCurrent(get_infoForm());

}

catch(Exception e) {};

}

CHAPTER 4 ■ INTRODUCING MIDLETS92

public void commandAction(Command command, Displayable displayable) {

if (displayable == infoForm) {

if (command == exitCommand) {

exitMIDlet();

}

}

}

private void scheduleMIDlet() {

try {

String me = this.getClass().getName();

Date when = new Date();

if (when.getTime() < whenLaunched + DELAY) {

PushRegistry.registerAlarm(me, whenLaunched + DELAY);

}

ByteArrayOutputStream baos = new ByteArrayOutputStream();

DataOutputStream dos = new DataOutputStream(baos);

dos.writeLong(whenLaunched + DELAY);

byte b[] = baos.toByteArray();

store = RecordStore.openRecordStore(storeName, true);

store.addRecord(b, 0, b.length);

store.closeRecordStore();

}

catch (Exception e) {}

}

private void alarmFired() {

getDisplay().setCurrent(get_alarmAlert(), get_infoForm());

}

public Display getDisplay() {

return Display.getDisplay(this);

}

public void exitMIDlet() {

getDisplay().setCurrent(null);

try {

if (getDisplay().getCurrent() != get_infoForm())

{

scheduleMIDlet();

}

}

CHAPTER 4 ■ INTRODUCING MIDLETS 93

catch(Exception e) {};

destroyApp(true);

notifyDestroyed();

}

public Form get_infoForm() {

if (infoForm == null) {

infoForm = new Form(null, new Item[] {get_helloStringItem()});

infoForm.addCommand(get_exitCommand());

infoForm.setCommandListener(this);

}

return infoForm;

}

public StringItem get_helloStringItem() {

if (helloStringItem == null) {

helloStringItem = new StringItem("",

"An alarm has been set for fifteen seconds from now.");

}

return helloStringItem;

}

public Command get_exitCommand() {

if (exitCommand == null) {

exitCommand = new Command("Exit", Command.EXIT, 1);

}

return exitCommand;

}

public Alert get_alarmAlert() {

if (alarmAlert == null) {

alarmAlert = new Alert(null, "The alarm has fired.\n", null, null);

alarmAlert.setTimeout(-2);

}

return alarmAlert;

}

public void startApp() {

initialize();

}

CHAPTER 4 ■ INTRODUCING MIDLETS94

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

The code begins with a TimerTask subclass that notifies the MIDlet that the alarm
fired; this subclass needs two methods: setOwner, which hooks the task to the MIDlet, and
run, which performs the action when the timer invokes the task.

The initialize method, which startApp invokes when the AMS launches the MIDlet
for any reason, must do two things. First, it must determine whether the MIDlet is launch-
ing because of an alarm invocation or a user invocation, and second, it must display the
appropriate screen (either an informative form or the alarm alert) depending on whether
the alarm fired while the application was not running. To do this, the MIDlet must persist
the desired alarm time so that it can tell the difference between a user-initiated launch
and an alarm launch. To persist this data, the MIDlet uses the Java ME record store, which
I discuss in more detail in Chapter 6. For now, it suffices to know that the record store
persists records that are arrays of bytes; I use instances of the ByteArrayInputStream and
DataInputStream classes to decode the desired alarm time if the MIDlet detects a record in
the store. (The scheduleMIDlet method, which I discuss next, is responsible for writing this
record upon exit if an alarm is set.) If the alarm time was before the current time, the
MIDlet will show the alarm alert by setting it to the current displayable item. If no record
was found, or if the alarm time hasn’t been reached, the MIDlet will create a new instance
of MyTask and schedule its task to fire at the appropriate time.

The scheduleMIDlet method does the opposite. Invoked upon the MIDlet exit, it
checks the current time against the launch time, and if it is before the time for the alarm
to fire, it will register the alarm with the push registry before writing the alarm time to the
persistent record store using instances of ByteArrayOutputStream and DataOutputStream.
The exitMIDlet method invokes scheduleMIDlet when you exit the application through the
exit command (so the alarm is only scheduled on normal exits, not on AMS-induced ter-
mination).

Both the timer and the alarm use the alarmFired method, which simply sets the cur-
rent display to be the alarm alert notification instead of the default informative screen
the MIDlet shows at application launch.

The remainder of the code initializes the user interface:

• get_infoForm: This method lazily creates an instance of the form shown at applica-
tion launch.

• get_helloStringItem: This method lazily creates an instance of the string item used
by the introductory form.

CHAPTER 4 ■ INTRODUCING MIDLETS 95

• get_exitCommand: This method lazily creates an instance of the exit command used
by the MIDlet to signal application exit.

• get_alarmAlert: This method lazily creates the alarm alert message.

Wrapping Up
The javax.microedition.midlet class encapsulates the notion of an MIDP application,
called a MIDlet. To implement a MIDlet, you must subclass this class and provide four
functions: the constructor, startApp, pauseApp, and destroyApp. The AMS invokes these
methods as your MIDlet transitions from paused to active to destroyed (potentially
entering the paused and active states multiple times as the native platform interrupts
your application). You can cause one of these transitions; for example, you can force
your MIDlet to exit by invoking notifyDestroy after cleaning up the resources used
by your MIDlet.

MIDlets are packaged as suites contained within a JAR file that contains both the
classes implementing the MIDlets for a suite and a manifest that describes the suite
through properties such as the MIDlet suite name, the icon, and individual MIDlet
names, icons, and MIDlet subclasses. The JAR file is usually accompanied by a second
file—the descriptor (JAD) file—which contains the same properties identified in the
manifest file. You can query the property list for a MIDlet using the MIDlet method
getAppProperty, or you can load a file from the JAR file using the Class method
getResourceAsStream.

Not just user actions invoke MIDlets. MIDlets can also start in response to incoming
events such as connection requests or timer events. You can schedule an alarm using the
push registry registerAlarm method, which specifies the MIDlet to start and when to
start. For running MIDlets, you’ll want to subclass TimerTask and use an instance of the
Timer class to run your task.

CHAPTER 4 ■ INTRODUCING MIDLETS96

Building User Interfaces

The CLDC brings together a number of flexible user-interface widgets from which you
can build many kinds of applications. Unlike other GUI platforms, the interfaces to these
UI widgets are highly abstracted, meaning you can write one application to run on a
number of different device configurations, such as those with keypads, touchscreens, or
even voice input. In fact, it’s fair to say that the CLDC’s generality has outstripped the
imagination of most device manufacturers; the interface to the widgets supports far more
kinds of hardware than have been commercially available.

In this day and age of drag-and-drop code generation to build user interfaces, it’s
tempting to gloss over these details. After all, why worry too much about how forms col-
lect visible widgets when you can simply pick a specific form or widget from a palette and
then wire things together by pointing and clicking? Besides the obvious answer—you can
better design your application with a firm grasp of the fundamentals—understanding
these fundamentals enables you to create your own user-interface widgets, as well as effi-
ciently compose sophisticated applications that remain easy to navigate.

In this chapter, I show you the components you can use to build your application’s
user interface. I begin by discussing the relationship between the various elements of
the javax.microedition.lcdui package and showing you how the various elements fit
together. I then discuss commands—the fundamental way users interact with your
application. After that, I give you a comprehensive introduction to the various visible
objects you can create, beginning with simple items for showing text and choices, and
moving on to how you group these items into application screens. Finally, I discuss
how these items interact with the display canvas so that you can understand how to
make your own visible objects.

Understanding the Relationship Between the
Display and Visible Item Objects
The ultimate purpose of MIDlets is to interact with the user. In a very real sense, your
MIDlet’s flow can be reduced to the following process: pick a Displayable to show, set the
Display to show the Displayable, wait for a Command, and then pick the next Displayable (or
exit). The state machine diagram in Figure 5-1 shows this process. 97

C H A P T E R 5

Figure 5-1. The life cycle of a MIDlet from the perspective of the display

To facilitate this process, every MIDlet has access to the display, which is represented
by an instance of the Display class. Obtained through the static method
Display.getDisplay(), the instance lets you do the following:

CHAPTER 5 ■ BUILDING USER INTERFACES98

• Determine whether the screen supports color or grayscale

• Determine the number of colors and alpha levels supported by the display

• Get the border style and user-selectable color for the foreground and background

• Flash the display backlight

• Obtain the best image bounds for an Alert

• Get the currently shown Displayable

• Set the currently shown Displayable

• Vibrate the device using the vibration motor

What exactly is the Displayable interface for? The hierarchy in Figure 5-2 shows the
relationship between the Display, what it can display (Displayable classes), and Item
classes, which Displayables contain to make up complex user interfaces.

As you can see in Figure 5-2, the Display must have a corresponding Displayable
object to display to the user. Displayable objects come in several flavors. The Canvas class
provides the lowest level of access to graphics, permitting you to intercept raw events and
draw directly to the screen. Its subclass, GameCanvas, provides some simple abstractions to
facilitate porting applications to a variety of devices. For a more high-level approach to
the user-interface layout, there is the Screen subclass and its subclasses Form, Alert,
TextBox, and List. The last three are high-level abstractions, handling all of the layout and
event handling, while Form lets you group one or more Item objects—things such as text
and date fields, for example.

If you’re familiar with either Java AWT or Swing, it’s important to realize that the user-
interface model for MIDlets is very different. Two key differences affect how you design
your user interface from the outset. First, you have no real control over the layout of your
application. Unlike the rich Java UI frameworks provided by AWT and Swing, the layout
of your user interface is completely controlled by the Screen class and its subclasses,
which typically have a simplistic layout policy. Second, MIDlets have no implementation
of the model-view-controller (MVC) paradigm, so if you’re used to using MVC, you will
need to implement it yourself.

The architects of the MIDP imposed these limitations to permit MIDlets to run on
the widest possible variety of devices and to ease application porting between devices
without requiring a heavyweight all-Java user interface such as that provided by Swing.
Unfortunately, these limitations do come with a downside: it’s nearly impossible to create
a truly bespoke user interface. Different devices generally present the user with differing
user interfaces; these changes may be small or may grossly affect the appearance of your
application. If you’re looking to create a UI with a very specific control appearance and
placement, you’ll need to code that from the ground up using the Canvas or GameCanvas
classes. I discuss that later in this chapter.

CHAPTER 5 ■ BUILDING USER INTERFACES 99

Figure 5-2. The relationship between the Display, Displayable, and Item classes

CHAPTER 5 ■ BUILDING USER INTERFACES100

Using Commands to Control Application Flow
Traditional user-interface programming requires implementation based on either
event-handling or MVC paradigms (or a combination thereof). The MIDP takes an
approach similar to the former paradigm, defining the Command class to encapsulate the
notion of a command from the user to the application. The MIDP environment sends
instances of the Command class to registered listeners, much as the Java AWT sends
events to event listeners. To receive instances of the Command class, MIDP objects must
implement the CommandListener interface, providing a commandAction method. Each
Command instance is added to a Displayable instance, which is responsible for presenting
the command to the user in some way (such as via a soft key or menu). The Displayable
instance is also responsible for sending the instance to a registered listener when you
activate the command.

Instances of Command are tuples, consisting of a short label, a long label, a type, and
a priority:

• Labels: Labels specify what the command shows on the user interface; only one
label is required. Where the label—and which label—for a command actually
appears in the user interface depends on several things, including the priority
of the command, the implementation of the Displayable to which you add the
command, and the implementation of the MIDP runtime itself. (Figure 5-3 shows
an example of commands in a soft key menu.)

• Type: The type indicates the kind of command, both for your application logic and
potentially for the UI of the MIDP runtime. It presents additional information
(such as an icon) about the command.

• Priority: The priority indicates the relative importance of the command to the user
interface. The lower the priority, the more obvious the command’s placement on
the Displayable to which it’s assigned.

CHAPTER 5 ■ BUILDING USER INTERFACES 101

Figure 5-3. Three commands—Exit, Help, and Stop—added to a Displayable

The simplest way for you to understand the relationship between Command objects and
Displayable objects is to show you the code that generated Figure 5-3. It’s in Listing 5-1.

CHAPTER 5 ■ BUILDING USER INTERFACES102

Listing 5-1. Demonstrating the Relationship Between Command and Displayable Objects

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class CommandExample extends MIDlet {

public void startApp() {

Displayable d = new TextBox("Demo", "", 20, TextField.ANY);

Command exit = new Command("Exit", Command.EXIT, 0);

Command help = new Command("Help", Command.HELP, 1);

Command stop = new Command("Stop", Command.STOP, 2);

d.addCommand(exit);

d.addCommand(help);

d.addCommand(stop);

d.setCommandListener(new CommandListener() {

public void commandAction(Command c, Displayable s) {

notifyDestroyed();

}

});

Display.getDisplay(this).setCurrent(d);

}

public void pauseApp() { }

public void destroyApp(boolean unconditional) { }

}

The diagram in Figure 5-4 shows the class relationship for this application. At
MIDlet startup, the MIDlet creates a TextBox instance and the command instances.
Next, it adds each of the new commands to the TextBox; in turn, the TextBox instance
determines where and how the commands should appear based on the labels and pri-
orities. The MIDlet also creates an anonymous CommandListener that responds to all of
the generated commands. It does this using the TextBox.setCommandListener method.
Finally, the Display’s notion of the current display is set to the Displayable, so that the
TextBox will be displayed.

CHAPTER 5 ■ BUILDING USER INTERFACES 103

Figure 5-4. Relationships between a typical Displayable instance, its Command instances,
and its CommandListener

Introducing Basic Visible Items
As noted in a previous section, the Form class is responsible for collecting visible items
into a single screen. Derived from Sun’s UIWidget example, the pseudocode example in
Listing 5-2 shows you how to add items to a Form at Form construction time.

CHAPTER 5 ■ BUILDING USER INTERFACES104

Listing 5-2. Assembling Some Item Objects on a Form Object

public class StringItemDemo extends MIDlet implements CommandListener {

private Form mainForm;

private StringItem stringItem1;

private StringItem stringItem2;

public StringItem get_stringItem1() {

if (stringItem1 == null) {

stringItem1 = new StringItem(null, "This is a simple label");

}

return stringItem1;

}

public StringItem get_stringItem2() {

if (stringItem2 == null) {

stringItem2 = new StringItem("This is the StringItem label:",

"This is the StringItem text");

stringItem2.setLayout(Item.LAYOUT_NEWLINE_AFTER | Item.LAYOUT_2);

}

return stringItem2;

}

public Form get_mainForm() {

if (mainForm == null) {

mainForm = new Form("String Item Demo", new Item[] {

get_stringItem1(),

get_stringItem2(),

});

}

return mainForm;

}

... more code follows ...

}

If you’ve been playing with NetBeans and creating user interfaces using the GUI
builder, this code should look familiar; it’s essentially a cleaned-up version of the code
built by NetBeans itself. It does, however, demonstrate a common pattern for populating
a Form: as the get_mainForm method shows, you can create the display items at Form
construction time:

CHAPTER 5 ■ BUILDING USER INTERFACES 105

mainForm = new Form("String Item Demo", new Item[] {

get_stringItem1(),

get_stringItem2(),

});

Passing a list of Item instances to the constructor inserts the instances in the same
order on the display, and is thus a common way to construct whole screens at a time.

The Form class really is a collection, though, and offers several methods to manipulate
the items it displays. I show you those in a later section in this chapter, “Collecting Visible
Items Using the Form Class.” For now, though, you should know that you can also add a
single item to the Form instance using its append and insert methods. The append method
adds the Item instance to the end of the list of items on the Form, while the insert method
inserts the item between two other items on the Form.

Introducing Items

For your user interface, the rubber hits the road with the Item class and its subclass.
Unless you’re coding raw interface code using the Canvas or GameCanvas classes (which I
discuss later), each visible item in your user interface must implement the Item interface
or else be a wholly separate Displayable object such as an Alert, TextBox, or List. The Item
class encapsulates the following responsibilities:

• Command management: An Item can send commands to the Form’s command
listener in response to user keystrokes such as selections or other actions. In addi-
tion, an individual Item can have its own command listeners.

• Drawing: An Item knows how to draw itself.

• Event handling: An Item knows how to handle raw events such as keystrokes, so
your application doesn’t have to.

• Layout preferences: An Item signals to its containing form its preferences about how
it should be laid out, and then the Form uses its layout policy to present all of the
items on the display in a cohesive way.

The Item class provides three methods for managing commands:

• addCommand: Lets you add a Command instance of type ITEM to the item. In turn,
the MIDP implementation presents this command when the item is active
(highlighted).

• removeCommand: Removes the indicated command from the item.

• setItemCommandListener: Sets a listener for ITEM commands on this item.

CHAPTER 5 ■ BUILDING USER INTERFACES106

With the exception of CustomItem subclasses—which I discuss in detail in the last
section of this chapter—Item subclasses take care of their own drawing. You can, however,
customize the drawing behavior of some items. For example, most items accept a label,
which is a string that precedes the item and is drawn in a read-only fashion. The Item
class provides the methods getLabel and setLabel to get and set the label, and it provides
constants to suggest button or hyperlink style via the constructor of specific Item sub-
classes such as StringItem.

Finally, Item instances signal their preferences as to how they should be laid out in
the parent Form to the parent Form. They do this through the layout constant you set via
the setLayout method. The Form class provides layout flags for indicating that an item
should be aligned to the top, bottom, left, right, or center of its viewable rectangle, that
an item should be shrunk to its minimum bounds or expanded as much as possible,
and whether an item should appear on a subsequent line or whether other items
should appear on their own line after it. These layout flags all affect the row-based
layout policy of the Form, which you’ll encounter in the section “Collecting Visible
Items Using the Form Class” later in this chapter. You can also query an Item for its
minimum or preferred size using one or more of these four methods: getMinimumHeight,
getMinimumWidth, getPreferredHeight, and getPreferredWidth. You use these in conjunc-
tion with setPreferredSize, which indicates the size of the viewable item in which you’d
like the Form to present the item.

When using NetBeans, if you’re editing a Form in the Screen Design view, you can
select any of the supported items by choosing one from the Form Items section of the
Palette (whose location defaults to the upper right-hand portion of the display). In fact, if
you’re using NetBeans, odds are that you won’t instantiate any of these classes from your
source code directly, but will instead rely on the code-generation facility to write that
code for you.

■Tip The properties of Items (and Displayables) that you can change are all also available in the
Properties window of NetBeans. In general, if you’re using NetBeans to build your user interface, you’ll need
to understand the properties available to a particular Item, but you won’t necessarily need to know the inter-
face to mutate those properties, because you set the property on the Item in NetBeans, and NetBeans’
automatic code-generation facility does the rest.

Introducing the Spacer

Because you can’t specify pixel positions for user-interface items, the MIDP imple-
mentation provides the Spacer class. Instances of the Spacer class take a minimum
size on creation and can be used to place pads between adjacent (horizontally or
vertically) items.

CHAPTER 5 ■ BUILDING USER INTERFACES 107

Introducing the StringItem

The StringItem class provides a read-only control drawing a text value. StringItem
instances may bear labels and be drawn as buttons or hyperlinks (see Figure 5-5). How a
StringItem appears depends on three things: the label, contents, and appearance mode
flags. The appearance mode can be one of the values StringItem.PLAIN, StringItem.
HYPERLINK, or StringItem.BUTTON, yielding the results you would expect.

Figure 5-5. StringItem instances of different appearances

You can change the label or contents of a StringItem instance at any time via the
setLabel and setText methods. You can also change the font of a StringItem object
through a property that’s available via the setFont and getFont methods.

CHAPTER 5 ■ BUILDING USER INTERFACES108

Introducing the TextField

For user input, the MIDP provides the TextField class. TextFields bear input constraints
that can restrict user input in a variety of ways; for example, it may require that users
enter only numeric input or phone numbers. The TextField class can also format input in
a variety of ways and return only what is input; for example, it might show an entered
phone number as (831) 555-1212, yet report to the application that the entered number
was 8315551212. You set an input constraint using the setConstraints method with a flag
value such as EMAILADDR, NUMERIC, PHONENUMBER, URL, or DECIMAL. These can be accompanied
by additional flags (combined using the bitwise OR operator |) such as PASSWORD (which
keeps you from seeing the entered text) or UNEDITABLE.

The class also supports the notion of input modes, which let you provide hints to the
implementation regarding how numeric key presses should be mapped to alphanumeric
key presses. You set input modes by specifying the string name for an input mode to the
method setInitialInputMode; values include the name of Unicode character blocks as
defined by the Java SE class java.lang.Character.UnicodeBlock, which is preceded by the
string UCB_, as in the following:

• UCB_BASIC_LATIN for Latin languages

• UCB_GREEK for the Greek language

• UCB_CYRILLIC for Cyrillic languages

• UCB_HEBREW for Hebrew languages

• UCB_ARABIC for Arabic

• UCB_THAI for Thai

• UCB_HIRAGANA for Japanese Hiragana syllabary

• UCB_KATAKANA for Japanese Katakana syllabary

• UCB_HANGUL_SYLLABLES for Korean

The MIDP also defines the following specific input modes:

• MIDP_UPPERCASE_LATIN for the uppercase characters of Latin languages

• MIDP_LOWERCASE_LATIN for the lowercase characters of Latin languages

When creating a TextField, you pass to the constructor the label and default text,
followed by the maximum number of characters the TextField should permit the user to
enter, and finally the constraints (bitwise ORed as appropriate).

CHAPTER 5 ■ BUILDING USER INTERFACES 109

The interface to the TextField class provides several low-level operations that let you
interact directly with the contents of a TextField, including the following methods:

• getCaretPosition: Returns the current input position

• getChars: Copies the contents of the TextField into the array you provide, starting
at position zero

• getString: Returns the contents of the TextField as a string

• delete: Lets you delete a specific number of characters starting at the offset you
provide

• insert: Inserts the character array or string you provide at the specified location

• setChars: Lets you replace partial runs of characters in the TextField by specifying
new characters, an offset, and a length

• setString: Lets you replace the entire contents of the TextField with a new string

For most applications, you’ll simply set the desired constraints and input mode
(quite possibly using the NetBeans Properties pane) when you create the item, and then
get the text of the item when you transition to a new Form.

Introducing the DateField

The DateField class is an editable component for presenting calendar (date and time)
information. Using the DateField, you can obtain constrained user input for the date,
time, or both the date and time by specifying the DATE, TIME, or DATE_TIME input modes.
Figure 5-6 shows an example of the DateField class in action.

The DateField extends Item with four methods:

• getDate: Returns the date you enter

• setDate: Sets the item to the indicated date

• getInputMode: Returns the input mode you set for the item

• setInputMode: Sets the input mode

CHAPTER 5 ■ BUILDING USER INTERFACES110

Figure 5-6. A DateField, and screens showing what happens when you select the time and date
portions of the field, respectively

Introducing the ImageItem

An ImageItem shows an image as an image, button, or hyperlink, depending on its appear-
ance mode. As with a StringItem, you can provide a Command and an ItemCommandListener to
process selection events on an ImageItem appearing as a button or hyperlink.

Introducing the Gauge

A Gauge item creates a graphical display of an integer value within a given range between
zero and some predefined maximum. When creating a Gauge item, you can control the
current value and the maximum value. Some instances of Gauge are interactive—that is,
they let the user set the value. Figure 5-7 shows an interactive Gauge.

CHAPTER 5 ■ BUILDING USER INTERFACES 111

Figure 5-7. An interactive Gauge

Because gauges can be interactive, you can add an ITEM Command instance to a gauge,
and then the gauge responds when the gauge is changed through its ItemCommandListener,
just as with an ImageItem or StringItem.

Managing Choices

The Choice interface and ChoiceGroup classes let you present a list of choices to users. As
shown in Figure 5-8, you can present choices as radio buttons (forcing an exclusive
choice, where users can select exactly one item at once), check boxes (where users can
select zero or more items), or a pop-up, which shows only the selected item.

CHAPTER 5 ■ BUILDING USER INTERFACES112

Figure 5-8. Various kinds of choices presented by the Choice and ChoiceGroup classes

Because the MIDP provides the List class—a class that presents choices—the MIDP
standard specifies the Choice interface, which is implemented by ChoiceGroup, an Item
subclass, and the Displayable subclass List (which you’ll see in the section “Creating a
Custom Item for a Screen” later in this chapter). Generally, you use a ChoiceGroup when
you want to mix choice items with other user-interface items. On the other hand, a List
is best if the choices take up the entire display.

When you create a ChoiceGroup, you must also specify its type:

• EXCLUSIVE: The ChoiceGroup can have exactly one element selected at a time, but
multiple items may be shown.

• MULITPLE: The ChoiceGroup can have zero or more items selected at a time.

• POPUP: The ChoiceGroup can have exactly one element selected, and the selected
element is always shown.

CHAPTER 5 ■ BUILDING USER INTERFACES 113

You can also specify a list of strings and images, one for each choice the item
should show.

The Choice interface defines two properties to manage what you have selected
from the interface. For exclusive and pop-up lists, the selected index property (with its
accessor getSelectedIndex and mutator setSelectedIndex) is probably the most useful,
as it returns the index into the list of choices of the currently selected item. For multiple-
selection lists, you want to use setSelectedFlags and getSelectedFlags, which give you
the status of each selected and unselected item through an array of boolean flags you
provide to the method. You can also invoke isSelected with an index to determine if the
user has selected a particular item, and setSelectedIndex to set the selection
status of a particular item.

Because Choice manages a collection of user choices, it has a collection-oriented inter-
face with the following methods that let you access and mutate the list of user choices:

• append: Lets you append a new user choice (string and image) to the list of choices
being presented

• delete: Takes an index and deletes the user choice item at the index you specified

• deleteAll: Deletes all user choices, resulting in an empty collection of choices

• insert: Inserts a new choice item (string and index) after the indicated index

• size: Returns the number of user choices in the group

You can also mutate an item’s appearance or contents using the setFont method to
change the font for a specific item.

Introducing the Screen and Its Subclasses
In the beginning of this chapter, I told you how the Display class uses Displayable
subclasses to manage what to display. For high-level user-interface programming, the
Screen subclasses Form, Alert, TextBox, and List are the only game in town. These let you
put together complex user interfaces quickly, albeit sacrificing some of the control (such
as per-pixel placement) of the Canvas class.

Collecting Visible Items Using the Form Class

The most flexible subclass of Screen is the Form class. As I’ve already said, it acts as a
collection and layout class for Item instances, letting you combine various Item subclass
instances to create screens with a variety of user-interface controls.

CHAPTER 5 ■ BUILDING USER INTERFACES114

The Form class’s layout policy centers around rows, by default positioning each Item
next to the previous as long as multiple Items fit on a single line. If there are more Items
than fit on a single line, Items are placed on rows one below the other. In the unlikely
event that there are more Items than fit on the display, the MIDP implementation may
choose to provide a scrolling view of the Items on the Form, or may paginate the Form,
taking you to a new screen to view additional Items on the Form.

The layout algorithm provides default layout constraints for each Item added to a
Form. For example, if the Form is laying out Items left to right, an Item with an unspecified
layout policy will default to LAYOUT_LEFT, left-aligned on the Form. If the Item specifies
another layout policy, such as LAYOUT_CENTER, then the Form will attempt to accommodate
the desired layout for the Item on the Form. As the Items are laid out on the Form, the layout
algorithm attempts to keep subsequent Items next to each other, unless any of the follow-
ing occurs:

• The previous Item has a row break after it.

• The current Item has the LAYOUT_NEWLINE_BEFORE layout hint set.

• The current Item is a StringItem that begins with \n.

• The current Item is a ChoiceGroup, DateField, Gauge, or TextField, and the LAYOUT_2
hint is not set.

• The current Item has a layout flag that differs from the form’s current alignment.

A row break occurs after an Item if any of the following occurs:

• The Item is a StringItem that ends with \n.

• The Item has the LAYOUT_NEWLINE_AFTER hint set.

• The Item is a ChoiceGroup, DateField, Gauge, or TextField, and the LAYOUT_2 hint is
not set.

If all of this seems confusing, don’t panic: the behavior is actually fairly intuitive, and
you’ll find in practice that a bit of experimentation quickly yields the layout you want.

The Form’s other responsibility is to keep a collection of the Items it draws. While the
details of that collection are private to the implementation of the Form class, the Form class
provides the following methods:

• append: Appends an Item to the Form

• delete: Takes an index and deletes the Item at the specified index in its collection
from the Form

CHAPTER 5 ■ BUILDING USER INTERFACES 115

• deleteAll: Deletes all Items in the Form

• get: Takes an index and returns the Item at that index

• insert: Takes an index and an Item and inserts the Item after the specified index

• set: Takes an index and an Item and replaces the Item at the specified index with
the new Item

• size: Returns the number of Items in the Form

A Form can have a listener that its Items invoke when they change values. This notifi-
cation occurs by invoking the itemStateChanged method of the listener you register with
the setItemSateListener method. Note that this isn’t triggered when you invoke Command
instances on the form; the CommandListener you register using the setCommandListener
receives Command events.

Alerting the User

The Alert class provides a screen that shows data to the user and waits for a predeter-
mined amount of time before automatically showing another Displayable. Typically,
Alerts appear full-screen; the application provides a title, optional image, and body text.
You can provide your own image, title, body text, and a gauge that replaces the image;
Figure 5-9 shows a sample Alert with a Gauge.

The constructor for an Alert can take up to four arguments: a title, text for the alert,
an image, and an alert type. The first three are self-explanatory; the fourth is a value from
the AlertType enumeration indicating whether the Alert is an alarm, confirmation, error,
warning, or informative alert. Once you create an Alert, you should configure it with its
time-out; as shown in Listing 5-3, you do this using the setTimeout method, specifying the
delay in milliseconds.

CHAPTER 5 ■ BUILDING USER INTERFACES116

Figure 5-9. An Alert with a Gauge

Listing 5-3. Configuring the Alert

public Alert get_cannotAddLocationAlert() {

if (cannotAddLocationAlert == null)

{

cannotAddLocationAlert = new Alert("Cannot Add Location");

cannotAddLocationAlert.setString("An error occurred adding the➥

location you entered. It has not been added.");

cannotAddLocationAlert.setTimeout(10000);

cannotAddLocationAlert.addCommand(get_backCommand());

}

return cannotAddLocationAlert;

}

CHAPTER 5 ■ BUILDING USER INTERFACES 117

public void add_location(String l) {

String locations[];

int i;

try {

locationStore.addLocation(new Location(l, ""));

locationList = null;

} catch (Exception e) {

getDisplay().setCurrent(get_cannotAddLocationAlert(),

get_locationList());

}

// Refresh the location list lazily.

}

Showing an Alert is a little different than showing other Displayables, because you
need to specify the Displayable that the screen should show after showing the Alert.
Consequently, you use the Display.setCurrent method, which takes both an Alert and
a subsequent form, like this:

Display.getDisplay().setCurrent(alert, nextForm);

Interestingly, you can set your own CommandListener on an Alert using
setCommandListener, but be careful if you do: it disables the autoadvance feature that
takes the screen to the next Displayable either when the user dismisses the Alert or
its timer expires. To restore this functionality, just set a CommandListener of null.

The Alert class has the usual gamut of accessor and mutator methods you’d expect,
including the following:

• setTimeout and getTimeout: Set and get the time-out until the Alert transitions to
the next Displayable

• setImage and getImage: Set and get the Image instance displayed by the Alert

• setString and getString: Set and get the string (not the title!) displayed by the Alert

• setIndicator and getIndicator: Set and get the gauge displayed by the Alert

■Tip If you set a Gauge for an Alert, it must be noninteractive, not owned by another Displayable, and
not have any commands or label, and its layout value must be LAYOUT_DEFAULT.

CHAPTER 5 ■ BUILDING USER INTERFACES118

Accepting Copious Amounts of Text

The TextBox class provides a full-screen alternative to the TextField and shares an inter-
face similar to the TextField (only, unfortunately, the MIDP does not break up the text
interface into separate interfaces and implementations, as it did for Choice, ChoiceGroup,
and List). Figure 5-10 shows a TextBox.

Figure 5-10. A TextBox

As you can see from the figure, TextBox instances are best for managing the input of
large chunks of text, and there’s the rub: most MIDP-capable devices don’t provide inter-
faces well suited to text entry. Consequently, I recommend that you avoid using TextBox
instances if you can. Instead, try to design your application so that it requires as little text
input as possible, either by omitting long text entry entirely or by memorizing repetitive
text entry and presenting the memorized text as choices in a List or ChoiceGroup.

CHAPTER 5 ■ BUILDING USER INTERFACES 119

Showing Lists of Choices

The List class provides you with a way to present full screens of choices, such as full-
screen single-selection or multiple-selection lists. Figure 5-11 shows one such List, with
the corresponding code in Listing 5-4 taken from Sun’s Java ME example code.

Figure 5-11. A List with multiple choices and a single ITEM command

CHAPTER 5 ■ BUILDING USER INTERFACES120

Listing 5-4. Code Generating the List Shown in Figure 5-11

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class ListExample extends MIDlet {

public void startApp() {

final List l = new List("Pizza Toppings", Choice.MULTIPLE);

l.append("Anchovies", null);

l.append("Cheese", null);

l.append("Olives", null);

l.append("Onions", null);

l.append("Pepperoni", null);

l.append("Sausage", null);

l.addCommand(new Command("Order", "Order Pizza", Command.ITEM, 0));

l.setCommandListener(new CommandListener() {

public void commandAction(Command c, Displayable s) {

boolean isSelected[] = new boolean[l.size()];

int i;

l.getSelectedFlags(isSelected);

for (i = 0; i < l.size(); i++) {

if (isSelected[i]) {

System.out.println(l.getString(i));

}

}

}

});

Display.getDisplay(this).setCurrent(l);

}

public void pauseApp() { }

public void destroyApp(boolean unconditional) { }

}

This code also shows the usual way of getting selections from a Choice subclass:
in the case of multiple lists, simply iterate over a list of boolean values obtained from
Choice.getSelectedFlags. For an exclusive list, it’s even easier: just invoke Choice.
getSelectedIndex, because the user can select only a single item.

CHAPTER 5 ■ BUILDING USER INTERFACES 121

■Note Wondering why the List l is declared as final in Listing 5-4? It’s because the variable l is
referenced in the closure created when you declare the anonymous CommandListener subclass. The
local class doesn’t really access l, but instead a private copy of l. If l were to change after it was
declared but before the platform invokes the closure’s commandAction method, the two notions of l
would be out of sync with each other.

Working with the Canvas and Custom Items
Despite the flexibility of the Screen and Item class hierarchy, there are some things you
just can’t do with these classes. One notable example, of course, is creating a game; more-
over, nearly any truly bespoke interface is out of reach, because of the high level of
abstraction provided by these classes.

There is another way, however. The MIDP provides the Canvas, which is a base class
for writing applications that need to handle low-level events and perform low-level
drawing. Instances of Canvas or its subclass GameCanvas encapsulate event and drawing
behavior by passing events to the instance and permitting the instance to draw using the
Graphics object passed to the instance’s paint method. These classes bring you as close as
you can come to the bare hardware of a MIDP platform.

Sometimes, though, you may want to take advantage of all the abstractions that the
Screen and Item classes provide, yet you may need a custom Item to present particular
data. You can do this using a CustomItem subclass, which lets you implement a UI widget
that works within the framework established by the Screen and Item subclasses.

■Caution Don’t venture into Java ME programming thinking the Canvas class is like the Canvas class in
Java SE! They are two very different beasts.

Controlling Drawing Behavior with a Custom Canvas

Subclassing the Canvas class gives you the opportunity to manage events and drawing
behavior at the lowest level. An implementation of Canvas must be able to do the
following:

CHAPTER 5 ■ BUILDING USER INTERFACES122

• Handle events: The Canvas class receives low-level events, including key-press,
repeat, and release events, as well as pointer-press, drag, and release events.

• Handle commands: As with other Displayable subclasses, your Canvas implementa-
tion inherits the methods pertaining to the Command infrastructure, including
addCommand, removeCommand, and setCommandListener.

• Draw: Subclasses of Canvas must implement the paint method, which takes a
Graphics instance that you use to draw on the Canvas.

The downside to using the Canvas class is that event handling is not as portable as
the Command and CommandListener classes are. For every keystroke, your Canvas receives a
keyPressed invocation and a keyReleased invocation, and possibly one or more
keyRepeated invocations between the two. The system passes these methods a key code—
that is, an integer indicating the key that you pressed. The Canvas class defines constant
members for keys common to all MIDP devices, including the number keys, the arrow
keys, four game keys, and the fire key (selection key). There may be overlap between
these keys; for example, the game keys may actually be number keys.

Unfortunately, other keys that aren’t common to all MIDP devices may have
different key codes, so if you’re designing a more complex Canvas subclass that uses
many keys, or one that requires alphanumeric input, you’ll end up needing to write
code for each device on which your application will run. One way to do this is to
abstract key-code handling from event handling, in much the same way that the MIDP
platform does; instead of examining key codes directly, use a function to map the key
codes and the logical actions that the key codes represent, so that you can map multi-
ple key codes to a single logical event.

Your Canvas subclass can receive pointer events, too, provided that your application is
running on a platform that supports some kind of pointer (mouse or stylus, presumably).
Some devices have no pointer; you can determine the support for pointer events by
invoking hasPointerEvents, which returns true if the device supports pointer-press and
release events. In a similar vein, the hasPointerMotionEvents method of Canvas returns true
if the device supports drag events from the pointer. Assuming there’s support, you receive
events by overriding the pointerPressed, pointerDragged, and pointerReleased methods;
each of these receives two integers, the x and y coordinate for the event.

At any time, the system can signal that the Canvas should redraw itself by invoking
its repaint method. This method comes in two varieties: one that takes the bounds of
the rectangle to redraw, and one that takes no arguments but is equivalent to invoking
repaint with the entire Canvas bounds. The repaint method doesn’t do any drawing,
however; that’s the responsibility of the paint method. The repaint-paint flow is asyn-
chronous; repaint indicates to the object that it’s dirty and should plan on repainting,
while the actual drawing by paint occurs at an unspecified (hopefully short!) time in
the future. This permits applications and the system from triggering needless redraw
operations, and it keeps clients from blocking on the Canvas’s paint operation.

CHAPTER 5 ■ BUILDING USER INTERFACES 123

You override the paint method to actually perform drawing. The caller passes this
method a single argument: an instance of Graphics that you use to actually perform draw-
ing. Your paint operation should repaint every pixel within the region defined by the
Graphics object’s clipping, because it may have resulted from multiple repaint calls. Note
that the Graphics instance is only valid within your paint method; you definitely should
not cache aside the Graphics instance you receive to use after exiting the paint method.

GRAPHICS OPERATIONS AND DOUBLE BUFFERING

On early Java ME devices, graphics operations to the screen were slow, and applications that did a lot
of painting showed visible artifacts such as flickering or tearing of the image as the platform inter-
leaved drawing operations with screen refreshes. Although a much rarer problem today, this can still be
a challenge, especially if you’re implementing a fast-paced game or similarly demanding application.

To avoid visual artifacts from display updates while drawing, you use a technique called double
buffering or ping-pong buffering, in which you perform all of your drawing operations on an offscreen
bitmap, and then when you’re done with all of the drawing operations, you transfer that image to the
display. Newer versions of the MIDP support double buffering; you can query the Canvas directly by
invoking Canvas.isDoubleBuffered. If this method returns true, the MIDP implementation will ren-
der the results of your paint operation into an offscreen bitmap and transfer the bitmap at appropriate
times to the display’s framebuffer, preventing visual artifacts.

If the platform does not support double buffering, you can implement double buffering yourself.
Instead of drawing with the Graphics object that the platform passes to your item’s paint method,
create an instance of javax.microedition.lcdui.Image to buffer all of your drawing operations.
Then, invoke the new image’s getGraphics method to obtain the Graphics object associated with the
image, and do all the drawing with that Graphics object. When you’re done, render the image directly
to the screen using the Graphics object passed to your paint method, like this:

void paint(Graphics g) {

int w = getWidth();

int h = getHeight();

Image buffer = Image.createImage(w, h);

Graphics bg = buffer.getGraphics();

bg.drawRect(0, 0, 10, 10);

g.drawImage(buffer, 0, 0);

}

If you’re only doing simple graphics updates or updating a small region of the screen, the memory
overhead imposed by double buffering may be more expensive than it’s worth and cause performance
penalties of its own. As a result, you should test your code carefully to determine if double buffering is
actually necessary.

CHAPTER 5 ■ BUILDING USER INTERFACES124

The Graphics class contains the usual gamut of interfaces for drawing to the Canvas
that you might expect, including methods to draw strings, lines, arcs, individual pixels,
and images. Its interface is similar to, but not the same as, the Java SE Graphics class, so
it’s best to check the MIDP documentation before writing code that uses this class.

Creating a Custom Item for a Screen

The CustomItem class gives you an abstract class from which to implement a new interac-
tive Item that you can place on a Form. CustomItem instances must be able to do the
following:

• Determine their appropriate size

• Draw the contents of the item

• Respond to events generated by keys, pointers, and traversal of its internal focus-
able subitems (entry and exit of each focusable subitem)

• Invoke the notifyStateChanged method when the value has changed

Item objects, including CustomItem subclasses, interact with their parent object via the
notion of a minimum and preferred size. The former size is the smallest size the parent
may give the CustomItem, while the latter is the size the CustomItem would like to occupy on
the parent. For a given CustomItem, the content size describes the actual region the parent
has allocated for its drawing; a CustomItem must draw its contents in that area. To make
matters simpler, the parent communicates the content region in coordinates relative to
the CustomItem—that is, the upper-left corner of the CustomItem is (0,0). Sizing from your
CustomItem to the parent is passed via the following methods:

• getMinContentHeight and getMinContentWidth: Let you specify your CustomItem’s
minimum height and width, respectively

• getPrefContentHeight and getPrefContentWidth: Let you specify the preferred height
and width for your CustomItem (possibly based on its current contents)

The parent form passes your CustomItem’s actual bounds—the content bounds—to
your paint method. Like a Canvas, you override paint to provide the code that repaints the
CustomItem’s region. You must paint every pixel clipped by the provided Graphics instance.
Unlike the Canvas, whose bounds are set by methods, your content bounds are passed as
arguments to the paint method. You can also schedule redraws using the repaint method,
just as you might a Canvas.

The events a CustomItem may receive depend on the MIDP implementation, which is
a barrier to application portability. Your implementation may determine which events it
supports by invoking CustomItem.getInteractionModes; the resulting integer is a bit mask

CHAPTER 5 ■ BUILDING USER INTERFACES 125

that specifies which events the device will pass to your CustomItem. The actual values for
the bit mask are provided as fields of CustomItem, and include the values KEY_PRESS,
KEY_RELEASE, KEY_REPEAT, POINTER_PRESS, POINTER_DRAG, and POINTER_REPEAT. For each kind of
event you intend to support, you must implement the appropriate method, which the
system will invoke to inform your subclass that there’s an event of that type ready for it to
process. These methods are the same as for the Canvas class:

• keyPressed: Handles key presses by key code

• keyReleased: Handles key releases by key code

• keyRepeated: Handles repeated key presses (when you press and hold a key) by
key code

• pointerPressed: Handles a pen-down or mouse-down at a coordinate

• pointerDragged: Handles a user dragging the pointer to a new coordinate

• pointerReleased: Handles a pen-up or mouse-up at a coordinate

In addition to these events, you must also handle focus events, which the MIDP
specification confusingly calls traversal operations (presumably because they’re gener-
ated as you traverse the parent). Traversal operations give you a way of knowing when
your CustomItem is active and from which direction you arrived at the CustomItem. For
example, a CustomItem that displays richly formatted text that can scroll outside its con-
tent area might wish to show the last pieces of text if it’s entered from below, or the first
piece of text it contains when entered from above. To do this, you must implement
CustomItem.traverse, which the caller gives four pieces of information.

The first argument indicates the direction from which you navigated into the
CustomItem. The second and third arguments give the width and height of the viewable
area that the item’s container has given its item. From this, you can assume that this is
the largest bound your item will be given to draw, although its actual content bounds will
be passed to the paint method. The final argument is an array indicating a rectangle
bound in the form [x, y, w, h]. When the container calls traverse, it contains the rec-
tangle currently visible; when your traverse method exits, it should contain the bounds
of the rectangle relevant to the viewer. Thus, if your CustomItem contains more informa-
tion than its content area, you should pass the region to be displayed in this rectangle.

The view system may invoke traverse to indicate that a CustomItem has focus, or, once
focused, to indicate that a subitem in the CustomItem should be focused. For example, a
CustomItem implementing a grid of cells (such as a spreadsheet) receives traverse invoca-
tions for each directional arrow press, and it draws its contents so that the currently
selected cell is indicated in some way. To keep your CustomItem focused and receiving
traversal events, your CustomItem.traverse method must return true. To indicate that
navigation of your CustomItem is complete—that the user has traversed out of the item—
return false from traverse.

CHAPTER 5 ■ BUILDING USER INTERFACES126

Finally, if your CustomItem has the concept of state—that is, if it contains a value—and
the value changes, you must call notifyStateChanged to let any listener on the CustomItem
know that its state has changed.

Implementing a Custom Item

Let’s wrap this up with a concrete example. Say the weather application obtains specific
weather conditions—sunny, cloudy, rainy, snowy, and so forth—from a remote server,
and you want to present that information in a graphic format on the Form that shows the
current weather. You could do this one of two ways. You could simply select a particular
image based on the conditions report, or you could encapsulate that functionality in a
CustomItem responsible for drawing the image associated with particular weather condi-
tions. In practice, which you choose may not make that much difference, but for the
purposes of this discussion, let’s assume the encapsulation in a CustomItem is better,
because it provides clear encapsulation and responsibility for the data presentation in a
single class. Listing 5-5 shows some of the code necessary to implement the WeatherItem,
a class that implements the functionality inherited from CustomItem.

Listing 5-5. The WeatherItem, a CustomItem Subclass for Displaying Weather Conditions

package example.wxitem;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class WeatherItem

extends CustomItem {

private String title;

private Display display;

private int width, height;

private boolean hasFocus = false;

private int conditions;

// States (not mutatable by caller!)

public final int SUNNY = 1;

public final int PARTLY_CLOUDY = 2;

public final int CLOUDY = 3;

public final int SHOWERS = 4;

public final int RAIN = 5;

public final int FLURRIES = 6;

public final int SNOW = 7;

public final int SLEET = 8;

CHAPTER 5 ■ BUILDING USER INTERFACES 127

// Default size

final private int DEFAULT_HEIGHT = 64;

final private int DEFAULT_WIDTH = 64;

// Colors

final private int WHITE = 0xFFFFFF;

final private int YELLOW = 0xFFFF00;

public WeatherItem(String t, Display d) {

super(t);

title = t;

display = d;

hasFocus = false;

width = DEFAULT_HEIGHT;

height = DEFAULT_WIDTH;

conditions = 0;

}

public void setConditions(int c) {

conditions = c;

}

public int getConditions() {

return conditions;

}

protected int getMinContentHeight() {

return height;

}

protected int getMinContentWidth() {

return width;

}

protected int getPrefContentHeight(int w) {

if (w < 0)

return height;

else

return height * w / width;

}

CHAPTER 5 ■ BUILDING USER INTERFACES128

protected int getPrefContentWidth(int h) {

if (h < 0)

return width;

else

return width * h / height;

}

protected void paint(Graphics g, int w, int h) {

// Always paint SOMETHING

g.setColor(WHITE);

g.fillRect(0, 0, w, h);

switch(conditions)

{

case SUNNY:

drawSun(g, w, h);

break;

case PARTLY_CLOUDY:

drawSun(g, w, h);

// FALL-THRU

case CLOUDY:

drawCloud(g, w, h);

break;

case SHOWERS:

drawSun(g, w, h);

// FALL-THRU

case RAIN:

drawCloud(g, w, h);

drawRain(g, w, h);

break;

case FLURRIES:

drawSun(g, w, h);

// FALL-THRU

case SNOW:

drawCloud(g, w, h);

drawSnow(g, w, h);

break;

case SLEET:

drawCloud(g, w, h);

drawRain(g, w, h);

drawSnow(g, w, h);

break;

CHAPTER 5 ■ BUILDING USER INTERFACES 129

default:

drawUnknown(g, w, h);

break;

}

}

private void drawSun(Graphics g, int w, int h) {

int x, y, min, r;

min = Math.min(w, h);

r = 3 * min / 4;

x = (w - r) / 4;

y = (h - r) / 4;

g.setColor(YELLOW);

g.fillArc(x, y, x + r, y + r, 0, 360);

}

private void drawCloud(Graphics g, int w, int h) {

// Drawing code here.

}

private void drawRain(Graphics g, int w, int h) {

// Drawing code here.

}

private void drawSnow(Graphics g, int w, int h) {

// Drawing code here.

}

private void drawUnknown(Graphics g, int w, int h) {

// Drawing code here.

}

protected boolean traverse(int dir, int viewportWidth, int viewportHeight,

int[] visRect) {

hasFocus = !hasFocus;

if (hasFocus)

{

visRect[0] = 0;

visRect[1] = 0;

visRect[2] = width;

visRect[3] = height;

}

CHAPTER 5 ■ BUILDING USER INTERFACES130

return hasFocus;

}

}

The class begins with the constructor, which picks a (somewhat arbitrary) default
width and height for the WeatherItem and initializes its conditions field—which stores
what weather indicator should be drawn—to 0. WeatherItem exports the conditions field
as a property through the setConditions and getConditions methods, which admittedly
could use some bounds checking.

The item returns the default bounds set by the constructor as the minimum bounds,
and uses the aspect ratio set by those bounds to compute the preferred content height
and width. Note that the parent of the item may invoke the getPrefContentHeight and
getPrefContentWidth methods with a value of –1 when setting up their layout, and to that
the CustomItem should respond with a default desired size.

The paint method does just that, switching on the weather indication and drawing a
sun, clouds, rain, or snowflakes as appropriate. The implementation assumes that each
of these images are layered, either as bitmaps or drawn using the Graphics context and 2D
vector graphics. For example, drawSun draws a circle three-quarters the size of the
WeatherItem centered within the WeatherItem. Other drawings might use the Graphics
methods or Graphics.drawImage to draw from PNG files stored within the MIDlet’s JAR file.

The implementation of traverse is trivial, because it only needs to track whether the
item has been traversed into (focused) or out of (unfocused). Clearly, when the
WeatherItem is focused, the rectangle of the item to draw should be its entire rectangle;
when it’s defocused, the WeatherItem doesn’t return a rectangle.

Wrapping Up
Although in no way compatible with Java SE, the MIDP provides a versatile collection of
high-level user-interface items and a more flexible low-level alternative. You can create
flexible, easily ported user interfaces using the Screen subclasses Alert, TextBox, List,
and Form, along with the various visible Item classes including TextBox, ChoiceGroup,
StringItem, ImageItem, and Gauge. Moreover, if you need to, you can extend the hierarchy
of items by creating custom items by subclassing CustomItem, providing your own event
handling and drawing behavior for a new item. For lower-level access to the event and
drawing system, you can subclass the Canvas class, which lets you receive pointer and
keystroke events directly, as well as draw on the screen using instances of the Graphics
class. Because both the Canvas and Screen classes implement the same parent,
Displayable, you can mix and match Canvas-based and Screen-based displays in the
same application.

CHAPTER 5 ■ BUILDING USER INTERFACES 131

Storing Data Using the
Record Store

At some point, nearly every MIDP application will need to store data. The original
version of the MIDP did not offer access to the file system (which I discuss in the next
chapter), but it did introduce a complementary concept: the record store. Unlike a file,
which can store anything, a record store stores groups of similarly structured items,
although in truth it falls short of meeting all the purposes of a database.

In this chapter, you’ll learn about the record store as it’s provided through the
javax.microedition.rms interface. After reading this chapter, you will understand how
the record store represents records; how to create, remove, and share record stores; and
how to access, mutate, and remove records. Along the way, you will see one application
of the record store as I show you how to use it to store data within the WeatherWidget
application.

Peeking Inside the Record Store
Through the javax.microedition.rms interface, MIDlets have access to multiple uniquely
named record stores. Each store contains a collection of records. MIDlet suites may mark
a record store as private, meaning that only MIDlets in the MIDlet suite that creates the
store can access the store, or shared, meaning that any MIDlet on the device can access
the store. The MIDP implementation keeps record stores in a nonvolatile region of the
device, such as a hard drive, flash file system, or RAM backed up by battery, so that data
persists between MIDlet instances. When a MIDlet is removed, all record stores that the
MIDlet created are removed as well. Figure 6-1 shows a schematic relationship between
MIDlet suites, MIDlets, and record stores.

133

C H A P T E R 6

Figure 6-1. The relationship between MIDlet suites, MIDlets, and record stores

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE134

As shown in Figure 6-1, the MIDlet suites in the example application follow
these rules:

• The WizardGames MIDlet suite uses only the WizardGameHighScores record store,
which is private to WizardGames.

• The Weather and Traveller MIDlet suites each have a private record store for
configuration and other data.

• The Traveller and Weather MIDlet suites read the current weather forecasts from
the CurrentWeatherData public record store.

Of course, both the Traveller and Weather MIDlet suites must understand the
representation schema for records in the CurrentWeatherData public record store. You
can make this happen most easily by sharing a class, because code can’t be shared
between MIDlets.

Record store names must be unique. To help guarantee this, the Java ME runtime
uses a MIDlet suite’s name as part of the name for a record store, so that you only need to
guarantee uniqueness when naming multiple stores within your application. Note that
the names are case sensitive and represented as Unicode strings, so you can localize
them as you would any other application string (although they typically don’t appear
anywhere in the user interface unless your MIDlet shows a list of its record stores).

Records within the record store are given a unique index, which is the record’s
primary key. This index starts with 1 and increments so that after creating record n, the
next record you create is given the index n+1. Removing a record does not recycle the
record ID; once a record ID is used, it’s permanently assigned, even if the value to
which it’s assigned is null.

Implementations of the record store must guarantee atomicity across a single thread,
but do not guarantee atomicity across multiple threads. Consequently, if your MIDlet
accesses the record store from multiple threads, be sure to synchronize access to records
in the store.

Using the Record Store
There’s actually very little you can do with a record store, because most of the work you
perform is with records within a store. Consequently, you can open or close a record
store, as well as remove a record store. Finally, you can check the version of a record store,
so you can ensure that your application uses the right record representation when read-
ing records from and writing records to the store.

All of the methods in this section belong to the javax.microedition.rms.
RecordStore class.

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 135

Opening and Closing a Record Store

Given the name of a record store, opening one is easy: simply invoke the RecordStore.
openRecordStore method, passing the name of the store and stating whether the store
should be created if it doesn’t exist. This method returns an instance of RecordStore you
use to access records in the open store. For example,

RecordStore.openRecordStore("Weather", true);

creates the record store named Weather for the current MIDlet and returns an instance
of RecordStore. This method can throw one of the following exceptions, so you best be
prepared to handle it:

• RecordStoreException: The method throws this exception in response to a general
error creating or opening the record store.

• RecordStoreNotFoundException: The method throws this exception if it can’t find the
record store you named and the creation flag is false.

• RecordStoreFullException: The method throws this exception if the record store
is full.

• IllegalArgumentException: The method throws this exception if the name is invalid.

Other RecordStore.openRecordStore methods take additional arguments that you
must use if you want to share your record store with multiple applications. In addition to
specifying the name of the record store and whether or not it should be created, you pass
an access mode (AUTHMODE_PRIVATE or AUTHMODE_ANY, meaning that any MIDlet can access
the record store) and a final argument indicating whether the store should be available
for read-only access (false) or read and write access (true) to other MIDlets. This inter-
face lets you create a shared record store; the final overloaded RecordStore.
openRecordStore method lets you open a shared record store from a different MIDlet. It
takes three arguments: the name of the store, the name of the MIDlet suite vendor
exporting the record store, and the name of the MIDlet suite exporting the record store.

As a result, for two MIDlets to share record stores, all of the following must occur:

• The MIDlet creating the record store to share must create it using
RecordStore.openRecordStore, passing true to create the record store, AUTHMODE_ANY
to permit other MIDlets to access the record store, and true if the shared record
store is to be writable by other applications.

• The author of the MIDlet creating the record store to share must publicize the for-
mat of records in the record store (ideally through a class that client applications
can use to access the store directly) as well as the vendor name and MIDlet suite
name used by the MIDlet creating the record store.

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE136

• Other MIDlets outside the MIDlet suite of the MIDlet creating the record store
must open the store using RecordStore.openRecordStore, passing the name of the
record store, the name of the creating MIDlet suite vendor, and the name of the
MIDlet suite that originally created the store.

Once you’re done with a record store, you must close it, signaling to the underlying
MIDP implementation that you’re done using the resources consumed by the record
store. You do this by invoking closeRecordStore on the instance provided when you
opened the record store.

Removing a Record Store

Although the MIDP removes the record stores associated with a MIDlet suite when the
suite is deleted, sometimes you want to delete a record store yourself. You do this by
invoking the RecordStore.deleteRecordStore method, which passes the name of the
record store to delete. The record store must be owned by the MIDlet suite of the MIDlet
making the request, and it may throw an exception if the store is open or any other error
occurs. It can throw the following exceptions:

• RecordStoreException: In response to a general error when removing the record
store, such as if the record store is still open

• RecordStoreNotFoundException: If the record store you named couldn’t be found

As you’ll learn in the upcoming section “Accessing Records in the Record Store,” you
can listen for changes to the record store, causing the record store to invoke a method
when changes occur. You should be aware, however, that the record store does not invoke
the method you provide when you delete the record store; in deleting the record store,
the store and its records are irretrievably deleted, and the system invokes no listeners.

Obtaining Information About a Record Store

While you’re not privy to the underlying implementation details of the record store, there
are some details about a specific record store you can access. Of course, you typically
know the name of the record store with which you’re working. An application that takes a
document-oriented approach to its data—say, one that tracks expense reports—might
choose to represent each document as a record or as a record store. If the latter, then
users may be responsible for naming record stores, such as “Sales Trip London” or “Sun
JavaOne Trip.” Of course, once you open the gates to user-named record stores, you need
a way to determine what record stores exist; you do this using the RecordStore.
listRecordStores method, which returns an array of String objects, each containing the
name of a specific record store belonging to the MIDlet suite. If the suite’s MIDlets have
not created any applications, this method will return null.

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 137

For a given record store, you can determine the last time the store was modified by
using its getLastModified method, which returns the last modified time in milliseconds
since the start of the system epoch (e.g., 1 January 1970). You can turn around and use
this time with the utilities in java.util.Date and java.util.Calendar to manipulate the
result, as well as javax.microedition.lcdui.DateField to display the result. Other details
you can obtain include the size (in bytes) of the store, which is returned by its getSize
method, and the number of records, which is obtained using the getNumRecords method.
All of these can throw a RecordStoreNotOpen exception, indicating that you must open the
store prior to obtaining this information.

Finally, record stores support the notion of versioning, but it’s not the sort of version-
ing you might expect. A record store’s version doesn’t indicate some canonical version
you apply when you change the format of its records or the application accessing the
record store; instead, it’s a monotonically increasing number that indicates the number
of changes (via the addRecord, setRecord, and deleteRecord methods). The initial version
of a store is an implementation-specific value, so while you can’t use a store’s version to
count the number of changes to the store, you can use it to peek at a store and see if it has
changed since the last time you accessed its contents. This can come in handy when
sharing a record store between applications.

Accessing Records in the Record Store
As you saw in Figure 6-1, the organization of records in the record store is free form.
Unlike a database, where you can define primary keys and search on specific fields, the
closest you get to a primary key in a record store is a record’s index. The first record you
create within a specific record store always has a record ID equal to 1; subsequent records
are assigned a record ID one greater than the record added previously. As I noted in the
previous section, removing a record does not recycle its record ID. For example, consider
the following sequence of events:

1. A MIDlet creates a new record store, the SampleRecordStore.

2. The MIDlet adds a record to the record store. Its ID is 1.

3. The MIDlet adds two more records. These records have IDs of 2 and 3,
respectively.

4. The MIDlet now deletes record 2.

5. The MIDlet adds another record. This record has an ID with the value 4.

After this sequence of events, the record store will have three records, with IDs 1, 3,
and 4, respectively.

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE138

A record itself is just a bag of bytes. The good news is that you’re free to implement
any structure you see fit on a record; the bad news is that it’s up to you to define a struc-
ture that supports your application and scales well. The MIDP implementation lacks the
serialization support found in java.io.Serializable, meaning you need to implement
your own serialization. (The interface defined by java.io.Serializable doesn’t really fit
the notion of records in the record store, either, because there are no lower-level filter
streams to help with serialization, and the object of record serialization is to serialize to
a bag of bytes rather than an output stream.)

This means that you need to be familiar with Java streams, particularly the
java.io.ByteArrayInputStream, java.io.ByteArrayOutputStream, java.io.DataInputStream,
and java.io.DataOutputStream classes. The process isn’t as daunting as it first appears.

To preserve a record, you first create a DataOutputStream and a ByteArrayOutputStream,
as shown in Listing 6-1.

Listing 6-1. Creating a DataOutputStream and a ByteArrayOutputStream

ByteArrayOutputStream baos = new ByteArrayOutputStream();

DataOutputStream dos = new DataOutputStream(baos);

Next, you write the record’s fields to the DataOutputStream using one or more of the
following methods:

• write: Takes an array of bytes, an offset, and a number of bytes to write, and writes
those bytes to the stream

• writeBoolean: Writes a boolean to the stream

• writeByte: Writes a single byte to the stream

• writeChar: Writes a character to the stream as a two-byte value with the high byte first

• writeChars: Writes a String as a sequence of characters

• writeDouble: Converts the double to a long using doubleToLongBits and writes the
long to the stream as an eight-byte value

• writeFloat: Converts the float to an int using floatToIntBits and writes the int to
the stream as a four-byte value

• writeInt: Writes an integer with the high byte first

• writeLong: Writes a long integer with the high byte first

• writeShort: Writes a short integer with the high byte first

• writeUTF: Writes a String using Java-modified UTF-8 encoding (in a machine-
specific way)

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 139

Once you write the record fields, you can obtain an array of bytes from the
ByteArrayOutputStream by invoking its toByteArray instance method, as shown in
Listing 6-2.

Listing 6-2. Invoking the toByteArray Instance Method

dos.writeUTF(record);

byte[] bytes = baos.toByteArray();

With the byte array in hand, you can add it to the store using the addStore method,
as I show you in the “Adding a Record” section later in this chapter. Of course, it’s a good
idea to nil out all three (the byte array bytes, the ByteArrayOutputStream instance, and the
DataOutputStream instance) once you’re done with them, to tell the garbage collector that
the memory they consume may be released. This can be especially helpful on older
devices with a small heap.

Not surprisingly, deserialization is the opposite of serialization. Begin by creating
instances of ByteArrayInputStream and DataInputStream from the bytes in a record, as
shown in Listing 6-3.

Listing 6-3. Creating ByteArrayInputStream and DataInputStream

ByteArrayInputStream bais = new ByteArrayInputStream(bytes);

DataInputStream dis = new DataInputStream(bais);

Next, you can use the following methods from the DataInputStream one at a time to
read the data you wrote back from the record:

• read: Reads an array of bytes from the stream

• readBoolean: Reads a boolean from the stream

• readByte: Reads a single byte from the stream

• readChar: Reads a character from the stream as a two-byte value with the high
byte first

• readChars: Reads a String as a sequence of characters

• readDouble: Reads a long from the stream as an eight-byte value and converts the
long to a double

• readFloat: Reads an int from the stream as a four-byte value and converts the int
to a float

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE140

• readInt: Reads an integer with the high byte first

• readLong: Reads a long integer with the high byte first

• readShort: Reads a short integer with the high byte first

• readUTF: Reads a string using Java-modified UTF-8 encoding (in a machine-
specific way)

Of course, you must read the fields in the same order as they were originally written.
Finally, you can process the fields into a new object using the object’s constructor,

or whatever other data structure you choose to use to represent your data while in
memory. As with writing, it’s a good idea to nil out references to the byte array bytes,
the ByteArrayInputStream instance, and the DataInputStream instance.

Of course, you can take a more sophisticated approach if your application requires.
One common pattern is to tag each field you write with a field type that identifies the
field, so that your MIDlet can read fields out of order. I show you how to do that in the last
section of this chapter.

Adding a Record

Once you have an array of bytes in hand that you want to store as a record, creating a new
record is as easy as invoking the open record store’s addRecord method. This method takes
three arguments:

• The array of bytes containing the data that consists of the record

• The offset to the first byte of the record in the array of data

• The number of bytes in the array that makes up the record

This approach—passing not just a bag of bytes but an offset into the same bag, and a
count of the number of bytes that make up the record—lets you construct multiple records
in one buffer if need be, and can help reduce thrash on the platform’s memory manager.

The addRecord method can throw one of the following exceptions:

• RecordStoreNotOpenException: Indicates that the record store you want to add a
record to isn’t open

• RecordStoreFullException: Indicates that the record store or the underlying
medium has no more room in which to complete the operation.

• RecordStoreException: Indicates a general failure related to the open record store

• SecurityException: Indicates that the MIDlet is not authorized to write to the
record store

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 141

For the obsessively curious—or if you’re tracking record IDs for some reason, such
as to link records in two different record stores—you can get the next record ID to be
assigned using the open store’s getNextRecordID method. This can throw one of the
following exceptions:

• RecordStoreNotOpenException: Indicates that the record store you want to add a
record to isn’t open

• RecordStoreException: Indicates a general failure related to the open record store

Of course, this isn’t atomic: there’s no guarantee that if you invoke this, do a bit of
stuff, and then insert a record that the ID of the inserted record actually will have this ID,
because the platform is multithreaded, and another thread within your application may
be using the store! So it’s up to you to manage thread contention across IDs if you use this
interface.

Retrieving a Record

Fundamentally, there are two ways to retrieve a record: by its ID, or by enumerating
across all records in the store. If you know a record’s ID, you can fetch it directly using the
open record store’s getRecord method and passing the record ID. This method returns the
record as an array of bytes. Of course, this method may fail; when it does, it throws one of
the following exceptions:

• RecordStoreNotOpenException: Indicates that the record store you want to add a
record to isn’t open

• InvalidRecordIDException: Indicates that the record ID is invalid

• RecordStoreException: Indicates a general failure related to the open record store

Once you have the bytes that make up your record, it’s up to you to deserialize your
record from those bytes; as I note in the opening to this section, you’ll likely use the
ByteArrayInputStream and DataInputStream classes to do this.

Enumerating a Record

Often, you don’t know the ID of a record when you want to fetch it. This may be because
you’re showing a list of records (such as a list of locations for the weather application, or a
list of expenses in an expense report) or because your record structure doesn’t require any
sort of coherent index. In this case, you need an enumerator, and the MIDP record store
has you covered with the record store’s enumerateRecords method. The enumerateRecords
method takes three arguments:

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE142

• RecordFilter: An instance is responsible for selecting which records should be
included in the enumeration.

• RecordComparator: An instance is responsible for comparing two records; the record
store enumerator uses this to determine the sort order of the returned records.

• boolean: When true, boolean indicates that the enumerator should remain current
during enumeration to any changes in the record store.

The method returns an instance of RecordEnumeration, upon which you can invoke
nextRecord repeatedly to obtain subsequent records sorted in the order dictated by the
RecordComparator you provided (if any). You can also invoke previousRecord to obtain the
record previously returned by nextRecord (or the last record of the enumeration if you
have not obtained any records using nextRecord).

The RecordFilter interface your record filter must match has a single method, match,
which takes an array of bytes (a record from the record store in its serialized form) and
returns true if the record matches the criteria you define. The RecordComparator interface
defines the compare method, which takes two arrays of bytes (each a record from the
record store in its serialized form) and returns one of RecordComparator.EQUIVALENT,
RecordComparator.FOLLOWS, or RecordComparator.PRECEDES, depending on whether the first
record is equivalent to, comes after, or comes before the second interface. Listing 6-4
shows a purely fictitious example.

Listing 6-4. Filtering Record Store Entries with an Enumeration

RecordStore rs = RecordStore.openRecordStore(store, true);

RecordEnumeration re = rs.enumerateRecords(

new RecordFilter() {

public boolean match(byte[] r) {

return true;

}

},

new RecordComparator() {

public int compare(byte[] r1. byte[] r2) {

return RecordComparator.EQUIVALENT;

}, false);

As intuition would dictate, this isn’t the best way to traverse all records if order is
unimportant. Instead, the most efficient use of enumerateRecords is to invoke it without a
filter or comparator (just pass null). This returns an enumeration that returns each ele-
ment of the store in an undefined sequence. If you need to visit all records of the store in
a specific order, specify a comparison function but no filter; if you’d like to filter out some
criteria but order is unimportant, specify a record filter but no record comparator.

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 143

The enumerateRecords method can throw a RecordStoreNotOpenException, if you’ve
closed the record store before invoking it.

Updating a Record

To update a record in the record store, you must have its ID. With its ID in hand, you can
use the record store’s setRecord method to set new contents for the record, just as if you
were adding a record. The method takes four arguments:

• The ID of the record to modify

• An array of bytes from which to draw the record

• An offset into the array indicating the first byte of the record

• The number of bytes (counting from the indicated offset) that comprise the record

As with other record manipulations, this method can throw an exception, including
any of the following:

• RecordStoreNotOpenException: Indicates that the record store you want to add a
record to isn’t open

• InvalidRecordIDException: Indicates that the record ID is invalid

• RecordStoreFullException: Indicates that the operation cannot be completed
because the record store or its underlying medium is full

• RecordStoreException: Indicates a general failure related to the open record store

• SecurityException: Indicates that the MIDlet is not authorized to write to the
record store.

Removing a Record

To remove a record from the record store, simply call deleteRecord, passing the record ID
of the record to be deleted. This method throws one of the following exceptions if an
error occurs:

• RecordStoreNotOpenException: Indicates that the record store you want to add a
record to isn’t open

• InvalidRecordIDException: Indicates that the record ID is invalid

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE144

• SecurityException: Indicates that the operation cannot be completed because the
MIDlet has read-only access to the record store

• RecordStoreException: Indicates a general failure related to the open record store

The word delete in the interface name is a bit of a misnomer. You have no control
over how the record store manages removal; record store compaction may occur on a
removal operation, or it may not. Moreover, the interface does not recycle the ID assigned
to the deleted record; once a record is deleted, the ID remains used. Querying for that ID
returns a null record or an exception indicating an invalid record ID.

Counting Records

If you’re getting ready to preprocess a large number of records, you may want to know
how many records are in the record store. Of course, you can do this with an enumera-
tion and counter, but there’s an easier way: simply invoke getNumRecords on an open
record store. It either returns an integer indicating the number of records currently in the
record store, or throws the RecordStoreNotOpenException if the record store isn’t open.

Listening for Record Store Changes

At times, you may want one application to respond to changes from another applica-
tion. The record store’s addRecordListener and removeRecordListener methods do just
that, letting you register a listener that implements the RecordListener interface on an
open record store, and deregister a listener, respectively. Once added, a record listener
receives the following method invocations whenever a record is added, changed, or
deleted, as follows:

• recordAdded: The system invokes this method when a record is added.

• recordChanged: The system invokes this method when a record is changed.

• recordDeleted: The system invokes this method when a record is deleted.

All three of these methods take two parameters: a reference to the record store in which
the record is stored, and the record ID of the record being added, changed, or deleted.

Understanding Platform Limitations of Record Stores

Record stores are a good compromise for the variety of mobile devices that can support Java
ME. However, they’re not perfect—or, more to the point, as you work with them, you learn
that their implementation on different devices can be far from perfect. If you’re deploying a
Java ME application to run on many devices, odds are you will encounter two pitfalls.

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 145

First and foremost, just because a device has a certain amount of storage available
does not guarantee that your MIDlets can use that much storage. The device’s software
(including the Java applications and native applications such as messaging,
contacts/personal information management, web browser, and so forth) shares the per-
sistent store, so the Java ME world only gets a subset of the persistent store in which to
store its data. How devices handle managing storage limitations differs from device to
device, as some devices may implement per-MIDlet limitations, while others may give
the Java AMS a private chunk of the persistent store in which to work. Worse, invoking a
RecordStore’s getSizeAvailable method causes the RecordStore to behave differently on
different devices; some devices may report the total amount of space left in the currently
allocated record store, while other devices may report the total amount of space left in
the persistent storage for all Java ME record stores.

The second common limitation is a limit on the size of an individual record; this
typically stems from the underlying implementation of a given record store. On some
devices, writing records that consist of more than some arbitrary maximum size simply
fails, throwing an exception, even if there’s space in the store for the record. Worse, you
can’t predict this in advance: there’s no way to determine if a specific handset has this
limitation, or query the record store implementation to determine what this cap may be.
To avoid this, keep your records as short as possible, and if you encounter the problem,
break your record up into smaller subrecords and write them individually, chaining them
again when you read from the record store.

Putting the Record Store to Work
The WeatherWidget example needs to store the list of locations you entered, as well as the
forecast data at each location, so that you don’t have to hit the network as you pick loca-
tions. The MIDP record store is ideal for this purpose.

WeatherWidget divides its use of the record store up into two classes: the Location
class, which represents a record in the store once it’s loaded into memory, and the
LocationStore class, which wraps the store in methods more friendly to the application
itself. Listing 6-5 shows the Location class, which is responsible for storing a location and
the weather forecast for a location.

Listing 6-5. The Implementation of the Location Class

package com.apress.rischpater.weatherwidget;

import javax.microedition.rms.*;

import java.io.*;

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE146

public class Location {

private final static int FIELD_VERSION = 1;

private final static int FIELD_LOCATION = 2;

private final static int FIELD_FORECAST = 3;

public final static int NO_ID = -1;

private final static int version = 1;

private String location;

private String forecast;

private int recordId;

/** Creates a new instance of Location */

public Location(String l, String f) {

location = l;

forecast = f;

recordId = NO_ID;

}

public Location(byte[] b) {

fromBytes(b);

recordId = NO_ID;

}

public Location(byte[] b, int id) {

fromBytes(b);

recordId = id;

}

public String getLocation() {

if (location != null) {

return location;

} else {

return "";

}

}

public void setLocation(String l) {

location = l;

}

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 147

public String getForecast() {

if (forecast != null) {

return forecast;

} else {

return "";

}

}

public void setForecast(String f) {

forecast = f;

}

public int getId() {

return recordId;

}

public void setId(int id) {

recordId = id;

}

public byte[] toBytes() {

byte[] b;

ByteArrayOutputStream baos = new ByteArrayOutputStream();

DataOutputStream dos = new DataOutputStream(baos);

// Record format is field-tag, then field for each

try {

dos.writeInt(FIELD_VERSION);

dos.writeInt(version);

if (location != null) {

dos.writeInt(FIELD_LOCATION);

dos.writeUTF(getLocation());

}

if (forecast != null)

{

dos.writeInt(FIELD_FORECAST);

dos.writeUTF(getForecast());

}

}

catch(Exception e) {

return null;

}

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE148

// Get the bytes for this item.

b = baos.toByteArray();

dos = null;

baos = null;

return b;

}

public void fromBytes(byte[] b) {

ByteArrayInputStream bais = new ByteArrayInputStream(b);

DataInputStream dis = new DataInputStream(bais);

// Read each tag, then each field

try

{

while(true) {

int tag = dis.readInt();

switch(tag) {

case FIELD_VERSION:

// Don't check version; there's only one

dis.readInt();

break;

case FIELD_LOCATION:

setLocation(dis.readUTF());

break;

case FIELD_FORECAST:

setForecast(dis.readUTF());

break;

}

}

}

catch (Exception e) {}

dis = null;

bais = null;

}

}

A location in memory actually has three fields, two of which are visible to its clients:

• location: A text string indicating the location for the forecast

• forecast: A text string indicating the weather at the location

• recordId: An integer indicating the record ID of the record in the record store (if any),
or the value NO_ID indicating the record has not yet been stored in the record store

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 149

The class has accessors and mutators for these three public fields, and it privately
keeps a constant field—the record’s version number—written with each record into the
store. Attaching a version to each record permits you to change the record store imple-
mentation without needing to destroy existing records; new code can check the version
of each record, select the appropriate code to load a record, and then resave the record in
the new format.

The bulk of the methods in the implementation of the Location class are getters and
setters for each of the public fields. Most interesting are the toBytes and fromBytes meth-
ods, which serialize and deserialize a record to and from an array of bytes, respectively.
Although it’s unlikely the record format will require much modification, you can choose
to use the record-tag approach described previously. This approach is exemplified by
toBytes, which performs this sequence of steps:

1. It writes a tag indicating that the field version follows the tag.

2. It writes the record version.

3. It writes a tag indicating that the location field follows the tag if there’s a field to
write, followed by the location field’s contents.

4. It writes a tag indicating that the forecast field follows the tag if there’s a field to
write, followed by the forecast field’s contents.

The fromBytes method works in reverse, except it uses a while loop and switch-case
statements so that it can read the fields of a record in any order.

As shown in Listing 6-6, the LocationStore interface provides a proxy to the record
store that makes it easy to obtain the list of locations, as well as a forecast for a location. It
doesn’t wholly abstract the record-store interface—notably, it throws RecordStoreException
in the event of problems with the underlying store—but it lets you think about accessing
locations in the way used by the application rather than solely as records in a store.

Listing 6-6. The Implementation of the LocationStore Class

package com.apress.rischpater.weatherwidget;

import javax.microedition.rms.*;

public class LocationStore {

private static final String storeName = "wx";

private RecordStore store = null;

public LocationStore() {

}

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE150

private void openStore() throws RecordStoreException {

if (store == null) {

store = RecordStore.openRecordStore(storeName, true);

}

}

private void closeStore() {

if (store != null) {

try {

store.closeRecordStore();

} catch(Exception ex) {}

store = null;

}

}

public String[] getLocationStrings() {

String[] result = null;

try {

openStore();

result = new String[store.getNumRecords()];

RecordEnumeration e = store.enumerateRecords(

null, // No filter

new RecordComparator () {

public int compare(byte[] b1, byte[] b2) {

Location r1 = new Location(b1);

Location r2 = new Location(b2);

if (r1.getLocation().compareTo(➥

r2.getLocation()) == 0) {

return RecordComparator.EQUIVALENT;

} else

if (r1.getLocation().compareTo(➥

r2.getLocation()) < 0) {

return RecordComparator.PRECEDES;

} else {

return RecordComparator.FOLLOWS;

}

}

},

false);

int i;

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 151

for (i=0; i<store.getNumRecords(); i++) {

Location l = new Location(e.nextRecord());

result[i] = l.getLocation();

l = null;

}

closeStore();

}

catch(Exception ex) { closeStore(); }

return result;

}

public Location getLocation(final String location) throws➥

RecordStoreException {

openStore();

Location l = null;

RecordEnumeration e = store.enumerateRecords(

new RecordFilter () {

public boolean matches(byte[] b) {

Location r = new Location(b);

if (r.getLocation().equalsIgnoreCase(location))➥

return true;

else return false;

}

},

null,

false);

if (e.hasNextElement()) {

int id = e.nextRecordId();

l = new Location(store.getRecord(id), id);

}

closeStore();

return l;

}

public void addLocation(Location l) throws RecordStoreException {

Location existing = getLocation(l.getLocation());

if (existing!=null) {

existing.setForecast(l.getForecast());

updateLocation(existing);

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE152

} else {

byte b[] = l.toBytes();

openStore();

store.addRecord(b, 0, b.length);

closeStore();

}

}

public void updateLocation(Location l) throws RecordStoreException {

int id = l.getId();

// If it has an id, do an update on that id.

if (id != Location.NO_ID) {

byte b[]=l.toBytes();

openStore();

store.setRecord(id,b,0,b.length);

} else {

// If it doesn't have an id, find it.

Location target = getLocation(l.getLocation());

// If there is a record matching this one, update it

if (target!=null) {

target.setForecast(l.getForecast());

updateLocation(target);

} else {

// otherwise add this one.

addLocation(l);

}

}

closeStore();

}

}

The private methods openStore and closeStore get called a lot. I considered moving
openStore to the constructor and adding a required cleanup method that the client must
call when releasing the interface (remember, the MIDP doesn’t support object finaliza-
tion!), but I decided that explicit finalization would be a burden on the clients of the
class. This is subject to change; testing on devices with a lot of locations might dictate a
different design. Anyway, these methods are fairly simple: openStore opens the store if it
isn’t already open, rethrowing any exceptions in the event of an error; closeStore closes
the store, concealing any errors that might occur.

The getLocationStrings method returns an array of Location items; you can use
it for populating the List of locations in the main user interface. It uses a simple
RecordEnumeration, relying on the enumeration to order the resulting enumeration in

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 153

increasing alphabetic order. In my anonymous inner RecordComparator class, it’s a little
goofy that String.compareTo’s results—negative if the receiver precedes the argument,
positive if the receiver succeeds the argument, and zero if they’re lexically equivalent—
need to be converted to RecordComparator values, but that’s the way it works. Once you
obtain the enumerator, you can simply walk the enumerator and insert each record’s
location in the appropriate field of the result array. Because this method simulates hav-
ing the entire list of locations in memory, you can wrap the entire sequence of events in
an exception handler.

The getLocation method, on the other hand, returns a Location instance when
provided with the name of a location. It, too, uses a RecordEnumeration and looks up the
Location using the RecordEnumeration’s matches method. It then uses the resulting enu-
meration to create a Location instance.

■Tip The inner classes for both locationStrings and getLocation use the same record-parsing
code contained within the Location class. This is sufficient in this example, where you may have 10
or 20 locations, and likely no more, but it may not be efficient enough to process truly large collections
of records, especially on slower handsets. If you’re developing an application that must manage a lot
of records, consider breaking out field deserialization in such a way as to permit your use of
RecordEnumeration to only deserialize what it needs to get the job done. Doing so will make your
application perform better.

The addLocation and updateLocation methods are similar, because they must both
deal with existing records (you don’t want to clutter the record store with duplicate loca-
tions of the same place). These methods rely on a Location object’s toBytes method. The
addLocation method begins by determining if a record for the existing Location already
exists, and if it does, it uses the updateLocation method instead to update that record’s
contents. Otherwise, it simply gets the bytes corresponding to a serialized version of the
indicated location instance and adds the record to the database, closing the record store
when it finishes.

The updateLocation method is a little more complex. It must handle three different
cases:

• The Location already exists in the database and has an ID (the location was created
using the LocationStore’s getLocation method).

• The Location already exists in the store but doesn’t have an ID (the location was
created programmatically but is a duplicate of one in the store).

• The Location does not exist in the store and must be added.

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE154

The first case is trivial and uses the store instance’s setRecord method to update the
existing record. The second case is a little more involved and requires that you search
the database to get the record ID of the existing record. You do this using the existing
getLocation method and copying over the data to update from the original Location
instance. Finally, the third case is also trivial: it just calls out to addLocation directly.

Integrating the Location and LocationStore classes into the WeatherWidget MIDlet is
straightforward. Listing 6-7 shows the results.

Listing 6-7. The Revised WeatherWidget Example Incorporating the Location and
LocationStore Classes

package com.apress.rischpater.weatherwidget;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.util.*;

public class WeatherWidget extends MIDlet implements CommandListener {

private Form wxForm;

private StringItem locationItem;

private StringItem wxItem;

private Command exitCommand;

private Command screenCommand;

private Command settingCommand;

private Command okCommand;

private Command backCommand;

private List locationList;

private TextBox locationTextBox;

private Alert cannotAddLocationAlert;

String location;

LocationStore locationStore;

/** This method initializes the UI of the application.

*/

private void initialize() {

locationStore = new LocationStore();

String[] locations = locationStore.getLocationStrings();

if (locations.length > 0) location = locations[0];

getDisplay().setCurrent(get_wxForm());

}

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 155

public void startApp() {

initialize();

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

public void commandAction(Command command, Displayable displayable) {

// Insert global pre-action code here

if (displayable == wxForm) {

if (command == exitCommand) {

exitMIDlet();

} else if (command == settingCommand) {

getDisplay().setCurrent(get_locationList());

}

} else if (displayable == locationList) {

if (command == screenCommand) {

getDisplay().setCurrent(get_locationTextBox());

} else if (command == List.SELECT_COMMAND) {

int index = get_locationList().getSelectedIndex();

set_location(get_locationList().getString(index));

getDisplay().setCurrent(get_wxForm());

} else if (command == backCommand) {

getDisplay().setCurrent(get_wxForm());

}

} else if (displayable == locationTextBox) {

if (command == backCommand) {

getDisplay().setCurrent(get_locationList());

} else if (command == okCommand) {

add_location(locationTextBox.getString());

getDisplay().setCurrent(get_locationList());

}

} else if (displayable == cannotAddLocationAlert) {

if (command == backCommand) {

getDisplay().setCurrent(get_locationList());

}

}

}

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE156

public String get_location() {

if (location == null) {

location = "";

}

return location;

}

public void set_location(String l) {

location = l;

get_wxForm().setTitle(l);

}

public void add_location(String l) {

String locations[];

int i;

try {

locationStore.addLocation(new Location(l, ""));

} catch (Exception e) {

getDisplay().setCurrent(get_cannotAddLocationAlert());

}

// Refresh the location list lazily.

locationList = null;

}

public Display getDisplay() {

return Display.getDisplay(this);

}

/**

* This method should exit the midlet.

*/

public void exitMIDlet() {

getDisplay().setCurrent(null);

destroyApp(true);

notifyDestroyed();

}

public StringItem get_wxItem() {

if (wxItem == null) {

wxItem = new StringItem("Forecast", "Sunny.");

}

return wxItem;

}

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 157

public Form get_wxForm() {

if (wxForm == null) {

wxForm = new Form(get_location(), new Item[] {

get_wxItem()

});

wxForm.addCommand(get_exitCommand());

wxForm.addCommand(get_settingCommand());

wxForm.setCommandListener(this);

}

return wxForm;

}

public TextBox get_locationTextBox() {

if (locationTextBox == null) {

locationTextBox = new TextBox("Add Location", "", 80, 0);

locationTextBox.addCommand(get_backCommand());

locationTextBox.addCommand(get_okCommand());

locationTextBox.setCommandListener(this);

}

return locationTextBox;

}

public List get_locationList() {

if (locationList == null) {

String[] locations;

locations = locationStore.getLocationStrings();

locationList = new List("Where",

List.IMPLICIT, locations, null);

locationList.addCommand(get_screenCommand());

locationList.addCommand(get_backCommand());

locationList.setCommandListener(this);

}

return locationList;

}

public Alert get_cannotAddLocationAlert() {

if (cannotAddLocationAlert == null)

{

cannotAddLocationAlert = new Alert("Cannot Add Location");

cannotAddLocationAlert.setString("An error occurred adding the➥

location you entered. It has not been added.");

cannotAddLocationAlert.addCommand(get_backCommand());

}

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE158

return cannotAddLocationAlert;

}

public Command get_settingCommand() {

if (settingCommand == null) {

settingCommand = new Command("Settings", Command.OK, 1);

}

return settingCommand;

}

public Command get_okCommand() {

if (okCommand == null) {

okCommand = new Command("OK", Command.OK, 1);

}

return okCommand;

}

public Command get_exitCommand() {

if (exitCommand == null) {

exitCommand = new Command("Exit", Command.EXIT, 1);

}

return exitCommand;

}

public Command get_screenCommand() {

if (screenCommand == null) {

screenCommand = new Command("Add Location", Command.SCREEN, 1);

}

return screenCommand;

}

public Command get_backCommand() {

if (backCommand == null) {

backCommand = new Command("Back", Command.BACK, 1);

}

return backCommand;

}

}

Looking at the code and comparing it with the implementation from the previous
chapter, you have a minimal number of changes to make. The most important change is
the replacement of the Vector used to store the list of locations; this is now the job of a
LocationStore instance, created by the MIDlet’s initialize method. After opening the

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE 159

store, the initialize method obtains the first location from the store, giving the UI a
default location.

The default location returned by get_location is now an empty string, consonant
with the notion that this will only occur the first time you launch the application before
you enter any locations. Updating the list of locations—which add_location performs—
is no longer a matter of adding an element to a vector, but instead calling the
LocationStore’s addLocation method, with some additional error handling in case the
store throws an exception. This error handling relies on the new factory method
get_cannotAddLocationAlert and the corresponding Alert, which informs you that the
application couldn’t add a location to the list of locations.

The get_locationList—a method NetBeans originally created that is the factory
method to create the list of locations—now invokes the LocationStore’s
getLocationStrings method instead of converting the Vector of locations to an array
of Strings.

Wrapping Up
In this chapter, you learned how to store persistent data using the MIDP’s record-store
interface. As you now know, a record store is a collection of records, each of which are an
ordered collection of bytes. The MIDP implementation of the record-store interface
abstracts you from the underlying details of the target, which may store the record store
as records in a file, as bytes in flash in a protected area, or as any other medium that
meets the standard’s requirements. By default, a MIDlet suite’s record stores can only be
accessed by MIDlets in that suite, although you can export access to other MIDlet suites
by specifying an authorization mode when you create the record store.

The javax.microedition.rms package contains the record-store classes, which include
the RecordStore class itself. The RecordStore class is responsible for managing record
stores as well as inserting, enumerating, updating, and removing record stores. Each
record is a collection of bytes that the record store assigns a record ID, which you use to
subsequently refer to a record when fetching, updating, or removing the record using the
RecordStore’s addRecord, setRecord, getRecord, and deleteRecord methods. You can also
enumerate the records in a store, passing instances of classes that filter and order the
enumeration results.

When creating and parsing records in a record store, it helps to use the java.io
classes ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, and
DataOutputStream. The DataInputStream and DataOutputStream let you read and write
data primitives, such as integers, floating-point numbers, and strings, to an underlying
stream. In conjunction with the ByteArrayInputStream and ByteArrayOutputStream
classes, you can take the resulting streams and convert them to arrays of bytes, which
the RecordStore class can use immediately as records in the store.

CHAPTER 6 ■ STORING DATA USING THE RECORD STORE160

Accessing Files and
Other Data

In the last chapter, I showed you how to use the record store—the means of persistent
data that is common to all MIDP implementations. Sometimes, though, what you really
need is raw access to a file on the file system or access to data managed by integrated
applications such as built-in contacts managers or date books. Not all devices support
this access; those that do implement JSR 75, which defines an optional interface for
accessing files on a local file system or personal information management (PIM) data
such as that kept by a contacts manager, date book, or to-do program. An implementa-
tion supporting JSR 75 may support file system access, PIM data, or both. Moreover,
although JSR 75 was developed originally for CLDC devices, it may be found on other
Java ME platforms as well. Given its flexibility and growing ubiquity, it’s a good interface
for you to be familiar with.

In this chapter, I discuss both facets of JSR 75, so you can learn how to access both
files and PIM data. I begin with the File Connection Optional Package (FCOP), explaining
how it differs from the record store, and I show how it fits in with the Java GCF. Next, I
show you the actual APIs you use when interacting with the FCOP. After that, I turn your
attention to the PIM package, showing you how the classes in this package fit together to
give you an interface that works with the contacts, calendar, and to-do application on a
device. In conjunction with the previous chapter, this chapter gives you a firm grasp of
how to store data on MIDP devices.

Introducing the FCOP
JSR 75, introduced shortly after CLDC 1.0, solves a problem that hobbled many develop-
ers for J2ME, Java ME’s immediate predecessor. Java applications were unable to safely
interact with integrated applications on a mobile device. The Java community (led by
Sun) introduced the PIM interface for specific applications managing PIM data. (I say
more about this later in this chapter, in the “Introducing the PIM Package” section.) But
for generic applications, or for those applications needing to manage their own files, the
FCOP provides the answer. 161

C H A P T E R 7

Devices may or may not have file systems, so you can’t assume that all Java ME CLDC
devices (let alone all Java ME devices!) support the FCOP as described in JSR 75. If it does
exist, though, it plugs into the rest of the Java runtime in a manner similar to that shown
in Figure 7-1.

Figure 7-1. The FCOP and the Java ME package structure

The key relationship shown in Figure 7-1 is that the Connector class defined by the
CLDC creates instances of the FileConnection interface to manage access to files on the
device’s file system. Using a Connector, you can obtain input and output streams to the
file you’ve referenced, or perform other operations such as removing a file or changing its
access mode.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA162

The GCF, which you’ll learn about in detail in Chapter 12, provides a unified class
hierarchy and means to access local and remote connection resources using URLs and
a stream-based interface. The javax.microedition.io.Connector class operates as a fac-
tory of connections for your application; you pass a URL describing the item you want
to open, and the Connector class returns an instance of a Connection subclass such as
FileConnection. With the FileConnection in hand, you can perform I/O using streams,
and you can access the particulars of the file system. You can create new files and direc-
tories as well as remove existing files and directories.

A URL referencing a local file on the file system uses the file:// protocol prefix
instead of the http:// prefix, like this:

FileConnection fc =

(FileConnection) Connector.open("file:///SDC/wx.xml", Connector.READ);

Why are there three solidus (/) characters? The first two separate the file protocol
indicator from the path to the file. The region between the second and the third is
reserved in URLs for the host name of the object being manipulated; in this case, because
the host name is the local host, it’s empty.

■Caution It’s a common mistake to type out the URL for a file the same way you would a URL for a web
resource, using only two slashes. It’s an error, however, and one that’s hard to catch except by close inspection.

You name files and directories the same way; the URL file:///SDC/directory may
either be a file or a directory, and it’s up to you and the APIs to know the difference.
That’s important when manipulating directories; as you’ll see in a moment, opening a
FileConnection to file:///SDC/directory/ and invoking the FileConnection.mkdir
method to create the directory is an error.

Using the FCOP
The sequence of events when using the FCOP goes something like this:

1. Determine whether or not the device running your application has the FCOP.

2. From the Connector class, obtain a FileConnection instance representing the file
you want to access.

3. Create the file if necessary.

4. Open the file for reading or writing and get an input or output stream,
respectively.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 163

5. Perform your input and output using the stream you got from step 4.

6. Close the stream.

7. Close the FileConnection.

Of course, you can do several other things, too. You can remove a file or directory,
change its access settings, and enumerate the contents of a directory. Finally, you can lis-
ten for changes on the file system, which alert you of status changes such as the insertion
of a removable storage card like a SanDisk microSD card.

The file system on a device is typically organized as a tree, just as on a FAT32 file sys-
tem (although the actual nature of the file system might be something totally different).
A key difference, however, is that the file system can have multiple roots, one for each
kind of removable or permanent file system. Thus, SD1/ might refer to the contents of the
first SD card, while internal would refer to the internal store. Unfortunately, there’s no
standard for determining these names; the only way to find out what they mean is to
query the system using the change-notification interface provided. (I show you how to
do that later, in the section titled “Listening for File System Changes.”)

Determining If the FCOP Is Present

Before you begin using the FCOP, you should check to see if it’s present. You can do this
by interrogating the system for the version of the FileConnection interface, as shown in
Listing 7-1.

Listing 7-1. Interrogating the System for the FileConnection Version

String cv = System.getProperty(

"microedition.io.file.FileConnection.version");

if (cv != null) {

// Mark that you have the interface available, or just

// do your file I/O here.

}

This check returns a version string such as "1.0", but if it returns anything non-null,
you know the FCOP is present on the target running your application.

Obtaining a FileConnection Instance

As I indicated previously, you use the Connection class to obtain an instance of
FileConnection, with which you actually perform your file operations. You do this
using its open method, like this:

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA164

FileConnection fc =

(FileConnection) Connector.open("file:///wx.xml", Connector.READ);

This method takes two arguments: the URL to the file you wish to open, and the
mode in which it should be opened. The mode is one of Connector.READ, Connector.WRITE,
or Connector.READ_WRITE.

Not surprisingly, the open method can throw exceptions that you must handle,
including the following:

• IllegalArgumentException: If a parameter is invalid

• ConnectionNotFoundException: If the target of the name cannot be found, or if the
requested protocol type is not supported

• IOException: If some other kind of I/O error occurs

• SecurityException: If access to the protocol handler is prohibited

Creating a New File or Directory

Three FileConnection interfaces exist to help you manage the creation of files and
directories:

• exists: Returns a boolean indicating whether or not the file name indicated when
the FileConnection was created exists

• create: Creates the named file, assuming you opened it using the Connector in
Connector.WRITE or Connector.READ_WRITE mode

• mkdir: Creates the named directory, assuming you opened it using the Connector
in Connector.WRITE or Connector.READ_WRITE mode

It’s important to realize, then, that simply passing a file name to Connector.open
and invoking it with Connector.WRITE or Connector.READ_WRITE doesn’t actually create
the file for you!

The creation interfaces are void interfaces, but they can throw IOException,
SecurityException, IllegalModeException, or ConnectionClosedException; exists can throw
SecurityException, IllegalModeException, or ConnectionClosedException.

■Caution You cannot create a directory by specifying a trailing solidus (/) on the URL for a file and then
calling create; the trailing solidus will cause create to throw an IOException. Use mkdir instead with a
path that does not have a trailing solidus.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 165

Opening a File

Although you’ve opened a FileConnection referring to the file you want to open, you still
need to open the file itself to obtain an input or output stream. You do this using one of
the following methods:

• openDataInputStream: Returns a DataInputStream from which you can read the file’s
contents

• openInputStream: Returns an InputStream from which you can read the file’s contents

• openDataOutputStream: Returns a DataOutputStream to which you can write data to
the file

• openOutputStream: Returns an OutputStream to which you can write data to the file

Of course, you can only obtain the streams that correspond to the modes in which you
opened the FileConnection; for example, you couldn’t obtain an OutputStream if you speci-
fied Connector.READ to Connector.open. Mismatching these will cause the runtime to throw
an IllegalModeException. You should be prepared to handle the SecurityException and
IOException exceptions as well.

What if you want to write starting somewhere past the first byte of the file? To do
this, simply invoke openOutputStream with the offset at which you want to begin writing.
Be sure your offset is positive, or the runtime will throw an IllegalArgumentException
your way.

Tweaking File Attributes

The FileConnection interface has a host of methods that let you query or tweak attributes
of the file or directory to which your FileConnection is associated, including the following:

• canRead: Returns true if your application is permitted to write to the file

• canWrite: Returns true if your application is permitted to write to the file

• directorySize: Returns the number of bytes the directory consumes; you can pass
true to include the directory’s subdirectories in the computation, or false to only
include the current directory

• fileSize: Returns the number of bytes the file consumes

• getName: Returns the name of the file, excluding the GCF URL protocol

• getPath: Returns the name of the directory containing the file, excluding the GCF
URL protocol

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA166

• getURL: Returns the path and file name in the form used by Connector for opening
the file (including the GCF URL protocol)

• isDirectory: Returns true if the specific FileConnection refers to a directory

• isHidden: Returns true if the FileConnection refers to a hidden file

• isOpen: Returns true if the current FileConnection is open

• lastModified: Returns the last time the file was modified

• setHidden: Lets you change the visibility status of a file

• setReadable: Lets you change the readable attribute of a file

• setWritable: Lets you change the writable attribute of a file

• truncate: Lets you truncate a file to a specific length

Of course, all of these can throw an exception, so be prepared to handle any they offer.

Deleting a File or Directory

You can delete a file or directory using the FileConnection.delete method, which
immediately deletes the indicated file or directory. If other streams are associated with
the file, they will be flushed and closed automatically; continuing to work with them
will result in an IOException. The FileConnection itself, however, remains open and
available for reuse (say, to create a new file with the same name).

Enumerating a Directory’s Contents

If you want to obtain a list of the contents of a directory, you can do so using the
FileConnection.list method, which returns an Enumeration of the directory’s contents.
FileConnection.list comes in two flavors: one that takes no arguments and shows all files
in a specific directory, and one that takes a wildcard-capable string and a boolean indicat-
ing whether hidden files should be included in the resulting Enumeration.

If you need to manipulate a file or directory returned by the Enumeration, you don’t
need to go through the gymnastics of creating a new FileConnection by constructing a
GCF-compliant URL for the file or directory in question. Instead, you can pass a string
from the Enumeration directly to the FileConnection that opened the Enumeration using the
setFileConnection method. This method resets the FileConnection to refer to the file or
directory you pass to it.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 167

Listening for File System Changes

Mobile devices are prone to a lot of changes in their environment, and the file system is
no exception. Many Java ME devices support removable file systems through memory
card slots, such as microSD or miniSD. Consequently, your application needs to be able
to detect when the user inserts or removes a card, and you need a way to enumerate the
mounted file systems. You can do this by registering a listener to the file system while
your application is running; the FCOP provides the javax.microedition.io.file.
FileSystemRegistry class to do this.

You register a listener using the FileSystemRegistry.addFileSystemListener
method, passing an instance of a class implementing javax.microedition.io.file.
FileSystemListener. You override the rootChanged method as shown in Listing 7-2.

Listing 7-2. Overriding the rootChanged Method

FileSystemListener l;

private void startListener() {

l = new FileSystemListener() {

public void rootChanged(int state, String rootName) {

// Process the change here.

}

}

try {

FileSystemRegistry.addFileSystemListener(l);

}

catch(Exception ex) { /* Handle exception */ }

}

private void stopListener() {

if (l != null) {

try {

FileSystemRegistry.removeFileSystemListener(l);

}

catch(Exception ex) { /* Handle exception */ }

}

}

Any time you add or remove a file system, the system invokes your rootChanged
method with two arguments. The first argument indicates the addition of a file system
root if you receive the FileSystemListener.ROOT_ADDED value, or the removal of a file sys-
tem if you receive the FileSystemListener.ROOT_REMOVED value. The second argument
indicates the name of the root used to access the file system that was added or removed.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA168

The addFileSystemListener method may throw one of the following exceptions:

• SecurityException: If your application is not permitted to listen for file system
changes

• NullPointerExecption: If you specify a nonexistent listener

Similarly, the removeFileSystemListener method throws a NullPointerException if you
invoke it with null.

■Tip When working in NetBeans, you can simulate the addition and removal of file system roots using the
emulator menu. Choose MIDlet ➤ External Events.

Another common use of the FileSystemRegistry is to determine which roots are
currently mounted. Odds are that you’ll want to do this before you first invoke an FCOP
class’s interface, to help ensure your application is portable between devices. Some
devices, like the emulator, ensure that there’s a default file system named root1, but
there’s no guarantee that all devices have the same root file names. You can list the root
file systems on a device using the FileSystemRegistry.listRoots method, which returns
an Enumeration of String items, each a single root file system name. For example, you
might write something like what’s shown in Listing 7-3.

Listing 7-3. Enumerating Root File Systems on the Device

Enumeration r = FileSystemRegistry.listRoots();

String cr = null;

while (r.hasMoreElements()) {

cr = (String) roots.nextElement();

/* do something with the discovered root */

}

Be advised that like the other FileSystemRegistry methods, listRoots can throw a
SecurityException if your application isn’t permitted to enumerate the root file systems
on a device.

Putting the FCOP to Work
Listing 7-4 shows the LocationStore class I presented in the previous chapter for storing
weather forecasts refactored to use a file instead of the record store.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 169

Listing 7-4. The LocationStore Implemented with the FCOP

package com.apress.rischpater.weatherwidget;

import javax.microedition.io.*;

import javax.microedition.io.file.*;

import java.io.*;

import java.util.*;

public class LocationStore {

private static final String storeName = "wx";

private static final String fileURLRoot = "file:///";

private static String fileUrl;

Vector locations;

FileConnection fc;

public LocationStore() {

locations = new Vector();

Enumeration em = FileSystemRegistry.listRoots();

if (em.hasMoreElements()) {

fileUrl = fileURLRoot + em.nextElement() + storeName;

}

load();

}

private void open() {

if (fc==null) {

try {

fc = (FileConnection)Connector.open(fileUrl,

Connector.READ_WRITE);

}

catch(Exception ex) {}

}

}

private void close() {

if (fc!=null) {

try {

fc.close();

} catch(Exception ex) {}

fc = null;

}

}

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA170

public void addLocation(Location l) {

locations.addElement(l);

save();

}

public String[] getLocationStrings() {

String result[] = new String[locations.size()];

int i;

for(i = 0; i < locations.size(); i++) {

result[i] = ((Location)locations.elementAt(i)).getLocation();

}

return result;

}

public Location getLocation(final String location) {

int i;

for(i = 0; i < locations.size(); i++) {

Location l = (Location)locations.elementAt(i);

if (location.equals(l.getLocation())) {

return l;

}

}

return null;

}

public void updateLocation(Location location) {

int i;

for(i = 0; i < locations.size(); i++) {

Location l = (Location)locations.elementAt(i);

if (location.getLocation().equals(l.getLocation())) {

l.setForecast(location.getForecast());

l.setId(location.getId());

}

}

save();

}

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 171

private void load() {

try {

int v;

byte b[];

int length;

Location l;

DataInputStream dis;

locations.removeAllElements();

open();

dis = fc.openDataInputStream();

// Read version

v = dis.readInt();

// While there are more elements, read them.

while(true) {

length = dis.readInt();

b = new byte[length];

dis.read(b, 0, length);

l = new Location(b);

locations.addElement(l);

}

}

catch(Exception ex) {};

close();

}

private void save() {

try {

int i;

byte[] b;

DataOutputStream dos;

open();

dos = fc.openDataOutputStream();

// Write version

dos.writeInt(1);

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA172

for(i = 0; i < locations.size(); i++) {

Location l = (Location)locations.elementAt(i);

b = l.toBytes();

dos.writeInt(b.length);

dos.write(b);

}

dos.close();

close();

}

catch(Exception ex) {}

}

}

The first change necessary isn’t really one for the FCOP: this LocationStore uses a
Vector to store the list of Location instances rather than relying on the file for indexed
access. Instead, this change loads all the forecasts into a Vector, and each time the Vector
is changed, it flushes the changes to disk. The constructor creates this Vector and then
enumerates the mounted file systems, selecting the first (which likely represents the
internal store) and constructing a GCF-compliant file name that consists of the file:///
protocol, the name of the internal file system root, and the name of the store. Finally, it
calls load to read the records from the file. The open and close methods open and close
the FileConnection, respectively.

The load method begins by removing any existing elements in the Vector and
then opening the FileConnection and then a DataInputStream to the file itself. With the
DataInputStream open, it reads the version of the file (which will always be 1 in the present
implementation) and then loops over the file, reading first the length of a record and then
the record as a collection of bytes and converting each collection to a Location instance.
The save method works in the reverse, creating a DataOutputStream and writing a version
of 1 before iterating over each Location, writing first the length and then the binary repre-
sentation of each Location. This approach requires only changes to the LocationStore
class, not the Location class, and does not require any changes to the interface.

■Tip When in doubt, use the RecordStore for data storage like this. It’s guaranteed to be on every MIDP-
compliant device, unlike FileConnection, which may not be. The example in this section illustrates how to
use the FCOP rather than explain when it should be used.

Integrating the class in Listing 7-4 into the WeatherWidget example is trivial and fol-
lows the same basic changes that I describe in the previous chapter. Because the FCOP
isn’t available on all Java ME devices, the WeatherWidget example uses the record store
implementation of the LocationStore class.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 173

Introducing the PIM Package
Many Java ME devices act as personal information managers. They contain built-in
applications that handle contacts, calendar appointments, and to-do items. Opening
these databases to third-party applications can add a lot of value, so JSR 75 defines an
optional PIM package that contains classes that abstract access to records of these appli-
cations (see Figure 7-2).

Figure 7-2. The PIM package classes

As Figure 7-2 shows, the singleton class PIM is responsible for opening instances of
PIMList subclasses, which include application record stores for the contacts, calendar,
and to-do applications. As you’ll see, each subclass is represented as an Enumeration of

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA174

PIMItem objects, and each PIMItem is an interface into a specific item in an application’s
database. Using the various interfaces in this hierarchy, you can enumerate records in any
of these application stores, as well as examine how entries are grouped into categories,
create new records, and remove existing records, just as a native application would.

Using the PIM Package
To use the PIM package, you need your code to follow this basic structure:

1. Check the device to ensure the PIM package is available.

2. Open the desired PIM database and obtain a PIMList for the desired database.

3. If you want to read entries from the PIMList, obtain elements from it using one of
its Enumeration-yielding interfaces.

4. If you want to create new entries in the PIMList, create a new PIMItem using
the PIMList. Then add the data to PIMItem, and finally call commit to commit
the changes.

5. If you want to change an entry of the PIMList, obtain the PIMItem corresponding
to the item you want to change, and call a method to set the various fields of the
item. Then call commit to commit the changes to the item.

6. If you want to remove an item, obtain the PIMItem corresponding to the item to be
removed, and then invoke the appropriate remove method on the PIMList, passing
the item to be removed.

Unlike the FCOP, which uses different exceptions to flag different errors, the PIM
package interfaces throw only a PIMException on an error. The PIMException thrown will
have one of the following reason codes available via the getReason method indicating why
the exception was thrown:

• FEATURE_NOT_SUPPORTED: If the functionality requested is not supported by the
implementation

• GENERAL_ERROR: For general errors

• LIST_CLOSED: If the PIMList you’re trying to use is closed already

• LIST_NOT_ACCESSIBLE: If the PIMList you’re trying to use is no longer available, per-
haps because the underlying database was deleted

• MAX_CATEGORIES_EXCEEDED: If the maximum number of categories for items in the
PIMList has been exceeded

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 175

• UPDATE_ERROR: Indicates an exception where the update could not continue

• UNSUPPORTED_VERSION: If the data is not supported by the version of the PIM
database

Let’s look in more detail at these and the other operations you can perform using the
PIM package.

Ensuring the PIM Package Is Available

Before you use the PIM package, you should ensure that it’s actually available. You do this
using System.getProperty, like this:

String currentVersion = System.getProperty("microedition.pim.version");

This returns the version number of the PIM package, so you can (and should!) check
to see if your code is version-compatible with the PIM package that’s on the device you’re
targeting. The call returns null if no PIM package is available.

Once you’ve ensured that the PIM package is available, you must obtain an instance
of the PIM singleton that provides access to all of the methods for opening and managing
PIMLists. You do this using the PIM.getInstance method.

Opening a PIM Database

You don’t open a PIM database in the same way you would a file, although similar things
are probably happening under the hood. Instead, you obtain a PIMList instance from the
PIM class using PIM.getInstance().openPIMList. This interface takes two arguments: the
type of the list to return (PIM.CONTACT_LIST, PIM.EVENT_LIST, or PIM.TODO_LIST) and an
access mode indicating whether the list should be returned as read-only (PIM.READ_ONLY),
write-only (PIM.WRITE_ONLY), or read-write (PIM.READ_WRITE).

Some devices have the capability of keeping more than one PIM list of a particular
type. Don’t confuse this with categories; categories indicate organization within a PIM
database, while this feature permits wholly separate lists. You can obtain a list of PIM
databases by type by invoking PIM.getInstance().listPIMLists, passing one of the PIM
list types (PIM.CONTACT_LIST, PIM.EVENT_LIST, or PIM.TODO_LIST). In return, you get an array
of String instances; each is a name you can pass as an optional third argument to
PIM.getInstance().openPIMList.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA176

Reading Records from a PIM Database

With the PIMList in hand for the PIM database you want to access, you can obtain an
Enumeration of its contents, returned as PIMItem objects. You may use one of three items
methods to obtain an Enumeration:

• An items method that takes no arguments and returns an Enumeration of all items
in the database

• An items method that takes a String and returns an Enumeration containing only
those records whose String fields contain the String you passed to items

• An items method that takes a PIMItem template and returns an Enumeration contain-
ing only those records whose fields contain the fields you specified in the template
item (which, of course, must be a ContactItem, EventItem, or ToDoItem, matching the
type of PIMList you’re querying)

These items methods can throw one of the following exceptions:

• IllegalArgumentException: If the arguments are malformed

• PIMException: If an error is manipulating the PIMList

• SecurityException: If the application is not permitted to access the PIM database

Reading Fields from a PIM Record

The PIMItem interface is a generic interface into multiple types of record data: a
contact, an event, or a to-do. Consequently, the PIMItem uses the notion of field keys
to access a given datum in a PIMItem such as a contact’s first name or an event’s start
time. These fields are defined by well-defined standards such as the vCard specifica-
tion from the Internet Mail Consortium. Each of the various PIMItem interface sub-
classes defines constant integer accessor keys indicating field types that a PIMItem can
return in response to an accessor interface. Table 7-1 shows the accessor field keys
defined by the PIM package.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 177

Table 7-1. Accessor Field Keys for the Contact Instances

Key Purpose Type

NAME The array of the contact’s names String []

ADDR The array of the contact’s primary address fields String []

EMAIL The e-mail address of the contact String

FORMATTED_NAME The name of the contact String

NICKNAME The nickname of the contact String

NOTE The note associated with the contact String

ORG The contact’s organization String

TEL The contact’s telephone number String

TITLE The contact’s title String

UID The unique ID of the contact String

URL The URL stored with the contact String

PHOTO_URL A URL to a photo of the contact String

PUBLIC_KEY_STRING The public key of the contact as a string String

BIRTHDAY The birthday of the contact Date

REVISION The last time and date at which the contact was modified Date

PHOTO The bytes in the photo of the contact byte []

PUBLIC_KEY The public key of the contact as a collection of bytes byte []

CLASS Specifies how the contact may be accessed, either as int
Contact.CLASS_CONFIDENTIAL, Contact.CLASS_PRIVATE,
or Contact.CLASS_PUBLIC

Table 7-2 shows the accessor field keys for the event instances.

Table 7-2. Accessor Field Keys for Event Instances

Key Purpose Type

LOCATION The location of the event String

NOTE The note associated with the event String

SUMMARY A summary of the event String

UID The unique ID of the event String

END When the event is scheduled to end Date

REVISION The last time and date at which the event was modified Date

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA178

Key Purpose Type

START When the event is scheduled to start Date

ALARM The relative time for the event’s alarm int

CLASS Specifies how the event may be accessed, either as int
Event.CLASS_CONFIDENTIAL, Event.CLASS_PRIVATE, or
Event.CLASS_PUBLIC

Table 7-3 shows the accessor field keys for the to-do instances.

Table 7-3. Accessor Field Keys for To-Do Instances

Key Purpose Type

NOTE The note for the to-do String

SUMMARY A summary of the to-do String

UID The unique ID of the to-do String

PRIORITY The priority of the to-do from 0 (undefined) to 9, int
with 1 being the highest priority

COMPLETION_DATE When the to-do was completed Date

DUE When the to-do must be completed Date

REVISION The last time and date at which the to-do was modified Date

COMPLETED Indicates if the to-do was completed boolean

CLASS Specifies how the to-do may be accessed, either as int
ToDo.CLASS_CONFIDENTIAL, ToDo.CLASS_PRIVATE,
or ToDo.CLASS_PUBLIC

So what to do with all these field constants? There’s no guarantee that a specific PIM
package implementation will have a specific field in its database, so the first thing to do is
to find out which field a particular implementation of the PIM package actually supports.
You can do this for a particular key by using PIMList.getInstance().isSupportedField or
by obtaining an array of all supported field keys using PIMList.getInstance().
getSupportedFields.

However, to actually read a value in a field, you need to use one of the following
PIMItem accessor methods in conjunction with the field key:

• getBinary: Returns the contents of a binary field as a byte [] given its field key and
the index to the nth datum of that type

• getDate: Returns the contents of a date field as a Date given its field key and the
index to the nth datum of that type

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 179

• getInt: Returns the contents of an integer field as an int given its field key and the
index to the nth datum of that type

• getString: Returns the contents of a string field as a String given its field key and
the index to the nth datum of that type

• getBoolean: Returns the contents of a boolean field as a boolean given its field key
and the index to the nth datum of that type

• getStringArray: Returns the contents of a string array field as a String [] given its
field key and the index to the nth datum of that type

For example, the code shown in Listing 7-5 returns the summary of a to-do item.

Listing 7-5. Returning the Summary of a To-Do Item

ToDoList list;

ToDo item;

// fetch item using an enumeration from PIMList

if (list.isSupportedField(ToDo.SUMMARY)) {

String summary = item.getString(ToDo.SUMMARY, 0);

// Do something with the summary

}

Each field can contain multiple entries for the same type, which is why you pass an
index to each of these accessor methods. For example, to enumerate over all phone num-
bers in a contact, you might write the code shown in Listing 7-6.

Listing 7-6. Enumerating Over Record Fields in a Contact

ContactList list;

Contact item;

int i=0;

// fetch item using an enumeration from PIMList

if (list.isSupportedField(Contact.TEL)) {

String phone;

phone = item.getString(Contact.TEL, i);

while(phone!=null) {

// Do something with the phone here.

i++;

phone = item.getString(Contact.TEL, i);

}

}

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA180

A datum for a field with multiple values such as Contact.TEL may have an attribute
indicating what kind it is. For example, a contact may have multiple telephone numbers,
one each for home, mobile, office, and fax phones. While you use the field index to obtain
each of these numbers, you use the attribute of a given field to determine which number
is which. You do this using the getAttributes method of a PIMItem instance, which returns
a bit mask of attributes for the given field and index, like so:

int attrs = item.getAttributes(Contact.TEL, i);

As I write this, attributes are only used for Contact items, and Table 7-4 shows the list
of attributes for Contact items. Of course, this may change in future versions of the PIM
package.

Table 7-4. Attributes of Contact Fields

Attribute Purpose

ATTR_ASST Field datum related to an administrative assistant

ATTR_AUTO Field datum related to auto

ATTR_FAX Field datum related to facsimile

ATTR_HOME Field datum related to home

ATTR_MOBILE Field datum related to mobile

ATTR_OTHER Field datum related to other information

ATTR_PAGER Field datum related to pager

ATTR_PREFERRED Field datum related to preferred contact (may only be on one datum)

ATTR_SMS Field datum related to SMS

ATTR_WORK Field datum related to work

Two fields—Contact.NAME and Contact.ADDR—return an array of strings. This is
because different implementations may have differing numbers of fields for a single
name or address. For example, does an address consist of one line for the street and one
for the suite or apartment, or two? Consequently, you can access each portion of these
fields as a single string within the returned array of strings. The Contact class provides
constants that let you index these arrays to obtain specific parts of a field, such as the
city, street, or postal code of an address. Table 7-5 shows the indexes you can use when
accessing elements of these String arrays. You can also determine the size of these arrays
by invoking a ContactList’s stringArraySize, passing either Contact.NAME or Contact.ADDR
to obtain the maximum number of permissible elements in either array.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 181

Table 7-5. Indexes into Contact Field String Arrays

Attribute Purpose

ADDR_COUNTRY Country part of address

ADDR_EXTRA Extra part of address

ADDR_LOCALITY Locality part of address

ADDR_POBOX Post office box part of address

ADDR_POSTALCODE Postal code part of address

ADDR_REGION Regional part of address

ADDR_STREET Street part of address

NAME_FAMILY Family name portion of name

NAME_GIVEN Given name portion of name

NAME_OTHER Other portion of name

NAME_PREFIX Prefix portion of name (i.e., Dr.)

NAME_SUFFIX Suffix portion of name (i.e., Jr.)

Modifying a PIM Record

Once you have a PIMItem in hand, you can change it. There are three kinds of changes you
might want to make:

• Add a datum to an existing field (e.g., add a new phone number to a contact with
existing phone numbers)

• Replace a datum within an existing field (e.g., replace an existing phone number
with new information)

• Remove a field entirely

In the first case, you use the PIMItem’s adder methods; in the second and third cases,
you use the PIMItem’s setter methods to do this.

The following adder methods are available:

• addBinary: Adds a new binary (byte[]) field datum

• addDate: Adds a new Date field datum

• addInt: Adds a new integer (int) field datum

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA182

• addString: Adds a new String field datum

• addBoolean: Adds a new boolean field datum

• addStringArray: Adds a new field datum consisting of an array of Strings

All of these methods take the field, attributes, and field datum you want to add to an
existing field.

The following setter methods are available:

• setBinary: Sets the value of a binary field

• setDate: Sets the value of a Date field

• setInt: Sets the value of an integer field

• setString: Sets the value of a String field

• setBoolean: Sets the value of a boolean field

• setStringArray: Sets the value of a field consisting of an array of Strings

When you invoke one of these methods, you pass the field you wish to add or
replace, the index, any attributes of the item, and the data to set.

Once you finish changing a PIMItem, you must invoke its commit method to write the
changes back to the PIM package’s record store.

Adding a PIM Record

Adding a new record is a three-step process:

1. Call the factory method in the PIMList interface subclass to create an empty record
of the desired type.

2. Invoke the various adder methods on the new record to populate it with the data.

3. Call commit to flush your changes to the PIM package’s record store.

The PIMList subclasses each define a factory method (createContact, createEvent,
or createToDo), which you must use to create an empty record in the application’s record
store. Once you do, you can fill out the fields of the resulting record and then simply flush
it to the store. Listing 7-7 shows how to create a new contact (omitting the obligatory
exception handling).

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 183

Listing 7-7. Creating a New Contact

ContactList list = (ContactList)

PIM.getInstance().openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE);

Contact c = list.createContact();

String [] name = new String[list.stringArraySize(Contact.NAME)];

name[Contact.NAME_GIVEN] = "Ray";

name[Contact.NAME_FAMILY] = "Rischpater";

c.addStringArray(Contact.NAME,Contact.ATTR_NONE,name);

c.commit();

Removing a PIM Entry

To remove a PIM entry, you must first have a reference to the corresponding PIMItem
item; you can get this reference with any of the enumeration methods described in the
previous section, “Reading Records from a PIM Database.” With the entry in hand, call
the appropriate remove method for the type of PIMList you’re managing. You call either
removeContact, removeEvent, or removeToDo, then pass the PIMEntry instance corresponding
to the item to be removed.

Note that there’s no method to remove all items in a list; to do this, you need to enu-
merate through the items in the list and remove each in turn.

Managing PIM Database Categories

Some devices support the ability to group items into categories, such as work and home
contacts. You can enumerate a PIMList’s categories using the getCategories method,
which returns a String array containing category names. If the result is a zero-length list,
either categories are not supported or there are no categories defined for the PIMList. You
can also test to see if a given string is used as a category name by invoking isCategory and
passing a string containing the name of the category you’d like to test.

You can add and remove categories using the addCategory and deleteCategory methods.
When adding a category, the category is only added if it does not exist already; you can’t
have two categories with the same name. This determination is made in a case-sensitive
way, although the underlying implementation may not be case sensitive. In a similar vein,
deleteCategory removes the category you name, although you must also pass a boolean indi-
cating whether you’d like to delete the items that were left unassigned to any category as a
result of removing that category. You can also rename a category, using the renameCategory
method; pass the current category name and the new category name (in that order).

Categories are typically used to limit the number of items that show in a list; you can
do the same programmatically using the PIMList’s itemsByCategory method, passing the
name of a category. In turn, you receive an Enumeration (possibly empty) of the PIMItems in
the category you specify.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA184

Putting the PIM Package to Work
Listing 7-8 shows a sample application that uses the PIM package. It performs two func-
tions: on launch, it inserts two entries into the contacts database, and when you press a
soft key, it lists the names of all the contacts in the contacts database.

■Note When running this sample application in the Sun emulator or as an unsigned application on a hand-
set, you’ll receive many requests by the AMS asking you for permission to perform each operation. This is
because the MIDlet requires privilege to use the PIM package in order to execute, and it must be packaged
as a signed application to avoid prompting the user before that privilege is used.

Listing 7-8. The PIM Package at Work

package com.apress.rischpater;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

import java.util.*;

import javax.microedition.pim.*;

public class PIMExample extends MIDlet implements CommandListener {

public PIMExample() {

try {

verifyPIMSupport();

seed();

}

catch (Exception ex) {

Form mForm = new Form("Exception");

mForm.append(new StringItem(null, ex.toString()));

Command mExitCommand = new Command("Exit", Command.EXIT, 0);

mForm.addCommand(mExitCommand);

mForm.setCommandListener(this);

return;

}

}

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 185

private Form helloForm;

private StringItem helloStringItem;

private Command exitCommand;

private List listContacts;

private Command okCommand1;

private void initialize() {

getDisplay().setCurrent(get_helloForm());

}

public void commandAction(Command command, Displayable displayable) {

if (displayable == helloForm) {

if (command == exitCommand) {

exitMIDlet();

} else if (command == okCommand1) {

getDisplay().setCurrent(get_listContacts());

}

}

}

public Display getDisplay() {

return Display.getDisplay(this);

}

public void exitMIDlet() {

getDisplay().setCurrent(null);

destroyApp(true);

notifyDestroyed();

}

public Form get_helloForm() {

if (helloForm == null) {

helloForm = new Form(null, new Item[] {get_helloStringItem()});

helloForm.addCommand(get_exitCommand());

helloForm.addCommand(get_okCommand1());

helloForm.setCommandListener(this);

}

return helloForm;

}

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA186

public StringItem get_helloStringItem() {

if (helloStringItem == null) {

helloStringItem = new StringItem("", "");

}

return helloStringItem;

}

public Command get_exitCommand() {

if (exitCommand == null) {

exitCommand = new Command("Exit", Command.EXIT, 1);

}

return exitCommand;

}

public List get_listContacts() {

if (listContacts == null) {

listContacts = new List(null, Choice.IMPLICIT,

new String[0], new Image[0]);

listContacts.setCommandListener(this);

listContacts.setSelectedFlags(new boolean[0]);

ContactLoaderThread t = new ContactLoaderThread(listContacts);

t.start();

}

return listContacts;

}

public Command get_okCommand1() {

if (okCommand1 == null) {

okCommand1 = new Command("Ok", Command.OK, 1);

}

return okCommand1;

}

public void startApp() {

initialize();

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 187

public void verifyPIMSupport() throws IOException {

String version = "";

version = System.getProperty("microedition.pim.version");

if (version != null) {

if (!version.equals("1.0"))

throw new IOException("Package is not version 1.0.");

}

else

throw new IOException("PIM optional package is not available.");

}

private ContactList list = null;

private void seed() throws PIMException {

try {

PIM pim = PIM.getInstance();

list = (ContactList)

pim.openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE);

}

catch (PIMException ex) { /* Contact list is not supported. */ }

addContact(list, "Ray", "Rischpater", "1234 High Street",

"Los Gatos", "USA", "95030");

addContact(list, "John", "Doe", "1111 Bear Road",

"Mariposa", "USA", "9????");

if (list != null)

list.close();

list = null;

}

private void addContact(ContactList list, String firstName,

String lastName, String street, String city,

String country, String postalcode)

throws PIMException {

Contact c = list.createContact();

String [] name = new String[list.stringArraySize(Contact.NAME)];

name[Contact.NAME_GIVEN] = firstName;

name[Contact.NAME_FAMILY] = lastName;

c.addStringArray(Contact.NAME, Contact.ATTR_NONE, name);

String [] addr = new String[list.stringArraySize(Contact.ADDR)];

addr[Contact.ADDR_STREET] = street;

addr[Contact.ADDR_LOCALITY] = city;

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA188

addr[Contact.ADDR_COUNTRY] = country;

addr[Contact.ADDR_POSTALCODE] = street;

c.addStringArray(Contact.ADDR, Contact.ATTR_NONE, addr);

c.commit();

}

}

Most of this is boilerplate autogenerated by NetBeans; the stuff you’re interested in is
invoked by the constructor: verifyPIMSupport, addContact, seed, and get_listContacts. The
constructor simply verifies support for the PIM package and invokes seed to add new
contacts to the database, creating and showing an error form if either method throws an
exception. Speaking of throwing exceptions, verifyPIMSupport does just that if it can’t find
the PIM package, or if the PIM package supported by the device isn’t the version that the
application expects (version 1.0).

The seed method creates two contacts by opening the PIM instance and obtaining a
ContactList to which it adds each of two statically defined contacts. This is handy code
to have around, because with it you can test your own PIM code directly in the emulator
as necessary. The addContact method uses the ContactList’s createContact method to cre-
ate an empty contact, and then adds the fields to the contact using the Contact.NAME and
Contact.ADDR fields.

The get_listContacts method is interesting, if only because it uses a separate thread
to read the contacts from the database. While you can do this synchronously, I find that
multithreading this operation leads to better behavior in the emulator; Listing 7-9 shows
the resulting ContactLoaderThread class.

Listing 7-9. Populating a List with Contacts Using the ContactLoaderThread

package com.apress.rischpater;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.io.*;

import java.util.*;

import javax.microedition.pim.*;

public class ContactLoaderThread extends Thread {

List list;

public ContactLoaderThread(List l) {

list = l;

}

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 189

public void run() {

try {

PIM pim = PIM.getInstance();

ContactList contList = (ContactList)

pim.openPIMList(PIM.CONTACT_LIST, PIM.READ_ONLY);

Enumeration contacts = contList.items();

while(contacts.hasMoreElements()) {

Contact c = (Contact) contacts.nextElement();

String [] nameValues = c.getStringArray(Contact.NAME, 0);

String firstName = nameValues[Contact.NAME_GIVEN];

String lastName = nameValues[Contact.NAME_FAMILY];

list.append(lastName + ", " + firstName, null);

}

}

catch(Exception ex) {}

}

}

The class in Listing 7-9 is simple, too—its run method simply iterates over each
Contact in the open ContactList, getting the first and last names of each item and
appending them to the List instance passed by the calling thread. The code expressly
catches exceptions but does nothing with the exceptions; a real-world application
would probably navigate to yet another Form to show an error.

Understanding the Role Code Signing and
Verification Can Play
As you might imagine, a rogue application can do some real damage using the interfaces
described in this chapter. While not all Java ME implementations open up access to the
entire file system and applications suites—device vendors are free to expose only a por-
tion of the file system, keeping protected files such as those representing system or
network access settings hidden from all Java ME applications—the file system space
accessible via the FCOP is typically shared among multiple Java ME applications as well
as potential system applications. A rogue application (either accidental or by design)
consuming file system space willy-nilly or deleting files or PIM records belonging to other
applications could cause no end of grief for a device user.

To help protect against this, most device manufacturers and carriers only support
access to the interfaces in JSR 75 within applications that have been signed in some
way (see the “Marketing and Selling Your Application” section in Chapter 1 and the
“Packaging and Executing CLDC/MIDP Applications” section in Chapter 3). Code
signing ensures that only those applications trusted by the operator (and by extension,

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA190

the user) have access to handset data. Obtaining this trust is typically a matter of third-
party certification prior to distribution. While not perfect—of course, it’s possible that
even a well-crafted application might have a defect that results in improper data access
despite passing certification tests—such a scenario is far less likely than in an
untrusted computing environment.

Typically, devices distributed by a network operator impose signing requirements for
a number of APIs, including file system (and PIM) access. The signing requirements are
often hierarchical, and for full access, you may need to distribute your application on the
network operator’s deck, requiring a business arrangement between your firm and the
network operator. Consequently, even if a device supports these APIs, they may not be
commercially available to your users on some devices.

Wrapping Up
Although not available on every Java ME device, JSR 75 defines two packages for access-
ing existing data outside the Java sandbox. The FCOP, building atop the GCF, lets you
access and manage files on internal and removable file systems. You access files and
directories for reading and writing using the Connector class, and then use the resulting
FileConnection instance to open the file or perform directory-level actions such as creat-
ing new files or directories or removing existing files or directories. Using the
FileConnection, you can also obtain InputStream and OutputStream instances for your file,
letting you read and write data from files on the file system. You can also listen for
changes to the file system that notify your application when removable media is inserted
or removed, letting your application respond to file system change events.

The PIM package, also defined by JSR 75, provides a set of abstract interfaces that let
you access contact, event, and to-do databases. Using the PIM class, you access a single-
ton that then lets you open PIM databases—represented by the PIMList interface—and
enumerate native database records in each of these applications. The resulting records
are represented as PIMItem objects, which consist of fields you access by enumerated key
via getters and setters.

CHAPTER 7 ■ ACCESSING F ILES AND OTHER DATA 191

Using the Java Mobile
Game API

Gaming—especially casual gaming—has become big business for the mobile market.
Today’s high-end cell phones rival portable game consoles in terms of both raw process-
ing horsepower and display fidelity; even low-end consumer phones can support many
kinds of games, as they often have computational characteristics equivalent to a PC from
only a handful of years ago. Java ME rises to the challenge quite handily, offering a robust
API for developing 2D games as part of MIDP 2.0.

In this chapter, I show you the classes that make up the Java Mobile Game API found
in MIDP 2.0 and beyond. I show you how to manage events and drawing, including how
to optimize your code to poll for keystrokes. I explain how to structure the graphics in
your game around layers using Java ME’s support for layers, tilings, and sprites, and how
to manage your game in the context of a single primary game loop. Finally, I close with a
brief example that ties all this together, showing you how to create a simple game anima-
tion using the API.

Looking Inside the Mobile Game API
While you could write games using the Java ME classes you’ve learned about so far—
many developers did, back in the days of MIDP 1.0—doing so is a lot of work. Typically,
you’d subclass Canvas, use double buffering to avoid drawing flicker, and work carefully
with one or more threads to control the various aspects of your game. You’d likely want to
build your own display manager that would let you create game levels as collections of
tiles, perhaps adding simple sprite animation. Fortunately, you get all this for free in
MIDP 2.0 and beyond, and a few other things besides (see Figure 8-1).

193

C H A P T E R 8

Figure 8-1. The classes in the Mobile Game API included in Java MIDP 2.0 and beyond

Five classes make up the Mobile Game API:

• GameCanvas: A subclass of Canvas used for accepting keystroke events and visually
containing your game

• LayerManager: A class responsible for presenting visible layers on the screen and
maintaining their Z-order

• Layer: An abstract class describing how a layer to be displayed on the screen should
behave

• TiledLayer: An implementation of Layer suited for displaying large bitmaps made
up of regular repeating regions called tiles

• Sprite: An implementation of Layer suited for animation of a set of bitmaps
according to an object’s state

The javax.microedition.lcdui.game package contains all of these classes.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API194

Managing Events and Drawing
The GameCanvas class provides a basis for your game’s visual display, including all of
the capabilities of the Canvas class (see Chapter 5, especially the section “Working
with the Canvas and Custom Items”). The class provides interfaces for managing the
following events:

• Event handling: You can continue to receive key and pointer events to control your
application. As you’ll soon see, you can also poll for key events, which is handy if
you’re within your game’s control loop.

• Command handling: GameCanvas ultimately inherits from Displayable, so you
inherit all the methods pertaining to the Command infrastructure, including
addCommand, removeCommand, and setCommandListener. In practice, you won’t use this
often, as raw keystrokes become the usual means for controlling a game.

• Drawing: Your GameCanvas can implement paint, which is responsible for painting
the display. However, as you’ll soon see, it may be more advantageous to do your
painting within your game’s control loop instead.

The GameCanvas has several additional features. First, GameCanvas has its own screen
buffer associated with it. GameCanvas subclasses are assured that the only thing that can
draw to a GameCanvas buffer is the Graphics objects obtained directly from that canvas,
without interference from other controls, MIDlets, or the system. With this buffer comes
added responsibility; as graphics buffers can be large, you should be conservative when
you allocate GameCanvas objects, and reuse them whenever possible.

Second, when you create a GameCanvas subclass, you have the option of indicating
whether you want the system to dispatch key events to the canvas, or whether you
want to poll the system for key states. This is a key way to optimize your application; if
your application has a central control loop, it is usually faster to poll for key state
changes during your event loop instead of responding to key events and updating the
game state, because it saves you the overhead of a method dispatch and the complexity
of tracking control state in your event handler and responding to changes in state in
your control loop.

Finally, because your application owns its display buffer, it can draw to the buffer at
any time. Now, this isn’t a call to generating graphics operations willy-nilly; such a style
can hurt game performance. However, it does invite a style of programming more famil-
iar to game programmers of yore, in which a central control loop running on its own
thread is responsible for updating game state and redrawing the display.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 195

Polling for Keystrokes

Polling for keystrokes is easy: simply use the getKeyStates method. This method returns
a bitmask of the pressed key values shown defined in the GameCanvas class in Table 8-1;
you can simply use & to mask off the flag for the key whose state you seek. Not all of
these keys are available on all devices; for example, many phones don’t include hard-
ware to generate the GAME_A–GAME_D events.

Table 8-1. Keys Available via getKeyStates

Value Typical Action

KEY_NUM0–KEY_NUM9 Numeric keypad keys 0–9

KEY_POUND # key

KEY_STAR * key

LEFT Left directional key

RIGHT Right directional key

UP Up directional key

DOWN Down directional key

FIRE OK or center directional key

GAME_A, GAME_B, GAME_C, GAME_D Custom game keys

■Caution As I point out in Chapter 5, not all devices provide all key codes, and some devices map
multiple key codes to the same key. When writing your application, be sure to abstract the key code from
the behavior it embodies using a lookup table or switch-case statement so you can accommodate this.

Of course, if you’re polling for key state, you don’t want to receive key events as
well, so you should pass true to your GameCanvas’ super invocation to indicate that
event handling should be disabled. For example, in my game, I might write something
like what’s shown in Listing 8-1.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API196

Listing 8-1. Polling for Key States

public class MyGameCanvas

extends GameCanvas {

Sprite cat;

public MyGameCanvas () {

super(true);

/* Do other setup here */

}

private void moveCat() {

int keyStates = getKeyStates();

int x, y;

x = cat.getX();

y = cat.getY();

if ((keyStates & LEFT_PRESSED) != 0) {

x-=cat.getWidth()/4;

}

if ((keyStates & RIGHT_PRESSED) != 0) {

x+=cat.getWidth()/4;

}

if ((keyStates & UP_PRESSED) != 0) {

y-=cat.getHeight()/4;

}

if ((keyStates & DOWN_PRESSED) != 0) {

y+=cat.getHeight(){/4;

}

cat.setPosition(x,y);

}

/* The rest of the canvas's implementation */

}

Managing Game Execution

Polling for events is all well and good, but just where do you poll for events? You poll in
the game’s control loop, which is a separate thread that you can usually implement in the
same class as your GameCanvas, as shown in Listing 8-2.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 197

Listing 8-2. Implementing the Game’s Control Loop in GameCanvas

public class MyGameCanvas

extends GameCanvas

implements Runnable {

Sprite cat;

public MyGameCanvas () {

super(true);

/* Do other setup here */

}

private void moveCat() {

int keyStates = getKeyStates();

int x, y;

x = cat.getX();

y = cat.getY();

if ((keyStates & LEFT_PRESSED) != 0) {

x-=cat.getWidth()/4;

}

if ((keyStates & RIGHT_PRESSED) != 0) {

x+=cat.getWidth()/4;

}

if ((keyStates & UP_PRESSED) != 0) {

y-=cat.getHeight()/4;

}

if ((keyStates & DOWN_PRESSED) != 0) {

y+=cat.getHeight()/4;

}

cat.setPosition(x,y);

}

private final int DELAYMS = 100;

public void start() {

Thread t = new Thread(this);

t.start();

}

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API198

public void run() {

Graphics g = getGraphics();

while(true) {

updateGameState(); // move computer controlled characters

moveCat(); // poll for events, move main character

doPaint(); // paint screen

try {

Thread.sleep(DELAYMS);

}

catch(InterruptedException ex) {}

}

}

}

In this more-than-pseudocode, less-than-a-game, the polling occurs in the moveCat
method I showed you in the previous section. Once the thread is started, the thread
updates the game’s characters, polls the keys, and repaints the screen every DELAYMS (100
milliseconds). The updateGameState and doPaint methods aren’t defined yet, of course—
more on them as we continue to explore the API.

Tying Your GameCanvas to Your MIDlet

As you remember from the discussion of the Canvas class in Chapter 5, it and its sub-
classes implement Displayable, meaning you can set the GameCanvas subclass to be the
active Displayable using the Display’s setCurrent method, as shown in Listing 8-3.

Listing 8-3. Setting the GameCanvas to Be the Active Displayable

public class GameCanvasSampleMIDlet extends MIDlet {

private MyGameCanvas canvas;

public GameCanvasSampleMIDlet () {

}

private void initialize() {

canvas = new MyGameCanvas();

getDisplay().setCurrent(canvas);

canvas.start();

}

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 199

public void exitMIDlet() {

canvas=null;

getDisplay().setCurrent(null);

destroyApp(true);

notifyDestroyed();

}

public void startApp() {

initialize();

}

public Display getDisplay() {

return Display.getDisplay(this);

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

Here, the MIDlet’s entry point calls initialize, which in turn creates the MyGameCanvas
and sets the display’s Displayable to the new MyGameCanvas instance before starting its
game loop.

This—creating a GameCanvas subclass that implements Runnable for its game loop,
setting the GameCanvas to be the current Displayable, and starting the game loop—is at the
heart of any MIDP 2.0–based game application.

Layering Visual Elements
While the introduction of the GameCanvas with its support for key polling, double-buffered
graphics, and the game loop is an important advancement in game programming for
Java ME, that’s only half the story. The Layer class hierarchy and the related LayerManager
greatly simplify how you handle graphics in your game.

A Layer is an abstract class representing a visible element of a game. Layers must
know how to paint themselves, as well as track their position and visibility. You can
perform the following operations on a Layer:

• Obtain its position on the canvas using the getX and getY methods.

• Obtain its width and height using the getWidth and getHeight methods.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API200

• Determine (and set) whether or not the Layer is visible using the isVisible and
setVisible methods.

• Set its position (either by offset or absolute positioning relative to the Graphics
object responsible for painting the object) using the move and setPosition methods.

The Layer itself is interesting, but it’s not as interesting as the TiledLayer and Sprite
subclasses, which provide concrete implementations of Layer.

You use the TiledLayer to present large images consisting of small regular repeating
bitmaps, or tiles. The TiledLayer is good for providing game backgrounds as well as inter-
mediate layers. A TiledLayer instance divides a large region into cells, each of which is
assigned a tile, a subimage from within the TiledLayer’s Image instance.

While you use the TiledLayer for large static objects, you use the Sprite for smaller
animated objects. Like a TiledLayer, a Sprite takes an image that gets divided up into
smaller images, called frames. Unlike a TiledLayer, a Sprite displays a single frame at
its location, letting you choose which frame should be displayed. Sprite instances can
transform the frame they’re displaying through rotation or mirror flipping, giving you
the ability to specify various appearances of an animated item using only a handful
of frames.

The various layers are tied together using the LayerManager class, which maintains
an ordered list of the Layers it must draw. This ordered list provides Z-ordering for the
frames; the first item in the list (at index 0) is closest to the user. Using the methods of
the LayerManager, you can add and remove layers from this list, as well as repaint the
individual Layers.

Managing Layers

The LayerManager’s primary responsibility is to help you keep the Layers in your game
organized. To do this, the LayerManager encapsulates a list of Layers and provides a view
window that defines the size of the visible region of the Layers and the visible region’s
position relative to the LayerManager’s coordinate system. By panning the view window,
you can pan the display across a collection of layers, creating a viewable window that
scrolls in any direction over the game world. You do this using the setViewWindow method,
passing the bounds (e.g., left, top, width, height) of the view window. For example, to
scroll right, simply move the view window to the right (increment the x coordinate when
invoking setViewWindow). Often, you want to coordinate this behavior with the movement
of the user character’s Sprite, so that the game world visible corresponds to the immedi-
ate surroundings of the user.

The majority of the LayerManager methods correspond to actions you can take on the
LayerManager’s list of Layers, as follows:

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 201

• append: Takes a Layer and places it at the end of the LayerManager’s list

• insert: Takes a Layer and an index and inserts the Layer at that index in the
LayerManager’s list, sliding subsequent Layers behind the inserted Layer

• getLayerAt: Takes an index and returns the Layer at that index

• remove: Takes a Layer and removes that Layer from the LayerManager’s list

• getSize: Returns the number of Layers in the LayerManager’s list

■Caution Remember that the order in which you add items to the LayerManager’s list determines the
Z-order for drawing, and the front-most item is at index 0—the first item you add to the list! It’s not uncom-
mon to build your list of Layers, only to find that the background is the only thing visible, because you built
your list in the reverse order.

You also use the LayerManager to present the contents of its list to the user on the
display by invoking its paint method. When you invoke paint, the LayerManager renders
each of its layers in order of descending index, implementing the Z-order promised by
the interface. The paint method takes the Graphics instance to use when rendering the
Layers in the list, and the offset in the Graphics instance where drawing should take place.
You use the setViewWindow method to set the clipping region that the LayerManager uses.

■Tip The LayerManager.paint method is optimized; it won’t render items that are completely outside
the Graphics clipping region. Thus, if you create a custom Layer subclass and implement the paint
method, you should be aware that the paint method is only invoked if there’s something to paint.

Optimizing Visual Layers Using Tiling

Most games have at least one visual component that can consist of regularly repeating
bitmaps, such as the background for a game level. For example, consider Figure 8-2,
which shows an eight-by-eight-tile grid for a game board made up of three tiles.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API202

Figure 8-2. The three tiles shown in (a) make up the tile image shown in (b), which is used
repeatedly to create the tiled region in shown in (c).

As you can see in Figure 8-2(a), each tile must have the same width and height.
You can combine these tiles in a number of ways, as shown in the strip in Figure 8-2(b),
so that each tile makes up one portion of an Image object. Finally, you can use multiple
tiles in succession to create a larger image—such as a game background—as you see in
Figure 8-2(c).

The TiledLayer class takes an image consisting of unique tiles, such as that shown in
Figure 8-2(b), and a set of indexes you provide into the Image object, and fills the cells of
an image with the tiles at each index. These indexes begin with the number 1, indicating
the tile at the upper-left corner of the image, and increment working left to right and top
to bottom across the image you provide.

For example, you can compose Figure 8-2(c) using the Image in Figure 8-2(b) and the
indexes into that image in Listing 8-4.

Listing 8-4. The Array of Indexes into the Tiles That Form the Image

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 2, 1, 1, 1, 1, 1,

1, 1, 1, 1, 3, 1, 1, 1,

1, 2, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 2, 1,

1, 1, 1, 3, 1, 1, 1, 1,

1, 1, 1, 1, 1, 3, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1

Each cell of a TiledLayer image can either be a single tile in the source bitmap or be
transparent, letting the layers behind the TiledLayer show through.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 203

A TiledLayer’s constructor takes everything necessary to create the TiledLayer image
except the array of cell indexes, which you pass to its setCell method. Thus, to create a
TiledLayer, you provide the following:

• The number of columns and rows in the tile image

• The image of tiles

• The width of a single tile in the image of tiles

• The height of a single tile in the image of tiles

For example, to create the TiledLayer used to draw the image in Figure 8-2(c), you
would write something like the code shown in Listing 8-5.

Listing 8-5. Creating the TiledLayer

Image boardImage = Image.createImage(imageName);

private final int tileWidth = 16, tileHeight = 16;

private final int cellsWidth = 8, cellsHeight = 8;

board = new TiledLayer(cellsWidth, cellsHeight, boardImage, tileWidth, tileHeight);

Once you create the TiledLayer, you need to set the index of the image of each cell in
the TiledLayer to the index of the tile in the tile bitmap. You do this using the setCell
method, passing the coordinates of the cell you want to set and the index of the tile in the
tile image, as shown in Listing 8-6.

Listing 8-6. Using the setCell Method

int[] map = {

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 2, 1, 1, 1, 1, 1,

1, 1, 1, 1, 3, 1, 1, 1,

1, 2, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 2, 1,

1, 1, 1, 3, 1, 1, 1, 1,

1, 1, 1, 1, 1, 3, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1

};

for(int i = 0; i < map.length; i++) {

int x = i % cellsWidth;

int y = i / cellsHeight;

board.setCell(x, y, map[i]);

}

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API204

Tiles within a TiledLayer can be animated; that is, they can rotate through differ-
ent tiles in succession—for example, when the illusion of moving water is desired.
To do this, you need only denote each of the animated tiles as animated using the
createAnimatedTile method and passing the index of the animated tile frame. The
createAnimatedTile method returns a negative number, which you use when setting
cell values using setCell. In turn, you can change all animated tiles of a given index to
a different animated tile by invoking the setAnimatedTile method and passing the
index of the original tiles to change and the index that they should be changed to.

Producing Animations

While the TiledLayer class is appropriate for creating large visible areas (perhaps with
rudimentary animation within the visible area), the Sprite class is best used for small
objects consisting of one or more bitmaps. You can animate Sprite objects by cycling
through separate animation frames. Like the TiledLayer, these frames are given to a
Sprite as a single Image object consisting of multiple frames, each with a constant
width and height. Figure 8-3(a) shows the three frames of an animated butterfly, while
Figure 8-3(b) shows one way you can composite those frames into a three-frame ani-
mation’s source Image.

Figure 8-3. As shown in (a), three frames make up the animation; in (b), these are combined
into a single Image instance to pass to the Sprite class.

■Tip Transparency in the source Image is indicated in the usual way, such as by using the alpha channel
of a PNG file.

Each frame is assigned a unique index; unlike tiles for a TileLayer, the Sprite class
counts frames starting at 0. Subsequent indexes are assigned from left to right and top to
bottom. For example, to create a Sprite instance corresponding to the animation consist-
ing of the frames in Figure 8-3(a), you might write the code shown in Listing 8-7.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 205

Listing 8-7. Creating a Sprite Instance

private final int tileWidth = 16, tileHeight = 16;

Image image = Image.createImage(imageName);

Sprite butterfly = new Sprite(image, tileWidth, tileHeight);

Every Sprite has a frame sequence that defines an ordered list of frames to be dis-
played. By default, this is simply the order of the list of available frames. You can explicitly
set this sequence using the method setFrameSequence, which takes an array of frame
indexes, as shown in Listing 8-8.

Listing 8-8. Setting the Frame Sequence

private static final int[] flightSequence = {

0, 1, 2, 2, 1, 0};

butterfly.setFrameSequence(flightSequence);

At any time, you can change which frame the Sprite will draw using any one of the
methods setFrame, prevFrame, or nextFrame.

■Tip Remember that setFrame, prevFrame, and nextFrame deal with indexes into the frame sequence,
not the image of frames!

Each Sprite instance has a reference pixel that indicates the location from which
the Sprite will draw its frame. By default, this is simply the upper left-hand corner of
the frame, but you can change this position using the defineReferencePixel, passing the
x and y coordinates of the new reference pixel. Reference pixels are especially handy
when you consider that the Sprite class can apply various visual transformations to the
frames that make up the Sprite. These transforms include rotations in multiples of 90°
and mirroring around the vertical axis of each of these rotations. When the Sprite class
applies a transformation, the Sprite is automatically repositioned so that the reference
pixel appears stationary; for example, rotation occurs about the reference pixel. You
can apply a transformation to a Sprite using the setTransform method, passing one of
the constants shown in Table 8-2.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API206

Table 8-2. The Various Transformations You Can Apply to a Sprite’s Frames

Constant Action

Sprite.TRANS_NONE No translation

Sprite.TRANS_ROT180 Rotate 180° about reference pixel

Sprite.TRANS_MIRROR Horizontal mirror about the reference pixel

Sprite.TRANS_MIRROR_ROT180 Rotate 180° about reference pixel, then horizontal mirror
about reference pixel

Sprite.TRANS_ROT90 Rotate 90° clockwise about reference pixel

Sprite.TRANS_MIRROR_ROT90 Horizontal mirror about the reference pixel, then rotate 90°
clockwise

Sprite.TRANS_MIRROR_ROT270 Horizontal mirror about the reference pixel, then rotate 90°
counterclockwise

Sprite.ROT270 Rotate 90° counterclockwise about reference pixel

Finally, the Sprite class provides collision detection using the collidesWith method,
checking to see if two Sprite instances (or a Sprite and an Image) collide. The Sprite class
can run this collision test using either the rectangle of the frame image or the opaque
pixels in the frame (which is a trifle slower); simply pass true if you want pixel-by-pixel
collision detection. Using the collidesWith method can simplify your game, as you don’t
need to perform your own collision detection.

Putting the Mobile Game API to Work
Although writing a full game is beyond the scope of this chapter, it’s instructive to see
all of these pieces together in a full example. Figure 8-4 shows a simple game using the
Mobile Game API that lets you move a cat about with the directional pad, chasing the
moving butterflies. When the cat touches a butterfly, the handset’s backlight flashes and
the handset vibrates.

The application has two classes: one is responsible for implementing the MIDlet
interface, and the other is a GameCanvas subclass that implements the game behavior
itself. In addition, the MIDlet contains the artwork for the game, as shown in Listing 8-9.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 207

Figure 8-4. A simple game using the Mobile Game API

Listing 8-9. The MIDlet Contents

src/

com/

apress/

rischpater/

SpriteCanvas.java

SpriteSampleMIDlet.java

res/

butterfly-sprite.png

cat.png

ground-tiles.png

Let’s look at each of these classes in more detail.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API208

Implementing the Game MIDlet

The MIDlet itself is trivial: on launch, all it needs to do is create an instance of the custom
canvas, set the new instance to be the current Displayable, and start the game thread. On
termination, it should null out the canvas instance, set the current displayable to null,
destroy itself, and notify the runtime that the MIDlet should be destroyed, as you see in
Listing 8-10.

Listing 8-10. The SpriteSampleMIDlet Class

package com.apress.rischpater;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class SpriteSampleMIDlet extends MIDlet {

private SpriteCanvas canvas;

public SpriteSampleMIDlet() {

}

private void initialize() {

if (canvas==null) {

try {

canvas = new SpriteCanvas(getDisplay());

getDisplay().setCurrent(canvas);

canvas.start();

}

catch(Exception ex) {}

} else {

canvas.setPaused(false);

}

}

public Display getDisplay() {

return Display.getDisplay(this);

}

public void exitMIDlet() {

destroyApp(true);

notifyDestroyed();

}

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 209

public void startApp() {

initialize();

}

public void pauseApp() {

canvas.setPaused(true);

}

public void destroyApp(boolean unconditional) {

canvas=null;

getDisplay().setCurrent(null);

}

}

This is straightforward code, especially if you already understand the life cycle of a
MIDlet. The only other work this MIDlet class does is in pauseApp, where the MIDlet
instructs the game canvas to pause game play by setting the game pause state to true.
Game play is resumed when the MIDlet receives a new startApp invocation; if the game
canvas already exists, the application will resume game play by setting the game pause
state to false.

Implementing the Game Canvas

If the SpriteSampleMIDlet class is simple, the game canvas is only a little more complicated.
This is due to the work in setting up the visible layers and the game loop. Listing 8-11 shows
the SpriteCanvas class that extends the GameCanvas class and implements the game canvas
and loop.

Listing 8-11. The SpriteCanvas Class

package com.apress.rischpater;

import javax.microedition.lcdui.*;

import javax.microedition.lcdui.game.*;

import java.io.IOException;

import java.util.Random;

public class SpriteCanvas

extends GameCanvas

implements Runnable {

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API210

private final int DELAYMS=75;

private boolean paused;

private Random random;

private Display display;

private LayerManager layers;

private TiledLayer board;

private Sprite[] butterfly;

private Sprite cat;

int[] map = {

1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 2, 1, 1, 1, 1, 1,

1, 1, 1, 1, 3, 1, 1, 1,

1, 2, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 2, 1,

1, 1, 1, 3, 1, 1, 1, 1,

1, 1, 1, 1, 1, 3, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1 };

private static final int[] flightSequence = {

0, 1, 2, 2, 1, 0 };

private final int tileWidth = 16, tileHeight = 16;

private final int boardWidth = 8, boardHeight = 8;

public SpriteCanvas(Display d)

throws IOException {

super(true);

display = d;

random = new Random();

layers = new LayerManager();

layers.setViewWindow(-(getWidth()-boardWidth*tileWidth)/2,

-(getHeight()-boardHeight*tileHeight)/2,

2* boardWidth*tileWidth, 2*boardHeight*tileHeight);

createButterflies("/res/butterfly-sprite.png");

createCat("/res/cat.png");

createBoard("/res/ground-tiles.png");

}

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 211

private void createBoard(String imageName)

throws IOException {

Image boardImage = Image.createImage(imageName);

board = new TiledLayer(boardWidth, boardHeight,

boardImage, tileWidth, tileHeight);

for(int i = 0; i < map.length; i++) {

int x = i % boardWidth;

int y = i / boardHeight;

board.setCell(x, y, map[i]);

}

layers.append(board);

}

private void createButterflies(String imageName)

throws IOException {

Image image = Image.createImage(imageName);

int x, y, i;

butterfly = new Sprite[2];

for (i=0; i<butterfly.length; i++) {

butterfly[i] = new Sprite(image, tileWidth, tileHeight);

x = random.nextInt(boardWidth)*tileWidth;

y = random.nextInt(boardHeight)*tileHeight;

butterfly[i].setPosition(x,y);

butterfly[i].defineReferencePixel(0,0);

butterfly[i].setTransform(Sprite.TRANS_NONE);

butterfly[i].setFrameSequence(flightSequence);

butterfly[i].setFrame(i % 3);

layers.append(butterfly[i]);

}

}

private void createCat(String imageName)

throws IOException {

Image image = Image.createImage(imageName);

int x, y;

int i;

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API212

x = random.nextInt(boardWidth)*tileWidth;

y = random.nextInt(boardHeight)*tileHeight;

cat = new Sprite(image, tileWidth, tileHeight);

cat.setPosition(x,y);

cat.defineReferencePixel(0,0);

cat.setTransform(Sprite.TRANS_NONE);

cat.setFrame(0);

layers.append(cat);

}

public void start() {

Thread thread = new Thread(this);

thread.start();

paused=false;

}

private void detectCollisions() {

int i;

for (i=0; i<butterfly.length; i++) {

if (cat.collidesWith(butterfly[i],true)) {

display.flashBacklight(100);

display.vibrate(100);

}

}

}

public void run() {

Graphics g = getGraphics();

while(true) {

try {

moveCat();

moveButterflies();

detectCollisions();

layers.paint(g, 0, 0);

flushGraphics();

Thread.sleep(DELAYMS);

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 213

synchronized(this) {

while (paused) {

wait();

}

}

}

catch(InterruptedException ex) {}

}

}

public void setPaused(boolean b)

{

synchronized(this) {

paused = b;

notify();

}

}

private void moveCat() {

int keyStates = getKeyStates();

int x, y;

x = cat.getX();

y = cat.getY();

if ((keyStates & LEFT_PRESSED) != 0) {

x -= cat.getWidth()/4;

}

if ((keyStates & RIGHT_PRESSED) != 0) {

x += cat.getWidth()/4;

}

if ((keyStates & UP_PRESSED) != 0) {

y -= cat.getHeight()/4;

}

if ((keyStates & DOWN_PRESSED) != 0) {

y += cat.getHeight()/4;

}

if (x < 0) x = 0;

if (y < 0) y = 0;

if (x > board.getWidth() - cat.getWidth())

x = board.getWidth() - cat.getWidth();

if (y > board.getHeight() - cat.getHeight())

y = board.getHeight() - cat.getHeight();

cat.setPosition(x,y);

}

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API214

private void moveButterflies() {

int dir;

int i;

int x, y, width, height;

for (i=0; i<butterfly.length; i++) {

dir = random.nextInt(9) + 1;

x = butterfly[i].getX();

y = butterfly[i].getY();

width = butterfly[i].getWidth();

height = butterfly[i].getHeight();

switch(dir)

{

/* 7 8 9

4 5 6

1 2 3 */

case 1:

x -= width/2;

y += height/2;

break;

case 2:

y += height/2;

break;

case 3:

x += width/2;

y += height/2;

break;

case 4:

x -= width/2;

break;

case 5:

break;

case 6:

x += width/2;

break;

case 7:

x -= width/2;

y -= height/2;

break;

case 8:

y -= height/2;

break;

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 215

case 9:

x += width/2;

y -= height/2;

break;

}

// Clip coordinates

if (x < 0) x = 0;

if (y < 0) y = 0;

if (x > board.getWidth() - width)

x = board.getWidth() - width;

if (y > board.getHeight() - height)

y = board.getHeight() - height;

butterfly[i].setPosition(x,y);

butterfly[i].nextFrame();

}

}

}

Broadly speaking, the SpriteCanvas class methods can be broken up into three groups:

• Game setup: This is the responsibility of the constructor and the helper methods
createButterflies, createCat, and createBoard.

• Game play: This is the responsibility of the game loop; it includes polling for
keystrokes and moving nonplayer characters.

• Handling pause and resume events: In the event of a state change (say, due to an
incoming call), the SpriteCanvas must pause game play. The MIDlet triggers this by
invoking the setPaused method.

The constructor begins by invoking the GameCanvas constructor, indicating that this
GameCanvas subclass will poll for keystrokes rather than receive keystroke events. Next, it
caches aside the display its creator gives it, and it creates a new instance of Random used by
the nonplayer characters. Finally, it creates and initializes the LayerManager (the skulldug-
gery with the view window ensures that the game board will be centered in the display)
and the various layers shown by the game. Note that the method creates the various lay-
ers in Z-order, with the butterflies closest to the user; this is because each creation
routine adds the resulting Layer to the LayerManager.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API216

The createBoard method creates an Image containing the tiles used to create the game
background, and then it creates a TiledLayer, setting the cells in the TiledLayer to the tiles
indicated by map. In a real game, this would be more complex, invoking a level loader that
would load a specific game level from the game’s resources, but the principle is essentially
the same. Once the code initializes the TiledLayer, it adds it to the LayerManager.

The createButterflies method creates two butterflies by first loading the frame Image
used in the butterflies’ animation and then creating each butterfly Sprite in turn. For
each butterfly Sprite, the code must select a random starting position for the butterfly,
initialize the frame sequence (which shows how the butterfly’s animation moves through
the sequence of frames) and start the butterfly at a different frame than the previous but-
terfly. Once the method creates and initializes each butterfly Sprite, it adds it to the
LayerManager. The createCat method is similar, except that the cat has no animation
frames, so it omits the process of setting the frame sequence.

The game loop—started by the start method—must manage the movement of
the cat and butterflies, detect any collisions between these characters, and redraw the
screen. The run method accomplishes this work, together with the helper methods
moveCat, moveButterflies, and detectCollisions. Finally, the game loop waits on the
paused variable if paused is true, giving the MIDlet a way to pause the game.

The moveCat method begins by polling for keystrokes and testing for the directional
keys. For each directional key pressed, the code incrementally shifts the cat’s position;
when all key combinations have been tested, the code checks to ensure the cat is still on
the game board before setting the cat’s position.

The moveButterflies method works similarly, with two differences. First, butterflies
move randomly; second, moveButterflies must move all butterflies. It does so using a
simple loop. Of course, this method and moveCat could be refactored to use a separate
helper function, but I chose not to in order to keep the responsibilities of each method
clear. In a more sophisticated game, this behavior might well be delegated to whole
classes implementing the behavior of characters.

The code for detectCollisions delegates detecting collisions to the Sprite cat using
its collidesWith method and passing each butterfly Sprite in turn. When cat detects a
collision, the code uses the Display instance passed to the canvas’s constructor to flash
the backlight and vibrate the handset.

The game’s main loop manages game pause and resume actions through the
setPaused mutator, its associated paused variable, and Java’s thread synchronization.
When the member variable paused is true, the game loop in the SpriteCanvas’s run
method waits, and the thread sleeps. When the MIDlet invokes setPaused again, it trig-
gers a notify on the member variable paused, and the thread continues execution.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API 217

Wrapping Up
MIDP 2.0 contains the Mobile Game API in javax.microedition.lcdui.game, a robust set of
classes you can use to implement your own games. This interface consists of five classes:

• GameCanvas: Lets you poll for keystrokes and structure your game around the notion
of a game loop using Java threads

• LayerManager: Responsible for managing visible elements on the screen in a Z-order
you define and draw

• Layer: Represents a single plane in the Z-order

• TiledLayer: An implementation of Layer you can use to create large bitmap images
from small tiles

• Sprite: An implementation of Layer you can use to create animations

Using the Mobile Game API, you structure your game MIDlet around the notion
of a game loop that runs in its own thread, managing events and updating game state.
Your game loop can poll for keystrokes or respond to events in the traditional manner,
and it draws to the screen as it needs to using the GameCanvas’s Graphics context. The
LayerManager class simplifies drawing by managing an array of Layers, which each can
paint their own contents. The API defines two specific kinds of layers: the TiledLayer,
which is suitable for drawing large regions of a game such as the game level’s back-
ground, and the Sprite, which helps you organize the frames of an animation for a
specific visible object.

CHAPTER 8 ■ USING THE JAVA MOBILE GAME API218

Intermezzo

It may seem odd that Java ME encompasses the CDC, when few mobile devices to date

actually implement it. However, when you consider the purpose of the CDC—to straddle

the divide between low-cost, low-power computing devices and today’s traditional

portable or fixed workstation—it’s clear that something needs to bridge that gap. Mobile

devices and other consumer devices such as set-top boxes continue to gain processing

power and memory, making it possible for ever-increasingly inexpensive devices to run

applications suited for the CDC.

If you’re sure you want to stick with MIDP programming—you’ve the makings of a dyed-

in-the-wool mobile developer—feel free to skip Part 3 and move on to Part 4, where I show

you more of the optional Java interfaces increasingly common on Java ME devices. On the

other hand, if the possibility of other consumer devices excites you, read on! There’s a lot

more to Java ME than just the CLDC and its MIDP.

CDC Development

Sun Microsystems has long seen Java as a platform for all computing devices, big or

small. Arguably, Java’s been successful for big jobs; technologies like Java Servlets power

some of the world’s big businesses. As you saw in Part 2, Java has been equally success-

ful on some of the world’s smallest devices—specifically, today’s cheap, ubiquitous cell

phones. Starting with PersonalJava, which evolved into the Java ME CDC, Sun is poised to

repeat its success for mid-tier devices, including set-top boxes and other entertainment

platforms. In this part, I show you how the CDC complements the CLDC, introducing the

two key programming models for the CDC and its profiles: the Foundation, Personal Basis,

and Personal Profiles. Don’t assume that what you read applies only to entertainment

devices or only to high-end mobile devices. Just as convergence has helped drive key fea-

tures of Java SE into Java ME, in the years to come I expect what you see in these pages

will be equally applicable to many Java-enabled non-traditional computing devices.

P A R T 3

Introducing Xlets and the
Personal Basis Profile

The initial runtime environment for Java applets was the browser, but the advent of Java
ME has changed that. As you saw in Chapter 4, the MIDlet is the MIDP’s answer to an
application runtime; in this chapter, you will see how the Xlet plays the same role for the
Personal Basis Profile (PBP) atop the CDC. Unsurprisingly, the responsibilities an Xlet ful-
fils are essentially the same as those of a MIDlet, so if you’re acquainted with the MIDlet,
what you see here will be quite familiar.

In this chapter, I discuss the Xlet execution model. After reading this chapter, you will
understand both the origin of the Xlet in the Java ME environment as well as the life cycle
of an Xlet. You will be able to write your own Xlets, as well as perform basic inter-Xlet
application communication using the interfaces available in the PBP.

Understanding the Xlet
The Xlet model comes to Java ME by way of Sun’s foray into the television space for Java
applications. Now part of the PBP atop the CDC, the Xlet model must meet some addi-
tional criteria above and beyond what a simple applet must; notably, it must permit
multiple applications to share device resources, including the I/O devices. It also must
ensure that no single application can bring down the Java virtual machine, as the virtual
machine may be hosting other applications at the same time. Consequently, the Xlet
must have a specific life cycle, letting the Xlet operate in active—running—and paused
states, just like a MIDlet.

As with the MIDlet, you implement an Xlet by extending a specific interface—
specifically, the javax.microedition.xlet.Xlet interface. As the runtime initializes the
Xlet, it provides a context, which gives your Xlet some key methods to interact with the
application runtime.

223

C H A P T E R 9

Looking at the Xlet Life Cycle

Figure 9-1 shows the states in which an Xlet may exist.

Figure 9-1. The life cycle of an Xlet

As you can see in Figure 9-1, the Xlet can be in one of three states:

• Paused: Once loaded, the Xlet application manager invokes the Xlet’s initXlet
method, which should initialize the Xlet. The Xlet is now in the paused state.

• Active: When the Xlet application manager is ready to give the Xlet control of the
device’s interface, it starts the Xlet using its startXlet method. The Xlet is now in
the active state. At any time, the Xlet application manager can again pause the Xlet
by invoking the Xlet’s pauseXlet method, bringing the Xlet back to the paused state,
from which it can again resume execution by invoking startXlet again.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE224

• Destroyed: When the application manager wants to shut down the Xlet, it invokes
the Xlet’s destroyXlet method, which must terminate the Xlet’s execution. The Xlet
is now in the destroyed state, awaiting garbage collection by the runtime.

It’s important to remember that an Xlet can move from the paused state straight to
the destroyed state and that it may repeatedly reenter the active and paused states
throughout its life. It’s important to remember these two other things as well:

• Don’t call System.exit: Yours may not be the only Xlet running, and you don’t
want to tear down the Java runtime. Use the XletContext object available to your
Xlet (discussed later in this chapter) instead to signal when your application
wants to close.

• Free everything you can when paused and when exiting to help the garbage
collector: This is especially important for things such as remote communications
interfaces, files, and the graphics context. The application should always be able to
clean up after itself.

An interesting difference between the Xlet life cycle and the MIDlet life cycle is
that an Xlet can throw an exception, XletStateChangeException, if it wants to ignore the
requested state change. For example, an Xlet that fails to initialize can throw this
exception to keep from starting, or an Xlet that is about to be destroyed can throw this
exception to keep from being shut down by the application management system.

Extending the Xlet Interface

An Xlet must provide five methods:

• A constructor: This is generally empty.

• initXlet: This method takes an XletContext object and initializes the Xlet.

• startXlet: The runtime invokes this method as the Xlet enters the active state.
This method must do whatever’s necessary to start the Xlet’s active execution.

• pauseXlet: This method must release unnecessary resources and indicate that the
Xlet is in the paused state.

• destroyXlet: This method must release all resources as the Xlet enters the
destroyed state and awaits garbage collection.

Listing 9-1 shows the simplest of Xlets.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 225

Listing 9-1. The Simplest of Xlets

import javax.microedition.xlet.*;

public class SimplestXlet implements Xlet {

public SimplestXlet () {

}

public void destroyXlet(boolean unconditional)

throws XletStateChangeException {

}

public void initXlet(XletContext context)

throws XletStateChangeException {

}

public void pauseXlet() {

}

public void startXlet() throws XletStateChangeException {

}

}

This Xlet obviously doesn’t do anything, but it illustrates an important point: it shows
that that the Xlet interface implementation can also throw the XletStateChangeException.
This exception indicates that a particular state transition has failed—for example, from
loaded to initialized, or from running to paused, or the reverse. How the application
management system handles these exceptions depends on the failed state transition and
the implementation of the platform.

Using the Xlet Context

For each Xlet, the application manager associates a context, which is an instance of
javax.microedition.xlet.XletContext. The runtime provides this manager so that the
Xlet can interact with its environment. The XletContext interface provides the following
methods:

• getClassLoader: Returns the base class loader of the Xlet

• getContainer: Returns the root container into which an Xlet should place its
components

• getXletProperty: Returns a named property from the XletContext

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE226

• notifyDestroyed: Notifies the application manager that the Xlet has entered the
destroyed state

• notifyPaused: Notifies the application manager that the Xlet does not want to be
active and has entered the paused state

• notifyActive: Notifies the application manager that the Xlet wants to enter the
active state

You typically use getContainer at your Xlet’s initialization to obtain the container into
which your other visible components should be placed. This is how the application man-
ager shares the screen with multiple Xlets; each Xlet gets a separate containing
component in which it can render its UI.

Like a MIDlet, an Xlet must signal the runtime when it wants to change state; in turn,
the runtime honors the request, performing the state change. This is how an Xlet indi-
cates that it wants to exit; instead of calling System.exit, it invokes notifyDestroyed.
Similarly, an Xlet can indicate that it wants to enter the paused state and relinquish the
UI to other Xlets by invoking notifyPaused, or it can request resumption to the active state
by invoking notifyActive.

Writing a Simple Xlet
Writing an Xlet for the PBP is simple in the abstract: simply implement the Xlet interface,
and in the process, extend a Java AWT container such as java.awt.Component. Your actual
application resides inside this container, and you can interact with the application man-
ager through the Xlet’s context given to your Xlet at initialization time.

Looking at a Simple Xlet

In Listing 9-1, you saw the skeleton for an Xlet; Listing 9-2 shows an actual functioning Xlet.

Listing 9-2. A Simple Xlet

package com.apress.rischpater.HelloXlet;

import java.awt.*;

import javax.microedition.xlet.*;

public class HelloXlet extends Component implements Xlet {

private XletContext context;

private Container rootContainer;

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 227

public HelloXlet() {

}

public void initXlet(final XletContext xletContext)

throws XletStateChangeException {

context = xletContext;

if(rootContainer == null) {

try {

rootContainer = context.getContainer();

rootContainer.add(this);

} catch (UnavailableContainerException e) {

System.out.println("Could not get our container!");

throw new XletStateChangeException("No container. "

+ e.getMessage());

}

}

}

public void startXlet() throws XletStateChangeException {

rootContainer.setVisible(true);

}

public void paint(Graphics g) {

g.drawString("Hello Xlet", 0, 100);

}

public void pauseXlet() {

System.out.println("HelloXet.pauseXlet()");

}

public void destroyXlet(boolean b) throws XletStateChangeException {

System.out.println("HelloXet.destroyXlet() - goodbye");

}

}

Figure 9-2 shows the Xlet’s output when run in the Java ME emulator.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE228

Figure 9-2. Hello Xlet

The Xlet itself is simple: implementing the Xlet contract, it extends Component, which
is a lightweight AWT class that knows how to draw when its paint method is invoked.

On initialization, the Xlet must do several things. First, it caches aside the context
the application management system provides to use when it wants to exit. Next, it
obtains the root container provided by the context and caches it aside; this container
defines where on the screen the Xlet is permitted to draw. Finally, it adds itself to the
context-provided root container.

By default, the Xlet’s UI is not visible. Thus, when the Xlet transitions to the active
state as the application manager invokes startXlet, the application must make its root
container visible; this causes a repaint that shows the application interface, handled by
paint, which performs a simple Graphics operation to paint the message “Hello Xlet” on
the display.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 229

The Xlet shouldn’t erase itself on pause; it may still be a visible part of the screen, just
not focused. Consequently, pausing this Xlet is trivial, because it doesn’t do anything; the
pauseXlet method simply logs to the console the fact that the application manager trig-
gered a transition to the paused state.

Similarly, destroying this Xlet is also trivial; the AMS handles removing the frame
from the root container, which triggers the destruction of the UI, so all destruction does
is log the fact that the Xlet was destroyed. (There’s no need for the Xlet to hide itself,
either, as the application manager does this for you.)

Understanding Xlet Dependencies

It’s worth observing that this Xlet, while simple, actually has two key dependencies
beyond the CDC, and these dependencies are challenges you may face in designing your
own Xlet. First, and most obvious, you must remember that the Xlet isn’t a CDC class; it’s
a PBP class. What that means to you is that just because a device supports the Java ME
CDC, that doesn’t necessarily mean that it provides the Xlet runtime, unless it imple-
ments the PBP. Fortunately, the vast majority of today’s CDC devices do include at least
the PBP, so in practice this isn’t likely to be a problem.

Second, the core CDC provides the Java class hierarchy for connected Java ME
devices, but it explicitly delegates the responsibility of determining how applications run
and what window toolkit is available to the various profiles atop the CDC. In addition to
providing the Xlet model, the PBP also provides a small subset of the Java AWT: compo-
nents and containers. Specifically, the PBP supports those AWT components that have no
peers in the operating system, letting application and framework developers implement
their own window toolkit. In fact, several platform vendors have done just this, and if
you’re working with Java ME on some devices, you may not be using a standard window
toolkit like the AWT at all, but instead a different component framework provided by a
third-party vendor.

Fortunately, there are other options for many more capable devices. Several JSRs
detail specific user-interface packages for CDC-enabled devices, including Scalable
Vector Graphics (SVG), available in a mobile profile format suitable for CDC-enabled
devices. JSR 226 defines an interface that supports SVG via the javax.microedition.m2g
package, and JSR 287 defines the second iteration of that interface with support for
events and the SVG Document Object Model (DOM). In addition, on some devices,
three-dimensional graphics may be available via the Mobile 3D Graphics API that JSR
184 defines, or the OpenGL ES Common profile interfaces defined in JSR 239.

Significantly more useful for many Java developers is the AGUI that JSR 209 defines.
This defines a reasonable subset of both Java AWT and Swing user interfaces that facili-
tates porting Swing applications to Java ME devices. I discuss the AGUI in more detail in
Chapter 10.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE230

Of course, all of these window toolkit options have underlying dependencies on the
core configuration and profiles that a particular device supports; Figure 9-3 shows typical
stacks of configurations, profiles, and GUI profiles defined by the JSR process.

Figure 9-3. The relationship between the CDC, the profiles atop the CDC, and some of the
more commonly available GUI toolkits available for the CDC

The figure shows two stacks: one for CDC 1.0, and one for CDC 1.1. Virtually any
platform running a window toolkit supports the Foundation Profile (FP) atop the CDC;
as you learned in the “Introducing the Foundation Profile” section in Chapter 1, the FP
provides network and I/O support, but not application support, which is the responsi-
bility of either the PBP or the Personal Profile (PP), which includes the full AWT as well
as the Xlet model. Potentially atop either the PBP or the PP are other window toolkits,
either proprietary or based on JSRs such as the ones for SVG, Mobile 3D, or OpenGL ES.

On CDC 1.1, the stack looks much the same, except that both PBP and PP have
minor tweaks and a new version number, and the AGUI providing most of AWT and
Swing, in addition to the possibility of other toolkits such as SVG, Mobile 3D Graphics,
or OpenGL ES.

As an example of how a consumer electronics device based on Java ME might imple-
ment a window toolkit stack, consider the Blu-ray Disc Java (BD-J) stack’s approach to the
UI, shown in Figure 9-4. Here, the Home Audio Visual Interoperability (HAVi) Group win-
dow toolkit, defined by the havi.ui package, sits directly atop the PBP, and in fact it
implements a rich collection of UI widgets using only the lightweight components such
as java.awt.Component provided by the PBP.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 231

Figure 9-4. The BD-J software stack

Listing 9-3 shows the same Hello Xlet example, this time written using the HAVi
classes provided as part of the BD-J stack.

■Note Access to the BD-J stack is limited to developers actually developing Blu-ray content; typically, you
need to obtain a license to a Blu-ray authoring environment that supports BD-J development.

Listing 9-3. Hello Xlet Written Using the HAVi Window Toolkit Classes

package com.apress.rischpater.HelloHaviXlet;

import java.awt.*;

import org.havi.ui.*;

import javax.microedition.xlet.*;

public class HelloHaviXlet extends Component implements Xlet {

private HScene scene;

public void initXlet(XletContext context)

throws XletStateChangeException {

scene=HSceneFactory.getInstance().getBestScene(new HSceneTemplate());

scene.add(this);

}

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE232

public void startXlet() throws XletStateChangeException {

scene.setVisible(true);

}

public void pauseXlet() {

}

public void destroyXlet(boolean b) throws XletStateChangeException {

scene.dispose();

}

public void paint(Graphics g) {

g.drawString("Some text", 0, 100);

}

}

Fundamentally, the code in Listing 9-3 looks very much the same as the code in
Listing 9-2. The HAVi toolkit defines the notion of scenes, which you can think of as
being analogous to containers; the initXlet method creates a new scene and positions
it on the display. Otherwise, the code is the same as the previous example, except that
you must explicitly dispose of a scene when you’re through with it; this Xlet does this as
part of the destroyXlet method.

Clearly, then, when setting out to develop Xlet applications, you should have answers
to the following questions before you begin your design:

• What version of the CDC is supported?

• What version of the FP is supported?

• What version of the PBP—or the PP—is supported?

• Which additional window toolkits, if any, are available?

In Chapter 10, after a brief discussion of applet development for the PP’s support for
the Applet model, I discuss programming for the AWT and AGUI in more depth.

Developing Lightweight User Interfaces
Using the PBP
In the Java SE AWT, the entire AWT hierarchy descends from the Component class and its
subclass Container, and the class hierarchy acts as a proxy for a native UI component; for
example, the java.awt.Checkbox class is just a proxy for a corresponding peer component
that wraps the behavior of the native platform’s window toolkit. On some PBP-enabled

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 233

hosts, there may be no native window toolkit other than that provided by the Java run-
time; on others, the amount of memory consumed by the peer hierarchy would be too
great for the platform to support. To get around this, as you have already learned, the PBP
does not contain a full user-interface hierarchy for your application development. In fact,
the PBP explicitly excludes heavyweight components such as text labels, text input boxes,
buttons, lists, and menus. Instead, it requires the following four AWT top-level compo-
nent classes:

• java.awt.Component: The base class for all user-interface components

• java.awt.Container: The base class for AWT components that contain other
components

• java.awt.Frame: A top-level window with a title bar and a border

• java.awt.Window: The base class for top-level windows

Believe it or not, these four core component classes are enough to implement an
entire window toolkit, because the Component and Container classes can represent com-
ponents including nested components, and the Frame and Window classes permit you to
define top-level windows that contain those components. Of course, the PBP-required
AWT subset includes a host of additional classes that permit you to implement your
user interface, including java.awt.Graphics, java.awt.Image, and java.awt.AWTEvent.

This leaves you with just two choices for building an application that uses a GUI,
as you saw in the previous section: you can either use one in a package provided by
someone else, or you can roll your own. The Java community has defined several such
window toolkits, including more of the standard Java classes for the UI (AWT and/or
Swing, depending on the profile and packages on the target), and there are others such
as the HAVi hierarchy for BD-J. In addition, creating your own hierarchy may well be
feasible for your application, especially if your user interface has simple requirements.

Implementing Your Own Components for a Window Toolkit

In the Java user-interface paradigm, a component is any object that has a graphical repre-
sentation that can be displayed on the screen and interact with the user. A container is a
component that can also contain other components. When implementing your own GUI,
most of the work you need to do involves creating your own primitive components, such
as buttons. This involves implementing subclasses of java.awt.Component.

The key to implementing your own toolkit is handling the drawing for each of your
toolkit’s components. Typically, this happens for one of two reasons: system-triggered
painting occurs, such as when the component is made visible on the screen or is resized,
or application-triggered painting occurs, when the component decides it needs to
repaint itself because its contents have changed. The AWT contract—which you must

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE234

fulfill by implementing the Component interface—requires that drawing occur via callbacks
to the component, specifically through its paint method. Your paint method is passed a
Graphics object, which has all of the primitives you require to perform two-dimensional
painting on a canvas.

It’s important that you refrain from caching the Graphics object you receive when the
system invokes your paint method, or from painting in methods other than your paint
method. Other methods may be invoked at inappropriate times for your component to
draw, such as when it’s not visible or when the Graphics object isn’t in a state to perform
drawing. When the framework invokes your paint method, the Graphics object is precon-
figured with the appropriate state for drawing your component, including the following
graphics rendering options:

• The Graphics object’s color is set to the component’s foreground property.

• The Graphics object’s font is set to the component’s font property.

• The Graphics object’s translation is set such that the origin (0,0) represents the
upper-left corner of the component.

• The Graphics object’s clip rectangle is set to the area of the component that needs
to be redrawn.

Of course, you’re free to reconfigure the Graphics object passed to your paint method
as necessary.

To signal to the component that it should redraw, the application—or the compo-
nent itself—should invoke one of the component’s repaint methods. When invoking
repaint, whenever possible you should include the bounds that must be repainted, so
that the component can limit the redrawing to the region that’s necessary. You can also
pass a time interval in milliseconds, indicating that the component should repaint itself
before the specified number of milliseconds elapses. This form of repaint is especially
useful when performing multiple repaints, because it lets you queue up all of the drawing
work at once.

Note that although it looks similar, the update method provided by a component isn’t
the same as repaint. Only the AWT event system invokes update in response to an appli-
cation-triggered redraw request; system repaints do not trigger a call to update. This lets
you hook either system-level redraw requests (by overriding update) or application-level
redraw requests (by overriding repaint). However, odds are that you will want the default
component behavior for both repaint and update.

Container subclasses, which can contain more than one component, are themselves
Component subclasses and can also perform their own drawing by overriding the paint
method. The default implementation of the Container’s paint method is to invoke paint
on any of its visible children that intersect the rectangle to be painted, so if you’re imple-
menting a Container subclass that knows how to paint, it’s imperative that your
container’s paint method invoke the superclass’s paint method, as shown in Listing 9-4.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 235

Listing 9-4. Invoking the Superclass’s paint Method

public class PaintingContainer extends Container {

public void paint(Graphics g) {

// paint my contents first…

super.paint(g);

}

}

A full discussion of the Graphics class and its methods is beyond the scope of this
chapter, but it’s important to remember that a Graphics object both stores the context of a
particular set of drawing primitives (font, color, clip region, and so on) and provides meth-
ods to draw graphic primitives, including rectangles, arcs, lines, polygons, characters, and
images. The last primitive—the ability to draw images—may be key for your window
toolkit components, because you can have an artist draw images for various parts of a
component (such as a button’s boundary, background, and so forth), and then your
Component subclass can simply composite those images with the Graphics object in its
paint method with a minimum of primitive graphics to provide a specific look and feel.

Writing a Simple, Lightweight Component

Implementing a rich windowing toolkit can be a great deal of work, but it doesn’t have to
be, especially if your application only has a few user-interface primitives. Listing 9-5
demonstrates a simple component: a round button bearing a text label.

Listing 9-5. The RoundButton Lightweight Component

import java.awt.*;

import java.lang.*;

import java.util.*;

import java.awt.event.*;

public class RoundButton extends Component {

protected String label;

protected boolean pressed = false;

private Image offscreen;

private static int PREFERRED_SIZE = 100;

private static int LABEL_PAD = 40;

public RoundButton(String l) {

label = l;

enableEvents(AWTEvent.MOUSE_EVENT_MASK);

}

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE236

public void invalidate() {

super.invalidate();

offscreen = null;

}

public void update(Graphics g) {

paint(g);

}

public void paint(Graphics g) {

int s = Math.min(getSize().width - 1, getSize().height - 1);

// Double-buffer the drawing

if(offscreen == null) {

offscreen = createImage(getSize().width, getSize().height);

}

Graphics og = offscreen.getGraphics();

og.setClip(0,0,getSize().width,getSize().height);

// Draw the background, indicating press state.

if(pressed) {

og.setColor(getBackground().darker().darker());

} else {

og.setColor(getBackground());

}

og.fillArc(0, 0, s, s, 0, 360);

// draw the perimeter of the button

og.setColor(getBackground().darker().darker().darker());

og.drawArc(0, 0, s, s, 0, 360);

// draw the label centered in the button

Font f = getFont();

if(f != null) {

FontMetrics fm = getFontMetrics(getFont());

og.setColor(getForeground());

og.drawString(label,

s/2 - fm.stringWidth(label)/2,

s/2 + fm.getMaxDescent());

}

g.drawImage(offscreen,0,0,null);

og.dispose();

}

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 237

public Dimension getPreferredSize() {

Font f = getFont();

if(f != null) {

FontMetrics fm = getFontMetrics(getFont());

int max = Math.max(fm.stringWidth(label) + LABEL_PAD,

fm.getHeight() + LABEL_PAD);

return new Dimension(max, max);

} else {

return new Dimension(PREFERRED_SIZE, PREFERRED_SIZE);

}

}

public Dimension getMinimumSize() {

return new Dimension(PREFERRED_SIZE, PREFERRED_SIZE);

}

public void processMouseEvent(MouseEvent e) {

switch(e.getID()) {

case MouseEvent.MOUSE_PRESSED:

pressed = true;

repaint();

break;

case MouseEvent.MOUSE_RELEASED:

if(pressed == true) {

pressed = false;

repaint();

}

break;

case MouseEvent.MOUSE_ENTERED:

break;

case MouseEvent.MOUSE_EXITED:

if(pressed == true) {

pressed = false;

repaint();

}

break;

}

super.processMouseEvent(e);

}

}

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE238

The RoundButton shows all of the principles I discuss in the previous section, and it
uses double buffering to an offscreen Image instance to prevent the possibility of flicker-
ing when the component repaints. It’s not a complex component, but it is a little long, so
let’s take it field by field and method by method.

The RoundButton has a label field that contains the string labeling the button for
the user. It must also track its state, whether it’s pressed or not, which it does using
the protected pressed field. It maintains an Image for offscreen drawing, aptly named
offscreen, and two private constant variables: the preferred size of the button and the
default padding for the button label.

■Tip You may be wondering why I chose protected for the access protection level of these fields. I’m
assuming that this class will be part of a more sophisticated GUI framework, and thus might have subclasses
that customize the behavior of this button and need access to its fields.

The RoundButton constructor simply caches aside the label you provide and enables
mouse events for the component. The RoundButton must override the invalidate method
as part of the double buffering. The windowing environment calls invalidate as part of the
component’s sizing and layout, which in turn requires the RoundButton to allocate a new
offscreen bitmap for drawing. For speed, the invalidate method only invalidates the cur-
rent offscreen bitmap; it leaves allocating the new offscreen bitmap to the paint method.

The update method—invoked by the windowing toolkit hierarchy as a result of a sys-
tem redraw—must, by definition, clear the component’s background and completely
redraw the component. Because paint draws the entire component to an offscreen
bitmap and then copies that bitmap to the screen, update can simply call paint directly.

The paint method does the real work for the RoundButton. It begins by creating the
offscreen bitmap if one is required, and then it obtains a Graphics instance for the off-
screen bitmap. It then draws the button on the offscreen bitmap from back to front, with
the following operations:

1. It computes the button background, which is slightly darker if the button is
being pressed.

2. It draws a filled circle for the button using the color it computed in the
previous step.

3. Once it has drawn the background, it draws the border using a shade darker
than the button’s background.

4. With the background and border drawn, it draws the button’s label, which is
centered in the region defined by the button.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 239

5. Now that it has completely updated the offscreen bitmap, it draws the image
corresponding to the offscreen bitmap using the current graphics context.

6. It disposes of the offscreen bitmap’s graphics context.

The getPreferredSize and getMinimumSize methods provide clues regarding the com-
ponent’s desired size to any layout managers. These methods take into account the size
of the label for the button.

The RoundButton needs to only handle mouse events, which it does using the
processMouseEvent method; when you press the mouse and the mouse cursor is within the
bounds of the button, it should visibly show the press by darkening its background; this
darkening must disappear when you release the mouse button within the bounds of the
RoundButton, or when the mouse cursor exits the RoundButton’s bounds and you’ve previ-
ously pressed the RoundButton. The switch statement within the processMouseEvent method
handles the various cases for this logic. processMouseEvent also invokes repaint to force
the RoundButton to redraw to visibly show its changed state.

Understanding Window Toolkit Limitations of the PBP

You’ve just seen a key limitation of the window toolkit provided by the PBP: the proscrip-
tion of heavyweight components. However, there are other limitations that you should be
aware of:

• The number, size, and location of java.awt.Frame instances—which correspond to
native windows—may be severely limited.

• The decoration, title, and resizability of java.awt.Frame instances are under the
control of the native window manager and are guidelines, not requirements.
The native window toolkit is free to disregard requests from your application for
decoration, including title, size, and placement.

• The platform may or may not have a mouse, and thus, it may not generate
mouse events.

• The platform may or may not have a full keyboard, and thus, it may not generate
keyboard events.

• Alpha compositing may not support full compositing of a source over a
destination.

• The BasicStroke attributes may be ignored when specifying a graphics stroke.

• You may not be able to set the cursor bitmap on a component-specific basis.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE240

In practice, the upshot of these restrictions is that many PBP implementations sup-
port only a single top-level window, so you can’t construct applications with more than
one window. To determine whether or not the PBP implementation you’re working with
has these limitations, you can query a system property for each limitation. Table 9-1
shows the system properties and their values.

Table 9-1. PBP System Properties and Their Values

Property Value

java.awt.AlphaComposite.SRC_OVER.isRestricted true if and only if
AlphaComposite.SRC_OVER is restricted

java.awt.Graphics2D.setStroke.BasicStroke. true if and only if the use of
isRestricted BasicStroke is restricted in

Graphics2D.setStroke

java.awt.event.MouseEvent.isRestricted true if and only if MouseEvent is restricted

java.awt.event.MouseEvent.supportLevel Level of support for MouseEvent, if
restricted; undefined otherwise1

java.awt.event.KeyEvent.isRestricted true if and only if KeyEvent is restricted

java.awt.event.KeyEvent.supportMask2 Mask describing KeyEvent support, if
restricted; undefined otherwise

java.awt.Component.setCursor.isRestricted true if the cursor image cannot be
changed for any Component; optionally
supported by platforms

java.awt.Frame.setLocation.isRestricted true if Frame location is limited to a single
value; optionally supported by platforms

java.awt.Frame.setResizable.isRestricted true if Frame resizability may not be
changed; optionally supported by
platforms

java.awt.Frame.setSize.isRestricted true if Frame size is limited to a single
value; optionally supported by platforms

java.awt.Frame.setTitle.isRestricted true if Frame titles may not be changed;
optionally supported by platforms

java.awt.Frame.setUndecorated.isRestricted true if Frame decorations may not be
changed; optionally supported by
platforms

1 The java.awt.event.MouseEvent.supportLevel property is 0 if the platform generates no mouse events, 1 if
the platform provides all events but pointer movement events, and 2 if it provides all events that the
AWT defines.

2 The java.awt.event.KeyEvent.supportMask is a bit mask where 1 indicates support for VK_LEFT and
VK_RIGHT keys, 2 indicates support for VK_UP and VK_DOWN keys, 4 indicates support for VK_0 through
VK_9 (a numeric keypad), and 8 indicates support for VK_A through VK_Z with VK_SPACE and
VK_BACK_SPACE (an alphanumeric keypad).

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 241

Obtaining Xlet Properties and Resources
As you saw in the section “Using the Xlet Context” in this chapter, the XletContext
provided by the application runtime to your Xlet includes the getXletProperty method
for obtaining runtime properties. The only property presently defined by the Java ME
standard itself is the XletContext.ARGS property, which permits your application to col-
lect any command-line launch arguments passed when the user launched your
application, letting the application manager pass options to your Xlet.

The Xlet can also interrogate the system for properties using the static class
method System.getProperty, which typically returns system-level properties proprietary
to the platform, rather than runtime properties defined by the PBP or PP implementa-
tion on which your application is running. For Java ME consumer devices aimed at the
audio-visual market, for example, these include information about the file system, the
broadcast profile, the availability of Internet access, and the version number of addi-
tional packages such as the UI widget set (for example, the HAVi package).

Xlets are typically packaged as JAR files, so you can include additional resources
with your application as part of the associated JAR file. To access other resources in
your Xlet’s JAR file, your implementation must use the Xlet context’s class loader, just as
it would for a stand-alone application or applet. For example, you might write the code
shown in Listing 9-6.

Listing 9-6. Accessing an Image from an Xlet JAR File

ClassLoader cl = context.getClassLoader();

Icon icon = new ImageIcon(cl.getResource("images/icon.png"));

Using the class loader provided by the XletContext, you can get application and
system resources by name, and you can obtain either a URL to the resource or an
InputStream to the resource using one of the following methods:

• getResource: Returns a URL to the named resource

• getResourceAsStream: Returns an InputStream to the named resource

• getSystemResource: Returns a URL to the named system resource, which is a
platform-specific attribute of the target hardware

• getSystemResourceAsStream: Returns an InputStream to the named system resource,
which is a platform-specific attribute of the target hardware

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE242

Communicating with Other Xlets
A key difference between the MIDlet execution model provided by the MIDP and that of
the Xlet execution model provided by the PBP is that the Xlet execution model requires
that Xlets support rudimentary Inter-Xlet Communication (IXC). Data sharing for Xlets is
increasingly important, as the platforms that can run Xlets typically have access to a great
deal of data (through either broadcast or wide-area networks such as the Internet) but
limited storage for applications and data. As a result, data sharing between applications
becomes increasingly important, because it is impractical for each application to contain
the code necessary to access and decode a network source for data and cache its own
copy of the data it needs in order to function.

The usual means for applications to share data in the Java environment is through
the Java RMI stack, which permits both interapplication and interdevice communica-
tion. In fact, a robust subset of the RMI stack can be made available for Java ME; this is
discussed in JSR 66, and I discuss it in more detail in Chapter 11. This support for RMI
is key for some set-top boxes and other platforms with a strong reliance on middle-
ware, because RMI enables servers and clients to exchange data in a Java-native,
object-oriented way, simplifying the design and deployment of multitier systems.

Not all PBP devices need the entire RMI stack, however, so the PBP defines only a
subset of RMI suitable for letting Xlets share data. Not surprisingly, the PBP mechanisms
closely mirror the RMI architecture, leveraging some classes and the same basic process
for defining the communication process.

IXC requires that data be represented by shared Java objects that encapsulate the
data you want to share. These objects must be remotable—that is, they must implement
the java.rmi.Remote interface. Xlets share these remotable objects through the IXC reg-
istry, which is a singleton shared by all Xlets running on the local host available from the
XletContext. Xlets can register the remotable object using the IXC registry, or they can
obtain access to remoted objects through the registry. Figure 9-5 shows a schematic of
the relationship between two different Xlets and an object they share.

As the diagram suggests, there’s a subtle difference between the object shared
through the registry by the first Xlet, and what the second Xlet actually consumes. Due
to the way the Java class loader operates, Xlets cannot simply share objects; instead,
the IXC registry creates and returns a stub object that acts as a proxy to the shared
object. This is similar to the RMI model, although in the full RMI implementation,
either you must generate the stub using the RMI compiler (if you’re using a version of
Java before Java 5) or the RMI runtime can do this automatically (if you’re using a ver-
sion of Java after version 5).

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 243

Figure 9-5. The relationship between two Xlets and an object they share

Implementing a Shared Object

Consider an Xlet with explicit access to a network that wants to share data with other
applications. You must wrap this data in a remotable class, as you see in Listing 9-7.

Listing 9-7. A Data Wrapper Class Exported Using IXC

import java.rmi.*;

public class Location

implements java.rmi.Remote {

private String location;

private String forecast;

public Location() {

}

public void setLocation(String l)

throws RemoteException {

location = l;

}

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE244

public void setForecast(String f)

throws RemoteException {

forecast = f;

}

public String getLocation()

throws RemoteException {

if (location != null) {

return location;

}

else {

return "";

}

}

public String getForecast()

throws RemoteException {

if (forecast != null) {

return forecast;

}

else {

return "";

}

}

}

Pretty simple stuff, except for two key differences between this class and a generic
container class for data: the declaration imports java.rmi, and each of the accessors and
mutators can throw java.rmi.RemoteException. When implementing a remotable class, all
of its methods may throw java.rmi.RemoteException, because the class implementation
may actually be a remote stub provided by the IXC registry and may be unable to com-
municate with the actual instance of the class.

As I previously stated, the entire java.rmi class hierarchy is not available to Xlets
running atop the PBP. Instead, the PBP requires only the following RMI classes:

• java.rmi.Remote: Used to indicate a remotable class

• java.rmi.AccessException: Thrown to indicate that the caller of a remote object
does not have permission to perform the requested action

• java.rmi.AlreadyBoundException: Thrown if you attempt to bind an object to the
registry to a name that has already been bound to another object

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 245

• java.rmi.NotBoundException: Thrown if you attempt to look up or unbind an object
that has no associated binding

• java.rmi.RemoteException: The common superclass for communications-related
exceptions that may occur during remote method invocation

• java.rmi.UnexpectedException: Thrown if the client of a remote method call receives
an exception that is not among the exception types declared in the throws clause of
the method in the remote interface

• java.rmi.registry.Registry: A remote interface to a remote object registry

It’s important to remember that the IXC mechanism lets you invoke the methods of
objects in another Xlet’s context, rather than share data in its simplest sense. In other
words, you can’t obtain or mutate attributes of an object through IXC and objects that
implement java.rmi.Remote; instead, you must make attributes available through meth-
ods. Given that this is good object-oriented practice anyway, it shouldn’t be an issue,
but it does mean defining appropriate accessor and mutator methods for any field in
your class that you want to be available to a remote Xlet. That’s why Location defines
setLocation, setForecast, getLocation, and getForecast as mutators and accessors to
private fields, rather than simply making those fields public.

Sharing an Object for Other Xlets to Find

Once you define your remotable object(s), you still need to make them available to other
Xlets. Doing this is a two-step process: first, you create the objects your Xlet will share,
and then you add them to the system-wide Xlet registry. The registry, which is an instance
of javax.microedition.xlet.ixc.IxcRegistry, keeps a name-object mapping of the objects
registered by all Xlets running on the machine.

■Caution Don’t confuse the IxcRegistry with the java.rmi.Naming or java.rmi.registry.
LocateRegistry registries; even if RMI is available on the machine, the IxcRegistry is a separate
registry of remotable objects.

You can’t obtain an instance of IxcRegistry directly; instead, you obtain one from
the XletContext. Under the hood, the PBP implementation maintains a strict one-to-
one correspondence between IxcRegistry instances and XletContexts, sharing data
through a system-wide database of IXC exported objects. Using the IxcRegistry, you
can do the following:

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE246

• Obtain an IxcRegistry instance for a specific context by invoking its static
getRegistry method.

• Register an object implementing java.rmi.Remote to a unique name using the
bind method.

• Return an array of Strings naming each bound object in the registry using list.

• Call lookup to retrieve a specific Remote object.

• Unregister a specific object using unbind, or unregister all objects registered in the
current XletContext using unbindAll.

• Register a new object implementing java.rmi.Remote to an already registered name
using the rebind method.

Listing 9-8 shows how a prototypical Xlet might offer a remote Location instance to
other Xlets.

Listing 9-8. An Xlet Producing an Object for IXC Consumption

import java.rmi.*;

import javax.microedition.xlet.*;

import javax.microedition.xlet.ixc.*;

public class XletLocationProducer implements Xlet {

private XletContext context;

private Location location;

private static final String NAME =

"XletLocationProducer.Location";

public XletLocationProducer () {

}

public void initXlet(XletContext c)

throws XletStateChangeException {

location = new Location();

context = c;

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 247

try {

IxcRegistry registry = IxcRegistry.getRegistry(context);

if (registry == null) {

throw new XLetStateChangeException("No registry");

}

registry.bind(NAME, location);

}

catch(AlreadyBoundException e){

throw new XletStateChangeException("Something bound");

}

catch(StubException e){

throw new XletStateChangeException("Stub error");

}

}

public void pauseXlet() {

}

public void startXlet()

throws XletStateChangeException {

}

public void destroyXlet(boolean b)

throws XletStateChangeException {

IxcRegistry registry = IxcRegistry.getRegistry(context);

if (registry == null) {

throw new XLetStateChangeException("No registry");

}

registry.unbindAll();

}

}

The Xlet creates an instance of the Location class it wants to remote during initial-
ization, and it uses the IxcRegistry for the current XletContext to bind it to the name
XletLocationProducer.Location. This should always succeed, but it can fail for one of
three reasons:

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE248

• The IxcRegistry cannot obtain an instance for the XletContext. This should never
happen, but if it does, the resulting registry will be null.

• Another Xlet has already bound a remote object to the name XletLocationProducer.
Location. That might happen if the Xlet is running in more than one context, or if
another Xlet uses the same name for something it wants to remote.

• The IxcRegistry fails to create a stub for the remoted class.

Of these failures, the most likely is a StubException, which can happen if you don’t
implement your remote class correctly. To implement your remote class correctly, you
must ensure that

• The class implement java.rmi.Remote

• Each remote object method declare java.rmi.RemoteException in its throws clause

• The type of each remote object method only accept and return primitive Java types
(including, of course, void) or those classes that extend java.io.Serializable

These restrictions make sense when you think about them, because the IXC mecha-
nism must have a way to know that a remote object is remotable, can handle exceptions
encountered during the remote execution, and can pass objects from one Java class
loader to another during remote execution.

On the Xlet’s exit, the Xlet unregisters the object from the IxcRegistry using
unbindAll. This, too, can fail, but there’s little the Xlet can do about these failures at exit
time, so the Xlet just logs the failures for debugging purposes. It’s not strictly necessary
that the Xlet do this—the runtime will take care of it if it doesn’t—but it’s good practice.

■Tip When your Xlet exits, use unbindAll at this point rather than invoke unbind for each named object,
so that if you add additional objects to the registry, you won’t need to add matching unbind requests.

Using a Shared Object

At any point, an Xlet can query the IxcRegistry for a remoted object by name using the
well-known name another Xlet used to register the object. Listing 9-9 shows a hypotheti-
cal consumer Xlet that uses the Location object shared by the XletLocationProducer.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 249

Listing 9-9. Accessing a Remote Object

import java.rmi.*;

import javax.microedition.xlet.*;

import javax.microedition.xlet.ixc.*;

public class XletLocationConsumer implements Xlet {

private XletContext context;

private Location location;

private static final String NAME =

"XletLocationProducer.location";

public XletLocationConsumer () {

}

public void initXlet(XletContext c)

throws XletStateChangeException {

context = c;

try {

IxcRegistry registry = IxcRegistry.getRegistry(context);

if (registry == null) {

throw new XLetStateChangeException("No registry");

}

location = (Location)registry.lookup(NAME);

}

catch(NotBoundException e){

throw new XletStateChangeException("Nothing bound");

}

catch(StubException e){

throw new XletStateChangeException("Stub error");

}

}

public void pauseXlet() {

}

public void startXlet()

throws XletStateChangeException {

}

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE250

public void destroyXlet(boolean b)

throws XletStateChangeException {

}

}

The process for obtaining a remote object is similar to that for registering a remote
object: obtain a reference to the IxcRegistry for the XletContext, and then invoke lookup
to obtain the stub for the remoted object. The returned stub will be a proxy to the original
class, so you can cast it to the original class definition; you should be sure that both the
producing and consuming Xlets include the class definition for the remoted class.

When looking up a remote object, many of the same things can happen as when
registering one. In very rare circumstances, there may be no registry with which to
obtain a remote object, or the registry may fail to create the local stub for the remote
object. It’s far more likely, however, that the remote object simply isn’t registered,
because the producing Xlet isn’t running. If that happens, the registry’s lookup method
will throw a NotBoundException, and your Xlet will be free to proceed as it sees fit per its
business rules without the remote object.

Be prepared for your remote object disappearing while you’re using it. When this
happens, accessing any of the object’s methods throws a RemoteException. This can hap-
pen for a number of reasons, but the most likely reason is that the Xlet producing the
object has exited, and the original remoted object has been freed. For that reason, it’s
generally best to access a remote object only when you need its services, and release it as
soon as you’re done using it, rather than relying on the serving Xlet and object to persist
throughout the lifetime of the consuming Xlet.

Wrapping Up
The CDC has similar application execution constraints to the CLDC, including limited
memory and I/O options. To reflect this, the PBP atop the CDC defines the Xlet, which is
an executable interface not dissimilar to the MIDlet defined by the MIDP.

Like the MIDlet, an Xlet has a well-defined life cycle that consists of three states:
paused, active, and destroyed. An Xlet begins its life after creation in the paused state,
moving to the active state when the application manager calls its startXlet method. Sim-
ilarly, the application manager can pause the Xlet at any time by invoking its pauseXlet
method, and it can resume execution by forcing the Xlet to re-enter the active state by
invoking startXlet again. At any time, when the Xlet is in any state, the application man-
ager can terminate the Xlet’s execution by invoking the destroyXlet method. Unlike a
MIDlet, however, the Xlet can refuse a state transition and generate an error by throwing
the XletStateChangeException.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE 251

An Xlet has an accompanying XletContext object, which gives the Xlet access to criti-
cal information about the application management environment, including the class
loader used by the Xlet, the root container into which it should place its GUI elements,
and runtime properties. An Xlet can also access any launch arguments provided by the
application management system as a property of the XletContext.

Multiple Xlets can run at one time; the application manager partitions the screen
into separate containers, giving a root container to each Xlet. Unlike the MIDP, which
defines a user-interface hierarchy, the PBP requires only the presence of lightweight AWT
components that an Xlet and its supporting classes may override to create a user inter-
face. This can pose challenges for cross-platform Xlets, because different Java ME devices
supporting the CDC may have different user interfaces, spanning the gamut from custom
GUIs based on the lightweight AWT hierarchy to the AGUI implementing much of Java
Swing, to other Java packages such as those that provide SVG and 3D graphics.

Xlets can share data through an interface based on the Java RMI; the runtime for
PBP-enabled devices includes a system-wide registry for remoted objects that implement
the java.rmi.Remote interface. Using this interface, you can write classes that implement
objects that share data through methods, or you can offload computational tasks to
another running Xlet.

CHAPTER 9 ■ INTRODUCING XLETS AND THE PERSONAL BASIS PROFILE252

Introducing Applets and the
Advanced Graphics and User
Interface

High-end devices based on the CDC are, in many ways, very close in features to true
computers. Many have always-on access to the Internet or to other networks with gate-
ways to the Internet; some may even have built-in web browsers. To reflect these
capabilities, the PP defined in JSRs 62 and 216 defines support for applets and provides
backward compatibility with the Xlet application model you saw in the last chapter.
The applet model defined by the PP is identical to the classic applet model that’s been
with Java since the beginning; PP devices can execute applets in either an embedded
web browser or in a native execution environment that provides the same facilities.
Moreover, the PP requires the presence of the Java AWT, making it easy to create com-
plex user interfaces.

In this chapter, I explain the applet execution model supported by devices that
provide the PP. I review the fundamentals of writing applets before discussing the user-
interface options available to you when writing Xlets and applets for PP-enabled devices.
In the process, I discuss both the AWT and Advanced Graphics and User Interface (AGUI)
implementations that you may encounter on devices that support the PP.

Writing Applets for Java ME
The original intent of the Java applet execution model was to provide an execution envi-
ronment for Java code downloaded over the Web within the confines of a web browser.
Dating back to the earliest days of Java, the applet adheres to strict security restrictions,
including the following:

• An applet cannot define or invoke native methods.

• An applet cannot access files on the host that executes the applet.

253

C H A P T E R 1 0

• An applet cannot make network connections except to the host that provided
the applet.

• An applet cannot invoke any program on the host executing the applet.

These are limitations not placed on Xlets, making the applet execution model more
desirable in the context of providing backward compatibility with existing applets or
offering a robust web browsing experience than in the context of providing an applica-
tion execution environment for new applications.

Like Xlets and MIDlets, applets have a life cycle enforced through the interface pro-
vided by the base class, java.applet.Applet. An applet context accompanies a running
applet, permitting applets access to resources such as sounds, images, and other applets
running within the same context.

Looking at the Applet Life Cycle

Figure 10-1 shows the states an applet passes through during its execution. Unlike Xlets
and MIDlets, an applet cannot pause execution; instead, the applet execution environ-
ment can stop or start an applet. Specifically, the runtime can perform the following
actions:

• Create the applet, invoking the applet’s constructor.

• Give the applet an opportunity to initialize by invoking its init method.

• Start the applet by invoking its start method.

• Stop the applet when it loses focus, such as when a browser navigates to a different
page, by invoking its stop method.

• Restart the applet (possibly reloading and reinitializing it) when the applet regains
focus by invoking start again.

• Stop the applet and give it an opportunity to perform any final cleanup by invoking
its destroy method before garbage collecting the applet. Of course, an applet can
be destroyed at any other time, too.

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE254

Figure 10-1. The life cycle of an applet

Listing 10-1 shows the interface an applet must implement to follow the applet
life cycle.

Listing 10-1. The Applet Interface

import java.applet.*;

public class SimplestApplet extends Applet {

public void init() {

}

public void start() {

}

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE 255

public void stop() {

}

public void destroy() {

}

}

As you can see from Listing 10-1, the applet model is deficient in comparison with
the Xlet model in two key ways: it cannot refuse a state transition, and it has no notion of
pausing or resuming execution. Note that at an applet does not need to override any of
the methods in Listing 10-1 if it has nothing to do during a state transition; the class pro-
vides default implementations of each.

Presenting the Applet’s User Interface

Under the hood, applets are actually containers; specifically, they’re subclasses of java.
awt.Container, meaning that applets can contain other user-interface objects or perform
their own painting by overriding the paint method. The Hello World applet shown in
Listing 10-2 demonstrates overriding the paint method, which the window toolkit
invokes when the applet is first drawn and whenever it is revealed.

Listing 10-2. Overriding the paint Method

package com.apress.rischpater.HelloApplet;

import java.applet.*;

import java.awt.Graphics;

public class HelloApplet extends Applet {

public void paint(Graphics g) {

g.drawString("Hello world!", 0, 0);

}

}

Listing 10-3 shows an approach that uses Java AWT components and containers.

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE256

Listing 10-3. Using Java AWT Components and Containers

package com.apress.rischpater.HelloApplet;

import java.awt.*;

import java.applet.*;

public class HelloApplet extends Applet {

public void init() {

Label label;

label = new Label("Hello world!");

add(label);

}

}

The difference between these two examples lies in how drawing is performed. The
code in Listing 10-2 uses the window toolkit’s Graphics object directly, while the code in
Listing 10-3 delegates drawing to components provided by the window toolkit. Because
applets are only supported by the PP, you’re assured that at least the Java AWT is available
on platforms that support applets.

Accessing an Applet’s Context

An applet has access to resources on the server that provided the applet, including
images and audio clips. These can be fetched directly either by the applet or the applet’s
context. You can obtain the applet’s context (an instance of the AppletContext class) by
invoking the applet’s getAppletContext method. The AppletContext represents the envi-
ronment in which one or more applets are executing, such as a web page or Java-based
application manager. With an instance of an AppletContext, you can perform the follow-
ing operations:

• Use getApplet to obtain a reference to a named applet running within the
AppletContext.

• Use getApplets to enumerate across the list of applets managed by a specific
AppletContext.

• Use getAudioClip to obtain an audio clip from the applet’s server, or use getImage
to obtain an image from the applet’s server.

• Use showDocument to dispatch a request to view a web page.

• Use showStatus to update the context’s displayed status.

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE 257

Because the methods of the AppletContext class are clearly browser-centric, and
because of the relationship that traditional Java applets have with a web browser, the
methods are not as powerful as the context provided to MIDlets and Xlets. One interest-
ing deficiency of the AppletContext class when compared with the MIDlet and Xlet
contexts is the inability of an applet to request its own termination via the context;
instead, an applet that wants to terminate its own execution must perform a showDocument
request to a URL different than that of the document containing the applet.

Communicating Between Applets

As you might surmise from the AppletContext’s getApplets method, more than one applet
can be running at once, and more than one applet can share the same applet context.
This lets multiple applets sharing the same applet perform interapplet communication,
as each of the applets sharing a single context can learn of each other’s existence and
invoke each other’s methods. For multiple applets that obtain information from the
applet server, you might perform interapplet communication to pipeline requests so that
only one applet needs to perform the network activity, for example. In order for applets
to communicate with each other, the applets must originate from the same server (and,
depending on the implementation, the same directory on the same server) and run in the
same context—typically, in the same window of the browser or on the same screen.

For one applet to find another, the searching applet must know the sought applet’s
name. How you specify this depends on how the target device loads applets; if the target
hardware uses a web browser as its container for applets, you’ll specify the name of an
applet using either the <APPLET> tag or a <PARAM> tag when you specify the source of an
applet. For example, you might write the code shown in Listing 10-4.

Listing 10-4. Specifying the Name of the Applet

<APPLET CODEBASE="applets/" CODE="HelloWorld.class"

WIDTH=200

HEIGHT=200

NAME="hello"/>

Listing 10-4 uses the NAME attribute of the APPLET tag, but you can also use the more
extensible PARAM attribute of the APPLET tag, as you see in Listing 10-5.

Listing 10-5. Another Way to Specify an Applet Name

<APPLET CODEBASE="applets/" CODE="HelloWorld.class"

WIDTH=200

HEIGHT=200>

<PARAM NAME="name" VALUE="hello"/>

</APPLET>

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE258

The APPLET HTML tag specifies that the Java applet defined in the Java class file
HelloWorld.class should be loaded from the web server’s applets directory and given the
name hello within the current applet’s context.

Returning to the topic of interapplet communication, consider two applets: Producer
and Consumer. Producer provides an interface used by Consumer within the context of a sin-
gle execution environment such as a web page. Producer only needs to declare a method
to be used by Consumer, as shown in Listing 10-6.

Listing 10-6. Declaring a Method Used by Consumer in Producer

public class Producer extends Applet {

… methods here …

public void processRequest(String anArgument) {

… do something with anArgument …

}

}

The HTML that serves the Producer applet must identify Producer so that Consumer can
find it by name using the AppletContext, as shown in Listing 10-7.

Listing 10-7. Identifying the Producer Applet

<APPLET CODEBASE="applets/" CODE="Producer.class"

WIDTH=200

HEIGHT=200

NAME="producer"/>

The Consumer applet, which invokes Producer’s processRequest method, only needs to
locate the Producer in the applet context. It can then treat the resulting object like any
other Java object, invoking its processRequest method, as shown in Listing 10-8.

Listing 10-8. Invoking the Producer’s processRequest Method

public class Consumer extends Applet

implements ActionListener {

… methods here …

public void actionPerformed(ActionEvent e) {

Applet producer = null;

producer = getAppletContext().getApplet("producer");

if (producer != null &&

producer instanceof Producer) {

((Producer)producer).processRequest("Hi!");

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE 259

} else {

// Handle the error somehow

}

}

}

In other words, the applet context provides a named registry of applets running in
the same context; once you retrieve an applet from the registry, you can simply invoke
one of its methods. Of course, good programming practice dictates that you perform
some sort of error handling when you do this, either by testing the target explicitly to see
if it implements the desired interface for your interapplet communication, or by catching
the NoSuchMethod exception that may occur if the class you’re dispatching against isn’t the
class you expect. One common reason why this might occur is if the applet manager has
loaded one applet but not the other.

Developing User Interfaces with the AWT
Historically, the PP, which is a superset of the PBP, was derived from PersonalJava, Sun’s first
foray into set-top boxes and other consumer electronics devices. As such, it includes sup-
port for most of Java’s AWT, including heavyweight components. Expensive in terms of
memory and its real-time operating system (RTOS) footprint, including the AWT is required
because the PP supports applets that are backward compatible with web applets, as well as
permits device manufacturers to host and provide applets for new devices.

■Caution In the name of backward compatibility, the PP supports the deprecated Java 1.0.2 event model,
which is based on the java.awt.Event class. But that doesn’t mean you should use the Java 1.02 event
model, because it’s deprecated and may disappear in a future version of the PP.

The PP includes most of the AWT classes in J2SE 1.3. The following lists some of the
key omissions:

• Two-dimensional graphics classes such as java.awt.Paint and java.awt.Stroke

• Support for printing through java.awt.PrintJob and java.awt.PrintGraphics

• Support for accessible interfaces through the java.awt.Component.
AccessibleAWTComponent hierarchy

It’s important to remember that the AWT is only available on CDC platforms imple-
menting the PP; however, the PP includes both the Xlet and applet execution models. In
other words, you can leverage the AWT as defined in the PP for both applets and Xlets,
provided that your applets and Xlets run on hardware supporting the PP.

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE260

Figure 10-2 shows the AWT class hierarchy for user-interface components calling out
the major classes in the hierarchy. You can divide the components into the following two
key groups: AWT components and AWT containers. A component, of which Component is
the superclass, represents any user-interface object. This includes buttons, check boxes,
radio buttons, labels, lists, and text-entry items. A container, of which Container is the
superclass, is a component that can contain other components. Containers have layout
managers, which are responsible for where components appear within a container.

Figure 10-2. The AWT class hierarchy

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE 261

■Note If you need to learn the basics of programming with Java AWT, pick up a copy of Beginning Java SE 6
Platform: From Novice to Professional by Jeff Friesen (Apress, 2007) or visit Sun’s documentation on the
topic at http://java.sun.com/javase/6/docs/technotes/guides/awt/.

Using AWT Containers

In AWT, a container is simply a component that can contain other components. The
lightweight Panel container lets you group related components, while the Window and
Frame containers have corresponding heavyweight implementations in the native plat-
form’s window environment. A Window provides a top-level window in the native
platform’s window environment, while a Frame provides a top-level title and a border.

A container maintains a list of components and lets you add additional components
to that list. The various add methods of Container let you add components, specifying not
just the component to add, but where in the list of components the new component
should be, as well as any constraints on how the component should be placed within the
container.

The list represents only the components within a container and the Z-order for those
components; the container’s layout manager determines how components are laid out
visually within the bounds of the container. The layout manager uses the minimum and
preferred sizes specified by each component and the container bounds and an algorithm
to determine how the components should appear within the container. The AWT defines
five layout managers:

• BorderLayout: Arranges its components to fit in five regions: north, south, east,
west, and center. When adding components to a container using the BorderLayout,
you indicate which region the component should occupy; the BorderLayout consid-
ers the preferred size of each component when positioning each component.

• CardLayout: Arranges its components so that each component occupies a virtual
card; only one card (and thus one component) is visible at a time. The CardLayout
defines a set of methods that allow an application to traverse the cards sequentially
or show a specific card.

• FlowLayout: Arranges components in a left-to-right, top-to-bottom flow.

• GridBagLayout: Aligns components vertically and horizontally without requiring the
components to be the same size. Each component has a set of corresponding con-
straints that indicates how the component should be placed in the container.

• GridLayout: Aligns components vertically and horizontally in a rectangular grid,
requiring each component to be the same size.

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE262

When you create a container, its default layout manager is the FlowLayout.
You can query a container to obtain one of its components using getComponent or

getComponentAt; the former method accepts an index into the list of components, while
the latter takes either a Point or x and y coordinates and returns the component at the
specified location. You can also test if a container contains a specific component by
invoking the container’s isAncestorOf method.

Typically, you use containers to group components during the creation of your user
interface, which itself may inherit from the Panel or Window classes. The typical pattern is
to create a container’s components in its constructor or in a method that its constructor
invokes, such as an initComponents method. Because creating user interfaces by hand can
be tedious, consider using something like NetBeans, which provides both a source and
design view of Container classes.

■Tip In NetBeans, select New ➤ JPanel Form… or New ➤ JFrame Form when right-clicking a package in
the Projects pane, then choose the Design view for the new document. You can change the base class of
your container in the Source view to be a java.awt.Panel or java.awt.Frame, and the palette NetBeans
provides includes the AWT components just below the Swing components.

Because of the limitations that many consumer electronics devices have, the
relationship between the Window class and the underlying window may be somewhat
tenuous. This is because the location, size, and label of top-level windows are under
the control of the native window manager. The methods that let you adjust a con-
tainer’s title, bounds, and position provide guidelines to the native window manager,
rather than absolutes that the manager must obey. As a result, the window manager
may ignore these requests or modify them in order to present the Window appropriately.
On some platforms, these may be asynchronous operations; interfaces such as
getLocation, getSize, and getLocationOnScreen may not reflect the actual geometry of
the Window. Moreover, the window manager may ignore the decoration, title, and resiz-
ability of a Frame.

Using AWT Components

The various subclasses of java.awt.Component are where your user interface’s rubber
meets the road. As you saw in Figure 10-2, the hierarchy of components includes the
basic widgets you need to create most user interfaces, and you can always create your
own either by composing several components in a container or by drawing a compo-
nent’s contents and handling events directly.

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE 263

The java.awt.Component interface manages several different things:

• The attributes of a component, such as a component’s position, font, visibility,
opacity, and so forth

• Event handling for the component; these methods comprise a deprecated set of
methods now replaced with the listener model I discuss in the “Handling AWT
Events” section later in this chapter

• Methods to support drawing the component

• Methods that manage focus and indicate which component has focus

As you have already seen, AWT components can come in two flavors: heavyweight
and lightweight. Heavyweight components are proxy interfaces to a peer object in the
native window toolkit; for example, if the java.awt.Button class has a native component
corresponding to the button, there will be a peer class somewhere that encapsulates
the interface to the native button. Lightweight components, on the other hand, have no
corresponding tangible entity in the native window toolkit; the Java environment renders
them on the fly. Although not a requirement, it’s likely that if you encounter the AWT on a
PP-compliant device, the AWT will implement an interface to heavyweight components.
Heavyweight components have an advantage in that an application developed with
heavyweight components can generally match the look and feel of the native platform,
because the controls used by the heavyweight component toolkit are the same controls
as those provided by the underlying platform. However, the implementation of the
classes that bridge the AWT with the underlying platform can consume valuable heap
and ROM space, which is why not all profiles for the CDC include heavyweight components.

When working with components, it’s a good idea to avoid mixing lightweight
and heavyweight components, due to limitations both in the AWT and the underlying
platform. Lightweight components—including those in the AGUI, which I discuss later
in this chapter’s “Developing User Interfaces with the AGUI” section—have support for
transparent regions, unlike a heavyweight component. Among other things, this means
that heavyweight components occlude what’s behind them and can only appear rec-
tangular. Moreover, when heavyweight and lightweight components intersect, the
heavyweight component is always on top, regardless of Z-order. Finally, a heavyweight
object consumes any mouse events that fall on it; a lightweight component passes
events on to its parent container.

Handling AWT Events

With the AWT, you handle events by overriding specific methods that receive events from
the window toolkit. You can do this in one of two ways: by intercepting the low-level
events that are passed to a component, or by registering listeners for high-level events.

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE264

Handling low-level events is best done by specific components, such as when writing
new lightweight components (a topic I discuss in Chapter 9). If you need to process low-
level events, you can do so by following these steps:

1. Enable receipt of the appropriate events by invoking enableEvents and passing a
constant for the kind of events the applet wants to receive.

2. Override either processEvent or one of its delegates (processComponentEvent,
processFocusEvent, processKeyEvent, processMouseEvent, processMouseMotionEvent,
processInputMethodEvent, or processMouseWheelEvent) to handle any incoming
events.

3. Disable event receipt by invoking disableEvents when you don’t want to receive
any events.

By far the simplest way to handle events, however, is to extend the component to
include a specific listener for a high-level event, and then implement the corresponding
listener. The Java event model—used by both the AWT and Swing, which is the basis for
the AGUI—includes listener interfaces for a variety of events, including the following:

• ActionListener: Handles high-level actions generated by components

• FocusListener: Handles focus changes in the java.awt.Container and Container
subclasses

• KeyListener: Handles individual keyboard events

• MouseListener, MouseMotionListener, and MouseWheelListener: Handle mouse- and
pointer-generated events

• TextListener: Handles events that indicate when a text field’s contents have
changed

Listing 10-9 shows a simple applet that responds to button clicks on its button.

Listing 10-9. Responding to Button Clicks

package com.apress.rischpater.buttonsample;

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE 265

public class ButtonApplet extends Applet

implements ActionListener {

Label label;

public ButtonApplet() {

}

public void init() {

label = new Label("Hello World");

Button button = new Button("Click Here");

add(label);

add(button);

button.addActionListener(this);

}

public void actionPerformed(ActionEvent e) {

label.setText("Click!");

}

}

While simplistic, this code shows the basic idea: objects interested in receiving
events must declare themselves as implementing the appropriate listening interface,
and then signal to the generator of the event that they’re listening for events by invoking
the appropriate method. This example does this by implementing the ActionListener
contract that provides the actionPerformed method. Additionally, the applet notifies the
button, which generates ActionEvents, that it wants to receive any ActionEvents that the
button generates.

Developing User Interfaces with the AGUI
The AGUI package, defined in JSR 209, provides a subset of the Java Swing classes for Java
ME devices. Using the AGUI, you can develop essentially a single application that runs
atop both a AGUI-enabled Java ME device and a conventional computer. The AGUI pack-
age depends on CDC 1.1, FP 1.1, and PBP 1.1, and it provides the following packages:

• A subset of the java.awt package to provide the class hierarchy for implementing
the AGUI’s lightweight components

• The java.awt.font package to support rendering PostScript Type 1, Type 1 multiple
master, OpenType, and TrueType fonts

• The java.awt.geom package for operations on objects related to two-dimensional
geometry

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE266

• The java.awt.image package to support streamed creation and modification of
images; the AGUI requires support for GIF89a, JPEG, JFIF, and PNG version 1.0
images

• The java.nio package for specifying byte order

• The javax.imageio package, along with javax.imageio.event, javax.imageio.
metadata, and javax.imageio.stream to support image I/O

• The javax.microedition.plaf package, which differs from the Java SE implementa-
tion in that the implementation APIs are not classes but rather interfaces to permit
OEMs and service providers to deeply customize the look and feel of the AGUI

• The javax.microedition.agui.event class to support the dedicated hardware keys
typically found on consumer electronics devices

• The javax.swing package and its subpackages javax.swing.border, javax.swing.
event, javax.swing.plaf, javax.swing.table, javax.swing.text, javax.swing.tree,
and javax.swing.undo to provide lightweight components that work the same
across multiple platforms

Using the AGUI is similar to using the AWT, in that you organize your user interface
around containers that contain components, and you register event listeners to handle
user-interface events. Two key differences arise, however, especially when using some
of the more sophisticated components provided by Swing. First, Swing’s architects
designed Swing’s components around the MVC design pattern. Understanding MVC
can make interacting with the more complex Swing components easier. Second, Swing
supports a pluggable look and feel (although the AGUI support does not provide the
same functionality).

■Note If you need to learn the basics of programming with Java Swing, as with AWT, I suggest you pick up
a copy of Beginning Java SE 6 Platform: From Novice to Professional (Apress, 2007) by Jeff Friesen or visit
Sun’s documentation on the topic available at http://java.sun.com/javase/6/docs/technotes/
guides/swing/.

Using the AGUI is similar enough to Swing that with your existing Swing experi-
ence, you should feel right at home. However, there are some differences, including
the following:

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE 267

• Possible limits on the behavior of containers requiring corresponding top-level
windows

• Additional support for input constraints and device-specific keys

• Restrictions on subclassing drawing behavior for components

In addition, several class methods have some optional restrictions depending on the
AGUI implementation; your application can query the system by means of a system
property to determine the actual behavior. Table 10-1 shows a list of the system proper-
ties you can query and their meaning; the subsequent sections describe the AGUI
limitations in more detail.

Table 10-1. The AGUI System Properties and Their Values

Property Value

javax.swing.JComponent.setBackground. true if and only if
isRestricted JComponent.setBackground is restricted

by the native window toolkit

javax.swing.JComponent.setBorder. true if and only if
isRestricted JComponent.setBorder is restricted by

the native window toolkit

javax.swing.JComponent.setForeground. true if and only if
isRestricted JComponent.setForeground is restricted

javax.swing.JComponent.setToolTipText. true if and only if calls to
isRestricted JComponent.setToolTipText fail silently

because tool tips are not supported

javax.swing.JList.setCellRenderer.isRestricted true if and only if
JList.setCellRenderer cannot set
custom cell renderers

javax.swing.setMnemonic.isRestricted true if and only if calls to setMnemonic
fail silently

javax.swing.text.JTextComponent. true if and only if calls to
setFocusAccelerator.isRestricted JTextComponent.setFocusAccelerator

fail silently

javax.swing.JMenuBar.clientPropertiesSupported true if and only if JMenuBar supports
client properties

javax.swing.JMenuBar.NUM_SOFT_KEYS The number of soft keys available on the
device, if JMenuBar client properties are
supported; undefined otherwise

javax.swing.JMenuBar.NUM_SOFT_MENUS The number of soft menus available on
the device, if JMenuBar client properties
are supported; undefined otherwise

javax.swing.JTabbedPane.setToolTipTextAt. true if and only if calls to
isRestricted JTabbedPane.setToolTipTextAt fail

silently

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE268

Finally, a gentle reminder: the AGUI, like Swing, is not thread-safe. Swing
components should be accessed by only one thread at a time; usually, this is the
event-dispatching thread. If you’re writing a multithreaded application that needs to
work with the AGUI interface, you should ensure that all AGUI updates occur on the
event-dispatching thread. You can do this using the javax.swing.SwingUtilities class;
it provides the static methods invokeLater and invokeAndWait, which take a Runnable
to perform on the event-dispatching thread after the window system handles all
pending events. Use the invokeLater method to queue an action to perform on the
event-handling thread; this is preferable to invokeAndWait, which blocks until the
window system has completed your task.

Understanding Restrictions on Top-Level Windows

The PBP permits devices to disallow multiple top-level windows. When the AGUI is com-
bined with a device that does not permit multiple top-level windows, the AGUI suffers
from the same limitation: only a single JFrame is permitted on a single graphics device.
Attempts to construct a second JFrame fail, and the runtime throws the java.lang.
UnsupportedOperationException. This means that, for maximum portability between
AGUI-enabled devices, your user interface should reside entirely in one window.

This has ramifications for other containers as well. For example, the JOptionPane may
only use lightweight containers to display dialogs, and it may not be possible to create a
top-level dialog by creating a JOptionPane with a null value for its parent component.
Similarly, pop-up menus should be rooted in a specific container; you can’t create a
JPopupMenu with a null invoker. Moreover, like the JOptionPane, the JPopupMenu may only
use lightweight components in its composition.

Using the AGUI’s Added Input Support

Many consumer electronics devices do not have a traditional keyboard; in fact, many
consumer electronics devices have different input devices from each other altogether.
This poses a challenge for any generic window toolkit, which must somehow abstract the
differences between disparate devices.

The AGUI borrows the notion of input constraints that limit what a user can enter
from MIDP 2.0 by passing the INPUT_CONSTRAINT client property to a JTextComponent via the
putClientProperty method. Table 10-2 shows the input constraints that an implementa-
tion of the AGUI may support.

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE 269

Table 10-2. AGUI-Supported Input Constraints and Values

Constraint Numeric Value Passed to Description
putClientProperty

ANY 0 The user is allowed to enter any text.

EMAILADDR 1 The user is allowed to enter an e-mail address.

NUMERIC 2 The user is allowed to enter an integer value.

PHONENUMBER 3 The user is allowed to enter a phone number.

URL 4 The user is allowed to enter a URL.

DECIMAL 5 The user is allowed to enter a signed decimal value.

Because the AGUI may be implemented on devices with specific hardware keys—
such as a remote control or physical buttons on a PDA or smartphone—the AGUI defines
the javax.microedition.agui.event.DeviceKeyEvent that specifies a hardware key event
such as a keypad volume control, dedicated application launch facility, or media control
such as rewind or fast forward. Key event listeners may receive key events (instances of
subclasses of the java.awt.event.KeyEvent class) with the value VK_UNDEFINED, and then
test the event using instanceof to determine if the KeyEvent is really a DeviceKeyEvent. If it
is, you can then determine which hardware key the user pressed by invoking the
DeviceKeyEvent’s getDeviceKeyCode method.

Finally, many consumer electronics devices support soft keys that an application can
assign a custom label and action. The AGUI lets you define these using the interface to
JMenuBar, specifying a menu type and a menu priority. The menu type indicates the
intent of the action your application offers through the soft key, and the menu priority
indicates the importance of this command label relative to other command labels on
the same screen.

Understanding Changes to the Drawing Algorithm

A key compromise of the AGUI is to support the Swing APIs regardless of whether they’re
implemented as lightweight components or heavyweight components. To meet this goal,
platform vendors may make a number of changes to better support the native rendering
pipelines found on many of the platforms that implement the AGUI.

Perhaps most noticeable is that the rendering of JComponent subclasses is double-
buffered by default. You can determine whether double buffering is active by calling the
isDoubleBuffered method of any JComponent implementor. You can also request a compo-
nent to perform single buffer drawing by calling setDoubleBuffered and passing false, but
the AGUI implementation can choose to ignore your request.

The underlying UI toolkits on many consumer devices are considerably less flexible
than that found supporting today’s Java SE implementations. To meet these restrictions,

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE270

the AGUI limits the ability of applications to render on top of components. Because
components may be heavyweight, the JComponent paint methods (paint, paintComponent,
paintBorder, and paintComponents) have been made final on the first concrete subclass of
JComponent. This is because the AGUI provides optimized, tight integration with the
underlying platform, and may use the platform’s window toolkit to implement the AGUI.

Another way to look at this restriction is in light of the pluggable look and feel (PLAF)
provided by Swing and the AGUI; in Swing, it’s easy for developers to override the presen-
tation of Swing components to provide their own look and feel. In the AGUI, this
functionality is primarily for platform vendors implementing the AGUI to be able to pro-
vide an optimal look and feel for the device, not for developers like you and me to create
a specific look and feel.

Wrapping Up
To remain compatible with the large number of applets on the Web and to provide a
familiar programming model, the PP provides support for the applet execution model.
Identical to the applet model in use in today’s web browsers, the applet model that CDC
devices provide run applets in the context of an embedded web browser or another exe-
cution environment enforcing the same security model.

Applets have a life cycle similar to, but not the same as, MIDlets and Xlets.
Notably, there’s no defined way to pause and restart an applet, and unlike both
MIDlets and Xlets, an applet cannot explicitly ask its containing application to termi-
nate the applet’s execution. Because an applet is a subclass of java.awt.Container, it
can contain other user-interface components or simply override its paint method and
draw its user interface directly.

To support applets, the PP also supports most of the AWT, which was Java’s first user
interface hierarchy. While the AWT implementation is not complete—it lacks support for
printing, accessible interfaces, and some two-dimensional graphics—it has relatively few
limitations. Like the Java SE AWT, the PP-provided AWT is usually implemented using
heavyweight components, giving you the ability to create complex user interfaces that
reflect the look and feel of the native platform hosting the Java environment.

The AGUI, which is an optional package requiring the CDC, FP, and PBP, provides
yet another way for you to develop rich user interfaces on some devices. You can use
the AGUI to write not only applets, but Xlets as well. Based on the ubiquitous Swing
hierarchy of user-interface classes, the AGUI has a handful of limitations, such as limits
on top-level containers and how components can customize drawing behavior. The
AGUI also offers a more robust event framework, supporting both soft keys and hard-
ware buttons commonly found on today’s consumer electronics devices.

CHAPTER 10 ■ INTRODUCING APPLETS AND THE ADVANCED GRAPHICS AND USER INTERFACE 271

Using Remote
Method Invocation

The CDC is expressly for devices with always-on or nearly always-on connections to
the Internet. CDC devices offer great potential for network programming, because the
demands of limited resources are balanced by a reliable network connection. Java’s support
for Remote Method Invocation (RMI) provides a programming model that is a welcome
alternative to the lightweight model provided by web services. (Ironically, the RMI model in
large part predates the move to web services, as it’s based on the remote procedure call
semantics developed at Sun and popularized in a variety of remote computing initiatives.)

In this chapter, I first give you a whirlwind tour of the Java RMI facility as it is imple-
mented in the Java SE. After presenting you with the high-level architecture and
approach to Java RMI, I introduce the key Java RMI interfaces and show how those inter-
faces fit together to meet two key goals of many networked applications: remoting Java
computation, and remoting access to Java objects. Next I turn attention to JSR 66, the
Java RMI Optional Package (RMI OP) that defines the implementation of RMI available
on some CDC-enabled devices. After I show you what is available through the Java RMI
OP, I present an example to help cement the concepts you encounter in this chapter.

Understanding Java RMI
A key feature of the Java programming language is its ability to support distributed pro-
gramming—applications that run on separate hosts, passing objects back and forth—
through the Java RMI paradigm.

All distributed object-oriented applications need to perform three kinds of tasks:

• Remote object discovery: Applications need mechanisms to discover references to
remote objects.

• Remote communication: Applications running in different contexts on different
machines need to be able to communicate about the changing state of objects.

• Remote behavior definition: Applications must also be able to communicate about
the definitions from which those objects are derived.

273

C H A P T E R 1 1

Let’s see how the architecture of Java RMI accommodates these requirements.

Understanding the Architecture of Java RMI

Java RMI meets the needs of distributed programs in two key ways: by providing a remote
discovery registry, and by providing a robust communications mechanism for exchang-
ing information about Java classes and objects. Figure 11-1 shows the relationship
between the client and the server in an RMI-based application.

Figure 11-1. RMI application architecture

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION274

RMI-based solutions have several key components:

• RMI client application: This runs within the client’s JVM. Supporting the RMI client
application is the Java Remote Method Protocol (JRMP).1

• RMI registry: Maintained by the application server, this provides object discovery
to RMI clients.

• RMI server: Hosted by the application server’s JVM, this is responsible for executing
remote objects.

• Web server: This is responsible for serving new code to the RMI client application.

You build a distributed application using RMI as you would any other Java application:
through interfaces and classes. In your distributed application, some objects are remotable—
that is, you can invoke a remotable object’s methods across JVMs through the protocol pro-
vided by the RMI. You gain references to these objects using the RMI registry running on a
well-known server; the registry returns a stub that implements the methods provided by the
remote object. Under the hood, a remote object isn’t the same as a local object; instead, it’s
a proxy, implementing network interfaces that communicate with the remote JVM’s
instance of the object. Stub objects implement the same interface that the remote object
implements, meaning that it can be cast to any of the objects implementable by the remote
object. Figure 11-2 shows this relationship; the remote object is the solid circle in the RMI
server, and the stub is the dotted circle in the RMI client.

Figure 11-2. The relationship between remote and local objects in the RMI implementation

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION 275

1. Other protocols, such as the Java RMI over Internet Inter-Orb Protocol (RMI-IIOP), as well as proprietary
implementations can support RMI; these are not supported by the CDC and are not discussed here.

In truth, there’s more to RMI than your interface, implementation, and a stub. Early
versions of RMI required both stubs and skeletons, which are server-side classes that bear
the responsibility of communicating between the stub and the served object. You built
these skeletons, like the stubs, using the RMI compiler rmic. Today, with the rise of the
Java reflection interfaces, RMI applications need only stubs; in fact, as you’ll see later in
this chapter, not even stub classes are required when using the RMI package tailored for
Java ME.

The Java RMI model has its advantages over proprietary and traditional web services
approaches, including the following:

• Object orientation: The RMI model extends the Java execution model in a seamless
way, letting you pass Java objects across the RMI interface. This lets you continue
to use object-oriented techniques and design patterns when constructing your
application.

• Security: The RMI model leverages Java’s existing security model.

• Legacy support: Servers providing RMI services can connect to legacy services
through JNI calls, letting you wrap legacy systems in Java interfaces and integrate
them into your networked applications.

These advantages make RMI attractive in many situations, especially with consumer
electronics applications in the set-top box market, where security and integration with
large-scale legacy computing has been an ongoing effort since the late nineties. At the
same time, RMI is somewhat dated, having originated in the mid to late nineties. In com-
parison with its chief competitor, the XML- and HTTP-based web service model, it can be
seen as lacking, especially in the following areas:

• Interoperability with web services: The web services model has become the leading
client/server architecture pattern in many markets. Connecting an RMI applica-
tion to an existing web service requires additional work similar to that required by
connecting an RMI application to any other legacy application.

• Weight: RMI comes with a size penalty on the platforms that support it; RMI
requires the CDC and the Foundation Profile for mobile devices. This requires
significantly more robust hardware than does the Java ME web services imple-
mentation, which can run atop a CLDC platform. In addition, the RMI protocol
can be significantly more expensive over wireless links than a carefully designed
web service exchange.

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION276

• Network support: Although the full RMI implementation supports automatic HTTP
tunneling through firewalls, as you’ll see in the section “Seeing What’s Provided by
the Java RMI Optional Package” later in this chapter, the Java RMI OP does not.
Thus, to support Java RMI on Java ME devices, your network security policy requires
additional thought over that required when simply deploying a web service.

Despite these limitations, Java RMI may be a good fit when developing your appli-
cation, especially if your situation meets one of two criteria. First, clearly, if your
application infrastructure already uses RMI, you can best integrate with it by continuing
to use RMI throughout your development. This is especially true for some segments of
the telecommunication consumer electronics marketplace, where middleware solutions
to constrained television set-top boxes are common. Second, if you are developing an
application with strong remote computation requirements, RMI provides a better layer
of abstraction for expressing programs about remoting computation through agents
than a traditional web service.

Introducing the Java RMI Interfaces

The key to understanding Java RMI is understanding the concept of interfaces. As you
already know, an interface is a contract: it makes a promise that a particular object will
carry out particular functions (the methods of the class), but it doesn’t say how it will
carry out those functions. In other words, an interface separates the definition of behavior
from the implementation of behavior. This is key, because RMI uses this concept through-
out its implementation; your remote objects are defined in terms of their interfaces, and
their implementation (that is, their ability to operate as remote objects) occurs behind
your program’s back.

The Java RMI interfaces are defined in the java.rmi package hierarchy. This hierarchy
defines one interface, three classes, and a bunch of exceptions:

• The java.rmi.Remote interface: Specifies the intent of an interface destined for
remote execution

• The java.rmi.MarshalledObject class: Abstracts a byte stream with the serialized
representation of an object

• The java.rmi.Naming class: Provides the interface to storing and obtaining refer-
ences to remote objects in a remote object registry

• The java.rmi.RMISecurityManager class: Defines a default security manager used
when downloading code from a remote server

• Exceptions such as java.rmi.RemoteException: Occur when dealing with errors that
can occur in a distributed environment

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION 277

■Note A parallel implementation of Java RMI provides RMI over Internet Inter-Orb Protocol (RMI-IIOP).
Now part of Java SE and in the javax.rmi hierarchy, it has no corresponding support in Java ME.

To implement the server side of a distributed system, some additional code is
necessary. The java.rmi.server hierarchy provides this code, including the java.rmi.
server.UnicastRemoteObject and java.rmi.activation.Activatable classes. The differ-
ence between the two classes is that remote objects extending UnicastRemoteObject
require a server to run for the lifetime of the object, while an object extending
Activatable runs in the context of Java’s RMI daemon rmid.

Understanding the Java RMI Optional Package
The Java RMI OP, formalized in JSR 66, came about fairly early in the history of mobile
Java. Approved in 2000, it arose from efforts by Motorola, Siemens, Sun, and others to
bring RMI to mobile platforms running J2ME, the predecessor to Java ME. These partners
developed RMI OP to meet the needs of highly connected, distributed applications that
leverage Java standards for information passing. Today, Sun provides a reference imple-
mentation of Java RMI OP implemented entirely in Java to licensees that can be
integrated directly onto hardware that meets the minimum requirements. RMI OP is
interoperable with the Java SE RMI implementation, making it ideal for integrating
embedded devices with existing RMI-based solutions.

Looking at the Requirements for the Java RMI Optional Package

Although carefully streamlined to meet the needs of embedded devices, RMI OP still has
some sizable requirements, including the following:

• 2.5MB of available ROM over the existing requirements for Java ME and other
platform concerns

• 1MB or more of available RAM over the existing requirements for Java ME and
other platform concerns

• TCP/IP connectivity to the network

• Support for the Java ME Foundation Profile running atop the Java ME Connected
Device Configuration

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION278

Many device vendors have moved toward providing support for the CDC on mobile
and embedded devices, although few still provide the horsepower necessary to run RMI
OP. As the cost of memory and processors continues to fall and we see greater conver-
gence between personal computers and other consumer devices, it’s likely that this will
change, and the RMI OP will move from being available only in specialized environments
to being more generally available.

Seeing What’s Provided by the Java RMI Optional Package

How does RMI OP differ from RMI as provided by Java SE? It’s first useful to determine
how RMI OP is the same as Java SE, because it’s likely that you will design your solution
around Java SE RMI and use a Java SE– or Java EE–based server environment to support
your distributed application.

By definition, RMI OP must support the following features:

• Full support for the RMI call semantics, including support for the RMI wire
protocol

• Support for marshalling—that is, support for representing an object on a
remote host

• The ability to export remote objects from RMI OP–enabled devices through the
UnicastRemoteObject class

• Distributed garbage collection and garbage collector interfaces across both client
and server

• Interfaces to support objects that don’t persist between invocations and require a
full-time server to manage their activation

• Support for the registry interfaces and the ability for RMI OP–enabled devices to
export registry objects remotely

RMI OP is surprisingly comprehensive for a standard aimed at low-end devices. By
supporting UnicastRemoteObject, distributed garbage collection, and the ability to register
and export a remote object, RMI OP–enabled hardware can fully participate in distrib-
uted computation, acting as both clients and servers in the object-distribution process.
This symmetry is a key feature of RMI OP over the traditional web service model of com-
putation, both because it’s required for full interoperability support with Java SE RMI and
because it lets embedded devices serve objects to remote servers. In fact, on devices pro-
viding RMI OP, RMI can be used for interapplication communication on the same device
or for truly distributed applications across the network.

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION 279

So what’s missing? A lot, actually, but odds are that you won’t miss most of it:

• Support for RMI request proxying over HTTP

• Support for the RMI multiplexing protocol, which enables multiple JVMs to invoke
remote methods on each other when only a single communication channel exists

• Implementation of the Activatable interface, providing a concrete implementation
of objects that can be activated

• Deprecated methods, classes, and interfaces (which you shouldn’t be using anyway!)

• Support for the RMI skeleton/stub protocol, along with the need for the stub and
skeleton compiler

These deficits have some practical consequences, but not as many as you might
think. First, and most limiting, is that RMI OP can only communicate using the original
TCP/IP socket-based RPC mechanism: there’s no support for tunneling through firewalls.
This has a direct impact on the network topology under which you deploy your applica-
tion, because you must configure the firewalls that protect your servers to permit Java
RMI traffic. The loss of a concrete implementation of Activatable may be an issue for you
if you want the device to host objects that do not persist between activations, but you’re
free to provide your own implementation of the interface. And not needing to construct
stub and skeletons is actually a blessing; you only need to do this work for your Java SE
applications.

Applying Java RMI
When writing a distributed application with Java, you must perform the following steps
in concert with the java.rmi package:

1. Write the Java interfaces for the remote services.

2. Implement the remote services, deriving your implementation from
UnicastRemoteObject or Activatable.

3. Generate stub classes from the implementation if you’re deploying part of the
solution on Java SE or Java EE.

4. Write a remote service host container that creates and manages your remote services.

5. Write your Java client, invoking the remote objects on the client.

6. Install and deploy the client and server.

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION280

While this sounds like a lot of work, it frees you from many of the low-level details of
developing a remote application. Steps 1 and 2 are writing Java code—something you
already know how to do. The Java SE comes with the rmic compiler to perform step 3.
Step 4 is simply writing a small Java application, and step 5 you have to do anyway—your
client application is what it’s all about. Step 6 can be a small task or a big task, depending
on the nature of your application and service.

Let’s walk through these steps one at a time using the weather example we’ve visited
throughout the book. Our WeatherApplet example for the CDC needs a source for
weather data, presumably sourced from a commercial or governmental service. In the
sections that follow, I walk you through building a remotable Location class suitable for
communicating location and weather data using RMI OP.

To implement the remotable Location object, you need to define the relationship
between the various interfaces and implementations necessary. Figure 11-3 shows the
relationship between the Location interface, the RMI OP hierarchy, and the implementa-
tion of Location, LocationImpl.

Figure 11-3. The remotable Location interface and its implementation

The Location interface—which I first introduced as a class for representing spatial
locations and weather reports for specific locations in Chapter 6—has two String proper-
ties exported as properties via the four methods getLocation, setLocation, getForecast,

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION 281

and setForecast. The Location interface is remotable, indicated by its extension of the
java.rmi.Remote interface. Its concrete implementation, LocationImpl, is based on the
RMI OP implementation of a java.rmi.UnicastRemoteObject, which can be shared across a
distributed computing environment.

■Note Because NetBeans doesn’t directly support the development of RMI applications, the examples that
follow require you to have the JDK installed, which should have been installed when you installed NetBeans.
You may need to be sure that the bin directory of the installed JDK is in your path to access commands
such as javac and rmic.

Writing the Java Interfaces for the Service

As I noted previously, the key to RMI is defining the interfaces to the remote service.
Listing 11-1 shows the Location interface.

Listing 11-1. The Location Interface

public interface Location

extends java.rmi.Remote {

public String getLocation()

throws java.rmi.RemoteException;

public void setLocation(String l)

throws java.rmi.RemoteException;

public String getForecast()

throws java.rmi.RemoteException;

public void setForecast(String f)

throws java.rmi.RemoteException;

}

This interface is straightforward, although you can see that each method can throw
java.rmi.RemoteException. This is because implementations of the interface can be prox-
ies, remote from the actual implementation. In that case, the implementation of the
interface must have a way to signal an exceptional situation, such as a loss of network
connectivity.

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION282

Implementing the Service Using Java SE

The service itself is the LocationImpl class, which provides a concrete implementation of
the Location interface with help from the UnicastRemoteObject, as shown in Listing 11-2.

Listing 11-2. The LocationImpl Class

public class LocationImpl

extends

java.rmi.server.UnicastRemoteObject

implements

Location {

private String location;

private String forecast;

public LocationImpl()

throws java.rmi.RemoteException {

super();

}

public String getLocation()

throws java.rmi.RemoteException {

if (location != null) {

return location;

} else {

return "";

}

}

public void setLocation(String l)

throws java.rmi.RemoteException {

location = l;

}

public String getForecast()

throws java.rmi.RemoteException {

if (forecast != null) {

return forecast;

} else {

return "";

}

}

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION 283

public void setForecast(String f)

throws java.rmi.RemoteException {

forecast = f;

}

}

Note this implementation’s default constructor, which must invoke its superclass’s
constructor immediately. This is because the class must invoke the UnicastRemoteObject’s
constructor to perform the linking to the RMI subsystem and remote object initialization.

LocationImpl extends the UnicastRemoteObject, which provides the necessary links to
the RMI subsystem. This is one way to link an object to the RMI subsystem and prepare
it for exporting to remote systems; another way is to invoke the UnicastRemoteObject.
exportObject method, passing an object that implements Remote. In either case, the
UnicastRemoteObject implementation exports the object on a port to make it available to
receive incoming method invocations.

■Note A complete implementation of Location would use another remote computing interface—say a
web service—to obtain a remote location’s weather forecast. For brevity, I omit that here.

Although you don’t usually need to call it directly, UnicastRemoteObject has a corre-
sponding unexportObject that forcibly removes an object from the RMI runtime. After you
invoke this, if it succeeds, the object you pass can no longer accept incoming RMI calls.

Generating the Stub Classes for Java SE

If you’d like, you can generate Java SE stub classes for inclusion in Java SE applications;
this can be handy if you want to deploy your application for both Java ME and Java SE, or
if your distributed architecture calls for objects to be served from the Java ME device to
hardware running Java SE. Interestingly, you don’t perform this step on your Java source
code; you perform it on the class files generated from your implementation.

For a small project like this, it’s simply a matter of compiling LocationImpl and then
running the RMI compiler rmic on the resulting class file. To do this, bring up a shell and
issue the commands shown in Listing 11-3.

Listing 11-3. Building the Java SE Stub Classes by Hand

c:\book\Chapters\chapter11\code>javac Location.java

c:\book\Chapters\chapter11\code>javac LocationImpl.java

c:\book\Chapters\chapter11\code>rmic LocationImpl

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION284

These commands use javac to generate the class files for Location.java and LocationImpl.
java; the final line uses rmic to generate the skeleton LocationImpl_Stub.class.

■Note While the appearance of the command line differs if you’re using Mac OS X or Linux, the command
syntax remains the same.

Writing the Remote Service Host Application

The remote service needs to do two things. First, it must create an instance of implemen-
tation of the objects it serves. Second, it must register those objects with the RMI naming
service, specifying where clients can gain access to the remote object. Listing 11-4 shows
how to do this.

Listing 11-4. A Simple RMI Server Application

import java.rmi.Naming;

public class LocationServer {

public LocationServer() {

try {

Location c = new LocationImpl();

Naming.rebind("rmi://localhost:1099/LocationService", c);

} catch (Exception e) {

System.out.println("Exception: " + e);

}

}

public static void main(String args[]) {

new LocationServer();

}

}

This is pretty simple stuff, and it demonstrates the power of building a remote appli-
cation using RMI. The server creates a new instance of LocationImpl and registers it with
the naming daemon—that’s it!

To run the service on a stand-alone workstation for testing, you must first launch the
RMI registry, which is the Java application with which the LocationServer registers its
object for clients to find. You can launch rmiregistry in one shell and LocationServer
(using java to start the Java VM) in the other.

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION 285

■Tip If you can’t run the service, or if the client and server aren’t communicating, check to see if you’re
running firewall or other software that would prevent rmiregistry from listening on the default port (1099).
Another possibility is to operate rmiregistry on a different port, such as 8081, and change the port num-
ber in the application.

Of course, your production-caliber server isn’t going to be running on your laptop
with rmiregistry; instead you’ll host the resulting implementation on an application
server such as Sun’s GlassFish or BEA’s WebLogic Server. How you package and install the
remote service differs slightly depending on the application server you choose.

Invoking the Remote Object from the Client

Invoking the remote object from the client is trivial: simply look up the remote service
and obtain an instance of the remote object, as shown in Listing 11-5.

Listing 11-5. Invoking the Remote Object

import java.rmi.*;

…

Location c = (Location)Naming.lookup(

"rmi://localhost/LocationService");

…

When invoking a remote object, you must be sure that you specify the remote host—
in this case, localhost—as well as the port and the name of the remote service providing
the object. The java.rmi.Naming class does the rest, contacting the remote service and
obtaining an instance of the remote object.

Wrapping Up
Some devices running the CDC support RMI OP, an optional extension that brings much
of Java RMI to constrained devices. Like the Java SE implementation, RMI OP provides
facilities for remote object discovery, remote communication, and remote behavior defi-
nition, as well as a secure communications channel that the Java implementation of RMI
OP provides. Java RMI heavily leverages the use of interfaces to decouple an object’s
described behavior from its implementation. Remote clients use abstract interfaces
describing how a remote object will behave in conjunction with an underlying object
generated by the Java runtime that communicates with a remote server providing the
object’s actual implementation.

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION286

The RMI OP package, defined by JSR 66, provides a comprehensive subset of Java
RMI, including remote call semantics, remote object representation, object exporting
from CDC devices, and distributed garbage collection. RMI OP is based on the original
J2SE RMI implementation and its wireline protocol; it is not an implementation of RMI-
IIOP, which brings CORBA to Java. When writing applications that use RMI OP, you must
define interfaces for the remote services, implement the remote services using the inter-
faces you define, and write the remote service host container that manages those
interfaces. If part of your application runs on Java SE– or Java EE–enabled hardware, you
must also generate the stub classes used by RMI to support object distribution across
multiple virtual machines on the network.

Using Java RMI in Java ME isn’t for everyone. In today’s world of distributed web
services using XML over HTTP, it’s best suited for environments that require fully object-
oriented approaches toward distributed computing, or for those legacy environments
that require you to connect Java ME devices to existing network services already offering
RMI services to other Java clients.

CHAPTER 11 ■ USING REMOTE METHOD INVOCATION 287

Intermezzo

This next part of the book is crucially important for you as a mobile applications devel-

oper. Today’s Java ME platform is more connected than ever before, with required support

for accessing today’s Internet with the ubiquitous HTTP, as well as optional interfaces for

lower-level Internet protocols as well as wireless protocols such as Bluetooth and SMS.

Nearly every application of value requires at least some data communications capability.

Plan on reading Chapter 12 closely, because its explanation of the GCF underpins commu-

nication within Java ME. If you’re developing applications that utilize web services, read

Chapter 13, because it teaches you how to work with Extensible Markup Language (XML),

the lingua franca of the Internet. Wireless messaging (the topic of Chapter 14) is optional,

but even if you aren’t planning on using the wireless messaging interface, I recommend

you at least skim this chapter so you have an understanding of the wireless communica-

tions options available to you.

Communicating with
the Rest of the World

Support for networked communications has been a crucial component of Java since the

beginning, and Java ME continues this trend, bringing with it essential contributions to the

entire community of Java developers. The three chapters in this part look at the key

aspects of creating Java ME applications that use the Internet. In Chapter 12, you’ll learn

how to use the GCF, one of the most important frameworks and APIs provided by Java ME.

It pervades Java ME’s notions of how applications communicate across physical inter-

faces such as networks. In Chapter 13, you’ll learn what options you have when working

with XML—an important facet of many communicating applications today. Finally, in

Chapter 14, you’ll see how to access the wide-area wireless networking capabilities found

on many Java ME devices.

P A R T 4

Accessing Remote Data
on the Network

Sun Microsystems’ early success was as a manufacturer of high-performance computing
platforms for scientific and engineering purposes. A key feature of most workstations—
including Sun’s hardware—was support for networking. Embodied in the motto associated
with Sun, “The Network Is the Computer,” this commitment to networking continues to
this day with the robust network solutions available to and crafted using the Java platform.
Java ME is no exception; it was designed from the ground up as a platform that interacts
with other computers on the network.

In this chapter, I talk about what is perhaps one of the most important contributions
Java ME has made to the Java platform: the Generic Connection Framework (GCF). This
framework provides a unified API for interacting with systems on the network using dis-
parate protocols, and it has been extended to encompass file operations (see Chapter 7),
wireless communications using SMS (see Chapter 14), and contactless communications
(see Chapter 15). First, I explain what the GCF is and what it provides to you as an applica-
tion developer. Next, I show you how to use the GCF to perform low-level communications
on today’s IP network using TCP and UDP. The bulk of the chapter, however, shows you how
to use the GCF to access remote resources on the Internet using HTTP, an important facet
of nearly every Java ME networked application. I close with a word on how the Java ME
privilege model may affect your application.

Introducing the Generic Connection Framework
I/O and communication in the Java SE world is a wild ride: you find sockets, files, and con-
nection classes (derived from URLConnection) residing in the java.net and java.io packages.
Arguably powerful, to its detriment the Java SE framework for I/O requires you to have a
command of a relatively large number of interfaces, many with dissimilar semantics. This
turns out to be equally unwieldy for mobile devices as well; these deep and sophisticated
class hierarchies don’t scale well to mobile devices, especially those running the first
releases of Java ME. Consequently, with the introduction of the first CLDC, Sun introduced
the GCF, a straightforward hierarchy of interfaces and classes for managing connections 293

C H A P T E R 1 2

and performing I/O. The GCF has proven to be so popular that it has been widely adopted
outside its initial application; platform architects now abstract communications to files,
other network protocols, smart cards, radio-frequency identification (RFID) cards, Blue-
tooth peripherals, and even bar codes using the GCF. In fact, there’s work underway to fold
the GCF back into Java SE, as documented in JSR 197, demonstrating how the convergence
of fixed and mobile computing paradigms draws from both environments.

Contained within the javax.microedition.io package, the GCF provides an abstracted
approach to connectivity. By providing an extensible interface hierarchy of common
classes (see Figure 12-1) and a factory to create instances of those classes based on a
common request scheme based on URLs, the GCF significantly decreases the number of
classes required to support communicating applications. This reduces both the Java ME
platform footprint and the complexity that you as a Java ME developer must manage
when building your application.

Figure 12-1. The GCF hierarchy as originally introduced in CLDC 1.0

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK294

The GCF hierarchy is a tightly woven collection of interfaces with a sprinkling of classes:

• The Connector class: Responsible for operating as a factory of Connection objects.

• The Connection interface: Represents a generic connection between two entities.
The Connection interface defines the close method, which is responsible for closing
a connection.

• The DatagramConnection interface: Defines the actions you can take on a datagram-
oriented connection such as UDP.

• The StreamConnection interface: Defines the actions you can take on a stream-
oriented connection such as TCP. StreamConnection instances are bidirectional,
consisting of an InputConnection (from which you read data) and an
OutputConnection (to which you write data).

• The StreamConnectionNotifier interface: Defines the actions you can take when
listening for a new StreamConnection.

• The ContentConnection interface: Supports the passing of content encoded through
a well-known codec.

• The Datagram interface: Defines an abstract interface for a single datagram.
Datagrams are bidirectional, implementing this functionality by extending the
DataInput and DataOutput interfaces.

• The IOException class: Signals generic communications errors such as network fail-
ures, and the ConnectionNotFoundException, which is thrown by Connector class
methods when you attempt to create a connection that the platform cannot
resolve. (This IOException class isn’t formally part of the GCF.)

When you use the GCF, you follow these steps:

1. Create a URL describing the kind of socket you’d like to open and detailing the
address and name of the resource to which you want to connect.

2. Invoke the Connector.open class method, passing the URL you constructed to
receive an instance of a specific Connection subclass.

3. Use the concrete Connection subclass methods for the kind of connection
Connector.open returned to you to work with the connection.

The pseudocode in Listing 12-1 demonstrates this pattern, opening an HTTP con-
nection to the server www.nowhere.com and obtaining an InputStream from which to read.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 295

Listing 12-1. Opening an HTTP Connection and Obtaining an InputStream

String url = "http://www.nowhere.com";

…

StreamConnection c = null;

InputStream s = null;

try {

c = (StreamConnection)Connector.open(url);

s = c.openInputStream();

…

} catch (ConnectionNotFoundException e) {...}

catch (IllegalArgumentException e) {...}

catch (IOException ioe) {...}

finally {

try {

if (s != null) s.close();

if (c != null) c.close();

} catch (Exception e) {...}

}

This pseudocode is fairly typical for most applications that use connections. You
begin by constructing a URL describing where the connection should be made, and then
you use Connection.open to generate a concrete Connection class that implements the con-
nection to the address you specified in the URL. Once the connection is open, you obtain
streams (or datagrams) from the connection and perform your I/O using the provided
streams or datagrams. When you’re finished, you need to close both the stream (not the
datagram connections) and the connection itself.

Programming with connections is fraught with exceptions, because you’re at the
mercy of the outside environment. A network might not be available, a handset might
not have service, or sufficient resources may not be available on the device to accommo-
date your network request. Consequently, open can throw a number of exceptions:

• ConnectionNotFoundException: If the platform doesn’t support the requested
protocol, or if the platform cannot find the target specified by the URL

• IllegalArgumentException: If you specify an invalid parameter

• IOException: If any kind of I/O error occurs while opening the connection

• SecurityException: If your application is not permitted to access the protocol
you request

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK296

While the example in Listing 12-1 passes only the URL to open, you can also specify
an access mode (one of Connector.READ, Connector.WRITE, or Connector.READ_WRITE), indi-
cating the access mode for the resulting connection. If you supply an access mode, you
can also indicate that your application wants to receive time-outs when using the con-
nection if they’re provided by the specific protocol.

You’re probably familiar with the notion of a URL, but because URLs play a key role
in the creation of connections, it’s worth reviewing their semantics. Using the GCF, URLs
describe both the kind of connection as well as the location to which the connection
instance should connect. The syntax of a URL is described in RFCs 1738 and 2396; a URL
is a single string that looks like this:

scheme://user:password@host:port/path;parameters

where

• The scheme specifies the protocol used for the connection, such as HTTP.

• The user specifies an optional username required when accessing the connection.

• The password specifies an optional password required when accessing the
connection.

• The host is the fully qualified domain name or other address of the remote end
of the connection.

• The port specifies an optional port to be used on the remote end of the
connection.

• The path is a path to the remote end of the connection, whose interpretation and
format may vary depending on the scheme. The path may include one or more
parameters modifying the connection.

Under the hood, the implementation of Connector uses the scheme you specify in a
URL to determine the kind of Connection it should instantiate and return. Java ME and the
various RFCs for extending the communication capabilities of Java ME have defined sev-
eral different schemes. Table 12-1 provides a list of common schemes, the protocol, the
returned Connection subclass, and in which JSR the scheme was introduced to the Java
ME platform.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 297

Table 12-1. Connection Schemes

URL Scheme Protocol GCF Connection Type Defined By Required
or Optional

btl2cap Bluetooth L2CAPConnection JSR 82 Optional

datagram Datagram DatagramConnection CLDC, CDC, and Optional
JSR 197 for J2SE

file File system access FileConnection, JSR 75† Optional
InputConnection

http HTTP HttpConnection MIDP 1.0,* Required
MIDP 2.0,**
Foundation Profile,***
and JSR 197 for Java SE

https Secure HTTP HttpsConnection MIDP 2.0** Required

comm Serial I/O CommConnection MIDP 2.0** Optional

sms SMS MessageConnection JSR 120, JSR 205 Optional

mms MMS MessageConnection JSR120, JSR 205 Optional

cbs Cell Broadcast MessageConnection JSR 120, JSR 205 Optional
Service (CBS)

apdu Application Protocol APDUConnection JSR 177†† Optional
Data Unit (APDU)

jcrmi Java Card Remote JavaCardRMIConnection JSR 177†† Optional
Method Invocation

socket Socket SocketConnection MIDP 2.0** Optional

serversocket Socket ServerSocketConnection MIDP 2.0** Optional

datagram UDP UDPDatagramConnection MIDP 2.0** Optional

*JSR 37 defines MIDP 1.0.

**JSR 118 defines MIDP 2.0.

***JSR 46 defines Foundation Profile 1.0; JSR 219 defines Foundation Profile 1.1.

†I discuss this in Chapter 7.

††I discuss this in Chapter 15.

From Table 12-1, you can see that not all Java ME platforms support even the most
common connection types. This is something you must keep in mind when designing
your applications. For example, it would do you little good to develop an application that
required the use of UDP datagrams for widespread deployment on legacy handsets that
probably run CLDC MIDP 1.0, because those handsets likely don’t provide support for
the UDPDatagramConnection, and even some CLDC MIDP 2.0 handsets lack support for that
class. In general, it’s safe to assume support for HTTP on any CLDC or CDC device;

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK298

secure connections through HTTPS are usually available on MIDP 2.0 implementations,
but some devices may lack HTTPS support. Raw (stream or datagram) socket support is
less common, and serial support is significantly less common than even stream or data-
gram support. Other schemes, like those supporting SMS (which I describe in Chapter 14),
Bluetooth, and the FCOP (see Chapter 7), vary in their availability depending on the
carrier and handset class you target. It’s worth your effort to do some market research as
you define the features for your application to ascertain how many devices implement
the optional packages you need. Table 12-2 summarizes the availability of specific
Connection implementations by profile.

Table 12-2. Connection Implementations

Connection Required? CLDC 1.0, MIDP 1.0 MIDP 2.0 Foundation and
1.1 Related Profiles

CommConnection N ✓

Connection Y ✓ ✓ ✓ ✓

ContentConnection Y ✓ ✓ ✓ ✓

DatagramConnection N ✓ ✓ ✓ ✓

HttpConnection Y ✓ ✓ ✓

HttpsConnection Y ✓

InputConnection Y ✓ ✓ ✓ ✓

OutputConnection Y ✓ ✓ ✓ ✓

SecureConnection N ✓

ServerSocketConnection N ✓

SocketConnection N ✓

StreamConnection Y ✓ ✓ ✓ ✓

StreamConnectionNotifier Y ✓ ✓ ✓ ✓

UDPDatagramConnection N ✓

The GCF isn’t perfect: critics may fairly claim that the Connection class doesn’t go far
enough in abstracting common communications operations into abstract methods, so
that many conceptually similar operations (such as sending a datagram to a remote host
or sending a protocol data unit to a smart card) have widely varying interface semantics
in different subclasses of the Connection class. This is unfortunate, because it makes
learning about the various communications options available through optional packages
more difficult, and it makes taking a component-oriented approach to developing com-
municating applications impossible without the use of adapter classes.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 299

Communicating with Sockets and Datagrams
Although the vast majority of networked mobile applications likely use HTTP to fulfill
their communications needs, some applications may still need raw socket or datagram
facilities. This includes utilities for system administrators, instant messaging clients, and
novel applications of these protocols to games or multimedia applications.

Unfortunately, support for these facilities—usually implemented over TCP for
sockets and UDP for datagrams—is not available on all devices. As Table 12-2 shows,
MIDP 2.0 optionally provides support for socket communication, while all Java ME
platforms may provide support for datagram communication. Consequently, as you
establish the business case for your application, you should consider the availability of
these protocols and do some research to determine precisely which devices will sup-
port your application, and if there are enough devices in the hands of your target
market to justify your development expense. If not, you may want to consider tunnel-
ing your data communications over another protocol such as HTTP.

■Tip Resources such as the Java ME Device Table at http://developers.sun.com/mobility/
device/device and the WURFL device description repository at http://wurfl.sourceforge.net can
help you determine which devices support socket or datagram communications.

Using Sockets with the GCF

Socket programming with the GCF is easy: construct a URL to the destination of the
socket, and open it using Connector. Assuming everything goes your way—the path to the
server is available and the server is running—you can then obtain streams to perform
input and output on the connection established by the device.

When opening a socket connection, Connector.open returns an instance of
SocketConnection, which implements StreamConnection. For most socket-oriented pro-
gramming, using a StreamConnection is sufficient, as shown in Listing 12-2.

Listing 12-2. Using a StreamConnection

String url = "socket://nowhere.com:7";

…

StreamConnection c = null;

InputStream s = null;

OutputStream o = null;

byte[12] b;

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK300

try {

c = (StreamConnection)Connector.open(url);

s = c.openInputStream();

o = c.openOutputStream();

o.write("Hello world!".getBytes());

s.read(b, 0, b.length);

} catch (ConnectionNotFoundException e) {...}

catch (IllegalArgumentException e) {...}

catch (IOException ioe) {...}

finally {

try {

if (o != null) o.close();

if (s != null) s.close();

if (c != null) c.close();

} catch (Exception e) {...}

}

This code opens a TCP socket to port 7—the echo port—and proceeds to write the
message “Hello world!” Once it writes the message, it reads the response and then tears
down the streams and connection. As you see from the code, you perform the actual
I/O using the input and output stream classes InputStream and OutputStream; they let
you exchange individual arrays of bytes using their read and write methods. For higher-
level access, you can also obtain DataInputStream and DataOutputStream instances from
the connection using the StreamConnection’s methods openDataInputStream and
openDataOutputStream; as you recall from Chapter 2, they let you read and write primi-
tive data types including floating-point numbers, integers, and strings.

The SocketConnection instance that Connector.open returns has a few more methods
than the StreamConnection, and it lets you perform some low-level operations on the
socket by invoking the following methods:

• getAddress: Lets you obtain the remote address to which the socket is bound by
invoking on the socket

• getLocalAddress: Lets you obtain the local address to which the socket is bound

• getPort: Lets you obtain the remote port to which the socket is bound

• getLocalPort: Lets you obtain the local port to which the socket is bound

• getSocketOption: Lets you get a socket option

• setSocketOption: Lets you set a socket option

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 301

The socket options are a subset of the socket options you may have encountered
using TCP sockets on Linux or UNIX; Table 12-3 summarizes the options you can obtain
or mutate. You pass the option identifier to getSocketOption, and it returns the resulting
option; you pass the option identifier and a new value to setSocketOption, and it attempts
to set the option you specify.

Table 12-3. Socket Options

Option Identifier Meaning

SocketConnection.DELAY Duration to delay when writing to small buffers

SocketConnection.KEEPALIVE Duration that a socket should remain open for keep-alive
purposes

SocketConnection.LINGER Duration that a socket should linger open with output
remaining when there’s no response from the other side of
the socket

SocketConnection.RCVBUF Size in bytes of the receiving buffer

SocketConnection.SNDBUF Size in bytes of the sending buffer

The GCF also has support for accepting incoming socket requests through the
StreamConnectionNotifier and ServerSocketConnection classes, although in practice Java ME
applications rarely use this facility. There are at least three reasons why you probably don’t
want a Java ME application listening on a socket for incoming connections. First, listening
for an incoming connection requires the hardware to supply power to the network subsys-
tem. For many portable devices, especially those with wireless radios, this can drastically
reduce battery life. Second, the networks on which most Java ME devices operate typically
use dynamic address assignment when allocating addresses to Java ME devices; even if
there weren’t energy penalties for operating the network hardware, you wouldn’t know what
address corresponded to a specific device without using some kind of registration mecha-
nism in advance. Finally, only a small number of devices offer this support.

If you’re sure these reasons don’t apply to you, you can obtain a ServerSocketConnection
by simply specifying the port on which you want to listen, as shown in Listing 12-3.

Listing 12-3. Obtaining a ServerSocketConnection

String url = "socket://7";

ServerSocketConnection ssc = null;

try {

ssc = (ServerSocketConnection)Connector.open(url);

while (true) {

SocketConnection sc = (SocketConnection)ssc.acceptAndOpen();

InputStream s = sc.openInputStream();

OutputStream o = sc.openOutputStream();

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK302

try {

...

}

catch(Exception e) {...}

finally {

if (s!=null) s.close();

if (o!=null) o.close();

if (sc!=null) sc.close();

}

}

} catch (Exception e) {...}

finally {

try {

if (ssc != null) ssc.close();

} catch (Exception e) {...}

}

This code strongly resembles that of a traditional select/accept server loop written
using UNIX sockets. After creating a ServerSocketConnection, the code blocks on the
ServerSocketConnection instance’s acceptAndOpen method, which returns a SocketConnection
instance once a client has connected. Next, it opens input and output streams using the
socket to perform the necessary I/O service; once this is done, it cleans up and goes back to
waiting for the next request.

Of course, the accept/respond loop only runs for the lifetime of your application; a
true server would likely need to listen even when your application is not running. On
MIDP platforms, you can accomplish this using the push registry by registering your
application for incoming requests either at installation time or at runtime. To register at
installation time, simply include the GCF URL describing the socket to which you want to
listen and the name of your MIDlet as a value for a MIDlet-Push field in the application
descriptor, like this:

MIDlet-Push-1: socket://:7, ServerMIDlet, *

This instructs the application management system to invoke your application
whenever an incoming TCP request appears on port 7. Your application can then use
the PushRegistry’s listConnections method—which I describe in Chapter 14—to obtain
a list of connections that have data waiting. You can also programmatically add your
application to the push registry by invoking its registerConnection method, passing
exactly the same information as you provide in the MIDlet-Push field of your applica-
tion descriptor.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 303

Using Datagrams with the GCF

Datagram communication—which is generally suited for short, single messages where
sequencing and flow control are unnecessary—uses the Datagram class to encapsulate the
concept of a datagram. Like sockets, you use the Connector class to open a connection;
when using datagram communication, you obtain a class such as DatagramConnection or
UDPDatagramConnection, with which you create an instance of Datagram. Once you have the
Datagram instance in hand, you use it to send and receive individual datagrams. Listing 12-4
writes “Hello world!” to a datagram echo server.

Listing 12-4. Writing “Hello world!” to a Datagram Echo Server

String url = "datagram://noplace.com:7";

DatagramConnection dgc = null;

Datagram d;

String s = "Hello world!";

byte m[] = s.getBytes();

byte[] b = new Byte[12];

try {

dgc = (DatagramConnection)Connector.open(url);

try {

d = dgc.newDatagram(m, m.length);

dgc.send(d);

d.reset();

dgc.receive(d);

d.readFully(b, 0, b.length);

} finally {

dgc.close();

}

} catch (Exception e) {...}

finally {

try {

if (dgc != null) dgc.close();

} catch (Exception e) {}

}

The GCF pattern here is clear, although instead of using streams for input and out-
put, you use the Datagram class. The DatagramConnection class acts as a factory for Datagram
objects, which you then pass to send and receive to send and receive single datagrams,
respectively.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK304

The Datagram class is an abstract class that encapsulates the following concepts
common to all datagram protocols:

• Datagrams have a buffer in which the datagram stores the data in a single
datagram packet.

• Datagrams have an offset, which is the current position for reading or writing data
in the buffer.

• A datagram’s buffer has a length, indicating the size of the datagram buffer.

• Datagrams have a representation of the source or destination address of the
datagram.

Datagrams implement the DataInput and DataOutput interfaces, as you saw in
Figure 12-1, letting you read and write various primitive data types, including boolean,
byte, character, double, float, integer, long integer, and UTF Strings. The interface to
DataInput and DataOutput is reminiscent of that provided by DataInputStream and
DataOutputStream; the classes provide methods readX and writeX for the various sup-
ported types X, including the following:

• readBoolean, which lets you read an input byte and returns true if the byte is
nonzero, and writeBoolean, which lets you write a boolean as a single byte

• readByte and writeByte, which let you read and write single bytes, respectively

• readChar and writeChar, which let you read and write single characters, respectively

• readFloat and writeFloat, which let you read and write floating-point numbers,
respectively

• readShort and writeShort, which let you read and write short integers, respectively

• readInt and writeInt, which let you read and write integers, respectively

• readLong and writeLong, which let you read and write long integers, respectively

• readUnsignedByte and writeUnsignedByte, which let you read and write a single
unsigned byte, respectively

• readUTF and writeUTF, which let you read and write UTF-8 encoded strings,
respectively

• readFully and write, which let you read and write arrays of bytes, respectively

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 305

Each Datagram instance represents a single message either waiting to be written to the
connection or previously read from the connection; you can reuse a Datagram instance by
invoking its reset method. You can also query the various properties of a Datagram using
the following methods:

• getAddress: Returns the address of a Datagram

• getData: Returns the contents of a Datagram’s buffer

• getOffset: Returns the offset into a Datagram’s buffer

• setData: Lets you set a Datagram’s buffer, offset, and length given an array of bytes

• setLength: Lets you set the length of a Datagram’s buffer

Communicating with HTTP
After the protocols that deliver e-mail, HTTP is perhaps the most widely deployed and
understood protocol for data exchange today. At heart, it’s a simple client/server proto-
col, and its simplicity and generality have led it to be one of the most important protocols
on the Internet today. Besides being the protocol responsible for delivering content on
the Web—created by Tim Berners-Lee, it has its origins in providing the transport for
hypertext documents at the European Organization for Nuclear Research (CERN)—it
now underpins many other client/server exchanges, such as those enabling web services.
(I talk more about the web service model of computing in the next chapter.)

Reviewing HTTP

HTTP is a client/server protocol in which a client application—the user agent—makes a
request of a server for an operation or content located at a particular URL. The request
consists of headers that contain metadata about the request, and an object body, which is
an optional block of data that pertains to the request. The server replies to the request in
the same way, returning headers that provide metadata about the request followed by an
optional object body in response. HTTP can run over any reliable stream protocol, but in
common practice, it operates over TCP. The protocol itself uses an eight-bit representa-
tion for characters, but the request and response headers are written as plain text,
making it easy for developers to understand, implement, and troubleshoot. For example,
a client web browser might send the message in Listing 12-5 to obtain the home page at
the URL http://www.noplace.com.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK306

Listing 12-5. Obtaining a Web Page

GET /index.html HTTP/1.1

Host: www.noplace.com

The first line of the request is the request itself; the request consists of a method, a
resource, and the version of the protocol. The GET request asks the remote server to return
the indicated resource—in this case, the document index.html—using HTTP version 1.1.
Subsequent lines of the request consist of metadata about the request, indicated as
name-value pairs demarcated by colons and separated by newlines, such as the server
destination host (in the example, www.noplace.com). If a request includes an object body,
it follows the headers after a blank line, as shown in Listing 12-6.

Listing 12-6. Posting Information to a Web Server

POST /do HTTP/1.1

Host: www.noplace.com

name=value

Here, the remote server is being asked to process the object body name=value by
invoking the script do and passing the object body to the script. Table 12-4 shows a list of
the defined HTTP methods (also called verbs) and their use.

Table 12-4. HTTP Methods and Their Meaning

Method Meaning

HEAD Asks for the response identical to the response created by a GET, but without the
object body

GET Requests a representation of the specified resource

POST Submits data to be processed by the specified resource

PUT Uploads a representation of the specified resource

DELETE Deletes the specified resource

TRACE Echoes back the received request

OPTIONS Returns the raw HTTP methods that the server supports for the resource

CONNECT Converts the request connection to a transparent TCP tunnel

Returning to Listing 12-5, the server might make a response like the one shown in
Listing 12-7.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 307

Listing 12-7. A Typical Server Response

HTTP/1.1 200 OK

Date: Mon, 23 Jun 2008 22:13:40 GMT

Server: Apache/2.2.8 (Unix) mod_ssl/2.2.8 OpenSSL/0.9.7l DAV/2 PHP/5.2.5

Content-Location: index.html

Vary: negotiate,accept-language,accept-charset

TCN: choice

Last-Modified: Mon, 24 Sept 2007 01:12:03 GMT

ETag: "ec11-5b0-43ad74ee73ec0;44bbb82e73280"

Accept-Ranges: bytes

Content-Length: 49

Connection: close

Content-Type: text/html

<html>

<body>

Hello world!

</body>

</html>

The first line of an HTTP server’s response is always the response status, consist-
ing of the server version, a numeric indication of status, and a human-readable status
string. A status code is always a three-digit number; the first digit indicates the class of
the response, and the second and third indicate details. Common classes are 200, indi-
cating success, and 400, indicating a client error that caused the server to be unable to
fulfill the request. Table 12-5 shows a list of common (but not all) HTTP status codes.
Following the response status are a series of headers; the actual meaning of each
header isn’t as important now as understanding that each header has a name (such as
Date) followed by a value (Mon, 23 Jun 2008 22:13:40 GMT). You may encounter some
headers such as Content-Length and Content-Type often when using HTTP; many others
may not be necessary for your work. Fortunately, the most common ones, such as the
Date, Content-Length, and Content-Type headers, are self-explanatory; they indicate the
date and time the server generated the response, how many bytes are in the response,
and the encoding method the server used to encode the response, respectively.
Finally, after the headers comes the object body of the response—in this case, a short
HTML document.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK308

Table 12-5. Common HTTP Status Codes

Status Code Meaning

100 Request headers have been received; the client may send the request body.

101 Switching protocols.

200 Standard response for successful HTTP requests.

201 The request has been completed and has resulted in a new resource.

202 The request has been accepted for processing, but the processing has not been
completed.

204 No content.

301 Moved permanently; this and all future requests should be directed to the
given URL.

302 Moved temporarily; this request should be directed to the given URL.

303 The response can be found under another URL using a GET method request.

304 The resource has not been modified since last requested.

400 The request contains bad syntax or cannot be completed.

401 Authentication of the user agent is possible but did not occur.

403 The request was legal, but the server is refusing to respond to it.

404 The requested resource could not be found.

405 A request was made of a resource using a method not supported by that resource.

500 An internal server error occurred while handling the request.

503 The service is presently unavailable.

505 The HTTP version used is not supported.

509 The bandwidth limit was exceeded.*

*This is not an official status code, but is returned by many servers.

Using HTTP with the GCF

HTTP’s ability to provide metadata with requests for service using standard verbs lets you
define a wide variety of services that a remote system can provide besides just returning
pieces of a web page. Often, though, Java ME devices need only the ability to read remote
content. You can download content using the GCF and a ContentConnection, as shown in
Listing 12-8.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 309

Listing 12-8. Using a ContentConnection to Download an Image

public void run() {

ContentConnection cc = null;

DataInputStream in = null;

try {

String url = "http://www.noplace.com/image.png";

cc = (ContentConnection)Connector.open(url);

in = new DataInputStream(cc.openInputStream());

int length = (int)cc.getLength();

byte[] data = null;

if (length != -1) {

data = new byte[length];

in.readFully(data);

}

else {

int chunkSize = 512;

int index = 0;

int readLength = 0;

data = new byte[chunkSize];

do {

if (data.length < index + chunkSize) {

byte[] newData = new byte[index + chunkSize];

System.arraycopy(data, 0, newData, 0, data.length);

data = newData;

}

readLength = in.read(data, index, chunkSize);

index += readLength;

} while (readLength == chunkSize);

length = index;

}

Image image = Image.createImage(data, 0, length);

…

}

catch (Exception e) {...}

finally {

try {

if (in != null) in.close();

}

catch (IOException ioe) {}

}

}

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK310

The ContentConnection class inherits from StreamConnection and provides three new
methods: getEncoding, getLength, and getType. This example uses the getLength method to
determine the number of bytes being returned by the remote server; unfortunately,
there’s no guarantee that the server will actually report this information. Consequently,
this example tests the returned content length; if it’s undefined, the code will read the
data in 512-byte chunks. Either way, the code creates a new image with the returned data
and closes both the input stream and ContentConnection. This code is encapsulated in a
runnable method, run, because in practice you’re likely to use threads for all of your I/O.
(I show you a concrete example of this in the “Putting HTTP to Work” section, which
details a full application that uses HTTP.)

The ContentConnection class is a high-level abstraction of the kind of metadata
that HTTP provides, and it lets you perform only a fetch of remote content. Using the
ContentConnection, you specify a remote resource when you create the connection
using the Connector class. Under the hood, the platform makes the desired request
using the HTTP method GET and the connection you specify when you request the
DataInputStream from which the remote resource will be read, giving you no control
over the semantics of the HTTP request itself. Once the platform has completed the
request, you can learn only three things about the response: how the response was
encoded (using the getEncoding method), the number of bytes returned (using the
getLength method), and the Multipurpose Internet Mail Extensions (MIME) type of the
method (using the getType method).

■Note The content type and other information about the response are only available if the server provides
them; your application must be prepared to deal with the possibility that a server won’t return this informa-
tion (unless you have control over the server implementation as well, and even then you would need to
handle any errors that arise in your application from a lack of this metadata).

Because ContentConnection is such a simple interface, it’s ideal when your applica-
tion needs only to obtain the contents of a remote resource. It is, however, woefully
inadequate for more sophisticated uses of HTTP, because it does not provide access to
most of the metadata that accompanies HTTP requests and responses, nor does it let
you specify the method HTTP invokes when making the request. For finer-grained
access to the HTTP protocol, you need to use instances of the HttpConnection class—
a class that inherits from ContentConnection. (In fact, when you invoke Connector.open
on a URL with the http scheme, the instance returned is the HttpConnection, not the
ContentConnection the code in Listing 12-8 suggests.)

Reflecting the underlying connection with a remote HTTP server, an HttpConnection
instance can be in one of three states:

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 311

• Setup: You can set request parameters, including the method.

• Connected: The request method and parameters have been sent, and the response is
requested.

• Closed: The HTTP connection has been terminated.

Unlike other types of connections, you need to know what state an HttpConnection
is in, because certain methods will only work when the connection is in the proper
state. For example, you can’t set the method type the connection should use once the
connection is in the connected state, because the connection has already sent the
request. The transition from setup to connected occurs when you invoke any method
that requires the connection to exchange data, such as opening a stream for reading or
writing to the connection.

While the connection is in the setup state, you can set the request method using
the connection’s setRequestMethod method, passing one of HttpConnection.GET,
HttpConnection.POST, or HttpConnection.HEAD. You can also specify an arbitrary request
header for the request, such as the MIME content type being provided. You do this
using the connection’s setRequestProperty method, passing the name of the request
header and the value as strings, like this:

hc.setRequestProperty("Content-Type", "application/x-urlformencoded");

Many of the HttpConnection methods have direct correspondence with HTTP
response headers, including the following methods:

• getDate: Returns the value of the Date header as a time in seconds since the begin-
ning of the epoch

• getExpiration: Returns when the resource will expire, as indicated by the Expires
header as a time in seconds since the beginning of the epoch

• getLastModified: Returns when the resource was last modified, as indicated by the
Last-Modified header as a time in seconds since the beginning of the epoch

• getResponseCode: Returns the three-digit HTTP response code

• getResponseMessage: Returns the HTTP response message, if any

• getHeaderField: Returns the value of a specific HTTP header by name

You can also enumerate all of the response headers using the getHeaderField and
getHeaderFieldKey methods by passing an integer; they return the value and name of the
nth header, treating the block of response headers as a single array.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK312

The HttpConnection class also contains some of the utility functions for examining
URLs. These utility functions let you determine the scheme, host name, port, and file a
URL contained when the GCF created the HttpConnection instance. These HttpConnection
methods include getProtocol, getHost, getPort, and getFile. You can also determine the
URL to which a specific HttpConnection refers by invoking its getURL method.

Probably the most common reason for needing to use an HttpConnection instead of a
ContentConnection is when you need to submit data for processing, like user input to a
web service. This may involve using the HTTP POST method instead of GET. You use an
HttpConnection and get its OutputStream in order to write the data to the server, as shown
in Listing 12-9.

Listing 12-9. Sending Data to the Server

void run() throws IOException {

String url = "http://www.noplace.com/do";

HttpConnection hc = null;

DataInputStream is = null;

OutputStream os = null;

int rc;

try {

hc = (HttpConnection)Connector.open(url);

hc.setRequestMethod(HttpConnection.POST);

hc.setRequestProperty("Content-Type",

"application/x-urlformencoded");

os = hc.openOutputStream();

os.write("name=value\n".getBytes());

rc = hc.getResponseCode();

if (rc != HttpConnection.HTTP_OK) {

throw new IOException("HTTP response code: " + rc);

}

is = hc.openInputStream();

int length = (int)hc.getLength();

byte[] data = null;

if (length != -1) {

data = new byte[length];

is.readFully(data);

}

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 313

else {

int chunkSize = 512;

int index = 0;

int readLength = 0;

data = new byte[chunkSize];

do {

if (data.length < index + chunkSize) {

byte[] newData = new byte[index + chunkSize];

System.arraycopy(data, 0, newData, 0, data.length);

data = newData;

}

readLength = is.read(data, index, chunkSize);

index += readLength;

} while (readLength == chunkSize);

length = index;

}

…

} catch (Exception e) {…}

finally {

try {

if (is != null) is.close();

if (os != null) os.close();

if (hc != null) hc.close();

}

catch (Exception e) {…}

}

}

The setup using the GCF is exactly the same; the only difference is that this time the
code casts the result to an HttpConnection. The code then sets the request method to POST
using setRequestMethod, and it adds an additional header to the request describing the
content type. On most implementations, the process of obtaining an output stream for the
request will cause the HttpConnection to move from the setup to the connected state; the
remote server is now waiting for the application to write the object body for the POST
request. The code does this by first obtaining the output stream on the connection using
openOutputStream, and then by writing a simple form-encoded name-value pair. Even if
the implementation buffers the headers and object body you’ve prepared using the
HttpConnection instance and OutputStream, the HttpConnection must open the connection,
send the request, and read the HTTP response headers when you invoke getResponseCode.
At this point, the connection is definitely in the connected state, and you can obtain infor-
mation about the result using connection methods such as getLength, as this code does to
determine the length of the resulting object body. The remainder of the code is the same as

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK314

for using a ContentConnection and InputStream to read the results from the server, closing the
streams and connection when the code finishes reading from the stream.

Putting HTTP to Work

Using the GCF for connections to remote resources is simple in theory, but in practice it’s
a little more complex, for two reasons. First, and most importantly, you must handle all of
the exceptions that may arise; the pseudocode you’ve seen before indicates that excep-
tions can occur, but the pseudocode doesn’t do anything useful with them. Second, you
want to perform your I/O on a separate thread, because the connections usually block
the thread on which they operate while they exchange data with the remote server. While
on some devices and networks, this delay can be negligible, there’s no guarantee of this,
and the result of having connections perform their work on the main thread is a frozen
user interface—something intolerable for users.

Listing 12-10 shows the WeatherFetcher class, which uses HTTP to obtain the weather
forecast for a specific city and state. The WeatherWidget example uses it to obtain
weather forecasts from a remote web server, as you see in Listing 12-11. (If you’re follow-
ing along with the listings in this chapter, you will want to make the changes in all of the
listings in your project, because they are interrelated.)

■Note The implementation of WeatherFetcher assumes that the remote web server can provide weather
forecasts given a city and state, and that the resulting weather forecasts are provided to the application in
plain text. In the next chapter, I build on what you learn here to see how an actual web service would use
XML to provide structure to the request and response data.

Listing 12-10. The WeatherFetcher Class

package com.apress.rischpater.weatherwidget;

import java.io.*;

import javax.microedition.io.*;

public class WeatherFetcher implements Runnable {

private String url = "http://www.noplace.com/weather";

private Thread thread;

private Location location;

private boolean cancelled;

WeatherWidget app;

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 315

public WeatherFetcher(Location l, WeatherWidget a) {

location = l;

app = a;

cancelled = false;

if (l!=null && a!=null) {

thread = new Thread(this);

thread.start();

}

}

public void cancel() {

cancelled = true;

}

public void run() {

String vars;

String forecast = "";

HttpConnection hc = null;

InputStream in = null;

OutputStream out = null;

vars = "location="+WeatherFetcher.urlEncode(location.getLocation());

try {

hc = (HttpConnection)Connector.open(url);

hc.setRequestMethod(HttpConnection.POST);

hc.setRequestProperty("Content-Type",

"application/x-www-formrlencoded");

hc.setRequestProperty("Content-Length",

Integer.toString(vars.length()));

out=hc.openOutputStream();

out.write(vars.getBytes());

in=hc.openInputStream();

int length=(int)hc.getLength();

byte[] data = new byte[length];

in.read(data);

forecast = new String(data);

}

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK316

catch(Exception e){ forecast = e.getMessage(); }

finally {

try {

if (in!=null) hc.close();

if (out!=null) hc.close();

if (hc!=null) hc.close();

}

catch(Exception e) {}

}

if (!cancelled) {

location.setForecast(forecast);

app.update();

}

}

private static String urlEncode(String s)

{

if (s!=null) {

StringBuffer tmp = new StringBuffer();

int i=0;

try {

while (true) {

int b = (int)s.charAt(i++);

if ((b>=0x30 && b<=0x39) || /* 0-9 */

(b>=0x41 && b<=0x5A) || /* A-Z */

(b>=0x61 && b<=0x7A)) { /* a-z */

tmp.append((char)b);

} else {

tmp.append("%");

if (b <= 0xf) tmp.append("0");

tmp.append(Integer.toHexString(b));

}

}

}

catch (Exception e) {}

return tmp.toString();

}

return null;

}

}

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 317

The WeatherFetcher class implements Runnable, because the actual connection occurs
in a separate thread. This permits the MIDlet to perform the network communication
without blocking the user interface—a feature expected by today’s users. Given a location
and an instance of the application to notify when the network operation is complete, the
class creates a new thread, connects to the remote server, posts the location to the server,
and obtains the results. This work is started in the class constructor, which sets aside the
provided location and reference to the application’s user interface before starting a new
thread using the newly created instance of this class. The WeatherFetcher class requires a
reference to the MIDlet that uses it; the class notifies the MIDlet when the update has
occurred by invoking the MIDlet’s update method. Listing 12-11 shows this change to the
WeatherWidget MIDlet, and I’ll discuss this change more in a bit.

The user interface can cancel the operation at any time; this can occur if you pick a
different location while the WeatherFetcher and its thread are blocked awaiting a response
from the network. To do this, the user interface invokes the cancel method; it simply
asserts a cancellation flag, which the WeatherFetcher tests before updating the user inter-
face. In fact, cancel doesn’t actually cancel the HTTP connection, because there’s really
no good way to do this; instead, it permits the HTTP connection to complete and cancels
updating the user interface.

The run method actually performs the work necessary to obtain a weather forecast
for a specific location; this code should be familiar to you by now. The WeatherConnection
class assumes the remote web server has accepted the desired location as a name-value
pair encoded as a form argument; this is typical for simple web servers that also provide
content for web forms. Consequently, the first thing that run does is create a name-value
pair and store the result in vars; the syntax of this pair is appropriate for any web server
responding to a form, and looks like this:

location=Berkeley,CA

This step must URL-encode the argument string; some characters such as a space
character (" ") cannot be transmitted as they are, but instead are represented as a single
percent symbol (%) followed by the two-digit hexadecimal ASCII code of the character.
Thus, a space character (" ") would be represented as the string %20. While the example
passes only a single named value location, it could just as easily pass multiple values;
these would be concatenated using an ampersand (&), like this:

city=Berkeley&state=CA

Typically, however, if you’re building an application to exchange structured data with
a web server, you’ll probably encode that structured data using XML—a subject I save for
Chapter 13.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK318

■Tip If you’re passing name-value pairs using the HTTP GET or POST methods, it’s imperative that you
URL-encode the values, or else the URL will be malformed and the responding server likely will not process
your result. The full syntax for URL encoding is described in RFC 2396.

Once the outgoing data is URL-encoded, it’s time for run to set up the HTTP connec-
tion. It does this using the GCF, setting the request method to POST, indicating that the
content type being sent is URL-encoded form data as if from a web browser, and specifying
the length of the data. (This example could have used an HTTP GET request and simply
tacked the form data on the end of the URL, but it’s more useful to show you how to make
an HTTP POST request, because it’s likely you’ll be using POST for any serious web service
interactions anyway.)

With the connection configured, the code writes the arguments to the connection’s
output stream and proceeds to open and read the result from the input stream. In prac-
tice, this is where the code is likely to block; on a mobile wireless device, it may take up to
a second or so for this interaction to proceed. In fact, it’s quite likely that this transaction
will take longer to process this interaction, at least the first time the application executes,
because many devices, especially MIDP devices, will ask the user to permit the MIDlet if
it’s OK to perform the request. Only signed third-party applications are permitted to use
network resources without permission; others will prompt the user for permission prior
to initiating any network request.

Once the code reads the result from the network, it constructs a new String with the
resulting data and updates the Location object with the new data before notifying the
application that the Location object has changed.

■Tip In a crude sense, the WeatherFetcher is using the Observer pattern, using the Location object it
received at initialization as a model, and the application as a receiver of updates. I could have constructed a
more elaborate interface and class hierarchy to represent this, although doing so would not have simplified
the purpose of this example, which is to show you how to use the HttpConnection.

The static urlEncode method is trivial, creating a new string based on an input string.
The new string has URL-encoded characters for any nonalphabetic characters. Frankly,
it’s a mystery to me why the CLDC and CDC don’t provide this function somewhere as a
utility; most network-aware applications are going to need it anyway.

Integrating the WeatherFetcher class into the WeatherWidget application does not
require much work; starting from the implementation you last saw in Chapter 6, you only
need to make a few changes to the MIDlet itself to initiate requests for weather updates
when the MIDlet first launches or when you select a new location from the location list.
Listing 12-11 shows these changes.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 319

Listing 12-11. The WeatherWidget MIDlet Modified to Use the WeatherFetcher Class

package com.apress.rischpater.weatherwidget;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import java.util.*;

public class WeatherWidget extends MIDlet implements CommandListener {

private Form wxForm;

private StringItem locationItem;

private StringItem wxItem;

private Command exitCommand;

private Command screenCommand;

private Command settingCommand;

private Command okCommand;

private Command backCommand;

private Command updateCommand;

private List locationList;

private TextBox locationTextBox;

private Alert cannotAddLocationAlert;

private WeatherFetcher fetcher;

private Location location;

private LocationStore locationStore;

private void initialize() {

locationStore = new LocationStore();

String[] locations = locationStore.getLocationStrings();

try {

if (locations.length > 0)

location = locationStore.getLocation(locations[0]);

}

catch(Exception e){}

fetcher = new WeatherFetcher(location, this);

getDisplay().setCurrent(get_wxForm());

}

public void startApp() {

initialize();

}

public void pauseApp() {

}

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK320

public void destroyApp(boolean unconditional) {

if (fetcher!=null) fetcher.cancel();

fetcher = null;

}

public void update() {

get_wxItem().setText(get_forecast());

try

{

locationStore.updateLocation(location);

}

catch(Exception e){}

fetcher = null;

}

public void commandAction(Command command, Displayable displayable) {

// Insert global pre-action code here

if (displayable == wxForm) {

if (command == exitCommand) {

exitMIDlet();

} else if (command == settingCommand) {

getDisplay().setCurrent(get_locationList());

}

} else if (displayable == locationList) {

if (command == screenCommand) {

getDisplay().setCurrent(get_locationTextBox());

} else if (command == List.SELECT_COMMAND) {

int index = get_locationList().getSelectedIndex();

set_location(get_locationList().getString(index));

if (fetcher != null) fetcher.cancel();

fetcher = new WeatherFetcher(location, this);

getDisplay().setCurrent(get_wxForm());

} else if (command == backCommand) {

getDisplay().setCurrent(get_wxForm());

}

} else if (displayable == locationTextBox) {

if (command == backCommand) {

getDisplay().setCurrent(get_locationList());

} else if (command == okCommand) {

add_location(locationTextBox.getString());

getDisplay().setCurrent(get_locationList());

}

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 321

} else if (displayable == cannotAddLocationAlert) {

if (command == backCommand) {

getDisplay().setCurrent(get_locationList());

}

}

}

public String get_forecast() {

if (location == null) {

return "unknown forecast";

} else {

return location.getForecast();

}

}

public String get_location() {

if (location == null) {

return "unknown";

} else {

return location.getLocation();

}

}

public void set_location(String l) {

try {

location = locationStore.getLocation(l);

}

catch(Exception e) {}

get_wxForm().setTitle(l);

}

public void add_location(String l) {

String locations[];

int i;

try {

locationStore.addLocation(new Location(l, ""));

} catch (Exception e) {

getDisplay().setCurrent(get_cannotAddLocationAlert());

}

// Refresh the location list lazily.

locationList = null;

}

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK322

public Display getDisplay() {

return Display.getDisplay(this);

}

public void exitMIDlet() {

if (fetcher!=null) fetcher.cancel();

fetcher = null;

getDisplay().setCurrent(null);

destroyApp(true);

notifyDestroyed();

}

public StringItem get_wxItem() {

if (wxItem == null) {

wxItem = new StringItem("Forecast", get_forecast());

}

return wxItem;

}

public Form get_wxForm() {

if (wxForm == null) {

wxForm = new Form(get_location(), new Item[] {

get_wxItem()

});

wxForm.addCommand(get_exitCommand());

wxForm.addCommand(get_settingCommand());

wxForm.setCommandListener(this);

}

return wxForm;

}

public TextBox get_locationTextBox() {

if (locationTextBox == null) {

locationTextBox = new TextBox("Add Location", "", 80, 0);

locationTextBox.addCommand(get_backCommand());

locationTextBox.addCommand(get_okCommand());

locationTextBox.setCommandListener(this);

}

return locationTextBox;

}

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 323

public List get_locationList() {

if (locationList == null) {

String[] locations;

locations = locationStore.getLocationStrings();

locationList = new List("Where", List.IMPLICIT, locations, null);

locationList.addCommand(get_screenCommand());

locationList.addCommand(get_backCommand());

locationList.setCommandListener(this);

}

return locationList;

}

public Alert get_cannotAddLocationAlert() {

if (cannotAddLocationAlert == null)

{

cannotAddLocationAlert = new Alert("Cannot Add Location");

cannotAddLocationAlert.setString("An error occurred adding the➥

location you entered. It has not been added.");

cannotAddLocationAlert.addCommand(get_backCommand());

}

return cannotAddLocationAlert;

}

public Command get_settingCommand() {

if (settingCommand == null) {

settingCommand = new Command("Settings", Command.OK, 1);

}

return settingCommand;

}

public Command get_okCommand() {

if (okCommand == null) {

okCommand = new Command("OK", Command.OK, 1);

}

return okCommand;

}

public Command get_exitCommand() {

if (exitCommand == null) {

exitCommand = new Command("Exit", Command.EXIT, 1);

}

return exitCommand;

}

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK324

public Command get_screenCommand() {

if (screenCommand == null) {

screenCommand = new Command("Add Location", Command.SCREEN, 1);

}

return screenCommand;

}

public Command get_backCommand() {

if (backCommand == null) {

backCommand = new Command("Back", Command.BACK, 1);

}

return backCommand;

}

}

The MIDlet must now declare an instance of WeatherFetcher, so that it can initiate
and cancel requests for weather updates at launch or when you choose a location. The
initialize method takes care of the first case, in which the application requests an
update for a weather forecast at application launch.

The new update method, which the WeatherFetcher instance invokes, must do two
things: update the user interface with the newly obtained forecast, and update the
LocationStore with the new weather data. It silently ignores any failures to update the
LocationStore, under the assumption that the old cached data is likely good enough, and
subsequent views of the same location will refetch the weather forecast data anyway.

The MIDlet’s main command handler commandAction must react when you choose a
new location by cancelling any pending operation and creating a new Fetcher for the
newly selected location, initiating a new network request.

Finally, exiting the MIDlet should dismiss the network operation; this is done by both
destroyApp, which the application manager will invoke if the device must terminate the
application, and exitMIDlet, which the user interface itself invokes.

Securing Your HTTP Transaction with HTTPS

While HTTP has many advantages as an application-layer protocol, security’s not one
of them. Sharing information over HTTP is like talking in a crowded restaurant; the
only security you get is through obscurity, and that’s not really security at all. To meet
the needs of secure applications such as e-commerce, there’s the HTTPS protocol,
which is simply HTTP implemented over a secure socket connection such as TLS.
HTTPS provides both client/server authentication through certificates and encryption
of the end-to-end communication using a mutually agreed-upon protocol, defending it
against many kinds of attacks, such as man-in-the-middle and eavesdropping attacks.
Required by MIDP 2.0, HTTPS is an important addition to the Java ME platform that
finds use in many applications.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 325

Fortunately, using HTTPS in your application is as simple as tacking on a couple of s
characters. When creating the connection, request an HttpsConnection from the Connector
instead, as shown in Listing 12-12.

Listing 12-12. Requesting an HttpsConnection

HttpsConnection hc = (HttpsConnection)

Connector.open("https://www.noplace.com/");

The resulting HttpsConnection implements HttpConnection, so you use it the same
way. In addition, you can obtain two additional pieces of information about the connec-
tion: the port on which the server accepted the connection via its getPort method, and
details about the negotiated secure connection via its getSecurityInfo method.

The getSecurityInfo method returns an instance of SecurityInfo that describes the
kind of connection established between your application and the remote server; from it,
you can obtain four pieces of information: how the GCF encrypted the transaction, the
bearer protocol, the version of the bearer protocol, and the remote certificate. This infor-
mation is available via the following SecurityInfo methods:

• getCipherSuite: Returns a String naming the cipher suite that the GCF used to
encrypt the transaction

• getProtocolName: Returns a String indicating the name of the protocol bearing the
transaction

• getProtocolVersion: Returns a String indicating the version of the protocol bearing
the transaction

• getServerCertificate: Returns the certificate of the remote server

The certificate returned by getServerCertificate is an object that implements the
Certificate interface; you can query it for its properties, such as who issued the certifi-
cate and when it will expire.

While adding HTTPS to your application may be easy, crafting a secure application
isn’t. As leading computer security expert Gene Spafford has remarked, HTTPS is like
“using an armored truck to transport rolls of pennies between someone on a park bench
and someone doing business from a cardboard box.” To craft a truly secure application,
you must also take responsibility for the data your application exchanges with remote
servers; for example, an e-commerce application should take care to protect a user’s cre-
dentials to avoid compromise if the user’s device is lost or stolen. I show you some of the
tools that Java ME provides to meet these challenges in Chapter 15.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK326

Granting Permissions for Network Connections
As I indicated in the section “Putting HTTP to Work,” networked applications require
privilege. This requirement, imposed by the MIDP, ensures that applications do not
generate unauthorized network connections that may result in data use charges or in
transmitting your information to unauthorized individuals. Network access through the
GCF in the MIDP is guarded by permissions based on the type of connection your appli-
cation wants to create. Table 12-6 shows the names of these permissions.

Table 12-6. MIDP Permissions Governing Access to the GCF

Permission Interface

javax.microedition.io.Connector.http HttpConnection

javax.microedition.io.Connector.https HttpsConnection

javax.microedition.io.Connector.datagram DatagramConnection

javax.microedition.io.Connector.datagramreceiver DatagramConnection

javax.microedition.io.Connector.socket SocketConnection

javax.microedition.io.Connector.serversocket ServerSocketConnection

javax.microedition.io.Connector.ssl HttpsConnection

javax.microedition.io.Connector.comm CommConnection

javax.microedition.io.PushRegistry PushRegistry

By default, working in the emulator provided by NetBeans, your MIDlet runs as an
untrusted MIDlet, and connections are only available if the user grants permission for
the connection.

As I describe in Chapter 3, trusted applications must specify the privileges they
require in the JAD attributes MIDlet-Permissions and MIDlet-Permissions-Opt. The easiest
way to do this in NetBeans is by specifying this in the application’s properties; choose
Properties ➤ Application Descriptor ➤ API Permissions and click the button labeled Add.
Figure 12-2 shows this screen in NetBeans.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 327

Figure 12-2. Specifying MIDlet permissions

Wrapping Up
Unlike other configurations of Java, Java ME provides a unified approach to data commu-
nication through the GCF. The GCF provides a factory class for connections, called
Connector, that lets you create subclasses of the Connection interface based on the URL
you pass to Connector.open. The URL specifies not only the destination of the connection,
but also the protocol type and port, letting you create a wide variety of different connec-
tions. However, the actual connection types (the application-layer protocols and
transport-layer protocols) are limited by the platform on which your application is exe-
cuting; some protocols such as HTTP are available on nearly the entire range of Java ME
platforms including both the CDC and the CLDC, while other protocols such as datagram
protocols or low-level streamed socket protocols may not be.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK328

You perform the actual communication using the Connection interface subclass that
Connector.open returns; it typically provides a means for you to obtain either streams or
datagrams that you use to exchange bytes with the remote side of the connection. Most
subclasses of Connection provide additional methods for performing protocol-specific
operations, such as setting socket options.

An important example of a Connection interface subclass is the hierarchy that begins
with ContentConnection and contains HttpConnection; you use these two classes to perform
HTTP exchanges with remote web servers to obtain content and interact with remote
web services. Using just the HttpConnection, you can post data to a remote server in URL-
encoded form and obtain a response that your application can parse, store, and display;
you can do the same over HTTPS using the HttpsConnection.

When running on the CLDC MIDP platform, your application requires privilege in
order to establish a connection. Untrusted applications prompt the user for permission
to establish a connection; trusted applications can indicate their need for access to a spe-
cific connection type through the JAD attributes MIDlet-Permissions and
MIDlet-Permissions-Opt.

CHAPTER 12 ■ ACCESSING REMOTE DATA ON THE NETWORK 329

Accessing Web Services

In the last chapter, you learned how to establish connections to remote resources,
such as remote web servers. While connecting to remote resources is a crucial compo-
nent of many Java ME applications, most of today’s networked Java ME applications
need something more: the ability to interoperate with today’s web services, the services
provided by web servers designated for machine-to-machine interaction. Web services
are an important evolution of the client/server model, and applications with clear user
interfaces that present data, such as weather, financial, and travel information, from
web services are in high demand as mobile users increasingly rely upon mobile devices
for access to products and services.

In this chapter, I show you how to use the optional J2ME Web Services Specification
specified by JSR 172 to interface the Java ME platform with the web services powering
today’s applications, as well as how to accomplish the same when the J2ME Web Services
Specification isn’t available. I begin with a review of the web service architecture from a
client perspective, so you’ll understand how working with a web service is different from
simply pulling a remote resource over the Internet. In the process, you’ll learn the three
categories of web service architecture, as well as understand how HTTP and XML play
key parts in supporting today’s web services. Finally, I discuss in detail the two pieces of
the web service puzzle missing from the previous chapter: how to generate and parse
XML within a Java ME application.

Looking at a Web Service from the
Client Perspective
Most breakthroughs in computing aren’t revolutionary, but rather evolutionary.
The web service is no different; at its heart, it’s an application of the client/server
computing model using HTTP as a bearer protocol and a well-known language such as
XML, JavaScript Object Notation (JSON), or YAML Ain’t Markup Language (YAML) for
data representation. A full-fledged web service has three key components, as you see in
Figure 13-1:

331

C H A P T E R 1 3

• A service broker: Responsible for helping clients determine the location of one or
more service providers

• One or more service providers: Responsible for providing remote computing facili-
ties such as computation and object exchange to clients

• One or more service requestors: The clients that use the broker to find the provider
and interact with the provider

■Note In the discussion that follows, I use the term client to refer to the service requestor.

Figure 13-1. A schematic representation of a web service

In a classic web service, the requestor first discovers what web services are available
by coordinating with the service broker using the Universal Description, Discovery, and
Integration (UDDI) registry protocol; once the requestor determines what services are
available from a provider, the requestor and provider communicate about the actual
services available using the Web Services Description Language (WSDL). Actual
requestor-provider communications utilize the Simple Object Access Protocol (SOAP).
UDDI, WSDL, and SOAP are all XML applications in that they use XML as the base lan-
guage for representing data. In practice, HTTP carries the requests and responses that
these languages encode, although of course any reliable protocol capable of carrying
object data and metadata about objects would suffice.

CHAPTER 13 ■ ACCESSING WEB SERVICES332

Considering the Architecture

In practice, the term web service has come to apply to just about any machine-to-
machine communications application that makes use of web technologies. More than
just shorthand to describe a certain class of application, this designation is appropriate
as the paradigm has evolved.

In large-scale environments, a web service’s division of responsibilities, as shown in
Figure 13-1, is important. However, in many situations, the division of responsibilities
can be (and has been) simplified to reflect differences in requirements and computing
environments.

One of these simplifications is the removal of the broker, or the combination of the
broker and service provider. In this model, clients have a predefined notion of the loca-
tion and nature of the services provided by service providers. This is especially true for
many mobile clients, because the complexity and overhead of dynamic discovery and
capability negotiation can add significantly to the memory costs of an application.

Another way to categorize web services is by looking at the nature of the interaction
between client and server. Broadly speaking, there are three categories of interaction:
remote procedure call (RPC) services, service-oriented architecture (SOA) services, and
services that use representational state transfer (REST). I like to think of these as taking a
functional approach, a messaging approach, and a resource approach, respectively.

RPC-oriented web services are among the most common, and their semantics date
back to pre-Web client/server programming in which a client requests a remote server
to execute a specific operation. The semantics of encapsulating a request and response
typically vary from service to service; small services make great use of simple XML rep-
resentations for objects and requests, while more complex applications almost always
use SOAP to represent objects.

■Note The Java RMI you first saw in Chapter 11 is another example of an RPC interface.

SOA web services are among the largest and most complex, and SOA is widely sup-
ported by many industry vendors today. Unlike RPC, in which the primary concept is that
of a method call that is typically tightly coupled with the underlying implementation and
domain, SOA represents requests as messages. In other words, its focus is on messages,
not operations. SOA can provide many advantages when implementing large-scale web
services between many different subsystems or organizations. SOA web services use
SOAP—an XML representation of objects for data interchange—and WSDL to describe
the kinds of services a server or client offers or needs.

Finally, web services based on REST attempt to use the range of methods provided by
HTTP to describe the kinds of operations a client may request a service to perform on
documented objects. A hallmark of RESTful web services is the presentation of well-
known URLs that represent objects, rather than operations, services, or a general

CHAPTER 13 ■ ACCESSING WEB SERVICES 333

invocation point. Clients request interactions with those objects using HTTP methods
such as GET, PUT, or DELETE. RESTful applications may use SOAP, but the strong inclina-
tions toward parsimony in RESTful services lead many architects to use simple,
homegrown XML representations of objects.

While large web services use a hierarchy of World Wide Web Consortium (W3C)
protocols including UDDI, WSDL, and SOAP, it’s entirely possible for you to build a web
service using only XML. Many popular Web 2.0 services used in software mashups do
this, eschewing the complexity of the full W3C stack for lightweight object representation
based solely on SOAP or occasionally just an application of XML alone. Increasingly, web
services may provide support for other structured data representations, such as JSON or
YAML, enabling software developers to capitalize on the support for these newer data
representations in programming languages such as JavaScript or Ruby.

■Tip While there’s no reason why you can’t build on or use a web service that provides JSON or YAML
interfaces with your Java ME application, you should be prepared to do more work to support these data
representations, because there’s little support on the Java ME platform for them as I write this. I imagine that
this situation is likely to change in the coming years as more services use these representations in their
client/server communication.

Exchanging Data over the Network

If you’re writing a client for any of today’s web services, odds are that you will use
either HTTP or HTTPS. As I noted in the previous chapter in the section “Securing
Your HTTP Transaction with HTTPS,” HTTP is a good protocol for data exchange, but
it’s not terribly secure. Many web services, including those for e-commerce, almost
certainly use HTTPS. It’s important to remember that not only do you need to protect
the security of your users’ data with HTTPS, but you also need to take responsibility
for protecting their data elsewhere in your application, such as when it’s stored in a
record store or file.

Another consideration when writing web service clients is the HTTP methods you
may need to use; this is especially true when using REST, because the REST paradigm
relies on the HTTP method to provide some of the semantics about a web service opera-
tion. For example, in writing a web service client to a messaging application that’s built
around REST, you may find that the web service definition for deleting a message
requires that you send an HTTP request with the DELETE method. Fortunately, this is as
easy as specifying the method using the HttpConnection’s (or HttpsConnection’s)
setRequestMethod passing the method you want to use, as shown in Listing 13-1.

CHAPTER 13 ■ ACCESSING WEB SERVICES334

Listing 13-1. Specifying the HTTP Method

try {

hc = (HttpConnection)Connector.open(url);

hc.setRequestMethod("DELETE");

…

} catch (Exception e) {…}

You can actually pass any string to setRequestMethod, but you should of course stick to
the methods defined by HTTP, which I summarize for you in Table 12-4 in Chapter 12.

Another consideration is the need some web services have for message digests, which
are secure hashes of the web request or object body from the client to the server. I discuss
how to compute message digests using various options available to Java ME developers
in Chapter 15.

One final thing you may encounter when developing a client for a web service at the
HTTP layer is a need for a cookie to save session state. This is especially true for SOA-
derived web services; often these services require the client application to log in and
present some state data provided during the login sequence during each transaction. This
is usually done by means of a cookie—a bit of data provided by the server in an HTTP
header that encapsulates a session with the server. Web clients use cookies all the time to
store state data between the client and server; your application may be called upon to do
the same thing. The full details of how HTTP can use cookies to carry session state are
described in RFC 2965 and RFC 2109. However, you should know the following facts:

• Web servers deliver cookies to your application using the Set-Cookie header.

• Cookies come in several parts: the first part is the session ID of the cookie, which is
the data you need to replay to a server in subsequent requests, and the remainder
is metadata about the cookie, such as when it expires and to which domain it
applies. Semicolons separate these parts.

• You deliver a cookie to the web server by using the Cookie header.

To look for cookies from a server, you simply use the HttpConnection’s getHeaderField

method, as shown in Listing 13-2.

Listing 13-2. Looking for Cookies from a Server

String cookie = hc.getHeaderField("Set-Cookie");

if (cookie != null) {

int semicolon = cookie.indexOf(';');

/* session is at cookie.substring(0, semicolon); */

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 335

Once you get a cookie, you should break it into its session ID and domain parts,
which you can do by cracking the cookie string at its semicolon; this splits the two parts.
A good place to store the resulting session is in a member field of the Java class imple-
menting your web service client. You’ll then check the domain against subsequent URLs
you request, sending the cookie only if the domains match using the HttpConnection’s
setRequestProperty, as shown in Listing 13-3.

Listing 13-3. Sending a Cookie with an HTTP Request

HttpConnection hc = (HttpConnection)Connector.open(url);

hc.setRequestProperty("cookie", mSession);

You may want to store cookies elsewhere, such as the record store, but there’s a
catch: they expire, and when they expire depends on how the server is configured. If
you want to persist cookies, you should definitely parse the cookie for the expiration
date and handle expirations appropriately by removing them from your application’s
store when they expire.

Using XML for Data Representation

XML provides a standard syntax for creating custom markup languages that let
you describe the data within a document. Derived from the Standard Generalized
Markup Language (SGML), it’s one of the most widely used markup languages
today. In this section, I give you just a thumbnail sketch of XML, the nitty-gritty
you need to understand to use simple XML in your own applications. For a thorough
introduction to XML, I encourage you to visit the W3C documentation at http://www.
w3c.org/XML.

XML syntax provides you with a general syntax for representing document
trees that originate with a single root element that must contain zero or more child
elements, which themselves can have children. Elements consist of tags that have
attributes and may contain other tags or data, like the example of a weather report
shown in Listing 13-4.

CHAPTER 13 ■ ACCESSING WEB SERVICES336

Listing 13-4. A Sample XML Document

<?xml version="1.0" encoding="UTF-8"?>

<!-- A simple weather example -->

<weather city="Berkeley" state="CA" country="USA">

<temperatures units="F">

<temperature type="high">76</temperature>

<temperature type="low">56</temperature>

<temperature type="current">72</temperature>

</temperatures>

<wind>

<direction units="compass">ENE</direction>

<speed units="MPH">5</speed></wind>

<precipitation probability="0" type="rain" units="in"/>

<text>

<when time="today">

Mostly cloudy in the morning then becoming mostly sunny.

Patchy fog in the morning. Highs in the 70s to lower 80s.

Afternoon seabreeze 10 to 20 mph.

</when>

<when time="tonight">

Mostly clear except areas of low clouds and fog developing

overnight. Lows in the mid to upper 50s. Evening seabreeze

10 to 20 mph.

</when>

</text>

</weather>

Figure 13-2 shows a tree representing the structure of this data.

CHAPTER 13 ■ ACCESSING WEB SERVICES 337

Figure 13-2. A tree representing the structure of the XML document in Listing 13-4

CHAPTER 13 ■ ACCESSING WEB SERVICES338

This example shows several key features of XML:

• XML documents begin with a preamble, delimited by <? and ?>. The preamble
indicates the version of XML used by the file and the character set encoding for
the file.

• XML documents may contain comments that begin with <!-- and end with -->.
(Comments cannot be nested, however.)

• Elements consist of plain text contained by < and >. (Actually, there are limits to
what can go between these symbols; for this discussion, it’s safe to assume that the
name of an element must consist of only alphanumeric characters and the under-
score character.)

• A starting tag indicates the beginning of an element’s data; an ending tag is
denoted by the same tag name contained by </ and >.

• White space is not significant between elements.

• Elements may have attributes, which are name-value pairs contained within the
beginning tag.

• Elements are case-sensitive.

• Empty elements contain no elements and are denoted using < and />.

• Elements may contain other elements or textual data.

■Note I’ve made up the schema for weather data this chapter uses in order to show a sampling of key
features of XML. On the Internet, several schemas for weather data exist, such as the one defined by the
National Weather Service of the U.S. government described at http://www.weather.gov/data/
current_obs/ or the Yahoo! weather format described at http://developer.yahoo.com/weather/.

XML documents can represent text in one of two ways: as flat character data that
may include five entities that represent the special characters <, >, &, ', and ", or as a
special unparsed character directive that contains raw character data that the XML
parser accepts without attempting to parse. Table 13-1 shows the five character entity
definitions.

CHAPTER 13 ■ ACCESSING WEB SERVICES 339

Table 13-1. XML Character Entities

Entity Character Represents

& & Ampersand

< < Less than

> > Greater than

' ' Apostrophe

" " Quotation mark

Listing 13-5 shows a simple unparsed character directive example.

Listing 13-5. An Example of Unparsed Character Data Using XML’s CDATA Directive

<?xml version="1.0" encoding="UTF-8"?>

<root>

<![CDATA[

Every character within the CDATA construct is treated as a

regular character; there are no restrictions, so I can write

things like 3 < 4 without confusing the XML parser.

]]>

</root>

An XML document may define one or more namespaces that define uniquely named
elements and attributes within the document. This permits an XML document to use a
single element or attribute for multiple purposes, such as an <id> element that pertains
to both a customer and a product ID. When using namespaces, you use the XML-
restricted xmlns tag to define a unique URL that identifies the namespace; namespace
names precede the tag name in tags. You separate the namespace name from the tag
name using a colon, as Listing 13-6 shows.

Listing 13-6. An Example of XML Namespaces

<?xml version="1.0" encoding="UTF-8"?>

<!-- A simple weather example -->

<wx:weather city="Berkeley" state="CA" country="USA"

xmlns:wx="www.apress.com/rischpater/weather">

<wx:temperatures units="F">

<wx:temperature type="high">76</wx:temperature>

<wx:temperature type="low">56</wx:temperature>

<wx:temperature type="current">56</wx:temperature>

</wx:temperatures>

CHAPTER 13 ■ ACCESSING WEB SERVICES340

<wx:wind units="MPH">

<wx:direction units="compass">ENE</wx:direction>

<wx:speed>5</wx:speed></wx:wind>

<wx:precipitation/>

<wx:text>

<wx:when time="today">

Mostly cloudy in the morning then becoming mostly sunny.

Patchy fog in the morning. Highs in the 70s to lower 80s.

Afternoon seabreeze 10 to 20 mph.

</wx:when>

<wx:when time="tonight">

Mostly clear except areas of low clouds and fog developing

overnight. Lows in the mid to upper 50s. Evening seabreeze

10 to 20 mph.

</wx:when>

</wx:text>

</wx:weather>

XML documents provide levels of validity; well-formed documents are those that
meet the syntactic requirements of XML itself, while valid documents meet additional
semantic constraints imposed by either users or another XML representation of a docu-
ment’s semantics, such as an XML schema or XML Document Type Definition (DTD). In
practice, when using XML for the lightweight clients running on Java ME–enabled
devices, you will create and manipulate well-formed XML content while leaving true vali-
dation to the server and how you parse the XML itself.

■Note In recent years, XML has been largely adopted as a panacea for data representation challenges,
with YAML and JSON as its close compatriots for web-based programming. There’s still room, however, for
binary-based protocols such as Wireless Application Protocol (WAP) Binary XML (WBXML, the binary version
of XML the W3C details at http://www.w3.org/TR/wbxml/) and tag-based representations that provide
more compact representation of data, especially for applications running over slower networks or applica-
tions that charge a premium for data delivery.

Exploring XML Support for Web Services in Java ME
Using a web service from your Java ME application typically involves the following steps:

1. Your application presents a user interface.

2. As a result of some action that the user or application takes, the application must
make a web service request to a remote web service.

CHAPTER 13 ■ ACCESSING WEB SERVICES 341

3. The application generates an XML document representing the web service
request (often referred to as marshalling data for the request).

4. Using HTTP, the application transmits the XML document to the remote web
service via a POST request.

5. Using HTTP, the application receives a response XML document from the remote
web service.

6. The application parses the resulting XML document to obtain values of interest
for the application or user (often referred to as unmarshalling the response).

7. The application uses the data it obtained from parsing the resulting XML
document.

Thus, web services pose three common programming tasks for Java ME developers
that are amenable to generalization across multiple applications through the addition of
new APIs:

• Interaction with a remote server using HTTP (as you saw in Chapter 12, the GCF
and the HttpConnection and HttpsConnection handle this)

• Generation of an XML document—typically represented as an instance of
String—from Java objects

• Parsing of an XML document to obtain values to place in fields of one or more
Java objects

The GCF ably addresses the first problem; in addition, there’s support for encapsulat-
ing the GCF functionality in the J2ME Web Services Specification, which I say more about
in the “Introducing the J2ME Web Services Specification” section later in this chapter.
XML generation in Java ME—the second problem—typically takes one of two forms: sim-
ple concatenation using template components and an instance of the StringBuffer class,
or use of the SOA-supporting J2ME Web Services Specification. I discuss each of these in
subsequent sections of this chapter. You can solve the third problem—parsing XML—in
one of two ways, by either relying on the optional Web Services Specification or including
a lightweight parser like kXML in your application.

XML parsers come in three varieties: DOM parsers, push parsers, and pull parsers.
DOM parsers parse an entire document and return an instance of a document tree
that lets you query for elements of the tree using its methods; they are typically expen-
sive both to implement and represent the document tree, and they’re generally not
used in the Java ME environment. Push parsers call a client interface’s methods with
XML events, such as the definition of a tag; in essence, they “push” data from the XML

CHAPTER 13 ■ ACCESSING WEB SERVICES342

to a specific parser class written to parse XML with specific tags. Pull parsers work the
opposite way; the code scanning the XML invokes the XML parser’s methods to obtain
individual tags and other information. As you see in subsequent sections of this chap-
ter, both the push and pull models are available for Java ME, and which you use is
primarily a decision based on the availability of the parser you want to use. In prac-
tice, I think it’s fair to say that a pull parser may use slightly less memory than a push
parser; however, given one, you can easily code the other (as I show later in this chap-
ter), so they’re essentially equivalent in all but name and how you structure the code
that interacts with them.

Generating XML in Java ME Applications

Generating XML in a Java ME application is a simple, if tedious, task, using the
StringBuffer class. You simply build the XML document, tag by tag, using a combination
of compile-time strings for the tags and values of your application’s objects for the tag
and attribute values. Listing 13-7 shows a revised version of the WeatherWidget’s Location
class that supports the additional weather information that an XML document such as
the one in Listing 13-4 might bear, including a toXml method that creates an XML repre-
sentation of the Location class.

Listing 13-7. A Version of the Location Class That Can Generate an XML Representation of
Its Value

package com.apress.rischpater.weatherwidget;

import javax.microedition.rms.*;

import java.io.*;

public class Location {

private final static int FIELD_VERSION = 1;

private final static int FIELD_CITY = 2;

private final static int FIELD_FORECAST = 3;

private final static int FIELD_TEMP = 4;

private final static int FIELD_WINDSPEED = 5;

private final static int FIELD_WINDDIR = 6;

private final static int FIELD_PRECIP = 7;

private final static int FIELD_STATE = 8;

private final static int FIELD_COUNTRY = 9;

private final static int FIELD_PRECIP_PROB = 10;

private final static int FIELD_PRECIP_TYPE = 11;

CHAPTER 13 ■ ACCESSING WEB SERVICES 343

private final static String XML_PREAMBLE =

"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n";

private final static String XML_START_OPEN = "<";

private final static String XML_START_EMPTYOPEN = "<";

private final static String XML_START_CLOSE="</";

private final static String XML_END_OPEN = ">";

private final static String XML_END_EMPTYOPEN = "/>";

private final static String XML_END_CLOSE = ">";

private final static String XML_ATTR_IS = "=";

private final static String XML_ATTR_QUOTE = "\"";

private final static String XML_NEWLINE="\n";

public final static String XML_TAG_WEATHER="weather";

public final static String XML_ATTR_CITY="city";

public final static String XML_ATTR_STATE="state";

public final static String XML_ATTR_COUNTRY="country";

public final static String XML_TAG_TEMPS="temperatures";

public final static String XML_ATTR_UNITS="units";

public final static String XML_TAG_TEMP="temperature";

public final static String XML_ATTR_TYPE="type";

public final static String XML_TAG_WIND="wind";

public final static String XML_TAG_DIRECTION="direction";

public final static String XML_TAG_SPEED="speed";

public final static String XML_TAG_PRECIP="precipitation";

public final static String XML_ATTR_PROB="probability";

public final static String XML_TAG_TEXT="text";

public final static String XML_TAG_WHEN="when";

public final static String XML_ATTR_TIME="time";

private final static String XML_ATTR_WTIME=" time=\"today\"";

private final static String XML_ATTR_TUNITS=" units=\"F\"";

private final static String XML_ATTR_WUNITS=" units=\"MPH\"";

private final static String XML_ATTR_PUNITS=" units=\"in\"";

public final static int NO_ID = -1;

private final static int version = 1;

private String city, state, country;

private String forecast;

private String temp;

private String windSpeed;

private String windDirection;

private String precipitation, precipitationProb, precipitationType;

private int recordid;

CHAPTER 13 ■ ACCESSING WEB SERVICES344

/** Creates a new instance of Location */

public Location() {

recordid = NO_ID;

}

public Location(String l) {

setLocation(l);

recordid = NO_ID;

}

public Location(byte[] b) {

fromBytes(b);

recordid = NO_ID;

}

public Location(byte[] b, int id) {

fromBytes(b);

recordid = id;

}

public String getLocation() {

StringBuffer result = new StringBuffer();

if (city!=null) {

result.append(city);

}

result.append(",");

if (state!=null) {

result.append(state);

}

result.append(",");

if (country!=null) {

result.append(country);

}

return result.toString();

}

public String getCity() {

if(city != null)

return city;

else

return "";

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 345

public String getState() {

if(state != null)

return state;

else

return "";

}

public String getCountry() {

if(country != null)

return country;

else

return "";

}

public void setLocation(String l) {

int cityStart, stateStart, countryStart;

cityStart = 0;

stateStart = l.indexOf(",");

if (stateStart==-1) {

city = l;

state="";

country="";

return;

}

countryStart = l.indexOf(",",stateStart+1);

city = l.substring(cityStart,stateStart);

if (countryStart==-1)

{

state = l.substring(stateStart-1);

country = "USA";

return;

}

state = l.substring(stateStart+1,countryStart);

country = l.substring(countryStart+1);

}

public void setLocation(String c, String s, String co) {

city = c;

state = s;

country = co;

}

CHAPTER 13 ■ ACCESSING WEB SERVICES346

public String getWind() {

if (windSpeed != null && windDirection != null)

return windSpeed + " mph from the " + windDirection;

else return "";

}

public void setWind(String s, String d) {

windSpeed = s;

windDirection = d;

}

public String getTemperature() {

if (temp!=null)

return temp;

else

return "";

}

public void setTemperature(String t) {

temp = t;

}

public String getPrecipitation() {

StringBuffer result = new StringBuffer();

if (precipitation != null) {

result.append(precipitation);

} else {

result.append("unknown");

}

result.append("in of ");

if (precipitationType != null) {

result.append(precipitationType);

} else {

result.append("unknown");

}

result.append("(");

if (precipitationProb != null) {

result.append(precipitationProb);

} else {

result.append("unknown");

}

result.append("%)");

return result.toString();

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 347

public void setPrecipitation(String p, String pp, String pt) {

precipitation = p;

precipitationProb = pp;

precipitationType = pt;

}

public String getForecast() {

if (forecast != null) {

return forecast;

} else {

return "";

}

}

public void setForecast(String f) {

forecast = f;

}

public int getId() {

return recordid;

}

public void setId(int id) {

recordid = id;

}

public byte[] toBytes() {

byte[] b;

ByteArrayOutputStream baos = new ByteArrayOutputStream();

DataOutputStream dos = new DataOutputStream(baos);

// Record format is field-tag, then field for each

try {

dos.writeInt(FIELD_VERSION);

dos.writeInt(version);

if (city != null) {

dos.writeInt(FIELD_CITY);

dos.writeUTF(getCity());

}

if (state != null) {

dos.writeInt(FIELD_STATE);

dos.writeUTF(getState());

}

CHAPTER 13 ■ ACCESSING WEB SERVICES348

if (country != null) {

dos.writeInt(FIELD_COUNTRY);

dos.writeUTF(getCountry());

}

if (forecast != null)

{

dos.writeInt(FIELD_FORECAST);

dos.writeUTF(getForecast());

}

if (temp != null) {

dos.writeInt(FIELD_TEMP);

dos.writeUTF(getTemperature());

}

if (precipitation != null &&

precipitationProb != null &&

precipitationType != null) {

dos.writeInt(FIELD_PRECIP);

dos.writeUTF(precipitation);

dos.writeInt(FIELD_PRECIP_PROB);

dos.writeUTF(precipitationProb);

dos.writeInt(FIELD_PRECIP_TYPE);

dos.writeUTF(precipitationType);

}

if (windDirection != null && windSpeed != null) {

dos.writeInt(FIELD_WINDDIR);

dos.writeUTF(windDirection);

dos.writeInt(FIELD_WINDSPEED);

dos.writeUTF(windSpeed);

}

}

catch(Exception e) {

return null;

}

// Get the bytes for this item.

b = baos.toByteArray();

dos = null;

baos = null;

return b;

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 349

public void fromBytes(byte[] b) {

ByteArrayInputStream bais = new ByteArrayInputStream(b);

DataInputStream dis = new DataInputStream(bais);

String dir = null, speed = null;

String c = null, s = null, co = null;

String p = null, pp = null, pt = null;

// Read each tag, then each field

try

{

while(true) {

int tag = dis.readInt();

switch(tag) {

case FIELD_VERSION:

// Don't check version; there's only one

dis.readInt();

break;

case FIELD_CITY:

c = dis.readUTF();

break;

case FIELD_STATE:

s = dis.readUTF();

break;

case FIELD_COUNTRY:

co = dis.readUTF();

break;

case FIELD_FORECAST:

setForecast(dis.readUTF());

break;

case FIELD_TEMP:

setTemperature(dis.readUTF());

break;

case FIELD_PRECIP:

p = dis.readUTF();

break;

case FIELD_PRECIP_PROB:

pp = dis.readUTF();

break;

case FIELD_PRECIP_TYPE:

pt = dis.readUTF();

break;

case FIELD_WINDDIR:

dir = dis.readUTF();

break;

CHAPTER 13 ■ ACCESSING WEB SERVICES350

case FIELD_WINDSPEED:

speed = dis.readUTF();

break;

}

}

}

catch (Exception e) {}

finally {

setLocation(c, s, co);

setPrecipitation(p, pp, pt);

setWind(speed, dir);

try {

dis.close();

bais.close();

}

catch (Exception e) {}

}

dis = null;

bais = null;

}

public String toXml() {

StringBuffer xmlBuffer = new StringBuffer();

xmlBuffer.append(XML_PREAMBLE);

xmlBuffer.append(XML_START_OPEN);

xmlBuffer.append(XML_TAG_WEATHER);

if (city != null) {

xmlBuffer.append(" ");

xmlBuffer.append(XML_ATTR_CITY);

xmlBuffer.append(XML_ATTR_IS);

xmlBuffer.append(XML_ATTR_QUOTE);

xmlBuffer.append(city);

xmlBuffer.append(XML_ATTR_QUOTE);

}

if (state != null) {

xmlBuffer.append(" ");

xmlBuffer.append(XML_ATTR_STATE);

xmlBuffer.append(XML_ATTR_IS);

xmlBuffer.append(XML_ATTR_QUOTE);

xmlBuffer.append(state);

xmlBuffer.append(XML_ATTR_QUOTE);

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 351

if (country != null) {

xmlBuffer.append(" ");

xmlBuffer.append(XML_ATTR_COUNTRY);

xmlBuffer.append(XML_ATTR_IS);

xmlBuffer.append(XML_ATTR_QUOTE);

xmlBuffer.append(country);

xmlBuffer.append(XML_ATTR_QUOTE);

}

if (forecast != null ||

temp != null ||

(precipitation != null &&

precipitationProb != null &&

precipitationType != null) ||

(windSpeed != null && windDirection != null)) {

xmlBuffer.append(XML_END_OPEN);

xmlBuffer.append(XML_NEWLINE);

if (temp != null) {

xmlBuffer.append(XML_START_OPEN);

xmlBuffer.append(XML_TAG_TEMPS);

xmlBuffer.append(XML_ATTR_TUNITS);

xmlBuffer.append(XML_END_OPEN);

xmlBuffer.append(XML_NEWLINE);

xmlBuffer.append(XML_START_OPEN);

xmlBuffer.append(XML_TAG_TEMP);

xmlBuffer.append(" ");

xmlBuffer.append(XML_ATTR_TYPE);

xmlBuffer.append(XML_ATTR_IS);

xmlBuffer.append("\"current\"");

xmlBuffer.append(XML_END_OPEN);

xmlBuffer.append(temp);

xmlBuffer.append(XML_START_CLOSE);

xmlBuffer.append(XML_TAG_TEMP);

xmlBuffer.append(XML_END_CLOSE);

xmlBuffer.append(XML_NEWLINE);

xmlBuffer.append(XML_START_CLOSE);

xmlBuffer.append(XML_TAG_TEMPS);

xmlBuffer.append(XML_END_CLOSE);

xmlBuffer.append(XML_NEWLINE);

}

if (windSpeed != null && windDirection != null) {

xmlBuffer.append(XML_START_OPEN);

xmlBuffer.append(XML_TAG_WIND);

CHAPTER 13 ■ ACCESSING WEB SERVICES352

xmlBuffer.append(XML_ATTR_WUNITS);

xmlBuffer.append(XML_END_OPEN);

xmlBuffer.append(XML_NEWLINE);

xmlBuffer.append(XML_START_OPEN);

xmlBuffer.append(XML_TAG_SPEED);

xmlBuffer.append(XML_END_OPEN);

xmlBuffer.append(windSpeed);

xmlBuffer.append(XML_START_CLOSE);

xmlBuffer.append(XML_TAG_SPEED);

xmlBuffer.append(XML_END_CLOSE);

xmlBuffer.append(XML_START_OPEN);

xmlBuffer.append(XML_TAG_DIRECTION);

xmlBuffer.append(XML_END_OPEN);

xmlBuffer.append(windDirection);

xmlBuffer.append(XML_START_CLOSE);

xmlBuffer.append(XML_TAG_DIRECTION);

xmlBuffer.append(XML_END_CLOSE);

xmlBuffer.append(XML_NEWLINE);

xmlBuffer.append(XML_START_CLOSE);

xmlBuffer.append(XML_TAG_WIND);

xmlBuffer.append(XML_END_CLOSE);

xmlBuffer.append(XML_NEWLINE);

}

if (precipitation != null &&

precipitationProb != null &&

precipitationType != null) {

xmlBuffer.append(XML_START_OPEN);

xmlBuffer.append(XML_TAG_PRECIP);

xmlBuffer.append(XML_ATTR_PUNITS);

xmlBuffer.append(" ");

xmlBuffer.append(XML_ATTR_PROB);

xmlBuffer.append(XML_ATTR_IS);

xmlBuffer.append(XML_ATTR_QUOTE);

xmlBuffer.append(precipitationProb);

xmlBuffer.append(XML_ATTR_QUOTE);

xmlBuffer.append(" ");

xmlBuffer.append(XML_ATTR_TYPE);

xmlBuffer.append(XML_ATTR_IS);

xmlBuffer.append(XML_ATTR_QUOTE);

xmlBuffer.append(precipitationType);

xmlBuffer.append(XML_ATTR_QUOTE);

xmlBuffer.append(XML_END_OPEN);

CHAPTER 13 ■ ACCESSING WEB SERVICES 353

xmlBuffer.append(precipitation);

xmlBuffer.append(XML_START_CLOSE);

xmlBuffer.append(XML_TAG_PRECIP);

xmlBuffer.append(XML_END_CLOSE);

xmlBuffer.append(XML_NEWLINE);

}

if (forecast != null) {

xmlBuffer.append(XML_START_OPEN);

xmlBuffer.append(XML_TAG_TEXT);

xmlBuffer.append(XML_END_OPEN);

xmlBuffer.append(XML_NEWLINE);

xmlBuffer.append(XML_START_OPEN);

xmlBuffer.append(XML_TAG_WHEN);

xmlBuffer.append(XML_ATTR_WTIME);

xmlBuffer.append(XML_END_OPEN);

xmlBuffer.append(forecast);

xmlBuffer.append(XML_START_CLOSE);

xmlBuffer.append(XML_TAG_WHEN);

xmlBuffer.append(XML_END_CLOSE);

xmlBuffer.append(XML_NEWLINE);

xmlBuffer.append(XML_START_CLOSE);

xmlBuffer.append(XML_TAG_TEXT);

xmlBuffer.append(XML_END_CLOSE);

xmlBuffer.append(XML_NEWLINE);

}

xmlBuffer.append(XML_START_CLOSE);

xmlBuffer.append(XML_TAG_WEATHER);

xmlBuffer.append(XML_END_CLOSE);

xmlBuffer.append(XML_NEWLINE);

} else {

xmlBuffer.append(XML_END_EMPTYOPEN);

}

return xmlBuffer.toString();

}

public void fromXml(String xml) {

/* shown in Listing 13-9 and 13-13 */

}

}

CHAPTER 13 ■ ACCESSING WEB SERVICES354

The code begins with static definitions of the various fields the object now stores,
along with static String declarations for the various bits of XML the code uses when
building up its XML representation. Much of the class remains unchanged from Chapter 6,
except the addition of new fields and accessor/mutator methods for these fields; the
toBytes and fromBytes methods have changed to serialize the new fields using the same
tag-value system I introduced in the discussion about record stores in Chapter 6. The
toXml method constructs the XML in a StringBuffer instance by appending the preamble
and bits of static XML along with the values of each member variable. This technique is
crude, but it works well; depending on the kind of object you want to represent as XML,
you can often streamline the code a bit, such as when you have vectors of similar objects.

If you’ve spent a fair amount of time using Java, you might look at the toXml method
and be tempted to do something similar with Java reflection, creating a generic XML
encoder object that takes an instance of an object, interrogates the object for member
fields, and writes XML based on the type and contents of each field. This is an excellent
approach for Java SE, because Java SE provides reflection, but unfortunately the
approach falls short on Java ME devices, because as I discuss in Chapter 2, the CLDC
lacks support for reflection. If your code is destined to run only on the CDC, a reflection-
oriented approach may well make sense.

Introducing the J2ME Web Services Specification

The J2ME Web Services Specification (as its name indicates, its development predates the
Java ME platform, and it’s an option for both CLDC- and CDC-based devices) that JSR
172 describes provides two additions to the Java ME platform: access to remote SOAP-
based web services, and a push XML parser. These additions—collectively called the
optional Web Services Specification—are both optional; a platform implementing JSR
172 can offer SOAP-based web services support, a push XML parser, or both. Many
advanced mobile devices today include both portions of JSR 172, although it’s not avail-
able everywhere; as with other optional specifications, it’s important to confirm the
availability of the specified API on your device targets early in product development.

The implementation of SOAP-based web services support is a subset of Java API for
XML-based RPC (JAX-RPC), the Java interface to web-based RPC services. This subset
provides the client implementation of JAX-RPC, including marshalling and
unmarshalling (between Java and SOAP) of boolean, byte, short, int, long, String, arrays,
and complex types and static stub-based invocation of RPC calls by the client. Due to
platform limitations, it’s not a full implementation of JAX-RPC; devices implementing the
specification cannot offer service end points or use extensible type mapping.

Applications using the JAX-RPC support must follow these steps:

1. At compile time, define and generate a stub from the WSDL description of the
service.

2. At runtime, instantiate an instance of the stub.

CHAPTER 13 ■ ACCESSING WEB SERVICES 355

3. At runtime, invoke methods on the stub corresponding to the service end point’s
operational implementation.

4. Package the generated stub with the Java ME client application.

The work here is similar to what you need to do if you want to use the optional sup-
port for Java RMI that I describe in Chapter 11, because the JAX-RPC interface uses the
same overall architecture, relying on a local stub object to provide an interface to the
remote service provider.

While the JAX-RPC interface provides an important option available to you when
interfacing with some existing legacy services, a growing number of web services are
moving toward or fully implement a RESTful approach, in which the relatively heavy
semantics of SOAP is replaced by a more descriptive use of XML. In a way, this is turning
the use of XML back to its origins, in which it’s used to provide a human- and machine-
readable description of the contents of a data object. In that regard, it’s the second
optional component of JSR 172 that becomes important to you: the XML parser.

The XML parser that JSR 172 defines is a strict subset of the XML parser defined in
JSR 63. It specifies that

• The implementation must not provide any support for the Simple API for XML
(SAX) parsing.

• The implementation must not provide any support for DOM, because DOM is too
heavy in terms of implementation size and runtime memory footprint for use on
Java ME devices.

• The implementation must not support XML Transformations (XSLT).

• The implementation is not required to support XML validation, as validation is
expensive in terms of processing power and memory.

• The implementation must support the predefined XML entities (e.g., &) but is
not required to support optional XML entities.

• The implementation must support XML namespaces.

• The implementation must support both UTF-8 and UTF-16 character encodings.

The optional parser implementation includes three packages: javax.xml.parsers,
org.xml.sax, and org.xml.sax.helpers. The first package contains the platform’s parser
implementation itself, while the other packages provide utilities for the parser. The
parser implementation must implement the SAX2 parsing interface, as reflected by the
namespace for the packages.

SAX provides a straightforward interface to parsing XML, in which the parser con-
sumes XML from a stream and generates events during parsing that represent specific

CHAPTER 13 ■ ACCESSING WEB SERVICES356

XML elements, comments, and other items. In using a SAX parser, you provide an event
handler that accepts the events the SAX parser sends and builds the resulting object from
those events. Your event handler implements the interface defined by the org.xml.sax.
helpers.DefaultHandler class, overriding its methods to handle individual SAX events.
Some of the events you can choose to handle include the following:

• startDocument: Signals the beginning of the XML document.

• endDocument: Signals the end of the XML document.

• startElement: Signals the start of an element and is given the element’s name,
namespace, and attributes. Attributes are passed using an instance of an
Attributes class that provides a collection of all of the attributes of an element,
making it easy for you to find the value of a specific attribute.

• endElement: Signals the end of an element.

• characters: Takes character data from within an element.

Returning to the WeatherWidget example, Listing 13-8 shows the
LocationParserHandler class—a subclass of DefaultHandler that parses an XML document
representing a Location object with its associated forecast.

Listing 13-8. The LocationParserHandler SAX Handler

package com.apress.rischpater.weatherwidget;

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class LocationParserHandler extends DefaultHandler {

private Location location;

private boolean setForecast;

private boolean hasForecast;

private boolean setTemp;

private String precipitation, precipType, precipProb;

private String windSpeed, windDirection;

private StringBuffer buffer;

public LocationParserHandler(Location l) {

location = l;

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 357

public Location getLocation() {

return location;

}

public void startDocument() {

if (location == null)

location = new Location();

setForecast = false;

hasForecast = false;

setTemp = false;

}

public void startElement(String uri, String localName,

String qName, Attributes attributes)

throws SAXException {

buffer = new StringBuffer();

if (qName.equals(Location.XML_TAG_WEATHER) == 0) {

String c = attributes.getValue(Location.XML_ATTR_CITY);

String s = attributes.getValue(Location.XML_ATTR_STATE);

String co = attributes.getValue(Location.XML_ATTR_COUNTRY);

location.setLocation(c,s,co);

hasForecast = false;

}

if (qName.equals(Location.XML_TAG_TEMPS) == 0) {

String u = attributes.getValue(Location.XML_ATTR_UNITS);

if (u != null && u.equals("F") != 0)

throw new SAXException("Invalid temperature units");

hasForecast = false;

}

if (qName.equals(Location.XML_TAG_TEMP) == 0) {

String t = attributes.getValue(Location.XML_ATTR_TYPE);

if (t != null && t.equals("current") != 0)

setTemp = true;

else

setTemp = false;

hasForecast = false;

}

if (qName.equals(Location.XML_TAG_WIND) == 0) {

String u = attributes.getValue(Location.XML_ATTR_UNITS);

if (u != null && u.equals("MPH") != 0)

throw new SAXException("Invalid temperature units");

hasForecast = false;

}

CHAPTER 13 ■ ACCESSING WEB SERVICES358

if (qName.equals(Location.XML_TAG_PRECIP) == 0)

{

String u = attributes.getValue(Location.XML_ATTR_UNITS);

if (u != null && u.equals("in") != 0)

throw new SAXException("Invalid precipitation units");

precipProb = attributes.getValue(Location.XML_ATTR_PROB);

precipType = attributes.getValue(Location.XML_ATTR_TYPE);

hasForecast = false;

}

if (qName.equals(Location.XML_TAG_TEXT) == 0)

hasForecast = true;

if (qName.equals(Location.XML_TAG_WHEN) == 0 && hasForecast) {

String w = attributes.getValue(Location.XML_ATTR_TIME);

if (w != null && w.equals("now") == 0)

setForecast = true;

else

setForecast = false;

}

}

public void characters(char[] ch, int start, int length) {

if (buffer != null)

buffer.append(ch, start, length);

}

public void endElement(String uri, String localName, String qName) {

if (qName.equals(Location.XML_TAG_SPEED) == 0)

windSpeed = buffer.toString();

if (qName.equals(Location.XML_TAG_DIRECTION) == 0)

windDirection = buffer.toString();

if (qName.equals(Location.XML_TAG_WIND) == 0)

location.setWind(windSpeed, windDirection);

if (qName.equals(Location.XML_TAG_PRECIP) == 0) {

precipitation = buffer.toString();

location.setPrecipitation(precipitation,precipProb,precipType);

}

if (qName.equals(Location.XML_TAG_TEMP) == 0 && setTemp)

location.setTemperature(buffer.toString());

if (qName.equals(Location.XML_TAG_WHEN) == 0 && setForecast)

location.setForecast(buffer.toString());

CHAPTER 13 ■ ACCESSING WEB SERVICES 359

buffer = null;

}

public void endDocument() {

}

}

The handler for parsing Location objects in XML form uses a Location instance and a
few private variables during the parsing operation to keep track of the object’s state,
building up the resulting Location object in the member variable location. Key to this is
the StringBuffer buffer, which the handler uses to build up string representations of any
character data, such as the current temperature or forecast.

As the SAX parser works through the XML—I show you how to set up and start that
process in Listing 13-9—the first event the handler receives is startDocument. The method
handling this event simply sets the internal state of the handler, creating a new Location
to save the parse results if the client used the handler’s default constructor, providing no
Location object.

The SAX parser invokes the startElement every time it encounters the beginning of
a new element, such as <weather> or <temperature>. The method receives both the full
name of the element (in qName) and the name (in localName) in the namespace URL (in
uri); typically you’ll want to examine qName, unless you’re parsing XML with multiple
namespaces. Listing 13-8 does just this, setting up the handler’s state to accept the data
for the tag that the handler’s just encountered. In some cases, such as when parsing the
<weather> tag, the handler can do all of its work right away by working with individual
attributes; you can obtain the value of an attribute using its getValue method, or its
type using the getType method. In other cases, the code uses the value of an attribute to
provide some runtime checking on the incoming data—for example, by rejecting
weather data in units other than English units.

Once the SAX parser invokes startElement, it invokes either characters or endElement
next, depending on whether the element it’s parsing has character data. The characters
element takes a byte array containing the characters the parser has read; it may be
invoked multiple times for a single entity, so it’s up to you to buffer the results.

■Caution Don’t ignore the start and length arguments of characters! It’s up to the SAX parser to
determine how it wants to manage its internal array of characters, and what you get in the incoming charac-
ter array may be garbage outside the bounds that start and length together specify.

If startElement is where your handler prepares to handle an incoming element, then
endElement is the obvious place where it should store aside the datum the element repre-
sents. This endElement does just this, using the indicated element type to decide where the

CHAPTER 13 ■ ACCESSING WEB SERVICES360

character data it’s accumulated should go, nulling out the StringBuffer it used for that
accumulation once it has stored the buffer’s contents in the appropriate field of location.

The SAX parser invokes your handler’s endDocument when it encounters the end
of your document; this is another opportunity to update the variables you’re using to
store the parsed XML data. The LocationParserHandler method doesn’t need to do this,
because it’s updating location throughout the parse operation, so its endDocument is an
empty method.

■Note You don’t need to provide any of these methods if your class doesn’t do anything with the SAX
event the method represents; in Listing 13-8, I include endDocument for clarity and completeness, but it’s
not really necessary.

Using the SAX parser is simple: you instantiate the parser and location handler,
and you provide a stream with the parser handler to the parser for it to parse. Listing 13-9
shows this process in the Location class’s fromXml method, which takes an XML docu-
ment and sets the values of its fields to the values specified in the document using the
SAX parser.

Listing 13-9. Using the SAX Parser Provided by JSR 172

package com.apress.rischpater.weatherwidget;

import javax.microedition.rms.*;

import java.io.*;

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class Location {

/* other methods from Listing 13-7 */

public void fromXml(String xml) {

SAXParser parser = null;

LocationParserHandler handler = new LocationParserHandler(this);

byte[] xmlBytes;

ByteArrayInputStream bis;

try {

SAXParserFactory f = SAXParserFactory.newInstance();

parser = f.newSAXParser();

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 361

catch(Exception e) { return; };

xmlBytes = xml.getBytes();

bis = new ByteArrayInputStream(xmlBytes);

try {

parser.parse(bis,handler);

}

catch(Exception e){}

finally {

try {

bis.close();

}

catch(Exception e) {}

}

}

}

The fromXml method creates an initial LocationParserHandler, linking it to the
current Location instance. Under the hood, the platform can provide different imple-
mentations of SAX parsers, so it’s important to use the SAXParserFactory to get an
instance of the parser; you do this by creating an instance of the factory and then
invoking that instance’s newSAXParser method. The parser takes its data in the form of
an InputStream; converting the incoming XML to a byte array and using that with the
ByteArrayInputStream class provides the input stream necessary for the parser’s parse
method. That’s all there is to it!

All of this code assumes a RESTful web service that provides an XML document with
weather data given a location; Listing 13-10 shows a version of WeatherFetcher that does
just this, building on what you learned from the previous chapter.

Listing 13-10. A RESTful Implementation of WeatherFetcher

package com.apress.rischpater.weatherwidget;

import java.io.*;

import javax.microedition.io.*;

public class WeatherFetcher implements Runnable {

private static String url = "http://www.noplace.com/location/";

private Location location;

private boolean cancelled;

private WeatherWidget app;

CHAPTER 13 ■ ACCESSING WEB SERVICES362

/** Creates a new instance of WeatherFetcher */

public WeatherFetcher(Location l, WeatherWidget a) {

location = l;

app = a;

cancelled = false;

if (l!=null && a!=null) {

Thread thread = new Thread(this);

thread.start();

}

}

public void cancel() {

cancelled = true;

}

private static String urlEncode(String s)

{

if (s!=null) {

StringBuffer tmp = new StringBuffer();

int i=0;

try {

while (true) {

int b = (int)s.charAt(i++);

if ((b>=0x30 && b<=0x39) ||

(b>=0x41 && b<=0x5A) ||

(b>=0x61 && b<=0x7A)) {

tmp.append((char)b);

} else {

tmp.append("%");

if (b <= 0xf) tmp.append("0");

tmp.append(Integer.toHexString(b));

}

}

}

catch (Exception e) {}

return tmp.toString();

}

return null;

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 363

private String requestEncode() {

StringBuffer result = new StringBuffer();

result.append(url);

result.append(urlEncode(location.getLocation()));

return result.toString();

}

public void run() {

String requestUrl;

String response = "";

HttpConnection hc = null;

InputStream in = null;

requestUrl = requestEncode();

try {

hc = (HttpConnection)Connector.open(requestUrl);

hc.setRequestMethod(HttpConnection.GET);

in=hc.openInputStream();

int length=(int)hc.getLength();

byte[] data = new byte[length];

in.read(data);

response = new String(data);

}

catch(Exception e){}

finally {

try {

if (in!=null) in.close();

if (hc!=null) hc.close();

}

catch(Exception e) {}

}

if (!cancelled) {

location.fromXml(response);

app.update();

}

}

}

Recall that in a REST service, URLs represent objects, and HTTP methods represent
verbs that act on those objects. Thus, the weather service’s URL is really a prefix to a spe-
cific object; accessing the web service for the weather in Berkeley, California, the
application might generate this URL:

http://www.noplace.com/location/Berkeley%2C%20CA%2C%20USA

CHAPTER 13 ■ ACCESSING WEB SERVICES364

The string after the trailing / is the URL-safe encoding of a unique location (in this
case, “Berkeley, CA, USA”). The WeatherFetcher class accomplishes this mapping at the
beginning of run, where it creates the URL using the URL prefix for the service statically
defined by the class and its requestEncode method. Next, it creates an HttpConnection with
a method GET, and reads the response into a string for the Location instance to parse.

■Tip Although this example uses more RAM to read the entire document into memory and then parse
it, it’s easier to debug, because the XML obtained by the web service client can be written to a debug file
or elsewhere during development. I could have just as easily crafted the Location class to take an
InputStream for the fromXml argument and passed the HttpConnection’s InputStream instance
directly to the Location instance for parsing, saving some memory. You may want to consider this approach
when you need to parse large XML documents, because it’s possible that the underlying SAX parser won’t
need to read the entire document into memory during the parse operation.

Introducing the kXML Parser

As I note in the beginning of the previous section, the XML parser provided by JSR 172 is
optional (in fact, all of JSR 172 is optional!), and it’s quite likely that you will encounter
devices that don’t provide a SAX parser. Fortunately, there’s a lightweight alternative,
kXML, available under a generous license at http://kxml.sourceforge.net. To use the
parser, download the JAR file implementing the kXML parser and include it in your Net-
Beans project using the Properties inspector (see Figure 13-3).

The kXML package is now starting its third iteration; as I write this, kXML version 1
is deprecated, and kXML version 2 is the version people should use while the team
develops version 3. kXML version 2 implements a classic pull parser in the org.kxml2.io
package with the KXmlParser class. Using this class, you pull items from a stream contain-
ing XML using the various next methods:

• next: Returns the type of the next XML token in the stream

• nextTag: Returns the name of the next tag in the stream

• nextText: Returns the contents of the next CDATA region in the stream

• nextToken: Returns the next XML token in the stream

This approach—pulling tags from the source stream rather than having events sent
to a new class—may marginally reduce the amount of code you have to write and ship,
although many developers may find it less clear than the SAX push parser you saw in the
previous section. As you will soon see in Listing 13-12, it’s easy to construct a wrapper
around a pull parser that looks very much like a push parser.

CHAPTER 13 ■ ACCESSING WEB SERVICES 365

Figure 13-3. Adding an external library to your NetBeans project

To use the kXML parser, instantiate it, feed it a stream, and loop while invoking next,
as shown in Listing 13-11.

Listing 13-11. Using the kXML Parser

public void parse(ByteArrayInputStream in) {

try {

InputStreamReader reader = new InputStreamReader(in);

KXmlParser parser = new KXmlParser();

boolean keepParsing = true;

parser.setInput(reader);

while(keepParsing) {

int type = parser.next();

…handle the tags…

}

}

CHAPTER 13 ■ ACCESSING WEB SERVICES366

catch(Exception e) {

System.out.println(e.toString());

e.printStackTrace();

}

}

Listing 13-12 shows this in action with the LocationParser class that uses the kXML
parser to parse XML into a Location object.

Listing 13-12. Using the kXML Parser

package com.apress.rischpater.weatherwidget;

import org.kxml2.io.*;

import java.io.*;

public class LocationParser {

private Location location;

private boolean setForecast;

private boolean hasForecast;

private boolean setTemp;

private String precipitation, precipType, precipProb;

private String windSpeed, windDirection;

private StringBuffer buffer;

public LocationParser() {

location = new Location();

}

public LocationParser(Location l) {

location = l;

}

public void parse(ByteArrayInputStream in) {

try {

InputStreamReader reader = new InputStreamReader(in);

KXmlParser parser = new KXmlParser();

boolean keepParsing = true;

parser.setInput(reader);

while(keepParsing) {

int type = parser.next();

CHAPTER 13 ■ ACCESSING WEB SERVICES 367

switch(type) {

case KXmlParser.START_DOCUMENT:

startDocument(parser);

break;

case KXmlParser.START_TAG:

startElement(parser);

break;

case KXmlParser.END_TAG:

endElement(parser);

break;

case KXmlParser.TEXT:

characters(parser);

break;

case KXmlParser.END_DOCUMENT:

endDocument(parser);

keepParsing = false;

break;

}

}

}

catch(Exception e) {}

}

public Location getLocation() {

return location;

}

public void startDocument(KXmlParser parser) {

if (location == null)

location = new Location();

setForecast = false;

hasForecast = false;

setTemp = false;

}

public void startElement(KXmlParser parser)

throws Exception {

String qName = parser.getName();

buffer = new StringBuffer();

if (qName.equals(Location.XML_TAG_WEATHER)) {

String c = parser.getAttributeValue(null,Location.XML_ATTR_CITY);

String s = parser.getAttributeValue(null,Location.XML_ATTR_STATE);

String co = parser.getAttributeValue(null,Location.XML_ATTR_COUNTRY);

location.setLocation(c,s,co);

CHAPTER 13 ■ ACCESSING WEB SERVICES368

hasForecast = false;

}

if (qName.equals(Location.XML_TAG_TEMPS)) {

String u = parser.getAttributeValue(null,Location.XML_ATTR_UNITS);

if (u != null && u.equals("F") != 0)

throw new Exception("Invalid temperature units");

hasForecast = false;

}

if (qName.equals(Location.XML_TAG_TEMP)) {

String t = parser.getAttributeValue(null,Location.XML_ATTR_TYPE);

if (t != null && t.equals("current") == 0) {

setTemp = true;

} else {

setTemp = false;

}

hasForecast = false;

}

if (qName.equals(Location.XML_TAG_WIND)) {

String u = parser.getAttributeValue(null,Location.XML_ATTR_UNITS);

if (u != null && u.equals("MPH") != 0)

throw new Exception("Invalid temperature units");

hasForecast = false;

}

if (qName.equals(Location.XML_TAG_PRECIP))

{

String u = parser.getAttributeValue(null,Location.XML_ATTR_UNITS);

if (u != null && u.equals("in") != 0)

throw new Exception("Invalid precipitation units");

precipProb = parser.getAttributeValue(null,Location.XML_ATTR_PROB);

precipType = parser.getAttributeValue(null,Location.XML_ATTR_TYPE);

hasForecast = false;

}

if (qName.equals(Location.XML_TAG_TEXT)) {

hasForecast = true;

}

if (qName.equals(Location.XML_TAG_WHEN) && hasForecast) {

String w = parser.getAttributeValue(null,Location.XML_ATTR_TIME);

if (w != null && w.equals("now") == 0) {

setForecast = true;

} else {

setForecast = false;

}

}

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 369

public void characters(KXmlParser parser) {

if (buffer != null)

buffer.append(parser.getText());

}

public void endElement(KXmlParser parser) {

String qName = parser.getName();

if (qName.equals(Location.XML_TAG_SPEED) == 0) {

windSpeed = buffer.toString();

}

if (qName.equals(Location.XML_TAG_DIRECTION) == 0) {

windDirection = buffer.toString();

}

if (qName.equals(Location.XML_TAG_WIND) == 0) {

location.setWind(windSpeed, windDirection);

}

if (qName.equals(Location.XML_TAG_PRECIP) == 0) {

precipitation = buffer.toString();

location.setPrecipitation(precipitation,precipProb,precipType);

}

if (qName.equals(Location.XML_TAG_TEMP) == 0 && setTemp)

{

location.setTemperature(buffer.toString());

}

if (qName.equals(Location.XML_TAG_WHEN) == 0 && setForecast) {

location.setForecast(buffer.toString());

}

}

public void endDocument(KXmlParser parser) {

}

}

The code to LocationParser is very similar to LocationParserHandler, and for good
reason: it’s parsing the same XML, and once you obtain events from an XML parser, it
makes little difference whether the parser is a pull or push parser, as long as you can han-
dle the events. Like LocationParserHandler, LocationParser uses a Location object and
some temporary variables to store intermediate state while parsing a document.

CHAPTER 13 ■ ACCESSING WEB SERVICES370

The bulk of the work is done in the class’s parse method, which takes a byte stream
from which to read XML. It creates an instance of KXmlParser, sets the parser to read from
the InputStream it derives from the incoming byte stream, and then begins reading tags
from the parser in a while loop. The loop just uses a switch/case statement to generate
parser events for the kind of XML token the parser has encountered, invoking event han-
dlers I derive from the LocationParserHandler implementation.

Each of the parser’s event handlers takes an instance of the KXmlParser, so that it
can query the parser for more information about the event, such as the name of the tag
encountered (which getName returns), the value of an attribute (which getAttributeValue
returns), or the character data the parser encountered within a tag (which getText returns).

Using the kXML-enabled LocationParser in WeatherWidget is almost exactly the
same as using the JSR 172 SAX parser, as you see in Listing 13-13.

Listing 13-13. Using the kXML Parser and the LocationParser Class

package com.apress.rischpater.weatherwidget;

import javax.microedition.rms.*;

import java.io.*;

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

public class Location {

/* other methods from Listing 13-7 */

public void fromXml(String xml) {

LocationParser parser = new LocationParser(this);

byte[] xmlBytes;

ByteArrayInputStream bis;

xmlBytes = xml.getBytes();

bis = new ByteArrayInputStream(xmlBytes);

try {

parser.parse(bis);

}

catch(Exception e){}

finally {

try {

bis.close();

}

catch(Exception e) {}

}

}

}

CHAPTER 13 ■ ACCESSING WEB SERVICES 371

The fromXml method still takes a string, but instead of obtaining a factory for SAX
parsers and creating a SAX parser, it only needs to create an instance of LocationParser,
convert the incoming string to a byte array stream, and then invoke the LocationParser’s
parse method.

■Note kXML isn’t the only XML parser suitable for use with Java ME applications; others include NanoXML
and Xparse-J. Personally, I prefer kXML for its clean interface, widespread use, size, and stability, but if
you’re looking for other options, it’s worth using Google to find suggestions.

Wrapping Up
Interfacing with a web service is a key part of many Java ME applications. While Java ME
itself doesn’t provide much support for accessing web services, with a bit of work you can
bridge the gap.

Web services require you to represent data as XML for exchange with the remote
web service over HTTP; while you can easily do the data exchange using the GCF and
HttpConnection, handling the XML requires you to do a little more. Encoding XML is
straightforward, typically a matter of building up an XML document using a combination
of static defined strings and field values from the object that you want to represent as
XML. You can do this reasonably efficiently using a StringBuffer and invoking its toString
method upon completion to obtain the XML document.

You have a number of alternatives available to you when you need to parse XML;
two of the most commonly available are the XML parser defined by the optional J2ME
Web Services Specification (JSR 172) and the kXML parser.

JSR 172 defines both an optional RMI-style interface to remote web services that use
WSDL and SOAP as well as an optional SAX parser. Using the SAX parser, you can parse
XML by providing the SAX parser with a handler that processes the events the SAX parser
generates as it scans an XML document.

The kXML parser is packaged as a JAR file that you can include in your application;
it offers a simple pull parser you use by iterating over the XML tokens in your document.
You accomplish this iteration using the parser’s methods, invoking your own code to
handle the tokens that result. One good way to use the kXML parser is to use it to gener-
ate events similar to the SAX parser. This gives you a reasonable level of abstraction
between the document-scanning portion of your parser (the responsibility of the kXML
parser and the loop you use to obtain successive XML tokens) and the parsing portion
of your parser.

CHAPTER 13 ■ ACCESSING WEB SERVICES372

Messaging with the Wireless
Messaging API

Nearly all CLDC devices and some CDC devices provide hardware that connects to
the now-ubiquitous worldwide cellular networks. In addition to providing wireless IP
connectivity to Java ME–enabled devices, these networks provide wireless messaging
over other protocols, such as SMS and MMS. To enable your applications to access these
wireless messaging protocols, Sun Microsystems and its partners developed the Wireless
Messaging API (WMA), a comprehensive suite of messaging interfaces built atop the GCF.
WMA is an optional package for Java ME devices that JSR 120 originally defined and JSR
205 extended to support MMS.

In this chapter, I show you how to use WMA to send and receive SMS and MMS
messages. I begin by discussing wireless messaging services and how they differ from the
typical IP connection functionality you may have encountered in your career. Next, I
show you how WMA is organized, and I introduce the new classes WMA provides. After
that, I show you how to use the Java ME push registry—an important component when
developing and deploying wireless messaging applications. I close the chapter with a
concrete example showing you how to use WMA to send and receive SMS messages in
your application.

Introducing Wireless Messaging Services
Wireless messaging protocols predate both Java ME and IP over cellular networks; the
first digital networks incorporated SMS over the paging channels that the network uses
for call control.

Today, the various wireless messaging services—SMS, Cell Broadcast (SMS-CB),
and MMS—are the bearer networks for countless applications for messaging, premium
content (ring tone, wallpaper, and application) delivery, gaming, and other purposes.
While many applications use these protocols directly, with users originating or receiving
messages using the native messaging application on their wireless device, a growing
number of applications use Java ME front ends to the messaging protocol. This provides

373

C H A P T E R 1 4

a better user experience by vetting data input and providing a UI specific to the applica-
tion. For example, a dedicated Java ME messaging application can provide a threaded
interface to message conversations instead of the e-mail inbox messaging metaphor used
by most native wireless-terminal messaging applications.

Introducing Short Message Service

SMS is the oldest of the wireless messaging protocols in widespread use today. Originally
defined by the Global System for Mobile (GSM) standard in 1985, the protocol is now
used by some estimated 2.4 billion active users exchanging trillions of messages annually.
All major terrestrial cellular networks support some form of (generally interoperable)
SMS now, and many satellite communications networks do as well.

SMS messages consist of short (typically 160 characters compressed into 140 bytes)
packets sent between users on the same or disparate networks. SMS messages are routed
by an SMS Center (SMSC) and are said to be mobile-originated (MO) or mobile-
terminated (MT). When sent between users, messages are typically text, although the
protocol supports binary payloads as well. The binary formats SMS supports can be used
to send and receive ring tones and pictures, or concatenate multiple messages so that
longer text or binary messages can be sent. On most networks, you can address an SMS
message to a specific port, so that different applications can communicate on dedicated
ports, much like on the TCP/IP network. The SMS network is highly reliable, but message
delivery is not guaranteed; for example, a recipient might have her wireless terminal
switched off, and an SMS message may not be delivered to her terminal before the net-
work decides the message is too old to be delivered and discards it entirely.

On most of today’s cellular networks, SMS aggregators provide you with the option to
send and receive SMS messages from servers on the Web. Using an aggregator, you can
arrange to obtain the rights to use a short code—a number of a few digits, such as 40404—
as an end point from which to originate and receive messages. Users can address a
specific server via the aggregator by using the short code, just as they would send a mes-
sage to a specific phone number.

Introducing Multimedia Messaging Service

After seeing the success of SMS, network infrastructure providers and carriers worked
together to develop MMS—a separate protocol used to transport rich multimedia mes-
sages between handsets. Unlike SMS, which is limited to simple formatted text messages,
polyphonic ring tones, and small bitmaps, MMS messages can carry digitized audio, rich
text, and images captured by cameras on today’s wireless terminals. Riding atop any one
of a number of wireless protocols including SMS or TCP/IP, MMS use is growing as users
continue to originate and share content between wireless terminals.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API374

MMS uses many metaphors taken from e-mail protocols, including the notions of a
message subject, message body, and multiple message parts. MMS messages can be sent
to multiple recipients as well. As with SMS, a special server (the MMS Center) routes
MMS messages to and from wireless terminals. Although people exchange fewer MMS
messages than SMS messages, from your perspective as an application developer, the
business landscape is much the same. Companies can acquire short codes on specific
networks and register those short codes with aggregators—that is, companies that oper-
ate servers that route MMS messages between the Web and the cellular network.

Because MMS is a newer service, it does have some downsides as well. Fewer
people have MMS-enabled phones or pay for the service to receive MMS messages.
Moreover, while SMS is largely interoperable among all the world’s carriers, MMS is
not. In the United States, for example, only a few major carriers have agreed on MMS
interoperability. If you and I use different carriers, we may or may not be able to
exchange MMS messages.

Introducing the Cell Broadcast Service

While SMS is a point-to-point messaging service—an originator must specify a specific
recipient when sending a message—SMS-CB is a point-to-area (also called a one-to-
many) protocol that enables application developers and operators to target many
wireless terminals for a single message. A relatively recent addition to the messaging
standards available on wireless wide area networks (WANs), SMS-CB has only seen
recent adoption on a few networks for applications including advertising, weather alerts,
location-based news, and so forth.

When using SMS-CB, messages are shorter (82 bytes of compressed text or binary
data) but may be concatenated to provide a mechanism to deliver longer messages.
Instead of addressing messages to a specific recipient, you address them to a range
of cells, typically within a specific geographic area. Some advanced networks provide
interfaces that incorporate geographic information to eliminate the need for SMS-CB
applications to refer to specific cells; instead, with these interfaces, you can refer to areas
by their latitude and longitude.

Introducing Wireless Messaging API
WMA extends the GCF (which you first encountered in detail in Chapter 12) to include
the notion of various kinds of messages, similar in concept to UDP datagrams. Defining
the javax.wireless.messaging package, JSR 120 details WMA version 1.0, while JSR 205
details WMA version 2.0.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 375

■Note Because nearly all wireless terminals shipping today support WMA 2.0, what follows applies to
WMA 2.0 unless I specifically state otherwise. The key difference you need to remember between WMA 1.0
and WMA 2.0 is that WMA 2.0 adds support for SMS-CB and MMS messages.

Figure 14-1 shows the GCF classes you first saw in Chapter 12, along with the WMA-
introduced classes. WMA 1.0 defines the basic mechanism for creating instances of
messages, while WMA 2.0 defines the multipart message used to represent an MMS
message, with these classes and interfaces:

• MessageConnection: Acts as a factory for instances of Message subclasses that repre-
sent individual messages. You obtain an instance of MessageConnection just as you
would any other Connection, by specifying the type of connection in a URL you
pass to Connector.open.

• Message: The superclass of all WMA messages. It provides interfaces to manipulate
timestamps and addresses for messages.

• TextMessage: Represents an interface to an SMS message bearing text.

• BinaryMessage: Represents an interface to an SMS message bearing a binary
payload.

• MultipartMessage: Represents an interface to an MMS message bearing one or more
message parts. Only WMA 2.0 provides the MultipartMessage class.

• MessagePart: Represents a single part of a message, such as an image or text
segment. It’s used when composing and parsing MMS messages. Only WMA 2.0
provides the MessagePart class.

• MessageListener: Provides a mechanism by which the AMS can notify your
application of an incoming message.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API376

Figure 14-1. The GCF and the extensions to the GCF the WMA defines

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 377

The WMA uses the GCF’s Connector.open method to create instances of
MessageConnection, just as you learned how to create other Connection subclasses in
Chapters 12 and 13. As with other Connection subclasses, you obtain a Connection
subclass by specifying the kind of connection you want using a URL; the format of
the URL is

protocol://recipient:port

Each portion of the URL is defined as follows:

• protocol: The protocol—either cbs for SMS-CB messages, mms for MMS messages,
or sms for SMS messages

• recipient: The recipient address (a phone number, short code, or e-mail address)
for MO messages; when empty, indicates that the application will use the resulting
MessageConnection to receive messages

• port: The port to which the message will be sent—either a numeric port for SMS or
SMS-CB messages, or an alphanumeric string for MMS messages

When creating MessageConnection instances, you can create instances for either MO or
MT messages that use the SMS and MMS protocols, but WMA 2.0 only supports MT SMS-
CB messages. Thus, it’s an error to specify a recipient in the URL you pass to Connector.open
if the protocol is cbs.

Like TCP/IP and UDP connections, SMS, SMS-CB, and MMS messages are directed to
specific ports; different applications can use different ports to differentiate the data. Some
ports may be reserved for specific applications that the phone’s native software and network
use; for example, on GSM networks, the network reserves the ports listed in Table 14-1, and
attempting to send or receive SMS messages on these ports results in a SecurityException.
Some networks, such as the code division multiple access (CDMA) networks you find pre-
dominantly in North America, may not use port numbers at all, and you should omit the
port number on those networks altogether when opening a MessageConnection.

Table 14-1. Reserved Ports on GSM Networks

Port Number Purpose

2805 WAP Wireless Telephony Application (WTA) secure, connectionless session service

2923 WAP WTA secure session service

2948 WAP push connectionless session service (client side)

2949 WAP push secure, connectionless session service (client side)

5502 Service card reader service for Subscriber Identity Module (SIM) access

5503 Internet access configuration reader

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API378

Port Number Purpose

5508 Dynamic Menu Control Protocol (DMCP)

5511 Message Access Protocol services

5512 Simple e-mail notification services

9200 WAP connectionless session service

9201 WAP session service

9202 WAP secure, connectionless session service

9203 WAP secure session service

9207 WAP vCal Secure for secure transport of calendar data

49996 SyncML over-the-air (OTA) configuration

49999 WAP OTA configuration

Creating Messages

Once you obtain an MO MessageConnection from the GCF’s Connector class by passing a
URL including a recipient address, you can use it to create new instances of concrete
Message subclasses (such as TextMessage) using its newMessage method, like this:

TextMessage tm = (TextMessage)c.newMessage(MessageConnection.TEXT_MESSAGE);

As you might expect, you can use the newMessage method to create an instance of any
of the following subclasses of Message:

• TextMessage: Pass MessageConnection.TEXT_MESSAGE to obtain a TextMessage instance
(for a text SMS message).

• BinaryMessage: Pass MessageConnection.BINARY_MESSAGE to obtain a BinaryMessage
instance (for a binary SMS message).

• MultipartMessage: Pass MessageConnection.MULTIPART_MESSAGE to obtain a
MultipartMessage instance (for an MMS message).

You can also use a MessageConnection instance to send messages to different recipi-
ents; simply invoke newMessage passing both the constant indicating the kind of message
you want and a string containing the recipient address.

If your application needs to receive messages, you can obtain an instance of
MessageConnection configured for MT messages by passing a URL without a recipient
address and then invoking the MessageConnection’s receive method. As you will see in the
upcoming section “Receiving Messages,” the receive method blocks execution of the

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 379

thread that invokes it until the device receives a new message, so you should definitely do
this on a thread different from the UI thread.

Sending Messages

Once you create a message, you need to set the data payload for the message. How you
do this differs slightly between the various Message subclasses. The Message class provides
methods only for managing the recipient address of the message and the time at which
the message was sent:

• getAddress: Returns the address associated with the message

• getTimestamp: Returns the time at which the message was sent as an instance of
java.util.Date

• setAddress: Associates a new address with the message, discarding any previous
address associated with the message

As I remarked previously in the section “Introducing Short Message Service,” the
implementation of SMS message packets can concatenate packets (called segments),
enabling you to send messages longer than the 160-character (140-byte) limitation of the
protocol. WMA requires that any implementation must support concatenating up to
three segments as a single message, letting you send reasonably long messages of 400
bytes or so (the actual length is generally a little shorter because of the space taken by the
protocol to support segment concatenation, an optional port number, and so forth). You can
determine how many segments a message consumes by invoking the MessageConnection’s
numberOfSegments method and passing a TextMessage or BinaryMessage; the result is the
number of segments the message spans.

The implementation of MMS is different, letting you create a message as a collection
of parts, represented by instances of MessagePart. Instead of setting a MultipartMessage
payload all at once, you add individual parts.

Setting and Getting the Payload of a TextMessage

As you might imagine, managing the payload of a TextMessage instance is quite simple.
The class provides two methods: getPayloadText and setPayloadText. Each refers to the
message payload as an instance of String; you call getPayloadText to obtain a String
containing the instance’s payload, while you pass a string to setPayloadText to set the
instance’s payload. You can set the payload of a text message using code similar to that in
Listing 14-1.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API380

Listing 14-1. Setting the Payload of a TextMessage Instance

String receiver = "+18885551212";

String port = "1234";

String address = "sms://" + receiver + ":" + port;

MessageConnection c = null;

try {

c = (MessageConnection) Connector.open(address);

TextMessage t = (TextMessage) c.newMessage(

MessageConnection.TEXT_MESSAGE);

t.setAddress(address);

t.setPayloadText("Hello world!");

c.send(t);

} catch (Exception e) {}

finally {

if (c != null) {

try {

c.close();

} catch (Exception e) { /* recover */}

}

}

This code begins by creating a MessageConnection instance and using it to create a
new TextMessage instance. Next, it sets the recipient address of the TextMessage instance
and sets its payload to the message "Hello world!" before sending the message.

■Note If you’re familiar with telephony protocols, especially SMS, you know that SMS messages can be
encoded in any one of a number of different ways depending on the character set, network operator, and even
the bearer network used by the network operator. Mercifully, the WMA implementation is responsible for han-
dling message encoding and decoding to whatever protocols the handset and bearer network might require.

Setting and Getting the Payload of a BinaryMessage

Like TextMessage, BinaryMessage has a simple interface to manage its payload, treating the
payload as an array of bytes. The getPayloadData and setPayloadData methods are analo-
gous to getPayloadText and setPayloadText.

When people send binary SMS messages, the payload is typically small images or poly-
phonic ring tones, which the handset and SMSC encode and decode as Enhanced Messaging
Service (EMS) objects. Unfortunately, the WMA implementation does not support EMS
encoding or decoding, so short of writing your own codec, you can’t directly interoperate with

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 381

EMS-encoded objects or services. You can, however, use binary SMS via the BinaryMessage
class to send and receive other application data, such as for pushing compressed financial
(e.g., stock market updates), weather, or configuration data to your application.

Managing the Multiple Parts of a MultipartMessage

Working with MultipartMessage instances is a little different than working with other
Message subclasses, because the payload for an MMS message consists of one or more
parts. Each part is a single multimedia entity such as an image, a block of text, or a
sound, much like a conventional e-mail message. Figure 14-2 shows a schematic
representation of a message with multiple parts.

Figure 14-2. A schematic representation of a MultipartMessage instance

Instances of MultipartMessage have several fields:

• A timestamp: Inherited from the Message class, a timestamp is available via the
getTimestamp method.

• A starting content ID: The ID is a String that names the first part of the message
to be displayed to the user. It’s available via the getStartContentId and
setStartContentId methods.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API382

• A subject: A subject is a String available through the getSubject and setSubject
methods.

• Zero or more addresses: Addresses are Strings that indicate the recipients of the
message. You can add individual addresses using the addAddress method, get an
array of messages using the getAddresses method, or remove an address (or all
addresses) using the removeAddresses methods.

• Zero or more named headers: Headers contain metadata about the message. Each
header is a String, accessible by its name, which you also specify using a String via
the getHeader and setHeader methods.

• Zero or more message parts: Message parts are instances of MessagePart that contain
individual parts of a message. You can add a MessagePart instance to a multipart
message using the addMessagePart method, obtain an array of the MessageParts in a
message using getMessageParts, or remove a MessagePart instance from a message
using one of these methods: removeMessagePart, removeMessagePartId, or
removeMessagePartLocation.

Of course, you can’t access these fields directly; instead, you use the accessor and
mutator methods that the MultipartMessage class provides.

While the MultipartMessage class encapsulates the notion of an entire message, the
MessagePart class encapsulates a single attachment to a message. Each part has a unique
name, called the content ID. When working with MessagePart instances, you frequently
refer to them by this ID, which you can obtain for a specific part by invoking its
getContentID method. Instances also have four other fields:

• The message contents: An array of bytes you can fetch with the getContent or
getContentAsStream methods

• The specified content location of a message part: A String typically containing a
URL you can fetch using the getContentLocation method

• The encoding method used to encode the text in a part: Determined by the
getEncoding method

• The MIME type of the part: Indicates the type of the part (such as text, a PNG
image, and so on), which you can obtain using the getMIMEType method

Because of the part-oriented nature of the MultipartMessage class, creating one to
send is more complicated than simply creating a TextMessage or BinaryMessage instance
and setting its payload. Instead, you follow these steps:

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 383

1. Create one or more instances of MessagePart, passing the contents of each part, its
ID, and the part type to the MessagePart constructor.

2. Create an instance of MultipartMessage by invoking newMessage on a
MessageConnection instance.

3. Add the parts you created in the first step to the MultipartMessage using
addMessagePart.

4. Set the message’s subject (if any) using the MultipartMessage’s setSubject method.

5. Set the message’s recipients using the MultipartMessage’s addAddress method.

Listing 14-2 shows pseudocode for this sequence to send a single PNG image.

Listing 14-2. Pseudocode to Send a Single PNG Image in a Multipart Message

String address = "mms://" + receiver + ":" + appId;

MessageConnection c = null;

try {

c = (MessageConnection) Connector.open(address);

MultipartMessage mpm = (MultipartMessage)c.newMessage(

MessageConnection.MULTIPART_MESSAGE);

mpm.setSubject("An image");

InputStream is = getClass().getResourceAsStream("/img/i.png");

byte[] bImage = new byte[is.available()];

is.read(bImage);

mpm.addMessagePart(new MessagePart(bImage, 0, bImage.length,

"image/png", "id1", null, null));

c.send(mpm);

} catch (Exception e) { /* recover */ }

finally {

if (c != null) {

try {

c.close();

} catch (IOException e) { /* recover */}

}

}

This code begins in the same manner as Listing 14-1, except that it creates a
MultipartMessage instance instead of a TextMessage instance. Next, it sets its subject to
"An image". After that, it uses an InputStream instance to read the entire image into

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API384

memory, and it creates a new MessagePart consisting of the PNG image’s contents. Finally,
it sends the image using the MessageConnection.

Receiving Messages

To receive a message, you need a MessageConnection instance configured to accept MT
messages. You create one using Connector.open, passing the protocol and optional port or
application ID for the kind of MT message your application is to receive, like this:

MessageConnection c = (MessageConnection)Connector.open("sms://:" + port);

You can then receive new messages by invoking the MessageConnection’s receive
function, like this:

TextMessage msg = (TextMessage)c.receive();

Sounds simple, doesn’t it? There’s one catch: receive blocks until the application
receives a message, so if you do this on the default thread, your application UI will hang
until an incoming message arrives. You can solve this problem in one of two ways: regis-
ter a listener that the WMA notifies when a message is available, or invoke receive on a
separate thread.

Registering a listener is easy; like other Java listeners, you simply create a class that
implements the appropriate listener interface (in this case, MessageListener) and provide
the notifyIncomingMessage method. When the device receives a message, the AMS invokes
the listener with a MessageConnection configured to receive the incoming message.

The most robust method is actually to both register a listener and invoke receive
when the WMA invokes your listener, because receive can block for a short period while
the Java ME runtime and WMA process an incoming message once it arrives. I show you
this technique later in this chapter in the “Sending and Receiving MMS Messages” section.

Of course, you can only receive an incoming message this way while your application
is running. To receive an incoming message when your application is not running, your
application must register itself with the push registry, kept by the AMS. In turn, the AMS
invokes your application when the device receives a message for your application. I show
you how to do this in the upcoming section, “Using the Push Registry.”

Managing Message Headers

MulitpartMessage instances provide a collection of headers, which are name-value pairs
that intermediate servers may add to a message as it works its way from origination point
to destination. You can get the value of a message header by passing the name of the
header to getHeader, and you can set a header’s value by passing the name of the header
and the value to setHeader. With HTTP, you can create your own headers and include
application-specific data. However, the MMS protocol that MultipartMessage represents

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 385

only has a limited number of headers that are defined by the protocol specification.
Table 14-2 shows the most common headers and their purpose. Note that a specific
message might not bear all of these headers or might bear additional headers not shown
in Table 14-2.

Table 14-2. Common MultipartMessage Headers and Their Meaning

Header Name Purpose

X-Mms-Delivery-Time The date and time at which the message must be delivered to the
recipient

X-Mms-Expiry The date and time at which the message should expire and not be
delivered by the MMSC

X-Mms-Message-Class The class of message—either Personal, Advertisement,
Informational, or Auto

X-Mms-Priority The priority of the message—either High, Normal, or Low

X-Mms-Transaction-Id The assigned transaction ID for the message

■Note The MMS protocol underlying the MultipartMessage is specified by the Open Mobile
Alliance (OMA) and its WAP-209-MMSEncapsulation standard. If you’re going to work deeply with the
MultipartMessage class and the MMS protocol, it’s a good idea to closely read this and other MMS

documentation at the OMA web site (http://www.openmobilealliance.org). JSR 205 cites this
standard; Appendix D of JSR 206 discusses how the MMS message structure that the OMA defines maps
to the interfaces that the WMA provides.

Understanding Required Privileges When Using the WMA

Just as when using the GCF for HTTP or socket requests, using the GCF to obtain a
MessageConnection instance requires privilege. The WMA defines the following privileges
for each kind of message it supports:

• javax.microedition.io.Connector.sms: Required to obtain a MessageConnection that
can send or receive text or binary SMS messages

• javax.microedition.io.Connector.cbs: Required to obtain a MessageConnection that
can receive SMS-CB messages

• javax.microedition.io.Connector.mms: Required to obtain a MessageConnection that
can send or receive MMS messages

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API386

In addition to these privileges, your application needs the following specific
privileges to send or receive each kind of message:

• javax.microedition.io.Connector.sms.receive: Required to receive a text or binary
SMS message

• javax.microedition.io.Connector.sms.send: Required to send a text or binary SMS
message

• javax.microedition.io.Connector.cbs.receive: Required to receive an SMS-CB
message

• javax.microedition.io.Connector.mms.receive: Required to receive an MMS
message

• javax.microedition.io.Connector.mms.send: Required to send an MMS message

This fine-grained use of privilege helps prevent rogue MIDlets from sending or
receiving messages without the user’s approval. In addition, the AMS prompts the
user before letting the MIDlet create a MessageConnection instance or send or receive
a message.

As with other privileges, you must specify these in the MIDlet-Permissions field of
your JAD file prior to signing your MIDlet for certification and distribution.

Using the Push Registry
I first showed you the Java ME push registry in Chapter 4, where you learned how to use it
and the AMS to register an application to launch when an alarm fires. You can also use
the push registry—through the methods the PushRegistry class provides—to start your
application upon receipt of an incoming message. Figure 14-3 (which contains the same
sequence of events as Figure 4-3) shows the sequence of events when your application
registers with the push registry for an incoming message and the device receives an
incoming message for your application.

In Chapter 4, you saw only how to register for an alarm dynamically with the
PushRegistry class, which encapsulates the interfaces to the push registry.

■Note The PushRegistry class provides all class methods; you don’t need an instance of
PushRegistry. This is different from many other classes in the MIDP profile, where you obtain a
singleton instance of the class and invoke its methods instead.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 387

Figure 14-3. Receiving a message using the push registry

Later, in Chapter 12, in the “Using Sockets with the GCF” section, you saw how you
could include the URL in a MIDlet-Push field for an incoming end point in your JAD file.
When you do this, you must specify three things:

• A URL describing the inbound end point (in the same syntax as a URL for
Connector.open)

• The MIDlet class you want the AMS to launch when an incoming request is made
to the inbound end point

• The address of senders permitted to establish a connection to the inbound
end point

Listing 14-3 shows some hypothetical MIDlet-Push entries.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API388

Listing 14-3. Some Hypothetical MIDlet-Push Entries

MIDlet-Push-1: socket://:7, com.apress.rischpater.EchoMIDLet, *

MIDlet-Push-2: socket://:80, com.apress.rischpater.HttpMIDlet, 192.168.1.128

MIDlet-Push-3: sms://:1234, com.apress.rischpater.SMSMIDlet, +1123456????

As you can see from the example, the permissible sender entry can contain wild-
cards; just like with file names in most shells today, you can use * to specify one or more
characters, and ? to specify a single character.

■Note Using the push registry requires privilege; be sure you include the appropriate privileges for the GCF
end points you’re using in the MIDlet-Permissions entry of your MIDlet’s JAD file.

When the AMS launches your application in response to an inbound connection
request such as an MT message, the AMS adds the GCF URL of the inbound connection
to a list. You can request this list using the PushRegistry class’s listConnections method,
which returns a list of inbound connections. This is actually more information than you
need, because it lists all inbound end points on which the AMS is listening for your
MIDlet. By passing true, you receive a list of only those end points with pending connec-
tions bearing data. Listing 14-4 shows some pseudocode that does this.

Listing 14-4. Using the PushRegistry’s listConnections Method

private boolean processIncomingRequests() {

String[] connections =

PushRegistry.listConnections(true);

if (connections != null && connections.length > 0) {

for (int i=0; i < connections.length; i++) {

c = (MessageConnection) Connector.open(connections[i]);

Message m = c.receive();

if (m instanceof TextMessage) {

processOneMessage((TextMessage)m);

}

}

return(true);

}

return(false);

}

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 389

This example simply loops over the inbound connections provided by listConnections
and receives each inbound message, processing each in turn.

Registering Dynamically for Incoming Messages

When you specify the URL of an inbound connection in your MIDlet’s JAD file, you’re indi-
cating your interest in an inbound connection to the AMS statically—that is, at the time at
which you build and package your application. There will be times when you won’t want to
do this—for example, if your application lets the user determine whether or not it should
launch when the device receives an incoming message. To permit the user to determine
whether or not your MIDlet should respond to incoming messages, your application can
register its interest in inbound requests dynamically—that is, at runtime.

Dynamic registration for inbound messages is easy: simply invoke PushRegistry.
registerConnection and pass the inbound connection URL, the class to launch, and the
filter, as shown in Listing 14-5.

Listing 14-5. Dynamically Registering for an Inbound Connection Using the Push Registry

PushRegistry.registerConnection("sms://:1234",

"com.apress.rischpater.SMSMIDlet",

"*");

Doing this is functionally equivalent to listing the inbound end-point URL in a
MIDlet-Push entry; once you do this, the AMS sends inbound connection requests to your
MIDlet when it’s not running. To disable this—in other words, to cancel the registration—
invoke PushRegistry.unregisterConnection, passing just the URL you passed to
registerConnection:

PushRegistry.unregisterConnection("sms://:1234");

Once you do this, the AMS will no longer notify your MIDlet of inbound connections
on the GCF URL you specify.

Using PushRegistry APIs

Chapter 4 showed you how to register for alarms, and the previous listings showed you
how to register incoming connections. You can also determine the filter you previously
specified for an inbound connection or the MIDlet responsible for handling an inbound
connection.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API390

You invoke PushRegistry.getFilter with a GCF URL to obtain a String with the filter
previously specified for the inbound connection; you might want to do this if your applica-
tion dynamically specifies its inbound end point and filter, perhaps on behalf of the user.

You invoke PushRegistry.getMidlet (note the inconsistent capitalization with many
other instances of MIDlet in the MIDP APIs) to determine the URL responsible for han-
dling a specific inbound connection.

Applying the Wireless Messaging API
Content delivery through WMA is an essential and growing part of the Java ME applica-
tion landscape. Servers can easily push information to devices asynchronously, and the
rich UI capabilities of today’s Java ME handsets make for better user experience than
pushing WAP content to a wireless terminal’s browser. MO messaging can play an
important role in some applications, too, such as social-networking applications or
those where a continuous network connection is too costly or too heavyweight to be
worthwhile.

In demonstrating how to use the WMA in a practical example, I chose not to extend
the WeatherWidget to receive SMS weather updates, because it would not demonstrate to
you how to originate messages using the WMA in a real application. Instead, what follows
are two simple MIDlets: one that sends and receives text SMS messages, and one that
sends and receives a picture in an MMS message.

Sending and Receiving SMS Messages

Figure 14-4 shows two instances of SMSMIDlet running in the Java ME emulator. As
you can see, the user interface is simple, consisting of one text field that permits you to
enter the destination telephone number—technically, the Mobile Station International
Subscriber Directory Number (MSISDN)—and a second text field that permits you to
enter a message.

Why two instances? One of the features of the Java ME emulator is its ability to
fully emulate the functionality the WMA provides, including sending and receiving
messages. By running two instances of the SMSMIDlet at the same time, you can test
message sending and receiving. As you see in the title bar of each emulator window,
each instance of the emulator simulates a different MSISDN (in the figure, the MSIS-
DNs +5550000 and +5550001). By using the MSISDNs of each emulator, you can test
your use of the WMA before loading your application on to actual devices. This lets you
debug your implementation on your workstation more efficiently than if you were to
debug on the target device.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 391

Figure 14-4. SMSMidlet running in two instances of the emulator

The SMSMIDlet uses three classes in its implementation. Two—SMSMidlet and
SMSSender—are public, while the remaining one—SetMessage—is private. The SMSMIDlet
class, shown in Listing 14-6, performs the work necessary to set up the user interface and
receive messages.

■Tip Listing 14-6 won’t compile, of course, until after you define the SMSSender class, which I show later
in this section in Listing 14-7.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API392

Listing 14-6. The SMSMidlet Class

package com.apress.rischpater.smsmidlet;

import javax.microedition.midlet.*;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import javax.wireless.messaging.*;

import java.io.IOException;

public class SMSMIDlet

extends MIDlet

implements CommandListener, MessageListener, Runnable {

private SMSSender sender = null;

private Command exitCommand = new Command("Exit", Command.EXIT, 2);

private Command sendCommand = new Command("Send", Command.SCREEN, 1);

private final String port = "1234";

private TextField numberEntry= null;

private TextField msgEntry = null;

private Form form = null;

private String senderAddress = null;

private boolean endNow = false;

private MessageConnection c = null;

String msgReceived = null;

public SMSMIDlet() {

sender = SMSSender.getInstance();

}

public void commandAction(javax.microedition.lcdui.Command c,

javax.microedition.lcdui.Displayable d) {

if (c == exitCommand) {

if (!sender.isSending()) {

destroyApp(true);

notifyDestroyed();

}

} else if (c == sendCommand) {

String dest = numberEntry.getString();

String msg = msgEntry.getString();

if (dest.length() > 0)

sender.sendMsg(dest, port, msg);

}

}

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 393

protected void destroyApp(boolean param) {

try {

endNow = true;

c.close();

} catch (IOException ex) {}

}

protected void pauseApp() {

try {

endNow = true;

c.close();

} catch (IOException ex) {}

}

protected void startApp() {

if (form == null) {

form = new Form("SMSMIDlet");

numberEntry = new TextField("Connect to:",

null, 256,

TextField.PHONENUMBER);

msgEntry = new TextField("Message:",

null, 160,

TextField.ANY);

form.append(numberEntry);

form.append(msgEntry);

form.addCommand(exitCommand);

form.addCommand(sendCommand);

form.setCommandListener(this);

}

Display.getDisplay(this).setCurrent(form);

startReceive();

}

private void startReceive() {

Thread t;

t = new Thread(this);

t.start();

}

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API394

public void run() {

Message msg = null;

c = null;

endNow = false;

try {

c = (MessageConnection) Connector.open("sms://:" + port);

msg = c.receive();

while ((msg != null) && (!endNow)) {

if (msg instanceof TextMessage) {

msgReceived = ((TextMessage)msg).getPayloadText();

Display.getDisplay(this).callSerially(new SetMessage());

}

msg = c.receive();

}

} catch (IOException e) {}

}

class SetMessage implements Runnable {

public void run() {

msgEntry.setString(msgReceived);

}

}

}

The MIDlet uses two Command instances: one to signal the exit, and one to signal when
you select the send operation. It also uses two TextField instances: one for you to enter
the recipient MSISDN and one for the message you send or receive.

I based the implementation of this and the next sample application on the sample
code presented in the third edition of this book, rather than building a new user interface
using NetBeans. Consequently, the flow of the user interface code is a little different;
these samples illustrate how you might hand-construct a MIDlet with its own application
instead of using NetBeans to create your UI. I create the Command instances at class cre-
ation time, and the remainder of the UI in the MIDlet’s startApp method. This makes for
easy-to-read code in simple MIDlets, but doesn’t scale well for large MIDlet applications
that use many different screens.

The MIDlet uses a second thread to receive incoming messages; it starts this thread
in the startApp method by invoking startReceive. This method simply allocates a new
Thread instance using the MIDlet itself as the implementation of the Runnable interface to
provide the thread’s run method. I could have just as easily used an inner class, but that
seemed more work than it was worth. Consequently, as the MIDlet starts, the user inter-
face runs on the main thread, and a second thread starts and blocks in the run method on
the call to c.receive.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 395

As new text SMS messages arrive on the application’s port, c.receive returns new
instances of TextMessage. The thread’s run method extracts the payload text from the
incoming message and uses the Display instance’s callSerially method to schedule an
update to the display on the main thread. It then loops to wait for another incoming
text message.

callSerially is handy any time you need to schedule an operation on the applica-
tion’s main thread from a separate thread. It schedules the run method of an instance of
the class you provide to run after the main thread has handled any pending UI events.
The thread uses callSerially to schedule the run method of an instance of the inner
class SetMessage, which simply sets the output text field’s contents to the text of the
incoming message.

To send a message, SMSMIDlet invokes the sendMsg method of the SMSSender class.
This singleton class uses a separate thread to send each MO message to prevent blocking
the main thread. Listing 14-7 shows the SMSSender class.

Listing 14-7. The SMSSender Class

package com.apress.rischpater.smsmidlet;

import javax.microedition.io.*;

import javax.wireless.messaging.*;

import java.io.IOException;

public class SMSSender implements Runnable {

private static SMSSender me = new SMSSender();

private String receiver = null;

private String port = null;

private String msgString = null;

private boolean sending = false;

private SMSSender() {

}

public static SMSSender getInstance() {

return me;

}

public boolean isSending() {

return sending;

}

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API396

public void sendMsg(String r, String p, String m) {

if (sending) return;

receiver = r;

port = p;

msgString = m;

Thread t = new Thread(this);

t.start();

}

public void run() {

String address = "sms://" + receiver + ":" + port;

sending = true;

MessageConnection c = null;

try {

c = (MessageConnection) Connector.open(address);

TextMessage txtmessage = (TextMessage) c.newMessage(

MessageConnection.TEXT_MESSAGE);

txtmessage.setAddress(address);

txtmessage.setPayloadText(msgString);

c.send(txtmessage);

} catch (Exception e) {}

if (c != null) {

try {

c.close();

} catch (IOException ioe) {}

}

sending = false;

}

}

By making the constructor private, saving an instance of the class in the private field
me, and returning that instance via the public method getInstance, the class enforces the
singleton relationship and ensures that clients of the class can obtain only a single
instance of the class.

The work this class does is divided into two methods: sendMsg and run. sendMsg sets
aside the parameters for the message it should send—the recipient address, recipient
port, and text of the message itself—before scheduling a new thread using the allocated
instance of SMSSender as the Runnable object.

Once the Java runtime starts the new thread, it invokes the run method, which
actually sends the text of the message to the address and port you provide. The process is
straightforward: create the destination address, use the GCF to create a MessageConnection
instance so you can obtain a new TextMessage instance, configure the TextMessage

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 397

instance, and send the message using the MessageConnection and configured TextMessage
instance. Once the run method sends the message, it cleans up by closing the
MessageConnection before exiting.

Note that this example keeps error handling to a minimum; the try-catch blocks show
you where errors can occur (for example, a lack of wireless coverage would cause the invo-
cation of send to throw), but the code doesn’t do anything with these errors. When crafting
applications that use the wireless network for data exchange, it’s important to pay special
attention to how your application handles errors, because they can occur frequently (espe-
cially considering the vagaries of wireless coverage). How you handle errors when sending
and receiving wireless messages in your application depends to some extent on the nature
of your application, but generally falls into one of these three broad categories:

• Ignore errors entirely: Simple applications—especially those that rely on a sophisti-
cated back-end server—can often simply rely on the back end to resend messages
and manage errors. Applications that send many repetitive messages, such as
those reporting user position or other status, can often ignore transmission fail-
ures, because a subsequent message will be sent soon after the failure anyway.

• Notify the user and let the user deal with the error: This approach is appropriate for
simple applications but can quickly frustrate users, especially if the application
loses content you enter when the error occurs. It’s far better to fail silently and
notify the user of an abnormal condition passively (such as through a signal status
icon) than it is to create a modal interface that forces the user to respond to various
errors as they occur.

• Queue messages for later delivery: Applications requiring reliable message delivery
should provide their own message queue, likely as records in a record store. This
can gracefully handle most errors that can occur without user data loss.

Sending and Receiving MMS Messages

The exchange of MMS messages via the WMA is similar in principle to the exchange of SMS
messages, although two wrinkles arise. First, as you saw in the “Managing the Multiple
Parts of a MultipartMessage” section, sending or receiving an MMS message requires that
you work with not only the message, but also the content that makes up the message.
Second, the MMS protocol itself is a much more expensive protocol than the SMS protocol;
sending or receiving an MMS message can take far longer than sending or receiving an SMS
message, because MMS messages are larger and use the network’s data channels more
heavily than SMS does. This means that when using MMS, your application must use mul-
tiple threads to avoid stalling the user-interface thread. Moreover, your application should
be prepared to receive more than one message at once, because heavily used applications
may well be receiving a single MMS when another MMS message arrives.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API398

Figure 14-5 shows the MMSMIDlet application, again running in two different
instances. Unlike the SMSMIDlet example, the MMSMIDlet example sends an image
rather than text.

Figure 14-5. Two MMSMIDlet instances running side by side in emulation

Listing 14-8 shows the MMSMIDlet class, which comprises the user interface and
receives functionality for the MMSMIDlet sample.

■Tip As with Listing 14-6, Listing 14-8 doesn’t compile independently. You also need the MMSSender class,
which I show you in Listing 14-9.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 399

Listing 14-8. The MMSMidlet Class

package com.apress.rischpater.mmsmidlet;

import javax.microedition.midlet.*;

import javax.microedition.io.*;

import javax.microedition.lcdui.*;

import javax.wireless.messaging.*;

import java.io.IOException;

public class MMSMIDlet

extends MIDlet

implements CommandListener, Runnable, MessageListener {

private MMSSender sender = null;

private Command exitCommand = new Command("Exit", Command.EXIT, 2);

private Command sendCommand = new Command("Send", Command.SCREEN, 1);

private TextField numberEntry = null;

private static final String FRACTAL_PATH = "/icons/fractal.png";

private ImageItem imageItem = null;

private Form form = null;

private boolean endNow = false;

private MessageConnection c = null;

private final String appId = "MMSMIDlet";

protected int msgAvail = 0;

private final Integer monitor = new Integer(0);

public MMSMIDlet() {

sender = MMSSender.getInstance();

}

public void commandAction(javax.microedition.lcdui.Command c,

javax.microedition.lcdui.Displayable d) {

if (c == exitCommand) {

if (!sender.isSending()) {

destroyApp(true);

notifyDestroyed();

}

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API400

} else if (c == sendCommand) {

String dest = numberEntry.getString();

if (dest.length() > 0)

sender.sendMsg(dest, appId, "A fractal!", FRACTAL_PATH);

}

}

protected void destroyApp(boolean param) {

try {

endNow = true;

c.close();

} catch (IOException ex) {}

}

protected void pauseApp() {

endNow = true;

try {

c.setMessageListener(null);

c.close();

} catch (IOException ex) {}

}

protected void startApp() {

if (form == null) {

form = new Form("MMSMIDlet");

numberEntry = new TextField("Connect to:",

null, 256,

TextField.PHONENUMBER);

imageItem = new ImageItem(null,null,

ImageItem.LAYOUT_DEFAULT,null);

form.append(numberEntry);

form.append(imageItem);

form.addCommand(exitCommand);

form.addCommand(sendCommand);

form.setCommandListener(this);

}

Display.getDisplay(this).setCurrent(form);

startReceive();

}

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 401

private void startReceive() {

Thread t;

try {

c = (MessageConnection) Connector.open("mms://:" + appId);

c.setMessageListener(this);

} catch (Exception e) {}

if (c != null) {

t = new Thread(this);

t.start();

}

}

public void run() {

Message msg = null;

endNow = false;

msgAvail = 0;

while (!endNow) {

synchronized(monitor) {

if (msgAvail <= 0)

try {

monitor.wait();

} catch (InterruptedException e) {}

msgAvail--;

}

try {

msg = c.receive();

if (msg instanceof MultipartMessage) {

MultipartMessage mpm = (MultipartMessage)msg;

MessagePart[] parts = mpm.getMessageParts();

if (parts != null) {

for (int i = 0; i < parts.length; i++) {

MessagePart mp = parts[i];

String type = mp.getMIMEType();

byte[] ba = mp.getContent();

if (type.equals("image/png")) {

Image image =

Image.createImage(ba, 0, ba.length);

Display.getDisplay(this).callSerially(

new SetImage(image));

}

}

}

}

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API402

} catch (Exception e) {}

}

}

private void getMessage() {

synchronized(monitor) {

msgAvail++;

monitor.notify();

}

}

public void notifyIncomingMessage(MessageConnection c) {

if (c != null) {

getMessage();

}

}

class SetImage implements Runnable {

private Image img = null;

public SetImage(Image i) {

img = i;

}

public void run() {

imageItem.setImage(img);

}

}

}

The division of responsibility in the MMSMIDlet class is the same as in the SMSMIDlet
class, although both the receiving and sending code is more complicated, reflecting
the asynchronous nature of MMS interaction. Initialization for message receipt in
startReceive is similar to the implementation in SMSMIDlet, with one exception: the
MMSMIDlet implementation registers a message listener with the MessageConnection
returned from the GCF, so that the Java ME runtime can notify it of incoming messages
through the notifyIncomingMessage method.

When the MIDlet receives notification of an incoming message, it invokes
getMessage. Together, getMessage and the receive thread’s run method (originally
spawned by startReceive) use a message counter msgAvail and the monitor variable
monitor to coordinate message receipt; if the MIDlet is receiving a message, getMessage
waits before notifying the receive thread that another incoming message is pending.

The receive thread’s main loop is slightly more complicated because it uses the
monitor; it first waits on the monitor and then receives the incoming message. Receiv-
ing the message is the same as in the SMSMIDlet example—it just invokes receive on

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 403

the MessageConnection instance configured for MT messages—but message handling is
trickier, because the message may contain any number of message parts. The receive
thread checks to be sure that the Message it received from the MessageConnection
instance is a MultipartMessage instance, and then examines each of its parts to find a
part with the MIME type image/png. Once it does so, it creates an instance of Image
using the bytes from that part. It then updates the display with the image from that
part with the inner class SetImage. Finally, the thread’s run loop resumes waiting on the
monitor variable for another incoming message notification.

Like the SMSMIDlet example, sending also occurs on a separate thread; the
MMSSender class manages the sending of each outgoing message. Listing 14-9 shows the
MMSSender class.

Listing 14-9. The MMSSender Class

package com.apress.rischpater.mmsmidlet;

import javax.microedition.io.*;

import javax.wireless.messaging.*;

import java.io.*;

public class MMSSender implements Runnable {

private static MMSSender me = new MMSSender();

private MMSSender() {

}

public static MMSSender getInstance() {

return me;

}

private String receiver = null;

private String appId = null;

private String image = null;

private String msg = null;

private String encoding = null;

private boolean sending = false;

public void sendMsg(String r, String id, String m, String i) {

if (sending) return;

receiver = r;

appId = id;

msg = m;

image = i;

encoding = System.getProperty("microedition.encoding");

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API404

Thread t = new Thread(this);

t.start();

}

public boolean isSending() {

return sending;

}

public void run() {

sending = true;

try {

sendMMS();

} catch (Exception e) {}

sending = false;

}

private void sendMMS() {

String address = "mms://" + receiver + ":" + appId;

System.out.println(address);

MessageConnection c = null;

try {

c = (MessageConnection) Connector.open(address);

MultipartMessage mpm = (MultipartMessage) c.newMessage(

MessageConnection.MULTIPART_MESSAGE);

mpm.setSubject("MMSMIDlet Image");

if (image!=null) {

InputStream is = getClass().getResourceAsStream(image);

byte[] bImage = new byte[is.available()];

is.read(bImage);

mpm.addMessagePart(

new MessagePart(bImage, 0, bImage.length,

"image/png", "id1", null, null));

}

if (msg!=null) {

byte[] bMsg = msg.getBytes();

mpm.addMessagePart(

new MessagePart(bMsg, 0, bMsg.length,

"text/plain", "txt1", null, encoding));

}

c.send(mpm);

} catch (Exception e) {}

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 405

finally {

if (c != null) {

try {

c.close();

} catch (IOException e) {}

}

}

}

}

Identical in structure to the SMSSender class, MMSSender must do two things differently.
First, it must determine the character encoding scheme used by the host Java ME virtual
machine, so it can send it along with any outgoing MMS messages that include a text
part. Second, it must manage multiple message parts. Although the user interface for
MMSMIDlet only supports displaying the image part of an incoming MMS message, the
MMSSender can send both a text part and an image part. By sending both a text part and an
image part, I show you how to send multiple parts in a single MultipartMessage instance
and thoroughly test the implementation of the MIDlet’s message receipt functionality.

Getting the encoding scheme that the host virtual machine uses is easy; the sendMsg
method just invokes the System.getProperty method with the value microedition.
encoding. This returns the standard name of the encoding scheme, which you can then
use when sending text parts of MMS messages. Once the sendMsg method captures its
incoming arguments, it creates and starts a new thread to send the outgoing message
contents.

The thread uses the private sendMMS method to actually perform the sending; this
method must create MessagePart instances for each of the indicated payloads, add those
parts to a new MultipartMessage instance, and send the MultipartMessage. For each of the
text and image parts, the method first obtains an array of bytes representing the payload.
For an image payload, it fetches the bytes from the resource in the MIDlet JAR file; for a
string payload, it fetches the bytes from the String containing the message. Then, it cre-
ates a new MessagePart instance, specifying the MIME type and a name for the part when
it creates the part. When creating the MessagePart, the sendMMS method doesn’t specify a
location for the part, because there is no location. In addition, the MessagePart instance
that contains the text of the message to send also includes the encoding originally
fetched from the Java ME runtime. Once sendMMS creates the MessagePart instance with
the desired data, it adds the message part to the outgoing message. With both message
parts added to the outgoing message, the code uses the MessageConnection’s send method
to send the message, just as it would any other WMA message.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API406

■Note This example sends an image included with the MIDlet at compile time. Generating and encoding
images dynamically to send with the WMA can be difficult. The Mobile Media API (MMAPI), which I discuss in
Chapter 16, can generate JPEG images from a device’s camera, but you generally cannot encode Image
objects to send with the WMA over MMS without additional code such as a PNG encoder.

Wrapping Up
The WMA, defined first in JSR 120 and extended in JSR 205, defines an extension to the
GCF that lets MIDlets send and receive SMS and MMS messages, as well as receive
SMS-CB messages. In essence, using it is the same as writing any other GCF-aware
application: you use the Connector’s open method as a factory for MessageConnection
objects, which you can then use to create instances of specific Message subclasses to
represent messages for the device to send or messages that the device has received.

The MessageConnection instance you create with the GCF acts as a factory for mes-
sages; you can create new MO messages using its newMessage method, passing the kind of
message you want to create, or you can wait for an incoming message by invoking its
receive method (which blocks the current thread until a message arrives). The WMA
defines the Message class to encapsulate the notion of an address and timestamp for mes-
sages. Subclasses of Message define specific semantics for text SMS messages, binary SMS
messages, and MMS messages: the TextMessage, BinaryMessage, and MultipartMessage
classes, respectively. Using these classes, you can set the message payload, or in the case
of MultipartMessage instances, you can manage multiple recipient addresses as well as the
various parts that constitute a message. Once you configure an outgoing message, you
can send it using the MessageConnection’s send method.

Using the WMA requires that your MIDlet have privilege. When packaging your
application, be sure to include the privileges for both the kind of message your applica-
tion uses as well as the direction (send or receive) of the messages your MIDlet uses in its
JAD file.

CHAPTER 14 ■ MESSAGING WITH THE WIRELESS MESSAGING API 407

Intermezzo

As you’ve read this book, you’ve progressed from the basics provided by all implemen-

tations of Java ME through the configurations, profiles, and packages that constitute

today’s commercially successful Java ME marketplace. You may have skipped Part 2 or

Part 3, depending on your interest in a specific configuration of Java ME.

In the pages that follow, I discuss some of the most important extensions to the Java ME

platform. Some, such as the MMAPI, can be found on nearly all the Java ME devices in pro-

duction today. Others aren’t so prevalent, either because they’re new additions to the Java

ME landscape or because manufacturers have had less impetus to bring these APIs to

developers and consumers. Unlike previous parts, which I intended for you to consume

and digest as a main course, these chapters are organized differently. Each is intended to

stand on its own and give you a sampling of the various ways the Java ME platform grows

to meet needs. Enjoy, and bon appétit!

Other Java ME
Interfaces

In the last four parts, you’ve learned the fundamentals of building applications using the

two Java configurations supporting Java ME: the CLDC and the CDC. Along the way, you’ve

seen most of the interfaces and libraries common to the Java ME platform that make it so

powerful: the Java language and basic Java interfaces; GUI support through the MIDP, the

AWT, and the AGUI; support for files through Java’s existing mechanism or the FCOP; com-

munication via HTTP and wireless protocols; and other features. Much of what you’ve seen

belongs squarely to the Java ME platform; some bits, such as the FCOP and PIM APIs and

support for web services and wireless messaging, are actually extensions to the Java ME

platform so common as to be encountered on nearly all Java ME devices. Others, like the

advanced graphics toolkits provided by the Personal Profile and the AGUI, are less com-

mon, but it’s increasingly likely that you’ll encounter them in the future.

However, the rest of this book isn’t about Java ME itself, but rather about some of the most

powerful and exciting packages that sit atop Java ME. As I write this, there are more than 20

JSRs that define optional packages that enhance the Java ME platform. They provide inter-

faces that support additional capabilities such as interfaces for cryptography, support for

video, and location-based services. Not all of the packages defined by the JSR process are

available on all Java ME devices, but the growing convergence between all devices makes it

likely that given your application idea, you’ll find a JSR documenting a Java package for

Java ME that implements the interfaces you need, and there will be sufficient devices with

support for that package. As a result, you’ll likely have a viable market for your application.

P A R T 5

Securing Java ME
Applications

Security plays a big part in the success of today’s mobile marketplace. More so than
ever before, consumer devices are being woven into the very infrastructure of electronic
commerce. This revolution is being powered by mobile versions of the same security and
trust technologies—largely powered by the revolution in cryptography over the last
generation—that power electronic commerce on the Internet.

In this chapter, I look at the some of the various components available to Java ME
developers that can help you create more secure applications. After beginning with a look
at why you should have a grasp of today’s security fundamentals, including a review of
some key building blocks when designing secure applications, I move to a discussion of
Java ME’s Security and Trust Services API—an optional package that provides support
for smart cards and cryptography. I next touch on Java ME’s relatively new Contactless
Communication API, which enables secure commerce applications through near-field
communication devices to enable using your mobile device as a wireless wallet. Finally,
I close with a discussion of the Bouncy Castle cryptography package—a full-featured,
open source package for providing cryptography for Java ME devices.

Understanding the Need for Security
Back when I wrote my first networked application, the Internet was a small place—not so
small that everybody knew everybody, but still small enough that passwords were often
transmitted in the clear, right there where everybody could read them, if that’s what they
intended. Of course, that was before the Web, too, and writing a networked application
required serious protocol work or a good understanding of the remote procedure call
semantics just then in vogue for networked computing. Fast-forward a couple of
decades, and the Internet’s no longer a wild and wooly frontier, but a teeming metropolis.
While it’s tempting to blame the influx of people for the need for greater security, the
truth is far more complex and as much a reflection of human nature as one of human
presence. Today, securing an application is often as much an important part of gaining

413

C H A P T E R 1 5

the trust of the stakeholders involved as it is in repelling (real or imagined) attacks on
one’s intellectual property and commercial resources, such as content, storage, services,
and personal information.

Designing a secure application requires both an in-depth understanding of the
risks to your application as well as the countermeasures you can adopt to mitigate those
risks. Put simply, a risk is any possible event that can cause a loss. Risks are associated
with threat—a method of triggering a risk event. The following are examples of threats
of risk:

• A user gaining access to your application without paying for it

• A user’s personal data (such as identity information) being given to an unautho-
rized third party, with or without your knowledge

• A third party masquerading as you when interacting with your customers

In today’s highly networked world, most people pay attention to the risks that are
made manifest by networked applications, but of course that need not be the only ones
that apply. Consider the case of a user losing her mobile device and a third party access-
ing its record store to obtain personal data.

You address threats through the adoption of countermeasures that attempt to stop a
threat from triggering a risk, such as the following:

• Only offering your application and content through a trusted distribution service
to devices that prevent redistribution

• Encrypting vulnerable personal data before transmitting it across the network or
storing it on the device’s record store

• Using secure network protocols such as HTTPS with signed certificates to verify
identity when interacting with customers

Central to the design of countermeasures is the notion of cost: when you select
countermeasures, you aim to make it more expensive for a hypothetical opponent to
perform some task than the task is worth after factoring in the likelihood that the actual
risk event will take place. You must strike a fine balance between the costs that security
imposes (higher complexity, larger footprint, and greater user complexity) and the cost
of a realized security threat.

A key tool in today’s efforts to secure applications is cryptography: the art and
practice of hiding information. Cryptographic solutions, largely based on recent
advances in number theory, offer several tools for addressing security threats, including
the following:

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS414

• Ciphers: A cipher lets you encrypt data or decrypt data once it’s been encrypted. An
encrypting cipher takes your original message, called plaintext, and renders it
unreadable to third parties without the corresponding decrypting cipher. Ciphers
rely on keys; to decipher the encrypted message, you must have a key. Today’s
ciphers use advancements in number theory that let you split keys into a public
part and a private part; participants sharing a secret message keep their private key
to themselves and use a recipient’s public key to encrypt a message.

• Message digests: A message digest is nothing more than a cleverly designed hash
function; it takes a large block of data and reduces it to a small block of data. Two
popular message digest functions are SHA-1, which creates a digest 20 bytes long
for an arbitrary input, and MD5, which creates a digest 16 bytes long for an arbi-
trary input.

• Digital signatures: A digital signature is a personalized message digest. It uses an
individual’s private key to create a message digest that can be verified using the
signer’s public key, to prove that the person generating the signature signed the
message.

• Certificates: A certificate is really just an extension of a digital signature—it’s a doc-
ument signed by a trusted third party that proves your identity.

■Note For comprehensive coverage of cryptographic concepts and algorithms, you can’t do better than
Applied Cryptography: Protocols, Algorithms, and Source Code in C by Bruce Schneier (John Wiley & Sons,
1995).

These tools are in widespread use in the mobile marketplace today. Consider digital
signatures and certificates: they provide the backbone for today’s on-deck delivery of
wireless applications. Through the Java Verified Program, a third party signs your applica-
tion before giving it to carriers for distribution; when a device downloads your
application, it verifies the signature, permitting access to restricted APIs based on the
authorities that signed your application.

Another application of these tools is HTTPS, based on TLS. HTTPS is the secure ver-
sion of HTTP that you may well be using to secure your application’s network. HTTPS can
rely on certificates exchanged between client and server to prove the identify of both;
regardless, it uses public-key ciphers to encrypt the network communication that occurs
between client and server.

Of course, cryptography is but one countermeasure among many. Designing a secure
application requires defense in depth—never relying on a single security measure alone.
Strategies including physical security (preventing access to your application service’s

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 415

data center, for example), logging, auditing, and using secure network channels help you
secure your networked application. Bear in mind that cryptography can solve only one
segment of the security challenges you face, and that many of the challenges you face
may be social (think of phishing scams prevalent in today’s e-mail) rather than technical.

■Note Secrets & Lies: Digital Security in a Networked World by Bruce Schneier (John Wiley & Sons, 2000)
and The Art of Deception by Kevin D. Mitnick and William L. Simon (Wiley Publishing, 2002) are good places
to start learning more about the technical and social threats to application security and how to establish
countermeasures against those threats.

Looking at Java ME’s Security and Trust Services
Java SE provides a host of cryptographic interfaces including Java Cryptography
Architecture (JCA) and Java Cryptography Extension (JCE); not so with the base imple-
mentation of Java ME. There are a number of reasons for this, both technical and
legal; memory footprint and computational complexity make cryptography difficult
for some Java ME devices, and export restrictions could hobble Java ME’s adoption in
some markets if it came bundled with strong cryptographic solutions.

The extensible nature of Java ME comes to the rescue, however. JSR 177 defines
the Security and Trust Services API for J2ME (SATSA). In addition to supporting crypto-
graphic operations, SATSA includes optional components for Java ME that provide APIs
for communication with hardware security components, as well as certificate and signa-
ture management. SATSA defines four key optional packages that a device may support:

• Application Protocol Data Unit (APDU): This communications API enables low-
level communication between your application and cryptographic hardware such
as Java smart cards.

• SATSA-Java Card RMI (SATSA-JCRMI): This communications API permits
high-level communication between your application and a Java smart card.

• SATSA-public key infrastructure (SATSA-PKI): This API provides support for
managing public keys.

• SATSA-CRYPTO: This API provides a subset of the java.security package for
cryptography.

The APDU protocol builds on the GCF to provide a general interface for communi-
cating with Java smart cards, Universal Subscriber Identity Modules (USIMs), and

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS416

security token smart cards. Suitable for low-level communications, the APDU interface
deals at the level of individual bytes exchanged with cryptographic hardware; for many
applications, the SATSA-JCRMI API may be more appropriate. The other two APIs—
SATSA-PKI API and SATSA-CRYPTO—provide high-level cryptographic services to your
application.

■Caution As I write this, there is no unified SDK that implements all of these optional packages for either
NetBeans or the older Sun Java Wireless Toolkit. Worse, not only are the packages described in JSR 177
optional, but a vendor may choose to only implement some of the packages described in JSR 177. This has
the potential for serious fragmentation of the availability of these APIs.

Communicating with Cryptographic Hardware
Using the APDU API

Today’s smart cards secure many popular consumer electronics devices, including some
phones, computers, and consumer electronics set-top boxes. They’re also a key security
feature of some industrial communications control systems. At its heart, a smart card is
simply a small plastic card with one or more hardened embedded circuits inside, provid-
ing memory and possibly processing power. Smart cards typically include tamper-
resistant properties such as a secure file system, a secure microprocessor, and human-
visible tamper-indicating devices such as holograms or other information. Some smart
cards include support for cryptographic functions such as key generation and cipher
algorithms; the purpose of the SATSA API is to support accessing these cards using Java
ME–enabled hardware.

At the lowest software level, hardware such as a Java smart card or USIM communi-
cates with its host hardware using a channel of bits and bytes, similar to a network socket
or serial port. The International Organization for Standardization (ISO) provides ISO 7816
to describe the mechanical, electronic, and software communication scheme between
smart cards and their host hardware. The software scheme relies on the notion of
application identifiers (AIDs) that permit the selection of a specific smart card function;
communication to the smart card is accomplished using an ISO-defined protocol of
application protocol data units (hence the name APDU for the protocol used by the
SATSA package to communicate with the card).

Because this low-level access to card functions consists of the exchange of bytes
across a communications channel, you might think the Java GCF would provide an excel-
lent means to support this communication, and you’d be correct. Figure 15-1 shows the
relationship between the GCF classes and the APDU hierarchy.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 417

Figure 15-1. The APDU classes in relationship to the Java ME GCF hierarchy

Two interfaces—javax.microedition.apdu.APDUConnection and javax.microedition.
jcrmi.JavaCardRMIConnection—provide the means by which your application can commu-
nicate with a smart card. As its name suggests, you use the APDUConnection to perform
low-level APDU interaction with the card, while you use the JavaCardRMIConnection to
perform Java RMI to Java smart cards—a topic I touch on in the next section, titled
“Communicating with Java Smart Cards Using JCRMI.”

Just as when using the GCF to obtain access to FCOP or network interfaces, you
begin with a Uniform Resource Identifier (URI) that describes the entity to which your
application will connect. For smart cards, the URI has this format:

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS418

protocol:[slotid]; target

Each part is defined as follows:

• protocol: Either apdu for an APDU-based connection (returning an object imple-
menting APDUConnection) or jcrmi for a JCRMI-based connection (returning an
object implementing JavaCardRMIConnection)

• slotid: An integer indicating the slot into which the user has inserted the card

• target: The application identifier for the specific smart card application with which
to connect, or the word SAT to connect to a SIM application toolkit

Because devices can support more than one card slot, you can query smart
card–enabled hardware using the System.getProperty method with the microedition.
smartcardslots property, which returns a comma-delimited list of identifiers for existing
card slots. Each identifier consists of two characters: the first indicates the index you use
when specifying a URI to indicate the slot, and the second is either a C or an H indicating
whether the slot is cold-swappable or hot-swappable—that is, whether cards can only
be removed when the device is off (cold-swappable) or while the device is in operation
(hot-swappable).

Once you establish a connection to the smart card, you perform your I/O using the
exchangeAPDU method. Using exchangeAPDU, you send command APDUs to the smart card
and receive the response as an array of bytes. If necessary, you can establish several logi-
cal channels to the smart card using multiple APDUConnection instances, letting you use
more than one application on the smart card at a time. For example, you might write the
code shown in Listing 15-1.

Listing 15-1. Exchanging an APDU with a Smart Card

APDUConnection ac;

try {

byte[] commandAPDU = …;

String url = "apdu:0;AID=A1.0.0.67.4.7.1F.3.2C.5";

ac = (APDUConnection)Connector.open(url);

// Send a command APDU and receive a response APDU

byte[] responseAPDU = ac.exchangeAPDU(commandAPDU);

// Process the response

…

} catch(Exception e){

// Handle Exception

…

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 419

} finally {

…

if (ac != null) {

// Close connection

ac.close();

}

}

Of course, you should be prepared to handle exceptions; interruptions can occur,
such as a user ejecting a smart card while in use. When you’re finished, you must also
close the connection to release the underlying resources used by the Java VM to connect
to the smart card.

The APDUConnection interface also provides support for enabling, disabling, changing,
and confirming the personal identification number (PIN) that the smart card’s owner
uses to authenticate himself before permitting the smart card to perform an operation.
The following methods are used to interact with the user and return a smart card
response after processing a PIN:

• changePin: Prompts the user to enter the current PIN for the card and then a new
PIN for the card, and commits the PIN change to the card if appropriate

• disablePIN: Prompts the user to enter the current PIN for the card and disables the
need for subsequent identification using a PIN

• enablePIN: Prompts the user to enter the current PIN for the card and enables
requiring a PIN for subsequent use of the card

• enterPIN: Prompts the user to enter the current PIN for the card and verifies
the PIN

To open an APDUConnection, your application must run with privilege; the privilege
you must specify is javax.microedition.apdu.aid to an arbitrary smart card application
ID, and javax.microedition.apdu.sat to a USIM toolkit. Typically, this permission is only
granted to applications in the operator, manufacturer, or third-party trusted domains.

Communicating with Java Smart Cards Using JCRMI

The APDUConnection provides the lowest level of access to a smart card. This level of access
isn’t for the faint of heart; it requires a firm understanding of both smart card fundamen-
tals and the application communication protocol for a specific application on a smart
card. Such an interface is ripe for abstraction, and that’s the purpose of JCRMI.

JCRMI uses concepts from Java’s RMI architecture to permit access to smart card
operations on Java-enabled smart cards directly using Java (see Chapter 11 for a deeper

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS420

understanding of how RMI works in Java). Instead of working at the level of individual bits
and bytes, you can connect to a Java smart card application on the card, receive a stub
interface to the application, and invoke its methods remotely, as shown in Listing 15-2.

Listing 15-2. Using JCRMI to Connect with a Java Smart Card

try {

String url = "jcrmi:0;AID=A0.0.0.67.4.7.1F.3.2C.3";

JavaCardRMIConnection jc =

(JavaCardRMIConnection)Connector.open(url);

Wallet wallet = (Wallet)jc.getInitialReference();

…

currentBalance = wallet.getBalance();

…

jc.close();

} catch (Exception e) {

…

}

In essence, the combination of the GCF Connector class and the AID you specify acts
as the registry for a remote Java object; you use the JavaCardRMIConnection instance’s
getInitialReference method to obtain a reference to the stub representing the remote
application on the card.

As with an APDUConnection, exceptions can occur; this can happen if the card is not
inserted, if the smart card application does not exist, or if the Java ME application is not
permitted to use the smart card interface at all. Note that if the card is ejected while the
remote object is in use, access to the remote object of course fails; reinserting the card
requires the Java ME application to reconnect to the smart card application.

The JCRMI interface is significantly more limited in the following ways than either
Java RMI or Java RMI OP:

• Remote classes can only implement a maximum of 15 interfaces.

• Only primitive Java types (boolean, byte, short, int, and single-dimensional arrays
of these types) can be returned by remote methods.

• Parameters and return values are exchanged by value, except for remote object
references.

As with the APDUConnection, using a JavaCardRMIConnection instance requires
permission; you’ll want to assert the javax.microedition.jcrmi permission in your appli-
cation’s JAD file or manifest. As with the APDUConnection, use of this privilege is restricted
to applications in the operator, manufacturer, or third-party trusted domains.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 421

Leveraging the SATSA High-Level APIs for Cryptography

While the two optional packages defined by SATSA that you’ve seen are for interfacing
with cryptographic hardware, the remaining two provide implementations of common
cryptographic operations needed by many of today’s mobile applications. The SATSA-
CRYPTO package includes a subset of the java.securtity package, a subset of the
java.security.spec package, a subset of the javax.crypto package, and a subset of the
javax.crypto.spec package to provide APIs for public and private key management,
message digests, signature verification, and data encryption. The SATSA-PKI security
packages include javax.microedition.pki and javax.microedition.securityservice, which
define classes to support basic user-certificate management.

Using the SATSA-CRYPTO API, let’s look at two common operations you’re likely to
perform at some point during application development: creating message digests and
encrypting (or decrypting) a message.

Using the SATSA-CRYPTO API to Create a Message Digest

One of the most common cryptographic operations a mobile application may be
required to perform is creating a message digest. Many web service APIs today use mes-
sage digests as a means to prevent tampering with the payload of a web service request
or response; the message digest may appear as a separate HTTP header or an argument
to the web service request, or simply may be appended to the web service header. This
couldn’t be easier than using the SATSA-CRYPTO API, as shown in Listing 15-3.

Listing 15-3. Creating a Message Digest

String webRequest = "…";

byte[] message = webRequest.getBytes();

static String digestAlgorithm = "MD5";

static int digestLen = 16;

byte[] digest = new byte[digestLen];

try {

java.security.MessageDigest md;

md = java.security.MessageDigest.getInstance(digestAlgorithm);

md.update(message, 0, message.length);

md.digest(digest, 0, digestLen);

} catch (Exception e) {

// Handle NoSuchAlgorithmException or DigestException

…

}

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS422

The SATSA-CRYPTO API provides the MessageDigest class, which provides both a
static factory for creating message-digest algorithm implementations as well as an inter-
face to the message-digest algorithm. You can obtain a concrete instance of MessageDigest
by invoking its getInstance function and passing the name of the digest function (one of
"MD5" or "SHA-1") whose implementation you want. The resulting MessageDigest object
consumes arrays of bytes you pass to it by calling its update method, providing the result-
ing message digest and resetting the algorithm when you invoke its digest method.

This code opens assuming that you have a web request in hand for which you’d like
to generate an MD5 digest in webRequest. Because the MessageDigest interface works with
arrays of bytes, the code first gets the representation of the web request as an array of
bytes and then declares variables to contain the resulting digest. With this done, it gets an
instance of the MD5 MessageDigest implementation and passes it the bytes that make up
the webRequest by invoking md.update. For a long document, you could invoke this multi-
ple times. Once the MessageDigest instance has been fed the message using update, the
code asks it to compute the digest using the digest method, which takes an array of bytes
to store the output and the number of bytes in the array.

The MessageDigest implementation that SATSA-CRYPTO provides typically includes
both the MD5 and SHA-1 algorithms, but there’s no guarantee of either being available.
Consequently, your application should be prepared to handle the
NoSuchAlgorithmException.

You can also use the SATSA-CRYPTO API to verify message digests by creating a
message digest of a source document and comparing it with a provided message digest.
There’s no API for comparing message digests; simply loop over the bytes in each digest
and compare individual bytes to determine if the message digests are equivalent.

Encrypting and Decrypting Using the SATSA-CRYPTO API

Under most circumstances, the only time to encrypt data is when it leaves a device for
transmission on the network. In this case, HTTPS is generally sufficient for your data
security needs; occasionally you may find a need to store data locally in an encrypted
form or exchange data using a protocol other than HTTPS. The SATSA-CRYPTO API pro-
vides interfaces for encrypting and decrypting data, with one limitation: while you can
use public-key (also called asymmetric) cryptography to encrypt data using the SATSA-
CRYPTO API, you cannot decrypt data encrypted using public-key cryptography.

It’s best to think of the SATSA-CRYPTO API for ciphers as an interface and not as a
concrete implementation. For a given target, there’s no clear guarantee of which cipher
implementations you’ll encounter; one device may support Data Encryption Standard
(DES), Rivest Cipher 4 (RC4), and the Encryption Standard (AES), while another might
only support DES. Regardless of what’s supported, the general approach to using the
SATSA-CRYPTO cipher interface remains the same:

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 423

1. Generate the plaintext you want to encrypt as an array of bytes.

2. Generate the key you want to use to encrypt your plaintext, again as an array
of bytes.

3. Get an instance of the desired cipher implementation, which will be an instance
of java.security.Cipher.

4. Initialize the cipher.

5. Either encrypt the plaintext progressively using the Cipher’s update method, or
perform the encryption in a single operation using the Cipher’s doFinal method.

Predictably, decryption is the reverse of encryption; instead of specifying a cipher in
step 3, specify the cipher and indicate that it should be used in decryption mode. Instead
of passing plaintext in step 5, pass the enciphered text. Consider Listing 15-4, which
demonstrates encrypting a message.

Listing 15-4. Encrypting a Message

String algo= "RC4";

byte[] secretKey = { … };

String plainText = "Here there be treasure";

byte[] plainTextBytes = plainText.getBytes();

try {

java.security.Key key =

new SecretKeySpec(secretKey, 0, secretKey.length, algo);

java.security.Cipher cipher;

cipher = Cipher.getInstance(algo);

cipher.init(Cipher. ENCRYPT_MODE, key);

int ciphertextLength = plainText.length();

byte[] cipherTextBytes = new byte[ciphertextLength];

cipher.doFinal(plainTextBytes, 0, plainText.length, cipherTextBytes, 0);

} catch (Exception e) {…}

This follows the algorithm I outlined step for step; note especially the use of
ENCRYPT_MODE as the selected mode when initializing the Cipher instance. Decryption
would be the reverse of encryption, and the code would just need to pass DECRYPT_MODE for
the corresponding argument to init. After this code has run, assuming there are no
exceptions, the byte array cipherTextBytes will contain the encrypted text.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS424

Ciphers can differ in how they handle their input; some, like DES, are block
ciphers, which require the input to come in regularly sized blocks, such as blocks of
64 bytes. When using block ciphers, you must pad the input to block aligned bound-
aries; complicating this, some block ciphers are asymmetric, meaning that the input
block size and output block size are different. Other ciphers, like RC4, are stream
ciphers: they just take a stream of bytes (plaintext or encrypted text) and work their
magic. When using a block cipher, be sure you pass whole blocks to the update and
doFinal methods.

A number of things can happen when encrypting or decrypting using the Cipher
interface; these are signaled using one of the following exceptions:

• The API throws BadPaddingException or IllegalBlockSizeException for block ciphers
when the input is not padded correctly or occurs in the wrong-sized block.

• The API throws InvalidKeyException when an invalid key is used with a cipher.

• The API throws IllegalStateException when you attempt to use the cipher to
encrypt or decrypt a message before initializing it.

• The API throws NoSuchAlgorithmException if you attempt to get an instance of
Cipher for an algorithm that is not supported.

■Caution In the real world, you shouldn’t be so cavalier with a cipher’s private key as to embed it in
source code or another easily read resource such as a component of your JAR file. Malicious users could
find the key by decompiling your application or JAR. Instead, you could create the secret key at distribution
time using a different key for each application, and only distribute the application JAD using secure HTTP.
However, this would mean that your application couldn’t be signed and verified by participants of the Java
Verified Program. You could also provide a web service that provides secure key generation and delivery over
HTTPS to your application.

Exploring the Bouncy Castle Solution
to Security Challenges
While optional solutions like SATSA can solve problems for many devices, relying on an
optional solution doesn’t fulfill the write-once, run-anywhere promise that Java holds.
Fortunately, there’s a solution that runs on Java ME: the Bouncy Castle Java cryptogra-
phy API. Developed in Australia and available under a liberal open source license, the
API provides clean-room implementations of a provider for JCE and JCA for Java SE,

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 425

and a lightweight cryptography API that fits well with Java ME. This API implements
many popular ciphers, including DES, AES, Blowfish, International Data Encryption
Algorithm (IDEA), and others, as well as a slew of message-digest algorithms, including
MD5 and SHA. The API also provides a large number of utilities, including support for
Abstract Syntax Notation One (ASN.1) encoding and decoding, X.509 cryptographic
certificates and public-key exchange files, and codecs for Secure/MIME (S/MIME) and
OpenPGP.

You can get a copy of the API from http://www.bouncycastle.org/java.html; as I write
this, the current version is 1.39. You’ll want to download the release, unpack it, and drop
the ZIP files in the zips directory in the lib directory of your project.

The Bouncy Castle API consists of a number of packages; the following are the ones
you’re most likely to use:

• org.bouncycastle.crypto: Includes base classes that represent cryptographic
engines, digests, and other basic constructs

• org.bouncycastle.crypto.digests: Includes classes that implement message-digest
algorithms

• org.bouncycastle.crypto.engines: Includes classes that implement cipher
algorithms

• org.bouncycastle.crypto.generators: Includes classes that implement key
generators

• org.bouncycastle.crypto.params: Includes classes that implement representations
to options for specific cipher algorithms

It’s worth noting that the full implementation of Bouncy Castle for Java ME is large:
nearly one and a half megabytes! Of course, almost no application needs all of the func-
tionality provided by the API. To manage the size of applications depending on the API,
you need to use an obfuscator—something I discuss in Chapter 3 in the section titled
“Building CLDC/MIDP Applications.” NetBeans includes the ProGuard (http://
proguard.sourceforge.net) obfuscator, which does a fine job at managing the output
application size. Figure 15-2 shows appropriate settings for use with the Bouncy Castle
API; choose Obfuscating under the Build property.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS426

Figure 15-2. Representative obfuscation settings for a Java ME project using the Bouncy
Castle API

The settings shown in Figure 15-2 instruct the obfuscator to use the following
options:

• –keep public class *.* extends javax.microedition.midlet.MIDlet: Forces MIDlet
subclasses to retain their names

• -dontusemixedclassnames: Doesn’t allow mixed case in generating obfuscated class
names, to work around an issue in Microsoft Windows

• -defaultpackage '': Renames all packages other than packages implementing the
MIDlet interface

• -overloadaggressively: Uses the same name for different methods whenever possi-
ble (that is, whenever different methods have different arguments and return
values), creating a smaller package

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 427

■Note When obfuscating packages that use the Bouncy Castle API, the -defaultpackage '' directive
is especially important, because Bouncy Castle provides some classes in the java package, such as
java.math.BigInteger. The class loader for the CLDC doesn’t load classes defined in system packages,
because doing so is a security threat (it would enable a rogue application to replace a system class with one
of its own). By using the -defaultpackage '' directive, the obfuscator renames any classes in that pack-
age, so this isn’t a problem.

Let’s see how using the Bouncy Castle API compares with using the SATSA APIs to
create message digests and encrypt a message.

Creating Message Digests Using the Bouncy Castle API

Message digest functions are provided by the org.bouncycastle.crypto.digests package,
which implements various message-digest algorithms in a manner consistent with the
JCA. Digest algorithms must implement the interface defined by org.bouncycastle.
crypto.Digest; this resembles the JCA’s MessageDigest interface also found in the SATSA-
CRYPTO API. You might write the code in Listing 15-5 to compute an MD5 digest for a
web request.

Listing 15-5. Computing an MD5 Digest for a Web Request

String webRequest = "…";

byte[] message = webRequest.getBytes();

byte[] digest;

org.bouncycastle.crypto.Digest md =

new org.bouncycastle.crypto.digests.MD5Digest();

md.update(message, 0, message.length);

digest = new byte[md.getDigestSize()];

md.doFinal(digest, 0);

The logic of this code is very similar to the code you’d write using the JCA or SATSA-
CRYPTO API. At a high level, the approach is the same: create an instance of the digest
algorithm, use the update method to pass it the bytes from which to compute the digest, and
then compute the digest using the doFinal method. However, there are a few differences:

• There’s no generic factory for digest algorithms; instead, you explicitly create
an instance of the digest algorithm you need (this helps limit the number of
classes included in your application when you link against the Bouncy Castle
implementation).

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS428

• The message-digest algorithms don’t throw exceptions to signal errors.

• The Digest interface provides a method that tells you how many bytes long the
digest will be.

In addition to the handy getDigestSize method provided by the Digest interface,
you can also get a human-readable name of a message-digest algorithm by invoking
the Digest method getAlgorithmName, which you could present to the user via your appli-
cation’s UI. Most of the message-digest algorithms the Bouncy Castle API provides
actually implement the ExtendedDigest interface, which implements Digest and adds the
getByteLength method. You can invoke getByteLength to learn the size of the internal
buffer the digest applies its algorithm to.

Encrypting and Decrypting Using the Bouncy Castle API

The Bouncy Castle API provides cipher implementations through cryptographic engines
(in org.bouncycastle.crypto.engines) that implement specific interfaces such as
AsymmetricBlockCipher, BlockCipher, or StreamCipher (all of which you can find in the
org.bouncycastle.crypto package). These interfaces all serve a common purpose: they
let you initialize the cipher, provide data in the form of byte arrays to be encrypted or
decrypted (as either blocks or part of a message stream), and then perform the encryp-
tion or decryption operation. As with the JCA and SATSA-CRYPTO API, when you
initialize a cipher, you indicate whether you want the implementation to perform
encryption or decryption, as well as the details of the key for the operation. Using the
Bouncy Castle API to perform an encryption with RC4, you might write the code shown
in Listing 15-6.

Listing 15-6. Using the Bouncy Castle API to Perform RC4 Encryption

byte[] secretKey = { … };

String plainText = "Here there be treasure";

byte[] plainTextBytes = plainText.getBytes();

org.bouncycastle.crypto.StreamCipher cipher =

new org.bouncycastle.crypto.engines.RC4Engine();

cipher.init(true,

new org.bouncycastle.crypto.params.KeyParameter(secretKey));

byte[] cipherTextBytes = new byte[plainTextBytes.length];

try {

cipher.processBytes(plainTextBytes, 0,

plainTextBytes.length,

cipherTextBytes, 0);

} catch(Exception e) {…}

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 429

As with message digests, the interface to the Bouncy Castle API is conceptually
similar to the JCA and the SATSA-CRYPTO API but not exactly the same. Again, instead
of using a factory to create the desired cipher engine, you simply instantiate the engine
directly. You initialize the resulting engine similarly, specifying whether you want the
engine to encrypt (pass true) or decrypt (pass false) along with options for the engine
to its init method. Finally, you pass the bytes to be encrypted or decrypted to the
engine for processing. How the engine accepts the bytes you want it to process
depends on whether the engine implements a block cipher or stream cipher. You
pass bytes to a block cipher or asymmetric block cipher for processing using the
processBlock method, passing a complete block each time. You can determine the block
size of a block cipher by invoking its getBlockSize method, or an asymmetric block
cipher by invoking either getInputBlockSize or getOutputBlockSize for the input or
output block size, respectively. You pass bytes to a stream cipher using the processBytes
method.

In either case, the cipher engine returns the result to the method you invoked for
processing. This method may throw one of a number of exceptions, including the
DataLengthException if the data array is of an invalid length, or the IllegalStateException
if you failed to initialize the cipher.

Although this example uses the (relatively weak) RC4 algorithm, a number of other
supported ciphers are packaged with the Bouncy Castle API. Unlike the SATSA-CRYPTO
API, the algorithms are implemented for both symmetric and asymmetric ciphers, so
applications requiring both encryption and decryption of public-key ciphers benefit
from using the Bouncy Castle API instead of the SATSA-CRYPTO API.

In addition to supporting many different ciphers, the Bouncy Castle API also pro-
vides key-generation algorithms for the ciphers it supports. This is an important feature
of the API, because secure key generation and distribution is a challenge when writing
applications. The classes contained by org.bouncycastle.crypto.generators include
generators for supported ciphers; creating a key is as simple as creating the appropriate
generator and invoking a method. For example, to create a random key for DES, you
might write the code shown in Listing 15-7.

Listing 15-7. Generating a Random Key

org.bouncycastle.crypto.generators.DESKeyGenerator generator =

new org.bouncycastle.crypto.generators.DESKeyGenerator();

byte[] key = generator.generateKey();

Some key generators must be initialized first, so be sure to check the documentation
for the cipher system and key generator you choose. These key generators are usually
those that provide keys for public-key cryptography, in which a pair of keys—one public
for distribution to other parties and the other private for decryption—are used for
message encryption and decryption.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS430

■Caution While secure key generation is a boon provided by the Bouncy Castle API, it’s not the end of the
story. What your application does with its cryptographic keys is as important as how they’re created; weak
storage or exchange (such as sharing keys for symmetric ciphers over an unsecured network channel)
defeats the purpose of having a good key-generation algorithm in the first place.

Creating Secure Commerce with
Contactless Communications
Contactless communication—encompassing near-field communications such as
RFID tags and bar codes—is becoming an important segment of the mobile market.
With proper support for contactless communications, you can create many kinds of
applications, such as swipe-to-purchase (using your mobile phone as a mobile wallet),
mobile-purchase (scan a bar code and enable remote purchase), or comparison-
shopping (scan a bar code to learn more about a product, including comparison
prices). JSR 257 defines the Contactless Communication API, a suite of optional pack-
ages that provides support for both RFID tags (also known as proximity tags) and bar
codes (also known as visual tags).

■Tip As I write this, your best bet for a development environment that lets you work with the Contactless
Connection API is the Nokia Near Field Communication (NFC) SDK, which you can find on the Web by going
to http://www.forum.nokia.com/main/resources/technologies/nfc/.

The Contactless Communication API provides five packages, four of which may or
may not be present in any given implementation of the API:

• javax.microedition.contactless: Always present and provides classes that let you
discover near-field devices in the immediate vicinity

• javax.microedition.contactless.ndef: Provided if communications with cards
supporting the NFC Data Exchange Format (NDEF) are supported

• javax.microedition.contactless.rf: Provided if communications with general RFID
cards are supported

• javax.microedition.contactless.sc: Provided if communications with RFID cards
meeting the ISO 144443 proximity standard are supported

• javax.microedition.contactless.visual: Provided if the implementation supports
bar-code recognition and display

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 431

These packages rely on the presence of CLDC 1.1 or greater on the device, or equiva-
lent support from another Java configuration.

Contactless communication devices come in a variety of flavors, but all are based
on some wireless protocol typically built around RFID tags. The Contactless Communica-
tion API presently supports the following kinds of contactless devices:

• NDEF-compliant devices: Communication occurs through the exchange of
NDEFMessage objects that possess individual NDEFRecord objects.

• ISO 144443–compliant devices: Communication occurs through a Connection
subclass that permits the exchange of APDUs represented as arrays of bytes.

• Generic RFID tags: Communication with these devices occurs through a Connection
subclass that lets you exchange vectors of commands.

Not every implementation of the Contactless Communications API supports all of
these options.

When using the Contactless Communication API, your application typically performs
one or more of the following operations:

• Register for notifications when a contactless target becomes available: You can do
this using the MIDP push registry (see Chapter 14 for how to use the MIDP push
registry) or the javax.microedition.contactless.DiscoveryManager class provided
by the API.

• Communicate with a contactless communications device using the appropriate
Connection subclass provided by the Contactless Connection API: You can do this
when the device comes into range—reported either as an MIDP push or an event
from the DiscoveryManager.

• Capture the image using MMAPI, if you require visual tag recognition: For details
about how to do this, see Chapter 16. You pass the image you capture to a
VisualTagConnection instance for recognition.

• Create a stream of bytes to be encoded as a bar code and pass the bytes to a
VisualTagConnection to generate an image, if you require visual tag generation:
Once the image is generated, present it to the user.

Discovering Contactless Targets

Contactless communication poses a challenge, in that your application doesn’t know
when it will encounter a target with which it can communicate. Your application may
need to always be listening for a target (applications that confirm payments at point of

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS432

sale or those used for secure identification mechanisms generally fall into this category)
or may only listen for a target while the application is active—for instance, once the user
constructs a message to send to a target.

To always listen for a contactless target, your application simply needs to register this
intent with the MIDP push registry. The API provides push notifications when NDEF-
enabled or contactless targets come into proximity with the Java ME device. To register
for a push notification when this occurs, you need to construct a URI indicating the type
of NDEF records the application seeks, and place this URI in a field of the JAD file with
the name MIDlet-Push-n.

The URI can specify whether your application should start when the Java ME device
discovers a target containing either specific MIME-encoded data or a specific record
type. In either case, the push registry URI begins with the protocol ndef and then contin-
ues with either a MIME type declaration or record type declaration, like this:

ndef:mime?name=text/x-uri

This push registry URI will launch your application whenever the Java ME device
encounters an NDEF-enabled target bearing a URI (that is, a block of data with the MIME
type text/x-uri). Here’s another example:

ndef:rtd?name=urn:nfc:wkt:Sp

In this example, the first two fields of the URI—urn and nfc—indicate that the record
is an NDEF record, while wkt indicates the namespace for the record. Finally, Sp indicates
that the target being sought is a Smart Poster.

If your application uses the registry to receive notification of proximate targets, it
should also implement the javax.microedition.contactless.ndef.NDEFRecordListener
interface, which gives the platform a means to communicate data from the target to your
application. This method takes a single argument, an NDEFRecord generated by the target.
(I discuss these records in more detail in the next section.)

Once your application launches, you can also listen for targets by using the
DiscoveryManager class, provided by the javax.microedition.contactless package.
Required by all Contactless Communication API–compliant devices, this interface lets
you enumerate which kinds of targets are supported, and it lets you register a listener
when the Java ME device encounters a specific target. The listener must implement
the javax.microedition.contactless.TargetListener interface, which defines a single
method, targetDetected, that the API invokes when the device encounters a new tar-
get. The API passes this method an array of TargetProperties that describes the target
the device has encountered. For example, Listing 15-8 registers a listener for NDEF-
enabled targets.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 433

Listing 15-8. Registering a Listener for NDEF-Enabled Targets

import javax.microedition.contactless.*;

import javax.microedition.contactless.ndef.*;

import javax.microedition.pim.*;

import java.util.Enumeration;

import javax.microedition.io.Connector;

public class NDEFExample implements TargetListener {

private DiscoveryManager dm;

NDEFTagConnection conn;

public void registerForDiscovery() {

TargetType[] targets = DiscoveryManager.getSupportedTargetTypes();

boolean supported = false;

for (int i=0; i<targets.length; i++) {

if (targets[i].equals(TargetType.NDEF_TAG)) {

supported = true;

}

}

if (supported) {

dm = DiscoveryManager.getInstance();

try {

dm.addTargetListener(this, TargetType.NDEF_TAG);

}

catch (ContactlessException e) { … }

}

}

public void targetDetected(TargetProperties[] prop) {

TargetProperties target = prop[0];

String url = target.getUrl();

try {

conn = (NDEFTagConnection)Connector.open(url);

if (conn != null) {

readMessage();

}

}

catch (IOException e) { }

}

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS434

public static void readMessage()

{

…

}

public static void writeMessage()

{

…

}

}

It’s important that registration begin with a determination of which target types are
supported; you can determine which target types a specific implementation of the API
supports by invoking the DiscoveryManager’s static getSupportedTargetTypes to obtain a list
of supported types.

■Tip Always enumerate the supported types! Some versions of the Contactless Communication API may
support additional types of near-field devices beyond what I discuss here; see the documentation that
accompanies a specific Java ME device and implementation of the API for details.

Once the code tests to ensure that the implementation supports the NDEF type, it
registers a listener using the addTargetListener method. If you want to listen for multiple
target types, you can do so using a single DiscoveryManager; you can either specify sepa-
rate objects to respond to the targetDetected event or handle the detected target type
within the targetDetected method.

After registration, the API implementation invokes your listener’s targetDetected
method when the device encounters a target of the appropriate type; at this point, your
code should begin communicating with the device. This may be a place where your
application needs to launch a separate thread, especially if the communications
exchange consists of more than just a command or two.

Communicating with Contactless Targets

Unsurprisingly, communication with targets is via the ubiquitous GCF; the means to
communicate with various targets are embodied in Connection subclasses, as you see in
Figure 15-3.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 435

Figure 15-3. Supporting classes for communication with contactless targets

Unfortunately, implementing Connection is where uniformity between the various
subclasses ends. The API takes a message-oriented approach to communicating with
contactless targets, but the methods differ between the types of targets:

• NDEF-enabled devices use the javax.microedition.contactless.ndef.
NDEFTagConnection class to exchange NDEFMessage instances via the connection’s
readNDEF and writeNDEF methods.

• ISO 14443–enabled devices use the javax.microedition.contactless.sc.
ISO14443Connection class and its exchangeData method to exchange raw arrays
of bytes.

• Generic RFID devices use the javax.microedition.rf.PlainTagConnection class.
Instances of this class exchange vectors of Java objects using the tranceive method.
These Java objects are defined by extensions to the API that encapsulate application-
specific data.

• Visual tags can be encoded and decoded using the javax.microedition.
contactless.visual.VisualTagConnection class, which actually doesn’t connect to
anything. (I say more about this class in the next section.)

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS436

NDEF defines messages consisting of one or more records, each in a lightweight
binary message format that consists of a payload type, optional payload identifier, and
payload itself. For example, to read any pending NDEF records, you might write the code
shown in Listing 15-9.

Listing 15-9. Reading Pending NDEF Records

public static void readMessage()

{

try

{

NDEFMessage message = conn.readNDEF();

if(message == null)

{

return;

}

NDEFRecord[] records = message.getRecords();

if(records == null)

{

return;

}

System.out.println("Got "+records.length+" records.");

for (int i = 0; i < records.length; i++)

{

NDEFRecordType type = records[i].getRecordType();

System.out.println("id: " + new String(records[i].getId()));

System.out.println("type: " + type.getName());

System.out.println("payload: " + new String(records[i].getPayload()));

}

} catch (Exception e) { … }

}

This code walks the list of returned records, printing the ID and payload of each
message. Messages may also bear a type, available by invoking the record’s getRecordType
function, which returns an instance of NDEFRecordType. This type defines several record
types, including EMPTY, NFC_FORUM_RTD, MIME, URI, EXTERNAL_RTD, and UNKNOWN. A common
type is the URI type, which indicates that the payload of the message is a URL, such as
one offered by a Smart Poster device.

If you need to write records to the NDEF target, you can create a new NDEFRecord and
use the NDEFTagConnection’s writeNDEF method. When you define a new NDEFRecord, you
must supply the record’s type, ID, and payload, as shown in Listing 15-10.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 437

Listing 15-10. Defining a New NDEF Record

public static void writeMessage()

{

try {

PIM pim = PIM.getInstance();

ContactList cl =

(ContactList)pim.openPIMList(PIM.CONTACT_LIST, PIM.READ_ONLY);

Enumeration items = cl.items();

Contact item = (Contact) items.nextElement();

String name = item.getString(Contact.FORMATTED_NAME,0);

NDEFRecord[] records = new NDEFRecord[1];

records[0] = new NDEFRecord(

new NDEFRecordType(NDEFRecordType.UNKNOWN, “name”),

new String("F_M_NAME").getBytes(),

name.getBytes());

NDEFMessage message = new NDEFMessage(records);

conn.writeNDEF(message);

} catch (Exception e) { … }

}

This code transmits the first name in the PIM contacts list. First, it needs to ascertain
that name, which it does by using the PIM API (see Chapter 7) to obtain an instance of
the PIM manager. It uses the PIM manager to obtain the contact list and then uses the
enumeration the contact list provides to obtain the name stored in the first record of the
contact. Then the code creates a new NDEF record array, consisting of a single record.
This record is assigned a new NDEFRecord, of type unknown, bearing the ID F_M_NAME and
the formatted name obtained from the contact list. A new message is created using the
record array and then written via the connection.

Reading and writing to other contactless targets such as ISO 14443 is similar,
although instead of using separate read and write methods that the connector provides,
you exchange messages directly, as shown in Listing 15-11.

Listing 15-11. Exchanging Messages Directly

import java.io.IOException;

import javax.microedition.contactless.*;

import javax.microedition.contactless.sc.*;

import javax.microedition.io.Connector;

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS438

public class ISO14443Example implements TargetListener {

byte[] commandAPDU = ...;

public ISO14443Example () {

try {

DiscoveryManager dm = DiscoveryManager.getInstance();

dm.addTargetListener(this, TargetType.ISO14443_CARD);

dm.addTransactionListener(this);

}

catch (ContactlessException e) { … }

}

public void targetDetected(TargetProperties[] properties) {

TargetProperties target = properties[0];

Class[] classes = target.getConnectionNames();

for (int i=0; i<classes.length; i++) {

try {

if (classes[i].equals(Class.forName(

"javax.microedition.contactless.sc.ISO14443Connection")

)) {

String url = target.getUrl(classes[i]);

ISO14443Connection smc =

(ISO14443Connection)Connector.open(url);

byte[] responseAPDU = smc.exchangeData(commandAPDU);

// do something with the response

}

}

catch (Exception e) { … }

}

}

}

The detection process for an ISO 14443 target (or other RFID target, for that matter)
is exactly the same as for an NDEF-enabled one; simply specify a TargetType of ISO14443_
CARD to the DiscoveryManager’s addTargetListener interface. Once a target is detected, the
platform invokes the registered listener targetDetected, which can then exchange APDU
packets with the target.

If this interface looks familiar, it should; that’s because ISO 14443 devices are close
kin to the wired smart cards supported by the optional SATSA API I discussed previously
in this chapter.

■Caution You can only have a single connection open to a contactless target, due to hardware limitations
of most contactless target devices.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 439

Recognizing and Generating Visual Tags

Visual targets—a fancy name for bar codes, and you’ll often see the interface specification
refer them to tags—provide an interesting avenue for mobile e-commerce applications,
because they are ubiquitous on product packaging today. In turn, this means that readers
for these targets are also commonplace, enabling applications such as the transfer of
credentials to readers for paperless tickets.

The support for visual tags in the Contactless Connection API is somewhat different
than for other contactless targets, because there might be no automated discovery
process. While your application can register with the DiscoveryManager, you can also initi-
ate manual scanning of a visual tag. If the user wants to scan a visual tag, it’s up to her to
see the bar code, start your application, and have the application capture the bar-code
image using the MMAPI interface and present the image to the Contactless API for recog-
nition. In a similar vein, you can encode arbitrary data into a bar code and display it on
the screen, so the user can present a bar code to a bar-code scanner.

Bar codes come in different flavors, called symbologies. Some, such as European
Article Number/Universal Product Code (EAN/UPC), are one-dimensional, containing
a single stripe of information. Other, newer bar codes, such as Quick Response Code
(QR Code), are two-dimensional squares or rectangles of information. These two-
dimensional bar codes can encode more information, and applications often use them
to carry URLs or other information. When using the visual tag interface, you first need
to ascertain whether the symbology you desire is supported by the implementation.
You determine the list of supported symbologies by invoking the static SymbologyManager.
getReadSymbologies method, which returns an array of strings naming the supported
symbologies. Table 15-1 shows a list of potentially supported symbologies.

In addition to being symbology-agnostic, the Contactless Communication API is
image format–agnostic. The SymbologyManager keeps a list of supported image classes that
the implementation can decode or encode; you can obtain these lists through the static
method SymbologyManager.getImageClasses. This method returns an array of supported
Class instances; you can then peruse this list to see if the implementation supports a
specific image type.

Once you ascertain support for your desired symbology and image type, it’s time
to perform the encoding or decoding. You do this using a VisualTagConnection object,
which you obtain by opening a Connector to the URI "vtag://". The resulting instance
of VisualTagConnection can perform the necessary encoding or decoding. It’s kind of
odd to use a Connection subclass to do something besides establish a connection, but
that’s how the Contactless Connection API specifies the interface; it at least provides
conceptual parity with the other contactless interfaces.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS440

Table 15-1. Symbologies Typically Supported by the Contactless Communication API

Symbology Name Body Responsible for the Standard

aztec-code ANSI/AIM B13 ITS/97/002

code-16k ANSI/AIM BC7/1995

code-39 ANSI/AIM BCI-1995, ISO/IEC 16388

code-49 ANSI/AIM BC6-1995

code-93 ANSI/AIM BC5-1995

code-128 ANSI/AIM BC4-1999, ISO/IEC 15417

codebar ANSI/AIM BC3-1995

data-matrix ISO/IEC 16022

ean-upc ISO/IEC 15420

interleaved-2-of-5 ANSI/AIM BC2-1995, ISO/IEC 16390

maxicode ANSI/AIM BC10, ISO/IEC 16023

pdf417 ISO/IEC 15438

qr-code AIM ITS/97/001, ISO/IEC 18004

Listing 15-12 shows a class that encapsulates the encoding and decoding of QR Codes.

Listing 15-12. Encoding and Decoding QR Codes

import java.io.IOException;

import javax.microedition.lcdui.*;

import javax.microedition.io.Connector;

import javax.microedition.contactless.ContactlessException;

import javax.microedition.contactless.visual.*;

public class ProcessVisualTag {

private final String sym ="qr-code";

private Class imageClass;

private byte[] data;

private Image image;

public ProcessVisualTag(Object im) {

image = (Image)im;

imageClass = im.getClass();

decode();

}

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 441

public ProcessVisualTag(byte[] d) {

data = d;

imageClass = new String("javax.microedition.lcdui.Image");

encode();

}

public byte[] getData() {

return data;

}

public Image getImage() {

return image;

}

private boolean isSupported() {

boolean supportedSym = false;

boolean supportedImage = false;

try {

String[] symbologies = SymbologyManager.getReadSymbologies();

for (int i=0; i<symbologies.length; i++) {

if (symbologies[i].equals(sym)) {

supportedSym = true;

break;

}

}

Class[] images = SymbologyManager.getImageClasses();

for(int i=0; i<images.length; i++) {

if (images[i].equals(imageClass)) {

supportedImage = true;

imageClass = images[i].getClass();

break;

}

}

}

catch (Exception e) { return false; }

return supportedSym && supportedImage;

}

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS442

private void decode() {

try {

if (isSupported()) {

VisualTagConnection conn =

(VisualTagConnection)Connector.open("vtag://");

data = conn.readVisualTag(image, imageClass, sym);

conn.close();

}

}

catch (IOException ioe) { ... }

catch (VisualTagCodingException ce) { ... }

}

private void encode() {

try {

if (isSupported()) {

ImageProperties props =

SymbologyManager.getImageProperties(sym);

VisualTagConnection conn =

(VisualTagConnection)Connector.open("vtag://");

image = (Image)conn.generateVisualTag(data, imageClass, props);

conn.close();

}

}

catch (ContactlessException ce) {…}

catch (IOException ioe) {…}

catch (VisualTagCodingException ce) {…}

}

}

On creation, this helper accepts either an image object (such as that obtained using
the MMAPI, as I show you in Chapter 16) or an array of bytes representing a byte stream,
and it creates the corresponding representation as either an array of bytes or an encoded
QR Code. If you obtain an encoded QR Code, you will receive the data as an instance of
the Image class. The isSupported method handles the discovery of supported symbologies
and image representations, querying the SymbologyManager for its list of supported sym-
bologies and image classes. (When the code finds a matching image class, I copy it to the
imageClass instance variable, because the method for generating a visual tag takes a Class
instance, not the name of a class.)

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 443

The VisualTagConnection interface provides two methods: readVisualTag and
generateVisualTag. The readVisualTag (which you see in the decode method in Listing 15-12)
method is straightforward, accepting the source image, the class of the source image, and
the encoding symbology; the bytes generated from a successful scan are returned as an
array of bytes. This method can throw an IOException or a VisualTagCodingException,
which indicates that the coding operation failed.

The generateVisualTag (which you see in the encode method in Listing 15-12) method
is the encoding counterpart to readVisualTag, and it accepts the data to encode, the class
to which the data should be encoded (presumably an Image or subclass), and a set of prop-
erties describing symbology-specific properties of the encoding operation. You should
always get these image properties for a specific symbology from the SymbologyManager by
invoking its getImageProperties method; the resulting properties define things like the
dimensions of the generated bar code as well as the pixel pitch.

Wrapping Up
The Java ME platform provides a modicum of security-related interfaces to application
developers, like the inclusion of HTTPS for secure network transactions. However, there’s
more to crafting a secure application than simply encrypting network traffic; a secure
application may need to defend itself from threats including unauthorized use or access
to its private data.

Fortunately, solutions to security challenges exist, providing ciphers for data hiding,
digests and signatures to defend data against tampering and prove origination of a mes-
sage, and certificates to provide identity. The Java community has responded to the need
by implementing these security tools in a number of ways, including SATSA that JSR 177
defines; the open source Bouncy Castle API, which provides a comprehensive suite of
security and cryptographic interfaces; and higher-level building blocks to build secure
commerce applications, like the Contactless Communication API that JSR 257 defines.

The SATSA optional interfaces available on some devices provide various hardware
and software solutions to security problems, including APIs to access cryptographic
smart cards, infrastructure for the secure management of public keys, and a limited sub-
set of the JCA for encrypting and decrypting data. Using the SATSA optional interfaces,
your application can access a variety of smart cards using the GCF at either the level of
individual bytes or Java RMI if the device supports Java smart cards. Your application can
also use this API to perform encryption and decryption with symmetric ciphers.

The open source Bouncy Castle API provides a comprehensive suite of cryptographic
solutions to security problems, bringing with it support for many different kinds of
ciphers and message digests. It also provides implementations for other data representa-
tions, including ASN.1 and S/MIME, as well as support for OpenPGP encoding and
decoding. The interface is similar to that defined by SATSA for common operations such
as encryption, decryption, and the creation of message digests, and its clean-room

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS444

implementation in pure Java makes it an ideal choice for inclusion in any application
that needs to use its features while remaining portable to hardware that may or may not
support SATSA.

Today’s mobile applications leverage security solutions in a number of ways, but
electronic commerce is playing an increasing role in driving secure technologies to
mobile devices. To support secure commerce applications, the optional Contactless
Communication API provides the means to communicate with a number of wireless data
devices, such as near-field wireless devices and bar codes. The API provides support for
both proximity cards at a low level (where you exchange individual bytes) as well as the
NDEF, and it also lets you decode or generate bar-code images.

Security is a big topic, and this chapter has only scratched the surface. It’s not like
cooking with spices; while you can dump a handful of peppers into a dish to make it taste
spicy, you can’t just dump a handful of security APIs into your application and make it
secure. (Actually, they’re more alike than you think: the resulting dish is as likely to be as
inedible as your application is insecure!) Designing a secure application requires care
and forethought, and if you’re working to that end, be sure to consult one or more of the
excellent Internet and book references mentioned in this chapter for more details.

CHAPTER 15 ■ SECURING JAVA ME APPLICATIONS 445

Rendering Multimedia
Content

Today’s consumers increasingly demand the rich multimedia experience to which
they’re accustomed from their personal computers or other devices, including mobile
wireless terminals and portable media players. At the same time, both to sate this
demand and distinguish a product from its competition, manufacturers increasingly
invest money in developing rich multimedia interfaces for their product. While pundits
may argue that much of this investment has been gratuitous—little of the glitz and
glamour of a cell phone’s user interface today is truly necessary to make a call, for
example—much of it has not. Multimedia applications, from pedestrian audio and
video playback to sophisticated data-visualization applications, can both differentiate
products and add value. Through standardization efforts such as JSR 135, which
defines the MMAPI, and JSR 287, which defines support for Scalable 2D Vector
Graphics, Java ME provides a wealth of interfaces that enable you to build multimedia-
rich applications.

In this chapter, I show the interfaces these JSRs define. I begin by discussing the
MMAPI, because its support for audio and video makes it an important component of
many applications today. I explain how the MMAPI is organized and how it uses the
Java runtime and native support from the host hardware to render content from the
device’s local storage and the network. Next, I turn attention to Java ME’s support for
SVG—an exciting standard under development by the W3C and widely supported by
browsers as well as mobile devices. I show you how to render SVG images and anima-
tions using the classes provided by the optional Scalable 2D Vector Graphics API (which
I’ll just call the SVGAPI for short), as well as how to build Java ME applications that
leverage SVG content for parts of their user interface. After going over the basics of all
the multimedia-supporting classes at your disposal, I present an example MIDlet that
plays audio, video, and SVG content and lets you interface with a device’s camera to
capture images.

447

C H A P T E R 1 6

Introducing the MMAPI
From relatively early in the history of mobile Java, hardware vendors and Sun worked
together to explore how Java should support the rendering of multimedia content.
However, as participants in the Java community were hammering out the details of the
MMAPI, the hardware available could barely render digital audio, let alone video. Every-
one soon recognized the important role that multimedia support would play for many
Java ME applications.

The MMAPI features a modular API that enables you to both create your own simple
audio media through the specification of frequency and tone data as well as render mul-
timedia audio and video using a variety of codecs. Because the MMAPI is extensible,
hardware manufacturers can add new codecs and transports so that you can use the
same interfaces to render new data formats as they become available.

■Note Limitations of space prevent me from thoroughly covering everything you can do with the MMAPI.
If you find yourself wanting to learn more about the MMAPI after you read this chapter, I encourage you to
read Pro Java ME MMAPI: Mobile Media API for Java Micro Edition by Vikram Goyal (Apress, 2006), which
goes into far more detail about how you can use the MMAPI in your Java ME applications.

Understanding Basic Multimedia Concepts

To use the MMAPI successfully, you must understand three key concepts about how it
divides the responsibilities of media rendering. The first concept has to do with how
creators and distributors package and deliver multimedia content. Content creators (be
they major companies or individuals posting to social sites like YouTube) use specific
media types when exchanging multimedia content. Today’s media types are typically
sophisticated file formats that act as containers for highly compressed streams of audio-
visual data. For example, the popular Moving Picture Experts Group Version 4 (MPEG-4)
standard defines not just one but a suite of audio and video coding formats; an MPEG-4
file may have an audio stream in Advanced Audio Coding (AAC) synchronized with a
H.263 video stream, or it may be PureVoice audio synchronized with an MPEG-4 video
stream, or it may be something else altogether. Thus, when specifying what kinds of
multimedia their hardware can render, device vendors typically specify the information
in terms of both container formats and codecs. Typically, most mobile devices today rely
on a complex combination of hardware through digital signal processors (DSPs), dedi-
cated integrated circuits, and so forth, as well as software to implement the codecs
necessary for rendering multimedia. The implementation of a specific MMAPI stack
interconnects with this hardware and software to provide highly efficient mechanisms
for rendering a variety of multimedia formats.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT448

■Caution The boundary between container file formats and data file formats is often a blurry one,
especially when many encodings are themselves containers. When working with content providers, it’s not
enough to say something like, “I’ll take that as an MPEG-4 file, please,” the way you might ask for a PNG
image. Worse, the coding schemes supported by different devices are often different, so you may find that
an MPEG-4 file that plays on one device doesn’t play on another, because the streams of data inside the
file are coded using a compatible codec on the first device (say, in AAC on a device that supports AAC) and
incompatible on the second. Later, I show you how to interrogate a device’s MMAPI implementation to deter-
mine just what codecs are available.

Second, content providers can deliver multimedia in files—an all-at-once process in
which the device stores an entire file (say, a song or video) on the device’s file system—or
stream data using protocols such as the Real Time Streaming Protocol (RTSP). Most inter-
faces to multimedia systems treat the source of the data as a discrete entity, aptly calling
it the data source. A data source hides all the details of how the device obtained the
encoded data; it may have fetched the data from a file or over the network using any
one of a number of open or proprietary technologies.

Third, the low-level notion of a codec is usually at the wrong level of abstraction for
the average application developer. Working at the application layer, it’s easiest to think
of a player: an engine that, given a data source and some information about the how
the data coming from that data source was encoded, can render the data as an audio or
video stream. Players typically either offer interfaces directly for managing rendering,
or, on some platforms like that provided by the MMAPI, provide an interface to obtain
one or more controllers that can control a specific player’s rendering of the data from
the data source.

■Note Experienced readers will doubtless see parallels between the MVC pattern and the source-
player-controller organization of many multimedia APIs. This is not a coincidence; the division of responsibili-
ties that MVC provides fits well with the work necessary to render a multimedia stream, at least from the
perspective of you and me as application developers.

Finally, while you’re likely most interested in rendering multimedia from a data
source such as a web service or file, it’s important to realize that today’s devices may offer
their own data sources. A camera phone, for example, has an imaging sensor; many
implementations of the MMAPI permit you to treat that imaging sensor as a data source
from which you can render video and even capture images. When thinking about multi-
media applications, it’s important to remember that the source-player-controller division
of responsibilities is a general one and can be applied to almost anything that represents
a stream of multimedia data.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 449

Understanding the Organization of the MMAPI

Figure 16-1 shows the key classes that the MMAPI provides. In the diagram, the
DataSource class plays the role of the data source, the Player interface plays the role of the
player, and the various implementors of the Control interface play the role of controllers
in the division of labor required to render multimedia on Java ME devices. Three pack-
ages contain all of these classes: javax.microedition.media, javax.microedition.media.
control, and javax.microedition.media.protocol.

Figure 16-1. Key classes the MMAPI provides

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT450

The MMAPI provides the following classes and interfaces, among others:

• Manager: The Manager class provides an access point for obtaining system-dependent
resources such as implementations of the Player interface. Manager methods are
static, so there’s no need to obtain an instance of the class.

• Player: The Player interface provides the methods for interacting with a piece of
multimedia. Subclasses implementing Player encapsulate specific rendering
codecs such as an MP3 audio player.

• Control: The Control interface defines some media processing functions. Control
implementations interact with objects implementing the Controllable interface,
such as Player instances to permit programmatic and user control of media. Exam-
ples include the VolumeControl, which permits you to adjust the playback volume,
and the VideoControl, which permits you to control the visibility and placement of
the video on the display.

• DataSource: Implementations of the DataSource abstract class provide media to
instances of Player. They provide a container indicating a media object’s content
type and location as well as streams of source data through instances of SourceStream
that provide random access to a single media stream.

• ContentDescriptor: Instances of the ContentDescriptor class bear a string indicating
the type of a specific DataSource.

• TimeBase: The TimeBase interface represents a constantly ticking source of time.
Your application can share one TimeBase instance between multiple players to
synchronize multiple streams of media.

• PlayerListener: The PlayerListener interface describes the asynchronous events a
Player instance can provide to applications. You can implement this interface to
listen for notifications about media rendering.

• MediaException: MMAPI implementations use instances of the MediaException class
to signal errors.

■Note The Control interface has many subinterfaces, and I don’t discuss all of them here. For a
thorough explanation of what each does, consult JSR 135 or the Javadoc that accompanies the MMAPI
implementation.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 451

Using the MMAPI to render multimedia is simple; you must follow these four steps:

1. Create a Player instance using the Manager class, and reference a path to a specific
piece of media.

2. Permit the Player instance to obtain any necessary hardware resources required to
render the media.

3. Obtain any necessary Control instances to control or configure the Player instance.

4. Play the media.

Because the MMAPI implementation typically wraps dedicated hardware resources
(such as RAM, dedicated DSPs, or dedicated coprocessors) that other processes on the
device might require, it’s not enough to instantiate a Player instance. Instead, a Player
instance can be in one of five states, giving you programmatic control over the potentially
time-consuming process of obtaining necessary system resources (and permitting you to
better share those scarce resources with other applications on the device). Figure 16-2
shows how these states interact.

Figure 16-2. The states of a Player instance

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT452

These states are

• Unrealized: An unrealized Player instance does not have the information it needs
about the resources it must acquire in order to function. Many Player methods,
including getContentType, setTimeBase, getTimeBase, setMediaTime, getControls, and
getControl, will fail if invoked on a Player in this state, and the Player will throw an
IllegalStateException.

• Realized: An unrealized player moves to the realized state when you invoke its
realize method. This transition can be a lengthy process as the Player instance
obtains system resources and works with the media content to determine its
content type or perform other operations. You can stop the realization process by
invoking the instance’s deallocate method, but you must do so before the Player
instance finishes transitioning to the realized state; once realized, a Player instance
cannot return to the unrealized state.

• Prefetched: A realized player may still need to do additional time-consuming
processing such as fill media buffers from the network or obtain exclusive
resources such as a hardware codec. To do this, you invoke the Player instance’s
prefetch method.

• Started: Once a Player instance has been realized and its contents and resources
have been prefetched, you can start playback by invoking the Player instance’s
start method.1 This causes the Player instance to transition to the started state.
While in the started state, the instance runs and renders multimedia data until you
stop it by invoking stop or until it runs out of data to render. Invoking stop on a
started Player instance returns it to the prefetched state.

• Closed: From any other state, you can force a Player instance to release its
resources and move to the closed state by invoking its close method. Once
placed in this state, you must not attempt to use the instance again; it’s ready for
reclamation by the garbage collector, and all you should do is set any references
to it to null.

As they say, the devil’s in the details, so let’s look at some actual code that renders
multimedia and controls its playback.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 453

1. Oddly, you can usually bring a realized Player instance directly to the started state by invoking its
start method. A lot of the tutorial examples you see on the Internet—including examples from Sun—
do this, but it’s counter to the documentation that the MMAPI JSR provides, so I don’t recommend it.

Starting the Rendering Process

As a factory for Player instances, the Manager class has a straightforward set of interfaces.
You can play single tones (something I discuss further in the “Playing Individual Tones”
section later in this chapter), obtain an instance of Player for a specific piece of media,
list the supported content types and protocols, and get the system’s time base used for
rendering all media. The method you use most often, of course, is the createPlayer
method to obtain a Player instance.

Manager actually has three different createPlayer methods. The easiest one to use is
the one that takes an InputStream and a String indicating the MIME type of the media,
but it limits you to playing multimedia to which you can get an InputStream, such as a
static resource in your JAR file. For example, you might write the code in Listing 16-1 to
create, realize, prefetch, and start an MP3 audio player using a local resource:

Listing 16-1. Pseudocode for Playing an MP3 Audio File

Player player;

try {

InputStream in = getClass().getResourceAsStream("/res/sound.mp3");

player = Manager.createPlayer(in, "audio/mp3");

player.realize();

player.prefetch();

player.start();

} catch (MediaException e) {}

catch (IOException e) {}

Of course, you could use any other means to open an InputStream to your media
source; for example, you might want to use the FCOP I describe in Chapter 7 to play user-
loaded media files on the file system.

Often, though, you may want to specify a different source for the media, such as
a network source or another component of the device, such as an imaging sensor. The
Manager class also supports the notion of a locator, which is a lot like the URLs you pass
to the GCF. A locator is a String you pass to Manager.createPlayer. The String must
contain the following parts:

scheme://scheme-part

Specifically, scheme is the name of a protocol, such as http for HTTP, rtp for the Real-
Time Transfer Protocol (RTP), or rtsp for RTSP. The scheme-part is the location of the
media in a scheme-specific way, such as the host and path of a resource on the Web.
Table 16-1 shows some commonly supported schemes and their purpose.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT454

■Caution Not all devices support all schemes. For example, RTSP support is a relative latecomer to the
MMAPI; as I write this, only a few devices include support for it.

Table 16-1. Some Commonly Supported MMAPI Schemes

Scheme Name Purpose Note

capture Captures live media The scheme-part indicates the capture device.
from a device sensor

http Fetches via HTTP It usually downloads the entire file before rendering.

rtp Streams via RTP The scheme-part indicates the server address, port,
and content type.

rtsp Streams via RTSP The scheme-part indicates the server address, port,
and resource from which to stream.

Listing 16-2 shows some examples of syntactically valid locators. However, just
because a locator is syntactically correct does not mean that the device has the necessary
protocol and codec support to play the media that the locator specifies.

Listing 16-2. Some Valid Locators

http://www.noplace.com/loon-hoot.mp3

http://www.noplace.com/loon-display.3gp

capture://video

capture://audio

capture://radio

rtp://www.noplace.com:1224/audio

Under the hood, when you pass a locator to Manager.createPlayer, it sets up
whatever protocol engine it needs after parsing the locator. It then creates a DataSource
to pass media data from the source to the player. If you’re looking to provide support
for a protocol that isn’t supported by the MMAPI implementation on a specific device,
you can write a DataSource subclass that implements your protocol and use it with
Manager.createPlayer, like you see in the pseudocode in Listing 16-3.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 455

Listing 16-3. Using a Custom DataSource with the MMAPI Manager

Player player;

try {

DataSource ds = (DataSource)new CleverStreamingDataSource(

"proto://noplace.com/audio.mp3");

player = Manager.createPlayer(ds);

player.realize();

player.prefetch();

player.start();

} catch (MediaException e) {}

catch (IOException e) {}

Implementing CleverStreamingDataSource as a subclass of DataSource permits the
Manager to create a player that connects to your data source for its data.

■Tip Writing a custom DataSource is no easy task and is beyond the scope of this book. For more details,
I suggest you begin with Vikram Goyal’s article on Java ME content streaming, “Experiments in Streaming
Content in Java ME,” at http://today.java.net/pub/a/today/2006/08/22/experiments-in-
streaming-java-me.html. In particular, take a look at the “Create a custom DataSource” section.

Regardless of how you create and start your Player instance, you will want to do so in
a separate thread from the main application thread, because it’s a time-consuming affair.
I show you how to do this in practice later in this chapter, in the “Putting the MMAPI and
the SVGAPI to Work” section.

Once you’re done rendering media, at some point you will want to stop playback
and reclaim the resources the Player instance has consumed. Listing 16-4 shows the
usual process.

Listing 16-4. Stopping Media Playback and Reclaiming Resources

if (player != null) {

player.stop();

player.close();

player = null;

}

Interestingly, the Player’s stop method doesn’t actually stop playback; it pauses it.
That means that you can implement a user-initiated pause by invoking a Player
instance’s stop method, and you can restore playback where it was paused by invoking
its play method again.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT456

The MMAPI is very modular; to meet the goal of being available on the widest variety
of platforms, not all features are available in all implementations. You can get a list of
supported content types by invoking Manager.getSupportedContentTypes, or you can get a
list of the supported protocols for each content type by passing a supported content type
to Manager.getSupportedProtocols. Listing 16-5 enumerates the supported types and pro-
tocols on a given device, writing each to the debug console.

Listing 16-5. Enumerating Supported Media and Protocol Types

private void showSupportedMedia() {

String[] contentTypes = Manager.getSupportedContentTypes(null);

for (int i=0; i<contentTypes.length; i++) {

String protocols[] = Manager.getSupportedProtocols(contentTypes[i]);

for (int j=0; j<protocols.length; j++) {

String s = contentTypes[i] + ":" + protocols[j];

System.out.println(s);

}

}

}

In addition to determining whether a given MMAPI implementation supports a specific
content type or protocol, you may need other information, such as whether the target device
supports playing multiple audio channels simultaneously (audio mixing), whether the plat-
form can capture audio or video, and so forth. The MMAPI defines a set of system properties
whose values you can obtain using System.getProperty; these are shown in Table 16-2.

Table 16-2. Properties Describing a Target Device’s MMAPI Implementation

Property Returned Value

microedition.media.version The version of the MMAPI specification implemented

supports.mixing true if the device supports mixing; false otherwise

supports.audio.capture true if the device supports audio capture; false otherwise

supports.video.capture true if the device supports video capture; false otherwise

supports.recording true if at least one returned Player type supports recording;
false otherwise

audio.encodings A string specifying the supported capture audio formats

video.encodings A string specifying the supported capture video formats

video.snapshot.encodings A string specifying the supported video snapshot formats for
VideoControl.getSnapshot

streamable.contents A string specifying content types that can be played by a
Player instance as it receives data

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 457

Controlling the Rendering Process

For all but the simplest of media players, you will want to have additional control over
media playback. While the Player interface itself lets you start and stop playback, you can
do a lot more by obtaining instances of specific Control subclasses that let you change the
Player’s behavior. To get an instance of a specific kind of control, you pass the name of
the desired class (with the package name, if it’s not javax.microedition.media.control) to
the Player’s getControl method, like this:

VolumeControl vc = (VolumeControl)player.getControl("VolumeControl");

Each Control subclass has different methods, reflecting the kind of control over the
media rendering process it offers. Table 16-3 describes some Control subinterfaces that
come in handy when writing multimedia applications. Of course, not every subinterface
is available for a Player instance rendering every media type; it would make little sense,
for example, to be able to obtain a VideoControl for an audio file, or a TempoControl for a
video file.

Table 16-3. Implementors of Control You Can Use to Control Media Rendering

Interface Purpose Example Methods

FramePositioningControl Seek to a specific video frame seek
skip
mapFrameToTime
mapTimeToFrame

GUIControl Provide an object to render the initDisplayMode
media to the GUI

MetaDataControl Obtain metadata in a media file getKeys
getKeyValue

MIDIControl Controlling an internal synthesizer various

PitchControl Shift pitch of synthesized or sampled getMaxPitch
audio without changing playback speed getMinPitch

getPitch
setPitch

RateControl Shift playback rate getMaxRate
getMinRate
getRate
setRate

RecordControl Record media from a player commit
setRecordLocation
setRecordStream
startRecord
stopRecord

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT458

Interface Purpose Example Methods

StopTimeControl Set a preset stop time getStopTime
setStopTime

TempoControl Change tempo in synthesized audio getTempo
setTempo

ToneControl Replay monochannel tone sequence setSequence

VideoControl Control video display getSnapshot
setDisplayFullScreen
setDisplayLocation
setDisplaySize
setVisible

The GUIControl and its subinterface VideoControl deserve special attention, because
they’re how you get the video data from a multimedia source like a file or the device
camera and display it on the screen. The GUIControl interface specifies a single
method—initDisplayMode—which you use to obtain an object that can draw on a
Displayable object. VideoControl extends this interface, providing you with methods to
display video full-screen, specify the location of video playback, and so forth. Listing
16-6 shows how you use a VideoControl instance in conjunction with a Player instance
to play a video clip.

Listing 16-6. Playing a Video Using VideoControl and Player Instances

Player player;

Form viewer;

VideoControl vc;

try {

InputStream in = getClass().getResourceAsStream("/res/video.3g2");

player = Manager.createPlayer(in, null);

vc = (VideoControl) player.getControl("VideoControl");

player.realize();

player.prefetch();

if (vc != null) {

Item vi = (Item) vc.initDisplayMode(

VideoControl.USE_GUI_PRIMITIVE, null);

viewer.append(vi);

}

player.start();

} catch (MediaException e) {}

catch (IOException e) {}

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 459

Personally, I find it a little creepy that you ask a Control for an object to place on the
display, but that’s how this works: the VideoControl instance’s initDisplayMode takes a flag
and an Object as an argument, and returns a visible component for the display. You pass
the VideoControl.USE_GUI_PRIMITIVE value to indicate that the instance should return an
instance of an object in the GUI hierarchy for the device. This example runs on the MIDP
platform atop the CLDC, so the object that initDisplayMode returns is actually a subclass
of Item. Platforms that support the AWT (such as some CDC platforms) return an
instance of an object that subclasses Component.

■Note On MIDP devices, if you want to render the video full-screen, you can pass the VideoControl.
USE_DIRECT_VIDEO value to initDisplayMode to instruct it to draw the video directly to a Canvas object.
Pass a reference to the desired destination Canvas object as the second argument. Set the Canvas you
passed to initDisplayMode as the current Displayable item using Display.getDisplay.setCurrent,
place the Player instance in the started state, and voilà!

As I note in the previous section, Player objects are best used in their own thread.
Much of what they do is asynchronous and typically spans the entire stack of hardware
and software on a device. It’s important for you to have a way to get information about
what the Player instance is doing. A simple way to do this is to use its getState method,
which returns the current state that the Player instance is in. This is fine for coarse-
grained control, especially if you manage an instance from different threads, but to
really see what’s going on, you can add a listener to the Player instance using its
addPlayerListener method. The object you pass to addPlayerListener must implement
the PlayerListener interface, which specifies the playerUpdate method that the Player
instance invokes with information about media rendering. The event system defined
by the MMAPI is extensible; the PlayerListener interface defines a number of events,
which are shown in Table 16-4. The PlayerListener interface also lets individual Player
objects pass proprietary events as values in a String. Your application might use some
of these to provide fine-grained updates to its user interface—for example, to indicate
that the device is buffering a stream.

Table 16-4. Events Provided by Player Objects

Event Purpose

PlayerListener.BUFFERING_STARTED The Player instance enters a buffering mode.

PlayerListener.BUFFERING_STOPPED The Player instance leaves the buffering mode.

PlayerListener.CLOSED The Player instance is closed.

PlayerListener.DEVICE_AVAILABLE The exclusive device seized by the system has been
returned to the Player instance.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT460

Event Purpose

PlayerListener.DEVICE_UNAVAILABLE The system has seized an exclusive device previously
used by the Player instance.

PlayerListener.DURATION_UPDATED The duration of the media rendered by the Player
instance has been updated.

PlayerListener.ERROR An error occurred processing the media.

PlayerListener.RECORD_ERROR An error occurred recording the media.

PlayerListener.RECORD_STARTED Recording has started.

PlayerListener.RECORD_STOPPED Recording has stopped.

PlayerListener.SIZE_CHANGED The size of the video being rendered has changed.

PlayerListener.STARTED The Player instance has entered the started state.

PlayerListener.STOPPED The Player instance has stopped rendering media in
response to a stop invocation.

PlayerListener.STOPPED_AT_TIME The Player instance has stopped rendering media as a
result of a StopTimeControl.

PlayerListener.VOLUME_CHANGED The volume of an audio device has changed.

Capturing Media

The ability of a growing number of Java ME devices to capture audio and video is excit-
ing, because it enables new kinds of applications, such as those that perform music
recognition, as well as different social interactions over the network. The MMAPI makes it
almost too easy to capture pictures from a built-in image sensor; you only need to open a
Player to a device’s video sensor and invoke a VideoControl’s getSnapshot method. Listing 16-7
shows some pseudocode for this.

Listing 16-7. Capturing a Snapshot from an Imaging Sensor

Player player;

VideoControl vc;

Form viewer;

private void startCamera() {

try {

player = Manager.createPlayer("capture://video");

vc = (VideoControl) player.getControl("VideoControl");

player.realize();

player.prefetch();

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 461

if (vc != null) {

Item vi = (Item) vc.initDisplayMode(

VideoControl.USE_GUI_PRIMITIVE, null);

viewer.append(vi);

}

Display.getDisplay(this).setCurrent(viewer);

player.start();

} catch (MediaException e) {}

catch (IOException e) {}

}

private void stopCamera() {

try {

if (player!=null) {

player.stop();

player.close();

player = null;

}

} catch (MediaException e) {}

}

private void capture() {

if (vc != null) try {

byte[] imageBytes = vc.getSnapshot(null);

// do something with imageBytes...

} catch (MediaException e) {}

}

■Caution All of these methods should be invoked on their own thread; running them on the UI thread will
likely block the UI thread for an unacceptably long time, causing application stalls. On some platforms, this
may cause other problems, too, such as hanging the application, especially if the Java platform’s security
manager wants to prompt the user to approve the application’s use of the getSnapshot method. To see
how to do this in the context of an actual multithreaded application, read the upcoming “Putting the MMAPI
and the SVGAPI to Work” section, especially the “Capturing Images” subsection.

By now, you can probably muddle through the purpose of startCamera. It gets a new
Player instance that uses the device’s imaging sensor as a video source, realizes and ini-
tializes the instance, and obtains a VideoControl instance to display on the screen as a
camera viewfinder. The stopCamera method is simple, too; it just tears down the Player
instance.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT462

To capture the image, the capture method invokes the VideoControl instance’s
getSnapshot method. This method takes the name of the desired image format and
encoding options and returns the image encoded in the desired image format as a byte
array. By default, getSnapshot uses the system’s default encoding, which is the first field in
the value of the video.snapshot.encoding system property.

You can specify the encoding options as a URL-encoded string, with the following
arguments:

• encoding: Indicates the desired encoding, such as JPEG, PNG, or GIF

• width: Indicates the desired width for the encoded image in pixels

• height: Indicates the desired height for the encoded image in pixels

For example, you might pass encoding=jpeg&width=160&height=120 to getSnapshot to
receive a stamp-sized image encoded as a JPEG.

getSnapshot can throw an exception; expect a SecurityException if the application
does not have permission to take the snapshot, or a MediaException if the desired format
isn’t supported or if the Player doesn’t support taking snapshots. You might also get an
IllegalStateException, but only if you try to invoke getSnapshot on a VideoControl
instance whose initDisplayMode hasn’t been called.

Unfortunately, while the code itself is simple, in practice, this operation is fraught
with difficulties. First are the obvious problems you might expect: your application might
run on a device without an imaging sensor or without integration between the MMAPI
and the imaging sensor. That’s usually easy to find out; as you remember from Table 16-2,
a call to System.getProperty passing the value supports.video.capture tells you if the tar-
get device can in fact perform this operation. However, you may discover other problems,
including the following:

• Different locators: Some devices reserve the locator capture://image for capturing
still images, and capture://video for capturing video using a RecordControl instance
(I say more about that in a moment).

• Rendering a preview of the camera viewfinder doesn’t operate predictably: On some
devices, you can only obtain a camera viewfinder if you use the initDisplayMode to
specify a GUI primitive using VideoControl.USE_GUI_PRIMITIVE. Other devices only
work if you use VideoControl.USE_DIRECT_VIDEO and provide a Canvas object on
which the MMAPI draws the view that the sensor provides.

• Finding a common encoding scheme: Don’t build your application assuming that
all Java ME devices will provide the same image format or resolution, or the format
or resolution that you request. Some devices can encode in multiple formats, and
some can’t. Some can scale the encoded image, and some can’t—and some will
only scale your image if you provide both the width and height parameters.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 463

• Weird behavior: Some devices are manufactured with an image sensor mounted
upside down or rotated 90° in one direction or the other to meet specific industrial
design requirements. Unfortunately, on devices like this, it’s not uncommon to find
out that the native camera software knows about the rotation and corrects for it,
while the Java ME MMAPI implementation does not and captures the images
rotated or upside down.

Camera support with the MMAPI can be maddening, so check a device’s system
properties with System.getProperties, work carefully, and document your results. When
in doubt, check the manufacturer’s developer support forums; unless it’s a new device,
odds are you’re not the first to run into a specific problem. And don’t despair: help is in
on the way. JSR 234, the Advanced Multimedia Supplements (AMMS) API, defines a set
of supplemental MMAPI interfaces, including several camera-specific Control subinter-
faces. While not widely deployed on devices as I write this, AMMS API promises to
standardize the behavior of the imaging subsystem, as well as provide a suite of new
Control subinterfaces for imaging, including the following:

• javax.microedition.amms.control.camera.CameraControl: Use this to determine and
change things like shutter feedback, camera rotation, exposure mode, and image
resolution.

• javax.microedition.amms.control.camera.ExposureControl: Use this to determine
and change exposure settings.

• javax.microedition.amms.control.camera.FlashControl: Use this to determine and
set the flash mode for the camera flash.

• javax.microedition.amms.control.camera.FocusControl: Use this to determine and
set the focus mode and specific focus settings for variable-focus imaging sensors.

• javax.microedition.amms.control.ImageFormatControl: Use this to set the desired
image format.

• javax.microedition.amms.control.camera.SnapshotControl: Use this to control burst
still-image captures, taking multiple images in one capture request.

• javax.microedition.amms.control.camera.ZoomControl: Use this to determine and set
digital and optical zoom options for variable-zoom imaging sensors.

You can find out if a specific device has support for JSR 234 by invoking System.
getProperty, passing the string microedition.amms.version. Devices supporting the AMMS
API have stricter conformance requirements than those that support the MMAPI, so odds
are good that there will be greater consistency of behavior between devices that provide
the AMMS API.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT464

■Tip The AMMS API that JSR 234 defines provides a lot more than better control over imaging sensors. It also
includes interfaces for advanced audio features such as 3D audio localization, reverberation, and equalizers; radio
tuner control; effects for layering and grouping Player instances; and media postprocessing. If you’re working on
multimedia applications for high-end Java ME devices, be sure to see if the devices you target support this API.

The getSnapshot method obviously only works for capturing a single frame from a
video data source. Your application may want to record other data sources, such as the
audio stream from the microphone for a voice recorder or music-recognition application.
To capture other kinds of media, you use the RecordControl interface, which writes a copy
of the recorded media to an OutputStream instance. Listing 16-8 shows an example
derived from the documentation for JSR 135.

Listing 16-8. Pseudocode Demonstrating the RecordControl Interface

try {

// Create a DataSource that captures live audio.

ByteArrayOutputStream baos = new ByteArrayOutputStream();

Player p = Manager.createPlayer("capture://audio");

p.realize();

RecordControl rc = (RecordControl)p.getControl("RecordControl");

rc.setRecordStream(baos);

rc.startRecord();

p.start();

Thread.currentThread().sleep(5000);

p.stop();

rc.stopRecord();

rc.commit();

byte[] b = baos.toByteArray();

} catch (IOException ioe) {}

catch (MediaException me) {}

catch (InterruptedException e) {}

This example creates a Player instance that captures the current audio for five sec-
onds, and it gets an array of bytes to the encoded data that was captured. You can then
use this content elsewhere. For example, you can use it as data that you write to a file,
upload to a web server for processing, or send via the WMA as an MMS enclosure (which
I discuss in Chapter 14).

When using a RecordControl instance, the MMAPI usually encodes the resulting data
in the same format as the source. When recording from captured devices, you can find
out the supported encoding scheme through the values of the audio.encodings and
video.encodings system properties.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 465

■Tip As with the getSnapshot method, different devices may provide different encoding schemes, and
media recorded on one device may not be playable on a different vendor’s device. When designing your
application, think carefully about the needs of different devices for specific media types, and keep in mind
the possibility that your application will need a specific component (usually hosted on a server somewhere)
to transcode media from one format to another.

Playing Individual Tones

One of my first experiences with writing a multimedia application wasn’t on a computer,
but rather on a programmable calculator. It had a BEEP instruction that let you play a
four-tone beep encoded in ROM, and a TONE instruction that let you play a tone with a
preassigned frequency. I thought this was the bee’s knees at the time; being able to play a
single tone is still useful for some applications.

The easiest way to play a tone or two is with the Manager’s playTone method, which
takes a note, duration in milliseconds, and volume, like this:

Manager.playTone(60, 3000, 100);

The note value is actually a Musical Instrument Digital Interface (MIDI) note selec-
tor. Middle C is arbitrarily given the value 60, and you count up or down by half steps
from Middle C (e.g., A above Middle C would be 69). As simple as it is, playTone can
throw a MediaException, just like any player might, because another application could
be using the sound hardware. It can also throw an IllegalArgumentException if the tone
you provide is out of range.

If you want to play tones in sequence, it’s better if you use a Player instance with an
associated ToneControl instance, because then you can use the Player to control the
sequencing of each tone. Follow these steps to play a sequence of tones:

1. Create a Player instance using the locator Manager.TONE_DEVICE_LOCATOR (which
evaluates to device://tone).

2. Realize the player.

3. Get a ToneControl instance by invoking player.getControl("ToneControl").

4. Pass a sequence of tones encoded as an array of bytes (byte[]) to the ToneControl
instance you obtained in the previous step using the ToneControl’s setSequence

method.

5. Start the Player instance.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT466

If you think this is a little bizarre, rest assured you’re not alone. Feeding a sequence of
tones to a player via a control completely breaks the source-player-controller abstraction.
Worse, the scheme to encode the tone sequence is a Byzantine affair reminiscent of note-
control sequences defined by the MIDI standard, likely because most mobile devices have
sound hardware that accepts MIDI commands. The byte stream that encodes the tone
sequence consists of an initial version number indicating the version of the ToneControl
instance you’re using, followed by pairs of notes and durations. Unlike playTone, the dura-
tion you specify for the ToneControl instance isn’t in milliseconds but is rather a multiple of
the resolution—or fundamental tempo—of the ToneControl instance. By default, the resolu-
tion is 1/64th of one measure of four beats (4/4 time, if you’re a musician). Thus, in the
default configuration, a duration of 64 is a whole note (four beats), a duration of 16 is a
quarter note (one beat), a duration of 8 is an eighth note, and so on. Listing 16-9 shows an
example of a simple sequence of notes for a ToneControl instance.

Listing 16-9. Some Sample Data for a ToneControl Instance

byte tempo = 30; // set tempo to 120 bpm

byte d = 8; // eighth-note

byte C4 = ToneControl.C4;;

byte D4 = (byte)(C4 + 2); // two half steps, a whole step

byte E4 = (byte)(C4 + 4); // four half steps, a major third

byte G4 = (byte)(C4 + 7); // seven half steps, a fifth

byte rest = ToneControl.SILENCE;

byte block1 = 0;

byte block2 = 1;

byte[] song = new byte[] {

// As transcribed in JSR-135

ToneControl.VERSION, 1,

ToneControl.TEMPO, tempo,

ToneControl.SET_VOLUME, 50,

ToneControl.BLOCK_START, block1,// Start defining a block

E4,d, D4,d, C4,d, E4,d, // content of block 1

E4,d, E4,d, E4,d, rest,d,

ToneControl.BLOCK_END, block1, // end block definition

ToneControl.BLOCK_START, block2,

D4,d, D4,d, D4,d, rest,d, // content of block 2

E4,d, G4,d, G4,d, rest,d,

ToneControl.BLOCK_END, block2,

ToneControl.PLAY_BLOCK, block1, // play the first block

ToneControl.PLAY_BLOCK, block2, // play the next block

D4,d, D4,d, E4,d, D4,d, C4,d // play the last section

};

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 467

This example shows a few other commands you can place in a sequence for a
ToneControl instance. These commands influence the following options:

• Tempo: You can change the tempo of the playback at any time by using the
ToneControl.TEMPO parameter, following it with the new tempo in beats per minute
divided by 4.

• Volume: You can change the volume at any time by using the ToneControl.VOLUME
parameter, following it with the new volume (a number between 0 and 100).

• Blocks of notes: You can define up to 255 blocks of notes to be repeated. To begin a
block definition, use the ToneControl.BLOCK_START parameter, following it with a
block ID. Follow this with the commands in the block, and close the block using
the ToneControl.BLOCK_START parameter with the ID you used to start the block. You
can then play the block at any time in the sequence by specifying the
ToneControl.PLAY_BLOCK parameter and the block ID.

• Silence: Music isn’t just about notes; it’s also about the spaces between the notes.
To specify a rest, use the ToneControl.SILENCE note value followed by the duration
of the rest.

• Repetition: You can repeat a single note multiple times by specifying the ToneControl.
REPEAT followed by the number of repetitions, then the note and duration. (For
example, with the default resolution, the sequence ToneControl.REPEAT, 4, 60, 16
plays four quarter notes on Middle C.)

• Resolution: You can change the resolution from the default of 1/64 using the
ToneControl.RESOLUTION by following it with the denominator of the new resolution.
However, you can do this only once at the beginning of a sequence.

Listing 16-10 builds on the pseudocode from Listings 16-1 and 16-9 to play “Mary
Had a Little Lamb.”

Listing 16-10. Pseudocode to Play a Simple Song with a ToneControl Instance

Player player;

ToneControl control;

byte tempo = 30; // set tempo to 120 bpm

byte d = 8; // eighth-note

byte C4 = ToneControl.C4;;

byte D4 = (byte)(C4 + 2); // two half steps, a whole step

byte E4 = (byte)(C4 + 4); // four half steps, a major third

byte G4 = (byte)(C4 + 7); // seven half steps, a fifth

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT468

byte rest = ToneControl.SILENCE;

byte block1 = 0;

byte block2 = 1;

byte[] song = new byte[] {

// As transcribed in JSR-135

ToneControl.VERSION, 1,

ToneControl.TEMPO, tempo,

ToneControl.SET_VOLUME, 50,

ToneControl.BLOCK_START, block1,// Start defining a block

E4,d, D4,d, C4,d, E4,d, // content of block 1

E4,d, E4,d, E4,d, rest,d,

ToneControl.BLOCK_END, block1, // end block definition

ToneControl.BLOCK_START, block2,

D4,d, D4,d, D4,d, rest,d, // content of block 2

E4,d, G4,d, G4,d, rest,d,

ToneControl.BLOCK_END, block2,

ToneControl.PLAY_BLOCK, block1, // play the first block

ToneControl.PLAY_BLOCK, block2, // play the next block

D4,d, D4,d, E4,d, D4,d, C4,d // play the last section

};

try {

player = Manager.createPlayer(Manager.TONE_DEVICE_LOCATOR);

player.realize();

player.prefetch();

control = (ToneControl)player.getControl("ToneControl");

control.setSequence(song);

player.start();

} catch (MediaException pe) {}

catch (IOException ioe) {}

catch (Exception e) {}

Specifying sequences of notes in your application like this is cumbersome and
unwieldy, so I suggest that if you take this approach, generate the array of ToneControl
sequences and store them as resources in your JAR file, which you can load using
getClass().getResourceAsStream().

Finally, a tip regarding whether to use the playTone method or a ToneControl
instance: playTone does not block the currently executing thread. If you want to
sequence multiple tones using playTone, you should do so in a separate thread and
have the thread sleep between each invocation. Otherwise, one playTone may overwrite
the next; at best, you’ll hear silence, but you may just get garbled noise, too. For this
reason, if you want to play multiple tones, I suggest you use a Player instance con-
trolled by a ToneControl instance instead.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 469

Introducing the Java Scalable 2D Vector
Graphics API
These days, the idea of multimedia encompasses audio and video from analog sources,
such as Hollywood movies, MP3 files of the Grateful Dead bootlegs, or photo snapshots
from your camera phone. All-digital multimedia is booming, however, in the form of the
SVG format. SVG is an open XML specification for describing two-dimensional vector
graphics images that may be static or may include animation and support for user inter-
action. To compete with Adobe’s Shockwave Flash (SWF) format, the mobile industry is
widely adopting a subset of the SVG format, called SVG Tiny, for wireless terminals and
other devices.

Understanding Basic SVG Concepts

The SVG format lets you represent an image using objects such as labels, circles, lines,
polygons, and curves. Unlike the images to which you’re probably accustomed, such as
PNG, GIF, BMP, or JPEG images (which are called bitmap or raster images because they’re
composed of rows of individual picture elements), the SVG format is a vector format that
uses a mathematical description of the shapes that make up an image. In addition, SVG
images can contain bitmap data as well. This information is expressed using XML as
defined by the W3C; for information on the specific standards, consult
http://www.w3c.org/TR.

Because SVG is a vector format, images represented using SVG don’t show scaling
artifacts when rendered at different resolutions the way bitmap images do. Moreover,
the standard explicitly provides support for animated images, letting artists create ani-
mations that render well on different-sized screens. Even more useful, SVG includes
support for an event model that lets SVG images exchange events with the container
that renders the image, so it’s possible to express the look and feel of an entire user
interface using SVG. SVG documents can also include scripts to handle events, making
it a full-blown graphical authoring environment in its own right. Many browsers and
other applications provide support for SVG already, making it a powerful standard with
wide industry adoption.

JSR 287 defines an optional set of packages that support rendering and creating
SVG images that comply with the SVG Mobile 1.2 standard (also known as SVG Tiny 1.2,
described by the W3C at http://www.w3.org/TR/2003/REC-SVGMobile-20030114/). This stan-
dard eliminates two key features of SVG—support for scripts, and filters that the render
can apply on a vector graphic to produce a modified bitmap output—as well as a few
other limitations on clipping and transparency.

SVG is an XML application, so it’s possible for you to create SVG content using noth-
ing more than a text editor. Listing 16-11 shows an example.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT470

Listing 16-11. A Simple SVG Tiny Document

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE svg [

<!ENTITY smile "

<rect x='0' y='0' width='128' height='128' fill='gray' stroke='black'/>

<g transform='translate(0, 0)'>

<circle cx='64' cy='64' r='64' fill='yellow'/>

<circle cx='40' cy='40' r='6.5' fill='black'/>

<circle cx='88' cy='40' r='6.5' fill='black'/>

<path d='M 40 88 L 64 96 88 88' stroke='black' stroke-width='2'/>

</g>

">

]>

<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny">

<title>Smiley face</title>

⌣

</svg>

This code produces the image you see in Figure 16-3.

Figure 16-3. A simple SVG image, rendered

In practice, however, most SVG images of any use are too complex to code by hand;
the vast number of objects in a complex image would simply take too long to produce
manually. Fortunately, most vector graphics applications, from heavyweights like Adobe
Illustrator to numerous smaller applications written by small shops and open source
teams such as Inkscape (http://www.inkscape.org/), let you export images to SVG; these
tools should be familiar to any artist who produces digital content.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 471

A full exploration of the SVG and SVG Tiny formats is beyond the scope of this chap-
ter; if you’re interested in the nuts and bolts of the standard, you can start by looking at
the W3C standards at http://www.w3c.org/TR and the wealth of information available on
the Internet. In print, a good place to start is Kurt Cagle’s discussion of the standard in his
book SVG Programming: The Graphical Web (Apress, 2002).

Understanding the Organization of the SVGAPI

SVG support for Java ME began with JSR 226. Compatible with SVG Tiny 1.1, it provided a
set of packages that includes support for basic rendering of SVG images and animated
images, as well as handling user events from SVG images. The standards community
quickly replaced JSR 226 with JSR 287, which provides better support for animation and
an SVG document’s DOM.

■Tip As I write this, NetBeans 6.1 and the majority of devices with any SVG support only provide support
for the SVGAPI that JSR 226 provides. Moving forward, however, I believe that the majority of SVG-enabled
devices and development environments will support JSR 287, so throughout the remainder of this chapter, I
focus on JSR 287.

The SVGAPI that both JSR 226 and JSR 287 describe provides support for several
aspects of vector graphics rendering. Key, of course, is the high-level rendering API that JSR
287 provides. However, JSR 287 also provides interfaces that provide an encapsulation of
the SVG DOM. It also provides SVG events, SVG animation through the Synchronized Mul-
timedia Integration Language (SMIL), and an optional package that defines interfaces for
high-performance immediate-mode rendering (in which the API does not keep a full
model of the objects being rendered) that vendors can implement to give applications
access to hardware rendering engines.

The SVGAPI provides the following packages:

• javax.microedition.m2g: The high-level interfaces for document rendering

• javax.microedition.vectorgraphics: Optional high-performance, immediate-mode
rendering APIs that the SVGAPI and other applications can use

• org.w3c.dom: Interfaces that provide a subset of the DOM Level 3 Core API for
managing XML DOMs

• org.w3c.dom.events: Event interfaces for the DOM Level 3 Core API

• org.w3c.dom.smil: Interfaces for rendering SMIL animation

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT472

• org.w3c.dom.svg: Interfaces and classes for the SVG DOM API

• org.w3c.dom.views: The DOM Views API that JSR 287 defines for interacting with the
SVG DOM

Figure 16-4 shows a class diagram that illustrates the relationships between the rele-
vant parts of the SVGAPI that I discuss in the following sections. In the figure, I omit
package names for brevity.

Figure 16-4. The relationships between key parts of the SVGAPI

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 473

■Note The SVGAPI is big, especially if you take into account the APIs that the javax.microedition.
vectorgraphics package provides. Figure 16-4 shows only the relationships between the classes you’re
likely to use when rendering SVG images.

As Figure 16-4 shows, the class and interface hierarchy is actually fairly flat for the
root-level classes and interfaces. Be aware of the following classes and interfaces:

• ScalableGraphics: The fundamental class for 2D vector rendering

• ScalableImage: Represents an image in vector format; the parent of the SVGImage class

• SVGImage: Represents an SVG image conforming to SVG Tiny 1.2

• SVGAnimator: Handles automatic rendering of updates in animated SVG images
using an SVGImage

• Document: Represents an XML document

• SVGDocument: Represents an SVG document; a child of Document

• Element: Represents a generic item in an SVG document’s DOM; the parent to
individual SVG elements

• Event: Represents contextual information about a specific interface; the parent of
the SVG event classes

• EventListener: Represents a listener to events, specifying the handleEvent that the
SVGAPI framework uses to send an object events

Rendering SVG Images

You can use the SVGAPI to render an SVG image in one of two ways. The first way is easy
and best used for static images (those that do not require animation). The second is a little
more complex, because it requires you to do everything you’d do for the first way and then
a little more; however, in return, you get an object that manages an animated SVG image.

Rendering Static SVG Images

The first way is simple: create an SVGImage using some initial data to draw, and then draw
it by giving it to a ScalableGraphics instance. Listing 16-12 shows pseudocode for this way
to draw an SVG image.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT474

Listing 16-12. Rendering an SVG Image

InputStream in = …

SVGImage image;

ScalableGraphics sg = ScalableGraphics.createInstance();

Graphics g;

int w, h;

try {

image = (SVGImage)ScalableImage.createImage(in, null);

} catch(IOException e) {};

sg.bindTarget(g);

image.setViewportWidth(w);

image.setViewportHeight(h);

sg.render(0, 0, image);

sg.releaseTarget();

When you create an SVGImage instance, you can specify the source data as an instance
of an InputStream subclass or as a URL. When you create an instance, you can also specify
an external resource handler that the SVGImage uses to load subelements. Usually, you
don’t need to do this—you can simply pass null. However, you might want to do this
when your image has components to be fetched from over the network, for example; in
that case, you’d provide an implementation of the ExternalResourceHandler that wraps the
HttpConnection.

Of course, Listing 16-12 doesn’t translate well to the MIDP graphics environment.
Listing 16-13 builds on Listing 16-12 and shows a simple SVGImageItem class that extends
the MIDP CustomItem class that I first discuss in Chapter 5. Instances of the SVGImageItem
class are suitable for addition to Form items in your MIDlet.

Listing 16-13. The SVGImageItem Class for Rendering a Static SVG Image on a Form

import java.io.*;

import javax.microedition.lcdui.*;

import javax.microedition.m2g.*;

public class SVGImageItem extends CustomItem {

private ScalableGraphics sg;

private SVGImage image;

private int prefWidth, prefHeight;

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 475

public SVGImageItem(String l, InputStream in, ExternalResourceHandler h) {

super(l);

sg = ScalableGraphics.createInstance();

if (in != null) {

try {

image = (SVGImage)ScalableImage.createImage(in, h);

} catch(IOException e) { e.printStackTrace(); };

} else {

image = (SVGImage)SVGImage.createEmptyImage(h);

}

SVGAnimator animator = SVGAnimator.createAnimator(image);

Canvas svgCanvas = (Canvas)animator.getTargetComponent();

prefWidth = svgCanvas.getWidth();

prefHeight = svgCanvas.getHeight();

image.setViewportWidth(prefWidth);

image.setViewportHeight(prefHeight);

}

protected int getPrefContentHeight(int w) {

return minContentHeight();

}

protected int getPrefContentWidth(int h) {

return minContentWidth();

}

protected int getMinContentHeight() {

return prefHeight;

}

protected int getMinContentWidth() {

return prefWidth;

}

public void paint(Graphics g, int w, int h) {

g.setColor(255, 255, 255);

g.fillRect(0, 0, w, h);

sg.bindTarget(g);

image.setViewportWidth(w);

image.setViewportHeight(h);

sg.render(0, 0, image);

sg.releaseTarget();

}

}

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT476

This class must meet the minimal requirements of the CustomItem interface by imple-
menting a constructor that calls the inherited constructor, providing layout hints to the
layout manager via the getPref and getMin dimension methods, and providing a paint
method that draws the contents of the item.

The SVGImageItem constructor method in Listing 16-13 is a little more involved
than the pseudocode in Listing 16-12, because it uses an SVGAnimator to obtain preferred
bounds for the SVG image. I create an SVGAnimator, which would render on a Canvas, and
then get the preferred bounds of that Canvas instance. After I do this, I just discard the
Canvas instance and SVGAnimator, because I won’t need it for anything else. Finally, I
set the image’s viewport—its bounds—to the preferred bounds I obtained from the
SVGAnimator’s Canvas instance.

■Note While it’s possible to determine an SVG image’s bounds by using the SVGDocument methods to
access the DOM of the SVG image directly, using an SVGAnimator is clearer and will pave the way for you to
understand how to animate an SVG image, which I show you in the next section.

The MIDP layout manager uses the getPrefContentHeight and getPrefContentWidth
methods to determine the SVG image’s preferred height and width, respectively, as com-
puted by the constructor. When the layout manager wants to obtain a preferred bound
for width or height, it passes the appropriate method a desired bound for the other axis.
The getMinContentHeight and getMinContentWidth methods return the preferred bounds
for the image.

The paint method performs the same basic work as the pseudocode in Listing 16-12.
First, it paints an empty rectangle where it will paint the SVG image, in case something
was on the screen at that location. Next, it binds the ScalableGraphics instance to the
Graphics instance that the containing Canvas provided to the paint method. This provides
the ScalableGraphics instance with a GraphicContext to use when rendering the SVG
image. After that, it sets the image’s actual width and height to the width and height pro-
vided by the containing Canvas, and then it tells the ScalableGraphics instance to render
the image at the origin of the item. Finally, it releases the Graphics context bound using
the ScalableGraphics’s releaseTarget method.

Rendering Animated SVG Images

The second way to render an SVGImage, using an SVGCanvas, is a little more work, but it lets
you easily render animated SVG images or those that process events. The strategy is simi-
lar to what you saw in Listing 16-13:

1. Create an instance of SVGImage representing the image you want to draw.

2. Create an instance of SVGAnimator with the SVGImage.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 477

3. Get the component—a Canvas when using the MIDP—on which the SVGAnimator
will render the image.

4. Set the bounds of the SVGImage to the bounds the SVGAnimator’s component.

5. Make the SVGAnimator’s component visible.

6. Use the SVGAnimator to start playing the animation.

When rendering an animated SVG, the SVGAnimator implementation uses the desired
SVG image and a container of some kind provided by the platform’s actual GUI hierarchy,
such as the MIDP or the AWT. The designers of the SVGAnimator class assumed that it
would be used on both CLDC and CDC platforms, so it doesn’t return a specific instance
of an MIDP class such as Canvas. Instead, the SVGAnimator provides the getTargetComponent
to return a component into which it renders the SVG, much as an MMAPI VideoControl
instance returns a component via its initDisplayComponent method. When using the
SVGAPI on an MIDP platform, the object that getTargetComponent returns is a Canvas
instance; on other platforms, it’s a subclass of Component. Thus, on MIDP platforms,
you can use the Display class’s setCurrent method to set the resulting Canvas as the
Displayable to draw; on other platforms, you can insert the resulting component into
the appropriate container in your GUI’s view hierarchy.

The SVGAnimator class implements an update thread, which it uses to render the SVG
image as an animated image. The thread itself implements a simple state machine with
the three states that you see in Figure 16-5.

Figure 16-5. The SVGAnimator state machine

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT478

An SVGAnimator instance can be in one of the following states:

• Stopped: An SVGAnimator begins its life in the stopped state, and it does not draw
anything during this state. When it’s in the other states, you can place an
SVGAnimator instance in the stopped state by invoking its stop method.

• Playing: An SVGAnimator with a running update thread that is drawing to its compo-
nent is in the playing state. You can pause a playing SVGAnimator by invoking its
pause method, or stop it by invoking its stop method.

• Paused: An SVGAnimator may be paused, during which time the animation is not
updating and not proceeding. You can resume playing an SVGAnimator by invoking
its play method while it’s in the paused state, or stop it by invoking its stop method.

Listing 16-14 shows pseudocode that sets up an SVGAnimator and starts playback.

Listing 16-14. Playing an Animated SVG

SVGAnimator svgAnimator = null;

String mediaName = …;

Display display = …;

private void initAndStartSvgPlayer()

throws IOException {

InputStream in = getClass().getResourceAsStream(mediaName);

SVGImage svgImage = (SVGImage)ScalableImage.createImage(in, null);

svgAnimator = SVGAnimator.createAnimator(svgImage);

Canvas svgCanvas = (Canvas)svgAnimator.getTargetComponent();

svgImage.setViewportWidth(svgCanvas.getWidth());

svgImage.setViewportHeight(svgCanvas.getHeight());

display.setCurrent((Displayable)svgCanvas);

svgAnimator.play();

}

Because the SVGAnimator uses a separate thread to perform the animation, you can’t
access the SVG image itself directly while the image is animating. Instead, if you need to
change the contents of the image (see the next section, “Modifying SVG Images”), you
should do so only using the SVGAnimator’s invokeAndWait or invokeLater method.

■Note Rendering an SVG image does not use the same API and concepts that the MMAPI defines. This is a
shame, as a little work to extend the notions of data source and player would likely have made for a clean
interface. When working with media, don’t confuse the SVGAPI with the MMAPI.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 479

Through its target object (the Canvas or Component subclass) as well as the SVG con-
tent itself, an SVGAnimator can obtain and generate events. For your application logic
to receive these events, it must implement a class that inherits the SVGEventListener
interface, which specifies methods for user events such as key-press events, key-
release events, pointer-press events, pointer-release events, and notifications when
the platform hides or shows the animation itself. You can process these events by
hand, but most of the time when you want to interact with events from an SVG image,
it will be to create an SVG-specific control. Fortunately, the NetBeans environment
provides some classes that do this for you, as I discuss later in the “Using NetBeans
with SVG Images” section.

■Note JSR 226 defines a mechanism by which you can use the MMAPI to play an SVG image. It’s
essentially the same as playing other video; get a Player instance with a locator that specifies an SVG
image, and then get a Control subinterface javax.microedition.media.control.SVGControl.
Using that Control instance, you can get an Item or Component object to add to your view hierarchy and
play the media normally. JSR 287 does not specify whether devices will continue to support the MMAPI
for SVG playback.

Modifying SVG Images

While it’s less likely that you will want to write an application that creates SVG images
instead of displaying them, it’s certainly possible, and the SVGAPI that JSR 287 defines
lets you do it. Because the SVGAPI provides support for the SVG DOM, it’s entirely
possible for you to create an empty SVG image and add new objects to it. To do this,
you must have working knowledge of the XML DOM, the SVG DOM, and the SVG stan-
dard itself; all of that is largely outside the scope of this section. Here, I just sketch the
general principle so you know that it’s something you can do if you find you have the
need. All of what I say in this section is only on JSR 287–enabled devices; JSR 226 does
not have many of the classes and some of the methods required if you want to work
directly with the SVG DOM.

Listing 16-15 shows pseudocode derived from JSR 287 that gives an example of modi-
fying an existing SVG image using an SVGAnimator to provide user events to application
logic. In turn, those user events cause the code to add new circles to the SVG image that
the application is displaying.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT480

Listing 16-15. Creating and Populating an SVG Image

class MIDPSVGEditor implements SVGEventListener, Runnable {

private static final String svgNS = "http://www.w3.org/2000/svg";

private SVGDocument svgDocument;

private SVGAnimator svgAnimator;

private Vector addToTree = new Vector();

private int cx, cy;

public MIDPSVGEditor (SVGImage svgi) {

svgDocument = svgi.getDocument();

svgAnimator = SVGAnimator.createAnimator(svgi);

svgAnimator.setSVGEventListener(this);

}

public Object getTargetComponent() {

return svgAnimator.getTargetComponent();

}

public void pointerPressed(int x, int y) {

}

public void pointerReleased(int x, int y) {

cx = x;

cy = y;

}

public void keyPressed(int keyCode) {

SVGElement circle = svgDocument.createElementNS(svgNS, "circle");

circle.setFloatTrait("cx", (float)cx);

circle.setFloatTrait("cy", (float)cy);

synchronized (addToTree) {

addToTree.addElement(circle);

}

svgAnimator.invokeLater(this);

}

public void keyReleased(int keyCode) {

}

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 481

public void run() {

synchronized (addToTree) {

for (int i = 0; i < addToTree.size(); i++) {

svgDocument.getDocumentElement().appendChild(

(SVGElement) addToTree.elementAt(i));

}

addToTree.removeAllElements();

}

}

public void hideNotify() {

}

public void showNotify() {

}

}

■Note Listing 16-15 won’t work with JSR 226, as JSR 226 does not include the SVGDocument class,
support for the SVG DOM, or the ability to create empty SVG images with interaction hints. While it’s possible
to create SVG XML on a Java ME device and render it using JSR 226, you won’t have the flexibility that the
SVGDocument and other JSR 287 classes provide that let you work with individual SVG DOM elements.

You initialize this call with a preexisting SVGImage. The image might be one from
another source, or you can create an empty SVGImage by invoking the SVGImage static
method createEmptyImage, like this:

SVGImage svgImage = SVGImage.createEmptyImage(null, hints);

The first argument to createEmptyImage is an optional ExternalResourceHandler, just as
if you were creating an SVGImage for an existing image. The second argument is informa-
tion about the kind of interactions the SVGImage instance should expect from users and
the SVG content itself. It’s a bit mask that can contain the following values, binary ORed:

• SVGImage.INTERACTION_MODE_DISABLED: Indicates that no user interaction with the
SVG image will take place

• SVGImage.INTERACTION_MODE_SCRIPT_EXECUTION: Indicates that script execution within
the SVG image may take place (with most implementations of the API, this has no
effect)

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT482

• SVGImage.INTERACTION_MODE_FOCUS_HIGHLIGHT: Indicates that the SVG image may
contain focus highlighting, and the user may change which element has focus

• SVGImage.INTERACTION_MODE_IN_PLACE_TEXT_EDIT: Indicates that the SVG image may
contain in-place text editing (within a text field, for example)

• SVGImage.INTERACTION_MODE_OTHER: Indicates that the implementation should
support other user interaction with the SVG image

In Listing 16-15, the keyPressed and run methods show you how to mutate an SVG
image. When you press a key while the SVGAnimator’s target component has focus, the
SVGAnimator invokes keyPressed, which creates a new circle element that it will add to the
target document later at the first thread-safe opportunity. Because the SVGAnimator uses
multiple threads, the code needs to synchronize the addition of the circle element with
the SVGAnimator; the code adds the new circle to a vector and schedules the update using
invokeLater. The run method—which the Java VM invokes at the appropriate time—
actually adds any pending circles to the SVG document.

Generally speaking, the Document and SVGDocument classes let you interact with a spe-
cific SVG document; this example uses the Document method createElementNS to create an
individual circle to draw on the image. To use createElementNS correctly, you need to have
a pretty good grip of the SVG standard, because you use it to create primitives in the SVG
language. If you’re going this route in your application, I suggest you carefully study the
W3C standards I cited previously.

Of course, with these classes you can also query a specific document’s DOM; the run
method in Listing 16-15 does this to get the document element of the SVG XML, which by
the definition of SVG has a child for each shape in the image. You can change elements of
the DOM, too, using the Node interface that the SVGDocument inherits; run does this by
invoking appendChild, passing the new object createElementNS created.

Using NetBeans with SVG Images

The approach that the SVGAPI takes to providing SVG support is fine for many applica-
tions, but it’s a little labor intensive, especially for things many application developers
would like to do, such as simply play an SVG animated image, show an SVG image as a
splash screen or wait screen, or use one as a menu. While you can certainly write code to
do this yourself—it’s a matter of composing a Displayable that uses an SVGAnimator—it’s
going to be code that you, your virtual neighbor, and a good deal many other Java ME
developers are going to be writing over and over again for the next few years. Fortunately,
there’s a better way.

The Mobility Pack for the NetBeans IDE provides a small package, org.netbeans.
microedition.svg, which contains some utility classes for building SVG user interfaces.
These classes all extend the MIDP Canvas class, so you simply use the Display class’s
setCurrent to display an instance of one. Even better, the classes are integrated with the

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 483

NetBeans IDE, so if you’re building your application using the visual designer, you can
drag out the components you want to use in your application, just as you would for con-
ventional MIDP components, as you saw in Chapter 3. The org.netbeans.microedition.svg
class includes the following classes:

• SVGPlayer: Provides a simple wrapper around the SVGAPI to play animated SVG
images. It accepts the events it receives as a Canvas implementation and forwards
them to the SVGAPI.

• SVGSplashScreen: Provides a screen for showing a single SVG animation that
transitions to another screen.

• SVGWaitScreen: Provides an interstitial screen that displays an SVG animation while
a blocking background task executes.

• SVGMenu: Provides a player for an SVG that contains multiple selectable items.
Menu items are individual SVG elements in a single SVG image.

Note These classes are provided in the version of the org.netbeans.microedition.svg package that
NetBeans 6.1 includes. Previous versions of NetBeans had similar classes, although in those releases, the
SVGPlayer didn’t exist; instead, it included the SVGAnimatorWrapper. If you’re working with older versions
of NetBeans, you’ll want to either upgrade or use SVGAnimatorWrapper. Upgrading is probably the right
choice to make, because SVGAnimatorWrapper is deprecated in more recent releases of the package.

It’s easy to use the NetBeans visual GUI builder to create an application that uses
these classes, but of course you don’t have to; you can also import the org.netbeans.
microedition.svg package and use these classes directly.

These classes and others are under constant refinement by the NetBeans developer
community; if you’re interested in working with SVG content at a higher level than the
SVGAPI, you should consult the latest documentation at http://wiki.netbeans.org/.

Putting the MMAPI and the SVGAPI to Work
You could build some interesting weather applications around the MMAPI and the SVGAPI,
such as a server-side application that provides weather reports as SVG animations to Java
ME clients, or a weather-blogging application that permits users to view, share, and interact
with weather data. However, they’d all be pretty complex. Consequently, rather than inte-
grating the MMAPI or the SVGAPI with the WeatherWidget example I’ve touched upon
throughout this book, in this section I present a simple media player application that plays
media using both the MMAPI and the SVGAPI. The application opens with a list of media

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT484

files from which you may choose one to play. Figure 16-6 shows the application’s main
screen—a media player—displaying a single frame of a movie.

Figure 16-6. The media player view for the MultimediaMIDlet application showing a frame
from Duck and Cover2

Note As I alluded to previously in the “Capturing Media” section, support for media capture on Java ME
devices is a hit-or-miss affair, and the simulator is no exception. Worse, the simulation environment that the
Mobility Pack for NetBeans provides doesn’t support the full range of media files that today’s average Java
ME device can render. When debugging media applications, I find it best to test using WAV audio files or
MPEG-1 video files in the simulator, and then move to a target handset on which I know what audio and
video formats are actually available. Multimedia support on today’s Java ME devices is a rapidly changing
part of the Java ME ecosphere, so be prepared to spend some time researching supported media types for
specific devices and testing when building your application.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 485

2. Duck and Cover, directed by Anthony Rizzo (1951; Federal Civil Defense Administration, Archer Pro-
ductions). Now in the public domain; see http://en.wikipedia.org/wiki/Duck_and_Cover_(film),
http://www.imdb.com/title/tt0213381/, and http://www.archive.org/details/DuckandC1951.

Listing 16-16 shows the entire MultimediaMIDlet class, which provides the entire
implementation. As a MIDlet, its target is of course the MIDP; you could write similar
code using the MMAPI and the SVGAPI to run on a CDC platform that included these
APIs in addition to AWT or Swing.

Listing 16-16. The MultimediaMIDlet Class

package com.apress.rischpater.multimediamidlet;

import java.io.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

import javax.microedition.media.*;

import javax.microedition.media.control.*;

import javax.microedition.m2g.*;

public class MultimediaMIDlet

extends MIDlet

implements CommandListener, Runnable {

private Display display;

private List choiceScreen;

private Form mediaScreen;

Displayable viewerDisplayable;

private Item videoItem;

private ImageItem capturedImage;

private VideoControl videoControl;

private Command captureCommand;

private Command selectCommand;

String mediaName = null;

String mediaType = null;

private Player player = null;

SVGAnimator svgAnimator;

boolean endNow;

private static final String SVG_IMAGE_PATH = "/res/image.svg";

private static final String SVG_IMAGE_TYPE = "image/svg+xml";

private static final String WAV_SOUND_PATH = "/res/sound.wav";

private static final String WAV_SOUND_TYPE = "audio/x-wav";

private static final String MPG_MOVIE_PATH = "/res/movie.mpg";

private static final String MPG_MOVIE_TYPE = "video/mpeg";

private static final String CAP_VIDEO_PATH = "capture://video";

private static final String CAP_VIDEO_TYPE = "video/x-capture";

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT486

private void init() {

showSupportedMedia();

display = Display.getDisplay(this);

if (choiceScreen == null) {

choiceScreen = new List("MultimediaMIDlet", List.IMPLICIT);

choiceScreen.addCommand(new Command("Exit", Command.EXIT, 0));

selectCommand = new Command("Play", Command.ITEM,1);

choiceScreen.setSelectCommand(selectCommand);

choiceScreen.addCommand(selectCommand);

choiceScreen.setCommandListener(this);

choiceScreen.append("Sound", null);

choiceScreen.append("Video", null);

choiceScreen.append("SVG", null);

choiceScreen.append("Camera Capture",null);

}

display.setCurrent(choiceScreen);

}

public void startApp() {

init();

}

private void showSupportedMedia() {

String[] contentTypes = Manager.getSupportedContentTypes(null);

for (int i=0; i<contentTypes.length; i++) {

String protocols[] =

Manager.getSupportedProtocols(contentTypes[i]);

for (int j=0; j<protocols.length; j++) {

String s = contentTypes[i] + ":" + protocols[j];

System.out.println(s);

}

}

}

public void pauseApp() {

endNow = true;

if (svgAnimator != null) {

svgAnimator.stop();

}

if (player!=null) {

player.close();

}

}

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 487

public void destroyApp(boolean unconditional) {

endNow = true;

if (player != null) {

player.close();

}

}

public void commandAction(Command c, Displayable s) {

if (c.getCommandType() == Command.EXIT) {

destroyApp(true);

notifyDestroyed();

} else

if (display.getCurrent() == viewerDisplayable) {

if (c == captureCommand) {

synchronized(this) {

this.notify();

}

}

} else

if (display.getCurrent() == choiceScreen) {

if (c == selectCommand) {

Form waitForm = new Form("Loading...");

display.setCurrent(waitForm);

int itemIndex = choiceScreen.getSelectedIndex();

switch(itemIndex) {

case 0:

mediaName = WAV_SOUND_PATH;

mediaType = WAV_SOUND_TYPE;

break;

case 1:

mediaName = MPG_MOVIE_PATH;

mediaType = MPG_MOVIE_TYPE;

break;

case 2:

mediaName = SVG_IMAGE_PATH;

mediaType = SVG_IMAGE_TYPE;

break;

case 3:

mediaName = CAP_VIDEO_PATH;

mediaType = CAP_VIDEO_TYPE;

break;

}

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT488

Thread t = new Thread(this);

t.start();

}

}

}

public void run() {

playFromResource();

while(!endNow) {

synchronized(this) {

try {

this.wait();

} catch (Exception e) {}

if (!endNow) {

try {

byte[] raw = videoControl.getSnapshot(null);

Image image = Image.createImage(raw, 0, raw.length);

capturedImage.setImage(image);

} catch (MediaException e) {continue;}

}

}

}

}

private void initMediaPlayer()

throws IOException, MediaException {

if (mediaScreen == null) {

mediaScreen = new Form("MultimediaMIDlet");

mediaScreen.addCommand(new Command("Exit", Command.EXIT, 0));

mediaScreen.setCommandListener(this);

}

viewerDisplayable = (Displayable)mediaScreen;

if (mediaType.equals(CAP_VIDEO_TYPE))

player = Manager.createPlayer(mediaName);

else {

InputStream in = getClass().getResourceAsStream(mediaName);

player = Manager.createPlayer(in, mediaType);

}

player.realize();

player.prefetch();

}

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 489

private void initSvgPlayer()

throws IOException {

InputStream in = getClass().getResourceAsStream(mediaName);

SVGImage svgImage = (SVGImage)ScalableImage.createImage(in, null);

svgAnimator = SVGAnimator.createAnimator(svgImage);

Canvas svgCanvas = (Canvas)svgAnimator.getTargetComponent();

viewerDisplayable = (Displayable)svgCanvas;

svgImage.setViewportWidth(svgCanvas.getWidth());

svgImage.setViewportHeight(svgCanvas.getHeight());

}

private void configViewSound() {

// No-op

}

private void configViewSvg() {

// No-op

}

private void configViewVideo() {

captureCommand = new Command("Capture", Command.ITEM, 0);

mediaScreen.addCommand(captureCommand);

videoControl = (VideoControl) player.getControl("VideoControl");

if (videoControl != null) {

videoItem = (Item) videoControl.initDisplayMode(

VideoControl.USE_GUI_PRIMITIVE, null);

mediaScreen.append(videoItem);

}

capturedImage = new ImageItem(null, null,

ImageItem.LAYOUT_DEFAULT, null);

mediaScreen.append(capturedImage);

}

private void playFromResource() {

try {

if (mediaType.equals("image/svg+xml")) {

initSvgPlayer();

configViewSvg();

svgAnimator.play();

}

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT490

else

{

initMediaPlayer();

if (mediaType.startsWith("audio")) {

configViewSound();

} else if (mediaType.startsWith("video")) {

configViewVideo();

}

player.start();

}

display.setCurrent(viewerDisplayable);

} catch (Exception e) {

showException(e);

}

}

private void showException(Exception e) {

Alert a = new Alert("Exception", e.toString(), null, null);

a.setTimeout(Alert.FOREVER);

display.setCurrent(a, viewerDisplayable);

}

}

The MIDlet source opens with a few import directives, because it relies on the MIDP
APIs as well as the MMAPI and the SVGAPI. The MIDlet follows the basic organization of
all MIDlets in the book, eschewing initialization in the constructor in favor of an explicit
init method that the startApp method invokes when the AMS launches the MIDlet. The
following methods are responsible for MIDlet behavior:

• startApp, pauseApp, and destroyApp: These methods together manage the life cycle
of the MIDlet. Starting the MIDlet shows a list of media to play, while pausing or
quitting the MIDlet stops any pending media playback.

• init: As previously mentioned, init creates the initial List instance showing the
choices for media playback. It also dumps a list of supported media types to the
system console using the showSupportedMedia method.

• commandAction: This method processes user selections from the initial List screen
and permits you to capture a video frame during video playback.

• run: The application uses a separate thread (which I’ll call the player thread) for
media playback; this thread executes the run method, which starts media playback
and waits for a request from the user to capture media.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 491

• initMediaPlayer and initSvgPlayer: These methods initialize the classes in the
MMAPI and the SVGAPI, respectively.

• configViewSound, configViewSvg, and configViewVideo: These methods perform addi-
tional configuration of the Canvas subclass instance that displays the media. Some
are no-ops and don’t do anything in this implementation; they’re provided for
illustration only.

• playFromResource: This method uses the media type you select to determine
whether to initialize the MMAPI or the SVGAPI, start the media playback, and
show the Canvas subclass instance that contains the rendered media. The player
thread’s run method invokes this method.

• showException: This method shows an exception in an Alert.

The showSupportedMedia method is one of those utilities you never think you have to
write, yet you find yourself writing it again and again. It queries the MMAPI Manager for a
list of supported content types using its getSupportedContentTypes function. With the con-
tent type (e.g., audio/wav), it queries the Manager again to determine which protocols the
implementation of the MMAPI supports (e.g., HTTP). Finally, it prints each supported
pair to the console. Listing 16-17 shows representative output from the simulator.

Listing 16-17. Supported Media Content Types and Protocols

video/mpeg:http

video/mpeg:file

image/gif:http

image/gif:file

audio/x-wav:http

audio/x-wav:file

audio/x-wav:capture

audio/amr:http

audio/amr:file

audio/x-tone-seq:http

audio/x-tone-seq:file

audio/x-tone-seq:device

video/vnd.sun.rgb565:capture

audio/sp-midi:http

audio/sp-midi:file

audio/midi:http

audio/midi:file

audio/midi:device

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT492

You might think you don’t need this information—after all, the vendor information
that accompanies most Java ME devices provides a list of supported media types—but
frequently you do, because there’s no guarantee that a Java ME device’s firmware is wired
correctly with the MMAPI just because it can render a media type using a native applica-
tion. In fact, it’s possible at times that the media list that the MMAPI Manager provides
may be incorrect.

■Tip While testing any Java ME application on a device is a crucial part of your development cycle,
it’s especially so with most of the Java ME extensions documented through JSRs, and the MMAPI is no
different. Always test your application on target hardware early in your development cycle, and repeat the
testing often.

The heart of the UI flow is the commandListener method and the MIDlet fields mediaName
and mediaType. When you choose a kind of media to play, commandListener uses a simple
switch statement to populate these variables with the file name in the JAR file and the
type of media you selected. Next, it launches the player thread, using the MIDlet class
itself as the Runnable item. The resulting thread starts with the MIDlet class’s run method,
which initializes and starts playback.

The next sections describe how the MIDlet plays audio and video, captures images
from the video stream, and plays animated SVG content.

Playing Audio and Video

When the player thread starts, its run method first invokes playFromResource. This method
uses the information the commandListener set aside about the media type you selected.
Later, the implementation uses this information to determine whether to initialize the
SVGAPI or the MMAPI, as well as to set the next Displayable item in the viewerDisplayable
field of the MIDlet. In addition, if you selected a file that isn’t an SVGAPI, the class will
create any additional controls the MIDlet requires. This logic consists of a series of nested
if-else statements, which are sufficient for this example, but possibly worth dividing into
separate subclasses with a common interface that returns a Displayable.

The initMediaPlayer does the heavy lifting initializing the MMAPI; it closely resem-
bles Listing 16-1. It creates a Form instance, which becomes the Displayable that the
MIDlet shows when rendering the media. initMediaPlayer adds an instance of Command
that permits you to exit the application before setting the command listener for the new
form to the MIDlet.

The method then creates a Player instance, using either the locator of the camera if
you selected the Camera Capture option, or an InputStream taken from the JAR resource
named by your choice in the commandAction method. Finally, it configures the new Player
instance by first realizing the player and then prefetching the content.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 493

Once initMediaPlayer does its work, control returns to playFromResource, which
invokes either configViewSound or configViewVideo to do any additional postconfiguration
of the user interface before starting the media playback. The configViewSound method
does nothing; it’s simply a placeholder. You might want to experiment with the code and
create various Control subclasses on the player field here, such as a VolumeControl.
configViewVideo, however, must do a little work; it creates another Command instance
that lets you trigger a video capture and adds it to the Form instance before creating the
VideoControl instance. The resulting VideoControl provides the method with an Item
instance to add to the Form. Finally, the method creates a second additional empty
ImageItem instance that the MIDlet uses to display the image you capture when you
select the Capture option.

The playFromResource method then starts the newly created Player instance and sets
the current Viewable instance to the viewerDisplayable before returning control to the
player thread’s run method. At this point in the MIDlet execution, the MMAPI renders the
media you selected, while the player thread blocks on this waiting for you to select the
Capture option.

Capturing Images

The VideoControl instance that the MIDlet stores in the videoControl field can capture a
snapshot once its Player instance has begun playback, although it’s inadvisable to do so
on the main thread, because that can stall either the MIDlet UI or the MMAPI itself. By
using the MIDlet instance itself as an explicit lock via the Java synchronized keyword and
the Object method notify, the MIDlet can signal from the UI thread to the player thread
that you want to capture a frame. In addition, using the synchronized keyword ensures
that you can’t trigger a capture while the application is performing a capture, which is
probably an error anyway.

Once the Java VM uses notify/synchronized to kick the player thread to capture a
frame, the player thread performs the capture by invoking the videoControl’s getSnapshot
method, specifying the default encoding. At this point, the player has a byte[] of the cap-
tured image data; the code just uses the data to set the other image on the Form to display
the image you captured.

Another thing you might want to do with image data that your application has cap-
tured is to share it with someone else. You could do that by changing the MMSSender class I
show you in Chapter 14 to take an optional byte[] of encoded image data, as you see in
Listing 16-18, and using the new MMSSender method that Listing 16-18 defines.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT494

Listing 16-18. Revisions to the MMSSender Class to Enable You to Send a Captured Image
via MMS

public class MMSSender implements Runnable {

private byte[] imageBytes;

public void sendMsg(String r, String id, String m, byte[] bi) {

if (sending) return;

receiver = r;

appId = id;

msg = m;

imageBytes = bi;

encoding = System.getProperty("microedition.encoding");

Thread t = new Thread(this);

t.start();

}

public void sendMMS() {

String address = "mms://" + receiver + ":" + appId;

System.out.println(address);

MessageConnection c = null;

try {

c = (MessageConnection) Connector.open(address);

MultipartMessage mpm = (MultipartMessage) c.newMessage(

MessageConnection.MULTIPART_MESSAGE);

mpm.setSubject("An Image");

if (image != null) {

InputStream is = getClass().getResourceAsStream(image);

imageBytes = new byte[is.available()];

is.read(imageBytes);

}

if (imageBytes != null) {

mpm.addMessagePart(

new MessagePart(

imageBytes, 0, imageBytes.length,

"image/png", "id1", null, null));

}

if (msg != null) {

byte[] bMsg = msg.getBytes();

mpm.addMessagePart(

new MessagePart(bMsg, 0, bMsg.length,

"text/plain", "txt1", null, encoding));

}

c.send(mpm);

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 495

} catch (Exception e) {}

finally {

if (c != null) {

try {

c.close();

} catch (IOException e) {}

}

}

}

…other fields and other methods remain the same from Chapter 14…

}

■Note The implementation in Listing 16-18 assumes that the image that the VideoControl returns is a
PNG image; if you’re writing this for a production application, you should extend MMSSender to accept the
MIME type of the image data you’re providing, as well as specify a specific MIME type for the getSnapshot
method.

Playing SVG Content

Returning to the MultimediaMIDlet, the flow for playing SVG content is similar. The
playFromResource method invokes initSvgPlayer and configViewSvg and then starts the
playback using the resulting svgAnimator’s play method. Because the SVGAPI’s approach
to media rendering is a little different than the MMAPI, the flow in initSvgPlayer is differ-
ent, although configViewSvg remains an empty method, just as configViewSound is. The
initSvgPlayer method bears a strong resemblance to the pseudocode you first saw in
Listing 16-12.

The initSvgPlayer method begins by getting an InputStream instance to the SVG
image in the JAR file, and then creates a new SVGImage instance using that data and
the default SVGAPI ExternalResourceHandler. With the image, the method next creates
the svgAnimator it will use to play the animation; if the SVG is a static image, that’s OK,
because it’ll just be rendered by the svgAnimator instance when playFromResource
invokes svgAnimator.play. Using the svgAnimator, the initSvgPlayer gets an instance
of the SVGAnimator’s Canvas instance, which it sets aside as the Displayable that the
MIDlet should show when playFromResource sets the next Displayable. Finally, this
method obtains the default bounds for the svgCanvas and uses them to initialize the
svgImage’s viewport to obtain and set the optimum rendering rectangle for the image
on the display.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT496

Wrapping Up
Through optional APIs documented in JSRs 135 and JSR 287, the Java ME platform
provides your applications the capability to render rich audio and video in a variety of
different formats, including WAV, MPEG, and SVG. Although the MMAPI that JSR 135
defines is fundamentally different than the SVGAPI that JSR 287 defines, together they
give you broad latitude in your application’s UI design.

The MMAPI uses a paradigm reminiscent of the MVC paradigm many user-interface
frameworks, such as Swing, use. Your application obtains or provides a data source to a
player that can be controlled by one or more controls that can affect media rendering
in some way. The MMAPI provides a Manager class, which provides individual Player
instances given a data source such as an InputStream instance or a locator that specifies
a data source’s location. Locators can point to media on the device, from a sensor on the
device, or from off the device on the network; many (but not all) MMAPI implementa-
tions support some form of remote media access via HTTP, RTP, or RTSP.

Because the MMAPI provides a Java ME wrapper around dedicated hardware
resources, applications that use the MMAPI need to consider carefully when to use those
resources. The Player interface implements a state machine that helps restrict access to
limited resources on the device. A Player object can be in one of five states: unrealized,
realized, prefetched, started, or closed. The Player interface provides methods to transi-
tion through these states; typically your application will create a Player instance and only
invoke its realize and prefetch methods just before starting playback with start.

MMAPI Player objects are also factories for Control objects; a Control may mutate
the behavior of a Player (such as by adjusting its volume) or may provide additional func-
tionality, such as an interface from which to gain a user-interface component you can
use to show video in a media file. Capture from audio and video sensors on a Java device
works this way; you specify a locator for the device, and you can use the VideoControl’s
getSnapshot method to obtain an image snapshot, or the RecordControl class to record a
stream of audio or video data. Not all devices support audio or video capture, however,
and the Java ME runtime provides system properties that enumerate precisely what
media types and what sensors a specific MMAPI implementation supports. Some devices
may support JSR 234, which defines additional Control subclasses you can use with the
MMAPI to control capture sensors as well as perform additional multimedia operations.

The SVGAPI, on the other hand, supports the SVG Tiny 1.2 standard defined by the
W3C. Using SVG, you can define images—static or animated—that appear clear and
unpixellated at nearly any rendering size. In fact, you can build whole parts of your applica-
tion’s user interface by specifying events within your SVG document that your Java ME
application can receive in response to user operations, such as focus changes. SVG is based
on XML; many vector-based drawing programs support this widely adopted standard,
making it widely available to mobile content developers. Through its packages and classes,
the SVGAPI has a rich set of features, including the ability to access portions of an SVG doc-
ument through the SVG DOM. In fact, you can even create SVG images on the fly, letting
users create new SVG images right on the Java ME device from within your application.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT 497

You can use the SVGAPI in one of two ways to render an image: you can use the
SVGImage class to render static images, or you can use the SVGAnimator class to render
dynamic images. These work with MIDP Canvas subclasses or AWT Component sub-
classes, depending on the Java ME configuration of the target device. It’s generally
easiest to create an SVGImage instance and delegate rendering to an SVGAnimator, which
has its own rendering thread and state machine to manage animated SVG images as
well as any user interaction the SVG image requires. Finally, if you’re just knocking out
an application using NetBeans and need a simple container to hold an animated SVG
(e.g., for a splash screen or interstitial display), NetBeans itself provides a package with
some simple components for rendering static or animated SVG images. You can use
those components right from the NetBeans GUI builder, making it easy to add SVG-
based features to your application.

Regardless of the kind of multimedia your application is going to render, thread
management in multimedia applications is crucial. You should never attempt to render
multimedia—using either the MMAPI or the SVGAPI—on the main application or MIDlet
thread, because the work necessary to perform the rendering may stall the UI thread,
making the device feel sluggish or unusable. Both the MMAPI and the SVGAPI provide
you with interfaces to schedule operations on the main thread, and you can coordinate
activities between the main UI thread and any multimedia threads using simple Java
primitives like synchronization via the synchronized keyword or a monitor variable.

CHAPTER 16 ■ RENDERING MULTIMEDIA CONTENT498

Finding Your Way

For many developers, the potential of location-based service (LBS) applications is the
most exciting aspect of Java ME development today. The potential for new applications
that use user position in conjunction with web-available data (for geocoded business
locations, locating fellow users, real-time traffic, weather, and other incident informa-
tion) is simply staggering. Whole new markets are emerging, such as cost-effective,
real-time, location-aware navigation; social networking that involves friends’ locations;
and dispatch and emergency service applications that tap a device’s location transpar-
ently. JSR 179 defines the Location API, which provides a simple optional API for
determining a device’s location and sharing location preferences with other applications.

In this chapter, I begin with some brief remarks about LBS for readers who haven’t
previously encountered the technologies behind it. Next, I introduce the Location API,
describe the package and classes that JSR 179 defines for enabling LBS on Java ME
devices, and show you how to use the Sun Java Wireless Toolkit to simulate location data
when developing and debugging your applications. I close the chapter by showing you an
extension to the WeatherWidget application that permits users to specify their current
location rather than enter a location when obtaining weather data.

Understanding Location-Based Services
For many years in many countries including the United States, emergency-management
officials have been able to determine the location of telephone callers. (In the United
States, this is a key part of the 911 system; dialing 911 on any phone connects you to
an emergency dispatcher who has information about the location of the phone from
which you’re calling.) In the mid-1990s, the governments of many countries moved
to require carriers to provide the same information for wireless telephone users, giving
emergency-response personnel the same capabilities they have when responding to
emergency calls from wireline phones. This drove the creation of a number of mobile
handset location technologies, including Assisted Global Positioning System (A-GPS)
and various cell-tower triangulation systems. Originally intended for use primarily for
emergency purposes, network operators were keen to find a means to charge for this
service, because providing location-based information on the network incurred high

499

C H A P T E R 1 7

costs due to the need for hardware changes to their network infrastructure. At the same
time, many businesses were quick to recognize the market potential of location-aware
wireless terminals for applications as diverse as fleet management and social network-
ing.

The first commercial launch of LBS services was in Japan by KDDI in 2001; early
offerings in Japan met with wide acclaim and rapid adoption. Elsewhere, adoption has
been slower but is now reaching critical mass as mobile platforms, including Java ME,
Qualcomm’s Binary Runtime Environment for Wireless (BREW), Apple’s iPhone, and
Google’s Android, provide APIs for LBS applications. In addition, carriers have made the
service available for applications on their networks.

Today, several commercially available systems permit wireless devices to determine
their location with great precision, provided they have access to one or more Wide Area
Network (WAN) services. The most well known is GPS, in which a device triangulates its
position using information derived from radio signals received from orbiting satellites.
While commercial GPS receivers have been available at low cost for industry and per-
sonal purposes for more than a decade, commercial GPS has two major disadvantages
that make it ill-suited to be the only means of mobile device positioning. First, GPS
receivers require a clear view of the sky in order to be able to receive the radio signals
from the satellites that the service uses. Second, GPS accuracy is somewhat variable due
to a combination of atmospheric effects and a specific GPS feature named Selective
Availability (SA), which permits the US government to compromise the accuracy of civil-
ian GPS in times of war. Fortunately, SA is presently deactivated, and with the widespread
civilian adoption of GPS, it is unlikely to be reintroduced, but other errors can lead to an
error of several meters. Today, there are ongoing efforts around the world to develop
other global navigation assistance systems for political and economic reasons, providing
international alternatives to GPS (which works anywhere on the globe).

To address the inherent problems with GPS, several other schemes have been pro-
posed, including A-GPS and various forms of network triangulation. A-GPS works by
using additional hints about the device’s position gleaned from data about which cell
sites it may be using, and it delegates much of the mathematical processing that deter-
mining your position requires to network resources. Triangulation techniques rely on
determining a device’s position based on received signals from local cell towers, and
more recently local Wi-Fi base stations as well. To ensure rapid position determination
time, as well as high accuracy and availability, today’s wireless handsets usually incorpo-
rate several schemes for position location.

While the means of determining a device’s position may vary under the hood, the
result that the positioning system provides is the same: the device’s coordinate, which is
usually the latitude and longitude computed at a specific time fixed to a datum—a math-
ematical model of the earth’s surface. Because the positioning system is approximate—
atmospheric effects, radio propagation effects such as multipath, and other factors intro-
duce error into even the best positioning systems—the position that the system provides
is a notion of the position’s accuracy, usually a radius. The coordinates and radius define

CHAPTER 17 ■ FINDING YOUR WAY500

a circle in which the device is likely to be. It’s important to remember when designing
your application that the position data is approximate—even taking into account the
position circle. It’s possible for a device to fall outside the positioning circle, although in
practice this doesn’t happen often. This positioning error is often referred to as the
uncertainty of position, and in some systems, you can trade position uncertainty for
other factors, such as the amount of time or financial cost involved in determining the
device’s position. Depending on device and network capabilities, position information
may also be accompanied by the device’s elevation, speed, and course (direction of
motion), although that isn’t always available.

Due to the nature of the positioning systems themselves, obtaining device position
is an expensive operation from the perspective of battery power, time, and user cost.
Positioning can require scarce device resources as well as network transactions with
remote servers, so devices provide position data in near-real time, rather than real time.

Introducing the Location API
The Java ME Location API defines the javax.microedition.location package, which
contains a collection of classes that permit applications to request and obtain a location
result. The Location API was designed to work with both CLDC and CDC devices,
although it is only available for CLDC 1.1 and later devices, because the location frame-
work requires floating-point mathematics support in order to provide your application
with latitude and longitude information.

The Location API abstracts the device’s location subsystem from your application,
giving you a way to determine the device’s location in a manner that best meets your
application’s constraints (such as position-acquisition time, uncertainty, and cost to the
user). You can request a position just once (often referred to as a one-shot positioning
request), or you can request that the API deliver notifications of device position while
your application is running.

All Location API implementations must provide the latitude and longitude coordi-
nates in a position response, along with the time at which the device determined the
position and a measure of accuracy. Depending on the device’s hardware, position data
may also include the orientation (compass, pitch, and roll) of the device, the speed at
which the device is traveling, and more human-palatable data such as a position’s
street address.

The Location API provides an additional feature that isn’t available in most APIs
on other platforms (e.g., Qualcomm’s BREW), and that’s access to a system-wide
database of landmarks and the position of those landmarks. This permits the device’s
native software and all applications on the device to share a single store of common
user-specified locations, such as the positions of the user’s place of residence and
occupation. This enables the user to have a consistent user experience across all LBS
applications on the device.

CHAPTER 17 ■ FINDING YOUR WAY 501

Understanding the Location API

The javax.microedition.location package defines nine classes, two interfaces, and two
exceptions. Other than the exceptions, which inherit from Exception, the class hierarchy
is almost completely flat, representing the simplicity of the API and the domain it
abstracts. The package provides the following classes:

• LocationProvider: Represents a hardware or software module within the device that
can determine the device’s location. It provides a static factory method that returns
specific LocationProvider instances configured to respond to specific location
requests.

• Criteria: Represents specific criteria that apply to a location request, such as the
desired accuracy and cost to the user.

• Location: Represents a collection of basic information about a location, including a
timestamp, coordinates, accuracy, speed, course, and information about the
method used to determine the location, as well as an optional textual address.

• Coordinates: Represents the latitude, longitude, and altitude of a location, and pro-
vides methods to interconvert between floating-point and human-readable textual
representations of coordinates.

• QualifiedCoordinates: Represents the latitude, longitude, and altitude triple
associated with a measurement of the coordinates’ accuracy. It is a subclass of
Coordinates.

• AddressInfo: Represents textual information about a location such as the street
address. The AddressInfo class encapsulates a collection of fields accessed through
manifest constants.

• Orientation: Represents the physical orientation in space of the terminal, including
azimuth (the horizontal pointing direction), pitch (the vertical elevation angle),
and roll (the orientation around the device’s own longitudinal axis).

• LandmarkStore: Represents a store of individual user landmarks. There is always a
default landmark store, and implementations may provide additional named land-
mark stores for application use.

• Landmark: Represents a known location with a user-provided name, consisting of
the name, a QualifiedCoordinates object, and an AddressInfo object.

The API defines two interfaces: LocationListener and ProximityListener. The
LocationListener gives your application a means to regularly receive position reports
from the API implementation through its locationUpdated method, and it permits the

CHAPTER 17 ■ FINDING YOUR WAY502

API implementation to notify your application if the source of location data has
changed (perhaps as a result of transitioning from one network to another). You use
the LocationListener interface any time you want to receive continuous position notifi-
cations, such as an application that provides real-time position reports as the device
moves. The ProximityListener interface lets your application wait for notification when
the terminal has fallen within the proximity radius around a specific coordinate. Using
the ProximityListener to determine when the device reaches a predetermined location
is more efficient than using the LocationListener, because the underlying implementa-
tion of the positioning hardware may have similar capabilities. It’s also easier; you don’t
need to receive and manage regular position reports just to determine if the device has
reached a desired location.

The LocationException and LandmarkException are exceptions the implementation
may throw in response to critical failures of either the location subsystem or the land-
mark store. For both exceptions, the String associated with the exception gives additional
information about the details surrounding the failure.

You can do two things with the Location API: determine the device’s location, and
manage the landmarks the user has created for LBS applications to use.

Using the Location API to Determine Device Location

Using the Location API requires that you perform three steps:

1. Establish the (possibly user-specified) criteria for the location request.

2. Obtain a LocationProvider instance that can provide your application with the
device’s location in a manner that meets your criteria.

3. Determine the position’s location.

The pseudocode in Listing 17-1 shows this basic sequence of events.

Listing 17-1. Determining the Device Location

try {

Criteria cr = new Criteria();

cr.setHorizontalAccuracy(10);

LocationProvider lp = LocationProvider.getInstance(cr);

Location l = lp.getLocation(60);

Coordinates c = l.getQualifiedCoordinates();

if (c != null) {

// Do something with the location

}

} catch (LocationException e) {}

catch (Exception e) {}

CHAPTER 17 ■ FINDING YOUR WAY 503

The Criteria object you create specifies any specific requirements you have regard-
ing the locations your application will request. The Location API implementation uses
these to configure and select a specific LocationProvider instance. Table 17-1 shows the
specific criteria you can specify within a Criteria object. If the implementation cannot
explicitly meet your criteria, it will make its own best-effort selection, provided that the
resulting LocationProvider instance meets your specific cost criteria. The Criteria class
provides the constants NO_REQUIREMENT, POWER_USAGE_LOW, POWER_USAGE_MEDIUM, and
POWER_USAGE_HIGH to describe the case where no criteria apply and to describe specific
power-consumption criteria. Listing 17-1 sets a single criterion for the LocationProvider
instance: that the location determination fall within ten meters of the probable location
of the device.

Table 17-1. Criteria for Location Provider Configuration

Criteria Units Default Value Setter Accessor

Horizontal Meters NO_REQUIREMENT setHorizontalAccuracy getHorizontalAccuracy
accuracy

Vertical Meters NO_REQUIREMENT setVerticalAccuracy getVerticalAccuracy
accuracy

Preferred Milliseconds NO_REQUIREMENT setPreferredResponseTime getPreferredResponseTime
response
time

Power int NO_REQUIREMENT setPreferredPowerConsumption getPreferredPowerConsumption
consumption

Cost boolean true (permitted setCostAllowed isAllowedToCost
allowed to incur cost

to the user)

Speed boolean false setSpeedAndCourseRequired isSpeedAndCourseRequired
and course
required

Altitude boolean false setAltitudeRequired getAltitudeRequired
required

Address boolean false setAddressInfoRequired isAddressInfoRequired
required

The LocationProvider class is a factory of LocationProvider instances, as well as a
factory of Location objects and a notifier of location and proximity information. You
obtain a specific LocationProvider instance through the class’s LocationProvider.
getInstance method, passing a Criteria instance that describes the restrictions that
should apply to the positioning work the LocationProvider will perform. Once you have

CHAPTER 17 ■ FINDING YOUR WAY504

the LocationProvider instance, you can determine either the current position or the last
known position (which may be null) by invoking the LocationProvider’s getLocation or
getLastKnownLocation methods, respectively. Many of the LocationManager methods can
throw exceptions—typically LocationExceptions for location-based failures, or
SecurityExceptions if the user or platform does not permit the operation.

■Tip Location determination can be a time-consuming process, and the LocationProvider implementa-
tion may block the current thread. For this reason, it’s best to invoke getLocation in a thread separate from
the main thread, to avoid stalling the user interface of your application. I show you how to do this in a real
MIDlet later in this chapter, in the “Locating the User” section.

The specific Location instance that the LocationProvider class’s getLocation method
returns provides the device’s location at a specific instance in time that the implementa-
tion determined using a specific location method. When you invoke getLocation, you
must pass a number indicating the maximum number of seconds your application is
willing to wait for the positioning request to complete.

From an instance of Location, you can use the following methods to determine more
about the device location:

• isValid: Returns true if the Location is valid with coordinates

• getQualifiedCoordinates: Returns the coordinates of the Location

• getTimestamp: Returns when the location data was collected

• getAddressInfo: Returns the street address (as an AddressInfo object)

• getCourse: Returns the heading in degrees relative to true north

• getSpeed: Returns the device’s current ground speed in meters per second at the
measurement time

• getLocationMethod: Returns a bit mask describing how the implementation
determined the location

• getExtraInfo: Returns any additional information about the request

Table 17-2 describes the bit field values that the getLocationMethod uses to report how
the implementation determined the device’s location.

CHAPTER 17 ■ FINDING YOUR WAY 505

Table 17-2. Location Methods and Location Bit Field Values

Method Bit in Bit Mask Asserted Note

Assisted by other means MTA_ASSISTED MTY_NETWORKBASED and
MTY_TERMINALBASED indicate assistance
source

No assistance used MTA_UNASSISTED

Angle of arrival MTE_ANGLEOFARRIVAL Angle of incident radiation on antenna used

Cell ID MTE_CELLID Cell tower IDs used in determination

Satellite MTE_SATELLITE Satellite system (e.g., GPS) used

Short range MTE_SHORTRANGE Bluetooth or other wireless network
system used

Time difference MTE_TIMEDIFFERENCE Time difference between received
terrestrial signals used

Time of arrival MTE_TIMEOFARRIVAL Time of arrival of received terrestrial
signals used

Network-based method MTY_NETWORKBASED Network used in assisting request

Terminal-based method MTY_TERMINALBASED Position determination used terminal-
based method

The Location API provides the Coordinates and the QualifiedCoordinates classes to
represent a specific place in space. A Coordinates instance is absolute, specifying lati-
tude, longitude, and elevation, with no error; QualifiedCoordinates extends the notion
of Coordinates by adding information regarding the horizontal and vertical uncertainty
in meters. The Coordinates class provides methods for obtaining coordinate values
(getAltitude, getLatitude, and getLongitude), as well as a generic conversion method
(convert) for converting between floating-point and string representations of a coordi-
nate. You can also obtain the azimuth and distance between coordinates by invoking
one Coordinates’ azimuthTo and distance methods, passing each a second coordinate.
Because the LocationProvider always provides real measurements, it will always return
a QualifiedCoordinate; you can determine the uncertainty of a specific location meas-
urement using the result’s getHorizontalAccuracy and getVerticalAccuracy methods.

Your application may require more than one location measurement; you can either
invoke a LocationProvider’s getLocation method repeatedly or register an object that
implements LocationListener to receive location events. Registering a LocationListener
with a LocationProvider via the setLocationListener method takes four arguments:

• listener: The LocationListener implementation that receives the location events

• interval: Specifies how often to determine the location and send location events to
the listener

CHAPTER 17 ■ FINDING YOUR WAY506

• timeout: Specifies how late a location may be after the interval elapses

• maximumAge: Specifies how old a location result is permitted to be when the event is
set (in seconds)

In a similar vein, your application can receive notification when the device is near to
a specific location by adding a ProximityListener using the addProximityListener method.
When you do this, you specify the instance that implements the ProximityListener inter-
face, the coordinates of the desired location, and a radius in meters around the desired
location that defines the region of proximity. Note, however, that while you can have
multiple proximity notifications with a single LocationProvider, you can only have a
single LocationListener.

Using the Location API to Manage Landmarks

The Location API includes two classes that let location-aware applications interact
with each other through a common store: Landmark and LandmarkStore. Any LBS-enabled
application with security privilege may add to this store, as well as view and modify
elements in this store. These two classes enable you to add a landmark in one applica-
tion—say, a travel guide—and access the same landmark from another application,
such as a turn-by-turn navigation application.

As the names suggest, the LandmarkStore contains representations of Landmark objects.
The LandmarkStore is persistent, although the actual implementation isn’t specified; it
may keep its records in an MIDP record store in flash memory or use another storage
scheme altogether.

The Location API requires any implementation to have at least one LandmarkStore,
called the default LandmarkStore, although the implementation may support additional
stores, which you access by name much like an MIDP record store. To access a store, you
must first get an instance of LandmarkStore, which you do by invoking its static method
getInstance and passing the name of the store you seek (or null for the default store).
You can obtain a list of stores by invoking the LandmarkStore.listLandmarkStores method,
which returns an array of Strings containing the name of each store on the device. The
LandmarkStore also provides the static methods createLandmarkStore and
deleteLandmarkStore for creating and deleting a store.

Like the PIM package I showed you in Chapter 7, the Location API supports cate-
gories for the LocationStore; a category is simply a String attached to entries in the store,
letting users group related items by that String (such as “Work” or “Vacation”). You use
the following methods to interact with categories in a store:

• getCategories: Enumerates the categories in a store, which returns an Enumeration

• addCategory: Adds a category

• deleteCategory: Deletes a category while retaining the records in the category

CHAPTER 17 ■ FINDING YOUR WAY 507

Note that you can associate a category with multiple entries in the store, but each
entry can be associated with only a single category.

The LandmarkStore provides the following methods for adding, deleting, and updating
a Landmark in the store:

• addLandmark: Adds a new landmark to the store

• deleteLandmark: Deletes a landmark in the store

• updateLandmark: Updates an existing landmark in the store

• removeLandmarkFromCategory: Removes a category assigned to a specific Landmark

Adding a Landmark requires you to pass both the instance of the Landmark to add and a
category name (or null to indicate no category).

You can search the existing Landmark instances in a store using one of the three
getLandmarks methods it defines, all of which return an Enumeration of Landmarks. Passing
no arguments to getLandmarks enumerates all Landmarks in the store. Passing getLandmarks
a category name (or null) and a bounding rectangle of latitudes and longitudes gives you
an enumerated list of the Landmark instances within that rectangle, while passing just a
category (or null) and a name returns the Landmark instances in the category you specify
that possess the name you provide.

A Landmark itself is merely a container that holds a user’s name, description, address
information, and coordinates; the class exposes these through accessors and mutators:

• getName and setName: Gets and sets the Landmark name

• getDescription and setDescription: Gets and sets the Landmark description

• getAddressInfo and setAddressInfo: Gets and sets the Landmark address, which is an
instance of AddressInfo

• getQualifiedCoordinates and setQualifiedCoordinates: Gets and sets the Landmark’s
location as an instance of QualifiedCoordinates

Understanding the Role That Security Plays in LBS

Many users are understandably very sensitive about the interrelationship between loca-
tion and network services; privacy is often a key concern. Like most optional APIs, the
Location API requires privilege on platforms such as MIDP 2.0 that support it. As such,
your application may require carrier signing in order to operate on mobile devices once
you distribute it. Table 17-3 lists the permission names and protected methods in the
Location API. The API provides permissions not just for determining location, but also for
accessing the store of landmarks.

CHAPTER 17 ■ FINDING YOUR WAY508

Table 17-3. Location API Permissions

Permission Name Methods Protected by This Permission

javax.microedition.location. LocationProvider.getLocation
Location LocationProvider.setLocationListener

LocationProvider.getLastKnownLocation

javax.microedition.location. Orientation.getOrientation
Orientation

javax.microedition.location. LocationProvider.addProximityListener
ProximityListener

javax.microedition.location. LandmarkStore.getInstance
LandmarkStore.read LandmarkStore.listLandmarkStores

javax.microedition.location. LandmarkStore.addLandmark
LandmarkStore.write LandmarkStore.deleteLandmark

LandmarkStore.removeLandmarkFromCategory
LandmarkStore.updateLandmark

javax.microedition.location. LandmarkStore.addCategory
LandmarkStore.category LandmarkStore.deleteCategory

javax.microedition.location. LandmarkStore.createLandmarkStore
LandmarkStore.management LandmarkStore.deleteLandmarkStore

For a user to want to use an LBS application, he or she must trust both the
application and the application’s vendor. Establishing this trust isn’t just about turning
on and off various MIDlet permissions like the ones in Table 17-3. When crafting your
application, you need to think carefully about why location data is relevant and what
risks your users undertake by sharing their location. The value you provide must be
greater than the risk—real or perceived—to the application user. In addition, your
application should treat location data just as it would any other private data, exposing
it only to the degree that is necessary for your application to function. An obvious
example would be a social-networking application; a user may well want to share his or
her location, but may also want to be able to exercise control over the degree to which
it is shared. For example, the user may want to control public display and share in the
information only with a circle of specific friends.

Using the Location API
Adding location information to news and weather applications is an obvious use of the
Location API, and it’s exactly what I do in this section with the WeatherWidget example
you’ve seen throughout the book. Based on the WeatherWidget using the kXML parser
from Chapter 13, the WeatherWidget MIDlet shown in Listing 17-2 includes the ability to
use your current location as the location for a weather report.

CHAPTER 17 ■ FINDING YOUR WAY 509

Listing 17-2. The WeatherWidget Class Using the Location API

package com.apress.rischpater.weatherwidget;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.location.*;

public class WeatherWidget extends MIDlet

implements CommandListener, Runnable {

private Form wxForm;

private Alert locatingAlert;

private StringItem wxItem;

private Command exitCommand;

private Command screenCommand;

private Command settingCommand;

private Command okCommand;

private Command backCommand;

private Command locateCommand;

private List locationList;

private TextBox locationTextBox;

private Alert cannotAddLocationAlert;

private WeatherFetcher fetcher;

private WeatherLocation wxlocation;

private WeatherLocationStore locationStore;

private void initialize() {

locationStore = new WeatherLocationStore();

String[] locations = locationStore.getLocationStrings();

try {

if (locations.length > 0)

wxlocation = locationStore.getLocation(locations[0]);

}

catch(Exception e){}

fetcher = new WeatherFetcher(wxlocation, this);

getDisplay().setCurrent(get_wxForm());

}

public void startApp() {

initialize();

}

CHAPTER 17 ■ FINDING YOUR WAY510

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

public void update() {

get_wxItem().setText(get_forecast());

try

{

locationStore.updateLocation(wxlocation);

}

catch(Exception e){}

}

public void determineLocation() {

getDisplay().setCurrent(get_locatingAlert());

Thread t = new Thread(this);

t.start();

}

public void commandAction(Command command, Displayable displayable) {

if (displayable == wxForm) {

if (command == exitCommand) {

exitMIDlet();

} else if (command == settingCommand) {

getDisplay().setCurrent(get_locationList());

}

} else if (displayable == locationList) {

if (command == locateCommand) {

determineLocation();

} else if (command == screenCommand) {

getDisplay().setCurrent(get_locationTextBox());

} else if (command == List.SELECT_COMMAND) {

int index = get_locationList().getSelectedIndex();

set_location(get_locationList().getString(index));

fetcher.cancel();

fetcher = new WeatherFetcher(wxlocation, this);

getDisplay().setCurrent(get_wxForm());

} else if (command == backCommand) {

getDisplay().setCurrent(get_wxForm());

}

CHAPTER 17 ■ FINDING YOUR WAY 511

} else if (displayable == locationTextBox) {

if (command == locateCommand) {

determineLocation();

} else if (command == backCommand) {

getDisplay().setCurrent(get_locationList());

} else if (command == okCommand) {

add_location(locationTextBox.getString());

getDisplay().setCurrent(get_locationList());

}

} else if (displayable == cannotAddLocationAlert) {

if (command == backCommand) {

getDisplay().setCurrent(get_locationList());

}

}

}

public String get_forecast() {

if (wxlocation == null) {

return "unknown forecast";

} else {

return wxlocation.getForecast();

}

}

public String get_location() {

if (wxlocation == null) {

return "unknown";

} else {

return wxlocation.getLocation();

}

}

public void set_location(String l) {

try {

wxlocation = locationStore.getLocation(l);

}

catch(Exception e) {}

get_locationTextBox().setString(l);

get_wxForm().setTitle(l);

}

CHAPTER 17 ■ FINDING YOUR WAY512

public void add_location(String l) {

wxlocation = new WeatherLocation(l);

try {

locationStore.addLocation(wxlocation);

} catch (Exception e) {

getDisplay().setCurrent(get_cannotAddLocationAlert());

}

locationList = null;

}

public Display getDisplay() {

return Display.getDisplay(this);

}

public void exitMIDlet() {

getDisplay().setCurrent(null);

destroyApp(true);

notifyDestroyed();

}

public StringItem get_wxItem() {

if (wxItem == null) {

wxItem = new StringItem("Forecast", get_forecast());

}

return wxItem;

}

public Form get_wxForm() {

if (wxForm == null) {

wxForm = new Form(get_location(), new Item[] {

get_wxItem()

});

wxForm.addCommand(get_exitCommand());

wxForm.addCommand(get_settingCommand());

wxForm.setCommandListener(this);

}

return wxForm;

}

CHAPTER 17 ■ FINDING YOUR WAY 513

public Alert get_locatingAlert() {

if (locatingAlert == null) {

locatingAlert = new Alert("Locating", "Finding your location",

null, null);

locatingAlert.setTimeout(Alert.FOREVER);

}

return locatingAlert;

}

public TextBox get_locationTextBox() {

if (locationTextBox == null) {

locationTextBox = new TextBox("Add Location", "", 80, 0);

locationTextBox.addCommand(get_locateCommand());

locationTextBox.addCommand(get_backCommand());

locationTextBox.addCommand(get_okCommand());

locationTextBox.setCommandListener(this);

}

return locationTextBox;

}

public List get_locationList() {

if (locationList == null) {

String[] locations;

locations = locationStore.getLocationStrings();

locationList = new List("Where", List.IMPLICIT, locations, null);

locationList.addCommand(get_screenCommand());

locationList.addCommand(get_backCommand());

locationList.addCommand(get_locateCommand());

locationList.setCommandListener(this);

}

return locationList;

}

public Alert get_cannotAddLocationAlert() {

if (cannotAddLocationAlert == null)

{

cannotAddLocationAlert = new Alert("Cannot Add Location");

cannotAddLocationAlert.setString("An error occurred adding➥

the location you entered. It has not been added.");

cannotAddLocationAlert.addCommand(get_backCommand());

}

return cannotAddLocationAlert;

}

CHAPTER 17 ■ FINDING YOUR WAY514

public Command get_settingCommand() {

if (settingCommand == null) {

settingCommand = new Command("Settings", Command.OK, 1);

}

return settingCommand;

}

public Command get_okCommand() {

if (okCommand == null) {

okCommand = new Command("OK", Command.OK, 1);

}

return okCommand;

}

public Command get_locateCommand() {

if (locateCommand == null) {

locateCommand = new Command("Use this location", Command.ITEM, 1);

}

return locateCommand;

}

public Command get_exitCommand() {

if (exitCommand == null) {

exitCommand = new Command("Exit", Command.EXIT, 1);

}

return exitCommand;

}

public Command get_screenCommand() {

if (screenCommand == null) {

screenCommand = new Command("Add Location", Command.SCREEN, 1);

}

return screenCommand;

}

public Command get_backCommand() {

if (backCommand == null) {

backCommand = new Command("Back", Command.BACK, 1);

}

return backCommand;

}

CHAPTER 17 ■ FINDING YOUR WAY 515

private class LocationUpdater implements Runnable {

String location;

public LocationUpdater(String l) {

location = l;

}

public void run() {

add_location(location);

set_location(location);

getDisplay().setCurrent(get_locationTextBox());

}

}

public void run() {

Criteria criteria = new Criteria();

LocationProvider lp;

StringBuffer cl = new StringBuffer();

String location;

criteria.setCostAllowed(true);

criteria.setAddressInfoRequired(true);

criteria.setHorizontalAccuracy(100);

criteria.setVerticalAccuracy(100);

try {

lp = LocationProvider.getInstance(criteria);

Location l = lp.getLocation(60);

if (l != null && l.isValid()) {

AddressInfo ai = l.getAddressInfo();

QualifiedCoordinates c = l.getQualifiedCoordinates();

if (ai != null) {

cl.append(ai.getField(AddressInfo.CITY));

cl.append(", ");

cl.append(ai.getField(AddressInfo.STATE));

cl.append(", ");

cl.append(ai.getField(AddressInfo.COUNTRY));

} else {

int r = QualifiedCoordinates.DD_MM;

String s;

cl.append("GPS Coordinates, ");

s = QualifiedCoordinates.convert(c.getLatitude(), r);

cl.append(s);

cl.append(", ");

CHAPTER 17 ■ FINDING YOUR WAY516

s = QualifiedCoordinates.convert(c.getLongitude(), r);

cl.append(s);

}

}

} catch(Exception e) {};

if (cl.length() > 0) {

location = cl.toString();

} else {

location = "Could not determine location.";

}

getDisplay().callSerially(new LocationUpdater(location));

}

}

The core UI implementation remains the same, but I made a few changes for clarity.
The most obvious change is that I renamed the Location, LocationStore, and LocationParser
classes to WeatherLocation, WeatherLocationStore, and WeatherLocationParser, respectively.
This isn’t strictly necessary, as I could resolve the naming collision between my use of
Location as a class name throughout the book and the Location API’s Location class using
package qualifiers in the WeatherWidget class and elsewhere, but doing so may be confusing.

To support the location features, I added the locatingAlert to provide status while
the MIDlet uses the Location API. I also added the Command instance locateCommand to the
locationList and locationTextBox screens. Using the same scheme for organizing UI code
that NetBeans imposes, I added lazy constructor-fetcher methods for these items. I could
have added them directly using the NetBeans GUI builder, but small changes like this fre-
quently go faster if you edit the code by hand.

■Caution Choosing whether to rely on the NetBeans GUI builder or hand-build GUIs (in whole or in part) is
a difficult decision. I find that using NetBeans to lay out my GUI gives me a way to rapidly prototype an appli-
cation’s flow, although it’s sometimes faster to make small tweaks by hand. For this book, I chose to use the
GUI builder for initial examples and then hand-edit those examples to minimize the amount of additional
code that gets added to a project (either by me or NetBeans itself). Doing this can be dangerous, because
the NetBeans code generator doesn’t like you changing its autogenerated code. In practice, it’s best to either
rely on a code-generation tool or build code by hand, and not mix the two approaches.

To show you the location that the MIDlet determines with the Location API, I
tweaked the implementation of the set_location method slightly. In addition to updating
the MIDlet’s wxlocation field, the set_location method also sets the locationTextBox’s
contents to the location the MIDlet has determined with the API.

CHAPTER 17 ■ FINDING YOUR WAY 517

The WeatherWidget uses a separate thread to obtain your position, although the code
for that thread is within the WeatherWidget class itself rather than a separate class. The
determineLocation method creates and starts this thread in response to you choosing
“Use this location” from the list of locations or the location-entry screen. As this thread
finishes execution, it schedules a Runnable task on the main thread to add the new loca-
tion to the list of locations, and it sets the MIDlet to show the locationTextBox so you can
see the results of the location request.

Locating the User

The MIDlet uses a one-shot positioning request to determine your location; the location
thread does this work when you invoke determineLocation by spawning a new thread that
executes the run method in Listing 17-2. This code is an extension of the pseudocode you
saw in Listing 17-1; it has only a few important differences.

The application sets specific criteria for the location request, indicating that it’s OK
for the location request to incur cost, that an AddressInfo should accompany the request,
and that it’s OK to set a relatively high margin of error (100 meters). The run method
validates the resulting Location instance, using the resulting AddressInfo structure if it’s
available to provide the WeatherLocation structure with a real city, state, and country, just
as if you’d entered this information directly. In most cases, however—and certainly in the
Sun Java Wireless Toolkit—all that you receive is a QualifiedCoordinates instance, and the
code just uses that instead, building up a String that consists of the tag GPS Coordinates
followed by the latitude and longitude. This is admittedly a hack, but a reasonable one: it
uses the existing implementation of the other classes in the MIDlet and permits me to
focus on showing you the Location API, rather than how to refactor the other classes to
work with either coordinate data or its human-usable counterpart.

Once run builds up the String containing the location data, it uses a separate Runnable
to update the UI on the main thread. This isn’t strictly necessary, because the locatingAlert
obstructs the locationTextBox’s input anyway, so there’s no possibility for conflict between
the two threads. However, it demonstrates to you how to schedule an action on the main UI
thread. The private inner class LocationUpdater actually performs the work necessary to
update the UI, which could have been an anonymous class, since it only occurs here. Its
constructor takes the new location, while its run method adds the new location to the loca-
tion list, sets the current location to the new location, and changes the display from the
locationAlert to the locationTextBox, which shows the determined location.

Simulating Location API Data in the Sun Java Wireless Toolkit

The Sun Java Wireless Toolkit supports the Location API in simulation; you can specify
either a fixed location or a script of locations that the emulator will use over its lifetime.
Figure 17-1 shows the configuration screen (select MIDlet ➤ External Events from the
emulator’s main menu, and choose the Location tab).

CHAPTER 17 ■ FINDING YOUR WAY518

Figure 17-1. Simulating the device location

As you can see from the figure, you can choose to simulate not just the device posi-
tion, but also its orientation, altitude, speed, and course. You can also simulate location
failures by changing the Location Provider combo box, letting you test your application
in a predictable and repeatable way.

While specifying your position manually is a good way to test simple applications
that use one-shot positioning, you’ll want to vary the simulated position over time when
testing more complex applications (especially those that use multiple location requests
or proximity detection). You can do this using a simple script in XML that includes the
following two XML tags:

• waypoints: This top-level tag contains a list of individual waypoint items, each a
separate position.

• waypoint: This tag contains a specific position and timestamp using the time (in
milliseconds), latitude, longitude, and altitude (in meters) attributes.

Listing 17-3 shows a simple example.

CHAPTER 17 ■ FINDING YOUR WAY 519

Listing 17-3. A Simple Script for Simulating Motion in the Sun Java Wireless Toolkit

<?xml version="1.0"?>

<waypoints>

<waypoint time="0"

latitude="37.87" longitude="-122.22" altitude="10" />

<waypoint time="50000"

latitude="38.0" longitude="-122.30" altitude="12" />

</waypoints>

By clicking the Browse… button and selecting a script with waypoint elements, you
can then replay the position data within the Sun Java Wireless Toolkit using the playback
controls at the bottom of the Location pane in the Location tab.

■Tip Need a lot of test data? GPS receivers with USB or serial ports are cheap, and nearly all of them out-
put data in a standard format dictated by the National Marine Electronics Association (NMEA). Using one, you
can hike, drive, or bicycle around town and capture position information on a laptop computer, then convert
the data to a list of waypoint entries to use in testing your application. NMEA uses a comma-delimited,
plaintext format; converting the file to use with the Sun Java Wireless Toolkit can be as simple as writing a
quick Emacs macro or a little Java command-line tool.

Wrapping Up
The optional Location API provides a general wrapper around the wide number
of positioning technologies that devices use today. Contained within the javax.
microedition.location package is a LocationProvider class that permits you to obtain
the device’s location either once or as a sequence in time; you can also use it to obtain
an event when the device approaches some location.

The LocationProvider class is a factory for both LocationProvider and Location
instances, as well as a notifier of locationUpdated, proximityEvent, providerStateChanged,
and monitoringStateChanged events. To use the interface, you obtain an instance of
LocationProvider through its getInstance static method, passing a Criteria object that
describes your requirements for the location information you seek. You can then register
LocationListener or ProximityListener implementations with the LocationProvider
instance to receive continuous location information or proximity events, or simply
determine the location of the device as needed by invoking its getLocation method. All
of this should be done on a separate thread, of course, to avoid stalling the UI thread.

CHAPTER 17 ■ FINDING YOUR WAY520

The API represents location data as instances of the Location class, which bear fields
representing the coordinates, street address, timestamp, course, speed, and means of
location for the instance. To standardize access to this data, the API also includes classes
such as AddressInfo and QualifiedCoordinates, which represent a street address and loca-
tion with an associated error circle, respectively.

The API also permits different applications (potentially including the embedded
applications on the device) to share location data with each other through one or more
landmark stores. You access the landmark stores through the LandmarkStore class, which
provides static methods for creating and removing stores from the persistent file system
as well as accessing a specific store. Once you create an instance of LandmarkStore, you
can use it to enumerate the contents of a store, obtaining individual Landmark objects that
represent a specific Location instance and user-supplied data such as the name, descrip-
tion, and category for the instance.

CHAPTER 17 ■ FINDING YOUR WAY 521

Seeking a Common
Platform

The balkanization of the Java ME platform is undoubtedly its weakest point. As you’ve
seen in the chapters throughout this part, a number of optional APIs enable you to
create compelling applications for the platform. Unfortunately, it’s often difficult to
determine which devices support which of these APIs, and if you use more than a few
optional APIs in your application, you’ll need to manage the combinatorial explosion
that results from the number of different optional APIs that may or may not be on tar-
get devices in the market. This fragmentation is an undesirable side effect of the JCP;
as vendors attempt to extend Java ME to support their device’s features, they propose
new extensions to the Java ME platform. The JCP works reasonably well in ensuring
that when different vendors differentiate products, the new features are available via a
common API. However, it suffers from the presence of too many optional APIs from
which to choose. Many organizations active in the JCP recognize this problem and have
proposed several JSRs to address this problem.

In this chapter, I discuss the Java ME fragmentation problem in more detail, helping
you understand both why it occurs and what you can do to plan around it in your devel-
opment efforts. I talk more about the actual contents of the typical JSR, because for you
to become truly fluent as a Java ME developer, you need to be able to understand what a
JSR does and does not provide. I then examine in detail the three key JSRs that address
Java ME fragmentation today: JSR 185, which defines the Java Technology for the Wireless
Industry (JTWI); JSR 248, which defines the Mobile Service Architecture (MSA) 1.0; and
JSR 249, which defines MSA2.

Understanding the Role JSRs Play
in Fragmentation
As you saw in Chapter 1, Java ME’s roots as a platform for small computing devices drove
its creators to take a minimalist, lowest-common-denominator approach in which the
basic platform would contain little functionality. By adding new modules to the platform,

523

C H A P T E R 1 8

Sun and other vendors could provide additional features in a predictable and consistent
manner. The introduction of configurations, profiles, and packages lets Sun provide
versions of Java ME that meet the capabilities of specific classes of devices, and it lets
developers target those devices.

Contributing to Fragmentation and Unification

Sun licenses Java ME to an open market of platform and device vendors, many of whom
want to offer additional software or hardware features to differentiate their products. The
JCP addresses this by letting competing vendors work together to describe extensions to
Java ME (and Java as a whole). For example, prior to the FCOP, a number of handsets on a
few US carriers had proprietary, file system–access interfaces based on Java SE. While
nothing was architecturally wrong with these interfaces, the very fact that one carrier
supported handsets from multiple vendors with different interfaces to access files on
the file system was a big problem: if you wanted to achieve a wide market share on that
carrier with an application that required file-system access, you needed to write and
distribute multiple versions of your application. The FCOP addressed this by providing a
single API that all platform vendors offer. Now you only need to write your code using the
API that FCOP provides in order to run on any device that provides file-system access.

This solution works well for single API sets, such as the FCOP or the MMAPI, but
falls short when addressing the fact that different device vendors offer differing sets of
optional APIs. If you’re writing a single application that requires only one or two optional
APIs, this may not be a large issue for you, but increasingly complex mobile applications
require the support of more than one or two optional APIs. These applications are often
at risk of not being able to gain the market share that can support their development,
simply because there’s little clarity regarding which optional APIs platform vendors will
actually support out of the plethora of those that exist.

An obvious solution to the problem is to apply the configuration/platform/package
model that Sun uses to describe Java ME versions to the optional packages, defining
new configurations and platforms. In essence, this is exactly what JCP members have
done through other JSRs. Some JSRs—such as the ones I’m discussing in this chapter,
which are JSR 185, JSR 248, and JSR 249—don’t describe optional APIs; instead, they
describe collections of optional APIs and provide additional clarification as to the
acceptable behavior of specific optional APIs where necessary. In essence, these JSRs
attempt to unify the platform through the prescription that a set of optional APIs be
required in order for a particular name or label to apply. For example, as you’ll see in the
next section, “Understanding the JTWI,” a JTWI-compliant device described by JSR 185
must include CLDC 1.0, MIDP 2.1, and WMA 1.1; it may also include MMAPI 1.1. Device
vendors can—and should—choose to meet the JTWI standard in order to make their
products palatable to the market, and carriers can require that devices meet the JTWI
standard prior to permitting them on their network.

CHAPTER 18 ■ SEEKING A COMMON PLATFORM524

Admittedly, this solution suffers from the same problem that it’s trying to cure: there’s
no set individual or organization that can actually dictate to vendors exactly which JSRs
they must support. Consequently, these attempts at unification are themselves not per-
fect; they rely on market forces for their success. However, the expert groups behind
these JSRs often include key manufacturers and operators—companies including Nokia,
Vodafone, Motorola, Orange, and Sun—lending credibility and momentum to these
efforts to stem platform fragmentation.

Reading a JSR

Since you’ve made it this far in the book, I’ll let you in on a little secret: a lot of what
I’ve told you throughout this book is available in the JSRs that document the APIs
you’ve read about.1 In fact, Java ME changes so quickly that in practice, it’s better for
you to be familiar with the JSRs that define the platform than for you to have simply
read a book or two on Java ME. (Of course, there’s no substitute for actual experience
writing code for the platform, too!) That way, as vendors introduce new APIs for
emerging technologies, you’ll be prepared to learn about the APIs and how to use
them in your application.

Broadly speaking, most JSRs have the following contents (often with these titles):

• Introduction: States the purpose for the JSR. This introduction usually tells you
the business case for the JSR; in the case of an optional API, it will tell you why the
expert group that drafted the JSR felt the Java developer community needed the
optional API.

• Contributors: Lists the companies (and often people) behind the creation of
the JSR.

• Glossary: Defines domain-specific terms that the JSR uses, and often recaps
the definitions of must, must not, should, should not, and may, as described in
Request for Comments (RFC) 2119, “Key Words for Use in RFCs to Indicate
Requirement Levels.”

• Packages: Describes the packages the JSR introduces to the Java environment.

• APIs: Describes the classes and interfaces in the packages the JSR introduces.

• Samples: Shows how to use the APIs the JSR introduces. If you’re lucky, the JSR
will contain samples.

CHAPTER 18 ■ SEEKING A COMMON PLATFORM 525

1. That said, I’ve tried to give you practical experience in applying the Java ME APIs, as well as make the
material a little less dry than Atacama Desert.

Many JSRs actually contain the full package documentation in HTML from Javadoc;
some JSRs, such as JSR 135, provide all of their information in that form. Consequently,
to use the information in a JSR successfully, you need both some domain experience
about the problem the JSR is trying to solve, as well as a clear understanding of the
packages the JSR defines and the classes those packages contain.

JSRs themselves have a clear life cycle, which includes the following phases:

1. Draft: JSRs frequently undergo several early drafts, many of which are reviewed
privately by the expert group that puts forth a JSR. During this phase, you may not
even know that the JSR exists; if you do, you must recognize that its contents will
almost certainly change at some point in the future.

2. Public review: During this time, anyone may see or comment on a JSR by address-
ing comments to the expert group responsible for the JSR. This phase ends during
an approval ballot conducted among members of the JCP; if a document does not
pass the approval ballot, the expert group may submit a revised version that
addresses the community’s concerns. Once a JSR has passed the public review
stage, it’s likely to undergo little change in the future, except for maintenance.

3. Maintenance: Once a JSR is accepted by the community, the expert group provid-
ing the JSR may make minor changes to it to address items that need correction.

4. Dormancy: A JSR that no longer has an expert group behind it is said to be dor-
mant. It’s likely that dormant JSRs describe APIs that do not have widespread
support among the community, or APIs that have been clearly superseded by
newer initiatives.

Understanding where a JSR is in its life cycle can help you determine whether or
not you can depend on the APIs it provides in your product planning. For example,
basing a product on an API described in a JSR in the early draft phase may be danger-
ous. Before basing a product on a dormant JSR, it’s a good idea to understand why that
JSR is dormant.

Over time, I’ve come up with an approach that enables me to learn and work with
the information in a JSR fairly quickly. The trick is to not only look at the APIs, but also to
try to gain some domain experience about the problem the API designers are trying to
solve. For example, when looking at the SATSA-CRYPTO API in JSR 177, I spent some time
looking at the various technologies in the smart-card industry, even though the project I
was working on wasn’t likely to use a specific vendor. I also spent some time looking at
other APIs that other communities have developed that meet the same objective; seeing
how different people approach the same problem of abstracting access to a resource can
shed light on the decisions made for the implementation that the JSR actually docu-
ments. Always keep in mind that at some level, the APIs a JSR defines are really just an
abstraction of some physical system; it’s easy to get so wrapped up in the class and object
model that you forget the real-world underpinnings.

CHAPTER 18 ■ SEEKING A COMMON PLATFORM526

Another thing that can help you understand a JSR is to draw class diagrams for the
interfaces and classes the JSR’s packages provide—even if the JSR authors helpfully pro-
vide the diagrams anyway. If you can read through the description of a set of classes and
methods and produce a diagram of the relationships between those classes and methods,
you’re well on the way to actually understanding how they work together.

A word of warning is in order, however. JSRs are in English, a natural language
fraught with nuance and uncertainty. Like any software system specification, it’s difficult
to eliminate ambiguity when working with natural languages; worse, JSRs are often
meant to be descriptive of a number of actual implementations, and often aren’t pre-
scriptive enough to cover all the possible ambiguities. JSR 135, which describes the
MMAPI, is a painful illustration; you need only consider the number of caveats I offered
in Chapter 16’s “Capturing Media” section to realize that the JSR isn’t the whole story.
Some JSRs actually try to address the shortcomings of other JSRs; the two JSRs describing
the MSA provide an example of JSRs attempting to mend flaws in previous JSRs.

Sun (and occasionally other companies) provide reference implementations (RIs)
to vendors for key packages, including the MMAPI. The RI is often the implementation
of the package in one or more JSRs that finds its way into the Sun Java Wireless Toolkit
and corresponding NetBeans Mobility Pack; Sun may also make the RI available to
vendors as a starting point on which to base their implementation. Additionally, Sun
also makes Technology Compatibility Kits (TCKs) available for many of these key
optional APIs; vendors can use the TCK’s tests as a way to determine the degree to
which their implementation matches the RI. Of course, all of this assumes that the RI
is a perfect implementation of a perfect JSR that has no ambiguity (in either the eyes
of the RI implementors or you!)—a rather unlikely confluence of events in today’s
software world.

The solution, of course, as I’ve urged you throughout this book, is to implement
and test your assumptions about any API you use. Although it’s extremely rare for an
API or a tool to be broken or nonexistent, it’s entirely possible that some element of
the documentation around an API will not be quite clear (either to you or to someone
who based his or her implementation on the documentation). If you’re learning a new
API, building a prototype of an application that uses key parts of that API is a good
way to both cement your understanding of the API and determine if it’s as solid as it
ought to be. Furthermore, you can use that same prototype on different device targets
to explore any nuances of the device implementation of the API. As in most things,
there’s really no substitute for experience.

Dealing with Fragmentation on Your Own

You may find yourself in the uncomfortable position of having to develop an application
using APIs that have no JSR; worse, the APIs may be different on different platforms. This
can happen, especially when working closely with device manufacturers or when relying
on cutting-edge features that the community just hasn’t reached unity on. In that case,

CHAPTER 18 ■ SEEKING A COMMON PLATFORM 527

one thing you can do is provide an isolation layer that abstracts the nonstandard API, and
implement to that isolation layer. This lets you swap in and out implementations of the
isolation layer that conform to specific API implementations, so that as you port your
code from one nonconforming device to another, you minimize the changes in your
application to the nonstandard API.

If the interface consists solely of logic, you can also make a reference implementa-
tion yourself; for example, consider how you could use the kXML parser on devices that
do not support XML parsing through JSR 172. Of course, you may be able to do this to
make up for deficiencies in devices that don’t provide implementation for a specific API,
too. This approach can also help you when working with the Sun Java Wireless Toolkit,
because you may not be able to run your application without the optional API you’re
missing in emulation, making it more difficult to develop and debug your application.

You should also consider becoming part of the solution by joining the JCP and par-
ticipating in the standards process yourself.

Understanding the JTWI
The JTWI, defined by JSR 185, was one of the first attempts to unify the optional APIs
available for Java ME devices—specifically, mobile phones. Finalized by 2003, it actually
requires very little above and beyond the CLDC/MIDP stack that most Java-enabled
mobile phones were including at the time. It was a crucial milestone, however, in that it
set out some clear goals for Java ME implementations of mobile phones.

On the hardware front, the JTWI makes some strong recommendations, the following
being chief among them:

• Color screen: The device must have a minimum screen size of 125✕125 pixels,
with a pixel aspect ratio of 1:1. The screen must be color, with a color depth of at
least 12 bits.

• Heap: The device must have at least 256KB of heap available to the Java VM.

Thus, while it’s possible you’ll encounter a JTWI device with a smaller screen or heap,
it’s extremely unlikely.

JTWI devices must meet some rigid specifications, including the following:

• JAR file size: The AMS must be able to support JAR files of at least 64KB.

• JAD file size: The AMS must be able to support JAD files of at least 5KB.

• Record store: The record store implementation must be able to store at least 30KB.

• Threads: The Java VM must permit a MIDlet suite to create a minimum of 10
simultaneously running threads.

CHAPTER 18 ■ SEEKING A COMMON PLATFORM528

• JPEG support: The Image class must be able to support JPEG images as well as PNG
images required by MIDP 2.0.

• GSM SMS: The WMA implementation must support GSM SMS, including the
ability to deliver SMS messages to MIDlets via the push registry.

• HTTP 1.1: Each device must provide HTTP 1.1 for all supported media types, as
required by MIDP 2.0.

In addition, the JTWI requires CLDC 1.0 or 1.1, MIDP 2.0, and WMA 1.1. Vendors may
include MMAPI 1.1 as well.

Examining the JTWI Required Elements

To reach the lowest tier of devices (and thereby encompass a large number of target
devices), the JTWI requires relatively few packages. However, to ensure compatibility
between those devices, the JTWI requires the following elements:

• CLDC: The JTWI requires CLDC 1.0, as defined in JSR 30. Vendors may substitute
CLDC 1.1, as defined in JSR 139, because CLDC 1.1 is a strict superset of CLDC 1.0.
The CLDC—either 1.0 or 1.1— provides a robust core foundation upon which all
applications depend (see Chapter 2).

• MIDP: The JTWI requires MIDP 2.0, as defined in JSR 30. This provides the UI,
persistent store, and communications layer that many applications require (see
Chapters 2, 3, 4, and 5).

• WMA: The JTWI requires WMA 1.1, as defined in JSR 120—including SMS—to
enable applications to take advantage of the wireless network on which JTWI-
compliant devices operate (see Chapter 14).

The JTWI provides some clarification for each of these JSRs, as I note in the previous
section. The curious (or excessively pedantic) should refer to JSR 185 for details.

Examining the JTWI Optional Elements

At the time JSR 185 was written, multimedia interfaces were just becoming available
on some mid- and high-tier mobile handsets. To encourage adoption of the MMAPI
(which I described in Chapter 16) where it can be made available, the JTWI requires
that if a device supports multimedia access through Java ME, it be made available
through MMAPI 1.1. If an MMAPI implementation exists on a JTWI device, the device
must support the following features:

CHAPTER 18 ■ SEEKING A COMMON PLATFORM 529

• HTTP: The device must support HTTP 1.1 download (not streaming) of all
supported media formats. This is because the MMAPI itself does not support
any mandatory protocols, nor does it specify which media types require a specific
protocol.

• MIDI: The device must support MIDI file playback. This is because many games
are enhanced by suitable audio; MIDI provides a compact representation of that
audio. In addition, the device must also support the VolumeControl for MIDI
playback.

• Tone sequences: The device must support tone sequences as an additional route to
provide audio for games and other applications.

• Snapshot format: If the MMAPI implementation supports the video feature set and
video image capture, the snapshot format must include JPEG encoding as an
encoding option.

Frustratingly, there’s a lot that the JTWI doesn’t say about the MMAPI, such as
whether it should support streaming and digital audio formats such as WAV or MP3.
By setting the bar as low as it does, though, it includes many commercially available
devices, and it has helped the Java ME developer community standardize many
aspects of multimedia development for wireless games.

Understanding the MSA
The JTWI is an excellent first step in unifying Java ME APIs for the mobile-phone market.
However, it is seriously dated; the fast pace of hardware and software development for
mobile devices guaranteed that by the time the JTWI would be widely adopted and refer-
enced, it would not address further fragmentation from additional features such as the
FCOP, additional MMAPI and SVG support, and other features such as Bluetooth and the
Mobile 3D Graphics API, neither of which I have even discussed at any length this book.
Consequently, the Java ME community has produced JSRs 248 and 249 to define the
MSA—a platform architecture more broad than the one that the JTWI defines, yet still
targeted at high-volume devices. Moreover, while the JTWI largely captured the state of
the Java ME device market at the time of its acceptance, the MSA aims to describe not
only features that are already available on some devices, but also those that experts
expect will be prevalent in the foreseeable future.

There are already two versions of the MSA: MSA 1.0, which JSR 248 defines; and
MSA2, which JSR 249 defines. MSA 1.0 is fully accepted by the JCP; the maintenance
release of JSR 248 was released as I wrote this chapter. By comparison, JSR 249 is a wee
little thing; while its predecessor JSR 248 was being approved, JSR 249 was in private draft

CHAPTER 18 ■ SEEKING A COMMON PLATFORM530

state and not even visible to the entire community. However, it’s worth discussing both,
because it’s not clear which the market will eventually adopt, and both provide an excel-
lent framework for discussing the immediate future of the Java ME platform.

Like the JTWI before it, the MSA defines a collection of APIs that conformant devices
must support, and it provides specific clarifications regarding ambiguities surrounding
many of those APIs. Together, MSA 1.0 and MSA2 define five different permutations of
optional Java ME APIs for mass-market phones using technologies and APIs readily avail-
able either now or in the near future.

Understanding MSA 1.0

The efforts to craft MSA 1.0 began some two years after the completion of the JTWI, and
you can see this clearly when you look at the number and types of optional interfaces it
requires for conformance. The JSR defining MSA 1.0 specifies mandatory components
and requirements that must be fulfilled, as well as conditionally mandatory requirements
that must be fulfilled if specific conditions set out in the JSR are met.

The JSR contains five key sections that describe the mandatory component JSRs,
additional clarifications about component JSRs, additional platform requirements
above and beyond the JSRs, various recommendations for developers, and a roadmap
detailing a tentative future for Java ME and the MSA. The expert group behind the
specification consists of major players in the Java ME market, including hardware
manufacturers such as Motorola, Nokia, Research In Motion, Samsung, Siemens,
and Sony, as well as network operators including Cingular Wireless (now part of AT&T
Mobility), NTT docomo, Orange, Sprint, T-Mobile, and Vodafone, as well as of course
Sun. The specification defines two platforms: MSA and MSA Subset. (To avoid confu-
sion with MSA2 that JSR 249 defines, I’ll refer to these as MSA 1.0 and MSA Subset 1.0.)
As the name suggests, MSA 1.0 is a full software stack, while MSA Subset 1.0 eliminates
several optional software packages for lower-cost, less-powerful devices. In order to
meet the requirements of either of these platforms, a compliant implementation must
implement or comply with

• JSRs: It must implement every JSR indicated as a required component for the plat-
form as specified by MSA 1.0 or MSA Subset 1.0

• Additional clarifications for JSRs: It must comply with any additional MSA 1.0 or
MSA Subset 1.0 requirements as detailed in the JSR’s relevant “Additional Clarifica-
tions” section

• Additional requirements: It must comply with all of the additional MSA require-
ments set out in JSR 248

CHAPTER 18 ■ SEEKING A COMMON PLATFORM 531

Some requirements are common to both MSA 1.0 and MSA Subset 1.0, including
requirements in the following categories:

• JTWI: An MSA-compliant implementation must meet the requirements of the
JTWI.

• Screen: An MSA-compliant implementation should have a screen with at least
128✕128 pixels with 16 bits of color supporting 65,536 colors. (It’s possible you’ll
encounter one that doesn’t, but this is unlikely.)

• Heap: The minimum permitted Java heap available to a MIDlet should be at least
1024KB; the MSA recommends that the heap should be at least 2048KB.

• JAD and JAR file restrictions: The minimum supported MIDlet JAR size is 300KB.
The minimum supported MIDlet suite JAD file is 10KB. The platform must support
JAD manifests with up to 512 attributes.

• Record store: The minimum supported record store size per MIDlet suite is 64KB,
and each MIDlet suite may use a minimum of 10 separate record stores.

• Security: The MSA defines a clear correspondence between optional package APIs
requiring permission and the name of the relevant permission.

• System properties: The MSA defines and provides a common reference for the
system properties that you use to determine the availability and version of specific
APIs (e.g., the FCOP).

• Network protocols: HTTP, HTTP over Secure Sockets Layer (SSL) 3.0, TCP, SMS,
and MMS are mandatory protocols that MSA implementations must provide.
In addition, MSA 1.0 (not MSA Subset 1.0) must provide support for the Session
Initiation Protocol (SIP). Other protocols, such as HTTP over TLS, TCP server sup-
port, TLS 1.0, and UDP, are optional. Some protocols, including several profiles of
Bluetooth and Infrared Data Association (IrDA), are conditionally mandatory.

• Content formats: MSA requires support for a number of common content formats,
including PNG, JPEG, the Mobile 3D Graphics API, SVG Tiny 1.1, WAV in 8kHz
pulse-code modulation (PCM) format, Adaptive Multi-Rate Narrow Band (AMR-
NB) audio compression, MIDI, and Scalable Polyphony MIDI (SP-MIDI) audio.

Examining MSA Subset 1.0

To be considered MSA Subset 1.0–compliant, a product must provide the following
packages:

CHAPTER 18 ■ SEEKING A COMMON PLATFORM532

• CLDC 1.1 and MIDP 2.1: Provide the foundation platform as specified in JSR 139
and JSR 118.

• FCOP and PIM: Provide access to the native file system and personal information
manager. The FCOP must provide properties giving the default URL of the storage
directory for camera-captured photos and videos, wallpaper images, ring tones, music,
and voice recorders, and a private storage directory for each MIDlet. PIM must include
support for the PIMList subclasses ContactList, ToDoList, and EventList in read-only,
read-write, and write-only modes. ContactList must support fax, home, mobile,
preferred, and work numbers, as well as street-address, e-mail, note, URL, and photo
fields. ToDoList must include the summary, priority, completion date, due, and com-
pleted fields. As with other portions of MSA Subset 1.0, these apply to MSA 1.0 as well.

• Bluetooth: If the device supports Bluetooth technology, it must include the
Bluetooth API based on the GCF that JSR 82 describes. With this, applications
can exchange media between devices using Bluetooth.

• MMAPI: The MMAPI must be included to permit developers to create compelling
multimedia applications. Implementations must support the same resolutions for
image capture from the image sensor as the system camera application.

• Mobile 3D graphics: Mobile 3D graphics are an important element for games, some
rich GUIs, and other graphics-intensive applications. A compliant device must
provide the interface that JSR 184 specifies.

• WMA: A compliant device must provide WMA 2.0, as messaging is a key phone
feature that must be available to Java ME developers (see Chapter 14).

• SVG: Graphics remain a key component of today’s and tomorrow’s mobile
applications; including support for JSR 226 ensures that applications can
display SVG images.

Examining MSA 1.0

MSA 1.0 builds on MSA Subset 1.0 by adding the following packages:

• J2ME Web services: The J2ME Web Services Specification that JSR 172 describes—
both the XML parser and the web services optional package—must be included to
facilitate a standard way to support web services (see Chapter 13).

• Security and trust services: SATSA is an important element in a wide variety of
mobile applications and services. SATSA-CRYPTO must be provided, while support
for the APDU interface within SATSA and SATSA-PKI are conditionally mandatory
(see Chapter 15).

CHAPTER 18 ■ SEEKING A COMMON PLATFORM 533

• Location: The Location API that JSR 179 describes must be included if the device
has a GPS receiver or other position-location acquisitions subsystem to enable
location-based applications.

• SIP: SIP is the protocol of choice for IP-based telephony networks to establish and
manage voice call handling. MSA 1.0 requires that a compliant device includes the
package that enhances GCF support by providing SIP as JSR 180 specifies is
required.

• Content handling: The Content Handler API that JSR 211 defines permits one Java
application (or MIDlet) to launch another based on the content types it supports.

• Advanced multimedia: The Advanced Multimedia Supplements (AMMS) API,
which I mention briefly in Chapter 16, must be included to permit developers to
use enhanced camera support, 3D audio, support for an internal radio, and supe-
rior image encoding and processing capabilities.

• Internationalization: MIDlets and applications for Java ME are hard to internation-
alize; there’s no good way to isolate localized application resources from the source
code or dynamically identify those resources at runtime. JSR 238 provides a stan-
dard means for accomplishing this, and must be included.

Evolving for the Future: MSA2

JSR 249 defines MSA2, a collection of requirements that is backward compatible with
MSA 1.0. Written by an expert group with substantially the same composition as JSR 248,
MSA2 addresses changes in the Java ME marketplace that have occurred between the
time JSR 248 development started and ended. It defines three platforms:

• MSA2 Limited: For low-tier, mass-market phones.

• MSA2 Subset: Targeted for mid-tier, mass-market phones, this is a superset of
MSA2 Limited with additional requirements.

• MSA2: Targeted for high-tier devices, this is a superset of MSA2 Subset with addi-
tional requirements.

Like JSR 248, JSR 249 defines these platforms using the notion of mandatory require-
ments and conditionally mandatory requirements, and it not only specifies a collection
of JSRs that each platform must support, but it also provides additional requirements
about those JSRs, as well as additional requirements for the target platform as a whole.
Some of these requirements are inherited from MSA 1.0 and from the JTWI; others are
new to MSA2. Hardware requirements (such as screen and heap capabilities) remain the

CHAPTER 18 ■ SEEKING A COMMON PLATFORM534

same as for MSA 1.0; security requirements remain similar in principle but have
expanded considerably to include privileges for the additional APIs that MSA2 requires.

■Caution As I write this, JSR 249 is in draft form and is subject to change. Before you rely on the material
I provide here, visit the JCP web site for this JSR at http://jcp.org/en/jsr/detail?id=249 to obtain
the latest copy and see if there are any changes that may affect your development plans.

Examining MSA2 Limited

MSA2 Limited is essentially MSA Subset 1.0, with only the minimum number of additions
to ensure common APIs across the lowest tier of multiple devices. It includes the Mobile
Internationalization API (JSR 238) that MSA 1.0 requires, as well as the generic framework
for mobile device sensor management that JSR 256 defines.

The Mobile Sensor API gives you access to mandatory hardware sensors (the
battery and network-received signal strength) and a 3D accelerometer if the device
hardware has one.

Examining MSA2 Subset

MSA2 Subset builds on MSA2 Limited; in fact, it’s a superset of MSA2 Limited. It must
provide support for the following packages:

• MIDP 3.0: Defined in JSR 271, MIDP 3.0 is a fundamental part of MSA2 Subset
and MSA2. Currently under development by members of the JCP, it will extend the
MIDP 2.1 APIs already present by adding support for shared library code, better
application life-cycle management, a secure binary interface for the inter-MIDlet
exchange of record stores, and enhanced user interfaces, including required
support for the MMAPI.

• Mobile broadcast service: Many devices today can receive broadcast content such
as digital television. JSR 272 defines interfaces to access the service guide (permit-
ting applications to search the database of program content) as well as render
broadcast content including subtitles or other metadata associated with broadcast
content using an API based on the MMAPI.

• Contactless communication: JSR 257 (which I mention in Chapter 15) describes
means of performing contactless communication to RFID cards or visual tags.
Support for this API is required if the underlying hardware provides these
facilities.

CHAPTER 18 ■ SEEKING A COMMON PLATFORM 535

• Mobile user-interface customization: Device personalization—wallpaper, ring
tones, and device theming—is an important feature of many mobile devices today
and a major source of revenue for content providers. JSR 258 defines an API that
permits access to personalization data and provides a means for users to re-skin
Java ME applications; this API is required.

• XML: XML is arguably the lingua franca of today’s Web; JSR 280 defines standard
interfaces that replace those that JSR 172 defines. JSR 280 enables better XML pars-
ing and includes a streaming XML parser and support for the XML DOM. This API
is required to enable application developers to work with web services.

Examining MSA2

Based on MSA2 Subset, MSA2 requires inclusion for the IP Multimedia Subsystem
(IMS) services. IMS uses standard protocols including SIP, Diameter (a superset of
RADIUS), MMS, and RTSP to enable IP-based real-time messaging, chat, push-to-talk
(PTT), and multiplayer gaming that are rapidly becoming a standard part of the 3G
wireless infrastructure worldwide. To make the most of the IMS backbone on these
networks, downloaded applications must have access to IMS features through a
standard API; JSR 281 defines this API.

JSR 281 includes support for many aspects of IMS in a Java-centric way, including
definitions of optional packages to provide support for the following IMS features:

• Push: MIDlets can register to respond to incoming IMS connections, just as they
can to other messages.

• Quality of service (QoS): QoS guarantees are an important part of the IMS standard,
and the IMS API permits streaming of audio and video with QoS guarantees.

• Codecs: IMS API implementations must include support for AMR-NB (and AMR-
WB, the wideband version of AMR, if the device is a wideband device) as well as
H.263 for streaming video if the device supports it.

The IMS API builds upon the conceptual frameworks that the GCF and the MMAPI
provide.

CHAPTER 18 ■ SEEKING A COMMON PLATFORM536

Wrapping Up
Java ME’s strength as a platform lies in its write-once, run-anywhere nature; unfortu-
nately, this laudable goal is perpetually threatened by the open nature of the Java
community, which encourages and embraces growth, leading to API and platform
fragmentation. The Java community works to both extend the APIs available to Java
ME as well as stem the fragmentation of the Java ME platform through the JCP, which
issues JSRs that document additional APIs or combinations of APIs to enable new
applications and services. Three key JSRs are working to reduce Java ME platform
fragmentation by defining collections of Java ME APIs that should be included on as
many devices as possible.

The first, JSR 185, defines the JTWI, a bare-bones mobile handset that supports
the CLDC, the MIDP, and WMA. It may also support some audio multimedia through
the MMAPI. Most of today’s Java ME–enabled devices on the market explicitly comply
with the JTWI, either as a deliberate, verified goal of the device manufacturer or as a
matter of course.

The second two, JSRs 248 and 249, build on the JTWI and define additional
platforms that require an increasing number of APIs. These JSRs permit you to rely
on the presence of those required APIs for file system access, MMAPI, SATSA, Mobile
3D Graphics API, WMA, and SVG API, as well as APIs that implement new network
features such as SIP and IMS.

CHAPTER 18 ■ SEEKING A COMMON PLATFORM 537

Finding Java APIs

Throughout this book, I’ve focused on specific required and optional Java ME APIs and
how to use them. In some cases, I’ve pointed you to specific JSRs that document those
APIs, while in other cases I haven’t. Moreover, I’ve only discussed a subset of the optional
Java ME APIs; many other optional APIs are available on some Java ME–enabled devices.

The plethora of JSRs about Java ME APIs is truly overwhelming, especially as you
start out. Inevitably, someone will ask you, “Can a Java ME device do X?” Frequently,
it’s somebody important, such as the product manager designing your company’s next
product, which you’ll spend the next six months of your life developing. Answering this
question accurately isn’t as easy as it sounds, especially if you’re not familiar with X right
away. You need to consult the JSRs relevant to Java ME, find the APIs that pertain to X,
and see if they can do what you need. That’s what this Appendix is for: it contains Table A-1,
which maps important mobile technologies to the relevant JSRs that describe APIs for
that technology. Armed with this information, you can go to http://www.jcp.org, look up
the relevant JSR, and form the answer to the question you’ve been asked.

A final word: JSRs tell you how to do something with a Java ME device. They don’t tell
you if any Java ME devices actually do it that way. Mind you, I’m not knocking the JCP; it’s
a great process. I’m pointing out a reality of the free market around Java ME. The APIs that
some JSRs describe are only implemented by a few device manufacturers, often because
customers of those device manufacturers (either network operators or end consumers)
don’t understand the importance of the API set in the JSR. Other JSRs contain excellent
ideas, but are simply too expensive to implement. And a few are quickly superseded or
extended, so the JSR is only a fossil showing a snapshot of what happened at one moment
in the evolution of an API. For these reasons, you should look at JSRs as only the first step
in answering the question, “Can a Java ME device do X?” The information in a JSR lets you
answer this question with the response, “Theoretically, yes,” or “Not in a standard way”
(because there may be proprietary ways to do X on some devices anyway). To provide a
complete answer to the question—which probably really means, “How many Java ME
devices can do X?” and “Do we have a viable business case to build our application that
needs X?”—you also need to look at devices on the market in the time frame your product
encompasses. That’s more difficult in many cases; you need to take into account how your
product will be distributed, whether or not it only pertains to customers of a single net-
work operator, and so forth. Getting those answers takes legwork. Expect to spend time

539

A P P E N D I X

searching the Internet, reading product data sheets and developer documentation for spe-
cific devices, and scouring developer forums about the devices in question to provide a
clear answer as to the actual market availability of a specific feature or API.

Table A-1. Java ME JSRs by Technology

Technology JSR Notes

3D graphics 184, 239, 297 The MSA both requires and clarifies JSR 184.

Ad-hoc networking 259

Advanced GUI 209

Application deployment 232 This describes a mechanism for secure
application deployment for CDC devices.

Bar-code recognition 257 The MSA both requires and clarifies JSR 257.

Bluetooth 82 This GCF-based implementation can provide
both client and server end points.

Broadcast 272 The interfaces JSR 272 defines are based on the
MMAPI and the GCF. The MSA clarifies JSR 272.

CLDC 30, 139 The JWTI and the MSA have clarifying remarks
regarding CLDC implementations.

CDC 36, 218

Contactless communication 257 The MSA both requires and clarifies JSR 257.

Content handling 211 The MSA both requires and clarifies JSR 211.

Cryptography 177 The MSA both requires and clarifies JSR 177.

Device sensors 256 The MSA both requires and clarifies JSR 256.

Digital set-top box 242

File system 75 The MSA both requires and clarifies JSR 75.

Foundation Profile 46, 219

Gaming 178

IMS 281 The MSA both requires and clarifies JSR 281.

Internationalization 238 The MSA both requires and clarifies JSR 238.

Java database connectivity 169

JTWI 185

Location 179 The MSA both requires and clarifies JSR 179.

Messaging 120, 205, 266 JSR 205 introduced MMS. The JTWI
both requires and clarifies 120. The
MSA both requires and clarifies JSR 205.

Continued

APPENDIX ■ FINDING JAVA APIS540

Technology JSR Notes

MIDP 37, 118, 271 The JWTI and the MSA have clarifying remarks
regarding MIDP implementations.

MMS 205, 266 JSR 205 introduced MMS. The MSA both
requires and clarifies JSR 205.

Mobile broadcast 272 Interfaces are based on the MMAPI and the GCF.
The MSA both requires and clarifies JSR 272.

MSA 248, 249

Multimedia 135, 226, 234, 287 JSRs 226 and 287 describe SVG rendering.

Payments 229

PDA optional packages 75 The MSA both requires and clarifies JSR 75.
for J2ME

Personal Basis Profile 129, 217

Personal Information 75 The MSA both requires and clarifies JSR 75.
Manager access

Personal Profile 62, 216

Remote Method Invocation 66

RFID 257 The MSA both requires and clarifies JSR 257.

Security and trust 177 The MSA both requires and clarifies JSR 177.

Sensors 256 The MSA both requires and clarifies JSR 256.

SMS 120, 205, 266 The JWTI both requires and clarifies JSR 120.
The MSA both requires and clarifies JSR 205.

SIP 180 JSR 180 defines a GCF-based implementation
of classes that provide SIP support.

SVG 226, 287 The MSA both requires and clarifies JSR 226.

Telematics 298

Telephony 253

Television 272 This defines interfaces that are based on the
MMAPI and the GCF. The MSA both requires
and clarifies JSR 272.

Theming 258 The MSA both requires and clarifies JSR 258.

UI customization 258 The MSA both requires and clarifies JSR 258.

Visual tag recognition 257 The MSA both requires and clarifies JSR 257.

Web service APIs 172 The MSA both requires and clarifies JSR 172.

Wireless messaging 120, 205, 266 JSR 205 introduced the MMS. The JTWI
(SMS, MMS) both requires and clarifies JSR 120. The

MSA both requires and clarifies JSR 205.

XML 172, 280 JSR 280 supersedes JSR 172. The MSA both
requires and clarifies both JSR 172 and JSR 280.

APPENDIX ■ FINDING JAVA APIS 541

■Numbers
2D games, 193–218, 540
3D graphics

JSRs and, 540
MSA requirements and, 533

911 emergency systems, location-based
services and, 499

■Symbols
< > indicating plain text XML elements,

339
< /> indicating empty elements, in XML,

339
< less than, 339
<!-- --> indicating comments in XML

documents, 339
</ > indicating starting tag, in XML, 339
<? ?> indicating preamble to XML

documents, 339
> more than, 339
& ampersand, 339
/ solidus character, 163, 165
‘ ’ single quote, 339

■A
A-GPS (Assisted Global Positioning

System), 499
AAC format, 448
Abstract Windowing Toolkit. See AWT
acceptAndOpen method, 303
access modes, 297
AccessException, 245
accessor field keys, 177
ActionEvent class, 266
ActionListener, 265
actionPerformed method, 266
actions, for WeatherApplet sample

application, 61–75

Activatable class, 278
active state

of Xlets, 224
of MIDlets, 85

ad-hoc networking, JSRs and, 540
add methods (Container class), 262
addAddress method, 383, 384
addBinary method, 182
addBoolean method, 183
addCategory method, 184, 507
addCommand method, 106, 195
addContact method, 189
addDate method, 182
addFileSystemListener method, 168
addInt method, 182
addLandmark method, 508
addLocation method, 154, 160
addMessagePart method, 383
addPlayerListener method, 460
addProximityListener method, 507
addRecord method, 138, 141
addRecordListener method, 145
addresses, MMS messages and, 383
AddressInfo class, 502
addStore method, 140
addString method, 183
addStringArray method, 183
addTargetListener method, 435, 439
Adobe

Illustrator, 471
Shockwave Flash, 470

Advanced Graphics and User Interface.
See AGUI

AES (Encryption Standard), 423
AGUI (Advanced Graphics and User

Interface) 230
developing user interfaces with,

266–271
limitations of, 269–271

Index

543

AIDs (application identifiers), 417, 421
alarmFired method, 95
alarms, 90–96
Alert class, 99, 114, 116
AlertType enumeration, 116
AlreadyBoundException, 245
ampersand (&), 339
AMS (Application Management Software)

JAR/JAD files and, 89
MIDlets and, 86

animated SVG images, 477
animations, 205–207
Ant (Apache), 36
APDU (Application Protocol Data Unit),

417
APDUConnection interface, 418
API permissions, 54
append method, 106, 114, 202
appendChild method, 483
<APPLET>, 258
Applet Descriptor section, 54
applet model, 14
AppletContext class, 257
applets, 253–260

communicating between, 258
life cycle of, 254
vs. MIDlets/Xlets, 254, 258
naming, 258

application identifiers (AIDs), 417, 421
Application Management Software (AMS)

JAR/JAD files and, 89
MIDlets and, 86

Application Protocol Data Unit (APDU),
417

application screens, for user interfaces.
See screens

applications
adding location information to, 509–520
building/running, 43–53
deploying, JSRs and, 540
distributed object-oriented, 273
generating XML in, 343–355
marketing/selling yours, 17
packaging/executing, 53–56
samples of. See sample applications;

source code

security for, 413–445
signing, 55
steps for using web services from, 341

ARGS property, 242
ARPU (average revenue per user), 3, 4
Assisted Global Positioning System

(AGPS), 499
asymmetric cryptography, 423
AsymmetricBlockCipher interface, 429
atomicity, record stores and, 135, 142
average revenue per user (ARPU), 3, 4
AWT (Abstract Windowing Toolkit)

developing user interfaces with,
260–266

Personal Basis Profile and, 14
Personal Profile and, 15
user-interface model and, 99

AWT class hierarchy, for user-interface
components, 261

azimuthTo method, 506

■B
BadPaddingException, 425
bar codes. See visual tags
BD-J stack, 231
Berners-Lee, Tim, 306
BinaryMessage interface, 376, 379, 381
bitmap images, 470
block ciphers, 425
BlockCipher interface, 429
blocks of notes, 468
Blu-ray Disc Java (BD-J), 231
Bluetooth

JSRs and, 540
MSA requirements and, 533

–bootpathoption, 52
BorderLayout manager, 262
Bouncy Castle API, 425–431

message digests created via, 428
vs. SATSA-CRYPTO API, 430

broadcast service
JSRs and, 540
MSA2 and, 535

build directory, 36
build.xml file, 36

■INDEX544

butterfly/cat game (sample application),
207–217

Button class, 264
buttons, 236–240
ByteArrayInputStream class, 95, 139, 140,

142, 362
ByteArrayOutputStream class, 95, 139, 140

■C
calendar appointments, 161, 174

creating, 183
PIMItem class and, 177
removing, 184

Calendar class, 28
callSerially method, 396
cameras

capturing media and, 462
imaging sensors and, 449, 461, 464
MMAPI support and, 464

cancel method, 318
canRead method, 166
Canvas class, 99, 122, 193, 460, 463

vs. CustomItem class, 125
in Java ME vs. Java SE, 122
NetBeans IDE Mobility Pack and, 483
rendering SVG images and, 477
vs. Screen class, 114

canvas, 122–131
canWrite method, 166
capture method, 463
capture scheme, 455
capturing media, 461–466, 494
CardLayout manager, 262
case sensitivity, XML and, 339
cat/butterfly game (sample application),

207–217
categories, PIM database and, 176, 184
CDC (Connected Device Configuration),

8, 12
AGUI Optional Package and, 266
GUI toolkits and, 230
history of, 23
JSRs and, 540

CDC applications. See Xlets

CDMA networks, 378
cell phones. See mobile phones
cells, 201
certificates, 55, 415
certification, by third parties, 17
changePin method, 420
character entities, 339
characters event, 357, 360
child elements, XML and, 336
Choice class, 112
ChoiceGroup class, 112
choices

displaying, 120
managing, 112

Cipher interface, 424
ciphers, 415
class loaders, 242
CLDC (Connected Limited Device

Configuration), 8, 10
Connection implementations and, 299
Contactless Communication API

packages and, 432
GCF and, 293
history/future of, 19–22
JSRs and, 540
JTWI requirements and, 529
MSA requirements and, 533

CLDC 1.0, 22
CLDC 1.1, 19
CLDC/MIDP applications. See MIDlets
close method, 173, 295
closed state, 312, 453
closeRecordStore method, 137
closeStore method, 153
code division multiple access (CDMA)

networks, 378
code samples. See source code
code signing, 190
codecs, 448–453
Collections API (Java SE), 28
collidesWith method, 207, 217
collision detection, 207, 217
Command class, 101
commandAction method, 101, 122, 325,

491, 493

■INDEX 545

CommandListener class, 101, 122
commandListener method, 493
commands, 101, 106, 123
comments

NetBeans IDE and, 50
in XML documents, 339

commit method, 183
compare method, 143
Component class, 234, 261, 263
components, 234, 260–266, 270
Concurrent Versions System (CVS), 36
configurations, 8, 10
configViewSound method, 492, 494
configViewSvg method, 492, 496
configViewVideo method, 492, 494
CONNECT method, 307
Connected Device Configuration, See CDC
Connected Limited Device Configuration.

See CLDC
connected state, HTTP communication

and, 312
Connection class, 296–299, 378
Connection implementations (table), 299
Connection interface, 295
Connection schemes (table), 297
Connection subclasses, contactless

connections and, 432, 435, 440
ConnectionNotFoundException, 165, 295,

296
Connector class, 162, 295

datagram communication and, 304
socket communication and, 300

Connector.READ access mode, 297
Connector.READ_WRITE access mode,

297
Connector.WRITE access mode, 297
consumer-producer model, 259
consumers, Java ME market perspective

and, 3, 5
Contact class, 181
Contactless Communication API, 431
contactless communications, 431–444

contactless targets and, 432, 435–439
JSRs and, 540

ContactList class, 189, 533

ContactLoaderThread class (sample), 189
contacts, 161, 174, 189

creating, 183
PIMItem class and, 177–182
removing, 184

Container class, 234, 235, 256, 261
containers, 234, 256

AWT, 261–263
multimedia content and, 448

content
JSRs and, 540
multimedia. See multimedia content
remote, 309

content bounds, 125
content ID, MMS messages and, 383
ContentConnection class, 295, 309–315

vs. HttpConnection class, 311–315
StreamConnection interface and, 311

ContentDescriptor class, 451
Control interface, 450, 451
control loop, 195, 197
Control subclasses, 458, 494
controllers, multimedia content and, 449
cookies, 335
Coordinates class, 502, 506
countermeasures, security and, 414, 415
createAnimatedTile method, 205
createBoard (sample) method, 216, 217
createButterflies (sample) method, 216,

217
createCat (sample) method, 216, 217
createContact method, 183, 189
createElementNS method, 483
createEmptyImage method, 482
createEvent method, 183
createLandmarkStore method, 507
createPlayer methods, 454
createToDo method, 183
creating

calendar appointments, 183
contacts, 183
custom items, 125
directories, 165
events, 183
files, 165

■INDEX546

lightweight components, 236–240
message digests, 422, 428
messages, 379
MIDlets, 37–56
PIM records, 183
to-do items, 183
user interfaces, 97–131
WeatherWidget sample application,

38–51
Xlets, 57–77, 225, 227–233

Criteria class, 502, 504
cryptographic signatures, 17
cryptography, 414–425

asymmetric, 423
JSRs and, 540

CustomItem class, 107, 122, 125–131
CVS (Concurrent Versions System), 36

■D
daemon threads, 27
data communication, 293–329

HTTP communication and, 306–326
permissions and, 327
socket/datagram communications and,

300–306
Data Encryption Standard (DES), 423
data representation, XML for, 336–341
data services, 4
data sharing, Xlets and, 243–251
data sources, multimedia content and,

449
database connectivity, JSRs and, 540
database of landmarks, location-based

services and, 501
Datagram class, 304–306
datagram communication, 300, 304–306
Datagram interface, 295
DatagramConnection class, 304
DatagramConnection interface, 295
DataInput interface, 295, 305
DataInputStream class, 95, 139, 140, 142,

311
opening files and, 166
reading files and, 173

DataLengthException, 430
DataOutput interface, 295, 305
DataOutputStream class, 95, 139

reading files and, 173
sockets and, 301

DataSource class, 450, 451, 455
date and time, 110, 138
Date class, 28
date-book appointments, 161, 174

creating, 183
PIMItem class and, 177
removing, 184

DateField class, 110
deallocate method, 453
decode method, 444
decrypting messages

Bouncy Castle API and, 429
SATSA-CRYPTO API and, 423

DefaultHandler class, 357
defense in depth, 415
defineReferencePixel method, 206
DEFRecordListener interface, 433
DELETE method, 307, 334
delete method

Choice class, 114
FileConnection class, 167
TextField class, 110

deleteAll method, 114
deleteCategory method, 184, 507
deleteLandmark method, 508
deleteLandmarkStore method, 507
deleteRecord method, 138, 144
deleteRecordStore method, 137
DES (Data Encryption Standard), 423
deserialization, 140, 150
destroy method, 254
destroyApp method, 85, 87, 325, 491
destroyed state

of MIDlets, 85
of Xlets, 225

destroyXlet method, 225, 233
determineLocation method, 518
development planning, 16–18
device manufacturers, Java ME market

perspective and, 3

■INDEX 547

device sensors, JSRs and, 540
DeviceKeyEvent class, 270
devices

code signing and, 190
development planning, 16
FCOP and, 162
file system changes, listening for, 168
JTWI requirements/options and, 529
location-based services for, 499–521
MMAPI supplemental interfaces and,

464
MMAPI system property definitions

and, 457
MSA mandatory

components/requirements and,
531

personalizing, 536
resolving fragmentation and, 523–537
socket/datagram communications and,

300
supported media/protocol types,

enumerating on, 457
Digest interface, 429
digital signal processors (DSPs),

multimedia content and, 448
digital signatures, 415
directories

creating, 165
deleting, 167

directorySize method, 166
disablePIN method, 420
DiscoveryManager class, 432, 433, 440
display canvas, 122–131
Display class, 98, 483
Displayable class, 99, 107

GameCanvas class and, 195, 199
sample game application and, 209

Displayable interface, 85
dist directory, 36
distance method, 506
distributed object-oriented applications,

273
distribution considerations, 17
Document class, 474, 483

Document Type Definition (DTD), 341
doFinal method, 425
DOM parsers, 342
double buffering, 124
downloads

Bouncy Castle API, 426
kXML parser, 365
Mobility Packs, 34
NetBeans IDE, 34

drawing
Canvas class and, 123
controlling via Canvas class, 122–125
GameCanvas class and, 195–200
Item class and, 106

DSPs (digital signal processors),
multimedia content and, 448

DTD (Document Type Definition), 341
dynamic registration for inbound

messages, 390

■E
EAN/UPC (European Article

Number/Universal Product Code),
440

EclipseME, 34, 53
Element interface, 474
empty elements in XML, indicated by < />,

339
enablePIN method, 420
encode method, 444
encoding MMS messages and, 383
encrypting messages

Bouncy Castle API and, 429
SATSA-CRYPTO API and, 423

Encryption Standard (AES), 423
endDocument event, 357, 361
endElement event, 357, 360
enterPIN method, 420
enumerateRecords method, 142
error handling, wireless messages and,

398
European Article Number/Universal

Product Code (EAN/UPC), 440

■INDEX548

event handling
Canvas class and, 123
GameCanvas class and, 195–200
Item class and, 106

Event interface, 474
EventList class, 533
EventListener, 474
events, 161, 174, 264

creating, 183
PIMItem class and, 177
PlayerListener interface and, 460
removing, 184

exceptions
addFileSystemListener method and,

169
addRecord method and, 141
creating interfaces and, 165
data communications and, 295
deleteRecord method and, 144
deleteRecordStore method and, 137
encrypting/decrypting messages and,

425
getNextRecordID method and, 142
getNumRecords method and, 145
getRecord method and, 142
items method and, 177
listRoots method and, 169
location-based services and, 503
message digests, 423
open method and, 165, 296
openRecordStore method and, 136
PIM package and, 175
removeFileSystemListener method and,

169
setRecord method and, 144
verifyPIMSupport method and, 189
visual tags and, 444

exchangeAPDU method, 419
exchangeData method, 436
executing

MIDlets, 53–56
Xlets, 75

exit method, 27
exitMIDlet method, 95, 325

exportObject method, 284
ExtendedDigest interface, 429
extensibility, 7, 15
ExternalResourceHandler, 475, 482, 496

■F
FCOP (File Connection Optional Package),

161–173
determining if present, 164
Java ME fragmentation and, 524
LocationStore sample class and,

169–173
MSA requirements and, 533

field keys, PIM package and, 177
field types, 141
file access, 161–191

FCOP and, 161–173
PIM package and, 174–190

File Connection Optional Package. See
FCOP

file:/// protocol prefix, 163
file systems

adding/removing, 168
FCOP and, 161–173
JSRs and, 540
listening for changes to, 168

FileConnection class, 162–173
integrating into WeatherWidget, 173
vs. RecordStore class, 173

files, working with, 165–167
fileSize method, 166
FileSystemRegistry class, 168, 169
finalize method, 26
flat character data, XML and, 339
floating-point mathematics, CLDC and,

12, 26
Flow Designer, 38–50
FlowLayout manager, 262
focus events, 126
FocusListener interface, 265
Form class, 99

collecting visible items via, 114
items, adding to, 104

■INDEX 549

FP (Foundation Profile), 12, 14, 231
AGUI Optional Package and, 266
JSRs and, 540

fragmentation, Java ME and, 523–537
Frame class, 234
Frame container, 262
FramePositioningControl interface, 458
frames, 201
freeMemory method, 27
fromBytes method, 150, 355
fromXml method, 361, 372

■G
GameCanvas class, 99, 122, 194, 195–200

Canvas class and, 195
SpriteCanvas class and, 210–217

games, 193–218
cat/butterfly sample game and, 207–217
JSRs and, 540
managing execution for, 197

garbage collection, gc method for, 27
Gauge class, 111
gc method, 27
GCF (Generic Connection Framework),

11, 163, 293–329
APDU hierarchy and, 417
contactless targets and, 435
datagram communication and, 304–306
hierarchy of, 295
HTTP communication and, 309–315
permissions and, 327
socket communication and, 300–303
using, 295

generateVisualTag method, 444
Generic Connection Framework. See GCF
GET method, 307, 311, 313, 319
getAddress method, 301, 380
getAddressInfo method, 505, 508
getAlgorithmName method, 429
getAltitude method, 506
getApplet method, 257
getAppletContext method, 257
getApplets method, 257
getAppProperty method, 87, 89

getAttributeValue method, 371
getAudioClip method, 257
getBinary method, 179
getBlockSize method, 430
getBoolean method, 180
getByteLength, 429
getCaretPosition method, 110
getCategories method, 184, 507
getChars method, 110
getCipherSuite method, 326
getClassLoader method, 226
getComponent method, 263
getComponentAt method, 263
getConditions method, 131
getContainer method, 226
getContent method, 383
getContentAsStream method, 383
getContentID method, 383
getContentLocation method, 383
getContentType method, 453
getControl method, 453, 458
getControls method, 453
getCourse method, 505
getDate method, 110, 179, 312
getDescription method, 508
getDeviceKeyCode method, 270
getDigestSize method, 429
getDisplay method, 98
getEncoding method, 311, 383
getExpiration method, 312
getExtraInfo method, 505
getFile method, 313
getFilter method, 391
getFont method, 108
getForecast method, 281
getGraphics method, 124
getHeader method, 383, 385
getHeaderField method, 312
getHeaderFieldKey method, 312
getHorizontalAccuracy method, 506
getHost method, 313
getImage method, 118, 257
getImageProperties method, 444
getIndicator method, 118
getInitialReference method, 421

■INDEX550

getInputBlockSize method, 430
getInputMode method, 110
getInstance method, 397, 423, 504, 507
getInt method, 180
getInteractionModes method, 125
getKeyStates method, 196
getLabel method, 107
getLandmarks methods, 508
getLastKnownLocation method, 505
getLastModified method, 138, 312
getLatitude method, 506
getLayerAt method, 202
getLength method, 311, 314
getLocalAddress method, 301
getLocalPort method, 301
getLocation method, 154, 263, 281, 505, 506
getLocationMethod method, 505
getLocationOnScreen method, 263
getLocationStrings method, 153, 160
getLongitude method, 506
getMessage method, 403
getMessageParts method, 383
getMidlet method, 391
getMIMEType method, 383
getMin method, 477
getMinContentHeight method, 125, 477
getMinContentWidth method, 125, 477
getMinimumHeight method, 107
getMinimumSize method, 240
getMinimumWidth method, 107
getName method, 166, 508
getNextRecordID method, 142
getNumRecords method, 138, 145
getOutputBlockSize method, 430
getPath method, 166
getPayloadData method, 381
getPayloadText method, 380
getPort method, 301, 313, 326
getPref method, 477
getPrefContentHeight method, 125, 131,

477
getPrefContentWidth method, 125, 131,

477
getPreferredHeight method, 107
getPreferredSize method, 240

getPreferredWidth method, 107
getProperty method, 27, 242, 406, 419,

457, 463, 464
getProtocol method, 313
getProtocolName method, 326
getProtocolVersion method, 326
getQualifiedCoordinates method, 505, 508
getReadSymbologies method, 440
getReason method, 175
getRecord method, 142
getRecordType method, 437
getResource method, 242
getResourceAsStream method, 242, 469
getResponseCode method, 312, 314
getResponseMessage method, 312
getRuntime method, 27
getSecurityInfo method, 326
getSelectedFlags method, 114
getSelectedIndex method, 114
getServerCertificate method, 326
getSize method, 138, 202, 263
getSizeAvailable method, caution with, 146
getSnapshot method, 461–465, 494
getSocketOption method, 301
getSpeed method, 505
getStartContentId method, 382
getState method, 460
getString method, 110, 118, 180
getStringArray method, 180
getSubject method, 383
getSupportedContentTypes method, 457,

492
getSupportedFields method, 179
getSupportedProtocols method, 457
getSupportedTargetTypes method, 435
getSystemResource method, 242
getSystemResourceAsStream method, 242
getTargetComponent method, 478
getText method, 371
getTimeBase method, 453
getTimeout method, 118
getTimestamp method, 380, 382, 505
getType method, 311, 360
getURL method, 167, 313
getValue method, 360

■INDEX 551

getVerticalAccuracy method, 506
getXletProperty method, 226, 242
get_alarmAlert method, 96
get_exitCommand method, 96
get_helloStringItem method, 95
get_infoForm method, 95
get_listContacts method, 189
get_mainForm method, 105
Global Positioning System (GPS), 500
Global System for Mobile (GSM), 374, 378
GPS (Global Positioning System), 500
Graphics class, 122, 125, 235, 257
graphics operations, 124
graphics. See images
GridBagLayout manager, 262
GridLayout manager, 262
GSM (Global System for Mobile), 374, 378
GUIControl interface, 458, 459
GUIs, JSRs and, 540

■H
H.263 video streams, 448
hasPointerEvents method, 123
hasPointerMotionEvents method, 123
HAVi (Home Audio Visual

Interoperability), 231
HEAD method, 307
headers

HTTP communication and, 308
MMS messages and, 383, 385

heap
JTWI recommendations for, 528
MSA requirements for, 532

heavyweight components, 264, 270
“Hello World!”

datagram communication and, 304
HTTP communication and, 307
wireless messages and, 381

Hello World MIDlet, 83
“Hello Xlet”, 229, 232
HelloMidlet method, 85
high-level events, 264
Home Audio Visual Interoperability

(HAVi), 231

HTTP communication, 298, 306–326, 334
GCF and, 309–315
methods for, 307
opening connections and, 295
securing via HTTPS, 325
socket/datagram communications and,

300
status codes for, 308
WeatherWidget sample application and,

315–325
HTTP methods, 334
http scheme, 455
HttpConnection class, 311–315
HTTPS communication, 299, 325, 334

certificates and, 415
vs. SATSA-CRYPTO API , 423

HttpsConnection class, 326

■I
IllegalArgumentException, 136

open method and, 165, 296
playTone method and, 466

IllegalBlockSizeException, 425
IllegalStateException

ciphers and, 425, 430
Player instances and, 453, 463

Illustrator (Adobe), 471
ImageItem class, 111
images

sending in messages, 384, 398–407
visual tag recognition and, 432

imaging sensors, 449, 461, 464
IMS (IP Multimedia Subsystem)

JSRs and, 540
MSA2 and, 536

indexes, for records, 135, 138
init method, 254, 491
initComponents method, 263
initDisplayMode method, 459, 460, 463
initialize method, 95, 159, 325
initMediaPlayer method, 492, 493
initSvgPlayer method, 492, 496
initXlet method, 225, 233
Inkscape, 471

■INDEX552

input constraints, 109
input devices, AGUI and, 269
input modes, 109
InputConnection interface, 295
InputStream class, 295, 301, 315
InputStreamReader class, 30
insert method, 106, 202

Choice class, 114
TextField class, 110

integrated development environments,
33, 53

Inter-Xlet Communication (IXC), 243
International Organization for

Standardization (ISO), 417
internationalization, MSA and, 534, 540
interrupt method, 27
invalidate method, 239
InvalidKeyException, 425
InvalidRecordIDException, 142
invokeAndWait method, 269, 479
invokeLater method, 269, 479, 483
IOException, 165, 295, 296, 444
IP Multimedia Subsystem (IMS), MSA2

and, 536
isAncestorOf method, 263
isCategory method, 184
isDirectory method, 167
isDoubleBuffered method, 124, 270
isHidden method, 167
ISO (International Organization for

Standardization), 417
ISO14443Connection class, 436
isOpen method, 167
isSelected method, 114
isSupportedField method, 179
isValid method, 505
Item class, 99, 106
items, 104–114

custom, 122–131
PIM database categories and, 184

items method, 177
itemsByCategory method, 184
itemStateChanged method, 116
IXC (Inter-Xlet Communication), 243, 246
IxcRegistry, 246

■J
J2ME Polish, 17
J2ME Web Services Specification, 331,

355–365
JAD files, 6

JTWI devices and, 528
MIDlets and, 53–56, 87, 89, 387–390, 532

JAD/JAR pairs (suites), 53
JAR files

MIDlets and, 53, 87, 89
Xlets and, 75, 242

Java API for XML-based RPC (JAX-RPC), 355
Java APIs, 539–541
Java Application Descriptor. See JAD files
Java AWT, user-interface model and, 99
Java Community Process (JCP), 523–528,

530, 535–537
Java database connectivity, JSRs and, 540
Java ME (Java Platform, Micro Edition)

architecture of, 10–16
development planning and, 16–18
fragmentation and, 523–537
market for, 3
marketing/selling your applications

and, 17
platforms/libraries comprising, 6
security and, 6, 413–445
XML support for web services and,

341–372
Java ME Device Table, 300
Java ME Scalable 2D Vector Graphics. See

SVGAPI
Java Mobile Game API, 193–218, 540
Java Network Launching Protocol (JNLP),

75
Java Platform, Micro Edition. See Java ME
Java Remote Method Protocol (JRMP), 275
Java RMI stack. See RMI stack
Java SE (Java Standard Edition)

vs. CDC, 23
vs. CLDC 1.1, 20
Collections API of, 28
generating stub classes and, 284
implementing remote services and, 283
RMI OP and, 279
rmic compiler and, 281

■INDEX 553

Java SE class library
CDC and, 31
CLDC and, 24–30

Java SE Java Development Kit, 34
Java smart cards, 416–421
Java Specification Requests. See JSRs
Java Standard Edition. See Java SE
Java streams, 139
Java Technology for the Wireless Industry

(JTWI), 528, 540
Java Verified Program, 17, 415
Java Virtual Machine (JVM), 10
Java Web Start, 75
java.io package, changes in to fit CLDC, 29
java.lang package, changes in to fit CLDC,

24–28
java.util package, changes in to fit CLDC,

28
JavaCardRMIConnection interface, 418,

421
JavaScript Object Notation (JSON), 331
JAX-RPC (Java API for XML-based RPC),

355
JComponent class, 270
JCP (Java Community Process), 523–528,

530, 535–537
JCRMI interface, 420
JFrame class, 269
JMenuBar class, 270
JNLP (Java Network Launching Protocol),

75
JOptionPane class, 269
JPopupMenu class, 269
JRMP (Java Remote Method Protocol), 275
JSON (JavaScript Object Notation), 331
JSRs (Java Specification Requests), 8,

539–541
AGUI and, 230
CDC-enabled devices, user-interface

packages and, 230
how to read, 525
Java ME fragmentation and, 523–528

JSR 30 - J2ME Connected, Limited
Device Configuration, 529

JSR 36 - Connected Device
Configuration, 23

JSR 63 - Java API for XML Processing 1.1,
356

JSR 62 - Personal Profile Specification,
253

JSR 66 - RMI Optional Package
Specification Version 1.0, 278

JSR 75 - PDA Optional Packages for the
J2ME Platform, 161, 174, 190

JSR 82 - Java APIs for Bluetooth, 533
JSR 118 - Mobile Information Device

Profile 2.0, 533
JSR 120 - Wireless Messaging API, 373,

375, 529
JSR 135 - Mobile Media API, 447, 451,

465
JSR 139 - Connected Limited Device

Configuration 1.1, 529, 533
JSR 172 - J2ME Web Services

Specification, 331, 355
JSR 177 - Security and Trust Services API

for J2ME, 416
JSR 179 - Location API for J2ME, 499
JSR 184 - Mobile 3D Graphics API for

J2ME, 533
JSR 185 - Java Technology for the

Wireless Industry, 524, 528–529
JSR 197 - Generic Connection

Framework (GCF) Optional
Package for J2SE, 294

JSR 205 - Wireless Messaging API 2.0,
373, 375, 386

JSR 206 - Java API for XML Processing
(JAXP) 1.3, 386

JSR 209 - AGUI Optional Package, 266
JSR 216 - Personal Profile 1.1, 253
JSR 218 - Connected Device

Configuration 1.1, 23
JSR 226 - Scalable 2D Vector Graphics

API for J2ME, 472, 533

■INDEX554

JSR 234 - Advanced Multimedia
Supplements, 464

JSR 238 - Mobile Internationalization
API, 534–535

JSR 248 - Mobile Service Architecture,
524, 530

JSR 249 - Mobile Service Architecture 2,
524, 530, 534

JSR 256 - Mobile Sensor API, 535
JSR 257 - Contactless Communication

API, 431, 535
JSR 258 - Mobile User Interface

Customization API, 536
JSR 271 - Mobile Information Device

Profile 3, 535
JSR 272 - Mobile Broadcast Service API

for Handheld Terminals, 535
JSR 281 - IMS Services API, 536
JSR 287 - Scalable 2D Vector Graphics

API 2.0 for Java ME, 447, 470, 472,
480

life cycle of, 526
JTextComponent class, 269
JTWI (Java Technology for the Wireless

Industry), 528, 540
JVM (Java Virtual Machine), 10

■K
K virtual machine (KVM), 10
key codes, 123, 196
key events, 270
key generation, 430
key states, polling for, 195, 196
KeyEvent class, 270
KeyListener, 265
keyPressed method, 123, 126, 483
keyReleased method, 123, 126
keyRepeated method, 123, 126
keys, ciphers and, 415
keystrokes, polling for, 196
KVM (K virtual machine), 10
kXML parser, 365–372, 509
KXmlParser class, 365, 371

■L
labels, 101
Landmark class, 502, 507
LandmarkException, 503
landmarks

location-based services and, 501
managing, 507

LandmarkStore class, 502, 507
lastModified method, 167
Layer class, 194, 200
LayerManager class, 194, 200–205

method of, 202
sample game application and, 216

layers, 200–205
layout flags, 107
layout managers, 261, 262
layout preferences, Item class and, 106
LBS. See location-based services
less than (<), 339
lightweight components, 233–241, 264,

270
List class, 99, 113

complex user interfaces and, 114
displaying choices via, 120

list method, 167
listConnections method, 303, 389
listeners, 265
listLandmarkStores method, 507
listRecordStores method, 137
listRoots method, 169
load method, 173
Location API, 499, 501–521

determining device location via,
503–507

JSRs and, 540
managing landmarks and, 507
permissions and, 508
Sun Java Wireless Toolkit and, 518
WeatherWidget sample application and,

509–520

■INDEX 555

Location class, 154, 502, 504, 517
implementing, 146–150
integrating into WeatherWidget,

155–160
mutators and accessors and, 246
RMI OP and, 281
XML and, 343–355

location-based services (LBS), 499–521
determining device location and,

503–507
landmarks and, 501, 507
security and, 508
WeatherWidget sample application and,

509–520
Location interface, 282
LocationException, 503, 505
LocationImpl class (sample), 281, 283, 284
LocationListener interface, 502, 506
LocationParser class, 367–372, 517
LocationParserHandler class, 357–361, 370
LocationProvider class, 502–507
LocationStore class, 146, 169–173, 325,

507, 517
implementing, 150–155
integrating into WeatherWidget,

155–160
locationUpdated method, 502
LocationUpdater class, 518
locators, multimedia content and, 454,

463, 493
low-level events, 264

■M
Mac OS X, NetBeans Mobility Pack and, 34
Manager class, 451, 454
manifests, 87
marketing considerations, 17
MarshalledObject class, 277
marshalling data, 342, 355
match method, 143
Math class, 26
media player (sample application),

484–496
media types, multimedia content and, 448

MediaException class, 451, 463
memory, 27
menu priorities, 270
menu types, 270
Message class, 376, 380
message counters, 403
message digests, 335, 415

Bouncy Castle API and, 428
SATSA-CRYPTO API and, 422

MessageConnection interface, 376–380,
385

MessageDigest class, 423
MessageListener interface, 376, 385
MessagePart class, 376

vs. MultipartMessage class, 380, 383
sendMMS method and, 406

messages. See wireless messaging
MetaDataControl interface, 458
microphones, 465
MIDIControl interface, 458
MIDlet suites, 133–137
MIDlets, 13, 83–96. See also

WeatherWidget
vs. applets, 254, 258
attributes for, 87
building/running, 43–53
creating, 37–56
executing, 53–56
exiting, 87
GameCanvas class, tying to, 199
Hello World example of, 83
incoming messages, registering

dynamically for, 390
JAD/JAR pairs and, 53
life cycle of, 85, 97
methods for, 85
Mobility Pack for, 34, 37
MultimediaMIDlet class and, 486–492
packaging, 53–56, 87
properties for, 89
record stores and, 133
resources and, 89
sample game application and, 209
startup events/alarms and, 90–96
states of, 85

■INDEX556

MIDletStateChangeException, 87
MIDP (Mobile Information Device

Profile), 9, 13
2D games and, 193
Connection implementations and, 299
HTTPS and, 325
JSRs and, 541
JTWI requirements and, 529
MIDlets and, 83–96
MIDP 3.0 and, 535
MSA requirements and, 533

MIME type, MMS messages and, 383
MMAPI (Mobile Media API), 407, 448–469

classes/interfaces of, 451
JTWI requirements and, 529
MMAPI system property definitions

and, 457
MSA requirements and, 533
organization of, 450
sample media player and, 484–496
supplemental interfaces for, 464
using, 452–469

MMAPI schemes, 454
MMS Center, 375
MMS messages, 374

contents of, 383
JSRs and, 541
parts and, 376, 380, 382
sending/receiving, 398–407

MMSMIDlet class, 399–404
MMSSender class, 404, 494
MO (mobile-originated) messages, 374,

379
Mobile 3D graphics, MSA requirements

and, 533
mobile broadcast service

JSRs and, 541
MSA2 and, 535

mobile devices
development planning and, 16
Java ME platform and, 6–10
Moore’s law and, 21

Mobile Information Device Profile. See
MIDP

Mobile Media API. See MMAPI

mobile phones, 6
location-based services and, 499
MIDP and, 9
MSA and, 530–536

Mobile Sensor API, 535
mobile sensors, JSRs and, 541
Mobile Service Architecture (MSA),

530–536, 541
Mobile Station International Subscriber

Directory Number (MSISDN), 391
Mobile User Interface Customization API,

541
mobile-originated (MO) messages, 374, 379
mobile-terminated (MT) messages, 374,

385
Mobility Pack for NetBeans, 483, 485
Mobility Packs, for MIDlets and Xlets, 34,

37, 57
model-view-controller (MVC), 99
Moore’s law, 21
more than (>), 339
MouseListener, 265
MouseMotionListener, 265
MouseWheelListener, 265
moveButterflies (sample) method, 217
moveCat (sample) method, 199, 217
MP3 players, 454
MPEG-4, 448
MSA (Mobile Service Architecture),

530–536, 541
MSA2 (Mobile Service Architecture 2), 534
msgAvail message counter, 403
MSISDN (Mobile Station International

Subscriber Directory Number), 391
MT (mobile-terminated) messages, 374,

385
multimedia content, 447–498

capturing, 461–466
IMS and, 536
JSRs and, 541
MMAPI and, 448–469, 484–496
packaging and delivery of, 448
playing audio/video and, 493
playing SVG content and, 496
rendering, 452–469
SVGAPI and, 470–484

■INDEX 557

Multimedia Messaging Service. See MMS
messages

MultimediaMIDlet class, 486–492, 496
MultipartMessage interface, 376, 379

managing multiple parts of, 382
message headers and, 385

multithreading, 27
MVC pattern

MIDlets and, 99
multimedia content and, 449

■N
namespaces, XML and, 340
Naming class, 277
naming conventions

for applets, 258
for record stores, 135

NanoXML parser, 372
nbproject directory, 36
NDEF (NFC Data Exchange Format), 431,

436
NDEF-enabled targets, registering

listeners for, 433
NDEFTagConnection class, 436
near-field communications, 431
NetBeans, 105, 107

adding/removing file systems and, 169
containers and, 263
GUI builder and, 517
Mobility Pack for, 483
PIM package and, 189
RMI applications and, 282
SVG images and, 483

NetBeans IDE, 33–77
comments in, 50
home page of, 34
installing, 34
MIDlets and, 37–56
reasons for using, 33
Xlets and, 57–77

newMessage method, 379, 384
newSAXParser method, 362
next method, 365
nextFrame method, 206

nextRecord method, 143
nextTag method, 365
nextText method, 365
nextToken method, 365
NFC (Nokia Near Field Communication)

SDK, 431
NFC Data Exchange Format (NDEF), 431,

436
Nokia Near Field Communication (NFC)

SDK, 431
NoSuchAlgorithmException, 423, 425
NoSuchMethod exception, 260
NotBoundException, 246
notifyActive method, 227
notifyDestroyed method, 87, 227
notifyIncomingMessage method, 385, 403
notifyPaused method, 87, 227
notifyStateChanged method, 127
NullPointerExecption, 169
numberOfSegments method, 380

■O
obfuscation, 52
Object class, 26
object-oriented applications, 273
ODMs (original design manufacturers), 3
OEMs (original equipment

manufacturers), 3
OMA (Open Mobile Alliance), 386
one-shot positioning requests, location-

based services and, 501, 518
one-to-many protocols, 375
open method, 164, 173

Connector class and, 295, 300, 378, 385
HttpConnection class and, 311

Open Mobile Alliance (OMA), 386
openDataInputStream method, 166, 301
openDataOutputStream method, 166, 301
opening files, 166
openInputStream method, 166
openOutputStream method, 166, 314
openPIMList method, 176
openRecordStore method, 136
openStore method, 153

■INDEX558

optimization, 52
option identifiers, 302
OPTIONS method, 307
Orientation class, 502
original design manufacturers (ODMs), 3
original equipment manufacturers

(OEMs), 3
OutputConnection interface, 295
OutputStream class, 301, 313
OutputStreamWriter class, 30

■P
packages, 8, 15
packaging

MIDlets, 53–56
Xlets, 75

paint method, 123–125, 239
Container class and, 235, 256
GameCanvas class and, 195
Graphics class and, 235
LayerManager class and, 202
WeatherItem sample class and, 131

Panel class, 263
Panel container, 262
<PARAM>, 258
parse method, 362, 371
parts, MMS messages and, 376, 380, 382,

383
pauseApp method, 85, 86, 491
paused state, 479

of MIDlets, 85
of Xlets, 224

pauseXlet method, 224, 225, 230
payments, JSRs and, 541
PBP. See Personal Basis Profile
PDAs (personal digital assistants), 6

CDC and, 12
JSRs and, 541

permissions, 6, 319
APDU and, 420
granting for network connections, 327
JCRMI and, 421
location-based services and, 508
MIDP and, 13

Personal Basis Profile (PBP), 12, 14,
223–252

AGUI Optional Package and, 266
developing lightweight user interfaces

via, 233–241
JSRs and, 541
system properties of, 241

personal digital assistants. See PDAs
personal identification number (PIN),

smart cards and, 420
personal information management. See

entries at PIM
Personal Profile (PP), 12, 15

applets, support for, 253
JSRs and, 541

PersonalJava, 15, 23
PIM (personal information management),

161, 174–190, 438
checking/ensuring availability of the

PIM package, 175, 176
JSRs and, 541
MSA requirements and, 533
removing entries and, 184
sample applications and, 185–190

PIM class, 174
PIM database, 176
PIM records, 177–184

creating, 183
modifying, 182
reading from PIM database, 177

PIMException, 175
PIMItem class, 175, 177

adder methods for, 182
setter methods for, 183

PIMList class, 174, 184, 533
PIN (personal identification number),

smart cards and, 420
ping-pong buffering, 124
PitchControl interface, 458
pixels, reference pixels and, 206
plain text XML elements, indicated by < >,

339
PlainTagConnection class, 436
plaintext, 415
play method, 496

■INDEX 559

Player interface, 450, 451
PlayerListener interface, 451, 460
players, multimedia content and, 449
playerUpdate method, 460
playFromResource method, 492, 493, 496
playing audio/video, for multimedia

content, 493
playing state, 479
playTone method, 466–469
point-to-area protocols, 375
pointer events, 123
pointerDragged method

Canvas class, 123
CustomItem class, 126

pointerPressed method
Canvas class, 123
CustomItem class, 126

pointerReleased method
Canvas class, 123
CustomItem class, 126

polling
events, 197
key states, 195
keystrokes, 196

POST method, 307, 313, 319
PP. See Personal Profile
preamble, to XML documents, 339
prefectch method, 453
prefetched state, 453
preverify tool, 11, 52
prevFrame method, 206
previousRecord method, 143
priorities, 101
private record stores, 133
privileges, 6

third-party certification and, 17
WMA and, 386

processBlock method, 430
processBytes method, 430
processMouseEvent method, 240
processRequest method, 259
producer-consumer model, 259
profiles, 8, 12–15
ProGuard obfuscator, 52, 426

project configurations, 52
properties, for Xlets, 242
protocols, multimedia content and, 454
proximity tags, 431
ProximityListener interface, 502, 507
public-key cryptography, 423
pull parsers, 342, 365
push parsers, 342, 355
push registry, 54, 303

alarms and, 91
contactless communication and, 432
incoming message, 387

PushRegistry class, 303, 387
PUT method, 307
putClientProperty method, 269

■Q
QR Code (Quick Response Code), 440
QualifiedCoordinates class, 502, 506, 508,

518
Quick Response Code (QR Code), 440
quotes, single (‘ ’), 339

■R
raster images, 470
RateControl interface, 458
RC4 (Rivest Cipher 4), 423
RC4 encryption, using Bouncy Castle API

for, 429
read method, 140, 301
readBoolean method, 140
readByte method, 140
readChar method, 140
readChars method, 140
readDouble method, 140
readFloat method, 140
readInt method, 141
readLong method, 141
readNDEF method, 436
readShort method, 141
readUTF method, 141
readVisualTag method, 444

■INDEX560

readX method, 305
realize method, 453
realized state, 453
receive method

Connector class, 385
MessageConnection interface, 379

receiving messages, 385
MMS messages and, 398–407
SMS messages and, 391–398

record IDs, 135, 138
removing records and, 144
retrieving records and, 142
updating records and, 144

record stores, 133–160
accessing records in, 138–146
listening for changes in, 145
obtaining information about, 137
opening/closing, 136
platform limitations of, 145
removing, 137
WeatherWidget sample application and,

146–160
recordAdded method, 145
recordChanged method, 145
RecordComparator interface, 143
RecordControl interface, 458, 465
recordDeleted method, 145
RecordEnumeration interface, 143, 153
RecordFilter interface, 143
RecordListener interface, 145
records, 133

accessing in record stores, 138–146
size limits, record stores and, 146

RecordStore class, 135, 173
RecordStoreException, 136, 137
RecordStoreFullException, 136, 141
RecordStoreNotFoundException, 136, 137
RecordStoreNotOpenException, 138, 141,

144
reference implementations (RIs), 527
reference pixels, 206
registerAlarm method, 91
registerConnection method, 303, 390
Registry interface, 246
releaseTarget method, 477

remotable objects, making available to
other Xlets, 246

Remote class, 245
remote content, reading, 309
Remote interface, 243, 277
Remote Method Invocation. See entries at

RMI
remote objects, 243, 275

accessing, 249
invoking, 286

remote procedure call (RPC) services, 333
remote services, 280, 285
RemoteException, 246, 251, 277, 282
remove method, 184, 202
remove ToDo method, 184
removeAddresses method, 383
removeCommand method, 106, 195
removeContact method, 184
removeEvent method, 184
removeFileSystemListener method, 169
removeLandmarkFromCategory method,

508
removeMessagePart method, 383
removeMessagePartId method, 383
removeMessagePartLocation method, 383
removeRecordListener method, 145
renameCategory method, 184
rendering multimedia content, 452–469

controlling the process, 458–461
starting the process, 454–457
SVG images and, 474–484

repaint method, 123, 125, 235
repetition, multimedia content and, 468
representational state transfer (REST), 333
reset method, 306
resolution, multimedia content and, 467,

468
resources, Xlets for, 242
resources directory, 36
resources for further reading

countermeasures, 416
cryptography, 415
DataSources, writing custom, 456
MMAPI, 448
SVG/SVG Tiny, 472
XML, 336

■INDEX 561

REST (representational state transfer), 333
RESTful web services, 333, 356, 362
resume method (deprecated), 27
resumeRequest method, 87
revision-control software, 36
RFID devices, 436, 541
RFID tags, 431
RIs (reference implementations), 527
risks, security and, 414
Rivest Cipher 4 (RC4), 423
RMI (Remote Method Invocation),

273–287, 333
advantages/disadvantages of, 276
architecture of, 274
JSRs and, 541
Personal Basis Profile and, 14
using, 280–286

RMI interfaces, 277, 282
RMI OP (RMI Optional Package), 278
RMI over Internet Inter-Orb Protocol

(RMI-IIOP), 278
RMI server application (sample), 285
RMI stack, 243
RMI-IIOP (RMI over Internet Inter-Orb

Protocol), 278
rmic compiler, 276, 281, 284
RMISecurityManager class, 277
rms interface, 133
root element, XML and, 336
root file systems, 169
rootChanged method, 168
round buttons, 236–240
RPC (remote procedure call) services, 333
rtp scheme, 455
rtsp scheme, 455
run method

WeatherWidget sample application and,
318

receiving messages and, 403
SVG images and, 483
media playback and, 491, 493
location and, 518

run. sendMsg method, 397
Runnable interface, 318, 395
Runtime class, 27

■S
SA (Selective Availability), 500
sample applications

cat/butterfly game, 207–217
ContactLoaderThread class and, 189
Location class and, 146–150, 154
LocationStore class and, 146, 150–155,

169–173
media player, 484–496
PIM package and, 185–190
RMI server, 285
WeatherApplet, 57–76, 281
WeatherItem sample class and, 127–131
WeatherWidget. See WeatherWidget

sample code. See source code
SATSA (Security and Trust Services API for

J2ME), 416–425, 533
SATSA-CRYPTO API, 416, 422–425

vs. Bouncy Castle API, 430
encrypting/decrypting messages and,

423
message digest creation and, 422
MSA and, 533

SATSA-Java Card RMI (SATSA-JCRMI), 416
SATSA-public key infrastructure (SATSA-

PKI), 416
SAX parser, 357, 360
Scalable 2D Vector Graphics. See SVGAPI
ScalableGraphics class, 474, 477
ScalableImage class, 474
scheduleMIDlet method, 95
schemes, MMAPI and, 454, 463
SCP (Secure Copy Protocol), 56
Screen class, 99, 114, 122
Screen Designer, 39–43
screen transitions, for WeatherWidget, 39
screens, 114–122

JTWI recommendations for, 528
MSA requirements for, 532
MSA2 requirements for, 534
for WeatherWidget, 41

SD (Secure Digital) card, 77
Secure Copy Protocol (SCP), 56
Secure Digital (SD) card, 77

■INDEX562

security, 13, 413–445
Java ME security model and, 6
applets and, 253
understanding the need for, 413–416

Security and Trust Services API for J2ME
(SATSA), 416–425, 533

SecurityException, 141, 165
LocationManager methods and, 505
open method and, 296
Player instances and, 463
SMS messages and, 378

SecurityInfo interface, 326
seed method, 189
segments, SMS messages and, 380
Selective Availability (SA), 500
sending messages, 380–385

MMS messages and, 398–407
SMS messages and, 391–398

sendMMS method, 406, 495
sendMsg method, 396, 397, 406
serialization, 139, 150
ServerSocketConnection class, 302
service brokers, 332
service providers, 332
service requestors, 332
service-oriented architecture (SOA)

services, 333
set-top boxes, 5

CDC and, 12
JSRs and, 540

setAddress method, 380
setAddressInfo method, 508
setAnimatedTile method, 205
setBinary method, 183
setBoolean method, 183
setCell method, 204
setChars method, 110
setCommandListener method, 103, 116,

195
setConditions method, 131
setConstraints method, 109
setCurrent method, 118, 199, 478, 483
setDate method, 110, 183
setDescription method, 508

setDoubleBuffered method, 270
setFont method, 108
setForecast method, 281
setFrame method, 206
setHeader method, 383, 385
setHidden method, 167
SetImage class, 404
setImage method, 118
setIndicator method, 118
setInitialInputMode method, 109
setInputMode method, 110
setInt method, 183
setItemCommandListener method, 106,

111
setItemSateListener method, 116
setLabel method, 107, 108
setLayout method, 107
setLocation method, 281
setLocationListener method, 506
setMediaTime method, 453
SetMessage class, 392, 396
setName method, 508
setPaused method, 216
setPayloadData method, 381
setPayloadText method, 380
setPreferredSize method, 107
setQualifiedCoordinates method, 508
setReadable method, 167
setRecord method, 138, 144
setRequestMethod method, 312, 314, 334
setRequestProperty method, 312, 336
setSelectedFlags method, 114
setSelectedIndex method, 114
setSocketOption method, 301
setStartContentId method, 382
setString method, 110, 118, 183
setStringArray method, 183
setSubject method, 383, 384
setText method, 108
setTimeBase method, 453
setTimeout method, 116, 118
setTransform method, 206
setup state, HTTP communication and,

312

■INDEX 563

setViewWindow method, 201
setWritable method, 167
set_location method, 517
shared objects, 243–251

implementing, 244
using, 249

shared record stores, 133
Shockwave Flash (SWF) format, 470
short codes, 374
Short Message Service - Cell Broadcast

(SMS-CB), 375
Short Message Service. See SMS messages
showDocument method, 257
showException method, 492
showStatus method, 257
showSupportedMedia method, 491, 492
signing applications, 55
silence, multimedia content and, 468
Simple Object Access Protocol (SOAP),

332, 355
single quotes (‘ ’), 339
SIP API for J2ME, 541
SIP protocol, MSA and, 534
size method, 114
skeletons, 276
smart cards, 416–421
smartcardslots property, 419
SMS aggregators, 374
SMS Center (SMSC), 374
SMS messages, 374

encoding/decoding and, 381
JSRs and, 541
message size and, 374, 380
segments and, 380
sending/receiving, 391–398

SMS-CB (Short Message Service - Cell
Broadcast), 375

SMSC (SMS Center), 374
SMSSender class, 392, 396
SOA (service-oriented architecture)

services, 333
SOAP (Simple Object Access Protocol),

332, 355
SOAP-based web services, 355

socket communication, 300–303
socket options, 302
SocketConnection class, 300
soft keys, 270
solidus (/) character, 163, 165
source code

applets, 255, 258, 265
actionPerformed method, 61, 74
alarms, 91
alerts, configuring, 117
ByteArrayInputStream, creating, 140
ByteArrayOutputStream, creating, 139
command objects/displayable objects,

relationship between
demonstrated, 103

contacts, 184, 189
content, downloading via

ContentConnection, 309
control loop, implementing, 198
cookies, 335
data, sending to server, 313
DataSource, 455
DataInputStream, creating, 140
DataOutputStream, creating, 139
device location, determining, 503
encrypting messages, 424
FCOP, interrogating the system for

version of, 164
forms, adding items to, 205
frame sequences, 206
GameCanvas class, 199
“Hello World!”, 304, 307
Hello World applet, 256
Hello World MIDlet, 83
“Hello Xlet”, 232
HTTP connections, 295
HTTP methods, specifying, 334
HTTPS connections, 326
images, sending in messages, 384
imaging sensors, capturing snapshots

from, 461
indexes, array of, 203
IXC mechanism, 247
JAD files, 54

■INDEX564

Java AWT components/containers, 256
Java SE stub classes, 284
lightweight components, 236–240
kXML parser, 366–372
key states, polling, 189
listConnections method (PushRegistry

class), using, 389
Location class, 146, 343–355
Location interface, 282
location simulation, 519
LocationImpl class, 283
LocationStore class, implementing, 150,

170
LocationParser class, 371
LocationParserHandler class, 357–361
locators, for multimedia content, 455
media playback, stopping/reclaiming

resources, 456
message digests, 422, 428
MIDlets, 43–50, 208
MIDlet-Push entries, hypothetical, 388
MMS message, 384
MMSMIDlet class, 399–404
MMSSender class, 404
MP3 player, 454
MultimediaMIDlet class, 486–492
NDEF-enabled targets, registering

listeners for, 433
NDEF records, 437
paint method, 235
PIM package, 185
QR Codes, encoding/decoding, 441
random key generation, 430
RC4 encryption, using Bouncy Castle

API for, 429
record fields, enumerating over, 180
record store, filtering, 143
RecordControl interface, 465
remote objects, invoking, 286
RESTful web service, 362
resources, accessing, 242
RMI server application, 285
root file systems, enumerating, 169
rootChanged method, overriding, 168

SAX parser, 361
sendMsg method, 495
ServerSocketConnection, obtaining,

302
setCell method, 204
SettingPanel class, 68
shared objects, 244, 249
smart cards, 419, 421
SMSMidlet class, 392
SMSSender class, 396
Sprite class, 206
SpriteCanvas class. 210
SpriteSampleMIDlet class, 209
StreamConnection interface, 300
supported media/protocol types, 457,

492
SVG images, 474, 475, 479, 480
SVG Tiny document, 470
TextMessage interface, setting/getting

payload and, 380
to-do items, returning summary of, 180
toByteArray method, invoking, 140
ToneControl instances, 467, 468
TiledLayer class, 204
unparsed character directive, 340
video clips, playing, 459
WeatherApplet, 76
WeatherController class, 72
WeatherFetcher sample class, 315,

319–325, 362
WeatherWidget sample application,

155–160, 315, 319–325, 509–518
WeatherXlet, 62, 73
Web pages, obtaining, 306, 307
wireless messages, 438
Xlets, 225, 227
XML document, 336
XML namespaces, 340

Spacer class, 107
special characters, 339
Sprite class, 194, 201, 205–207

collision detection and, 207
transformations and, 206

SpriteCanvas class, 210–216

■INDEX 565

SpriteSampleMIDlet Class, 209
src directory, 36
start method, 254, 453
startApp method, 85, 86

init method and, 491
initialize method and, 95
startReceive method and, 395

startCamera method, 462
startDocument event, 357, 360
started state, 453
startElement event, 357, 360
starting content ID, MMS messages and,

382
starting XML tag, indicated by </ >, 339
startReceive method, 395
startup events, 90–96
startXlet method, 224, 225, 229
states, Player instances and, 452, 460
static SVG images, 474
status codes for HTTP communication,

308
stop method, 254, 453, 456
stop method (deprecated in Java SE), 27
stopCamera method, 462
stopped state, 479
StopTimeControl interface, 459
StreamCipher interface, 429
StreamConnection interface, 295, 300
StreamConnectionNotifier class, 302
StreamConnectionNotifier interface, 295
String class, 28
StringBuffer class, 28, 342, 355, 360
StringItem class, 107, 108
stubs, 275, 284
subjects, MMS messages and, 383
Subversion (SVN), 36
suites (JAD/JAR pairs), 53
Sun Java Wireless Toolkit, 43, 53, 518
suspend method (deprecated), 27
SVG images, MSA requirements and, 533
SVG Tiny, 470
SVGAnimator class, 474, 477–480
SVGAnimatorWrapper class, 484

SVGAPI (Scalable 2D Vector Graphics),
470–496

class/interface hierarchy of, 474
JSRs and, 541
modifying images and, 480
organization of, 472
rendering images and, 474–480
sample media player and, 484–496
using NetBeans and, 483

SVGCanvas, 477
SVGDocument class, 474, 483
SVGImage class, 474, 482
SVGImageItem class, 475
SVGMenu class, 484
SVGPlayer class, 484
SVGSplashScreen class, 484
SVGWaitScreen class, 484
SVN (Subversion), 36
SWF format (Adobe), 470
Swing, 267

AGUI and, 270, 271
user-interface model and, 99

SwingUtilities class, 269
symbologies, 440
SymbologyManager, 440, 443
System class, 27

■T
tags, in XML, 336
targetDetected method, 433, 435
TargetListener interface, 433
TargetProperties, 433
TCKs (Technology Compatibility Kits), 527
TCP connections, 295, 300, 302
Technology Compatibility Kits (TCKs), 527
telematics, JSRs and, 541
telephony, JSRs and, 541
television, JSRs and, 541
tempo, playback and, 468
TempoControl interface, 459
test directory, 36
text messages. See wireless messaging
TextBox class, 99, 114, 119

■INDEX566

TextField class, 109, 119
TextListener, 265
TextMessage interface, 376, 379, 380
theming, JSRs and, 541
third-party certification, 17
thread groups, 27
threats, security and, 414
TiledLayer class, 194, 201

indexes and, 203–205
sample game application and, 217

tiles, 194, 201
time APIs, 28
TimeBase interface, 451
Timer class, 29, 91
TimerTask class, 29, 91
timestamps, MMS messages and, 382
TimeZone class, 28
to-do items, 161, 174

creating, 183
PIMItem class and, 177
removing, 184
returning summary of, 180

toByteArray method, 140
toBytes method, 150, 154, 355
ToDoList class, 533
token smart cards, 417
ToneControl interface, 459, 466–469
tones, playing, 466–469
top-level windows, restrictions on, 269
totalMemory method, 27
toXml method, 343, 355
TRACE method, 307
transformations, Sprite class and, 206
traversal operations, 126
traverse method, 126, 131
truncate method, 167
trusted applications, 13
types, 101

■U
UDDI (Universal Description, Discovery,

and Integration), 332
UDPDatagramConnection class, 304
UI. See user interfaces

UnexpectedException, 246
unexportObject class, 284
UnicastRemoteObject class, 278, 279, 283
Uniform Resource Identifiers (URIs)

discovering contactless targets and, 433
smart cards and, 418

Universal Description, Discovery, and
Integration (UDDI), 332

Universal Product Code (UPC), 440
Universal Subscriber Identity Modules

(USIMs), 416
unmarshalling data, 342, 355
unparsed character directive, 339
unrealized state, 453
unregisterConnection method, 390
UnsupportedOperationException, 269
UPC (Universal Product Code), 440
update method, 235, 239, 318, 325, 425
updateLandmark method, 508
updateLocation method, 154
URFL device description repository, 300
URIs (Uniform Resource Identifiers)

discovering contactless targets and, 433
smart cards and, 418

urlEncode method, 319
URLs

creating, 295
syntax for, 297, 378

user interfaces (UIs), 97–131
application screens for, 114–131
items for, 104–112
JSRs and, 541
lightweight, developing via PBP,

233–241
USIMs (Universal Subscriber Identity

Modules), 416

■V
valid documents, XML and, 341
vector image format, 470
verifyPIMSupport method, 189
VeriSign, 55
versioning, record stores and, 138
video clips, playing, 459

■INDEX 567

VideoControl interface, 459, 461, 494
viewports, 477
visible items, 97–116
visual tag recognition, 432
visual tags (visual targets), 431–444

encoding/decoding, 436
JSRs and, 541
recognizing/generating, 440–444

VisualTagCodingException, 444
VisualTagConnection interface, 432, 436,

440, 444
volume, playback and, 468
VolumeControl interface, 494

■W
W3C, 470
WANs (Wide Area Networks), location-

based services and, 500
WAP (Wireless Application Protocol), 341
WAP-209-MMSEncapsulation standard,

386
WAP Binary XML (WBXML), 341
waypoint/waypoints elements, 519
WBXML (WAP Binary XML), 341
WeatherApplet (sample application),

57–76
packaging/executing, 75
RMI OP and, 281

WeatherFetcher (sample) class, 315–325, 362
WeatherItem (sample) class, 127–131
WeatherWidget (sample application),

37–56, 315–325
creating, 38–51
FileConnection class, integrating into,

173
integrating Location and LocationStore

classes into, 155–160
kXML parser and, 371
Location API and, 509–518
Location class and, 146–150, 155–160,

343–355
LocationParserHandler class and,

357–361
MMAPI/SVGAPI, 484
records stores and, 146–160

WeatherWidget class, 518
Web pages, obtaining, 306
web services

accessing, 331–372
architecture of from client perspective,

331–341
common Java ME programming tasks

for, 342
HTTP and, 306
JSRs and, 541
XML support for, 341–372

Web Services Description Language
(WSDL), 332

webRequest, 423
well-formed documents, XML and, 341
white space, XML and, 339
Wide Area Networks (WANs), location-

based services and, 500
Window class, 234, 263
Window container, 262
window toolkits, 230

implementing your own components
for, 234

PBP and, limitations of, 240
Wireless Application Protocol (WAP), 341
wireless messaging, 373–407

creating messages and, 379
encrypting/decrypting messages and,

423, 429
exchanging messages directly, 438
JSRs and, 540, 541
receiving messages and, 385, 391–398,

398–407
sending messages and, 380–385,

391–398, 398–407
WMA for, 375–387, 391–407

Wireless Messaging API. See WMA
wireless operators, Java ME market

perspective and, 3, 4
Wireless Universal Resource File

(WURFL), 17
WMA (Wireless Messaging API), 375–387

JTWI requirements and, 529
message encoding/decoding and, 381
MSA requirements and, 533
privileges and, 386

■INDEX568

push registry and, 387
using, 391–407
versions of, 375

write method, 139, 301
writeBoolean method, 139
writeByte method, 139
writeChar method, 139
writeChars method, 139
writeDouble method, 139
writeFloat method, 139
writeInt method, 139
writeLong method, 139
writeNDEF method, 436, 437
writeShort method, 139
writeUTF method, 139
writeX method, 305
WSDL (Web Services Description

Language), 332
WURFL (Wireless Universal Resource

File), 17

■X
Xlet application model, backward

compatibility for, 253
Xlet programming model, 14
XletContext interface, 225, 226, 242, 246
Xlets, 223–252

vs. applets, 254, 258
considerations for developing, 233
creating, 57–77, 225, 227–233
data sharing and, 243–251
dependencies and, 230–233
JAR files and, 242
life cycle of, 224
Mobility Pack for, 34, 57
properties/resources for, 242
states of, 224

XletStateChangeException, 225, 226
XML

for data representation, 336–341
generating in applications, 343–355
JSRs and, 541
MSA2 and, 536
sample document and, 336
web services and, 331, 334, 341–372

XML character entities, 339
XML files, Xlets and, 76
XML parsers, 342, 355, 356
XML schemas, 341
Xparse-J parser, 372

■Y
YAML (YAML Ain’t Markup Language), 331

■INDEX 569

