
Books for professionals By professionals®

Beginning JavaFX™

Dear Reader,

Beginning JavaFX™ introduces you to Rich Internet Applications (RIA) and 
explains to you all the essential features of the JavaFX™ Platform in depth. 
JavaFX™ is a new technology and its documentation is still evolving, so we 
offer you here a deeper insight into the JavaFX™ platform, while keeping 
things as clear as possible so that you can begin to start writing practical code 
with JavaFX™ whether you have worked with graphics before or not. We've 
designed this book to be as hands-on as possible for you by including many 
code samples and a code-driven methodology that will explain all the JavaFX™ 
features that you need in detail.

Beginning JavaFX™ covers a wide range of topics, from the basics of RIA, 
to the diverse language and UI constructs that it makes available to you. This 
book guides you through basic language features such as data types, expres-
sions, functions, operators, and class definitions, as well as advanced JavaFX™ 
features such as binding, triggers, access specifiers, and inheritance. We also 
give you a very detailed explanation of many user interface aspects that you'll 
be glad you considered in your projects - such as graphics, controls, and ani-
mation. You'll immediately find yourself writing practical and thoughtful code 
with JavaFX™ with us!

Lawrence PremKumar 
Praveen Mohan

US $39.99

Shelve in: 
Programming Languages / Java

User level: 
Beginner – Intermediate 

Praveen Mohan

THE APRESS ROADMAP

Pro 
JavaFX™ Platform

Beginning 
JavaFX™

Beginning 
Java™ SE 6 Platform 

www.apress.com
SOURCE CODE ONLINE

Companion eBook

 

Lawrence PremKumar

Prem
Kum

ar
M

ohan

Companion 
eBook 

Available

JavaFX
™

Beginning
Lawrence PremKumar and Praveen Mohan

Beginning

JavaFX
™

The eXperT’s Voice® in JaVa™ Technology

A hands-on tutorial for learning and using JavaFX™ 
to build your next Java™ rich client or Rich Internet 
Application (RIA)

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


 

Beginning JavaFX™ 
 

 

 

 

 

 

 

 

 

 

 

■ ■ ■ 

LAWRENCE PREMKUMAR 
PRAVEEN MOHAN  

 

 

www.allitebooks.com

http://www.allitebooks.org


ii 

 

Beginning JavaFX™ 

Copyright © 2010 by Lawrence PremKumar and Praveen Mohan 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher. 

ISBN-13 (pbk): 978-1-4302-7199-4 

ISBN-13 (electronic): 978-1-4302-7198-7 

Printed and bound in the United States of America (POD) 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of 
the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editor: Steve Anglin 
Development Editor: Tom Welsh 
Technical Reviewer: Sten Anderson 
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, 

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, 
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, 
Matt Wade, Tom Welsh 

Coordinating Editor: Kelly Moritz 
Copy Editor: James A. Compton 
Compositor: Kimberly Burton 
Indexer: Toma Mulligan 
Artist: April Milne 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail  
orders-ny@springer-sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our 
Special Bulk Sales–eBook Licensing web page at www.apress.com/info/bulksales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have 
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused 
directly or indirectly by the information contained in this work.  

The source code for this book is available to readers at www.apress.com. You will need to answer 
questions pertaining to this book in order to successfully download the code. 

www.allitebooks.com

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com
http://www.allitebooks.org


 

 

I dedicate this book to my beloved parents, Andrew and Jyothimani, brothers Bharath and Ranjith, wife 
Lavanya Lawrence, daughters Angel , Merlin and Bincy Lawrence and finally my friends Vimala Anne, 

Karkinath and Ravindra 

— Lawrence PremKumar 

 

 

I dedicate this book to my beloved parents, Dr. Prem Mohan and Sakunthala 

—Praveen Mohan  

 

 

www.allitebooks.com

http://www.allitebooks.org


 

 iv 

Contents at a Glance 

■About the Authors..................................................................................................... xiv 

■About the Technical Reviewer................................................................................... xv 

■Acknowledgements .................................................................................................. xvi 

■Introduction............................................................................................................. xvii 

■Chapter 1: Introduction to RIA.....................................................................................1 

■Chapter 2: Introduction to JavaFX...............................................................................9 

■Chapter 3: Data Types ...............................................................................................33 

■Chapter 4: Operators and Expressions ......................................................................47 

■Chapter 5: Functions .................................................................................................75 

■Chapter 6: Class Definitions ......................................................................................91 

■Chapter 7: Access Specifiers...................................................................................109 

■Chapter 8: Inheritance.............................................................................................141 

■Chapter 9: Data Binding...........................................................................................155 

■Chapter 10: Sequences............................................................................................175 

■Chapter 11: Triggers................................................................................................189 

■Chapter 12: Introduction to JavaFX  UI Elements....................................................203 

■Chapter 13: Introduction to Animation ....................................................................269 

■Index........................................................................................................................303 

 

 

www.allitebooks.com

http://www.allitebooks.org


 

 v

Contents 

■About the Authors..................................................................................................... xiv 

■About the Technical Reviewer................................................................................... xv 

■Acknowledgements .................................................................................................. xvi 

■Introduction............................................................................................................. xvii 

■Chapter 1: Introduction to RIA.....................................................................................1 

The History of RIA ..............................................................................................................1 

Key Characteristics of RIA .................................................................................................2 

RIA Workflow .....................................................................................................................2 

Why RIA..............................................................................................................................3 

Some RIA Examples...........................................................................................................5 

Summary ...........................................................................................................................7 

■Chapter 2: Introduction to JavaFX...............................................................................9 

Why JavaFX .......................................................................................................................9 

Advantages of JavaFX........................................................................................................9 

History of JavaFX .............................................................................................................10 

The JavaFX Platform........................................................................................................11 

The Developer Bundle............................................................................................................................. 11 

The Designer Bundle .............................................................................................................................. 12 

Standalone.............................................................................................................................................. 12 

JavaFX Platform Integration: The Bigger Picture.............................................................13 

JavaFX Mobile: An Introduction .......................................................................................14 

Advantages of JavaFX Mobile................................................................................................................. 14 

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS 

 

vi 

 
vi 

Deployment and Distribution ...........................................................................................15 

Getting Started.................................................................................................................16 

What to Download .................................................................................................................................. 16 

Writing Your First JavaFX Application..............................................................................16 

Running Your Application Using NetBeans ............................................................................................. 21 

Running the Application from the Command Line.................................................................................. 27 

Comments........................................................................................................................30 

Summary .........................................................................................................................31 

■Chapter 3: Data Types ...............................................................................................33 

Variable Declaration.........................................................................................................33 

var vs. def Declarations ...................................................................................................34 

Variable Naming ..................................................................................................................................... 34 

Variable Declaration Syntax.................................................................................................................... 35 

Data Types.............................................................................................................................................. 36 

Integer .................................................................................................................................................... 39 

Number................................................................................................................................................... 40 

Boolean................................................................................................................................................... 41 

Duration.................................................................................................................................................. 42 

Typecasting .....................................................................................................................43 

Sequences .......................................................................................................................44 

Default Values for Data Types..........................................................................................45 

Summary .........................................................................................................................46 

■Chapter 4: Operators and Expressions ......................................................................47 

The Assignment Operator ................................................................................................48 

The as Operator ...............................................................................................................49 

Arithmetic Operators........................................................................................................50 

The Modulus or Remainder Operator...................................................................................................... 51 

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS 

 

vii 

 
vii

The Arithmetic Assignment Operator ..................................................................................................... 51 

Operator Precedence.............................................................................................................................. 52 

Unary Operators...................................................................................................................................... 52 

The Increment and Decrement Operators: ++ and -- .......................................................................... 53 

The Unary + and – Operators ................................................................................................................. 54 

The not Operator..................................................................................................................................... 55 

Relational Operators ............................................................................................................................... 55 

Logical Operators ................................................................................................................................... 56 

Range Expressions ................................................................................................................................. 59 

Block Expressions .................................................................................................................................. 61 

Looping Expressions........................................................................................................62 

While Loops ............................................................................................................................................ 66 

Break Expressions ...........................................................................................................66 

Continue Expressions ............................................................................................................................. 67 

The if-else Expression ............................................................................................................................ 68 

Exception Handling................................................................................................................................. 70 

The new Expression ............................................................................................................................... 71 

Differentiating Expressions .................................................................................................................... 72 

Summary .........................................................................................................................73 

■Chapter 5: Functions .................................................................................................75 

How a Function Works.....................................................................................................77 

A Function with Neither an Argument nor a Return Value...................................................................... 77 

A Function with Arguments but Without a Return Value ........................................................................ 78 

A Function Without an Argument but with a Return Value ..................................................................... 79 

A Function with Arguments and a Return Value..................................................................................... 80 

Variable Access within a Function...................................................................................81 

Script-Level Variables............................................................................................................................. 81 

Local Variables ....................................................................................................................................... 82 

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS 

 

viii 

 
viii 

Function Overloading.......................................................................................................82 

Recursive Functions ........................................................................................................83 

Anonymous Functions......................................................................................................84 

The run() Function............................................................................................................86 

Command-Line Arguments..................................................................................................................... 87 

Summary .........................................................................................................................89 

■Chapter 6: Class Definitions ......................................................................................91 

Classes and Objects.........................................................................................................91 

Classes ................................................................................................................................................... 91 

Objects.................................................................................................................................................... 92 

Features of OOP ...............................................................................................................92 

Data Abstraction ..................................................................................................................................... 92 

Encapsulation ......................................................................................................................................... 92 

Inheritance.............................................................................................................................................. 92 

Polymorphism......................................................................................................................................... 92 

The Class Definition .........................................................................................................93 

Creating Object Literals .......................................................................................................................... 94 

Initializing Class Attributes within an Object Literal ............................................................................... 95 

Calling the Members of the Class........................................................................................................... 95 

Assigning Default Values to Data Members............................................................................................ 97 

The init Block.......................................................................................................................................... 97 

The postinit Block................................................................................................................................... 99 

Modifying Class Objects...................................................................................................99 

Objects as Function Arguments.....................................................................................100 

Non-Member Functions Accessing the Object...............................................................101 

Static Members..............................................................................................................102 

Sharing a Function Name Between Script-Level and  Member Functions ....................104 

www.allitebooks.com

http://www.allitebooks.org


■ CONTENTS 

 

ix 

 
ix

Calling a Java Method That Is a JavaFX Reserved Word ...............................................105 

The abstract Class .........................................................................................................106 

Summary .......................................................................................................................107 

■Chapter 7: Access Specifiers...................................................................................109 

The Script—The .fx File.................................................................................................110 

The Script-Private Access Specifier ..............................................................................111 

Packages .......................................................................................................................115 

Statics in JavaFX Script........................................................................................................................ 117 

The package Access Specifier.............................................................................................................. 118 

Package Access with Class Members .................................................................................................. 121 

Honoring Access Specifiers for Java Classes....................................................................................... 123 

The protected Access Specifier .....................................................................................124 

The public Access Specifier...........................................................................................127 

JavaFX Secondary Access Specifiers ............................................................................131 

public-read ........................................................................................................................................... 131 

public-init ............................................................................................................................................. 134 

Secondary Specifiers and def............................................................................................................... 136 

Access Specifiers for Class Definitions .........................................................................136 

Script-private Classes .......................................................................................................................... 137 

Package-accessible Classes ................................................................................................................ 137 

Protected Classes................................................................................................................................. 138 

Public Classes ...................................................................................................................................... 139 

Summary .......................................................................................................................139 

■Chapter 8: Inheritance.............................................................................................141 

The Order of Initialization of Data Members ..................................................................142 

Overriding Data Members..............................................................................................143 

Use of the super Keyword..............................................................................................144 



■ CONTENTS 

x 

x

Mixin Classes.................................................................................................................145 

Creating a Subclass from Multiple Mixin Classes . .............................................................................. 148 

The Order of Initialization in Multiple Inheritance. ............................................................................... 149 

Abstract Classes . ...........................................................................................................150 

Using a JavaFX Class to Extend a Java Abstract Class . ...................................................................... 151 

Anonymous Implementation of Java Interfaces.............................................................152 

Summary .......................................................................................................................153 

■Chapter 9: Data Binding...........................................................................................155 

What Does Binding Mean?.............................................................................................155 

Recalculation of Expressions.........................................................................................157 

Binding with Conditional Expressions............................................................................158 

Binding with for Expressions .........................................................................................159 

Binding Block Expressions.............................................................................................161 

Binding Functions . .........................................................................................................162 

Bound Functions ............................................................................................................164 

Binding with Object Literals. ..........................................................................................165 

Bidirectional Binding......................................................................................................169 

Lazy vs. Eager Binding...................................................................................................172 

Summary . ......................................................................................................................174 

■Chapter 10: Sequences............................................................................................175 

The sizeof Operator........................................................................................................176 

Accessing the Elements of a Sequence.........................................................................176 

Nested Sequences .........................................................................................................177 

Creating a Sequence Using a Range Expression ...........................................................178 

Excluding the End Value in the Sequence......................................................................179 

Sequence Slicing ...........................................................................................................179 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



■ CONTENTS 

 

xi 

 
xi

Using a Predicate to Create a Subset of a Sequence ....................................................180 

Working with Sequences ...............................................................................................181 

Inserting an Element into a Sequence.................................................................................................. 181 

Deleting an Element from a Sequence ................................................................................................. 182 

Reversing a Sequence.......................................................................................................................... 184 

Sequences as Function Parameters ..............................................................................184 

Binding with Sequences ................................................................................................186 

javafx.util.Sequences Utility Functions ..........................................................................187 

Summary .......................................................................................................................188 

■Chapter 11: Triggers................................................................................................189 

Defining a Simple Trigger ..............................................................................................189 

A Trigger with Access to the Old Value..........................................................................191 

Using Triggers with bind................................................................................................192 

Implementing Binding Using Triggers............................................................................193 

Validation Within the Trigger .........................................................................................195 

Sequence Triggers.........................................................................................................196 

Nested Triggers .............................................................................................................201 

Summary .......................................................................................................................202 

■Chapter 12: Introduction to JavaFX  UI Elements....................................................203 

Rendering Model: Immediate Mode vs.  Retained Mode Rendering..............................204 

Scene Graph ......................................................................................................................................... 204 

Scene.................................................................................................................................................... 205 

Stage .................................................................................................................................................... 206 

Coordinate System.........................................................................................................206 

Graphical API Summary .................................................................................................207 

Node – The Base UI Element .........................................................................................208 



■ CONTENTS 

 

xii 

 
xii 

Geometries.....................................................................................................................210 

Stroke vs. Fill ........................................................................................................................................ 210 

Writing your First UI .......................................................................................................212 

Paints.............................................................................................................................220 

Solid Colors........................................................................................................................................... 220 

Gradients .............................................................................................................................................. 222 

Input Handling................................................................................................................230 

Keyboard Input ..................................................................................................................................... 231 

Mouse Input.......................................................................................................................................... 232 

Text Rendering...............................................................................................................234 

Image Rendering............................................................................................................238 

Loading an Image ................................................................................................................................. 238 

Rendering an image ............................................................................................................................. 244 

Transformations.............................................................................................................246 

Translation............................................................................................................................................ 246 

Rotation ................................................................................................................................................ 249 

Scaling & Shear .................................................................................................................................... 252 

Controls & Layouts.........................................................................................................255 

StyleSheets....................................................................................................................260 

Charts ............................................................................................................................260 

Effects............................................................................................................................263 

Bounds...........................................................................................................................263 

Bounds Class ........................................................................................................................................ 263 

Node Bounds Variables......................................................................................................................... 264 

Summary .......................................................................................................................267 



■ CONTENTS 

 

xiii 

 
xiii

■Chapter 13: Introduction to Animation ....................................................................269 

What is Animation?........................................................................................................269 

Animation in JavaFX ......................................................................................................269 

Play, Pause, or Stop a Timeline ............................................................................................................ 274 

KeyFrame Attributes............................................................................................................................. 276 

Simplified Syntax.................................................................................................................................. 282 

Transitions............................................................................................................................................ 283 

Summary .......................................................................................................................301 

■Index........................................................................................................................303 

 

 
 



 

 xiv 

About the Authors 

 
■ Lawrence PremKumar is a tech lead at Yahoo and has more than six years of 
experience in Java and J2EE technologies. He has spent 4more than four years with 
Sun Microsystems on Java client side quality team (AWT, Swing) since JDK6 to JDK 
6u18. He is a hard-core and passionate client developer who has been associated with 
JavaFX for more than three years across various releases and has made significant 
contributions to JavaFX Graphics and Controls, in terms of development and quality. 
He has been actively evangelizing client JavaFX technologies across different 
universities and corporations. 

 
 
 
 
 
 

■ Praveen Mohan is a principal engineer at Yahoo and has more than eleven years of 
experience in Java and J2EE. He has spent more than nine years with Sun 
Microsystems, leading various Java Quality teams from the client side across multiple 
releases, starting from JDK 1.2.2 to JDK6. He has been specializing in various client 
Java technologies such as Swing, AWT, Java2D, Java3D, JavaFX, Media and Java 
Deployment, throughout his career. He has made significant contributions toward the 
development and quality of JavaFX and he has led the JavaFX graphics, controls, 
animation, and mobile compatibility quality teams at Sun across multiple releases of 
JavaFX. He has been actively evangelizing the JavaFX technology in various forums, 
universities, and conferences. He is passionate about 2D Graphics, Media, and Quality 
Engineering. 

 

 
 



 

 xv

About the Technical Reviewer 

� Sten Anderson has been working with Java since the late 90s and is currently a Senior Consultant for 
the software consultancy, Citytech, in Chicago. Sten blogs about Java, JavaFX, Groovy, and any number 
of other things at http://blogs.citytechinc.com/sanderson/. 
 
 
 
 

http://blogs.citytechinc.com/sanderson


 

 xvi 

Acknowledgments 

Writing a book is always a big effort, especially with such a rapid rate of change in the JavaFX technology. 
Making this book a reality has taken a lot of effort from many dedicated folks and it's our great pleasure 
to acknowledge their hard work. 

First of all, we would like to thank our Manager, Rabi Cherian, who has constantly encouraged and 
motivated us to share our knowledge with rest of the world. He put a lot of special effort into adjusting 
project deadlines to give us enough time to focus on the book. We also want to acknowledge Elancheran, 
Girish, and Srinivas from the JavaFX Quality Team at Sun for taking up additional work so as to give us 
sufficient time to work on this book. 

We would like to acknowledge the monumental efforts of our technical reviewers Sten Anderson 
and Tom Welsh for their conscientious technical guidance throughout the project and they have done a 
remarkable job in ensuring the contents of this book are of high quality. Our copy editor Jim Compton 
has an excellent eye for consistency. He has eliminated many embarrassing errors and has made lots of 
thoughtful suggestions for improvement throughout the project.  

We also want to recognize the efforts of Kelly Moritz, who has been coordinating the project in an 
excellent manner, which helped us complete the book on time.  

 
 
 
 



 

 xvii

Introduction 

This book covers all the essential features of JavaFX Platform and will teach you various aspects of the 
language and UI elements. It has been designed to proceed from less complex to more complex topics in 
a gradual manner so that you are not overwhelmed with myriad of concepts to learn and understand 
upfront. This book is for Flash, Silverlight, and other RIA developers looking to use and integrate JavaFX 
in their RIA, whether it is for desktop or mobile environments. However, our goal is to teach you JavaFX 
from the ground up, and you don't need prior programming expertise to use this book and hence this 
book is also suitable for those who are new to RIA development. Your time as a reader is extremely 
valuable, and you are likely waiting to read a pile of books besides this one. So we have made it concise 
by tightening things up and eliminating redundant examples. 

We recommend that you be hands-on while reading this book, as it is mostly code-driven and will 
help you learn the concepts through practical exploration while reading. This way, you can actually get 
to program with JavaFX, rather than just reading the book, and you can also become comfortable and 
productive with it readily. 

We have worked hard to keep pace with the changing syntax and architectures of the technology to 
ensure that the examples and explanations given in this book are both up-to-date and backward–
compatible  at least from JavaFX 1.1 to JavaFX 1.3.  

Since this is a Java based technology, we have also highlighted the differences and collaborations 
between Java and JavaFX wherever appropriate so that even an existing Java application can be well 
integrated with JavaFX. 

We hope this book helps you learn JavaFX quickly and makes you very hands-on and productive in 
coming up with a cool RIA. 
 

—Lawrence PremKumar 
 

—Praveen Mohan 

 
 



 

 

 
 

 
 

www.allitebooks.com

http://www.allitebooks.org


C H A P T E R  1 
 

■ ■ ■ 
 

1 

Introduction to RIA 

Rich Internet Applications (RIAs) have always been about the user experience. RIAs, by (Wikipedia) 
definition, are web applications that have most of the characteristics of desktop applications, typically 
delivered through web-browser plug-ins or independently via sandboxes or virtual machines. The term 
RIA has many different definitions within the Internet development community, but all of those 
definitions boil down to enhancing the end-user experience in different ways. RIAs transfer the 
processing necessary for the user interface to the web client but keep the bulk of the data (maintaining 
the state of the program, its data, and so on) back in the application server, thus offering a better user 
experience with a lot more flare and pushing the boundaries of what we expect from the browser. 

Many of us still remember the old days when we saw only static, plain text showing up on the 
browser. In recent times, we have come a long way, with dynamic content playing a vital role in the web 
application; this has definitely pushed the user experience way beyond the simple pages of old. Now RIA 
technology is bringing a similar revolution on the client side of computing that truly makes work easier, 
more accessible and more fun for everyone. One can view RIA as a convergence of user interface 
paradigms that exist for the desktop and the web and that facilitate the delivery of a uniform user 
experience across platforms, devices, and browsers. Rich in the context of RIA means a fluid, convenient, 
engaging, delightful user experience that works better than the halting, page-at-time, form-submission-
dominated interaction model. 

The History of RIA 
The concept of RIA was introduced in March 2002 by vendors like Macromedia who were addressing 
limitations at that time in the richness of user interfaces, presentation of media content, and overall 
sophistication of the application from a user perspective. The primary emphasis was on the richness of 
the user experience and not actually on the technology, and the goal was to offer an enhanced user 
experience independent of the technology. However, RIA has taken many years to progress and mature, 
and it is only now reaching a stage where RIA tools are beginning to deliver on their long-held promise of 
easily developed and deployed cross-platform applications. 

There are many players in the RIA arena currently, the biggest and prominent one being the Adobe 
Flash platform. However, recent developments—including the growth of powerful Web development 
technologies and improved standards support in the latest Web browsers—have boosted RIA’s potential 
reach and capabilities, thus encouraging far more players, including AJAX (Asynchronous JavaScript and 
XML), Adobe Flex, Microsoft Silverlight, Mozilla Prism, Sun Microsystems JavaFX, and others to enter 
the market. But when we look at these technologies from a development platform perspective, only few 
of them, such as Flex, Silverlight, and JavaFX, would qualify as full-fledged development platforms for 



CHAPTER 1 ■ INTRODUCTION TO RIA 

2 

RIA. Nevertheless, each of these products has its own unique strengths and weaknesses, which we will
uncover as we go deep into the JavaFX technology in the following chapters. 

Key Characteristics of RIA 
The key characteristics expected of an RIA platform typically include the following: 

Advanced Communications: Sophisticated communications with supporting servers through
optimized network protocols can considerably enhance the user experience. 

Minimize Complexity: RIA Frameworks come in handy when dealing with complex user interfaces
that are normally difficult to design, develop, deploy, and debug while enhancing the end user
experience. 

Consistency: Consistency of user experience across multiple operating systems, devices, and
browsers has become far more important in the user interface paradigm with today’s wider
connectivity to the Internet. 

Installation and Maintenance: Most RIA frameworks operate within a plug-in or a sandbox, so the
installation and maintenance of these plug-ins must be much more intuitive and should work
without the user thinking about the complexities of how it’s done.  

Offline: An RIA platform needs the ability to let the user work with the application without
connecting to the Internet and synchronizing it automatically when the user goes live. 

Security: RIAs should be as secure as any other web application, and the framework should be well-
equipped to enforce limitations appropriately when the user lacks the required privileges, especially
when running within a constrained environment such as a sandbox. 

Performance: Perceived performance in terms of UI responsiveness and smoother visual transitions
and animations are key aspects of any RIA. 

Richness: Richness can be defined in terms of responsiveness, immediacy, convenience, production
values, and ease-of-use. 

Standards: Adhering to standards becomes important in heterogeneous environments when
multiple technologies hybridize together in providing a better user experience. 

Ease-of-use: An RIA platform needs the ability to deliver enhanced ease-of-use for the end-users. 

Rapid Development: An RIA Framework should facilitate rapid development of a rich user
experience through its easy-to-use interfaces in ways that help developers and not scare them off. 

RIA Workflow 
Creating the rich user experience brought out by RIAs is normally a collaborative effort between
designers providing rich graphical assets and developers integrating them appropriately with the
business logic, refining the overall user experience through multiple iterations. Visual designers have
always been able to create beautiful experiences, whether that’s a painting, a sculpture, a web page, or
some form of artwork, and they know how to evoke emotion and reach out to the people viewing the
piece. The developers, on the other hand, are task-oriented and focus on making the business logic work
in an optimized way. The success of an RIA framework depends on how it helps designers take their 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 1 ■ INTRODUCTION TO RIA 

 

3 

ideas and turn those into interfaces that developers can eventually code around. Hence it is important 
for the RIA framework to offer a solid designer-developer workflow to cater to the needs of two different 
categories of professionals, in order to be successful in the marketplace. Figure 1-1 shows this workflow. 

 

Figure 1-1. RIA workflow 

Why RIA 
Applications are the basis of all computing experiences, and we need them to do what we do. However, 
most of the headaches the average person faces while using computers come from the way applications 
have been developed and deployed over the years. Traditional applications are tied to your computer, 
your operating system, and perhaps the file system. The problem with all of this is that it forces us to 
develop an understanding of the underlying layer below the application. In order to get work done, or 
experience something great, we need to know about file types, codecs, drivers, and other things that 
really have nothing to do with the task we are trying to accomplish.  

In contrast, the RIA has brought about a huge change in computing for the average person. We can 
have great digital experiences that are easy to find and easy to use on the Web. With the advent of 



CHAPTER 1 ■ INTRODUCTION TO RIA 

 

4 

standards that web browsers have been developed to comply with, and with the ability to connect to the 
Web from wherever you are with whatever device you have, people now expect to be able to experience 
content on the web consistently, anywhere, at any time. RIAs are a new breed of application that have 
emerged, bringing the best of the Web and the best of the traditional desktop application together. 

A well designed RIA can be a truly engaging experience to the user. It will allow the user to flow to 
many areas of the application without the click-and-wait that was the norm when browsing the Internet 
since its inception. RIA can also seamlessly include multimedia (audio, video, screencasts, and so on) 
and third-party tools (maps, messengers) to enhance the user’s experience.  

An RIA moves the ability to do work to the Web. It makes the process that we use to do something 
available to us everywhere regardless of what operating system we may be using. Further, our data and 
the content we create are also always available to us, moving our entire workflow from the computer to 
the “Internet cloud.” When applications and their associated data truly reside in the cloud, radical new 
possibilities emerge. Sharing data or collaborating with others becomes much easier. People can 
collaborate on tasks in real-time or asynchronously, and they can use streaming video, audio, and text to 
communicate with each other as they are working on something. A good RIA often exposes the pitfalls in 
a traditional web application through being able to interact with the server data in a more intuitive ways. 

Great RIAs also abstract the idea of “files.” Your data is stored contextually, and is usually searchable 
within that context. You never really deal with raw files when working with an RIA; you deal with your 
ideas instead. These workflows can be radically more productive, as they keep the focus on getting work 
done, and they require no knowledge of the underlying platform on the part of the end user. 

The traditional Web relied heavily on a few interface controls we have all come to know well. Things 
like links, combo boxes, and forms are great for dealing with interactive “pages,” but they aren’t all that 
helpful when you are editing images, streaming video, mapping GPS data, or making phone calls. New 
user interface requirements have driven the aforementioned technologies to allow designers and 
developers to explore the possibilities of brand new ways to interact with these types of data and 
processes. 

The laptop and desktop computer are hardly the only places where we expect rich experiences and 
want to access our data. Great RIA technologies must also stretch their presence to devices including the 
mobile world as well as home theater. Most of the technologies mentioned offer the ability to develop for 
a plethora of devices. This space is emerging, but it may likely be the most critical of all. The race for 
ubiquity here is on and far from decided. 

For enterprise applications, you are not tied to any particular technology when moving to RIA. You 
are not limited to any specific application server or language. There are many enterprise RIAs that 
employ ColdFusion, Java/J2EE, .NET, and PHP, and there are numerous other options out there. As with 
your client-side interface technology, your back-end technology should be determined by the needs of 
your application, your resources, and your infrastructure. Are you serving dynamic data? Are you 
streaming media? Are you employing real-time messaging? Are you upgrading an existing system, or 
building one from the ground up? Does your organization support open-source initiatives? Does your 
organization prefer commercial products that have technical support? What is your budget for 
technology? There are many variables in the equation, and many solutions to the problem. RIA is not 
locked into any one specific technology, nor does anyone expect it to ever be. The term “rich” is an 
appropriate reference to the user experience, but an RIA seldom sacrifices the other key aspects of the 
application, such as security, performance, stability, reliability, and so on, that are integral parts of any 
enterprise application. 



CHAPTER 1 ■ INTRODUCTION TO RIA 

 

5 

Some RIA Examples 
There are innumerable RIAs on the web that people use on a day-to-day basis without realizing that they 
are working with an RIA. In general, an RIA is anything that provides an engaging and delightful 
experience to the end user without having him/her go through a complex interface, multiple page 
refreshes, and the like to get what he or she wants. Some of the classic RIAs that people find exciting to 
use are illustrated in Figures 1-2 through 1-4; in addition to these sites, many of the social networking 
sites that people use every day are also RIAs.  

 

Figure 1-2. RIA from Indaba for mixing and managing music online (www.indabamusic.com) 

 

http://www.indabamusic.com


CHAPTER 1 ■ INTRODUCTION TO RIA 

 

6 

 

Figure 1-3. www.miniusa.com 

 

Figure 1-4. www.worldwidetelescope.org/webclient/ 

http://www.miniusa.com
http://www.worldwidetelescope.org/webclient


CHAPTER 1 ■ INTRODUCTION TO RIA 

 

7 

Summary 
Rich Internet Applications are allowing designers to create web sites in original ways that could never be 
imagined before, some of which you have just seen. RIA technologies are offering a number of new 
options for designing a creative visual interface. Rich Internet Applications are starting to have a serious 
impact on the whole software industry. It is amazing to see how Rich Internet Applications are starting 
to move into some of the most common and coveted areas of application development, and it would be 
truly exciting to be involved in a revolution in computing that truly makes work easier and more 
enjoyable for developers as well as consumers. In the next chapter, you will learn more about the JavaFX 
technology and its benefits, applicability, and usage. 
  



 

 

 
 



C H A P T E R  2 
 

■ ■ ■ 
 

9 

Introduction to JavaFX 

As described by Sun, JavaFX is an expressive and rich client platform for creating and delivering 
immersive Internet experiences across different screens. The main intention of this technology is to 
write Rich Internet Applications (RIAs) that run seamlessly across screens (desktop, mobile, or IP TV), 
providing a uniform user experience. JavaFX applications are written using a statically typed, declarative 
language called JavaFX Script that makes it easy to program in a visual context, enabling developers to 
create highly expressive and intuitive GUIs quickly and easily. 

JavaFX is fully integrated with the Java Runtime Environment (JRE) and takes full advantage of the 
performance and ubiquity of the Java platform. JavaFX applications will run on any desktop and browser 
that runs the JRE and easily integrate with Java Platform, Mobile Edition (Java ME), opening the door to 
billions of mobile phones and other connected devices! JavaFX also leverages the other benefits of the 
Java platform, such as object-orientation, inheritance, polymorphism, a well-established security model, 
well-defined exception handling, memory management through garbage collection, and the mature Java 
Virtual Machine (JVM). 

Why JavaFX 
Developers are seeking the most efficient way of creating expressive content in applications that appear 
on desktops, on the Internet, and on mobile devices. They need to build high-fidelity GUIs that operate 
seamlessly on multiple web browsers, operating systems, and devices, without having to port or rewrite 
their applications for each screen. To meet this goal, developers need to work efficiently with team 
members such as graphic designers and media authors to exchange audio, video, and other rich media 
assets. The JavaFX platform contains an essential set of tools and technologies that enable developers 
and designers to collaborate, create, and deploy applications with expressive content. 

Advantages of JavaFX 
JavaFX is a full-fledged development platform for RIAs and has many advantages over other equivalent 
technologies in the market. Out of all, there are some key factors that differentiate JavaFX significantly. 

RIAs for all screens: JavaFX provides a unified development and deployment 
model for building expressive RIAs across desktop, browser, mobile, and TV. 

Rich client platform: JavaFX makes it easy and intuitive to integrate graphics, 
video, audio, animation, and rich text. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

10 

Ease of use: JavaFX Script is an easy-to-learn, easy-to-implement language that 
is statically typed, offering a declarative syntax that makes it easy to program in 
a visual context without worrying about the internals. 

Powerful runtime: JavaFX leverages the extreme ubiquity, power, performance 
and security of the JRE. 

Time-to-market: JavaFX offers a dramatically shortened production cycle for 
designers and developers through its designer–developer workflow. JavaFX 
allows you to incorporate multimedia assets from popular third-party design 
tools such as Adobe Illustrator and Photoshop using the JavaFX Production 
Suite. 

Ready-made mass market: JavaFX allows you to distribute your RIAs widely, 
more quickly and easily across billions of Java-powered devices. 

Preserve your investment: You can reuse your existing Java libraries in JavaFX 
and thus preserve the investment you’ve already made in Java. 

Cross-browser functionality: JavaFX provides a uniform user experience 
across all browsers on multiple platforms. 

Enterprise Integrations: With JavaFX you are ready to integrate a rich UI with a 
complex enterprise back-end. 

Proven Security Model: You’ll get broader system access with the proven Java 
security model. 

History of JavaFX 
JavaFX was originally known as F3 (Form Follows Function) and was a pet project of Christopher Oliver, 
a software engineer at Sun Microsystems who came onboard through Sun's acquisition of SeeBeyond. At 
the JavaOne 2007 conference, Sun officially launched F3 as the JavaFX platform, and it had an 
interpreter-based language by then. In July 2008, Sun launched its first preview version of JavaFX with its 
own compiler. JavaFX 1.0 was released in December 2008 with many more enhancements and 
optimizations to the platform. 

JavaFX 1.1 was released in February 2009. Its primary focus was the mobile platform, and JavaFX 
was made fully functional on mobile devices, as demonstrated at the Mobile World Conference in 
February 2009.  

Sun continued adding more features, optimizations, and performance improvements, and it 
released JavaFX 1.2 at the JavaOne 2009 conference. At press time, Sun is currently working on   
JavaFX 1.3, tentatively targeted to be released in early 2010. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

11 

The JavaFX Platform 
The JavaFX 1.2.1 platform release includes various components, as illustrated in Figure 2-1. Let us see 
each one of them in detail. 

 

Figure 2-1. The JavaFX platform: an overview 

The Developer Bundle 
The developer bundle consists of the following elements: 

NetBeans IDE 6.7.1 for JavaFX 1.2.1: This provides a sophisticated integrated 
development environment for building, previewing, and debugging JavaFX 
applications. The editor features a drag-and-drop palette so you can quickly 
add JavaFX objects with transformations, effects, and animation. This IDE also 
comes with its own set of building block examples and the JavaFX Mobile 
Emulator, a mobile phone simulator. 

JavaFX Plug-in for NetBeans IDE: If you are already using the NetBeans IDE, 
you can add the JavaFX plug-in to include support for developing JavaFX 
applications. 

JavaFX Plug-in for Eclipse IDE: Sun also offers a JavaFX plug-in for the Eclipse 
IDE, which works with Eclipse IDE 3.4 or newer. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

12 

The Designer Bundle 
The designer bundle consists of JavaFX Production Suite, a single download that contains the following
tools to enable designers to exchange visual assets with developers: 

Plug-ins for Adobe Illustrator and Adobe Photoshop: Plug-ins are available
for popular designer tools such as Adobe Photoshop and Adobe Illustrator that
allow designers to export the visual assets created by these tools to JavaFX
applications. Developers can start building their applications based on
mockups that the designer creates. As the visual design evolves, it is easy for the
developer to incorporate changes in the artwork for the final version of their
application. When a designer saves a graphic to the JavaFX format, they can
compare how it will look in desktop and mobile applications, and they can view
metrics that enable them to minimize resource demands on mobile devices. 

JavaFX Media Factory: This contains two separate tools: 

• SVG Converter: Converts SVG Content into JavaFX Format. 

• JavaFX Graphics Viewer: Allows you to view graphic assets that were
converted to the JavaFX format. It allows you to preview each graphic as it
will appear in either desktop or mobile applications. 

Standalone 
If you prefer using other tools, or developing directly via the command line, you can download the
stand-alone JavaFX 1.2.1 SDK. The SDK includes the following components (also included when you
download NetBeans IDE for JavaFX): 

JavaFX Desktop Runtime 

JavaFX Mobile Emulator (for Windows) 

JavaFX APIs 

JavaFX Compiler 

JavaFX API documentation 

Examples 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

13 

JavaFX Platform Integration: The Bigger Picture 
Figure 2-2 illustrates the bigger picture of how the JavaFX platform integrates different platform 
elements, the runtime, tools, and frameworks to deliver applications, content, and services to 
consumers using multiple devices. 

 

Figure 2-2. The JavaFX Platform: the bigger picture 

Here is a brief introduction to each of the elements illustrated in Figure 2.2: 

JavaFX Runtime: Contains cross-platform and platform-specific runtime 
environments and supporting libraries. 

Common Elements: Contains APIs and other runtimes that work consistently 
across platforms. 

Desktop Elements: Contains API extensions that are specific to the desktop 
platform. 

Mobile Elements: Contains API extensions that are specific to the mobile 
platform. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

14 

TV Elements: Contains API extensions that are specific to the TV platform. 

Application Framework: Forms the building block for application 
development. 

Designer Tool: Allows visual designers and graphics experts to create graphic 
assets using popular content authoring tools such as Adobe Photoshop and 
Adobe Illustrator and bring those assets into the JavaFX application using the 
respective JavaFX plug-ins provided by Sun Microsystems. This shortens the 
production cycle of RIAs drastically. Sun is also working on its own content 
authoring tool, a preview of which was demonstrated at JavaOne 2009. 

Developer Tool: Helps developers create JavaFX applications, services, and 
content. 

JavaFX Mobile: An Introduction 
With JavaFX Mobile, Sun is bringing expressiveness to the most powerful and pervasive mobile platform. 
On mobile devices, JavaFX runs directly on Java ME to take advantage of the platform’s ubiquity, 
security, and highly capable feature-set. With JavaFX Mobile, developers and designers benefit from 
using the same JavaFX tools, such as the JavaFX SDK and the JavaFX Production Suite, that they have 
been using to create content for the desktop and browser. This makes it much easier to start creating 
mobile content, and it opens up the mobile device to a much wider pool of developers and designers. 

Consumers today expect richer experiences on their mobile devices and also want their content to 
work well in bandwidth-constrained network environments and in offline modes. However, creating 
content for mobile devices typically requires highly specialized programming skills that many content 
and service providers may not have in-house. Moreover, as companies look to deliver their content and 
services to consumers across all of their devices (Mobile, Desktop, TV, and so on), they want to do so 
with a consistent and device appropriate user experience. Developers want an easier way to create rich 
and expressive content for mobile devices and want to be able to collaborate with team members such 
as graphics designers and media authors in an efficient manner that allows simple exchange of audio, 
video and other rich media assets. Device manufacturers want to enable richer experiences while 
leveraging their existing technology investments. Thus everyone from device manufacturers to service 
providers to developers to end consumers benefits from the combination of Java and JavaFX Mobile. 

Advantages of JavaFX Mobile 
Here are the advantages of using the JavaFX Mobile platform to develop and deliver expressive content: 

• You can get your content in front of more users than with any other platform by 
cutting across multiple OEMs and platforms. 

• JavaFX makes it easy to design dynamic interfaces that integrate audio, video, text, 
graphics, and animation! 

• Java is backed by nearly all operators and OEMs, making it the strongest platform 
in the industry. 

• JavaFX Mobile lets operators and OEMs build on their existing investment in Java 
to lower their implementation costs. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

15 

• JavaFX Mobile allows developers to build expressive interfaces while reusing 
existing Java code. 

• JavaFX Mobile provides the broadest access to device-level capabilities of any 
cross-device platform. 

• JavaFX Mobile protects the user through a proven security model that enables safe 
access to data and device capabilities 

• JavaFX Mobile provides strong developer tools along with a better developer–
designer workflow that leverages existing, popular tools. 

• Developers can easily target their content across desktops and mobile devices 
with a single, unified SDK and a common API. 

• JavaFX Mobile provides a full mobile emulator to prototype and optimize content 
directly on your desktop. As of JavaFX 1.2.1, the supported mobile devices are HTC 
Diamond and LG Incite. 

Deployment and Distribution 
At one time we used to think of computers as the center of the Internet. But of late, the reach of the 
Internet has become entirely global and has gone well beyond just computers as a delivery mechanism, 
extending to a world of devices such as mobile phones, Internet billboards, set-top boxes, car 
dashboards, and more. All these devices touch consumers on a daily basis in every aspect of their lives, 
and consumers obviously want to stay connected wherever they are with whatever devices they have. 
Java as a technology caters to the needs of these consumers, and Java is presently deployed on billions of 
devices globally and has a developer base of over 6 million. JavaFX leverages the ubiquity of Java and 
hence allows JavaFX developers to reach a wider audience over more devices than any other technology. 

JavaFX applications can be deployed and distributed in the following ways: 

Java Plug-in: A tool used for deploying Java applets that run inside a web 
browser. 

Java Web Start: A tool used for deploying standalone Java applications on the 
desktop, using Java Network Launching Protocol (JNLP). 

The Java Store: JavaFX applications can be submitted for distribution through 
the Java Store. End users can go to the Java Store and “drag to install” or 
perform a traditional installation directly to their desktops. 

The JavaFX SDK contains a JavaFX Packager utility, which creates an application in a format that is 
specific for a target profile, either desktop or mobile. The NetBeans IDE incorporates this utility and is 
available to users when they choose an execution model. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

16 

Getting Started 
This section will get you started using the NetBeans IDE to write a small “Hello World” program in 
JavaFX, compile it, and execute it on multiple platforms. 

What to Download 
First make sure that you meet the system and software requirements listed at 
http://java.sun.com/javafx/1/reference/system–requirements–1–2.html. Check that you have the 
required hardware and available free disk space, and the correct version of the Java Software 
Development Kit (JDK) or Java Runtime Environment (JRE) before proceeding with any of the following 
installation instructions. 

 
Application developers should download the following: 

If you are new to the NetBeans IDE: Download and install NetBeans IDE for 
JavaFX 1.2.1. This version is available for Windows and Mac OS X platforms. A 
beta release is available for Ubuntu and OpenSolaris platforms. The NetBeans 
IDE for JavaFX 1.2.1 is a full-featured development environment that is 
packaged with the JavaFX Software Development Kit (SDK) and with best-
practice examples that can help you build your software development project. 
The installation includes the JavaFX Mobile Emulator, which is currently 
available only on the Windows platform. (Future releases of JavaFX may also 
have an emulator available on the Mac platform.) 

If you already have NetBeans IDE: Update your IDE with JavaFX 1.2.1 Plug-in 
for NetBeans. This version is available for Windows and Mac OS X platforms. A 
beta release is provided for the Ubuntu Linux and OpenSolaris platforms. The 
plug-ins provide the features that support the development of JavaFX 
applications in the NetBeans IDE. They also include the JavaFX SDK and best-
practice examples. The installation includes the JavaFX Mobile Emulator, which 
is currently available on the Microsoft Windows platform only. 

Now let's learn how to start a new project in NetBeans to create a “Hello World” program. 

Writing Your First JavaFX Application 
In this section, you will learn how to write a simple “Hello World” JavaFX application using NetBeans. 

• Make sure you have installed and set up the NetBeans IDE along with the 
Java Development Kit. 

• Start the NetBeans IDE. 

• Click the File menu and choose the New Project menu item, as shown in 
Figure 2-3. 

http://java.sun.com/javafx/1/reference/system%E2%80%93requirements%E2%80%931%E2%80%932.html


CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

17 

 

Figure 2-3. The NetBeans main screen with the New Projects option 

• Select JavaFX from Categories. Click the Next button as shown in Figure 2-4. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

18 

 

Figure 2-4. The NetBeans: New Project screen 

• Enter the Name and Location of the JavaFX project as shown in Figure 2-5. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

19 

 

Figure 2-5. The NetBeans New Project screen with project details entered 

• Click the Finish button. 

• Now you’ll see that a new JavaFX Project has been created; the screen looks 
as shown in Figure 2-6. You will see a Main.fx file; this is a default file that 
NetBeans has created. Modify the string “Application content” to read “Hello 
World from JavaFX.” and change the content of the title to “Hello JavaFX” as 
shown in Figure 2-6. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

20 

 

Figure 2-6.The Main.fx file in NetBeans 

Notice that JavaFX Script code is included within the Main.fx file by default. This code, listed below, 
includes several import statements and object literals. These literals represent key concepts within the 
JavaFX application, and are described in detail after the code snippet. 

/* 
 * Main.fx 
 * 
 */ 
 
package helloworld; 
 
import javafx.stage.Stage; 
import javafx.scene.Scene; 
import javafx.scene.text.Text; 
import javafx.scene.text.Font; 
 
/** 
 * @author Lawrence & Praveen 
 */ 
 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

21 

Stage { 
title: "Hello JavaFX" 
    width: 250 
    height: 80 
    scene: Scene { 
        content: Text { 
            font : Font { 
                size : 16 
            } 
            x: 10, y: 30 
            content: "Hello World from JavaFX" 
        } 
    } 
} 

The following object literals are created by default: 

Stage: The top-level container required to display any visible JavaFX objects. 
This can be considered as an equivalent of a java.awt.Frame or java.awt.Window 
in Java. Default instance variables such as title, width, and height are 
attributes of the stage. Scene attribute defines the client area within the stage. 

Scene: Similar to a drawing surface for the graphical content of your 
application. A scene instance variable has a content attribute that holds the 
actual graphical elements to be displayed. 

Text: Displays textual information in the scene. 

Font: Defines the font used to display the text in the scene. 

The concepts of stage and scene can easily be related back to real-world scenarios in which a stage is 
normally a platform on which a scene would be presented, and a scene is normally created by various 
actors. So in this case, a scene is composed of actors such as text, and the scene is shown from within a 
stage. The JavaFX developers deliberately defined the APIs to be in sync with the real-world scenario to 
keep the platform simple, easy-to-understand, and intuitive to even nonprogrammers. 

Running Your Application Using NetBeans 
There are thee modes in which you can deploy this application using NetBeans: standalone, 
browser/Java Web Start, and Mobile Emulator. Let's see each one of them in detail. 

Standalone Mode 
The default mode set in NetBeans in the standalone mode, and running the project as-is without 
modifying any configuration parameters will run the application in standalone mode. 

There are two ways to do this: First, you can just click the  button on the toolbar if the application is 
the Main application. Alternatively, you can right-click on the project and select Run Project if this 
project is not set as the Main Project in NetBeans (Main Project should be highlighted in bold under the 
Projects tab on the left). 

The output of our application run in standalone mode would look like Figure 2-7. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

22 

Figure 2-7. The output of Main.fx 

Browser/Java Web Start Mode 
To run our “Hello World” application on the browser, right-click on the project and go to Properties. As
shown in Figure 2-8, choose Run option from the list on the left and click the Run In Browser radio
button for Application Execution Model. 

Figure 2-8. NetBeans: Running in Browser mode 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

23 

To run it as a Java Web Start application, choose Web Start Execution as the Application Execution 
Model, as shown in Figure 2-9. 

 

Figure 2-9. NetBeans: Running in Web Start mode 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

24 

After choosing the application execution model, choose Application from the list on the left side and 
set the appropriate width and height for the applet, as shown in Figure 2-10. 

 

Figure 2-10. NetBeans: Setting application properties 

The project is now all set for executing on the browser, so just right-click and select Run Project or 
press F6 if this is the Main project. NetBeans will automatically open up the default browser on your 
platform and run the application. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

25 

Mobile Emulator 
To run the “Hello World” program on Mobile Emulator, choose Run in Mobile Emulator as the 
Application Execution Model, as shown in Figure 2-11. 

 

Figure 2-11. NetBeans: Running in Mobile Emulator mode 

After choosing the execution model, just right-click and select Run Project or press F6 if this is the 
Main project. You will see the output shown in Figure 2-12. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

26 

 

Figure 2-12. Output of Main.fx on Mobile Emulator (Windows) 

■ Note fx is the file extension for a JavaFX program. JavaFX also has a compiler and an interpreter. javafxc is 
the JavaFX compiler, which converts a JavaFX program to .class files (byte code); javafx is the JavaFX 
interpreter, which takes the .class file and executes it. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

27 

At this point, you may compare our JavaFX Script program with a Java or C/C++ application and 
wonder where the entry point is. In JavaFX, there is no need to bother about the entry point; it is taken 
care by the JavaFX runtime engine, because JavaFX is a “declarative programming language” (one that 
determines its path of execution at runtime). However, in certain cases, you will need a run() method to 
be included in your application; you’ll learn more about that in later chapters. 

Running the Application from the Command Line 
This section will outline how to build and run the application from the command line for people who do 
not use IDEs. Let's assume you have typed the code of Main.fx in a text editor and saved it in some 
location on the file system, such as c:\helloworld\Main.fx. 

 
First take care of the following prerequisites: 

JAVA_HOME must be set to the recommended JDK, namely c:\jdk1.6.0_14. Don't 
include the bin folder. 

JAVAFX_HOME must be set to the JavaFX SDK, which you can download separately 
from www.javafx.com); for example, c:\javafx-sdk1.2. Don't include the bin 
folder. 

PATH must be set to %JAVAFX_HOME%\bin. This is more of a convenience, as it 
allows you to use JavaFX and JavaFXC executables directly without specifying 
the full path. 

Compiling the Application for Standalone Execution 
To run in standalone mode from the command line, the application must be first compiled for 
execution. Take the following steps to compile the JavaFX program: 

1. Make sure you create a folder to store the class files, called, say, classes, at the 
same level as the helloworld folder; for example, c:\classes if you have the 
source code under c:\helloworld. 

2. Give the following command: 

javafxc –d classes helloworld/Main.fx 

where –d specifies where to store the class files. This will compile Main.fx and 
store all the class files under c:\classes. 

3. To run the application, give the following command: 

javafx –classpath classes helloworld.Main 
 
This will display the output shown earlier, in Figure 2.7. 

http://www.javafx.com


CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

28 

Compiling the Application for Browser/Java Web Start Execution with 
JavaFX Packager 
In order to build the application to run on a browser or in Java Web Start, we need to use the JavaFX 
Packager. Let's examine this tool in detail. 

JavaFX Packager is a command-line utility that comes with the JavaFX SDK and helps developers 
build applications seamlessly for whatever profile they want to deploy on. It is a single utility that you 
use to build your application for standalone, browser, Web Start, or mobile. NetBeans IDE internally 
uses this utility to build your application. 

JavaFXPackager requires the following mandatory input parameters: 

-src: The directory where source files are available 

-profile: The target profile (such as MOBILE or DESKTOP) 

-appClass: The main class for your application, the entry point 

 
JavaFXPackager also allows the following optional parameters: 

–appWidth: Required for Web Start/browser mode, specifies the application 
width. The default value is 200. 

–appHeight: Required for Web Start/browser mode, specifies the application 
height. The default value is 200. 

–sign: Specifies whether the application must be signed; required for 
browser/Web Start mode. The default value is unsigned. An application must 
be signed if it accesses any local resources or remote resources from a server 
that is different from the one where the application will be hosted. 

–draggable: Specifies whether the applet must be draggable from browser on to 
the desktop. By default, applets are not draggable. 

–res: Any resources used by the application, such as images, media, and so on. 

Building and Running the Application Using JavaFX Packager for the  
DESKTOP Profile 
To build the application for running on browser, give the following command (note that a dot can be 
used to represent the current directory): 

 
<JAVAFX_HOME>/bin/javafxpackager –src c:\helloworld –appClass helloworld.Main –profile 
DESKTOP –appWidth 250  –appHeight 80  –draggable 

 
This will create a folder dist in the current directory, which will contain the following: 

Main.jar: This contains the classes and resources. 

Main.jnlp: This is a jnlp file that can be launched using Java Web Start. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

29 

Main_browser.jnlp: This helper jnlp file facilitates running the application on 
the browser. 

Main.html: This is an HTML file embedding the JavaFX applet. 

Now to run the application on a browser, just load the HTML file in the browser and the applet will 
be loaded. 

To run it on Java Web Start, you can open the Main.jnlp file from the browser. You can also double-
click it if the JNLP mime type is configured properly on your native side and on the browser. If 
configured properly, Java Web Start will show the download progress dialog. 

Alternatively, you can run the application from the command line, as follows: 
 

<JAVA_HOME>/bin/javaws Main.jnlp 
 
To run it as a plain standalone application, you can use the following command: 
 

<JAVAFX_HOME>/bin/javafx –classpath Main.jar helloworld.Main 

Building and Running the Application Using JavaFXPackager for the  
MOBILE Profile 
To build the application to run on Mobile Emulator, give the following command: 

 
<JAVAFX_HOME>/bin/javafxpackager –src “c:\helloword” –appClass helloworld.Main –profile 
MOBILE 

 
This creates a dist folder with two files in the current directory: 

Main.jar: A jar file containing the classes and resources. 

Main.jad: The descriptor file that the emulator platform can decode. 

 
To launch the application on Mobile Emulator, give the following command from within the dist 

folder: 
 

<JAVAFX_HOME>/emulator/bin/emulator –Xdescriptor:Main.jad 
 
This will open up the Emulator and load the application as well. There are additional parameters for 

Emulator, such as the device type, memory, and so on, but those are optional. 

■ Note Executing the application on the browser or Java Web Start requires an Internet connection the first time, 
since the JavaFX runtime will be downloaded from the web dynamically when the application is launched. 
However, subsequent executions will use the locally cached runtime unless the user has explicitly cleared the 
cache or the contents of the cache have gone past the time-out period. 



CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

30 

Comments 
When writing code in any language, it is important to remember to include written comments about 
what each line or group of statements is doing. To keep the JavaFX interpreter from trying to execute this 
text, you must hide it between comment characters. Table 2-1 shows the two types of comments 
available in JavaFX. 

Table 2-1. Comment Markers in JavaFX 

Comment Type Description 

// comment  All characters after the // to the end of the line are ignored. 

/* comment */ All characters between /* and */ are ignored. These 
comments can extend onto multiple lines. 

■ Note Comment syntax in JavaFX is the same as in Java. If a line of code does something important, it is useful 
to call attention to it with a short comment. It is always considered “good programming” to provide comments for 
all your code to help future programmers (including yourself) understand what's happening. 

The type of comment you use and the purpose you use it for are entirely up to you, the programmer. 
Two styles of commenting programs are the Sun Microsystems and Microsoft styles. Most of the Sun 
documentation uses the following style for multiple lines, because it is useful with the automatic 
document generator that comes with the Java Development Kit: 

JavaDoc Style 
 /**      
     *  this is a multi–lined comment 
     *  for the following class      
     * 
     */  

The JavaDoc Style  tag tells the document generator to use the comments as text in the resulting 
HTML file that is created automatically from source code. It is nice to get into the habit of using it.  

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 2 ■ INTRODUCTION TO JAVAFX 

 

31 

Summary 
In this chapter, we have introduced what JavaFX technology is all about, including its advantages, 
platform components, and the bigger picture of where this technology fits in. We have also taken you 
through a tour of how to use the technology to develop a simple “Hello World” application through the 
NetBeans IDE as well as in standalone mode, and you learned how to deploy the application for the 
desktop, browser, Java Web Start and emulator. In the next chapter, we will dive into the JavaFX Script 
language to explore the data types it offers to programmers. 
  

3



D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



C H A P T E R  3 
 

■ ■ ■ 
 

33 

Data Types 

JavaFX Script is a statically typed language, in which the type is associated with the variable and not the 
value. Hence it is capable of detecting type errors at compile time and thus allows many type errors to be 
caught early in the development cycle. Static type checkers evaluate only the type information that can 
be determined at compile time, but they are able to verify that the checked conditions hold for all 
possible executions of the program, which eliminates the need to repeat type checks every time the 
program is executed. This makes execution and storage more efficient and optimized. 

Variable Declaration 
Variable declarations in JavaFX Script are similar to those in Java itself. JavaFX Script is a case-sensitive 
language, which means that an identifier written in uppercase is not equivalent to another one with the 
same name but written in lowercase. 

In JavaFX Script every variable, function, and expression (if statement, loop, and so on) has a type, 
which is determined from the context of how it has been used. JavaFX Script data types consist of an 
element specifier and a cardinality. 

The element specifier tells what type of data a variable holds. Listing 3-1 presents two examples. 

Listing 3-1. Examples of variable declarations 

var x = 10; 
var pi = 3.142; 

Here the variable x holds a value of the Integer type, and the variable pi holds a value of the Number 
(or floating-point) type of data. 

■ Note The cardinality of a data type determines how many elements can be held in a JavaFX Script type. 
Cardinality will be covered later in this chapter. 



CHAPTER 3 ■ DATA TYPES 

 

34 

var vs. def Declarations 
We can also define a variable using def as well. With def, variables are defined once and never assigned 
to again during their lifetime. Variables declared using var, however, can be assigned a new definition 
anytime. Listing 3-2 shows an example. 

Listing 3-2. Examples of def declarations 

def pi = 3.14; 
def v1 = bind (x + y); //  bind is a keyword and it will be covered in detail in the Binding 
chapter. 

■ Note Bind is a keyword and will be covered in detail in Chapter 11, “Binding.” 

In this example, the value of pi is a going to be a constant, so it is wise to declare it as def. Similarly, 
the value of v1 is derived from x, y and cannot be assigned directly, since it is bound. Hence it is a better 
programming practice to declare v1 as def instead of var. Remember that the value of v1 will change 
when the x or y value changes, but the definition of v1 never changes (the summation of x + y, in this 
case). 

It is important for the programmer to choose between var and def when declaring variables, and 
using def at appropriate places will reap huge benefits in memory and performance because the 
compiler knows in advance that the value defined by def is to remain constant, and it optimizes the way 
that value will be stored and used during the program lifecycle. 

Variable Naming 
A valid variable name is a sequence of one or more letters, digits, or underscore characters (_). JavaFX 
Script uses the same rules as Java to name the variables: 

• No special character can be part of a variable name. Only letters, digits, and single 
underscore characters are valid. 

• A variable name must always begin with a letter or an underline character (_). 

• A variable name can’t be a reserved word or keyword. 

■ Note When choosing a name for your variables, use full words instead of cryptic abbreviations. Doing so will 
make your code easier to read and understand.  



CHAPTER 3 ■ DATA TYPES 

 

35 

Reserved Keywords in JavaFX Script 
Table 3-1 lists the standard JavaFX Script reserved keywords.  

Table 3-1. JavaFX Script Reserved Keywords 

abstract  after and as assert at attribute bind bound break 

by catch class continue delete do else exclusive extends false 

finally first for from function if import in indexof init 

insert into inverse last lazy let new not null on 

or override package postinit private protected public readonly replace return 

reverse sizeof static step super then this throw true try 

tween typeof var where while with     

 

Variable Declaration Syntax 
Use one of the following syntax forms to declare a variable: 

var variableName : <data type>;  

or 

var variableName : <data type> = initialization; 

or 

var variableName – initialization; 

var is a keyword, which is used to declaring a variable. A variable’s type declaration is optional. If the 
type is omitted from a variable declaration statement, the compiler infers or derives the data type of that 
variable from the value assigned to it; this is called type inference. A variable that is not assigned an initial 
value will be assigned a default value that varies based on the data type. See “Default Values for Data 
Types” later in this chapter for a complete list of default values. 

 



CHAPTER 3 ■ DATA TYPES 

 

36 

■ Note Once the compiler derives the type from the given data, the data type for that variable is set permanently 
and cannot be changed later, because JavaFX Script is a statically typed language. By contrast, in a dynamically 
typed language like JavaScript, the type can change over a variable’s lifetime. 

Data Types 
There are five data types available in JavaFX Script: 

String 

Integer  

Number 

Boolean 

Duration 

String 
A String is a set of characters enclosed within either single or double quotes. You declare it with one of 
the following syntax forms: 

var variableName : String; 
var variableName : String = "initial Value";  // a string is initialized with double quotes 
var variableName  = 'initial Value'; // string is initialized with single quotes or double 
quotes, type is inferred 

Listing 3-3 shows examples of each type. 

Listing 3-3. Examples of String declarations 

var str1 :  String ='JavaFX';                      //  String data type declaration 
var str2 :  String = "JavaFX";                    //  String data type declaration 
var str3  =   "JavaFX";                        //  String inferred type 
println("  str1 =  { str1 } "); 
println('  str2 = { str2 }"); 
println(" str3  = {str3 } "); 

The println statements produce the following output: 

JavaFX 
JavaFX 
JavaFX 



CHAPTER 3 ■ DATA TYPES 

 

37 

The code in Listing 3-3 demonstrates String data type declarations, along with the declaration of a 
string inferred type. The first three lines all declare a string data type and initialize its value. The first two 
examples explicitly define the data type; in the third, the compiler will infer it automatically from the 
value assigned to the variable. 

The String data type in JavaFX Script maps to the String class in Java. This means that we call the 
methods of Java’s String class in JavaFX Script. Listing 3-4 demonstrates how this works. 

Listing 3-4.Calling methods of the Java String class 

var str : String = "Scripting 'JavaFX' Language"; 
println("str {str}”);    // ostr = Scripting 'JavaFX' Language 
// find the length of the string. 
println("str length = {str.length() }"); // str length = 18 
// convert the string to uppercase 
var upperCaseString = str.toUpperCase(); // UpperCase = SCRIPTING LANGUAGE 
println("UpperCase = {upperCaseString}"); 
// convert the string to lowercase. 
var lowerCaseString = upperCaseString.toLowerCase();   // lowerCase = scripting language 
println("lowerCase = {lowerCaseString}"); 
// get the substring 
var subString = str.substring(10); // subString = Language 
println(" subString = {subString}"); 

This code produces the following output: 

str = Scripting 'JavaFX' Language 
str length = 18 
UpperCase = SCRIPTING LANGUAGE 
lowerCase = scripting language 
subString = Language 

Listing 3-4 demonstrates that the JavaFX Script String data type can be used to invoke Java String 
class methods. Substring, length, toLowerCase(), and toUpperCase() are methods from the 
Java.lang.String class that are accessed using JavaFX Script String types. 

Strings in JavaFX Script are immutable, as in Java; this means you cannot change the characters in 
the string. For example, the method str.toLowercase() appears to modify the string, but it actually 
returns a new string object, leaving the original one unchanged. 

One notable difference in JavaFX Script is that you can include two single quotes with a double-
quoted string and two double quotes within a single-quoted string as follows: 

var s: String = "JavaFX is a 'cool' technology"; 
var s1: String = 'JavaFX is a "cool" technology'; 

The single and double quoted text used within the string will be treated as-is and you will see quote 
characters when printing the values as well. Another pair of special characters that are treated differently 
within the string are the curly braces. Anything specified between curly braces within a string is treated 
as an expression. Listing 3-5 presents an example. 



CHAPTER 3 ■ DATA TYPES 

 

38 

Listing 3-5. Examples of quotes and braces with strings 

var i: Integer = 10; 
var j: Integer = 10; 
println("Value of  'i + j' is: {i + j}"); 

This code displays the following output: 

Value of  'i + j' is: 20 

In this example, {i + j} is treated as an expression and evaluated, and the result of the evaluation is 
converted to String and replaces {i + j}. 

However, these are special cases, and to include other special characters, such as the backslash or 
line feed, you will have to use the escape character, discussed next. 

Escape Sequences 

The character and string escape sequences allow for the representation of some nonprinting characters. 
Table 3-2 lists some of the common escape characters. 

Table 3-2. Common Escape Sequences 

\t tab 

\n new line 

\b backspace 

\f form feed 

\r carriage return 

\” double quote 

\’ single quote 

\\ backslash 

As an example, the code in Listing 3-6 will include a new line in the given string. 

Listing 3-6. Using the escape character for a new line 

var escStr: String = "JavaFX \n is cool"; 
println("String with esc character: {escStr}"); 



CHAPTER 3 ■ DATA TYPES 

 

39 

This code produces the following output: 

String with esc character: JavaFX 
 is cool 

Integer 
An Integer value represents a number with no decimal or fractional part—a whole number. An Integer 
can be either positive or negative. 

The following snippet shows how to get the minimum and maximum value that an Integer primitive 
data type can hold. 

var intMin: Integer =  java.lang.Integer.MIN_VALUE; 
println("intMin = {intMin}");   
var intMax: Integer =  java.lang.Integer.MAX_VALUE; 
println("intMax = {intMax}"); 

It produces the following output: 

intMin = –2147483648 
intMax =  2147483647  

From this example, it is clear that the JavaFX Script Integer primitive data type maps to the 
java.lang.Integer class in Java, which means that we can use the methods in java.lang.Integer on the 
JavaFX Script Integer data type. An Integer literal may be expressed in decimal (base 10), hexadecimal 
(base 16), or octal (base 8). Let us see each of these numeric representations in detail. 

Decimal Number 
A decimal number is either the single ASCII character 0, representing the integer zero, or an ASCII digit 
from 1 to 9, optionally followed by one or more ASCII digits from 0 to 9, representing a positive integer. 

 
Following are the decimal numbers: 

0 1 2 3 4 5 6 7 8 9 

Here are two examples: 

var width : Integer = 150;  
var translat 
eX: Integer = –15; 

Hexadecimal Number 
A hexadecimal number consists of the leading ASCII characters 0x or 0X followed by one or more ASCII 
hexadecimal digits. It may be positive, zero, or negative. Hexadecimal digits with values 10 through 15 
are represented by the ASCII letters a through f or A through F. The letters may be uppercase or 
lowercase. 



CHAPTER 3 ■ DATA TYPES 

 

40 

Following are the hexadecimal numerals: 
 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

or 

0 1 2 3 4 5 6 7 8 9 a b c d e f 

Here is an example: 

var xValue : Integer = 0X12A; 

Octal Number 
An octal number consists of the ASCII digit 0 followed by one or more of the ASCII digits 0 through 7 and 
can represent a positive, zero, or negative integer. 

Following are the hexadecimal numbers: 

0 1 2 3 4 5 6 7 

Here is an example: 

var no : Number = 05; 

■ Note Octal numerals always consist of two or more digits. 0 is always considered to be a decimal number; but 
in practice, the numbers 0 , 00, and 0x0 all represent exactly the same integer value. 

Number 
Values of the Number data type are also known as real or floating-point numbers. This data type is used 
when evaluating any expression that requires fractional precision. A Number can contain either a 
decimal point, an e (uppercase or lowercase), which is used to represent “ten to the power of” in 
scientific notation, or both. The exponent part is an e or E followed by an integer, which can be signed 
(preceded by either + or –). Listing 3-7 presents an example. 

Listing 3-7. Examples of floating-point numbers 

var pi : Number = 3.142; // pi is a floating point no. 
var num : Number = 10; // 10 will be promoted to 10.0 
var num1 = 10; // Type inferred as Integer 

The first statement declares a Number variable pi, which holds the decimal number 3.142. The 
second statement declares a Number variable num, which holds the number 10. But after executing the 
second statement the variable value becomes 10.0, since the data is promoted from Integer to Number. 
The third line does not specify the data type but assigns a value of 10. Hence the data type for num1 will 
be automatically inferred by the compiler as Integer. 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 3 ■ DATA TYPES 

 

41 

Listing 3-8 demonstrates different ways of declaring a Number. 

Listing 3-8. Examples of Number declarations 

//  declare a variable with out initial value 
var a : Number ; 
println("a {a}");             // a 0.0 
// declare a variable with the inital value 
var pi = 3.142; 
println("pi = {pi}");            // pi = 3.142 
// declare a variable with intial value expressed in scientific notation or expontential 
form. 
var b : Number = 10e2; 
println("b = {b}");            // b = 1000.0 

These declarations produce the following output: 

a 0.0 
pi = 3.142 
b = 1000.0 

 
The code in Listing 3-8 demonstrates different ways of declaring a Number variable. The first 

example declares a variable of Number type but does not initialize it. Hence a default value of 0.0 would 
be assigned. The second example initializes the variable but does not define the data type. The compiler 
would in this case automatically infer the type as Number. Finally, the third example declares a Number 
variable and initializes it with an exponent decimal value. 

Listing 3-9 demonstrates the range of the Number data type. 

Listing 3-9. Example to print the minimum and maximum value  of Number data type 

var numMin: Number =  java.lang.Double.MIN_VALUE; 
println("Minimum value of Number data type  = {numMin}"); 
var numMax: Number =  java.lang.Double.MAX_VALUE; 
println("Maximum value of Number data type = {numMax}"); 

This code produces the following output: 

Minimum value of Number data type  = 4.9E–324 
Maximum value of Number data type = 1.7976931348623157E308 

Boolean  
A Boolean variable has two states, true and false, which are appropriately represented by the keywords 
true and false. The Boolean variable, therefore, represents the state of something that can have only 
one of two values. These values are typically used as checkpoints for determining whether to take a 
certain action. Listing 3-10 demonstrates how to use the Boolean data type. 



CHAPTER 3 ■ DATA TYPES 

42 

Listing 3-10. Examples of Boolean variables 

var flag : Boolean = true;
if(flag) { 
    println(This line will be printed on the console);
} 

The if conditional statement is covered in depth in Chapter 4, “Expressions, Conditional
Statements and Loops.” For now, all you need to know is that the if statement checks to see whether the
statement in the parentheses is true or false. If the statement is true, it executes the statements between
the curly braces. 

■ Note All data types are subclasses of java.lang.Object. However, unlike Java, JavaFX Script doesn’t require 
you to initialize the variable when it is declared. If a variable is not initialized, the compiler will initialize it
automatically using the default value for its data type. 

Duration 
A Duration value represents data in terms of time. It is typically used in animation applications, to work
with timelines, transitions, keyframes, and so on. As an example, Listing 3-11 demonstrates different
ways to represent 3.5 minutes. 

Listing 3-11. Examples of representing the value 3.5 minutes 

var d1 = 3.5m; 
var d2 = 3m + 30s; 
var d3 = 3500ms; 
var d4 = 3m + 0.5s; 
var d5 = Duration.valueOf(3500); 

Listing 3-12 demonstrates Duration’s usage in a timeline. 

Listing 3-12. Using Duration in a timeline 

var x: Number = 0;
Timeline { 
    at (0s) {x => 0 tween Interpolate.LINEAR}, 
    at (3s) {x => 2.0 tween Interpolate.LINEAR} 
    repeatCount: Timeline.INDEFINITE
} 

This example changes the x value from 0 to 2.0 within a timeframe of 3 seconds. To represent
indefinite time, we can use Duration.INDEFINITE. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 3 ■ DATA TYPES 

 

43 

■ Note Timelines are covered in detail in Chapter 13, “Introduction to Animation.” 

The Duration class provides numerous convenient methods for converting data to and from 
Duration time. Listing 3-13 shows some examples. 

Listing 3-13. Converting data to and from Duration values 

var d = 4h; 
var noOfHours = d.toHours(); 
var noOfMinutes = d.toMinutes();  
var noOfSeconds = d.toSeconds();   
var noOfMillis = d.toMillis();  
var d1 = d.add(10m); // d1 = 250m 
var d2 = d.sub(1h); // d2 = 3h 
var d3 = d.mul(10); // d3 = 2400m 
var d4 = d.div(10); // d4 = 24m 

Listing 3-13 demonstrates the build-in functions of the Duration data type. In the third statement, 
variable d of Duration data type is converted to minutes using the toMinutes() function. Likewise, the 
toSeconds() and toMillis() functions are used in the fourth and fifth statements. In addition to the 
conversion functions, Duration values can be added, subtracted , multiplied and divided using built-in 
functions as shown in the last four statements. 

■ Note You will learn more about the Duration data type in Chapter 13. 

Typecasting 
Type conversion or typecasting refers to changing the value of a variable from one data type into another. 
This is done to take advantage of certain features of type hierarchies. For instance, values from a more 
limited set, such as integers, can be stored in a more compact format and later converted to a different 
format, enabling operations that would not otherwise be possible, such as division with several decimal 
places of accuracy when there is a need for that. 

Casting can be implicit or explicit. Implicit casting are safe and handled by the compiler itself. 
Normally, upcasting is implicit whereas downcasting requires explicit notation in the code. Listing 3-14 
shows an example. 

Listing 3-14. An example of typecasting 

var d: Number = 10.0; 
var l:Integer = 2; 
d = l; // This is implicit casting 



CHAPTER 3 ■ DATA TYPES 

 

44 

In this code, casting is implicitly done by the compiler since we are assigning a subtype to a 
supertype. However, the following code will give a warning: 

var d: Number = 10.0; 
var l:Integer = 2; 
l = d;  

Here is the output: 

<src.fx>: warning: possible loss of precision 
found   : Number 
required: Integer 

To avoid this warning, downcasting has to be specified explicitly, using as keyword: 

l = d as Integer; 

We will discuss casting in more detail when we deal with objects in Chapter 9, “Inheritance.” 

Sequences 
Sequences in JavaFX Script are similar to arrays in Java, which hold a set of value of similar data type 
under a single variable name. As shown in Listing 3-15, sequences can be constructed explicitly. 

 

Listing 3-15. Sequences constructed explicitly 

[ 76, 9, 34, 2] 
['red', 'green', 'blue'] 

However, they can also be specified as ranges: 

[100 .. 200] 

Listing 3-16 shows some examples of how sequence variables are declared. 

Listing 3-16. Some variables of the Sequence type 

var nodes : CustomNode[]; 
var numbers : Number[]; 
def primes = [2, 3, 5, 7, 11]; 

■ Note Sequences in JavaFX Script are far more powerful and hence will be covered in detail in Chapter 10. This 
section is just an introduction. 



CHAPTER 3 ■ DATA TYPES 

 

45 

Default Values for Data Types 
As noted when we discussed data type declarations earlier in the chapter, each data type has its own 
default value that will be used when no initial value is provided. Table 3-3 summarizes the default values 
for different data types. 

Table 3-3. Default Values for Data Types 

Type Declaration Default Value Element Specifier Literal or Creation Examples 

String : String "" java.lang.String "Brownian" 

Integer : Integer 0 java.lang.Integer 1956 

Number : Number 0.0 java.lang.Double 1.4142 

Boolean : Boolean false java.lang.Boolean true 

Duration : Duration 0ms javafx.lang.Duration 47s 

Other 
class 
types 

: ClassName null ClassName Point {x: 3 y: 9} 

Function 
types 

: function(name 
: ParamType, 
...) : 
ReturnType 

null function(name : 
ParamType, ...) : 
ReturnType 

function(x:Integer):String 
{" {x} "} 

Sequence 
types 

: ElementSpec[] [] ElementSpec [9, 14, 21, 4] 

■ Note Class types are covered in Chapter 6, “ Class Definitions,” and function types are covered in Chapter 5, 
“Functions.” 



CHAPTER 3 ■ DATA TYPES 

 

46 

Summary 
In this chapter, you have seen what data types JavaFX offers and how to use them. The primitive data 
types that are supported by JavaFX are String, Integer, Number, Boolean, and Duration. A String is a set 
of characters enclosed by either single or double quotes. The Integer data type holds only whole 
numbers, not fractions or floating point numbers. Integers can be expressed in decimal, octal, or 
hexadecimal form. A Number can either contain a decimal point, an e (uppercase or lowercase), which is 
used to represent an exponent in scientific notation, or both. The Boolean data type can hold either true 
or false. The Duration data type represents values in terms of time such as seconds, milliseconds, and  
so on. 

In the next chapter, you will learn about the operators and expressions available in JavaFX Script. 
 



C H A P T E R  4 
 

■ ■ ■ 
 

47 

Operators and Expressions 

An expression in a programming language is a combination of values, operators, variables and functions 
that are evaluated in a particular order of precedence to produce a value. An operator performs an 
operation on one or more operands to produce a value. In JavaFX Script, everything that is not a 
definition is an expression. This chapter describes the syntax, meaning, and the use of various 
expressions and operators in JavaFX Script. 

Most of the operators in JavaFX Script are the same as in Java, with a very few exceptions. In this 
chapter, you will see the following operators in detail: 

• The assignment operator 

• Arithmetic operators 

• Unary operators 

• Relational operators 

• Logical operators 

Operators combine multiple operands together to form an expression, and JavaFX Script supports 
different types of expressions. You will learn about the following expressions in this chapter: 

 

• Range expressions 

• Block expressions 

• Looping expressions 

• while 

• for 

• Conditional expressions 

• if-else 

• Error-handling expressions 

• try, catch, finally, throw 

• New expressions 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

48 

The operators and expressions that are omitted from this chapter will be covered in subsequent 
chapters when we deal with the topics related to them. See the Summary of this chapter for more about 
expressions and operators not covered here. 

The Assignment Operator 
Many of the examples that you have seen so far in previous chapters have used the assignment operator. 
Lets’ take a close look at this operator. The assignment operator works just as in any other language—the 
value of the expression or the variable on the right side value is assigned to the variable on the left side. 
Listing 4-1 shows the syntax formats for an assignment operator. 

Listing 4-1. Assignment operator syntax 

variable name = value; 

or 

variable name = expression ;  
 

Following is a simple example of a variable being initialized with a value while it is defined: 
 

var width : Integer = 10; 
 

This can be considered two statements merged into one—first a declaration statement and then the 
assignment statement. You can split it as follows: 

 
var width  : Integer; 
width =10; 

 
Similarly, def variables are assigned with a constant definition when they are created, as shown 

next: 
 

def PI = 3.142; 
 
Here, PI is a def (constant definition) and holds a value, 3.142. Note that the data type of PI is 

derived automatically from the value assigned to it through the assignment operator. In this case, it is of 
type Number. 

Now let us see an expression with an assignment operator. 
 

var area : Number = 3.142 * r * r; 
 
In this example, the arithmetic expression on the right side is evaluated first and then assigned to 

the variable on the left. 
Assignments are not restricted to evaluating a simple expression and assigning its result to the 

variable on the left; they can also be used for creating an instance of a class, as shown in the following 
example. 

 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

49 

var button : Button = Button {  
    text : "Click Me" 
} 

 
Here, an instance of a Button class (JavaFX class) is created and assigned to a variable named 

button. In the next example, an instance of a java.io.File class is created and assigned to a variable 
named File. 

 
var file : java.io.File = new File("HelloWorld.java"); 

 
You will learn more about class definitions and objects in Chapter 6,”Class Definitions.” 
In Listing 4-2, different datatype values are assigned to different variables and are printed on the 

console using the println output statement. 

Listing 4-2. A simple program using the assignment operator 

var a : Integer = 10; 
var b : Boolean = true; 
var pi : Number = 22.0/7.0; 
var dur : Duration = 10ms; 
var name : String = "JavaFX is cool..! "; 
println("a  = {a}");    
println("b = {b}"); 
println("pi =  {pi}"); 
println("dur ={ dur}"); 
println("name = {name}"); 

 
Output 

a  = 10 
b = true 
pi =  3.142 
dur =10ms 
name = JavaFX is cool..!  

 
Sometimes you may need to assign the same value to multiple variables. Instead of using multiple 

assignment statements, you can do that in a single assignment statement, as follows: 
 

a = b = c; 
 

The value of c is first assigned to b, and then the b value to a. 

The as Operator 
The as operator is used to convert one data type to another. In JavaFX Script ,as is a keyword and is used 
to do type casting. You learned about type casting in Chapter 3, “Data Types,” so the following is just a 
refresher. Listing 4-3 shows a simple example of how as can be used. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

50 

Listing 4-3. Example of the as operator 

def PI : Number = 22.0/7.0; 
println("PI =  { PI } "); 
var x : Integer = PI as Integer ; 
println("x = {x}");         

 
Output 

PI = 3.142 
x = 3 

 
In Listing 4-3, the value of the variable PI has been assigned to an Integer variable, x. Since PI is of 

type Number and we are narrowing its precision to Integer, the compiler will show a warning that there 
is a loss of precision if you don't use the as operator. Using as, indicates to the compiler that the 
programmer knows what he or she is doing and hence the compiler need not worry. So in this example, 
the compiler does not display any warning. 

Casting is not just limited to numeric data types but can be extended to user-defined data types as 
well. You will learn more about this in Chapter 6, ”Class Definitions” and Chapter 8, “Inheritance,” when 
we deal with the concept of superclasses and subclasses. 

Arithmetic Operators 
The arithmetic operators are binary operators and are used in arithmetic expressions. The arithmetic 
operators can be combined with the assignment operator to perform arithmetic and assignment 
operations both together. The usage of these operators is pretty much the same as in any other language. 

Table 4-1 shows the arithmetic operators with their precedence; the Example column demonstrates 
how they can be used. 

Table 4-1. Operator Precedence for Arithmetic Operators 

Operator Meaning Precedence Example 

* Multiplication 1 a * b 

/ Division 2 a /b 

mod Modulus 3 a mod b 

+ Addition 4 a + b 

– Subtraction 5 a – b 

www.allitebooks.com

http://www.allitebooks.org


CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

51 

The Modulus or Remainder Operator 
In JavaFX Script the modulus or remainder operator is represented by the keyword mod. The mod operator 
returns the remainder of a division operation. It can be applied to the Number and Integer data types. 
Listing 4-4 demonstrates the use of the modulus operator, and the code is self-explanatory. 

Listing 4-4. Using the modulus operator 

var numMod  = 22.0  mod 7.0; 
println("numMod = {numMod}");     
var intMod = 22 mod 7; 
println("intMod = {intMod}"); 

 
Output 

numMod = 1.0 
intMod = 1 

■ Note In Java, the mod operator is represented by the '% symbol. 

The Arithmetic Assignment Operator 
When an arithmetic operator is combined with an assignment operator, it is called an arithmetic 
assignment operator. This operator allows you to do the arithmetic and assignment operation in a single 
statement. The arithmetic assignment operators have the following syntax: 

 
variable = variable arithmetic operator expression; 
 

Using an arithmetic assignment operator is best suited for cases when a variable is used in an 
expression and the same variable is used to store the result of the expression. Here is a simple example: 

 
x = x + 2; 

 
The variable x is used in an arithmetic operation, and the same variable is used to store the value of 

the expression as well. So we are using the variable x twice. Using an arithmetic assignment operator, the 
same expression can be simplified as follows: 

 
x+=2; 

 
Both statements perform the same operation; that is, they increment the value of the variable x by 2. 
Similarly, other arithmetic operators can also be combined with the assignment operator to perform 

the respective arithmetic and assignment operations in a single statement. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

52 

Operator Precedence 
Each operator is assigned a precedence or priority, which determines the order in which the operator
operates on the operand. As in an ordinary arithmetic expression, multiplication and division have a
higher precedence than addition and subtraction. If two operators have the same precedence, they are
executed according to the order in which they appear in the statement. For most operators (except the
assignment operator), the order is from left to right. 

Let’s look at an example to see how an expression is evaluated and in what order: 

x = 20 + 50.0 * 7 / 2; 

Since the multiplication (*) and division (/) operators have the highest precedence, they are
executed first, followed by the addition (+) operation. 

50.0 * 7               // since both * and / operators have the same precedence 
                      and multiplication(*) is on the left side, 
                      multiplication is done first, yielding the result 350.0. 

350.0 / 2             // the next highest precedence is the / operator, so division is 
                     done next, yielding the result 175.0. 

20 + 175.0           // the final operator left in the expression is 
                    addition (+), which yields the value 195.0, which 
                     is the final value of the expression that is 
                     assigned to 'x' 

If you want to change the order of the execution, enclose the respective operator and the operands
in parentheses. Let us rewrite the previous example as follows: 

x =(20 + 50.0) * 7 / 2; 

Now the operation (20 + 50.0) is evaluated first, since the parentheses take precedence over
multiplication. You can see the operator precedence across all the JavaFX Script operators in Table 4.4,
at the end of the “Operators” section. 

Unary Operators 
A single operator operating on a single value is called a unary operator. The following unary operators
are available in JavaFX Script: 

• Increment and Decrement 

• Unary – and + 

• Unary not 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

53 

The Increment and Decrement Operators: ++ and -- 
The increment (++) and decrement (--) operators perform a simple task. The first increments (increases) 
the value of its operand by 1 and the second decrements (decreases) the value of its operand by 1. There 
are two variants of each of these operators: prefix mode and postfix mode. Listing 4-5 shows the prefix 
and suffix syntax for unary increment operators and Listing 4-6 shows the prefix and suffix syntax for 
unary decrement operators. 

Listing 4-5. Syntax of the unary increment operator 

++ variable;   // prefix form of Increment operator 
variable ++;  // postfix form of Increment operator 
 

Listing 4-6. Syntax of the unary decrement operator 

-- variable;   // prefix form of decrement operator 
variable -- // postfix form of decrement operator 
 

In prefix mode the operator comes before the affected variable, and in postfix mode it comes after 
the variable. As demonstrated in the examples in Listing 4-7, the two modes differ in the timing at which 
the incrementing/ decrementing takes place. 

Listing 4-7. Unary increment/decrement operators 

1.    var x  : Integer = 10; 
2.    var y = x++; 
3.    var z = ++x; 
4.    println("x = {x}  y = {y}  z = {z}");      // x = 12 y = 10  z = 12 
5.    var p = x--; 
6.    var q = --x; 
7.    println("x = {x}  p = {p}  q = {q}");     // x = 10 p = 12 q = 10 

 
Output 

x = 12  y = 10  z = 12 
x = 10  p = 12  q = 10 
 

In line 1, we declare a variable x and initialize its value to 10. In line 2, we are incrementing x using 
the postfix ++ operator and at the same time assigning the value of this expression to y. Looking at the 
line, you may assume that the value of y will be 11. But that is not correct because the value of the 
expression before the increment is assigned to y and x value is incremented afterward. Hence y will take 
the value of 10 and after this assignment; x will be incremented to 11. 

Similarly, in line 3, we are assigning ++x to a variable z. Here x will be incremented first and then 
assigned to z. Hence, x increments from 11 to 12, and this value is assigned to z. This is the exact 
difference between prefix and postfix mode. In postfix mode, the expression is evaluated first and 
incremented or decremented after, whereas in postfix mode, the value is incremented/decremented first 
and then the expression is evaluated. Now you can apply the same logic to variables p and q as well. 

Listing 4-8 provides another example of how prefix and postfix modes differ from each other. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

54 

Listing 4-8. Prefix and postfix operators 

1.    var x : Integer  = 7; 
2.    println("initial value x = {x}"); 
3    println("postfix variant incrementng the value of x = {x++}");     
4.    println("value x = {x}"); 
5.    println("prefix variant incrementng the value of x = {++x}"); 
6.    println("value x = {x}"); 
 

Output 
initial value x = 7 
postfix variant incrementng the value of x = 7 
value x = 8 
prefix variant incrementng the value of x = 9 
value x = 9 

  
If you understood the example in Listing 4-7, you can easily predict the results for Listing 4-8 

without looking at the output. 
In line 1, we are declaring a variable x and initializing it with 7. In line 2, we are printing the value of 

x, which is 7. In line 3, we are incrementing x with the postfix increment operator and printing its value. 
Since postfix incrementing happens after the evaluation of the expression in which it is involved, 
println() is executed first, printing the actual value of x, which is 7. After the print operation, the value 
of x is incremented to 8. In line 4, we print the incremented value of x, which is 8. In line 5, we are again 
printing the x value and at the same time incrementing it using the prefix increment operator. Here the 
incrementing happens before the print() operation, so  println() prints the incremented value of x, 
which is 9. 

The same evaluation logic applies to the prefix and postfix decrement operator as well. 
Hence, the choice between using prefix and postfix operators depends on the context—the actual 

expression in which the operator is involved and the expected value of the respective expression. 

The Unary + and – Operators 
JavaFX Script variables can hold either positive numbers (by default all number are positive) or negative 
numbers. If you need to specify a number as negative, then you need to put a minus (–) sign in front of 
the value or the variable. The minus sign can be used to change the algebraic sign of a value or a 
variable: 

 
var c = -10 ; 

 
This example states that –10 is assigned to a variable c. In the same way, the value of an expression 

can be made negative by applying the minus sign in front of the expression, as in the following example: 
 

var d  = - ( x * x  ); 
 

Here, the variable d will hold the negative value of the square of x. 
As mentioned at the beginning of this section, there is also a unary + operator. Its use is implicit, 

since all numbers are positive by default. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

55 

The not Operator 
The not operator is a unary operator used to complement either a relational or a logical expression. 
Listing 4-9 shows its syntax. 

Listing 4-9. Syntax of the not operator 

not logical or relational expression  
 
The not operator negates the value of the logical or relational expression that follows it. If the 

expression evaluates to True, the not operator will change that to False and vice-versa. Listing 4-10 
shows an example. 

Listing 4-10. Using the not operator 

var a = 10; 
var b = 5; 
var x : Boolean = not ( a > b ); 
println(x); 

 
Output 

false 
 
As you see in the example, the actual value of the relational expression is true since a is greater  

than b. But the not operator changes that to false while assigning it to variable x. 

■ Note In Java, the negation operator is represented by ! (the exclamation symbol). 

Relational Operators 

Relational operators are used to compare the relationship between two operands. Relational expressions 
involving these operators always produce Boolean results and are often used in conditional expressions, 
as you will see later in this chapter. Table 4-2 shows the relational operators available in JavaFX Script. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

56 

Table 4-2. Relational Operators 

Operator Meaning Example 

< Less than  Operand1 < Operand2 

<= Less than or equal to Operand1 <= Operand2 

> Greater than Operand1 > Operand2 

>= Greater than or equal to Operand1 >= Operand2 

== Equal to Operand1 == Operand 2 

!= Not equal Operand1 != Operand2 

 
Note: All relational operators except equal (==) and not equal (!=) 
can be applied only to simple data types like Integer or Number. 
Equal to and Not Equal To can be applied to objects as well. 

 
var x  = 10 > 5; 

 
Here we are comparing whether 10 is greater than 5. Since 10 is greater than 5, the value of x after 

executing the statement will be True. Since relational expressions fetch a Boolean result, the data type of 
x would automatically be inferred as Boolean by the compiler. 

Logical Operators 
Logical operators are binary operators used to combine the value of two or more relational expressions. 
Similar to relational expressions, logical expressions also produce only Boolean results. 

Table 4-3 shows the logical operators available in JavaFX Script. 

Table 4-3. Logical Operators 

Operator Meaning Syntax 

and Logical AND operator  Relational expression1 

and 

Relational expression 2 

or Logical OR operator  Relational expression1 

or 

 Relational expression 2 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

57 

 
Logical operators work as cutoff or short-circuit operators. For example, if an and operator combines 

two relational expressions to form a logical expression, and the relational expression on the left side 
evaluates to False, then the value of the whole logical expression evaluates to False and the right- side 
relational expression is not evaluated at all. In the same way, if an or logical operator combines two 
relational expressions and the left- side relational expression evaluates to True, then the right expression 
is ignored and the value of the whole logical expression becomes True. 

Here is an example of how two relational expressions are combined with a logical operator: 
 

var x = ( 10 > 5 and 2 < 5 ); 
var firstGrade = ( totalMark => 60 or totalMarks <= 80 ); 

 
Besides using variables or data values as you’ve seen, the relational expressions combined by the 

logical operators can also include complex expressions as well. 

■ Note In Java, the logical operators are represented by different symbols - && for AND and || for OR. In JavaFX 
Script, they have been deliberately named in plain English for convenience. 

Table 4-4 summarizes the operator precedence for all the operators available in JavaFX Script. 

Table 4-4. Operator Precedence in JavaFX Script 

Operator Description Precedence 

() Parentheses 1 

++ 

-- 

Post increment 

Post decrement 

2 

++ 

-- 

not  

sizeof 

indexof  

reverse 

=> 

Pre increment 

Post decrement 

Logical complement 

Size of a sequence 

Index of a sequence element 

Reversing a sequence order 

Tween operator 

3 

 

 

 

 

 

Continued 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

58 

Operator Description Precedence 

* 

/ 

mod 

Multiplication 

Division 

modulus 

4 

+ 

- 

Addition 

Subtraction 

5 

== 

!= 

< 

<= 

> 

>= 

Equal 

Not equal 

Less than 

Less than or equal to 

Greater than 

Greater than or equal to 

6 

instanceof 

as 

Type checking 

Cast  

7 

and Logical AND  8 

or Logical OR 9 

 

+= 

-= 

*= 

/= 

%= 

Addition and assignment 

subtraction and assignment 

multiplication and assignment 

Division and assignment 

Modulus and assignment 

10 

= Assignment 11 

 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

59 

Range Expressions 

A range expression defines a sequence of numeric values forming an arithmetic series, using the syntax 
shown in Listing 4-11. 

Listing 4-11. Syntax of a range expression 

[number1..number2] 
 
A range expression defines a sequence whose elements consist of the integers from number1 to 

number2 inclusive. The following example shows a simple range expression. 
 

var nums = [0..3];  
println (nums); 

 
Output 

[ 0, 1, 2, 3 ] 
 
A range expression must have a starting and an ending value and may optionally specify a step 

value, to define the number by which the sequence must be incremented. The default step value of 1 is 
used if none is specified. The following example would redefine the previous range with a step value of 2. 

 
var nums = [0..3 step 2];  
println (nums); 

 
Output 

[ 0,  2] 
 

Here, the resulting sequence just includes 0, 2 and not the final value. When there is a step value, 
first the starting value is included in the sequence and then the step factor is applied repeatedly until the 
end value is reached. Note that the end value 3 is not included here since it does not meet the step 
criteria. 

The range expression can be pictorially represented as shown in Figure 4-1. 

 

Figure 4-1. The range expression 

In this diagram, the three valueExpressions must be of either type Integer or Number. If any of them 
is of type Number, the rangeExpression will become a sequence of Numbers. 

Table 4-5 shows examples of range expressions with corresponding output values. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

60 

Table 4-5. Range Expressions 

Range Expression Value Comments 

[1..5] [1, 2, 3, 4, 5] Uses the default step value of 1. 

[1..<5] [1, 2, 3, 4] All values between 1 and 5, inclusive of 1 
but exclusive of 5. 

[1..5.0] [1.0, 2.0, 3.0, 4.0, 5.0] A number sequence of values between 1.0 
and 5.0. 

[3.6..7] [3.6, 4.6, 5.6, 6.6] 3.6, then 3.6 + 1, and so on until the end 
value is reached. 

[1..9 step 2] [1, 3, 5, 7, 9] All values between 1 and 9 with an explicit 
step of 2 

[100..90 step -3] [100, 97, 94, 91] Negative step. Values decrease. 

[0.0..1.0 step 
0.25] 

[0.0, 0.25, 0.5, 0.75, 1] Fractional step value. 

[0.0..<1.0 step 
0.25] 

[0.0, 0.25, 0.5, 0.75] Fractional step value, excluding the end 
value in the range. 

[5..1] [] Compiler Warning: “empty sequence range 
literal, probably not what you meant.” For 
descending sequences, step value must be 
negative. 

var y = 2; 

[y * 2..y*5] 

[ 4, 5, 6, 7, 8, 9, 10 ] Expressions as start/end values. 

var y = 2; 

[y * 2..y*5 step y] 

[ 4, 6, 8, 10 ] Start/End/Step values as expressions. 

[1..10 step -1] [] Compiler Warning: “Empty sequence range 
literal, probably not what you meant.” For 
ascending sequences, step value must be 
positive. 

■ Note Range expressions are unique to JavaFX in the sense that they are not available in Java. Range 
expressions have varied applications in JavaFX Script in places such as sequences, for loops, and so on. Because 
range expressions can be defined by using other expressions to define their start, end, and step values, these 
expressions can become very powerful and can greatly simplify the way for loops and sequences are defined. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

61 

Block Expressions 
A block is a collection of definitions and/or expressions surrounded by curly braces and separated by 
semicolons. The value of the block expression is the value of the last expression in the block. If the last 
statement is not an expression, then the value of the block is Void. Listing 4-12 shows an example. 

Listing 4-12. Example of a block expression 

println( { 
var sum = 0; 
   var counter = 10; 
   while (counter > 0) { 
          sum += counter; 
          --counter; 
  } 
   "Sum is {sum}" 
} ); 
 

Output 
Sum is 55 

 
As you can see, the value of the block enclosed within the println() is the value of the last 

expression, which is Sum is {sum}. 
Listing 4-13 illustrates a conditional block expression. 

Listing 4-13. Example of a conditional block expression 

var flag: Boolean = true; 
var x = if (flag) { 
45 * 2 + 10; 
} else { 
90 * 2 + 20; 
} 
println(x); 
 

Output 
100  (if flag value is true as given in the code) 
200 (if flag value is changed to false)     
 

Here, the value of the if and else blocks takes the value of the arithmetic expression defined within 
the block since that is the last (only) expression in the block. Please note that the variables declared 
within a block can be used only in that block or in its child blocks, since they are local to the block. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

62 

■ Tip Using the type and value of the last expression as the type/value of the block comes handy in many places. 
One good example is in functions where you don't have to have a return expression explicitly at the end of the
block, and the last expression's value would be returned automatically. Similarly, the function need not explicitly 
declare a return type; the return type would be inferred automatically from the last expression of the function
block. You will learn more about this in Chapter 5, “Functions.” 

Looping Expressions 
Loops are an integral part of any programming language; they are used to control the flow of execution.
Looping expressions are iterative; they repeat until the Boolean expression that controls the loop
evaluates to False. JavaFX Script offers two types of looping constructs: for and while. You will examine
each of them in detail in this section. 

The for expression iterates over one or more sequences. The value of the for expression comes
from its body. If the body is of type Void, the value of the for expression would also be Void. The body of
the for loop is executed for each valid value specified by the range (which you specify within square
brackets [ ]). 

■ Note The Void type indicates that an expression does not have a value. Examples of Void expressions are the 
while expression and calls to functions that have no return value. The only time Void can be used to declare a type 
explicitly is to declare the return type of a function that does not return a value. You will see this in detail in
Chapter 5. For now, Void can be considered to be equivalent of an expression having “no value.” 

Listing 4-14 is a simple example of a for expression. 

Listing 4-14. Example of a for loop 

for (i in [1..5]) { 
    print ("{i} "); 
} 

Output
1 2 3 4 5 

In this example, the syntax [x..y] is a range expression representing a range of values. Here the
loop repeats for five times, with i taking values from 1 to 5 (inclusive). No need to declare the variable i
explicitly outside the for loop, as it will be implicitly created when the loop begins and discarded when
the loop is terminated. The value of the for-expression is considered to be Void since the body of the
for-expression (println) does not have a valid return value. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

63 

Listing 4-15 demonstrates a for expression that returns a valid value. 

Listing 4-15. Example of a for expression with a valid value 

var seq = for (i in [1..3]) 2 * i; 
println(seq);  
 

Output 
[2, 4, 6] 
 

Here, i takes the value of 1 to 3, and the body of the for-expression returns a valid value of i 
multiplied by 2. Since the for-expression yields a valid value, it can be assigned to a variable of type 
Sequence. Though we have not explicitly defined seq to be of type Sequence, the compiler will infer the 
type automatically to be Integer[ ], since the for expression returns multiple values. Hence the code 
shown in Listing 4-15 would yield the same result as this: 

 
var seq: Integer [] = [2, 4, 6]; 

■ Note A for expression is always expected to return a sequence, even if it just returns a single value. The 
compiler will always try to infer the data type as a sequence when the result of the for expression is assigned to a 
variable. 

The for expression can be pictorially represented as shown in Figure 4-2. 

 

Figure 4-2. The for expression 

As you can see, a for expression can have multiple in clauses; an in clause can be defined pictorially 
as shown in Figure 4-3. 

 

Figure 4-3. The in-clause 

 
An in clause typically returns a range of values for which the loop has to repeat, and both a for-

Expression and an in clause can optionally include a where clause to validate the values from the given 
range conditionally. 

The for examples that you have seen so far have used a single in-clause within the for-expression. 
Now let us see a for expression with multiple in clauses. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

64 

var seq = for (x in [1..2], word in ["Richard", "Brian"]) "{x} {word}"; 
 
Having multiple in clauses can be considered like having a nested for-loop in Java. When we have 

more than one in clause, the rightmost in clause acts as the innermost loop. 
The output of the previous example is as follows: 
 

seq = [ 1 Richard, 1 Brian, 2 Richard, 2 Brian ] 
 
The same code can be replicated in a conventional way as shown in Listing 4-16. 

Listing 4-16. Example of a conventional for expression with multiple in clauses 

var seq: String[]; 
for (x in [1..2]) { 
    for (word in ["Richard", "Brian"]) { 
        insert "{x} {word}" into seq; 
    } 
} 
println(seq); 
 

Output 
[ 1 Richard, 1 Brian, 2 Richard, 2 Brian ] 

 
As you see, this code has yielded the same result as that of the for expression with multiple in 

clauses shown previously. Here the insert statement just inserts a new element into the sequence; you 
will learn more about this in Chapter 10, “Sequences.” 

So far, we have only seen plain in clauses that do not validate the range values conditionally. In 
Listing 4-17, you can see how to validate the range values conditionally within an in clause using where. 

Listing 4-17. Example of a for expression with conditional validation 

var words = for (length in [3..6], word in ['moose', 'wolf', 'turkey', 'bee'] where 
word.length() >= length) word; 

 
In this example, the inner in clause validates if a specific range value size actually exceeds the length 

(specified by the outer in clause), and this range value would be used only if the condition is met. 
Now let's see iteratively how the sequence is built when the value of length changes from 3 to 6: 
 
Iteration 1 

length = 3   seq = ['moose', 'wolf', 'turkey', 'bee'] 
Iteration 2 

length = 4    seq = ['moose', 'wolf', 'turkey', 'bee', 'moose', 'wolf', 'turkey'] 
Iteration 3 

length = 5    seq = ['moose', 'wolf', 'turkey', 'bee', 'moose', 'wolf', 'turkey', 'moose', 
'turkey'] 

Iteration 4 
length = 6    seq = ['moose', 'wolf', 'turkey', 'bee', 'moose', 'wolf', 'turkey', 'moose', 
'turkey', 'turkey'] 

 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

65 

As you see in the output, in the second iteration bee is dropped from the range of word since the 
condition defined by the where clause is not satisfied. Similarly wolf is dropped for iteration 3 and moose 
is dropped for iteration 4. 

The same example can also be written in the conventional way as shown in Listing 4-18. 

Listing 4-18. Example of the conventional way of using conditional validations in a for expression 

var words = for (length in [3..6]) { 
for (word in ['moose', 'wolf', 'turkey', 'bee']) {  
        if (word.length() >= length)  { 
        word  
        } else { 
            null 
        } 
    } 
    }; 

 
The output of Listing 4-18 is the same as that of Listing 4-17. 

■ Note The else part in Listing 4-18 generates a null value but unlike in Java, null values are ignored and not 
inserted into the sequence. 

The range expressions in a for loop can themselves contain expressions and can also depend on the 
range value of the previous in clause, such as the one shown in Listing 4-19. 

Listing 4-19. Example of an expression within a range expression 

var seq = for (x in [1..5], y in [1..(x-1)]) { 
println("X Val: {x}, Y Val: {y}, Mod Val: {x mod y}"); 
x mod y; 
} 
println(seq); 

 
Output 

X Val: 2, Y Val: 1, Mod Val: 0 
X Val: 3, Y Val: 1, Mod Val: 0 
X Val: 3, Y Val: 2, Mod Val: 1 
X Val: 4, Y Val: 1, Mod Val: 0 
X Val: 4, Y Val: 2, Mod Val: 0 
X Val: 4, Y Val: 3, Mod Val: 1 
X Val: 5, Y Val: 1, Mod Val: 0 
X Val: 5, Y Val: 2, Mod Val: 1 
X Val: 5, Y Val: 3, Mod Val: 2 
X Val: 5, Y Val: 4, Mod Val: 1 
[ 0, 0, 1, 0, 0, 1, 0, 1, 2, 1 ] 

 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

66 

In this example note that the first iteration of x value, with a value of 1, is skipped because it does 
not fetch a valid y value. The rest of the output is self-explanatory. 

With the combination of range expression, multiple in clauses, and conditional validation of the 
range values, the for expression in JavaFX Script makes looping code much simpler, less verbose, and 
very powerful. 

While Loops 
While expressions are the same in JavaFX Script as in Java. The expression specified after the close 
parenthesis repeats as long as the Boolean expression controlling the while loop evaluates to True. 
Listing 4-20 shows a simple example of a while loop, and the code is self-explanatory. 

Listing 4-20. Example of a while loop 

var i = 0; 
while (i < 5) { 
println(i); 
i ++; 
} 

Output 
0 
1 
2 
3 
4 

 
A while expression can be pictorially represented as shown in Figure 4-4. 

 

Figure 4-4. The while expression 

In Figure 4-4, valueExpression yields a binary value (True or False), based on which the execution of 
the while loop is repeated. Unlike a for expression, the value of the while expression is always Void and 
hence it cannot be used in assignments like for expressions. 

Break Expressions 
A break expression is used to terminate (abruptly) a loop in which it is lexically contained and needs to 
be used with while or for expressions. The value of the break expression is always Void since it abruptly 
ends the execution of a loop. Usage of break in JavaFX Script is same as in Java. Listing 4-21 shows an 
example. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

67 

Listing 4-21. Example of using break within a while loop 

var x = 0; 
while (x <= 5.0) { 
x++; 
println(x); 
if (x > 2.5 ) { 
    break; 
} 
} 

Output 
1 
2 
3 

 
This example uses a break expression to break the while loop conditionally. 
Now let us see how to use this from within a for expression, as shown in Listing 4-22. 

Listing 4-22. Example of using break within a for expression 

var words: String[]; 
for (length in [3..6]) { 
for (word in ['moose', 'wolf', 'turkey', 'bee']) {  
    if (word.length() >= length)  { 
        insert word into words; 
    } else { 
        break; 
    } 
} 
}; 
 

Output 
words = [ moose, wolf, turkey, bee, moose, wolf, turkey, moose ] 

 
The code in Listing 4-22 breaks the inner loop whenever the length of word does not meet the length 

specified by the outer loop. 

Continue Expressions 
The continue expression is the same in JavaScript as in Java. It abruptly completes the current iteration 
of the loop in which it is lexically contained and attempts to start the next iteration. The statements that 
follow continue won't be executed and control is transferred to the top of the loop. Listing 4-23 
demonstrates a continue expression. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

68 

Listing 4-23. Example of a continue expression 

var notPrime = false; 

for (x in [2..100]) { 

    for (y in [2..(x-1)]) { 

        if (x mod y == 0) { 

            notPrime = true; 

            break; 

        } 

    } 

    if (notPrime) { 

        notPrime = false; 
                 continue; 

    } else { 

        print("{x} "); 

    } 

} 

Output 
2 3 5 7 11S 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 

 
This example is self-explanatory. However, note that the value of continue is also always Void. 

The if-else Expression 
The if-else expression in JavaFX Script is pretty much the same as in Java. If-else is probably the most 
basic way of controlling program flow. The if-else expression in JavaFX Script uses the truth or 
falsehood of the associated conditional expression to decide the program flow. If the conditional 
expression evaluates to True, the first block of code or the expression following the conditional 
expression is executed. If the conditional expression evaluates to false, the else block is executed. 

The if-else expression can be pictorially represented as shown in Figure 4-5. 

 

Figure 4-5. The if-else expression 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

69 

As described in Figure 4-5, the else and then parts of the if-else expression are optional. 
The value of an if expression can either be a valid value or Void depending on the value that the first 

and second expressions evaluate to. If the else part is present and if neither of the expressions are of the 
Void type, then the if expression will have a valid value. The value will be that of the first expression if 
valueExpression evaluates to True and will be that of the second if valueExpression is False. If the 
valueExpression is False and if there is no else block, the value of the if expression would be Void. 

■ Note The Java language has the if-else statement as well as the ternary operator, such as a > b? a: b. In 
JavaFX Script, the same if statement is used for both, thanks to block expressions. You will find both usages in the 
examples given in this chapter.  

Listing 4-24 shows a simple if-else expression. 

Listing 4-24. Example of an if-else expression 

var mark: Integer = 60; 
if (mark >= 50) { 
println("PASS"); 
} else { 
println ("FAIL"); 
} 
 

Output 
PASS 
 

The same expression can alternatively be specified in one statement, as shown in the following 
example.  Here we omit the braces since there is only one statement in each of the blocks. 

 
If (mark >= 50) println("PASS") else println("FAIL"); 

 
Since the value of mark is 60, this will print PASS. If the mark value is changed to anything less than 50, 

then the else block will be executed, printing FAIL. The value of the if expression as such would be Void 
since neither of the expressions have a valid value here. 

Since the if-else expression can bear a value, it can be used to assign a value to a variable 
conditionally, as shown in Listing 4-25. 

Listing 4-25. Example of if-else with a value 

var flag = true; 
var x = if (flag) "JavaFX" else 3.14;  
println(x); 
 

Output 
JavaFX  



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

70 

 
This result occurs because flag is set to True. If the ) flag value is changed to false, the output would 

be 3.14. 
In Listing 4-25, the type of the variable x would be an Object here as there is no more specific type 

that has String and Number as sub-types. 
When using if-else expressions for assignments, you have to ensure there is an else part and both 

the expressions given under if and else yield valid values. If not, this would result in a compilation 
error. 

■ Note Neither Java nor JavaFX Script allows you to use a number as a Boolean the way C and C++ do, where 
truth is non-zero and falsehood is zero. So, If you need to use a number a, you should first change it to Boolean 
through a conditional expression such as (a != 0) or (a > 0). 

Exception Handling 
Exception handling in JavaFX Script is almost the same as in Java. The same try-catch-finally blocks 
used in Java are applicable to JavaFX Script as well but need to be written with JavaFX Script variable 
declaration syntax. 

Listing 4-26 shows a simple example of how the try-catch-finally is written in JavaFX Script. 

Listing 4-26. Example of a try-catch-finally block 

    try {         
    throw new Exception("Demonstrating try-catch-finally"); 
} catch (e:Exception) { 
    println("Exception thrown {e}"); 

} finally { 
println("finally reached"); 
} 
 

Listing 4-26 could also be written as follows: 
    try {         
    throw new Exception("Demonstrating try-catch-finally"); 
} catch (any) { 
    println("Exception thrown {any}"); 

} finally { 
println("finally reached"); 
} 

 
Output 

Exception thrown java.lang.Exception: Demonstrating try-catch-finally 
finally reached 

 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

71 

Listing 4-26 throws an exception intentionally from within the try block to see if it is caught by the 
respective catch block. As you see in the output, the respective catch block as well as the finally block 
are called when the exception is thrown. Now let us see in detail how this works in JavaFX Script. 

The typical try-catch-finally and throw clauses in JavaFX Script are pictorially described in  
Figures 4-6 through 4-8. First, Figure 4-6 shows the complete try-catch-finally structure. 

 

Figure 4-6. The try expression 

The try block (Figure 4-6) is executed until either an exception is thrown or it finishes successfully. 
When there is an exception, each catch clause is inspected to see which of the catch block's 
formalParameters matches that of the exception thrown. Figure 4-7 represents the catch block pictorially. 

 

Figure 4-7. The catch expression 

If any of the catch blocks is tuned to receive the exception thrown, the respective block is executed, 
with formalParameter replaced with the exception object. No further catch blocks will be executed. If 
none of the catch blocks match the exception thrown, then the exception propagates out of the try-
catch-finally blocks. 

A finally block, if present, will always be executed after the try block regardless of whether any 
exception is thrown. 

The throw expression in JavaFX Script (Figure 4-8) is same as in Java and causes an exception to be 
thrown. Since it completes abruptly, it does not have any value. 

 

Figure 4-8. The throw expression 

A try expression does not have any value and hence it is of type Void. 

The new Expression 
A new expression is used to create instance of a Java class. It allows us to specify the parameters required 
by the constructor of the respective Java class. Figure 4-9 is a diagram of its syntax, and listing 4-27 
shows some examples of the new operator to create instances of Java classes. 



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

72 

Figure 4-9. The new expression 

Listing 4-27. Examples of the new expression 

var f = new java.io.File("JavaFX.txt"); 
var fis: java.io.FileInputStream = new java.io.FileInputStream("Sun.doc");
var str = new java.lang.String("JavaFX is cool"); 

Instances of JavaFX classes can also be created with the new operator, but it is recommended to use
object literals for JavaFX class instances. You will see more about object literals when we deal with class
definitions in JavaFX Script. 

Differentiating Expressions 
In JavaFX Script, one expression must be differentiated from another by a semicolon, without which
there will be a compilation error. Listing 4-28 shows good and bad examples. 

Listing 4-28. Correctly and incorrectly differentiating expressions 

println(n) // This line would show a compilation error for missing semicolon 
var xx = 9; // Correct 
var yy = 100 // This will not show a compilation error since there are no expressions
following this one. 

Output 
You have forgotten the ';', which is needed to separate one expression from the next.
println(n) 
      ^ 

Hence it is important to close an expression with a semicolon (;) when there are further expressions
following it. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 4 ■ OPERATORS AND EXPRESSIONS 

 

73 

Summary 
JavaFX Script operators operate on one or more operands or values and produce either a Boolean or  
Numeric value or a reference. Arithmetic, Relational and logical operators are binary operators. The 
mod, increment/decrement, not, –, and + are unary operators. Each operator is assigned a precedence 
or priority which determines the order in which the operator operates on the operand. 

Some operators are not covered in this chapter; they are as follows: 

• indexof 

• instanceof 

• sizeof 

• reverse 

In this chapter, you have also learned about various expressions such as for, while, break, continue, 
if-else, range, block, try-catch-finally, and so on, its syntax and usage. There are still more 
expressions that are not covered here, such as 

• Object literals 

• Qualified names 

• PostFix expressions 

• Member access 

• Function invocation 

• This 

• Sequence 

• Selection 

• Indexing 

• Slice 

• Function expressions 

• Timeline expressions 

The operators and expressions not covered in this chapter will be covered in later chapters when we 
go in-depth into topics such as class definitions, access modifiers, functions, timelines, and so on. In the 
next chapter, you will learn more about functions in JavaFX Script and their usage. 
 



 

 

 



C H A P T E R  5 
 

■ ■ ■ 
 

75 

Functions 

A function is a block of statements enclosed within curly braces. This block is given a name and is 
invoked using the specified name. 

One of the important reasons to use functions is that they help organize the code conceptually and 
logically, avoiding redundancy within your program. Functions help break the bulk of code into smaller 
chunks by logically grouping the statements. Typically the code that is called frequently within your 
program is moved to a function that is then invoked from multiple places instead of duplicating the 
same code in all the places. Sometimes this is referred to as the “divide and conquer” approach.  

In JavaFX Script, functions can be classified into two types based on where they are located within 
your program; there are script-level functions and member functions of a class definition. Script-level 
functions are written directly within the script (an .fx file) and not inside any class definition present in 
the script. Functions of this type are visible to the entire script and within any class definitions that may 
exist in the script. It is also possible to make these functions visible outside the script, by specifying 
appropriate access specifiers; you will learn more about this in Chapter 7, “Access Specifiers.” 

Member functions (also known as instance functions) are functions defined within a class as a 
member of the class and are accessible within the class by default. To access these functions outside the 
class, you will have to create an instance of the class. Here also it is possible to make these members 
visible outside of the script by specifying appropriate access specifiers. 

■ Note All the examples in this chapter are script-private functions, meaning they will not have any access 
specifiers defined and would be accessible only within the script.  

Functions are normally defined by the application developer depending on the requirement of the 
application. In addition to that, you can find many functions available in the JavaFX APIs that you can 
use within your application. For instance, you have seen many examples using println, which is a 
function offered by the JavaFX APIs that is implicitly available within any JavaFX application (no import 
required). 

Let us see the syntax for defining a function: 
 

[modifiers] function function-name([parameterName : parameterType , .. ] ) : [ return type ] 
{ 
    // statements 
} 

 



CHAPTER 5 ■ FUNCTIONS 

 

76 

The access modifiers that can be specified while declaring a function in JavaFX Script are package, 
protected and public. These modifiers are reserved words in JavaFX Script, and you will learn more 
about them in Chapter 7. Specifying an access modifier is optional; if nothing is specified, the default 
will be “script-private” access and will make the function visible only within the script where it is 
declared.  

In addition to the access modifiers, you can also specify certain other modifiers such as bound, 
abstract and override in the function definition. Bound functions are explained in detail in Chapter 9, 
“Data Binding.” You will learn more about abstract and overridden functions in Chapter 8, 
“Inheritance.” They have been listed here in the syntax just for completeness. These modifiers are 
additive in nature and hence can be combined with the access modifiers. 

Every function requires an identifier, which is the function name. The rules for naming variables 
that you have already learned apply to function naming as well. Arguments (or parameters) are the 
inputs for the function, and they are separated by commas. Arguments are enclosed within the 
parentheses. It is not mandatory that a function have an argument; you can define a function with no 
arguments. Similarly, even if you define an argument, it is not necessary to define the data type for the 
argument, as it will be inferred automatically by the compiler. Nevertheless, there are circumstances 
where you will declare the data type while defining the function arguments, as you will see later in this 
chapter. If the function returns a value, you specify the return type after the closing parenthesis 
separated by a colon. The return type of the function is optional as well; if it is not specified, the compiler 
tries to infer a valid return type automatically from the last statement in the function body. If the last 
statement is an expression that does not yield a value (such as a println statement), then the default 
return type of Void is assumed. The executable block of code that is enclosed with the curly braces forms 
the body of the function. 

Let us see how to write a simple function. Listing 5-1 is our first example. 

Listing 5-1. Example of a simple function 

1.    function sayHello ( name )  { 
2.        println("Hello {name} ..!"); 
3.    } 
4.    println("My team Members"); 
5.    sayHello("praveen");    // function call  
6.    sayHello("lawrence"); 

 
Output 

My team Members 
praveen 
lawrence 
 

Listing 5-1 is a very simple program that demonstrates how to write a function. The aim of the 
function is just to print some names with a welcome message. In this example the function is defined 
above the function call (the statement that calls the function). But it is not mandatory to define the 
function above the statement that calls it in JavaFX Script; we can define the function anywhere within 
the script. 

This rule is similar to that for the main() function in Java, which can appear anywhere within the 
class definition. 



CHAPTER 5 ■ FUNCTIONS 

 

77 

How a Function Works 
Let us analyze how the function shown in Listing 5-1 works. When the function sayHello is invoked at 
line 5 with an argument of praveen, control goes to line 1, taking the value praveen and copying it to the 
variable name specified in the parameter list of the function. The value praveen in line 5 is called an actual 
argument, since it is the actual value that is passed to the function. The variable name in line 1 is called a 
formal argument, since it just collects the value passed from the function call. Formal arguments are also 
called formal parameters. The scope of the formal parameter is restricted to the body of the function. 
They are created when the function is called and destroyed when the function ends. 

As you have seen in the syntax, specifying arguments and return types is optional in JavaFX Script. 
With this in mind, let us see the following combinations of function definitions in detail: 

• Functions with neither an argument nor a return value 

• Functions with an argument but without a return value 

• Functions without an argument but with a return value 

• Functions with both an argument and a return value 

A Function with Neither an Argument nor a Return Value 
Let us see how to define a function that does not take any arguments and does not return anything. 
Listing 5-2 shows an example. 

 
Syntax 

modifiers function-name( ) { 
    // statements 
} 

or 

modifiers function-name( ) : Void { 
    // statements 
} 

Listing 5-2. Example of a function with neither an argument nor a return value 

1.    for(i in [1..5])  { 
2.        sayHello(); 
3.    } 
4. 
5.    function sayHello(){ 
6.        println("This is a function without an argument and a return value"); 
7.    } 

 
Output 

This is a function without an argument and a return value 
This is a function without an argument and a return value 
This is a function without an argument and a return value 



CHAPTER 5 ■ FUNCTIONS 

 

78 

This is a function without an argument and a return value 
This is a function without an argument and a return value 
 

 In Listing 5-2, we have defined a function called sayHello() from line 5 to line 7. This function 
doesn't take any argument (the parentheses are empty) and there is no return type as well. We are 
calling the same function five times in line 2 using a for loop. For each function call, the output 
statement is printed on the console as shown in the output section. Since the block expression that 
forms the body of the function does not have a valid value, the compiler would automatically infer a 
return type of Void. 

A Function with Arguments but Without a Return Value 
Let us see how to write a function with some arguments (or parameters) but without a return value. 

 
Syntax 

modifiers function-name(parameterName : parameterType , .. ) { 
    // statements 
} 

or  

modifiers function-name( parameterName : parameterType , ..) : Void { 
    // statements 
} 

Listing 5-3 shows an example of a function that takes an argument but does not have a return value. 

Listing 5-3. Example of a function with arguments but no return value 

1.    function factorial( num : Integer) : Void {     
2.        var i : Integer = 1; 
3.        var fact : Integer = 1; 
4.        while(i <= num ){ 
5.            fact = fact * i++; 
6.        } 
7.        println("factorial of {num} is {fact}");     
8.    } 
9. 
11.    var n2 : Integer = 6; 
12.    factorial(5); 
13.    factorial(n2); 
 

Output 
factorial of 5 is 120 
factorial of 6 is 720 

 
The aim of the function defined in Listing 5-3 is to find the factorial of a given number. From line 1 

to line 8, we define the function named factorial, and in lines 12 and 13 we call the function. When the 
function is called, its body of the function is executed, accepting the argument passed. In this function 
body, a block expression calculates the factorial of the given number and prints it out. Please note that 



CHAPTER 5 ■ FUNCTIONS 

 

79 

the value of this block expression is Void because the value of the last expression in the block is a 
println, which does not yield any value. Hence the return type of the function is considered to be Void. 

■ Note In JavaFX Script, unlike in Java, the arguments passed to a function are read-only and cannot be modified 
by the function. Trying to modify the parameters will result in a compilation error. 

A Function Without an Argument but with a Return Value 
Let us see how to write a function that does not accept any arguments but returns a valid value. 

 
Syntax 

modifiers function-name(  ) : [return type]  { 
    // statements 
    return expression ; 
} 

or  

modifiers function-name(  )   { 

    // statements 
    return expression; 
} 

or 

modifiers function-name( ) : [return type]{ 
    // statements 
} 
 

As you can see, there are three ways of declaring a function that does not accept an argument but 
returns a valid value. The first syntax shows a function declaration with its return type specified explicitly 
and a return statement within the body of the function. The second syntax shows a function declaration 
where the return type is not specified in the first line of the function declaration, but the function body 
specifies a return statement explicitly. In this case, the compiler will automatically infer the return type 
from the return statement. The third syntax shows a function declaration where we have specified the 
return type in the first line of the function declaration, but we have not specified anything within the 
function body. In this case the return type of the function is determined by the last statement of the 
function. 

Now let us see a simple example (Listing 5-4). 

Listing 5-4. Example of a function without an argument but with a return value  

1.    function getPI( ) { 
2.        return 22.0/7.0; 
3.    } 
4. 
5.    function getOddsLessThanTen( ) { 
6.        [1..10 step 2]; 



CHAPTER 5 ■ FUNCTIONS 

 

80 

7.    } 
8. 
9.    function printName() : String{ 
10. 
11. 
12.             "Jack and Jill"; 
13.    } 
14. 
15.    var pi = getPI(); 
16.    println("pi value = {pi}"); 
17.    var nos : Integer [] = getOddsLessThanTen( ); 
18.    println(" Odd numbers = {nos}"); 
19.    println(printName()); 
 

Output 
pi value = 3.142857 
 Odd numbers = 13579 
Jack and Jill 
 

This example has three different functions that show how functions return their values. The first 
function, getPI(), returns the value of Pi. We have explicitly specified the return statement.  

The second function, getOddsLessThanTen(), returns a range from 1 to 9 with a step of 2. We have 
not specified any return statement or the return type for this function, so in this case the compiler 
automatically infers that the function getOddsLessThanTen() returns a Sequence by looking at the last 
statement of the function. 

The third function, printName(), returns a String depending upon the if expression. In this function 
we have specified both the return type and the return statement. 

A Function with Arguments and a Return Value 
Let us see how to write a function that accepts some arguments and returns a valid value.  

 
Syntax 

modifiers function-name( parameterName : parameterType , .. ) : [return type] { 
    // statements 
    return expression; 
} 

Listing 5-5 shows an example. 

Listing 5-5. Example of a function that has arguments and a return value 

1.    function functionExpression(a:Integer, b:Integer):Number { 
2.        var x = a + b; 
3.        var y = a - b; 
4.        return squareOfNumber(x) / squareOfNumber (y); 
5.    } 
6. 
7.    function squareOfNumber(n:Integer): Number { 
8.        n * n; 



CHAPTER 5 ■ FUNCTIONS 

 

81 

9.    }      
10.    println("{ functionExpression(5,8) }"); 

 
Output 

18.777779 
 

This example demonstrates how one function calls another within the body of the function and, at 
the same time, plays the role of the expression that decides the return value.  

■ Note A function can take any number of arguments of any data type, but it can return only one return value. If 
you need to return multiple values, use a Sequence as the return type of the function. 

Variable Access within a Function 
A function can access script-level variables, parameters, and local variables. Let’s see each of them in 
detail. 

Script-Level Variables 
A variable defined within the script is called a script-level variable. Such a variable can be accessed 
anywhere within the script: within the script functions, within the blocks, within the class member 
functions, and so on. The value of this variable can be changed anywhere within the script. Script-level 
variables are like static variables in Java. Listing 5-6 shows an example. 

Listing 5-6. Using a script-level variable 

1.    var scriptLevelVar  : Number = 10; 
2. 
3.    public  function simpleFunction(  ) {  
4.        println("Accessing scriptLevelVar with in the simple function = 
{scriptLevelVar}");  
5.        // modifing the value of scriptLevelVar 
6.        scriptLevelVar = 45.34; 
7.        println("Modified value of scriptLevelVar in simple function = {scriptLevelVar}");  
8.    } 
9. 
10.    function run (){ 
11.        println("Accessing the scriptLevelVar in run function \nscriptLevelVar = 
{scriptLevelVar}"); 
12.        simpleFunction(  ) ; 
13.        ;  scriptLevelVar++; 
14.        println("Modified value in run function scriptLevelVar = {scriptLevelVar}");  
15.    } 
 



CHAPTER 5 ■ FUNCTIONS 

82 

Output 
Accessing the scriptLevelVar in run function
scriptLevelVar = 10.0 
Accessing scriptLevelVar with in the function = 10.0
Modified value of scriptLevelVar in function = 45.34
Modified value in run function scriptLevelVar = 46.34 

This example demonstrates how a script-level variable can be accessed and modified from within a
function. 

■ Note Script-level variables are created before the run() function is invoked. 

Local Variables 
Local variables are variables that are defined within the function and can only be accessed within it. The
life-span of such variables is same as that of the function in which they are declared. These variables are
created when the function is called and are destroyed when the function completes execution. Their
value can be changed any number of times within the body of the function. 

Function Overloading 
Function overloading is typically about a set of functions sharing the same function name, but accepting
different arguments and performing different activities depending on the kind of parameters sent to
them. This is also known as polymorphism in OOP (Object Oriented Programming). When an overloaded
function is called, the JavaFX Script checks the number and type of parameter(s) of all the functions
defined with the same name and calls the one whose parameters exactly match the calling statement.
Listing 5-7 shows an example. 

Listing 5-7. Example of an overloaded function 

1.    function fun() { 
2.        println("Function Overloaded without any argument."); 
3.    } 
4. 
5.    function fun(a : Integer , b : Integer) { 
6.        println("Function Overloaded with  Integer argument a ={ a } , b = {b}"); 
7.    } 
8. 
9.    function fun(n : Number ) { 
10.        println("Function Overloaded with  Number argument n = {n}"); 
11.    } 
12. 
13.    fun(); 
14.    fun(5, 10); 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 5 ■ FUNCTIONS 

 

83 

15.    fun(22.0/7.0); 
16.    fun(40); 

 
Output 

Function Overloaded without any argument. 
Function Overloaded with Integer argument a = 5 , b = 10 
Function Overloaded with Number argument n = 3.142857 
Function Overloaded with Number argument n = 40.0 

 
The example in Listing 5-7 has different functions sharing the same function name. Each function 

has a different set of arguments. The first function doesn't take any argument, the second function takes 
two Integer arguments, and the third function takes one Number argument. When the function is called 
from line 13 to line 16, the JavaFX Script compiler checks the number and type of parameters and calls 
the corresponding function.  

Line 16 is a special type of function call. The function argument doesn't match any of the function 
declarations directly. When this situation arises, JavaFX Script's automatic type conversion plays an 
important role in solving the issue. At Line 16, the function call has an Integer value, but none of the 
function declarations match. However, the last function matches in the number of arguments but differs 
in data type. Nevertheless, the function expects a Number type, which has a greater precision than the 
Integer, so it is actually safe to promote an Integer to a Number data type without any data loss. Hence 
the compiler converts 40 to a Number and calls the fun() function, which accepts a Number. You can 
easily see from the output that a plain 40 is converted into 40.0.  

Recursive Functions 
A function that calls itself either directly or indirectly until a condition is satisfied is called a recursive 
function. Let us take the most common example of the recursive function that calculates the factorial of 
a given number and the Fibonacci series. You have already seen the factorial example in this chapter. 
Listing 5-8 illustrates how the same problem can be solved using a recursive function. 

Listing 5-8. Example of a recursive function 

1.    function factorial( n : Integer ) : Integer{ 
2.        if( ( n==0) or ( n == 1 ) ) { 
3.            return n; 
4.        } 
5.        else { 
6.            return n * factorial(n - 1 ); 
7.        } 
8.    } 
9. 
10.    println("factorial of 5 = {factorial(5) }"); 
11.    var fact = factorial(8); 
12.    println("factorial of 8 = {fact}"); 

 
Output 

factorial of 5 = 120 
factorial of 8 = 40320 
 



CHAPTER 5 ■ FUNCTIONS 

 

84 

In Listing 5-8, the function factorial() takes an Integer as the argument and returns an Integer as 
output. In line 2 we are checking whether the argument n value is either 0 or 1. If the value of n is 1, then 
we are just returning the value of n. if the value is more than 1, the else part is executed. It calls the same 
function, passing n – 1. This recursion continues until the condition given in line 2 is satisfied.  

■ Note It is mandatory to declare the return type of a recursive function explicitly. Failing to do so will result in a 
compilation error. 

Listing 5-9 shows another example of a recursive function. 

Listing 5-9. Example of a recursive function with multiple invocations 

1.        function fibonacciFun(n:Integer):Integer { 
2.        if (n<2) { 
3.            return n 
4.        } 
5.        else { 
6.              (fibonacciFun(n-1) + fibonacciFun(n-2)); 
7.         } 
8.    }  
9. 
10.    println(" fibonacci of 10 = { fibonacciFun(10) }"); 
11.    println(" fibonacci of 1 = { fibonacciFun(1) }"); 

 
Output 

fibonacci of 10 = 55 

Anonymous Functions 
An anonymous function is one that doesn't have a function name. Using anonymous functions, we can 
convert a function in an expression, called a function expression.  

The first step to write an anonymous function is to define a variable of type Function. 
 
Syntax 

var function_variable_name : function ( : parameter , : parameter ) : [return type]; 
 
Example 

    var x  : function( : Integer,  : Integer) : Integer; 
 
This section is very simple; it’s just providing the signature of the function, without specifying the 

function name. It is similar to declaring a variable, but instead of the data type, we are specifying the 
function type.  

Here, function_variable_name is the variable that holds the function expression ,followed by the 
function keyword, which specifies that this is a variable of Function type. A Function type must also 



CHAPTER 5 ■ FUNCTIONS 

 

85 

define the parameters within a pair of parentheses. If there is no parameter, then it could just be the 
opening and closing parentheses. Following the parameters is the return type of the function. 

■ Note It is mandatory to specify the type of the parameter(s), as there is no body of the function defined here. If 
we omit the data type of the parameters a compilation error is thrown. 

Syntax  
function_variable_name = function(argument name1 , argument name2 ) : [return type] { 
        // statements 
} 
 

From this syntax, you see that an anonymous function is similar to a normal function, except that 
the function name is missing and we are assigning the function to a variable of the Function type.  

Now let us see how to call the function variable that refers to an anonymous function expression, a 
step called closure. This is similar to calling the function using the function name and passing values to 
the arguments. But instead of a function name we are calling the anonymous function with the function 
variable name to which we have assigned the function expression. 

Let’s put it all together to make a complete script, as shown in Listing 5-10. 

Listing 5-10. Example of an anonymous function 

1.    var x : function(   : Integer ,   : Integer ) : Integer ; 
2. 
3.    x = function(a,b ) { 
4.        if(a > b ) { 
5.             a; 
6.        } 
7.        else { 
8.             b; 
9.        } 
10.    }; 
11. 
12.    println("greatest number of 5 and 10 = { x(5,10) }"); 
 

Output 
greatest no of 5 and 10 = 10 
 

In line 1, we have declared the variable x of type Function, which takes two Integers as arguments 
and whose return type is Integer. From line 3 to line 10 we have defined the function expression assigned 
to variable x. In line 12 we have an output statement which calls the anonymous function through the x 
variable (of Function type) by passing the values 5 and 10, and finally the return value of the function 
expression is printed. 

Listing 5-11 shows another example of an anonymous function. 



CHAPTER 5 ■ FUNCTIONS 

 

86 

Listing 5-11. Example of a variable of type function with automatic type inference 

1.    var fact = function (num : Integer )  { 
2.        var i : Integer = 1; 
3.        var fact : Integer = 1; 
4.        while(i <= num ){ 
5.            fact = fact * i++; 
6.        } 
7.        return fact; 
8.    } 
9.    println("Factorial of 5 = { fact(5) } "); 
 

Output 
Factorial of 5 = 10 
 

In Listing 5-10, we had declared function variable separately and function expression separately, but 
in Listing 5-11 we have combined the statements.  

Now we know that in JavaFX Script, a variable can be of the Function type. Functions are described 
as first-class objects in JavaFX Script, which allows the programmers not only to create variables of type 
functions but also to pass such a variable arguments to other functions and return it as a return type 
from other functions.  

The run() Function 
The run() function is a special function in JavaFX Script that acts as the entry point to your application, 
similar to the main() function in Java. This function is implicitly created by the compiler internally as 
long as you do not have a public member (a variable, or a class, or a function) defined in your main 
script. However, if you have defined a public member, then the compiler lets you create the run() 
function as well and no longer generates it implicitly. If you fail to specify one despite having some 
public member, the compiler will throw a compilation error.  

This function will be automatically called when you execute your application through the javafx 
executable, and any command-line arguments that the user may pass will be given to this function. 
Listing 5-12 shows a simple example of the run() function. 

Listing 5-12. Example of the run() function 

1.    function run (){ 
2.        println("This is the entry point for JavaFX Scripting..!"); 
3.    } 

 
Let’s call this script EntryPoint.fx. When this script is executed, we see the following output on the 

console. This run() function is called by the JavaFX runtime automatically. 
 
Output 

This is the entry point for JavaFX Scripting..! 
 

Let’s see another of the run() function (Listing 5-13). 



CHAPTER 5 ■ FUNCTIONS 

 

87 

Listing 5-13. Example that enforces addition of a run() function 

1.    public  function areaOfCircle(radius :Number):Number {  
2.        return  3.142 * radius * radius;  
3.    } 
4. 
5.    function run(){ 
6.    println("This is the entry point for JavaFX Scripting..!"); 
7.    println("Area of the circle = {areaOfCircle( 7) } " ); 
8.    } 

 
Output 

This is the entry point for JavaFX Scripting..! 
Area of the circle = 153.958 
 

In this example we have defined a function called areaOfCircle and implemented the run() 
function. When the script is executed, the output shown is printed on the console. Notice that the 
function areaOfCircle is called within the run() function. Since the run() function is the entry point of 
the script, it will be called first, before areaOfCircle. If we move the function call areaOfCircle from line 
7 to outside the run() function, say line 4, we will get a compilation error. This is because we have a 
public member in the script areaOfCircle and if there is a public member, JavaFX Script compiler 
enforces you to move all the loose expressions in to a run() function. In such a case, the run() function 
become mandatory. If you want to try this yourself, do the following in Listing 5-13. 

1. Move the function call at line 7 to line 4. 

2. Comment out the run() function entirely. 

3. Remove the public keyword from the function areaOfCircle. 

Now you will be able to compile and run the example without any errors.  

■ Note When there is a public member in the script, a run() function becomes mandatory, and all the loose 
expressions in the script must be moved to that function. Otherwise, the compiler will throw an error. 

Command-Line Arguments 
The run() function can be defined with or without parameters. We have seen the function without 
parameter in the previous examples; let’s see how to get the command-line arguments within the run 
function. 

 
Syntax 

function run( sequence of String ) {  
                                   // statements 
                                      } 



CHAPTER 5 ■ FUNCTIONS 

 

88 

Listing 5-14. ModifiedRun.fx, an example of a function with command-line arguments  

1.    function run (cmdLine : String[]){ 
2.        println("Printing Command-line arguments");     
3.        for( arg in cmdLine ){ 
4.            println(arg); 
5.        } 
6.    } 
 

Run the script as follows: 
 

D:\javafx-sdk1.3\bin\javafx ModifiedRun Learning JavaFX Script Command-line argument 
 
Output 

Printing Command-line arguments 
Learning 
JavaFX 
Script 
Command-line 
argument 
 

There is also another way of accessing the command-line attributes. The JavaFX API contains a 
class, named FX in the javafx.lang package that is implicitly imported into any JavaFX script (just like 
java.lang classes). There is a method getArguments() in the FX class that returns a sequence of strings 
representing the command-line arguments. If no arguments are passed, this method returns a null 
value. Listing 5-15 shows an example. 

Listing 5-15. CommandLineArgsDemo.fx, an example using the getArguments() method  

1.    public  function area_of_circle( radius :Number):Number {  
2.        return 2 * 3.142 * radius ;  
3.    } 
4. 
5.    function run (){ 
6.        println("Learning FX.getArguments() ..!"); 
7.        var args : String []  = FX.getArguments(); 
8.        println(area_of_circle (java.lang.Integer.parseInt(args[0]))); 
9.    } 
 

Output 
D:\javafx-sdk1.3\bin\javafx  CommandLineArgsDemo 20 
Learning FX.getArguments() ..! 
125.68 
 

There is also another variant of getArguments() that accepts a string parameter, and this can be used 
when the incoming values are represented as key-value pairs. You would find this variant very useful 
typically when dealing with the browser version of the JavaFX Application (Applets). You can get more 
information about this from the JavaFX API documentation. 



CHAPTER 5 ■ FUNCTIONS 

 

89 

Summary 
In this chapter you have learned about functions in detail. A function is a set of statements that are 
enclosed in curly braces. A function is accessed by its name, called a function name. A function 
definition may optionally include one or more modifiers, parameters and the return type. Overloaded 
functions are functions that share the same function name but differ in their number and type of 
arguments. Function parameters are read-only and hence cannot be modified. A function can be made 
anonymous by omitting a function name and instead assigning it to a variable of type Function. 
Anonymous functions can be invoked using the corresponding variable name, and such variables can be 
passed as parameters to other functions as well. The run() function acts as the entry point to any FX 
application, and the programmer has to define it if there is a public member declared within the script. 
Using this run() function and the Javafx.lang.FX class, you can get access to the command-line 
arguments. 

In the next chapter, you will learn more about class definitions and how to go about defining and 
using classes and object literals within JavaFX Script. 
 



 

 

 



C H A P T E R  6 
 

■ ■ ■ 
 

91 

Class Definitions 

JavaFX Script is an object-oriented programming (OOP) language. Because it is built on the Java 
platform, JavaFX Script inherits almost all the features of Java, including those that support object 
orientation. We will start this chapter by examining some basic concepts of OOP, and later you will learn 
how to implement your own class in JavaFX Script. 

Object-oriented programming languages were developed to correct some of the flaws programmers 
found with procedural languages; for example, typically they are not very flexible. In OOP data is treated 
as a critical element and not allowed to flow unrestrictedly. OOP binds data closely to the functions that 
operate on it and protects it from accidental modification by outside functions. OOP allows the 
decomposition of a problem into a number of entities called objects and then builds data and functions 
around these objects. Thanks to the use of objects, one of the advantages of using OOP is its reusability 
of code. OOP also has these basic advantages: 

• OOP provides a clear modular structure for programs, which makes it good for 
defining abstract data types in which implementation details are hidden and the 
unit has a clearly defined interface. 

• OOP makes it easy to maintain and modify existing code, as new objects can be 
created with small differences from existing ones. 

• Data is hidden and cannot be accessed by non-member functions. 

Classes and Objects 
Classes and objects are the two most important concepts of OOP, so we’ll begin with a brief definition of 
each. 

Classes 
A class is a user-defined data type. It’s a blueprint or prototype from which objects are created. A well-
defined class demonstrates all or at least few of the features of OOP: data abstraction, encapsulation, 
polymorphism, and inheritance. We’ll discuss these defining features shortly. 



CHAPTER 6 ■ CLASS DEFINITIONS 

92 

Objects 
An object is an instance of a class, which replicates the real world object. For example, consider a
computer. You see the computer as one unit, but it is built from many individual components —the
motherboard, RAM, processor, hard disk, SMPS, and so on. Instead of looking at these individual
components, you tend to look the whole. In the same a way, an object is made up of data members of
the class. 

Features of OOP 
The object-oriented programming approach is defined by the following four features: 

• Data abstraction 

• Encapsulation 

• Polymorphism 

• Inheritance 

Data Abstraction 
Abstraction refers to the act of representing essential features without including the underlying details or
explanations. Classes use the concept of abstraction and are defined as lists of abstract attributes. 

Encapsulation 
Encapsulation is the process of storing data and functions in a single unit and is achieved by declaring a
class. It can also be called data hiding; since data cannot be accessible to the outside world, only those
functions that reside within the class can access it. Encapsulation can be achieved by declaring packages
and modules as well as classes. 

Inheritance 
Inheritance is the process by which an object belonging to one class can acquire the properties of
another class. This is an important feature facilitating the reusability of code. It is achieved by deriving a
new class from an existing class (base class). The new class (derived class) will have combined features of
both the classes. In Chapter 8, “Inheritance,” you will learn the types of inheritance and its
implementation. 

Polymorphism 
Polymorphism is the ability of something to take more than one form. In OOP, the concept is exhibited
in different behaviors in different instances, depending on the data types used in the operation
(functions). Polymorphism is extensively used in implementing inheritance. It is also called function
overloading, which you learned about in Chapter 5, “Functions.” 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 6 ■ CLASS DEFINITIONS 

 

93 

The Class Definition 
Now that you know what a class is, you can move on to learn how to define one. Figure 6-1 shows the 
structure of a class. As you can see, a class consists of data members and member functions. It may also 
contain optional init() and postinit() blocks, which we’ll examine later in this chapter. 

 

Figure 6-1. Classes contain data members and member functions 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

94 

Class is a keyword, which tells the compiler that you are going to create a user-defined data type. 
Class-name is the name given to identify the class. The rules that applies to name a variable applies even 
for naming a class. The Opening and closing curly braces of the class contains the data members and the 
member functions  

The access specifiers or modifiers that can be applied to a class declaration are package, protected, 
and public. You will learn all about access modifiers in Chapter 7, “Access Modifiers”. Access to classes, 
data members, and member functions is regulated using access modifiers—a class can control what 
information or data can be accessible by other classes. To take advantage of encapsulation, you should 
minimize access whenever possible.  

Data members are the attributes of the object and can have the access modifier package, protected, 
public, public-read or public-init. If you don't specify an access modifier, then such data members of 
the class will have script-level access and can be accessed in other classes in the same file. 

Member functions are the functions that reside within the class. Member functions have the ability 
to access any data members and other member functions of the class. You can specify the access 
modifiers package, protected, and public for member functions. 

Finally, the init and postinit blocks shown in Figure 6-1are optional. You will learn about these 
two optional parts of a class definition later in this chapter. Listing 6-1 demonstrates a class definition. 

Listing 6-1. A simple class definition 

class Account { 
    var accountNumber : Integer ; 
    var accountHolderName : String; 
    var balance : Number; 
 
    function printAccountHolderInformation( ) { 
        println("Account Number = {accountNumber}  Account Holder Name = {accountHolderName}  

Balance : {balance} "); 
        } 
} 

 
This example declares a class called Account, which contains three data members, accountNumber, 

accountHolderName, and balance, along with a single member function called 
printAccountHolderInformation(), which prints the data members of the class. With this we have 
defined the blueprint of the object or defined the user-defined data type. 

Creating Object Literals 
Creating an instance of our new class means  allocating memory for the object in RAM (main memory). 
An instance of a class can be created in two ways; here’s the first: 

 
Syntax 

var object_name : class_name = class_name{ }; 
 
This first syntax for creating a class instance is known as the JavaFX style. It is similar to declaring an 

ordinary variable. In this method, you specify that the object belongs to a particular class and then you 
create the instance. 

The second method of creating the instance of the class is to use the Java style, creating the object 
using the new operator. 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

95 

 
Syntax 

var object_name : class_name = new class_name( ); 
 
Here, you are specifying that the object belongs to a particular class and then creating the object 

using the new operator. 

■ Note When creating an object of a class using JavaFX style, use curly braces after the class name 
(class_name{ }). By contrast, when you use Java style to create an object of a class, you’ll use parentheses after 
the class name (class_name( )). 

Now let us create the objects of the class Account in both JavaFX style and Java style: 
 

var account1 : Account = Account{ };    // JavaFX style 
var account2 : Account = new Account( ) ; // Java style 
 

Both statements create instances of the class Account. Object account1 is created using JavaFX style 
and account2 is created using Java style. Note that we have not initialized the attributes explicitly, which 
means that all the attributes will take their default values, depending on the data type. 

Initializing Class Attributes within an Object Literal 
So far, you have learned how to declare a class  and create objects that are instances of the class. Now 
let’s initialize an object. Listing 6-2 shows the code. 

Listing 6-2. Initializing the attributes of the Account class 

var account1 = Account{ 
    accountNumber : 121    //  initializing the data member 
    accountHolderName : "Praveen"    //  initializing the data member 
    balance : 56434.34    //  initializing the data member 
}; 
 

In the above expression, we are creating the object account1 of class Account and initializing it. The 
data member of the object are initialized by the colon operator (:) followed by the value. 

Calling the Members of the Class 
Members of the class, which as you saw earlier may be either data members or member functions, are 
accessed using the dot (.) operator. 

 
        account1.name    // accessing datamember 
        account1.printAccountHolderInformation( ); // accessing member function 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

96 

 
In these statements, you are accessing the name data member of class Account through its object 

account1, and you are accessing member function printAccountHolderInformation() of the same 
Account class. 

Assume you have created four objects. Memory is allocated for four objects, but the member 
functions are loaded only once in memory. All the objects share the member functions. Figure 6-2 
illustrates this structure. 

 

Figure 6-2. Data members of the class sharing the member function 

Now let’s access the member function of the class Account using the objects account1 and account2: 
 

account1.printAccountHolderInformation( );     //  calling the member function 
account2.printAccountHolderInformation( );     //  calling the member function 
 

Finally, let’s put all the pieces together—class definition, object creation, and initialization—to form 
a complete JavaFX class. Listing 6-3 shows the code. 

■ Note In JavaFX Script, unlike Java, it is not mandatory that a public class name should be same as the 
filename; the class and filename can be different. 

Listing 6-3. The complete Account class 

class Account { 
    var accountNumber : Integer ; 
    var accountHolderName : String; 
    var balance : Number; 
    function printAccountHolderInformation( ) { 
        println("Account Number = {accountNumber} Account Holder Name = {accountHolderName} 

Balance : {balance} "); 
    } 
} 
var account1 : Account = Account{ /*create an instance and initialize the object */ 
    accountNumber : 121 
    accountHolderName : "Praveen" 
    balance : 56434.34 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

97 

}; 
var account2 = Account{} ; // create an instance 
account1.printAccountHolderInformation( ); // calling the member function 
account2.printAccountHolderInformation( ); // calling the member function 

 
After executing Listing 6-3 you’ll see the following output. 
 
Output 
------ 

account number = 121 Account Holder Name = Praveen  Balance : 56434.34 
account number = 0 Account Holder Name =   Balance : 0.0 
 

The output statement prints the details of the objects account1 and account2. In the output of 
account2, you can see that the value of account number is zero, the value of accountHolderName is null “”, 
and balance is 0.0. This is because we have not initialized the data members of the object. 

Assigning Default Values to Data Members 
It is possible to set a default value for the data members of the class, if you don’t initialize the object. If 
you initialize the object, then the default value is overridden. 

 
var balance : Number = 500.0;     // 500.0 can be either dollars or any currency 

 
In this assignment statement the data member balance of the Account class is initialized with 500.0. 

This is because the minimum balance of the newly opened account should have 500.0, whether rupees 
or dollars. If you modify the Account class example, Listing 6-3, by initializing the balance data member 
with the default value as shown in the assignment statement, executing the code will display the 
following output. 

 
Output 
------ 

Details of the account2        // just to denote that you are seeing the details of account2 
account number = 0 Account Holder Name =   Balance : 500.0 

The init Block 
init is a keyword. It’s an optional block; if present it is used to initialize the data member of the class, or 
you can add any initialization statements. You can consider the init block to be the constructor of the 
class. It is executed as the final step of instance initialization. The following init block shows how to 
initialize the balance data member of the class Account. 

 
init { 
    balance = 500.0; 
} 
 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

98 

Listing 6-4. A class definition that includes an init block 

1.    class Distance { 
2.        var feet : Integer = 1;    // default value is 1 
3.        var inches : Number = 0.0; 
4. 
5.        init { 
6.            println("within init block.."); 
7.            println("Default value is overridden by object initialization"); 
8.            println("feet = {feet}  inches = {inches}"); 
9.            println("Overriding the default value printing the "); 
10.            feet = 10; 
11.            inches = 4.5; 
12.            println("feet = {feet}  inches = {inches}"); 
13.        } 
14. 
15.        function showdist() : Void { 
16.            println("feet = {feet } inches = {inches } "); 
17.        } 
18.    } 
19. 
20.    var dist1 : Distance = Distance { 
21.        feet : 5 
22.        inches : 10.5 
23.    } 
24.    println("calling the member function to print the value of data member"); 
25.    dist1.showdist() ; 
 
 

Output 
------ 

within init block.. 
Default value is overridden by object initialization 
feet = 5  inches = 10.5 
Overriding the default value printing the 
feet = 10  inches = 4.5 
calling the member function to print the value of data member 
feet = 10 inches = 4.5 

 
In Listing 6-4, we declare a Distance class, which has two data members, feet and inches (which 

have default values of 1 and 0.0, respectively), and a member function named showdist()  to display the 
value of feet and inches. In line 20, the object dist1 is created and initialized. We assign feet a value of 5 
and inches a value of 10.5. Because we have initialized the object dist1, the default values of feet and 
inches are overridden. Now feet holds the value of 5 and inches holds the value of 10.5. Next the JavaFX 
script runtime will execute the init block. The first statement of the init block is line 6, which is an 
output statement announcing that now you are in the init block. In line 8, the values of feet and inches 
are printed, 5 and 10.5. Next we modify the feet and inches values by 10 and 4.5, and then print the 
overridden value of the object initialization. When object dist1 calls the showDist() function, the 
modified value in the init block is printed. 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

99 

Order of Instance Initialization 
Based on the previous example, we can summarize the sequence in which instances of a class are 
initialized: 

1. Objects are created. If a default value is set, data member are initialized with it. 

2. If the object is initialized, then any default value is overridden. 

3. The init block is executed. If data members are set to a new value, then object 
initialization is overridden. 

The postinit Block 
As noted earlier, the postinit block is optional .It is executed after instance initialization has completed. 
Usually, you’ll place code in postinit that has to be executed after the object is initialized. One of the 
best uses of a postinit block is to add event-handling code, such as keyevent() and mouseEvent() 
functions. 

 
Syntax 
    postinit { 
     //statements that is required after creation and initialization of the object. 

       } 

Modifying Class Objects 
Now that you’ve seen what’s included in a class definition, let’s move on to working with class objects  
elsewhere in the code. 

You can modify the objects of a class just like modifying any variable. The following two assignment 
statements show how to assign the value to data members of the class: 

 
dist.feet = 6; 
dist.inches =  7.11; 
 

Let’s modify the Distance class to modify the value of data member outside the class; Listing 6-5 
shows the code. 

Listing 6-5. Modifying the value of a data member outside the class 

1.    class Distance { 
2.        var feet : Integer = 1;    // default value is 1 
3.        var inches : Number = 0.0; 
4. 
5.        function showdist() : Void { 
6.              println("feet = {feet } inches = {inches } "); 
7.        } 
8.    } 
9. 
10.    var dist1 : Distance = Distance {  // creating the object and initializing it 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

100 

11.        feet : 5 
12.        inches : 10.5 
13.    } 
14.    println("dist1 object value"); 
15.    dist1.showdist() ; 
16.     dist1.feet = 8;        // modifying the feet data member 
17.    dist1.inches = 11.5;    // modifying the inches data member 
18.    println("dist1 object value after changing the data member"); 
19.    dist1.showdist() ; 

 
Output 
------ 

dist1 object value 
feet = 5 inches = 10.5 
dist1 object value after changing the data member 
feet = 8 inches = 11.5 

 
Here, the Distance class is modified from the previous example to demonstrate how to change a 

data member of an object. In line 10 we create the instance dist1 and it is initialized. In lines 16 and 17 
the data members of the dist1 instance are modified. To verify that the data member of dist1 have been 
modified, we call the dist1.showdist() function, and the output shows the result. 

Objects as Function Arguments 
Not only is it common to have either simple variables or the data members of a class as arguments of the 
member function, it is also common to have the object itself as the function argument. 

Let’s modify the Distance class of the previous example to add a member function that takes the 
object as its argument. Listing 6-6 shows the code. 

Listing 6-6. A member function that takes an object as its argument 

1.    class Distance { 
2.        var feet : Integer = 0; 
3.        var inches : Number = 0.0; 
4. 
5.        function showdist() : Void { 
6.            println("feet = {feet } inches = {inches } "); 
7.        } 
8. 
9.        public function addDistance(tempDist1:Distance,tempDist2:Distance ) : Void { 
10.            inches = tempDist1.inches + tempDist2.inches; 
11.             if(inches >= 12.0 ) { 
12.                feet++; 
13.                inches -= 12.0; 
14.             } 
15.             feet  = feet + tempDist1.feet + tempDist2.feet; 
16.        } 
17.    } 
18.    var dist1 : Distance = Distance { 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

101 

19.        feet : 5 
20.        inches : 10.5 
21.    } 
22.    var dist2 : Distance = Distance { 
23.        feet : 7 
24.        inches : 6.65 
25.    } 
26.    println("The value of dist1 object "); 
27.    dist1.showdist() ; 
28.    println("The value of dist2 object "); 
29.    dist2.showdist() ; 
30.    var dist3 = Distance {}; 
31.    dist3.addDistance(dist1 , dist2); 
32.    println("The value of dist3 object "); 
33.    dist3.showdist() ; 
 

In this example, we first create three objects, dist1, dist2 and dist3. Notice that dist1 and dist2 are 
initialized, so they have the default value. The dist3 object is not initialized. In line 31, dist3 calls the 
addDistance(dist1 , dist2) member function, which takes dist1 and dist2 as its arguments. When 
execution control goes to line 9, the dist1 and dist2 object values are passed to the formal parameters 
tempDist1 and tempDist2. We add the inches values of the formal parameters and assign the result to the 
variable inches, which is the data member of dist3. Since the dist3 object calls addDistance(dist1 , 
dist2), there is no need to specify dist3 to access the data member, as we do for tempDist1 to access its 
data member. 

Non-Member Functions Accessing the Object 
It is not mandatory that only a member function of a class can access its objects. In some situations, 
even functions that are not members can access the object. Listing 6-7 demonstrates how a non member 
function can access the objects of the class and return the object. 

Listing 6-7. A non-member function accessing class objects 

1.    class Distance { 
2.          var feet : Integer = 0; 
3.          var inches : Number = 0.0; 
4.          function showdist() : Void { 
5.          println("feet = {feet } inches = {inches } "); 
6.        } 
7.    } //  end class 
8.    /*  Non-member function */ 
9.    function addDistance(dist1: Distance , dist2 : Distance): Distance { 
10.        var feet : Integer = dist1.feet + dist2.feet; 
11.        var inches : Number = dist1.inches + dist2.inches; 
12.        if(inches >= 12.0 ) { 
13.            feet++; 
14.            inches -= 12.0; 
15.        } 
16.        return Distance{ feet : feet  inches : inches } 



CHAPTER 6 ■ CLASS DEFINITIONS 

102 

17.    } 
18. 
19.    var dist1 : Distance = Distance { 
20.        feet : 5 
21.        inches : 10.5
22    } 
23.    var dist2 : Distance = Distance { 
24.        feet : 7 
25.        inches : 6.65 
26.    } 
27.    println("The value of the dist1 object "); 
28.    dist1.showdist() ; 
29.    println("The value of the dist2 object "); 
30.    dist2.showdist() ; 
31.    var dist3 = addDistance(dist1 , dist2); 
32.    println("The value of the dist3 object "); 
33.    dist3.showdist() ; 

Output
------ 

The value of the dist1 object 
feet = 5 inches = 10.5  
The value of the dist2 object 
feet = 7 inches = 6.65  
The value of the dist3 object 
feet = 13 inches = 5.1499996  

Listing 6-7 is a modified version of the previous example, Listing 6-6. Here we have pulled the
addDistance function outside the class and make the member function return the object as the return
value of the function. 

Static Members 
When you use script-level variables and script-level functions along with a class, the class can access
those variables and functions as its own data members and member functions. This is because the
script-level variables and functions become static within the class, and the instance of the class can also
script variables and functions. Listing 6-8 shows an example; save the code as StaticMember.fx. 

Listing 6-8. Using script-level variables and functions as static members of a class 

1.    var x : Integer = 14; 
2.    function square() { 
3.        x * x; 
4.    } 
5. 
6.    class StaticMember { 
7.        var dataMem : Integer = x; 
8. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 6 ■ CLASS DEFINITIONS 

 

103 

9.        function memberFunction(){ 
10.            println("square of {x} = {square()}"); 
11.        println(x); 
12.        } 
13.    } 
14. 
15.    var st = StaticMember{}; // instance of the class 
16.    println("{st.x},  {st.dataMem }");    // 14,14 
17.    StaticMember.x = 3; 
18.    println("{st.x}, square: {st.square() }");    //9, square:  9 
19.    st.memberFunction(); 
20.    st. dataMem = 99; 
21.    println("{StaticMember.x}, {st.dataMem }");    //3, 99 
22.    st = StaticMember { 
23.        dataMem : 71717 
24.    }; 
25.    println("{StaticMember.x},  {st.dataMem }");    //3, 71717 
 

Output 
------ 

14,  14 
3, square: 9 
square of 3 = 9 
3 
3, 99 
3,  71717 
 

 
In this example, you can see a script-level variable x and a script-level function named square() that 

returns the square of x. A class StaticMember has a data member dataMem, which contains the value of x 
(that is, the default value , which is the script-level variable's value). This indicates that that x is accessed 
inside the class as a static variable of the script. In the same code, the member function 
callingScrptLevelFunction() calls the square() function in line 10. Another interesting statement in 
this example is that the object or instance of the StaticMember class can access the x and dataMem 
variables in line 16 also in other places in the example. 

Function Overloading Within a Class 
Chapter 5, “Functions,” introduced the concept of function overloading. This concept can also be 
applied to member functions. Since you already know about function overloading, let’s go straight to an 
example of how it works with member functions. Listing 6-9 shows an example. 

Listing 6-9. Overloading a member function 

class Circle { 
    function draw(){ 
        println("Drawing a circle with the fixed x,y and the radius value"); 
    } 
 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

104 

    function draw(radius : Number){ 
        println("Drawing a circle with the fixed x,y value with the given radius of 

{radius}"); 
    } 
 
    function draw(x : Number , y : Number){ 
        println("Drawing a circle with the given x = {x } ,y = { y} value with default value 

radius"); 
    } 
 
    function draw(x : Number , y : Number , radius : Number){ 
        println("Drawing a circle with the given x = {x } ,y = { y} value with the given 

radius of {radius}"); 
    } 
} 
var fo : Circle = Circle{}; 
fo.draw(); 
fo.draw(10.0); 
fo.draw(35.0,55.5); 
fo.draw(35.0 , 55.0 , 10.25); 
 

Output 
------ 

Drawing a circle with the fixed x,y and the radius value 
Drawing a circle with the fixed x,y value with the given radius of 10.0 
Drawing a circle with the given x = 35.0 ,y = 55.5 value with default value radius 
Drawing a circle with the given x = 35.0 ,y = 55.0 value with the given radius o 
f 10.25 
 

In this example, you can see that the class Circle has four member functions with the same function 
name, but they differ in their parameters; this is the function overloading. When you invoke each 
function JavaFX looks for the corresponding function name whose parameters match. If the match is 
found, it calls that function. 

Sharing a Function Name Between Script-Level and  
Member Functions 
It is possible for a script-level function and the member function of the class to share the same name. 
JavaFX Script determines which function to call by the context in which it is called. 

if you want to call the member function, you need to call it through an instance or object of the 
class. By contrast, you call a script-level function directly by its name within the script. If you need to call 
a member function outside its class, you must call it using the script name or the file name. Listing 6-10 
shows an example. 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

105 

■ Note Although it’s possible for a Script-level function and a member function to share a name, you should avoid 
this practice, as it may be confusing. 

Listing 6-10. A script-level function and a main function with the same name 

1.    function sayHello( ){ 
2.        println("i am a script-level function..!"); 
3.    } 
4. 
5.    class MyClass { 
6.        function sayHello( ){ 
7.            println("i am class member function..!"); 
8.        } 
9.    } 
10.    sayHello(); 
11.    var obj : MyClass = MyClass{} 
12.    obj.sayHello( ); 
13    MyClass{}.sayHello();    // anonymous object calling the member function 
 

Output 
------ 

i am a script-level function..! 
i am a class member function..! 
i am class member function..! 
 

In Listing 6-10, you can see that the script-level function and the member function have the same 
name, sayHello(). The script-level function is called directly by its name, as specified line 10. In line 12, 
the member function is called by an instance of the class. In line13, the member function is called using 
the anonymous object. 

■ Note An anonymous object is one that doesn’t have a name. You can see the anonymous object calling the 
member function in line 13. 

Calling a Java Method That Is a JavaFX Reserved Word 
How do you call a method on a Java object whose name happens to be the same as a JavaFX Script 
reserved word? You learned about JavaFX Script reserved words, or keywords, in Chapter 3, “Data 
Types.” You cannot directly use a reserved word to name a variable (as in var while;), class (such as 
class true {}), or other user-defined entity. You could, however, indiscriminately use reserved words to 
name your classes, functions, variables, and so on; but this would be unwise. Instead, the doubled angle 
brackets notation was introduced so that you can invoke Java object methods whose names happen to 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

106 

be reserved in JavaFX Script. For example, the following script uses this feature to invoke the 
java.lang.String class's replace() method. 

 
var s = "abc def ghi"; 
s = s.<<replace>> ("def", "DEF"); 
println (s); // Output: abc DEF ghi 
 

Output 
abc DEF ghi 

The abstract Class 
An abstract class is one that is declared with the access modifier abstract. Like other classes, this type of 
class can have data members and member functions; but with a few functions that are not implemented 
(instead, you just specify the function prototype). These unimplemented functions are described as 
abstract functions. Because a class of this type is incomplete without implementing member functions, 
you cannot create an object of the class. To access the data members or the member functions of this 
class, you need to extend this class and implement the incomplete member function—the abstract 
function. You will learn more about extending classes in Chapter 8. Because this chapter is dedicated to 
classes, our purpose here is just to  introduce you to abstract classes and functions. Listing 6-11 shows 
an example. 

Listing 6-11. Example of an abstract class 

public abstract class   AbstractClassExample { 
    var  x: Integer ; 
 
        function  callMe( ) : Void  {     // implemented function 
            println("Please call me also. "); 
        } 
        //unimplemented function 
        public abstract function sayHello( ) : String; 
    } 
 

In this code, AbstractClassExample is an abstract class because it contains an abstract member 
function, sayHello(). 

■ Note It is mandatory to specify the keyword abstract for both the abstract method  and the class. Failing to 
specify either of these will result in a compilation error. 

You will learn more about implementing abstract classes, interfaces, and other elements in  
Chapter 8. 



CHAPTER 6 ■ CLASS DEFINITIONS 

 

107 

Summary 
In this chapter you learned the essentials of working with class definitions and other object-oriented 
features of JavaFX Script. Following are the main points to keep in mind: 

• A well defined class exhibits some or all features of OOP, including at a minimum 
data abstraction and encapsulation. 

• An object is an instance of the class. When a program is executed, objects interact 
with each other by sending messages. 

•  The variables inside a class are called its data members and the functions inside 
the class are called member functions. 

• A member function can only access the data members of the class. 

• Objects of a class can be created using either JavaFX or Java style. The new operator 
is used to create an object in Java style. 

• The init block is optional and used to initialize the data member of the class. It is 
called after the objects are created and is the final stage of initializing the object. 

• The postinit block is optional and called after the object initialization is 
completed. 

• An abstract class is one that contains abstract functions. Therefore, it is not 
possible to create instances of an abstract class. 

 



 

 

 



C H A P T E R  7 
 

■ ■ ■ 
 

109 

Access Specifiers 

An important aspect of object-oriented programming is data encapsulation (also called data hiding), 
whereby the implementation details of a class are kept hidden from the users of the class. Not only the 
implementation but also the data can be kept hidden from the user. Or one can choose to provide 
varying degrees of restricted access to those data members through functions. 

In general, this concept can be simply stated as “differentiating things that change from things that 
do not.” This is particularly important when you are writing an API library that the application developer 
is going to use. Any user of your API library should be able to rely on your API when writing the 
application and should not be forced to rewrite code when you come up with a newer version of the 
library. On the other hand, you as a library creator should have the freedom to change the 
implementation (for the better) without breaking the existing applications written using your API. While 
you can achieve this by not removing any of the existing methods, there are further problems to handle. 
Existing applications might have used your data members, and it's hard to for the API author to figure 
out which of the data members are accessed by the client applications and which are not. So you will 
finally end up not being able to change anything, fearing incompatibility with existing applications. 

So in any object-oriented design, it is important to identify what should be exposed to API users and 
what should be kept hidden so that the API author can change the hidden things as needed later on. 
(These revisions are made for many reasons, such as improving functionality, performance, reliability 
and so on.) In other words, the interface of the class remains the same while the implementation 
changes. This is where access specifiers (also called access modifiers) are useful. 

The concept of access specifiers—keywords that identify specific levels of access— was developed 
mainly to control how a class and its members are accessed by the users of the class. With the help of 
access specifiers, you can clearly define what can and cannot be accessed by users of your library, which 
gives you the freedom to improve your library at will without breaking any existing applications. 

JavaFX Script offers the following access specifiers you may know from Java; you will see each of 
them in detail in this chapter. 

• public 

• protected 

• package 

• Script-private (when nothing is specified explicitly) 

While these look similar to the access specifiers that Java offers, there are subtle differences between 
how Java and JavaFX Script deal with them, as you will learn when we discuss them in detail. They are 
primary access modifiers that are applicable to all forms of access: creation and reference to classes, 
defining and calling functions in a class or outside of the class, reading and writing of script or instance 
variables, and overriding and setting or binding in an object literal of an instance variable. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

110 

There are also two access specifiers that are entirely new in JavaFX Script: 

• public-read 

• public-init 

These are applicable only to variable declarations (var) and are additive in nature with respect the 
primary modifiers specified before. In this chapter, we will refer to these as secondary specifiers or 
modifiers. 

Now let us see the basic syntax of specifying the primary and secondary access specifiers. 
 
Syntax 

[<secondary_access_specifier> <primary_access_specifier>] var variable name[: data 
type] = <initial value>; 

or 
primary access-specifier function function name()[: return data type] { } 

 
Any elements appearing between square brackets are optional. 

The Script—The .fx File 
Before going into the details of the access specifiers, you should understand how JavaFX organizes the 
code within a JavaFX script. A JavaFX script is the .fx file that will have the JavaFX code and can 
optionally contain zero or more classes.  Unlike Java, JavaFX does not require you to write all the code 
within a class, and an application may or may not have a class. So you don't have to always create a 
class, and you can write expressions, variable declarations, functions and so on directly within the script. 
A script is also compiled into a Java class internally, but that's more of an implementation detail. 
Understanding the script paradigm is important because the concept of script is new in JavaFX and does 
not exist in Java, and JavaFX offers specific access specifiers at the script level. 

The variables and functions created directly within the script are considered to be equivalent of the 
Static modifier in Java. Your script, in addition to expressions, vars, functions, and so on can also have 
one or more class definitions in itself. You learned about classes in Chapter 6, “Class Definitions,” and 
here you will learn more about how a class member interacts with a script member that resides outside 
of the class when these members have different access specifiers. 

I’ll show how to specify access modifiers for the class definitions later in this chapter; first you will 
see the applicability of access modifiers for the class/script members. 

The context in which script variables and functions are defined is called a static context, and a class 
definition is a nonstatic context. So accessing a class variable from outside the class would require an 
instance of the class, because accessing an instance variable of a class is not permitted from a static 
context. This is true in Java, too, where a nonstatic variable cannot be accessed directly from a static 
context. 

■ Note JavaFX Script, unlike Java, allows you to have different names for a script and a class defined within that 
script. JavaFX Script does not strictly require you to give a script the same name you have given a class within it. 
Similarly, you can have multiple public classes defined within the same script. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

111 

The Script-Private Access Specifier 
The default access specifier in JavaFX Script is the script-private. This is the access specifier assigned by 
the compiler when one is not explicitly specified, as you have seen in all the previous examples. 

A script-private member is accessible only within its own script. In other words, within the same .fx 
file and not outside. The script may or may not have a class definition in it, nevertheless the script-
private members will be accessible within the class definition also provided if the class definition resides 
in the same .fx file. 

This access specifier is applicable to variable declarations, functions, class definitions, and so on. 
Figure 7-1 illustrates script-only access for members defined within script1 in Package B. 

 

Figure 7-1. Script-only access 

As you see in the diagram, only script1 has access to the members, and no access is allowed outside 
of the script. Listing 7-1, a script named Employee.fx, and Listing 7-2, the EmployeeList.fx script, 
demonstrate this level of access. 

Listing 7-1. Variables with default access: Employee.fx 

// Script Private variables 
var empId: String; 
var firstName: String; 
var lastName: String; 
var deptId: Number; 
var designation: String; 
 
public function populateData(empID: String) { 
    empId = empID; 



CHAPTER 7 ■ ACCESS SPECIFIERS 

112 

    // Typically other details are fetched from web-service or database using the
empid. 
    // Hardcoding here 
    if (empId == "23456") { 
        firstName = "Praveen"; 
        lastName = "Mohan"; 
        deptId = 44; 
        designation = "Manager"; 
    } else { 
        println("Invalid Employee ID"); 
    }
} 

public function printData() { 
    println("Details of employee with ID: {empId}"); 
    println("First Name: {firstName}"); 
    println("Last Name: {lastName}"); 
    println("Department ID: {deptId}"); 
    println("Designation: {designation}");   
} 

public function run() { 
    empId = "11111"; 
    firstName = "Lawrence"; 
    lastName = "PremKumar"; 
    deptId = 33; 
    designation = "Developer"; 
    printData();
} 

Listing 7-2. Accessing script-private variables of another script: EmployeeList.fx 

var employee = Employee {}; 
var id:String = "23456"; 
//employee.empId = id;  - ERROR: Not accessible here
//employee.firstName = "Praveen"; - ERROR: Not accessible here
employee.populateData(id); 
employee.printData(); 

First compile and run Employee.fx to see its result. 

Output 
Details of employee with ID: 11111
First Name: Lawrence 
Last Name: PremKumar 
Department ID: 33.0 
Designation: Developer 

Then compile and run EmployeeList.fx. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

113 

Output 
Details of employee with ID: 23456 
First Name: Praveen 
Last Name: Mohan 
Department ID: 44.0 
Designation: Manager 

 
In this example, you see many of the variables declared without any access specifier; those variables 

assume the default access specifier, script-private. You see that those variables are accessible directly 
within the script in the run() method. Thus, compiling and executing Employee.fx yields the expected 
result. However, you cannot access those variables from another script directly, and doing so will cause a 
compilation error—typically demonstrated by the commented lines in EmployeeList.fx. So a public 
function is provided in Employee.fx for initializing those variables from a different script. You can 
uncomment the commented lines in EmployeeList.fx and see for yourself what kind of error the 
compiler throws. 

Now let's us see how such variables are accessed from within the class definitions available in the 
same script. Listing 7-3 is a script named ScriptPrivateWithClassDef.fx. 

Listing 7-3. Script-private access from within the class: ScriptPrivateWithClassDef.fx 

var PI: Number = 3.14; 
var area: Number; 
function printArea() { 
    println("Area: {area}"); 
} 
class CustomCircle { 
    var r: Number;    
    init { 
        area = calculateArea(); 
        printArea(); 
    } 
    function calculateArea() { 
        PI * r * r; 
    } 
} 
CustomCircle { r: 25 }; //Anonymous Object Literal 

 
Output 

Area: 1962.5 
 
As you see, the variables declared outside the class (the script variables) can be accessed like static 

variables from within the class, and there is no need to use an instance or the member operator. 
However, the reverse situation would require an instance—that is, a script-private variable defined 
within a class would require an instance of the class to be accessed from a static context. Listing 7-4 
redefines the previous example  to demonstrate this. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

114 

Listing 7-4. Accessing class variables from within the script: ScriptPrivateClassDef2.fx 

var PI: Number = 3.14; 
class CustomCircle { 
    var r: Number; 
    var area: Number; 
    init { 
        calculateArea(); 
    } 
    function calculateArea() { 
        area = PI * r * r; 
    } 
    function printArea() { 
        println("Area: {area}"); 
    } 
} 
 
var circle = CustomCircle { r: 25 }; 
circle.printArea(); 
println(circle.area); 

 
 
Output 

Area: 1962.5 
1962.5 

 
In Listing 7-4, notice a change from Listing 7-3: the area variable and printArea function from the 

script have been moved into the class definition. Now you need to have an instance of CustomCircle in 
order to access the area variable or the printArea function and hence we are assigning the CustomCircle 
instance to a variable circle (instead of leaving it anonymous, as we did in Listing 7-3) and accessing the 
class members with the help of this variable. 

It is also possible to access the script-private variables defined in one class from another class if 
both the classes are defined within the same source file. Listing 7-5 demonstrates this approach. 

Listing 7-5. Access across multiple classes in the script: ScriptPrivateClassDef3.fx 

var PI: Number = 3.14; 
class CustomCircle { 
    var r: Number; 
    var area: Number; 
    function calculateArea() { 
        area = PI * r * r; 
    } 
    function printArea() { 
        calculateArea(); 
        println("Area: {area}"); 
    } 
} 
 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

115 

class ShapeBuilder { 
    var circleRadius:Number = 10; 
    var circle: CustomCircle = CustomCircle { r: bind circleRadius }    
    init { 
        circle.printArea(); 
        circleRadius = 25; 
        circle.printArea(); 
    } 
} 
ShapeBuilder{}; 

 
Output 

Area: 314.0 
Area: 1962.5 

 
In Listing 7-5, because the CustomCircle and ShapeBuilder classes are defined in the same script, the 

class ShapeBuilder can create an instance of the class CustomCircle within itself and can access the 
attributes of class CustomCircle using the instance circle. Please note that it works only if both the 
classes are defined in the same script. For instance, if you move ShapeBuilder to a different script (a 
different .fx file—ShapeBuilder.fx), you will no longer be able to access CustomCircle or its attributes. 
You would get a compilation error attempting to compile ShapeBuilder.fx because the class 
CustomCircle and its attributes are script-private. So when you need separate scripts, you will have to 
look for other access specifiers that provide broader access than script-private. 

Packages 
As listed at the beginning of the chapter, the next level of access is package. Before going into the package 
access specifier, however, it’s a good idea to understand the concept of packages and why they are 
required. The concept is inherited from Java and its implementation in JavaFX Script is not very 
different. By definition, a package is a collection of related classes and scripts grouped together under a 
common package name. Each package is given a name, and the combination of the package and 
class/script name forms the fully qualified name of the class/script, which uniquely identifies it. The 
package can include Java classes as well. Packages help API developers organize their source files 
appropriately by combining related classes/scripts into a single collection; This in turn helps the API 
users (application developers) to use only the collection that the application requires, and not all the 
classes. 

This also helps you avoid naming conflicts in your program. When you use the OOP paradigm to 
create an application, you typically model the problem domain by creating your own data types and 
assign each of them an identifiable name. Each type that you create must be unique so that you can 
identify and use it appropriately in your program. This could get complicated when you start using types 
from other vendors, especially when writing a larger application. In such a case, you can choose to 
assign your types their own unique package name that does not conflict with the names that others have 
chosen. As a result, you don't have to deal with this complexity in your code and can focus on the actual 
complexity of the application as such. Conflicts can arise not only from external vendor APIs but also 
with the APIs developed in-house, typically in a multi-developer environment. In such a case, it is very 
much possible that your co-developer may choose to have the same name as you for one of his/her 
classes, potentially creating a conflict within the same API library. This is where subpackages become 
helpful. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

116 

You can also organize the packages hierarchically; a package can have subpackages. Anything 
contained within a package is called a package member.These can be classes, scripts, or subpackages. 

With the help of access specifiers, you can grant special privileges for the classes/scripts within the 
same package, and you can share and reuse the code within the same package. The logical grouping of 
classes and scripts makes it convenient for the users of your API as well to import only the classes that 
are needed. It improves the readability and maintainability of the whole application over all. 

A package can be defined by using the package keyword, which should be specified as the first line in 
each of the source files that you want to organize together. 

For example, If you have three source files, A.fx, B.fx, and C.fx, that you want to organize into a 
single package named tasks, add the following line in each of these source files as the first line. 

 
package tasks; 
 

You should also physically organize the files in the same way, by creating a folder named \tasks\ 
and moving these source files into the folder. 

A fully qualified name of a class or a script is the class/script name prefixed with appropriate 
package names, separated by the dot  (.) operator. 

So for our tasks example, the fully qualified names would be 
 

tasks.A 
tasks.B 
tasks.C 

 
In order to use these classes in a different package, you have to import these classes specifically. If 

you want to import all three classes, you can just use a wild-card character, as follows: 
 

import tasks.*; 
 

Otherwise, you can import only the necessary classes, as in these statements: 
 

import tasks.A; 
import tasks.C; 

 
A typical fully-qualified name of a class looks like the following: 
 

com.foo.ui.Bar 
 

where com, foo and ui are packages, and Bar is the actual JavaFX script (Bar.fx) that resides within 
the com/foo/ui package. The com.foo portion is typically the reverse domain name of the organization 
that creates the API library. In this notation foo is a subpackage of com, and ui is a subpackage of foo. The 
Java Virtual Machine does not differentiate between main and subpackages when granting package-
specific access, and JVM does not treat these packages in an hierarchical way. As far as JVM is concerned, 
a sibling package is treated the same way as a subpackage, and whatever rights tare available within a 
particular package are not granted either to a sibling package or to a subpackage. Thus, subpackages are 
useful more for the API author/user, because the sources are organized in a much better way and form a 
hierarchy. They do not make much difference to the JVM. 

In all the examples you have seen so far, there is no package name assigned explicitly. In such a 
case, the compiler uses a default package name implicitly, and all the scripts or classes are considered to 
be part of this default package automatically. 

JavaFX Graphics API has its own set of classes and packages, such as the following: 
 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

117 

javafx.scene 
javafx.scene.shape 
javafx.scene.paint 
javafx.scene.text 

 
and so on. You will see many of them when we introduce you to graphics and animation in later 

chapters. 

Statics in JavaFX Script 
Script variables are considered to be equivalent to the static modifier in Java and can be imported into 
another JavaFX Script. A script variable is one declared outside of any class definitions within a script. 
Such variables can be imported into another JavaFX script—as long as the access specifier for those 
script variables allows them to be accessed from a different script. In other words, the variables that have 
script-private default access will not be imported, because their scope is limited to the script where they 
are created). 

 
Syntax 

import script name.*; 
 
Here, script name is the name of the .fx file such as Bar.fx. Note that we are using the name of the 

script in the import and not any class or package as such. We will explore the importing of packages and 
classes in more detail in the next section. In this type of importing, the specified script may or may not 
contain any class. Listings 7-6 and 7.7 demonstrates static importing. 

Listing 7-6. Defining the statics: AreaUtil.fx 

public def PI: Number = 3.14; 
public function getAreaOfCircle(radius: Number) { 
    PI * radius * radius; 
} 
protected function getCircumferenceOfCircle(radius: Number) { 
    2 * PI * radius; 
} 
package function getSurfaceAreaOfSphere(radius: Number) { 
    4 * PI * radius * radius; 
} 

Listing 7-7. Importing the statics from AreaUtil: ShapeBuilder.fx 

import AreaUtil.*; 
 
class Circle { 
    var radius: Number; 
    var area = bind getAreaOfCircle(radius); 
    var circumference = bind getCircumferenceOfCircle(radius); 
} 
class Sphere { 
    var radius: Number; 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

118 

    var surfaceArea: Number = bind getSurfaceAreaOfSphere(radius); 
} 
var circle = Circle { 
    radius: 25 
} 
var sphere = Sphere { 
    radius: 20 
} 
println("PI value: {PI}"); 
println("Circle Area: {circle.area}"); 
println("Circle Circumference: {circle.circumference}"); 
println("Sphere SurfaceArea: {sphere.surfaceArea}"); 
 

Run ShapeBuilder.fx to see the following result. 
 
Output 
PI value: 3.14 
Circle Area: 1962.5 
Circle Circumference: 157.0 
Sphere SurfaceArea: 5024.0 

 
In Listings 7-6 and 7-7, all the variables and functions declared in AreaUtil.fx are imported into 

ShapeBuilder.fx and thus can be accessed within ShapeBuilder.fx as if they were defined there. But the 
variables declared in this example are either public, protected, or package and not script-private, and 
hence they are accessible. No script-private variables (var statements with no access specifiers 
mentioned) would be imported into another script. Likewise, a package-access variable will not be 
imported when the FX script is imported into a different package. Here no package is specified in either 
of the scripts, and so both of them belong to the same default package that the compiler assigns. This 
example is a typical use of statics, in which utility variables and functions that are shared across the 
whole application are grouped into a single .fx script, which would be imported into other scripts 
wherever these utilities are needed. 

The package Access Specifier 
Now that you’ve seen the concept of packages and the need for them, we can explore the package access 
specifier. A class or a member of the class or the script having the access specifier defined as package 
would be accessible anywhere within the same package and not in other packages or subpackages. This 
is the next wider access level beyond the default script-private access.Listings 7-8 through 7-10 
demonstrate package access. 

■ Note Java's default access is package (or friendly), which is applied when you don't explicitly specify any 
access specifier. But in JavaFX Script, you explicitly specify package access, and the default specifier is script-
private. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

119 

Listing 7-8. Implementation that offers package access function: CookDessert.fx 

package com.foo.dessert; 
package var bakeTime: Number; 
package var coolingTime: Number; 
 
package function cook(item: String) { 
    println("Baking item: {item} for {bakeTime} min"); 
    println("Cooling item: {item} for {coolingTime} min"); 
    println("Item {item} is ready!!"); 
} 
 

Listing 7-9. Public interface for accessing package level function in CookDessert: Desserts.fx 

package com.foo.dessert; 
public var item: String; 
 
public function prepare() { 
    if (item == "Cake") { 
        var cake = CookDessert {}; 
        cake.bakeTime = 25; 
        cake.coolingTime = 10; 
        cake.cook ("Cake"); 
    } else if (item == "Pudding") { 
        var pudding = CookDessert {}; 
        pudding.bakeTime = 10; 
        pudding.coolingTime = 5; 
        pudding.cook("Pudding"); 
    } else { 
        println("Sorry!! Recipe not available yet!"); 
    } 
} 

Listing 7-10. Application that accesses the package level functionality in CookDessert through the public 

interface in Desserts: Dinner.fx 

package com.foo.meal; 
import com.foo.dessert.*; 
var dessert = Desserts {}; 
dessert.item = "Pudding"; 
dessert.prepare(); 
 

Compile all the files and run Dinner.fx to see the following result. 
 
Output 

Baking item: Pudding for 10.0 min 
Cooling item: Pudding for 5.0 min 
Item Pudding is ready!! 

 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

120 

In Listings-7-8, 7-9, and 7-10, CookDessert.fx and Desserts.fx belong to a package named 
com.foo.dessert. CookDessert contains the parameters and recipe for cooking desserts that Desserts.fx 
script makes use of. The members, such as bakeTime and coolingTime, are specific to the 
com.foo.dessert package and hence have been declared with the package access specifier so that they 
are accessible only within the package. As a result, the API user cannot access the members of 
CookDessert.fx from within Dinner.fx, since Dinner.fx belongs to a different package. Hence there is 
another script—Desserts.fx that offers a public interface to the API user and internally calls the 
members of CookDessert.fx. Desserts.fx is able to access the members of CookDesserts.fx directly 
since they belong to the same package, com.foo.dessert. 

Note that CookDesserts.fx creates an instance of the Desserts script inside its prepare() function; 
this can be avoided if you import CookDessert.* into Desserts.fx. We can rewrite Listing 7-9 as follows - 

 
package com.foo.dessert; 
import CookDessert.*; 
public var item: String; 
public function prepare() { 
    if (item == "Cake") { 
        bakeTime = 25; 
        coolingTime = 10; 
        cook ("Cake"); 
    } else if (item == "Pudding") { 
        ... 
    // Same as listing 7.9 

Here the static variables (script variables) declared in one file are imported into the other so that 
you don't have to create an instance of CookDessert.fx in Desserts.fx. This will yield the same output 
as that of Listing 7.8 to 7.10. 

■ Note Only permitted members of a script are imported into another, and the access specifier of each member of 
the script is validated at the time of import. For example, if there is a script-private variable declared in 
CookDessert, it will not be imported into Desserts. And if this import is to a different package (for example, if 
CookDessert is imported into Dinner.fx), the package access variables will not be imported, and hence the 
compiler will give an error appropriately when you try to access any of the CookDessert variables from within 
Dinner.fx. 

Fig 7-2 demonstrates package access for members of script1 and summarizes the behavior of the 
package access specifier that you have seen so far. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

121 

 

Figure 7-2. Package Access 

As you see in the diagram, the package members of script1 can be accessed within script1 and 
script2 since both scripts belong to the same package—Package B. However, no access is granted to 
package A. 

Trying to access the members of script1 or script2 from within any of the scripts in package B 
would cause a compilation error. 

Package Access with Class Members 
The package access specifier behaves the same way when used within the class definitions as with script 
variables. The access specifiers for the class definitions as such will be discussed later in this chapter; for 
now, let us assume all the classes are public and hence can be accessed anywhere. Here you will see 
package access specified for class members such as variable definitions and functions. Listings 7-11 and 
7-13 convert the same example you have seen previously to use class definitions. 

Listing 7-11. Class definitions with package level access: CookDessert.fx 

package com.foo.dessert; 

package class CookDessert { 
    package var bakeTime: Number; 
    package var coolingTime: Number; 

    package function cook(item: String) { 
        println("Baking item: {item} for {bakeTime} min"); 
        println("Cooling item: {item} for {coolingTime} min"); 
        println("Item {item} is ready!!"); 
    } 

} 



CHAPTER 7 ■ ACCESS SPECIFIERS 

122 

Listing 7-12. Public interface to package-level functionality in CookDessert: Desserts.fx 

package com.foo.dessert; 

public class Desserts { 
    public var item: String; 
    var cookDessert:CookDessert; 

    public function prepare() { 
        if (item == "Cake") { 
            cookDessert = CookDessert { 
                bakeTime: 25 
                coolingTime: 10 
            }; 
            cookDessert.cook ("Cake"); 
        } else if (item == "Pudding") { 
            cookDessert = CookDessert { 
                bakeTime: 10 
                coolingTime: 5 
            }; 
            cookDessert.cook("Pudding"); 
        } else { 
            println("Sorry!! Recipe not available yet!"); 
        } 
    }
} 

Listing 7-13. Application accessing package-level functionality through a public interface in Dessert.fx: 

Dinner.fx 

package com.foo.meal;
import com.foo.dessert.*;
var dessert = Desserts { 
    item: "Pudding" 
}; 
dessert.prepare(); 
//var cookDessert = CookDessert{}; - ERROR: Cannot be accessed 

Output 
Baking item: Pudding for 10.0 min
Cooling item: Pudding for 5.0 min
Item Pudding is ready!! 

The code in this example is self-explanatory. The same code that was previously defined within the
script has been moved into a class definition, and the only change you will probably notice is in the way
objects are created for the class CookDessert within Desserts; this time, the attributes are initialized
directly in the object literal. Apart from that, there is no change with the behavior. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

123 

Another change you should note is that the class CookDessert itself has been defined with a package 
access specifier. This would prevent anyone from creating an instance of the class from a class or script 
that is outside the package. That's exactly what the commented line in Dinner.fx demonstrates. If the 
line were uncommented, it would cause the compiler to throw an error, because Dinner.fx belongs to a 
different package and hence does not have access to the CookDessert class. 

Honoring Access Specifiers for Java Classes 
Access specifiers specified within the Java classes accessed within a JavaFX script must also be honored 
in the same way as JavaFX Script or JavaFX classes. Listings 7-14 and 7-15 demonstrate this behavior. 

Listing 7-14. A sample Java class: JavaImpl.java 

package com.foo; 
public class JavaImpl { 
    int x = 10; 
    String technology = "JavaFX"; 
    public JavaImpl() { 
        System.out.println("Constructor called"); 
    } 
} 

Listing 7-15. JavaFX script accessing the Java class - Main.fx 

package com.foo; 
var jimpl = new JavaImpl(); 
println("X value: {jimpl.x}"); 
println("Technology: {jimpl.technology}"); 

 
Output 

Constructor called 
X value: 10 
Technology: JavaFX 

 
As you see in Listing 7-14, the JavaImpl java class members do not specify any access specifiers, and 

in Java, the default access specifier is package. Hence, these class members must be accessible within the 
same package—com.foo. An instance of JavaImpl has been created from within the JavaFX script, 
Main.fx (Listing 7-15), and that script also belongs to the same com.foo package. Hence, the class 
members of JavaImpl are accessible within Main.fx. 

This example indicates that the access specifiers, whether specified in Java or JavaFX Script, are 
appropriately honored and even the default access specifier type of Java is preserved when accessed 
from within JavaFX Script, even though the default access type is different than in Java compared to 
JavaFX. 

Similarly, access is also revoked appropriately wherever required. For example, if we change the 
package in Main.fx from com to jfx, you will see a compilation error. 

Now that you have learned how the package access specifier works under different circumstances, 
we can move on to the protected access specifier, which is closely tied to class definitions and 
inheritance. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

124 

The protected Access Specifier 
The next wider access is provided by the protected access specifier. Members of the class that are 
protected are accessible within the same package, just like package-level members, and also accessible 
outside the package if it is accessed from within a subclass. The concept of base class (super class) and 
derived class (sub class) is explained in detail in Chapter 8, “Inheritance,” but here is a brief introduction 
focusing on the use of the protected access specifier in the context of inheritance. 

Inheritance is about taking an existing class and adding more functionality to it. The existing class is 
called the base class and the new class that extends the existing class is called the derived class. In 
addition to adding new functionality, the derived class can also choose to change the behavior of the 
existing members within its implementation. 

 
Syntax 

class derived class extends base class {..} 
 

Example 
class Car extends Vehicle { 

} 
 
(The rest of this class is pretty much the same as any other class definition.) 
Here, when the Car and Vehicle classes belong to different packages, the only members of Vehicle 

that you will have access to from within the Car are the public members. But declaring everything as 
public would leave everything too open to control. There are cases where you would want to expose 
certain functionality only to those who extend your class and not to all the users of the class. This is 
where protected comes in handy. 

Protected members of the class are accessible within the same package, just like package members, 
and they are accessible to classes that reside in other packages provided those classes extend this class. 

Figure 7-3 demonstrates the protected access specifier. 

 

Figure 7-3. Protected access for class X members 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

125 

As you see in the diagram, class Z and class Y are subclasses of class X, but they are implemented in 
different packages. When we looked at  package access earlier, class Z was granted access but not class Y. 
With protected access specified for members of class X, all the classes extending class X will also have 
access to the protected member, regardless of the package where they are implemented. The protected 
level also preserves the package access, so that all the scripts and classes in the same package will have 
access to the protected member of class X. 

The next example clearly shows the difference between protected and the other access specifiers 
you have seen so far. Listing 7-16 shows the Vehicle.fx file and Listing 7-17 shows Car.fx. 

Listing 7-16. A generic vehicle superclass: Vehicle.fx 

package com.automobile; 
 
public class Vehicle { 
    package var yearOfManufacture: Integer; 
    protected var noOfWheels: Integer; 
    protected var noOfDoors: Integer; 
    var make: String; 
    protected var inspectionDone: Boolean; 
    protected function checkQuality(): Boolean { return false; }; 
    
    public function getYearOfManufacture() { 
        yearOfManufacture; 
    } 
    init { 
        yearOfManufacture = 2009; 
        make = "Toyota"; 
    } 
    public function getMake() { 
        make; 
    } 
    public function getNoOfDoors() { 
        noOfDoors; 
    } 
    public function getNoOfWheels() { 
        noOfWheels; 
    } 
} 

Listing 7-17. A car implementation that extends Vehicle: Car.fx 

package com.automobile.fourwheelers; 
import com.automobile.*; 
 
class Car extends Vehicle { 
    var noOfSeats: Integer; 
    var hatchBack: Boolean; 
    protected override function checkQuality(): Boolean { 
        // Check engine 
        // Check Interiors 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

126 

        // Check Painting 
        return true; 
    } 
    init { 
        noOfSeats = 4; 
        hatchBack = true; 
        noOfWheels = 4; 
        noOfDoors = 4; 
        inspectionDone = true; 
        // make = "Honda"; // COMPILER ERROR: Not allowed 
        // YearOfManufacture = 2008; // COMPILER ERROR: Not allowed 
    } 
} 
var corolla = Car {}; 
println("Year Of Manufacture: {corolla.getYearOfManufacture()}"); 
println("Make: {corolla.getMake()}"); 
println("No Of Wheels: {corolla.getNoOfWheels()}"); 
println("No Of Doors: {corolla.getNoOfDoors()}"); 

 
Compile the two scripts and run Car.fx to see the following result. 
 
Output 

Year Of Manufacture: 2009 
Make: Toyota 
No Of Wheels: 4 
No Of Doors: 4 

 
In this example, you can see that the data members of the Vehicle class are declared as protected 

and there are equivalent public get methods. So the API user will only be able to use the get methods, 
and the attributes cannot be set directly from the customer code. The Car class, on the other hand, has 
access to these protected variables and can set the appropriate values, since the Car class extends from 
Vehicle. Nevertheless, there are some script-private and package data members, such as make and 
yearOfManufacture, that the Car class cannot access. Trying to access those variables would cause a 
compilation error. You can uncomment the commented lines in the Car class to see for yourself the 
compilation error you get. 

Also notice that although the Vehicle and Car classes belong to two different packages, Car is able to 
access the protected members of the Vehicle class. This is different from the package access specifier, 
where we were not allowed to access the package data members of a class in one package from another 
package. Hence, protected members have wider access than package members and can be accessed 
across packages provided they extend the base class. 

The following example, in Listings 7-18 and 7-19,  shows a protected member accessed freely within 
the same package without any inheritance. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

127 

Listing 7-18. Class definition having protected members: Cup.fx 

package com.cutlery; 
 

class Cup { 
    protected var material: String; 
    protected var purpose: String; 
} 

 

Listing 7-19. Another class definition in the same package accessing protected members of Cup.fx: 

Saucer.fx 

package com.cutlery; 
class Saucer { 
    init { 
        var c = Cup{}; 
        c.material = "porcelain"; 
        c.purpose = "tea"; 
        println(c.material); 
        println(c.purpose); 
    } 
} 
var s = Saucer {}; 

 
Compile the two scripts and run Saucer.fx to see the following result. 
 
Output 

porcelain 
tea 

 
In this example, the protected members of the Cup class can be accessed from within the Saucer 

class because both of them belong to the same package. So to summarize, the protected access specifier 
has all the access that package access specifier provides, plus additional access for inherited classes. 

The public Access Specifier 
The public access specifier has the widest access in JavaFX Script. Public members of a class or the script 
can be initialized, overridden, read, assigned, or bound from anywhere. Figure 7-4 demonstrates public 
access for members of script1 in Package B. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

128 

 

Figure 7-4. Public access for script1 members 

As you see in the diagram, the public members of script1 are accessible everywhere. The example 
in Listings 7-20 and 7-21 demonstrates public access. 

Listing 7-20. A rectangle implementation: Rectangle.fx 

package com.foo; 
public class Rectangle { 
    public var x: Number; 
    public var y: Number; 
    public var width: Number; 
    public var height: Number; 
    var area: Number; 
 
    public function draw() { 
        computeArea(); 
        drawRectangle(); 
    } 
    function computeArea() { 
        area = width * height; 
    } 
    function drawRectangle() { 
        println("Initializing the rect peer"); 
        println("Creating graphics surface"); 
        println("Rectangle Drawn"); 
    } 
} 

 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

129 

Listing 7-22. An application using the Rectangle API: UIBuilder.fx 

package com.foo.uibuilder; 
import com.foo.*; 
var borderRect = Rectangle { 
    x: 0 
    y: 0 
    width: 100 
    height: 100 
} 
 
borderRect.draw(); 
// borderRect.computeArea(); - ERROR: Will not work 

 
 
Compile the two scripts and run UIBuilder.fx to see the following result. 

 
Output 
Initializing the rect peer 
Creating graphics surface 
Rectangle Drawn 

 
Note that there are two source files here, in two different packages. The public variables declared in 

Rectangle.fx can be accessed in UIBuilder.fx. In UIBuilder, we are creating an instance of Rectangle 
and accessing Rectangle's public function draw using the member operator. However, if you try to access 
a nonpublic member of Rectangle (say computeArea()), the compiler will throw an error. Public 
members of a class or script are accessible everywhere and thus have the widest possible access in 
JavaFX Script. 

■ Note Although the public access modifier is simple, you should use it with caution, because it limits your 
ability to make later changes to the API. Such changes will have to be done in a compatible manner so as not to 
break any existing applications that are using the API, and hence you are limited in what you can change once you 
get your first version of the API out. So it is wise to keep the access narrower initially wherever possible and 
expose as public only those APIs that are really needed. You can always widen the access later on without 
breaking compatibility. 

The Enforced run() Function Requirement 
When you introduce a public member in your Java FX script, or in a class within the script, and the script 
is going to be the entry point for your application (that is, its name will be the argument to the javafx 
executable), it is mandatory to implement a run method for this script where you have declared the 
public member. The compiler generates this automatically as long as you don't have a public member, 
but the moment you introduce a public member, the compiler expects you to take care of implementing 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

130 

this. Failing to do this will result in a compilation error. Listing 7-22 is an example that demonstrates the 
error. 

Listing 7-22. A script with public members but no run() function: ExampleWithoutRun.fx 

        // CAUTION: This example will not compile 
    public var pi : Number = 3.142; 
    public var radius : Number = 6; 
    function area_of_circle( ) { 
               pi * radius * radius; 
    } 
    println("area of circle = {area_of_circle()}"); 

 
Attempt to compile the script, and you’ll see the following output. 
 
Output 

ExampleWithoutRun.fx:8: Loose expressions are not permitted in scripts with exported ('pu 
blic', etc) members. 
Any expressions to be run on script invocation should be moved into run(). 
println("area of circle = {area_of_circle()}"); 
^ 

Let’s  correct the previous example so that it works. Listing 7-23 shows the revised code. 

Listing 7-23. A script that tightens loose expressions: ExampleWithRun.fx 

    public var pi : Number = 3.142; 
    public var radius : Number = 6; 
    function area_of_circle( ) { 
        pi * radius * radius; 
    } 
    function run() { 
        println("pi = {pi}  ,  radius = {radius}"); 
        println("area of circle = {area_of_circle()}"); 
    } 
 

Compile and run the script to see its output. 
 
Output 

pi = 3.142 , radius = 6.0 
area of circle = 113.112 

 
As you see in Listing 7-23, once you implement the run() method, everything works fine. This run() 

method must be included directly in the script and not within any class as such. The run() method can 
also take arguments, typically the arguments that you pass to your application through the command 
line. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

131 

JavaFX Secondary Access Specifiers 
As mentioned in the chapter introduction, JavaFX Script offers two more access specifiers, which are 
applicable only to variables. They are 

 
public-init 
public-read 

 
These access specifiers cannot be used for classes and functions. 
Because of the central use of object literals in JavaFX Script, instance variables tend to be externally 

visible. To provide more control over the var declarations, JavaFX Script introduced these access 
specifiers that offer more-refined access. We will refer to these access specifiers as secondary specifiers 
throughout this chapter. The other access specifiers you have learned so far can be considered primary 
specifiers. 

These access specifiers are additive and can be combined with primary access specifiers, such as 
script-private (no specifier), public, protected, and package. 

public-read 
As its name suggests, the public-read access specifier allows a variable to be read from anywhere. 
However, the ability to change the variable value depends on other access specifiers mentioned in the 
var declaration. 

 
Syntax 

public-read [primary access specifier] var var name[:data type] [= value]; 
 
where not specifying the primary specifier would default to script-private. The data type is optional, 

since the compiler can infer the type automatically from the value assigned. 
 
Example 

public-read var x = 10.0; 
 

Variable x can be read from anywhere—within the script, outside the script, within the package, 
outside the package, and so on. But let us see who has the privilege to modify this variable. 

The primary access specifier is skipped for this variable declaration, which means this variable can 
be modified only within the script. Hence, within the script where this is declared, one can modify, bind, 
or assign the value of this variable. 

Listings 7-24 and 7-25 present a simple example of a simulated media player. 

Listing 7-24. Mock Media Player implementation: MediaPlayer.fx 

public class MediaPlayer { 
    public var url: String; 
    public-read var playing: Boolean = false; 
    public function play() { 
        // play media here 
        println("Currently Playing {url}"); 



CHAPTER 7 ■ ACCESS SPECIFIERS 

132 

        playing = true; 
    } 
    public function stop() { 
        // stop the playback 
        playing = false; 
    }
} 

Listing 7-25. A juke box application that uses MediaPlayer: MediaBox.fx 

var player = MediaPlayer { 
    url: "http://www.javafx.com/javafx_launch.wmv"
} 
player.play(); 
println("Is Playing? {player.playing}");
player.stop(); 
println("Is Playing? {player.playing}"); 

Compile the two scripts and run MediaBox.fx to see their output. 

Output 
Currently Playing http://www.javafx.com/javafx_launch.wmv
Is Playing? true 
Is Playing? false 

This example demonstrates a simple media player application that defines a URL and play()/stop()
functions. The MediaPlayer class also exposes a public-read attribute, playing, that is intended for only 
the applications to read. The MediaBox application creates an instance of the player and plays the media.
Once it starts playing, the application wants to query whether the media is still being played and hence it
queries the playing attribute's value. However, no application can set this value except the MediaPlayer
class itself, which would typically set this value depending on various conditions such as the user
stopping the media, end of media reached, the URL changed while media was played, and so on. 

For example if the MediaBox tried to set the value of playing, that would cause the compiler to throw
a compilation error since it has been declared as public-read. 

Also note that there is no primary access specifier mentioned in the declaration; this means the
write-access defaults to script-private. So the value of playing can only be modified within the
MediaPlayer.fx script. Another way of allowing write access externally (if needed) is to declare a public
function setPlaying(val: Boolean) within the MediaPlayer, and applications that would like to modify
the playing value can call this function. 

Now let us see some examples that combine primary and secondary access specifiers to offer a
varied write-access to the variable. 

public-read package var x: String = "JavaFX"; 

In this statement, the variable x has its primary access specified as package—it can be assigned,
bound or initialized within the same package and the value can be read anywhere. 

public-read protected var x: String = "JavaFX"; 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

http://www.javafx.com/javafx_launch.wmv
http://www.javafx.com/javafx_launch.wmv


CHAPTER 7 ■ ACCESS SPECIFIERS 

 

133 

Here , the variable x has its primary access specified as protected—it can be assigned, bound, or 
initialized within the same package or from derived classes in other packages. 

 
public-read public var x: String = "JavaFX"; 

 
The variable x has its primary access specified as public. This combination is useless, because the 

variable is publicly modifiable and hence public-read does not make sense anymore. You can remove 
the -public-read- specifier and it will give the same effect. Since this is a potentially useless 
combination, the compiler will give a warning message if you try to compile this code. 

Also note that a public-read variable can be unidirectionally bound to another variable from 
anywhere, but the public-read variable must be on the right side of the bind expression. In such a 
binding, the value of the public-read variable is consumed by some other variable without causing any 
change to the public-read variable as such. However, bidirectional binding will cause a compilation 
error. The example in Listings 7-26 and 7-27 demonstrates this binding. 

Listing 7-26. Script with a single public-read attribute: PublicReadBindExample1.fx 

package com.foo; 
public-read var x = 100.0; 
public function setX(val: Number) { 
    x = val; 
} 

Listing 7-27. Public-read attributes in bind expressions: PublicReadBindExample2.fx 

package com.jfx; 
import com.foo.*; 
var obj = PublicReadBindExample1 {}; 
var y = bind obj.x; 
println("Y Value: {y}"); 
obj.setX(200); 
println("Y Value: {y}"); 

 
To see the output, compile and run PublicReadBindExample2.fx. 
 
Output () 

Y Value: 100.0 
Y Value: 200.0 

 
As you see in the output, changing the x value in this example through the setX() method changes 

the y value as well, since y is bound to x. 
With the help of public-read, you can expose any variable declaration publicly for read access 

without worrying about the variable being modified inadvertently by the public code, which still retains 
the write access as you wish, be it protected, package, or script-only. 

7



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

134 

public-init 
A variable defined with the public-init access specifier can be read or initialized anywhere but cannot 
be bound publicly. Notice that I said “initialized” and not assigned—it can be initialized in an object 
literal but cannot be changed or assigned or bound from anywhere. Nevertheless, these variables can be 
modified either within the same script, within the package, or in inherited classes across the package 
depending on the primary access specified. In other words, once initialization is over, public-init 
would pretty much be treated the same way as public-read throughout the life-cycle of that class 
instance created. 

■ Note Another important difference between public-read and public-init is that public-init usage is 
limited to class member variables and is not allowed for script variables. Using it for script variables will throw a 
compilation error. 

Syntax 
public-init [primary access specifier] var var name[:data type] [= value]; 

 
Not specifying the primary specifier would default to script-private. Specifying a data type is 

optional because the compiler can infer the type automatically from the value assigned. 
The example in Listings 7-28 and 7-29 demonstrates the usage of public-init. 

Listing 7-28. Defining public-int vars: PublicInitExample1.fx 

public class PublicInitExample1 { 
    public-init var y = 20; 
    public-init var x = bind (2 * y); 
} 

Listing 7-29. Initializing public-init vars: PublicInitMain.fx 

var pre1 = PublicInitExample1 { 
    y: 100 
    x: 20 
} 
println("X Value: {pre1.x}"); 
println("Y Value: {pre1.y}"); 
println("------------"); 
var pre2 = PublicInitExample1 { 
    y: 100 
} 
println("X Value: {pre2.x}"); 
println("Y Value: {pre2.y}"); 
 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

135 

Compile the two scripts and run PublicInitMain.fx to see the following output. 
 
Output 

X Value: 20 
Y Value: 100 
------------ 
X Value: 200 
Y Value: 100 
 

In Listing 7-28, there are two public-init variables defined within the PublicInitExample1 class. In 
a different FX script, you create an instance of the class (pre1) and you are initializing x, y within the 
object literal at the time of creation. According to the definition of public-init, this is allowed. Hence, 
printing those values show the correct values you have assigned (20, 100). Note that the bind defined for 
variable x has been overridden in the object literal and hence will have no effect on the pre1 instance of 
the class. 

In the second instance of the PublicInitExample1 class, pre2, you are initializing only the y value 
and not the x value. So the x value will use the original bind expression defined within 
PublicInitExample1 class for pre2, and the last two lines of output indicate that the bind defined on 
variable x has been exercised. 

Now with the same example, after the initialization let us try to see if the value of y can be changed 
outside the object literal block. Listings 7-30 and 7-31 show the code. 

Listing 7-30. A script with public-init vars defined: PublicInitExample1.fx 

public class PublicInitExample1 { 
    public-init var y = 20; 
    public-init var x = bind (2 * y); 
} 

Listing 7-31. Accessing public init outside the object literal: PublicInitMain.fx 

// WARNING: This code will not compile 
var pre1 = PublicInitExample1 { 
    y: 100 
    x: 20 
} 
println(pre1.x); 
println(pre1.y); 
pre1.y = pre1.y + 100; 
 

Compile and run the scripts to see the following output. 
 
Output 

PublicInitMain.fx: y has script only (default) write access in PublicInitExample1 
pre1.y = pre1.y + 100; 
  ^ 
1 error 

 
This example demonstrates the difference between initialization and assignment. Initialization 

within the object literal is permitted here, but trying to assign or bind to x/y causes a compilation error. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

136 

Now let us see some combinations of public-init and different primary access modifiers to offer 
varied access to the variable. 

 
public-init var y: String = "JavaFX"; 

 
Here, the variable y can be read from anywhere, and it can be publicly initialized within an object 

literal (as seen in the examples given before) from anywhere, but it cannot be assigned or bound 
publicly. Because the primary access specifier is omitted, it defaults to script-only, allowing y to be 
modified (assigned or bound) only within the script. 

 
public-init package var y: String = "JavaFX"; 

 
This time the variable y can be read and initialized from anywhere, but it can be assigned and 

bound only within the same package. 
 

public-init protected var y: String = "Cool"; 
 
Here the variable y can be read and initialized from anywhere, and it can be modified, assigned, or 

bound anywhere within the same package.  It can be modified, assigned, and bound from any class in 
other packages, provided the class extends from the base class where y is declared. 

 
public-init public var y = "JavaFX"; 

 
This combination would be useless, because you have already made the variable public by defining 

the primary access specifier as public. It is fully open to the public, so it makes no sense to declare it as 
public-init. The compiler in this case would throw a warning to indicate that this is a meaningless 
combination of access specifiers. 

Secondary Specifiers and def 
So far, you have seen the usage of secondary access specifiers only  with var declarations. Technically, it 
is possible to use def in place of var. However, the real-world use of such a combination is very limited. A 
def once defined cannot be changed in an object literal, it cannot be overridden by a derived class, nor 
can it be assigned a different definition or value regardless of what the access permissions are. Hence the 
usage of access specifiers with def is pretty much confined to specifying whether the value of the def 
should be publicly readable or not. 

Access Specifiers for Class Definitions 
So far, you have only seen access specifiers applied to class members and not to classes themselves. In 
most of the examples you have seen so far, the widest access, public, has been assigned to the classes. In 
fact, most of the access specifiers that we have discussed so far are applicable to classes as well as class 
members. In this section, you will see the applicability of each access specifier with respect to class 
definitions. 

The access specified on the class normally will be wider, with appropriate access restrictions 
enforced on the class members. Having a too-restrictive access specifier on the class itself can 
potentially make the class unusable. 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

137 

Script-private Classes 
A class definition that does not have any access specifier mentioned explicitly would default to script-
private, meaning that the class can be instantiated and used only within that script. Trying to instantiate 
or refer to the class in some other script would cause a compilation error. Listing 7-32 shows an example. 

Listing 7-32. Script-private class definition: Cup.fx 

class Cup { 
    public var material: String; 
} 
var c = Cup { material: "ceramic" }; 
println ("From same script: {c.material}"); 

 
Output 

From same script: ceramic 
 
In Listing 7-32, the Cup class is script-private, and you don't see any issues using it within the script. 

However, when you try to use it in some other script, the compiler will throw an error, saying the Cup 
class has script-only access. 

The same error will occur even when the members of the class are public. So normally it does not 
make sense to have access for the class members that is wider than the class itself. 

■ Note Having script-only access at the class level is normally too restrictive to be useful, and you should keep 
the class at a higher access level and restrict the class member's access instead. 

Package-accessible Classes 
As with class members, you can choose package access for the class itself, which will make the class 
accessible only within the package and not exposed to the public. It is common to apply such access to 
implementation classes whose interface and implementation are consumed only within the respective 
package. Listings 7-33 and 7-34 demonstrate this access. 

Listing 7-33. A class definition restricted to package-only use: Cup.fx 

package class Cup { 
    package var material: String; 
} 

 

Listing 7-34. Using a package-only class: Cup1.fx 

var c1 = Cup { material: "plastic" }; 
println("From another script {c1.material}"); 

 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

138 

Output 
From another script plastic 

 
In this example, Cup.fx and Cup1.fx both reside within the same default unnamed package, so the 

Cup class is accessible from within Cup1.fx. However, if you move Cup and Cup1.fx into separate 
packages, there will be a compilation error, because Cup has only package access and cannot be accessed 
from a different package. 

Protected Classes 
Classes specified as protected are different from protected class members. A protected member of a 
public class (A) can be accessed from within another class that extends A, even if the derived class is in a 
different package. However, this definition will not work if the class itself is protected, because a 
protected class cannot be extended by another class in a different package. The compiler will complain 
that the protected class is being accessed outside of its scope because the usage to extend the class 
comes directly within the script. Go through the example in Listings 7-35 and 7-36 and you will 
understand this clearly. 

Listing 7-35. A protected class definition: Cup.fx 

package com.cutlery; 
protected class Cup { 
    protected var material: String; 
} 

Listing 7-36. Accessing a protected class definition: Cup1.fx 

//WARNING: This script will not compile 
package com.jfxcutlery; 
import com.cutlery.*; 
class FXCup extends Cup { 
    public override var material = "Ceramic"; 
} 
var c2 = FXCup{}; 
println(c2.material); 

 
Compile and run the code to see the following output. 
 

Output 
Cup1.fx:4: com.cutlery.Cup has protected access in com.cutlery 
class FXCup extends Cup { 
          ^ 
Cup1.fx:8: cannot find symbol 
symbol : variable material 
location: class com.jfxcutlery.Cup1.fxCup 
println(c2.material); 
     ^ 



CHAPTER 7 ■ ACCESS SPECIFIERS 

 

139 

Cup1.fx:5: cannot find symbol 
symbol : variable material 
location: class com.jfxcutlery.Cup1.fxCup 
    public override var material = "Ceramic"; 
              ^ 
3 errors 

 
As shown in the output, the compiler sees an inappropriate use of the protected class where it has 

been used within a script directly from a different package. As per the definition, this is wrong because a 
protected entity is not being used within a derived class. So having a protected class does not bring in 
any of the advantages of the protected access specifier, and the class can be used only within the 
package. Hence there will be no difference between protected and package for class definitions. 

So in this case, the class has to be defined as public, and if you want to have restrictions in place, 
keep the class members as protected wherever appropriate. 

Public Classes 
Public classes do not need much explanation. Just like any other public members of the class or script, 
they can be accessed from anywhere and can be instantiated or extended from anywhere. You have 
already seen many such examples in this chapter. 

Summary 
In this chapter, you have learned about data encapsulation, or data hiding, and the advantages of having 
appropriate restrictions on data members. In JavaFX Script, data encapsulation can be achieved through 
access specifiers (also called access modifiers) such as public, protected, package and the default, in 
decreasing order of access territory. Public members can be read, written, bound and so on from 
anywhere. Protected members can be accessed within the same package or from classes in other 
packages that derive from the class where the protected member is defined. Package members can be 
accessed from within the same package. If no access specifier is specified, it defaults to script-private, 
where the member would be accessible only within that script. 

JavaFX also offers two new secondary access specifiers, public-read and public-init. Members 
having public-read access can be read from anywhere. Members having public-init can be initialized 
(within an object literal) or read from anywhere. However, the write access for these members would be 
decided by the primary modifiers specified along with public-init/read. If primary modifiers are 
omitted, the member will have write access only within the script where it is defined. 

In the next chapter, you will learn more about inheritance in object-oriented programming. You’ll 
learn how it can be achieved in JavaFX Script and how its implementation differs from that in Java. You 
will also learn more about protected access, with real inheritance examples, and you’ll learn how to 
implement Java Interfaces within JavaFX. 

 



 

 

 



C H A P T E R  8 
 

■ ■ ■ 
 

141 

Inheritance 

Inheritance is a form of software reusability in which programmers create classes that “inherit” an 
existing class's data and behaviors and enhance them with new capabilities. Software reusability saves 
time during application development. It also encourages the reuse of proven and debugged high-quality 
software, which increases the likelihood that a system will be implemented effectively. When creating a 
class, instead of writing completely new data members and member functions, the programmer can 
designate that the new class should inherit the members of the existing class. The existing class is called 
the base class, and the new class that is derived from the base class is called the derived class. In Java and 
the JavaFX scripting language, a base class is called a superclass and the derived class is called a 
subclass. 

Inheritance is an integral part of the JavaFX scripting language. When you inherit, you say “This new 
class is like that old class with new data members and member functional that adds the additional 
capabilities.” You state this in code by giving the name of the class as usual, but before the opening brace 
of the class body, put the keyword extends followed by the name of the base class or superclass. When 
you do this, you automatically provide all the fields and methods in the base class to the derived class or 
subclass, and you can define your own data members and member functions in the derived class. 

Listing 8-1 shows a simple example of how we can inherit a class in JavaFX. 

Listing 8-1. A simple inheritance example 

class Shape{ 
    var x : Number=10.0; 
    var y : Number=10.0; 
    function drawShape(){ 
        println("Draw the shape"); 
    } 
} 
class Circle extends Shape { 
    var radius : Number; 
    override function drawShape(){ 
        println("Draw circle at x={x} y={y} with radius={radius}"); 
    } 
} 
var circle : Circle = Circle{ 
    x : 40 
    y : 50 
    radius : 5 



CHAPTER 8 ■ INHERITANCE 

142 

}
circle.drawShape(); 

Output 
Draw circle at x=40.0 y=50.0 with radius=5.0 

In Listing 8-1, the class shape represents any shape to draw on the computer. It’s a base class or
superclass, which has two data members, x and y, representing X and Y coordinates on the screen, and
drawShape(), a method to draw the shape. 

Listing 8-1 also shows a class Circle, which is extended from the Shape class. So class Circle is a
derived class, since it inherits all the data members and the member functions of the Shape class and also
defines its own data as well as member functions, thereby enhancing the functionality of the base class.
Since a circle is also a shape, we are overriding member functions of the drawShape( ) method to draw
the circle, and the overridden method is marked with the override keyword. (Method overriding is
covered in Chapter 5, “Functions.”) 

Finally, when you create an instance of the class Circle, you have the data members x, y, and
radius. When you call the circle.drawShape() method on an instance of the Circle class, the
Circle.drawShape() method is invoked. If you need to invoke a member function of the Shape class, then
you should invoke drawShape() on a Shape class instance. 

The Order of Initialization of Data Members 
Since inheritance involves two or more classes, in general there is a relationship established between the
base and the derived class. When you create an instance of the derived class, it contains within it a base
class member as a subobject. This subobject is the same as if you had created an instance of the base
class by itself. It's just that from the outside, the subobject of the base class is wrapped within the
derived class object. When we initialize an object of the derived class, first the base class data member is
initialized and then the derived class data member. Let us see an example that demonstrates the order in
which the data members are initialized across base and the derived classes, through the init block.
(Refer to Chapter 6, “Class Definitions,” for more information on the init block. Briefly, it is equivalent
to the constructor in Java and is called automatically when a class is instantiated. It is used to do any
initialization such as grouping different shapes to create a custom UI control.) Listing 8-2 shows the
code. 

Listing 8-2. Data member initialization order 

    class Base { 
        var a : Integer; 
        var str:String; 
        init{ 
            println("Base class init block."); 
            a = 10; 
            str="Base"; 
          } 
    } 

    class Derived extends Base { 
        var k:Number; 
        init {    

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8 ■ INHERITANCE 

 

143 

            println("Derived class init block."); 
            k=34.34; 
        } 
 
        function printValues() : Void { 
            println("a = { der.a }  str = {der.str}  k = {der.k}"); 
          } 
 
    } 
 
    var der:Derived = Derived{} 
    der.printValues();    // a = 10  str = Base  k = 34.34 

 
Output 

Base class init block. 
Derived class init block. 
a = 10  str = Base  k = 34.34 

 
Listing 8-2 has two classes, named Base and Derived. Each class has its own data members and its 

own init blocks to initialize the data members. When we create an object or instance of the class 
Derived, the Base class’s init block is called first and then the init block of the derived class. Hence the 
base class's data member initialization is done prior to that of the derived class. Finally, the 
printValues() method is called to verify the initialized data member values. 

Overriding Data Members 
Similar to overriding a member function of the base class, you can override the data members or 
instance variables of the base class as well. Overriding a data member is straightforward and simple. In 
the derived class, you declare a data member or instance variable with the same name as the superclass 
data member, but with the override keyword as one of its modifiers, and without any type specifier. A 
data member can be initialized with a different value in the derived class when it is being overridden, 
and if the variable is left uninitialized in the derived class, the initialization specified in the base class 
would be considered. 

Listing 8-3 shows an example. 

Listing 8-3. Overriding data members 

class Game{ 
    var player:Integer = 2; 
    var item : String="Some Game"; 
    var location:String="Out Door"; 
 
    function printValues() : Void { 
        println("player = {player}  item = {item}  location={location}"); 
    } 
    } 
 



CHAPTER 8 ■ INHERITANCE 

 

144 

class Cricket extends Game{ 
    override var item="Bat,Ball and stumps"; 
    override var location;        // data member is not initialized. 
    
    override function printValues() : Void { 
        println("player = {player}  item = {item}  location={location}"); 
    } 
} 
var game:Game=Game{ } 
    game.printValues(); 
    var cri:Cricket = Cricket{} 
    cri.printValues(); 
 

Output 
player = 2  item = Some Game  location=Out Door 
player = 11  item = Bat,Ball and stumps  location=Out Door 

 
In Listing 8-3, we are overriding three data members of the base class Game from within the derived 

class Cricket, and we are initializing two of the overridden members with new values in the derived 
class. We are leaving the variable location uninitialized. We are creating an instance of the Game class as 
well as the Cricket class and printing the values. In the output, notice that the value ofthe  location 
variable in the cri instance is automatically initialized to Out Door, demonstrating that the initialization 
is inherited from the base class. 

■ Note Attempting to specify a type specifier in a statement overriding a data member or instance variable will 
cause a compiler error. 

Use of the super Keyword 
Like Java, JavaFX Script also supports the super keyword, which can be used to invoke a method 
available in the base class from within any member function of the derived class. Let us see a simple 
example of how it can be used in JavaFX, in Listing 8-4. 

Listing 8-4. Usage of the super keyword 

class A{ 
   function fun1(){ 
       println("Base class Function-1"); 
   } 
   function fun2(){ 
       println("Base class Function-2"); 
   } 
} 
 



CHAPTER 8 ■ INHERITANCE 

 

145 

class B extends A{ 
   function bFun1(){ 
       println("Derived class Function-1"); 
   } 
   override function fun2(){ 
       super.fun2(); 
       println("Derived class Function-2"); 
   } 
} 
var obj:B=B{} 
obj.fun2(); 

 
Output 

Base class Function-2 
Derived class Function-2 
 

The code shown in Listing 8-4 is self-explanatory; we call the base class's fun2() function from 
within the overriding function of the derived class. 

It is also possible to call a non-overridden function of the base class using the super keyword, but 
doing that generally does not make sense, since you can already invoke the non-overridden member 
function directly. 

Mixin Classes 
JavaFX Script has supported multiple inheritance right from its inception, but the concept of multiple 
inheritance has been radically changed as of JavaFX 1.2. Prior to 1.2, a normal JavaFX class could directly 
extend from any number of other classes, but as of version 1.2 this has been streamlined by enforcing 
certain restrictions on inheriting multiple classes through mixins. The mixin keyword in JavaFX Script 
refers to a new form of multiple inheritance with same features as before but with additional benefits 
such as much simpler and much faster code generation. The concept of a mixin is generic within OOP. 
Mixins are more or less like interfaces in Java except that they can have variables and implementations 
that can be inherited by all the classes that extend a mixin class. 

The mixin keyword is applied to classes, and such a class is described as a mixin class. A mixin class 
is a like a regular JavaFX class; it contains data members, member functions, an init block anda  
postinit block. The difference is that the class cannot be instantiated directly; it is instead designed to 
be extended and used by subclasses. 

Some basic points should be remembered while implementing inheritance in JavaFX: 

• JavaFX Script classes are allowed to extend at most one other JavaFX Script class as 
a superclass. This superclass can be either a Java class or a JavaFX Script class. 

• JavaFX Script classes are allowed to extend any number of JavaFX Script mixin 
classes. 

• JavaFX mixin classes are allowed to extend any number of other JavaFX mixin 
classes and can also extend any number of Java interfaces. 

As mentioned earlier, a mixin class can extend one regular (non-mixin) class and any number of 
mixin classes. 



CHAPTER 8 ■ INHERITANCE 

 

146 

Now let us see an example that demonstrates the difference between how Java and JavaFX achieve a 
similar functionality and how simple JavaFX is compared to Java (Listing 8-5). 

Listing 8-5. A comparison of mixins in Java and JavaFX 

FileName: GreetWorld.java 
public interface GreetWorld { 
    public void printGreetings(); 
} 
FileName: Greeting1.java 
public class Greeting1 implements GreetWorld { 
    String courtesy = "Hello"; 
    String name = "Praveen!"; 
    
    public void printGreetings() { 
        System.out.println(courtesy + " " + name); 
    } 
    public static void main (String args[]) { 
        Greeting1 g = new Greeting1(); 
        g.printGreetings(); 
    } 
} 
FileName: Greeting2.java 
public class Greeting2 implements GreetWorld { 
    String courtesy = "Hello"; 
    String name = "Lawrence!"; 
    
    public void printGreetings() { 
        System.out.println(courtesy + " " + name); 
    } 
    public static void main (String args[]) { 
        Greeting2 g = new Greeting2(); 
        g.printGreetings(); 
    } 
} 
FileName: Greetings.fx 
public mixin class GreetWorld { 
    var courtesy: String = "Hello"; 
    var name: String; 
    
    public function printGreetings(): Void { 
        println("{courtesy} {name}"); 
    } 
} 
 
class Greeting1 extends GreetWorld { 
    override var name = "Praveen!"; 
} 
 



CHAPTER 8 ■ INHERITANCE 

 

147 

class Greeting2 extends GreetWorld { 
    override var name = "Lawrence!"; 
} 
 
public function run() { 
    var g1 = Greeting1 {} 
    var g2 = Greeting2 {} 
    g1.printGreetings(); 
    g2.printGreetings(); 
} 
 

Output 
(Executing Greeting1.java) Hello Praveen! 
(Executing Greeting2java) Hello Lawrence! 
(Executing Greetings.fx) 
Hello Praveen! 
Hello Lawrence! 

 
As you see in Listing 8-5, the JavaFX code is much simpler than the Java code. You can easily see that 

there is an implementation for the method printGreetings() in the mixin class, and so the subclasses do 
not have to implement the method again. The implementations of printGreetings in Greeting1 and 
Greeting2 are identical, a duplication that is avoided in JavaFX. In addition to this, all the classes are 
maintained in a single file in JavaFX; in Java you need a separate file for each of the public classes and 
interfaces. 

■ Note A mixin class cannot be instantiated directly and can only be extended. However, you can instantiate a 
derived class that extends a mixin class, and it is legal to cast a derived class's object to a mixin reference. It is 
also legal to use a mixin class with the instanceof operator. 

Listing 8-6 demonstrates how to create a subclass from a regular class and a mixin class. 

Listing 8-6. Deriving a mixin and a regular class together 

class Base { 
    var x : Integer; 
    function showX() { 
        println("x = {x}"); 
    } 
} 
 
mixin class MixBase  { 
    var y : Integer; 
    function showY( ){ 
        println("y = {y}"); 
    } 
} 



CHAPTER 8 ■ INHERITANCE 

 

148 

 
class SubClass extends MixBase , Base { 
    var z : Integer; 
    function showZ() { 
        println("z = {z}"); 
    //super.showY(); - ILLEGAL: WILL NOT COMPILE 
    //super.showX(); - LEGAL 
    } 
} 
 
var obj = SubClass{ 
    x : 10; 
    y : 20; 
    z : 30; 
} 
 
obj.showX();  // x = 10 
obj.showY();  // y = 20 
obj.showZ();  // z = 30 
 

Output 
x = 10 
y = 20 
z = 30 
 

Listing 8-6 shows how a regular class and a mixin class can be extended by a subclass. Notice that a 
mixin class can also have data members and functions just like a normal class, and those members can 
be accessed the same way as we do with a normal class. 

Notice also that the contents of the mixin class, such as member functions and data members, are 
included in the derived class rather than inherited. They become part of the derived class during 
compilation. Hence, the super keyword can only refer to the extension of a non-mixin class and not a 
mixin class. That's why super.showY() will not compile if uncommented in this example, whereas 
super.showX() will compile correctly. 

Creating a Subclass from Multiple Mixin Classes 
When a class inherits from multiple other classes, the technique is called multiple inheritance. Java does 
not support multiple inheritance through classes, but it can be done using Java interfaces. By contrast, in 
the JavaFX scripting language, mixin inheritance allows you to extend multiple mixin classes, giving you 
the benefits of multiple inheritance. Now let us see how we can create a subclass extending from 
multiple mixin classes (Listing 8-7). 

Listing 8-7. Extending multiple mixin classes 

public mixin class Mixin1 { 
    var a : Integer; 
    public function getA(){ 
        return a; 
    } 
} 



CHAPTER 8 ■ INHERITANCE 

 

149 

public mixin class Mixin2 { 
    var b : Integer; 
    public function getB(){ 
        return b; 
    } 
} 
class Mixee extends Mixin1, Mixin2 { 
    var c : Integer; 
    public function getC(){ 
        return c; 
    } 
} 
function run () { 
    var obj = Mixee{ 
        a : 10;b:20;c:30; 
    } 
    println("a = {obj.getA()}  , b = {obj.getB()}  , c= {obj.getC()}"); // a = 10  , b = 20  
, c= 30 
} 
 
output :- 
a = 10  , b = 20  , c= 30 
 

In Listing 8-7, we have defined two classes, named Mixin1 and Mixin2.Each class contains a single 
Integer data member and a member function to return its data value. The class Mixee extends both the 
Mixin1 and Mixin2 classes, inheriting the data members and member functions of both parent mixin 
classes and thus enabling multiple inheritance. Now with an object of the Mixee class, you can access the 
data members and member functions of Mixee, Mixin1, or Mixin2. 

The Order of Initialization in Multiple Inheritance 
Recall from the beginning of this chapter that init blocks are always executed in order from parent class 
to child class. Now when we have multiple parent classes, the same order of parent-to-child is 
maintained, and the parents' init blocks would be called before the child's. But the order among 
multiple parents is chosen by the order in which the parent classes are mentioned after the extends 
keyword in the derived class. If class A extends from B, C, and D, the order of initialization would be  
B  C  D  A. Listing 8-8 is an example that demonstrates the order of initialization in a multiple-
inheritance scenario. 

Listing 8-8. Order of initialization with multiple inheritance 

public mixin class Mixin1 { 
    init{ 
        println("mixin1 init block"); 
    } 
} 
 
public mixin class Mixin2 { 
    init{ 
        println("mixin2 init block"); 



CHAPTER 8 ■ INHERITANCE 

 

150 

    } 
} 
 
class Mixee extends Mixin1, Mixin2 { 
    init{ 
        println("mixee init block"); 
    } 
  } 
 
function run() { 
    Mixee{} 
} 
 

Output 
mixin1 init block 
mixin2 init block 
mixee init block 

 
As you see in the output of Listing 8-8, the order is always from parent to child and the order among 

multiple parents is decided by the order in which the parent classes are extended by the derived class. In 
this case, Mixee extends Mixin1 first and then Mixin2, and so the init blocks are executed in the order 
Mixin1  Mixin2  Mixee. 

Abstract Classes 
There are situations in which you would want to define a superclass that declares the structure of a given 
abstraction without providing a complete implementation of every method. That is, sometimes you will 
want to create a superclass that only defines a generalized form that will be shared by all of its 
subclasses, leaving it to each subclass to fill in the details. Such a class determines the nature of the 
methods that the subclasses must implement. One way this situation can occur is when a superclass is 
unable to create a meaningful implementation for a method. 

In such a scenario, you can create a class and mark certain methods to be overridden by subclasses 
compulsorily, by specifying the abstract type modifier. The responsibility of implementing these 
methods is with the subclass, since the parent class will not have any implementation. Thus, a subclass 
must override them—it cannot simply use the version defined in the superclass. 

Any class that contains one or more abstract methods must also be declared abstract. To declare a 
class abstract, you simply use the abstract keyword in front of the class keyword at the beginning of the 
class declaration. There can be no objects of an abstract class. That is, an abstract class cannot be 
directly instantiated, because an abstract class is not fully defined. But you can create a reference of the 
abstract class. 

■ Note A mixin class can have abstract functions if you want to leave the implementation to the derived classes. 
But the class need not be referred to as abstract, unlike a normal Java or JavaFX Script class. 



CHAPTER 8 ■ INHERITANCE 

 

151 

Using a JavaFX Class to Extend a Java Abstract Class 
Because the JavaFX Scripting language is built on top of Java, JavaFX classes can extend Java classes 
(including abstract classes) and Java interfaces. For example, suppose you have created an application in 
Java and now want to migrate it to JavaFX. You can just extend those Java classes or implement the Java 
interfaces in your JavaFX directly to import the same behavior (that is, the interface) that you have 
already built using Java. Listing 8-9 shows an example; we have a Java abstract class, which is in a 
separate .java file, and this abstract class is extended and implemented by JavaFX subclasses. 

Listing 8-9. A JavaFX class extending an abstract Java class 

Filename : Figure.java 
package inheritance; 
 
abstract class Figure { 
    public float dim1; 
    public float dim2; 
    // abstract area class 
    abstract float area(); 
} 
 

FileName : AbstractImplementation.fx 
package inheritance; 
class Rectangle extends Figure { 
    override function area() : Number  { 
        println("Overriden area function in Rectangle class"); 
        return dim1 * dim2; 
    } 
} 
 
class Triangle extends Figure { 
    override function area() : Number { 
        println("Overriden area function in Triangle class"); 
        return dim1 * dim2 / 2.0; 
    } 
} 
 
function run(){ 
    var rect = Rectangle{ } 
    rect.dim1 = 5.0; 
    rect.dim2 = 5.0; 
    println(rect.area()); 
 
    var triangle  = Triangle{ } 
    triangle.dim1 = 10.0; 
    triangle.dim2 = 5.0; 
    println(triangle.area()); 
} 
 



CHAPTER 8 ■ INHERITANCE 

152 

Output 
Overriden area function in Rectangle class 
25.0 
Overriden area function in Triangle class 
25.0 

In Listing 8-9, we have a Java abstract class named Figure, which has an abstract method named
area. This Java abstract class is stored in a file called Figure.java. The class is extended by two JavaFX
classes, Rectangle and Triangle, and it overrides the abstract method area in a file called
AbstractImplementation.fx. Both the Java and JavaFX classes are in the package inheritance. In the
run() function, we create instances of the Rectangle and Triangle classes and assign values to the data
members. Finally, we call the area() function of the respective implementations. 

Anonymous Implementation of Java Interfaces 
In Java, we often encounter situations where we need to implement interfaces anonymously, without
specifying a class name, and the same thing can be done in JavaFX Script as well. One such example is
the implementation of java.awt.event.ActionListener, which is demonstrated in Listing 8-10. 

Listing 8-10. Implementing Java interfaces anonymously 

import javax.swing.*; 
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener; 

var counter: Integer = 0; 

var listener = ActionListener { 
    public override function actionPerformed(ae: ActionEvent): Void { 
        println("Timer Triggered {counter}"); 
        counter ++; 
    }
} 

var timer: Timer = new Timer(1000, listener);
timer.start(); 

Output 
Timer Triggered 0
Timer Triggered 1
Timer Triggered 2
Timer Triggered 3
.. 
.. 

In Listing 8-10, we are implementing a swing timer from Java to do some animation. A swing timer
requires an action listener and a time interval at which the action listener's actionPerformed must be
invoked. Here we are creating an object, named listener, of type ActionListener, by providing an inline 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 8 ■ INHERITANCE 

 

153 

implementation of the interface and using it in the Timer constructor. As you see in the output, the swing 
timer will invoke listener's actionPerformed() function every second (1000ms), infinitely. As you see the 
ActionListener implementation, it is the same listener method in Java implemented in JavaFX Script 
syntax with keywords such as override and function. 

Summary 
Inheritance allows a class to be derived from an existing class. The derived class has all the data and 
functions of the parent class but adds new ones of its own. Inheritance makes possible reusability—the 
ability to use a class over and over in different programs with enhanced features. JavaFX supports all 
types of inheritance as Java does, including multiple inheritance, but in a slightly different way, using 
mixin classes. A mixin class resembles a regular class in that it contains data members and member 
functions but is prefixed with the mixin keyword. A JavaFX Script class can extend at most one Java or 
one JavaFX Script class, but it can extend multiple JavaFX mixin classes. The class that is extended from 
the mixin class is called a mixee class. JavaFX classes can extend Java abstract classes and implement 
Java Interfaces. In the next chapter, you will learn more about one of the most important and powerful 
JavaFX features—data binding. 
 



 

 

 



C H A P T E R  9 
 

■ ■ ■ 
 

155 

Data Binding 

Binding is one of the most important, powerful and useful features of JavaFX; it can simplify your code to 
a great extent. In this chapter, we will start with basic binding concepts and proceed toward more 
sophisticated binding, with appropriate examples. 

What Does Binding Mean? 
In general terms, binding normally means sticking one object firmly to another, forming a bond, say by 
tying with a rope. After the objects are bound, anything you do with one of the objects will impact the 
other. Displacing one of the objects, for example, will displace the other. The definition in JavaFX is on 
similar lines. It's the ability to create a direct and immediate relationship between two variables, where a 
change to one variable would change the other. 

Binding in JavaFX is achieved through the bind keyword, which associates the value of the target 
variable with the outcome of an expression. The expression could just be anything —another variable, 
an object, a function call, an expression, a block, and so on. This expression is called a bound expression 
and is illustrated in Figure 9-1. A bound expression can be any expression that does not return Void, and 
so expressions involving increment or decrement operators or loops are not allowed. 

 

Figure 9-1. Unidirectional binding 

 
Listing 9-1 demonstrates a simple bind. 

Listing 9-1. A simple bind 

var x = 0; 
def y = bind x * x; 
x = 10; 
println(y); // 10*10 = 100 



CHAPTER 9 ■ DATA BINDING 

 

156 

x = 5; 
println(y); // 5*5 = 25 

 
Output 

100 
25 

 
In this example, def y is bound to the square of x, which means that whenever the x value changes, 

the y value will be recalculated but not vice-versa. This is called unidirectional binding. The binding 
happens in one direction—from right to left. In the example, changing the x value changes y, but 
changing y will not change x. (There is also bidirectional binding, which we will discuss later in this 
chapter.) Continuing with the example, the expression x*x depends on the value of x, and so x can be 
considered a dependency. So when the dependency changes, the expression will be re-evaluated. 

Also note that y is declared as def, primarily because no value can be assigned directly to y, and y’s 
value can be changed only through x. If you try to change the value of y directly, that would result in a 
compilation error. You can also define y as a var, but assigning a value to y will still cause a runtime 
error, since it is not legal to change the value of y when it is unidirectionally bound to an expression 
already. 

Listing 9-2 is an example that is nearly as simple but uses a loop. 

Listing 9-2. Changing a bound expression from within a loop 

var x = 100; 
var y = bind x + 100; 
for( a in [5..50 step 5]){ 
  x = a; 
  println( "x={x}, y={y}"); 
} 

 
Output 

x=5, y=105 
x=10, y=110 
x=15, y=115 
x=20, y=120 
x=25, y=125 
x=30, y=130 
x=35, y=135 
x=40, y=140 
x=45, y=145 
x=50, y=150 

 
The code in this example is pretty self-explanatory: whenever the x value changes, y also changes 

automatically. The only difference from Listing 9-1 is that the value of the expression is changed 
continuously with a loop, which causes continuous re-evaluation of the expression. 



CHAPTER 9 ■ DATA BINDING 

 

157 

■ Note It is recommended to use def instead of var for variables whose value depend on a bound expression 
since it is not legal to assign a value directly to a bound variable, and such errors can be caught at compile time 
instead of runtime when using def. However, this applies only to unidirectional binds, and it would still make sense 
to use var in the case of bidirectional binds, as we will see later in this chapter. 

Recalculation of Expressions 
When the bound expression changes, the outcome is recalculated and assigned to the target variable. 
However, this recalculation will not be done for all the elements in the expression, as it is optimized to 
re-evaluate only the changed portion in the expression. Let us see this in detail with the following bound 
expression: 

 
def val = bind expr1 + expr2 

 
The value of val will be recalculated whenever expr1 or expr2 changes. However, only the changed 

expression will be recalculated and not both if only one of the expressions is changing. 

■ Note There is another important optimization technique, called lazy binding, in which the bound expression will 
be evaluated only when the result of the expression is being consumed. So it is unsafe to assume that val will be 
changed immediately when expr1 or expr2 changes when using JavaFX 1.3 or higher, but it is guaranteed to be 
changed before the first consumption of val's value. For more information, see the last section of this chapter, 
“Lazy vs. Eager Binding.” 

Let's prove this with an example; Listing 9-3 shows the code. 

Listing 9-3. Optimized re-evaluation of a bound expression 

var x = 10; 
var y = 20; 
var z = 10; 
var sum = bind addConstant() + z; 
println(sum); 
z = 30; 
println(sum); 
 
function addConstant() { 
    println("function called"); 
    30 // This will be considered as the return value. 
} 



CHAPTER 9 ■ DATA BINDING 

 

158 

 
Output 

function called 
40 
60 

 
In Listing 9-3, the bound expression consists of a function call and a variable. When this expression 

is evaluated the first time, the value of addConstant() is calculated and remembered. It is then added to 
the z value, and the outcome is assigned to sum. That's why you see the “function called” message in the 
output. 

Now when the z value changes, the outcome of the addConstant() function is not recalculated (since 
it is not changed), and the same value that was calculated before is fetched and replaced in the 
expression. However, the new z value is substituted in the expression to give the value of 60 to sum. Since 
the outcome of addConstant() is not recalculated, the function is not called the second time. 

Thus you can see that the recalculation of bound expressions is optimized so as not to evaluate all 
the elements in the expression but only the changed portions. We will see more about this optimization 
when we explore how binding works with other forms of expressions later in this chapter. 

■ Note The value of the function expression is the value of the last line in the expression, which in our example  
is 30. So there is no need to have an explicit return statement within the function; also note that the return type is 
not explicitly mentioned, since it is automatically inferred from the last line of the function block. 

Binding with Conditional Expressions 
Bind can be used along with conditional expressions such as if-else to choose the value of the target 
variable conditionally. 

 
Syntax 

def x = bind if (condition) expr1 else expr2; 
 
Here, as in any other if-else expression, if condition is true, x will have the value of expr1; 

otherwise, it will equal expr2. If condition is true, only expr1 is recalculated, and expr2 is ignored even if 
there is a change in the expr2. The inverse of this is also true. Listing 9-4 demonstrates conditional 
binding. 

 

Listing 9-4. A conditional bind 

var mark = 50; 
var status = bind if (mark >= 50) then "PASS" else "FAIL"; 
println(status); 
mark = 30; 
println(status); 

 



CHAPTER 9 ■ DATA BINDING 

 

159 

Output 
PASS 
FAIL 

 
When you use bind with if-else, the value of the if expression must always be a valid value and 

cannot be Void, though a normal unbound if-else expression can have a Void value. In other words, the 
following requirements must be taken care of when you use bind along with an if expression: 

• Having an else clause is mandatory 

• if and else expressions (expr1 and expr2 in the syntax shown earlier) must return 
a valid value and cannot be Void. 

 
Any violation of these requirements would cause a compilation error. 

■ Note Remember that null is different from Void; null is a valid value and can be used in the bound conditional 
expressions but Void typically represents “No-value.” 

Binding with for Expressions 
Binding can be used with for expressions as long as those expressions return a valid value and not Void. 
Listing 9-5 is an example of how the bind keyword can be used with the for expression. 

Listing 9-5. A bind with a for expression 

var min = 0; 
var max = 5; 
def seq = bind for (x in [min..max]) 2*x; 
println(seq); 
max = 10; 
println(seq); 
min = 5; 
println(seq); 
 

Output 
[ 0, 2, 4, 6, 8, 10 ] 
[ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 ] 
[ 10, 12, 14, 16, 18, 20 ] 
 

In Listing 9-5, whenever min/max values change within the for expression, the portion of the 
sequence that would be impacted by the change would be recalculated and not the entire sequence. 

For example, initially the for expression is evaluated fully and the sequence is created when it is 
defined. Now when the max value is changed to 10, the existing items of the seq (index 0 through 5) will 
not be recalculated,  and only the new items are calculated and added to the sequence. 



CHAPTER 9 ■ DATA BINDING 

 

160 

Now when the min value changes from 0 to 5, the initial five entries in the seq are discarded and the 
rest of the items are never touched. 

There is of course, one exception to this: If an expression uses indexof, then it will be re-evaluated 
completely, regardless of the min/max values, since it is quite possible that some additions/deletions 
would obviously change the index of all the items. Listing 9-6 demonstrates how this works. 

Listing 9-6. A bind with a for expression using indexof 

var seq = [1..10]; 
def seq1 = bind for (x in seq) { 
    x * (indexof x) + 2; 
} 
println(seq1); 
insert 0 before seq[0]; 
println(seq1); 

 
Output 

[ 2, 4, 8, 14, 22, 32, 44, 58, 74, 92 ] 
[ 2, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102 ] 

 
In this example, note that the entire sequence has changed after we insert a value at the beginning 

of seq; this occurs because seq elements actually depend on the index of the corresponding element in 
seq. Inserting an item in the beginning alters the index of all the elements in seq, and hence causes the 
entire seq1 to be recalculated by rerunning the for expression through its entire range. 

It is important to re-emphasize here that a bound variable cannot be modified directly, and doing so 
will result in a runtime error. This is true of a var; In the case of a def, the variable cannot be modified 
directly at all, regardless of whether it is bound, and doing so will result in compile-time error. 

With for expressions, one can have a non-default step value also bound to a variable in addition to 
the min and max values. Let us see how this works; Listing 9-7 shows the code. 

Listing 9-7. A bind with a for expression using a bound step value 

var stepVal = 1; 
var max = 20; 
var seq = bind for (i in [0..max step stepVal] where i < max/2 )  i; 
println(seq); 
stepVal = 5; 
println(seq); 
stepVal = 8; 
println(seq); 
max = 41; 
println(seq); 

 
Output 

[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ] 
[ 0, 5 ] 
[ 0, 8 ] 
[ 0, 8, 16 ] 

 



CHAPTER 9 ■ DATA BINDING 

 

161 

As you see in this example, maximum as well as step values are bound to variables, and any change 
to either max or the step value would cause the for expression to be recalculated. Changing the step value 
from 5 to 8 would cause the entire sequence to be recalculated; however, changing the max value will just 
insert additional elements into the sequence and will not recalculate the existing elements. 

It is also possible to use functions within a bound for expression. Listing 9-8 demonstrates how to 
do this. 

Listing 9-8. Functions in a bound for expression 

var sum = bind for (i in [1..10] where i > 5 )  sumSeq([1..i]); 
 
function sumSeq( seq : Integer[]):Integer { 
    var sum = 0; 
    for (num in seq) {sum = sum + num;} 
    sum 
} 
println(sum); 

 
Output 

[ 21, 28, 36, 45, 55 ] 
 
In this example, the for expression actually delegates the sum calculation to a function that is 

invoked whenever the i value changes. Note that a sequence has been created and passed as an 
argument to the function. 

Binding Block Expressions 
A block is a set of expressions enclosed within curly braces. The value of the block expression is the value 
of the last expression in the block. When the block is bound to a target variable, there are certain 
restrictions as to what can appear within the block. Typically, the following restrictions apply to 
expressions that are defined before the last statement within a block: 

 

• The last statement in the block must fetch a valid value and cannot be Void. Hence 
you cannot have statements such as println() anywhere within the bound block. 

• Only variable declarations (def/var) can appear in nonfinal positions. 

• Assignment, increment, and decrement operators are prohibited at nonfinal 
positions. (Assignment is allowed only if it is preceded by a variable declaration.) 

• Expressions such as while and insert/delete (see Chapter 10, “Sequences”) are 
not allowed. 

Violating any of these restrictions would result in a compilation error. As far as recalculation of 
expressions is concerned, any change in the expressions specified within the block would cause the 
entire block expression to be re-evaluated. 

 



CHAPTER 9 ■ DATA BINDING 

162 

Syntax 
def xxx = bind { 
    def a = expr; 
    var b = expr1; 
    expr2;
} 

Listing 9-9 demonstrates an example of a block expression with bind. 

Listing 9-9. A bound block expression 

var x = 10;
var y = 10;
var z = 0; 

def sum = bind { 
    x + y + z;
}
println(sum);
x = 20;
println(sum); 

Output
20 
30 

In Listing 9-9, changing the x value has caused the block expression to be re-evaluated, and the
newly computed value is assigned to the dependent variable sum. 

Binding Functions 
A function whose outcome is bound to a target variable will be called whenever any argument of the
function changes. Let us prove this with a simple example (Listing 9-10). 

Listing 9-10. Binding a function 

var x = 10; 
var y = 20; 
var z = bind sum (x, y);
println(z); 
x = 20; 
println(z); 
y = 30; 
println(z); 

function sum(x: Integer, y: Integer) { 
    println("added"); 
    x + y;
} 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 9 ■ DATA BINDING 

 

163 

Output 
added 
30 
added 
40 
added 
50 

 
Here, the sum() function takes two arguments, and its outcome is bound to z. So whenever the 

arguments of the sum() function change, the sum() function will be invoked to recalculate the value of 
the function-expression. So initially the sum() function is invoked and its output of 30 is assigned to z. 
After this, the x value changes. Hence the function is called again to recalculate the value of x+y, and 
the new value is assigned to z. The same applies to y as well. This is the reason you see three “added” 
statements in the output, and it proves that the function is invoked whenever the arguments change its 
values. (Again, remember that the function sum() may not be called immediately when the x/y value is 
changed but instead is done when the output of z is being consumed within a println after a change to 
x/y. This is the same lazy binding optimization that you will learn at the end of this chapter.) 

The ability to bind a function to a target variable is not limited to JavaFX functions; it is also 
available to existing functions available in Java classes. 

■ Note When a bound function is invoked from within a bound context (meaning that it’s called automatically 
because one of its parameters has changed in value), the arguments are passed by reference and so is the return 
value. Passing by reference means that a pointer to the actual data  (the memory address) is sent and not the 
actual data itself. By contrast, if the same method is called from within a nonbound context (for example, the 
developer calling it explicitly), the arguments and return value are passed by value and not by reference. 

Listing 9-11 is an example of how a Java function can be bound. 

Listing 9-11. Binding a Java function 

import java.lang.Math; 
var d = 0; 
var x2 = bind Math.toRadians(d); 
 
for( r in [0..360 step 60]) { 
    d = r.intValue(); 
    println("d={d}, x2= {x2}"); 
} 

 
Output 

d=0, x2= 0.0 
d=60, x2= 1.0471975511965976 
d=120, x2= 2.0943951023931953 
d=180, x2= 3.141592653589793 
d=240, x2= 4.1887902047863905 



CHAPTER 9 ■ DATA BINDING 

 

164 

d=300, x2= 5.235987755982989 
d=360, x2= 6.283185307179586 

 
The code in Listing 9-11 just converts angle to radians using the Java Math API, and you can see that 

x2 is bound to a Java function—Math.toRadians(). Likewise, you can bind any Java function from within 
JavaFX, including creating new objects through respective constructors. 

Bound Functions 
A function that is bound to a target variable using bind as shown in Listings 9-10 and 9-11 is different 
from a “bound” function, which will have the bound keyword in its definition. In this section you’ll see 
how the behavior of a bound function is different from the normal bind function. First, Listing 9-12 
shows an example of an ordinary bind function. 

Listing 9-12. A standard bind function 

var name1 = "JavaFX"; 
var name2 = "Technology"; 
var filler = "Cool"; 

 
function concat(x: String, y: String) { 
    "{x} {filler} {y}"; 
} 

 
def s = bind concat(name1, name2); 
println(s); 
name1 = "Java"; 
println(s); 
filler = "mature"; 
println(s); 

 
Output 

JavaFX Cool Technology 
Java Cool Technology 
Java Cool Technology 

 
In Listing 9-12, you can see that when name1 changes, the function is invoked as we have seen in the 

previous examples. However, the body of the function is a black-box, and any change in the function's 
body does not cause the function to be reinvoked even though the function is bound. So with normal 
functions that are associated with a target variable through bind, recalculation happens only when the 
argument changes; bind does not really care about the expressions specified in the function body. This is 
why you don't see filler being changed to mature in the output, because the function is not invoked 
when filler is changed. 

However, there are cases where one would expect bind to evaluate the function even if one of the 
expressions in the function's body changes. Nevertheless, this is a little expensive and should not be 
carried out by default unless the developer wants it explicitly. This is where bound functions come into 
the picture. 

A bound function is invoked even when there is a change in one of the expressions specified in the 
function body and the arguments to the function do not change. Bound functions are explicitly marked 



CHAPTER 9 ■ DATA BINDING 

 

165 

with the bound keyword. The parameter-passing tips given for the normal bind functions apply to bound 
functions as well—parameters and return values are passed by reference (the memory address of the 
actual data) when the bound functions are invoked from a bound context and passed by value when 
they are invoked by the application explicitly. 

Now let's change the previous example to use a bound function and see how the behavior changes; 
Listing 9-13 shows the code. 

Listing 9-13. A bound function 

var name1 = "JavaFX"; 
var name2 = "Technology"; 
var filler = "Cool"; 

 
bound function concat(x: String, y: String) { 
    "{x} {filler} {y}"; 
} 

 
def s = bind concat(name1, name2); 
println(s); 
name1 = "Java"; 
println(s); 
filler = "mature"; 
println(s); 

 
Output 

JavaFX Cool Technology 
Java Cool Technology 
Java mature Technology 

 
As you see in Listing 9-13, now the concat() function has a bound prefix, and bound is a keyword. 

Thus, the last output indeed reflects the new filler value and indicates that the function was called 
when the filler value changed. 

■ Note Although bound functions look appealing, they come with a cost in performance and therefore should be 
used with caution. While using bound functions, the developer has to be sure under what circumstances the 
function will be invoked and when the expressions given within the function body are bound to change. 

Binding with Object Literals 
As you saw in Chapter 6, “Class Definitions,” JavaFX supports class definitions similar to Java, and you 
can create your own classes. Unlike Java, however, JavaFX does not expect everything to be bundled 
within a class, and it is possible to have a FX application without any class definitions. Let us see some 
examples of how binding can be used with these classes. 

For example, Listing 9-14 demonstrates how you create a class. 



CHAPTER 9 ■ DATA BINDING 

 

166 

Listing 9-14. Creating a class 

class Employee { 
    var name: String; 
    var age: Number; 
    var department: String; 
    var id: Number; 
} 
 

Now let's see how to create an instance of the class. 
 

var emp = Employee { 
    name: "Praveen" 
    age: 44 
    department: "JavaFX" 
    id: 334455 
}; 

 
Note that we will have to use  the colon character (:)instead of equal to when initializing the object 

literal. It is legal to omit the initialization of some of the attributes of the class if desired, and those 
attributes will be assigned with default values. 

Now instead of hard-coding the department name for each employee, we could store it in some 
variable and share it across all employee instances. Let's see how binding helps in this case; Listing 9-15 
shows the code. 

Listing 9-15. Binding with object literals 

var deptName = "JavaFX"; 
var empNames = ["Richard", "Praveen", "Lawrence", "Steve"]; 
var emp:Employee[] = []; 
 
class Employee { 
    var name: String; 
    var age: Number; 
    var department: String; 
    var id: Number; 
    
    function printInfo() { 
        println("{name}, {age}, {department}, {id}"); 
    } 
} 

 
emp = for (x in [0..3]) { 
    Employee { 
        id: x 
        name: empNames[x] 
        department: bind deptName 
        age: 34 
    } 
    

s



CHAPTER 9 ■ DATA BINDING 

 

167 

} 
 

for (e in emp) e.printInfo(); 
deptName = "JavaFX BU"; 
println("----------------"); 
for (e in emp) e.printInfo(); 

 
Output 

Richard, 34.0, JavaFX, 0.0 
Praveen, 34.0, JavaFX, 1.0 
Lawrence, 34.0, JavaFX, 2.0 
Steve, 34.0, JavaFX, 3.0 
---------------- 
Richard, 34.0, JavaFX BU, 0.0 
Praveen, 34.0, JavaFX BU, 1.0 
Lawrence, 34.0, JavaFX BU, 2.0 
Steve, 34.0, JavaFX BU, 3.0 
 

In Listing 9-15, we create four instances of the Employee class and bind the department name to the 
deptName variable. So initially, all four instances are created with JavaFX as the department name. That's 
what you see in the output. Then we change the deptName value to JavaFX BU, and you see that all four 
instances are getting updated to the new department name. 

This example demonstrates binding at the object level. However, it is also possible to define the 
binding at the class level so that it applies to all the objects created. Listing 9-16 is an example showing 
how class-level binding is achieved for members of the class. 

Listing 9-16. Class-level binding 

class Cube { 
    var x: Number; 
    var y: Number; 
    var z: Number; 
    var area: Number = bind x * y * z; 
} 
 
var c1 = Cube { 
    x: 10 
    y: 10 
    z: 10 
} 
var c2 = Cube { 
    x: 2 
    y: 2 
    z: 2 
} 
println(c1.area); 
println(c2.area); 
c1.x = 11; 
c2.y = 4; 
println(c1.area); 
println(c2.area); 



CHAPTER 9 ■ DATA BINDING 

 

168 

 
Output 

1000.0 
8.0 
1100.0 
16.0 

 
As you see in the output of this example, the variable area is a multiplication of x, y, and z across all 

instances of Cube, so there is no need to define it once per each instance. Changing the x, y, z values of 
the cube would automatically recalculate the value of area for the respective instance of the class. 

What we have seen here is an attribute-level binding within the class or instance. However, this 
would not be possible in certain cases, such as when the respective attribute is a public-init attribute. 
Such objects are described as immutable, and public-init attributes can only be initialized once and 
cannot be bound or assigned. Binding would still be possible in such cases, but in that case the entire 
object has to be bound . Let's see how this works; Listing 9-17 shows the code. 

Listing 9-17. Binding immutable objects 

class MyCircle { 
    public-init var centerX: Number; 
    public-init var centerY: Number; 
    var radius: Number; 
    
    init { 
        println("Init Called"); 
    } 
    override function toString() { 
        "centerX: {centerX}, centerY: {centerY}, radius: {radius}"; 
    } 
} 
 
var cx = 100.0; 
var cy = 100.0; 
var r = 50.0; 
 
var circleObj = bind MyCircle { 
    centerX: cx 
    centerY: cy 
    radius: r 
} 
 
println(circleObj); 
cx = 200; 
println(circleObj); 
cy = 200; 
println(circleObj); 
r = 30; 
println(circleObj);    

 



CHAPTER 9 ■ DATA BINDING 

 

169 

Output 
Init Called 
centerX: 100.0, centerY: 100.0, radius: 50.0 
Init Called 
centerX: 200.0, centerY: 100.0, radius: 50.0 
Init Called 
centerX: 200.0, centerY: 200.0, radius: 50.0 
Init Called 
centerX: 200.0, centerY: 200.0, radius: 30.0 

 
In this example, we have used the bind keyword not for the attribute but for the whole instance. This 

means that whenever there is a change in the values of cx, cy, or r, the whole object would be recreated 
and returned, since the individual attribute values cannot be changed. So as you see in the output, the 
init is called whenever we change the cx, cy, or r values, which indicates that a new object is being 
created. thus, init can be considered an equivalent of a constructor in a Java class that is called for every 
object creation. 

There are many built-in immutable objects like this in the JavaFX APIs, such as Font, 
RadialGradient, LinearGradient, and so on, and this type of binding will come handy when dealing with 
those objects. 

■ Note Always keep in mind that object creation and disposal are costly operations, especially when there are 
more members in the class such as attributes and functions. Hence, this kind of binding must be used with 
caution since the whole object is recreated every time an attribute value changes. 

Bidirectional Binding 
So far we have only seen unidirectional binding, in which the expression on the right side is bound to the 
target variable on the left, and any change in the expression causes the target variable to change. This is 
unidirectional binding and all the examples we have seen so far are of this type. Bidirectional binding is a 
type of binding in which the variables on both the sides listen to each other's changes and change 
themselves accordingly. This way, the variables on the left and right sides always remain in sync, as 
shown in Figure 9-2. 

 

Figure 9-2. Bidirectional binding 

The syntax of bidirectional binding is as follows: 
 

var x = bind y with inverse 



CHAPTER 9 ■ DATA BINDING 

 

170 

 
When the y value changes, the x value also changes, and vice-versa. Listing 9-18 is an example that 

demonstrates bidirectional binding. 

Listing 9-18. Bidirectional binding 

var name = "JavaFX"; 
var name1 = bind name with inverse; // indicates bidirectional binding 
println(name1); 
name = "Java"; 
println(name1); 
name1 = "C++"; 
println(name); 
println(name1); 

 
Output 

JavaFX 
Java 
C++ 
C++ 

 
In Listing 9-18, please note that the name1 variable is bound to name using with inverse, which 

means that if name changes, name1 will also change, and if name1 changes, name will likewise change. Also 
note the line name1 = "C++". The println after this line indicates that both name and name1 have changed 
to C++. If the binding were unidirectional, name1 = "C++" would have resulted in a runtime error, saying 
“cannot assign to bound variable.” 

IMPORTANT POINTS TO REMEMBER 

There are three important points to keep in mind about bidirectional binding: 

 

Currently bidirectional binding is limited to objects and variables and not expressions. That's 
because the variables on both the left and the right must be assignable, and you cannot have an 
expression in place of variables, since no value can be assigned to an expression. This perhaps makes 
bidirectional binding less interesting for local variables, but it would be very useful in the case of objects. 

Listing 9-19 shows an example of how bidirectional binding works with object literals. 

1. Bidirectional binding is implemented using the keywords with inverse. 

2. One can assign to a bound variable if it is bound using with inverse. 
Unidirectional binding would normally throw an exception in this case. 

3. When binding bidirectionally, it is better to use var instead of def since def 
variables cannot be assigned any value directly and might defeat the purpose of 
bidirectional binding. 



CHAPTER 9 ■ DATA BINDING 

 

171 

Listing 9-19. Bidirectional binding with objects 

class XY { 
    var x: Number; 
    var y: Number; 
    override function toString() { "x: {x}, y: {y}" } 
} 
def pt1 = XY { 
    x: 10 
    y: 10 
} 
def pt2 = XY { 
    x: bind pt1.x with inverse 
    y: 0 
} 
 
println(pt1); 
pt1.x = 20; 
println(pt2); 
pt2.x = 30; 
println(pt1); 

 
Output 

x: 10.0, y: 10.0 
x: 20.0, y: 0.0 
x: 30.0, y: 10.0 
 

Listing 9-19 is a classic example of how bidirectional binding works with object literals. As you see in 
the code, there are two instances of the XY class, and the x attribute of one of them is bound to the other. 
First pt1.x is changed, and that actually changes pt2.x. After that, pt2.x is changed, which changes 
pt1.x. 

Because bidirectional binding is limited to just variables, it cannot be used with many of the 
expressions for which unidirectional binding works, such as the following: 

• for expressions 

• Conditional expressions 

• Block expressions 

• Arithmetic expressions 

• Function expressions 

Even though bidirectional binding looks fairly limited, it can still be very useful with objects and 
primitive types. 

With bidirectional binding, you can also create a chain of bound objects up to any level, where one 
value change will trigger a sequence of changes in the chain of bound variables. Listing 9-20 is an 
example of bidirectional multi-level binding. 



CHAPTER 9 ■ DATA BINDING 

172 

Listing 9-20. Bidirectional multi-level binding 

var x1 = 10; 
var y1 = bind x1 with inverse;
var z1 = bind y1 with inverse; 

println("x1: {x1} y1: {y1} z1: {z1}");
x1 = 20; 
println("x1: {x1} y1: {y1} z1: {z1}");
y1 = 30; 
println("x1: {x1} y1: {y1} z1: {z1}");
z1 = 40; 
println("x1: {x1} y1: {y1} z1: {z1}"); 

Output 
x1: 10 y1: 10 z1: 10
x1: 20 y1: 20 z1: 20
x1: 30 y1: 30 z1: 30
x1: 40 y1: 40 z1: 40 

As you can see, x1, y1 and z1 are bound to one another, and any change in any of those values
causes all other variable values to change. 

Lazy vs. Eager Binding 
So far what we have seen is eager binding, where regardless of whether the target variable is used or not,
the bound expression will be recalculated when there is a change in the bound expression. But there is
another type of binding, called lazy binding, where the recalculation will occur only when the target
variable is accessed. Prior to JavaFX 1.3, it was left to the application developer to decide whether to go
with eager or lazy binding, and if the developer chose to go with lazy binding, the expression had to be
marked with the lazy keyword. 

Syntax 
var <varname> = bind lazy <expr> 

However, in JavaFX 1.3 the compiler has undergone lot of optimization and has the ability to choose
eager or lazy binding depending on the expression being bound. Lazy binding offers high performance
benefits and hence is made the default in JavaFX 1.3, so you don't have to specify the lazy keyword
anymore. While it is said to be the default, there are places where lazy binding cannot be employed,
especially if the value of a bound expression is consumed immediately within a trigger defined on the
bound expression. Triggers are covered later in this book, but essentially, a trigger is a block of code,
defined on a variable within the on replace block, that is executed whenever the value of the variable
changes. 

So when a bound expression changes, the value of the target variable changes and thus its trigger
will immediately be called to consume the changed value. In such cases, the JavaFX compiler employs
eager binding. So if you really want your binding to be eager for any reason, define a trigger on the target
variable. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 9 ■ DATA BINDING 

 

173 

Let us see the exact difference between eager and lazy binding with a simple example. First,  
Listing 9-21 demonstrates lazy binding. 

Listing 9-21. Lazy binding 

var x = 10; 
var val = bind multiplyByTen(x); 
for (i in [1..4]) x ++; 
println("val: {val}"); 
 
function multiplyByTen(y: Integer):Integer { 
    println("function called {y}"); 
    y * 10; 
} 

 
Output 

function called 14 
val: 140 

 
In this example, there is a function that is bound to a target variable, val, and takes a single 

argument, x. So in theory, multiplyByTen() is supposed to be called whenever the x value changes. This 
was the case prior to JavaFX 1.3. But with 1.3, the compiler optimizes this scenario to see if the returned 
value of the function is actually being consumed anywhere; it performs this check every time the 
function is invoked. In this case, we are just incrementing the x value five times, but the target value val 
(the consumer of the function's output) is not being used anywhere. So the compiler continues with 
incrementing x without calling the function. Finally, when we print the value of val, at that time the 
function is called with the last value of x, which is 14, and gets a return value of 140 from the function. 

So by default, the bound expression is not evaluated immediately when one of its elements changes. 
Instead, it is evaluated when the result of the expression is being consumed, and that's what is called 
lazy binding. 

However, if you want to restore the pre-1.3 behavior of eager evaluation, you will have to define a 
trigger on the target variable. Let us modify the previous example to make the evaluation eager, restoring 
pre-JavaFX1.3 behavior; Listing 9-22 shows the code. 

Listing 9-22. Eager binding 

var x = 10; 
var val = bind multiplyByTen(x) on replace { 

        // Any code that may consume val, validate val 
    }; 
    for (i in [1..4]) x ++; 
    println("val: {val}"); 
 
    function multiplyByTen(y: Integer):Integer { 
        println("function called {y}"); 
        y * 10; 
    } 

 



CHAPTER 9 ■ DATA BINDING 

 

174 

Output 
function called 10 
function called 11 
function called 12 
function called 13 
function called 14 
val: 140 

 
In this example, we have used triggers (on replace), a feature that you’ll learn about in Chapter 11. 

For now, just remember that the block after on replace is executed whenever the value of the variable 
val changes. When you compare Listings 9-21 and 9-22, the only difference is the addition of the on 
replace clause to the bound expression, and you can see the difference in the output—the function is 
invoked for every change of x. The trigger indicates that the output of the bound expression is likely to be 
consumed almost immediately when an element of the expression changes, and so the compiler 
employs eager binding in this case. 

So wherever you need eager binding, define a trigger on the bound expression. 
Lazy binding makes execution far more optimized by minimizing the unnecessary evaluation of 

bound expressions for every bit of change, and in the process offers much better performance for your 
applications. 

Summary 
Binding is one of the most powerful features of JavaFX; it has the potential to simplify your code 
drastically when used wisely. It is commonly used to keep your UI in sync with the back-end model 
easily, which otherwise would have to be coded explicitly through listeners. You will see more examples 
of this in Chapter 12, “Introduction to JavaFX Graphics.” 

The success of binding depends on how judiciously it's been used in the application. Although it is 
one of the most powerful features in JavaFX, it often comes with a price in terms of performance, and 
indiscriminate use of bind can significantly bring down the performance of your application. JavaFX 1.3+ 
has far more performance optimizations, such as lazy evaluation of bound expressions by default, but 
still striking a good balance between the bind usage and the potential performance trade-offs is critical 
to the success of your RIA. 

Nonetheless, binding when used appropriately will significantly ease development and help you 
avoid writing a lot of unnecessary code that would otherwise be needed to keep your UI objects in sync 
with the changing data in the back-end. 
 



C H A P T E R  10 
 

■ ■ ■ 
 

175 

Sequences 

A JavaFX Script sequence is a special kind of data structure that, like an array in Java, represents an 
ordered list of items of the same type. But unlike Java arrays, JavaFX Script sequences are not objects. 
Like arrays, however, they hold elements (individual items in the sequence) of the same type. 

 
Syntax 

var sequence_name : datatype[]; 

or 

var sequence_name : datatype[] = [value1, value2 .. value n]; 

or  

var sequence_name = [value1, value2 .. value n]; 
 
The examples in Listing 10-1 show several ways to create and initialize a sequence. 

Listing 10-1. Different ways of defining a sequence 

1.    var emptySequence : Integer[]; 
2.     println(emptySequence);    // []  
3. 
4.    var intSequence : Integer[] = [2,4,6,8,10]; 
5.    println(intSequence);        // [ 2, 4, 6, 8, 10 ] 
6. 
7.    var inferenceSequence = ["Praveen", 'Girish' ,"Cheran" , 'Rabi' , "Lawrence" ]; 
8.    println(inferenceSequence);    // [ Praveen, Girish, Cheran, Rabi, Lawrence ] 
 

In line 1 we create an empty sequence, which is represented as brackets: [ ]. In line 4 we define an 
Integer sequence named intSequence and initialize it. As you can see, a sequence is initialized by 
specifying its elements within the brackets. In line 7, we define an Inference-type sequence called 
inferenceSequence; this sequence holds String elements. 



CHAPTER 10 ■ SEQUENCES 

 

176 

The sizeof Operator 
After creating a sequence, we commonly need to know the number of elements it holds. So JavaFX Script 
provides a unary operator called sizeof, which returns the number of elements in a sequence. 

 
Syntax 

sizeof sequence name; 
 
The example in Listing 10-2 demonstrates the usage of the sizeof operator. 

Listing 10-2. Using the sizeof operator 

1.    var emptySequence:Integer[]; 
2.    println("sizeof emptySequence = {sizeof emptySequence }"); // sizeof emptySequence = 0 
3. 
4.    var inferenceSequence = ["Praveen",'Girish', "Cheran" , 'Rabi' , "Lawrence" ]; 
5.    println("sizeof inferenceSequence = {sizeof inferenceSequence}"); // sizeof 
inferenceSequence = 5 
 

Line 2 prints 0 for emptySequence, since it doesn't have any elements, and line 5 prints the size of 
inferenceSequence as 5, since that variable holds five elements. 

Accessing the Elements of a Sequence 
Once you create a sequence, you may need to access its elements, either in a specific order, such as from 
the first element to the last, or randomly. You access an element of a sequence by specifying its index 
within square brackets ([ ]). 

 
Syntax 

sequence_name[index] ; 
 

The example in Listing 10-3 demonstrates how to access the elements of a sequence. 

Listing 10-3. Accessing the elements of a sequence 

1.    var teamMembers : String[] = [ 
2.        "Praveen", "Lawrence", "Girish","Rabi","Cheran","Srini","Blessan" 
3.    ]; 
4.    println("My team members");        // My team members 
5.    for( i in [0.. sizeof teamMembers - 1] ) 
6.    println(teamMembers[i]);    //     Praveen 
                                         Lawrence 
                                         Girish 
                                         Rabi 
                                         Cheran 
                                         Srini 
                                         Blessan 



CHAPTER 10 ■ SEQUENCES 

 

177 

 
In Listing 10-3, we declare a String sequence teamMembers. Each element of the sequence is accessed 

using its index, as in line 12. To access the element, we have used a for range expression, which starts 
from zero and ends with sizeof teamMembers -1. 

 
Alternatively, you can use the following statements to access the elements of the sequence: 

for( i in names  ) 
println(i); 

 
Elements of a sequence can also be accessed randomly. For example, if you want to access the third 

element of the teamMembers sequence, you specify it as teamMembers[2], which returns the value girish. 

■ Note Sequences are “zero based,” which means they always starts from zero and end with a value of sizeof the 
sequence minus 1. For example, if the sequence has 100 elements, the first element is accessed by sequence[0] 
and the last element by sequence[99]. 

Nested Sequences 
You might come across a situation where you need to combine sequences. When you do this, the JavaFX 
Script compiler automatically flattens all the sequences to form a single sequence. 

The example in listing 10-4 demonstrates the nesting of sequences. 

Listing 10-4. Sequence nesting 

1.    var numSeq1 : Integer[] = [1,2,3]; 
2.    var numseq2 : Integer[] = [6,7,8,9,10]; 
3.    var numSeq3 : Integer[] = [ numSeq1 , 4,5, numseq2 ]; 
4.    println(numSeq1);    // [ 1, 2, 3 ]     
5.    println(numSeq2);    // [ 6, 7, 8, 9, 10 ] 
6.    println(numSeq3);    // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] 

 
First we declare three sequences. The last sequence (numSeq3) holds numSeq1 and numSeq2 as 

individual elements (to form a nested sequence), as well as its own elements. When JavaFX Script 
executes line 3 it flattens numSeq1 and numSeq2 to form a single sequence, (numSeq3). This can be seen in 
the line 6 output statement. 



CHAPTER 10 ■ SEQUENCES 

 

178 

Creating a Sequence Using a Range Expression 
Range expressions can be used to create either Integer or Number sequences. You have already seen 
range expression in Chapter 4, “Operators and Expressions.” Usually a range expression consists of a 
starting number, ending number, and optional step value. The step value may be either positive or 
negative (depending on the requirement); the default step value is 1. 

 
Syntax 

var sequence_name: datatype[] = [start value ..end value  step value]; 
 
The example in Listing 10-5 demonstrates how to create sequences using range expressions. 

Listing 10-5 . Creating sequences using range expressions 

1.    var intSeq : Integer[] = [1..10]; // default step positive 1 
2.    println(intSeq );    // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] 
3.    var intSeq1 : Integer[] = [0..100 step 10]; // step  10 
4.    println(intSeq1);    // [ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 ] 
5.    var emptySeq : Integer[] = [100..0];  //empty sequence, since step is missing 
6.    println(emptySeq);    // [ ] 
7.    var intSeq2 : Integer[] = [100..0 step -10 ];  
8.    println(intSeq2);    // [ 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0 ] 
9.    var numSeq : Number [] = [0.5 .. 5.0 step 0.5];  //  number sequence 
10.    println(numSeq);    // [ 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 ] 
 

In line 1, we declare an intSeq sequence whose value ranges from 1 to 10. Since we have not 
specified the step value, its default value of 1 is used. In line 3, we declare an intSeq1 sequence, whose 
value ranges from 0 to 100 with a step value of 10. Next, in line 5, we declare an emptySeq sequence, 
whose range of values is from 100 to 0. Since the starting number of the range is greater than the end 
number and we have not specified the step value of this sequence, the result of this range expression is 
zero; hence, the sequence is empty. To avoid this type of empty sequence creation, it is mandatory to 
specify the step value of the range expression used to create the sequence. The correct version of the 
empty sequence is specified in line 7, with the sequence creation intSeq2. Finally, line 9 shows a Number 
sequence whose range value is from 0.5 to 5.0 with the step value of 0.5. 

When you compile the code in Listing 10-5, you will encounter a warning that the expression will 
return an empty sequence. 

■ Note It’s a good practice to specify the step value when creating a sequence using a range expression. 



CHAPTER 10 ■ SEQUENCES 

 

179 

Excluding the End Value in the Sequence 
Until now, the sequences that you have created using range expressions included the end value that you 
specified in the range expression. In some situations, you may need to exclude the end value when 
creating a sequence using a range expression. To do this, use two dots and a less-than relation operator 
(..<) in the range expression. 

 
Syntax 

var sequence_name :  datatype [] = [start value .. end value  step value]; 
 
The example in Listing 10-6 demonstrates how to create a sequence that excludes the end value of 

its range expression. 

Listing 10-6. Creating a sequence that excludes the end value of the range expression 

1.    var intSeq  : Integer[] = [1..< 10];  
2.    println(intSeq ); // output [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] 
3.    var intSeq1 : Integer[] = [0..< 90 step 10];  
4.    println(intSeq1); // output [ 0, 10, 20, 30, 40, 50, 60, 70, 80 ] 
 

In this example, we declare two sequences and create them using range expressions. In line 1, we 
have a range expression generating numbers from 1 to 10. While generating the range numbers from 1 to 
10 each time, the JavaFX Script compiler checks the condition that generated numbers must be less than 
10. Once the generated number reaches 10, then your range expression is stopped, since the condition 
has failed and the resulting sequence range is from 1 to 9. In line 3, we declare a sequence whose range 
number is from 0 to 80 with the specified step value of 10. This sequence holds the decade values from 0 
to 80, since the condition for this range expression is < 90 and the step value is 10. 

Sequence Slicing 
Sequence slicing provides access to portions of a sequence. That is, using this technique you create from 
an existing sequence either a new sequence or an expression that evaluates to a sequence. The newly 
created sequence elements will be within the range, or equal to the existing elements, of the existing 
sequence. Usually sequence slicing consists of a sequence name (the existing sequence) or another 
expression that evaluates to a sequence, followed by a pair of square brackets which has a starting index 
with an optional ending index separated by two dots (..) or two dots with a less-than relational operator 
(..<). If the ending index is omitted, JavaFX Script interprets it as accessing all the elements of the 
sequence started from the specified starting index to the sizeof the sequence minus one. 

The example in Listing 10-7 demonstrates sequence slicing. 

Listing 10-7. Sequence slicing 

1.    var s1 = [0..8];    // [0,1,2,3,4,5,6,7,8] 
2.    var s2 = s1[4..]; 
3.    println(s2);        // [4,5,6,7,8] 
4.    var s3 = s1s2[0..<]; 
5.    println(s3);        // [0,1,2,3,4,5,6,7 ] 

 



CHAPTER 10 ■ SEQUENCES 

 

180 

In line 1, we declare a sequence s1, which holds the values from 0 to 8. In line 2, we are creating a 
new sequence (s2) from s1, and we are instructing the JavFX Script compiler to access all the elements of 
sequence s1 starting from index 4 to the sizeof s1 minus one. In line 4 we are creating a new sequence 
s3 from s2, in which we access all the elements of s2 starting from index 0 to the last element of s2 
sequence; that is, from s2[0] to s2[sizeof s2-1]. 

Using a Predicate to Create a Subset of a Sequence 
A predicate is a Boolean expression used to create a new sequence that is a subset of an existing 
sequence. 

 
Syntax 

var newSequence = existingSequence[variable | Boolean expression]; 
 

Here, existingSequence is the name of the existing sequence from which you are going to create a 
new sequence, which will be a subset of existingSequence, and assign it to newSequence. Notice the pair 
of square brackets ([ ]) that enclose a predicate in the format of a selection variable. Here, variable is 
just a placeholder within the square brackets that helps the compiler to evaluate Boolean expression. 
The vertical bar | character is used to visually separate the variable from Boolean expression. Finally, 
the Boolean expression specifies the criteria to be met before the current item will be copied into the 
new sequence. 

The example in Listing 10-8 demonstrates creating a new sequence from an existing sequence using 
predicates. 

Listing 10-8. Creating a new sequence from an existing one using predicates 

1.    var integerSequence : Integer[] = [1..10 ]; 
2.    println(integerSequence);    // [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]  
3.    var subSequence1 = integerSequence[ n | n > 5 ]; 
4.    println(subSequence1);        // [ 6, 7, 8, 9, 10 ]  
5.    var subSequence2 = integerSequence[ n | n < 5 ]; 
6.    println(subSequence2);        // [ 1, 2, 3, 4 ]  
7.    var subSequence3 = integerSequence[ n | indexof n > 4 ]; 
8.    println(subSequence3);        // [ 6, 7, 8, 9, 10 ]  
9.    var subSequence4 = integerSequence[ n | indexof n < 2 or indexof n > 7 ]; 
10.    println(subSequence4);        // [ 1, 2, 9, 10 ]  
11.    var emptySequence = integerSequence[ n | n > 10 ]; 
12.    println(emptySequence);     // [ ] 

■ Note The difference between sequence slicing and sequence predicates is that in sequence slicing, a range 
expression is used to create a new sequence, whereas in sequence predicates the vertical bar and a Boolean 
expression are used to create a new sequence from an existing one. 



CHAPTER 10 ■ SEQUENCES 

 

181 

Working with Sequences 
So far, you have created sequences either by explicitly specifying the elements of the sequence or by 
using range expressions. JavaFX Script also allows you to insert and delete the elements of the sequence 
dynamically. The following operations can be performed on a sequence: 

• Inserting elements into the sequence 

• Deleting elements from the sequence 

• Reversing a sequence 

Inserting an Element into a Sequence 
An element can be inserted into a sequence dynamically using the insert and into keywords. 

 
Syntax 

insert element into sequence_name; 
 
var  seq : Integer [] ; 
insert 120 into seq; 
insert 45 into seq; 
 

In these statements we first create an empty Integer sequence, seq. in the later statements we insert 
the values 120 and 45 into the seq sequence. By default, elements are inserted at the end of a sequence. 
So when you print the seq sequence, you see the following output on the console: 

 
[ 120 , 45 ] 

 
Suppose you want to insert an element 75 as the first element of the sequence seq. To do that, you 

can use the following syntax: 
 

Insert element before sequence_name[ index ] ; 
 

insert 75 before seq[0]; 
insert 99 before seq[2];  

 
In these statements, we are inserting the value 75 as the first element (seq[0]) and value 99 as the 

third element ( seq[2]). We do this by using the keyword before and specifying the index within the 
sequence where we want to insert. The before keyword instructs JavaFX Script that you need to insert 
the element before the specified index in the sequence. When you print this seq sequence, you’ll see the 
following output on the console: 

 
[ 75, 120, 99, 45 ] 

 
You can insert an element after a specified element in a sequence; this is done using the keyword 

after. 
 
Syntax 

insert element after sequence_name[index]; 



CHAPTER 10 ■ SEQUENCES 

182 

For example, in the following statements: 

insert 67 after seq[1];
insert 78 before seq[1]; 

we are inserting 67 as the third element and 78 as the last element of the sequence seq. The final
output of the seq sequence is as follows: 

[ 75, 120, 67, 99, 45, 78 ] 

An element or value can also be inserted into a sequence by specifying a negative index. 
The examples in Listing 10-9 show how to insert elements into a sequence by specifying the index in 

different forms. 

Listing 10-9. Different ways of inserting elements into a sequence dynamically 

1.    var nums = [0..10]; 
2.    insert 65 after nums[sizeof nums+1]; 
3.    insert 23 after nums[sizeof nums]; 
4.    insert 77 after nums[sizeof nums - 1]; 
5.    insert 21 before nums[5]; 
6.    insert 97 after nums[0]; 
7.    insert 6 before nums[-1]; 
8.    insert 54 after nums[-2]; 
9.    println(nums);        // [ 54, 6, 0, 97, 1, 2, 3, 4, 21, 5, 6, 7, 8, 9, 10, 65, 23, 77
] 

We are not restricted to inserting only a single element into a sequence; we can also insert a
sequence into an existing sequence. The resulting sequence will be flattened, as you learned in the
“Nested Sequences” section of this chapter. 

The example in Listing 10-10 demonstrates how to insert a sequence as an element into another
sequence. 

Listing 10-10. Inserting a sequence as an element into a sequence 

1.    var num : Integer[] = [1..4]; 
2.    var num1 : Integer[] = [5..10]; 
3.    insert num1 after num[2]; 
4.    println(num);         // [ 1, 2, 3, 5, 6, 7, 8, 9, 10, 4 ] 

In this example, we declare two sequences, num and num1, using range expressions. In line 3 , we are
inserting the num1 sequence after num[2]. 

Deleting an Element from a Sequence 
Element of a sequence can be deleted dynamically, using the delete keyword. Following are different
ways of deleting elements from a sequence: 

i

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 10 ■ SEQUENCES 

 

183 

• Specifying the element of the sequence. 

• Specifying the index of the element in the sequence. 

• Deleting the whole sequence. 

• Deleting the elements using range expression. 

 
Syntax 

delete element from sequence_name; 
delete     sequence_name[index]; 
 

The examples in Listing 10-11 demonstrate various ways of deleting elements from a sequence. 

Listing 10-11. Ways of deleting elements from a sequence 

1.    var fruits : String [] = ["Applet" , "Mango" , "Orange", "Grapes"]; 
2.    delete "Mango" from fruits;   // deleting the element by specifying the element 
itself. 
3.    delete fruits[1]; // deleting the element by specifying the index of the element 
4.    println(fruits);      // [ Applet , Grapes ]  
 

In line 1, we declare a String sequence named fruits with four elements. In line 2, we are deleting 
an element Mango from the sequence fruits; here from is a keyword that specifies from which sequence 
you are deleting the element. In line 3 , we are deleting the element by specifying its index within the 
sequence. 

You can delete all of the elements in the sequence by specifying just the delete keyword followed by 
the sequence name, as in this example: 

 
var fruits : String [] = ["Applet" , "Mango" , "Orange", "Grapes"]; 
delete fruits ;  
 

Alternatively, you can use the following statement to delete all the elements of the sequence: 
 
fruits = []; 
 

You have learned how to create an Integer or Number sequence using a range expression. However, 
there may be situations where you need to delete a portion, or subset, of the sequence. In the previous 
the example of the fruits sequence, if you need to delete all the elements except Grapes, you can use the 
following statements: 

 
delete fruits[0..2]; 

■ Note The delete command only removes elements from the sequence; it does not delete the sequence from 
your script. You can still access the sequence and add new items to it as before.  



CHAPTER 10 ■ SEQUENCES 

 

184 

Reversing a Sequence 
JavaFX Script provides the reverse operator to reverse the order of elements in a sequence. The reverse 
operator produces a new sequence that contains the same elements as the original sequence but in 
reverse order. 

 
Syntax 
var sequence = reverse existingSequence; 
 
The example in Listing 10-12 demonstrates how to reverse a sequence. 

Listing 10-12. Reversing a sequence 

1.    var namesSeq : String[] = ["Lawrence" , "Yinhe" , "Praveen" , "Vimala Anne"]; 
2.    var reversedNameSeq = reverse namesSeq; // returns the reversed sequence of namesSeq 
3.    println(reversedNameSeq);    // [ Vimala Anne, Praveen, Yinhe, Lawrence ] 

 
Here, line 2 returns the reverse of sequence nameSeq to reversedNameSeq. This new sequence has the 

same elements as namesSeq but in the reverse order. 

Sequences as Function Parameters 
Unlike Java and its handling of arrays, JavaFX Script allows sequences to be used as function parameters. 
When a sequence is sent as a parameter to a function, its elements are read-only, like any other 
parameter to the function. That is, trying to change the elements of the sequence, inserting and deleting 
them dynamically, will result in a compile-time error. A script-level, package-level sequence can be 
accessed by any function. Sequences defined within a function, by contrast, cannot be accessed outside 
the function. 

The example in Listing 10-13 demonstrates the implementation of a stack using a sequence; the 
sequence is passed as a parameter to the function. 

Listing 10-13. Implementing a stack using a sequence, by passing the sequence as a parameter to the 

function 

1.    var stack: Integer[]; 
2.    function push(value : Integer){     
3.        insert value into stack; 
4.    } 
5.     
6.    function pop( ) { 
7.        if(sizeof stack == 0 ){ 
8.            println("Stack underflow"); 
9.        }else { 
10.            delete stack[sizeof stack -1]; 
11.        } 
12.    } 
13. 



CHAPTER 10 ■ SEQUENCES 

 

185 

14.    function currentStackContent(stk : Integer[] ) { 
15.        print(reverse stk);     
16.    } 
17. 
18.    function peak() { 
19.        if(sizeof stack == 0 ){ 
20.            println("Sorry..! there are no elements in the stack."); 
21.        }else { 
22.            println("\n { stack[sizeof stack -1] } is the topmost element 
23.            in the stack."); 
24.        } 
25.    } 
26. 
27.    push(5); 
28.    push(3); 
29.    push(45); 
30.    push(25); 
31.    push(98); 
32.    println("Content of the stack");    // Content of the stack 
33.    currentStackContent(stack);        // [ 98, 25, 45, 3, 5 ] 
34.    pop(); 
35.    peak();        //  25 is the topmost element in the stack. 
36.    pop(); 
37.    println("Content of the stack");    // Content of the stack 
38.    currentStackContent(stack );        // [ 45, 3, 5 ] 
 

In Listing 10-13, the function push inserts an element into the stack; for each call of the push function 
the element is inserted at the end of the stack Integer sequence. The function pop deletes the last 
element of the stack using the sizeof operator before deleting the element, because we are checking for 
the availability of the element in the stack sequence. If the element is available, then the last element of 
the stack sequence is deleted. The function peep is used to check the last element of the stack sequence. 
The final and most interesting function is currentStackContent. It is used to display the elements of the 
stack sequence in reverse order (elements are printed in reverse order to achieve the last-in, first-out 
concept of stack implementation), where the sequence is sent as the parameter of the function, so that 
stack sequence is not modified. 

Functions can also return a sequence as a return value. Let’s modify the curentStackContent 
function so that it can return the reversed sequence. 

 
function currentStackContent(stk : Integer[] ) : Integer[] { 
    return reverse stk; 
} 

 
Function calls to currentStackContent should be modified accordingly. 



CHAPTER 10 ■ SEQUENCES 

 

186 

Binding with Sequences  
Unlike binding a variable, it is common to bind a sequence in JavaFX Script. When a variable is bound to 
an individual element of a sequence, any change either to the value of the element or its position (for 
example, when an element is inserted or deleted) is reflected in the bound variable. 

The example in Listing 10-14 demonstrates how an element of a sequence is bound to a variable. 

Listing 10-14. Binding an element of a sequence to a variable 

1.    var seq = [10, 20, 30]; 
2.    var z = bind seq[1];    // z is bound to seq[1]  
3.    println(seq);        // [ 10,20,30 ] 
4.    println("z={ z }");    // z=20 
5.    insert 55 before seq[1]; 
6.    println(seq);        // [10,55,20,30 ] 
7.    println(" z={ z }");    // z=55 
8.    seq[1] = 38; 
9.    println(seq);        //[10,38,20,30] 
10.    println(" z={ z }");    //z=38 
11.    delete seq[1];     
12.    println(seq);        // [10,20,30] 
13.    println(" z={ z }");    // z=20 
 

In line 2, the variable z is bound to the second element of the seq sequence, seq[1]. When a new 
element is inserted at the second position of seq as in line 5 , the z value changes, reflecting the insertion 
of a new element at position seq[1]. The z value changes even when the element is updated, as in line 8. 

You know that a sequence can be created using a range expression; we can also bind the sequence 
values to the range expression, Any changes that apply to the range expression directly will reflect the 
values of the sequence. 

Listing 10-15 demonstrates how sequence values are bound to the range expression. 

Listing 10-15. Binding the sequence values to the range expression 

1.    var num = 5; 
2.    var seq1 : Integer[] = bind [1..num]; 
3.    println(seq1);    // [ 1,2,3,4,5 ] 
4.    num = 10; 
5.    println(seq1);    // [ 1,2,3,4,5,6,7,8,9,10 ] 
6.    num = 6; 
7.    println(seq1);   // [ 1,2,3,4,5,6 ] 

 
Here, the seq1 is bound to the range expression, which goes from 1 to the value of num. As the value 

of num changes, the seq1 sequence values also change, as in lines 1, 4, and 6. 
Just as binding can be applied between two variables, it can also be applied between two sequences. 

Any changes that occur to the source sequence, whether by inserting a new element, deleting an 
element, or any other change to the existing elements in the sequence, are reflected by changes in the 
destination sequence. In fact, even bidirectional binding can be applied between sequences, as 
demonstrated by the example in Listing 10-16. 



CHAPTER 10 ■ SEQUENCES 

 

187 

Listing 10-16. Binding applied between two sequences 

1.    var seq1  = [1..5]; 
2.    println(seq1);        // [ 1, 2, 3, 4, 5 ] 
3.    var seq2  = bind seq1 with inverse; 
4.    println(seq2);          // [ 1, 2, 3, 4, 5 ]  
5.    insert 100 before seq1[3]; 
6.    println(seq1);        // [ 1, 2, 3, 100, 4, 5 ] 
7.    println(seq2);        // [ 1, 2, 3, 100, 4, 5 ] 
8.    insert 555 into seq2; 
9.    println(seq1);        // [ 1, 2, 3, 100, 4, 5, 555 ] 
10.    println(seq2);        // [ 1, 2, 3, 100, 4, 5, 555 ]  
11.    delete 5 from seq1; 
12.    println(seq1);        // [ 1, 2, 3, 100, 4, 555 ]  
13.    println(seq2);        // [ 1, 2, 3, 100, 4, 555 ]  

javafx.util.Sequences Utility Functions 
The javafx.util.Sequences class in JavaFX Script contains various functions for manipulating 
sequences. All the functions in this javafx.util.Sequences class are nonmutative; that is, they do not 
change the input parameters, but create new instances for output. 

Following are the functions of the Javafx.util.Sequences class; you can see their descriptions 
in the API documentation: 

• sort(seq) 

• sort(seq,comparator) 

• binarySearch(seq, key); 

• binarySearch(seq,key,comparator) 

• indexByIdentity(seq,key) 

• indexOf(seq,key) 

• isEqualByContentIdentity(seq1, Seq2) 

• max(seq) 

• max(seq, comparator) 

• min(seq) 

• min(seq,comparator) 

• nextIndexByIdentity(seq,key,pos) 

• nextIndexOf(seq,key,pos) 

• reverse(seq) 

• shuffle(seq) 



CHAPTER 10 ■ SEQUENCES 

 

188 

Summary 
A sequence is an ordered list of items of the same type. In that respect sequences are like arrays in Java, 
but with the difference that in Java arrays are objects and in JavaFX Script sequences are not. Elements 
of a sequence always start from the zeroth index and end at sizeof the sequence minus 1. Elements of 
the sequence can be defined explicitly in the declaration statement by enclosing them within square 
brackets ([ ] ), or they can be inserted into the sequence dynamically using the insert keyword with the 
before and after keywords to specify a desired position. Likewise, elements of a sequence can be 
deleted using the delete keyword. Range expressions can be used to create a sequence. Sequence slicing 
provides access to portions (subsets) of a sequence. Predicates are Boolean expressions used to create a 
new sequence that is a subset of an existing sequence. A sequence can be reversed using the reverse 
keyword. Either a single element of the sequence or the whole sequence can be bound to a variable or to 
a sequence. Finally, the Javafx.util.Sequence class contains various functions for manipulating 
sequences. 

 
 



C H A P T E R  11 
 

■ ■ ■ 
 

189 

Triggers 

A trigger is a block of code that is attached to a variable and executed whenever the value of the variable 
changes, including the assignment of the initial value. You can also optionally get hold of the old values 
that were replaced within the trigger. Triggers are very powerful and unique in JavaFX Script, just like 
bind. Triggers can be attached to normal variables as well as to sequences. First let us see how triggers 
work for simple variables and then proceed to complicated triggers and sequence triggers. 

Defining a Simple Trigger 
Here is the typical syntax of a trigger defined on a variable: 

 
Syntax 

var <var name>[:data type] [= <initial value>] on replace [old value] { 
    // block of code to be executed on value change 
} 

or 

var <var name>[:data type] [= bind expr] on replace [old value] { 
    // block of code to be executed on value change 
} 
 

Up until on replace, both syntax forms are pretty much the same as any variable declaration. The on 
replace clause indicates that there is a block of code that must be executed whenever the value of var 
name changes. This is what is called a trigger. 

■ Note Please note that “trigger” is just the name of the feature and not a keyword as such. It is typically 
represented by on replace. 

Let us see a simple example of a trigger (Listing 11-1). 



CHAPTER 11 ■ TRIGGERS 

 

190 

Listing 11-1. SimpleTrigger.fx 

var name="Praveen" on replace { 
    println("Name has changed"); 
    println("New Name: {name}"); 
} 
name = "Lawrence"; 

 
Output 

Name has changed 
New Name: Praveen 
Name has changed 
New Name: Lawrence 

 
In this example, we are defining a trigger on a variable called name. Typically you would expect this 

trigger to be invoked when you change the value of name. But as mentioned in the introduction, assigning 
an initial value is also considered a change. Hence, first the trigger is called when the name variable is 
assigned the value praveen. That contributes to the first two lines of the output. Right after the 
declaration, you are changing the value of name to Lawrence. This is another change, so the same trigger 
gets called again, printing the last two lines of the output. 

At this point you may think that the trigger is called the first time because you are specifying an 
initial value yourself. That is not correct. It gets called even when the compiler assigns a default value. 

■ Note For any variable, regardless of whether there is an initial value specified by the programmer or not, the 
trigger gets called during the variable initialization. 

So even if you modify Listing-11-1 to the code shown in Listing 11-2, the trigger would still be called 
twice. 

Listing 11-2. SimpleTriggerWithoutInitialization.fx 

var name on replace { 
    println("Name has changed"); 
    println("New Name: {name}"); 
} 
name = "Lawrence"; 

 
Output 

Name has changed 
New Name: 
Name has changed 
New Name: Lawrence 

 



CHAPTER 11 ■ TRIGGERS 

 

191 

As you see in the output of Listing-11-2, the first two lines are printed when the trigger is executed 
while initializing the object; that's why you see no name printed on the second line of the output. The 
last two lines are printed because of the application-triggered change. 

A Trigger with Access to the Old Value 
Now if you want to access the old as well as the new value of the name variable, you can do that by 
changing the original Listing 11-1 code as shown in Listing 11-3. 

Listing 11-3. TriggerAccessOldVal.fx 

var name = "Praveen" on replace oldName { 
    println("Name has changed from old: {oldName} to new: {name}"); 
} 
name = "Lawrence"; 

 
Output 

Name has changed from old:  to new: Praveen 
Name has changed from old: Praveen to new: Lawrence 

 
In Listing 11-3, when the name is changed to a new value, the old value is assigned to the oldName 

variable before the trigger is called and passed to the trigger block. Note that oldName is just a variable 
name; it can be any name with which you want to access the old data of the variable. The oldName 
variable need not be declared upfront and can be implicit. However, please note that the scope of this 
variable is limited to the trigger block, and it cannot be accessed outside the block. Also note that this 
is like a final variable whose value cannot be modified within the trigger block. The sole purpose of this 
variable is to read the old value of the actual variable to which the trigger code is attached, and nothing 
beyond that. Trying to modify oldName within the trigger block would cause a compilation error. 

Also note that you may have a variable already defined with the same name (oldName) outside of 
the trigger definition; that will not conflict with the one used in the trigger definition. These two 
variables will be treated separately, as you can see in Listing 11-4. 

Listing 11-4. TriggerVarNameSpace.fx 

var oldName: String = "JavaFX"; 
 
var name = "Praveen" on replace oldName { 
    println("Name has changed from old: {oldName} to new: {name}"); 
} 
 
name = "Lawrence"; 
println("OLD NAME: {oldName}"); 

 
Output 

Name has changed from old:  to new: Praveen 
Name has changed from old: Praveen to new: Lawrence 
OLD NAME: JavaFX 

 



CHAPTER 11 ■ TRIGGERS 

192 

As you see in the output of Listing 11-4, the oldName you have defined outside the trigger does not
get changed, and what has been defined in the trigger definition is entirely a new variable. 

To summarize, the trigger functionality can be pictorially represented as shown in Figure 11-1. 

Figure 11-1. Triggers in JavaFX Script 

This diagram precisely represents the on replace clause that constitutes a trigger. As you can see, it
is the block between the first name clause and the last block clause. The use of sequences was explained
in Chapter 10, “Sequences.” The remaining clauses are pretty much self-explanatory. The first name
clause is actually the name of the variable that gets the old value of the variable to which the trigger is
attached. As you see in Figure 11.1, that name clause is optional, so you may choose not to get the old
value. 

Using Triggers with bind 
There is no correlation between a trigger and bind as such, apart from the fact that the value of the
variable changes through another variable or expression. Listing 11-5 shows a simple example of a
trigger with bind. 

Listing 11-5. TriggerWithBind.fx 

var w = 10; 
var h = 10; 
var d = 10; 
var isCube = true; 
var area = bind if (isCube) {w*h*d} else {w*h} on replace  oldVal { 
    println("Area Changed from: {oldVal} to {area}");
} 
w = 20; 
isCube = false; 
d = 20; 

Output 
Area Changed from: 0 to 1000
Area Changed from: 1000 to 2000
Area Changed from: 2000 to 200 

In this example, we have a variable area that is bound to a conditional expression and has a trigger
attached to it. As you learned in the binding chapter, the value of area changes whenever any of the
following changes: w, h, d, or isCube. The first line of the output is generated by the variable initialization.
The second line is due to the w value changing to 30. After that, we are changing the value of isCube,
which again causes a value change in area from w * h * d to w * h, yielding 200 (20 x 10). Next we are
changing the value of d, which does not cause the trigger to be executed, because the conditional
expression is evaluating the expression in the else part, which does not include d. So this behavior is
correct and expected. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 11 ■ TRIGGERS 

 

193 

Implementing Binding Using Triggers 
While binding can be combined with triggers, it is also possible to implement binding without actually 
using the bind keyword, using triggers. This kind of implementation is needed when you want the 
benefit of binding a variable to an expression without losing the flexibility of being able to assign some 
value directly to the variable. Let us see a simple example (Listing 11-6). 

Listing 11-6. BindUsingTriggersError.fx 

var x = 20; 
var y = 30; 
var sum = bind x + y on replace { 
    println("Sum: {sum}"); 
} 
x = 30; 
//sum = 100; // Runtime error 

 
Output 

Sum: 50 
Sum: 60 

 
In Listing-11-6, we are binding an expression (x + y) to sum, and whenever the x or y value changes, 

sum will be recalculated. However, if you want the flexibility of overriding the value of sum, it is not 
possible. The moment you assign some value to sum, the JavaFX Runtime will throw an error, saying you 
cannot assign to a bound variable. In this case, you cannot do a bidirectional binding, either, since there 
is an expression on the right side. You may recollect that bidirectional binding is limited to variables. 

So in this situation, it would be wise to hand-wire the binding yourself, using triggers. This way, you 
will have the flexibility to override the value of sum at any time. Let us modify Listing-11-6 to implement 
hand-wired binding using  triggers, as shown in Listing 11-7. 

Listing 11-7. BindUsingTriggers.fx 

var x = 20 on replace { 
        sum = x + y; 
} 
var y = 30 on replace { 
    sum = x + y; 
} 
var sum = x + y on replace { 
    println ("Sum: {sum}"); 
} 
x = 30; 
overrideSum(100); 
function overrideSum(val: Integer) { 
    sum = val; 
} 

 



CHAPTER 11 ■ TRIGGERS 

 

194 

Output 
Sum: 20 
Sum: 50 
Sum: 50 
Sum: 60 
Sum: 100 

 
In Listing 11-7, we have defined a trigger on x as well as y. So whenever the value of x or y changes, 

we recalculate the sum and assign it to the variable sum. So you pretty much get the same effect as if 
you’d entered bind x + y. At the same time, you are able to override the value of sum at any time, and 
here we are assigning a value of 100 through the overrideSum method. Perhaps, in a real-world API 
library, you could expose this method as public and the library user could actually override the value of 
sum if needed, from the application code while leveraging on the hand-wired binding. 

Similarly, you can implement bidirectional binding as well using triggers. Listing 11-8 shows simple 
binding code that uses bidirectional binding and demonstrates how you can implement it yourself 
without using bind. 

Listing 11-8. BidirectionalBind.fx 

var name:String; 
var name1 = bind name with inverse; 
name = "JavaFX"; 
println ("Name: {name}, Name1: {name1}"); 
name1 = "Java"; 
println ("Name: {name}, Name1: {name1}"); 
 

Output 
Name: JavaFX, Name1: JavaFX 
Name: Java, Name1: Java 

 
In this example, you see a simple bidirectional binding that binds two string variables, name and 

name1. If either of them changes, the other one also changes, as you see in the output. 
Now let us implement the same binding using triggers (Listing 11-9). 

Listing 11-9. BidirectionalBindUsingTrigger.fx 

var name:String on replace { 
    name1 = name; 
} 
var name1:String on replace { 
    name = name1; 
} 
name = "JavaFX"; 
println ("Name: {name}, Name1: {name1}"); 
name1 = "Java"; 
println ("Name: {name}, Name1: {name1}"); 

 
Output 

Name: JavaFX, Name1: JavaFX 
Name: Java, Name1: Java 



CHAPTER 11 ■ TRIGGERS 

 

195 

 
The output of Listing-11-9 looks exactly same as that of Listing 11-8, but as you see, Listing-11-9 

uses triggers to simulate the effect of bidirectional binding. When looking at the code, you may initially 
think that this would cause an infinite loop—after all, we are changing one variable from the other 
trigger, causing the triggers to be called indefinitely. However, that is not what actually happens. Please 
note that when name is changed to JavaFX, name's trigger is called, and it sets name1 to JavaFX as well. This 
in turn calls name1's trigger, which tries to set name back to JavaFX. But since name's value is already JavaFX, 
technically there is no change in name's value. Thus name's trigger won't be called in this case. 

■ Note A trigger is called only when there is a change in the value of the variable. If the variable is assigned the 
same value that it already holds, the trigger will not be called. In other words, if oldValue and newValue of a 
variable are the same, the trigger code is not executed. 

The implementation of unidirectional and bidirectional binding using triggers provides a lot of 
flexibility, and you will find it very useful and handy in dealing with situations that demand both the 
power of binding and the flexibility of overriding the value of the bound variable. This technique also 
allows bidirectional binding of expressions that cannot be bound with the conventional with inverse 
clause. 

Validation Within the Trigger 
Triggers can be used effectively for validating the values of the variables to which they are attached, 
before the value is used in other bound expressions. When a variable is assigned a value, its trigger gets it 
first, before it is consumed by other expressions, and hence provides an opportunity to validate the 
values and eliminate the unwanted ones. 

Listing 11-10 demonstrates a simple example of how to avoid a divide-by-zero scenario with 
triggers. 

Listing 11-10. TriggerValidation.fx 

var x: Number = 10; 
var y: Number = 5 on replace oldVal { 
    if (y <= 0) { 
        y = oldVal; 
        println("y value reset"); 
    } 
} 
 
var ratio = bind (x/y); 
println(ratio); 
y = 0; 
println(ratio); 

 



CHAPTER 11 ■ TRIGGERS 

 

196 

Output 
2.0 
y value reset 
2.0 

 
In this example, the variable ratio is bound to an expression (x/y). If the value of y happens to be 0, 

it would yield an undesirable ratio value of infinity. Hence it is important to validate the y value and reset 
it appropriately before the ratio is recalculated. The best way to do this is to define a trigger and check 
the value of y from within that trigger. If the Y value is not appropriate, you can revert back to oldVal. 
This change will cause another trigger call, of course. Triggers can be powerful validators of data values, 
providing an opportunity for the programmer to veto any value change. This is evident from the output, 
where y is reset to its old value when it is set to 0, and the value of ratio remains unchanged, since the y 
value has not changed, as needed to force a recalculation of the ratio expression (x/y). 

Sequence Triggers 
Triggers defined on a sequence are a little more complex than the triggers defined on a normal variable 
that we have seen so far. Defining a trigger within a  sequence has additional clauses that provide you 
wider access to the data changed in the sequence, from within the trigger. Let us go from a simpler 
trigger to more complicated examples. You may want to refer back to the diagram given in Figure 11.1 at 
this point. 

The syntax that we have used with normal variables is applicable to sequences as well. Listing 11-11 
shows an example of a trigger defined on a sequence. 

Listing 11-11. SequenceTrigger.fx 

var seq = ['A', 'B', 'C', 'D', 'E', 'F'] on replace oldValue { 
    println("Seq changed from {oldValue} to {seq}"); 
} 

1.   insert 'G' into seq; 
2.   delete 'C' from seq; 
3.   insert 'Z' before seq[0]; 
4.   seq[1] = 'V'; 
5.   seq[3..5] = ['H', 'J']; 
6.   delete seq[1..2]; 
 

Compile and run the code to see the following result. Note that (here and in the remaining 
examples) the line numbers are not part of the actual output; they are added for explanation. 

 
Output 

Seq changed from  to ABCDEF 
1.   Seq changed from ABCDEF to ABCDEFG 
2.   Seq changed from ABCDEFG to ABDEFG 
3.   Seq changed from ABDEFG to ZABDEFG 
4.   Seq changed from ZABDEFG to ZVBDEFG 
5.   Seq changed from ZVBDEFG to ZVBHJG 
6.   Seq changed from ZVBHJG to ZHJG 

 



CHAPTER 11 ■ TRIGGERS 

 

197 

In Listing-11-11, there is a simple trigger defined on the sequence, and the old value of the sequence 
is obtained through the oldValue variable. Now let us analyze the output line by line: 

The first line of the output (unnumbered) is due to variable initialization, and the old value is empty. 
You can relate each line of numbered code to the corresponding line in the output, as explained 
here. 

Code line 1: Tries to insert G at the end of the seq, and in the output, you see the seq value changed 
from ABCDEF to ABCDEFG. 

Code line 2: Deletes item C from the seq and you see that the old seq ABCDEFG changes to ABDEFG since 
C is now removed. 

Code line 3: Inserts an item Z at the beginning of the seq, which causes the entire seq to change. You 
see that Z gets inserted into the sequence. 

Code line 4: Replaces the item at index 1 (A), changing it to V. Now you see the new value as ZVBDEFG. 

Code line 5: Replaces items at indices [3..5], which means seq[3]. [4], and [5] with ['H', 'J']. 
Hence ZVBDEFG changes to ZVBHJG. 

Code Line 6: Deletes items at indices 1,2, which changes the sequence content to ZHJG. 
 
This output is not complicated, and this is just a simple use of triggers with sequences, where you 

get the entire unmodified sequence in the oldValue variable. Apart from the actual sequence modified 
and the old sequence, you don't get much information here about which of the indices are updated. 

Triggers become more powerful when you start including the additional clauses provided 
exclusively for triggers. Let us see the syntax of the trigger with new clauses defined: 

 
Syntax 

var <var name>[: data type[] ] [= value] on  replace [old value [= new element(s)]] { ... 
} 

or 
var <var name>[: data type[] ] [= value] on  replace [old value [[ firstIndex .. lastIndex ] 
= new element(s)]] { ... 
} 

 
For both variations the syntax up to on replace is pretty much the same as any other example you 

have seen so far, except that the variable is of type Sequence here. The sequence-specific clauses follow 
on replace; let’s examine those in the first syntax in detail: 

 

old value: The implicit variable to which the old sequence value would be assigned. It is similar to 
the example in the section “A Trigger with Access to the Old Value.” The var name could be anything. 

= new element(s): Another variable, to which the new elements added to the sequence would be 
assigned. The new elements would be coalesced if there is more than one new element added to the 
sequence. The new elements can be elements inserted newly into the sequence or can replace a set 
of existing elements. If you want to have this clause, then old value is also required compulsorily. 
 
So the usage of this syntax form would be as follows: 
 



CHAPTER 11 ■ TRIGGERS 

 

198 

on replace oldValue {} 

or 

on replace oldValue = newElements { } 
 
The second syntax format gives additional control over the range of values changed; let us see that 

clause in detail: 
 

<old value>[startingIndex..endingIndex]: The starting and ending index variables are again just 
variable names and can be changed to any other variable name. These variables hold the starting 
and ending index of the sequence where the change has actually happened. 
Now let us see an example of each of these syntax formats (Listing 11-12). 

Listing 11-12. SequenceTriggerNewSyntax1.fx 

1.  var seq = ['A', 'B', 'C', 'D', 'E', 'F'] on replace oldValue = newElements { 
2.      println("Seq changed:  {oldValue} by {newElements} to {seq}"); 
3.  } 
4.  insert 'G' into seq; 
5.  delete 'C' from seq; 
6.  insert 'Z' before seq[0]; 
7.  seq[1] = 'V'; 
8.  seq[3..5] = ['H', 'J']; 
9.  delete seq[1..2]; 
 
Output 

1.   Seq changed:   by ABCDEF to ABCDEF 
2.   Seq changed:  ABCDEF by G to ABCDEFG 
3.   Seq changed:  ABCDEFG by  to ABDEFG 
4.   Seq changed:  ABDEFG by Z to ZABDEFG 
5.   Seq changed:  ZABDEFG by V to ZVBDEFG 
6.   Seq changed:  ZVBDEFG by HJ to ZVBHJG 
7.   Seq changed:  ZVBHJG by  to ZHJG 

 
In Listing 11-12, we have two variables being used after on replace : oldValue is used for getting the 

old value of the sequence, and newElements is used for getting the changed elements alone. The new 
sequence is of course, assigned to the seq variable itself. 

When you look at the output, the oldValue printed is the value of the sequence before the actual 
change, and newElements prints out the elements that are added to the sequence—either new or 
replacing some of the existing elements. Note that newElements does not print anything when an element 
is deleted from the sequence (line 3 of the output). Another important point to notice is in line 6 of the 
output, which is triggered by line 8 from the code. This line tries to replace three elements in the 
sequence with two other elements, H and J. When you look at the output, these two new elements are 
coalesced to print HJ, and that's what has been assigned to newElements. Again the last line of output 
(line 7) does not print any newElements value, since it is triggered by a delete statement. 

Now let us see the same example with the second syntax (Listing 11-13). 



CHAPTER 11 ■ TRIGGERS 

 

199 

Listing 11-13. SequenceTriggerNewSyntax2.fx 

1.   var seq = ['A', 'B', 'C', 'D', 'E', 'F'] on replace oldValue[fIndex..lIndex] = 
newElements { 
2.       println ("Seq changed:  {oldValue} [{fIndex}..{lIndex}] by {newElements} to 
{seq}"); 
3.   } 
4.   insert 'G' into seq; 
5.   delete 'C' from seq; 
6.   insert 'Z' before seq[0]; 
7.   seq[1] = 'V'; 
8.   seq[3..5] = ['H', 'J']; 
9.   delete seq[1..2]; 
 
Output 

1.   Seq changed:   [0..-1] by ABCDEF to ABCDEF 
2.   Seq changed:  ABCDEF [6..5] by G to ABCDEFG 
3.   Seq changed:  ABCDEFG [2..2] by  to ABDEFG 
4.   Seq changed:  ABDEFG [0..-1] by Z to ZABDEFG 
5.   Seq changed:  ZABDEFG [1..1] by V to ZVBDEFG 
6.   Seq changed:  ZVBDEFG [3..5] by HJ to ZVBHJG 
7.   Seq changed:  ZVBHJG [1..2] by  to ZHJG 

 
In Listing 11-13, the same code shown in Listing-11-12 has been modified to include the range 

information as well, and with these new clauses, you can precisely identify which part of the sequence is 
modified. Now let us analyze the output in detail: 

Line 1: Triggered by the variable initialization. 

Line 2: Triggered by Line 4 from the code, where a new element is inserted into the sequence. The 
first index changed is actually the new index created by the new element, 6,' and it does not affect 
any other indices. Hence, the range is shown as [6..5], which denotes the newElements value of G. 

Line 3: Caused by deleting the element C at index 2. It is a removal of an element and hence the 
newElements would not yield a valid value. The impact is just on a single element and hence the 
range shows [2..2] 

Line 4: Caused by inserting Z into the seq at the first index. Pretty much the same behavior as line 2. 

Line 5: Caused by replacing A with V at index 1. This is again a change at a single index, and so the 
range is [1..1]. However, since V is a new element added, newElements returns V. 

Line 6: Caused by replacement of three values (index 3, 4, 5) with two values (H, J). The affected 
indices are 3,4,5, so the range is [3..5]. New elements added to the seq are coalesced and returned 
as newElements. 

Line 7: Two elements have been deleted, so the affected index range shows [1..2]. Since it is a 
deletion, newElements is empty. 



CHAPTER 11 ■ TRIGGERS 

 

200 

■ Note The syntax [firstIndex..lastIndex] denotes a range within which the values/elements are changed within 
the sequence. This does not represent the index changes as such. For example, deleting an element at index-2 
will change the indices of all the subsequent elements. That is not typically captured in the [firstIndex..lastIndex] 
range, which captures the indices of elements whose values were changed. 

Now let us see another example that makes use of bind and for loops to create a sequence; we will 
define a trigger on that sequence. Listing 11-14 shows the code. 

Listing 11-14. SequenceTriggerWithBind.fx 

var min = 0; 
var max = 5; 
 
def seq = bind for (x in [min..max]) " {x*x}" on replace oldVal[sindx..eindx] = 
newElm { 
    println("Seq changed from {oldVal} [{sindx}..{eindx}] by {newElm} to {seq}"); 
} 
min = 5; 
max = 8; 

 
Output 

1.   Seq changed from  [0..-1] by  0 1 4 9 16 25 to  0 1 4 9 16 25 
2.   Seq changed from  0 1 4 9 16 25 [0..4] by  to  25 
3.   Seq changed from  25 [1..0] by  36 49 64 to  25 36 49 64 

 
In Listing 11-14, we are creating a sequence dynamically through a for expression that is bound to 

the seq variable. Note that the seq variable is a def, meaning that its definition is constant throughout 
the application life-cycle. Now we have defined a trigger on the sequence with access to the old value, 
start index, end index, and new element. The min and max values used in the for expression are bound, 
and so any automatic change to those values would cause the trigger to be executed. Now let us analyze 
the output in detail. 

The initial sequence as shown in line 1 of the output consists of squares of [0, 1, 2, 3, 4, 5]. Now 
when the min value changes to 5, the sequence pretty much reduces to squares of [5..5], which is [25]. 
That's what has been shown in line 2 of the output. NewElm is empty because it is a removal operation. 
Now when you look at the difference between lines 1 and 2, the sequence size is reduced from 6 to just 1, 
and all items except the last one are removed. That's represented by the range [0..4] in line 2. Line 3 of 
the output represents the range of [5..8] when the max value is set to 8. This does not cause any change 
to the existing value but inserts three more values, which are represented by the newElm variable as  
36 49 64. The final seq shows all the values inserted into the sequence. 



CHAPTER 11 ■ TRIGGERS 

 

201 

Nested Triggers 
A trigger can be defined on any variable regardless of where it is declared. It can be defined on a member 
variable of a class, on a script variable, on a local variable declared within a function, block, and so on. 
One can also define a trigger within another trigger since a trigger is just another block. Also, it is 
possible to change the value of a variable from within its own trigger. 

Listing 11-15 shows  a simple example of how nesting can be implemented. 

Listing 11-15. NestedTriggers.fx 

1.   class TriggerSample { 
2.       var w = 100 on replace oldVal { 
3.           var valid = isValid(w) on replace { 
4.               if (not valid) { 
5.                   println("Invalid value {w}. Reset to {oldVal}"); 
6.                   w = oldVal; 
7.               } else { 
8.                   println("Valid value {w}"); 
9.               } 
10.               println(w); 
11.           } 
12.       } 
13.   } 
14.   function isValid(val: Integer) { 
15.       val > 0; 
16.   } 
17.   function run() { 
18.       var sample = TriggerSample{}; 
19.       sample.w = 200; 
20.       sample.w = 0; 
21.   } 
 
Output 

1.   Valid value 100 
2.   100 
3.   Valid value 200 
4.   200 
5.   Invalid value 0. Reset to 200 
6.   Valid value 200 
7.   200 
8 200 

 
In Listing 11-15, we are defining a variable w as a member of a class, whose value we are validating 

within the trigger and resetting it if it is invalid. So there is another trigger defined within the main 
trigger here, and the nested trigger validates the value of w. As you see in the code, the inner trigger calls a 
script-level function to validate the value. Now let us analyze the output. 



CHAPTER 11 ■ TRIGGERS 

202 

Line 1, 2: Printed when w is initialized. 

Line 3: Setting w to 200 in the code calls the trigger, and this value has been validated to true. 

Line 4: W is set with the value of 200 after validation. 

Line 5: Sets a value of 0 to w. The isValid() function is called and returns false. Since the value is
invalid, we are resetting the value to back to 200 (the old value). 

Line 6: Note that 200 is not printed yet, which means line 9 from the code is not yet executed. This is
because resetting the w value within the validation trigger calls the main trigger again, and this time
isValid returns true for the reset value of 200. 

Lines 7, 8: 200 is printed twice—once for the reset operation (caused by the inner trigger) and
another time for the actual value set by the application (w = 0). 

There are a few more things to note in this example: the script-level function isValid() is accessed
from within the trigger, a nested trigger is used to validate the value, and the value of the variable is
changed from within the same trigger. Also note that the variable w is accessible within the inner trigger
of valid, and this is true for any block—it can access the variables of the parent block. 

■ Note You have to be careful when setting the value of a variable within its own trigger. If the value that is set
within the trigger is incremental, that will cause the trigger to be called infinitely. For example, var w on replace
{ w = w + 1 }  will cause the trigger to be called indefinitely and will result in a StackOverflowError. 

Summary 
In this chapter, you have examined in detail what triggers are. A trigger is a block of code that is attached
to a variable and is executed when the value of the variable changes. You can access the old value of the
variable within the trigger block and you can validate the new value assigned to the variable before it is
consumed by other expressions. Triggers on sequences provide more control over the change by
exposing the affected range, the old value of the sequence, and the new elements inserted into the
sequence. You can define a trigger within another trigger, and the inner trigger can access the variables
of the parent trigger. Triggers can be defined on any variable that is part of a class, script, block or
function. You can also use triggers to implement your own binding, and you can do both unidirectional
and bidirectional binding. 

Thus, triggers are one of the most powerful and unique features of JavaFX Script; they can help you
create an event-driven logic typically like an EventListener in Java AWT and Swing. Triggers are most
widely used in animations in JavaFX, and you will see more of this in Chapter 13, “introduction to 
Animation.” 

With this chapter , you have been introduced to all the important features of JavaFX Script, and we
have come to the end of our introduction to the language. In the next two chapters, we will dive deep
into the JavaFX Graphics and Animation APIs, and you’ll see how you can develop a full-fledged rich UI
application using JavaFX Script. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



C H A P T E R  12 
 

■ ■ ■ 

203 

Introduction to JavaFX  
UI Elements 

As you have learned, JavaFX is a rich client platform for creating and delivering immersive Internet 
experiences across different screens. So far, you have learned the JavaFX Script language capabilities and 
features and in this chapter, we will introduce you to various graphics APIs in JavaFX that help you build 
a rich Internet application.  Before going into the actual APIs, you must understand how the APIs are 
classified in JavaFX. There are two broad categories of the APIs in JavaFX that you will learn in this 
chapter: 

• common profile 

• desktop profile 

Common profile APIs include classes that work across devices such as desktop, mobile, and TV. So if 
you are developing an application that is expected to work across multiple screens, you will have to stick 
only to common profile APIs. But if you are developing a desktop-specific application, you can take 
advantage of the desktop profile APIs to add specific functionality that enhances your application 
further for the desktop. 

JavaFX common profile graphics offer a richer and wider range of functionality to cater to varied 
needs of an RIA and the scope of the features extend from drawing basic geometric shapes to virtually 
any shape, multiple fill and pen styles, enhanced text and imaging capabilities, extensive color definition 
and composition, multi-stop linear and radial gradience, prefabricated graphical charts, event handling 
supporting mouse and keyboard interactions across all the UI elements, most standard UI controls of an 
enterprise UI with multiple layouts, and all kinds of two-dimensional transformations required by the 
RIA. All these features are built on top of a device-agnostic rendering model, thus making the look and 
feel uniform across screens. 

Here is the broad categorization of the common profile graphical APIs: 

• Geometries 

• Fill and Stroke Styles 

• Colors 

• Paints 

• Text 

• Image 

• Charts 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

204 

• UI Controls 

• Input 

• Transformations 

• Layouts 

On the desktop side, JavaFX Graphics provides a way to reuse your existing swing components 
within your JavaFX application and also offers a richer set of advanced effects such as Lighting, Shadow, 
Glow, Blur, and so forth that you can apply to any UI element. 

The desktop profile graphics APIs can broadly be classified into the following: 

• Effects 

• Swing Controls 

In this chapter, we will go through all the common profile APIs in detail and briefly touch upon 
some of the desktop-specific APIs as well.   

Rendering Model: Immediate Mode vs.  
Retained Mode Rendering 
JavaFX adopts the Retained Mode rendering model where the graphical data is maintained in a data 
model within the library. Any application-triggered repainting does not directly render the entire UI as is 
the case with immediate mode rendering, but updates the underlying data model and renders only the 
required portion of the data model to the display.  This is far more optimized than the immediate mode 
rendering model, where the client code would directly cause the UI elements to be rendered to the 
display. For example, Java2D Graphics uses immediate mode rendering and the client code has to take 
care of the rasterization of the UI elements (obtain a graphics context and drawing to it yourself).  With 
retained mode rendering, it is not the actual data that is being transferred to the GPU (Graphical 
Processing Unit), but only a command that tells which portion of the retained data model has to be 
updated. At the application level, the rendering process is the same whether the target rendering device 
is desktop or mobile or TV. 

Scene Graph 
JavaFX uses the popular scene graph data model typically used in 3D graphical systems to implement the 
retained mode rendering. A scene graph is a device-independent data model that allows the 
programmers to define what UI elements they need and where they want them to be displayed and the 
actual rasterization is taken care of internally.  In a scene graph, all the UI elements (a.k.a. Nodes) are 
represented hierarchically in a tree/graph data structure, as seen in Figure 12-1.   



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

205 

 

Figure 12-1. Scene graph containing different nodes 

An example of a scene graph is given in Figure 12-1.  A node in the scene graph can have zero or one 
parent and each node in the scene graph can either be a “leaf” node with no children or a “branch” node 
with one or more children.  A node that does not have a parent is referred to as the “root” node. A scene 
graph may have multiple trees and only a single node within each scene graph tree can be a root node.  
For example, the Circle object in Figure 12-1 is a leaf node, the Group object that is a sibling of Image is a 
branch node, and the other Group object that is the parent of all other nodes is the root node. The root 
node is added directly to the scene and a scene may have many such root nodes and hence many trees 
within the scene graph. For example, similar to Figure 12-1, you may have multiple Group nodes added 
to the scene, in which case each of the Group nodes will be a root of its own tree. What is shown in 
Figure 12-1 is just a single tree in the scene graph.  Any effect such as transformations, clipping, and so 
forth applied to a parent would implicitly be applied to all its children.   

JavaFX scene graph is generic enough to support animations, transformations, clipping, and effects 
in addition to different node types. The JavaFX SceneGraph implementation has lot more optimizations 
fine-tuned toward RIAs and hence delivers a superior visual performance than other conventional scene 
graphs. 

A scene graph is exposed to the application through the 'javafx.scene.Scene' class. 

Scene 
Scene is the root of the entire scene graph to which you will add your visual elements and it represents 
the drawing surface. If you are comfortable with Java, you can assume the drawing surface to be 
something equivalent to 'java.awt.Canvas' or 'javax.swing.JPanel'. The javafx.scene.Scene class has a 
content attribute that holds all the graphical elements to be displayed. While you assume Scene to be 
something equivalent to Canvas, in reality you don't have to worry about what it represents internally 
since JavaFX abstracts those details from the programmer. All you need to do is just to add your visual 
elements to the scene's content attribute and Scene takes care of drawing them. 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

206 

Stage 
Just having a drawing surface or a scene graph is not sufficient for drawing the visual elements to the 
display and you still need a top-level container to show it on the screen. You can correlate this back to 
Java where you would add the 'Canvas'/'JPanel' to a top-level container such as 'java.awt.Window' or 
'javax.swing.JFrame'. Similarly, Stage (javafx.stage.Stage) in JavaFX is an equivalent of the top-level 
container that holds the drawing surface. What it represents internally is platform-dependent and as a 
programmer, you don't have to worry about it. Once you have the scene, just associate it to the scene 
attribute of the Stage class. A Stage can have only one scene at any point in time but you can change the 
scene anytime.  

 ■ Note Both Scene and Stage offer width/height attributes, but there are subtle differences between the two.  
A Scene's width/height can only be initialized and cannot be assigned or bound, whereas a Stage's width/height 
can be bound (must always be bi-directional) and assigned. Another difference is in terms of the actual client area. 
The width/height set on a Stage does take into consideration the decorations, title bar, and insets and hence the 
actual area of the drawing surface will be lesser on a desktop and more on platforms where there is no decoration. 
But in the case of setting Scene's width and height, the drawing surface is guaranteed to have the same size 
across devices and platforms regardless of whether the Stage is decorated or undecorated. Hence, it is 
recommended to always specify the required size on the Scene instead of the Stage if you want your application to 
behave consistently across devices. 

Coordinate System 
The two-dimensional coordinate system in JavaFX is same as any other graphical system as far as user 
space is concerned. User space is the coordinate system with which an application developer writes the 
UI and device space is the coordinate system of the actual device. As an application developer, you need 
to be bothered only about the user space and the underlying rendering engine will take care of 
translating the coordinates to the target device space appropriately at the time of rasterization.  

In the user space, the coordinate system is right-handed, with its origin (x, y) (0,0) at the top left 
corner of the display and the orientation semantics being that +y is the local gravitational down and +x is 
horizontal to the right, as shown in Figure 12-2. 

 

Figure 12-2. Coordinate system (user space) 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

207 

While this looks straight-forward, there is a small caveat here. The SceneGraph supports multiple 
coordinate systems such as local, parent, and scene, with local being specific to a leaf node, parent 
coordinate system is that of its parent, and scene is that of the scene to which this node belongs.  
Nonetheless, all the coordinate systems have the same orientation as shown in Figure-12-2. You will 
uncover the actual difference later in this chapter, but for now, just remember the orientation given in 
Figure 12-2. 

Since 1.3, JavaFX also offers a basic 3D support with which you can apply three-dimensional 
transformations on nodes.  Additionally, 3D coordinate system will have a Z axis that runs from (0,0) 
toward you, the reader.  

Graphical API Summary 
JavaFX offers a wide range of functionality to cater to varied requirements of RIA. In this section, you will 
see a summary of all the graphics-related packages available in JavaFX with a brief description of what 
they offer, in Table 12-1. You will find more detailed explanations of the APIs as you read through this 
chapter further. 

Table 12-1. Graphics API Summary 

Package Description 

javafx.scene Contains a set of base classes of the scene graph hierarchy such as 
Node, CustomNode, Parent , and so forth and also the Scene class 
that represents the scene graph.   

javafx.scene.shape Offers multiple classes for defining geometric primitives such as 
rectangle, circle, curves, paths, polygons and so forth. The abstract 
definition of all geometric primitives is provided by the Shape class. 

javafx.scene.paint Offers various color- and paint-related classes that are used to fill 
and stroke the geometric primitives and text. Includes gradients 
such as Radial and Linear.  

javafx.scene.text Contains classes that offer text-rendering capabilities and classes 
that allow to customize the font and text layouts used in text 
rendering. 

javafx.scene.transform Offers advanced transformation capabilities such as scale, shear, 
rotate, and translate that you can apply on a node. Transformations 
can be in two- or three-dimensional space. Most basic 
transformation needs are addressed with convenience attributes 
that are part of the Node class, but you can achieve any additional, 
more customized transformations using this package. 

javafx.scene.image Offers Image loading and rendering capabilities. 

Continued 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

208 

Package Description 

javafx.scene.control Offers a wide range of UI controls such as Button, CheckBox, 
RadioButton, and so forth, that enterprise RIAs can leverage on. 

javafx.scene.layout Offers a wide variety of built-in layouts that take care of organizing 
the nodes in terms of position and size. Also offers customizable 
layouts where the application will decide how to organize the 
nodes. 

javafx.geometry Contains classes that represent the node dimensions, bounds, and 
position in two- or three-dimensional coordinate space. 

javafx.scene.chart 

javafx.scene.chart.data 

javafx.scene.chart.part 

Offers APIs for creating and managing various charts such as 
BarChart, LineChart, PieChart, and so forth and their 
customization. 

javafx.scene.effect 

javafx.scene.effect.light 

Offers advanced graphical filter effects that you can apply on one or 
more nodes to create a rich desktop experience.  These APIs are 
desktop only. 

javafx.scene.input Offers APIs for supporting keyboard and mouse interactions for any 
node. 

javafx.ext.swing Offers wrapper classes for many swing equivalents. However, many 
such wrappers are obsolete and replaced by UI control equivalents 
that are pure JavaFX implementations that offer a uniform user 
experience across platforms. But these wrappers can be useful if you 
want to reuse some swing control that is already built and being 
used in a Java application. All these classes are desktop only. 

Node – The Base UI Element 
Any UI object in JavaFX must extend from a base class–javafx.scene.Node–in order to be added to a 
scene graph and rendered on the screen. The Node class abstracts all the common features shared by all 
the UI elements and all other nodes inherit these attributes and functions from the Node class.  As you 
read in the “Scene Graph” section earlier in this chapter, each element added to a scene graph (or Scene 
from the application standpoint, since scene graph is exposed through the Scene class) must be an 
object of Node or its subclass.  Some examples of Leaf nodes are javafx.scene.shape.Rectangle, 
javafx.scene.image.ImageView, and so forth, and these nodes cannot have any children. Branch/Parent 
nodes are nodes that extend from the javafx.scene.Parent class and can contain a set of children and 
hence form a new branch in the scene graph. Some examples are javafx.scene.Group, 
javafx.scene.CustomNode, or sub-classes of these node types.  All UI controls extend from the Parent 
class. A node can occur only once within the content of the scene or parent or Group. Trying to add the 
same node more than once to a same parent or scene will result in a runtime error. Similarly, trying to 
add a node from one parent to another parent will cause the node to be silently removed from the old 

x



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

209 

parent and added to the new parent. Also, there must not be any cycles in the scene graph where the 
node is an ancestor of itself in the scene graph. Such cycles will also cause a runtime error. All these 
restrictions are clearly documented in javafx.scene.Node's class description. 

The Node class defines many attributes and functions, some of the important ones of which are 
shownin Table 12-2.   Attributes that require a detailed explanation such as transformations, bounds, 
events, blocksMouse, and so forth, will be dealt with separately later in this chapter. 

Table 12-2. Node Attributes 

Attribute Type Default Value Description 

id String Empty string A String identifier for a node, just like the “id” element in HTML. 
This identifier must be unique within the scene graph and it is the 
responsibility of the application to ensure that. This can be used 
to lookup for a particular node within a scene graph using the 
Scene.lookup() method. 

visible Boolean TRUE Indicates whether a node is visible or not.  

opacity Number 1 Defines the transparency of the node. A value of “'1.0” indicates 
the node to be opaque and “0.0” indicates that the node is fully 
transparent.   A transparent node can still receive mouse and 
keyboard events and can respond to user input.  

clip Node Null If specified, this node will be clipped by the geometry of the given 
node.  

disable 

disabled 

Boolean FALSE “disable” indicates whether this node is expected to respond to 
user interactions. If false, the mouse and keyboard events are 
ignored for this node. It is up to the application to change the 
visual representation of the node when disabled and for some 
cases, such as Controls, this is handled implicitly. 

“disabled” is a read-only attribute that is set to true when the 
node or its parent is disabled. “disable” takes into consideration 
only the disabled state of this particular node, whereas “disabled” 
takes into consideration the disabled state of its parent as well. 
One can track the value of “disabled” to change the visual 
appearance appropriately. 

parent Node Null Gives the parent of this node in the scene graph. If this node is 
directly added to the Scene or not yet added to the Scene, parent 
will be null. 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

210 

Geometries 
JavaFX offers several classes that define common geometric objects (shapes), such as lines, curves, 
ellipses, rectangles, circles, and so forth. All the built-in geometric objects are grouped under the 
'javafx.scene.shape' package. There are many attributes shared by multiple shapes and all such 
attributes are abstracted in the base class–javafx.scene.shape.Shape. Hence, all the geometric shapes 
extend from the javafx.scene.shape.Shape class and this class provides a common protocol for defining 
and inspecting multiple geometric objects.  With the help of multiple shape objects, you can virtually 
define and use any two-dimensional geometric object. A shape's contour is defined as its path. 

The Shape base class primarily defines the stroke-and fill-related attributes that are shared by all the 
shapes and you need to understand the difference between a stroke and fill. 

Stroke vs. Fill 
A stroke defines how the contour (or outline) of a shape is drawn and what kind of pen style to be used 
when drawing the outline. On the other hand, a fill defines the filling pattern, which is basically the 
pattern with which the geometric area of the shape is filled.  An example of a stroke and a fill is given in 
Figure 12-3. 

Both stroke and fill can accept a solid color or a gradience.  You can specify a solid color as 
Color.RED, Color.BLUE, and so forth, whereas a gradience is a fill pattern that is defined in terms of a 
combination of colors that are distributed across the geometric area of the shape in specific proportions 
with a smooth transition between the colors. You will learn more about this in the “Paints” section, later 
in this chapter. 

 

Figure 12-3. Stroke vs. fill 

Stroke Attributes 
The most important and commonly used stroke attributes are: 

• stroke – Defines the paint to be used to draw the outline. Can be a solid color or a 
gradient paint. 

• StrokeWidth – Defines the width of the stroke; the default value is 1.0. A 
strokeWidth of 0.0 will still draw a hair-line stroke. 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

211 

You can also customize the pen style using the following attributes:  

• strokeLineCap – Defines the end cap style of a stroke segment. This can be 
SQUARE, ROUND, or BUTT as shown in Figure 12-4. 

 

Figure 12-4. End cap styles (BUTT, ROUND, and SQUARE) 

• StrokeLineJoin – Defines the pattern when two line segments meet. This can be 
BEVEL, MITER, or ROUND as shown in Figure 12-5. 

 

Figure 12-5. Line join styles (BEVEL, ROUND, MITER) 

• StrokeDashArray, strokeDashOffset – Defines a dashing pattern for the stroke, 
where a dash array specifies the length of the dash segment and offset specifies 
the gap between the dash segments.  Figure 12-6 shows the comparison between 
normal versus dashed stroke patterns. 

 

Figure 12-6. Normal vs. dashed strokes 

A shape can choose to have fill alone, stroke alone, both of them, or neither of them. Each shape by 
design has either a default fill or a stroke defined. Not specifying a fill for a shape will cause the shape to 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

212 

use a default fill if one is defined internally or the default can be null for some shapes. Table 12-3
outlines the default values of fill/strokes for different shapes. 

Table 12-3. Fill/Stroke Defaults 

Shapes Default Fill Default Stroke 

Line, Polyline, Path Null Color.BLACK 

All other shapes except Line,
Polyline, Path 

Color.BLACK null 

Writing your First UI 
As you have already learned, JavaFX Script uses a declarative syntax and the usefulness of this syntax will
be apparent when you start developing a UI. This syntax will help you code your UI in a structure that
will closely resemble how those UI elements are represented visually.  Hence, you can actually write the
UI in a visual context.  

Now let us see how to create a simple UI application using some shapes. You have already read a
similar example in Chapter 2, but here you will see more about what is required to create and show a UI
using JavaFX. The instructions given in Chapter 2 toward creating a Netbeans JavaFX project and
executing it are still applicable for this example as well and hence, let us concentrate more on the UI
elements and other requirements.  

Let us try to create a UI that is as simple as drawing three circular rings that intersects with each
other, as given in Figure-12-7. 

Figure 12-7. Three rings 

 For convenience, I have assumed the width of the application to be 240 and the height of the
application to be 320. Now let us see how to create the three circular rings first. 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

213 

Listing 12-1. Creating Three Rings – Part 1 

// WARNING – Not Complete yet !! 
import javafx.scene.shape.Circle;  
import javafx.scene.paint.Color;  
var circle1 = Circle { 
 centerX: 100 
 centerY: 150 
 radius: 40 
 fill: null 
 stroke: Color.RED 
 strokeWidth: 3 
} 
 
var circle2 = Circle { 
 centerX: 140 
 centerY: 150 
 radius: 40 
 fill: null 
 stroke: Color.BLUE 
 strokeWidth: 3 
} 
 
var circle3 = Circle { 
 centerX: 120 
 centerY: 170 
 radius: 40 
 fill: null 
 stroke: Color.GREEN 
 strokeWidth: 3 
} 

 
As you see in the code given in Listing 12.1, the first thing you need to do is to import the Circle class 

from the javafx.scene.shape package in your application.  Since each circle has to be colored 
differently, javafx.scene.paint.Color must also be imported. Likewise, whatever API you are going to 
use in your application needs to be imported first. You can import the classes individually or you can use 
the wildcard import such as 'import javafx.scene.shape.*' if you are planning to use multiple classes 
from the same package.  

Now you have access to the Circle class within your application and hence you can create three 
circle objects and initialize their attributes appropriately.  A circle must have an x, y value representing 
its center and a radius. We have chosen the x, y, radius values in such a way that the three circles have a 
reasonable intersection. Here, we have assigned a null value to fill since we don't want the circle to be 
filled and we have set the stroke attribute to the required color so that only the contour of the circle is 
drawn with a thickness of 3.0 pixels. 

Now you have the circles ready, but you need a drawing surface to draw the circles–the Scene.  
Now let us create a scene and add the circles to it. 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

214 

Listing 12-2. Creating Three Rings – Part 2 

// Continuation of listing 12.1 – part1 
var scene: Scene = Scene { 
    width: 240 
    height: 320 
    content: [circle1, circle2, circle3] 
} 

 
In Listing 12-2, a scene has been created and all the circles are added to it. Please remember to add 

another import statement to import the javafx.scene.Scene class. The scene's width and height have 
been initialized appropriately to the required size I have assumed earlier on. However, this is optional 
and not doing so would make the scene fit exactly to the size of its contents by default. Likewise, 
optionally you can fill the entire scene with a specific color if you want the default white background of 
the scene to be changed to something of your choice.  

There are many other attributes in the Scene class that you can use and please refer to the JavaFX 
API Documentation for more information on the other attributes.  

Please note that certain attributes of scene, such as width, height, are public-init, which means they 
can only be initialized in an object literal and cannot be assigned or bound. Such attributes will not have 
a colored marking under the Can Write column in the API documentation.  

Listing 12-3. Create Three Rings – Part 3 

// Continuation of listing 12.2 – part2 
Stage { 
    title: "Three Rings" 
    scene: scene 
} 

Now you need the top-level container to hold the scene and render it to the display, hence a stage 
has been created in Listing 12-3. Please remember to import the Stage class before using it–
javafx.stage.Stage. In the stage object literal, you are associating its scene attribute to the scene object 
you have created in your application. Similar to scene, there are many other useful attributes in the 
Stage class that you can make use of. Please refer to the API documentation.  

Now you are ready to build and execute the application; please follow the instructions given in 
Chapter 2 to execute it, either through Netbeans or from the command line. 

Please find the complete code for this example as follows. 

Listing 12-4. Three Rings Application 

import javafx.scene.shape.Circle; 
import javafx.scene.paint.Color; 
import javafx.scene.Scene; 
import javafx.stage.Stage; 
var circle1 = Circle { 
 centerX: 100 
 centerY: 150 
 radius: 40 
 fill: null 
 stroke: Color.RED 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

215 

 strokeWidth: 3 
} 
var circle2 = Circle { 
 centerX: 140 
 centerY: 150 
 radius: 40 
 fill: null 
 stroke: Color.BLUE 
 strokeWidth: 3 
} 
var circle3 = Circle { 
 centerX: 120 
 centerY: 170 
 radius: 40 
 fill: null 
 stroke: Color.GREEN 
 strokeWidth: 3 
} 
 
var scene: Scene = Scene { 
 width: 240 
 height: 320 
 content: [circle1, circle2, circle3] 
} 
Stage { 
 title: "Three Rings" 
 scene: scene 
} 

 
The output of this application will look like Figure 12-8 on a desktop and Figure 12-9 on a mobile 

device. 

 

Figure 12-8. Output of ThreeRings on desktop 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

216 

 

Figure 12-9. Output of ThreeRings on a mobile emulator 

So when creating a UI, you will have to first import the necessary classes, create the UI elements 
that you require, and add them to a scene.  Then associate the scene with a Stage so that it gets displayed 
on the screen. 

While it is good to create the scene and stage yourself in most cases, it is also possible to not create 
them explicitly in your application and let the runtime create it for you. However, usefulness of this is 
very limited and perhaps, limited to just test a standalone UI code before integrating them into an 
application.  When there is no scene/stage in your application, the runtime synthesizes them for you but 
for this to work, the last statement in your application must be a node construct that can readily be 
added to a scene. If you have a non-UI element as your last statement in your application, the runtime 
will not synthesize the scene and stage. An example of this is demonstrated in Listing 12-5 (Figure 12-10 
shows the output). The same example also demonstrates the usage of other stroke attributes such as 
dash array, line cap, and line join. 

Listing 12-5. Dashed Stroke with Auto Synthesis of Scene/Stage 

import javafx.scene.*; 
import javafx.scene.shape.*; 
import javafx.scene.paint.*; 
import javafx.stage.*; 
 
var x: Number = 0; 
var y: Number = 0; 
var width: Number = 200; 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

217 

var height: Number = 200; 
 
var colors: Color[] = [Color.BLUE, Color.RED, Color.GREEN, Color.ORANGE,  
        Color.YELLOW, Color.BLACK, Color.MAGENTA, 
Color.GRAY, 
        Color.CRIMSON, Color.LIME]; 
 
var gr: Group = Group { 
 content: [ 
  for (i in [0..100 step 10]) 
  Rectangle { 
   x: x + i 
   y: y + i 
   width: width - 2 * i 
   height: height - 2 * i 
   arcWidth: if (i mod 20 == 0) then i else 0 
   arcHeight: if (i mod 20 == 0) then i else 0 
   fill: if (i == 90) Color.BLACK else null 
   strokeDashArray: [4.0, 2.0] 
   strokeLineJoin: StrokeLineJoin.ROUND 
   strokeLineCap: StrokeLineCap.BUTT 
   strokeWidth: 5 
   stroke: colors[i/10] 
  } 
 ] 
} 

 

 

Figure 12-10. Output of the dashed stroke example with auto synthesis of scene/stage 

The code given in Listing  12-5 uses a dashing pattern with two elements that give a longer segment 
to the opaque portion of the dash compared to the transparent portion and hence produces the output 
shown in Figure 12-10. It also uses a specific Stroke Line Join style and Line Cap style. The arc 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

218 

width/height is set for alternate rectangles and you can visibly see the difference in the output.  Also, 
when width/height become equal or lesser than the arc width/height, the rectangles become circles. 
Please note that all rectangles except the innermost one are defined only with stroke and not fill.  Also 
note that there is no stage or scene defined in this application and hence runtime synthesizes them and 
the last statement in the application is a group that gets added to the scene. This is the reason why I have 
used a group to club all the rectangles together without which only the last created rectangle would have 
appeared on the scene. 

Apart from the built-in standard geometries, you can also create arbitrary shapes using the 
javafx.scene.shape.Path class and using various path elements. One such example is given in  
Listing 12-6 (with the output shown in Figure 12-11). 

Listing 12-6. Creating Custom Shapes 

import javafx.scene.shape.*; 
import javafx.scene.paint.*; 

var path:Path = Path { 
    id: "Path" 
    translateX: -175 
    translateY: -150 
 fill: Color.GRAY 
 stroke: Color.BLACK 
    elements: [ 
     MoveTo { 
         x: 200 
         y: 150 
     }, 
         LineTo { 
         x: 300 
         y: 350 
     }, 
         LineTo { 
         x: 200 
         y: 350 
     }, 
         LineTo { 
         x: 300 
         y: 150 
     }, 
         LineTo { 
         x: 200 
         y: 150 
     }, 
         MoveTo { 
         x: 250 
         y: 250 
     }, 
         CubicCurveTo { 
         controlX1: 250 
         controlY1: 250 
         controlX2: 350 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

219 

         controlY2: 150 
         x: 300 
         y: 350 
     }, 
         MoveTo { 
         x: 250 
         y: 250 
     }, 
         CubicCurveTo { 
         controlX1: 250 
         controlY1: 250 
         controlX2: 150 
         controlY2: 150 
         x: 200 
         y: 350 
     }, 
         MoveTo { 
         x: 250 
         y: 250 
     }, 
         ArcTo { 
         x: 250 
         y: 150 
         radiusX: 100 
         radiusY: 100 
         xAxisRotation: 360 
         sweepFlag: true 
     }, 
         ArcTo { 
         x: 250 
         y: 250 
         radiusX: 100 
         radiusY: 100 
         xAxisRotation: -360 
         sweepFlag: true 
     }, 
         MoveTo { 
         x: 250 
         y: 150 
     }, 
         VLineTo { 
         y: 250 
     }, 
         MoveTo { 
         x: 235 
         y: 200 
     }, 
         HLineTo { 
         x: 265 
     } 
    ] 
} 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

220 

 

 

Figure 12-11. Output of Custom Shape example 

The example given in Listing 12-6 creates an arbitrary shape using the Path API and various path 
elements and produces the output shown in Figure 12-11. The coordinates of the path elements are 
hard-coded, but you can make them relative to an x, y variable and hence position the node wherever 
you want. Also note that this example uses a little bit of transformation–translation to (x, y) -175, -150. 
This is because the actual node origin is hard-coded to start from 175, 150, and in order to change the 
origin to 0, 0 (the scene's origin), the node is translated in a negative direction. You will read more about 
transformations in the “transformation” section of this chapter.  

In addition to supporting complex shapes, JavaFX also supports morphing of one shape to another. 
This is offered by DelegateShape class, which inherits its geometry from another shape.  DelegateShape is 
initially assigned a shape that later gets morphed into another shape through a timeline (which will be 
explained in detail in the Animation chapter).   

Paints 
All the paint-related features are packaged within the javafx.scene.paint package. Shape's stroke and 
fill accepts a javafx.scene.paint.Paint object and this class acts as the base class. Paints can be defined 
in terms of single solid color or a combination of multiple colors following a pattern (gradience). In this 
section, you are going to see both. 

Solid Colors 
javafx.scene.paint.Color extends from the Paint class and defines various ways of specifying the 
colors. A color is a specific combination of red, green, blue, and alpha channel (will be referred as 
RGB/RGBA henceforth) where alpha defines the transparency of the color–its ability to show through the 
background. All the colors in JavaFX refer to sRGB color space (Refer to 
www.w3.org/pub/WWW/Graphics/Color/sRGB.html for more information). A color space is basically a 

http://www.w3.org/pub/WWW/Graphics/Color/sRGB.html


CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

221 

system for measuring colors and defines certain rules as to what combination of RGBA transforms to 
which color. All the colors that you can create using the Color class are classified as “Solid” colors, 
meaning a single color representation with a specific value of red, green, blue, and alpha. 

The Color class offers 100+ built-in named color values that you can use directly and correlate with 
real-world colors. This would be sufficient for most applications. But for applications for which you 
would like to use custom colors, the Color class offers multiple ways of constructing colors. You will see 
some of the common ones in Table 12-4. 

Table 12-4. Color Creation 

Creation Approach Description 

Using named constants Use the built-in colors such Color.RED, Color.BLUE, 
Color.ORANGE, and so forth. 

Creating a color instance through object literal: 

Color { blue: 1.0  green: 0  red: 0 alpha: 1.0 } 

Creates equivalent of Color.BLUE. The valid values 
are 0.0 – 1.0. Optionally, you can omit mentioning 
other channels and they default to 0.0. Default value 
of alpha will be 1.0. 

Use Color.color() methods to create a color  

1. Color.color(1.0, 0, 0) 

2. Color.color(1.0, 0, 0, 0.5) 

The Color() method accepts values for red, green, 
blue, alpha channels, in that order. If you don't care 
about the alpha value, you can use 3 arg method as 
in (1). 

1 – Color.RED, 2 – Color.RED that is 50% 
transparent. 

If you are comfortable defining colors with RGBA 
values ranging from 0-255, you can use the rgb() 
method - 

Color.rgb(0, 0, 255, 1.0) or Color.rgb(0, 0, 255)  

Some UI toolkits define colors in terms of 0-255 and 
JavaFX supports the same through the Color.rgb() 
method. The example code creates a Color.BLUE 
equivalent using the rgb() method. 

If you are comfortable with HTML/web notation 
of defining colors, you can use one of the 
following web notations  

• Color.web("0x0000FF",1.0) 

• Color.web("0x0000FF") 

• Color.web("#0000FF",1.0) 

• Color.web("#0000FF") 

• Color.web("0000FF",1.0) 

• Color.web("0000FF") 

• Represents blue as a hex web 
value, explict alpha 

• Represents blue as a hex web 
value, implict alpha 

• Represents blue as a hex web 
value, explict alpha 

• Represents blue as a hex web 
value, implict alpha 

• Represents blue as a hex web 
value, explict alpha 

• Represents blue as a hex web 
value, implict alpha 

 

Hence, JavaFX supports all possible notations of defining the color that are common in most UI 
toolkits. But so far, you have only seen creation of solid colors and it's often necessary to create paints 
that are combinations of two or more colors so as to make your application look like a real-world RIA. In 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

222 

the next section, you are going to see paints that are composed of multiple colors in a specific
proportion. 

Gradients 
A gradient is a smooth transition of colors. A gradient specifies a range of position-dependent colors
whose intensity and magnitude vary based on the current position, providing a smooth transition from
one color to the next color. Gradients can be linear or radial in nature and JavaFX supports both.  

Linear Gradient 
A linear color gradient is specified by two points, and a color at each point. The colors along the line
through those points are calculated using linear interpolation, then extended perpendicular to that line. 
In other words, If Point P1 (X1, Y1) with Color C1 and Point P2 (X2, Y2) with Color C2 are specified
in user space, the Color on the P1, P2 connecting line is proportionally changed from C1 to C2. Any
point P (X, Y) not on the extended P1, P2 connecting line has the color of the point P that is the
perpendicular projection of P on the extended P1, P2 connecting line.  

From the application standpoint, you may specify two or more gradient colors, and this Paint will
provide an interpolation between each color. The application provides an array of Stops specifying how
to distribute the colors along the gradient.  

The syntax of the Linear Gradient is as follows: 

LinearGradient { 
startX: Number 
startY: Number 
endX: Number 
endY: Number 
proportional: Boolean 
stops: [ 

Stop { offset: Number color: Color (C1)},
Stop { offset: Number color: Color (C2)} 

 ]
} 

startX, startY – endX, endY defines a straight-line within the geometry of the node on which the
color changes from C1 to C2 to C3 etc. The Stop#offset variable must be the range 0.0 to 1.0 and act like
keyframes along the gradient. They mark where the gradient should be exactly a particular color on the
line segment. Proportional indicates whether startX, Y and endX, Y are absolute coordinates or defined
in a scale of 0.0-1.0. If proportional is false, the coordinates must be absolute coordinates of the node,
and if true (default), the coordinates are defined within a scale of 0 to 1 where 0 represents the origin of
the rectangular bounds of the node and 1 represents the right-bottom end point of the rectangular
bounds.  

For example, in case of a rectangular node having x, y as 10, 10 and width, height as 100, 100, startX,
Y will be 10, 10 and endX, Y will be 110, 110 if proportional is false and if proportional is true, startX,Y will
be 0 and endX,Y will be 1. Having proportional as true is more convenient since you don't have to
calculate the absolute coordinates of the node and you can define the gradient with respect to a virtual
space of 0 to 1. So whatever node you apply this gradient to, the runtime will do the appropriate
mapping of 0-1 to the actual node geometry.  If defined in absolute coordinates, it is tightly coupled with 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

223 

the node's geometry (position and size), whereas if defined in proportional coordinates, it can be 
applied to any node regardless of its position or size. 

Let us see a simple example of filling a rectangle with a LinearGradient of three colors (Listing 12-7, 
with the output shown in Figure 12-12). 

 Listing 12-7. Linear Gradient with Absolute Coordinates 

import javafx.scene.shape.Rectangle; 
import javafx.scene.paint.*; 
import javafx.scene.Scene; 
import javafx.stage.Stage; 
 
Stage { 
 title: "LinearGradient" 
 scene: Scene { 
  width: 120 
  height: 120 
  content: Rectangle { 
   x: 0 
   y: 0 
   width: 100 
   height: 100 
   fill: LinearGradient { 
   startX: 0.0, startY: 0.0, endX: 100.0, endY: 100.0 
          proportional: false 
          stops: [ 
           Stop { offset: 0.0 color: Color.BLACK }, 
           Stop { offset: 0.5 color: Color.WHITE }, 
           Stop { offset: 1.0 color: Color.BLACK } 
    ] 
   } 
  } 
 } 
} 

 

Figure 12-12. Output of Linear Gradient with Absolute Coordinates 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

224 

In Listing-12-7, the gradient is defined for a rectangle using its absolute coordinates, where startX,Y 
represents the actual node origin and endX, endY represents (x+width), (y+height). In the stop 
definition, there are three stops defined–one at origin, one at the mid-point of the rectangle (0.5), and 
one at the end point of the straight line represented by the startX,Y-endX,Y. So the stop definition says, 
start filling the rectangle with Color.BLACK at origin, smoothly transition to Color.WHITE at the mid-
point, and transition back to Color.BLACK toward the end point. Listing 12-7 will produce the output 
shown in Figure 12-12. 

There are no limitations on the number of stop values that you can define for a gradient and you can 
define as many stop values as you like. However, the offset values must be unique and each stop must 
have an offset that is greater than the previous stop's offset. If not, this will result in a runtime error. 

Now to differentiate absolute vs. proportional coordinates, let us assume the rectangle's width and 
height are bound to some variables and gets increased to 200, 200. Gradient attributes cannot be bound, 
and hence the definition of that would remain the same. In this case, the output of the code in  
Listing 12-7 will become like what is shown in Figure 12-13. 

 

Figure 12-13. Output of  Linear Gradient Absolute for enlarged node geometry 

This is certainly not what we would want since we want the gradient to be maintained as-is, 
regardless of the node dimensions. This is where a proportional attribute comes very handy. Had if we 
defined the LinearGradient in a proportional way, the same output would have been maintained even 
when the node size increases. Now let us re-write the example given in Listing-12-7 in a proportional 
way. 

Listing 12-8. Linear Gradient with Proportional Coordinates 

import javafx.scene.shape.Rectangle; 
import javafx.scene.paint.*; 
import javafx.scene.Scene; 
import javafx.stage.Stage; 
 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

225 

var w: Number = 100; 
var h: Number = 100; 
 
Stage { 
 title: "LinearGradient" 
 scene: Scene { 
  content: Rectangle { 
   x: 0 
   y: 0 
   width: bind w 
   height: bind h 
   fill: LinearGradient { 
    startX: 0, startY: 0, endX: 1, endY: 1 
          proportional: true 
          stops: [ 
           Stop { offset: 0.0 color: Color.BLACK }, 
           Stop { offset: 0.5 color: Color.WHITE }, 
           Stop { offset: 1.0 color: Color.BLACK } 
    ] 
   } 
  } 
 } 
} 
 
w = 200; 
h = 200; 

 

Figure 12-14. Linear Gradient Proportional 

As you see in Figure 12-14, the gradient definition is maintained even when the node width/height 
is increased and also the same gradient definition can be applied to a different node that has different 
dimensions.  

But it is not always true that you would want to have endX, endY as 1, 1 always, and sometimes you 
may define the gradient for a smaller area of the node and you can make the same gradient repeat or 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

226 

reflect for the rest of the area. This is what is defined by 'cycleMethod'. A cycle method defines how to fill 
the area beyond the end point endX, endY if the node's geometry extends beyond endX, endY. There are 
three options for such cases (applicable to both proportional as well as absolute definitions): 

• NO_CYCLE–Do not do any cycling and just fill the rest of the area with the color of 
the last stop. In the rectangle example, such an area would be filled with 
Color.BLACK. 

• REPEAT–Start repeating the same gradient considering the first x, y that lie outside 
of  the gradient definition as startX, startY and proceed until the actual end point 
of the node's geometry.  

• REFLECT–Apply a mirror image of the defined gradient from the x,y that lie 
outside of the gradient definition, which means the stop values will now be 
applied in the reverse order.  

Now you will see an example of REFLECT and REPEAT –in Listing 12-9. 

Listing 12-9. Linear Gradient REPEAT Cycle 

import javafx.scene.shape.Rectangle; 
import javafx.scene.paint.*; 
import javafx.scene.Scene; 
import javafx.stage.Stage; 
 
var w: Number = 100; 
var h: Number = 100; 
 
Stage { 
 title: "LinearGradient" 
 scene: Scene { 
  content: Rectangle { 
   x: 0 
   y: 0 
   width: bind w 
   height: bind h 
   fill: LinearGradient { 
    cycleMethod: CycleMethod.REPEAT 
    startX: 0, startY: 0, endX: 0.5, endY: 0.5 
          proportional: true 
          stops: [ 
           Stop { offset: 0.0 color: Color.BLACK }, 
           Stop { offset: 0.3 color: Color.WHITE }, 
           Stop { offset: 0.6 color: Color.RED }, 
           Stop { offset: 1.0 color: Color.BLACK } 
    ] 
   } 
  } 
 } 
} 
w = 200; 
h = 200; 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

227 

 

Figure 12-15. Linear gradient repeat cycle 

Figure 12-15 shows the output of the example given in Listing12-9. In Listing 12-9, you can see a 
couple of changes. The endX, Y have been reduced to 0.5, 0.5, which means the gradient is defined only 
for 50% of the node's geometry. Now we have to let the runtime know what it should do with the 
remaining 50% of the node geometry and hence define a suitable cycleMethod.  If you don't specify 
anything, the remaining area will be filled with the last stop color and the output would look similar to 
Figure-12-13. If you specify the cycleMethod as REPEAT, as given in Listing-12-9, the same gradient that 
was defined for the first half of the node geometry will be repeated for the rest of the node area as well, as 
shown in Figure 12-15. 

Now when you replace 'cycleMethod.REPEAT' with 'cycleMethod.REFLECT' in Listing-12-9, you will get 
the output shown in Figure 12-16. As you compare Figure 12-15 with Figure 12-16, Figure 12-16 shows a 
mirror image of the gradient in the lower half of the node, whereas in Figure 12-15, it is more of a 
repetition of the same gradience. 

 

Figure 12-16. Linear gradient reflect cycle 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

228 

Radial Gradient 
A radial gradient is specified as a circle that has one color and a focus (usually at the center of the circle) 
that has another. Colors are calculated by linear interpolation based on distance from the focus. This 
class provides a way to fill a shape with a circular radial color gradient pattern. You may specify two or 
more gradient colors, and this paint will provide an interpolation between each color. You must specify 
the circle controlling the gradient pattern, which is described by a center point and a radius. You can 
also specify a separate focus point within that circle, which controls the location of the first color of the 
gradient. By default, the focus is set to be the center of the circle.  

The syntax of radial gradient is as follows: 

RadialGradient { 
 centerX: Number 
 centerY: Number 
 focusX: Number 
 focusY: Number 
 radius: Number 
 proportional: Boolean 
 stops: [ 
  Stop { offset: Number color: Color (C1)}, 
  Stop { offset: Number color: Color (C2)} 
 ] 
} 

  
The syntax is pretty much similar to LinearGradient with the only difference that you are defining a 

circle instead of a straight-line and the circle can optionally define a focus point.  
This paint will map the first color of the gradient to the focus point, and the last color to the 

perimeter of the circle, interpolating smoothly for any in-between colors specified by you. Any line 
drawn from the focus point to the circumference will thus span all the gradient colors. Specifying a focus 
point outside of the circle's radius will result in the focus being set to the intersection point of the focus-
center line and the perimeter of the circle. All the advantages discussed about the proportional attribute 
are applicable to RadialGradient as well. 

Listing 12-10 shows an example of how to use the radial gradient with different focus points. 

Listing 12-10. Radial Gradient with Focus 

import javafx.stage.Stage; 
import javafx.scene.Scene; 
import javafx.scene.shape.*; 
import javafx.scene.paint.*; 
import javafx.scene.layout.*; 

public class RadialGradientSample { 

    init { 
        var h: Number = 100; 
        var w: Number = 100; 
        var sceneWidth = 300; 
        var sceneHeight = 300; 
        var counter = 0; 
        var radialGradient: RadialGradient [] = [ 
            for(y in [10..30 step 10]) { 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

229 

                for(x in [10..30 step 10]) { 
                    RadialGradient { 
                        cycleMethod: CycleMethod.NO_CYCLE 
                        centerX: w / 2,  
                        centerY: h / 2,  
                        focusX: if (x/10 == 1) (w/2 + 30)  
                          else if (x/10 == 2) (w/2) 
                          else (w/2 - 30) 
                        focusY:  if (y/10 == 1) (h/2 + 30)  
                          else if (y/10 == 2) (h/2) 
                          else (h/2 - 30) 
                        radius: 50 
                        proportional: false 
                        stops: [ Stop { offset: 0.0 color: Color.BLACK }, 
                                 Stop { offset: 1.0 color: Color.RED } ] 
                    } 
                } 
            } 
        ];        
         
        var tile: Tile = Tile { 
         rows: 3 
         columns: 3 
         content: [ 
          for (g in radialGradient) 
          Rectangle { 
              x: 0 
              y: 0 
              width: 100 
              height: 100 
              fill: radialGradient [counter++] 
          } 
   ] 
  } 

        Stage { 
            scene: Scene { 
                height: sceneHeight 
                width: sceneWidth 
                content: [ 
                    tile 
               ] 
            } 
        } 
    } 
} 

public function run() { 
 RadialGradientSample{}; 
} 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

230 

 

Figure 12-17. Radial Gradient with focus 

Listing 12-10 demonstrates the usage of RadialGradient with different focus points. This sample 
creates nine Radial Gradient objects, each with a different focus point and each of them is used to fill a 
rectangle. All the rectangles are added to a Tile (you will learn more about Tile in the “Controls & 
Layouts” section later in this chapter; just understand that it is a layout for now).  The output of this 
example is shown in Figure-12-17. The default behavior is the circle shown at the middle in Figure 12-17, 
where the focus and center points are the same.   

Radial Gradient also supports the same set of cycle methods that you have already learned for 
Linear Gradient and it is handled in the same way as Linear Gradient.  

Please note that the gradients are common profile APIs and hence supported across multiple 
platforms/devices, providing a uniform and richer user experience.  

Input Handling 
Handling user interactions such as keyboard and mouse is critical to any UI application and it has been 
largely simplified in JavaFX by providing convenient attributes in the Node class itself. When you are 
defining a node, you will have to define the event-related attributes as well to keep track of the keyboard 
and mouse interactions from the user.   



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

231 

Keyboard Input 
Keyboard operations can be tracked through the following attributes: 

• onKeyPressed: function (ke: KeyEvent) { } 

• onKeyReleased: function (ke: KeyEvent) { } 

• onKeyTyped: function (ke: KeyEvent) { } 

 
All these attributes are of type 'function' and each of them accept a javafx.scene.input.KeyEvent 

object as an argument. This is pretty much similar to the event handling in AWT/Swing toolkits in Java, 
but here you don't need a separate listener implementation; rather, define the listener code implicitly 
within the node definition.  

For these functions to work properly, a node first should contain the focus so that it can get notified 
of the key inputs. So first, let us see an introduction on focus. 

JavaFX Focus Sub-system 
For key events to work, a node should contain the keyboard focus and all the key events should be 
targeted to the node containing the focus. Focus is a state of the node that indicates whether the 
respective node is ready to respond to the keyboard inputs from the user. This is visually reflected in 
some cases, such as controls where an additional border is shown around the control when it has focus. 
For non-control nodes, it is up to the application to differentiate the node visually based on its focus 
state.  

If a node contains focus, it's 'focused' attribute will be true and it is called the 'focus owner'. If there 
are multiple stages in the application, you can find out which stage has the focus owner by checking the 
value of the 'Stage.containsFocus' attribute. A true value also indicates that the stage is active.  A node 
can be a focus owner but cannot be 'focused' (focused attribute of Node becoming true) until the 
respective stage in which it resides is active. If not currently active and when subsequently made active, 
the respective focus owner will become 'focused'.  

A node that is not a control has its focusTraversable turned off by default, which means it cannot 
transfer focus automatically to the next node in the focus cycle when pressing TAB. But controls 
(javafx.scene.control) can transfer focus to the next node in the focus cycle. Hence, a non-control 
node can receive focus from a control through TAB traversal, but then it is up to the application to 
transfer it to the next node through requestFocus()calls.  

A call to requestFocus()will be entertained only when the node is eligible and eligibility is decided 
by the following factors: 

• Node is added to the scene 

• Node and its ancestors are visible 

• Node and its ancestors within the scene are not disabled 

If any of these conditions are violated, requestFocus calls are ignored. If any of these violations 
occur after the node becomes a focus owner, focus will be moved to the next node in the focus cycle if 
one is eligible. If no nodes in the scene are eligible, focus owner becomes null. It is up to the traversal 
engine to pick up the the next eligible node and it may depend on various factors such as proximity of 
the next eligible node to the current focus owner that is affected, the order in which nodes are added to 
the scene, and so forth.  



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

232 

Similarly, if the focus owner is moved from one sub-tree to another within the same scene graph, its
focus state will be maintained. However, if it is moved to a new scene, its focus state will depend on the
new scene's focus state. If the new scene had a focus owner already, that will be preserved and if not, the
moved node will gain focus depending on its eligibility.  There is one situation where the requestFocus()
call will be remembered and honored later on and that is when it is called before the nodes are
initialized when the scene is shown for the first time. Any call made before the initialization will be
remembered and honored when the scene is made visible.  

Mouse Input 
Mouse operations on a node can be tracked through the following attributes: 

• onMousePressed: function (me: MouseEvent) – Triggered when mouse is pressed
on a node. 

• onMouseReleased: function (me: MouseEvent) – Triggered when mouse is
released on a node. 

• onMouseClicked: function (me: MouseEvent)  - Triggered when mouse is pressed
and released on a node. 

• onMouseEntered: function (me: MouseEvent) – Triggered when the mouse pointer
enters a node. 

• onMouseExited: function (me: MouseEvent) – Triggered when the mouse pointer
exits a node. 

• onMouseDragged: function (me: MouseEvent) – Triggered when the mouse pointer
is pressed on a node and dragged. This keeps triggering until the mouse is
released, regardless of the mouse position. 

• onMouseMoved: function (me: MouseEvent) – Triggered when the mouse is
hovered on a node. 

• onMouseWheelMoved: function (me: MouseEvent) – Triggered when the mouse
wheel is moved when the mouse pointer is within the node. 

All these attributes are of type 'function' and each of them accept a javafx.scene.input.MouseEvent
object as an argument. This is pretty much similar to the event handling in AWT/Swing toolkits in Java,
but here you don't need a separate listener implementation; rather, define the listener code implicitly
within the node definition.  In other words, you don't have to implement the entire listener interface as
in Java; you can implement just the functions that are needed. 

While these attributes are self-explanatory, there are a few mouse-related attributes that are worth
defining here. They are: 

• Node.pressed: Boolean 

• Node.hover: Boolean 

• Node.blocksMouse:Boolean 

Node.pressed is set when the mouse is pressed on the node. If you are just interested in the pressed
state of the node, you don't have to define the onMousePressed and instead you can just use this attribute
directly to check if the mouse is pressed. Similarly, Node.hover will let you know whether the mouse is 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

233 

moved on a node without you defining the onMouseMoved explicitly. These attributes are given for 
convenience since they are very widely used by most applications. 

Please note that mouse-aware area of a node is the geometry of the node for most shapes. However, 
certain nodes such as Text and controls are exceptions where the mouse-aware area is the bounds of the 
node and not its geometry.  Say if it is based on the geometry, it would be really hard to use some of the 
controls such as CheckBox, RadioButton, and so forth, and the user has to keep the mouse pointer 
exactly on the text to produce a selection of the control. This is unintuitive and, perhaps, very difficult. 
On the other hand, if it is bounds-driven, the user can click anywhere on the area where text is shown 
and it will change the selection. 

While the default behaviors of certain nodes are chosen to be this way, it is valuable to give an 
option to the developer as to what he would want to choose–geometry-based picking or bounds-based 
picking. This is achieved through Node.pickOnBounds. If this is set to true, it enables bounds-based 
picking just like the text node. If it is false, the mouse-aware area is defined by the node geometry.  This 
behavior is pictorially represented in Figure 12-18. 

 

Figure 12-18. Geometry vs. bounds picking 

BlocksMouse 
Node.blocksMouse is an important feature that defines how mouse events are handled for nodes that are 
overlapping one another. If a node is said to be blocking the mouse events, it means it does not allow the 
mouse events to pass through to the nodes located beneath or visually obscured by this node (or up the 
hierarchy in the scene graph).  This can be considered equivalent to the event consumption in 
AWT/Swing toolkits. By default, blocksMouse is set to false for all the nodes (except those that descend 
from the control class) and hence, they allow the mouse events to propagate up the scene graph.  

Some interesting facts about blocksMouse are that the node acts as if it is isolated from the parent 
when its blocksMouse is set to true. Say you add a rectangle to a group and set blocksMouse to true for the 
rectangle. Now when you enter the mouse into the rectangle from the group, group would trigger 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

234 

onMouseExit and Rectangle will trigger onMouseEnter. Similarly, when moving the mouse out of rectangle 
and into the group, rectangle will trigger onMouseExit and Group will trigger onMouseEntered. This might 
look a bit strange at first sight because mouse is actually within the rectangle and hence within the group 
as well. But this behavior is intentional and as per the design and you can consider the node to be 
excluded from its parent when its blocksMouse is true. 

Another interesting aspect of blocksMouse is with respect to a disabled node. BlocksMouse setting is 
not honored for a disabled node and hence a disabled node will always allow the events to pass through 
to the nodes obscured.  

Text Rendering 
Text rendering in JavaFX is done through the javafx.scene.text.Text class available in the 
javafx.scene.text package. You can consider a text node as another shape with additional capabilities 
and Text node indeed extends from the javafx.scene.shape.Shape class. Hence, all the features such as 
stroke, fill, and so forth that you have learned so far with respect to shapes are applicable for text as well. 
In this section, you will learn about some of the important aspects of text rendering and the support for 
different fonts.  Before jumping into the API, let us see some basic concepts in text rendering. 

A string is commonly thought of in terms of the characters that comprise the string. When a string is 
drawn, its appearance is determined by the font that is selected. However, the shapes that the font uses 
to display the string don’t always correspond to individual characters. For example, in professional 
publishing, certain combinations of two or more characters are often replaced by a single shape called a 
ligature. The shapes that a font uses to represent the characters in the string are called glyphs. A font 
might represent a character such as a lowercase a in acute using multiple glyphs, or represent certain 
character combinations such as the fi in final with a single glyph. A glyph is simply a shape that can be 
manipulated and rendered in the same way as any other shape. An application developer need not worry 
about glyphs since they are the internal representation of the string to be rendered.  

A font can be thought of as a collection of glyphs. A single font might have many versions, such as 
heavy, medium, oblique, gothic, and regular. These different versions are called faces. All of the faces in a 
font have a similar typographic design and can be recognized as members of the same family. In other 
words, a collection of glyphs with a particular style forms a font face, a collection of font faces forms a 
font family, and a collection of font families forms the set of fonts available on a particular configuration. 

Fonts can be manipulated in JavaFX using the javafx.scene.text.Font class. A font can be built by 
specifying the full font name, which is a combination of font family plus the font style. For example, Arial 
is a family name and Bold is the style. So you can build a font using the name Arial Bold.  Font look-up is 
done in the following order: 

• Embedded fonts 

• Fonts shipped with JavaFX 

• Fonts available on the system 

• Fallback fonts 

The runtime looks for the given font in these places and if it cannot find one, it falls back to using 
the default font available in the runtime. In any case, Font.name is updated to the font being used and 
you can compare that with what you have specified or some other default font. 

Please note that all the attributes in the font class are public-init and hence cannot be bound. If you 
really want to bind a font, you will have to bind it, as shown in Listing 12-11. 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

235 

Listing 12-11. A Text Node with a Bound Font 

import javafx.scene.*; 
import javafx.scene.text.*; 
import javafx.scene.input.*; 
 
var fontNames = ["Arial Bold", "Amble Condensed", "Amble Condensed Italic"]; 
var index = 0 on replace { 
 println("Font Used: {t.font.name}"); 
} 
 
var t = Text { 
 font: bind Font { 
  name: fontNames[index] 
  size: 25 
 } 
 content: "JavaFX" 
 textOrigin: TextOrigin.TOP 
 
 onMouseClicked: function (me: MouseEvent) { 
  if (index < sizeof fontNames) { 
   index ++; 
  } else { 
   index = 0; 
  } 
 } 
} 

 
Output 
Font Used: 
Font Used: Amble Condensed 
Font Used: Amble Condensed Italic 
Font Used: Amble Condensed 
Font Used: Arial Bold 
 
In Listing 12-11, the Font object literal as such is bound with the text node's font attribute and no 

binding is specified at the attribute level within the Font object. So when the user clicks on the text node, 
the index changes, which causes the entire font object to be re-created and used with the text node and 
hence, the user will see the font changing visually.   

The Font class provides some built-in functions to get all the fonts available on the system (includes 
JavaFX and embedded fonts as well). It is much safer to use the built-in functions to get the font names 
instead of specifying a font name yourself, mainly because hard-coding a font name is prone to 
typographic errors and it will not be very apparent since the runtime will use the default font under the 
covers if the specified one does not exist.  

You can also construct a new font using the built-in functions by specifying your requirements in 
terms of size, name, weight, size, posture, and so forth and you can do the same through the object 
literal as well. Font offers lots of additional attributes such as size, embolden, oblique, ligatures, letter 
spacing, and so forth. Please refer to the API documentation for more information. However, the most 
predominantly used attributes are font name and font size.  

The text node is just another shape, so all the shape attributes are applicable for the text node as 
well. It supports multi-line rendering in two ways. The developer can break the text into multiple lines 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

236 

by including a '\n' in the string. Another way to do this is to use wrappingWidth. Specify wrappingWidth in 
terms of pixels and the given text gets word wrapped when its bounds exceeds the given width.  
Additionally, you can specify various origins and alignments to form a paragraph of text.  

The example given in Listing 12-12 demonstrates various text alignments with respect to  
multi-line text.  

Listing 12-12. Text Alignments 

import javafx.scene.paint.*; 
import javafx.stage.*; 
import javafx.scene.*; 
import javafx.scene.input.*; 
import javafx.scene.shape.*; 
import javafx.scene.text.*; 
 
public class TextAlignments { 
 
    init { 
 
        var content: String = "The quick brown fox jumps over the lazy dog.\n" 
         "Woven silk pyjamas exchanged for blue quartz?\n" 
         "Have a pick: twenty six letters - no forcing a jumbled quiz!"; 
        var alignments: TextAlignment[] = [ 
          TextAlignment.LEFT,  
          TextAlignment.CENTER,  
          TextAlignment.RIGHT,  
          TextAlignment.JUSTIFY 
        ]; 
         
        var alignmentsString: String[] = [ 
          "TextAlignment.LEFT",  
          "TextAlignment.CENTER",  
          "TextAlignment.RIGHT",  
          "TextAlignment.JUSTIFY" 
        ]; 
         
        var counter = 0; 
        Stage { 
         scene: Scene { 
             height: 160 
             width: 240 
             content: [ 
              Text { 
               x: 10 
               y: 10 
               content: bind alignmentsString[counter] 
              }, 
                 Text { 
                     x: 10 
                     y: 40 
                     font: Font { size: 15 } 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

237 

                     content: content 
                     fill: Color.BLACK 
                     wrappingWidth: 200 
                     underline: true 
                     textAlignment: bind alignments[counter] 
                     focusTraversable: true 
                     onKeyPressed: function(e:KeyEvent) { 
                         if (e.code == KeyCode.VK_LEFT) { 
                             if (counter < alignments.size()-1) { 
                              counter ++; 
                             } else { 
                              counter = 0; 
                             } 
                         } 
                     } 
                 } 
             ] 
         } 
     } 
    } 
} 
 
public function run() { 
 TextAlignments{}; 
} 

 

Figure 12-19. Multi-line text with different alignments 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

238 

Listing 12-12 demonstrates the usage of multi-line text, wrapping width, and text alignments.  While 
running this example, when the stage appears on the screen, press the LEFT arrow key to cycle through 
various alignments. The given text is wrapped at 200 pixels and various alignments are applied to the 
text. Figure 12-19  shows the output of Listing 12-12–the various alignments that are possible with 
JavaFX.  A text node is provided with x, y attributes for defining the position within the scene. The font 
set on the text node does not specify a name and hence, the default FX font (Amble family) would be 
used. Setting underline to true underlines the content text, as shown in the output.  

With the combination of attributes offered by Font and Text classes, you can do any kind of text 
rendering that is possible with other UI toolkits. The JavaFX controls such as Label, Button, CheckBox, 
RadioButton, TextBox (multi-line/single-line), and so forth use text nodes extensively to represent 
textual information (such as label text) and can get as powerful as a multi-line textbox, where you can 
create and edit multiple lines of text.  

Image Rendering 
Images are collections of pixels organized spatially.  JavaFX offers a comprehensive yet simple API for 
image rendering through two classes available in the javafx.scene.image package. The actual image 
(bitmap) is represented using the javafx.scene.image.Image class and rendering of the image onto a 
scene is handled by the javafx.scene.image.ImageView class. An image has to be first loaded on to the 
memory before rendered on the scene. The next section shows how to load an image. 

Loading an Image 
javafx.scene.image.Image is capable of loading an image from a URL that could be a web URL or a local 
file URL. An image can be loaded in the foreground thread (default) or in a background thread. If the 
image is of a relatively large size, the developer may not want the application user to wait until the entire 
image is loaded and hence can choose to load the image in a background thread. Until the entire image 
is loaded, the Image class allows the developer to show a placeholder image, which is often the 
thumbnail of the actual image being loaded. This engages the end user appropriately when the image is 
being loaded in the background.  If you are writing a desktop-only application, you can also convert an 
existing buffered image created in java (java.awt.image.BufferedImage) to a JavaFX Image 
(javafx.scene.image.Image) using the following API: 

 
javafx.ext.swing.SwingUtils.toFXImage(image: java.awt.image.BufferedImage): 

javafx.scene.image.Image 
 
Currently (as of 1.3), JavaFX supports loading of the following image formats–GIF, Animated GIF, 

JPEG, PNG, and BMP. Future version of JavaFX may support additional image formats. However, if you 
are developing a common profile application, you may have to restrict the image type to PNG and GIF 
since mobile implementation currently only supports these formats.  



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

239 

■ Note The image format support for desktop applications comes from the underlying ImageIO implementation 
from Java (javax.imageio.*) that JavaFX leverages on. Hence, if you have an imageio plug-in to recognize a new 
image format, just add the plug-in to your classpath and JavaFX will automatically be able to support the new 
format without any code change. 

As mentioned already, images can be loaded from the local file system or from the Web. The Image 
class also allows the developer to specify a preferred width and height for the image optionally, and the 
image loaded gets scaled to the specified width/height. You can choose the appropriate scaling 
algorithm to control the rendering quality, by giving priority either to the performance or smoothness of 
the image.  

Listing 12-13 shows a simple example of loading an image. 

Listing 12-13. Simple Image Loading  

import javafx.scene.image.*; 
 
var img = Image { 
 url: "{__DIR__}duke.gif" 
} 
 
ImageView { 
 image: img 
} 

 

Figure 12-20. Default image loading from local file system 

In Listing 12-13, the code tries to load an image–duke.gif– from the directory where classes are 
available (represented by __DIR__) and uses the default width and height of the original image. The 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

240 

ImageView is used to render the image on to the scene and you will see that in a while. The output of this 
example is shown in Figure 12-20. 

Now let us customize the image width and height for an image loaded from the Web (Listing 12-14). 

Listing 12-14. Image Loading–Custom Size 

import javafx.scene.image.*; 
 
var img = Image { 
 url: "http://www.apress.com/img/masthead_logo.gif" 
 width: 200 
 height: 200 
} 
 
ImageView { 
 image: img 
} 

 

Figure 12-21. Image loading from the Web with a custom size 

Listing 12-14 is loading an image from the Web (the Apress logo from www.apress.com) and changing 
its default size to 200, 200. Please note that the actual size of this image is 422x80, and hence changing it 
to 200, 200 alters the aspect ratio between the width and height. It’s pretty apparent from the output 
shown in Figure-12-21 that the ratio has gone for a toss. If you want to preserve the aspect ratio while 
resizing the image (either width alone, or height alone, or both), you can set preserveRatio to true and 
you will get an output as shown in Figure 12-22. 

http://www.apress.com/img/masthead_logo.gif
http://www.apress.com


CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

241 

 

Figure 12-22. Image loading from the Web with custom size–aspect ratio preserved 

■ Note It is always better to specify the appropriate width and height when loading the image, depending on your 
requirements, since it optimizes the image that resides in the memory. While it is also possible to do the scaling at 
rendering time using ImageView, it is better doing it at loading time since it helps you manage the memory 
appropriately by keeping a smaller-size image in memory if your usage is likely to scale down the image from it's 
original size. 

Now let’s see another example where we load the image in the background while keeping the user 
engaged through a placeholder (Listing 12-15). 

Listing 12-15. Background Loading of Images 

import javafx.scene.image.*; 
import javafx.scene.Scene; 
import javafx.stage.Stage; 
 
var width = 800; 
var height = 600; 
 
var img = Image { 
 url: "http://c0278592.cdn.cloudfiles.rackspacecloud.com/original/191195.jpg" 
 backgroundLoading: true 
 placeholder: Image { 
  url: "{__DIR__}191195.png" 
 } 
} 
 
Stage { 
 scene: Scene { 
  width: width 
  height: height 
  content: ImageView { 
   image: img 
   x: bind (width/2 - img.width/2) 
   y: bind (height/2 - img.height/2) 
  } 
 } 
} 

http://c0278592.cdn.cloudfiles.rackspacecloud.com/original/191195.jpg


CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

242 

Figure 12-23. Placeholder image shown while the actual image being loaded 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

243 

 

Figure 12-24. Actual image replacing the placeholder 

 
Listing 12-15 loads a larger image in the background thread and while the image is being loaded, a 

placeholder image (thumbnail version of the image being loaded) is shown to the user, as shown in 
Figure 12-23. When the actual image completes loading, the placeholder image is replaced with the 
actual image, as shown in Figure 12-24. Another use of this placeholder image is that when there is an 
issue with loading the actual image, the placeholder will be retained forever, thus avoiding a blank 
screen for the end user. In such cases, the placeholder could be an image that indicates an error in image 
loading such as the ones we typically see on web pages with a red colored X on one of the corners.  



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

244 

■ Note Loading an image in the background is optional and often decided by the size of the image and probability 
of an error when loading it. But please note that the runtime should not have any issues in loading the placeholder 
image, if you have specified one. An invalid placeholder image will prevent proper loading of the actual image and 
will not load the actual image even if the actual image is correct. So please take extra care when specifying the 
placeholder to ensure the placeholder is correct. However, this is not an issue if the placeholder is skipped 
altogether. 

Rendering an image 
Images are rendered on to the scene through the javafx.scene.image.ImageView class. So far, you have 
seen a basic use of the image view class, but ImageView has lot more features to offer. It is possible to alter 
the width and height of the image view using the fitWidth and fitHeight attributes, and it is also 
possible to preserve the aspect ratio just like you did with Image.   

■ Note The width and height attributes of the Image class are public-init and hence cannot be bound, whereas 
fitWidth and fitHeight of image view are normal public attributes and hence can be bound. So if there is a need to 
alter the width and height of the image in response to another variable, it is better to do it with fitWidth/fitHeight 
where you can just bind them. On the other hand, specifying it at Image level will offer better optimization in terms 
of the size of the image kept in the memory. 

Additionally, you can specify an 'x' and 'y' location for the image view if you want the image view to 
be placed at a specific point. This has already been demonstrated in Listing 12-15, where the image is 
placed at the center of the scene through the use of 'X'/'Y' attributes of ImageView. 

When scaling the image up or down, you can control the rendering quality by choosing the 
appropriate algorithm by toggling the 'smooth' attribute. If smooth is true, runtime chooses an algorithm 
that offers better smoothness compromising on the performance, and if you set it to false, focus will be 
on the performance compromising on the smoothness of the image.  

ImageView also offers a way to specify a view port into the original image. Viewport is a rectangle 
within the image which indicates that only those pixels that fall within the viewport must be shown and 
not others. Viewport rectangle is independent of image view's transformations or scaling. If viewport is 
not specified, the entire image is shown.  

Listing 12-16 shows a simple example of the viewport usage. 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

245 

Listing 12-16. ImageView Viewport 

import javafx.scene.image.*; 
import javafx.scene.Scene; 
import javafx.stage.Stage; 
import javafx.geometry.*; 
 
var width = 200; 
var height = 200; 
 
var img = Image { 
 url: "http://noelschweig.com/photos/gallery/nature/nature4.jpg" 
 width: 200 
 height: 200 
} 
 
Stage { 
 x: 0 
 y: 0 
 scene: Scene { 
  width: width 
  height: height 
  content: ImageView { 
   image: img 
  } 
 } 
} 
 
Stage { 
 x: 200 
 y: 0 
 scene: Scene { 
  width: width 
  height: height 
  content: ImageView { 
   image: img 
   viewport: Rectangle2D { 
    minX: 0 
    minY: 0 
    width: 100 
    height: 100 
   } 
  } 
 } 
} 
 
 

http://noelschweig.com/photos/gallery/nature/nature4.jpg


CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

246 

 

Figure 12-25. ImageView with and without viewport 

Listing 12-16 demonstrates the use of viewport where it creates an image object and displays it using 
two image view objects, one with view port and another one without it. If there is no viewport, the entire 
image is shown as given in the left half of Figure-12.25. The code specifies a viewport of 0, 0, 100, 100 
within the image, which is of size 0, 0, 200, 200, and that's what is shown in the right half of Figure 12-25. 
If the viewport is smaller than the actual image, only the pixels that fall within the viewport area are 
shown. If the viewport is bigger than the actual size of the image, the entire image is shown.  

Also note that the same image instance can be used by multiple image view objects and can be 
displayed differently on the scene.  

Transformations 
Any Node can have transformations applied to it. These include translation, rotation, scaling, or shearing 
transformations.  Transformations can be two-dimensional or three dimensional (available since 1.3). 
Let’s see each of the 2-D transformations in detail. 

Translation 
A translation is applied to a node by repositioning it along a straight-line path from one coordinate 
location to another. The node is translated by adding translation distances tx and ty to the original 
coordinate position (x,y) of the origin of the node. For example, if you create a rectangle that is drawn at 
the origin (x=0, y=0) and has a width of 100 and a height of 50, and then apply a translation with a shift of 
10 along the x axis (x=10), then the rectangle will appear drawn at (x=10, y=0) and remain 100 points 
wide and 50 points tall. Note that the origin was shifted, not the x variable of the rectangle. 

In JavaFX, you can translate a node in two ways. One way is to use the convenience attributes 
available in the Node class–translateX, translateY. The other way is to use the 'Node.transforms' 
attribute. For most basic transformations, it is sufficient to use translateX, translate, but if you want to 
combine multiple transformations to create a composite transformation, it is better to go for 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

247 

'transforms' attribute, which accepts an array of transformations and the order of transformations will 
also be preserved. 

■ Note It is not advisable and potentially dangerous to use both convenience variables and the 'transforms' 
attribute together for a node and the behavior would be unpredictable since you do not know the order in which 
transformations will be evaluated. Hence, if you decide to use either of the ways to apply transformations, better 
stick to the same for that node and do not mix up both.  

Listing 12-17 shows a simple example of a translate transformation applied on a rectangle through 
translateX, translateY attributes. 

Listing 12-17. Translate Transformation Using translateX, Y 

import javafx.scene.*; 
import javafx.scene.shape.*; 
import javafx.scene.paint.*; 
import javafx.scene.input.*; 
import javafx.stage.Stage; 
 
var tx: Number = 0; 
var ty: Number = 0; 
 
var rect: Rectangle = Rectangle { 
 x: 0 
 y: 0 
 width: 100 
 height: 100 
 fill: Color.GRAY 
 translateX: bind tx 
 translateY: bind ty 
  
 onKeyPressed: function (ke: KeyEvent) { 
  if (ke.code == KeyCode.VK_RIGHT) { 
   tx = tx + 10; 
  } else if (ke.code == KeyCode.VK_LEFT) { 
   tx = tx - 10; 
  } else if (ke.code == KeyCode.VK_UP) { 
   ty = ty - 10; 
  } else if (ke.code == KeyCode.VK_DOWN) { 
   ty = ty + 10; 
  } 
 } 
} 
 
Stage { 
 scene: Scene { 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

248 

  width: 400 
  height: 400 
  content: [rect] 
 } 
} 
 
rect.requestFocus(); 
 

 
Figure 12-26. Rectangle translated through keyboard interactions 

 In Listing 12-17, a rectangle is drawn at 0, 0 with a width/height of 100, 100 and its translateX, 
translateY are bound to two variables tx, ty. A key listener is added to the node that changes the tx, ty 
values based on what key is pressed. UP/DOWN arrow keys move the node along the y-axis and 
LEFT/RIGHT arrow keys move the node along the x-axis.  Please note that the x, y values of the rectangle 
are unchanged and translation is applied to the rectangle's origin and not to the x, y value of the 
rectangle. The output of Listing 12-17 is shown in Figure 12-26. 

Now let’s re-write example 12-17 to use the transforms attribute instead of translateX,Y.  



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

249 

var rect: Rectangle = Rectangle { 
 x: 0 
 y: 0 
 width: 100 
 height: 100 
 fill: Color.GRAY 
 transforms: bind Transform.translate(tx, ty) 
 . . . .  
 . . . . 
} 

 
As you can see in the re-factored code, there is not much difference between translateX, Y and the 

transforms attribute with respect to translate transformation. However, you will see a significant 
difference for transformations that depend on a pivot point such as scale, rotate, and shear, and you will 
learn it while learning those transformations. 

Rotation 
A rotation is applied to a node by repositioning it along a circular path in the xy plane. A rotation 
transformation needs a rotation angle and the pivot point (x, y) about which the node is to be rotated.  
For example, if you create a rectangle that is drawn at the origin (x=0, y=0) and has a width of 100 and 
height of 30 and you apply a 90-degree rotation (angle=90) and a pivot at the origin (pivotX=0, pivotY=0), 
then the rectangle will be drawn as if its x and y were 0 but its height was 100 and its width -30. That is, it 
is as if a pin is being stuck at the top left corner and the rectangle is rotating 90 degrees clockwise around 
that pin. If the pivot point is instead placed in the center of the rectangle (at point x=50, y=15) then the 
rectangle will instead appear to rotate about its center. Note that as with all transformations, the x, y, 
width, and height variables of the rectangle (which remain relative to the local coordinate space) have 
not changed, but rather the transformation alters the entire coordinate space of the rectangle.  

Similar to translate, you can apply rotate either using the 'Node.rotate' attribute or the 
'Node.transforms' attribute of the Node class. The 'rotate' attribute, by default, assumes the center of 
the node as the pivot point, whereas in the case of transforms, you need to explicitly specify the pivot 
point.  

Listing 12-18 shows a simple example of a rotate transformation applied on a node using rotate, 
with the output being shown in Figure 12-27. 

Listing 12-18. Rotate Transformation Using Rotate on a Custom Node 

import javafx.scene.*; 
import javafx.scene.shape.*; 
import javafx.scene.paint.*; 
import javafx.scene.input.*; 
import javafx.stage.Stage; 
import javafx.scene.transform.*; 
 
var rotate: Number = 0; 
 
var svgNode: SVGNode = SVGNode { 
 rotate: bind rotate 
   
 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

250 

 onKeyPressed: function (ke: KeyEvent) { 
  if (ke.code == KeyCode.VK_RIGHT) { 
   rotate++; 
   if (rotate > 360) rotate = 360; 
  } else if (ke.code == KeyCode.VK_LEFT) { 
   rotate --; 
   if (rotate < 0) rotate = 0; 
  }  
 } 
} 
 
Stage { 
 scene: Scene { 
  width: 150 
  height: 150 
  content: [svgNode] 
 } 
} 
 
svgNode.requestFocus(); 
 
class SVGNode extends CustomNode { 
  
 public override function create(): Node { 
  var gr: Group = Group { 
   content: [ 
    SVGPath { 
        content: "M70 20 L30 100 L110 100 Z" 
       }, 
       Rectangle { 
        x: 30 
        y: 20 
        width: 80 
        height: 80 
        fill: null 
        stroke: Color.RED 
       } 
      ] 
     } 
    } 
} 

 
 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

251 

 
Figure 12-27. Rotating a custom node with the rotate attribute 

In Listing 12-18, there is a new concept being introduced–CustomNode.  

Custom Node 
A Custom Node is the base class for defining new node types that are not available as part of built-in 
nodes in the API. This is perhaps one of the most-used classes in JavaFX since every application will have 
the need to define its own nodes. As you see in the Listing 12-18, you can create a custom node by 
extending the javafx.scene.CustomNode class and overriding its create method. You can return any node 
or a composite node such as a group from the create method and the object of this class will be treated 
as a node by itself. Whatever you do with your custom node, such as transformations, clipping, and so 
forth will be applied to all its children (the nodes returned by the create method). Instead of overriding 
the create method, alternatively you can also override the 'children' attribute of the custom node and 
assign your own node to it. 

Now, coming back to the rotation aspect of it, Listing 12-18 creates an instance of the custom node 
and binds its rotate attribute to a rotate variable. The value of the rotate variable changes based on the 
keyboard input. When the rotate value increments or decrements, the custom node rotates in the 
clockwise or counter-clockwise direction visually. Please note that the pivot point is assumed to be the 
center of the custom node and hence the node rotates with respect to its center, as shown in  
Figure 12-27. 

However, if you want to have more control over the pivot point, you can use the 'transforms' 
attribute of the node to rotate the node instead of the 'rotate' attribute and, for example, you can re-
factor the code to use 'transforms' to use a pivot point of the origin 0,0 instead of the center, as follows: 

 
… 
… 
... 
var svgNode: SVGNode = SVGNode { 

 transforms: bind Transform.rotate(rotate, 0, 0) 
… 
… 
} 
 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

252 

The re-factored code uses a pivot point of 0, 0 instead of the default center of the node and you can
see the difference yourself when you run the application.  

■ Note The rotation example clearly differentiates the difference between the convenience attributes and the
'transforms' attribute, where transforms offers you more control over the transformation than the convenience
attributes. On the other hand, people who just use simple basic transformations will definitely find convenience
attributes to be handier than the transforms attribute. Nevertheless, use the approach that is appropriate for you
and do not mix up both. 

Scaling & Shear 
A scaling transformation alters the size of the node, causing  a node to either appear larger or smaller
depending on the scaling factor. Scaling alters the coordinate space of the node such that each unit of
distance along the axis in local coordinates is multiplied by the scale factor. As with rotation
transformations, scaling transformations are applied about a "pivot" point. You can think of this as the
point in the Node around which you "zoom." For example, if you create a rectangle with a
strokeWidth of 5, and a width and height of 50, and you apply a scale transformation with scale factors
(x=2.0, y=2.0) and a pivot at the origin (pivotX=0, pivotY=0), the entire rectangle (including the stroke)
will double in size, growing to the right and downward from the origin.  

A shearing transformation, sometimes called a skew, effectively rotates one axis so that the x and y
axes are no longer perpendicular. 

■ Note A shear transformation does not have the convenience attribute and hence has to be specified only
through the 'transforms' attribute of the node, whereas the scale transformation has scaleX, scaleY in the node
class. 

Listing 12-19 shows how you can apply scaling and shear transformation for the custom node you
saw in the previous example, with the output shown in Figure 12-28.  

Listing 12-19. Scale and Shear Transformations 

import javafx.scene.*;
import javafx.scene.shape.*;
import javafx.scene.paint.*;
import javafx.scene.input.*;
import javafx.stage.Stage;
import javafx.scene.transform.*; 

var scaleX: Number = 1;
var scaleY: Number = 1; 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

253 

var shearX: Number = 0.0; 
var shearY: Number = 0.0; 
 
var svgNode: SVGNode = SVGNode { 
 transforms: bind [ 
  Transform.scale(scaleX, scaleY, svgNode.layoutBounds.maxX/2, 
svgNode.layoutBounds.maxY/2), 
  Transform.shear(shearX, shearY) 
 ] 
   
 onKeyPressed: function (ke: KeyEvent) { 
  if (ke.code == KeyCode.VK_UP) { 
   scaleX += 0.2; 
   scaleY += 0.2; 
   if (scaleX > 3.0) { 
    scaleX = -3.0; 
    scaleY = -3.0; 
   } 
  } else if (ke.code == KeyCode.VK_DOWN) { 
   scaleX -= 0.2; 
   scaleY -= 0.2; 
   if (scaleX < -3.0) { 
    scaleX = 3.0; 
    scaleY = 3.0; 
   } 
  } else if (ke.code == KeyCode.VK_LEFT) { 
   shearX += 0.2; 
   shearY += 0.2; 
   if (shearX > 1.0) { 
    shearX = -1.0; 
    shearY = -1.0; 
   } 
  } else if (ke.code == KeyCode.VK_RIGHT) { 
   shearX -= 0.2; 
   shearY -= 0.2; 
   if (shearX < -1.0) { 
    shearX = 1.0; 
    shearY = 1.0; 
   } 
  }  
 } 
} 
 
Stage { 
 scene: Scene { 
  width: 150 
  height: 150 
  content: [svgNode] 
 } 
} 
 
svgNode.requestFocus(); 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

254 

 
class SVGNode extends CustomNode { 
  
 public override var children: Node[] = [ 
  SVGPath { 
   content: "M70 20 L30 100 L110 100 Z" 
  }, 
  Rectangle { 
   x: 30 
   y: 20 
   width: 80 
   height: 80 
   fill: null 
   stroke: Color.RED 
  } 
 ]; 
} 

 
Figure 12-28. Scaling and shearing a custom node 

In Listing 12-19, the custom node you saw in Listing 12-18 has been applied with a scale and a shear 
transformation. Please note that both the transformations are applied using the 'transforms' attribute of 
the node and scale also requires a pivot point (x, y) about which the node is to be scaled. In this case, the 
center of the node has been specified. Node.layoutBounds returns the rectangular bounds of the node, 
excluding any transformations or clipping, but inclusive of its stroke width. The code is calculating the 
center point of the node, which is used as the pivot so that it appears as if the node zooms about its 
center. The default pivot points when using 'Transforms.scale (x, y)' will be 0, 0, which is the origin of 
the node.  Pressing UP/DOWN arrow keys will scale the node up and down appropriately, and pressing 
LEFT/RIGHT arrow keys will shear the node up and down. Scaling using a negative value will invert the 
node to look as if it is a mirror image of the original node and it is often used to create reflection-like 
effects. 

Also note one other difference in the implementation of the custom node in Listing 12-19. The 
example does not override the 'create' method of the CustomNode class, but instead overrides the 
'children' attribute of the CustomNode. This is the preferred approach over overriding the create method 
and the advantage of this approach is that you do not have to create an intermediate group to represent 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

255 

multiple nodes within a custom node as we had done in Listing-12-18. The children attribute is a node 
array as opposed to a single Node return value of CustomNode.create.  

You may apply multiple transformations to a node by specifying an ordered chain of transforms. 
The order in which the transforms are applied is defined by the sequence specified in the transforms 
variable.  

Controls & Layouts 
JavaFX offers a wide set of controls and layouts that are useful for creating front-ends for enterprise 
applications. All these controls are pure JavaFX implementations and hence provide a uniform look and 
feel across all devices.  Controls provide additional variables and behaviors beyond those of Node to 
support common user interactions in a manner that is consistent and predictable for the user.  However, 
controls are no different from normal nodes as far as developers are concerned and you can add a 
control wherever you can add a node. All controls extend from the javafx.scene.Control class, which in 
tern extend from javafx.scene.CustomNode.  Each control comes with its own skin that you can 
customize to suit your application requirements. By default, all controls except Label blocks mouse 
events and hence the nodes obscured by controls will not get the mouse events when interacting with 
the control unless you turn off blocksMouse explicitly. 

All controls except for a few, such as ProgressBar, Label, are focus-traversable by default. So you 
don't have to explicitly make them focus-traversable and they all support keyboard focus traversal in the 
forward and reverse directions by default, unlike nodes. A control can transfer focus to a focus-
traversable node available in the focus-traversal cycle when pressing TAB but after that, it is the 
responsibility of that node to transfer the focus to the next node in the focus cycle. Whereas, controls do 
this by default for you. 

JavaFX as of 1.3 offers the set of controls shown in Figure 12-29. 

 
Figure 12-29. UI Controls supported as of JavaFX 1.3 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

256 

In addition to what is shown in the diagram, there is also a set of preview controls that are available 
purely on an experimental basis in the com.javafx.preview.control package and you can try them out. 
Some of those controls are: 

• CheckMenuItem  

• CustomMenuItem  

• Menu  

• MenuBar  

• MenuButton  

• MenuItem  

• MenuItemBase  

• PopupMenu  

• RadioMenuItem  

• SplitMenuButton  

• ToolBar  

• TreeCell  

• TreeItem  

• TreeItemBase  

• TreeView  

However, these controls are not for production use and may change in the next release. You can just 
play with them and provide your feedback. 

Similarly, there are many layout managers available under javafx.scene.layout and these layouts 
can accept controls as well as nodes. Lot of improvements have gone into layouts and controls in  
JavaFX 1.3. Listing 12-20 shows one of the most typical usecases of controls and layouts–a simple login 
form created using the Panel layout and a set of controls (see Figure 12-30). 

Listing 12-20. Login Form Using Controls 

package layout; 
 
import javafx.stage.Stage; 
import javafx.scene.Scene; 
import javafx.scene.CustomNode; 
import javafx.scene.Node; 
import javafx.scene.layout.Panel; 
import javafx.scene.control.Label; 
import javafx.scene.control.TextBox; 
import javafx.scene.control.PasswordBox; 
import javafx.scene.control.Button; 
import javafx.scene.paint.Color; 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

257 

import javafx.scene.paint.LinearGradient; 
import javafx.scene.paint.Stop; 
import javafx.scene.shape.Rectangle; 
import javafx.stage.StageStyle; 
 
public class LoginForm extends CustomNode{ 
 
    def width = bind scene.width on replace { 
        panel.requestLayout(); 
    } 
    def height = bind scene.height on replace { 
        panel.requestLayout(); 
    } 
    var panel : Panel; 
     
    var paddingTop = 20.0; 
    var paddingLeft = 20.0; 
    var paddingBottom = 20.0; 
    var paddingRight = 20.0;     
     
    var saveButton:Button = Button {  
     text: "Save"  
     action: function() { 
      saveButton.scene.stage.close(); 
     } 
    } 
    var cancelButton:Button = Button {  
     text: "Cancel"  
     action: function() { 
      cancelButton.scene.stage.close(); 
     } 
    } 
 
    var idLabel = Label { text: "Login Name" }; 
    var idText = TextBox { columns : 20}; 
    var passwordLabel = Label { text: "Password" }; 
    var passwordTxtBox = PasswordBox { columns : 20}; 
 
    override function create() : Node { 
        panel = Panel{ 
            content: [ 
                idLabel, idText, 
                passwordLabel, passwordTxtBox, 
               saveButton, cancelButton 
            ] 
            onLayout: onLayout 
      } 
   } 
 
   function onLayout() : Void { 
            
 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

258 

    var hSpacing = 10.0; 
        var vSpacing = 5.0; 
        var gridW = 50.0; 
        var gridH = 25.0; 
 
        idLabel.height = gridH; 
        var w = panel.getNodePrefWidth(idLabel); 
        var x = (paddingLeft + gridW) - w; 
        var y = paddingTop; 
        var h = gridH; 
        panel.layoutNode(idLabel, x, y, w, h); 
 
        x = paddingLeft + gridW + hSpacing; 
        w = panel.getNodePrefWidth(idText); 
        panel.layoutNode(idText, x, y, w, h); 
 
        w = panel.getNodePrefWidth(passwordLabel); 
        x = (paddingLeft + gridW) - w; 
        y = idLabel.layoutY + gridH + vSpacing; 
        panel.layoutNode(passwordLabel, x, y, w, h); 
 
        x = paddingLeft + gridW + hSpacing; 
        w = panel.getNodePrefWidth(passwordTxtBox); 
        panel.layoutNode(passwordTxtBox, x, y, w, h); 
 
        w = panel.getNodePrefWidth(cancelButton); 
        var buttonPanelWidth = (w * 2) + hSpacing; 
        x = (scene.width - buttonPanelWidth)/2.0; 
        y = passwordTxtBox.layoutY + (gridH * 2); 
        panel.layoutNode(saveButton, x, y, w, h); 
 
        x = saveButton.layoutX + hSpacing + w; 
        panel.layoutNode(cancelButton, x, y, w, h); 
   } 
} 
 
function run(){ 
    Stage { 
        title: "Login Form" 
        style : StageStyle.UNDECORATED 
        scene: Scene { 
            width: 280 
            height: 140             
            content: [ 
               Rectangle {                     
                    width: 280 
                    height: 140 
                    stroke: Color.BLACK 
                    strokeWidth: 2 
                    fill: LinearGradient { 
                        startX: 0.491 
                        startY: -0.009 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

259 

                        endX: 0.509 
                        endY: 1.009 
                        proportional: true 
                        stops: [Stop { 
                                offset: 0 
                                color: Color.color(0.639, 0.639, 0.639, 0.239) 
                            }, Stop { 
                                offset: 1 
                                color: Color.color(0.078, 0.078, 0.078, 0.988) 
                            }] 
                    } 
                    arcHeight: 20 
                    arcWidth: 20 
                }, 
               LoginForm{} 
            ] 
        } 
    } 
} 

 
Figure 12-30. UI controls & layouts–login form 

Listing 12-20 demonstrates a common usecase of designing a login form using the Panel layout and 
a set of UI controls.  Panel is the layout that offers maximum flexibility to you and you can customize the 
way controls/nodes must be displayed within the panel by defining your own coordinates. As you can 
see in Listing 12-20, there is an 'onLayout' function that is defined within the Panel object literal and this 
method takes care of positioning the controls appropriately within the panel. Also, this method is 
invoked indirectly by 'Container.requestLayout' whenever the scene width/height changes. The actual 
positioning code is self-explanatory.  

Covering controls and layouts further in this chapter will really be overwhelming since they are huge 
topics by themselves. There is pretty good online documentation available for controls and layouts at 
www.javafx.com and please refer the same for more information, in addition to the API documentation 
shipped with the SDK. For example, the following document is worth referring to for controls: 
www.javafx.com/docs/articles/UIControls/overview.jsp 

http://www.javafx.com
http://www.javafx.com/docs/articles/UIControls/overview.jsp


CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

260 

StyleSheets 
JavaFX 1.3 offers a powerful and comprehensive CSS engine that allows you to customize the built-in 
look of the nodes and controls. Using CSS in JavaFX is similar to using it with HTML since CSS 
implementation is fully adherent to the CSS specification specified at www.w3.org/Style/CSS/. You can 
define the styles at the application level through a .css file that you can embed into the scene using the 
javafx.scene.Scene.stylesheets attribute that accepts an array of string URLs to multiple style sheets. 
Alternatively, you can also customize the style on a per-node basis using the 'id' and 'styleClass' 
attributes available in the node class. Please refer to the online documentation at 
www.javafx.com/docs/articles/UIControls/theming.jsp for more information on how to use CSS with 
JavaFX. Also note that this is available on desktop as well as mobile devices, as of JavaFX 1.3. 

Charts 
Charts allow the user of the chart to visualize and interpret a large volume of data in an easy way and 
derive appropriate business conclusions from it. JavaFX offers a wide range of APIs to create and 
manipulate charts and graphs and it supports creation of the following charts that are most commonly 
used in a RIA (also demonstrated in Figure 12-31): 

• Area Chart: Displays quantitative data like a line chart but with the area between 
the line and the horizontal axis shaded. Good for comparing the magnitude of two 
or more series of data. 

• Bar Chart: A good way to show data in a way that makes it easy to see how the 
data changes over time or under a set of different conditions.  

• Bubble Chart: Plot data points on a two-dimensional grid and have the extra 
ability to display the relative magnitudes of the data by controlling the diameter of 
the point (or bubble) displayed at each XY coordinate. 

• Line Chart: A simple way to display two-dimensional data points where each 
point is connected to the next point in the data series by a line. 

• Pie Chart: Typically used to display the relative percentages of a series of values 
on a circle. The value of each piece of data, as a percentage of the total, dictates 
how much of the circle’s area it takes up. In other words, the chart shows how big 
a slice of the pie each value represents. 

• Scatter Chart: Used to plot the points of one or more series of data. These charts 
are typically used to show the correlation (or not) of the data by comparing how 
the data points are clustered (or not).  

http://www.w3.org/Style/CSS
http://www.javafx.com/docs/articles/UIControls/theming.jsp


CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

261 

 

Figure 12-31. JavaFX Charts 

Listing 12-21 shows a simple example of how to create a pie-chart using JavaFX Chart APIs, with the 
output shown in Figure 12-32.  

Listing 12-21. A Pie Chart 

import javafx.stage.Stage; 
import javafx.scene.Scene; 
import javafx.scene.chart.*; 
 
def pieChart = PieChart { 
    title: "Health Pie" 
    data: [ 
        PieChart.Data { label: "Carrot" value: 22  } 
        PieChart.Data { label: "Eggplant" value: 27 } 
        PieChart.Data { label: "Potato" value: 16 } 
        PieChart.Data { label: "Tomato" value: 50 } 
        PieChart.Data { label: "Cauliflower" value: 6 } 
        PieChart.Data { label: "Mushroom" value: 7 } 
    ] 
} 
 
Stage { 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

262 

    title: "Pie Chart" 
    scene: Scene{ 

    width: 540 
            height: 410 
            content: pieChart 
     } //Scene
}//Stage 

Figure 12-32. JavaFX pie chart 

In Listing 12-21, a pie chart has been defined with a title and a set of data, where each data is
provided with a label and a value of this pie.  As you see in Figure 12-32, all the labels and the pie value
are displayed in the output. Additionally, you can use other attributes PieChart.Data to customize the
chart or make it interactive by responding to user input.  

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

263 

For some of the other charts, such as BarChart, you will have to define the X and Y axis of the chart 
where you can have the category on one axis and a set of numeric values on the other and define a lower 
and upper bound for the numeric values with appropriate tick values. There is a detailed article on 
charts at http://java.sun.com that will help you build more complex charts using JavaFX. Please refer to 
the following article for more information: 
http://java.sun.com/developer/technicalArticles/javafx/v1_2_charts/.  

Effects 
An effect is a graphical algorithm that produces an image, typically as a modification of a source image.  
Effects primarily add richness to your UI by manipulating the default look of your node in various ways, 
such as adding a glow effect, a shadow within the node, a drop-shadow outside of your node, blurring 
certain pixels of your node, and so forth. You can associate an effect with a scene graph Node by setting 
the Node.effect attribute. Some effects change the color properties of the source pixels (such as 
ColorAdjust), others combine multiple images together (such as Blend), while still others warp or move 
the pixels of the source image around (such as DisplacementMap or PerspectiveTransform). All effects 
have at least one input defined and the input can be set to another effect to chain the effects together 
and combine their results, or it can be left unspecified, in which case the effect will operate on a 
graphical rendering of the node it is attached to. All effects available in javafx.scene.effect descend 
from the javafx.scene.effect.Effect class. Effects are desktop-only APIs and not available on other 
devices.  

■ Note Advanced effects are visually intensive and often require a good video card (with OpenGL or Direct3D 
support) so that the operations can be hardware-accelerated for better performance. Without a good video card, 
these operations will use the software pipeline and may cause sluggishness or a drop in visual performance in 
some cases. 

Bounds 
The visuals displayed within a JavaFX scene are fully represented by a 2D scene graph, where each visual 
element (line, path, image, and so forth) is represented by a distinct node with variables that can be 
easily manipulated dynamically. The node's size and position (otherwise known as its bounds) become 
complicated when considering these many variables that contribute to its bounds, such as shape 
geometry (for example, startX/startY, width, and radius), transformations (for example, scale and rotate), 
effects (for example, shadows and glow), and clipping. Understanding how each of these variables 
affects the bounds calculations of a node is crucial to getting the scene layout you want.  

Bounds Class 
A node's rectangular bounds are represented by the javafx.geometry.Bounds class, which provides init-
only  minX, minY, maxX, maxY, width, height variables. Keep in mind that since the bounding box can be 
anywhere in the 2D coordinate space, the X/Y values may often be negative.  

http://java.sun.com
http://java.sun.com/developer/technicalArticles/javafx/v1_2_charts


CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

264 

■ Note The Bounds class was introduced in JavaFX1.2 in anticipation of adding Z in the future. BoundingBox 
(concrete 2D implementation of Bounds) has replaced Rectangle2D for bounds values, however Rectangle2D still 
exists as a general-purpose geom class for other uses. 

Node Bounds Variables 
A Bounds object is always relative to a particular coordinate system, and for each node it is useful to look 
at bounds in both the node's local (untransformed) coordinate space, as well as in its parent's 
coordinate space once all transforms have been applied. The Node API provides three variables for these 
bounds values and are listed in Table 12-5.  

Table 12-5. bounds related attributes in Node class 

Attribute Access Description 

boundsInLocal (public-read) physical bounds in the node's local, untransformed coordinate 
space, including shape geometry, space required for a non-zero 
strokeWidth that may fall outside the shape's position/size 
geometry, the effect and the clip. 

boundsInParent (public-read) physical bounds of the node after ALL transforms have been applied 
to the node's coordinate space, including transforms[], 
scaleX/scaleY, rotate, translateX/translateY, and layoutX/layoutY. 

layoutBounds (public-read 
protected) 

logical bounds used as basis for layout calculations; by default only 
includes a node's shape geometry, however its definition may be 
overridden in subclasses. It does not necessarily correspond to the 
node's physical bounds. 

 

It's worth pointing out that a node's visibility has no affect on its bounds; these bounds can be 
queried whether its visible or not.  

It might be easier to visualize in Figure 12-33, which shows the sequence in which the bounds-
affecting variables are applied; variables are applied left-to-right, where each is applied to the result of 
the one preceding it (geometry first, layoutX/Y last). 

 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

265 

 

Figure 12-33. Semantics of various bounds variables in the Node class 

The reason we need a more malleable definition for layout bounds (versus just using 
boundsInParent) is because a dynamic, animating interface often needs to control which aspects of a 
node should be factored into layout versus not. 

Figure 12-34 shows a simple example of how bounds computation is done for a simple rounded 
rectangle with no effects, transforms, or clipping. 

 

Figure 12-34. Demonstration of bounds on a rounded rectangle with no transformations 

In Figure 12-34, note that x and y are variables specific to rectangle and that they position the 
rectangle within its own coordinate space rather than moving the entire coordinate space of the node. 
On the other hand, transformations change the coordinate space of the node instead of the actual 
geometry.  All of the javafx.scene.shape classes have variables for specifying appropriate shape 
geometry within their local coordinate space (for example, Rectangle has x, y, width, height; Circle has 
centerX, centerY, radius; and so forth) and such position variables should not be confused with a 
translation on the coordinate space. 

Figure 12-35 shows how a simple translation works for this case. 
 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

266 

 

Figure 12-35. Rounded rectangle with a translation 

Now in Figure 12-35, boundsInParent has changed to reflect the translated rectangle; however, 
boundsInLocal and layoutBounds remain unchanged because they are relative to the rectangle's 
coordinate space, which was what was shifted. Although layoutBounds is relative to the node's local 
coordinate space, I'm showing it in the parent's to emphasize how a parent container interprets its value 
when laying out the node.  

Figure 12-36 demonstrates the bounds of a rectangle when it is rotated and scaled. 

 

Figure 12-36. Rounded rectangle with rotation and scale 

Please note that layoutBounds remains unchanged (from the perspective of the parent), even as the 
node's local coordinate system is scaled and rotated.  

The bounds of a Group node have a slight twist: layoutBounds is calculated by taking the union of 
the boundsInParent on all visible children (invisible children are not factored into its bounds). 
boundsInLocal will take the layoutBounds and add any effect or clip set on the group. Finally, the group's 



CHAPTER 12 ■ INTRODUCTION TO JAVAFX UI ELEMENTS 

 

267 

boundsInParent is calculated by taking boundsInLocal and applying any transforms set on the group. This 
is demonstrated in Figure 12-37. 

 
Figure 12-37. Group bounds 

The group's layoutBounds are tightly wrapped around the union of its children boundsInParent and 
do not include the drop shadow.  

Summary 
In this chapter, you have learned about all the graphical features available in JavaFX right from the 
fundamentals such as the rendering model, scene graph, scene and stage, and various graphics APIs that 
JavaFX offer such as shapes, strokes, fills, font, text, images, colors, gradience, bounds, transformations, 
controls, layouts, and so forth. You have also learned about how to make your applications interactive by 
handling the keyboard and mouse events appropriately. Already you have learned about the JavaFX 
Script language extensively in the previous chapters, and now you have gained all that is required to 
build a wonderful RIA.  

The next and final chapter will help you learn more about how to add dynamic contents to your 
application through various animations and will give you a good introduction on the animation 
framework that is built-in to the JavaFX Script language. 

 



 

 

 



C H A P T E R  13 
 

■ ■ ■ 
 

269 

Introduction to Animation 

Animation is one of the basic building blocks of any RIA, and any RIA technology need to have good 
animation support in order to deliver an immersive Internet experience to the end user. Animation adds 
liveliness to the content you are presenting and makes it far more expressive and interactive to the end 
user than static content. 

What is Animation? 
Before going into the animation support JavaFX provides, let us first see what animation is. Animation is 
a process of creating and displaying a sequence of frames (or simply pictures) within a given time period 
to create an illusion of movement. The retina of the human eye (some psychologists argue that it's the 
human brain) can persist, or hold, the picture that is exposed to it for a certain time period even after the 
exposure to the picture has ceased. For example, you can easily recall seeing a glowing light float in your 
eye for some time after you look into a light source and then switch off the light. This is due to the 
persistence of vision, in which the retina persists the image that has been exposed to it for approximately 
one twenty-fifth of a second. So you can create an optical illusion of motion by presenting 24 or more 
frames per second (FPS) for the human eye to recognize smooth animation. 

Animation in JavaFX 
In JavaFX, animation can be achieved simply by changing the value of any variable over a specific time 
period. Note that this is not directly related to the UI but rather is built into the language syntax. The 
visual behavior of the animation is brought in through the usage of the variable whose value is changed 
over a timeline. If, for instance, you are changing the value of a variable x from 0 to 360 within 5 seconds, 
this is just a language feature and there is no UI involved until you bind this variable to, for example, a 
node's rotate attribute. Once it is bound, this ordinary value change transforms into a visual animation 
of rotating the specified node from 0 to 360 within a span of 5 seconds. If you bind the same variable to 
scaleX/scaleY of the node, it would be a zoom transformation instead of rotation. Technically, you can 
also refer to this as a state transition of your scene or node, where animation is basically a sequence of 
transitions of a node's state over a timeline. 

Thus animation in JavaFX is independent of the UI and is a feature of the language through which 
you can change the value of any attribute over a timeline. Application developers have the freedom to 
map such value changes into a visual animation appropriately, as illustrated in our example of binding a 
rotate variable to the rotate attribute of a node. 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

270 

JavaFX offer various animation capabilities through the APIs, available in the following packages: 

• javafx.animation 

• javafx.animation.transition 

Animation also uses some special operators, such as => and tween, that are built into the language. 
You will learn about them as you read further. 

JavaFX animation can be described as keyframe animation, which is the traditional animation 
technique used in visual design tools. It is also considered the one of the most effective techniques for 
defining animation programmatically. In a keyframe animation, you constitute a series of state 
transitions where you define the starting and ending snapshots of your scene's state at specific points in 
time and leave it to the interpolation mechanism to generate the intermediate states. Interpolation is a 
mechanism by which the intermediate states of an animation with starting and ending states defined are 
calculated automatically using either a predefined algorithm or a custom algorithm that is specified 
explicitly. These intermediate states ensure there is a smooth transition from the beginning state to the 
end state, which is critical for the visual illusion of motion. 

So a timeline (javafx.animation.Timeline) is defined by one or more keyframes 
(javafx.animation.KeyFrame), and each keyframe has a specific time and a set of values. This timeline 
processes the keyframes sequentially in the order specified by KeyFrame.time. The values defined by 
KeyFrame are interpolated to or from the targeted key values depending on the direction of the animation 
at the given time. 

Now let us see a simple example of how to create a timeline to cause a circle to zoom in and zoom 
out. Listing 13-1 shows the code, and Figure 13-1 shows the output. 

Listing 13-1. Zooming in and out of a circle 

import javafx.stage.Stage; 
import javafx.scene.Scene; 
import javafx.scene.shape.Circle; 
import javafx.scene.paint.Color; 
import javafx.animation.Timeline; 
import javafx.animation.KeyFrame; 
import javafx.animation.Interpolator; 
 
var rad : Number = 10.0; 
var circle : Circle =  Circle { 
    centerX: 100, centerY: 100 
        radius : bind rad 
    fill: Color.RED 
} 
 
Timeline { 
    repeatCount: Timeline.INDEFINITE 
    keyFrames : [ 
        KeyFrame { 
                        time : 0s 
                        values : [rad => 80 tween Interpolator.LINEAR] 
                }, 
                KeyFrame { 
                        time : 2s 
                        values : [rad => 0 tween Interpolator.LINEAR] 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

271 

                } 
    ] 
}.playFromStart(); 
 
Stage { 
    title: "Animation Example-1" 
    scene: Scene { 
        width: 200 
        height: 200 
        content: [   circle   ] 
    } 
} 
 

 

Figure 13-1. Output of zooming of a circle 

In Listing 13-1, there is a timeline defined with two keyframes. The first keyframe is a starting 
snapshot state, which initializes the time variable to 0 seconds and the radius of the circle to 80. The 
second keyframe is the ending snapshot of the state transition, where time is defined as 4 seconds and 
the radius value is 0. Basically, this timeline instructs JavaFX to initialize the radius of the circle to 80 at 0 
seconds and, within a time period of 4 seconds, reduce the radius of the circle from 80 to 0. Then repeat 
this animation indefinitely. The interpolation to be used for calculating the value of radius between 0 
and 4 seconds is LINEAR interpolation, which means that calculation of radius will happen at a steady 
rate from beginning to end. 

Let us analyze the code in more detail, since there are some new operators and data types. 
 

KeyFrame.time 
 
This accepts a data type called Duration (javafx.lang.Duration). The  Duration class accepts values 

in terms of time. Duration can be specified in terms of milliseconds, seconds, minutes, and so on. For 
example, you can express a 2½ minute value in the following ways: 

 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

272 

Duration t = 2m + 30s;
Duration t = 2.5m;
Duration t = 2500ms; 

In addition to this, there are multiple utility methods available in the Duration class to manipulate
time values, convert from one type to another, add/divide/subtract one time value to/from another, and
compare two duration objects. Animation uses this data type extensively since it is a time-bound feature. 

=> 

The => operator is a literal constructor (a shortened form) that specifies the target value for a given
attribute. 

tween 

The tween operator denotes the type of tweening (also called inbetweening) to be used. Tweening is
the process of generating intermediate frames between two given frames to give the appearance that the
first frame evolves smoothly into the second one, using the appropriate interpolation mechanism. In
short, tween specifies the interpolation technique to be used in the state transition, in this example
Interpolator.LINEAR. 

Timeline.keyFrames 

As you see, Timeline.keyFrames is a sequence of keyframes, which means you are not just restricted
to specifying the first and last keyframes; you define as many intermediate keyframes as you wish at each
time period. Even in this example, you can specify individual keyframes for 1s, 2s, 3s, and so on —each
specifying a target value for the radius. 

KeyFrame.values 

KeyFrame.values is also a sequence, which means you are not limited to just changing a single
attribute; you can change as many attributes as you like. In this example, you could also change the
centerX, centerY of the circle when changing the radius. The code for doing that would be similar to the
following: 

KeyFrame { 
    time: 0s 
    values: [rad => 80 tween LINEAR, circle.centerX => 400 tween LINEAR, circle.centerY =>
200 tween LINEAR] 
} 

This would initialize the centerX, centerY of the circle to different values when the animation
starts. 

Timeline.repeatCount 

This specifies the number of times you want the animation to repeat. The default value is 1, which
means it will just be executed once. To change that, you can either give a specific value or say
INDEFINITE, as in this example, if you want the timeline to run indefinitely. An important point to note
here is that the animation repeats again from 0 seconds after reaching 4 seconds. In this example, it
would mean that the value of radius changes in the following order: 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

273 

10 (initial value)  

First cycle: 80 (0 sec)  (radius value decrements in linear fashion as time increases)... 0 (4 sec) 

Second cycle:  80 (5 sec)  (radius value decrements in linear fashion as time increases)... 0 (8 sec) 

Third cycle: 80 (9 sec)  (radius value decrements in linear fashion as time increases)... 0 (12 sec) 

and so on. 
 
Note that radius suddenly changes from 0 to 80 at the beginning of every animation cycle and 

gradually reduces to 0 from 0 to 4 seconds. 
Now let us revisit the Listing 13-1 code in detail to summarize our understanding. 

The first KeyFrame defines the initial state of the circle when the animation is about to start. So at 0 
seconds, radius will be initialized to 80 and circle will be resized to the new radius. 

The second KeyFrame defines the final state of the animation, which concludes at 4 seconds. At this 
time, the radius of the circle should have become 0. 

The interpolation is LINEAR, which means radius should change at a constant rate when time 
increments from 0 to 4th second. 

Timeline should be repeated indefinitely as explained in the Timeline.repeatCount section. 

The rad value is bound to circle.radius, which will refresh the circle visually when the rad value 
changes. 
 
But all these are just definitions, and the timeline is not actually running. A timeline is like a movie 

in the sense that you will have to play it, and so we are calling the Timeline.playFromStart() function, 
which will play the animation from 0 seconds. There are methods available in the Timeline class to play, 
stop and pause the animation, which you will learn in the next section. 

You will see the output as shown in Figure-13-1 and the circle will zoom out from 80 to 0 gradually 
in 4 seconds, after which it will suddenly zoom to the size of 80 again. 

Currently the animation effect appears little jerky, because the radius resets to 80 from 0 every time 
a new cycle starts. Instead of this, wouldn't it be nice to zoom in the circle gradually back to 80 from 0 
instead of a sudden switch? You don't need to define another keyframe to do this, and there is a built-in 
attribute in Timeline which does it for you: 

 
Timeline.autoReverse 

 
This is a Boolean value that when True indicates that the timeline should reverse its direction for 

every alternate cycle. It is set to False by default. Now let us assume that we have revised Listing 13-1 to 
set this to True, and see how the values change (following the flow given under Timeline.repeatCount): 

10 (initial value)  

First cycle: 80 (0 sec)   (radius value decrements in linear fashion as time increases)... 0 (4 sec) 

Second cycle: 0 (5 sec)  radius value increments in linear fashion as time increases)... 80 (8 sec) 

Third cycle: 80 (9 sec)  (radius value decrements in linear fashion as time increases)... 0 (12 sec) 
 
As you see, the timeline has reversed its direction for the second cycle, and radius will now 

gradually increase from 0 to 80, giving a smooth zooming experience. Add this attribute to Listing 13-1 
and try it out yourself. 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

274 

Play, Pause, or Stop a Timeline 
A timeline is like a movie that you can play, pause and stop, just as you do with your DVD player. 
Following  is a brief overview of the attributes  for starting and stopping a timeline: 

play : Plays the timeline from the current position. This is typically used after a pause, where it 
resumes play from the time where it was paused before. 

playFromStart: Plays the timeline from the beginning; that is, from 0 seconds. This must be used 
when you are starting the timeline for the first time and not after a pause, since typically you would 
want a paused timeline to resume from where it was paused 

pause: Pauses the animation temporarily. Can be resumed subsequently through play 

stop: Stops the animation permanently and resets the current time position to 0. 
 
Now let us see a simple example which demonstrates each of the playing options as applied to an 

animating circle. Listing 13-2 shows the code and Figure 13-2 shows the output. 

Listing 13-2. Play/pause/stop demonstration 

import javafx.stage.Stage; 
import javafx.scene.Scene; 
import javafx.scene.shape.Circle; 
import javafx.scene.paint.Color; 
import javafx.animation.Interpolator; 
import javafx.animation.KeyFrame; 
import javafx.animation.Timeline; 
import javafx.scene.control.ToggleGroup; 
import javafx.scene.control.RadioButton; 
import javafx.scene.layout.HBox; 
 
var xAxis : Number = 0.0; 
def toggleGroup = ToggleGroup {}; 
var timeline : Timeline; 
 
var playRB : RadioButton = RadioButton { 
    text: "Play" 
    toggleGroup: toggleGroup 
} 
 
var playFromStartRB : RadioButton = RadioButton { 
    text: "PlayFromStart" 
    toggleGroup: toggleGroup 
} 
 
var stopRB : RadioButton = RadioButton { 
    text: "Stop" 
    toggleGroup: toggleGroup 
} 
 
var pauseRB : RadioButton = RadioButton { 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

275 

        text: "Pause" 
    toggleGroup: toggleGroup 
} 
 
var selectedButton = bind toggleGroup.selectedToggle on replace { 
        if (selectedButton == pauseRB) { 
            timeline.pause(); 
        } else if (selectedButton == stopRB) { 
            timeline.stop(); 
        } else if (selectedButton == playRB) { 
            timeline.play(); 
        } else if (selectedButton == playFromStartRB) { 
           timeline.playFromStart(); 
    } 
} 
 
var layout : HBox  = HBox{ 
     translateX : 10 
     translateY : 20 
     spacing : 10 
     content: [playFromStartRB, stopRB, playRB, pauseRB] 
} 
 
var circle : Circle = Circle { 
    centerX: 20.0 
    centerY: 100.0 
    radius: 40.0 
    fill: Color.BLACK 
    translateX: bind xAxis 
} 
 
timeline = Timeline { 
    keyFrames : [ 
        KeyFrame { 
            time : 2s 
            values : xAxis => 400 tween Interpolator.EASEBOTH 
        } 
    ] 
    autoReverse: true 
    repeatCount:  Timeline.INDEFINITE 
} 
timeline.play(); 
 
Stage { 
    title: "play/pause/stop demo" 
    scene: Scene { 
        width: 450 
        height: 200 
        content: [ layout, circle ] 
    } 
} 

 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

276 

 

Figure 13-2. Output from the Play/Pause/Stop demo 

In Listing 13-2, we are animating a circle by translating it on the x-axis back and forth, as illustrated 
in Figure 13-2. The timeline is set with autoReverse true, and so the animation changes its direction for 
alternate cycles and continues indefinitely. You will notice the following behaviors with this application: 

 

• Select the Pause radio button, and animation will stop at the current position. 
Selecting Play subsequently will play the animation from the same position where 
it was stopped. On the other hand, if you select PlayFromStart after a pause, it will 
start from the starting position (which might be either the leftmost or the 
rightmost end, depending on the direction of the animation cycle at the time of 
the pause). 

• Select the Stop radio button, and animation will stop at the current position. 
Please note that Stop resets the current position to its initial position, so selecting 
Play or PlayFromStart will only start the animation from the starting position. 

There are read-only variables in the Timeline class that give the current status of animation such as 
running or paused, and that are set when the animation is played/paused or stopped. 

Another important aspect that you should notice here is that we have defined only a single 
keyframe, whose time value is specified as 2s (2 seconds). This is actually the end point of the timeline; 
the timeline will automatically synthesize a starting keyframe, whose time value will be 0 seconds if none 
is specified explicitly. So for keyframe 0, the value of the xAxis variable would be its initial value, which is 
0 in this case. So the timeline aims to translate the circle from 0 to 400 within a span of 2 seconds. 

KeyFrame Attributes 
As you have learned, a keyframe defines a snapshot of the animation at a given point in time by 
specifying the time and respective values of the animation at the given time. There are also additional 
attributes that can be defined as part of the keyframe, such as action and canSkip. This section looks at 
each of them in detail. 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

277 

KeyFrame.action 
The action function of the KeyFrame class is called when the elapsed time of the animation cycle passes 
the specified time of the keyframe. The function is called when the elapsed time passes the specified 
time even if it never equaled the indicated value exactly. This function is handy when you want to 
execute something at the end of each keyframe. 

KeyFrame.canSkip 
This attribute indicates whether the timeline can skip calling the action function of the keyframe if the 
master timer gets behind and more than one timeline cycle is skipped between time pulses. If it is set to 
True, only one call to the action function will occur for each time pulse regardless of how many cycles 
have occurred since the last execution of the action. 

Listing 13-3 and Figure 13-3 illustrate how to use the action attribute of the keyframe. 

Listing 13-3. KeyFrame action 

import javafx.stage.*; 
import javafx.scene.shape.*; 
import javafx.scene.paint.*; 
import javafx.animation.*; 
import javafx.scene.*; 
 
 
var scaleX: Number = 1.0; 
var scaleY: Number = 1.0; 
var rotate: Number = 0; 
var timeline : Timeline; 
var scene:Scene; 
var sceneWidth = bind scene.width; 
var sceneHeight = bind scene.height; 
var colors = [Color.RED, Color.BLUE, Color.GREEN, Color.LIME, Color.BROWN, 
Color.GOLD, Color.PINK]; 
var colorIndex = 0 on replace { 
    if (colorIndex >= sizeof colors - 1) { 
        colorIndex = 0; 
    } 
} 
var fillColor = bind colors[colorIndex]; 
var rect: Rectangle = Rectangle { 
    x: bind sceneWidth/2 - 50 
    y: bind sceneHeight/2 - 50 
    width: 100 
    height: 100 
    fill: bind fillColor 
    stroke: Color.YELLOW 
    strokeWidth: 2.0 
    scaleX: bind scaleX 
    scaleY: bind scaleY 
    rotate: bind rotate 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

278 

} 
 
var counter = 0; 
 
timeline = Timeline { 
    keyFrames : [ 
        KeyFrame { 
            time : 0s 
            values : [scaleX => 0 tween Interpolator.LINEAR, 
                      scaleY => 0 tween Interpolator.LINEAR, 
                     rotate => 0 tween Interpolator.LINEAR] 
            action: function() { 
                print("0 "); 
                colorIndex ++; 
            } 
        }, 
        KeyFrame { 
            time : 3s 
            values : [scaleX => 1.5 tween Interpolator.LINEAR, 
                      scaleY => 1.5 tween Interpolator.LINEAR, 
                      rotate => 120 tween Interpolator.LINEAR] 
            action: function() { 
                print("3 "); 
                colorIndex ++; 
            } 
        }, 
        KeyFrame { 
            time : 5s 
            values : [scaleX => 4.0 tween Interpolator.LINEAR, 
                      scaleY => 4.0 tween Interpolator.LINEAR, 
                      rotate => 360 tween Interpolator.LINEAR] 
            action: function() { 
                print("5 "); 
                colorIndex ++; 
            } 
        } 
    ] 
    autoReverse: true 
    repeatCount:  Timeline.INDEFINITE 
} 
timeline.play(); 
 
scene = Scene { 
    width: 400 
    height: 400 
    content: [rect] 
} 
 
Stage { 
    title: "KeyFrame Action demo" 
    scene: scene 
} 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

279 

 
Output 
0 3 5 3 0 3 5 3 0 3 5 3 0 3 5 … 
 

 

Figure 13-3. KeyFrame action 

Listing 13-3 is a simple application that defines three keyframes, each of which defines a snapshot of 
animation with respect to the scaleX, scaleY, and rotate attributes of a rectangle. Notice that the range 
of value change for first two keyframes is much less than from the second to the third keyframe, and so it 
appears as if the animation accelerates after 3 seconds when you execute this application. 

Each keyframe is defined with an action that changes the fill color of the rectangle from a set of pr-
defined values and also prints out a message to indicate that the action is called. When you look at the 
output message printed, the timeline starts from 0s => 3s => 5s during the first cycle and then the 
direction of the animation reverses because autoReverse is True. So the next cycle of animation proceeds 
as follows: 5s => 3s => 0s. Once again the direction will be reversed at this point and will proceed in the 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

280 

forward direction. This continues indefinitely because repeatCount is set to Timeline.INDEFINITE. You 
can also visually verify the change of the rectangle's fill at every time point defined by the keyframes. 

Now we can explore how canSkip fits into this paradigm. First let us see how the default behavior of 
canSkip works; Listing 13-4 is a version of the code from Listing 13-3, slightly modified to create a 
problem we might want the code to skip. 

Listing 13-4. KeyFrame action program modified to introduce a delay 

//Preceding code is the same as Listing 13-3 
.... 
.... 
 
timeline = Timeline { 
    keyFrames : [ 
        KeyFrame { 
            time : 0s 
            values : [scaleX => 0 tween Interpolator.LINEAR, 
                     scaleY => 0 tween Interpolator.LINEAR, 
                     rotate => 0 tween Interpolator.LINEAR] 
            action: function() { 
                print("0s "); 
                colorIndex ++; 
            } 
        }, 
            KeyFrame { 
            time : 3s 
            values : [scaleX => 1.5 tween Interpolator.LINEAR, 
                      scaleY => 1.5 tween Interpolator.LINEAR, 
                      rotate => 120 tween Interpolator.LINEAR] 
            action: function() { 
                print("3s "); 
                for (x in [1..1000]) { 
                    java.lang.Thread.sleep(7); 
                } 
                colorIndex ++; 
            } 
        }, 
        KeyFrame { 
            time : 5s 
            values : [scaleX => 4.0 tween Interpolator.LINEAR, 
                      scaleY => 4.0 tween Interpolator.LINEAR, 
                      rotate => 360 tween Interpolator.LINEAR] 
            action: function() { 
                print("5s "); 
                colorIndex ++; 
            } 
        } 
    ] 
    autoReverse: true 
    repeatCount:  Timeline.INDEFINITE 
} 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

281 

timeline.play(); 
 
// Same as listing 13-3 
.... 
.... 

 
Output 
0s 3s 5s 3s 0s 3s 5s 3s 0s 3s 5s 3s 
 
Listing 13-4 is the same animation code you saw in Listing 13-3 but with a slight change in one of 

the action functions. A delay of 7000 ms is introduced in the action function of the second keyframe. 
The execution of the timeline begins normally with the first keyframe, but when the control completes 
the second keyframe and executes its action, there is an unexpected delay of 7 seconds, when the 
timeline is supposed to be executing the third keyframe. So the timeline is behind its own schedule 
because of the delay we have introduced. When the timeline comes out of the second action function 
and is about to continue with other keyframes, it realizes that it has to miss the next two keyframes 
because it is already lagging behind the actual schedule. At this time, it just skips the next two keyframes. 
However, if canSkip is set to False (the default value), then it cannot skip the action function of the next 
two keyframes. Thus it is compelled to call the next two actions, though in quick succession. 

So if you are doing something important within the action of the keyframe that you don't want the 
timeline to skip at any cost, leave the default canSkip behavior as is and your action will not be skipped, 
though the keyframe may be skipped due to the time lag. 

However, there could be cases where your action is pretty much tied to the modifications you are 
doing within your keyframe and has to be executed only when the keyframe is executed successfully and 
not otherwise. In such cases, you will have to set canSkip to True. Then the timeline will have the 
freedom to skip the action when it skips the respective keyframe because of unforeseen delays that your 
app may have introduced in the previous actions. Timeline delays may be introduced not just by the 
previous actions in all cases; sometimes they are introduced by the complex operations defined within 
the keyframe values as well. 

Now let’s see how canSkip works with a True value, by modifying Listing 13-4 to create Listing 13-5, 
and see how the output differs. 

Listing 13-5. Execution with canSkip set to True 

// Preceding code is the same as Listing 13-4 
... 
... 
 
timeline = Timeline { 
    keyFrames : [ 
        KeyFrame { 
            time : 0s 
            canSkip: true 
            //Same as Listing 13-4 
            .... 
        }, 
            KeyFrame { 
            time : 3s 
            canSkip: true 
            // Same as listing 13-4 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

282 

           .... 
        }, 
        KeyFrame { 
            time : 5s 
            canSkip: true 
            //Following code is the same as Listing 13-4 
        .... 
    ] 
    autoReverse: true 
    repeatCount:  Timeline.INDEFINITE
} 
timeline.play(); 

// Following code is the same as listing 13-4 

Output 
0s 3s 3s 0s 3s 5s 3s 3s 0s 3s 5s 3s 

In Listing 13-5, canSkip is set to true for all the keyframes, and so the timeline can choose to skip the
subsequent keyframes and associated actions if there is a time lag. This is what is reflected in the output,
where you see that the palindrome model shown in the output of Listing 13-4 is broken, and some of the
keyframes are indeed skipped. 

Simplified Syntax 
Although keyframe animations are typical JavaFX objects, a special syntax is provided to make it easier
to express animation than is possible with the standard object-literal syntax. The trigger clause enables
you to associate an arbitrary callback with the keyframe. 

Listing 13-6 illustrates how we can rewrite the code from Listing 13-1 in a simplified manner. 

Listing 13-6. Simplifying the syntax of the Circle Zoom program 

import javafx.stage.Stage; 
import javafx.scene.Scene; 
import javafx.scene.shape.Circle;
import javafx.scene.paint.Color;
import javafx.animation.Timeline;
import javafx.animation.KeyFrame;
import javafx.animation.Interpolator; 

var rad : Number = 10.0; 
var circle : Circle =  Circle { 
    centerX: 100 
    centerY: 100 
    radius : bind rad 
        fill: Color.RED
} 

Timeline { 
    repeatCount: Timeline.INDEFINITE 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

283 

    autoReverse: true 
    keyFrames : [ 
        at (0s) { rad => 80 tween Interpolator.LINEAR }, 
        at (4s) { rad => 0 tween Interpolator.LINEAR } 
    ] 
}.play(); 
 
Stage { 
    title: "Animation Example-1" 
    scene: Scene { 
        width: 200 
        height: 200 
        content: [   circle   ] 
    } 
} 

 
The output is the same as for Listing 13-1. 
In Listing 13-6, you are seeing the same application as in Listing 13-1, but the syntax for defining the 

keyframes is much simpler here. The time defined within the at clause is the value of the KeyFrame.time 
attribute that you defined in Listing 13-1, and the curly braces include the values of the keyframe. 

Simplified syntax has its own limitations. If you have multiple values for the keyframe, you cannot 
include them within the curly braces, and you will have to define two at clauses with the same time 
value. Similarly, action and canSkip attributes cannot be specified when using at syntax. 

So the following code snippet will not compile: 
 
at (4s) { rotate => 400, scaleX => 5.0 }  //WRONG 
 
Instead, you will have to write it as follows: 
 
at (4s) { rotate => 400 } 
at (4s) { scaleX => 5.0 } 
 
This is not very convenient when you have multiple values to be changed in a keyframe, so it’s 

important to choose the right syntax appropriate for your requirement. 
The keyframe 0 can also be skipped with this syntax if you don't have a need to assign a different 

starting value for the keyframe than what is initialized. 

Transitions 
Transitions are a set of animation classes created to lighten the burden on the developers who create 
animated transitional effects. These classes offer a set of predefined transitions that can be utilized by 
merely setting a few variables, instead of going through the creation of a series of keyframes. These 
classes are available in the javafx.animation.transition package and include the following set of 
transitions: 

PathTransition 

ScaleTransition 

FadeTransition 

TranslateTransition 

RotateTransition 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

284 

 
As you’ll see, multiple transitions can be combined using parallel and sequential transitions to 

create complex animations. Table 13-1 lists the attributes of the Transition class you will typically have 
focus on to create a meaningful animation. 

Table 13-1. Transition Attributes 

Attribute Description Default Value 

Duration Length of the animation in time. Accepts a value in 
javax.scene.Duration. 

400 ms 

Node Target node to which the transition has to be applied. Null 

Interpolator The type of interpolation to be applied. Interpolator.EASEBOTH 

AutoReverse Direction of the alternate animation cycles. Same as 
Timeline.autoReverse. 

FALSE 

RepeatCount The number of cycles for which this animation has to be 
repeated. 

1 

Rate The speed at which the animation is played. 1 

 
As you see in Table 13-1, many of the timeline attributes are applicable here, and all the transitions 

can be controlled just as in a keyframe animation using play/pause/playFromStart/stop methods. 
Transition classes can be considered a set of utility classes that offer convenience in creating transitional 
effects on the nodes without going through the creation of each and every keyframe. 

Path Transitions 
The path transition allows you to create a translation animation of a node along the given path. The 
translation is achieved by altering the translateX, translateY variables, but the object is moved along 
the geometric contour of the given path defined by the path attribute. Listing 13-7 shows an example, 
and Figure 13-4 illustrates its output. 

Listing 13-7. A path transition 

import javafx.stage.Stage; 
import javafx.scene.*; 
import javafx.scene.paint.*; 
import javafx.animation.transition.*; 
import javafx.scene.shape.*; 
import javafx.scene.text.*; 
import javafx.animation.*; 
 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

285 

var rad : Number = 10.0; 
var path:Path = Path { 
    id: "Path" 
    translateX: -150 
    translateY: -130 
    fill: Color.GRAY 
    stroke: Color.BLACK 
    elements: [ 
        MoveTo { 
            x: 200 
            y: 150 
        }, 
            LineTo { 
            x: 300 
            y: 350 
        }, 
            LineTo { 
            x: 200 
            y: 350 
        }, 
            LineTo { 
            x: 300 
            y: 150 
        }, 
            LineTo { 
            x: 200 
            y: 150 
        }, 
            MoveTo { 
            x: 250 
            y: 250 
        }, 
            CubicCurveTo { 
            controlX1: 250 
            controlY1: 250 
            controlX2: 350 
            controlY2: 150 
            x: 300 
            y: 350 
        }, 
            MoveTo { 
            x: 250 
            y: 250 
        }, 
            CubicCurveTo { 
            controlX1: 250 
            controlY1: 250 
            controlX2: 150 
            controlY2: 150 
            x: 200 
            y: 350 
        }, 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

286 

            MoveTo { 
            x: 250 
            y: 250 
        }, 
            ArcTo { 
            x: 250 
            y: 150 
            radiusX: 100 
            radiusY: 100 
            xAxisRotation: 360 
            sweepFlag: true 
        }, 
            ArcTo { 
            x: 250 
            y: 250 
            radiusX: 100 
            radiusY: 100 
            xAxisRotation: -360 
            sweepFlag: true 
        }, 
            MoveTo { 
            x: 250 
            y: 150 
        }, 
            VLineTo { 
            y: 250 
        }, 
            MoveTo { 
            x: 235 
            y: 200 
        }, 
            HLineTo { 
            x: 265 
        } 
    ] 
} 
 
var node = Text { 
    content: "JavaFX" 
    fill: null 
    stroke: Color.RED 
    font: Font { size: 15 } 
} 
 
var pathTransition = PathTransition { 
    duration: 10s 
    path: AnimationPath.createFromPath(path) 
    repeatCount: Timeline.INDEFINITE 
    autoReverse: true 
    node: node 
} 
 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

287 

pathTransition.play(); 
    
 
Stage { 
    title: "Path Transition" 
    scene: Scene { 
        width: 300 
        height: 300 
        content: [path, node] 
    } 
} 
 

 

Figure 13-4. Output from the path transition program 

In Listing 13-7, the code demonstrates the animation of a text node along the geometric contour of a 
path object, which you saw in Chapter 12. A path is constructed and given to the PathTransition.path 
attribute through AnimationPath.createFromPath(), which creates an animation path from the specified 
path object. The node to the path transition has to be applied is specified in the node attribute of the path 
transition. Finally, both paths have been added to the scene. The animation is set with other standard 
animation attributes, such as duration, repeatCount, and autoReverse, which you have already seen in 
the previous examples. Note that the duration attribute denotes the duration of one animation cycle, not 
the duration of a single snapshot of the animation as defined by KeyFrame.time attribute previously. 

When you run this example, the output will resemble the screen capture shown in Figure 13-4; the 
text will animate along the path of the given sample path. One important thing to note in this example is 
that  orientation is set on the PathTransition, which means the orientation is defaulted to 
OrientationType.NONE. Thus the targeted node's rotation matrix remains unchanged along the 
geometric path, and so the text always stays horizontal with no rotation. 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

288 

There is also a way you can apply a rotation matrix to the target node so that the node changes its 
orientation when it is animated along the given path, keeping the node's rotation matrix perpendicular 
to the path's tangent. You will see the difference if you run the next example, Listing 13-8. Your output 
should resemble Figure 13-5. 

Listing 13-8. Applying a rotation matrix to a targeted node 

// Preceding code is the same as Listing 13-7 
... 
... 
 
var pathTransition = PathTransition { 
    duration: 10s 
    path: AnimationPath.createFromPath(path) 
    repeatCount: Timeline.INDEFINITE 
    autoReverse: true 
    orientation: OrientationType.ORTHOGONAL_TO_TANGENT 
    node: node 
} 
 
pathTransition.play(); 
// Following code is the same as listing 13-7 
... 
... 
 

 

Figure 13-5. PathTransition with orientation output 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

289 

In Listing 13-8, the only extra code added from Listing 13-7 is PathTransition.orientation, which is 
set to ORTHOGONAL_TO_TANGENT instead of implicitly to NONE (the default) as in the previous version. 
Compare the output shown in Figure 13-5 with Figure 13-4. You will notice that the text is now rotated in 
such a way that it stays perpendicular to the path's tangent. 

■ Note A path can be a javafx.scene.shape.Path object or an SVGPath defined by 
javafx.scene.shape.SVGPath, where the coordinates of the path are defined in SVG notation. 

Path transition is a very powerful animation technique, as it allows you to animate a node along the 
contour of an arbitrary path constructed by the Path object and can be used to construct very powerful 
animations in JavaFX. 

Scale Transitions 
A scale transition allows you to zoom into or out of a node by altering its scaleX, scaleY attributes over a 
timeline. This approach is slightly different from the one presented in Listing 13-1, where we altered the 
node geometry directly by changing the radius of the circle. In a scale transition, the node geometry 
stays the same but a scaling transformation is applied on the node to zoom into or out of the node. 

■ Note A scale transformation does not alter the node geometry, and so the bounds of the node in local 
coordinates (boundsInLocal) remain unchanged. Only boundsInParent is altered (by the scale factor), whereas 
changing the radius of the node changes the node geometry and thus the boundsInLocal value as well. 

A scale transformation can be done using absolute or incremental values, and absolute values 
always take precedence over incremental ones. 

Now let us see how we can rewrite Listing 13-1 to use ScaleTransition to achieve the same effect; 
Listing 13-9 shows the code, and Figure 13-6 shows the output. 

Listing 13-9. Applying a scale transition 

import javafx.stage.Stage; 
import javafx.scene.Scene; 
import javafx.scene.shape.Circle; 
import javafx.scene.paint.Color; 
import javafx.animation.*; 
import javafx.animation.transition.*; 
import javafx.animation.Interpolator; 
 
var rad : Number = 10.0; 
var circle : Circle =  Circle { 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

290 

    centerX: 100, centerY: 100 
        radius : bind rad 
    fill: Color.RED 
} 
 
var scaleTransition = ScaleTransition { 
    fromX: 0.0 
    fromY: 0.0 
    toX: 8.0 
    toY: 8.0 
    node: circle 
    duration: 4s 
    repeatCount: Timeline.INDEFINITE 
    autoReverse: true 
} 
 
scaleTransition.play(); 
 
Stage { 
    title: "Scale Transition" 
    scene: Scene { 
        width: 200 
        height: 200 
        content: [circle] 
    } 
} 
 

 

Figure 13-6. Output of the  scale transition program 

In Listing 13-9, we have rewritten our original code to create the same zoom effect. As in  
Listing 13-1, the radius of the node is increased from 0 to 80, which is equivalent to scaling the node by a 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

291 

factor of 8. Hence we have specified the starting scaleX,Y values as 0, 0 and the final scaleX, Y values as 
8.0, 8.0 and the duration is the same 4 seconds. The transformation is applied on the node; circle and 
rest of the animation attributes are pretty much the same. When you run this example, you will get the 
same behavior as that of Listing 13-1 although the approach is different here. The scaleX, Y values of the 
given node change from fromX/Y to toX/toY over a time period of 4 seconds, and you don't have to 
explicitly bind anything to make the node scale appropriately. 

■ Note ScaleTransition always scales the node with respect to its center, which means that any scale 
animation targeted with respect to an arbitrary point on the scene has to be done through the keyframes 
demonstrated previously and cannot be done by the transition class. 

Rotate Transitions 
A rotate transition is similar to a scale transition but rotates the node instead of scaling, using the 
node.rotate attribute. The rotation is specified in degrees and starts from fromAngle and ends with 
toAngle. Alternatively, you can make the transition incremental by specifying the byAngle attribute of the 
RotateTransition class. 

Translate Transitions 
A translate transition applies a translate transformation on the node through Node.translateX, Y 
attributes and thus translates the given node along the X,Y axis by the specified offset. You can specify 
either absolute values, using toX/Y, or incremental values, using byX/Y. The node will be translated along 
the X or Y axis appropriately. 

Fade Transitions 
A fade transition allows you to creating a fading effect by making the node disappear and reappear 
through the node.opacity attribute, whose value is altered from 0 to 1 or vice-versa. You can specify 
absolute values using fromValue and toValue or incremental values through byValue attributes available 
in the FadeTransition class. 

Now let us see an example that combines various transitions to create a nice animating application. 
Listing 13-10 shows the code, and Figure 13-7 illustrates the output. 

Listing 13-10. Combining multiple transitions 

import javafx.animation.*; 
import javafx.animation.transition.*; 
import javafx.scene.Group; 
import javafx.scene.image.Image; 
import javafx.scene.image.ImageView; 
import javafx.scene.input.MouseEvent; 
import javafx.scene.paint.Color; 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

292 

import javafx.scene.paint.CycleMethod;
import javafx.scene.paint.RadialGradient;
import javafx.scene.paint.Stop; 
import javafx.scene.Scene; 
import javafx.scene.shape.ArcTo; 
import javafx.scene.shape.Circle; 
import javafx.scene.shape.MoveTo; 
import javafx.scene.shape.Path; 
import javafx.stage.Stage; 

var x: Number; 
var y: Number; 
var stgX: Number = 0; 
var stgY: Number = 0; 
var scene: Scene; 
var stgWidth: Number = bind scene.width;
var stgHeight: Number = bind scene.height; 

var rgp: RadialGradient = RadialGradient { 
    centerX: 0.5 
    centerY: 0.5 
    radius: 1.0 
    proportional: true 
    cycleMethod: CycleMethod.REFLECT 

    stops: [ 
        Stop { 
            offset: 0.0 
            color: Color.RED 
        }, 
        Stop { 
            offset: 0.4 
            color: Color.BLACK 
        }, 
        Stop { 
            offset: 0.7 
            color: Color.GRAY 
        } 
    ]
} 

var path: Path = Path { 
    fill: rgp 
    stroke: Color.LIGHTBLUE 
    strokeWidth: 2 
    elements: [ 
        MoveTo { 
            x: 15 
            y: 15 
        }, 
        ArcTo { 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

293 

            x: 50 
            y: 10 
            radiusX: 20 
            radiusY: 20 
            sweepFlag: true 
        }, 
        ArcTo { 
            x: 70 
            y: 20 
            radiusX: 20 
            radiusY: 20 
            sweepFlag: true 
        }, 
        ArcTo { 
            x: 50 
            y: 60 
            radiusX: 20 
            radiusY: 20 
            sweepFlag: true 
        }, 
        ArcTo { 
            x: 20 
            y: 50 
            radiusX: 10 
            radiusY: 5 
            sweepFlag: true 
        }, 
        ArcTo { 
            x: 15 
            y: 15 
            radiusX: 10 
            radiusY: 10 
            sweepFlag: true 
        }, 
    ] 
}; 
 
var blueCircle: Circle = Circle { 
    centerX: 15 
    centerY: 15 
    radius: 4 
    fill: Color.BLUE 
} 
 
var redCircle: Circle = Circle { 
    centerX: 70 
    centerY: 20 
    radius: 4 
    fill: Color.RED 
} 
 
var greenCircle: Circle = Circle { 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

294 

    centerX: 20 
    centerY: 50 
    radius: 4 
    fill: Color.GREEN 
} 
 
var gr: Group = Group { 
    translateX: bind x 
    translateY: bind y 
    content: [path, blueCircle, redCircle, greenCircle] 
} 
 
var pathTransition = PathTransition { 
    duration: 5s 
    node: blueCircle 
    path: AnimationPath.createFromPath(path) 
    orientation: OrientationType.ORTHOGONAL_TO_TANGENT 
    repeatCount: Timeline.INDEFINITE 
    rate: 0.5 
} 
pathTransition.play(); 
 
var pathTransition1 = PathTransition { 
    duration: 5s 
    node: redCircle 
    path: AnimationPath.createFromPath(path) 
    orientation: OrientationType.ORTHOGONAL_TO_TANGENT 
    repeatCount: Timeline.INDEFINITE 
    rate: 1.0 
} 
pathTransition1.play(); 
 
var pathTransition2 = PathTransition { 
    duration: 5s 
    node: greenCircle 
    path: AnimationPath.createFromPath(path) 
    orientation: OrientationType.ORTHOGONAL_TO_TANGENT 
    repeatCount: Timeline.INDEFINITE 
    rate: 2.0 
} 
pathTransition2.play(); 
 
var xTimeline: Timeline = Timeline { 
    repeatCount: Timeline.INDEFINITE 
    autoReverse: true 
    keyFrames: [ 
    at (0s) {x => scene.x}, 
    at (7s) {x => 
        stgWidth - 90 tween Interpolator.LINEAR}, 
    ] 
}; 
 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

295 

var yTimeline: Timeline = Timeline { 
    repeatCount: Timeline.INDEFINITE 
    autoReverse: true 
    keyFrames: [ 
    at (0s) {y => scene.y}, 
    at (4s) {y => stgHeight - 75 tween Interpolator.LINEAR},    
    ] 
}; 
 
var fadeTransition = FadeTransition { 
    duration: 10s 
    node: bind path 
    fromValue: 1.0 
    toValue: 0.2 
    repeatCount: Timeline.INDEFINITE 
    autoReverse: true 
    interpolate: true 
} 
fadeTransition.playFromStart(); 
 
var rotTransition = RotateTransition { 
    duration: 4s 
    node: bind gr 
    fromAngle: 0 
    toAngle: 360 
    repeatCount: Timeline.INDEFINITE 
    autoReverse: true 
} 
rotTransition.playFromStart(); 
 
scene = Scene{ 
    fill: Color.WHITE 
    width: 240 
    height: 320 
    content: [ gr ] 
} 
 
Stage{ 
    title: "Cloud" 
    visible: true 
 
    scene: scene 
    onClose: function() { 
        java.lang.System.exit(0); 
    } 
} 
xTimeline.play(); 
yTimeline.play(); 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

296 

 

Figure 13-7. Output of the cloud animation program 

In Listing 13-10, you see an application that combines various transitions to animate an object. This 
example basically creates an arbitrary path that looks like a cloud and applies two transitions on the 
object, RotateTransition and FadeTransition. As the names suggest, RotateTransition keeps rotating 
the cloud object, and FadeTransition alters its opacity to create a fading effect. Apart from this, there are 
two other timelines that keep changing the node's translateX and translateY to keep the node moving. 

In addition, there are three path animations defined along the path of the cloud object, in which 
three circles animate along the path. The animation rates of these three circles  are set with different 
values so that the blue circle animates slowly, the red circle animates at medium speed, and the green 
circle animates quickly. When you run this application, you will notice that the red and green circles 
often overtake the blue circle thanks to their higher animation rates. 

This application demonstrates various transitions and how to use them in conjunction with other 
timelines. 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

297 

Parallel and Sequential Transitions 
So far, you have seen various transitions available in JavaFX, and even begun to combine them, but now 
let us see how to combine these transitions in a more focused way to create advanced animation effects. 
In Listing 13-10, we indeed used multiple transitions together, but there is no order or dependency 
between the various transitions, and so they are executed in arbitrary order with no relation to one 
another. If we try to group the transitions in more meaningful ways, however, we soon see that there are 
two basic ways to do so. We can create a chain of transitional effects where one transition starts when 
another one completes; this is sequential in nature. On the other hand, we can also create transitions 
that are guaranteed to run in parallel irrespective of when the previous transition completes. 

Parallel and sequential transitions are the JavaFX tools that implement this distinction. Containers 
themselves, they can hold other transitions and execute them in parallel or sequential order. 

Our next two examples demonstrate these transition types. We’ll begin with a simple example of 
parallel transitions: creating and animating star-shaped paths within the scene, triggered by mouse 
movements. Listing 13-11 shows the code, and Figure 13-8 shows its output. 

Listing 13-11. A demonstration of parallel transitions 

import javafx.stage.Stage; 
import javafx.scene.shape.*; 
import javafx.scene.input.*; 
import javafx.scene.*; 
import javafx.animation.transition.*; 
import javafx.scene.paint.*; 
 
var xAxis : Integer = 0; 
var yAxis : Integer = 0; 
var scene : Scene ; 
var grp : Group = Group{}; 
 var star : Path ; 
 
var bgRect : Rectangle = Rectangle{ 
    width : 250 
    height : 250 
    focusTraversable : true 
    onMouseMoved: function (e: MouseEvent): Void { 
        insert star = Path{ 
                    elements: [ 
                        MoveTo {x: 24.413, y: 12.207}, 
                        LineTo {x: 15.979, y: 14.947}, 
                        LineTo {x: 15.979, y: 23.816}, 
                        LineTo {x: 10.766, y: 16.641}, 
                        LineTo {x: 2.331, y: 19.381}, 
                        LineTo {x: 7.544, y: 12.207}, 
                        LineTo {x: 2.331, y: 5.032}, 
                        LineTo {x: 10.766, y: 7.772}, 
                        LineTo {x: 15.979, y: 0.597}, 
                        LineTo {x: 15.979, y: 9.466}, 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

298 

                        ClosePath { }, 
                        MoveTo {x: 0, y: 0}, 
                        MoveTo {x: 24.413, y: 24.413} 
                    ] 
                    translateX: bind e.x 
                    translateY: bind e.y 
                    strokeWidth: 1 
                    fill: Color.RED 
        } into grp.content; 
 
        ParallelTransition { 
            node: star 
            content: [ 
               RotateTransition { duration: 1s byAngle: 360  }, 
               ScaleTransition { duration: 2s node: star byX: 2 byY: 2 }, 
               FadeTransition { 
                        duration: 3s fromValue: 1.0 toValue: 0.0 
                        action : function(){ 
                            delete star from grp.content; 
                        } 
                } 
            ] 
        }.play(); 
    } 
} 
 
Stage { 
    title: "Rotating and fading start" 
    scene: bind Scene { 
        content : bind [ bgRect  , grp] 
        width: 200 
        height: 200 
    } 
} 

 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

299 

 

Figure 13-8.Output of the parallel transition program 

In Listing 13-11, we are creating and adding a star-shaped path to a group when the mouse is moved 
within a black rectangle. At the same time, we are defining a parallel transition that rotates, scales, and 
fades each of the stars added to the group. Because it is a parallel transition, all the transitions happen 
over the same time, and when you move the mouse within the black rectangle, you will notice that the 
stars are being created continuously and each undergoing different transformations at different times. 
Some shapes will be rotating, some of them will be fading out, and some of them will be zooming. There 
is no dependency defined among the transitions and hence you will see stars undergoing different 
transitions according to the time at which they were added and the time at which their parallel transition 
was started. 

However, if we make the container transition  sequential, then the stars first all appear, then rotate, 
then scale to the given scale factor, and finally fade out. All the transitions do not happen in parallel; 
instead, one transition is a dependent on the previous one, and a new transition cannot start until the 
previous one is complete. 

You can easily see the difference by running both Listing 13-11 and the following Listing 13-12 
(Figure 13-9 shows its output) and comparing their behaviors. 

Listing 13-12. A demonstration of sequential transitions 

//Previous code is the same as Listing 13-11 
        ... 
        ... 
 
        SequentialTransition { 
            node: star 
            content: [ 
               RotateTransition { duration: 1s byAngle: 360  }, 
               ScaleTransition { duration: 2s node: star byX: 2 byY: 2 }, 
               FadeTransition { 
                        duration: 3s fromValue: 1.0 toValue: 0.0 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

300 

                        action : function(){ 
                            delete star from grp.content; 
                        } 
                } 
            ] 
        }.play(); 
    } 
} 
 
//Following code is the same as Listing 13-11 
... 
... 

 

Figure 13-9. Output of the sequential transition program 

Listing-13-12 uses the same code as that of Listing 13-11, with one difference: ParallelTransition is 
replaced by Sequential Transition. Again, just run the two versions and watch the difference in their 
behavior, and you will easily understand the difference between parallel and sequential transitions. 

■ Note The duration, repeatCount, and autoReverse instance variables have no affect on these classes and are 
defined separately for each transition declared in the content variable. 

Sequential and parallel transitions can be used in combination to create even more advanced visual 
effects. If a desired transformation cannot be implemented by a combination of any predefined 
animated transitions, you can override the rebuildKeyFrames() function of the Transition class to 
implement the keyframes that suit the logic of your application. 



CHAPTER 13 ■ INTRODUCTION TO ANIMATION 

 

301 

Summary 
Animation can be defined as the change in a variable's value over a time period, and it is built into the 
JavaFX language syntax and independent of any UI library. Animation in JavaFX is defined through a set 
of keyframes (snapshots of the animation at specific times) and an enclosing timeline. This timeline can 
be played, paused, and stopped just like a movie played on your DVD player. Animation comes with its 
own operators that are handy in defining the value change and interpolation. Each keyframe can also 
have an action associated with it. You can use the elaborate or the simplified animation syntax 
depending on the complexity of your animation. 

Animation also offers a set of predefined transitions that can be used to create transformational 
animations such as scaling, rotation, fading and translation. A node can be animated along the path of 
arbitrary shape using path transitions. Multiple transitions can be combined to create highly advanced 
visual effects, and the dependency between the transitions can be clearly defined using parallel or 
sequential transitions. 
 



D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



 
 

■ ■ ■ 
 

303 

Index 

 

■ Symbols 
=> operator, 272 

■ A 
abstract classes 

definition of, 106 
using a JavaFX class to extend a Java abstract 

class, code listing, 151 
abstract functions, 106 
access specifiers, 75, 94 

abstract, 106 
accessing protected members freely within the 

same package, 126 
applying access specifiers to class definitions, 136 
base and derived classes, 124 
Car.fx script, code listing, 125 
combining primary and secondary access 

specifiers, 132 
definition of, 109 
enforced run() function requirement, 129 
honoring access specifiers for Java classes, 123 
JavaFX Script and, 110 
JavaImpl.java, code listing, 123 
Main.fx script, code listing, 123 
MediaBox.fx script, code listing, 131 
MediaPlayer.fx script, code listing, 131 
package, 76, 115, 118, 137 
protected, 76, 124, 138 
public, 76, 127, 139 
public-init, 134 
public-read, 131 
Rectangle.fx script, code listing, 128 
script-private, 111, 137 
secondary specifiers, 110 

syntax of, 110 
UIBuilder.fx script, code listing, 128 
using package access specifiers for class 

members, 121 
using secondary access specifiers with def 

declarations, 136 
using secondary access specifiers with var 

declarations, 131 
using the public access specifier with caution, 129 
Vehicle.fx script, code listing, 125 
See also data types 

actual arguments, 77 
Adobe Flash, 1 
Adobe Flex, 1 
advantages of JavaFX, 9 
after keyword, 181 
AJAX, 1 
alpha channel, 220 
animation 

=> operator, 272 
animation in JavaFX, 269 
AnimationPath.createFromPath(), 287 
applying a rotation matrix to a targeted node, 

code listing, 288 
applying a scale transition, code listing, 289 
at clause, 283 
attributes for starting and stopping a timeline, 

274 
autoReverse, 273, 276 
changing the value of any attribute over a 

timeline, 269 
Circle Zoom program, code listing, 270 
combining multiple transitions to animate an 

object, code listing, 291 
creating a path transition, code listing, 284 
definiton of, 269 
FadeTransition class, 291 



■ INDEX 

 

304 

inbetweening, 272 
interpolation, 270 
javafx.animation, 270 
javafx.animation.KeyFrame, 270 
javafx.animation.Timeline, 270 
javafx.animation.transition, 270, 283 
javafx.lang.Duration, 271 
javafx.scene.shape.Path, 289 
javafx.scene.shape.SVGPath, 289 
keyframe animation, 270 
KeyFrame.action, code listing, 277 
KeyFrame.canSkip, 277 
KeyFrame.canSkip set to False, code listing, 280 
KeyFrame.canSkip set to True, code listing, 281 
KeyFrame.values, 272 
LINEAR interpolation, 271 
parallel transitions, code listing, 297 
PathTransition class, 284 
persistence of vision, 269 
playFromStart(), 273 
playing, pausing, and stopping an animation, 

code listing, 274 
read-only variables that give the current 

animation status, 276 
rebuildKeyFrames(), 300 
repeatCount, 273 
RotateTransition class, 291 
ScaleTransition class, 289 
sequential transitions, code listing, 299 
simplifying the syntax of the Circle Zoom 

program, code listing, 282 
state transition of a scene or node, 269 
synthesizing a starting keyframe, 276 
Timeline.INDEFINITE, 272, 280 
Timeline.keyFrames, 272 
Transition class, table of attributes, 284 
transitions, using, 283 
TranslateTransition class, 291 
trigger clause, 282 
tween operator, 272 
using simplified syntax, 282 
See also Duration class; KeyFrame class; 

PathTransition class; Timeline class 
anonymous functions, 84 
Application Execution Model, 25 
AreaUtil.fx script, code listing, 117 
arguments, 76 
arithmetic expressions, 48 
arithmetic operators 

arithmetic assignment operator, 51 
definition of, 50 
order of precedence, table of, 50 

as keyword, 44 
as operator 

definition of, 49 
typecasting, 49 

assignment operator 
definition of, 48 
syntax of, 48 

at clause, 283 
autoReverse, 273, 276 

■ B 
base class, 141 
before keyword, 181 
bind keyword, 155 
block expressions 

binding, 161 
definition of, 61 
Void, 61 

Boolean, definition of, 41 
bound expression, definition of, 155 
bound keyword, 164 
bounds 

boundsInLocal, 266 
boundsInParent, 265–267 
bounds-related attributes in the Node class, table 

of, 264 
determining the bounds calculations of a node, 

263 
javafx.geometry.Bounds, 263 
layoutBounds, 265–266 

break expression, 66 
browser mode, 22 

■ C 
Car.fx script, code listing, 125 
cardinality, 33 
charts 

creating a pie chart, code listing, 261 
types of charts supported by JavaFX, 260 

classes 
abstract class, definition of, 106 
abstract functions, 106 
accessing members of a class, 95 
Account class example, complete code listing, 96 
applying access specifiers to class definitions, 136 
assigning default values to data members, 97 
base and derived classes, 92, 124 
binding with object literals, 165 
calling a Java method that is a JavaFX reserved 

word, 105 



■ INDEX 

 

305 

class declaration, example code listing, 94 
.class files, 26 
class name, 94 
class-level binding, code listing, 167 
colon operator, 95 
creating class instances using either JavaFX style 

or Java style, 94–95 
curly braces, 94 
data member, definition of, 94 
definition of, 91 
dot operator, 95 
init block, 97 
initializing class attributes, 95 
member function, definition of, 94 
modifying class objects and data members, 99 
new operator, 95 
order of instance initialization, 99 
package, 94, 137 
parentheses, 95 
postinit block, 99 
protected, 94, 138 
public, 94, 139 
public-init, 94 
public-read, 94 
script-private, 137 
sharing a function name between script-level and 

member functions, 104 
structure of, 93 
two methods for creating an instance of a class, 

94 
using doubled angle brackets notation, 105 
using function overloading within a class, 103 
using non-member functions to access class 

objects, 101 
using objects as function arguments, 100 
using script-level variables and functions as static 

class members, 102 
See also inheritance; object-oriented 

programming (OOP) 
closure, 85 
colon operator, 95 
Color class, 221 
comments 

comment syntax, 30 
JavaDoc Style tag, 30 
types of comments available in JavaFX, 30 

common profile APIs 
alpha channel, 220 
attributes for tracking keyboard input, 231 
attributes for tracking mouse input, 232 
categories of, 203 
Color class, 221 

cycleMethod, 225, 227 
default values for fills and strokes, table of, 212 
definition of, 203 
fill, 210 
how to define custom colors, 221 
javafx.scene.image.Image, 238 
javafx.scene.image.ImageView, 238, 244 
javafx.scene.input.KeyEvent, 231 
javafx.scene.input.MouseEvent, 232 
javafx.scene.text.Font, 234 
javafx.scene.text.Text, 234 
linear gradient, 222 
linear gradient REPEAT cycle, code listing, 226 
linear gradient with absolute coordinates, code 

listing, 222 
linear gradient with proportional coordinates, 

code listing, 224 
Paint class, 220 
radial gradient, 228 
Shape class, 210 
specifying a solid color or gradient, 210 
sRGB color space, 220 
stroke, 210 
using a radial gradient with different focus points, 

code listing, 228 
See also graphical APIs; image rendering; image 

transformations; text rendering 
conditional expressions, binding, 158 
continue expression, 67 
coordinate system (2D), 206 
coordinate system (3D), 207 
curly braces, 37 
CustomNode class, 251, 254 
cycleMethod, 225, 227 

■ D 
data abstraction, definition of, 92 
data binding 

bidirectional binding, 169 
bidirectional binding with object literals, code 

listing, 170 
bidirectional binding, prohibited expressions, 171 
bidirectional multi-level binding, code listing, 171 
bind keyword, 155 
binding block expressions, 161 
binding functions, 162 
binding immutable objects, code listing, 168 
binding with conditional expressions, 158 
binding with for expressions, 159 
binding with object literals, 165 
bound block expression, code listing, 162 



■ INDEX 

 

306 

bound expression, definition of, 155 
bound functions, 164 
changing a bound expression from within a loop, 

code example, 156 
class-level binding, code listing, 167 
definition of, 155 
eager binding, code listing, 173 
eager binding, definition of, 172 
implementing bidirectional binding using 

triggers, code listing, 194 
implementing binding using triggers, 193 
implementing hand-wired binding using triggers, 

code listing, 193 
lazy binding, code listing, 173 
lazy binding, definition of, 172 
optimized reevaluation of a bound expression, 

code listing, 157 
recalculation of bound expressions, 157 
unidirectional binding, 156 
using def instead of var with bound expressions, 

157 
using triggers with bind, code listing, 192 
with inverse keywords, 170 
See also triggers 

data hiding, 92, 109 
data members 

assigning default values to, 97 
definition of, 94 

data types, 33 
Boolean, 41 
detecting type errors at compile time, 33 
Duration, 42 
Integer, 39 
list of data types in JavaFX Script, 36 
Number, 40 
sequence, definition of, 175 
static type checkers, 33 
String, 36 
table of default values, 45 
typecasting, 43 
See also access specifiers 

decimal numbers, definition of, 39 
decrement operator, 53 
def keyword, 34, 48 
DelegateShape class, 220 
delete keyword, 182 
derived class, 141 
designer bundle, components of, 12 
desktop profile APIs 

categories of, 204 
definition of, 204 

developer bundle, components of, 11 

device space, 206 
dot operator, 95 
doubled angle brackets notation, 105 
Duration class, 272 

definition of, 42 
methods of, 43 
representing indefinite time, 42 
toMillis(), 43 
toMinutes(), 43 
toSeconds(), 43 
using in a timeline, 42 
See also animation; KeyFrame class; 

PathTransition class; Timeline class 

■ E 
eager binding 

code listing, 173 
definition of, 172 

Eclipse IDE, JavaFX Plug-in, 11 
effects 

definition of, 263 
hardware acceleration and visual performance, 

263 
javafx.scene.effect, 263 

element specifier, 33 
Employee.fx script, code listing, 111 
EmployeeList.fx script, code listing, 111 
encapsulation, definition of, 92, 109 
entry point, 27 
escape sequences, table of, 38 
exception handling 

throw clause, 71 
try-catch-finally block, 70 

expressions 
arithmetic expressions, 48 
block expressions, 61 
break expression, 66 
continue expression, 67 
definition of, 47 
differentiating expressions, 72 
exception handling, 70 
for expression, 62 
if-else expression, 68 
looping expressions, 62 
new expression, 71 
range expressions, 59 
Void, 62 
while expression, 66 

extends keyword, 141 



■ INDEX 

 

307 

■ F 
faces, 234 
FadeTransition class, node.opacity attribute, 291 
false keyword, 41 
fill, 210 
first-class objects, 86 
floating-point numbers, 40 
focus, 231 
focusTraversable, 231 
fonts, 234 
for expression, 62 

binding, 159 
formal arguments, 77 
from keyword, 183 
functions 

access specifiers, 75–76 
actual arguments, 77 
anonymous functions, 84 
arguments, 76 
body of a function, 76 
closure, 85 
defining a function above the statement that calls 

it, 76 
definition of, 75 
example of how to write a function, 76 
first-class objects, 86 
formal arguments (formal parameters), 77 
function expression, 84 
function overloading, 82, 92, 103 
functions available in the JavaFX APIs, 75 
how a function works, 77 
identifier, 76 
local variables, 82 
member functions (instance functions), 75 
naming functions, 76 
parameters, 76 
polymorphism, 82 
recursive functions, 83 
run(), 86 
script-level functions, 75 
script-level variables, 81 
specifying the return type, 76 
syntax for defining a function, 75 
Void as a default return type, 76 
writing functions with arguments and a return 

value, 80 
writing functions with arguments but without a 

return value, 78 
writing functions without arguments but with a 

return value, 79 

writing functions without arguments or a return 
value, 77 

See also sequences; variables 
.fx file extension, 26, 110 

■ G 
getArguments(), 88 
glyphs, 234 
graphical APIs 

alpha channel, 220 
categories of, 203 
Color class, 221 
common profile APIs, 203 
coordinate system (2D), 206 
coordinate system (3D), 207 
creating a first UI application, 212 
creating custom shapes, code listing, 218 
cycleMethod, 225, 227 
dashed stroke with auto synthesis of scene and 

stage, code listing, 216 
default values for fills and strokes, table of, 212 
DelegateShape class, 220 
desktop profile APIs, 204 
device space, 206 
drawing three circular rings (part 1), code listing, 

212 
drawing three circular rings (part 2), code listing, 

213 
drawing three circular rings (part 3), code listing, 

214 
drawing three circular rings, complete code 

listing, 214 
drawing three circular rings, output of, 215 
fill, 210 
how to define custom colors, 221 
immediate mode rendering, 204 
javafx.scene.input.KeyEvent, 231 
javafx.scene.paint.Color, 213 
javafx.scene.Scene, 205 
javafx.scene.shape.Path, 218 
javafx.stage.Stage, 206 
linear gradient, 222 
linear gradient REPEAT cycle, code listing, 226 
linear gradient with absolute coordinates, code 

listing, 222 
linear gradient with proportional coordinates, 

code listing, 224 
morphing one shape into another, 220 
Node class, table of attributes, 209 
Paint class, 220 
radial gradient, 228 



■ INDEX 

 

308 

retained mode rendering, 204 
scene graph data model, 204 
Shape class, 210 
specifying a solid color or gradient, 210 
sRGB color space, 220 
stroke, 210 
synthesizing the scene and stage at runtime, 216 
table of, 207 
user space, 206 
using a radial gradient with different focus points, 

code listing, 228 
See also common profile APIs; image rendering; 

image transformations; text rendering 

■ H 
Hello World application 

building and running from the command line, 27 
deploying using NetBeans, 21 
JAVA_HOME, 27 
JavaFX Packager utility, 28 
JAVAFX_HOME, 27 
Main.fx, code listing, 19 
PATH, 27 
running in browser mode, 22 
running in Mobile Emulator mode, 25 
running in standalone mode, 21 
running in standalone mode from the command 

line, 27 
running in Web Start mode, 23 
running on a browser or in Web Start from the 

command line, 28 
storing the class files, 27 
using the JavaFX Packager utility for the 

DESKTOP profile, 28 
using the JavaFX Packager utility for the MOBILE 

profile, 29 
writing a first JavaFX application, procedure for, 

16 
hexadecimal numerals, definition of, 39 
history of JavaFX, 10 

■ I 
identifier, 76 
if-else expression, 68 
image rendering 

controlling the rendering quality of a scaled 
image, 244 

image formats supported by JavaFX, 238 
javafx.scene.image.Image, 238 
javafx.scene.image.ImageView, 238, 244 

loading an image from a URL or a local file 
system, 238 

loading an image in the background, code listing, 
241 

loading an image of a specific size, code listing, 
240 

loading an image, code listing, 239 
placeholder images, 243 
preserveRatio, 240 
using a viewport, code listing, 244 
See also common profile APIs; graphical APIs; 

image transformations; text rendering 
image transformations 

applying scale and shear transformations, code 
listing, 252 

CustomNode class, 251, 254 
Node.rotate attribute, 249 
Node.transforms attribute, 246 
rotation transformation using rotate on a custom 

node, code listing, 249 
rotation transformation, definition of, 249 
scaling transformation, definition of, 252 
shearing transformation, definition of, 252 
translation transformation using translateX and 

translateY, code listing, 247 
translation transformation, definition of, 246 
See also common profile APIs; graphical APIs; 

image rendering; text rendering 
immediate mode rendering, 204 
in clause, 63 
inbetweening, 272 
increment operator, 53 
Indaba, 5 
indefinite time, representing, 42 
inheritance 

abstract classes, 150 
base and derived classes, 92, 124 
base class, 141 
comparing mixins in Java and JavaFX, code 

listing, 146 
considerations when implementing inheritance 

in JavaFX, 145 
creating a subclass extending from multiple 

mixin classes, code listing, 148 
creating a subclass from a regular class and a 

mixin class, code listing, 147 
definition of, 92, 141 
derived class, 141 
example of, 141 
extends keyword, 141 
implementing Java interfaces anonymously, code 

listing, 152 



■ INDEX 

 

309 

initialization order of data members, code listing, 
142 

instantiating a derived class that extends a mixin 
class, 147 

java.awt.event.ActionListener, 152 
mixin classes, 145 
multiple inheritance, 145, 148 
order of initialization in multiple inheritance, 

code listing, 149 
override keyword, 142–143 
overriding the data members or instance 

variables of a base class, code listing, 143 
subclass, 141 
super keyword, 144, 148 
superclass, 141 
using a JavaFX class to extend a Java abstract 

class, code listing, 151 
See also classes; object-oriented programming 

(OOP) 
init block, 97 
input handling 

attributes for tracking keyboard input, 231 
attributes for tracking mouse input, 232 
focus owner, 231 
focusTraversable, 231 
geometry-based picking versus bounds-based 

picking, 233 
javafx.scene.input.KeyEvent, 231 
javafx.scene.input.MouseEvent, 232 
Node.blocksMouse, 232–233 
Node.hover, 232 
Node.pickOnBounds, 233 
Node.pressed, 232 
nodes that contain focus, 231 
requestFocus(), 231 
Stage.containsFocus attribute, 231 
transferring focus to the next node in the focus 

cycle, 231 
insert keyword, 181 
insert statement, 64 
Integer 

definition of, 39 
minimum and maximum values of, 39 

interpolation, definition of, 270 
into keyword, 181 

■ J 
Java Network Launching Protocol (JNLP), 15 
java.awt.event.ActionListener, 152 
java.lang, 88 
java.lang.Integer, 39 

java.lang.Object, 42 
Java.lang.String, 37 
JAVA_HOME, 27 
JavaFX 

=> operator, 272 
advantages of, 9 
animation as changing the value of any attribute 

over a timeline, 269 
animation in JavaFX, 269 
at clause, 283 
bind keyword, 155 
checking the system and software requirements, 

16 
Circle Zoom program, code listing, 270 
.class files, 26 
combining multiple transitions to animate an 

object, code listing, 291 
common profile APIs, 203 
coordinate system (2D), 206 
coordinate system (3D), 207 
data binding, definition of, 155 
declarative programming language, 27 
designer bundle, components of, 12 
desktop profile APIs, 204 
developer bundle, components of, 11 
device space, 206 
entry point, 27 
FadeTransition class, 291 
.fx file extension, 26 
graphical APIs, categories of, 203 
graphical APIs, table of, 207 
history of, 10 
implementing Java interfaces anonymously, code 

listing, 152 
inbetweening, 272 
interpolation, 270 
Java platform support, 9 
Java Platform, Mobile Edition (Java ME), 9 
Java Plug-in, 15 
Java Runtime Environment (JRE), 9 
Java Store, 15 
Java Virtual Machine (JVM), 9 
Java Web Start, 15 
java.awt.event.ActionListener, 152 
JavaDoc Style tag, 30 
javafx, 26 
JavaFX Graphics Viewer, 12 
JavaFX Media Factory, 12 
JavaFX Packager utility, 15, 28 
JavaFX Plug-in for Eclipse IDE, 11 
JavaFX Plug-in for NetBeans IDE, 11 
JavaFX Production Suite, 10, 12 



■ INDEX 

 

310 

javafx.animation, 270 
javafx.animation.KeyFrame, 270 
javafx.animation.Timeline, 270 
javafx.animation.transition, 270, 283 
javafx.geometry.Bounds, 263 
javafx.lang, 88 
javafx.lang.Duration, 271 
javafx.scene.Control, 255 
javafx.scene.CustomNode, 251 
javafx.scene.effect, 263 
javafx.scene.image.Image, 238 
javafx.scene.image.ImageView, 238, 244 
javafx.scene.input.KeyEvent, 231 
javafx.scene.input.MouseEvent, 232 
javafx.scene.layout, 256 
javafx.scene.Node, 208 
javafx.scene.paint.Color, 213 
javafx.scene.paint.Paint, 220 
javafx.scene.Scene, 205 
javafx.scene.Scene.stylesheets, 260 
javafx.scene.shape.Path, 218, 289 
javafx.scene.shape.Shape, 210 
javafx.scene.shape.SVGPath, 289 
javafx.scene.text.Font, 234 
javafx.scene.text.Text, 234 
javafx.stage.Stage, 206 
javafx.util.Sequences, list of functions, 187 
javafxc, 26 
keyframe animation, 270 
KeyFrame.action, code listing, 277 
KeyFrame.values, 272 
LINEAR interpolation, 271 
Mobile Emulator, 11, 29 
morphing one shape into another, 220 
NetBeans IDE 6.7.1 for JavaFX 1.2.1, 11 
Oliver, Christopher, 10 
overview of the JavaFX 1.2.1 platform, 11 
overview of the various platform elements, 13 
parallel transitions, code listing, 297 
PathTransition class, 284 
playing, pausing, and stopping an animation, 

code listing, 274 
plug-ins for Adobe Illustrator and Adobe 

Photoshop, 12 
reusing existing Java libraries, 10 
RotateTransition class, 291 
ScaleTransition class, 289 
scene graph data model, 204 
sequential transitions, code listing, 299 
simplifying the syntax of the Circle Zoom 

program, code listing, 282 
standalone JavaFX 1.2.1 SDK, components of, 12 

Sun Microsystems, 10 
supported image formats, 238 
SVG Converter, 12 
Timeline.keyFrames, 272 
Transition class, table of attributes, 284 
TranslateTransition class, 291 
tween operator, 272 
tweening, 272 
types of comments, 30 
user space, 206 
using a JavaFX class to extend a Java abstract 

class, code listing, 151 
writing the Hello World application, 16 
See also JavaFX Script; NetBeans IDE; Rich 

Internet Applications (RIAs) 
JavaFX Mobile, overview of, 14 
JavaFX Packager utility 

mandatory input parameters, list of, 28 
optional parameters, list of, 28 

JavaFX Script 
abstract classes, 150 
access specifiers, 110 
accessing class variables from within a script, 113 
accessing script-private variables across multiple 

classes in a script, 114 
AreaUtil.fx script, code listing, 117 
as keyword, 44 
base class, 141 
benefits of, 10 
Boolean, 41 
calling the methods of Java’s String class, 37 
cardinality, 33 
case-sensitivity of, 33 
character and string escape sequences, table of, 

38 
choosing between var and def when declaring 

variables, 34 
curly braces, 37 
data types, 33, 36 
data types, table of default values, 45 
decimal numbers, definition of, 39 
def keyword, 34, 48 
derived class, 141 
detecting type errors at compile time, 33 
Duration, 42 
element specifier, 33 
Employee.fx script, code listing, 111 
EmployeeList.fx script, code listing, 111 
expressions, 59 
extends keyword, 141 
fully qualified name of a class or script, 115–116 
functions, 75 



■ INDEX 

 

311 

.fx file extension, 110 
hexadecimal numerals, definition of, 39 
honoring access specifiers for Java classes, 123 
implicit and explicit casting, 43 
inheritance, definition of, 141 
Integer, 39 
JavaImpl.java, code listing, 123 
Main.fx script, code listing, 19, 123 
MediaBox.fx script, code listing, 131 
MediaPlayer.fx script, code listing, 131 
mixin classes, 145 
multiple inheritance, 145, 148 
naming variables, 34 
nonstatic context, 110 
Number, 40 
object literals, 21 
object-oriented programming (OOP), 91 
octal numbers, definition of, 40 
operators, 47 
order of precedence for all JavaFX Script 

operators, table of, 57 
override keyword, 142–143 
package, definition of, 115 
public-init access specifier, 134 
public-read access specifier, 131 
reserved keywords, table of, 35 
scene, 21 
script variables, importing, 117 
script-private access specifier, 111 
ScriptPrivateClassDef2.fx script, code listing, 113 
ScriptPrivateClassDef3.fx script, code listing, 114 
ScriptPrivateWithClassDef.fx script, code listing, 

113 
secondary specifiers, 110 
sequences, 44 
ShapeBuilder.fx script, code listing, 117 
single- and double-quoted text, 37 
stage, 21 
static context, 110 
static modifier in Java, 110, 117 
static type checkers, 33 
statically typed language, 33, 36 
String, 36–37 
subclass, 141 
subpackages, 115 
super keyword, 144, 148 
superclass, 141 
syntax for declaring a variable, 35 
trigger, definition of, 189 
type inference, 35 
typecasting, 43 
understanding the script paradigm, 110 

upcasting and downcasting, 43 
using secondary access specifiers with def 

declarations, 136 
using secondary access specifiers with var 

declarations, 131 
var keyword, 34–35 
variable declarations, 33 
variable’s type declaration, 35 
See also JavaFX; NetBeans IDE; Rich Internet 

Applications (RIAs) 

■ K 
KeyFrame class 

attributes of, 276 
keyframe animation, definition of, 270 
KeyFrame.action, code listing, 277 
KeyFrame.canSkip, 277 
KeyFrame.canSkip set to False, code listing, 280 
KeyFrame.canSkip set to True, code listing, 281 
KeyFrame.values, 272 
synthesizing a starting keyframe, 276 
See also animation; Duration class; 

PathTransition class; Timeline class 
keywords 

abstract, 106, 150 
after, 181 
as, 44 
before, 181 
bind, 155 
bound, 164 
class, 94, 150 
def, 34 
delete, 182 
extends, 141 
false, 41 
from, 183 
init, 97 
insert, 181 
into, 181 
lazy, 172 
mixin, 145 
mod, 51 
on replace, 189, 192, 197 
override, 142–143 
package, 116 
postinit, 99 
reverse, 184 
super, 144, 148 
table of reserved keywords in JavaFX Script, 35 
true, 41 
var, 34 
with inverse, 170 



■ INDEX 

312 

■ L 
lazy binding 

code listing, 173
definition of, 172 

ligatures, 234
linear gradient 

definition of, 222 
stop values, 224
Stop#offset variable, 222
syntax of, 222 

LINEAR interpolation, 271
local variables, 82 
logical operators, table of, 56
looping expressions 

break expression, 66
continue expression, 67
definition of, 62 
for expression, 62
if-else expression, 68 
in clause, 63 
insert statement, 64
null values, 65 
Void, 62 
where clause, 63 
while expression, 66 

■ M 
Macromedia, 1 
Main Project, 21 
Main.fx script, code listing, 19, 123
Main.html, 29 
Main.jad, 29 
Main.jar, 28–29 
Main.jnlp, 28 
Main_browser.jnlp, 29 
MediaBox.fx script, code listing, 131
MediaPlayer.fx script, code listing, 131
member functions, definition of, 75, 94
Microsoft Silverlight, 1 
mixin classes, 145 
Mobile Emulator, 11, 25, 29 
modulus operator 

definition of, 51
mod keyword, 51 

Mozilla Prism, 1 
multiple inheritance, 145, 148 

■ N 
NetBeans IDE 

Application Execution Model, 25 
building and running applications from the 

command line, 27 
checking the system and software requirements, 

16 
deploying the Hello World application, 21
downloading and installing, 16
JAVA_HOME, 27 
JavaFX Packager utility, 15, 28 
JavaFX Plug-in for NetBeans IDE, 11
JAVAFX_HOME, 27 
Main Project, 21 
Main.fx, code listing, 19 
Main.html, 29 
Main.jad, 29 
Main.jar, 28–29 
Main.jnlp, 28 
Main_browser.jnlp, 29 
NetBeans IDE 6.7.1 for JavaFX 1.2.1, 11 
object literals, 21 
PATH, 27 
Projects tab, 21 
Run Project, 21, 24 
running applications in standalone mode from 

the command line, 27 
running applications on a browser or in Web 

Start from the command line, 28
running in browser mode, 22 
running in Mobile Emulator mode, 25
running in Web Start mode, 23 
scene, 21 
stage, 21 
storing the class files, 27 
updating, 16 
using the JavaFX Packager utility for the 

DESKTOP profile, 28 
using the JavaFX Packager utility for the MOBILE 

profile, 29 
writing the Hello World application using 

NetBeans, 16 
See also JavaFX; JavaFX Script; Rich Internet 

Applications (RIAs)
new expression, definition of, 71
new operator, 72, 95 
Node class, table of attributes, 209
nonstatic context, 110 
not operator, 55 
null values, 65 
Number 

D
ow

nl
oa

d 
fr

om
 W

ow
! e

B
oo

k 
<

w
w

w
.w

ow
eb

oo
k.

co
m

>



■ INDEX 

 

313 

declaring, 41 
definition of, 40 
floating-point numbers, 40 
range of, 41 

■ O 
object literals, 21 
object-oriented programming (OOP) 

abstract class, definition of, 106 
access specifiers, definition of, 109 
advantages of, 91 
base and derived classes, 92, 124 
class declaration, example code listing, 94 
class, definition of, 91 
class, structure of, 93 
data abstraction, definition of, 92 
data hiding, 92, 109 
data member, definition of, 94 
encapsulation, definition of, 92, 109 
features of, 92 
function overloading, 92 
inheritance, definition of, 92 
member function, definition of, 94 
new operator, 95 
object, definition of, 92 
polymorphism, definition of, 92 
procedural programming languages and, 91 
secondary specifiers, 110 
two methods for creating an instance of a class, 

94 
 
writing an API library, 109 
See also classes; inheritance 

objects 
binding with object literals, 165 
definition of, 92 

octal numbers, definition of, 40 
Oliver, Christopher, 10 
on replace clause, 189, 192, 197 
operators 

=> operator, 272 
arithmetic assignment operator, 51 
arithmetic operators, 50 
as operator, 49 
assignment operator, 48 
colon, 95 
decrement operator, 53 
definition of, 47 
dot, 95 
increment operator, 53 

logical operators, 56 
modulus (remainder) operator, 51 
new operator, 72, 95 
not operator, 55 
order of precedence, 52 
order of precedence for all JavaFX Script 

operators, table of, 57 
relational operators, 55 
reverse operator, 184 
sizeof operator, 176 
tween operator, 272 
unary - operator, 54 
unary + operator, 54 
unary operators, 52 

override keyword, 142–143 

■ P, Q 
package, 76, 94 

definition of, 115 
organizing hierarchically, 116 
organizing source files into a single package, 116 
organizing with subpackages, 115 
package access specifier, code examples, 118 
package members, 116 
package-accessible classes, 137 
using package access specifiers for class 

members, 121 
Paint class, 220 
parameters, 76 
parentheses, 95 
PATH, 27 
PathTransition class 

applying a rotation matrix to a targeted node, 
code listing, 288 

creating a path transition, code listing, 284 
See also animation; Duration class; KeyFrame 

class; Timeline class 
persistence of vision, 269 
placeholder images, 243 
playFromStart(), 273 
playing, pausing, and stopping an animation, code 

listing, 274 
polymorphism, 82, 92 
postfix mode, 53 
postinit block, 99 
prefix mode, 53 
preserveRatio, 240 
procedural programming languages, 91 
Projects tab, 21 
protected, 76, 94, 124 



■ INDEX 

 

314 

accessing protected members freely within the 
same package, 126 

Car.fx script, code listing, 125 
code examples of, 125 
protected classes, 138 
Vehicle.fx script, code listing, 125 

public, 76, 94, 127 
enforced run() function requirement, 129 
public classes, 139 
Rectangle.fx script, code listing, 128 
UIBuilder.fx script, code listing, 128 
using the public access specifier with caution, 129 

public-init, 94 
code examples, 134 
syntax of, 134 

public-read, 94 
code examples, 131 
syntax of, 131 

■ R 
radial gradient 

definition of, 228 
syntax of, 228 

range expressions 
definition of, 59 
starting and ending values, 59 
step value and step criteria, 59 
table of, 59 

rebuildKeyFrames(), 300 
Rectangle.fx script, code listing, 128 
recursive functions 

definition of, 83 
examples of, 83 

relational operators 
definition of, 55 
table of, 55 

requestFocus(), 231 
reserved keywords in JavaFX Script, 35 
retained mode rendering, 204 
return type, 76 
reverse operator, 184 
Rich Internet Applications (RIAs) 

Adobe Flash, 1 
Adobe Flex, 1 
AJAX, 1 
characteristics and advantages of, 2 
definition of, 1 
designing a truly engaging user experience, 4 
developing for a variety of devices, 4 
enterprise applications, 4 

example web sites, 5 
exposing the pitfalls in a traditional web 

application, 4 
history of, 1 
Indaba, 5 
Macromedia, 1 
Microsoft Silverlight, 1 
Mozilla Prism, 1 
new user interface requirements, 4 
offering a solid designer-developer workflow, 3 
storing data contextually, 4 
See also JavaFX; JavaFX Script; NetBeans IDE 

RotateTransition class, node.rotate attribute, 291 
rotation transformation, definition of, 249 
Run Project, 21, 24 
run() 

accessing command-line attributes, 87 
defining with or without parameters, 87 
definition of, 86 
example of, 86 
generating implicitly, 86 
javafx executable, 86 

■ S 
ScaleTransition class, 289 
scaling transformation, definition of, 252 
Scene class, 205 
scene graph data model 

definition of, 204 
example of, 205 
root, branch, and leaf nodes, 205 
Scene class, 205 
Stage class, 206 

scene, definition of, 21 
script-level functions, definition of, 75 
script-level variables, 81 
script-private access specifier, 111 
script-private classes, 137 
ScriptPrivateClassDef2.fx script, code listing, 113 
ScriptPrivateClassDef3.fx script, code listing, 114 
ScriptPrivateWithClassDef.fx script, code listing, 113 
secondary specifiers, 110 
sequences 

accessing the elements of a sequence, 176 
after keyword, 181 
applying bidirectional binding between 

sequences, 186 
before keyword, 181 
binding an element of a sequence to a variable, 

186 



■ INDEX 

 

315 

binding sequence values to a range expression, 
186 

creating and initializing a sequence, 175 
creating sequences using range expressions, 178 
declaring, 44 
definition of, 44, 175 
delete keyword, 182 
deleting elements from a sequence, 182 
determining the number of elements, 176 
differentiating sequence slicing from sequence 

predicates, 180 
excluding the end value when using a range 

expression, 179 
from keyword, 183 
implementing a stack using a sequence, code 

listing, 184 
insert keyword, 181 
inserting elements into a sequence, 181 
into keyword, 181 
javafx.util.Sequences, list of functions, 187 
nested sequences, 177 
reverse operator, 184 
reversing a sequence, 184 
sequence slicing, 179 
sequence triggers, 196 
sequences as zero-based, 177 
SequenceTriggerNewSyntax1.fx script, code 

listing, 198 
SequenceTriggerNewSyntax2.fx script, code 

listing, 198 
SequenceTriggerWithBind.fx script, code listing, 

200 
sizeof operator, 176 
specifying the step value when using a range 

expression, 178 
trigger defined on a sequence, code listing, 196 
using a predicate to create a subset of a sequence, 

180 
using for loops and bind to create a sequence 

trigger, 200 
using sequences as function parameters, 184 
See also functions; variables 

Shape class, 210 
ShapeBuilder.fx script, code listing, 117 
shearing transformation, definition of, 252 
sizeof operator, 176 
sRGB color space, 220 
Stage class, 206 
stage, definition of, 21 
standalone mode, 21 
static context, 110 
static modifier (Java), 110, 117 

static type checkers, 33 
stop values, 224 
Stop#offset variable, 222 
String 

calling the methods of Java’s String class, 37 
curly braces, 37 
definition of, 36 
escape sequences, table of, 38 
examples of String declarations, 36 
single- and double-quoted text, 37 
Strings as immutable, 37 

stroke, attributes of, 210 
style sheets 

customizing the built-in look of nodes and 
controls, 260 

javafx.scene.Scene.stylesheets, 260 
subclass, 141 
subpackages, 115 
Sun Microsystems and Christopher Oliver, 10 
super keyword, 144, 148 
superclass, 141 
SVG Converter, 12 

■ T 
text rendering 

breaking text into multiple lines, 235 
demonstrating various text alignments, code 

listing, 236 
faces, 234 
font families, 234 
fonts, 234 
glyphs, 234 
javafx.scene.text.Font, 234 
javafx.scene.text.Text, 234 
ligatures, 234 
text node with a bound font, code listing, 234 
wrappingWidth, specifying, 236 
See also common profile APIs; graphical APIs; 

image rendering; image transformations 
throw clause, 71 
Timeline class 

attributes for starting and stopping a timeline, 
274 

autoReverse, 273, 276 
Duration data type, 42 
playFromStart(), 273 
playing, pausing, and stopping an animation, 

code listing, 274 
read-only variables that give the current 

animation status, 276 
repeatCount, 273 



■ INDEX 

 

316 

synthesizing a starting keyframe, 276 
Timeline.INDEFINITE, 272, 280 
See also animation; Duration class; KeyFrame 

class; PathTransition class 
toMillis(), 43 
toMinutes(), 43 
toSeconds(), 43 
Transition class 

rebuildKeyFrames(), 300 
table of attributes, 284 

TranslateTransition class, 291 
translation transformation, definition of, 246 
trigger clause, 282 
triggers 

accessing the old value of a variable, 191 
avoiding a divide-by-zero scenario using triggers, 

code listing, 195 
code examples, 189 
definition of, 189 
implementing bidirectional binding using 

triggers, code listing, 194 
implementing binding using triggers, 193 
implementing hand-wired binding using triggers, 

code listing, 193 
implementing nested triggers, code listing, 201 
on replace clause, 189, 192, 197 
sequence triggers, 196 
SequenceTriggerNewSyntax1.fx script, code 

listing, 198 
SequenceTriggerNewSyntax2.fx script, code 

listing, 198 
SequenceTriggerWithBind.fx script, code listing, 

200 
syntax of, 189 
syntax of a trigger with new clauses defined, 197 
trigger defined on a sequence, code listing, 196 
using for loops and bind to create a sequence 

trigger, 200 
using triggers as validators of data values, 195 
using triggers with bind, code listing, 192 
See also data binding 

true keyword, 41 
try-catch-finally block, 70 
tweening 

definition of, 272 
inbetweening, 272 

type inference, 35 
typecasting 

as keyword, 44 
definition of, 43 
implicit and explicit casting, 43 
 

upcasting and downcasting, 43 
See also data types 

■ U 
UI 

controls supported as of JavaFX 1.3, list of, 255 
creating a first UI application, 212 
creating custom shapes, code listing, 218 
dashed stroke with auto synthesis of scene and 

stage, code listing, 216 
drawing three circular rings (part 1), code listing, 

212 
drawing three circular rings (part 2), code listing, 

213 
drawing three circular rings (part 3), code listing, 

214 
drawing three circular rings, complete code 

listing, 214 
drawing three circular rings, output of, 215 
javafx.scene.Control, 255 
javafx.scene.layout, 256 
login form using controls and a Panel layout, 

code listing, 256 
preview controls, list of, 256 
synthesizing the scene and stage at runtime, 216 

UIBuilder.fx script, code listing, 128 
unary operators 

decrement operator, 53 
definition of, 52 
increment operator, 53 
not operator, 55 
postfix mode, 53 
prefix mode, 53 
sizeof operator, 176 
unary - operator, 54 
unary + operator, 54 

unidirectional binding, 156 
user space, coordinate system (2D), 206 

■ V 
variables 

Boolean, 41 
choosing between var and def when declaring 

variables, 34 
def keyword, 34, 48 
local variables, 82 
naming variables, 34 
script-level variables, 81 
sequence, definition of, 175 
sequences, 44 



■ INDEX 

 

317 

syntax for declaring a variable, 35 
type inference, 35 
using secondary access specifiers with def 

declarations, 136 
using secondary access specifiers with var 

declarations, 131 
var keyword, 34–35 
variable declarations, 33 
variable’s type declaration, 35 
See also functions; sequences 

Vehicle.fx script, code listing, 125 

viewport, 244 
Void, 61–62, 76 

■ W, X, Y, Z 
Web Start mode, 23 
where clause, 63 
while expression, 66 
wrappingWidth, 236

 


	Prelim
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Introduction to RIA
	The History of RIA
	Key Characteristics of RIA
	RIA Workflow
	Why RIA
	Some RIA Examples
	Summary

	Introduction to JavaFX
	Why JavaFX
	Advantages of JavaFX
	History of JavaFX
	The JavaFX Platform
	The Developer Bundle
	The Designer Bundle
	Standalone

	JavaFX Platform Integration: The Bigger Picture
	JavaFX Mobile: An Introduction
	Advantages of JavaFX Mobile

	Deployment and Distribution
	Getting Started
	What to Download

	Writing Your First JavaFX Application
	Running Your Application Using NetBeans
	Standalone Mode
	Browser/Java Web Start Mode
	Mobile Emulator
	Running the Application from the Command Line
	Compiling the Application for Standalone Execution
	Compiling the Application for Browser/Java Web Start Execution with JavaFX Packager
	Building and Running the Application Using JavaFX Packager for the DESKTOP Profile
	Building and Running the Application Using JavaFXPackager for the MOBILE Profile

	Comments
	Summary

	Data Types
	Variable Declaration
	var vs. def Declarations
	Variable Naming
	Reserved Keywords in JavaFX Script
	Variable Declaration Syntax
	Data Types
	String
	Integer
	Decimal Number
	Hexadecimal Number
	Octal Number
	Number
	Boolean
	Duration

	Typecasting
	Sequences
	Default Values for Data Types
	Summary

	Operators and Expressions
	The Assignment Operator
	The as Operator
	Arithmetic Operators
	The Modulus or Remainder Operator
	The Arithmetic Assignment Operator
	Operator Precedence
	Unary Operators
	The Increment and Decrement Operators:
	and
	The Unary + and – Operators
	The not Operator
	Relational Operators
	Logical Operators
	Range Expressions
	Block Expressions

	Looping Expressions
	While Loops

	Break Expressions
	Continue Expressions
	The if-else Expression
	Exception Handling
	The new Expression
	Differentiating Expressions

	Summary

	Functions
	How a Function Works
	A Function with Neither an Argument nor a Return Value
	A Function with Arguments but Without a Return Value
	A Function Without an Argument but with a Return Value
	A Function with Arguments and a Return Value

	Variable Access within a Function
	Script-Level Variables
	Local Variables

	Function Overloading
	Recursive Functions
	Anonymous Functions
	The run() Function
	Command-Line Arguments

	Summary

	Class Definitions
	Classes and Objects
	Classes
	Objects

	Features of OOP
	Data Abstraction
	Encapsulation
	Inheritance
	Polymorphism

	The Class Definition
	Creating Object Literals
	Initializing Class Attributes within an Object Literal
	Calling the Members of the Class
	Assigning Default Values to Data Members
	The init Block
	Order of Instance Initialization
	The postinit Block

	Modifying Class Objects
	Objects as Function Arguments
	Non-Member Functions Accessing the Object
	Static Members
	Function Overloading Within a Class

	Sharing a Function Name Between Script-Level and Member Functions
	Calling a Java Method That Is a JavaFX Reserved Word
	The abstract Class
	Summary

	Access Specifiers
	The Script—The .fx File
	The Script-Private Access Specifier
	Packages
	Statics in JavaFX Script
	The package Access Specifier
	Package Access with Class Members
	Honoring Access Specifiers for Java Classes

	The protected Access Specifier
	The public Access Specifier
	The Enforced run() Function Requirement

	JavaFX Secondary Access Specifiers
	public-read
	public-init
	Secondary Specifiers and def

	Access Specifiers for Class Definitions
	Script-private Classes
	Package-accessible Classes
	Protected Classes
	Public Classes

	Summary

	Inheritance
	The Order of Initialization of Data Members
	Overriding Data Members
	Use of the super Keyword
	Mixin Classes
	Creating a Subclass from Multiple Mixin Classes
	The Order of Initialization in Multiple Inheritance

	Abstract Classes
	Using a JavaFX Class to Extend a Java Abstract Class

	Anonymous Implementation of Java Interfaces
	Summary

	Data Binding
	What Does Binding Mean?
	Recalculation of Expressions
	Binding with Conditional Expressions
	Binding with for Expressions
	Binding Block Expressions
	Binding Functions
	Bound Functions
	Binding with Object Literals
	Bidirectional Binding
	Lazy vs. Eager Binding
	Summary

	Sequences
	The sizeof Operator
	Accessing the Elements of a Sequence
	Nested Sequences
	Creating a Sequence Using a Range Expression
	Excluding the End Value in the Sequence
	Sequence Slicing
	Using a Predicate to Create a Subset of a Sequence
	Working with Sequences
	Inserting an Element into a Sequence
	Deleting an Element from a Sequence
	Reversing a Sequence

	Sequences as Function Parameters
	Binding with Sequences
	javafx.util.Sequences Utility Functions
	Summary

	Triggers
	Defining a Simple Trigger
	A Trigger with Access to the Old Value
	Using Triggers with bind
	Implementing Binding Using Triggers
	Validation Within the Trigger
	Sequence Triggers
	Nested Triggers
	Summary

	Introduction to JavaFX UI Elements
	Rendering Model: Immediate Mode vs. Retained Mode Rendering
	Scene Graph
	Scene
	Stage

	Coordinate System
	Graphical API Summary
	Node – The Base UI Element
	Geometries
	Stroke vs. Fill
	Stroke Attributes

	Writing your First UI
	Paints
	Solid Colors
	Gradients
	Linear Gradient
	Radial Gradient

	Input Handling
	Keyboard Input
	JavaFX Focus Sub-system
	Mouse Input
	BlocksMouse

	Text Rendering
	Image Rendering
	Loading an Image
	Rendering an image

	Transformations
	Translation
	Rotation
	Custom Node
	Scaling & Shear

	Controls & Layouts
	StyleSheets
	Charts
	Effects
	Bounds
	Bounds Class
	Node Bounds Variables

	Summary

	Introduction to Animation
	What is Animation?
	Animation in JavaFX
	Play, Pause, or Stop a Timeline
	KeyFrame Attributes
	KeyFrame.action
	KeyFrame.canSkip
	Simplified Syntax
	Transitions
	Path Transitions
	Scale Transitions
	Rotate Transitions
	Translate Transitions
	Fade Transitions
	Parallel and Sequential Transitions

	Summary

	Index



