
www.allitebooks.com

http://www.allitebooks.org

Instant Spring for Android
Starter

Leverage Spring for Android to create RESTful and OAuth
Android apps

Anthony Dahanne

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Instant Spring for Android Starter

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1220113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-190-5

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits
Author

Anthony Dahanne

Reviewer

Stanojko Markovik

Acquisition Editor

Usha Iyer

Commissioning Editor

Ameya Sawant

Technical Editor

Jalasha D'costa

Project Coordinator

Michelle Quadros

Proofreader

Lesley Harrison

Production Coordinator

Melwyn D'sa

Conidon Miranda

Cover Work

Conidon Miranda

Cover Image

Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author
Anthony Dahanne is a Java software developer since 2005. His favorite topics
include Android, Continuous Integration, Web Services, and of course,
core Java development.

During his spare time, he enjoys hacking on some open source Android app (G2Android,
ReGalAndroid, and so on). He also contributes from time to time to build/IDE plugins
usually involving Maven and Eclipse.

You can meet him at one of the many Java-related user group gatherings at Montréal
(Android Montréal, Montréal JUG, Big Data Montréal, and so on).

Working at Terracotta, he's currently implementing the REST management tools for EhCache.

I would like to thank Guilhem De Miollis for his time spent reviewing the
content of the book and even suggesting some topics. My colleagues at the
Interfaces team at Terracotta, for always taking the time to share their deep
Java knowledge with me, and finally my beloved wife Isabelle for her patience
and help to make this book happen.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer
Stanojko Markovik was born in Skopje, Macedonia, but now resides in Paris, France. He
holds a master's degree in software engineering from the faculty of electrical engineering and
information technologies in his hometown of Skopje. His expertise spans from developing
enterprise-level applications; serving millions of clients to developing single-user applications for
mobile or desktop using various technologies.

Throughout his career he worked for companies that range from 5 – 10 to 500 – 1000 employees.
As an engineer, he is versatile in multiple platforms and technologies including Java, Android,
Blackberry, Spring, J2EE, C, and C++.

He has also presented his work at industry conferences on innovative technologies and worked
on EU projects to improve the technological advancements of the twenty-first century.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://www.allitebooks.org

PacktLib.PacktPub.com
Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ÊÊ Fully searchable across every book published by Packt

ÊÊ Copy and paste, print and bookmark content

ÊÊ On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Instant Spring for Android Starter	 1

So, what is Spring for Android?	 3
RestTemplate	 3
Auth/Spring Social	 3
What Spring for Android is not	 4

Integrating it in an Android app	 5
Minimal dependencies to add or use RestTemplate	 5
Getting started with Eclipse and Spring for Android	 5

Installing the ADT plugin	 6
First example app	 9

Using Maven to build a Spring for Android app	 16
Quick start – RestTemplate	 20

Different message converters	 20
MappingJacksonHttpMessageConverter	 20
SimpleXmlHttpMessageConverter	 22
RssChannelHttpMessageConverter	 25

Gzip encryption	 27
HTTP Basic authentication	 29
The RESTful recipe app	 31

RecipeList activity: listing all recipes stored on the server	 32
RecipeEditor activity	 36

Android annotations	 39
Quick start – OAuth	 42

Developing a website or an app relying on a service provider	 42
The OAuth dance	 43
Spring for Android Auth module	 45
An OAuth example using Google	 46

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

People and places you should get to know	 58
Official sites	 58
Articles and tutorials	 58
Community	 58
Blogs	 58
Twitter	 58

Instant Spring for Android
Starter

Welcome to Instant Spring for Android Starter. This book has been specially
created to provide you with all the information that you need to ease your Android
development using Spring for Android. You will learn the different features
provided by Spring for Android and get started with building your first apps using
these features.

This book contains the following sections:

So, what is Spring for Android? describes Spring for Android has an extension of
the Spring Framework that helps simplify the development of native Android
applications; it currently (Version 1.0.0.RELEASE) features a REST client
(RestTemplate) and OAuth support (Spring Social).

Integrating it in an Android app teaches how to integrate Spring for Android with
the Eclipse IDE and ADT (Android Development Tools), as well as with Maven.

Quick start – Rest Template will show you how to use some of the core features of
the Spring for Android Rest Template module; for example, creating a REST client.
By the end of this section you will be able to retrieve, update, create, and delete
REST resources using message converters and/or HTTP Basic authentication.

Quick start – OAuth will show you how to use some of the core features of Spring
for Android Auth module; for example, creating an OAuth connection to Google+
to read a user profile. By the end of this section you will be able to establish an
OAuth connection to authenticate your user and app.

People and places you should get to know – Every open source project is centered
around a community. This section provides you with many useful links to the
project page and forums, as well as a number of helpful articles, tutorials and
blogs, in addition to the Twitter feeds of Spring for Android super-contributors.

3

Instant Spring for Android Starter

So, what is Spring for Android?
In this first section, we will go through the main aspects of Spring for Android: RestTemplate,
Auth, and what Spring for Android is not.

RestTemplate
The RestTemplate module is a port of the Java-based REST client RestTemplate, which
initially appeared in 2009 in Spring for MVC. Like the other Spring template counterparts
(JdbcTemplate, JmsTemplate, and so on), its aim is to bring to Java developers (and thus
Android developers) a high-level abstraction of lower-level Java API; in this case, it eases the
development of HTTP clients.

In its Android version, RestTemplate relies on the core Java HTTP facilities
(HttpURLConnection) or the Apache HTTP Client. According to the Android device version
you use to run your app, RestTemplate for Android can pick the most appropriate one for you.
This is according to Android developers' recommendations.

See http://android-developers.blogspot.ca/2011/09/
androids-http-clients.html. This blog post explains why in certain
cases Apache HTTP Client is preferred over HttpURLConnection.

RestTemplate for Android also supports gzip compression and different message converters
to convert your Java objects from and to JSON, XML, and so on.

Auth/Spring Social
The goal of the Spring Android Auth module is to let an Android app gain authorization to a web
service provider using OAuth (Version 1 or 2).

OAuth is probably the most popular authorization protocol (and it is worth mentioning that, it is
an open standard) and is currently used by Facebook, Twitter, Google apps (and many others) to
let third-party applications access users account.

Spring for Android Auth module is based on several Spring libraries because it needs to securely
(with cryptography) persist (via JDBC) a token obtained via HTTP; here is a list of the needed
libraries for OAuth:

ÊÊ Spring Security Crypto: To encrypt the token

ÊÊ Spring Android OAuth: This extends Spring Security Crypto adding a dedicated
encryptor for Android, and SQLite based persistence provider

ÊÊ Spring Android Rest Template: To interact with the HTTP services

ÊÊ Spring Social Core: The OAuth workflow abstraction

4

Instant Spring for Android Starter

While performing the OAuth workflow, we will also need the browser to take the user to
the service provider authentication page, for example, the following is the Twitter OAuth
authentication dialog:

What Spring for Android is not
SpringSource (the company behind Spring for Android) is very famous among Java developers.
Their most popular product is the Spring Framework for Java which includes a dependency
injection framework (also called an inversion of control framework). Spring for Android does not
bring inversion of control to the Android platform.

In its very first release (1.0.0.M1), Spring for Android brought a common logging facade for
Android; the authors removed it in the next version.

5

Instant Spring for Android Starter

Integrating it in an Android app
Spring for Android is contained in multiple JAR libraries which should be linked to the project.
These JAR libraries are not part of the standard Android distribution. For example, we will need the
following JAR libraries to consume a JSON REST API with Spring For Android RestTemplate:

Minimal dependencies to add or use RestTemplate
You can use the IDE to manually satisfy the dependencies (and their transitive dependencies).
The alternative to manual dependency management is automatic project building with Maven.
We will explain Maven building later in the section.

Getting started with Eclipse and Spring for Android
Eclipse is certainly the most popular IDE to develop Android apps; one of the reasons why it is
so is because the Android Development Tools (ADT), maintained by Google, provides the Eclipse
plugins to ease Android development (debugger, custom XML editors, and so on).

IntelliJ IDEA Community Edition provides out of the box support for Android;
Netbeans also lets you install the nbandroid plugin which facilitates
Android apps development.

We need to perform the following steps to get started with Eclipse:

1.	 Download a recent version from http://www.eclipse.org/downloads (ADT is
compatible with Eclipse from the Version 3.6.2; at the time of writing, 4.2 Juno was
the most recent). Prefer Eclipse IDE for Java developers rather than the other versions
available.

2.	 Once you have it downloaded and unpacked on your machine, start it. Choose a
workspace location (where your projects will lie) and install the ADT plugin: click on
Help | Eclipse Marketplace... and type adt (as shown in the following screenshot) in the
textbox before pressing Enter; now select Android Development Tools for Eclipse by
clicking on the Install button.

6

Instant Spring for Android Starter

You don't have to select the NDK support feature, which provides support
for Native Android Development (using the C or C++ language) since
Spring For Android libraries are Java only libraries.

Installing the ADT plugin
Eclipse will prompt you several times about licenses and will eventually ask you to restart it.

1.	 When you're back in your workspace, make sure you have an (up-to-date) Android SDK
installed on your machine: click on the icon with an Android robot coming out of a box,
and install or update the Android SDK (you don't need all Android versions, you can just
install the most popular ones such as 2.2 aka Froyo, 2.3.3 aka Gingerbread, 4.0.3 aka Ice
Cream Sandwich and 4.1 aka Jelly Bean); restart Eclipse when you're done.

The Android SDK Manager to manage the Android tools and platforms

7

Instant Spring for Android Starter

2.	 If you haven't done so already, you also need to create an Android Virtual Device (AVD)
so that you can deploy your Android apps to it (you could also connect your phone or
tablet via USB to deploy your apps on it); for that matter, click on the icon representing
an Android robot in a device screen and create a new AVD, as shown in the
following screenshot:

Creating a new AVD

8

Instant Spring for Android Starter

You can find more details on the ADT plugin from the official website:
http://developer.android.com/tools/sdk/eclipse-adt.html.

3.	 We finally need to download the Spring for Android JARs, go to the Spring for Android
website: http://www.springsource.org/spring-android and click on the
Download button (you can skip the registration in the following screen). Now choose
the latest Spring for Android release (at the time of writing: 1.0.1.RELEASE) and unzip it
on your machine; we will need the libraries in the next step:

Spring for Android official download page

9

Instant Spring for Android Starter

First example app
Now we are ready to create our first application with Spring for Android:

1.	 Click on File | New... | Android Application, give your project name and accept the
defaults in the following dialogs:

www.allitebooks.com

http://www.allitebooks.org

10

Instant Spring for Android Starter

2.	 A new window named New Android Application will pop up, as shown in the
 following screenshot:

Creating an Android app from Eclipse

3.	 When asked for a new activity, choose the default BlankActivity, as shown in the
following screenshot:

11

Instant Spring for Android Starter

4.	 Now copy the JARs spring-android-core-{version}.jar and spring-
android-rest-template-{version}.jar from the Spring for Android ZIP file
you downloaded before, to the $Project_home/libs folder of your new project; you
should have the following project structure:

First example app

5.	 For this first sample app to use Spring for Android to request a web service (we will
use http://ifconfig.me/all), we will just need to perform a GET method on this
URL and we will receive the client info: IP, User Agent, and so on. We will then need
to declare our intention to access the network. This works by adding the following
permission tag just before the application tag in the Android manifest file:

(...)<uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="15" />
<uses-permission android:name="android.permission.INTERNET"/>
<application (...)

12

Instant Spring for Android Starter

The Android manifest is found at the root of the project:
AndroidManifest.xml.
Forgetting to do so results in obscure messages in the log cat view (where
all the logs are gathered) such as Fatal Exception; see http://
developer.android.com/guide/topics/security/permissions.html
for more information on permissions.

The HTTP protocol defines methods, or verbs, to indicate the action to
be performed on the remote resource: GET to fetch a resource, POST to
store a resource, PUT to update a resource, DELETE to delete a resource
are examples of HTTP verbs, you can learn more about them by reading
this article: http://en.wikipedia.org/wiki/Hypertext_Transfer_
Protocol.

6.	 Then, we adjust the activity layout by removing the default "hello world"
(android:text="@string/hello_world") and replacing it by an anchor that
we will use to print the response of the web service (android:id="@+id/hello_
text"):

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >
 <TextView
 android:id="@+id/result_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 tools:context=".MainActivity" />
</RelativeLayout>

The activity layout is found at res/layout/activity_main.xml.

7.	 Finally, we can rework MainActivity itself (only the onCreate() method needs to
be updated):

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 final TextView resultTextView =
 (TextView) findViewById(R.id.result_text);
 AsyncTask<String, Void, String> simpleGetTask =
 new AsyncTask<String, Void, String>() {

13

Instant Spring for Android Starter

 @Override
 protected String doInBackground(String... params) {
 //executed by a background thread

 //create a new RestTemplate instance
 RestTemplate restTemplate = new RestTemplate();

 //add the String message converter, since the result of
 // the call will be a String
 restTemplate.getMessageConverters().add(
 new StringHttpMessageConverter());

 // Make the HTTP GET request on the url (params[0]),
 // marshaling the response to a String
 return
 restTemplate.getForObject(params[0],String.class);
 }

 @Override
 protected void onPostExecute(String result) {
 // executed by the UI thread once the background
 // thread is done getting the result
 resultTextView.setText(result);
 }
 };
 String url = "http://ifconfig.me/all";
 // triggers the task; it will update the resultTextView once
 // it is done
 simpleGetTask.execute(url);
 }

If Eclipse complains about missing imports, press simultaneously
Shift + Ctrl + O to automatically add the required the imports.

In this snippet, we first got a reference to our result_text text view, and set it to a
final variable named resultTextView (final because we will need to access it
through an inner class).

Next, we created an anonymous inner class, extending AsyncTask to implement all
the logic of hitting the web service (creating the RestTemplate instance, adding the
String converter and calling getForObject), and setting the result to the text view
(using the setText method). When we call simpleGetTask.execute(url), the
URL is added to the array of params in doInBackground(String... params)
(so params[0] is url in this case).

14

Instant Spring for Android Starter

If we had directly written the code to hit the web service in the
onCreate() method, the application would not have even been able to
start since the Android platform prevents the developers from performing
HTTP requests in the UI (main) thread (and for a good reason: those
network-related operations often take time to complete, and would freeze
the UI while the operations were in progress).

@Override
public void onCreate(Bundle savedInstanceState) {
 TextView resultTextView = (TextView) findViewById(R.id.result_
text);
 String url = "http://ifconfig.me/all";
 RestTemplate restTemplate = new RestTemplate();
 RestTemplate.getMessageConverters().add(new
StringHttpMessageConverter());
 String result = restTemplate.getForObject(url, String.class);
 resultTextView.setText(result);
}

Do not do this! You can not perform HTTP-related calls
from the UI (main) thread.

More information about AsyncTasks can be found in the official
documentation: http://developer.android.com/reference/android/
os/AsyncTask.html and also on threads and processes in Android in general:
http://developer.android.com/guide/components/processes-and-
threads.html.

15

Instant Spring for Android Starter

8.	 We are now ready to launch this first Spring for Android based app!

Right-click on the project name and select Run as... | Android Application:

9.	 Eclipse will start your previously created AVD and will automatically run the app, you
should see something similar to the following screenshot:

MainActivity screenshot from the AVD

Congratulations! You've successfully run your first Spring for Android based app!

16

Instant Spring for Android Starter

Using Maven to build a Spring for Android app
In the previous example, we only added two JARs to the libs folder; but if you need other
dependencies, such as MessageConverters (to unmarshall JSON, XML responses), the Auth
module, or any other existing libraries in your project, managing your dependencies will soon
become a burden!

Maven can help you manage your dependencies (in a nutshell, you specify them in a file
called pom.xml and it will get them from the Internet automatically, including their transitive
dependencies) and much more: release operations, tests runs, header generation, and so on.
Maven is a modular open source build tool with tons of plugins!

When using the Android Maven plugin, you should add to your environment
the following variable ANDROID_HOME (linking your Android home
directory) and add ANDROID_HOME/platform-tools to your path.
This is explained in detailed in https://code.google.com/p/maven-
android-plugin/wiki/GettingStarted.

To begin with, let's add the m2e (Maven to Eclipse) plugin to Eclipse: like we did for the ADT
plugin, open Help | Eclipse Marketplace and search for maven; choose Maven Integration for
Eclipse, click on Install and acknowledge the dialogs; restart your IDE at the end of the process.

Installing Maven Integration for Eclipse

17

Instant Spring for Android Starter

Now import the project named spring-for-android-first-example-maven into your
workspace: you can either clone it from GitHub or unzip the examples.zip archive; and then,
from Eclipse, click on File | Import… and choose Existing Maven Projects, and click on Next.

Import existing Maven project

Browse to the directory where you cloned or unzipped the project and click on the Next button:

Browse to your maven project

18

Instant Spring for Android Starter

M2e will show you a list of m2e connectors needed to integrate the Maven-based project into
your IDE (basically those connectors tell m2e how to generate and compile sources); click on
Finish and accept the following dialogs; restart Eclipse.

The most important connector here is the m2e-android connector : it enables
m2e to integrate with ADT, more info on http://rgladwell.github.com/
m2e-android/.

The project should be imported just fine and you can deploy the project on your AVD in the same
way you did with the previous project (right-click on the project, and choose Run as | Android
application).

Let's have a look though at the pom.xml file (the only additional file compared to the previous
project), right-clicking on it and choosing Open with… | Maven POM Editor; click on the pom.
xml tab at the bottom of the view.

(...)<dependencies>
 <dependency>
 <groupId>com.google.android</groupId>
 <artifactId>android</artifactId>
 <version>4.0.1.2</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.android</groupId>
 <artifactId>spring-android-rest-template</artifactId>
 <version>${spring-android-version}</version>
 </dependency>
 </dependencies>
 <build>
 <finalName>${project.artifactId}</finalName>
 <sourceDirectory>src</sourceDirectory>
 <plugins>
 <plugin>
 <groupId>com.jayway.maven.plugins.android.generation2</
groupId>
 <artifactId>android-maven-plugin</artifactId>
 <version>3.3.0</version>
 <extensions>true</extensions>
 <configuration>
 <sdk>
 <!-- platform or api level (api level 4 =
 platform 1.6)-->
 <platform>15</platform>
 </sdk>

19

Instant Spring for Android Starter

 </configuration>
 </plugin>
 </plugins>
 </build>(...)

There you can see in the dependencies section; the Android platform and the Spring for Android
RestTemplate artifact (no need to specify Spring for Android core! Remember, Maven
automatically gets the transitive dependencies) and in the plugins section the Android-Maven
plugin (which extends Maven for Android projects, thanks to the extensions=true attribute),
configured to require Android 4.0.3 (API level 15).

Maven at its core is a command-line tool, and if you download and unzip Maven on your
machine, you could go to the root directory of the Maven project (where pom.xml resides) and
type the Maven command with different goals:

ÊÊ mvn clean install: To compile, run the tests and package

ÊÊ mvn clean install android:run: To start your app in an AVD

To see all the available goals, you can type mvn help:describe
-Dplugin=com.jayway.maven.plugins.android.
generation2:maven-android-plugin.

You also can simulate command line Maven from inside Eclipse, right-clicking
on the project and choosing Run as | Maven build..., and specifying your
goals.

Maven installation instructions can be found online: http://www.
sonatype.com/books/mvnref-book/reference/installation-sect-
maven-install.html.

To learn more about Maven, I highly recommend to read the free and
available online Maven book at http://www.sonatype.com/books/
mvnref-book/reference/ which even has a specific Android chapter.

Now we are ready to hack together some richer Spring for Android based apps!

www.allitebooks.com

http://www.allitebooks.org

20

Instant Spring for Android Starter

Quick start – RestTemplate
Now that our workspace is set up and we already successfully deployed our first Spring for
Android RestTemplate based app, let's explore some more capabilities from RestTemplate.

This section relies on several example apps. We will go through all the important points of each
code sample. Feel free to import the projects into your IDE and browse the code.

From now on, I will use Maven to manage dependencies, but you don't have
to. Each project has a list of dependencies in its README.md file: download
them (or get them from your Spring for Android ZIP archive libs folder),
and add them to the libs folder!

Different message converters
In the previous section, we already used a message converter:
StringHttpMessageConverter. Each message converter supports reading from and writing
to certain media types (often referred to as MIME types); StringHttpMessageConverter
supports reading all kinds of documents (MIME */*) and writing to text (MIME text/plain). Let's
discover more complex message converters.

MIME (Multipurpose Internet Mail Extensions), is not only used to describe
the content of e-mails, it is vastly used to describe the content of documents
exchanged through HTTP as well (http://en.wikipedia.org/wiki/
MIME).

MappingJacksonHttpMessageConverter
JSON messages are very frequent among REST web services. Originally designed for the
JavaScript language (JavaScriptObjectNotation); they're lightweight and human
readable as well.

Ifconfig.me can return a JSON response, if you use this URL : http://ifconfig.me/all.
json.

In the code from our first example, let's replace StringHttpMessageConverter with
MappingJacksonHttpMessageConverter:

AsyncTask<String, Void, IfConfigMeJson> simpleGetTask =
 new AsyncTask<String, Void, IfConfigMeJson>() {
 @Override
 protected IfConfigMeJson doInBackground(String... params) {
 String url = params[0];
 RestTemplate restTemplate = new RestTemplate();

21

Instant Spring for Android Starter

 MappingJacksonHttpMessageConverter jacksonConverter =
 new MappingJacksonHttpMessageConverter();
 restTemplate.getMessageConverters().add(jacksonConverter);
 return restTemplate.getForObject(url,
 IfConfigMeJson.class);
 }

 @Override
 protected void onPostExecute(IfConfigMeJson result) {
 String resultAsString = new StringBuilder()
 .append("Your current IP is : ")
 .append(result.getIpAddr()).toString();
 resultTextView.setText(resultAsString);
 }

};

String url = "http://ifconfig.me/all.json";
//triggers the task
simpleGetTask.execute(url);

As you can see, we also introduced a model class named IfConfigMeJson: this class
defines the mapping between the JSON messages properties ({"connection":"keep-
alive","ip_addr":"70.30.43.43", [..]}) and a POJO (Plain Old Java Object: a simple
class with member variables and their accessors), so that we can easily access each property of
the response (in the following example: result.getIpAddr()) in our Java code:

public class IfConfigMeJson {
 private String connection;
 @JsonProperty("ip_addr")
 private String ipAddr;
 public String getConnection() {
 return connection;
 }
 public void setConnection(String connection) {
 this.connection = connection;
 }
 public String getIpAddr() {
 return ipAddr;
 }
 public void setIpAddr(String opAddr) {
 this.ipAddr = opAddr;
 }

http://ifconfig.me/all.json

22

Instant Spring for Android Starter

Jackson automatically matches JSON properties with Java fields as long
as they are named identically (CamelCase in Java, underscore for JSON).
You've certainly noticed that we mapped the JSON property ip_addr
with the field ipAddr, to respect Java naming conventions, thanks to
Jackson's @JsonProperty annotation before the field definition. On a
side note, we could have declared the fields of the class as public and have
the accessors removed.

When you run the application, you will only see the following screenshot:

The app using MappingJacksonHttpMessageConverter

In this section we added a dependency to jackson-mapper-asl in our pom.xml file:

<dependency>
<groupId>org.codehaus.jackson</groupId>
 <artifactId>jackson-mapper-asl</artifactId>
 <version>${jackson-version}</version>
</dependency>

There is another JSON message converter available,
GsonHttpMessageConverter, using the Google Gson library
instead of Jackson, that can be used alternatively.

SimpleXmlHttpMessageConverter
Another message converter worth mentioning is SimpleXmlHttpMessageConverter:
it maps XML responses and requests to POJOs the same way
MappingJacksonHttpMessageConverter did with JSON.

As an example, let's request the Ifconfig.me XML service: http://ifconfig.me/all.xml.

23

Instant Spring for Android Starter

In the MainActivity class from our previous example, let's replace
MappingJacksonHttpMessageConverter with SimpleXmlHttpMessageConverter:

AsyncTask<String, Void, IfConfigMeXml> simpleGetTask =
 new AsyncTask<String, Void, IfConfigMeXml>() {
 @Override
 protected IfConfigMeXml doInBackground(String... params) {
 String url = params[0];
RestTemplate restTemplate = new RestTemplate();
 SimpleXmlHttpMessageConverter xmlConverter =
 new SimpleXmlHttpMessageConverter();
 restTemplate.getMessageConverters().add(xmlConverter);
 return restTemplate.getForObject(url, IfConfigMeXml.class);
 }

 @Override
 protected void onPostExecute(IfConfigMeXml result) {
 String resultAsString = new StringBuilder()
 .append("Your current IP is : ")	
 .append(result.getIpAddr()).toString();
 resultTextView.setText(resultAsString);
 }

};

String url = "http://ifconfig.me/all.xml";

Once again, you'll notice we rely on a class, named IfConfigMeXml.java, to allow
SimpleXml to do the mapping between the XML response and the Java code. The following is
the XML response:

<info>
<forwarded/>
<ip_addr>70.43.43.43</ip_addr>
[...]
</info>

The following is the Java code:

@Root (name="info")
public class IfConfigMeXml {

 @Element(required=false)
 private String forwarded;

 @Element(name="ip_addr")

http://ifconfig.me/all.xml

24

Instant Spring for Android Starter

 private String ipAddr;
 [...]
}

The annotations are similar to the ones we used for the JSON message converter.

The @Root annotation defines what will be the name of the root XML tag: info in this case.

The @Element annotation is added before each field to let SimpleXml know those fields are
mapped to XML tags: if required is set to false, it means the tag could be empty; if name is
specified, it means the POJO field does not match the XML tag name.

If you run the application, you will get exactly the same output as we had in the previous example.

In this section, we added a dependency to the SimpleXml framework.
Unfortunately, this dependency has transitive dependencies to stax and
xpp3 which are not needed for Android applications.

We had to explicitly filter some transitive dependencies to let Maven know not to add them to
the classpath.

<dependency>
 <groupId>org.simpleframework</groupId>
 <artifactId>simple-xml</artifactId>
 <version>${simple-version}</version>
 <exclusions>
 <!-- StAX is not available on Android -->
 <exclusion>
 <artifactId>stax</artifactId>
 <groupId>stax</groupId>
 </exclusion>
 <exclusion>
 <artifactId>stax-api</artifactId>
 <groupId>stax</groupId>
 </exclusion>
 <!-- Provided by Android -->
 <exclusion>
 <artifactId>xpp3</artifactId>
 <groupId>xpp3</groupId>
 </exclusion>
 </exclusions>
</dependency>

25

Instant Spring for Android Starter

RssChannelHttpMessageConverter
This message converter is about parsing RSS feeds; as usual we are going to inject it to our
RestTemplate instance, but this time we will read entries from a blog feed.

final WebView resultTextView = (WebView) findViewById(R.id.result_
text);
AsyncTask<String, Void, Channel> simpleGetTask = new
AsyncTask<String, Void, Channel>() {
 @Override
 protected Channel doInBackground(String... params) {
 RestTemplate restTemplate = new RestTemplate();
 // Configure the RSS message converter.
 RssChannelHttpMessageConverter rssChannelConverter = new
RssChannelHttpMessageConverter();
 rssChannelConverter.setSupportedMediaTypes(
 Collections.singletonList(MediaType.TEXT_XML));

 // Add the RSS message converter to the RestTemplate instance
 restTemplate.getMessageConverters().add(rssChannelConverter);

 // Make the HTTP GET request on the url (params[0]), marshaling
//the response to a String
 return restTemplate.getForObject(params[0], Channel.class);
 }

 @Override
 protected void onPostExecute(Channel result) {
 //get the latest article from the blog
 Item item = (Item) result.getItems().get(0);

 // load the content of the article into the WebView
 resultTextView.loadData(item.getContent().getValue(), "text/
html", "UTF-8");
 }
};
String url = "http://blog.dahanne.net/feed/";

We don't have to create a POJO mapping class here since the result will always be a Channel –
a class providing us with methods to access the different property of the feed: items, language,
published date, and so on. In this example, we only read the content of the first item – the latest
article from my blog!

26

Instant Spring for Android Starter

The feed looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
<channel>
 <title>Anthony Dahanne's blog</title>
 <description>A blog</description>
 [...]
 <item>
 <title>Article 1</title>
 <description>content of the article</description>
 [...]
 </item>
 [...]
</channel>
</rss>

And the result on the device is as follows:

The content of the first item of an RSS feed

You may have noticed that I switched the previous TextView for a
WebView, capable of interpreting HTML code such as hyperlinks.

RssChannelHttpMessageConverter does not have default supported types, that's why we
added the media type text/xml as a supported type.

27

Instant Spring for Android Starter

We had to add a dependency on the Android ROME Feed Reader for this RSS
feed example; this library is not published on Maven Central, which means
we also had to declare the repository where its artifacts are deployed to.

<dependency>
 <groupId>com.google.code.android-rome-feed-reader</groupId>
 <artifactId>android-rome-feed-reader</artifactId>
 <version>${android-rome-version}</version>
</dependency>

<repositories>
 <repository>
 <id>android-rome-feed-reader-repository</id>
 <name>Android ROME Feed Reader Repository</name>
 <url>https://android-rome-feed-reader.googlecode.com/svn/maven2/
releases</url>
 </repository>
</repositories>

Gzip encryption
To save bandwidth during transfers, as part of each request you can tell the server that you
support gzip encryption. If the server supports gzipping the responses, it will do so.

Spring for Android RestTemplate, relies on Android java.net.HttpURLConnection since
Gingerbread (2.3), which defaults in sending the Accept-Encoding : gzip header; so gzip
compression is on by default.

Otherwise, you just need to specify in the headers of the request that you can support gzip.
Let's have a look at a concrete example – the Jackson example where this time we only show the
client supported encoding mechanism:

@Override
protected IfConfigMeJson doInBackground(String... params) {

 HttpHeaders requestHeaders = new HttpHeaders();
 requestHeaders.setAcceptEncoding(ContentCodingType.IDENTITY);
// Add the gzip Accept-Encoding header
//requestHeaders.setAcceptEncoding(ContentCodingType.GZIP);
 HttpEntity<?> requestEntity =
 new HttpEntity<Object>(requestHeaders);
 RestTemplate restTemplate = new RestTemplate();

28

Instant Spring for Android Starter

 MappingJacksonHttpMessageConverter jacksonConverter =
 new MappingJacksonHttpMessageConverter();
 restTemplate.getMessageConverters().add(jacksonConverter);
 ResponseEntity<IfConfigMeJson> response =
 restTemplate.exchange(params[0], HttpMethod.GET,
 requestEntity, IfConfigMeJson.class);
 return response.getBody();
}

Using Identity, we declare that we do not support anything else other than raw text.

When you ask for gzip explicitly or implicitly, java.util.zip.
GzipInputStream will be automatically used to decode the response.

Did you notice that instead of using getForObject(url,Pojo.class) we used exchange
(url,GET,requestEntity,Pojo.class)? The exchange() method is a more versatile
method that allows for customization of the request.

Let's have a look at the request/response exchanged during the execution of this code:

Request (IDENTITY and then GZIP) Response (IDENTITY and then GZIP)
GET/all.json HTTP/1.1

Accept: application/json

Accept-Encoding: identity

Content-Length: 0

Host: ifconfig.me:80

Connection: Keep-Alive

HTTP/1.1 200 OK

Date: Fri, 02 Nov 2012
02:41:04 GMT

Server: Apache

Vary: Accept-Encoding

Connection: close

Transfer-Encoding: chunked

Content-Type: application/
json

13c

{"connection":"Keep-
Alive","ip_addr:[...],"encod
ing":"identity"}

0

29

Instant Spring for Android Starter

Request (IDENTITY and then GZIP) Response (IDENTITY and then GZIP)
GET /all.json HTTP/1.1

Accept: application/json

Accept-Encoding: gzip

Content-Length: 0

User-Agent: Dalvik/1.6.0
(Linux; U; Android 4.0.4;
sdk Build/MR1)

Host: ifconfig.me:80

Connection: Keep-Alive

X-Forwarded-For:
192.168.1.111

HTTP/1.1 200 OK

Date: Fri, 02 Nov 2012
02:42:08 GMT

Server: Apache

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Length: 258

Connection: close

Content-Type: application/
json

ã� /%êAOÑ0 ÖÔ˛

"ì&À–�
"ß5fi'ãâg2€él•¥§4�ˇªÖΩÕ|3ÔeÊ˝
2È¨%9kgŸ/{&ö"ì—+±/"SáJ˘àk

—îPq

It's often handy to analyze the requests and responses that go back and
forth the device; you can use the open source software Membrane as
an HTTP proxy (http://www.membrane-soa.org/soap-monitor/)
creating a new simple proxy that listens to localhost:2000 and redirects
to the web service you target (for example, http://ifconfig.me).

In the Android code, just replace your web service URL with
computer_ip:2000 (could be 192.168.1.1:2000): you'll then
see all the traffic between your Android app and the web service URL.

HTTP Basic authentication
This authentication scheme is, as its name implies it, very basic and unsecured. You just provide
a username and a password to access a realm (usually a portion of a website).

As we did for the encoding, we can provide the credentials through a header: the username and
the password will be Base64-encoded.

By no means does Base64 encoding provide security. You can decode it as
easily as you encode it! See https://en.wikipedia.org/wiki/Base64
for more information on Base64.

www.allitebooks.com

http://www.membrane-soa.org/soap-monitor/
http://ifconfig.me
http://www.allitebooks.org

30

Instant Spring for Android Starter

As an example, we'll try to access a web page that displays Hello World; provided you sent
the right credentials. The page is http://restfulapp.appspot.com/helloworld, and the
credentials are username – s4a and password – s4a (you can try it in your web browser).

Let's try to access this page with Spring for Android's RestTemplate!

AsyncTask<String, Void, String> simpleGetTask = new AsyncTask<String,
Void, String>() {
 @Override
 protected String doInBackground(String... params) {
 // Set the credentials for creating a Basic Auth request
 HttpAuthentication authHeader =
 new HttpBasicAuthentication("s4a", "s4a");
 HttpHeaders requestHeaders = new HttpHeaders();
 requestHeaders.setAuthorization(authHeader);
 HttpEntity<?> requestEntity =
 new HttpEntity<Object>(requestHeaders);

 RestTemplate restTemplate = new RestTemplate();

 restTemplate.getMessageConverters()
 .add(new StringHttpMessageConverter());

 try {
 // Make the GET request to the Basic Auth protected URL
 ResponseEntity<String> response =
 restTemplate.exchange(params[0], HttpMethod.GET,
 requestEntity, String.class);
 return response.getBody();
 } catch (HttpClientErrorException e) {
 // Handle 401 Unauthorized response
 Log.e("MainActivity",e.getLocalizedMessage(),e);
 return "Wrong credentials";
 }
 }

 @Override
 protected void onPostExecute(String result) {
 // executed by the UI thread		
 resultTextView.setText(result);
 }

};

31

Instant Spring for Android Starter

The way we set Accepted-Encoding in the previous example, we set an
HttpBasicAuthentication header to the RestTemplate headers.

Let's have a look at the request/response exchanged during the execution of this code:

Request Response
GET/helloworld HTTP/1.1

Accept: text/plain, */*

Authorization: Basic czRhOnM0YQ==

Content-Length: 0

User-Agent: Dalvik/1.6.0 (Linux;
U; Android 4.0.4; sdk Build/MR1)

Host: restfulapp.appspot.com:80

Connection: Keep-Alive

Accept-Encoding: gzip

HTTP/1.1 200 OK

Content-Type: text/plain;
charset=iso-8859-1

Vary: Accept-Encoding

Date: Fri, 02 Nov 2012
03:33:06

Server: Google Frontend

Cache-Control: private

Transfer-Encoding: chunked

d

Hello, world

0

The string czRhOnM0YQ== is the Base64 encoding of
s4a:s4a.

We will cover a better way to authenticate and also authorize a user and the user's app in the
next section: Quick Start – OAuth.

The RESTful recipe app
Let's study the case of the RESTful recipe app: an Android app to interact with a RESTful service
to create, update, read, and delete recipes.

A recipe is somewhat simple – it is a POJO with the following fields:

ÊÊ An ID (Integer)

ÊÊ A title (String)

ÊÊ A description of the recipe (String)

ÊÊ A type: usually an entree, a main dish or a dessert (String)

ÊÊ An author (String)

32

Instant Spring for Android Starter

The online web app that we will use as our backend service, is a JAX-RS (the JEE specification
for REST services) application based on Jersey (the reference JAX-RS implementation library),
and deployed on Google App Engine – it could have been written in Ruby, Python, or any
other language.

If you have already studied the Notepad app, part of the Android samples,
you will be familiar with the RESTful recipe app: it was written using the
Notepad App code as a base, replacing the persistence from an embedded
SQLite database to a REST online service.

RecipeList activity: listing all recipes stored on the server
When the user launches the app, the first thing he wants to see is the list of the available recipes.

This activity uses ListView, backed with ListAdapter to display them to the user.

But first, it needs to get them from the server:

ÊÊ We need a model (Recipe.java):

public class Recipe {

 private Long id;
 private String title;
 private String description;
 private String type;
 private String author;
}

ÊÊ And a RestTemplate instance nested in an AsyncTask:

private class GetRecipesTask extends RecipeAbstractAsyncTask
<Void, Void, List<Recipe>> {

 @Override
 protected void onPreExecute() {
 showProgressDialog("Loading recipes. Please wait...");
 }

 @Override
 protected List<Recipe> doInBackground(Void... params) {
 HttpHeaders requestHeaders =
 prepareHeadersWithMediaTypeAndBasicAuthentication();

 // Populate the headers in an HttpEntity object		
 HttpEntity<?> requestEntity =

33

Instant Spring for Android Starter

 new HttpEntity<Object>(requestHeaders);

 // Create a new RestTemplate instance
 RestTemplate restTemplate = new RestTemplate();
 restTemplate.getMessageConverters()
.add(new MappingJacksonHttpMessageConverter());

 try {
 // Perform the HTTP GET request
 ResponseEntity<Recipe[]> responseEntity =
 restTemplate.exchange(
 "http://www.restfulapp.appspot.com/rest/recipes/",
 HttpMethod.GET, requestEntity,
 Recipe[].class);
 return Arrays.asList(responseEntity.getBody());
 }
 catch (RestClientException e) {
 Log.e(TAG, e.getMessage(), e);
 exception = e;
 return null;
 }
 }

 @Override
 protected void onPostExecute(List<Recipe> result) {
 dismissProgressDialog();
 if(result != null) {
 recipes = result;
 } else {
 String message = exception != null ?
 exception.getMessage() : "unknown reason";
 Toast.makeText(RecipesList.this,
 "A problem occurred during the reception of all
recipes
 : " +message , Toast.LENGTH_LONG).show();
 recipes = new ArrayList<Recipe>();
 }
 ListAdapter adapter = new RecipeAdapter(RecipesList.this,
 R.layout.recipeslist_item, recipes) ;
 setListAdapter(adapter);
 }
}

http://www.restfulapp.appspot.com/rest/recipes/

34

Instant Spring for Android Starter

This task will get executed every time we need to get an updated list of recipes:

ÊÊ When the activity is created (or resumed): onResume()

ÊÊ When we're back from a successful update operation: onActivityResult()

You may have noticed that this AsyncTask extends RecipeAbstractAsyncTask,
a class that defines an exception, and a utility method,
prepareHeadersWithMediaTypeAndBasicAuthentication():

protected HttpHeaders
prepareHeadersWithMediaTypeAndBasicAuthentication() {
 HttpHeaders requestHeaders = new HttpHeaders();
 List<MediaType> acceptableMediaTypes = new
ArrayList<MediaType>();
 acceptableMediaTypes.add(MediaType.APPLICATION_JSON);
 requestHeaders.setAccept(acceptableMediaTypes);
 HttpAuthentication authHeader = new
HttpBasicAuthentication("s4a", "s4a");
 requestHeaders.setAuthorization(authHeader);
 return requestHeaders;
 }

As its name implies, it prepares the request headers to include the Basic authentication needed,
and the desired MediaType object from the server.

Back to GetRecipesTask: we prepare the request headers, we create a new RestTemplate
instance – configured to use Jackson to (un) serialize the messages, and we perform the
GET request:

// Perform the HTTP GET request
 ResponseEntity<Recipe[]> responseEntity = restTemplate.
exchange(getString(R.string.recipe_resource_url), HttpMethod.GET,
requestEntity, Recipe[].class);

The R.string.resource_url value is defined in strings.xml and
is defined to be equal to: http://www.restfulapp.appspot.com/rest/
recipes/.

35

Instant Spring for Android Starter

Since we want to get a list of recipes, the type given to the ResponseEntity object is an array.

Another important thing to note is that the exception handler: RestClientException is, unlike its
name, a wrapping server and client exception. If you want to tell your user what went wrong,
you'd better catch this exception and keep it until you're back in the UI thread when executing
the code in the onPostExecute() method.

Note that RestClientException is a subclass of RuntimeException,
that's why you don't need to catch it explicitly. If you don't though, this
exception could kill your activity if it is thrown.

Talking about the user interface, this task uses its pre-and post-execute methods to keep the
user updated about the status of the loading by using ProgresDialogs and Toasts.

It can be useful to manually debug a REST resource, from outside your
application; the cURL application (downloadable at http://curl.haxx.se/
download.html) is probably the most popular tool to do so.

For each HTTP request evoked in this section, I will now include its matching
cURL command line.

curl --user s4a:s4a -H "Accept: application/json" -i http://www.
restfulapp.appspot.com/rest/recipes
[{"id":0,"title":"Montreal's Poutine","description":"French
fries are covered with fresh cheese curds, and topped with brown
gravy.","type":"MAIN_DISH","author":"Anthony"},{"id":1,"title":"a
title","description":"a description","type":"a type","author":"an
author"}]

An overview of the RecipesList activity

http://www.restfulapp.appspot.com/rest/recipes
http://www.restfulapp.appspot.com/rest/recipes

36

Instant Spring for Android Starter

RecipeEditor activity
This activity is responsible for getting, updating, creating, and deleting the recipes.

The RecipeEditor activity in update mode

ÊÊ GETting a recipe

When a user taps on the create icon of the RecipeList activity, or on one of the recipe
title, he/she is directed to the RecipeEditor activity.

If the user wants to create a new recipe, he/she will see empty fields, but if he/she wants
to see a recipe, they'll first get it from the server before filling the fields; thanks to the
internal GetRecipeTask :

// Perform the HTTP GET request
Log.i(TAG,"Getting the recipe with id : "+params[0] + " : " +url +
params[0]);
ResponseEntity<Recipe> responseEntity = restTemplate.exchange(url
+ params[0], HttpMethod.GET, requestEntity,	 Recipe.class);
return responseEntity.getBody();

Nothing really new here, we want to get a single recipe, identified by its ID
(params[0]).

curl --user s4a:s4a -H "Accept: application/json" -i http://www.
restfulapp.appspot.com/rest/recipes/0
{"id":0,"title":"Montreal's Poutine","description":"French fries
are covered with fresh cheese curds, and topped with brown
gravy.","type":"MAIN_DISH","author":"Anthony"}

http://www.restfulapp.appspot.com/rest/recipes/0
http://www.restfulapp.appspot.com/rest/recipes/0

37

Instant Spring for Android Starter

ÊÊ PUTting a recipe

To update one recipe, we must request the recipe resource with the PUT HTTP verb.

For that, we have, once again, a dedicated AsyncTask: UpdateRecipeTask, that will
instantiate a RestTemplate instance, carrying the updated recipe (as soon as the user
presses the Save button, we call the updateNote() method that syncs the content of
the view, with the model of the current recipe).

// Create a new RestTemplate instance
RestTemplate restTemplate = new RestTemplate();
restTemplate.getMessageConverters()
 .add(new MappingJacksonHttpMessageConverter());

// Populate the headers in an HttpEntity object HttpEntity<Recipe>
requestEntity = new HttpEntity<Recipe>(recipe,requestHeaders);
try {
 // Perform the HTTP PUT request
 Log.i(TAG,"Updating the recipe with id : "
 +recipe.getId() + " : " + url);
 ResponseEntity<Void> responseEntity =
 restTemplate.exchange(url, HttpMethod.PUT, requestEntity,
 Void.class);
 if(responseEntity.getStatusCode() != HttpStatus.OK) {
 throw new HttpServerErrorException(
 responseEntity.getStatusCode());
 }
}
catch (RestClientException e) {
 Log.d(TAG, e.getMessage(), e);
 exception = e;
}

You can see the real important part here is RequestEntity, that wraps our recipe:
RestTemplate will pass it along to Jackson that will convert it into a JSON string.

If the server does not respond with the HTTP Status 200 (OK), we can consider
something went wrong and keep the exception for the user interface.

curl --user s4a:s4a -H "Accept: application/json" -H "Content-
type: application/json" -X PUT -d '{"id":"0", "title":"a
title","description":"a description","type":"a type","author":"an
author"}' -i http://www.restfulapp.appspot.com/rest/recipes/

ÊÊ POSTing a recipe

To create one recipe, we must request the recipe resource with the POST HTTP verb.

38

Instant Spring for Android Starter

In the REST literature, you will also read about the usage of the PUT HTTP verb to create an entity
too; but on one condition though – you would have to provide the ID (so that several PUT in a row
do not change the resource state. PUT is idempotent just like GET and DELETE, and just as unsafe
as DELETE and POST).

In our case, we create a new resource, so POST reflects
well our intention.

Let's have a look at CreateRecipeTask, which is very similar to
UpdateRecipeTask:

// Populate the headers in an HttpEntity object
HttpEntity<Recipe> requestEntity =
 new HttpEntity<Recipe>(recipe,requestHeaders);
try {
 // Perform the HTTP POST request
 Log.i(TAG,"Posting the recipe with id : "
 +recipe.getId() + " : to " +url);
 ResponseEntity<Void> responseEntity =
 restTemplate.exchange(url, HttpMethod.POST,
requestEntity,
 Void.class);
 if(responseEntity.getStatusCode() != HttpStatus.CREATED) {
 throw new HttpServerErrorException(
 responseEntity.getStatusCode());
 }
}
catch (RestClientException e) {
 Log.d(TAG, e.getMessage(), e);
 exception = e;
}
return null;

Some interesting things to notice: the recipe does not have any ID set since the user
is creating a recipe from nothing. The web service will assign an ID to this recipe (and
should return the URI of the created resource); and the expected status is not 200, but
201 (HttpStatus.CREATED).

curl --user s4a:s4a -H "Accept: application/json" -H
"Content-type: application/json" -X POST -d '{"title":"a
title","description":"a description","type":"a type","author":"an
author"}' -i http://www.restfulapp.appspot.com/rest/recipes/

39

Instant Spring for Android Starter

ÊÊ DELETing a recipe

To delete one recipe, we must request the recipe resource with the DELETE HTTP verb.

The AsyncTask named DeleteRecipeTask is similar to GetRecipeTask in the way
that it only requires the ID of the recipe to be appended to the resource URI (there is no
need to carry the whole recipe as we did with PUT and POST).

try {
 // Perform the HTTP DELETE request
 Log.i(TAG,"Deleting the recipe with id : "
 +recipe.getId() + " : from " +url +recipe.getId());
 ResponseEntity<Void> responseEntity =
 restTemplate.exchange(url+recipe.getId(),
 HttpMethod.DELETE, requestEntity,	Void.class);
 if(responseEntity.getStatusCode() != HttpStatus.NO_CONTENT) {
 throw new HttpServerErrorException(
 responseEntity.getStatusCode());
 }
}
catch (RestClientException e) {
 Log.d(TAG, e.getMessage(), e);
 exception = e;
}

This request expects to have a response with a 204 HTTP code, meaning the request
was a success, but there is nothing to return (HttpStatus.NO_CONTENT).

HTTP code 200 would have been fine as a response to a successful
DELETE request.

Check with your web service documentation (or better, experiment
with cURL for example) to make the best assumptions about what is
supposed to return a web service.

curl --user s4a:s4a -H "Accept: application/json" -X DELETE -i
http://www.restfulapp.appspot.com/rest/recipes/1

Android annotations
You may have heard about this project available at https://github.com/excilys/
androidannotations/ that aims at reducing the amount of code needed to inject views,
activities, providers, services, and so on in an Android app.

The project leaders have decided to use Spring for Android's RestTemplate as the REST client
library backing the REST annotations.

www.allitebooks.com

http://www.allitebooks.org

40

Instant Spring for Android Starter

Android annotations is based on the annotations processor tool (apt), now
part of the Java 6 compiler; each annotated class will trigger the generation
of a subclass (named the same with an _ appended to the filename, for
example OriginalActivity_.java) that will contain all the boilerplate
code the annotations saved you from writing!

So, along with @Eactivity (to allow an activity to use Android annotations), @ViewById (to
inject your views), you have @Get, @Post, @Put, and so on.

Let's have a look at how we can benefit from Android annotations with the JSON example
(getting the IP address from Ifconfig.me).

@EActivity(R.layout.activity_main)
public class MainActivity extends Activity {

 private IfConfigMeJson all;

 //inject the view to the activity layout
 @ViewById(R.id.result_text)
 TextView resultTextView;

 //inject the Rest service that wraps RestTemplate
 @RestService
 IfConfigMeRestClient restClient;
   //Use the Rest Service in a background thread
 @Background
 @AfterInject
 void getAllInfo() {
 all = restClient.getAll();
 }

 //wait a few seconds for the service to finish
 @UiThread(delay = 5000)
 @AfterViews
 void afterViews() {
 resultTextView.setText("Your IP is : "+all.getIpAddr());
 }

}

There is definitely less code, right?

41

Instant Spring for Android Starter

You may have noticed though that we are using a new class named IfConfigMeRestClient:

@Rest(rootUrl = "http://ifconfig.me", converters =
 { MappingJacksonHttpMessageConverter.class })
public interface IfConfigMeRestClient {

 @Get("/all.json")
 @Accept(MediaType.APPLICATION_JSON)
 IfConfigMeJson getAll();

}

This class configures RestTemplate providing the converter class, the HTTP verb used, the
mapping class (IfConfigMeJson), and the accepted media types.

Android annotations provides a good level of support to Spring for Android's RestTemplate
(see https://github.com/excilys/androidannotations/wiki/Rest-API for the list of
RestTemplate based annotations), and I suggest you try it to see if you prefer using it or not in
your Spring for Android based project.

If you start a project using Android annotations from scratch, I suggest you
carefully follow those environment instructions: https://github.com/
excilys/androidannotations/wiki/Building-Project-Maven-
Eclipse.

42

Instant Spring for Android Starter

Quick start – OAuth
OAuth is an open standard for authorization as Wikipedia puts it.

OAuth allows users to share their data or resources, hosted on a service provider, with websites
or desktop or mobile apps.

Of course, if you gave your credentials (username and password) to those websites or apps, they
could access your data on your behalf; but would you trust a third-party app or website to keep
your credentials (your key to your digital life) safe? What if this app or website is malicious? Or
simply unsecured? How many times have you read about a website getting its users credentials
stolen, or keeping passwords in plain text in their databases?

OAuth is just about this; letting third-party apps or websites have a limited access (through a
list of authorizations or scopes: access user email, access user profile, can post
messages on user behalf, and so on) to your data, hosted on a service provider (the
famous OAuth service providers are Google, Facebook, Twitter, Yahoo!, GitHub, LinkedIn, and so
on) without ever giving them your credentials.

Developing a website or an app relying on a service provider
Have you ever noticed those Login with Facebook or Login with Google buttons on
some websites (such as Deezer.com, StackOverFlow.com, and so on), or have you ever
had a third-party Twitter app on an Android device (such as Twicca) request your
Twitter credentials?

All those websites and apps use OAuth to get access to your data:

ÊÊ For one, they are saving you the trouble of having to create and remember yet other
credential. They even enrich your user experience by accessing your data (such as your
profile picture, activity info, and so on).

ÊÊ In addition, they gather a bigger audience (since the users don't have to go through
the tedious account creation process) and they don't have to manage authentication
credentials (with its risks) nor authorization.

Usually if a website or app creator wants to benefit from a service providing OAuth
authorization, he/she has to register it against the OAuth service provider (Google, Facebook,
and so on) which in turn will give him/her a Client ID and Client secret value:

43

Instant Spring for Android Starter

Using the Google API Console to register a new application and associate it with a client ID and a client secret

Let's discover how this client ID and client secret enables the app to access the user's data.

The OAuth dance
An Android app (or any other installed app) relies on an OAuth 2.0 service provider such as
Google. Let's have a look at the workflow of the OAuth authorization process in the following
five simple steps:

1.	 The user launches the app for the first time; it will generate the token request – a URL
to the service provider, including the app client ID and client secret, and also the several
authorizations needed for the app (user info, userinfo e-mail, and so on).

An example with Google OAuth 2.0 service provider:

https://accounts.google.com/o/oauth2/auth?
client_id=508046100884-o6jgcn8e7c1g5gklhc8gibr80ouio8df.apps.
googleusercontent.com&
response_type=code&
redirect_uri=http://localhost&
scope=https://www.googleapis.com/auth/userinfo.profile https://
www.googleapis.com/auth/userinfo.email https://www.googleapis.com/
auth/plus.me

2.	 This URL is loaded by the Android Chrome browser, most probably embedded in the
app thanks to a WebView. The user is asked to accept or deny the authorizations asked
by the app.

3.	 In return, if the user grants the app, the app will intercept the response from the
embedded browser that contains an authorization code.

An example of the response with Google OAuth 2.0 service provider:

http://localhost/?code=4/urIB_wqrOqGpX-2w1UPXD8dHQAYO.
ArEX_6EbNP0ZuJJVnL49Cc98lfsNdgI

https://accounts.google.com/o/oauth2/auth
http://localhost/

44

Instant Spring for Android Starter

4.	 The app will finally exchange this authorization code for a token (if the lifetime of the
token is limited, the app will also receive a refresh token and the expire time). This
access token will be saved securely by the app.

An example of a token request/response with Google OAuth 2.0 service provider.

Request:

POST /o/oauth2/token HTTP/1.1
Host: accounts.google.com
Content-Type: application/x-www-form-urlencoded

code=4/v6xr77ewYqhvHSyW6UJ1w7jKwAzu&
client_id=8819981768.apps.googleusercontent.com&
client_secret={client_secret}&
redirect_uri=https://oauth2-login-demo.appspot.com/code&
grant_type=authorization_code

Response:

{
 "access_token":"1/fFAGRNJru1FTz70BzhT3Zg",
 "expires_in":3920,
 "token_type":"Bearer",
 "refresh_token":"1/xEoDL4iW3cxlI7yDbSRFYNG01kVKM2C-259HOF2aQbI"
}

5.	 The app will finally be able to interact with the resource (such as a REST service),
provided it sends a valid token along with each of its requests.

An example of a request with a token with Google OAuth 2.0 service provider:

GET /oauth2/v1/userinfo HTTP/1.1
Authorization: Bearer 1/fFBGRNJru1FQd44AzqT3Zg
Host: googleapis.com

Most, if not all, OAuth 2.0 service providers will only accept authorized
service calls on HTTPS, to make sure the token can not be intercepted.

45

Instant Spring for Android Starter

The OAuth workflow to access Google UserInfo Service, from https://developers.google.com/
accounts/docs/OAuth2

You can read https://developers.google.com/accounts/docs/
OAuth2InstalledApp to know the Google OAuth 2.0 service provider
specifics, or http://developers.facebook.com/docs/concepts/
login/login-architecture/ to know about Facebook OAuth 2.0 service
provider specifics.

It is strongly advised to read the OAuth service provider documentation
before starting working on a client app (each of them have some subtle
differences such as the parameters of the request token, the callback url, and
so on).

Spring for Android Auth module
The Spring for Android Auth module supports both OAuth 1.0a and OAuth 2.0.

In a nutshell:

ÊÊ OAuth 2.0 allows for better support of non-webapps (such as an Android app)

ÊÊ OAuth 2.0 no longer requires developers to use cryptography

ÊÊ OAuth 2.0 access tokens are short-lived (thanks to the refresh tokens)

46

Instant Spring for Android Starter

To know more about OAuth 2.0, you can read several articles from
Eran Hammer on his blog: http://hueniverse.com/2010/05/
introducing-oauth-2-0/

The Spring for Android Auth module depends on the following:

ÊÊ Spring for Android core (common classes: Base64, StringUtils, resource
abstractions, and so on)

ÊÊ Spring for Android RestTemplate (REST API abstracting the underneath HttpClient)

ÊÊ Spring Social Core (OAuth 1.0 and 2.0 API wrapping the OAuth flows: request for
authorization code, request for token, and so on)

ÊÊ Spring Security Crypto (provides support for symmetric encryption, key generation, and
password encoding)

The Auth module itself defines cryptography and SQL classes for Android (to enable you to
persist the authorization tokens securely to a SQLite Android database).

Spring for Android's Auth only contains seven classes as of now, that are
about support for persisting OAuth tokens on an Android device; all the
OAuth code is in Spring Social Core.

To make Twitter, Facebook, and Google apps developers' life easier,
Spring Social has extensions, respectively named Spring Social Twitter,
Spring Social Facebook, and Spring Social Google. These define APIs to
access user's information, posts, contacts, agendas in each of those social
networks.

An OAuth example using Google
We are going to build an Android app displaying information about a Google user: we are going
to use Spring for Android Auth of course, but more importantly Spring Social and Spring Social
Google.

The official documentation examples are about Facebook and Twitter. If you
want to create an app interacting with those social networks, have a look at
the Spring for Android examples at https://github.com/SpringSource/
spring-android-samples.

Let's have a look at the pom.xml file of this project, in particular the inclusion of Spring
Social Google:

<dependency>
 <groupId>org.springframework.social</groupId>
 <artifactId>spring-social-google</artifactId>

47

Instant Spring for Android Starter

 <version>1.0.0.M1</version>
 <exclusions>
 <!-- Exclude in favor of Spring Android RestTemplate -->
 <exclusion>
 <artifactId>spring-web</artifactId>
 <groupId>org.springframework</groupId>
 </exclusion>
 <exclusion>
 <artifactId>spring-core</artifactId>
 <groupId>org.springframework</groupId>
 </exclusion>
 </exclusions>
</dependency>
[...]
<repository>
 <id>spring.social.google</id>
 <name>Spring Social Google</name>
 <url>https://github.com/GabiAxel/maven/raw/master/</url>
</repository>

You will notice here (in the repository section), this module is not hosted by Spring Source,
because it is actually a community project not endorsed by Spring Source.

This pom.xml file contains many exclusions; this is because most of
the libraries used were developed with Java SE in mind, this is why they
rely on Spring Core, Spring MVC, and so on. Spring for Android Core and
RestTemplate provide the necessary dependencies for those modules.

Now let's have a look at the AndroidManifest.xml file:

[...]
<application
 android:name=".MainApplication"
 android:icon="@drawable/app_notes"
 android:label="@string/app_name" >
 <activity
 android:name=".GoogleActivity"
 android:label="@string/title_main" >
 [...]
 </activity>
 <activity
 android:name=".GoogleWebOAuthActivity"
 android:excludeFromRecents="true"
 android:noHistory="true" />

48

Instant Spring for Android Starter

 <activity android:name=".GoogleProfileActivity" />
</application>

For the first time in our examples, we are going to use an Application class, named here
MainApplication.

GoogleWebOAuthActivity will embed a browser and will only be
launched for authentication. We don't want this activity to be part of the
app history or the user to be able to get back to it; that's why we added
android:noHistory="true" and android:excludeFromRecent
s="true". More info on this is available at http://developer.android.
com/guide/topics/manifest/activity-element.html.

This class will be used to prepare the two most important factories of our app
(they will be accessed in all the activities): ConnectionFactoryRegistry and
ConnectionRepository:

public class MainApplication extends Application {
 private ConnectionFactoryRegistry connectionFactoryRegistry;
 private SQLiteOpenHelper repositoryHelper;
 private ConnectionRepository connectionRepository;

 // ***************************************
 // Application Methods
 // ***************************************
 @Override
 public void onCreate() {
 // create a new ConnectionFactoryLocator and populate it with
Google ConnectionFactory
 this.connectionFactoryRegistry = new ConnectionFactoryRegistry();
 this.connectionFactoryRegistry.addConnectionFactory(new GoogleConn
ectionFactory(getClientId(),
 getClientSecret()));

 // set up the database and encryption
 this.repositoryHelper = new SQLiteConnectionRepositoryHelper(th
is);
 this.connectionRepository = new SQLiteConnectionRepository(this.
repositoryHelper,
 this.connectionFactoryRegistry, AndroidEncryptors.
text("password", "5c0744940b5c369b"));
 }

49

Instant Spring for Android Starter

As you can see, in the onCreate() method we initialize:

ÊÊ ConnectionFactoryRegistry: With the client ID and the client secret
of the application from ConnectionFactoryRegistry, we'll have access
to GoogleConnectionFactory which is the Google services extension of
OAuth2ConnectionFactory that gives access to all OAuth operations

ÊÊ ConnectionRepository: This will be responsible for persisting
ConnectionFactoryRegistry, so that the OAuth token can be retrieved without
needing to do the whole OAuth workflow every time

You may have noticed the use of a salt and a password (encryption) during
the initialization of the database.

This will prevent a malicious app from being able to access the device
database to retrieve the user OAuth token. A brief reminder: the app will
never have access to the user's Google password. The authentication to
the service provider, Google in this example, is always performed from the
device browser.

Let's have a look at the main activity of that project, GoogleActivity that will be
launched at startup:

@Override
public void onStart() {
 super.onStart();
 if (isConnected()) {
 showGoogleOptions();
 } else {
 showConnectOption();
 }
}

private boolean isConnected() {
 return connectionRepository.findPrimaryConnection(Google.class) !=
null;
}

www.allitebooks.com

http://www.allitebooks.org

50

Instant Spring for Android Starter

This activity will display a list of entries related to the user profile if he/she is connected or just a
Connect button if the user is not connected yet (since GoogleConnectionFactoryRegistry
is persisted in a database, just looking up a connection of type Google in
ConnectionRepository is enough to know whether or not the access token is already fetched).

The GoogleActivity if the user has not yet logged in

So, in the case that we are not connected, taping on Connect will call
displayGoogleAuthorization() which will launch GoogleWebOAuthActivity.

GoogleWebOAuthActivity is certainly the most important activity of this app. It is
responsible for the OAuth 2.0 authentication and authorization.

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 //javascript is mandatory
 getWebView().getSettings().setJavaScriptEnabled(true);

 // Using a custom web view client to capture the access token
 getWebView().setWebViewClient(new GoogleOAuthWebViewClient());

 this.connectionRepository = getApplicationContext().
getConnectionRepository();
 this.connectionFactory = getApplicationContext().
getGoogleConnectionFactory();
}

@Override
public void onStart() {
 super.onStart();

 // display the Google authorization page
 getWebView().loadUrl(getAuthorizeUrl());

51

Instant Spring for Android Starter

}

// ***************************************
// Private methods
// ***************************************
private String getAuthorizeUrl() {
 String redirectUri = getString(R.string.google_oauth_callback_url);
 String scope = getString(R.string.google_scope);

 // Generate the Google authorization url to be used in the browser
 OAuth2Parameters params = new OAuth2Parameters();
 params.setRedirectUri(redirectUri);
 params.setScope(scope);
 return this.connectionFactory.getOAuthOperations().
buildAuthorizeUrl(GrantType.AUTHORIZATION_CODE, params);
}

When this activity is created, it configures the associated WebView (you will notice this
activity extends AbstractWebViewActivity that injects a Chrome Browser instance into a
WebView) to accept JavaScript (the service provider and Google OAuth 2.0 requires JavaScript
to authenticate the user) and injects a custom WebViewClient object that we will use to
intercept OAuth flows (more on that in a moment).

Then, when the activity starts, we ask the WebView (the embedded Chrome browser) to request
the authorization code for this app (see step 1 of The OAuth dance section).

This request is built using a callback URL, the scope of the authorizations needed for the app,
and the client ID and secret (those two were already given to Spring OAuth when we created
ConnectionFactoryRegistry).

<resources>
 <string name="google_app_id">508046100884-
o6jgcn8e7c1g5gklhc8gibr80ouio8df.apps.googleusercontent.com</string>
 <string name="google_app_secret">RuUyrF5qoGYWTFm1r_o8Gs4F</string>
 <string name="google_oauth_callback_url">http://localhost</string>
 <string name="google_scope">https://www.googleapis.com/auth/
userinfo.profile https://www.googleapis.com/auth/userinfo.email
https://www.googleapis.com/auth/plus.me</string>
</resources>

52

Instant Spring for Android Starter

The callback URL here is http://localhost, because Google OAuth
2.0 service provider gives the choice between http://localhost and
urn:ietf:wg:oauth:2.0:oob.

This will impact the response holding the authorization code; whether it will
be part of a query string parameter or in the title bar of the browser. You can
read https://developers.google.com/accounts/docs/OAuth2Insta
lledApp#choosingredirecturi for more details.

If the user has not yet authenticated to any Google web services from his device, he/she should
see a dialog inviting him/her to authenticate:

This dialog only appears if the user has not yet been authenticated to any Google services on his device

53

Instant Spring for Android Starter

In all cases though, the user will see this authorization dialog which lists all the scopes the app
has requested:

Google OAuth 2.0 service provider authorization dialog

If the user denies the authorization, then, as expected, the authorization
process will be terminated.

According to the service provider, this dialog may vary.

Once the user accepts the requested authorizations, GoogleWebOAuthActivity will
detect that the web client is being redirected to a localhost (the callback URI), with the
authorization code:

private class GoogleOAuthWebViewClient extends WebViewClient {

 private static final String LOCALHOST = "localhost";
 private static final String CODE = "code";

 /*
 * The WebViewClient has another method called
shouldOverridUrlLoading which does not capture the javascript
 * redirect to the success page. So we're using onPageStarted to
capture the url.

54

Instant Spring for Android Starter

 */
 @Override
 public void onPageStarted(WebView view, String url, Bitmap favicon)
{
 // parse the captured url
 Uri uri = Uri.parse(url);
 // log the url : very interesting for debugging the OAuth
workflow
 Log.d(TAG, url);

 /*
 * The WebViewClient is launched to load an URL from the provider
that will ask the user whether or not he accepts our app to access his
data.
 * Once the provider successfully gets the approval from the user,
it will redirect this WebViewClient to the callback_uri, with a query
parameter named "code" : this is the authorization code
 */
 String host = uri.getHost();
 String code = uri.getQueryParameter(CODE);

 // The WebViewClient is redirected to the callback_uri, let's
trade the authorization code for the access token
 if (LOCALHOST.equals(host)) {
 if(!exchangeAuthorizationCodeForAccessToken.getStatus().
equals(AsyncTask.Status.RUNNING)) {
 exchangeAuthorizationCodeForAccessToken.execute(code);
 Toast.makeText(getApplicationContext(), "Redirecting you to
the app main activity", Toast.LENGTH_LONG).show();
 //preparing to quit this activity for the main activity
 getWebView().setVisibility(View.INVISIBLE);
 }
 }
 }
}

exchangeAuthorizationCodeForAccessToken.execute(code) will execute the
following AsyncTask (we are going to send back the authorization code from our app, using
RestTemplate, relying on Java UrlConnection, so we need to code this call from a
background thread):

private AsyncTask<String, Void, Void>
exchangeAuthorizationCodeForAccessToken = new AsyncTask<String, Void,
Void>() {

55

Instant Spring for Android Starter

 private Exception exception;

 @Override
 protected Void doInBackground(String... params) {
 // executed by a background thread
 //params[0] should contain the authorization code
 try {
 AccessGrant exchangeForAccess = connectionFactory.
getOAuthOperations().exchangeForAccess(params[0], getString(R.string.
google_oauth_callback_url), null);
 Connection<Google> connection = connectionFactory.createConnecti
on(exchangeForAccess);
 connectionRepository.addConnection(connection);
 } catch (DuplicateConnectionException e) {
 Log.e(TAG,"something went wrong when adding the accessToken to
the connection repository",e);
 exception = e;
 } catch (Exception e) {
 Log.e(TAG,"something went wrong when adding the accessToken to
the connection repository",e);
 exception = e;
 }
 return null;
 }

 @Override
 protected void onPostExecute(Void result) {
 // executed by the UI thread once the background thread is done
getting the result
 if(exception != null) {
 Toast.makeText(getApplicationContext(), exception.getMessage(),
Toast.LENGTH_LONG).show();
 }
 // we go back to the main activity to display the options
 displayGoogleOptions();
 }

};

Once the exchangeForAccess method is called, we retrieve the user token and we persist it
in the ConnectionRepository class.

56

Instant Spring for Android Starter

Our app is finally authorized to access the user's Google profile!

The GoogleActivity if the user has not yet logged in

If the user clicks on Profile, he will launch GoogleProfileActivity, from which, as you may
expect, we get the user profile.

To do so we are using an AsyncTask, named FetchProfileTask, that will hit two Google
web services: UserOperations (to read the main profile of the user and his/her profile picture)
and PersonOperations (to read his/her Google+ profile, here we will just access the about
me description):

@Override
protected LegacyGoogleProfile doInBackground(Void... params) {

 LegacyGoogleProfile userProfile = google.userOperations().
getUserProfile();
 aboutMe = google.personOperations().getGoogleProfile().
getAboutMe();
 profileBitmap = BitmapFactory.decodeStream(new URL(userProfile.
getProfilePictureUrl()).openConnection().getInputStream());
 return userProfile;

}

57

Instant Spring for Android Starter

This information is then injected into the view:

The GoogleProfileActivity displaying the user profile picture, "about me" description and some profile info

58

Instant Spring for Android Starter

People and places you should get to know
If you need help with Spring for Android (or REST or OAuth in general), the following are some
people and places which will prove invaluable.

Official sites
ÊÊ Homepage: http://www.springsource.org/spring-android

ÊÊ Manual and documentation: http://static.springsource.org/spring-android/
docs/1.0.x/reference/htmlsingle/

ÊÊ Blog: http://blog.springsource.org/category/android/

ÊÊ Source code: https://github.com/SpringSource/spring-android

ÊÊ Official example's source code: https://github.com/SpringSource/spring-
android-samples

ÊÊ Android Maven Plugin: http://code.google.com/p/maven-android-plugin/

Articles and tutorials
ÊÊ Explanation of OAuth: http://hueniverse.com/oauth/guide/

ÊÊ OAuth for Google services: http://support.google.com/a/bin/answer.
py?hl=en&answer=61017

ÊÊ Official Android documentation about remote connections: http://developer.
android.com/training/basics/network-ops/connecting.html

Community
ÊÊ Official forums: http://forum.springsource.org/forumdisplay.php?88-Android

ÊÊ Official bug tracker: https://jira.springsource.org/browse/ANDROID

Blogs
ÊÊ Android team blog: http://android-developers.blogspot.ca/

Twitter
ÊÊ Follow Spring for Android on Twitter: https://twitter.com/springandroid

ÊÊ Follow Roy Clarkson (Spring for Android lead developer) on Twitter: https://twitter.
com/royclarkson

ÊÊ For more Open Source information, follow Packt at: http://twitter.com/#!/
packtopensource

Thank you for buying
Instant Spring for Android Starter

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be sent
to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss
it first before writing a formal book proposal, contact us; one of our commissioning editors will get in
touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.allitebooks.com

http://www.allitebooks.org

Spring Security 3.1
ISBN: 978-1-84951-826-0 Paperback: 456 pages

Secure your web applications from hackers with this step-
by-step guide

1.	 Learn to leverage the power of Spring Security to
keep intruders at bay through simple examples that
illustrate real world problems

2.	 Each sample demonstrates key concepts allowing
you to build your knowledge of the architecture in a
practical and incremental way

3.	 Filled with samples that clearly illustrate how to
integrate with the technologies and frameworks of
your choice

Learning Vaadin
ISBN: 978-1-84951-522-1 Paperback: 412 pages

Master the full range of web development features
powered by Vaadin-built RIAs

1.	 Discover the Vaadin framework in a progressive
and structured way

2.	 Create outstanding new components by yourself

3.	 Integrate with your existing frameworks and
infrastructure

Please check www.PacktPub.com for information on our titles

Spring Data
ISBN: 978-1-84951-904-5 Paperback: 160 pages

Implement JPA repositories with less code and harness
the performance of Redis in your applications

1.	 Implement JPA repositories with lesser code

2.	 Includes functional sample projects that
demonstrate the described concepts in action and
help you start experimenting right away

3.	 Provides step-by-step instructions and a lot of code
examples that are easy to follow and help you to
get started from page one

JasperReports 3.5 for Java Developers
ISBN: 978-1-84719-808-2 Paperback: 368 pages

Create, Design, Format, and Export Reports with the
world's most popular Java reporting library

1.	 Create better, smarter, and more professional
reports using comprehensive and proven methods

2.	 Group scattered data into meaningful reports, and
make the reports appealing by adding charts and
graphics

3.	 Discover techniques to integrate with Hibernate,
Spring, JSF, and Struts, and to export to different
file formats

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	PacktLib.PacktPub.com
	Table of Contents
	Instant Spring for Android Starter
	So, what is Spring for Android?
	RestTemplate
	Auth/Spring Social
	What Spring for Android is NOT!

	Integrating it in an Android app
	Minimal dependencies to add or use RestTemplate
	Getting started with Eclipse and Spring for Android
	Installing the ADT plugin
	First example app

	Using Maven to build a Spring for Android app

	Quick start – RestTemplate
	Different message converters
	MappingJacksonHttpMessageConverter
	SimpleXmlHttpMessageConverter
	RssChannelHttpMessageConverter

	Gzip encryption
	HTTP Basic authentication
	The RESTful recipe app
	RecipeList activity: listing all recipes stored on the server
	RecipeEditor activity

	Android annotations

	Quick start – OAuth
	Developing a website or an app relying on a service provider
	The OAuth dance
	Spring for Android Auth module
	An OAuth example using Google

	People and places you should get to know
	Official sites
	Articles and tutorials
	Community
	Blogs:
	Twitter:

