
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ... xvii

About the Technical Reviewer ... xix

Introduction ... xxi

Chapter 1: Introducing the Rails Framework ■ ..1

Chapter 2: Getting Started ■ ...13

Chapter 3: Getting Something Running ■ ...27

Chapter 4: Introduction to the Ruby Language ■ ..45

Chapter 5: Working with a Database: Active Record ■ ...61

Chapter 6: Advanced Active Record: Enhancing Your Models ■ ...81

Chapter 7: Action Pack: Working with the View and the Controller ■ 121

Chapter 8: Advanced Action Pack ■ ...151

Chapter 9: JavaScript and CSS ■ ..191

Chapter 10: Sending and Receiving E-Mail ■ ...203

Chapter 11: Testing Your Application ■ ..219

Chapter 12: Internationalization ■ ..251

Chapter 13: Deploying Your Rails Applications ■ ...267

Appendix A: Databases 101 ■ ...273

Appendix B: The Rails Community ■ ...281

Appendix C: Git ■ ..285

Index ...297

www.allitebooks.com

http://www.allitebooks.org

xxi

Introduction

What Is This Book About?
In the past several years, the Web has exploded to include information on every facet of our lives. It touches everything
we do; even some refrigerators have included access to the Internet. Ruby on Rails has played a part in fueling
that explosion. his book will equip you with the knowledge you need to build real production web applications.
It leads you through installing the required prerequisites on Windows, OS X, or Linux and then jumps straight into
building applications. It is meant for the novice programmer who has some command line experience but little or no
programming experience. At the end of the book, you should have a irm grasp on the Ruby language and the Rails
framework.

Chapter 1 introduces you to the current web landscape and then goes over some of the ideals and principles that
the Rails framework is built on. It teaches you about the MVC paradigm and shows how Rails implements each piece
of that paradigm (model, view, and controller).

Chapter 2 walks you through installing Ruby, Rails, and the SQLite database. It is broken down by operating
system, and when inished, will give a level platform among all three. You should be able to follow along with the book
no matter which platform you choose. It also will show you how to build a quick “Hello World” application to make
sure everything is working correctly.

Chapter 3 dives right in and starts the blog application that we’ll use throughout the rest of the book. We’ll
continually build on this application, enhancing and refactoring as we go along. You’ll create your irst model in this
chapter, the article model. We’ll cover how migrations work and even get Rails to construct our irst scafold. At the
end of this chapter, you’ll have a working blog application, although it will be lacking features. We’ll add those in the
following chapters.

Chapter 4 slows down a little bit from the previous chapter and takes you on a tour of the Ruby language. If you’ve
used Ruby for a while and feel comfortable with it, feel free to skim over this. If you’re new to Ruby, this chapter will
teach you everything you need to know to use Rails. Ruby is an easy to pick up language, and the syntax is very inviting
and easy to read. Although we won’t add any code to our blog application here, you will get to use the Ruby language
inside the Ruby console.

Chapter 5 shows you how Rails uses Active Record to let you interact with any number of databases. Rails
abstracts away the diicult bits (unless you need them) and lets you interact with databases in an object-oriented way.
You’ll learn how to create new records, ind records, and even update and delete them. We’ll also apply some basic
validations so we can be sure our data are just the way they should be.

Chapter 6 expounds on the previous chapter. You’ll dive deeper into Active Record and your models. You will
build more complex validations and custom instance methods. A major component of this chapter is the relation
between your models and how Rails lets you deine those relations. Your models for the blog application will have
complex relations and validations.

In Chapter 7 we’ll cover the view and controller parts of MVC. We will lesh out the blog application and walk
through the code that Rails generated for the scafold of our controllers and views.

Chapter 8 modiies the controller and views in more advanced ways, and at this point the features of our blog
application have come together. You’ll learn about controller callbacks and strong parameters that were added in
Rails 4. We’ll also give our application a fresh coat of paint with some Cascading Style Sheets (CSS).

www.allitebooks.com

http://www.allitebooks.org

■ INTRODUCTION

xxii

Chapter 9 goes over the Asset Pipeline that was added in Rails 3.2 and how to add JavaScript and CSS. We’ll
enhance our application with JavaScript dabbling in Ajax and animation. his chapter covers CofeeScript and SASS
and how they integrate into the Rails landscape. At the end of this chapter, your application will have a nice layer of
spit and polish.

Chapter 10 adds e-mail capability to our application. You will be able to suggest articles to friends and even be
notiied when your article has new comments. It will also discuss methods to receive e-mail into your application.

Chapter 11 covers one of the most important topics in Rails applications: testing. You can be sure that after this
chapter you’ll be able to add new features without breaking old ones. You’ll test whether your application behaves
exactly the way you think it should.

Chapter 12 covers internationalization. After all, it is the World Wide Web, and not everyone speaks the same
language. We’ll translate our web application into another language, and along the way you’ll learn how to translate
the application into as many languages as you like.

Chapter 13 will show you how to deploy your web application to Heroku, one of the leading Platform As A Service
(PAAS) providers. his will allow you to present your application to the world quickly and easily so you can start
building a user base.

he three appendices cover the Git version control system, SQL, and where to ind help in the Rails community.

www.allitebooks.com

http://www.allitebooks.org

1

CHAPTER 1

Introducing the Rails Framework

Rails is a web application framework for the Ruby programming language. Rails is well thought out and practical:
it will help you build powerful web sites quickly, with code that’s clean and easy to maintain.

The goal of this book is to give you a thorough and complete understanding of how to build dynamic web
applications with Rails. This means more than just showing you how to use the specific features and facilities of the
framework, and more than just giving you a working knowledge of the Ruby language. Rails is quite a bit more than
just another tool: it represents a way of thinking. To completely understand Rails, it’s essential that you know about its
underpinnings, its culture and aesthetics, and its philosophy of web development.

If you haven’t heard it already, you’re sure to notice the phrase “the Rails way” cropping up every now and again.
It echoes a familiar phrase that has been floating around the Ruby community for a number of years: “the Ruby way.”
The Rails way is usually the easiest way—the path of least resistance, if you will. This isn’t to say that you can’t do
things your way, nor is it meant to suggest that the framework is constraining. It simply means that if you choose to
go off the beaten path, you shouldn’t expect Rails to make it easy for you. If you’ve been around the UNIX circle for
any length of time, you may think this idea bears some resemblance to the UNIX mantra: “Do the simplest thing that
could possibly work.” You’re right. This chapter’s aim is to introduce you to the Rails way.

The Rise and Rise of the Web Application
Web applications are extremely important in today’s world. Almost everything we do today involves web applications.
We check our e-mail on the Web, and we do our banking on the Web. We even use our phones to access the web more
than we actually make phone calls! As connections get faster, and as broadband adoption grows, web-based software,
and similarly networked client or server applications, are poised to displace software distributed by more traditional
(read, outdated) means.

For consumers, web-based software affords greater convenience, allowing us to do more from more places.
Web-based software works on every platform that supports a web browser (which is to say, all of them), and there’s
nothing to install or download. And if Google’s stock value is any indication, web applications are really taking off.
All over the world, people are waking up to the new Web and the beauty of being web based. From e-mail and
calendars, photos and videos, to bookmarking, banking, and bidding, we’re living increasingly inside the browser.

Due to the ease of distribution, the pace of change in the web-based software market is fast. Unlike traditional
software, which must be installed on each individual computer, changes in web applications can be delivered quickly,
and features can be added incrementally. There’s no need to spend months or years perfecting the final version or
getting in all the features before the launch date. Instead of spending months on research and development, you can
go into production early and refine in the wild, even without all the features in place.

Can you imagine having a million CDs pressed and shipped, only to find a bug in your software as the FedEx
truck is disappearing into the sunset? That would be an expensive mistake! Software distributed this way takes
notoriously long to get out the door because before a company ships a product, it needs to be sure the software is bug
free. Of course, there’s no such thing as bug-free software, and web applications aren’t immune to these unintended
features. But with a web application, bug fixes are easy to deploy.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

2

When a fix is pushed to the server hosting the web application, all users get the benefit of the update at the same
time, usually without any interruption in service. That’s a level of quality assurance you can’t offer with store-bought
software. There are no service packs to tirelessly distribute and no critical updates to install. A fix is often only a
browser refresh away. And as a side benefit, instead of spending large amounts of money and resources on packaging
and distribution, software developers are free to spend more time on quality and innovation.

Web-based software has the following advantages; it is:

Easier to distribute•

Easier to deploy•

Easier to maintain•

Platform-independent•

Accessible from anywhere•

The Web Isn’t Perfect
As great a platform as the Web is, it’s also fraught with constraints. One of the biggest problems is the browser itself.
When it comes to browsers, there are several contenders, each of which has a slightly different take on how to
display the contents of a web page. Although there has been movement toward unification and the state of standards
compliance among browsers is steadily improving, there is still much to be desired. Even today, it’s nearly impossible
to achieve 100% cross-browser compatibility. Something that works in Internet Explorer doesn’t necessarily work
in Firefox, and vice versa. This lack of uniformity makes it difficult for developers to create truly cross-platform
applications, as well as harder for users to work in their browser of choice.

Browser issues aside, perhaps the biggest constraint facing web development is its inherent complexity. A typical web
application has dozens of moving parts: protocols and ports, the HTML and cascading style sheets (CSS), the database
and the server, the designer and the developer, and a multitude of other players, all conspiring toward complexity.

Despite these problems, the new focus on the Web as a platform means the field of web development is evolving rapidly
and quickly overcoming obstacles. As it continues to mature, the tools and processes that have long been commonplace in
traditional, client-side software development are beginning to make their way into the world of web development.

The Good Web Framework
Among the tools making their way into the world of web development is the framework. A framework is a collection
of libraries and tools intended to facilitate development. Designed with productivity in mind, a good framework
provides a basic but complete infrastructure on top of which to build an application.

Having a good framework is a lot like having a chunk of your application already written for you. Instead of
having to start from scratch, you begin with the foundation in place. If a community of developers uses the same
framework, you have a community of support when you need it. You also have greater assurance that the foundation
you’re building on is less prone to pesky bugs and vulnerabilities, which can slow the development process.

A good web framework can be described as follows:

• Full stack: Everything you need for building complete applications should be included in
the box. Having to install various libraries or configure multiple components is a drag.
The different layers should fit together seamlessly.

• Open source: A framework should be open source, preferably licensed under a liberal,
free-as-in-free license like the Berkeley Software Distribution (BSD) or that of the
Massachusetts Institute of Technology (MIT).

• Cross-platform: A good framework is platform independent. The platform on which you
decide to work is a personal choice. Your framework should remain as neutral as possible.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

3

A good web framework provides you with the following:

• A place for everything: Structure and convention drive a good framework. In other words,
unless a framework offers a good structure and a practical set of conventions, it’s not a very
good framework. Everything should have a proper place within the system; this eliminates
guesswork and increases productivity.

• A database abstraction layer: You shouldn’t have to deal with the low-level details of database
access, nor should you be constrained to a particular database engine. A good framework
takes care of most of the database grunt work for you, and it works with almost any database.

• A culture and aesthetic to help inform programming decisions: Rather than seeing the structure
imposed by a framework as constraining, see it as liberating. A good framework encodes
its opinions, gently guiding you. Often, difficult decisions are made for you by virtue of
convention. The culture of the framework helps you make fewer menial decisions and helps
you focus on what matters most.

Enter Rails
Rails is a best-of-breed framework for building web applications. It’s complete, open source, and cross-platform.
It provides a powerful database abstraction layer called Active Record, which works with all popular database systems.
It ships with a sensible set of defaults and provides a well-proven, multilayer system for organizing program files and
concerns.

Above all, Rails is opinionated software. It has a philosophy of the art of web development that it takes very
seriously. Fortunately, this philosophy is centered on beauty and productivity. You’ll find that as you learn Rails,
it actually makes writing web applications pleasurable.

Originally created by David Heinemeier Hansson, Rails first took shape in the form of a wiki application called
Instiki. The first version, released in July 2004, of what is now the Rails framework, was extracted from a real-world,
working application: Basecamp, by 37signals. The Rails creators took away all the Basecamp-specific parts and what
remained was Rails.

Because it was extracted from a real application and not built as an ivory tower exercise, Rails is practical and free
of needless features. Its goal as a framework is to solve 80% of the problems that occur in web development, assuming
that the remaining 20% are problems that are unique to the application’s domain. It may be surprising that as much
as 80% of the code in an application is infrastructure, but it’s not as far-fetched as it sounds. Consider all the work
involved in application construction, from directory structure and naming conventions, to the database abstraction
layer and the maintenance of state.

Rails has specific ideas about directory structure, file naming, data structures, method arguments, and, well,
nearly everything. When you write a Rails application, you’re expected to follow the conventions that have been laid
out for you. Instead of focusing on the details of knitting the application together, you get to focus on the 20% that
really matters.

Since 2004, Rails has come a long way. The Rails team continues to update the framework to support the latest
technologies and methodologies available. You’ll find that as you use Rails, it’s obvious that the core team has kept the
project at the forefront of web technology. The Rails 4 release is better than ever. Speed, security, and ease of use were
major focuses of this release and it shows.

Rails Is Ruby
There are a lot of programming languages out there. You’ve probably heard of many of them. C, C#, Lisp, Java,
Smalltalk, PHP, and Python are popular choices. And then there are others you’ve probably never heard of: Haskel,
IO, and maybe even Ruby. Like the others, Ruby is a programming language. You use it to write computer programs,
including, but certainly not limited to, web applications.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

4

Before Rails came along, not many people were writing web applications with Ruby. Other languages like PHP
and ASP were the dominant players in the field, and a large part of the Web is powered by them. The fact that Rails
uses Ruby is significant because Ruby is considerably more expressive and flexible than either PHP or ASP. This makes
developing web applications not only easy, but also a lot of fun. Ruby has all the power of other languages, but it was
built with the main goal of developer happiness.

Ruby is a key part of the success of Rails. Rails uses Ruby to create what’s called a domain-specific language
(DSL). Here, the domain is that of web development; when you’re working in Rails, it’s almost as if you’re writing in
a language that was specifically designed to construct web applications—a language with its own set of rules and
grammar. Rails does this so well that it’s sometimes easy to forget that you’re writing Ruby code. This is a testimony to
Ruby’s power, and Rails takes full advantage of Ruby’s expressiveness to create a truly beautiful environment.

For many developers, Rails is their introduction to Ruby—a language with a following before Rails that
was admittedly small at best, at least in the West. Although Ruby had been steadily coming to the attention of
programmers outside Japan, the Rails framework brought Ruby to the mainstream.

Invented by Yukihiro Matsumoto in 1994, it’s a wonder Ruby remained shrouded in obscurity as long as it did.
As far as programming languages go, Ruby is among the most beautiful. Interpreted and object oriented, elegant and
expressive, Ruby is truly a joy to work with. A large part of Rails’ grace is due to Ruby and to the culture and aesthetics
that permeate the Ruby community. As you begin to work with the framework, you’ll quickly learn that Ruby, like
Rails, is rich with idioms and conventions, all of which make for an enjoyable, productive programming environment.

In summary, Ruby can be described as follows:

An interpreted, object-oriented scripting language•

Elegant, concise syntax•

Powerful metaprogramming features•

Well suited as a host language for creating DSLs•

This book includes a complete Ruby primer. If you want to get a feel for what Ruby looks like now, skip to Chapter
3 and take a look. Don’t worry if Ruby seems a little unconventional at first. You’ll find it quite readable, even if you’re
not a programmer. It’s safe to follow along in this book learning it as you go and referencing Chapter 3 when you need
clarification. If you’re looking for a more in-depth guide, Peter Cooper has written a fabulous book titled Beginning
Ruby: From Novice to Professional, Second Edition (Apress, 2009). You’ll also find the Ruby community more than
helpful in your pursuit of the language. Be sure to visit http://ruby-lang.org for a wealth of Ruby-related resources.

Rails Encourages Agility
Web applications aren’t traditionally known for agility. They have a reputation of being difficult to work with and a
nightmare to maintain. It’s perhaps in response to this diagnosis that Rails came onto the scene, helping to usher
in a movement toward agile programming methodologies in web development. Rails advocates and assists in the
achievement of the following basic principles of software development:

Individuals and interactions over processes and tools•

Working software over comprehensive documentation•

Customer collaboration over contract negotiation•

Responding to change over following a plan•

So reads the Agile Manifesto,1 which was the result of a discussion among 17 prominent figures (including Dave
Thomas, Andy Hunt, and Martin Fowler) in the field of what was then called “lightweight methodologies” for software
development. Today, the Agile Manifesto is widely regarded as the canonical definition of agile development.

1http://agilemanifesto.org

www.allitebooks.com

http://ruby-lang.org/
http://agilemanifesto.org/
http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

5

Rails was designed with agility in mind, and it takes each of the agile principles to heart almost obsessively.
With Rails, you can respond to the needs of customers quickly and easily, and Rails works well during collaborative
development. Rails accomplishes this by adhering to its own set of principles, all of which help make agile
development possible.

Dave Thomas and Andy Hunt’s seminal work on the craft of programming, The Pragmatic Programmer
(Addison-Wesley, 1999), reads almost like a roadmap for Rails. Rails follows the don’t repeat yourself (DRY) principle,
the concepts of rapid prototyping, and the you ain’t gonna need it (YAGNI) philosophy. Keeping important data in
plain text, using convention over configuration, bridging the gap between customer and programmer, and, above
all, postponing decisions in anticipation of change are institutionalized in Rails. These are some of the reasons that
Rails is such an apt tool for agile development, and it’s no wonder that one of the earliest supporters of Rails was Dave
Thomas himself.

The sections that follow take you on a tour through some of Rails mantras and, in doing so, demonstrate how well
suited Rails is for agile development. Although we want to avoid getting too philosophical, some of these points are
essential to grasp what makes Rails so important.

Less Software

One of the central tenets of Rails’ philosophy is the notion of less software. What does less software mean? It means
using convention over configuration, writing less code, and doing away with things that needlessly add to the
complexity of a system. In short, less software means less code, less complexity, and fewer bugs.

Convention Over Configuration

Convention over configuration means that you need to define only configuration that is unconventional.
Programming is all about making decisions. If you were to write a system from scratch, without the aid of Rails,

you’d have to make a lot of decisions: how to organize your files, what naming conventions to adopt, and how to
handle database access are only a few. If you decided to use a database abstraction layer, you would need to sit down
and write it or find an open source implementation that suited your needs. You’d need to do all this before you even
got down to the business of modeling your domain.

Rails lets you start right away by encompassing a set of intelligent decisions about how your program should work
and alleviating the amount of low-level decision making you need to do up front. As a result, you can focus on the
problems you’re trying to solve and get the job done more quickly.

Rails ships with almost no configuration files. If you’re used to other frameworks, this fact may surprise you. If
you’ve never used a framework before, you should be surprised. In some cases, configuring a framework is nearly half
the work.

Instead of configuration, Rails relies on common structures and naming conventions, all of which employ
the often-cited principle of least surprise (POLS). Things behave in a predictable, easy-to-decipher way. There are
intelligent defaults for nearly every aspect of the framework, relieving you from having to explicitly tell the framework
how to behave. This isn’t to say that you can’t tell Rails how to behave: most behaviors can be customized to your
liking and to suit your particular needs. But you’ll get the most mileage and productivity out of the defaults, and Rails
is all too willing to encourage you to accept the defaults and move on to solving more interesting problems.

Although you can manipulate most things in the Rails setup and environment, the more you accept the defaults,
the faster you can develop applications and predict how they will work. The speed with which you can develop
without having to do any explicit configuration is one of the key reasons why Rails works so well. If you put your files
in the right place and name them according to the right conventions, things just work. If you’re willing to agree to the
defaults, you generally have less code to write.

The reason Rails does this comes back to the idea of less software. Less software means making fewer low-level
decisions, which makes your life as a web developer a lot easier. And easier is a good thing.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

6

Don’t Repeat Yourself

Rails is big on the DRY principle, which states that information in a system should be expressed in only one place.
For example, consider database configuration parameters. When you connect to a database, you generally

need credentials, such as a username, a password, and the name of the database you want to work with. It may seem
acceptable to include this connection information with each database query, and that approach holds up fine if you’re
making only one or two connections. But as soon as you need to make more than a few connections, you end up with
a lot of instances of that username and password littered throughout your code. Then, if your username and password
for the database change, you have to do a lot of finding and replacing. It’s a much better idea to keep the connection
information in a single file, referencing it as necessary. That way, if the credentials change, you need to modify only a
single file. That’s what the DRY principle is all about.

The more duplication exists in a system, the more room bugs have to hide. The more places the same information
resides, the more there is to be modified when a change is required, and the harder it becomes to track these changes.

Rails is organized so it remains as DRY as possible. You generally specify information in a single place and move
on to better things.

Rails Is Opinionated Software
Frameworks encode opinions. It should come as no surprise then that Rails has strong opinions about how your
application should be constructed. When you’re working on a Rails application, those opinions are imposed on you,
whether you’re aware of it or not. One of the ways that Rails makes its voice heard is by gently (sometimes, forcefully)
nudging you in the right direction. We mentioned this form of encouragement when we talked about convention
over configuration. You’re invited to do the right thing by virtue of the fact that doing the wrong thing is often more
difficult.

Ruby is known for making certain programmatic constructs look more natural by way of what’s called syntactic
sugar. Syntactic sugar means the syntax for something is altered to make it appear more natural, even though it
behaves the same way. Things that are syntactically correct but otherwise look awkward when typed are often treated
to syntactic sugar.

Rails has popularized the term syntactic vinegar. Syntactic vinegar is the exact opposite of syntactic sugar:
awkward programmatic constructs are discouraged by making their syntax look sour. When you write a snippet of
code that looks bad, chances are it is bad. Rails is good at making the right thing obvious by virtue of its beauty and the
wrong thing equally obvious by virtue of ugliness.

You can see Rails’ opinion in the things it does automatically, the ways it encourages you to do the right thing,
and the conventions it asks you to accept. You’ll find that Rails has an opinion about nearly everything related to
web application construction: how you should name your database tables, how you should name your fields, which
database and server software to use, how to scale your application, what you need, and what is a vestige of web
development’s past. If you subscribe to its worldview, you’ll get along with Rails quite well.

Like a programming language, a framework needs to be something you’re comfortable with—something that
reflects your personal style and mode of working. It’s often said in the Rails community that if you’re getting pushback
from Rails, it’s probably because you haven’t experienced enough pain from doing web development the old-school
way. This isn’t meant to deter developers; rather, it means that in order to truly appreciate Rails, you may need a
history lesson in the technologies from whose ashes Rails has risen. Sometimes, until you’ve experienced the hurt,
you can’t appreciate the cure.

Rails Is Open Source
The Rails culture is steeped in open source tradition. The Rails source code is, of course, open. And it’s significant that
Rails is licensed under the MIT license, arguably one of the most “free” software licenses in existence.

Rails also advocates the use of open source tools and encourages the collaborative spirit of open source. The
code that makes up Rails is 100% free and can be downloaded, modified, and redistributed by anyone at any time.

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

7

Moreover, anyone is free to submit patches for bugs or features, and hundreds of people from all over the world have
contributed to the project over the past nine years.

You’ll probably notice that a lot of Rails developers use Macs. The Mac is clearly the preferred platform of many
core Rails team developers, and most Rails developers are using UNIX variants (of which Mac OS X is one). Although
there is a marked bias toward UNIX variants when it comes to Rails developers, make no mistake, Rails is truly cross-
platform. With a growing number of developers using Rails in a Windows environment, Rails has become easy to
work with in all environments. It doesn’t matter which operating system you choose: you’ll be able to use Rails on it.
Rails doesn’t require any special editor or Integrated Development Environment (IDE) to write code. Any text editor is
fine, as long as it can save files in plain text. The Rails package even includes a built-in, stand-alone web server called
WEBrick, so you don’t need to worry about installing and configuring a web server for your platform. When you want
to run your Rails application in development mode, simply start up the built-in server and open your web browser.
Why should it be more difficult than that?

The next chapter takes you step by step through the relatively painless procedure of installing Rails and getting
it running on your system. But before you go there, and before you start writing your first application, let’s talk about
how the Rails framework is architected. This is important because, as you will see in a minute, it has a lot to do with
how you organize your files and where you put them. Rails is a subset of a category of frameworks named for the way
in which they divide the concerns of program design: the model-view-controller (MVC) pattern. Not surprisingly, the
MVC pattern is the topic of our next section.

The MVC Pattern
Rails employs a time-honored and well-established architectural pattern that advocates dividing application logic
and labor into three distinct categories: the model, view, and controller. In the MVC pattern, the model represents
the data, the view represents the user interface, and the controller directs all the action. The real power lies in the
combination of the MVC layers, which Rails handles for you. Place your code in the right place and follow the naming
conventions, and everything should fall into place.

Each part of the MVC—the model, view, and controller—is a separate entity, capable of being engineered and
tested in isolation. A change to a model need not affect the views; likewise, a change to a view should have no effect
on the model. This means changes in an MVC application tend to be localized and low impact, easing the pain of
maintenance considerably while increasing the level of reusability among components.

Contrast this to the situation that occurs in a highly coupled application that mixes data access, business
logic, and presentation code (PHP, we’re looking at you). Some folks call this spaghetti code because of its striking
resemblance to a tangled mess. In such systems, duplication is common, and even small changes can produce large
ripple effects. MVC was designed to help solve this problem.

MVC isn’t the only design pattern for web applications, but it’s the one Rails has chosen to implement. And it
turns out that it works great for web development. By separating concerns into different layers, changes to one don’t
have an impact on the others, resulting in faster development cycles and easier maintenance.

The MVC Cycle
Although MVC comes in different flavors, control flow generally works as follows (Figure 1-1):

The user interacts with the interface and triggers an event (e.g., submits a registration form).•

The controller receives the input from the interface (e.g., the submitted form data).•

The controller accesses the model, often updating it in some way (e.g., by creating a new user •
with the form data).

The controller invokes a view that renders an updated interface (e.g., a welcome screen).•

The interface waits for further interaction from the user, and the cycle repeats.•

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

8

If the MVC concept sounds a little involved, don’t worry. Although entire books have been written on this
pattern, and people will argue over its purest implementation for all time, it’s easy to grasp, especially the way Rails
does MVC.

Next, we’ll take a quick tour through each letter in the MVC and then learn how Rails handles it.

The Layers of MVC
The three layers of the MVC pattern work together as follows:

• Model: The information the application works with

• View: The visual representation of the user interface

• Controller: The director of interaction between the model and the view

Models

In Rails, the model layer represents the database. Although we call the entire layer the model, Rails applications are
usually made up of several individual models, each of which (usually) maps to a database table. For example, a model
called User may map to a table called users. The User model assumes responsibility for all access to the users table in
the database, including creating, reading, updating, and deleting rows. So, if you want to work with the table and, say,
search for someone by name, you do so through the model, like this:

User.where(:name => 'Linus').first

This snippet, although very basic, searches the users table for the first row with the value Linus in the name
column and returns the results. To achieve this, Rails uses its built-in database abstraction layer, Active Record. Active
Record is a powerful library; needless to say, this is only a small portion of what you can do with it.

Chapters 5 and 6 will give you an in-depth understanding of Active Record and what you can expect from it. For
the time being, the important thing to remember is that models represent data. All rules for data access, associations,
validations, calculations, and routines that should be executed before and after save, update, or destroy operations are

View(s)

MVC System

generates eventsshows status

User

Controller(s)

provides data

Model

changes

Figure 1-1. The MVC cycle

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

9

neatly encapsulated in the model. Your application’s world is populated with Active Record objects: single ones, lists
of them, new ones, and old ones. And Active Record lets you use Ruby language constructs to manipulate all of them,
meaning you get to stick to one language for your entire application.

Controllers

For the discussion here, let’s rearrange the MVC acronym and put the C before the V. As you’ll see in a minute, in
Rails, controllers are responsible for rendering views, so it makes sense to introduce them first.

Controllers are the conductors of an MVC application. In Rails, controllers accept requests from the outside
world, perform the necessary processing, and then pass control to the view layer to display the results. It’s
the controller’s job to field web requests, like processing server variables and forming data, asking the model
for information, and sending information back to the model to be saved in the database. It may be a gross
oversimplification, but controllers generally perform a request from the user to create, read, update, or delete a model
object. You see these words a lot in the context of Rails, most often abbreviated as CRUD. In response to a request,
the controller typically performs a CRUD operation on the model, sets up variables to be used in the view, and then
proceeds to render or redirect to another action after processing is complete.

Controllers typically manage a single area of an application. For example, in a recipe application, you probably
have a controller just for managing recipes. Inside the recipes controller, you can define what are called actions.
Actions describe what a controller can do. If you want to be able to create, read, update, and delete recipes, you create
appropriately named actions in the recipes controller. A simple recipes controller would look something like this:

class RecipesController < ApplicationController
 def index
 # logic to list all recipes
 end

 def show
 # logic to show a particular recipe
 end

 def create
 # logic to create a new recipe
 end

 def update
 # logic to update a particular recipe
 end

 def destroy
 # logic to delete a particular recipe
 end
end

Of course, if you want this controller to do anything, you need to put some instructions inside each action. When
a request comes into your controller, it uses a URL parameter to identify the action to execute; and when it’s done, it
sends a response to the browser. The response is what you look at next.

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

10

Views

The view layer in the MVC forms the visible part of the application. In Rails, views are the templates that (most of the
time) contain HTML markup to be rendered in a browser. It’s important to note that views are meant to be free of all
but the simplest programming logic. Any direct interaction with the model layer should be delegated to the controller
layer, to keep the view clean and decoupled from the application’s business logic.

Generally, views have the responsibility of formatting and presenting model objects for output on the screen,
as well as providing the forms and input boxes that accept model data, such as a login box with a username and
password or a registration form. Rails also provides the convenience of a comprehensive set of helpers that make
connecting models and views easier, such as being able to prepopulate a form with information from the database or
the ability to display error messages if a record fails any validation rules, such as required fields.

You’re sure to hear this eventually if you hang out in Rails circles: a lot of folks consider the interface to be the
software. We agree with them. Because the interface is all the user sees, it’s the most important part. Whatever the
software is doing behind the scenes, the only parts that an end user can relate to are the parts they see and interact
with. The MVC pattern helps by keeping programming logic out of the view. With this strategy in place, programmers
get to deal with code, and designers get to deal with templates called erb (Embedded Ruby). These templates take
plain HTML and use Ruby to inject the data and view specific logic as needed. Designers will feel right at home if they
are familiar with HTML. Having a clean environment in which to design the HTML means better interfaces and
better software.

The Libraries That Make Up Rails
Rails is a collection of libraries, each with a specialized task. Assembled together, these individual libraries make up
the Rails framework. Of the several libraries that compose Rails, three map directly to the MVC pattern:

• Active Record: A library that handles database abstraction and interaction.

• Action View: A templating system that generates the HTML documents the visitor gets back as
a result of a request to a Rails application.

• Action Controller: A library for manipulating both application flow and the data coming from
the database on its way to being displayed in a view.

These libraries can be used independently of Rails and of one another. Together, they form the Rails MVC
development stack. Because Rails is a full-stack framework, all the components are integrated, so you don’t need to
set up bridges among them manually.

Rails Is Modular
One of the great features of Rails is that it was built with modularity in mind from the ground up. Although many
developers appreciate the fact that they get a full stack, you may have your own preferences in libraries, either for
database access, template manipulation, or JavaScript libraries. As we describe Rails features, we mention alternatives
to the default libraries that you may want to pursue as you become more familiar with Rails’ inner workings.

Rails Is No Silver Bullet
There is no question that Rails offers web developers a lot of benefits. After using Rails, it’s hard to imagine going back
to web development without it. Fortunately, it looks like Rails will be around for a long time, so there’s no need to
worry. But it brings us to an important point.

CHAPTER 1 ■ INTRODUCING THE RAILS FRAMEWORK

11

As much as we’ve touted the benefits of Rails, it’s important for you to realize that there are no silver bullets
in software design. No matter how good Rails gets, it will never be all things to all people, and it will never solve all
problems. Most important, Rails will never replace the role of the developer. Its purpose is to assist developers in
getting their job done. Impressive as it is, Rails is merely a tool, which when used well can yield amazing results. It’s
our hope that as you continue to read this book and learn how to use Rails, you’ll be able to leverage its strength to
deliver creative and high-quality web-based software.

Summary
This chapter provided an introductory overview of the Rails landscape, from the growing importance of web
applications to the history, philosophy, evolution, and architecture of the framework. You learned about the features
of Rails that make it ideally suited for agile development, including the concepts of less software, convention over
configuration, and DRY. Finally, you learned the basics of the MVC pattern and received a primer on how Rails
does MVC.

With all this information under your belt, it’s safe to say you’re ready to get up and running with Rails. The next
chapter walks you through the Rails installation so you can try it for yourself and see what all the fuss is about. You’ll
be up and running with Rails in no time.

13

CHAPTER 2

Getting Started

For various reasons, Rails has gained an undeserved reputation of being difficult to install. This chapter dispels
this myth. The truth is that installing Rails is relatively easy and straightforward, provided you have all the right
ingredients. The chapter begins with an overview of what you need to get Rails up and running and then provides
step-by-step instructions for the installation. Finally, you’ll start your first Rails application.

An Overview of Rails Installation
The main ingredient you need for Rails is, of course, Ruby. Some systems, such as OS X come with Ruby preinstalled,
but it’s often outdated. To make sure you have the best experience with this book it’s best if you start from a clean slate,
so you’ll install it. After you have Ruby installed, you can install a package manager (a program designed to help you
install and maintain software on your system) called RubyGems. You use that to install Rails.

If you’re a Ruby hacker and already have Ruby and RubyGems installed on your computer, Rails is ridiculously
easy to get up and running. Because it’s packaged as a gem, you can install it with a single command:

$ gem install rails

That’s all it comes down to—installing Rails is a mere one-liner. The key is in having a working installation of
Ruby and RubyGems. Before you get there, though, you need one other ingredient to use Rails: a database server.

As you’re well aware by now, Rails is specifically meant for building web applications. Well, it’s a rare web
application that isn’t backed by a database. Rails is so sure you’re using a database for your application that it’s
downright stubborn about working nicely without one. Although Rails works with nearly every database out there,
in this chapter you use one called SQLite. SQLite is open source, easy to install, and incredibly easy to develop with.
Perhaps that’s why it’s the default database for Rails.

You start by installing Ruby and RubyGems, and you use the magical one-liner to install Rails. Then, you install
SQLite and make sure it’s working properly. Here are the steps in order:

 1. Install Ruby 2.0.

 2. Install Rails.

 3. Install SQLite.

Before you begin, note that the “many ways to skin a cat” adage applies to Rails installation. Just as the Rails stack
runs on many platforms, there are as many ways to install it. This chapter describes what we feel is the easiest and
most reliable way to install Rails for your platform. You go about the process differently for OS X, Linux, and Windows,
but they all amount to the same thing.

CHAPTER 2 ■ GETTING STARTED

14

No matter which platform you’re using, you need to get familiar with the command line. This likely isn’t a problem
for the Linux crowd, but it’s possible that some OS X users and certainly many Windows users don’t have much
experience with it. If you’re using OS X, you can find a terminal emulator in /Applications/Utilities/Terminal.app.
If you’re on Windows, you can open a command prompt by choosing Start ➤ Run, typing cmd, and clicking OK. Note
that you’ll use the command line extensively in your travels with Rails. A growing number of IDEs make developing
applications with Rails even simpler, and they completely abstract the use of a command-line tool; but stick to the
command line to make sure you grasp all the concepts behind many commands. If you later decide to use an IDE
such as Aptana’s RadRails, JetBrains’ RubyMine, or Oracle’s NetBeans, you’ll have a great understanding of Rails and
will understand even better where the IDE is speeding up your work.

Also, a quick note for OS X users: if you’re using a Mac and would prefer to use a package manager such as Fink
or MacPorts, the Linux instructions will prove useful.

Go ahead and flip to the section that describes your platform (OS X, Windows, or Linux), and let’s begin.

Installing on Mac OS X 10.8 Mountain Lion
You’d think that given the prevalence of OS X among Rails developers (the entire core team uses OS X), installing Rails
on OS X would be easy. And you’d be correct. First, we need to install Apple’s Developer Tools so that we can compile
packages. Note that SQLite is preinstalled on OS X, so that’s one thing we don’t need to worry about.

Installing the Apple Developer Tools (Xcode)
You need the Apple Developer Tools installed to be able to compile some of the Ruby gems you may need in the
future. Before you can compile source code on your Mac, you need to install a compiler. Apple’s Developer Tools
package, Xcode Tools, includes a compiler and provides the easiest way to set up a development environment on
your Mac. The easiest way to download Xcode is from the Mac App Store. Click the Apple menu ➤ App Store and
search for Xcode.

Note ■ Xcode is a large download, over 1 GB, so be patient. It may take a while.

Installing Command Line Tools
Once you have Xcode installed you now need to install the command line tools. Inside of Xcode click Xcode ➤
Preferences ➤ Downloads. You should see a listing for the command line tools with a download button next to it.
Once that is downloaded, you can continue to the next step.

Installing Homebrew
For this next piece you’ll need to dig into the terminal a bit, but don’t worry we’ll guide you through it. Homebrew is a
great package manager for OS X that is written in Ruby no less. It will help you to install the other pieces you’ll need as
you go. To install Homebrew, enter the following command into the terminal (Applications ➤ Utilities ➤ Terminal):

ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"

https://raw.github.com/mxcl/homebrew/go

CHAPTER 2 ■ GETTING STARTED

15

Installing RVM
Now you’ll need to install a common Ruby tool called the Ruby Version Manager (RVM). It helps you manage
versions of Ruby and various gems that you may use for projects. Its install is just as simple as Homebrew. It’s just
one command:

\curl -L https://get.rvm.io | bash -s stable

You can test to see if Ruby is installed correctly by asking Ruby for its version number:

ruby --version

ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.3.0]

If your output isn’t exactly like this, don’t panic. Ruby is often updated with new security patches and features,
but it should at least say Ruby 2.x.xpx.

Installing Rails
To install Rails, use the command line:

gem install rails

That’s it! Rails is installed, let’s check the version to make sure everything went well:

rails -v

Rails 4.0

Great! Ruby, SQLite, and Rails are installed and working correctly.

Installing on Windows
Installation on Windows is easy thanks to installer packages. You start by installing Ruby 2.0.

Installing Ruby
Installing Ruby on Windows is marvelously easy thanks largely to the one-click installer for Ruby. You can read more
and download the installer from its web site: http://rubyinstaller.org/.

The latest version of the installer at the time of this writing is Ruby 2.0.0-p195 for Ruby 2.0, which you can
download using this URL: http://rubyforge.org/frs/download.php/76955/rubyinstaller-2.0.0-p195.exe.

After you’ve downloaded the installer, start the installation by double-clicking its icon. What follows is standard
installer fare, and the defaults are sufficient for your purposes. When you select the location where you want to put
Ruby (usually C:\Ruby20), as shown in Figure 2-1, select the Add Ruby Executables to Your PATH check box; the
installer takes care of the rest. You have a fully functioning Ruby installation in minutes.

https://get.rvm.io/
http://rubyinstaller.org/
http://rubyforge.org/frs/download.php/76955/rubyinstaller-2.0.0-p195.exe

CHAPTER 2 ■ GETTING STARTED

16

When the installer is finished, you can test to see if Ruby is working and that your environment is correctly
configured by opening your command prompt and asking Ruby its version number:

> ruby --version

ruby 2.0.0p195 (2013-02-24 revision 26273) [i386-mingw32]

Installing Rails
You’ll be pleased to know that Ruby 2.0 comes bundled with RubyGems, a package-management system for Ruby
(http://rubygems.org), which makes installing Ruby libraries, utilities, and programs a breeze. This includes
Rails installation.

First, let’s update RubyGems and its sources list. Open your command prompt and issue the following gem
command:

> gem update –system

Now, to install Rails, issue the following gem command in your command prompt:

> gem install rails

Figure 2-1. Ruby installer for Windows

www.allitebooks.com

http://rubygems.org/
http://www.allitebooks.org

CHAPTER 2 ■ GETTING STARTED

17

Be forewarned that the gem command can take some time. Don’t be discouraged if it seems to be sitting there
doing nothing for a few minutes; it’s probably updating its index file. RubyGems searches for gems in its remote
repository (http://rubygems.org), so you need to be connected to the Internet for this command to work.

After spitting out some text to the screen and generally chugging away for a few minutes, the gem program should
exit with something like the following before dumping you back at the command prompt:

Successfully installed rails-4.0

That’s all there is to it! The one-click installer takes care of most of the work by installing and configuring Ruby;
and because Rails is distributed as a RubyGem, installing it is a simple one-liner.

You can double check that Rails was installed successfully by issuing the rails -v command at the
command prompt:

> rails -v

Rails 4.0

Installing SQLite
To install SQLite on Windows, download the following files from the SQLite web site (www.sqlite.org/download.html):

sqlite-3_6_23_1.zip - http://www.sqlite.org/sqlite-3_6_23_1.zip
sqlitedll-3_6_23_1.zip - http://www.sqlite.org/sqlitedll-3_6_23_1.zip

Note that the version number may be different by the time you read this. Unzip both files, and move their
contents to the Ruby bin directory C:\Ruby20\bin. When you’re done, you can test that you’ve correctly installed
SQLite by issuing the following command from the command prompt:

> sqlite3 –version

3.6.23.1

Now that you’ve installed SQLite, let’s install its Ruby binding—a Ruby library that allows you to talk with SQLite.
To install the SQLite3 Ruby binding, issue the following gem command from the command prompt:

> gem install sqlite3-ruby

With Ruby, Rails, and SQLite happily installed, it’s time to take them for a test drive. Unless you feel like reading
the installation instructions for Linux, you’re free to skip ahead to the “Creating Your First Rails Application” section.

Installing on Linux
Linux (and UNIX-based systems in general) comes in a variety of different flavors, but they share a lot in common.
These instructions use a Debian-based variant called Ubuntu Linux, but they should apply to most UNIX systems with
varying mileage.

http://rubygems.org/
http://www.sqlite.org/download.html
http://www.sqlite.org/sqlite-3_6_23_1.zip
http://www.sqlite.org/sqlitedll-3_6_23_1.zip

CHAPTER 2 ■ GETTING STARTED

18

Note■ Ubuntu Linux is a top-notch distribution that’s rapidly gaining mindshare in the Linux community. At the time of

this writing, it’s the most popular Linux distribution for general use and is largely responsible for the increased viability of

Linux as a desktop platform. It’s freely available from http://ubuntu.org and highly recommended.

Just about all Linux distributions (including Ubuntu) ship with a package manager. Whether you’re installing
programs or code libraries, they usually have dependencies; a single program may depend on dozens of other
programs in order to run properly, which can be a struggle to deal with yourself. A package manager takes care of
these tasks for you, so you can focus on better things.

Ubuntu Linux includes the Debian package manager apt, which is what the examples in this book use. If you’re
using a different distribution, you likely have a different package manager, but the steps should be reasonably similar.

Before you begin installing Ruby, Rails, and SQLite, update the package library using the apt-get update
command:

$ sudo apt-get update

The apt-get program keeps a cached index of all the programs and their versions in the repository for faster
searching. Running the update command ensures that this list is up to date, so you get the most recent versions of the
software you need.

Installing Ruby
Before you install Ruby, you need to install a few libraries required by the components you’re installing. Enter the
following command:

$ sudo apt-get install build-essential curl

You’re going to use the Ruby Version Manager to let Ruby install it for you. This makes everything a snap:

$ \curl -L https://get.rvm.io | bash -s stable

You can test that this is working by asking Ruby for its version number:

$ ruby --version

ruby 2.0.0p195 (2013-05-14) [i686-linux]

Installing Rails
Now you can use RubyGems to install Rails. Enter this command:

$ gem install rails

http://ubuntu.org/
https://get.rvm.io/

CHAPTER 2 ■ GETTING STARTED

19

After spitting out some text to the screen and generally chugging away for a little while, the gem program should
exit with a message like the following:

Successfully installed rails-4.0

You can verify this claim by asking Rails for its version number:

$ rails --version

Rails 4.0

With Ruby and Rails happily installed, you’re ready to move on to the next step: installing SQLite.

Installing SQLite
To install SQLite with apt-get, issue the following command:

$ sudo apt-get install sqlite3 libsqlite3-dev

If all goes according to plan, you can test your SQLite3 installation by invoking the sqlite3 program and asking
for its version number:

$ sqlite3 --version

3.6.16

Now that you’ve installed SQLite, let’s install its Ruby binding—a Ruby library that allows you to talk with SQLite.
To install the SQLite3 Ruby binding, issue the following gem command from the command prompt:

$ sudo gem install sqlite3-ruby

With Ruby, Rails, and SQLite happily installed, it’s time to take them for a test drive.

Creating Your First Rails Application
You’ll start by using the rails command to create a new Rails project. Go to the directory where you want
your Rails application to be placed; the rails command takes the name of the project you want to create as an
argument and creates a Rails skeleton in a new directory by the same name. The newly created directory contains
a set of files that Rails generates for you to bootstrap your application. To demonstrate, create a new project called
(what else?) hello:

CHAPTER 2 ■ GETTING STARTED

20

$ rails new hello

 create

 create README

 create Rakefile

 create config.ru

 create .gitignore

 create Gemfile

 create app

 create app/controllers/application_controller.rb

 create app/helpers/application_helper.rb

 create app/views/layouts/application.html.erb

 create app/mailers

...

If you look closely at the output, you see that the subdirectories of app/ are named after the MVC pattern
introduced in Chapter 1. You also see a name that was mentioned briefly in Chapter 1: helpers. Helpers help bridge
the gap between controllers and views; Chapter 7 will explain more about them.

Rails generated a new directory called hello. If you look at the folder structure, you’ll see the following:

Gemfile app db log test

README config doc public tmp

Rakefile config.ru lib script vendor

Starting the Built-In Web Server
Next, let’s start up a local web server so you can test your new project in the browser. True, you haven’t written any
code yet, but Rails has a nice welcome screen that you can use to test whether the project is set up correctly. It even
gives you some information about your Ruby environment.

Ruby ships with a built-in, zero-configuration, pure Ruby web server that makes running your application in
development mode incredibly easy. You start up the built-in web server using the rails server command. To start the
server now, make sure you’re inside the directory of your Rails application, and then enter the following commands:

$ bundle install

Fetching source index from http://rubygems.org/

...

Your bundle is complete! Use 'bundle show [gemname]' to see where a

bundled gem is installed.

http://rubygems.org/

CHAPTER 2 ■ GETTING STARTED

21

$ rails server

=> Booting WEBrick

=> Rails 4.0.0 application starting in development on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

[2013-05-22 14:26:54] INFO WEBrick 1.3.1

[2013-05-22 14:26:54] INFO ruby 2.0.0 (2013-05-14) [i386-darwin10.2.0]

[2013-05-22 14:26:54] INFO WEBrick::HTTPServer#start: pid=5181 port=3000

The message from the rails server command tells you that a web server is running at the IP address 0.0.0.0
on port 3000. Don’t be alarmed by this all-zeros address—it simply means that the server is running locally on your
machine. The hostname localhost also resolves to your local machine and is thus interchangeable with the IP
address. We prefer to use the hostname variant.

With the server running, if you open http://localhost:3000/ in your browser, you’ll see the Rails welcome
page, as shown in Figure 2-2. Congratulations! You’ve put Ruby on Rails.

Figure 2-2. Rails welcome page

http://0.0.0.0:3000/
http://localhost:3000/

CHAPTER 2 ■ GETTING STARTED

22

The welcome page is nice, but it doesn’t teach you much. The first step in learning how Rails works is to generate
something dynamic. You’re about to learn why you called this project “hello”!

We’re sure it would be in violation of the law of programming books if we didn’t start with the ubiquitous
“Hello World” example. And who are we to disobey? In the next few steps, you make your Rails application say hello;
 and in doing so, you learn a few new concepts. Your goal is to have a request with the URL
 http://localhost:3000/salutation/hello respond with a friendly “Hello World!” message.

First things first: stop the web server by pressing Ctrl+C in the command prompt window. That should bring you
back to your prompt.

Note ■ Notice how easy it is to start and stop a local server? That’s the whole point of the built-in server in a nutshell.

You shouldn’t need to be a system administrator to develop a Rails application.

Generating a Controller
You use the rails command’s generate option to create certain files within your project. Because you’re dealing with
the request and response cycle (you request a URL, and the browser receives a response), you generate a controller
that is responsible for handling salutations:

$ rails generate controller salutation

create app/controllers/salutation_controller.rb

invoke erb

create app/views/salutation

invoke test_unit

create test/functional/salutation_controller_test.rb

invoke helper

create app/helpers/salutation_helper.rb

invoke test_unit

create test/unit/helpers/salutation_helper_test.rb

Not unlike the rails command you used to generate your application, the rails generate controller
command creates a bunch of new files. These are mostly empty, containing only skeletal code (often called stubs).
You could easily create these files on your own. The generator merely saves you time and the effort of needing to
remember which files to create and where to put them.

The salutation controller was created in the app/controllers directory and is sensibly named
salutation_controller.rb. If you open it with a text editor, you see that there’s not much to it, as shown in Listing 2-1.

Listing 2-1. The app/controllers/salutation_controller.rb File

class SalutationController < ApplicationController
end

http://localhost:3000/salutation/hello

CHAPTER 2 ■ GETTING STARTED

23

Creating an Action
If you want SalutationController to respond to a request for hello, you need to make an action for it. Open
salutation_controller.rb in your text editor and add the hello action, as shown in Listing 2-2.

Listing 2-2. The Updated app/controllers/salutation_controller.rb File: http://gist.github.com/319866

class SalutationController < ApplicationController
 def hello
 @message = 'Hello World!'
 end
end

Actions are implemented as Ruby methods. You can always tell a method definition because of the def keyword.
Inside the action, you set a Ruby instance variable called @message, the value of which you output to the browser.

Creating a Template
With your action successfully defined, your next move is to add some HTML into the mix. Rails makes it easy by
separating the files that contain HTML into their own directory as per the MVC pattern. In case you haven’t guessed,
HTML is the responsibility of the view.

If you look in the app/views directory, you see another product of the controller generator: a directory called
salutation. It’s linked to the salutation controller, and it’s where you put template files that correspond to your
salutation actions.

Note ■ Because Rails allows you to embed Ruby code in your HTML by using the ERb Templating library, you use the

.html.erb (HTML + ERb) extension for your templates.

The default way to render a template in response to a request for an action is remarkably simple: name it the
same as the action. This is another case of using a predefined Rails convention. Because you want to show a response
to the hello action, name your file hello.html.erb, and Rails renders it automatically. This is easy to grasp in
practice. Figure 2-3 gives a visual cue as to how controllers and templates correspond.

http://gist.github.com/319866

CHAPTER 2 ■ GETTING STARTED

24

Start by creating a new, blank file in app/views/salutation/. Name it hello.html.erb, and add the code shown
in Listing 2-3. Notice the <%= %> syntax that surrounds the @message variable: these are known as Embedded Ruby
(ERb) output tags. Chapter 7explains more about ERb. For now, it’s only important to know that whenever you see
<%= %> in a template, whatever is between the tags is evaluated as Ruby, and the result is printed out.

Listing 2-3. The app/views/salutation/hello.html.erb File: http://gist.github.com/319910

<html>
 <body>
 <h1><%= @message %></h1>
 </body>
</html>

You now have to tell your Rails application how to respond to a URL. You do that by updating the config/routes.rb
file. You don’t need to worry about the details of how the routes file work for now, Chapter 8will cover that. Replace
the contents of your config/routes.rb file and make sure it looks like Listing 2-4.

Listing 2-4. The config/routes.rb File: http://gist.github.com/319933

Hello::Application.routes.draw do
 get ':controller(/:action(/:id(.:format)))'
end

It looks like you’re all set. The salutation controller fields the request for hello and automatically renders the
hello.html.erb template. Start up the web server again using the rails server command, and request the URL
http://localhost:3000/salutation/hello in your browser. You should see the result shown in Figure 2-4.

Figure 2-3. Controllers correspond to a directory in app/views

http://gist.github.com/319910
http://gist.github.com/319933
http://localhost:3000/salutation/hello

CHAPTER 2 ■ GETTING STARTED

25

Sure enough, there’s your greeting! The hello template reads the @message variable that you set in the controller
and, with a little help from ERb, printed it out to the screen.

In case you didn’t notice, the URL http://localhost:3000/salutation/hello maps directly to the controller
and action you created because of the change you made to your config/routes.rb file. This is achieved by the
following URL pattern:

:controller(/:action(/:id(.:format)))

For now, it’s enough that you can make the mental connection between URL segments and the code in your
application. When you read the URL http://localhost:3000/salutation/hello, you can translate it into a request
for the hello action on the salutation controller.

Summary
This chapter covered a lot, so you should be proud of yourself. You went from not having Rails installed to getting a
basic Rails application up and running. You learned how to install Ruby and how to manage packages with RubyGems
(which you used to install Rails). You also learned how to create a new Rails project using the rails command and
how to use the generator to create a new controller. And you learned how controller actions correspond to templates.
The stage is now set for the next chapter, where you begin building a more full-featured project.

Figure 2-4. The “Hello World” application

http://localhost:3000/salutation/hello
http://localhost:3000/salutation/hello

27

CHAPTER 3

Getting Something Running

The best way to learn a programming language or a web framework is to dig in and write some code. After reading the
first two chapters, you should have a good understanding of the Rails landscape. Chapter 4 will lead you through the
Ruby language, but first let’s write a little code to whet your appetite. This chapter builds a foundation and will get you
excited by walking you through the construction of a basic application. You will learn how to create a database and
how to connect it to Rails, as well as how to use a web interface to get data in and out of the application.

You will receive a lot of information in this chapter, but it shouldn’t be more than you can absorb. The goal
is to demonstrate, not to overwhelm. Rails makes it incredibly easy to get started, and that’s a feature this chapter
highlights. There are a few places where Rails really shines, and getting something running is one of them. By the
end of this chapter, you’ll have a working web application to play with, explore, and learn from. You’ll build on this
application throughout the rest of the book, adding features and refining functionality.

An Overview of the Project
This chapter will walk you through building a simple blog application that lets you create and publish articles, like
WordPress or Blogger. The first iteration focuses on the basics: creating and editing articles.

Before you start coding, let’s sketch a brief summary of the goals and flow of the application at a very high level.
The idea isn’t to focus on the nitty-gritty, but instead to concentrate on the general case.

Your application will have two kinds of users: those who post and publish articles and those who wish to
comment on existing articles. In some cases, people will play both roles. Not all users will need to create an account
by registering on the site. It will also be nice if people can notify their friends about interesting articles using a feature
that sends a friendly e-mail notification to interested parties.

You will add some of these features in later chapters. Other application requirements will likely come up as
you continue, but these are enough to get started. In the real world, specifications are seldom correct the first time
around, so it’s best not to dwell on them. Rails doesn’t penalize you for making changes to an application that’s under
construction, so you can engage in an iterative style of development, adding and incrementing functionality as you go.

You start with what matters most: articles. You may wonder why you don’t begin with users. After all, without
users, who will post the articles? If you think about it, without articles, what could users do? Articles are the epicenter
of the application, so it makes the most sense to start there and work out the details as you go. Ready? Let’s get started!

Creating the Blog Application
As you saw in Chapter 2, the first step is to create a new Rails application. You could come up with a fancy name, but
let’s keep it simple and call the application blog. It’s not going to win any awards for creativity, but it works.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ GETTING SOMETHING RUNNING

28

To begin, from the command line, go to the directory where you want to place your new application; then, issue
the rails command to generate the application skeleton and base files:

$ rails new blog

create
create README.rdoc
create Rakefile
create config.ru
create .gitignore
create Gemfile
...

As you recall from the example in Chapter 2, the rails command takes as an argument the name of the project
you want to create and generates a directory of the same name that contains all the support files. In this case, it creates
a subdirectory called blog in the current working directory. Change into the blog directory and get oriented.
Figure 3-1 shows the directory structure.

Figure 3-1. The Rails directory structure

You’ll quickly get used to the Rails directory structure, because all Rails applications follow this standard. This is
another benefit of conventions: you always know where to locate files if you have to work on a Rails project that was
developed by someone else. Table 3-1 briefly explains the directory structure.

CHAPTER 3 ■ GETTING SOMETHING RUNNING

29

Your first stop is the config directory. Of the little configuration there is to do in a Rails application, most of
it takes place in this aptly named location. To get an idea of what Rails expects as far as databases go, open the
config/database.yml file in your editor and take a peek. You should see something like the file shown in Listing 3-1
(comments are omitted here).

Listing 3-1. The config/database.yml File

SQLite version 3.x
gem install sqlite3
#
Ensure the SQLite 3 gem is defined in your Gemfile
gem 'sqlite3'
development:
 adapter: sqlite3
 database: db/development.sqlite3
 pool: 5
 timeout: 5000

Warning: The database defined as "est" will be erased and
re-generated from your development database when you run "rake".
Do not set this db to the same as development or production.
test:
 adapter: sqlite3
 database: db/test.sqlite3
 pool: 5
 timeout: 5000

Table 3-1. Rails Directory Structure

Folder Description

app

bin

All the components of your application.

Executables to support Rails.

config

config.ru

Configuration files for all of the components of your application.

A file used by rack servers to start the application.

db

Gemfile

Gemfile.lock

Files related to the database you’re using, and a folder for migrations.

Used by the bundler gem to keep a list of gems used in your application.

Canonical resource of what gems should be installed.

lib Libraries that may be used in your application.

log Log files that your application may require.

public Static assets served by your application, such as images, JavaScript, and CSS files.

Rakefile

README.rdoc

Lists available for tasks used by Rake.

Human readable file generated to describe an application.

test Directory containing test unit tests for your application.

tmp Contains temporary files supporting your application.

vendor External libraries, such as gems and plug-ins, that your application bundles.

CHAPTER 3 ■ GETTING SOMETHING RUNNING

30

production:
 adapter: sqlite3
 database: db/production.sqlite3
 pool: 5
 timeout: 5000

The first thing you should notice is the different sections: development, test, and production. Rails understands
the concept of environments and assumes you’re using a different database for each environment. Therefore, each has
its own database connection settings, and different connection parameters are used automatically. Rails applications
run in development modes by default, so you really only need to worry about the development section at this point.
Still, other than the database names (db/*.sqlite3), there should be little difference between the connection
parameters for each environment.

This example uses the default SQLite database because it’s easy to use and set up. However, you can use the
database management system of your choice by passing the –d or --database= option to the rails command with
one of the following options as per your preference: mysql, oracle, postgresql, sqlite2, sqlite3, frontbase,
or ibm_db.

If you select a database other than SQLite, the rails command may prefill the database parameter based on
the database server and project name: blog in this case. If you give your application a different name (say, a snazzy
Web 2.0 name like blog.ilicio.us *beta) with a database server such as MySQL, you’ll see something different
here. It doesn’t matter what you name your databases, as long as database.yml references the correct one for each
environment. Let’s stick with the convention and create the databases using the default names.

WHAT IS YAML?

The .yml extension refers to a YAML file. YAML (a recursive acronym that stands for “YAML Ain’t Markup

Language”) is a special language for expressing objects in plain text. Rails can work with YAML natively and can

turn what looks like plain text into Ruby objects that it can understand.

YAML is whitespace sensitive: it uses spaces (not tabs) to convey structure and meaning. Make sure your editor

knows the difference between tabs and spaces, and be sure that when you’re editing YAML files, you use

only spaces.

Creating the Project Databases
You may think that to create a new database, you’ll use your favorite database administration tool. However, because
you already told Rails the database connection details, you can now run a Rake task that talks to the database and
issues all the necessary commands to set up the databases. Jump to the command prompt and type:

$ rake db:create

When using SQLite, you aren’t forced to create the database, because a new database file is automatically created
if one doesn’t exist; but it will come in handy when you try a different database engine. You also may see some
messages like db/development.sqlite3 already exists. Don’t be afraid—this is an indication that an SQLite file was
found. If you see that message, rest assured that your existing database was left untouched, and no database file has
been harmed.

CHAPTER 3 ■ GETTING SOMETHING RUNNING

31

Note ■ Rake is a build language for Ruby. Rails uses Rake to automate several tasks, such as running database

migrations, running tests, and updating Rails support files. You can think of Rake tasks as little utility programs.

For a list of all available Rake tasks, run rake -T from your Rails project directory. For more information about Rake,

including complete documentation, see http://rake.rubyforge.org/.

Regardless of the database management system you select, you should notice that the databases you want to use
are created. This is another case in which Rails removes some complexity from your mind and helps you focus on
your application.

Note ■ Depending on how your environment is set up, you may not need to specify the username, password, and other

options in your config/databases.yml file to create the database.

Although you’re only concerned with the development environment at this time, it doesn’t hurt to create the
other databases while you’re at it. Go ahead and create two more databases, one each for the test and production
environments:

$ rake db:create:all

You can confirm the creation of the database by using the rails dbconsole program to look at the databases
currently on your system:

$ rails dbconsole

SQLite version 3.7.12Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .exit

At this point, you can issue any number of SQL (Structured Query Language) statements and look at the tables
and records that eventually will be in your application. (If you aren’t familiar with SQL, you can learn more about
it in Appendix B.) When you’re finished with the SQLite console, type the .exit command to go back to your
regular prompt. You can test to see if your connection is working by running the following command:

$ rake db:migrate

If nothing exceptional is returned, congratulations! Rails can connect to your database. However, if you’re using
a database engine other than SQLite, and you may see something like this:

rake aborted!
Access denied for user 'root'@'localhost' (using password: NO)

Then you need to adjust your connection settings. If you’re having problems, make sure the database exists and
that you’ve entered the correct username and password in the config/database.yml configuration file.

http://rake.rubyforge.org/

CHAPTER 3 ■ GETTING SOMETHING RUNNING

32

Creating the Article Model
Now that you can connect to the database, this section will explain how you create a model. Remember that models
in Rails correspond to database table names. Because you want to model articles, let’s create a model named Article.
By convention, model names are camel-cased singular and correspond to lower-cased plural table names. So, an
Article model expects a table named articles; a Person model expects a table named people.

Note ■ Camel case means that each word begins with a capital letter and is written without spaces. For instance,

a class that described blog images would be written as BlogImage. Refer to http://en.wikipedia.org/wiki/CamelCase

for more information.

Rails is smart enough to use the correct plural name for most common words; it doesn’t try to create a persons table.

Like most things in Rails, models have their own generator script that makes it easier to get started. The generator
automatically creates a new model file in the app/models directory and also creates a bunch of other files. Among
these are a unit test (for testing your model’s functionality, as discussed in Chapter 11) and a database migration.
A database migration contains instructions for modifying the database table and columns. Whenever you generate
a new model, a migration is created along with it.

Note ■ If you want to skip generation of the migration when generating a new model, you can pass the

--skip-migration argument to the generator. This may be useful if you’re creating a model for an existing database

or table.

To see the generator’s usage information, run it without arguments:

$ rails generate model

Usage:
 rails generate model NAME [field[:type][:index] field[:type][:index]] [options]
...

As you can see from the usage banner, the generator takes a model name as its argument and an optional list of
fields. The model name may be given in camel-cased or snake-cased format, and options can be provided if you want
to automatically populate the resulting migration with column information.

Note ■ Snake-cased words are written in all lowercase with underscores replacing spaces, for instance, blog_image.

For more information visit http://en.wikipedia.org/wiki/Snake_case.

http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/Snake_case

CHAPTER 3 ■ GETTING SOMETHING RUNNING

33

Let’s run the generator now to create the first model, Article:

$ rails generate model Article

invoke active_record
create db/migrate/20130406203049_create_articles.rb
create app/models/article.rb
invoke test_unit
create test/unit/article_test.rb
create test/fixtures/articles.yml

If you look at the lines that start with create, you see that the generator has created an article model, an article
test, an articles fixture (which is a textual representation of table data you can use for testing), and a migration named
20130406203049_create_articles.rb. From that, your model is generated.

Note ■ The first part of the migration file name is the timestamp when the file was generated. So, the file on your

computer will have a slightly different name.

Creating a Database Table
You need to create a table in the database. You could do this with a database administration tool or even manually
using SQL, but Rails provides a much more efficient facility for table creation and maintenance called a migration.
It’s called a migration because it allows you to evolve, or migrate, your schema over time. (If you’re not familiar with
databases, tables, and SQL, consult Appendix B for the basics.)

Note ■ Schema is the term given to the properties that make up a table: the table’s name, its columns, and its column

types, as well as any default values a column will have.

What’s the best part about migrations? You get to define your schema in pure Ruby. This is all part of the Rails
philosophy that you should stick to one language when developing. It helps eliminate context switching and results in
higher productivity.

As you can see from the output of the model generator, it created a new file in db/migrate called
20130406203049_create_articles.rb. As mentioned before, migrations are named with a numeric prefix, which is
a number that represents the exact moment when the migration file was created. Because multiple developers can
create migrations in a development team, this number helps uniquely identify this specific migration in a project.

Let’s open this file and take a peek. It’s shown in Listing 3-2.

Listing 3-2. The db/migrate/20130406203049_create_articles.rb File

class CreateArticles < ActiveRecord::Migration
 def change
 create_table :articles do |t|

 t.timestamps
 end
 end
end

CHAPTER 3 ■ GETTING SOMETHING RUNNING

34

In its initially generated form, the migration is a blank canvas. But before you go any further, let’s note a few
important items. First, notice the instance method: change. In previous versions of Rails, there would be an up and
down class method, but now Rails is smart enough to figure it out based on the modifications you make in this method.
You can roll back without ever writing a method that explicitly drops the table. Pretty slick, isn’t it?

Listing 3-3 has the details filled in for you. Even without ever having seen a migration before, you should be able
to tell exactly what’s going on.

Listing 3-3. Completed db/migrate/20130406203049_create_articles.rb File

class CreateArticles < ActiveRecord::Migration
 def change
 create_table :articles do |t|
 t.string :title
 t.text :body
 t.datetime :published_at

 t.timestamps
 end
 end
end

Let’s step through the code. First, you use the create_table method, giving it the name of the table you want to
create. Inside the code block, the string, text, and datetime methods each create a column of the said type named
after the parameter; for example, t.string :title creates a field named title with the type string. The timestamps
method, in the t.timestamps call, is used to create a couple of fields called created_at and updated_at, which Rails
sets to the date when the record is created and updated, respectively. (For a full description of the available method
types you can create in your migrations, see http://api.rubyonrails.org/classes/ActiveRecord/Migration.html.)

On its own, this migration does nothing. Really, it’s just a plain old Ruby class. If you want it to do some work and
create a table in the database for you, you need to run it. To run a migration, you use the built-in db:migrate Rake task
that Rails provides.

From the command line, type the following to run the migration and create the articles table. This is the same
command you used to test the database connection. You sort of hijack it for this test, knowing that it will attempt to
connect to the database and thus prove whether the connection works. Because there were no existing migrations
when you first ran it, it didn’t do anything. Now that you have your first migration, running it results in a table
being created:

$ rake db:migrate

== CreateArticles: migrating ==
-- create_table(:articles)
 -> 0.0019s
== CreateArticles: migrated (0.0023s) ===

Just as the output says, the migration created the articles table. If you try to run the migration again (go ahead,
try it), nothing happens. That’s because Rails keeps track of all the migrations it runs in a database table, and in this
case there’s nothing left to do. If for some reason you decide you need to roll back the migration, you can use the
db:rollback task to roll back. Try it and you will notice that it dropped the articles table. Remember that we never
wrote any code to drop the table, Rails just handled it for us. Imagine if you would have edited the database schema
directly with a database management tool; if you wanted to roll back, you’d have to remember what it looked like
before and exactly what you changed. This makes your life much easier. Okay, before we move on, don’t forget to run
migrations again since we rolled back.

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html

CHAPTER 3 ■ GETTING SOMETHING RUNNING

35

Generating a Controller
You’ve created a model and its supporting database table, so the next step is to work on the controller and view side of
the application. Let’s create a controller named articles (remember controllers are plural and models are singular)
to control the operation of the application’s articles functionality. Just as with models, Rails provides a generator that
you can use to create controllers:

$ rails generate controller articles

create app/controllers/articles_controller.rb
invoke erb
create app/views/articles
invoke test_unit
create test/controllers/articles_controller_test.rb
invoke helper
create app/helpers/articles_helper.rb
invoke test_unit
create test/helpers/articles_helper_test.rb
invoke assets
invoke coffee
create app/assets/javascript/articles.js.coffee
invoke scss
create app/assets/stylesheets/articles.css.scss

The controller generator creates six files:

• app/controllers/articles_controller.rb: The controller that is responsible for handling
requests and responses for anything to do with articles.

• test/controllers/articles_controller_test.rb: The class that contains all functional
tests for the articles controller (Chapter 11 covers testing applications).

• app/helpers/articles_helper.rb: The helper class in which you can add utility methods
that can be used in your views (Chapters 7 and 8 cover helpers).

• test/helpers/articles_helper_test.rb: The class that contains all helper tests for your
helper class.

• app/assets/javascripts/articles.js.coffee: This is a CoffeeScript file for writing the
JavaScript associated with the views for our articles. We’ll go in to more depth about
JavaScript later.

• app/assets/stylesheets/articles.css.scss: This is a SASS (Syntactically Awesome
Stylesheets) file where you can put style sheets for the associated views.

Note ■ CoffeeScript and SASS are languages that compile into JavaScript and CSS, respectively. Rails supports these

by default by using the asset pipeline to compile them into more standard languages automatically.

The controller generator also creates an empty directory in app/views called articles. This is where you place
the templates for the articles controller.

CHAPTER 3 ■ GETTING SOMETHING RUNNING

36

Up and Running with Scaffolding
One of the most talked-about features that has given a lot of exposure to Rails is its scaffolding capabilities. Scaffolding
allows you to create a boilerplate-style set of actions and templates that makes it easy to manipulate data for a specific
model. You generate scaffolding using the scaffold generator. You’re probably getting used to generators by now. Rails
makes heavy use of them because they help automate repetitive tasks and generally remove the chances for errors
when creating new files. Unlike you probably would, the generator won’t ever forget how to name a file; nor will it
make a typo when creating a class. Let’s use the scaffold generator now and solve the mystery of how this works:

$ rails generate scaffold Article title:string body:text published_at:datetime
--skip-migration

Because you’ve already generated a few of these files, Rails prompts you before it tries to overwrite any that
already exist. Specifically, it warns about the articles controller, the articles functional test, the articles fixture
file, and both the SASS and CoffeeScript files. Because your articles controller was empty, it’s safe to overwrite it.
The same goes for the test and fixture, so go ahead and answer yes by pressing Y when you’re asked. You used the
--skip-migration option when calling the generator because a migration creating the articles table already existed,
and Rails would complain if you tried to create the same table twice.

The scaffold provides methods and pages that allow you to insert, update, and delete records in your database.
That’s all you need to generate a working scaffold of the Article model. Let’s fire up the web server and test it. Start
your local web server from the command line (rails server), and browse to the articles controller in your browser:

http://localhost:3000/articles

You should see the results displayed in your browser, as shown in Figure 3-2.

Figure 3-2. Articles scaffolding

http://localhost:3000/articles

CHAPTER 3 ■ GETTING SOMETHING RUNNING

37

Click the New article link, and you’re taken to a screen where you can enter articles. Notice that the URL is
http://localhost:3000/articles/new, which means you’re invoking the new action on the articles controller.
Go ahead and add a few articles and generally play with the application. Figure 3-3 shows an example of an article
entered on this screen.

Figure 3-3. Adding an article

Notice that every time you add an article, you’re redirected back to the index action, where you see all your
articles listed. You can edit them, delete them, or create new ones. If you click the Show link, you’re taken to the detail
page for that article. You’ve got to admit, Rails gives you a lot of functionality for free.

Speed is the key benefit here. The scaffold generator allows you to quickly get something running, which is a
great way to test your assumptions.

Caution ■ Scaffolding comes with an important disclaimer. You shouldn’t use it in production. It exists to help you do

exactly what you just did: get something running. By its definition, it’s a temporary or unfinished product.

www.allitebooks.com

http://localhost:3000/articles/new
http://www.allitebooks.org

CHAPTER 3 ■ GETTING SOMETHING RUNNING

38

Adding More Fields
Now that you can see the model represented in the browser, let’s add some more fields to make it a little more
interesting. Whenever you need to add or modify database fields, you should do so using a migration. In this case,
let’s add the excerpt and location fields to the articles table.

You didn’t need to generate the last migration (the one you used to create the articles table), because the model
generator took care of that for you. This time around, you can use the migration generator. It works just like the model
and controller generators, which you’ve seen in action. All you need to do is give the migration generator a descriptive
name for the transformation:

$ rails generate migration add_excerpt_and_location_to_articles
excerpt:string location:string

invoke active_record
create db/migrate/20130423232337_add_excerpt_and_location_to_articles.rb

As you’ve already seen, the generator creates a migration class in db/migrate prefixed by a number identifying
when the migration was created. If you open the 20130423232337_add_excerpt_and_location_to_articles.rb
file, you see the migration class with the code shown in Listing 3-4. As with the model generator, which prefilled
the migration to some extent, passing field names and types as options to the migration generator prefills the
generated class for you as long as you refer to the correct table name at the end of the migration name—in this case,
to_articles.

Listing 3-4. The db/migrate/20100223232337_add_excerpt_and_location_to_articles.rb File

class AddExcerptAndLocationToArticles < ActiveRecord::Migration
 def change
 add_column :articles, :excerpt, :string
 add_column :articles, :location, :string
 end
end

Looking at the add_column method, the first argument is the table name (articles), the second is the field name,
and the third is the field type. Remember that the change method knows how to migrate up or down, so if in the
unlikely event you want to remove these columns, Rails will know how.

With this new migration in place, use the Rake task to apply it and make the changes to the database:

$ rake db:migrate

== AddExcerptAndLocationToArticles: migrating ================================
-- add_column(:articles, : excerpt, :string)
 -> 0.0236s
-- add_column(:articles, : location, :text)
 -> 0.0013s
== AddExcerptAndLocationToArticles: migrated (0.0164s) =========================

CHAPTER 3 ■ GETTING SOMETHING RUNNING

39

If all goes according to plan, the articles table now has two new fields. You could edit the view templates in the
app/views/articles folder to add form elements for the new fields, but instead let’s call the generator again (you’ll
learn about views in Chapter 7):

$ rails generate scaffold Article title:string location:string excerpt:string
body:text published_at:datetime --skip-migration

Press Y when asked if you want to overwrite some files, and you’re finished, as you can see in Figure 3-4.

Figure 3-4. Additional fields added to the new article form

This exposes one of the issues of this type of scaffolding: when you generate new versions of the scaffold files,
you run the risk of overwriting custom changes you may have made. We’re doing it this way as an illustration, but you
wouldn’t normally do this.

CHAPTER 3 ■ GETTING SOMETHING RUNNING

40

Adding Validations
You may wonder what happens if you try to save a new article without giving it any information. Try doing that: Rails
doesn’t care. Actually, it’s the Article model that doesn’t care. This is because in Rails, the rules for data integrity
(such as required fields) are the responsibility of the model.

To add basic validation for required fields, open the Article model in app/models/article.rb and add the
validation method shown in Listing 3-5 inside the class body.

Listing 3-5. Validation Added to the app/models/article.rb File

class Article < ActiveRecord::Base
 validates_presence_of :title, :body
end

Save the file, and try creating an empty article again. Instead of saving the record, Rails displays a formatted error
message, as shown in Figure 3-5.

Figure 3-5. Error messages for an article

If you’ve done any web development before, you know that validating fields is a major nuisance. Thankfully, Rails
makes it easy.

CHAPTER 3 ■ GETTING SOMETHING RUNNING

41

Note ■ Notice that you don’t need to restart the web server when you make changes to your project files in the

app/ directory. This is a convenience provided by Rails when running in development mode.

Chapter 6 goes through all the specifics of model validations. For now, you’re using only the most primitive
methods of protecting your data. It shouldn’t surprise you that Active Record is capable of much more involved
validations, such as making sure a numeric value is entered, validating that data are in the correct format using regular
expressions, and ensuring unique values, among other checks.

Note ■ Regular expressions (regex for short) are expressions that describe patterns in strings. Like most programming

languages, Ruby has built-in support for regular expressions.

Generated Files
Now that you’ve seen the pages in action, let’s look at the articles controller again. As you can see in Listing 3-6,
the controller is now chock-full of actions. There’s one for each of index, show, new, create, edit, update, and
destroy—the basic CRUD actions.

Listing 3-6. The app/controllers/articles_controller.rb

class ArticlesController < ApplicationController
 before_action :set_article, only: [:show, :edit, :update, :destroy]

 # GET /articles
 # GET /articles.json
 def index
 @articles = Article.all
 end

 # GET /articles/1
 # GET /articles/1.json
 def show
 end

 # GET /articles/new
 def new
 @article = Article.new
 end

 # GET /articles/1/edit
 def edit
 end

 # POST /articles
 # POST /articles.json
 def create
 @article = Article.new(article_params)

CHAPTER 3 ■ GETTING SOMETHING RUNNING

42

 respond_to do |format|
 if @article.save
 format.html { redirect_to @article, notice: 'Article was successfully created.' }
 format.json { render action: 'show', status: :created, location: @article }
 else
 format.html { render action: "new" }
 format.json { render json: @article.errors, status: :unprocessable_entity }
 end
 end
 end

 # PATCH/PUT /articles/1
 # PATCH/PUT /articles/1.json
 def update
 respond_to do |format|
 if @article.update(article_params)
 format.html { redirect_to @article, notice: 'Article was successfully updated.') }
 format.json { head :no_content }
 else
 format.html { render action: "edit" }
 format.json { render json: @article.errors, status: :unprocessable_entity }
 end
 end
 end # DELETE /articles/1
 # DELETE /articles/1.xml
 def destroy
 @article.destroy

 respond_to do |format|
 format.html { redirect_to articles_url }
 format.json { head :no_content }
 end
 end

 private
 # Use callbacks to share common setup or constraints between actions.
 def set_article
 @article = Article.find(params[:id])
 End

 # Never trust parameters from the scary internet, only allow the white list through.
 def article_params
 params.require(:article).permit(:title, :location, :excerpt, :body, :published_at)
 end
end

As you did in this chapter, after you’ve generated scaffolding, if you change your model, you have to regenerate
it if you want your application to follow suit. Most of the time, however, you make the changes by hand and have a
variation of the default scaffold.

CHAPTER 3 ■ GETTING SOMETHING RUNNING

43

It’s important to realize why scaffolding exists and to be aware of its limitations. As you’ve just seen, scaffolding
helps when you need to get something running quickly to test your assumptions. It doesn’t take you very far in the real
world, and eventually you end up replacing most (if not all) of it.

Explore the generated code and see if you can figure out how it hangs together. Don’t worry if you can’t
understand all of it—the chapters that follow will discuss it in depth. With everything you know about Rails already,
you should be able to piece together most of it.

Try changing a few things to see what happens. If you inadvertently break something, you can always run the
scaffolding generator again to revert to the original. Can you see how the views in app/views/articles are related
to the actions? What about the response messages, like Article was successfully created? What happens when
you change them? See if you can find where the error messages for failed validations are rendered. If you remove the
message, does the record still get saved? You can learn a lot by exploring, so take as much time as you need.

Summary
This chapter started by outlining the basics of the sample application. Then, you rolled up your sleeves and created
a database and configuration files. Based on the goals of the application, you began by creating the tables necessary
to run the core of your Article model and got a first look at the simplicity and flexibility that migrations give the
development process. The scaffolding allowed you to test your assumptions about the model and table you created by
getting a firsthand look at it in action. You also took a first crack at adding in validations that ensure you maintain the
integrity of your data. The chapters that follow investigate these concepts in depth, starting with the first part of the
MVC principle: models.

45

CHAPTER 4

Introduction to the Ruby Language

Rails is a great framework for the development of web-based applications. One of its greatest advantages over other
web frameworks is that it’s written in Ruby, a very consistent and elegant object-oriented programming language.
In order to increase your productivity as a Rails developer, it’s important that you master Ruby. If you’re new to
programming, don’t worry: we explain the concepts in a way you can understand.

Ruby was made to make developers happy. This should be exciting to you because you’re a developer, and you
want to be happy! Some languages feel like the creator was in a bad mood and hated you. Ruby tries its best to make
you feel at ease and in control. As you grow as a developer, you’ll understand the importance of this fact more and
more, especially if you do this for a living.

This chapter gives you an overview of the features of the Ruby language. It explains how the language is organized
and presents its fundamentals. After reading this chapter, you should better understand how the Ruby language that
Rails is built on works, and you should be able to create classes and methods and use control-flow statements in your
code. The best way to learn is to explore the language using this chapter as a guide. It’s important that you run the
examples given yourself, and also to try things on your own.

Ruby has far more features than we can mention in this short introduction. We encourage you to investigate more
of the complex features of Ruby as you continue using Rails.

Instant Interaction
A lot of languages require that you write some code, compile, and then run the program to see the results.
However, Ruby is dynamic, which means you can work with the language live. You will get instant feedback from
your commands.

Ruby comes with a great little tool: an interactive interpreter called irb (for Interactive Ruby). You can start up an
irb session whenever you want by typing irb at the command prompt. Using irb, you can play around with code and
make sure it works as you expect before you write it into your programs.

You can execute any arbitrary Ruby code in irb and do anything you would otherwise do inside your Ruby
programs: set variables, evaluate conditions, and inspect objects. The only essential difference between an interactive
session and a regular old Ruby program is that irb echoes the return value of everything it executes. This saves you
from having to explicitly print the results of an evaluation. Just run the code, and irb prints the result.

You can tell when you’re in an irb session by looking for the irb prompt, which looks like irb(main):001:0>, and
the arrow symbol (=>), which indicates the response.

To start an irb session, go to the command prompt and type irb. You should see the irb prompt waiting for your input:

$ irb
irb(main):001:0>

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

46

Look at that. You’re inside Ruby! If you press Enter, Ruby ignores the line and gives you another prompt, but
it ends with an asterisk instead of the greater-than sign to indicate that Ruby is expecting something from you to
execute. It can only get more exciting from here.

Note ■ Your irb prompt might look slightly different depending on your version of Ruby and your computer

environment. This is perfectly okay.

When learning a new programming language, traditionally, the first thing you do is make the language print the
string “Hello, World!” Let’s go ahead and do that. Type the following after the irb prompt:

irb(main):001:0> "Hello, World!"
=> "Hello, World!"

Excellent. You just wrote your first bit of Ruby! Some languages require many more lines of code to write the
Hello, World! Application, but in Ruby it only took one. One of the ways Ruby makes developers happy is by being
concise. One line is certainly concise, wouldn’t you say?

So what exactly happened here? Well first, you created a string with the content “Hello, World!” The irb command
always outputs the value of the last command to the screen, thus you have “Hello, World!” written to the screen.
You will notice as you type valid Ruby commands and press Enter that irb will continue to output the value of those
commands. Try adding two numbers together:

irb(main):001:0> 1 + 1
=> 2

Now let’s try something a little more difficult. Let’s ask Ruby for the current time:

irb(main):001:0> Time.now
=> 2013-04-02 14:14:55 -0500

So, Ruby dutifully reported the current time to us, including the date no less. What if you just wanted the
current year?

irb(main):001:0> Time.now.year
=> 2013

You can see how easy and concise Ruby is. The code is simple and almost reads like an English sentence. If you’re
wanting a description of exactly what you did in the last two examples here it is: You called a method (now) on a Class
(Time). In the second example, you chained another method call onto the previous one. We’ll cover this in depth later,
but first let’s talk about data types.

Ruby Data Types
A data type is a constraint placed on the interpretation of data. Numbers and strings are just two of the data types the
Ruby interpreter distinguishes among, and the way Ruby adds numbers is different from the way in which it adds strings.
For example, 2 + 3 evaluates to 5, but, “2” + “3” evaluates to “23”. The second example may seem surprising at first, but it’s
simple: anything, including numbers, surrounded by quotes is interpreted as a string. Read on to find out more.

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

47

Strings
A string is a sequence of characters that usually represents a word or some other form of text. In Ruby, you can create
String objects by putting the characters inside single or double quotation marks:

irb(main):001:0> 'Ruby is a great language'
=> "Ruby is a great language"

irb(main):002:0> "Rails is a great framework"
=> "Rails is a great framework"

The main difference between strings delimited by single and double quotes is that the latter are subject to
substitutions. Those substitutions are identified by Ruby code inside the #{} construct, which is evaluated and
replaced by its result in the final String object. The technical term for this technique is string interpolation.

irb(main):003:0> "Now is #{Time.now}"
=> "Now is 2013-04-02 20:54:31 +0000"

irb(main):004:0> 'Now is #{Time.now}'
=> "Now is \#{Time.now}"

Note ■ In general, most developers only use double quotes when using string interpolation or if the actual string

includes single quotes. This is technically faster, if only slightly.

When you use the hash symbol (#) with the curly braces, Ruby notices and tries to evaluate whatever is between
the braces. To evaluate means to process it like any other code. So, inside the braces, you say Time.now, which returns
the current time. However, when you use single quotes, Ruby doesn’t check the string for substitutions before sending
it through.

The String class has a large number of methods you need when doing string manipulation, like concatenation
and case-changing operations. The following examples list a few of those methods:

irb(main):005:0> "Toronto - Canada".downcase
=> "toronto - canada"

irb(main):006:0> "New York, USA".upcase
=> "NEW YORK, USA"

irb(main):007:0> "a " + "few " + "strings " + "together"
=> "a few strings together"

irb(main):008:0> "HELLO".capitalize
=> "Hello"

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

48

Tip ■ To get a list of methods available for any object, call the "methods" method using an instance of the object you

want to inspect. Type "a string".methods in irb to see all the methods you can call on the String object. If you want

to find a certain method, try using grep on that method, too. For example, typing "a string".methods.grep /case/

shows all string methods containing the word case. Other examples would be:

4.methods

["some", "array", "elements"].methods

Numbers
Ruby has a few classes to represent numbers: Fixnum, Bignum, and Float. As the names of the classes suggest, Fixnum
and Bignum represent whole numbers and are both subclasses of Integer. Float objects represent real numbers,
meaning numbers with a fractional part. As in most programming languages, you can perform basic arithmetic
operations in Ruby as you would using a calculator:

irb(main):001:0> 1 + 2
=> 3

irb(main):002:0> 2323 + 34545
=> 36868

irb(main):003:0> 9093 - 23236
=> -14143

irb(main):004:0> 343 / 4564
=> 0

irb(main):005:0> 3434 / 53
=> 64

irb(main):006:0> 99 * 345
=> 34155

irb(main):007:0> 34545.6 / 3434.1
=> 10.059578928977

Note ■ Notice that when whole numbers are divided, the result is always a whole number even if there is a remainder.

If one of the numbers is a decimal, then a decimal will always be returned.

 irb(main):001:0> 6/4
=> 1

irb(main):002:0> 6/4.0
=> 1.5

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

49

Symbols
Symbols aren’t a common feature in most languages. However, as you’ll learn when reading this book, they’re
extremely useful. Symbol is a data type that starts with a colon, like :controller. Symbols are objects that work
just like any other object in Ruby. They’re used to point to some data that isn’t a traditional String object, in a
human-readable format. In fact, they’re almost like strings, except you can’t modify them:

irb(main):001:0> :my_symbol
=> :my_symbol

irb(main):002:0> :my_symbol + :second
NoMethodError: undefined method `+' for :my_symbol:Symbol
 from (irb):2
 from /usr/bin/irb:15:in `<main>'
irb(main):003:0> "my_string" + "second"
=> "my_stringsecond"

Fancy computer science types refer to this condition as being immutable, which really just means you can’t
modify something. Use symbols when you want to name something nicely and you don’t want it changed at all—for
example, by having something appended to the end of it. There are also memory advantages to using symbols, but
that is out of the scope of this book. The importance of symbols will become clear as you use Ruby more.

Arrays and Hashes
Sometimes you have a lot of data that you need to keep track of—maybe a list of students, users, or anything that you
may keep in a collection. Ruby has two different types of container objects for storing collections: arrays and hashes.

Arrays are part of almost every modern language. They keep information in order. You can ask for the first item
or the last item or put items in a certain order. You can think of an Array object as a long series of boxes in which
you can put things. You define arrays by using the [] notation. Note that in most programming languages, including
Ruby, arrays are 0 indexed. This means you always refer to the first element in an array as 0. Read carefully what
happens here:

irb(main):001:0> city_array = ['Toronto', 'Miami', 'Paris']
=> ["Toronto", "Miami", "Paris"]

irb(main):002:0> city_array[0]
=> "Toronto"

irb(main):003:0> city_array[1] = 'New York'
=> "New York"

irb(main):004:0> city_array << 'London'
=> ["Toronto", "New York", "Paris", "London"]

irb(main):004:0> city_array + ["Los Angeles"]
=> ["Toronto", "New York", "Paris", "London", "Los Angeles"]

In the first example we created the array of cities and assigned it to the variable named city_array. In the second
example we referenced the city array and asked for the object at the index position 0 (remember, with arrays, 0 is the
first index). “Toronto” is returned. In the third example, we are replacing the object at index 1 with the string “New
York.” Notice in the next example when the array is printed to the screen that Miami is no longer in the list but has

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

50

been replaced. The fourth example uses what is commonly called the shovel operator. Simply put, this just adds the
object to the end of the array. So we added the string “London” to the end of our array. Finally, in the last array we
add the array that contains “Los Angeles” to our previous array. This returns a new single dimensional array with the
contents of both arrays. Arrays are extremely common and useful in Ruby.

The Hash object offers another way to keep a collection. Hashes are different from arrays, because they store
items using a key. Hash objects preserve order, just like arrays, which enables you to call certain methods on them—for
example, hash.first to get the first key, value pair. In Ruby, you often use symbols for hash keys, but in reality, any
object can function as a key.

You define hashes with curly braces, {}. You can create a Hash object by defining it with {:key => "value",
:other_key => "other value" }. Then, you can pull out data by using square brackets on the end of the list. For
instance, you retrieve a value by typing my_hash[:key] from the my_hash variable. Here are some examples:

irb(main):005:0> my_hash = {:canada => 'Toronto', :france => 'Paris', :uk => 'London'}
=> {:canada=>"Toronto", :france=>"Paris", :uk=>"London"}

We’ve created a hash and assigned it to the “my_hash” variable. In this example, the keys of our array are
countries, and the values are cities. To reference a specific value of a hash, you pass the hash a key and it will return
the value to you:

irb(main):006:0> my_hash[:uk]
=> "London"

We’ve passed the hash a key of :uk, and it return the value of “London.”

irb(main):007:0> my_hash[:canada] = 'Calgary'
=> "Calgary"

This is the same idea, but here we’re changing the value out for the key Canada. So the value of “Toronto” goes
away and is replaced by “Calgary.”

irb(main):008:0> my_hash.first
=> [:canada, "Calgary"]

In this example, we use the first method, which returns the first key value pair. Notice in this case the return
value is an array. The first element in the array is the key, and the second is the value. The keys method will return an
array of all the keys contained in the hash. Here is an example:

irb(main):010:0> my_hash.keys
=> [:canada, :france, :uk]

It is important to note that in all of our examples, we have assigned strings to different positions to both our
hashes and arrays, but any object could be stored in an array or hash. For instance, you might want to store numbers
or even another array or hash. The possibilities are unlimited.

irb(main):001:0> numbers_array = [1, 2, 3, 4, 5]
=> [1,2,3,4,5]

irb(main):002:0> numbers_hash = {:one => 1, :two => 2, :three => 3}
=> {:one => 1, :two => 2, :three => 3}

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

51

Language Basics
Like other programming languages, Ruby includes variables, operators, control-flow statements, and methods.
This section shows you how to use them.

Variables
Variables are used to hold values you want to keep for later processing. When you perform a calculation, you probably
want to use the result of that calculation somewhere else in your application code, and that’s when you need a
variable. In Ruby, variables are easily created. You just need to give a variable a name and assign a value to it; there’s
no need to specify a data type for the variable or define it in your code before you use it.

Let’s create a few variables to hold some values you may need later. Notice that you can reuse a variable name by
reassigning a value:

irb(main):001:0> test_variable = 'This is a string'
=> "This is a string"

irb(main):002:0> test_variable = 2010
=> 2010

irb(main):003:0> test_variable = 232.3
=> 232.3

You’ve created a variable named test_variable and assigned a few different values to it. Because everything in
Ruby is an object, the test_variable variable holds a reference to the object you assigned.

Variable names can be any sequence of numbers and letters, as long as they start with a letter or an underscore;
however, the first character of a variable indicates the type of the variable. Variables also have a scope, which is the
context in which the variable is defined. Some variables are used in a small snippet of code and need to exist for only
a short period of time; those are called local variables. Table 4-1 lists the different types of variables supported by Ruby
and shows how to recognize them when you’re coding. Type some variable names in irb, and you’ll get results similar
to those shown here.

Table 4-1. Ruby Variables

Example Description

@@count Class variables start with @@. Class variables exist in the scope of a class, so all instances of
a specific class have a single value for the class variable.

@name Instance variables start with @. Instance variables are unique to a given instance of a class.

SERVER_IP You can create a constant in Ruby by capitalizing the first letter of a variable, but it’s a convention
that constants are written in all uppercase characters. Constants are variables that don’t change
throughout the execution of a program. In Ruby, constants can be reassigned; however, you get
a warning from the interpreter if you do so.

my_string Local variables start with a lowercase letter, and they live for only a short period of time. They
usually exist only inside the method or block of code where they’re first assigned.

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

52

In Ruby, it’s considered best practice to use long and descriptive variable names. For example, in Java, you may
have a variable named phi; but in Ruby, you write out place_holder_variable for clarity. The basic idea is that code
is much more readable if the person looking at it (probably you) doesn’t have to guess what phi stands for. This is
extremely important when you come back to a piece of code after a year or so.

Operators
You can combine Ruby code using operators. Many classes implement operators as methods. Table 4-2 lists the most
common operators and their functions.

Table 4-2. Ruby Operators

Operator Description

[] []= Assignment

* / % + ** Arithmetic

<= >= < > Comparison

.. ... Range

& ^ | AND, exclusive OR, regular OR (bitwise)

|| && not or and Logical operators

Ruby contains a ternary operator that you can use as a short notation for if-else-end. The ternary operator uses
the form expression ? value_if_true : value_if_false:

a = 10
b = 20
a > b ? a : b
=> 20

In plain English, we’re saying if a is greater than b then return a, otherwise return b. The ternary operator is very
concise but still easy to read.

Blocks and Iterators
Any method in Ruby can accept a code block—a fragment of code between curly braces or do..end constructs; it
determines whether the method in question calls the given block. The block always appears immediately after the
method call, with the start of the block coming on the same line as the method invocation.

Here’s an example using the times method; times executes the given code block once for each iteration. In this
case, “Hello” is printed five times:

5.times { puts "Hello" }
Hello
Hello
Hello
Hello
Hello

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

53

If a method yields arguments to a block, the arguments are named between two pipe characters (|) on the same
line as the method call. In the next example, the block receives one argument, item.
[1,2,3,4,5].each { |item| puts item }

1
2
3
4
5

Here, each number is yielded to the block in succession. You store the number in the block variable item and use
puts to print it on its own line.

The convention is to use braces for single-line blocks and do..end for multiline blocks. Here’s an example similar
to the previous one; it uses each_with_index, which yields the item and its index in the array:

["a", "b", "c"].each_with_index do |item, index|
 puts "Item: #{item}"
 puts "Index: #{index}"
 puts "---"
end

Item: a
Index: 0

Item: b
Index: 1

Item: c
Index: 2

Control Structures
In all of the previous examples, the Ruby interpreter executed the code from top to bottom. However, in the majority
of cases, you want to control which methods are to be executed and when they should be executed. The statements
you want to be executed may depend on many variables, such as the state of some computation or the user input.
For that purpose, programming languages have control-flow statements, which allow you to execute code based
on conditions. Here are a few examples of how to use if, else, elsif, unless, while, and end. Notice that control
structures in Ruby are terminated using the end keyword:

now = Time.now
=> 2010-04-05 20:55:03 +0000

if now == Time.now
 puts "now is in the past"
elsif now > Time.now
 puts "nonsense"
else
 puts "time has passed"
end
=> time has passed

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

54

The first if statement will never trigger because there is a slight bit of time that passes between when you set the
now variable and when you test it against Time.now. The second conditional won’t trigger because the now variable will
obviously be in the past, if only slightly. The third conditional “else” will always trigger, because neither of the first
two conditionals triggered.

A trick that makes simple conditionals easy to read is to place if and unless conditional statements at the end of
a code line so they act as modifiers. Here’s how it looks:

a = 5
b = 10
puts "b is greater than a" if a < b

b is greater than a

puts "a is greater than b" unless a < b

nil

The unless structure was confusing for us at first. Once we started reading it as “if not” it made sense. In the
previous example, reading the statement as “puts ‘a is greater than b’ if not a < b” makes the most sense.

You can also use while statements, as in all major programming languages:

a = 5
b = 10

while a < b
 puts "a is #{a}"
 a += 1
end

a is 5
a is 6
a is 7
a is 8
a is 9

Methods
Methods are little programmable actions that you can define to help your development. Let’s leave irb for the moment
and talk about pure Ruby code. (All of this also works if you type it into irb.)

Suppose that, several times in the application you’re writing, you need to get the current time as a string. To save
yourself from having to retype Time.now.to_s over and over, you can build a method. Every method starts with def:

def time_as_string
 Time.now.to_s
end

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

55

Anywhere in the application that you want to get the time, you type time_as_string:

puts time_as_string

"2010-04-05 20:55:21 +0000"

See how easy that is? Obviously with this code you didn’t do much, but methods can be much more complex.
Methods can also take in variables:

def say_hello_to(name)
 "Hello, #{name}!"
end

puts say_hello_to("John")

"Hello, John!"

Here you defined a method named say_hello_to that accepts one argument name. That method uses string
interpolation to return a string of “Hello, name that was passed to the method!” The puts then sends the response of
that method to the screen.

Next, let’s look at how to put methods together into classes to make them really powerful.

Note ■ You already know that local variables must start with a lowercase letter and can’t contain any characters other

than letters, numbers, and underscores. Method names are restricted to the same rules, which means they often look like

variables. Keywords (like if, or, when, and, and others) share the same set of properties. How does the Ruby interpreter

know the difference? When Ruby encounters a word, it sees it as a local variable name, a method invocation, or a

keyword. If it’s a keyword, then Ruby knows it and responds accordingly. If there’s an equals sign (=) to the right of the

word, Ruby assumes it’s a local variable being assigned. If it’s neither a keyword nor an assignment, Ruby assumes it’s a

method being invoked and sends the method to the implied receiver, self.

Classes and Objects
You’ve reviewed all the basic types of items in a Ruby application, so let’s start using them.

Objects
Ruby is an object-oriented (OO) programming language. If you’ve never worked in an OO language before, the
metaphors used can be confusing the first time you hear them. Basically, objects are simple ways to separate your code
and the data it contains. Objects are just like objects in the real world. You can move them around, make them do
things, destroy them, create them, and so forth. In OO programming, you act on objects by either calling methods on
them or passing them to other methods. This will become clearer as we go along.

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

56

Let’s say you’re writing a program to help track the athletic program at a school. You have a list of all the students
who are currently participating on a team, along with their student IDs. This example looks at the rowing team. You
could keep an array of arrays representing the students on the team:

rowing_team = [[1975, "Smith", "John"], [1964, "Brown", "Dan"], ...]

Note ■ This is called a multidimensional array. It’s simply an array that contains more arrays as elements. You could

reference the first array in the array like so:

rowing_team.first
=> [1975, "Smith", "John"]

This is an array of [id, first_name, last_name]. You’d probably need to add a comment to explain that. If you
wanted multiple teams, you could wrap this in a hash:

teams = { :rowing => [[1975, "Smith", "John"], [1964, "Brown", "Dan"], ...],
 :track => [[1975, "Smith", "John"], [1900, "Mark", "Twain"], ...]
 }

That works for now. But it’s kind of ugly, and you could easily get confused, especially if you kept adding teams.
This style of coding is referred to as procedural, and it’s not object oriented. You’re keeping track of huge data
collections that are made up of simple types. Wouldn’t it be nice to keep all these data more organized? You’ll need to
define what your objects will look like, so you’ll need a pattern, called a class. Then you will instantiate your class to
make an instance.

Classes
A class is like a blueprint for creating an object. You’ve been using classes all over the place—Array, String, User, and
so on. Now, let’s construct a Student class and a Team class.

Here is the basic blueprint for a Student class:

class Student
 # Setter method for @first_name
 def first_name=(value)
 @first_name = value
 end

 # Getter method for @first_name
 def first_name
 @first_name
 end

 # Setter method for @last_name
 def last_name=(value)
 @last_name = value
 end

4

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

57

 # Getter method for @last_name
 def last_name
 @last_name
 end

 # Returns full name
 def full_name
 last_name + ", " + first_name
 end
end

Note ■ “Getter” and “Setter” methods are methods that get an instance variable or set an instance variable,

respectively. It’s that simple. They are used to expose this functionality both inside and outside your instance. In this case,

you have a getter and setter method for last_name and first_name.

Right now, you’re keeping track of the student’s first_name and last_name strings. As you can see, you define
a method named first_name=(value), and you take value and put it into an instance variable named @first_name.
Let’s try using this class:

Take the Class, and turn it into a real Object instance
@student = Student.new
@student.first_name = "Bob"
@student.last_name = "Jones"
puts @student.full_name

"Jones, Bob"

Instead of building a dumb array, you’ve built a smart class. When you call new on the class, it builds a version of
itself called an object, which is then stored in the @student variable. In the next two lines, you use the = methods to
store the student’s first and last names. Then, you use the method full_name to give a nicely formatted response.

It turns out that creating getter and setter methods like this is a common practice in OO programming.
Fortunately, Ruby saves you the effort of creating them by providing a shortcut called attr_accessor:

class Student
 attr_accessor :first_name, :last_name, :id_number

 def full_name
 last_name + ", " + first_name
 end
end

This behaves in exactly the same way as the first version. The attr_accessor bit helps by automatically building
the methods you need, such as first_name=. Also, this time you add an @id_number.

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

58

Let’s build a Team class now:

class Team
 attr_accessor :name, :students

 def initialize(name)
 @name = name
 @students = []
 end

 def add_student(id_number, first_name, last_name)
 student = Student.new
 student.id_number = id_number
 student.first_name = first_name
 student.last_name = last_name
 @students << student
 end

 def print_students
 @students.each do |student|
 puts student.full_name
 end
 end
end

You’ve added something new to this class: the initialize method. Now, when you call new, you can pass in
the name. For example, you can type Team.new('baseball'), and the initialize method is called. Not only does
initialize set up the name, but it also sets up an instance variable named @students and turns it into an empty
array. The method add_students fills the array with new Student objects.

Let’s see how you use this class:

team = Team.new("Rowing")
team.add_student(1982, "John", "Smith")
team.add_student(1984, "Bob", "Jones")
team.print_students

Smith, John
Jones, Bob

Containing things in objects cleans up your code. By using classes, you ensure that each object only needs to
worry about its own concerns. If you were writing this application without objects, everyone’s business would be
shared. The variables would all exist around one another, and there would be one huge object. Objects let you break
things up into small working parts.

By now you should have a general idea of what’s going on with some of the Ruby code you’ve seen floating
around Rails. There is a lot more to Ruby that we haven’t touched on here. Ruby has some amazing metaprogramming
features you can read about in a book that specifically focuses on Ruby, such as Beginning Ruby: From Novice to
Professional, second edition, by Peter Cooper (Apress, 2009).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4 ■ INTRODUCTION TO THE RUBY LANGUAGE

59

RUBY STYLE

Style is important when you’re programming. Ruby programmers tend to be picky about style, and they generally

adhere to a few specific guidelines, summarized here:

Indentation size is two spaces. •

Spaces are preferred to tabs. •

Variables should be lowercase and underscored: • some_variable, not someVariable or

somevariable.

Method definitions should include parentheses and no unnecessary spaces: •
MyClass.my_method(my_arg), not my_method(my_arg) or my_method my_arg.

Whatever your personal style, the most important thing is to remain consistent. Nothing is worse than looking at

code that switches between tabs and spaces or mixed and lowercase variables.

Ruby Documentation
You can refer to the following documentation for more information about Ruby:

• Core library: The Ruby distribution comes with a set of classes known as the Ruby Core library,
which includes base classes such as Object, String, Array, and others. In the Ruby Core
application programming interface (API) documentation, you can find all the classes and
methods included in the Core library. In this short chapter, you’ve already seen a few classes
in action. One of the secrets to effectively using Ruby is to know which classes and methods
are available to you. We recommend that you go to the Ruby Core API documentation page at
www.ruby-doc.org/core/ and start to learn more about Ruby classes and methods.

• Standard library: In addition to the Core library, the Ruby distribution comes bundled with
the Ruby Standard library. It includes a set of classes that extends the functionality of the
Ruby language by helping developers perform common programming tasks, such as network
programming and threading. Make sure you spend some time reading the Standard library
documentation at www.ruby-doc.org/stdlib/.

• Online resources: The Ruby documentation project home page is located at www.ruby-doc.org.
There you can find additional reading resources to help you learn Ruby, such as articles and
tutorials, as well as the Core and Standard Ruby API documentation.

Summary
This chapter gave a strong introduction to the Ruby language. You now have the tools to start learning the Rails
framework and start building web applications. As you progress, you’ll more than likely come to love Ruby,
especially if you have a background in other languages. Its power is only matched by its simplicity, and its genuinely
fun to program with. The next chapter will dive into Active Record and learn how Rails lets you easily interact with
your database.

http://www.ruby-doc.org/core/
http://www.ruby-doc.org/stdlib/
http://www.ruby-doc.org/

61

CHAPTER 5

Working with a Database:
Active Record

Earlier, you took a whirlwind tour through creating a basic Rails application using the built-in scaffolding feature. You
sketched out a basic model for a blog application and created the project databases. You used the built-in web server
to run the application locally and practiced adding and managing articles from the web browser. This chapter will
take a more in-depth look at how things work, starting with what is arguably the most important part of Rails: Active
Record.

You may recall from Chapter 1 that Active Record is the Ruby object-relational mapping library that handles
database abstraction and interaction for Rails. Whether you realized it or not, in Chapter 3 all access to the database—
adding, editing, and deleting articles—happened through the magic of Active Record.

If you’re not sure what exactly object-relational mapping is, don’t worry. By the end of this chapter, you’ll
know. For now, it’s best if you think of Active Record as being an intermediary that sits between your code and your
database, allowing you to work with data effectively and naturally. When you use Active Record, you communicate
with your database using pure Ruby code. Active Record translates the Ruby you write into a language that databases
can understand.

This chapter teaches you how to use Active Record to talk to your database and perform basic operations. It
introduces the concepts you need to know about communicating with databases and object-relational mapping.
Then, you will look at Active Record and walk through the techniques you need to know to effectively work with
a database from Rails. If you don’t have a lot of database experience under your belt, don’t worry. Working with
databases through Active Record is a painless and even enjoyable experience. If you’re an experienced database guru,
you’ll find that Active Record is an intelligent and efficient way to perform database operations without the need for
low-level database-specific commands.

Note■ If you need to get the code at the exact point where you finished Chapter 3, download the zip file from GitHub

(https://github.com/adamgamble/beginning_rails_4/archive/ch3.zip).

Introducing Active Record: Object-Relational Mapping on Rails
The key feature of Active Record is that it maps tables to classes, table rows to objects, and table columns to object
attributes. This practice is commonly known as object-relational mapping (ORM). To be sure, Active Record isn’t the
only ORM in existence, but it may well be the easiest to use of the bunch.

https://github.com/adamgamble/beginning_rails_4/archive/ch3.zip

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

62

One of the reasons Active Record is so easy to use is that almost no configuration is required to have it map a
table to a class. You just need to create a Ruby class that’s named after the table you want to map and extend the Active
Record Base class:

class Book < ActiveRecord::Base
end

Notice the part that reads < ActiveRecord::Base. The less-than sign indicates that the Book class on the left is a
subclass of the one on the right, ActiveRecord::Base. In Ruby, when you extend a class like this, you automatically
gain access to all the functionality in the parent class. There’s a lot of code in the ActiveRecord::Base class, but you
don’t need to look at it. Your class merely inherits it, and your work is finished.

Assuming Active Record knows how to find your database and that you have a table called books (note that the
table name is plural, whereas the class name is singular), the table is automatically mapped. If you know your books
table contains the fields title, publisher, and published_at, you can do this in any Ruby context:

book = Book.new

book.title = "Beginning Rails 4"
book.publisher = "Apress"
book.published_at = "2013-10-21"

book.save

These five lines write a new record to the books table. You gain a lot of ability by the simple act of subclassing!
And that’s why Active Record is easy to use. Notice how the table’s fields (title, publisher, and published_at) can
be read and written to using methods on the object you created (book). And you didn’t need to tell Active Record what
your fields were named, or even that you had any fields. It figured this out on its own. Of course, Active Record doesn’t
just let you create new records. It can also read, update, and delete records, plus a lot more.

Active Record is database agnostic, so it doesn’t care which database software you use, and it supports nearly
every database out there. Because it’s a high-level abstraction, the code you write remains the same no matter which
database you’re using. For the record (no pun intended), in this book you use SQLite. As explained in Chapter 2,
SQLite is open source, easy to use, and fast, and it’s the default database used for Rails development. (Along with the
SQLite site, http://sqlite.org, the Wikipedia entry on SQLite is a good resource: http://en.wikipedia.org/wiki/
SQLite.)

Note ■ Rails is also ORM agnostic: it allows you to hook up your ORM of choice. The main ORM competitor for Active

Record is DataMapper (http://datamapper.org), which you can use if you think Active Record has some deficiencies;

however, we feel that sticking to the default ORM is the best way to learn. We don’t cover DataMapper in this book.

What About SQL?
To be sure, you don’t need Active Record (or any ORM) to talk to and manipulate your database. Databases have their
own language: SQL, which is supported by nearly every relational database in existence. Using SQL, you can view
column information, fetch a particular row or a set of rows, and search for rows containing certain criteria. You can
also use SQL to create, drop, and modify tables and insert, update, and destroy the information stored in those tables.
The problem with SQL is that it’s not object oriented. If you want to learn the basic SQL syntax, look at Appendix B.

http://sqlite.org/
http://en.wikipedia.org/wiki/SQLite
http://en.wikipedia.org/wiki/SQLite
http://datamapper.org/

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

63

Object-oriented programming and relational databases are fundamentally different paradigms. The relational
paradigm deals with relations and is mathematical by nature. The object-oriented paradigm, however, deals with
objects, their attributes, and their associations to one another. As soon as you want to make objects persistent using a
relational database, you notice something: there is a rift between these two paradigms—the so-called object-relational
gap. An ORM library like Active Record helps you bridge that gap.

Note ■ Active Record is based on a design pattern. Design patterns are standard solutions to common problems in

software design. Well, it turns out that when you’re working in an object-oriented environment, the problem of how to ef-

fectively communicate with a database (which isn’t object oriented) is quite common. Therefore, many smart people have

wrapped their minds around the problem of how best to bring the object-oriented paradigm together with the relational

database. One of those smart people is Martin Fowler, who, in his book Patterns of Enterprise Application Architecture

(Addison-Wesley, 2002), first described a pattern that he called an Active Record. In the pattern Fowler described, a one-

to-one mapping exists between a database record and the object that represents it. When Rails creator David Heinemeier

Hansson sought to implement an ORM for his framework, he based it on Fowler’s pattern.

Active Record lets you model real-world things in your code. Rails calls these real-world things models—the M
in MVC. A model might be named Person, Product, or Article, and it has a corresponding table in the database:
people, products, or articles. Each model is implemented as a Ruby class and is stored in the app/models directory.
Active Record provides the link between these classes and your tables, allowing you to work with what look like
regular objects, which, in turn, can be persisted to the database. This frees you from having to write low-level SQL
to talk to the database. Instead, you work with your data as if they were an object, and Active Record does all the
translation into SQL behind the scenes. This means that in Rails, you get to stick with one language: Ruby.

Note ■ Just because you’re using Active Record to abstract your SQL generation doesn’t mean SQL is evil. Active

Record makes it possible to execute SQL directly whenever that’s necessary. The truth is that raw SQL is the native

language of databases, and there are some (albeit rare) cases when an ORM won’t cut it.

Active Record Conventions
Active Record achieves its zero-configuration reputation by way of convention. Most of the conventions it uses are
easy to grasp. After all, they’re conventions, so they’re already in wide use. Although you can override most of the
conventions to suit the particular design of your database, you’ll save a lot of time and energy if you stick to them.

Let’s take a quick look at the two main conventions you need to know:

Class names are singular; table names are plural.•

Tables contain an identity column named • id.

Active Record assumes that the name of your table is the plural form of the class name. If your table name
contains underscores, then your class name is assumed to be in CamelCase. Table 5-1 shows some examples.

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

64

All tables are assumed to have a unique identity column named id. This column should be the table’s primary
key (a value used to uniquely identify a table’s row). This is a fairly common convention in database design. (For more
information on primary keys in database design, the Wikipedia entry has a wealth of useful information and links:
http://en.wikipedia.org/wiki/Unique_key.)

The belief in convention over configuration is firmly entrenched in the Rails philosophy, so it should come as
no surprise that there are more conventions at work than those listed here. You’ll likely find that they all make good
sense, and you can use them without paying much attention.

Introducing the Console
Ruby comes with a great little tool: an interactive interpreter called irb (for Interactive Ruby). Most of the time,
you invoke irb using the console program that ships with Rails, but you can start up an irb session whenever you
want by typing irb at the command prompt. The advantage of the console is that it enjoys the special privilege of
being integrated with your project’s environment. This means it has access to and knowledge of your models (and
subsequently, your database).

You use the console as a means to get inside the world of your Article model and to work with it in the exact
same way your Rails application would. As you’ll see in a minute, this is a great way to showcase the capabilities of
Active Record interactively.

You can execute any arbitrary Ruby code in irb and do anything you might otherwise do inside your Ruby
programs: set variables, evaluate conditions, and inspect objects. The only essential difference between an interactive
session and a regular old Ruby program is that irb echoes the return value of everything it executes. This saves you
from having to explicitly print the results of an evaluation. Just run the code, and irb prints the result.

You can tell whenever you’re inside an irb session by looking for the double greater-than sign (>>)—or a slightly
different sign depending on your environment—which indicate the irb prompt, and the arrow symbol (=>), which
indicates the response.

As you continue to progress with both Ruby and Rails, you’ll find that irb is an essential tool. Using irb, you can
play around with code and make sure it works as you expect before you write it into your programs.

If you’ve been following along with the previous chapters, then you should have a model called Article (in
app/models/article.rb), and you’ve probably already entered some sample data when playing with scaffolding in
Chapter 3 If not, make sure you get up to speed by reading Chapters 2 and 3 before moving on.

Let’s load irb and start to experiment with the Article model. Make sure you’re inside the blog application
directory, and then type rails console on your command line. This causes the irb console to load with your
application’s development environment and leaves you at a simple prompt, waiting for you to enter some code:

$ rails console
Loading development environment.
>>

Table 5-1. Table and Class Name Conventions

Table Class

events Event

people Person

categories Category

order_items OrderItem

http://en.wikipedia.org/wiki/Unique_key

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

65

From the console, you can interrogate your Article model for information. For instance, you can ask it for its
column names:

>> Article.column_names
=> ["id", "title", "body", "published_at", "created_at", "updated_at",
"excerpt", "location"]

Look at that! All your columns are presented as a Ruby array (you can tell by the fact that they’re surrounded by
square brackets). Another quick trick you may use often is to type just the name of your model class in the console to
find out not only the column names, but also the data type of each column:

>> Article
=> Article(id: integer, title: string, body: text, published_at: datetime,
created_at: datetime, updated_at: datetime, excerpt: string, location: string)

You get the column_names class method courtesy of the ActiveRecord::Base class from which your Article class
inherits. Actually, you get a lot of methods courtesy of ActiveRecord::Base. To see just how many, you can ask:

>> Article.methods.size
=> 549

Note ■ Depending on the version of Rails you are using and what gems you have installed, the number of methods

might be different from 549. This is normal.

That’s a lot of methods! You may get a different number of methods depending on your environment. Don’t
worry—you don’t need to memorize all of them. Most of them are used internally so you’ll never have to use them
directly. Still, it’s important, if for no other reason than to get a sense of what you get for free just by subclassing Active
Record. Although in this case ActiveRecord::Base is considered the superclass, it sure makes your lowly Article
class super, doesn’t it? (Sorry, enough bad humor.)

A CRASH COURSE IN RUBY CLASS DESIGN

Object-oriented programming is all about objects. You create a class that encapsulates all the logic required to

create an object, along with its properties and attributes, and use the class to produce new objects, each of which

is a unique instance, distinct from other objects of the same class. That may sound a little abstract (and with good

reason—abstraction, after all, is the name of the game), but if it helps, you can think of a class as being an

object factory.

The obvious example is that of a car factory. Contained within a car factory are all the resources, tools, workers,

and processes required to produce a shiny new car. Each car that comes off the assembly line is unique. The cars

may vary in size, color, and shape, or they may not vary from one another much at all. The point is that even if two

cars share the exact same attributes, they aren’t the same car. You certainly wouldn’t expect a change to the color

of one car to affect all the others, would you? Well, in object-oriented programming, it’s not much different. The

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

66

class is the factory that produces objects, which are called instances of a class. From a single factory, an infinite

number of objects can be produced:

class Car
end

car1 = Car.new
car2 = Car.new

car1 is a Car object, which is to say it’s an instance of the class Car. Each car is a different object, created by the

same factory. Each object knows which class it belongs to (which factory created it), so if you’re ever in doubt,

you can ask it:

car2.class #=> Car

Your Car class doesn’t really do anything that useful—it has no attributes. So, let’s give it some. You start by

giving it a make—something like Toyota or Nissan. Of course, you need to define a way to read and write these

attributes. You do this by creating aptly named reader and writer methods. Some object-oriented languages

refer to these as getters and setters. The two sets of terms are pretty much interchangeable, but Ruby favors the

former. Let’s add a reader and writer for the make attribute:

class Car
 # A writer method. Sets the value of the @make attribute
 def make=(text)
 @make = text
 end

 # A reader method. Returns the value of the @make attribute
 def make
 @make
 end
end

The methods you just defined (make() and make=()) are instance methods. This is because they can be used only

on instances of the class, which is to say, the individual objects that have been created from the class. To create a

new instance of the Car class, you use the new constructor:

my_car = Car.new

That’s all that’s required to create a new instance of the class Car in a local variable called my_car. The variable

my_car can now be considered a Car object. Although you have a new Car object, you haven’t yet given it a make.

If you use the reader method you created to ask your car what its make is, you see that it’s nil:

my_car.make #=> nil

Apparently, if you want your car to have a make, you have to set it. This is where the writer method comes in

handy:

my_car.make = 'Toyota'

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

67

This sets the value of the make attribute for your car to Toyota. If you had other Car objects, their makes would

remain unchanged. You’re setting the attribute only on the my_car object. Now, when you use the reader method,

it confirms that the make attribute has been updated:

my_car.make #=> 'Toyota'

Of course, you can change the value any time you want:

my_car.make = 'Mazda'

And again, if you ask your Car object its make, it will tell you:

my_car.make #=> 'Mazda'

That’s a simple example, but it illustrates a couple of very important points: Classes are used to create objects,

and objects have attributes. Every object has a unique set of attributes, different from other objects of the same

class.

The reason for this crash course in Ruby class design is to illustrate the point that modeling with Active Record is

a lot like modeling with standard Ruby classes. If you decided to think of Active Record as being an extension to

standard Ruby classes, you wouldn’t be very far off. In practice, this fact makes using Active Record in Ruby quite

natural. And because Active Record can reflect on your tables to determine which fields to map automatically, you

need to define your attributes in only one place: the database. That’s DRY (don’t repeat yourself)! See Chapter 4 to

learn more about Ruby’s syntax, classes, and objects.

Active Record Basics: CRUD
Active Record is a big topic, so let’s start with the basics. You’ve seen the so-called big four earlier, but here they are
again: create, read, update, and delete, affectionately known as CRUD. In one way or another, most of what you do
with Active Record in particular, and with databases in general, relates to CRUD. Rails has embraced CRUD as a
design technique and as a way to simplify the modeling process. It’s no surprise then that this chapter takes an in-
depth look at how to do CRUD with Active Record.

Let’s build on the blog application you started in Chapter 3 Although your application doesn’t do much yet, it’s at
a stage where it’s easy to demonstrate these concepts in a more concrete fashion.

This section uses the console, so keep it open as you work, and feel free to experiment as much as you want. The
more experimentation you do, the deeper your understanding will be.

Creating New Records
You start by creating a new article in the database so you have something to work with. There are a few different ways
to create new model objects, but they’re all variations on the same theme. This section shows how each approach
works and explains the often subtle differences among them.

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

68

Using the new Constructor

The most basic way to create a new model object is with the new constructor. If you read the crash-course section on
Ruby classes earlier, you’re sure to recognize it. If you didn’t, then it’s enough that you know new is the usual way to
create new objects of any type. Active Record classes are no different. Try it now:

>> article = Article.new
=> #<Article id: nil, title: nil, body: nil, published_at: nil, created_at: nil,
updated_at: nil, excerpt: nil, location: nil>

All you’re doing here is creating a new Article object and storing it in the local variable article. True to form,
the console responds with the return value of the method, which in this case is a string representation of the model
object. It may look a little funny, but this is what all Ruby objects look like when you inspect them. The response lists
the attributes of the Article class. Starting here, you could call a few of the article variable methods. For example,
the new_record? method tells you whether this object has been persisted (saved) to the database, and the attributes
method returns a hash of the attributes that Active Record garnered by reflecting on the columns in the table. Each
key of the hash will be the name of a column (body, created_at, etc.).

>> article.new_record?
=> true
>> article.attributes
=> {"body"=>nil, "created_at"=>nil, "excerpt"=>nil, "location"=>nil,
"published_at"=>nil, "title"=>nil, "updated_at"=>nil}

Here, you’re using reader methods, which read and return the value of the attribute in question. Because this is
a brand-new record and you haven’t given it any information, all your attributes are nil, which means they have no
values. Let’s remedy that now using (what else?) writer methods:

>> article.title = 'RailsConf'
=> "RailsConf"

>> article.body = 'RailsConf is the official gathering for Rails developers..'
=> "'RailsConf is the official gathering for Rails developers.."

>> article.published_at = '2013-04-13'
=> "2013-04-13"

Note ■ A return of nil always represents nothing. It’s a helpful little object that stands in the place of nothingness. If

you ask an object for something and it returns false, then false is something, so it’s not a helpful representation. As a

nerdy fact, in logics, false and true are equal and opposite values, but they’re values in the end. The same is true of zero

(0). The number 0 isn’t truly nothing—it’s an actual representation of an abstract nothing, but it’s still something. That’s

why in programming you have nil (or null in other languages).

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

69

Now, when you inspect your Article object, you can see that it has attributes:

>> article
=> #<Article id: nil, title: "RailsConf", body: "RailsConf is the official
 gathering for Rails devel...", published_at: "2013-04-13 00:00:00",
 created_at: nil, updated_at: nil, excerpt: nil, location: nil>

You still haven’t written a new record. If you were to look at the articles table in the database, you wouldn’t find
a record for the object you’re working with. (If you squint really hard at the preceding object-inspection string, notice
that no id has been assigned yet.) That’s because you haven’t yet saved the object to the database. Fortunately, saving
an Active Record object couldn’t be any easier:

>> article.save
(0.1ms) begin transaction
SQL (2.2ms) INSERT INTO "articles" ("body", "created_at", "published_at",
"title", "updated_at") VALUES (?,?,?,?,?) [["body", "RailsConf is the official
gathering for Rails developers.."], ["created_at", Sat, 13 Apr 2013 15:50:29 UTC
+00:00], ["published_at", Wed, 13 Apr 2013 00:00:00 UTC +00:00], ["title",
"RailsConf"], ["updated_at", Sat, 13 Apr 2013 15:50:29 UTC +00:00]]
(2.9ms) commit transaction
=> true

When you save a new record, an SQL INSERT statement is constructed behind the scenes; notice that Rails has
displayed the generated SQL for you. If the INSERT is successful, the save operation returns true; if it fails, save
returns false. You can ask for a count of the number of rows in the table just to be sure that a record was created:

>> Article.count
=> 1

Sure enough, you have a new article! You’ve got to admit, that was pretty easy. (You may have created
some articles during the scaffolding session. If so, don’t be surprised if you have more than one article already.)
Additionally, if you ask the article whether it’s a new_record?, it responds with false. Because it’s saved, it’s not “new”
anymore:

>> article.new_record?
=> false

Let’s create another article. This time, omit all the chatter from the console so you can get a better sense of how
the process plays out. You create a new object and place it in a variable, you set the object’s attributes, and finally you
save the record. Note that although you’re using the local variable article to hold your object, it can be anything
you want. Usually, you use a variable that indicates the type of object you’re creating, like article or, if you prefer
shorthand, just a:

>> article = Article.new

>> article.title = "Introduction to SQL"
>> article.body = "SQL stands for Structured Query Language, .."
>> article.published_at = Date.today

>> article.save

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

70

Note ■ Although writer methods look like assignments, they’re really methods in disguise. article.title = 'some-

thing' is the functional equivalent of article.title=('something'), where title=() is the method. Ruby provides a

little syntactic sugar to make writers look more natural.

Now you’re rolling! You’ve already created a few articles and haven’t had to write a lick of SQL. Given how easy
this is, you may be surprised that you can do it in even fewer steps, but you can. Instead of setting each attribute on its
own line, you can pass all of them to new at once. Here’s how you can rewrite the preceding process of creating a new
record in fewer lines of code:

>> article = Article.new(:title => "Introduction to Active Record",
:body => "Active Record is Rails's default ORM..", :published_at => Date.today)
>> article.save

Not bad, but you can do even better. The new constructor creates a new object, but it’s your responsibility to
save it. If you forget to save the object, it will never be written to the database. There is another method available that
combines the creating and saving steps into one.

Using the create Method

When you want to create an object and save it in one fell swoop, you can use the create method. Use it now to create
another article:

>> Article.create(:title => "RubyConf 2013", :body => "The annual RubyConf will
take place in..", :published_at => '2013-04-13')
=> #<Article id: 4, title: "RubyConf 2013", body: "The annual RubyConf will take
place in..", published_at: "2013-04-13 00:00:00", created_at: "2013-04-13
23:17:19", updated_at: "2013-04-13 23:17:19", excerpt: nil, location: nil>

Instead of returning true or false, the create method returns the object it created—in this case, an Article
object. You’re actually passing a hash of attributes to the create method. Although hashes are normally surrounded
by curly braces, when a hash is the last argument to a Ruby method, the braces are optional. You can just as easily
create the attribute’s hash first and then give that to create:

>> attributes = { :title => "Rails Pub Nite", :body => "Rails Pub Nite is every
3rd Monday of each month, except in December.", :published_at => "2013-04-13"}
=> {:title=>"Rails Pub Nite", :body=>"Rails Pub Nite is every
3rd Monday of each month, except in December.", :published_at=>" 2013-04-13"}
>> Article.create(attributes)

=> #<Article id: 5, title: "Rails Pub Nite", body: "Rails Pub Nite is every 3rd
Monday of each month, e...", published_at: "2013-04-13 00:00:00",
created_at: "2013-04-13 23:36:07", updated_at: "2013-04-13 23:36:07",
excerpt: nil, location: nil>

Let’s see how many articles you’ve created by doing a count:

>> Article.count
=> 5

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

71

You’re getting the hang of this now. To summarize, when you want to create a new object and save it manually,
use the new constructor; when you want to create and save in one operation, use create. You’ve already created five
new records, which are plenty for now, so let’s move on to the next step: finding records.

Reading (Finding) Records
Now that you have a few articles to play with, it’s time to practice finding them. Every model class understands the
find method. It’s quite versatile and accepts a number of options that modify its behavior.

Let’s start with the basics. find is a class method. That means you use it on the model class rather than an object
of that class, just as you did the new and create methods. Like new and create, a find operation, if successful, returns
a new object.

You can call find four ways:

• find(:id): Finds a single record by its unique id, or multiple records if :id is an array of ids

• all: Finds all records in the table

• first: Finds the first record

• last: Finds the last record

The following sections go through the different ways to call find and explain how to use each.

Finding a Single Record Using an ID

The find, first, and last methods mostly return a single record. The :id option is specific; you use it when you’re
looking for a specific record and you know its unique id. If you give it a single id, it either returns the corresponding
record (if there is one) or raises an exception (if there isn’t one). If you pass an array of ids—like [4, 5]—as the
parameter, the method returns an array with all records that match the passed in ids. The first method is a little
more forgiving; it returns the first record in the table or nil if the table is empty, as explained in the next section.

You can find a single record using its unique id by using find(:id). Here’s how it works:

>> Article.find(3)
=> #<Article id: 3, title: "Introduction to Active Record", body: "Active Record
is Rails's default ORM..", published_at: "2013-04-13 04:00:00",
created_at: "2013-04-13 23:15:37", updated_at: "2013-04-13 23:15:37",
excerpt: nil, location: nil>

As you can see, you found the article with the id of 3. If you wanted to take a closer look at what was returned, you
can store the result in a local variable:

>> article = Article.find(3)
=> #<Article id: 3 ...>
>> article.id
=> 3
>> article.title
=> "Introduction to Active Record"

Here, you store the object that find returned in the local variable article. Then, you can interrogate it and ask
for its attributes.

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

72

All this works because an article with the id 3 actually exists. If instead you search for a record that you know
doesn’t exist (say, 1037), Active Record raises an exception:

>> Article.find 1037
ActiveRecord::RecordNotFound: Couldn't find Article with ID=1037
...

Active Record raises a RecordNotFound exception and tells you it couldn’t find any articles with the id of 1037. Of
course it couldn’t. You know that no such record exists. The lesson here is that you use find(:id) when you’re looking
for a specific record that you expect to exist. If the record doesn’t exist, it’s probably an error you want to know about;
therefore, Active Record raises RecordNotFound.

RECOVERING FROM RECORDNOTFOUND ERRORS

When you use find with a single id, you expect the record to exist. Usually we don’t want to display Rails error

messages directly to the user, but we can make them nicer and customize the verbage. So how can you recover

gracefully from a RecordNotFound exception if you need to? You can use Ruby’s facility for error handling: begin

and rescue. Here’s how this works:

begin
 Article.find(1037)
rescue ActiveRecord::RecordNotFound
 puts "We couldn't find that record"
end

First, you open a begin block. Then, you cause a RecordNotFound error by deliberately searching for a record

that you know doesn’t exist. When the error occurs, Ruby runs the code you put inside the rescue part of the

body, which prints a friendly message.

You can put anything you like in the rescue block—you might want to render a specific view here, log the error, or

even redirect to another location. Error handling works the same way with other error messages also. If you need

to rescue from any error at all you can just use rescue without specifying an error class.

Finding a Single Record Using first

You can find the first record that the database returns by using the first method. This always returns exactly one
item, unless the table is empty, in which case nil is returned:

>> Article.first
=> #<Article id: 1, title: "RailsConf", body: "RailsConf is the official
 gathering for Rails devel...", published_at: "2013-04-13 00:00:00",
 created_at: "2013-04-13 23:12:09", updated_at: "2010-04-13 23:12:09",
 excerpt: nil, location: nil>

Keep in mind that this isn’t necessarily the first record in the table. It depends on the database software you’re
using and the default order in which you want your records to be retrieved. Usually records are ordered by either
created_at or updated_at. If you need to be sure you get the first record you’re expecting, you should specify an
order. It’s the equivalent of saying SELECT * FROM table LIMIT 1 in SQL. If you need to find a record and don’t

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

73

particularly care which record it is, first can come in handy. Note that first doesn’t raise an exception if the record
can’t be found.

The last method works exactly the same as first; however, records are retrieved in the inverse order of
first. For example, if records from articles are listed in chronological order for first, they’re retrieved in inverse
chronological order for last:

>> Article.last
=> #<Article id: 5, title: "Rails Pub Nite", body: "Rails Pub Nite is every 3rd
Monday of each month, e...", published_at: "2013-04-13 00:00:00",
created_at: "2013-04-13 23:36:07", updated_at: "2013-04-13 23:36:07",
excerpt: nil, location: nil>

Finding All Records

So far, you’ve looked at finding a single record. In each case, find, first, or last returns a single Article object. But
what if you want to find more than one article? In your application, you want to display all the articles on the home
page.

If you run the all method, it returns all records for that class:

>> articles = Article.all
=> [#<Article id: 1,..> #<Article id: 2,..>, #<Article id: 3,..>,
#<Article id: 4,..> , #<Article id: 5,..>]

The square brackets in the response indicate that all has returned an array. You can confirm this by asking the
articles variable what its class is:

>> articles.class
=> Array

Sure enough, articles tells you it’s an Array. To be precise, it’s an array of Article objects. Like all Ruby arrays,
you can ask for its size:

>> articles.size
=> 5

Because articles is an array, you can access the individual elements it contains by using its index, which is
numeric, starting at 0:

>> articles[0]
=> #<Article id: 1, title: "RailsConf", body: "RailsConf is the official
 gathering for Rails devel...", published_at: "2013-04-13 00:00:00",
 created_at: "2013-04-13 23:12:09", updated_at: "2013-04-13 23:12:09",
 excerpt: nil, location: nil>

And after you’ve isolated a single Article object, you can find its attributes:

>> articles[0].title
=> "RailsConf"

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

74

What’s happening here is that all produces an array, and you access the object at the 0 index and call the title
method. You can also use the first method, which all arrays respond to, and get the same result, but with a little
more natural syntax:

>> articles.first.title
=> "RailsConf"

If you want to iterate over the collection, you can use the each method, which, again, works with all arrays. Here,
you loop over the array, extract each item into a variable called article, and print its title attribute using the puts
command:

>> articles.each { |article| puts article.title }
RailsConf
Introduction to SQL
Introduction to Active Record
RubyConf 2010
Rails Pub Nite
=> [#<Article id: 1,..> #<Article id: 2,..>, #<Article id: 3,..>,
#<Article id: 4,..> , #<Article id: 5,..>]

Sometimes you want your results ordered. For example, if you’re listing all your articles, you probably want them
listed chronologically. To do so, you can use the order method, which accepts as argument the name of the column or
columns. For you SQL heroes, it corresponds to the SQL ORDER clause:

>> articles = Article.order("published_at")
=> [#<Article id: 1,..> #<Article id: 2,..>, #<Article id: 3,..>,
#<Article id: 4,..> , #<Article id: 5,..>]
>> articles.each {|article| puts article.published_at }2013-04-13 00:00:00 UTC2013-04-13 04:00:00
UTC2013-04-13 04:00:00 UTC2013-04-13 00:00:00 UTC2013-04-13 00:00:00 UTC
=> [#<Article id: 1,..> #<Article id: 2,..>, #<Article id: 3,..>,
#<Article id: 4,..> , #<Article id: 5,..>]

Notice that when you call the order method, it returns an array object, as you may have expected. One thing that
happens on the background is that Active Record allows you to chain calls to multiple methods before sending the
command to the database; so you can call all, followed by order, and some other methods we’ll talk about in Chapter
6, to create more precise database queries. Also, Active Record is smart enough to use lazy loading, a practice that
only hits the database when necessary—in this example, when you call the each method.

By default, any column is ordered in ascending order (for example, 1–10, or a–z). If you want to reverse this to get
descending order, use the DESC modifier (the same way you do in SQL, because the value of the order parameter is
really just an SQL fragment):

>> articles = Article.order ('published_at DESC')
=> [#<Article id: 4,..> #<Article id: 5,..>, #<Article id: 2,..>,
#<Article id: 3,..> , #<Article id: 1,..>]
>> articles.each {|article| puts article.published_at }2013-04-13 00:00:00 UTC2013-04-13 00:00:00
UTC2013-04-13 00:00:00 UTC2013-04-13 00:00:00 UTC2013-04-13 00:00:00 UTC
=> [#<Article id: 4,..> #<Article id: 5,..>, #<Article id: 2,..>,
#<Article id: 3,..> , #<Article id: 1,..>]

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

75

Finding with Conditions

Although finding a record by its primary key is useful, it requires that you know the id to begin with, which isn’t
always the case. Sometimes you want to find records based on other criteria. This is where conditions come into play.
Conditions correspond to the SQL WHERE clause. If you want to find a record by its title, you call the where method and
pass a value that contains either a hash of conditions or an SQL fragment.

Here, you use a hash of conditions to indicate you want the first article with the title RailsConf:

>> Article.where(:title => 'RailsConf').first
=> #<Article id: 1, title: "RailsConf", body: "RailsConf is the official
 gathering for Rails devel...", published_at: "2013-04-13 00:00:00",
 created_at: "2013-04-13 23:12:09", updated_at: "2013-04-13 23:12:09",
 excerpt: nil, location: nil>

Because you use first, you get only one record (the first one in the result set, even if there is more than one
result). If you instead use all, you get back a collection, even if the collection has only one item in it:

>> Article.where(:title => 'RailsConf').all
=> [#<Article id: 1, title: "RailsConf", body: "RailsConf is the official
 gathering for Rails devel...", published_at: "2013-04-13 00:00:00",
 created_at: "2013-04-13 23:12:09", updated_at: "2013-04-13 23:12:09",
 excerpt: nil, location: nil>]

Notice the square brackets, and remember that they indicate an array. More often than not, when you’re doing
an all operation, you expect more than one record in return. But all always produces an array, even if that array is
empty:

>> Article.where(:title => 'Unknown').all
=> []

Updating Records
Updating a record is a lot like creating a record. You can update attributes one at a time and then save the result, or
you can update attributes in one fell swoop. When you update a record, an SQL UPDATE statement is constructed
behind the scenes. First, you use a find operation to retrieve the record you want to update; next, you modify its
attributes; and finally, you save it back to the database:

>> article = Article.first
>> article.title = "Rails 4 is great"
>> article.published_at = Time.now
>> article.save
=> true

This should look pretty familiar by now. The only real difference between this process and the process of creating
a new record is that instead of creating a brand-new row, you fetch an existing row. You update the attributes the exact
same way, and you save the record the same way. Just as when you create a new record, when save operates on an
existing record, it returns true or false, depending on whether the operation was successful.

When you want to update an object’s attributes and save it in a single operation, you use the update_attributes
method. Unlike when you create a new record with create, because you’re updating a record, you need to fetch that
record first. That’s where the other subtle difference lies. Unlike create, which is a class method (it operates on the

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

76

class, not on an object), update_attributes is an instance method. Instance methods work on objects or instances of
a class. Here’s an example:

>> article = Article.first
>> article.update_attributes(:title => "RailsConf2013", :published_at => 1.day.ago)
=> true

Deleting Records
You’re finally at the last component of CRUD: delete. When you’re working with databases, you inevitably need to
delete records. If a user cancels their order, or if a book goes out of stock, or even if you have an error in a given row,
you may want to delete it. Sometimes you need to delete all rows in a table, and sometimes you want to delete only a
specific row. Active Record makes deleting rows every bit as easy as creating them.

There are two styles of row deletion: destroy and delete. The destroy style works on the instance. It instantiates
the object, which means it finds a single row first, and then deletes the row from the database. The delete style
operates on the class, which is to say it operates on the table rather than a given row from that table.

Using destroy

The easiest and most common way to remove a record is to use the destroy method, which means the first thing you
need to do is find the record you want to destroy:

>> article = Article.last
>> article.destroy
=> #<Article id: 5, title: "Rails Pub Nite", body: "Rails Pub Nite is every 3rd
Monday of each month, e...", published_at: "2013-04-13 00:00:00",
created_at: "2013-04-13 23:36:07", updated_at: "2013-04-13 23:36:07",
excerpt: nil, location: nil>

If you’re interested, the SQL that Active Record generates in response to the destroy operation is as follows:

DELETE FROM articles WHERE id = 5;

As a result, the article with the id of 5 is permanently deleted. But you still have the object hanging around in the
variable article, so how can it really be gone? The answer is that although the object remains hydrated (retains all its
attributes), it’s frozen. You can still access its attributes, but you can’t modify them. Let’s see what happens if you try to
change the location:

>> article.location = 'Toronto, ON'
RuntimeError: can't modify frozen hash

It appears that the deleted article is now frozen The object remains, but it’s read-only, so you can’t modify it.
Given this fact, if you’re going to delete the record, you don’t really need to create an explicit Article object after all.
You can do the destroy in a one-line operation:

>> Article.last.destroy

Here, the object instantiation is implicit. You’re still calling the destroy instance method, but you’re not storing
an Article object in a local variable first.

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

77

You can still do better. You can use the class method destroy, which does a find automatically. As with find and
create, you can use destroy directly on the class (that is, you don’t create an object first). Because it operates on the
table and not the row, you need to help it by telling it which row or rows you want to target. Here’s how you delete the
article with the id 1:

>> Article.destroy(1)
=> [#<Article id: 1, title: "RailsConf", body: "RailsConf is the official
 gathering for Rails devel...", published_at: "2010-02-27 00:00:00",
 created_at: "2010-05-01 23:12:09", updated_at: "2010-05-01 23:12:09",
 excerpt: nil, location: nil>]

Sometimes you want to destroy more than one record. Just as with find, you can give destroy an array of primary
keys whose rows you want to remove. Use square brackets ([]) to indicate that you’re passing an array:

>> Article.destroy([2,3])
=> [#<Article id: 2, ..>, #<Article id: 3, ..>]

Although ActiveRecord::Base.destroy is a class method, it instantiates each object before destroying it. You
can tell this by looking at its source:

def destroy(id)
 if id.is_a?(Array)
 id.map { |one_id| destroy(one_id) }
 else
 find(id).destroy
 end
end

Note ■ The documentation for the classes and methods rails provides can be viewed at http://api.rubyonrails.org.

In this case, this specific method is located at http://api.rubyonrails.org/classes/ActiveRecord/Relation.html

#method-i-destroy.

Here you can see that if the received argument is an array, destroy iterates over the array and calls the same
destroy method once for each item in the array. This effectively causes it to take the else path of the conditional,
which performs a find first (instantiating the object) and then calls the instance version of destroy. Neat, huh? That
pretty much covers destroy.

Using delete

The second style of row deletion is delete. Every Active Record class has class methods called delete and delete_
all. The delete family of methods differs from destroy in that they don’t instantiate or perform callbacks on the
object they’re deleting. They remove the row immediately from the database.

Just like find and create, you use delete and delete_all directly on the class (that is, you don’t create an object
first). Because the method operates on the table and not the row, you need to help it by telling it which row or rows
you want to target:

>> Article.delete(4)
=> 1

http://api.rubyonrails.org/
http://api.rubyonrails.org/classes/ActiveRecord/Relation.html#method-i-destroy
http://api.rubyonrails.org/classes/ActiveRecord/Relation.html#method-i-destroy

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

78

Here you specify a single primary key for the article you want to delete. The operation responds with the number
of records removed. Because a primary key uniquely identifies a single record, only one record is deleted.

Just as with find, you can give delete an array of primary keys whose rows you want to delete. Use square
brackets ([]) to indicate that you’re passing an array:

>> Article.delete([5, 6])
=> 0

The return of the delete method in this case is 0, since we didn’t have records with id 5 and 6 in our database.
Zero records were deleted.

Note ■ Unlike find, which is capable of collecting any arguments it receives into an array automatically, delete must

be supplied with an array object explicitly. So, although Model.find(1,2,3) works, Model.delete(1,2,3) fails with an

argument error (because it’s really receiving three arguments). To delete multiple rows by primary key, you must pass an

actual array object. The following works, because it’s a single array (containing three items) and thus a single argument:

Model.delete([1,2,3]).

Deleting with Conditions

You can delete all rows that match a given condition with the delete_all class method. The following deletes all
articles before a certain date:

>> Article.delete_all("published_at < '2011-01-01'")
>> 0

The return value of delete_all is the number of records deleted.

Caution ■ If you use delete_all without any arguments, it deletes all rows in the table, so be careful! Most of the

time, you pass it a string of conditions.

When Good Models Go Bad
So far, you’ve been nice to your models and have made them happy by providing just the information they need. But
in Chapter 3 you provided validations that prevented you from saving bad records to the database. Specifically, you
told the Article model that it should never allow itself to be saved to the database if it isn’t given a title and body.
Look at the Article model, as shown in Listing 5-1, to recall how validations are specified.

Listing 5-1. The app/models/article.rb File

class Article< ActiveRecord::Base
 validates_presence_of :title, :body
end

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

79

You may have noticed in your generated scaffolding that you use a helper method called errors.full_messages
to print out a helpful error message. That helper isn’t black magic; it’s a bit of code that asks the model associated with
the form for its list of errors (also referred to as the errors collection) and returns a nicely formatted block of HTML to
show the user.

Note ■ You may have noticed that you call methods in Ruby with a dot (.) For instance, you say @article.errors

to get the error collection back. However, Ruby documentation uses the # symbol along with the class name to let the

reader know that there is a method it can call on for an instance of that class. For example, on the Article class, you can

use the method @article.title as Article#title, because it’s something that acts on a particular @article but not

the Article class itself. You’ve also seen that you can write the code Article.count, because you don’t need to know

about a particular @article, but only Article objects in general. Keep this convention in mind when you’re reading Ruby

documentation.

The secret to this is that every Active Record object has an automatic attribute added to it called errors. To get
started, create a fresh Article object:

>> article = Article.new
=> #<Article id: nil, title: nil, body: nil, published_at: nil, created_at: nil,
updated_at: nil, excerpt: nil, location: nil>
>> article.errors.any?
=> false

This seems odd: you know this new article should have errors, because it’s invalid—you didn’t give it a title or
a body. This is because you haven’t triggered the validations yet. You can cause them to occur a couple of ways. The
most obvious way is to attempt to save the object:

>> article.save
=> false

Every time you’ve used save before, the model has happily chirped true back to you. But this time, save returns
false. This is because before the model allows itself to be saved, it runs through its gauntlet of validations, and one or
more of those validations failed.

You would be right to guess that if you tried article.errors.any? again, it would return true:

>> article.errors.any?
=> true

Let’s interrogate the errors collection a little more closely with the full_messages method:

>> article.errors.full_messages
=> ["Title can't be blank", "Body can't be blank"]

Voilà! Look how helpful the model is being. It’s passing back an array of error messages.

CHAPTER 5 ■ WORKING WITH A DATABASE: ACTIVE RECORD

80

If there is only one attribute that you care about, you can also ask the errors collection for a particular attribute’s
errors:

>> article.errors.messages(:title)
=> "can't be blank"

Notice that because you tell it which attribute you’re looking for, the message returns a slightly different result
than before. What if you ask for an attribute that doesn’t exist or doesn’t have errors?

>> article.errors.messages(:nonexistent)
=> nil

You get back nil, which lets you know that you didn’t find anything.
Another helpful method is size, which, as you saw earlier, works with all arrays:

>> article.errors.size
=> 2

Saving isn’t the only way you can cause validations to run. You can ask a model object if it’s valid?:

>> article.valid?
=> false

If you try that on a new object, the errors collection magically fills up with your pretty errors.

Summary
In this chapter, you’ve become familiar with using the console to work with models. You’ve learned how to create,
read, update, and destroy model objects. Also, you’ve briefly looked into how to see the simple errors caused by the
validations you set up on your model in Chapter 3.

The next chapter discusses how to create relationships (called associations) among your models, and you begin
to see how Active Record helps you work with your data in extremely powerful ways. It also expands on the concept of
validations and shows how you can do a lot more with validates. You’ll see that Rails provides a bevy of prewritten
validators and an easy way to write your own customized validators.

81

CHAPTER 6

Advanced Active Record: Enhancing
Your Models

Chapter 5 introduced the basics of Active Record and how to use it. This chapter delves more deeply into Active
Record and teaches you how to enhance your models.

Model enhancement is a general term. It refers to endowing your models with attributes and capabilities that go
beyond what you get from subclassing ActiveRecord::Base. A model contains all the logic that governs its citizenship
in the world of your application. In the model, you can define how it interacts with other models, what a model should
accept as a minimum amount of information for it to be considered valid, and other abilities and responsibilities.

Models need to relate to one another. In the real world, bank accounts have transactions, books belong to
authors, and products have categories. These relationships are referred to as associations, and Active Record makes
them easy to work with. Models also have requirements. For instance, you can’t have a transaction without an
amount—it might break your system if someone tried to have an empty transaction. So, Active Record gives you easy
ways to tell a model what it should expect in order to be saved to the database.

This chapter will teach you how to programmatically enhance your models so they’re more than just simple
maps of your tables. To demonstrate the concepts, you build on the blog application you started in Chapter 3, so keep
it handy if you want to follow along with the examples.

Adding Methods
Let’s begin with a brief review of Active Record basics. At the simplest level, Active Record works by automatically
wrapping database tables whose names match the plural, underscored version of any classes that inherit from
ActiveRecord::Base. For example, if you want to wrap the users table, you create a subclass of ActiveRecord::Base
called User, like this:

class User < ActiveRecord::Base
end

That’s all you really need to have Active Record map the users table and get all the basic CRUD functionality
described in Chapter 5 But few models are actually this bare.

So far, you’ve left your model classes unchanged. That’s a good thing, and it speaks to the power and simplicity of
Active Record. However, it leaves something to be desired. Most of the time, your models need to do a lot more than
just wrap a table.

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

82

Note ■ If you’re familiar with SQL, you’re probably feeling that Active Record provides only simple-case solutions and

can’t handle complicated cases. That’s entirely untrue. Although SQL is useful for highly customized database queries,

most Rails projects rarely need to touch SQL, thanks to some clever tricks in Active Record.

The primary way in which you enhance models is by adding methods to them. This is referred to as adding
domain logic. With Active Record, all the logic for a particular table is contained in one place: the model. This is why
the model is said to encapsulate all the domain logic. This logic includes access rules, validations, relationships, and,
well, just about anything else you feel like adding.

In addition to all the column-based reader and writer methods you get by wrapping a table, you’re free to define
your own methods on the class. An Active Record subclass isn’t much different from a regular Ruby class; about the
only difference is that you need to make sure you don’t unintentionally overwrite any of Active Record’s methods
(find, save, or destroy, for example). For the most part, though, this isn’t a problem.

Let’s look at a simple example. You often need to format data, rather than accessing a model attribute in its raw
form. In the blog application, you want to be able to produce a formatted, long title that includes the title of the article
and its date. To accomplish this, all you need to do is define a new instance method called long_title that performs
the concatenation of those attributes and produces a formatted string. Add the code shown in Listing 6-1 just before
the last end statement in the app/models/article.rb file.

Listing 6-1. Custom long_title Method, in app/models/article.rb: http://gist.github.com/323787

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

 def long_title
 "#{title} - #{published_at}"
 end
end

You’ve just created an instance method on the model; that is, you’ve told the Article model that it’s now
endowed with a new attribute called long_title. You can address long_title the same way you would any other
method on the class. Open an irb session and try this on the console. From the terminal window, make sure you’re
inside the blog application directory, and then start up the Rails console with the following command:

$ rails console

This should drop you at a simple irb prompt with two right arrows and a blinking cursor; this may look a bit
different based on your environment. From here, you create a new article and use it to call the long_title method:

>> Article.create :title => 'Advanced Active Record', :published_at => Date.today,
:body => 'Models need to relate to each other. In the real world, ...'
=> #<Article id: 6, title: "Advanced Active Record", ...>
>> Article.last.long_title
=> "Advanced Active Record - 2013-04-22 04:00:00 UTC"

There is no difference between the methods Active Record creates and those you define. Here, instead of asking
the model for one of the attributes garnered from the database column names, you define your own method called
long_title, which does a bit more than the standard title method.

http://gist.github.com/323787

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

83

The methods you add to your models can be as simple as returning true or false or as complicated as doing
major calculations and formatting on the object. The full power of Ruby is in your hands to do with as you please.

Don’t worry if you don’t feel comfortable adding your own methods to models just yet. The important part to
note from this section is that Active Record models are regular Ruby classes that can be augmented, modified, played
with, poked, and turned inside out with sufficient Ruby-fu. Knowing this is extremely helpful in being able to pull back
the curtain and understand the advanced features of Active Record.

FAT MODELS

Some might be nervous by the long_title method you just used. They may see it as a violation of the MVC

paradigm. They might ask, “Isn’t formatting code supposed to be in the view?” In general, the answer is yes.

However, it often helps to have models that act as intelligent objects. If you ask a model for some information

about itself, it’s natural to assume that it can give you a decent answer that doesn’t require a large amount

of work later on to figure out what it means. So, small formatted strings and basic data types that faithfully

represent the data in the model are good things to have in your code.

An intelligent model like this is often called fat. Instead of performing model-related logic in other places (that is,

in controllers or views), you keep it in the model, thus making it fat. This makes your models easier to work with

and helps your code stay DRY.

A basic rule of thumb while trying to stay DRY is that if you find yourself copying and pasting a bit of code, it

may be worth your time to take a moment and figure out if there is a better way to approach the problem. For

instance, if you had kept the Article#long_title formatting outside the model, you might have needed to

repeat the same basic string-formatting procedure every time you wanted a human-friendly representation of an

article’s title. Then again, creating that method is a waste of time if you’re going to use it in only one place in the

application and never again.

This is where programmer experience comes in. As you learn and mature in your Rails programming, you’ll find it

easier and easier to figure out where stuff is supposed to go. If you’re always aiming for a goal of having the most

maintainable and beautiful code you can possibly write, your projects will naturally become easier to maintain.

Next, let’s look at another common form of model enhancement: associations. Active Record’s associations give
you the ability to define in simple terms how models relate to and interact with one another.

Using Associations
It’s a lowly application that has only one table. Most applications have many tables, and these tables typically need to
relate to one another in one way or another. Associations are a common model enhancement that let you relate tables
to one another.

Associations are natural constructs that you encounter all the time in the real world: articles have comments,
stores have products, magazines have subscriptions, and so on. In a relational database system, you relate tables using
a foreign key reference in one table to the primary key of another table.

Note ■ The terms relationship and association can be used pretty much interchangeably. However, when this book

refers to associations, it generally means the association on the Active Record side, as opposed to the actual foreign-key

relationships at the database level.

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

84

Let’s take the example of articles and comments. In a situation where a given article can have any number of
comments attached to it, each comment belongs to a particular article. Figure 6-1 demonstrates the association from
the database’s point of view.

The example in Figure 6-1 uses a column named article_id in the comments table to identify the related article
in the articles table. In database-speak, comments holds a foreign-key reference to articles.

Figure 6-1. The relationship between the articles and comments tables

Table 6-1. Sample Foreign-Key References

Model Table Foreign Key to Reference This Table

Article articles article_id

Person people person_id

Friend friends friend_id

Category categories category_id

Book books book_id

By Rails convention, the foreign-key column is the singular, lowercase name of the target class with _id
appended. So, for products that belong to a particular store, the foreign key is named store_id; for subscriptions that
belong to magazines, the foreign key is named magazine_id; and so on. Here’s the pattern:

#{singular_name_of_parent_class}_id

Table 6-1 shows a few more examples, just to drive this concept home.

Whenever you need one table to reference another table, remember to create the foreign-key column in the table
doing the referencing. In other words, the model that contains the “belong_to” needs to have the foreign key column
in it. That’s all your table needs before you can put Active Record’s associations to work.

Declaring Associations
As you’ve probably come to expect by now, Active Record makes working with associations easy. You don’t need to
get down to the bare metal of the database very often. As long as you understand the concept of primary and foreign
keys and how to create basic relationships in your tables, Active Record does the proverbial heavy lifting, converting
foreign-key relationships into rich object associations. This means you get to access associated objects cleanly and
naturally using Ruby:

article.comments
store.products
magazine.subscriptions

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

85

After the relationships are defined in your database tables, you use a set of macro-like class methods in your
models to create associations. They look like this:

• has_one

• has_many

• belongs_to

• has_and_belongs_to_many

Here’s a quick example. The Message model declares a has_many relationship with Attachment; Attachment
returns the favor by declaring that each of its objects belongs to a particular Message:

class Message < ActiveRecord::Base
 has_many :attachments
end

class Attachment < ActiveRecord::Base
 belongs_to :message
end

Given these instructions, Active Record expects to find a table called attachments that has a field in it called
message_id (the foreign-key reference). It uses this association to let you enter things like Message.first.
attachments and get an array (or a collection) of Attachment objects that belongs to the first Message in the database.
Moreover, you can work with your associations in both directions. So, you can enter Attachment.first.message to
access the Message to which the first Attachment belongs. It sounds like a mouthful, but when you get the hang of it,
it’s quite intuitive.

Whenever you declare an association, Active Record automatically adds a set of methods to your model that
makes dealing with the association easier. This is a lot like the way in which Active Record creates methods based on
your column names. When it notices you’ve declared an association, it dynamically creates methods that enable you
to work with that association. The following sections go through the different types of associations and describe how
to work with them. You also learn about the various options you can use to fine-tune associations.

Creating One-to-One Associations
One-to-one associations describe a pattern where a row in one table is related to exactly one row in another table.

Suppose that in your blog application, you have users and profiles, and each user has exactly one profile. Assume
you have User and Profile models, and the corresponding users and profiles tables have the appropriate columns.
You can tell your User model that it has one Profile and your Profile model that it belongs to a User. Active Record
takes care of the rest. The has_one and belongs_to macros are designed to read like regular English, so they sound
natural in conversation and are easy to remember. Each represents a different side of the equation, working in tandem
to make the association complete.

Note ■ Part of the Rails philosophy about development is that the gap between programmers and other project

stakeholders should be bridged. Using natural language, such as has one and belongs to, in describing programmatic

concepts helps bridge this gap, providing a construct that everyone can understand.

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

86

Adding the User and Profile Models

When you started the blog application, you decided to let anyone create new articles. This worked fine when only one
person was using the system; but you want this to be a multiple-user application and let different people sign up, sign
in, and start writing their own articles separately from one another.

Let’s fire up the generator and create the User model:

$ rails generate model User email:string password:string

Just as you saw in Chapter 5, the model generator creates, among other things, a model file in app/models and a
migration in db/migrate. Open db/migrate/20130406205458_create_users.rb, and you should see the now-familiar
code in Listing 6-2.

Listing 6-2. Migration to Create the users Table, db/migrations/20130406205458_create_users.rb

class CreateUsers < ActiveRecord::Migration
 def change
 create_table :users do |t|
 t.string :email
 t.string :password

 t.timestamps
 end
 end
end

This is standard migration fare. In the change definition, you use the create_table method to create a new users
table. The new table object is yielded to the block in the variable, t, on which you call the string method to create
each column. Along with the standard email field, you specify a password field, which you use for authentication,
as explained in the “Reviewing the Updated Models” section later in this chapter. The primary key, id, is created
automatically, so there’s no need to specify it here.

As you probably noticed, the User model is extremely simple: it only contains information that allows the user
to authenticate into the application. Some users may want to add a lot more detail about themselves and would love
the ability to enter personal information such as their birthday, a biography, their favorite color, their Twitter account
name, and so on. You can create a Profile model to hold such information outside the scope of the User model. Just
as you did for the User model, use the generator again:

$ rails generate model Profile user_id:integer name:string birthday:date
bio:text color:string twitter:string

You also have a migration file for the Profile model in db/migrate/20130406210440_create_profiles.rb—feel
free to take a peek. Notice the existence of the foreign key user_id in the profiles schema. Also recall that you don’t
need to specify primary keys in migrations because they’re created automatically.

Now, all you need to do is run the migrations and create the new tables using the db:migrate Rake task. Run the
migrations with the following command:

$ rake db:migrate

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

87

== CreateUsers: migrating ===

-- create_table(:users)

 -> 0.0019s

== CreateUsers: migrated (0.0020s) ===

== CreateProfiles: migrating ===

-- create_table(:profiles)

 -> 0.0027s

== CreateProfiles: migrated (0.0035s) ==

With the table and foreign keys in place, Listings 6-3 and 6-4 show how to declare the one-to-one association on
the User and Profile models, respectively.

Listing 6-3. The User Model, app/models/user.rb: http://gist.github.com/323944

class User < ActiveRecord::Base
 has_one :profile
end

Listing 6-4. The Profile Model, app/models/profile.rb: http://gist.github.com/323946

class Profile < ActiveRecord::Base
 belongs_to :user
end

The has_one declaration on the User model tells Active Record that it can expect to find one record in the
profiles table that has a user_id matching the primary key of a row in the users table. The Profile model, in turn,
declares that each of its records belongs_to a particular User.

Telling the Profile model that it belongs_to :user is saying, in effect, that each Profile object references
a particular User. You can even go so far as to say that User is the parent and Profile is the child. The child model is
dependent on the parent and therefore references it. Figure 6-2 demonstrates the has_one relationship.

Figure 6-2. The one-to-one relationship between users and profiles

http://gist.github.com/323944
http://gist.github.com/323946

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

88

Let’s get inside a console session (rails console) and see how this comes together. If you have a console session
opened, run the reload! command in the console session to make sure it loads the newly generated models. Follow
along to create objects and relate them to one another. First, create a user and a profile as follows:

>> reload!
Reloading...
>> user = User.create(:email => 'user@example.com', :password => 'secret')
=> #<User id: 1, email: "user@example.com", password: "secret",
 created_at: "2013-04-02 15:10:07", updated_at: "2013-04-02 15:10:07">
>> profile = Profile.create(:name => 'John Doe',
:bio => 'Ruby developer trying to learn Rails')
=> #<Profile id: 1, user_id: nil, name: "John Doe", birthday: nil,
bio: "Ruby developer trying to learn Rails", color: nil, twitter: nil,
created_at: "2013-04-02 15:10:55", updated_at: "2013-04-02 15:10:55">

Note ■ The reload! method reloads the Rails application environment within your console session. You need to call it

when you make changes to existing code. It’s exactly as if you had restarted your console session—all the variables you

may have instantiated are lost.

Although you’ve successfully created a new user and a new profile, you haven’t yet associated them with each
other. If you ask the user object for its profile, it responds with nil:

>> user.profile
=> nil

To make the association happen, you specify it like any regular assignment on the user object and then call save,
like this:

>> user.profile = profile
=> #<Profile id: 1, user_id: 1, name: "John Doe", birthday: nil,
bio: "Ruby developer trying to learn Rails", color: nil, twitter: nil,
created_at: "2013-04-02 15:10:55", updated_at: "2013-04-02 15:10:55">
>> user.save
=> true

Assignment is assignment, whether it’s a name attribute to which you’re assigning the value Joe or an association
method to which you’re assigning an object. Also notice that the profile’s user_id attribute is updated to the value
of user.id: This is what bonds both objects together. Now, when you ask the user object for its profile, it happily
responds with one:

>> user.profile
=> #<Profile id: 1, user_id: 1, name: "John Doe", birthday: nil,
bio: "Ruby developer trying to learn Rails", color: nil, twitter: nil,
created_at: "2013-04-02 15:10:55", updated_at: "2013-04-02 15:10:55">

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

89

That’s all there is to it. Although this is pretty good, you can do a bit better. You can create and save the profile in
one shot and have it perform the association automatically, like this:

>> user.create_profile :name => 'Jane Doe', :color => 'pink'
=> #<Profile id: 2, user_id: 1, name: "Jane Doe", birthday: nil,
bio: nil, color: "pink", twitter: nil, created_at: "2013-04-02 15:18:57",
updated_at: "2013-04-02 15:18:57">

Using the create_profile method to create a new profile initializes the Profile object, sets its foreign key to
user.id, and saves it to the database; at the same time, it sets the previous profile object’s—the one named “John
Doe”—user_id—field to nil. This works for any has_one association, no matter what it’s named. Active Record
automatically generates the create_#{association_name} method for you. So if you had an Employee model set up
with an association like has_one :address, you would get the create_address method automatically.

These alternatives for doing the same thing may seem confusing, but they’re really variations on the same theme.
In all cases, you’re creating two objects (the parent and the child) and telling each about the other. Whether you
choose to do this in a multistep operation or all on one line is entirely up to you.

Earlier, you learned that declaring a has_one association causes Active Record to automatically add a suite of
methods to make working with the association easier. Table 6-2 shows a summary of the methods that are added
when you declare a has_one and belongs_to relationship between User and Profile, where user is a User instance.

Table 6-2. Methods Added by the has_one Association in the User/Profile Example

Method Description

user.profile Returns the associated (Profile) object; nil is returned if none
is found

user.profile=(profile) Assigns the associated (Profile) object, extracts the primary key, and
sets it as the foreign key

user.profile.nil? Returns true if there is no associated Profile object

user.build_profile(attributes={}) Returns a new Profile object that has been instantiated with attributes
and linked to user through a foreign key but hasn’t yet been saved

user.create_profile(attributes={}) Returns a new Profile object that has been instantiated with
attributes and linked to user through a foreign key and that has already
been saved

Although you’re using the User.has_one :profile example here, the rules work for any object associated to
another using has_one. Here are some examples, along with sample return values:

user.profile
#=> #<Profile id: 2, user_id: 1, ...>
user.profile.nil?
#=> false
user.build_profile(:bio => 'eats leaves')
#=> #<Profile id: nil, user_id: 1, ...>
user.create_profile(:bio => 'eats leaves')
#=> #<Profile id: 3, user_id: 1, ...>

The has_one declaration can also include an options hash to specialize its behavior if necessary.
Table 6-3 lists the most common options. For a complete list of all options, consult the Rails API documentation
(http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_one).

http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_one

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

90

Creating One-to-Many Associations
One-to-many associations describe a pattern where a row in one table is related to one or more rows in another table.
Examples are an Email that has many Recipients, or a Magazine that has many Subscriptions.

Up until now, your articles have been orphaned—they don’t belong to anyone. You remedy that now by
associating users with articles. In your system, each article belongs to a user, and a user may have many articles.
Figure 6-3 illustrates this association.

Figure 6-3. The one-to-many relationship between users and articles

Table 6-3. Common has_one Options

Option Description Example

:class_name Specifies the class name of the association. Used when
the class name can’t be inferred from the association
name.

has_one :profile, :class_name =>
'Account'

:conditions Specifies the conditions that the associated object must
meet in order to be included as a WHERE SQL fragment.

has_one :profile, :conditions =>
"active = 1"

:foreign_key Specifies the foreign key used for the association in
the event that it doesn’t adhere to the convention of
being the lowercase, singular name of the target class
with _id appended.

has_one :profile, :foreign_key =>
'account_id'

:order Specifies the order in which the associated object is
picked as an ORDER BY SQL fragment.

has_one :profile, :order =>
"created_at DESC"

:dependent Specifies that the associated object should be removed
when this object is. If set to :destroy, the associated
object is deleted using the destroy method. If set to
:delete, the associated object is deleted without calling
its destroy method. If set to :nullify, the associated
object’s foreign key is set to NULL.

has_one :profile, :dependent =>
:destroy

Associating User and Article Models

Just as you associated users and profiles, you want to have a similar relationship between users and articles. You need
to add a foreign key user_id in the articles table that points to a record in the users table.

Fire up the migration generator:

$ rails generate migration add_user_id_to_articles user_id:integer

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

91

Open db/migrate/20130406221123_add_user_id_to_articles.rb, and you should see the code in Listing 6-5.

Listing 6-5. Migration to Add user_id Field, db/migrate/20130406221123_add_user_id_to_articles.rb

class AddUserIdToArticles < ActiveRecord::Migration
 def change
 add_column :articles, :user_id, :integer
 end
end

Pay attention to the user_id column in the change section. It’s the foreign-key reference column you’ve heard so
much about. Also note that its type is :integer. That’s important, because it’s referring to a numeric id.

Now, all you need to do is run the migration using the db:migrate Rake task. Run the migration with the
following command:

$ rake db:migrate

== AddUserIdToArticles: migrating ==

-- add_column(:articles, :user_id, :integer)

 -> 0.0012s

== AddUserIdToArticles: migrated (0.0015s) ===================================

With the foreign key in place, Listings 6-6 and 6-7 show how you declare the one-to-many association in your
Article and User models, respectively. Add these to the relevant models.

Listing 6-6. The Article Model, belongs_to Declaration in app/models/article.rb: http://gist.github.com/323981

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

 belongs_to :user

 def long_title
 "#{title} - #{published_at}"
 end
end

Listing 6-7. The User Model, has_many Declaration in app/models/user.rb: http://gist.github.com/323982

class User < ActiveRecord::Base
 has_one :profile
 has_many :articles
end

That’s all there is to it. This bit of code has endowed your Article and User models with a lot of functionality.

Note■ For has_one and has_many associations, adding a belongs_to on the other side of the association is always

recommended. The rule of thumb is that the belongs_to declaration always goes in the class with the foreign key.

http://gist.github.com/323981
http://gist.github.com/323982

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

92

Creating a New Associated Object

Your associations are in place; so, let’s get back into the code to put what you’ve learned to the test. Do this exercise
on the console: either run rails console to start a new console session or type reload! if you still have a console
window open from the previous section.

Let’s test whether the association between users and articles is set up correctly. If it is, you should be able to ask
the user object for its associated articles, and it should respond with a collection. Even though you haven’t created
any articles for this user yet, it should still work, returning an empty collection:

>> reload!
Reloading...
=> true
>> user = User.first
=> #<User id: 1, email: "user@example.com", password: "secret",
created_at: "2013-04-02 15:10:07", updated_at: "2013-04-02 15:10:07">
>> user.articles
=> []

Great! The has_many association is working correctly, and User instances now has an articles method, which
was created automatically by Active Record when it noticed the has_many declaration.

Let’s give this user some articles. Enter the following commands:

>> user.articles << Article.first
=> [#<Article id: 6, ..., user_id: 1>]
>> user.articles.size
=> 1
>> user.articles
=> [#<Article id: 6, ..., user_id: 1>]

By using the append (<<) operator, you attach Article.first onto your user object. When you use << with
associations, it automatically saves the new association. Some things in Active Record don’t happen until you say
save, but this is one of the examples where that part is done automatically.

What did that do exactly? Let’s look into the article and find out:

>> Article.first.user_id
=> 1

See how this article’s user_id points to the user with an id of 1? This means you’ve successfully related the two
objects. You can even ask an Article instance for its user:

>> Article.first.user
=> #<User id: 1, email: "user@example.com", password: "secret",
created_at: "2013-04-02 15:10:07", updated_at: "2013-04-02 15:10:07">

Voilà! Your models can really start to express things now. The has_many and belongs_to declarations create more
methods, as you did earlier with the long_title method. Let’s look at what else these happy little helpers brought
along to the party. Table 6-4 shows a summary of the methods that are added when you declare a has_many and
belongs_to relationship between User and Article (user represents a User instance).

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

93

You’re using the User.has_many :articles example here, but the rules work for any object associated with
another using has_many. Here are some examples, along with sample return values:

>> user.articles
=> [#<Article id: 6, ...>]
>> user.articles << Article.new(:title => 'One-to-many associations',
:body => 'One-to-many associations describe a pattern ..')
=> [#<Article id: 6, ...>, #<Article id: 7, ...>]
>> user.article_ids
=> [6, 7]
>> user.articles.first
=> #<Article id: 6, ...>
>> user.articles.clear
=> []
>> user.articles.count
 => 0
>> Article.count
 => 2
>> user.articles.create :title => 'Associations',

Table 6-4. Methods Added by the has_many Association in the User and Article Models

Method Description

user.articles Returns an array of all the associated articles. An empty array is
returned if no articles are found.

user.articles=(articles) Replaces the articles collection with the one supplied.

user.articles << article Adds one or more articles to the collection and saves their
foreign keys.

user.articles.delete(articles) Removes one or more articles from the collection by setting their
foreign keys to NULL.

user.articles.empty? Returns true if there are no associated Article objects for
this user.

user.articles.size Returns the number of associated Article objects for this user.

user.article_ids Returns an array of associated article ids.

user.articles.clear Clears all associated objects from the association by setting their
foreign keys to NULL.

user.articles.find Performs a find that is automatically scoped off the association;
that is, it finds only within items that belong to user.

user.articles.build(attributes={}) Returns a new Article object that has been instantiated with
attributes and linked to user through a foreign key but hasn’t yet
been saved. Here’s an example: user.articles.build(:title
=> 'Ruby 1.9').

user.articles.create(attributes={}) Returns a new Article object that has been instantiated
with attributes and linked to user through a foreign key and
has already been saved. Here’s an example: user.articles.
create(:title => 'Hoedown').

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

94

:body => 'Active Record makes working with associations easy..'
=> #<Article id: 8, ...>

You can also pass in options to your association declaration to affect the way you work with those associations.
Table 6-5 lists some of the most common options.

Table 6-5. Common has_many Options

Option Description Example

:class_name Specifies the class name of the association. Used
when the class name can’t be inferred from the
association name.

has_many :articles, :class_name =>
'Post'

:conditions Specifies the conditions that the associated objects
must meet in order to be included as a WHERE SQL
fragment.

has_many :articles, :conditions =>
"active = 1"

:foreign_key Specifies the foreign key used for the association
in the event that it doesn’t adhere to convention of
being the lowercase, singular name of the target class
with _id appended.

has_many :articles, :foreign_key =>
'post_id'

:order Specifies the order in which the associated objects
are returned as an ORDER BY SQL fragment.

has_many :articles, :order =>
"published_at DESC"

:dependent Specifies that the associated objects should be
removed when this object is. If set to :destroy, the
associated objects are deleted using the destroy
method. If set to :delete, the associated objects are
deleted without calling their destroy method. If set
to :nullify, the associated objects’ foreign keys are
set to NULL.

has_many :articles, :dependent =>
:destroy

There’s much more to has_many associations than can possibly be covered here, so be sure to check out the
Rails API documentation (http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.
html#method-i-has_many) for the full scoop.

Applying Association Options
It’s time to apply what you’ve learned to your domain model. Specifically, you use the :order option to apply a default
order to the User.has_many :articles declaration, and you use the :dependent option to make sure when you delete
a user, all their articles are deleted as well.

Specifying a Default Order

When you access a user’s articles, you want to make sure they come back in the order in which they’ve been
published. Specifically, you want the oldest to be at the bottom of the list and the newest to be at the top. You can do
this by configuring the has_many association with a default order using the :order option. Add the :order option to
the has_many :articles declaration, as shown in Listing 6-8.

http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_many
http://api.rubyonrails.org/classes/ActiveRecord/Associations/ClassMethods.html#method-i-has_many

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

95

Listing 6-8. The :order Option Added to has_many: http://gist.github.com/324010

class User < ActiveRecord::Base
 has_one :profile
 has_many :articles, -> { order('published_at DESC') }
end

You give the name of the field that you want to order by, and then you say either ASC (ascending) or DESC
(descending) to indicate the order in which the results should be returned. Because time moves forward (to bigger
numbers), you want to make sure you’re going back in time, so you use the DESC keyword here.

Note ■ ASC and DESC are SQL keywords. You’re actually specifying an SQL fragment here, as discussed in the

“Advanced Finding” section later in this chapter.

You can also specify a secondary order by adding a comma between arguments. Let’s say you want to sort by the
title of the article after you sort by the date. If two articles have been published on the same day, they are ordered first
by the date and then by the lexical order of the title. Listing 6-9 shows the article title added to the :order option.

Listing 6-9. Adding the Title to the :order Option for has_many: http://gist.github.com/324019

class User < ActiveRecord::Base
 has_one :profile
 has_many :articles, -> { order('published_at DESC, title ASC')}
end

Notice that you use ASC for ordering on the title. This is because as letters go up in the alphabet, their value goes
up. So, to sort alphabetically, use the ASC keyword.

Specifying Dependencies

Frequently, dependencies exist between models. For instance, in your blog application, if you delete users, you want
to make sure they don’t have articles in the system. Said another way, an Article is dependent on its User. You can
let Active Record take care of this for you automatically by specifying the :dependent option to your association.
Listing 6-10 shows all the options to has_many :articles, including the :dependent option.

Listing 6-10. The :dependent Option Added to has_many: http://gist.github.com/324020

class User < ActiveRecord::Base
 has_one :profile
 has_many :articles, -> { order('published_at DESC, title ASC')},
 :dependent => :destroy
end

By passing in the symbol :destroy, you declare not only that articles are dependent, but also that when the
owner is deleted, you want to call the destroy method on every related article. This ensures that any *_destroy
callbacks on the article instances are called (callbacks are discussed later, in the “Making Callbacks” section). If you
want to skip the callbacks, you can use the :delete option instead of :destroy, which deletes the records directly
via SQL.

http://gist.github.com/324010
http://gist.github.com/324019
http://gist.github.com/324020

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

96

Let’s say you want to set the foreign-key column (user_id) to NULL in the articles table, instead of completely
destroying the article. Doing so essentially orphans the articles. You can do this by using the :nullify option instead
of :destroy. If you don’t use the :dependent option and you delete a user with associated articles, you break foreign-
key references in your articles table. For this application, you want to keep the :nullify option, as per Listing 6-11.

Listing 6-11. The :dependent Option Set to :nullify: http://gist.github.com/324023

class User < ActiveRecord::Base
 has_one :profile
 has_many :articles, -> { order('published_at DESC, title ASC')},
 :dependent => :nullify
end

Creating Many-to-Many Associations
Sometimes, the relationship between two models is many-to-many. This describes a pattern where two tables are
connected to multiple rows on both sides. You use this in the blog application to add categories to articles. If you
wanted to allow only one category to be selected for a given article, you could use has_many. But you want to be able to
apply multiple categories.

Think about this for a minute: an article can have many categories, and a category can have many articles—
where does the belongs_to go in this situation? Neither model belongs to the other in the traditional sense. In Active
Record–speak, this kind of association is has_and_belongs_to_many (often referred to as habtm for short).

The has_and_belongs_to_many association works by relying on a join table that keeps a reference to the foreign
keys involved in the relationship. The join table sits between the tables you want to join: articles and categories.
Not surprisingly, then, the join table in this case is called articles_categories. Pay particular attention to the table
name. It’s formed from the names of each table in alphabetical order, separated by an underscore. In this case, the a in
articles comes before the c in categories—hence, articles_categories. Figure 6-4 illustrates this relationship.

Figure 6-4. The many-to-many relationship between articles and categories

Let’s start by adding the Category model. This is a simple matter of generating the model, consisting of just a
name column. Run the following command inside your application root:

$ rails generate model Category name:string

Look at the generated migration in db/migrate/20130407001138_create_categories.rb; it’s pretty
familiar territory at this point. You need another migration to create the join table. Do that now by running the
following command:

$ rails generate migration create_articles_categories

http://gist.github.com/324023

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

97

Remember that when you use create_table inside a migration, you don’t need to specify the primary key,
because it’s created automatically. Well, in the case of a join table, you don’t want a primary key. This is because
the join table isn’t a first-class entity in its own right. Creating tables without primary keys is the exception and not
the rule, so you need to explicitly tell create_table that you don’t want to create an id. Take a close look at the call to
create_table in Listing 6-12. You pass in option :id => false, which prevents create_table from creating the
primary key; also, you add the appropriate fields.

Listing 6-12. The db/migrate/20130407002156_create_articles_categories.rb: File

class CreateArticlesCategories < ActiveRecord::Migration
 def change
 create_table :articles_categories, :id => false do |t|
 t.references :article
 t.references :category
 end
 end
 def self.down
 drop_table :articles_categories
 end
end

You use the references method in the create_table block instead of using integer. It’s just another notation
that uses the association name as a parameter instead of a field name; so, t.references :article is the same as
t.integer :article_id. Feel free to pick the syntax you prefer. Go ahead and run the migrations:

$ rake db:migrate

== CreateCategories: migrating ===

-- create_table(:categories)

 -> 0.0032s

== CreateCategories: migrated (0.0034s) ======================================

== CreateArticlesCategories: migrating =======================================

-- create_table(:articles_categories, {:id=>false})

 -> 0.0011s

== CreateArticlesCategories: migrated (0.0013s) ==============================

With the Category model and the join table in place, you’re ready to let Active Record in on your association.
Open the Article and Category models and add the has_and_belongs_to_many declarations to them, as shown in
Listings 6-13 and 6-14, respectively.

Listing 6-13. Adding the has_and_belongs_to_many Declaration in the Article Model app/models/article.rb:
http://gist.github.com/324055

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

http://gist.github.com/324055

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

98

 belongs_to :user
 has_and_belongs_to_many :categories

 def long_title
 "#{title} - #{published_at}"
 end
end

Listing 6-14. Adding the has_and_belongs_to_many Declaration in Category Model app/models/category.rb:
http://gist.github.com/324057

class Category < ActiveRecord::Base
 has_and_belongs_to_many :articles
end

Seeding Data

As part of creating an application skeleton, Rails added a file called db/seeds.rb, which defines some data you
always need in your database. The seeds file contains Ruby code, so you can use the classes and methods—including
associations—available in your models, such as create and update. Open it and create one user and a few categories
so that it looks like Listing 6-15.

Listing 6-15. The db/seeds.rb File: http://gist.github.com/324072

user = User.create :email => 'mary@example.com', :password => 'guessit'
Category.create [{:name => 'Programming'},
 {:name => 'Event'},
 {:name => 'Travel'},
 {:name => 'Music'},
 {:name => 'TV'}]

That should do nicely. You can load your seed data using the Rake task db:seed:

$ rake db:seed

If you need to add more default categories later, you can append them to the seeds file and reload it. If you want
to rerun the seed data, the trick lies in the fact that the seeds file doesn’t know whether the records already in the
database have to be cleaned up; running rake db:seed again adds all records one more time, and you end up with
duplicate user and categories. You should instead call rake db:setup, which re-creates the database and adds the
seed data as you may expect.

Let’s give this a test run. Get your console ready, reload!, and run the following commands:

>> article = Article.last
=> #<Article id: 8, title: "Associations", ...>
>> category = Category.find_by_name('Programming')
=> #<Category id: 1, name: "Programming", ..>
>> article.categories << category
=> [#<Category id: 1, name: "Programming", ..>]
>> article.categories.any?
=> true
>> article.categories.size
=> 1

http://gist.github.com/324057
http://gist.github.com/324072

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

99

Here, you automatically associate a category with an article using the << operator. You can even do this from the
category side of the association. Try the following:

>> category.articles.empty?
=> false
>> category.articles.size
=> 1
>> category.articles.first.title
=> "Associations"

You just did the opposite of the previous test: has_and_belongs_to_many works in both directions, right? So, you
found your category and asked it for its first article titled “Associations” because that’s what you associated in the other
direction.

Using has_and_belongs_to_many is a very simple way to approach many-to-many associations. However, it has
its limitations. Before you’re tempted to use it for more than associating categories with articles, note that it has no
way of storing additional information on the join. What if you want to know when or why someone assigns a category
to an article? This kind of data fits naturally in the join table. Rails includes another type of association called
has_many :through, which allows you to create rich joins like this.

Creating Rich Many-to-Many Associations
Sometimes, when you’re modeling a many-to-many association, you need to put additional data on the join model.
But because Active Record’s has_and_belongs_to_many uses a join table (for which there is no associated model),
there’s no model on which to operate. For this type of situation, you can create rich many-to-many associations using
has_many :through. This is really a combination of techniques that ends up performing a similar but more robust
version of has_and_belongs_to_many.

The basic idea is that you build or use a full model to represent the join table. Think about the blog application:
articles need to have comments, so you create a Comment model and associate it with Article in a one-to-many
relationship using has_many and belongs_to. You also want to be able to retrieve all the comments added to users’
articles. You could say that users have many comments that belong to their articles, or users have many comments
through articles. Figure 6-5 illustrates this relationship.

Figure 6-5. The rich many-to-many relationship between comments and users, through articles

Let’s generate the model and migration for the Comment model:

$ rails generate model comment article_id:integer name:string email:string body:text

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

100

invoke active_record

create db/migrate/20130408213941_create_comments.rb

create app/models/comment.rb

invoke test_unit

create test/unit/comment_test.rb

create test/fixtures/comments.yml

Migrate by issuing the rake db:migrate command:

$ rake db:migrate

== CreateComments: migrating ===

-- create_table(:comments)

 -> 0.0016s

== CreateComments: migrated (0.0017s) ==

Update your models to reflect the one-to-many association between comments and articles. Listings 6-16
and 6-17 show the updated Comment and Article models, respectively.

Listing 6-16. The Comment Model in app/models/comment.rb: http://gist.github.com/325793

class Comment < ActiveRecord::Base
 belongs_to :article
end

Listing 6-17. The Article Model in app/models/article.rb: http://gist.github.com/325796

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

 belongs_to :user
 has_and_belongs_to_many :categories
 has_many :comments

 def long_title
 "#{title} - #{published_at}"
 end
end

Nothing is new here—what you implement is very similar to the users and articles relationship you saw earlier,
but instead of a user having many articles, an article has many comments.

Let’s get back to the relationship between users and comments. You need to tell your user model that a user has
many comments through its articles. Basically, you use the article model as a join table between users and comments.
You achieve the linking using the has_many :through method. Listing 6-18 shows the updated User model.

http://gist.github.com/325793
http://gist.github.com/325796

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

101

Listing 6-18. The Updated User Model, has_many :through Declarations in app/models/user.rb:
http://gist.github.com/325809

class User < ActiveRecord::Base
 has_one :profile
 has_many :articles, -> {order('published_at DESC, title ASC')},
 :dependent => :nullify
 has_many :replies, :through => :articles, :source => :comments
end

Notice that you rework how you name associations. One aspect of the Rails philosophy is that you should always
be questioning and refactoring your code to work with best practices. In this incarnation, comments that users receive
on their articles are called replies.

As an added benefit, has_many :through allows you to easily have nice names for your associations. The :source
option lets you define the source name of the association. In this case, the replies are the articles’ comments, so you
set the :source option accordingly.

Let’s play with this on the console to see how it works—don’t forget to reload!. You first find the first user, find
the user’s first article, and create a comment on it. Then, you see that comment directly from the user object:

>> user = User.first
=> #<User id: 1, email: "user@example.com", ...>
>> user.replies.empty?
=> true
>> article = user.articles.first
=> #<Article id: 8, title: "Associations", ..., user_id: 1>
>> article.comments.create(:name => 'Guest',
:email => 'guest@example.com', :body => 'Great article!')
=> #<Comment id: 1, article_id: 8, name: "Guest", ...>
>> user.replies
=> [#<Comment id: 1, article_id: 8, name: "Guest", ...>]
>> user.replies.size
=> 1

Advanced Finding
Chapter 5covered use of the find class method in Active Record. This section expands on different find operations using
the where method. Building advanced finder methods is one of the most important things you do with your models.

Using the where Method
The most basic condition style is the hash syntax. Active Record takes the Hash passed to the where method and turns
the keys into column names and the values into parameters to match. The hash syntax is useful only if you’re trying to
find an exact match. Run the following command in a console window to try out the hash syntax:

>> Article.where(:title => 'Advanced Active Record')
=> [#<Article id: 6, title: "Advanced Active Record", ...>]

The hash syntax works well for straightforward where operations where you use only ANDs to join together the
conditions (that is, all conditions must match). However, sometimes you need more flexibility than exact matches.

http://gist.github.com/325809

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

102

Using an SQL Fragment
To specify conditions, you can pass in an SQL fragment as a string that is sent directly to the query. You need to have
a pretty decent knowledge of SQL to use this kind of syntax; but it provides a lot of flexibility, and you can create
arbitrarily complex SQL fragments if you’re an SQL ninja.

Try the same find operation as in the previous section, but use a pure SQL condition fragment:

>> Article.where("title = 'Advanced Active Record'")
=> [#<Article id: 6, title: "Advanced Active Record", ...>]

Let’s try something more complicated that only SQL is able to do:

>> Article.where("created_at > '23-04-2013' OR body NOT LIKE '%model%'")
=> [#<Article id: 7, title: "One-to-many associations", ...>,
#<Article id: 8, title: "Associations", ...>]

Instead of using the = sign, you use the greater-than (>) symbol to make sure the date occurs after April 23, 2013.
This is followed by the SQL OR operator, which says “if this first part isn’t a match, then try the right-hand side and give
it a second chance at matching.” Therefore, you check the right-hand side only if the left-hand side fails. If an item
fails the created_at match, you check to see if the body is NOT LIKE code. You can think of OR as a more permissive
joining operator. It only cares that one of the conditions is a match. OR has a sister named AND, which requires that
both conditions are true:

>> Article.where("created_at > '23-04-2013' AND body NOT LIKE '%model%'")
=> []

You also use the SQL LIKE (modified using NOT, for negation) operator, which allows you to make partial matches.
Normally, when using =, SQL requires that the string match perfectly. However, LIKE is more permissive and allows
partial matches when used with the % wildcard. The % symbols are SQL wildcard characters that apply in LIKE clauses.
A % at the beginning of a pattern says that the pattern must match at the end of the field (the beginning can be any
sequence of characters); a % at the end means that the pattern must match at the beginning, where the end can be any
sequence of characters. Using a % on both sides of the pattern means that it must match anywhere in the field. Using
%model% means that the word model must occur somewhere (anywhere) in the body of the article. In the previous
example, you don’t want articles that have the word model; therefore, an article with the sentence “I don’t have your
match” is accepted as a match.

As you can see, this usage has all the flexibility of SQL, but it also has SQL’s natural limitations. For instance, you
may need to find information based on what the user passes into the application via the request parameters in your
application (Chapter 7 covers request parameters). If you aren’t careful, those data can be very dangerous to your
application, because they are open to SQL injection attacks. In such an attack, a user submits malicious code that
tricks your database server into doing far more than you intended. For more information about SQL injection, check
out the Wikipedia article at http://en.wikipedia.org/wiki/SQL_injection. Fortunately, Rails gives you a way to
avoid such threats by using the array condition syntax, which performs correctly quoted replacements.

Using an Array Condition Syntax
The array condition syntax gives you the ability to specify conditions on your database calls in a safer way than using
SQL syntax. Also, you don’t need to worry as much about SQL specifics like quoting and other concerns, because it
does automatic conversions for you on the inputs you give it. This is how it protects against SQL injection—it ensures
that the substituted values are safely quoted, thereby preventing malicious users from injecting arbitrary SQL into
your queries.

http://en.wikipedia.org/wiki/SQL_injection

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

103

The following example requires the use of a nice little Ruby method called Time.now. Basically, it returns a Time
object that is set to the current time. Let’s see if you can find all the articles that were published before today:

>> Article.where("published_at < ?", Time.now)
=> [#<Article id: 6, title: "Advanced Active Record", ...>]

It doesn’t look like much was published before today. Instead of writing in the date, you put a ? in the spot where you’d
normally write the value you want to find. The where method takes the second element in the array, Time.now, and replaces
it where the first ? appears. Additionally, the array syntax automatically takes your time and converts it into something your
database likes. You can invoke the to_sql method after the where method to inspect the issued SQL statement:

>> Article.where("published_at < ?", Time.now).to_sql
=> "SELECT \"articles\".* FROM \"articles\"
WHERE (published_at < '2013-04-02 16:27:51.059277')"

You give it a Time object, and it turns the object into the format that pleases your database. If you had passed it a
string, it wouldn’t have converted. You can even pass some information from another model:

>> Article.where("created_at = ?", Article.last.created_at)
=> [#<Article id: 8, title: "Associations", ...>]

That condition returns all the articles created at the same moment as the last article. You can pass as many
conditions as you want, as long as they occur in the same order as the question marks:

>> Article.where("created_at = ? OR body LIKE ?", Article.last.created_at, 'model')
=> [#<Article id: 8, title: "Associations", ...>]

MONITORING THE LOGS

You can see the SQL statements issued by your application in the file log/development.log. It’s often useful

to monitor what the server is doing. You may have already noticed that when you run rails server, it tells you

about what is going on in your application. However, different web servers (depending on what you’ve installed)

give different outputs, some more descriptive than others.

Fortunately, Rails prints all of its activities to a log file. If you look in your log directory, you see

log/development.log. This is the file where all the activities of your application are output. If you’re

running in production mode, the log file is log/production.log.

This file is written to live by your server. Sometimes it’s useful (especially on a live server) to monitor the events

occurring on your server. If you’re on a UNIX system, you can run the command tail -f log/development.log

to get a live feed from your logs. If you’re on a Windows system, you can find several applications that behave like

tail with a quick Google search.

During debugging, it can be useful to output messages to the log to see what’s going on with your application.

Almost anywhere in your application, you can type this:

Rails.logger.debug "This will only show in development"
Rails.logger.warn "This will show in all environments"

Both of these messages print directly to the log file and can be extremely useful for figuring out what is

happening with your server.

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

104

The main disadvantage with the array syntax is that it can become confusing to remember the order of the
elements you’re passing in for the conditions.

Instead of adding a list of things at the end of the array, you can pass in a hash and change the question marks to
actual named replacements. This can help you keep the order of your arguments straight:

>> Article.where("title LIKE :search OR body LIKE :search",
{:search => '%association%'})
=> [#<Article id: 7, title: "One-to-many associations", ...>,
#<Article id: 8, title: "Associations", ...>]

As you can see, you can reuse the same term in multiple places in your condition. If you were using the regular
array syntax, you’d have to pass the same value '%association%' twice. This is especially useful if you have many,
many conditions.

Using Association Proxies
Association proxy is a fancy term for the ability to chain together multiple calls to Active Record. You’ve been using
this technique throughout the book, but it hasn’t received special mention. Here is a basic example of association
proxies:

>> User.first.articles.all
=> [#<Article id: 8, title: "Associations", ...>]

This code returns all the articles of the first user. The all method (off articles) is automatically scoped to the
user, which is to say it finds articles that belong to that user. If you recall, articles is a has_many relationship on the
User model. The cool part is that this isn’t two queries to the database. It does all this in one request to the database.

Scoped finders are also more secure. Imagine a multiple-user system where data owned by one user shouldn’t be
accessible by another user. Finding an associated object (say, an article) by its id doesn’t restrict it to articles owned
by a particular user. You could pass in the article_id and the user_id as conditions, but that’s sloppy and prone to
error. The correct way to do this is to scope all find operations off the user in question. For example, assuming you
have a User object stored in the variable current_user; current_user.articles.find(1) ensures that the article
with id 1 is returned only if it belongs to the current_user.

Anyone who has done database work will realize that this incredibly simple syntax is far easier than the SQL
queries that need to be created to achieve similar results. If you play around with these chains, you can check out the
log to see the SQL that’s generated—be happy that you didn’t have to write it yourself !

This technique doesn’t just apply to finding. You can use it to automatically assign ownership with build and
create constructors by setting the appropriate foreign keys. Consider the following example, which creates a new
article for the current_user. It automatically sets the article’s user_id to that of the current user:

current_user.articles.create(:title => 'Private', :body => ‘Body here..’)

This is much better than the alternative, which is to go through the Article model directly and set the user_id
as an attribute (Article.create(:user_id => current_user.id). As a rule, whenever you need to restrict find
operations to an owner, or if you’re assigning ownership, you should use the power of the association proxy.

Other Finder Methods
Active Record ships with other finder methods that complement the where method and can be used on their own as
well. Table 6-6 lists some of those methods with a brief description and a quick example.

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

105

You’ve used the where method before. Let’s take the rest for a spin:

>> Article.all
=> [#<Article id: 6, title: "Advanced Active Record", ...>,
#<Article id: 7, title: "One-to-many associations", ...>,
#<Article id: 8, title: "Associations", ...>]
>> Article.order("title ASC")
=> [#<Article id: 6, title: "Advanced Active Record", ...>,
#<Article id: 8, title: "Associations", ...>,
#<Article id: 7, title: "One-to-many associations", ...>]
>> Article.limit(1)
=> [#<Article id: 6, title: "Advanced Active Record", ...>]
>> Article.order("title DESC").limit(2)
=> [#<Article id: 7, title: "One-to-many associations", ...>,
#<Article id: 8, title: "Associations", ...>]

You first retrieve a list of articles with all; then, you retrieve all articles ordered alphabetically by their title
using the order method. After that, you retrieve a single article using the limit method. Finally, you chain the limit
method to order to retrieve a couple of articles after sorting them. All methods listed in Table 6-6 are chainable; when
you chain finder methods to one another, Rails combines their specifics to form a single query to the database.

Default Scope
As you write applications, you may notice that you repeat certain conditions many times throughout your code. For
the blog application, it would make sense to display categories in alphabetical order, as the user would expect. Rails
provides a technique called scope to encapsulate commonly used find operations. Rails doesn’t enforce a default
order; it lets the database take care of sorting the results, which in most cases is done on the primary key id. Let’s look
at how your Category records are returned now:

>> Category.all
=> [#<Category id: 1, name: "Programming", ...>, #<Category id: 2, name: "Event", ...>,
#<Category id: 3, name: "Travel", ...>, #<Category id: 4, name: "Music", ..>,
#<Category id: 5, name: "TV", ...>]

Table 6-6. Some Active Record Finder Methods

Method Description Example

where(conditions) Specifies the conditions in which the records
are returned as a WHERE SQL fragment

Article.where
("title = 'Advanced Active Record'")

order Specifies the order in which the records are
returned as an ORDER BY SQL fragment

Article.order("published_at DESC")

limit Specifies the number of records to be returned
as a LIMIT SQL fragment

Article.limit(1)

joins Specifies associated tables to be joined in as
a JOIN SQL fragment

Article.joins(:comments)

includes Specifies associated tables to be joined and
loaded as Active Record objects in a JOIN
SQL fragment

Article.includes(:comments)

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

106

As you can see, categories are returned according to their primary key id. Let’s make sure categories are always
listed alphabetically, regardless of the conditions you use for the query. The code in Listing 6-19 tells the Category
class that you always want records to be ordered by the name field.

Listing 6-19. The default_scope Declaration in app/models/category.rb: http://gist.github.com/325932

class Category < ActiveRecord::Base
 has_and_belongs_to_many :articles

 default_scope lambda { order('categories.name') }
end

Notice that what you pass to the default_scope method is identical to the order method call in the previous
section. As you may expect, you can pass any finder method to default_scope. Let’s see the order in which your
categories are retrieved now:

>> reload!
Reloading...
>> Category.all
=> [#<Category id: 2, name: "Event", ...>, #<Category id: 4, name: "Music", ...>,
#<Category id: 1, name: "Programming", ...>, #<Category id: 5, name: "TV", ...>,
#<Category id: 3, name: "Travel", ...>]

As you can see, your categories are sorted alphabetically by default.

Note ■ When specifying the order for the default scope, you use the fully qualified name categories.name instead of

just name. Whenever you use associations to retrieve categories, Rails runs an SQL command to join categories with other

tables, which may also have a name field; using the table name ensure that your database always knows the field you

really want to sort by.

Named Scope
The default scope is useful. But in most cases, the only code you want to have there is default ordering for your
application, because adding a condition to default_scope would cause that condition be applied every time. For
queries that you run often, you should create named scopes that make your code easier to read and maintain.

Let’s create two named scopes: the first one lists all the articles with a published_at date and is named
:published; the second scope lists all the articles without a published_at date and is named :draft. You create both
scopes using the scope method, which takes the name of the scope as its first parameter and a finder method call as
its second. Listing 6-20 shows the updated Article model.

Listing 6-20. Named Scopes Declarations in app/models/article.rb: http://gist.github.com/325944

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

 belongs_to :user
 has_and_belongs_to_many :categories
 has_many :comments

http://gist.github.com/325932
http://gist.github.com/325944

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

107

 scope :published, lambda { where("articles.published_at IS NOT NULL") }
 scope :draft, lambda { where("articles.published_at IS NULL") }

 def long_title
 "#{title} - #{published_at}"
 end
end

As in a regular where method, you can use arrays as parameters. In fact, you can chain finder methods with
other named scopes. You define the recent scope to give you articles recently published: first, you use the published
named scope, then you chain to it a where call (Listing 6-21).

Listing 6-21. Recent Named Scope Declaration in app/models/article.rb: http://gist.github.com/326095

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

 belongs_to :user
 has_and_belongs_to_many :categories
 has_many :comments

 scope :published, lambda { where("articles.published_at IS NOT NULL") }
 scope :draft, lambda { where("articles.published_at IS NULL") }
 scope :recent, lambda { published.where("articles.published_at > ?",
1.week.ago.to_date) }

 def long_title
 "#{title} - #{published_at}"
 end
end

Note ■ lambda is a keyword in Ruby that defines a self-contained standalone method, which is executed only when

you invoke it. You must use a lambda or some other object that responds to call when defining a scope.

To make scopes even more useful, you can define scopes that can receive parameters, instead of hard coding the
values you want to query with. You need search functionality that allows the end user to look up articles by title; so,
let’s add another scope called where_title that accepts an argument and searches by it (Listing 6-22).

Listing 6-22. The where_title Named Scope Declaration in app/models/article.rb: http://gist.github.com/326098

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

 belongs_to :user
 has_and_belongs_to_many :categories
 has_many :comments

http://gist.github.com/326095
http://gist.github.com/326098

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

108

 scope :published, lambda { where("articles.published_at IS NOT NULL") }
 scope :draft, lambda { where("articles.published_at IS NULL") }
 scope :recent, lambda { published.where("articles.published_at > ?",
1.week.ago.to_date)}
 scope :where_title, lambda { |term| where("articles.title LIKE ?", "%#{term}%") }

 def long_title
 "#{title} - #{published_at}"
 end
end

Now that you’ve added those scopes, let’s see them in action in a console session. When you look at the results
of running the methods, you get an English-like syntax that makes the code easy to read and expand. Pay special
attention to the line that uses Article.draft.where_title("one"), which shows how you chain scopes to get the
exact data you want:

>> reload!
Reloading...
>> Article.published
=> [#<Article id: 6, title: "Advanced Active Record", ...>]
>> Article.draft
=> [#<Article id: 7, title: "One-to-many associations", ...>,
#<Article id: 8, title: "Associations", ...>]
>> Article.recent
=> [#<Article id: 6, title: "Advanced Active Record", ...>]
>> Article.draft.where_title("one")
=> [#<Article id: 7, title: "One-to-many associations", ...>]
>> Article.where_title("Active")
=> [#<Article id: 6, title: "Advanced Active Record", ...>]

Applying Validations
It’s probably a safe bet that you don’t want every field in your tables to be optional. Certain fields need to be required,
terms of service agreements need to be accepted, and passwords need to be confirmed. That’s just the way it is when
you’re building web applications, and Rails understands this. Consider this example of an Account model:

class Account < ActiveRecord::Base
 validates_presence_of :login
 validates_confirmation_of :password
 validates_acceptance_of :terms_of_service
end

Like associations, validations are sets of high-level macros that let you selectively apply common validation
requirements to your model’s attributes. In this section, you create a full set of validations for your blog application,
and you see firsthand how easy it is to perform basic validations with Active Record. You start by applying some of the
built-in validations, and then you build a couple custom validation methods.

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

109

Using Built-In Validations
Rails has myriad built-in validators, all of which are accessible through the validates method. Here you will learn
about some of the options the validates method accepts as you apply them to your blog application. Check the
API for details of all the Rails validators (http://api.rubyonrails.org/classes/ActiveModel/Validations/
ClassMethods.html).

As a reference to get you started, you can pass two common options into any built-in validator. These are
described in Table 6-7.

Table 6-7. Default Options for All Validators

Option Description Example

:message Specifies the error message shown if validation fails. :message => "too long"

:on Specifies when this validation happens. The default is
:save. Other options are :create and :update.

:on => :create

Validating That a Value Has Been Entered

You can use the :presence option to make sure a user has entered something into a field. This is very useful in many
cases. You have those validations in the Article model for the title and body fields, as shown in Listing 6-23.

Listing 6-23. The Article Model, validates_presence_of Method in app/models/article.rb

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

 belongs_to :user
 has_and_belongs_to_many :categories
 has_many :comments

 scope :published, lambda { where("articles.published_at IS NOT NULL") }
 scope :draft, lambda { where("articles.published_at IS NULL") }
 scope :recent, lambda { published.where(["articles.published_at > ?",
1.week.ago.to_date])}
 scope :where_title, lambda { |term| where("articles.title LIKE ?", "%#{term}%") }

 def long_title
 "#{title} - #{published_at}"
 end
end

The default message is “can’t be blank.”

http://api.rubyonrails.org/classes/ActiveModel/Validations/ClassMethods.html
http://api.rubyonrails.org/classes/ActiveModel/Validations/ClassMethods.html

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

110

Validating That a Value Is Unique

Often, you want to ensure that a certain field is unique. The :uniqueness option validates whether the value of the
specified attribute is unique across the system. You use this method in the User model to make sure each e-mail is
unique, as shown in Listing 6-24.

Listing 6-24. The validates_uniqueness_of Method in app/models/user.rb:

class User < ActiveRecord::Base
 validates_uniqueness_of :email

 has_one :profile
 has_many :articles, -> { order('published_at DESC, title ASC') },
 :dependent => :nullify
 has_many :replies, :through => :articles, :source => :comments
end

When the record is created, a check is performed to ensure no record exists in the database with the given value
for the specified attribute email (that maps to a column). When the record is updated, the same check is made,
disregarding the record itself. The default error message is “#{value} has already been taken.”

The :scope option can also validate whether the value of the specified attributes is unique based on multiple
parameters. For example, you can use it to ensure that a teacher is on the schedule only once per semester for a
particular class:

class Schedule < ActiveRecord::Base
 validates_uniqueness_of :teacher_id, :scope => [:semester_id, :class_id]
end

Validating Length or Size

Sometimes you want to validate the length, or size, of a field entry. You can do this by using the :length option. You
use this method in the User model to specify a valid number of characters for an e-mail address, as shown in Listing
6-25. The option for specifying a size range is :within.

Listing 6-25. The validates_length_of Method in app/models/user.rb:

class User < ActiveRecord::Base
 validates_uniqueness_of :email
 validates_length_of :email, :within => 5..50

 has_one :profile
 has_many :articles, -> { order('published_at DESC, title ASC') },
 :dependent => :nullify
 has_many :replies, :through => :articles, :source => :comments
end

If you want to ensure only the minimum or maximum, you can use the :minimum or :maximum option. Table 6-8
lists the most common :length validator’s options.

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

111

Validating the Format of an Attribute

The :format option checks whether a value is in the correct format. Using this method requires familiarity with
regular expressions (regex) or being able to steal other people’s regular expressions. The classic example (and the one
you need) is e-mail. Update the validates method as shown in Listing 6-26.

Listing 6-26. Update validates :format Method in app/models/user.rb: http://gist.github.com/326146

class User < ActiveRecord::Base
 validates_uniqueness_of :email
 validates_length_of :email, :within => 5..50
 validates_format_of :email, :with => /^[^@][\w.-]+@[\w.-]+[.][a-z]{2,4}$/i

 has_one :profile
 has_many :articles, -> { order('published_at DESC, title ASC') },
 :dependent => :nullify
 has_many :replies, :through => :articles, :source => :comments
end

Don’t be put off by how complicated this looks. You pass in the :with option and a regex object to say what
patterns you want to match.

TIP■ If you want to learn more about using regular expressions, you can find many tutorials and books on the subject.

One good reference is Nathan Good’s Regular Expression Recipes (Apress, 2004).

Validating Confirmation

Whenever a user changes an important piece of data (especially the password), you may want the user to confirm that
entry by typing it again. This is the purpose of the validates_confirmation_of method. When you use this helper,
you create a new virtual attribute called #{field_name}_confirmation. Add this to the User model for password
confirmation, as shown in Listing 6-27.

Table 6-8. Options for Validating :length

Option Description

:minimum Specifies the minimum size of the attribute

:maximum Specifies the maximum size of the attribute

:is Specifies the exact size of the attribute

:within Specifies the valid range (as a Ruby Range object) of values acceptable for the attribute

:allow_nil Specifies that the attribute may be nil; if so, the validation is skipped

:too_long Specifies the error message to add if the attribute exceeds the maximum

:too_short Specifies the error message to add if the attribute is below the minimum

:wrong_length Specifies the error message to add if the attribute is of the wrong size

:message Specifies the error message to add if :minimum, :maximum, or :is is violated

http://gist.github.com/326146

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

112

Listing 6-27. The validates :confirmation Method in app/models/user.rb: http://gist.github.com/326153

class User < ActiveRecord::Base
 validates_uniqueness_of :email
 validates_length_of :email, :within => 5..50
 validates_format_of :email, :with => /^[^@][\w.-]+@[\w.-]+[.][a-z]{2,4}$/i
 validates_confirmation_of :password

 has_one :profile
 has_many :articles, -> { order('published_at DESC, title ASC')},
 :dependent => :nullify
 has_many :replies, :through => :articles, :source => :comments
end

The password attribute is a column in the users table, but the password_confirmation attribute is virtual.
It exists only as an in-memory variable for validating the password. This check is performed only if password_
confirmation isn’t nil and runs whenever the object is saved.

Other Validations

There is one other important validation method: validates_acceptance_of, which validates the acceptance of a
Boolean field.

Building Custom Validation Methods
In the blog application, you’d like to make sure no one creates a comment for an article that hasn’t been published
yet. First, you need to create a method so you can ask an Article whether its published_at field is null by using the
present? method, which returns true if a values exists and false otherwise. This method is useful outside validations,
because you may want to indicate on the administration interface later whether an article has been published. Let’s add
that method now and call it published?. Add the code shown in Listing 6-28 to the Article model.

Listing 6-28. Adding the published? Method in app/models/article.rb: http://gist.github.com/326170

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

 belongs_to :user
 has_and_belongs_to_many :categories
 has_many :comments

 scope :published, lambda { where("articles.published_at IS NOT NULL") }
 scope :draft, lambda { where("articles.published_at IS NULL") }
 scope :recent, lambda { published.where("articles.published_at > ?",
1.week.ago.to_date)}
 scope :where_title, lambda { |term| where("articles.title LIKE ?", "%#{term}%") }

 def long_title
 "#{title} - #{published_at}"
 end

 def published?
 published_at.present?
 end
end

http://gist.github.com/326153
http://gist.github.com/326170

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

113

This gets you a step closer to your goal. When building validations, Active Record gives you nice objects called
errors to use. Whenever you want to add a validation error to the list of errors, you just type errors.add(column_name,
error_message). So, let’s implement a method called article_should_be_published in the Comment class that uses
this functionality, as shown in Listing 6-29.

Listing 6-29. Adding the article_should_be_published Method in app/models/comment.rb:

class Comment < ActiveRecord::Base
 belongs_to :article

 def article_should_be_published
 errors.add(:article_id, "is not published yet") if article
&& !article.published?
 end
end

This checks whether you should apply the error by evaluating the if statement. If that if statement is true, you
want to add an error into the errors object. Note that before you test whether the article is published, you make sure
article isn’t nil. This is so your test doesn’t throw an error. If article is nil, that should be handled by another
validator: the validates_presence_of method.

How do you tell Active Record that this method should be run before a save? You use the validate class method
and pass it a symbol with the name of the method. At the top of your Comment class, add the code shown in Listing 6-30.
Note that we also expect comments to have values for name, email, and body; so, we add a presence validation call.

Listing 6-30. The validate Method in app/models/comment.rb:

class Comment < ActiveRecord::Base
 belongs_to :article

 validates_presence_of :name, :email, :body
 validate :article_should_be_published

 def article_should_be_published
 errors.add(:article_id, "is not published yet") if article && !article.published?
 end
end

This advises Active Record to pay attention to your new article_should_be_published method. In Chapter
11 you write tests to make sure this is working. But you can also go to the console—if you have it open already, don’t
forget to reload!—and try to create an invalid object to see if it reports errors for you. The easiest way to get to errors
in an Active Record object is with comment.errors.full_messages, as shown here:

>> article = Article.draft.first
=> #<Article id: 7, title: "One-to-many associations", ...>
>> comment = article.comments.create :name => 'Dude',
:email => 'dude@example.com', :body => 'Great article!'
=> #<Comment id: nil, article_id: 7, name: "Dude", email: "dude@example.com",
body: "Great article!", created_at: nil, updated_at: nil>
>> comment.errors.full_messages
=> ["Article is not published yet"]

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

114

Making Callbacks
You often want to have certain things happen during the lifecycle of the model. Certain actions need to happen during
certain events pertaining to a particular model. For instance, what if you want to send an e-mail to your administrator
whenever someone cancels an account? Or perhaps you want to make sure to create a new model because some other
model was also created. Sometimes, certain actions in the life of a model should execute associated actions.

To implement this, Active Record has callbacks. Six callbacks are commonly used in Active Record models:

• before_create

• after_create

• before_save

• after_save

• before_destroy

• after_destroy

As you can see, the names of the Rails callbacks describe their purpose. When you create a method with any of
these names in your model, the method is called automatically by the model during the time the name suggests. For
instance, if you make a before_save method, that method is called right before the model object is saved.

Any callback that starts with before_ can stop the execution chain if it returns false. For instance, if you define
before_create, you ensure that this model object will never be created:

def before_create
 false
end

This can be a gotcha later if you’re doing something like an assignment of false to a variable. If you’re ever
confused why a model won’t save, check your before_ filters.

In the blog application, you’d like to make sure that when a user creates a comment, an e-mail is automatically
sent to the article author. Although you don’t send an e-mail here, this chapter goes over the steps required to put
together code to eventually send the e-mail in Chapter 10 To set this up, you add an after_create method to the
Comment class that will eventually have the code to send an e-mail. Add the method shown in Listing 6-31 to the
Comment model.

Listing 6-31. Adding after_create Method in app/models/comment.rb

class Comment < ActiveRecord::Base
 belongs_to :article

 validates_presence_of :name, :email, :body
 validate :article_should_be_published

 def article_should_be_published
 errors.add(:article_id, "is not published yet") if article
&& !article.published?
 end

 def after_create
 puts "We will notify the author in Chapter 9"
 end
end

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

115

You use the code you want to be executed directly in the code of the after_create method. This is nice and
simple, but you should probably use the pattern as you did for validate in Listing 6-30, where you pass in a symbol
that references the method to run when the validation is performed. This helps keep the code readable and easier to
augment in the future, because you can supply an arbitrary number of methods to run on a callback, separated by a
comma. Name the method email_article_author, and tell Active Record to run it after a record is created, as shown
in Listing 6-32.

Listing 6-32. The email_article_author Method Specified as an after_create Callback in app/models/comment.
rb: http://gist.github.com/326211

class Comment < ActiveRecord::Base
 belongs_to :article

 validates_presence_of :name, :email, :body
 validate :article_should_be_published

 after_create :email_article_author

 def article_should_be_published
 errors.add(:article_id, "is not published yet") if article
 && !article.published?
 end

 def email_article_author
 puts "We will notify #{article.user.email} in Chapter 9"
 end
end

Active Record provides many more callbacks than are mentioned here, but those listed at the beginning of this
section are the ones you’ll find yourself using often. Some of the others are used in extremely rare cases (for instance,
after_initialize, which is called after an object is initialized). These callbacks can help you with just about
anything you need to do during the lifecycle of a model. They’re part of smart models, which know how to deal with
their own birth, life, and death.

Updating the User Model
You still need to do a little work on your User model. You can apply many of the techniques described in this chapter,
such as custom methods to allow you to perform user authentication, and validation methods to make sure your data
stay clean.

When you created the user migration (Listing 6-2), you added a field called password. This field stores a plain-text
password, which, if you think about it, isn’t very secure. It’s always a good idea to encrypt any sensitive data so they
can’t be easily read by would-be intruders. You deal with the encryption in the User model itself, but the first thing
you do is rename the field in the database from password to hashed_password. This is so you can create a custom
accessor called password with which to set the password while maintaining a field to store the encrypted version in
the database. The plain-text password is never saved.

To accomplish this, you create a migration. From the terminal, issue the following command to create the
new migration:

$ rails generate migration rename_password_to_hashed_password

Next, fill in the migration as shown in Listing 6-33.

u

http://gist.github.com/326211

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

116

Listing 6-33. Migration to Rename password to hashed_password in db/migrate/20130409052120_rename_
password_to_hashed_password.rb: http://gist.github.com/326261

class RenamePasswordToHashedPassword < ActiveRecord::Migration
 def change
 rename_column :users, :password, :hashed_password
 end
end

Run the migration using the rake db:migrate command, as follows:

$ rake db:migrate

== RenamePasswordToHashedPassword: migrating ===============================

-- rename_column(:users, :password, :hashed_password)

 -> 0.0558s

== RenamePasswordToHashedPassword: migrated (0.0560s) ========================

Next, update your User model so it looks like that in Listing 6-34. You program all the user-authentication
methods you need for allowing users to log in. Let’s look at the code first and then see in detail what you’ve done.

Listing 6-34. Current User Model in app/models/user.rb: http://gist.github.com/326271

require 'digest'
class User < ActiveRecord::Base
 attr_accessor :password
 validates_uniqueness_of :email
 validates_length_of :email, :within => 5..50
 validates_format_of :email, :with => /^[^@][\w.-]+@[\w.-]+[.][a-z]{2,4}$/i

 validates_confirmation_of :password
 validates_length_of :password, :within => 4..20
 validates_presence_of :password, :if => :password_required?

 has_one :profile
 has_many :articles, -> { order('published_at DESC, title ASC') },
 :dependent => :nullify
 has_many :replies, :through => :articles, :source => :comments

 before_save :encrypt_new_password

 def self.authenticate(email, password)
 user = find_by_email(email)
 return user if user && user.authenticated?(password)
 end

 def authenticated?(password)
 self.hashed_password == encrypt(password)
 end

http://gist.github.com/326261
http://gist.github.com/326271

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

117

 protected
 def encrypt_new_password
 return if password.blank?
 self.hashed_password = encrypt(password)
 end

 def password_required?
 hashed_password.blank? || password.present?
 end

 def encrypt(string)
 Digest::SHA1.hexdigest(string)
 end
end

Note ■ The SHA1 hashing algorithm used in this example is weak and was only used for an example. For production

web sites you should take a look at the bcrypt gem (https://github.com/codahale/bcrypt-ruby).

Whenever you store something sensitive like a password, you should encrypt it. To encrypt the password in your
User model, you use a simple algorithm called a hash that creates a random-looking string from the provided input.
This hashed output can’t be turned back into the original string easily, so even if someone steals your database, they
will have a prohibitively difficult time discovering your users’ passwords. Ruby has a built-in library called Digest that
includes many hashing algorithms.

Let’s go through the additions to the User model:

• require 'digest': You start by requiring the Digest library you use for encrypting the
passwords. This loads the needed library and makes it available to work within your class.

• attr_accessor :password: This defines an accessor attribute, password, at the top of the class
body. It tells Ruby to create reader and writer methods for password. Because the password
column doesn’t exist in your table anymore, a password method isn’t created automatically
by Active Record. Still, you need a way to set the password before it’s encrypted, so you make
your own attribute to use. This works like any model attribute, except that it isn’t persisted to
the database when the model is saved.

• before_save :encrypt_new_password: This before_save callback tells Active Record to
run the encrypt_new_password method before it saves a record. That means it applies to all
operations that trigger a save, including create and update.

• encrypt_new_password: This method should perform encryption only if the password
attribute contains a value, because you don’t want it to happen unless a user is changing
his password. If the password attribute is blank, you return from the method, and the
hash_password value is never set. If the password value isn’t blank, you have some work to do.
You set the hashed_password attribute to the encrypted version of the password by laundering
it through the encrypt method.

• encrypt: This method is fairly simple. It uses Ruby’s Digest library, which you included on the
first line, to create an SHA1 digest of whatever you pass it. Because methods in Ruby always
return the last thing evaluated, encrypt returns the encrypted string.

https://github.com/codahale/bcrypt-ruby

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

118

• password_required?: When you perform validations, you want to make sure you’re validating
the presence, length, and confirmation of the password only if validation is required. And it’s
required only if this is a new record (the hashed_password attribute is blank) or if the password
accessor you created has been used to set a new password (password.present?). To make this
easy, you create the password_required? predicate method, which returns true if a password
is required or false if it’s not. You then apply this method as an :if condition on all your
password validators.

• self.authenticate: You can tell this is a class method because it’s prefixed with self (it’s
defined on the class itself). That means you don’t access it via an instance; you access it
directly off the class, just as you would find, new, or create (User.authenticate, not @
user = User.new; @user.authenticate). The authenticate method accepts an e-mail
address and an unencrypted password. It uses a dynamic finder (find_by_email) to fetch the
user with a matching e-mail address. If the user is found, the user variable contains a User
object; if not, it’s nil. Knowing this, you can return the value of user if, and only if, it isn’t
nil and the authenticated? method returns true for the given password (user && user.
authenticated?(password)).

• authenticated?: This is a simple predicate method that checks to make sure the stored
hashed_password matches the given password after it has been encrypted (via encrypt). If it
matches, true is returned.

Let’s play with these new methods from the console so you can get a better idea of how this comes together:

>> user = User.first
=> #<User id: 1, email: "user@example.com", ..>
>> user.password = 'secret'
=> "secret"
>> user.password_confirmation = 'secret'
=> "secret"
>> user.save
=> true
>> user.hashed_password
=> "e5e9fa1ba31ecd1ae84f75caaa474f3a663f05f4"
>> User.authenticate('user@example.com', 'secret')
=> #<User id: 1, email: "user@example.com", ...>
>> User.authenticate('user@example.com', 'secret2')
=> nil
>> second_user = User.last
=> #<User id: 2, email: "mary@example.com", ...>
>> second_user.update_attributes(:password => 'secret',
:password_confirmation => 'secret')
=> true
>> User.authenticate('mary@example.com', 'secret')
=> #<User id: 2, email: "mary@example.com", ...>

When you ask the User model to authenticate someone, you pass in the e-mail address and the plain-text
password. The authenticate method hashes the given password and then compares it to the stored (hashed)
password in the database. If the passwords match, the User object is returned, and authentication was successful.
When you try to use an incorrect password, nil is returned. In Chapter 8 you write code in your controller to use these
model methods and allow users to log in to the site. For now, you have a properly built and secure backend for the way
users authenticate.

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

119

With the validation in the User model, the db/seeds.rb file also needs to be updated to make sure it follows the
rules expected in the model. While we are at it, we also add some code to create a few articles. Update your db/seeds.
rb file so that it looks like Listing 6-35.

Listing 6-35. Current Seeds File in db/seeds.rb: http://gist.github.com/387374

user = User.create :email => 'mary@example.com',
 :password => 'guessit',
 :password_confirmation => 'guessit'
Category.create [{:name => 'Programming'},
 {:name => 'Event'},
 {:name => 'Travel'},
 {:name => 'Music'},
 {:name => 'TV'}]
user.articles.create :title => 'Advanced Active Record',
 :body => "Models need to relate to each other. In the real world, ..",
 :published_at => Date.today
user.articles.create :title => 'One-to-many associations',
 :body => "One-to-many associations describe a pattern ..",
 :published_at => Date.today
user.articles.create :title => 'Associations',
 :body => "Active Record makes working with associations easy..",
 :published_at => Date.today

Reviewing the Updated Models
You’ve made a lot of changes to your models, so let’s make sure we’re on the same page before you move on. Look at
the Article, Category, and Comment models in Listings 6-36, 6-37, and 6-38, respectively, and make sure yours match.

Listing 6-36. Current Article Model in app/models/article.rb

class Article < ActiveRecord::Base
 validates_presence_of :title
 validates_presence_of :body

 belongs_to :user
 has_and_belongs_to_many :categories
 has_many :comments

 scope :published, lambda { where("articles.published_at IS NOT NULL") }
 scope :draft, lambda { where("articles.published_at IS NULL") }
 scope :recent, lambda { published.where("articles.published_at > ?",
1.week.ago.to_date)}
 scope :where_title, lambda { |term| where("articles.title LIKE ?", "%#{term}%") }

 def long_title
 "#{title} - #{published_at}"
 end

http://gist.github.com/387374

CHAPTER 6 ■ ADVANCED ACTIVE RECORD: ENHANCING YOUR MODELS

120

 def published?
 published_at.present?
 end
end

Listing 6-37. Current Category Model in app/models/category.rb

class Category < ActiveRecord::Base
 has_and_belongs_to_many :articles

 default_scope lambda { order('categories.name') }
end

Listing 6-38. Current Comment Model in app/models/comment.rb

class Comment < ActiveRecord::Base
 belongs_to :article

 validates_presence_of :name, :email, :body
 validate :article_should_be_published

 def article_should_be_published
 errors.add(:article_id, "is not published yet") if article
 && !article.published?
 end
end

Summary
After reading this chapter, you should have a complete understanding of Active Record models. The chapter covered
associations, conditions, validations, and callbacks at breakneck speed. Now the fun part starts. In the next chapter,
you get to use all the groundwork established in this chapter to produce the web interface for the data structures
you’ve created. This is when you get to reap the benefits of your hard work.

121

CHAPTER 7

Action Pack: Working with the View
and the Controller

When you type a URL into your browser’s address bar and press Enter, a few things happen behind the scenes. First,
the domain name is translated into a unique address by which the server that hosts the application can be identified.
The request is then sent to that server, which begins a chain of events that culminates in a response. The response is
usually, but not always, in the form of an HTML document, which is essentially a text document full of special codes
that your browser understands and can render visually on your screen. At this point, the request cycle is complete,
and the browser waits for further input from you. If you click a link somewhere on the page or type a new URL in the
address bar, the cycle begins all over again: the request is sent, the server processes it, and the server sends back the
response.

When you make a request to a Rails application, this request cycle is the responsibility of a component of Rails
called Action Pack. The Action Pack library is an integral component of the Rails framework and one that you need to
be familiar with if you intend to master Rails.

This chapter begins with an overview of Action Pack. Then, you get to work using it in your sample blog application.

Note■ If you need to get the code at the exact point where you finished Chapter 6, download the source code zip file

from the book’s page on http://www.apress.com and extract it on your computer.

Action Pack Components
You’ve been introduced to the MVC pattern, but if you need a refresher, here it is. The model is your application’s
world, most often represented by database objects like articles, comments, and subscribers. The controller is the
grand orchestrator, dealing with requests and issuing responses. The view is the code that contains instructions for
rendering visual output for a browser, like HTML.

Armed with this refresher, you may be able to guess what roles are played by Action Pack. This isn’t a test, so
here’s the answer: Action Pack is the controller and the view. The controller performs the logic, and the view renders
the template that is given back to the requesting browser. Not surprisingly, two of the modules that make up the
Action Pack are named accordingly: Action Controller and Action View.

At this point, you may be wondering why the view and the controller are wrapped up in a single library, unlike
models, which have a library of their own. The answer is subtle and succinct: controllers and views are very closely
related. The sections that follow paint a more complete picture of both the role and the relationship of controllers and
views, how they work, and how they work together to create and control the interface of a Rails application.

http://www.apress.com/

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

122

Action Controller
Controllers orchestrate your application’s flow. Every time a user requests a page, submits a form, or clicks a link, that
request is handled—in one way or another—by a controller. When you’re programming your application, you spend
a lot of time building controllers and giving them instructions on how to handle requests.

The concept of controllers can sometimes be difficult for newcomers to grasp. Even if you’ve built web
applications before, say in ASP (Active Server Pages) or PHP (Hypertext Preprocessor), you may not be used to
this form of separation, where the mechanics of flow are controlled by a separate entity and not embedded in the
pages themselves.

Let’s look at the example of the CD player in a car to illustrate the concept of controllers. The player is required to
respond to certain events, such as the user pressing the play button, fast forwarding, or rewinding a track. When you
push a button, you expect something to happen—you’ve made a request, and you wait for the subsequent response.

If your CD player were a Rails application, the instructions for what to do when a certain event takes place, such
as the pressing the eject button, would be contained in a controller. If you were to sketch it on paper, it might look
something like this:

CD Player•

Play•

Stop•

Fast-forward•

Rewind•

Eject•

These events, or actions, describe what the player should be capable of doing. Obviously, each of these actions
would need to be programmed to do something with the disc inside the player. When someone presses eject, you
would first call on the stop action (if the disc is playing) and then arrange for the player to spit out the disc. You would
code all the instructions for dealing with an eject event into the controller—specifically, inside the eject action. The
same would apply for play, fast-forward, and rewind.

It’s worth noting that this type of logic has nothing to do with the CD itself, nor does it have anything to do with
the music on the CD. If this were a Rails application, the CD would be the model. It can be used independently of the
player. In fact, it can be used in all sorts of players, not just the one in your car.

The stereo in your car is probably capable of more than just playing CDs. Most stereos have a radio receiver
built in as well. The radio would have its own set of events that would likewise need to be handled. These actions
might include things like changing stations, setting presets, and switching between AM and FM. To keep things
well organized, you would probably want to group these actions inside their own controller, separate from the CD
controller. After all, the radio and the CD player do different things.

When you’re dealing with a Rails application, it’s not much different. You separate the things that you need your
application to do with an object from the object itself. Even when you’re not dealing directly with an object (adjusting
the volume on your car stereo has little to do with either the CD in the player or the station on the radio), you still
handle the event inside a controller.

Each controller in Rails is designed as a Ruby class. Without getting too technical, Listing 7-1 shows how the CD
player example would look if it were a Ruby class.

Listing 7-1. CDPlayer Class

class CDPlayer
 def play
 end

 def stop
 end

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

123

 def fast_forward
 end

 def rewind
 end

 def eject
 end
end

Inside the CDPlayer class, you define a method for each action, or each thing you want your CD player to be able
to do. So, if you were to send the message “play” to an instance of the CDPlayer class, it would know how to handle
it (of course, because the play method is empty in this example, nothing would happen). On the other hand, if you
sent the message “pause,” Ruby would raise an exception and tell you that the method wasn’t found. If you wanted
CDPlayer objects to respond to that message, you would need to add a method called (you guessed it) pause.

All the methods in this class are public, which means they can be invoked by anyone. You don’t need to do
anything special to a method to make it public. Unless otherwise declared, all methods in a Ruby class are public by
default. If you were to mark an action as private, though, it could be used only internally by the class. For example,
if the stop method were private, it would raise a NoMethodError if you called it from outside the CDPlayer class.
However, the eject method is free to call on stop, because it does so internally. Although the usefulness of this feature
will become apparent as you continue to learn about controllers, consider this: if your CD player needed to display
the time remaining for a given track, it might need to perform a few calculations to figure that out. You might create
a method for doing these internal calculations, but would you want that method to be accessible from the outside?
Would you have a button called Calculate on your player?

It’s time for a working definition: Action Controllers are Ruby classes containing one or more public methods
known as actions. Each action is responsible for responding to a request to perform some task. A typical controller
is most often a collection of actions that relates to a specific area of concern. For example, consider the blog
application you’ve been building in the previous chapters. The controller that manages articles has the class name
ArticlesController and has action methods for listing, creating, reading, updating, and deleting articles.

The example of the CD player worked well to illustrate the basic concept of controllers, but it won’t take you
much further when dealing with web applications. If you were really dealing with a CD player, you would press play,
the disc would start playing, and that would be the end of it. But because Rails was specifically designed for building
web applications, it makes a fair number of assumptions about what you want your actions to do when they’re
finished firing. Chief among these is the rendering of a view.

Imagine that you’re reading a list of posts on someone’s blog. You click the title of a post, and you expect to be taken
to a new screen that shows you just that post. You requested an action (show), and in response, you receive a new screen.
This happens all the time in the world of web applications: when you click a link, you expect to go to a new page.

In Rails, it’s the general case that when actions have completed their work, they respond by rendering a view. The
concept of actions rendering views is so common that Rails has internalized it as a convention: unless otherwise stated,
when an action is finished firing, it renders a view. How does Rails know what view to render if you don’t tell it? It
looks for a view whose name matches that of the requested action. This should give you some insight as to why Action
Controller and Action View are bundled together in Action Pack. Because of the way controller actions relate to views,
a few other mechanisms facilitate their communication, all of which are covered shortly.

Action View
The Action View library is the second half of Action Pack. Given that controllers are responsible for handling the
request and issuing a response, views are responsible for rendering the output of a response in a way a browser
(or any other user agent) can understand. Let’s say you request the index action from the ArticlesController. After
performing the logic to retrieve a list of articles, the controller hands off to the view, which formats the list of articles
to make them look pretty. The controller then collects the results of the render, and the HTML is sent back to the
browser, thus completing the request cycle.

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

124

Although the controller and the view are separate entities, they need to communicate with each other. The
primary mechanism by which they do this is through shared variables. These shared variables are called instance
variables and are easy to spot in Ruby because they’re prefixed with the @ symbol. Keep this in mind as you look at the
view example in Listing 7-2, which uses an instance variable called @articles to produce an article listing.

Listing 7-2. An Example View

<html>
 <body>

 <% @articles.each do |article| %>
 <%= article.title %>
 <% end %>

 </body>
</html>

Even without knowing any Ruby, you should be able to guess what this code does: it iterates over the collection of
articles stored in the variable @articles and prints the title of each between HTML list-item () tags. If @articles
contained three articles whose titles were One, Two, and Three, respectively, the preceding code would be compiled
to the following:

<html>
 <body>

 One
 Two
 Three

 </body>
</html>

You may wonder where the variable @articles came into being. If you guessed in the controller, you would be
right. The controller sets up instance variables that the view can access. In this case, the controller created a variable
called @articles, and the view was given automatic access to it. Notice that the view doesn’t perform any logic to
fetch the list of articles; it relies on the controller to have set up the variable and performs the display logic necessary
to turn the collection into a browser-ready HTML list.

Embedded Ruby
The code you see mixed into the HTML markup is Ruby. Because templates that are capable of dealing only with static
HTML wouldn’t be very useful, Action View templates have the benefit of being able to use Embedded Ruby (ERb) to
programmatically enhance them.

Using ERb, you can embed Ruby into your templates and give them the ability to deal with data from the
controller to produce well-formed HTML representations. ERb is included in the Ruby standard library, and Rails
makes extensive use of it. You trigger ERb by using embeddings such as <% %> and <%= %> in your template files to
evaluate or print Ruby code, respectively. If you’ve ever worked with ASP, JSP (Java Server Page), or PHP, this style of
embedding should be familiar to you.

In the example in the preceding section, the loop is constructed within evaluation embedding tags (<% %>), and
the article’s title is printed using output embedding tags (<%= %>). Pay close attention to the subtle difference between

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

125

the two embedding types: output embedding includes an equals sign; regular embedding doesn’t. When you use
output embedding, you’re effectively saying print the results of the Ruby code when it’s evaluated. Regular embedding
doesn’t print results; it evaluates whatever is between the tags and goes on its merry way. If you mistakenly omit the
equals sign, no errors are raised, but nothing is printed either. You have a set of empty list tags.

Note ■ Following the Model behavior, Rails is modular and can be used with other templating libraries. A popular

alternative is the Haml (http://haml-lang.com) template language used by many Rails developers.

Helpers
The terms of the MVC are fairly strict in the way they advocate the separation of components. Controllers really
shouldn’t concern themselves with the generation of view code, and views shouldn’t concern themselves with
anything but the simplest of logic. Although it’s possible to use ERb to execute arbitrary Ruby code inside a view, and
although controllers are certainly capable of generating markup, it’s generally considered in violation of the MVC
pattern to do so. This is where helpers come in to play.

Action Pack’s helpers do exactly what their name implies: they help views by providing a convenient location to
encapsulate code that would otherwise clutter the view and violate the terms of the MVC. They offer a middle ground
between controllers and views and help to keep your application organized and easy to maintain.

If you think about it, ERb tags really aren’t the best place for performing complex logic, and templates can quickly
become unwieldy when creating markup programmatically. For this reason, Action Pack includes a large suite of
built-in helpers for generating all sorts of HTML fragments—from creating forms and formatting dates to making
hyperlinks and image tags. And when the built-in helpers aren’t enough, you can write your own. Each controller gets
its own helper module that’s mixed in automatically, ready to lend your templates a hand when they need it.

Routing
All the information pertaining to which controller and action to call on comes in the form of the request URL. Action
Pack includes a specialized component called routing, which is responsible for dissecting the incoming URL and
delegating control to the appropriate controller and action.

Every request that comes into your web application originates in the form of a URL. The routing system allows
you to write the rules that govern how each URL is picked apart and handled.

A traditional URL contains the path to a file on the server, relative to the server’s home directory. Here’s an example:

http://example.com/articles/show.asp?id=1037

You can tell a lot from this URL. First, you know the server technology being used is Microsoft’s ASP. Given that,
you also know that this URL resolves to the show.asp script, which is inside the /articles directory. In this case, there
is no URL rewriting going on; the mapping of the URL to the script that handles it is one to one.

The problem with this kind of mapping is that you have no control over the URL. The URL is coupled to
the script. What if you want to invoke the show.asp script but want the URL to read articles/detail.asp instead of
show.asp? Or better yet, what if you don’t want to expose the underlying script implementation (ASP) at all and use
just articles/detail? There’s no way. The lack of flexibility in this kind of URL mapping is a problem. If you ever
need to change the name of the script being invoked, you instantly break all the URL references. This can be a major
pain if you need to update all your code, especially if your pages are indexed by search engines.

Action Pack’s routing solves this problem by decoupling the URL from the underlying program
implementation. In Rails, the URL is related to the specific resource being requested, and it can be formatted to
correctly identify that resource without having to conform to the name of the script that does the handling. When

http://haml-lang.com/
http://example.com/articles/show.asp?id=1037

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

126

thought of in this way, URLs become part of the interface of an application, unrelated to the files that are ultimately
invoked to process a request.

There are myriad reasons why a routing system is a good idea. Here are just a few of them:

Decoupled URLs can convey meaning, becoming part of the interface.•

Clean, readable URLs are more user-friendly and easier to remember.•

URLs can be changed without affecting the underlying implementation.•

Of course, like most things in Rails, the routing system is open to configuration; and one of the great benefits of
routes is that because they’re decoupled, they can be customized to create meaningful URLs without much effort. This
chapter teaches you how to build and customize routes for your application, understand the default routes that Rails
creates for you, create named routes, and use routes when creating links and redirects in your code.

RESTful Resources
Rails adapted RESTful design as a convention in Rails 1.2 onward. Representational State Transfer (REST) is a
principle used mainly over the HTTP protocol to offer a better interface for client–server operations. This section first
discusses the REST concept and then explains how Rails implemented it through RESTful controllers and resources.

The REST principle is based on working with information in the form of resources. Each piece of information is
dealt with as a resource, each resource has a unique interaction point for every action that can be performed on it, and
each interaction point (action) is normally represented using a URL and a request method.

For example, think of a blog, which is a collection of information resources. Every article is a resource, and every
action you perform on it, such as read, edit, or delete, has its own interaction point, mainly identified by a URL and a
request method.

HTTP protocol, which is the main web protocol you normally use in browsers, has several request methods.
These are the primary ones used in RESTful design:

• POST: Normally used to submit forms and new resource data

• GET: Mainly used to request a page to view a resource or more

• PATCH/PUT: Used to modify specific resource

• DELETE: Used to delete a resource

Do those methods remind you of anything? If you’re thinking of CRUD, then you’re right. Taking the main
database operations create, read, update, and delete (CRUD) in REST design and tying them up with HTTP’s main
methods gives you what’s called a RESTful web service.

RESTful web services are commonly used in APIs (referred to as REST APIs) by associating every CRUD method
with its corresponding HTTP method:

• POST/Create: Creates of a resource

• GET/Read: Requests a specific resource or group of resources

• PATCH/PUT/Update: Edits attributes of a resource

• DELETE/Delete: Deletes a resource

Rails implemented RESTful design for controllers by introducing the concept of resources. Every model in your
application is dealt with via a controller as a resources set, and that RESTful controller has certain methods that
handle your regular operations on that model. We’ll examine that in depth after you understand the Action Pack
request cycle.

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

127

Action Pack Request Cycle
The entire request-to-response process is called the Action Pack request cycle. The request cycle consists of the
following steps:

 1. Rails receives a request from the outside world (usually a browser).

 2. Routing picks apart the request to determine the controller and action to invoke.

 3. A new controller object is instantiated, and an action method is called.

 4. The controller interacts with the model (usually performing a CRUD operation).

 5. A response is sent back to the browser, in the form of either a render or a redirect.

Figure 7-1 illustrates the process.

Figure 7-1. The Action Pack request cycle

Not long ago (and still today), developers used to construct server pages. Such a page had a bunch of code at the
top of an otherwise static page, just above the opening HTML tag. The markup was littered with different sorts of code:
it wasn’t unusual to see the database being accessed, forms being processed, sessions being set, and all manner of
logic being performed in line. The web server was responsible for controlling the application—one page redirecting to
another, running the code, and then dumping the results to the screen.

We won’t get into the multitude of reasons why this is a bad idea, except to say that it presents the problem of
coupling. In this scenario, the business logic and the view are mashed together, making the code more difficult to maintain
and debug. ASP and PHP pages are notable offenders, and if you’re coming from either of these camps, the concept of
separating concerns may be foreign at first. Here’s a way to think about it that may help. Imagine taking the code and
logic from the top of each page and sticking it in one place, leaving only the HTML behind. Then, instead of using the web
server to invoke each page as you would with a static site, have the web server call on a single dispatcher, which finds the
code you want to execute and calls it. The code it invokes—the file that contains the processing logic extracted from the
server page—is called the controller. Instead of logic being divided among pages, it’s divided into actions.

The single biggest advantage of this pattern is that the processing logic is decoupled from the view and safely
contained in one place. As you can see, it’s a lot easier to work this way. The interplay between actions is considerably
easier to visualize and understand when it isn’t spread out over a host of locations. Your server pages become
lightweight views, left to handle only the simplest of instructions, if any.

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

128

A Controller Walk-Through
Instead of boring you with more theory about controllers, views, and MVC, let’s dig in and start writing some
real-world code. You’ll continue building your blog application, examining the finer points and the places where
convention wins out over configuration. Along the way, this section touches on some of the most essential controller
and view concepts. By the end of this walk-through, you should have a complete grasp of how the Rails request cycle
works and a working example to refer to and expand on in the subsequent chapters. The purpose of this walk-through
isn’t to examine each and every aspect of Action Pack in detail, but rather to give you a practical overview of how the
components—routes, controllers, helpers, views, layouts, and partials—work together to control your application and
construct its interface.

Setting Up Routes
Links and URLs are important in web applications. They serve as the entry point to the application and contain all the
information required to route an incoming request to the controller and action that will handle it. Before you get into
the meat of understanding controllers and their actions, you need to spend a few minutes learning how to get from
request to response. It all starts with routing.

Routing Basics

In Rails, all the rules for mapping URLs to controllers are a matter of configuration. You find the routes.rb file in
the config directory. If you open that file in your editor now and examine it, you’ll see lots of commented code
with samples of routes you could possibly define. Look at the last commented line to understand how routes can be
defined:

get ':controller(/:action(/:id(.:format)))'

Routes work based on pattern matching and can include variables to set directly within the pattern. Here, the pattern
is a three-segment string partitioned by slashes (/) and containing variables to set, where the variables are prefixed by
a colon (:). The first segment sets the :controller variable, the second the :action variable, and the third the :id and
:format variables. These variables are used to determine the controller and action to invoke and the parameters to
send along. The pattern is matched from left to right, and the variables are optional. If the :id variable is empty, only the
controller and action are set. If the :action variable is empty, only the :controller variable is set, and so on.

Routing priority is based on the order in which routes exist in routes.rb, so that the first route defined has the
highest priority. If an incoming URL matches the first route defined, the request is sent along, and no other routes
are examined.

Here’s an example that matches a specific pattern and sets the controller and action in response:

get '/teams/home' => 'teams#index'

This route matches a URL like http://example.com/teams/home and routes the request to the index action on
the teams controller. The names of the controller and action are separated by the # symbol. You can also set arbitrary
parameters when using the route. For example, let’s say you want to set a parameter called query that you can access
and use in your controller:

get '/teams/search/:query' => 'teams#search'

This route matches a URL like http://example.com/teams/search/toronto, routing the request to the teams
controller and the search action. The third segment in the URL is assigned to the :query parameter because you
specify :query as an in-line variable.

http://example.com/teams/home
http://example.com/teams/search/toronto

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

129

Routes can be complex, and it’s possible to apply conditions and other forms of logic to them. For the most
part, though, you can get a lot of mileage from the general cases outlined here. The Rails API documentation
(http://guides.rubyonrails.org/routing.html) contains details on using the more complex routing features.

Named Routes

One of the coolest things about routing in Rails is a feature known as named routes. You can assign a name to a given
route to make referring to it in code easier. You still define the route the same way as a regular route, but you need a
new hash pair, where the key is :as and the value is the name of the route.

For example, let’s take the search route defined in the previous section and turn it into a named route:

get '/teams/search/:query' => 'teams#search', :as => 'search'

With this definition in place, Rails creates helper methods that allow you to reference this particular route using
its name: search_url and search_path. The *_url variant returns a full URL including the protocol and hostname
(http://example.com/teams/search), whereas the *_path variant returns just the path (/teams/search).

Later in this chapter, we’ll cover redirection methods and hyperlink-generation helpers. For now, note that you
can use them with named routes:

link_to "Search", search_path

outputs

Search

Named routes are shorter, DRYer, and impervious to changes made at the routing level. So if you change the
controller name from teams to cities, you don’t need to update links that use the named route; for the unnamed
version, you do.

RESTful Routes and Resources

Earlier, we said that RESTful design information is dealt with in the form of resources. Rails makes it easy for you to do
that: for every action in your controller, you have an associated named route to call.

Resources are configured in the routes.rb file using the resources method. If you look at the routes file in your
blog application, you see resources :articles at the top: it was added when you generated the articles scaffold in
Chapter 3. The resources :articles method defines the following named routes for the articles controller:

article_path => /articles/:id
articles_path => /articles
edit_article_path => /articles/:id/edit
new_article_path => /articles/new

The resources method generated four named routes for you; but when you open the ArticlesController, you
have seven actions (Table 7-1). How can you access the remaining actions? Remember that when you learned about
REST earlier, you saw that every operation is identified by both a URL and a request method. Using different request
methods with the generated named routes, Rails routes them to the appropriate controller actions.

http://guides.rubyonrails.org/routing.html
http://example.com/teams/search

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

130

Note ■ You can list all the available routes in your application by calling the Rake routes command from the terminal.

You can also view a list of routes by going to http://localhost:3000/rails/info in your browser while you have your

Rails server running in development mode.

By following the REST convention, instead of defining a named route for every action, you use the resources
method in your routes file. To give some examples, if you want to access the index action in your articles controller,
you go to /articles in your browser; the default request method when you type a URL in your browser is GET. What if
you want to create a new article? You can do that by submitting a form to /articles with the default request method
for forms, POST. To get a specific article, type /articles/:id, where :id is your article id. It’s that simple.

Configuring Routes for the Blog Application

Let’s configure the routes to be used in your blog application. You haven’t built all the controllers and actions yet (you
do that next), but that shouldn’t stop you from getting the routes in place.

You can handle an empty request for the root of your application’s domain using the root method. In the blog
application, you want the root URL (http://localhost:3000) to connect to the list of articles. To accomplish this, you
add a root declaration to your routes file and make it the first route. Make sure your config/routes.rb file looks like
Listing 7-3 (note that all comments have been deleted).

Listing 7-3. The config/routes.rb File: http://gist.github.com/330822

Blog::Application.routes.draw do
 root :to => "articles#index"
 resources :articles
end

Now that you have some routes defined, let’s move back to the articles controller and try to understand its actions
and templates.

Table 7-1. Articles Named Routes

Request Method Named Routes Parameters Controller Action

GET articles_path index

POST articles_path Record hash create

GET article_path ID show

PUT article_path ID and Record hash Update

PATCH article_path ID and Record hash Update

DELETE article_path ID destroy

GET edit_article_path ID edit

GET new_article_path new

http://localhost:3000/rails/info
http://localhost:3000/
http://gist.github.com/330822

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

131

Revisiting the Scaffold Generator
You generated a scaffold for your articles in Chapter 3, and this scaffold generated a RESTful controller for the Article
model in addition to all the required templates. The generator also added the resources declaration to your route.rb
file. Listing 7-4 shows the ArticlesController that your scaffold generated.

Listing 7-4. The ArticlesController app/controllers/articles_controller.rb

class ArticlesController < ApplicationController
 before_action :set_article, only: [:show, :edit, :update, :destroy]

 # GET /articles
 # GET /articles.json
 def index
 @articles = Article.all
 end

 # GET /articles/1
 # GET /articles/1.json
 def show
 end

 # GET /articles/new
 # GET /articles/new.json
 def new
 @article = Article.new
 end

 # GET /articles/1/edit
 def edit
 end

 # POST /articles
 # POST /articles.json
 def create
 @article = Article.new(article_params)

 respond_to do |format|
 if @article.save
 format.html { redirect_to(@article,
notice: 'Article was successfully created.') }
 format.json { render action: 'show',
status: :created, location: @article }
 else
 format.html { render action: "new" }
 format.json { render json: @article.errors,
status: :unprocessable_entity }
 end
 end
 end

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

132

 # PATCH/PUT /articles/1
 # PATCH/PUT /articles/1.json
 def update
 respond_to do |format|
 if @article.update_attributes(article_params)
 format.html { redirect_to(@article,
notice: 'Article was successfully updated.') }
 format.json { head :no_content }
 else
 format.html { render action: "edit" }
 format.json { render json: @article.errors,
status: :unprocessable_entity }
 end
 end
 end

 # DELETE /articles/1
 # DELETE /articles/1.json
 def destroy
 @article.destroy

 respond_to do |format|
 format.html { redirect_to articles_url }
 format.json { head :no_content }
 end
 end

 private
 # Use callbacks to share common setup or constraints between actions.
 def set_article
 @article = Article.find(params[:id])
 end

 # Never trust parameters from the scary internet, only allow the white list through.
 def article_params
 params.require(:article).permit(:title, :location, :excerpt, :body, :published_at)
 end
end

This may look like a lot of code to swallow, but in reality it’s simple. The scaffold generator creates the articles
controller with the default seven actions discussed earlier for RESTful controllers: index, show, new, edit, create,
update, and destroy.

Before your action renders a view, you arrange for it to set an instance variable that the view can use. To refresh
your memory, an instance variable is a special kind of Ruby variable that is unique to a given instance of a class,
serving as a way for an object to maintain its state. Because views are, in essence, extensions of the controller object,
they can access its instance variables directly (although not without some behind-the-scenes Ruby magic that Rails
takes care of for you). For all intents and purposes, however, you can consider instance variables to be shared between
controllers and views.

You can store any Ruby object in an instance variable, including strings, integers, models, hashes, and arrays. If
you reexamine each action in the articles controller, notice that it always starts by setting an instance variable to be
called later in that action’s view. Let’s take the index method as an example (Listing 7-5).

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

133

Listing 7-5. The Index Action in app/controllers/articles_controller.rb

GET /articles
GET /articles.json
def index
 @articles = Article.all
end

You define and set an instance variable named @articles, which holds the array of all your articles.
Let’s step back a bit. When you call the index method by typing the URL (http://localhost:3000/articles)

into your browser—don’t forget to start your local server using the rails server command—the request goes first
to your routes file, where it’s forwarded to the controller. Then, the controller responds to this request by setting an
instance variable and rendering something back to the browser.

What the controller renders is based on what has been requested. Normally, it’s an HTML page request, but it can
also be an XML or an Ajax request. It’s the responsibility of the respond_to method to define how to respond to each of
those requests. In the index action, you accept two formats: HTML, where Rails renders the index template using the
path (/articles); and JSON (JavaScript Object Notation), where Rails renders the articles in JSON format using the path
(/articles.json). In this case the respond_to method is implicit, which means that since we didn’t need to change any
options, it will just use the defaults. You will see the respond_to method actually used when we look at later actions.

Try that in the browser. Visit http://localhost:3000/articles to see the list of articles you know and saw
earlier, and visit http://localhost:3000/articles.json to see the result shown in Figure 7-2.

Figure 7-2. Output of http://localhost:3000/articles.json

http://localhost:3000/articles
http://localhost:3000/articles
http://localhost:3000/articles.json
http://localhost:3000/articles.json

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

134

GET AN API FOR FREE

Using RESTful controllers in Rails gives you the ability to have an API for your application. An API is a set of

functions that enables other applications to talk to your application. On the Web, this is normally done using JSON,

and REST is one of the main architectures used for that.

With Rails and its RESTful controllers, defining your API is a seamless process; basically, you just need to tell your

controller to respond to JSON requests, and you have an API. What’s neat in Rails is that the scaffold generator

adds the JSON part by default to all your controller actions, providing you with an API for free. Rails also supports

XML, but JSON is the default.

Rendering Responses
When an action has completed, it attempts to render a template of the same name. That’s the case with the index
action just discussed: it renders the index.html.erb template by default. The same applies to edit, new, and show
actions. But sometimes you want to render something else.

If you look at the create and update actions, notice that if the @article.save succeeds, you redirect to the
saved @article show page with a friendly message. However, if the save fails, you want to render the new or the edit
template. If you didn’t explicitly render those templates, the actions would fall through to their default behavior and
attempt to render their default create and update templates, which doesn’t exist.

The render method takes several options for its first argument: :text, :nothing, :inline, :template, :action,
:xml, :json, :js, and :update.

Note ■ The :update and :js responses are fairly specialized. You use them when you’re rendering Ajax or JavaScript

responses, as you’ll learn in Chapter 9

Redirecting
It may not sound like it, but a redirection is a response. Redirects don’t happen on the server side. Instead, a response
is sent to your browser that tells it to perform a redirection to another URL. The specifics of issuing a redirect aren’t
something you need to worry about, though, because Rails provides a specialized method to take care of the internals.
That method is called redirect_to, and it’s one you’ll find yourself using a lot, so it’s a good idea to get familiar with it.

The redirect_to method usually takes a URL as a parameter, which in most cases is represented by one of
your routes. Let’s say that you want to redirect the user to the articles’ index page, and the path you use is articles_
path—a route added by resources :articles in config/routes.rb; so, you execute redirect_to(articles_path).
If you look at the destroy action, the user is redirected to articles_url after an article is deleted.

As you can see from the create and update actions, redirect_to can also take an object as a parameter, in which
case it redirects to a path that represents that object. This means Rails uses a convention to translate objects to their
show action named route. In this case, redirect_to(@article) is a shortcut equivalent to redirect_to(article_
path(:id => @article)).

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

135

WHAT MAKES A CLASS AN ACTION CONTROLLER?

If you’re the curious sort (and, of course, you are), you may wonder how ArticlesController, a seemingly

normal Ruby class, becomes a full-fledged Action Controller. Well, if you look closely, you’ll notice that

ArticlesController inherits from another class: ApplicationController. To get a better picture of what’s

going on, let’s take a peek at the ApplicationController class in app/controllers/application_

controller.rb:

class ApplicationController < ActionController::Base
 # Prevent CSRF attacks by raising an exception.
 # For APIs, you may want to use :null_session instead.
 protect_from_forgery with: :exception
end

The mystery is quickly solved. The simple controller becomes an Action Controller by subclassing the

ApplicationController class, itself a subclass of ActionController::Base. This is an example of inheritance

and is common in object-oriented programming. When one class subclasses another, it inherits all the behavior

and methods of the parent. In the case of the articles controller, it inherits all the capabilities of the application

controller. Likewise, ApplicationController inherits all the capabilities of its parent, ActionController::Base.

The ActionController::Base class effectively endows your articles controller with its special abilities.

The application controller is the base from which all the controllers you make inherit. Because it’s the parent of all

controllers in your application, it’s a great place to put methods that you want accessible in every controller.

By looking at the articles controller, you now understand the basic conventions and common concepts of how a
RESTful controller normally behaves. You have seven default actions, and in every one of them you do the following:

Set an instance variable to be used later in the rendered action or template•

Handle the response using the • respond_to method to either do a render or redirect_to
another path, depending on the behavior you want to achieve

Understanding Templates
The next step is to look at the actions’ templates. Look in the app/views/articles directory, and you see seven templates:

form.html.erb•

index.html.erb•

index.json.jbuilder•

show.html.erb•

show.json.jbuilder•

new.html.erb•

edit.html.erb•

The basic convention of Action Pack is as follows: templates are organized by controller name, and a template
with the same name as the action being invoked is rendered automatically. You don’t need to wire up anything. Merely
by requesting an action from a controller, Rails renders the corresponding template in that controller’s directory
inside app/views/ that has the same name.

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

136

Let’s try an example. Make sure your local web server is running (rails server), and open
http://localhost:3000/articles/ in your browser. You see the articles index page shown in Figure 7-3.

Figure 7-3. Output of http://localhost:3000/articles

The articles listing is actually rendered from app/views/articles/index.html.erb, which follows the
convention discussed earlier. It’s the articles controller, so it goes to the articles directory in app/views. After
determining which controller to invoke, Rails proceeds to instantiate it and calls its index method. Its default response
after running the index action is to perform a render. Rails looks for a template named index.html.erb in the app/
views/articles directory and loads it. The same applies to the show action: the show.html.erb template is rendered.

At this point, the request cycle is complete. If you refresh your browser, the cycle begins anew, and the same
result is rendered. Notice how all the internals are taken care of for you. All you need to do is create an appropriately
named route, controller, action, and view, stick them in the right place, and request the URL in your browser. Rails
takes care of making sure everything is knit together properly.

Before you go any further, use your browser’s View Source command to see the HTML that was produced. If you
know anything about HTML (and chances are you do), you’ll quickly realize that some additional HTML code has
been rendered around the code in index.html.erb; it came from a layout. Most web pages have headers, footers,
sidebars, and other page elements that, when styled, make the page look pretty. Rails has a built-in facility for dealing
with page layouts.

Working with Layouts
Rails uses layouts to interpolate the output of an individual template into a larger whole—a reversal of the common
pattern of including a shared header and footer on every page (which, if you’ve done any work in languages like PHP
and ASP, is all too familiar). The scaffold generator you ran in Chapter 3 created a layout file and placed it in app/views/
layouts/application.html.erb. The application.html.erb layout is applied to all controllers. However, if you like
your layout to apply to a specific controller, you can create a layout file named after the controller you want. For example,
a layout that applies only to the articles controller should be created in app/views/layouts/articles.html.erb.
That’s the way it works in Rails. Just as an action tries to render itself using a view that matches its name, a controller
attempts to use a layout that matches its name.

http://localhost:3000/articles/
http://localhost:3000/articles

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

137

Note ■ Layouts always default to the most specific declaration. If your controller inherits from ApplicationController

and doesn’t specify a layout directly, Rails will look for a layout named after your controller first. If that layout isn’t found,

it will look for a layout declaration on ApplicationController, and if that isn’t found, it will look for a layout named

application. In other words, layout declaration follows normal class inheritance.

Open the file app/views/layouts/application.html.erb in your editor. You should see something like the file
shown in Listing 7-6.

Listing 7-6. The app/views/layouts/application.html.erb File

<!DOCTYPE html>
<html>
<head>
 <title>Blog</title>
 <%= stylesheet_link_tag "application", media: "all", "data-turbolinks-track" => true %>
 <%= javascript_include_tag "application", "data-turbolinks-track" => true %>
 <%= csrf_meta_tag %>
</head>
<body>

<%= yield %>
</body>
</html>

At rendering time, the layout yields the results of the template fragment’s execution in place. See the <%= yield
%> bit that’s highlighted in bold? That’s the important part. Wherever you put the yield keyword is where your
content goes.

One more thing to note: Rails is all about convention over configuration. Here, the convention is that a layout
with the name application.html.erb is automatically applied to all templates unless an alternate is specified. This
means that if you change the name of the layout as it stands, it won’t be automatically applied. If you want to apply
a different layout to a given controller, you can either have a layout named after the controller or specify it in the
controller using the class method layout:

class ExampleController < ApplicationController
 layout 'my_layout' # Will use a layout in app/views/layouts/my_layout.html.erb
end

COMMON LAYOUT CONVENTIONS

A few conventions apply to working with layouts:

A layout named • application.html.erb is applied automatically unless a more specific

candidate exists or is explicitly specified in the controller.

A layout that matches the name of a controller is automatically applied if present. •
Controller-specific layouts take precedence over the application-level layout.

You can use the • layout directive at the class level in any controller (that is, not inside an action)

to set the layout for the entire controller: layout 'my_layout'.

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

138

You can include a layout for a specific action with an explicit call to • render inside the action:

render :layout => 'my_layout'.

Sometimes, you want to render an action without a layout. In that case, you can pass • false in

place of the layout name: render :layout => false.

In practice, you usually use application.html.erb and rarely take advantage of the controller-specific

layout functionality. On the occasions when you need to use a different layout for a particular controller,

use the layout directive.

Looking at the Article Form
Let’s look at the new template in action. The new action has a single purpose: to initialize and display the form
for creating a new article. The actual creation of a new Article object is the responsibility of the Article model
(remember the discussions of the model in Chapters 5 and 6), but it’s orchestrated by the controller. Moreover, it
needs data (like a title and body), which it must procure from somewhere. The edit action isn’t any different, except
that it finds and displays a form of an existing article object rather than a new one.

You can extract this information from HTML form elements placed in the view and handled in the controller.
Open new.html.erb and edit.html.erb, which look like Listings 7-7 and 7-8, respectively.

Listing 7-7. Content of app/views/articles/new.html.erb

<h1>New article</h1>

<%= render 'form' %>

<%= link_to 'Back', articles_path %>

Listing 7-8. Content of app/views/articles/edit.html.erb

<h1>Editing article</h1>

<%= render 'form' %>

<%= link_to 'Show', @article %> |
<%= link_to 'Back', articles_path %>

Notice the similarity between the templates, especially the render 'form' part highlighted in bold. The render
method renders a partial named form in this context. The upcoming section “Staying DRY with Partials” discusses
partials in more depth; for now, let’s focus on the content of the template in app/views/articles/_form.html.erb
(Listing 7-9).

Listing 7-9. Content of app/views/articles/_form.html.erb

<%= form_for(@article) do |f| %>
 <% if @article.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@article.errors.count, "error") %>
prohibited this article from being saved:</h2>

 <% @article.errors.full_messages.each do |msg| %>
 <%= msg %>

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

139

 <% end %>

 </div>
 <% end %>

 <div class="field">
 <%= f.label :title %>

 <%= f.text_field :title %>
 </div>
 <div class="field">
 <%= f.label :location %>

 <%= f.text_field :location %>
 </div>
 <div class="field">
 <%= f.label :excerpt %>

 <%= f.text_field :excerpt %>
 </div>
 <div class="field">
 <%= f.label :body %>

 <%= f.text_area :body %>
 </div>
 <div class="field">
 <%= f.label :published_at %>

 <%= f.datetime_select :published_at %>
 </div>
 <div class="actions">
 <%= f.submit %>
 </div>
<% end %>

You use form helpers for each of your fields. Visit the article’s new page at http://localhost:3000/articles/new
in your browser and you’ll see that the helpers function to produce a nicely formatted HTML form. Use your browser’s
View Source command to look at the HTML that was generated. Here’s part of the generated HTML:

<h1>New article</h1>

<form accept-charset=”UTF-8” action="/articles" class="new_article"
id="new_article" method="post">
 <div style="margin:0;padding:0;display:inline">
 <input name="_snowman" type="hidden" value="☃" />
 <input name="authenticity_token" type="hidden"
 value="Dhqp8NmXwgsAPMVHJPfoRWu8UJN1XurF8ngdzaksC48=" />
 </div>

 <div class="field">
 <label for="article_title">Title</label>

 <input id="article_title" name="article[title]" size="30" type="text" />
 </div>
 <div class="field">
 <label for="article_location">Location</label>

 <input id="article_location" name="article[location]" size="30" type="text" />
 </div>

http://localhost:3000/articles/new

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

140

 <div class="field">
 <label for="article_excerpt">Excerpt</label>

 <input id="article_excerpt" name="article[excerpt]" size="30" type="text" />
 </div>
 <div class="field">
 <label for="article_body">Body</label>

 <textarea cols="40" id="article_body" name="article[body]" rows="20"></textarea>
 </div>
 ...
 <div class="actions">
 <input id="article_submit" name="commit" type="submit" value="Create Article" />
 </div>
</form>

Note the way in which Rails formats the name attribute of each form element: model[attribute]. This helps when
it comes to parsing the parameters from the form, as you’ll see shortly. If you manually create your form elements
(which you need to do sometimes), you can use this naming convention to make sure your form values are easy to
parse in the controller. Most of the time, though, you use form helpers when working with forms, especially when
you’re dealing with Active Record objects. Let’s spend some time discussing form helpers.

Using Form Helpers
One of the best things about working with templates in Rails is the presence of helpers. Rails comes with a bunch of
helper methods that take the tedium out of generating the bits of HTML that your views need. Let’s face it, nothing is
more of a drag to build than HTML forms. Fortunately, Rails understands the plight of the web developer all too well
and provides a suite of easy ways to build forms.

Two basic varieties of form helpers are available:

• FormHelper: Active Record–aware tag helpers for creating forms that hook into models.

• FormTagHelper: Helpers that output tags. They aren’t integrated with Active Record.
The names of these helpers are suffixed with _tag.

The FormHelper type is aware of Active Record objects assigned to the template; the FormTagHelper (note the Tag)
type isn’t. The advantage of the Active Record–aware, FormHelper, helpers is that they know how to populate
themselves with data and can automatically be highlighted in the event of validation errors from the model. But not
every form element you make corresponds directly to a model attribute. That’s where the FormTagHelper group comes
in handy. These have no special relationship with Active Record; they just output form tags.

In your article’s form template (Listing 7-9), you use six helpers: form_for, label, text_field, text_area,
datetime_select, and submit.

The form_for helper is of the FormHelper variety. It creates an HTML form tag for the passed object (@article, in
this case) and places everything in the do..end block inside the resulting form. It also produces and sets a form local
variable to the form block. The form local variable, in this case called f, is aware of the @article object and uses its
attributes’ names and values when calling the other form helpers: label, text_field, text_area, datetime_select,
and submit.

By default, forms use the HTTP POST method. If you want to use a different method, you need to specify it
manually using the :method option (for example, :method => :get). If you recall, POST is the request method you
used for the create action in your RESTful designed controller.HTTP verbs.

The HTTP protocol defines several request methods, the most popular of which are GET and POST. Both
are methods for requesting a web page; the difference is in how the request is sent. GET is the simpler of the two.

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

141

It includes all the information about the request as part of the URL. POST sends information invisibly, which is to say,
as part of the request header and not part of the URL. So, you can’t type a POST request into your browser’s location
bar. Every time you request a web page via the location bar in your browser, you’re using GET. When you submit a
form, say to register on a web site, the form is usually submitted via a POST.

How do you know when to use each? The best way to think of this is to consider GET a read method. It should
never do anything destructive, such as modifying a database record. POST, on the other hand, can be thought of as
a write method. When you need to create data, use POST. PATCH is used when you need to update a record partially,
for instance, only changing your e-mail address. PUT is used to update a record completely. There has been a lot of
controversy over these verbs on the Internet, but they are effectively used interchangeably in Rails. The DELETE verb is
used to destroy a record.

A small note: Most browsers only support the GET and POST verbs. Rails gets around this by using an actual POST
request but inserting hidden form fields specifying which actual verb to use. Rails automatically removes this field and
converts the request into the specified type. Once the request has reached the controller, it will appear as the intended verb.

Remember that you should never put a state-changing action behind a GET request. For more information,
see http://www.w3.org/2001/tag/doc/whenToUseGet.html.

The label helper is a FormHelper method that outputs an HTML label tag for the provided attribute. Here’s an
example of the output for title:

<label for="article_title">Title</label>

The text_field helper is of the FormHelper variety, meaning that it corresponds to Active Record objects.
It creates an HTML input tag whose type is set to "text" and assigns it a name and an ID that match the given object
and method (title in this case). Here’s what the rendered output looks like:

<input id="article_title" name="article[title]" size="30" type="text" />

The text_area helper is also of the FormHelper variety. It’s similar to text_field, except it returns a text area
instead of a text input. Here’s what the HTML output looks like for the body field:

<textarea cols="40" id="article_body" name="article[body]" rows="20"></textarea>

The datetime_select helper is a FormHelper that outputs a set of HTML select tags to input a date and time value.
The submit helper is a FormHelper that creates an input element whose type is set to "submit". It accepts the

name of the submit button as its first argument. If you don’t provide a name to the submit method, it generates a
name based on the @article object. For example, in the New Article form, the generated name is Create Article,
whereas in the Edit Article form, the name is Update Article. Here’s the HTML output from the example:

<input id="article_submit" name="commit" type="submit" value="Create Article" />

All these helpers (and, to be sure, most helpers in Rails) accept a hash of options as their last argument to
customize the resulting HTML. For example, to give your title field a class of large, you type f.text_field :title,
:class => 'large', which adds the class attribute to the output:

<input class="large" id="article_title" name="article[title]"

size="30" type="text" />

http://www.w3.org/2001/tag/doc/whenToUseGet.html

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

142

You can pass arbitrary options in this way, all of which end up as attributes on the resulting tag. For example,
to apply an in-line style attribute, you can use :style => 'background: #fab444'. Here’s a list of some of the most
common FormHelper helpers:

• text_field

• hidden_field

• password_field

• file_field

• text_area

• check_box

• radio_button

All these methods can be suffixed with _tag to create standard HTML tags (with no Active Record integration).
For a full list of FormHelper and FormTagHelper methods, consult the Rails API, where you can find a complete

reference along with usage examples:

• http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html

• http://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html

Now, back to your form. Let’s see what happens when you submit it. (Make sure your server is still running.) Click
the Create Article button, and you see the screen shown in Figure 7-4.

Figure 7-4. New article form with validation errors

http://api.rubyonrails.org/classes/ActionView/Helpers/FormHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/FormTagHelper.html

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

143

What happened? Well, as the message says, Rails couldn’t create an article for you. Of course it couldn’t—you
set validation rules in your Article model to prevent the creation of a new article object with an empty title or body
field. But let’s look at the output from the server running in the command prompt and see what happened:

Started POST "/articles" for 192.168.1.105 at 2013-07-06 02:46:45 -0500 Processing by
ArticlesController#create as HTML

 Parameters: {"utf8"=>"",
"authenticity_token"=>"fZ2oh3Tt6wx3mjxXBOH3kIZie/Jzap3NDDDdCUZsjxk=", "article"=>{"title"=>"",
"location"=>"", "excerpt"=>"", "body"=>"",
"published_at(1i)"=>"2013", "published_at(2i)"=>"7", "published_at(3i)"=>"6",
"published_at(4i)"=>"07", "published_at(5i)"=>"46"}, "commit"=>"Create Article"}

(0.1ms) begin transaction

(0.1ms) rollback transaction

Rendered articles/_form.html.erb (6.7ms)

Rendered articles/new.html.erb within layouts/application.html.erb (7.2ms)

Completed 200 OK in 14ms (Views: 9.9ms | ActiveRecord: 0.1ms)

See the section titled Parameters above? You may recognize this as a Ruby hash. This hash contains all the
form values you submitted. Notice that there’s an entry for the button name (commit), called Create Article, and for
authenticity_token, which is used for security in Rails to prevent anonymous form posts. The article portion of the
hash looks like this:

"article"=>{"title"=>"", "location"=>"", "excerpt"=>"", "body"=>"",
"published_at(1i)"=>"2010", "published_at(2i)"=>"5", "published_at(3i)"=>"2",
"published_at(4i)"=>"22", "published_at(5i)"=>"35

If you’re thinking that this looks a lot like the options hashes you passed to article objects when you were working
with Active Record on the console, you’re right. Rails automatically turns form elements into a convenient hash that
you can pass into your models to create and update their attributes. In the sections that follow, you’ll put this feature
to use in the next action, create. First, let’s take a deeper look at params.

Processing Request Parameters
Request parameters—whether they originate from requests of the GET or POST variety—are accessible via the params
hash. To be specific, params is a method that returns a Hash object so you can access it using hash semantics. Hashes
in Ruby are similar to arrays but are indexed by arbitrary keys—unlike arrays, which are indexed by number. (If you
need a quick review of the Hash object, flip to Chapter 4 for a Ruby primer.)

The value of any request variable can be retrieved by its symbolized key. So, if there’s a variable
called id in the request parameters, you can access it with params[:id]. Just to drive this concept home,
let’s look at a sample URL and display the params hash that it populates. Point your browser to
http://localhost:3000/articles?title=rails&body=great and check the server output. You should see
something similar to this:

Parameters: {"title"=>"rails", "body"=>"great"}

http://localhost:3000/articles?title=rails&body=great

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

144

Revisiting the Controller
With an understanding of params under your belt, let’s go back to your controller. The create action is the target of the
form submission. The method code shown in Listing 7-10 is from the articles controller, just under the new method.

Listing 7-10. The Create Action in app/controllers/articles_controller.rb

 # POST /articles
 # POST /articles.json
 def create
 @article = Article.new(article_params)

 respond_to do |format|
 if @article.save
 format.html { redirect_to @article, notice: 'Article was successfully created.' }
 format.json { render action: 'show', status: :created, location: @article }
 else
 format.html { render action: 'new' }
 format.json { render json: @article.errors, status: :unprocessable_entity }
 end
 end
 end

Let’s walk through this. First, you initialize a new Article object with whatever attributes come in via the
article_params method. This is something that is new to Rails 4.0. You can imagine that taking raw input from the
user and putting it directly into your model without filtering it could be dangerous. Imagine that you were letting
users sign up using the User#create action. If you had an attribute on the user model called admin that determined
whether or not the user had admin access to the system, a user could just add that parameter in themselves and
make themselves an admin. You can see how vital it is that we filter the parameters now! Let’s take a look at the
article_params method:

 # Never trust parameters from the scary internet, only allow the white list through.
 def article_params
 params.require(:article).permit(:title, :location, :excerpt, :body, :published_at)
 end

The syntax for this is simple. We are telling rails that we require the article param, and permit title, location,
excerpt, body, and published at. Any other params will be filtered out before they get to the model. If you try to just
pass params[:article] to the new or create method, an error will be returned.

After we pass the filtered params to the new method, we attempt to save the model. If the save is successful,
you use a facility that Rails provides called the flash to set a message—by passing the :notice option to
redirect_to—before redirecting to the show action on the same articles controller. The flash is a special kind of
storage mechanism provided by Rails for convenience. It encapsulates the pattern of wanting to set a message on
one action and have that message persist to the next, only to disappear after that action is rendered. This is useful for
providing user feedback, as you do here to say “Article was successfully created.” If you look at the show article file in
app/views/articles/show.html.erb, you have access to the notice variable, allowing the message to be displayed:

<p class="notice"><%= notice %></p>

The flash message you set is available to the controller and action you redirect to (the show action on the
articles controller). There are two special flash cases, notice and alert, which you can use just as you did in the
previous example by passing them as arguments to redirect_to.

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

145

Note ■ When you pass notice: "Article was successfully created" to redirect_to, it’s identical to calling

flash[:notice] = "Article was successfully created" in a separate line. Also, when you retrieve, in any view

template, the message using notice, you could as well use flash[:notice]. So, you can use any named key when

calling flash because it’s implemented as a Ruby hash. You store values in it based on a key. The key can be anything

you like: you can use any symbol, such as flash[:warning] =, in your controller and later retrieve it in your views using

the same flash[:warning] call.

If the save fails, you render the new action again so that any errors can be corrected.

Displaying Error Messages in Templates
Let’s try submitting the form empty one more time to explore it again. Sure enough, the form doesn’t save. Notice that
you’re still on the same screen and that the form elements are highlighted in red, as shown in Figure 7-4.

If you look at the HTML source, you see that the input and label tags are surrounded by div elements with the
class name field_with_errors:

<div class="field_with_errors">

 <label for="article_title">Title</label>

</div>

<div class="field_with_errors">

 <input id="article_title" name="article[title]" size="30" type="text" value="" />

</div>

Rails does this automatically for any fields that fail validation. You can use these classes to style invalid elements.

Note ■ The style rules that turn the invalid fields red are generated by the scaffold generator and are in

app/assets/stylesheets/scaffold.css.scss.

The formatted list of errors that appears at the top of the page is rendered using the code snippet below, which is
a part of app/views/articles/_form.html.erb:

 <% if @article.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@article.errors.count, "error") %> prohibited this article from being
saved:</h2>

 <% @article.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

146

Now that you understand this, let’s submit the form with valid data. If all goes according to plan, the new article
should be created, and you’re redirected to that article’s show action, where you see the friendly notice message you
set. Notice that if you refresh the page using your browser’s Refresh button, the notice message disappears.

The edit and update Actions
The edit and update actions look almost identical to the new and create actions. The main difference is that instead
of instantiating a new Article object, you fetch an existing one. This happens with a callback called before_action.
This is similar to the Active Record callbacks we looked at in Chapter 7. In this case, the set_article method is called
before the show, edit, update, and destroy actions are run. The set_article method loads the article using the id
passed in params. This allows your code to stay DRY by keeping you from typing that line multiple times throughout
the controller. It works exactly as if the code from the set_article method were typed at the very beginning of
your action.

Looking at our action again. We used Active Record’s update method to update all the Article attributes with
those from the article_params method. If the update fails, update returns false and your if statement takes the else
path (Listing 7-11).

Listing 7-11. The Update Action in app/controllers/articles_controller.rb

 # PATCH/PUT /articles/1
 # PATCH/PUT /articles/1.json
 def update
 respond_to do |format|
 if @article.update(article_params)
 format.html { redirect_to @article, notice: 'Article was successfully updated.' }
 format.json { head :no_content }
 else
 format.html { render action: 'edit' }
 format.json { render json: @article.errors, status: :unprocessable_entity }
 end
 end
 end

Revisiting the Views
Let’s get back to the views. If you look at the new and edit templates, you can’t help but notice they render almost the
same HTML: only the header and navigation are slightly different. Remember from the RESTful discussion that the
HTTP request methods for create and update should be POST and PUT, respectively. Rails once more takes care of that
for you. You’re rendering the same app/view/articles/_form.html.erb partial, but Rails knows the request method
to use based on the @article variable passed to the form_for helper.

Try editing one of the articles. The URL should be something like http://localhost:3000/articles/1/edit;
it looks similar to the new form, but with the record information already populated (Figure 7-5).

http://localhost:3000/articles/1/edit

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

147

Thanks to the form_for helper, the form fields are populated with their respective @article attributes. If you try
to submit this form and look at the output from the server running on the command prompt, you’ll see the following:

Started PATCH "/articles/1" for 192.168.1.105 at 2013-07-06 03:11:48 -0500

Processing by ArticlesController#update as HTML

 Parameters: {"utf8"=>"✓",
"authenticity_token"=>"fZ2oh3Tt6wx3mjxXBOH3kIZie/Jzap3NDDDdCUZsjxk=", "article"=>{"title"=>"Advanced
Active Record", "location"=>"", "excerpt"=>"",
"body"=>"Models need to relate to each other. In the real world, ...",
"published_at(1i)"=>"2013", "published_at(2i)"=>"7", "published_at(3i)"=>"6",
"published_at(4i)"=>"00", "published_at(5i)"=>"00"}, "commit"=>"Update Article", "id"=>"1"}

 Article Load (0.1ms) SELECT "articles".* FROM "articles" WHERE "articles"."id" = ? LIMIT 1
[["id", "1"]]

 (0.4ms) begin transaction

Figure 7-5. Editing an existing article

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

148

 SQL (1.9ms) UPDATE "articles" SET "location" = ?, "excerpt" = ?, "updated_at" = ? WHERE
"articles"."id" = 1 [["location", ""], ["excerpt", ""], ["updated_at", Sat, 06 Jul 2013
08:11:48 UTC +00:00]]

 (4.1ms) commit transaction

Redirected to http://192.168.1.104:3000/articles/1

Completed 302 Found in 52ms (ActiveRecord: 6.5ms)

Notice the bold line: the update action of the articles controller was called as expected. Rails recognizes that the
@article variable passed to form_for isn’t a new record; therefore, it calls the update action for you. This is yet
another example of convention over configuration in Rails.

Staying DRY with Partials
A typical web application is rife with view code and often suffers from a lot of needless duplication. The HTML forms
for adding and modifying articles are good examples of forms that are very similar. Wouldn’t it be nice if there were a
way to reuse the common elements from one form in more than one place? That’s where partial templates come in.

Partial templates, usually referred to as partials, are similar to regular templates, but they have a more refined set
of capabilities. Partials are used quite often in a typical Rails application, because they help cut down on duplication
and keep the code well organized. They follow the naming convention of being prefixed with an underscore, thus
distinguishing them from standard templates (which are meant to be rendered on their own).

Rather than creating two separate forms, Rails keeps your code DRY by using a single partial and including
it from both the new and edit templates. Let’s look at the code from new.html.erb and edit.html.erb, shown in
Listings 7-12 and 7-13, respectively.

Listing 7-12. The app/views/articles/new.html.erb File

<h1>New article</h1>

<%= render 'form' %>

<%= link_to 'Back', articles_path %>

Listing 7-13. The app/views/users/edit.html.erb File

<h1>Editing article</h1>

<%= render 'form' %>

<%= link_to 'Show', @article %> |
<%= link_to 'Back', articles_path %>

Let’s take a closer look at the render method. When referencing the partial in the render method, you don’t
include the leading underscore:

<%= render 'form' %>

http://192.168.1.104:3000/articles/1

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

149

A single string argument is passed to the render method. The render method also accepts a second argument in
the form of a hash. (Have you noticed that Rails is a big fan of the options hash?) The string argument is the partial’s
name. Upon seeing this, the render method searches the current directory for a file named _form.html.erb. Notice
that you don’t need to include the leading underscore or the file extension when specifying the partial’s name; Rails
knows to look for a file in the same directory as the calling template with a leading underscore.

Let’s take a brief detour to discuss a few things about partials. One of the things that makes partials unique is
a special convenience: automatic local variable assignment by way of convention over configuration. That’s was a
mouthful. The next section explains.

Local Variable Assignment in Partials

The render method accepts a hash of local variables as part of the options hash. This is an example of what a render
partial with local variables looks like:

<%= render 'header', :title => 'My Blog' %>

Any number of local variables can be assigned this way, and any object can be set as the value. In the preceding
example, the partial has access to the local variable title.

Rendering an Object Partial

Following the same convention of local variable assignment in partials, Rails makes it easier to render a partial that
represents a specific object. For example, suppose you have the following render call in your code:

<%= render @article %>

Rails looks for a partial in app/views/articles/_article.html.erb and automatically assigns a local variable
called article. It’s a shortcut for:

<%= render 'articles/article', :article => @article %>

Rendering a Collection of Partials

Another common pattern of rendering partials renders a collection of objects. Rails has a convention for rendering
collections where you pass the collection as the first argument of the render method; Rails automatically loops across
this collection and renders the partial of every object inside that array accordingly. Here’s an example:

<%= render @articles %>

This behaves exactly like the previous call, but it performs more magic under the hood. For example, if the
@articles array contains different Active Record objects, such as two articles and two comments, the render call
renders the right partial template for each of those objects. It renders /app/views/comments/_comment.html.erb for
the comment objects and /app/views/articles/_article.html.erb for the article objects. It translates as follows:

<% @articles.each do |object| %>
 <%= render object %>
<% end %>

CHAPTER 7 ■ ACTION PACK: WORKING WITH THE VIEW AND THE CONTROLLER

150

Summary
This chapter covered a lot of ground. It began with a general introduction to the components that compose Action
Pack, the Rails library responsible for the controller and the view. Then, it launched into a controller walk-through,
where you visited your scaffold-generated controller. In doing so, you learned about routes, what happens when you
generate a scaffold, how actions relate to views, and how to work with layouts. You were introduced to Rails’ form
helpers, and you learned how easily forms integrate with Active Record objects. The chapter also introduced partials,
and you learned how to keep your templates DRY and easy to maintain.

This chapter gave you your first taste of Rails outside the model. You now have a complete understanding
of how Rails divides its concerns and a firsthand look at MVC in action. You started by modeling your domain in
Chapters 5 and 6, and now you’ve completed the first iteration of building a web application around your domain.

You should be proud of yourself. At this stage, you know a lot about Rails. The next chapter builds on this
knowledge, starting with more advanced topics like building a controller from scratch, sessions, and state, and
sprucing up the application with some CSS.

x

151

CHAPTER 8

Advanced Action Pack

Now that you have a very good understanding of how the components of Action Pack work, it’s time to dig a little
deeper. You start by generating the user controller from scratch, writing its actions, and creating its templates. Then
you’ll add some functionality to the blog application: you allow users to leave comments when reading an article and
make sure only logged-in users have access to adding and editing content. Finally, you give your application some
styling so it looks better and more like a real application.

Note■ If you need to get the code at the exact point where you finished Chapter 7, download the source code zip file

from the book’s page on http://www.apress.com and extract it on your computer.

Generating a Controller
It’s time to create your first controller from scratch. If you haven’t noticed already, Rails ships with generators for most
common tasks, and controllers are no exception. The syntax for the controller generator is as follows:

$ rails generate controller ControllerName [actions] [options]

As a minimum, the controller generator takes the name of the controller as an argument, which you can specify
using either CamelCase (sometimes called MixedCase) or snake_case. The generator also takes an optional list of
actions to generate. For every action you specify, you’ll get an empty method stub in the controller and a template
in app/views/#{controller_name}. To see a list of all available options, you can run the generator rails generate
controller without arguments.

Tip■ The help output for the controller generator contains sample usage and options that you’re sure to find interesting.

All of the generators (and most UNIX commands, for that matter) respond to the --help argument (or variations thereof),

so you’re encouraged to try it whenever you’re issuing a system command.

http://www.apress.com/

CHAPTER 8 ■ ADVANCED ACTION PACK

152

Generate the Users controller using the following command:

$ rails generate controller Users

 create app/controllers/users_controller.rb
 invoke erb
 create app/views/users
 invoke test_unit
 create test/controllers/users_controller_test.rb
 invoke helper
 create app/helpers/users_helper.rb
 invoke test_unit
 create test/helpers/users_helper_test.rb
 invoke assets
 invoke coffee
 create app/assets/javascripts/users.js.coffee
 invoke scss
 create app/assets/stylesheets/users.css.scss

Take the time to read the output of the generator so you get a sense of all the files that were just created.
Notice where the templates are located: in the app/views directory, inside a subdirectory named after the controller.
In this case, because your controller is called users, your templates go in app/views/users. Open the newly minted
controller file in app/controllers/users_controller.rb and take a look (Listing 8-1).

Listing 8-1. Users Controller in app/controllers/users_controller.rb

class UsersController < ApplicationController
end

Tip ■ It’s a convention in Rails that controller names should always be plural.

As you can see, all the generator gives you is an empty stub. If you want your users controller to do anything
useful, you’ll need to add a few actions and give it something to do. Let’s add the actions you need to the controller
now. Edit users_controller.rb so that it looks like the code in Listing 8-2.

Listing 8-2. Updated app/controllers/users_controller.rb: http://gist.github.com/337147

class UsersController < ApplicationController
 before_action :set_user, only: [:show, :edit, :update, :destroy]

 def new
 @user = User.new
 end

 def create
 @user = User.new(user_params)
 if @user.save
 redirect_to articles_path, notice: 'User successfully added.'
 else
 render action: :new
 end
 end

http://gist.github.com/337147

CHAPTER 8 ■ ADVANCED ACTION PACK

153

 def edit
 end

 def update
 if @user.update(user_params)
 redirect_to articles_path, notice: 'Updated user information successfully.'
 else
 render action: 'edit'
 end
 end

 private
 def set_user
 @user = User.find(params[:id])
 end

 def user_params
 params
 end
end

You add four actions: new, create, edit, and update. The actions you add look very similar to the ones you saw
in the articles controller in Chapter 7. The main difference is that you aren’t using the respond_to block; therefore,
Rails directly renders the default erb templates. Let’s create those templates: Listings 8-3 and 8-4 show the new and
edit templates, respectively.

Listing 8-3. New User Template in app/views/users/new.html.erb: http://gist.github.com/337207

<h1>New user</h1>

<%= render 'form' %>

<%= link_to 'Back', articles_path %>

Listing 8-4. Edit User Template in app/views/users/edit.html.erb: http://gist.github.com/337206

<h1>Editing user</h1>

<%= render 'form' %>

<%= link_to 'Back', articles_path %>

In both the new and edit templates, you render a form partial, which is expected to be in
app/views/users/_form.html.erb. Create the form partial and make sure it looks like the code in Listing 8-5.

http://gist.github.com/337207
http://gist.github.com/337206

CHAPTER 8 ■ ADVANCED ACTION PACK

154

Listing 8-5. User Form Partial in app/views/users/_form.html.erb: http://gist.github.com/337209

<%= form_for(@user) do |f| %>
 <% if @user.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@user.errors.count, "error") %>
prohibited this user from being saved:</h2>

 <% @user.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

 <div class="field">
 <%= f.label :email %>

 <%= f.text_field :email %>
 </div>
 <div class="field">
 <%= f.label :password %>

 <%= f.password_field :password %>
 </div>
 <div class="field">
 <%= f.label :password_confirmation %>

 <%= f.password_field :password_confirmation %>
 </div>
 <div class="actions">
 <%= f.submit %>
 </div>
<% end %>

You use the same form helpers discussed in Chapter 7: text_field for text input and password_field for
password inputs. Before you go to the browser to try what you’ve created, you need to add users as a resource in your
routes file. Edit config/routes.rb so it looks like the code in Listing 8-6.

Listing 8-6. Adding Users to routes.rb in config/routes.rb: http://gist.github.com/337211

Blog::Application.routes.draw do
 root :to => "articles#index"
 resources :articles
 resources :users
end

To see it all in action, try adding a new user by visiting http://localhost:3000/users/new. The form should
look like Figure 8-1.

http://gist.github.com/337209
http://gist.github.com/337211
http://localhost:3000/users/new

CHAPTER 8 ■ ADVANCED ACTION PACK

155

When you try to actually create a user, you should receive an error message ActiveModel::ForbiddenAttributesError.
It helpfully highlights the line in the code where the error occurred. Line 9 is where the params actually are added to
the user. What happened? If you recall back in Chapter 7, when the scaffold generated the articles controller for us, it
was very specific about what params should and shouldn’t be sent. In our controller, we’re just passing params into it.
We need to specify which parameters are acceptable so nefarious users can’t hack our system. Modify the
user_params method to look like this:

UsersController in app/controllers/users_controller.rb

def user_params
 params.require(:user).permit(:email, :password, :password_confirmation)
end

Run the server again, and retry the user creation. Now you can create a new user, and you can also edit that user
if you have the user’s ID. In fact, right now anyone can create and edit users; but shortly, you’ll change the edit and
update actions’ implementation to make sure only users can edit their own profile.

Nested Resources
You added support for comments earlier, but only at the model level. You didn’t implement a controller or view for the
Comment model, and that’s what you’ll do now.

Comments are special because they aren’t regular resources that you can implement in a regular RESTful
controller, like articles or users are. Comments are more dependent on an article; they never exist on their own
because they’re conceptually meaningless if they’re not tied to an article.

Instead of defining comments as standalone resources, as you did for articles, you define them as nested
resources of articles. Go to the routes file and update the resources :article call to look like the code in Listing 8-7.

Figure 8-1. Adding a new user

CHAPTER 8 ■ ADVANCED ACTION PACK

156

Listing 8-7. Adding Comments to routes.rb in config/routes.rb: http://gist.github.com/338747

Blog::Application.routes.draw do
 root :to => "articles#index"
 resources :articles do
 resources :comments
 end
 resources :users
end

To define a nested resource, you use the resources method passed inside a block to the parent resource. Notice
how resources :comments is passed as a block to the resources :articles call; therefore, comments become a
nested resource of articles. The named routes for nested resources are different from standalone ones; they’re built
on top of a singular article named route, requiring an article ID every time they’re called. Table 8-1 lists the generated
named routes for comments.

Every time you call comment-named routes, you must provide an article ID. Let’s generate the comments
controller and see how you take care of that:

$ rails generate controller Comments

 create app/controllers/comments_controller.rb
 invoke erb
 create app/views/comments
 invoke test_unit
 create test/controllers/comments_controller_test.rb
 invoke helper
 create app/helpers/comments_helper.rb
 invoke test_unit
 create test/helpers/comments_helper_test.rb
 invoke assets
 invoke coffee
 create app/assets/javascripts/comments.js.coffee
 invoke scss
 create app/assets/stylesheets/comments.css.scss

Table 8-1. Comments’ Named Routes

Request Method Nested Named Routes Parameters Controller Action

GET article_comments_path Article ID index

POST article_comments_path Record hash create

GET article_comment_path ID, article ID Show

PUT/PATCH article_comment_path ID, article ID, and record hash update

DELETE article_comment_path ID, article ID destroy

GET edit_article_comment_path ID, article ID edit

GET new_article_comment_path Article ID new

http://gist.github.com/338747

CHAPTER 8 ■ ADVANCED ACTION PACK

157

Of the default seven actions for which Rails generates named routes, you need only two for comments: create
and destroy. You don’t need index, new, or show actions because comments are listed, shown, and added from the
article’s show page. You don’t want to support editing or updating a comment, so you don’t need edit or update
either. Listing 8-8 shows how the comments controller looks with only those two actions.

Listing 8-8. Comments Controller in app/controllers/comments_controller.rb: http://gist.github.com/338756

class CommentsController < ApplicationController
 before_action :load_article

 def create
 @comment = @article.comments.new(comment_params)
 if @comment.save
 redirect_to @article, notice: 'Thanks for your comment'
 else
 redirect_to @article, alert: 'Unable to add comment'
 end
 end

 def destroy
 @comment = @article.comments.find(params[:id])
 @comment.destroy
 redirect_to @article, notice: 'Comment Deleted'
 end

 private
 def load_article
 @article = Article.find(params[:article_id])
 end

 def comment_params
 params.require(:comment).permit(:name, :email, :body)
 end
end

Notice the before_action call at the beginning of the controller; it runs the method load_article before all
the actions in your comments controller. That’s all you’ll need to know for now. We’ll explain more about controller
callbacks shortly.

The load_article method does a simple task: it finds the article from the passed article_id and assigns it to the
@article instance variable. Remember that you always have the article_id in your parameters because it’s always
included in your nested named routes. With load_article in before_action, you’ll always have @article loaded and
accessible in your comments controller’s actions and templates.

Also notice how you find and assign @comment: you do so using @article.comments. This way, you’ll make sure
you’re dealing only with @article comments and you that don’t create or delete comments from another article.

Now let’s update the views and create some templates. As mentioned earlier, you list, show, and add new
comments from the article’s show page; so let’s update the article show page, make it a little nicer, and then add new
code to display comments. Listing 8-9 shows how app/views/articles/show.html.erb looks after the update.

http://gist.github.com/338756

CHAPTER 8 ■ ADVANCED ACTION PACK

158

Listing 8-9. Updated Article Show Template in app/views/articles/show.html.erb: http://gist.github.com/338770

<%= render @article %>

<h3>Comments</h3>
<div id="comments">
 <%= render @article.comments %>
</div>

<%= render :file => 'comments/new' %>

That’s a lot of cleaning. First, you extract the displaying attributes into a partial named
app/views/articles/_article.html.erb, which you call using render @article. One of the benefits of creating a
partial is that you can use it in other pages, such as the articles’ index page, which you’ll implement shortly.

Notice that the flash notice is removed from the article show template. To make sure the flash messages show in
any view template, you move it to the application layout in app/views/layouts/application.html.erb (Listing 8-10).

Listing 8-10. Updated Application Layout Template in app/views/layouts/application.html.erb:
http://gist.github.com/388446

<!DOCTYPE html>
<html>
<head>
 <title>Blog</title>
 <%= stylesheet_link_tag :all %>
 <%= javascript_include_tag :defaults %>
 <%= csrf_meta_tag %>
</head>
<body>

<%= content_tag :p, notice, :class => 'notice' if notice.present? %>
<%= content_tag :p, alert, :class => 'alert' if alert.present? %>

<%= yield %>

</body>
</html>

Then you list comments using the collection render on @article.comments. To refresh your memory, this loops
through the article comments, rendering the app/views/comments/_comment.html.erb partial for every comment.

Finally, you render the app/views/comments/new.html.erb template as a file; you could render it as a partial
too, but it’s more like a template than a partial. In some projects, you may need to render a regular template
file—corresponding to an action—which can also be used like a partial in other parts of the application. In this case,
to render the app/views/comments/new.html.erb file in the context of another template, you use render :file.

None of the files mentioned have been created yet. Let’s do that now. Create
app/views/articles/_article.html.erb, app/views/comments/_comment.html.erb, and app/views/comments/new.html.erb,
as shown in Listings 8-11, 8-12, and 8-13, respectively.

Listing 8-11. Article Partial in app/views/articles/_article.html.erb: http://gist.github.com/338785

<%= div_for article do %>
 <h3>
 <%= link_to article.title, article %>

http://gist.github.com/338770
http://gist.github.com/388446
http://gist.github.com/388446
http://gist.github.com/338785

CHAPTER 8 ■ ADVANCED ACTION PACK

159

 <%= link_to "Edit", edit_article_path(article) %>
 <%= link_to "Delete", article, confirm: "Are you sure?", method: :delete %>

 </h3>
 <%= article.body %>
<% end %>

Listing 8-12. Comment Partial in app/views/comments/_comment.html.erb: http://gist.github.com/338789

<%= div_for comment do %>
 <h3>
 <%= comment.name %> <<%= comment.email %>> said:

 <%= link_to 'Delete', article_comment_path(:article_id => @article,
:id => comment), confirm: 'Are you sure?', method: :delete %>

 </h3>
 <%= comment.body %>
<% end %>

Listing 8-13. New Comment Template in app/views/comments/new.html.erb: http://gist.github.com/338791

<%= form_for([@article, @article.comments.new]) do |f| %>
 <div class="field">
 <%= f.label :name %>

 <%= f.text_field :name %>
 </div>
 <div class="field">
 <%= f.label :email %>

 <%= f.text_field :email %>
 </div>
 <div class="field">
 <%= f.label :body %>

 <%= f.text_area :body %>
 </div>
 <div class="actions">
 <%= f.submit 'Add' %>
 </div>
<% end %>

The article and comment partials are pretty straightforward; aside from the markup, you display the attributes
and link to actions. You also wrap the content inside a div_for helper, which renders a div element with a unique ID
for the object passed as a parameter.

The new comment form calls form_for: instead of passing a single object as you did for article when you called
form_for(@article). You pass an array of both the article object @article and a new comment object by calling
@article.comments.new. This is a short way to tell Rails that you’re dealing with a nested resource. Calling
form_for([@article, @article.comments.new]) is identical to

form_for(:comment, @article.comments.new, url: [@article, @article.comments.new])

which is also identical to

form_for(:comment, @article.comments.new, url: article_comments_path(article_id: @article))

http://gist.github.com/338789
http://gist.github.com/338791

CHAPTER 8 ■ ADVANCED ACTION PACK

160

Passing the array of both the parent object and the nested child object translates into the corresponding nested
named route. You can replace the named route path of the delete link in app/views/comments/_comment.html.erb
with [@article, comment]. Change the comment partial to look like the code in Listing 8-14.

Listing 8-14. Delete Link Changed in app/views/comments/_comment.html.erb: http://gist.github.com/338801

<%= div_for comment do %>
 <h3>
 <%= comment.name %> <<%= comment.email %>> said:

 <%= link_to 'Delete', [@article, comment], :confirm => 'Are you sure?',
:method => :delete %>

 </h3>
 <%= comment.body %>
<% end %>

Now that you’ve created the missing templates and added the required code to the controller, let’s go to the
browser and see how it looks in the article show page. Run your server, go to your browser, and click your way through
to an article; you should see something very similar to Figure 8-2.

Figure 8-2. Article show page with new comment form

http://gist.github.com/338801

CHAPTER 8 ■ ADVANCED ACTION PACK

161

Try adding a few comments and see how the form behaves. Congratulations! You just added comment support
to your blog application using nested resources. Now that you have comments and users in the system, let’s add some
authorization logic to make sure only logged-in users can create and update articles.

Sessions and the Login/Logout Logic
The whole point of having users in your blog application is to allow them to create their own articles. But you also
need to be able to recognize them when they create an article. Web applications normally do that by using sessions.
Let’s talk a little more about that before you implement it in your application.

Lying in State
HTTP is stateless. The web server has no idea that it has talked to your browser before; each request is like a blind date.
Given this tidbit of information, you may wonder how you can stay logged in to a given site. How can the application
remember you’re logged in if HTTP is stateless? The answer is that you fake state.

You’ve no doubt heard of browser cookies. In order to simulate state atop HTTP, Rails uses cookies. When the first
request comes in, Rails sets a cookie on the client’s browser. The browser remembers the cookie locally and sends it
along with each subsequent request. The result is that Rails is able to match the cookie that comes along in the request
with session data stored on the server.

Using the Session
Secure in the knowledge that Rails will take care of all the low-level details of sessions for you, using the session
object couldn’t be easier. The session is implemented as a hash, just like flash. We should come clean here—flash is
a session in disguise (you can think of it as a specialized session due to its autoexpiring properties). Not surprisingly
then, the flash and session interfaces are identical. You store values in the session according to a key:

session[:account_id] = @account.id
session[:account_id] # => 1

session['message'] = "Hello world!"
session['message'] # => "Hello world!"

Session as a Resource
Now that you understand sessions, you can go back to your main task: allowing users to log in and log out. You create
a session when the user logs in and clear (destroy) it when they’re done. Of course, you do that in a RESTful way, by
treating the session as a resource:

Start by generating a sessions controller:

$ rails generate controller Sessions

 create app/controllers/sessions_controller.rb
 invoke erb
 create app/views/sessions
 invoke test_unit
 create test/controllers/sessions_controller_test.rb
 invoke helper

CHAPTER 8 ■ ADVANCED ACTION PACK

162

 create app/helpers/sessions_helper.rb
 invoke test_unit
 create test/helpers/sessions_helper_test.rb
 invoke assets
 invoke coffee
 create app/assets/javascripts/sessions.js.coffee
 invoke scss
 create app/assets/stylesheets/sessions.css.scss

Now define this as a resource in your routes file in config/routes.rb, as shown in Listing 8-15.

Listing 8-15. Adding session to routes.rb in config/routes.rb: http://gist.github.com/338904

Blog::Application.routes.draw do
 root :to => "articles#index"
 resources :articles do
 resources :comments
 end
 resources :users
 resource :session
end

Notice that you define session as a resource and not resources, because you never deal with a set of sessions
at once. You never list sessions in an index or anything like that—you just need to create or destroy a single session at
a time.

Let’s step back and try to explain the difference between resource and resources definitions. The main benefit
you get from defining resources in your routes file is the named routes that are generated for you. In case of a single
resource definition, you get different named routes: none of them are pluralized, all are singular, and there’s no index
action. Rails maps six actions instead of the seven in a resources definition. Table 8-2 provides a quick comparison
between resources named routes and resource named routes.

Table 8-2. Named Routes: resources vs. resource

Request Method resources Named Routes resource Named Routes Controller Action

GET articles_path Not available index

POST articles_path session_path create

GET article_path session_path show

PATCH/PUT article_path session_path update

DELETE article_path session_path destroy

GET edit_article_path edit_session_path edit

GET new_article_path new_session_path new

Note ■ Although a singular name is used for the resource, the controller name is still taken from the plural name, so

sessions_controller is the controller for the session resource in this case.

http://gist.github.com/338904

CHAPTER 8 ■ ADVANCED ACTION PACK

163

To avoid confusion, let’s map this in your mind; to log in, you need to create a session; to log out, you clear that
session. You use new_session_path as your login path, and the new template is your login page. POSTing the form in
the new session page to session_path creates the session. Finally, submitting a DELETE request to session_path clears
that session, performing a log out. Now, let’s map it in the routes file, as shown in Listing 8-16.

Listing 8-16. Adding session to routes.rb in config/routes.rb: http://gist.github.com/338912

Blog::Application.routes.draw do
 root :to => "articles#index"
 resources :articles do
 resources :comments
 end
 resources :users
 resource :session, :only => [:new, :create, :destroy]
 get '/login' => "sessions#new", :as => "login"
 get '/logout' => "sessions#destroy", :as => "logout"
end

You basically define two named routes, login_path and logout_path, which are more meaningful than
new_session_path and session_path when referring to those actions.

Logging In a User
As you did for Active Record resources, in the create action, you first check the validity of the resource—in this case
through authentication—and you save the state if all is good. If the validity check fails, you return the user to the login
page with an error message. In this controller, you never save a record to the database—you save a session object.
Listing 8-17 shows the create action.

Listing 8-17. The create Method in app/controllers/sessions_controller.rb: http://gist.github.com/338919

class SessionsController < ApplicationController
 def create
 if user = User.authenticate(params[:email], params[:password])
 session[:user_id] = user.id
 redirect_to root_path, :notice => "Logged in successfully"
 else
 flash.now[:alert] = "Invalid login/password combination"
 render :action => 'new'
 end
 end
end

First, you use the authenticate class method from the User model to attempt a log in (see Listing 6-37 in
Chapter 6). Remember that authenticate returns a User object if the authentication succeeds; otherwise, it
returns nil. Therefore, you can perform your conditional and your assignment in one shot using if user =
User.authenticate(params[:email], params[:password]). If the assignment takes place, you want to store a
reference to this user so you can keep the user logged in—a perfect job for the session:

session[:user_id] = user.id

http://gist.github.com/338912
http://gist.github.com/338919

CHAPTER 8 ■ ADVANCED ACTION PACK

164

Notice that you don’t need to store the entire User object in session. You store just a reference to the user’s ID.
Why not store the entire User object? Well, think about this for a minute: what if the user is stored in session and later
changes their login? The old login would remain in the session and would therefore be stale. This can cause problems if
the underlying User model changes. Your entire object could become stale, potentially causing a NoMethodError when
accessing attributes that didn’t exist on the model at the time it was placed in session. The best bet is to just store the id.

With a reference to the logged-in user safely stored in session, you can redirect to the root path, corresponding
to the articles controller.

If the assignment doesn’t take place and the User.authenticate method returns nil, you know the provided
login and password are invalid, and you return to the login page with an alert message using flash.now. RESTfully
speaking, the login page is where you enter the new session information, so it’s basically the new action.

Note ■ flash.now differs from the regular flash call by setting a flash message that is only available to the current

action. If you recall, regular flash makes messages available after a redirect.

But wait: you don’t have a new action yet. Don’t you need to define it first? The truth is, you don’t need to initialize
anything there—all you need is its template. By having the template, Rails automatically renders that template when it
doesn’t find the action definition. Let’s create the new template, as shown in Listing 8-18.

Listing 8-18. The new Session Template in app/views/sessions/new.html.erb: http://gist.github.com/338925

<h1>Login</h1>

<%= form_tag session_path do %>
 <div class="field">
 <%= label_tag :email %>

 <%= text_field_tag :email %>
 </div>
 <div class="field">
 <%= label_tag :password %>

 <%= password_field_tag :password %>
 </div>
 <div class="actions">
 <%= submit_tag 'Login' %>
 </div>
<% end %>

Notice that you use form_tag instead of form_for, which you used earlier with Active Record objects; that’s
because session isn’t an Active Record object. You also submit to session_path because it’s a resource, not
resources, as explained earlier. Again, because you aren’t dealing with an Active Record object, you use label_tag,
text_field_tag, and password_field_tag helpers.

Logging Out a User
The user is logged in when a session is created, so in order to log out the user, you need to clear that session. You do
so in the destroy action. The destroy action is fairly straightforward. You clear the session by using the
reset_session method that comes with Rails, which does exactly as it says: it resets the session by clearing all the
values in it. After you clear the session, you redirect back to the login_path, which is your login screen.

http://gist.github.com/338925

CHAPTER 8 ■ ADVANCED ACTION PACK

165

Another way to do this is to specifically clear the user_id key from the session hash, but it’s safer for the logout
in particular to clear all the session values. Listing 8-19 shows how the sessions controller looks after you add the
destroy method.

Listing 8-19. Updated Sessions Controller in app/controllers/sessions_controller.rb:
http://gist.github.com/338944

class SessionsController < ApplicationController
 def create
 if user = User.authenticate(params[:email], params[:password])
 session[:user_id] = user.id
 redirect_to root_path, :notice => "Logged in successfully"
 else
 flash.now[:alert] = "Invalid login/password combination"
 render :action => 'new'
 end
 end

 def destroy
 reset_session
 redirect_to root_path, :notice => "You successfully logged out"
 end
end

Go ahead and try it. Create a user by going to http://localhost:3000/users/new. Then log in by visiting the login
path at http://localhost:3000/login (Figure 8-3). Finally, if you want to log out, go to http://localhost:3000/logout.

Figure 8-3. Login page

Don’t worry about remembering all the URLs. You can link to them when you update your application layout.

http://gist.github.com/338944
http://gist.github.com/338944
http://localhost:3000/users/new
http://localhost:3000/login
http://localhost:3000/logout

CHAPTER 8 ■ ADVANCED ACTION PACK

166

Improving Controllers and Templates
Chapter 7 and earlier parts of this chapter covered generating controllers, creating templates and layouts, and DRYing
up with partials. Let’s take this a step forward: first, you update article views, and then you add callbacks to some of
your controllers, making sure some actions require authorization.

Cleaning Up the Articles Index Page
The current articles’ index page uses a table markup to list articles. If you’ve ever visited a blog, you know you’ve never
seen one like that; so, let’s change the table markup and loop to a friendlier markup that uses the article’s partial in
app/views/articles/_article.html.erb. Listing 8-20 shows the updated articles index.

Listing 8-20. Updated Articles Index in app/views/articles/index.html.erb: http://gist.github.com/338960

<h1>Listing articles</h1>

<div id="articles">
 <%= render @articles %>
</div>

<%= link_to 'New article', new_article_path %>

Caution ■ Be careful with reusing partials. In some cases, you may prefer to keep separate files. You reuse the article

partial here just to simplify things.

Visit your root path at http://localhost:3000. If all goes right, you should see something similar to Figure 8-4.
That looks like a real blog!

Figure 8-4. Blog-like home page

http://gist.github.com/338960
http://localhost:3000/

CHAPTER 8 ■ ADVANCED ACTION PACK

167

Adding Categories to the Article Form
In Chapter 6, you added categories to the Article model, but neither your controller nor your templates know about
this yet. Let’s remedy that now, starting with the article form. Add the code shown in bold in Listing 8-21 to the form
partial in app/views/articles/_form.html.erb.

Listing 8-21. Modified app/views/articles/_form.html.erb: http://gist.github.com/341499

<%= form_for(@article) do |f| %>
 <% if @article.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@article.errors.count, "error") %>
prohibited this article from being saved:</h2>

 <% @article.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>
 <div class="field">
 <%= f.label :title %>

 <%= f.text_field :title %>
 </div>
 <div class="field">
 <%= f.label :location %>

 <%= f.text_field :location %>
 </div>
 <div class="field">
 <%= f.label "Categories" %>

 <% Category.all.each do |category| %>
 <%= check_box_tag 'article[category_ids][]', category.id,
@article.category_ids.include?(category.id), id: dom_id(category) %>
 <%= label_tag dom_id(category), category.name, class: "check_box_label" %>
 <% end %>
 </div>
 <div class="field">
 <%= f.label :excerpt %>

 <%= f.text_field :excerpt %>
 </div>
 <div class="field">
 <%= f.label :body %>

 <%= f.text_area :body %>
 </div>
 <div class="field">
 <%= f.label :published_at %>

 <%= f.datetime_select :published_at %>
 </div>
 <div class="actions">
 <%= f.submit %>
 </div>
<% end %>

http://gist.github.com/341499

CHAPTER 8 ■ ADVANCED ACTION PACK

168

To offer articles the chance to be part of one or more categories, you show all the categories as check boxes. But
how do you associate those check boxes with the article?

Remember that Chapter 6talked about the methods that each association adds to your model when you use
them. In the case of the Article model, the has_and_belong_to_many :categories association adds the category_ids
method, which returns an array of the associated category IDs; it also adds the category_ids=(category_ids)
method, which replaces the current associated categories with the ones supplied.

Knowing that, look back at the new code added to the form: you loop through all the categories and draw a check
box for each one. The check_box_tag call deserves a closer look:

check_box_tag 'article[category_ids][]', category.id,
@article.category_ids.include?(category.id), :id => dom_id(category)

Notice how you use a form tag helper check_box_tag instead of an Active Record form helper check_box. You do
that so you can customize the name of the generated check-box form elements.

The check_box_tag method is an Action View form helper that generates a check box. The check_box_tag
method takes four arguments: the first defines the name of the check box, the second specifies the value of the check
box, and the third defines whether the check box is checked. Finally, an optional fourth argument can be passed; it’s a
hash of HTML options. In this case, you pass id: dom_id(category) as the last parameter to give the check box an ID
you refer to later.

The name you use is article[category_ids][]. The article[category_ids] part associates this field with the
params[:article] hash of attributes; the [] at the end of the name makes sure all the check-box values are passed as
arrays. For example, if categories 5 and 2 are selected, params[:article][:category_ids] is [5, 2] when the form is
submitted.

The only thing left to do is go back to the articles controller and make sure Rails knows that you want to allow
categories to be saved to the article. Otherwise it would just discard this information and never save it to the article.

Code listing app/controllers/articles.rb

def article_params
 params.require(:article).permit(:title, :location, :excerpt, :body, :published_at,
:category_ids => [])
end

When Rails generates the HTML markup from a form tag helper, it autogenerates the element’s ID from the
element’s name. For example, the HTML ID of check_box_tag('article[category_ids]') is article_category_ids.
If you loop over all the categories and depend on Rails to generate the IDs of the check boxes, all the rendered check
boxes have the same HTML ID. Not only are it standards incompliant to have multiple elements with the same ID, but
it also makes your life harder if you want to refer to any of those elements later. You solve this problem by setting the
ID of every check box by passing the ID to check_box_tag as the last argument.

The dom_id(category) method is a helper method that generates an HTML-friendly ID for your object. For
example, if a category’s id is 3, the dom_id of this category is category_3.

That’s about it. Now that you have category integration for articles, try adding a new article; you should see a form
similar to that in Figure 8-5.

CHAPTER 8 ■ ADVANCED ACTION PACK

169

Fill in the mandatory fields, select a couple of categories, and submit the form. Check the parameters output in
your rails server window. You should see something similar to the following output, depending on the values you
entered—pay attention to the category array:

Parameters: {"authenticity_token"=>"FqpxvxGqPzlQ/biDC+muT2KGyFHp1OCIbm+4KjBi1jI=",
"article"=>{"title"=>"Attending Rails Workshop", "location"=>"Miami",
"category_ids"=>["2", "1", "3"], "excerpt"=>"Rails workshop in Miami",
"body"=>"I'm attending a Ruby on Rails workshop in Miami this summer.",
"published_at(1i)"=>"2010", "published_at(2i)"=>"5", "published_at(3i)"=>"3",
"published_at(4i)"=>"19", "published_at(5i)"=>"26"}, "commit"=>"Create Article"}

If you try to edit the article you just created, you’ll see that your categories are selected, and you can modify them
like any other article attribute. The category_ids= method that the has_and_belong_to_many association added for
you does all the magic behind the scenes.

Figure 8-5. Updated article form with category check boxes

CHAPTER 8 ■ ADVANCED ACTION PACK

170

Using Controller Callbacks
Callbacks provide a way for you to perform operations either before or after an action is invoked. There’s even an
around callback that can wrap the execution of an action. Of the three, the before action is the most commonly used,
so this section focuses on it.

All the code you place in before_action is run before the action in question is called. Pretty simple, really. But
there’s a catch: if before_action returns false, the action isn’t executed. We often use this to protect certain actions
that require a log in. If you have an events controller and you want the new and create actions to remain open
(anyone can access them), but you want to restrict all other actions to logged-in users, you can do so using callbacks:

class EventsController < ApplicationController
 before_action :authenticate, :except => [:new, :create]
end

This causes the authenticate method to be run before every action except those listed. Assume the
authenticate method is defined in the application_controller controller and is therefore available to every other
controller in the system. If the authenticate method returns false, the requested action isn’t executed, thereby
protecting it from unauthorized visitors.

You can also use the :only modifier to specify that the filter is to run for only the given actions. You can write the
preceding example more concisely as follows:

before_action :authenticate, :only => :destroy

Without the :only or :except modifier, the filter runs for all actions.
Controller inheritance hierarchies share filters downward, but subclasses can also add or skip filters without

affecting the superclass. Let’s say you apply a global filter to the application_controller, but you have a particular
controller that you want to be exempt from filtration. You can use skip_before_action, like this:

class ApplicationController < ActionController::Base
 before_action :authenticate_with_token
end

class PublicController < ApplicationController
 # We don't want to check for a token on this controller
 skip_before_action :authenticate_with_token
end

Callbacks are a fairly involved topic, and we’ve only scratched the surface here. Still, you’ve seen the most
common usage pattern: protecting actions. For more information about filters, including usage examples, check out
the Rails guide at http://guides.rubyonrails.org/action_controller_overview.html.

Requiring Authentication with Filters
In your blog application, you want to protect blog creation and modification, restricting access to registered users. To
do this, you use callbacks that call specific methods and check for the user_id session you set on user log in. Recall
that any methods you add to the application_controller are available to all other controllers (because it’s the
superclass of all controllers).

Open the application_controller in app/controllers/application_controller.rb and add the protected
methods that enforce your authentication requirement, as shown in Listing 8-22.

http://guides.rubyonrails.org/action_controller_overview.html

CHAPTER 8 ■ ADVANCED ACTION PACK

171

Listing 8-22. Modified app/controllers/application_controller.rb: http://gist.github.com/341622

class ApplicationController < ActionController::Base
 protect_from_forgery

 protected
 # Returns the currently logged in user or nil if there isn't one
 def current_user
 return unless session[:user_id]
 @current_user ||= User.find_by_id(session[:user_id])
 end

 # Make current_user available in templates as a helper
 helper_method :current_user

 # Filter method to enforce a login requirement
 # Apply as a before_action on any controller you want to protect
 def authenticate
 logged_in? || access_denied
 end

 # Predicate method to test for a logged in user
 def logged_in?
 current_user.is_a? User
 end

 # Make logged_in? available in templates as a helper
 helper_method :logged_in?

 def access_denied
 redirect_to login_path, notice: "Please log in to continue"
and return false
 end
end

The current_user method acts like an accessor for the currently logged-in user. Because it returns a User object,
you can call instance methods of User on it, such as current_user.email. The authenticate method is your callback
method (the one you call from individual controllers). It checks whether there is a currently logged-in user via
logged_in? (which, in turn, checks that there is actually a User returned by current_user) and calls access_denied if
there isn’t; access_denied redirects to the login_path in the sessions controller with a notice message in the flash.

You want two of these methods available in templates as well: logged_in? and current_user. Having logged_in?
available allows you to make dynamic decisions about whether a user is logged in. You can use this to show or hide
administrative controls (such as adding or editing a given article). Having current_user around also proves useful in
templates, allowing you to access information about users, such as their e-mail addresses. Rails provides a handy way
to extend the visibility of methods to templates by declaring them as helpers. You can use helper_method followed by
a symbolic reference to the method in question, as you would in helper_method :logged_in?. You can also pass an
array of method references to helper_method if you want to declare them all at once.

Let’s apply the filter to the articles controller now. You also apply a filter to the users controller to restrict who
can edit user profiles.

http://gist.github.com/341622

CHAPTER 8 ■ ADVANCED ACTION PACK

172

Applying Filters to Controllers
You apply filters using a declarative syntax. In this case, you’ll want to check that a user is authenticated before you
process a protected action, so you use before_filter. Add the filter to the articles controller, just inside the class
body, as shown in Listing 8-23.

Listing 8-23. Before Filter Added in app/controllers/articles_controller.rb: http://gist.github.com/341628

class ArticlesController < ApplicationController
 before_action :authenticate, except: [:index, :show]

 #...
end

Notice how you’re able to selectively apply the filter to specific actions. Here, you want every action to be
protected except index and show. The :except modifier accepts either a single value or an array. You’ll use an array
here. If you want to protect only a few actions, you can use the :only modifier, which, as you would expect, behaves
the opposite of :except.

You’ll also want to use a filter in the users controller. Right now, anyone can edit a user as long as they know
the user’s ID. This would be risky in the real world. Ideally, you want the edit and update actions to respond
only to the currently logged-in user, allowing that user to edit their profile. To do this, instead of retrieving User.
find(params[:id]), you retrieve current_user and apply a filter to protect the edit and update actions. Listing 8-24
shows the latest version of the users controller.

Listing 8-24. Before Filter Added in app/controllers/users_controller.rb: http://gist.github.com/341632

class UsersController < ApplicationController
 before_action :authenticate, only: [:edit, :update]
 before_action :set_user, only: [:show, :edit, :update, :destroy]

 def new
 @user = User.new
 end

 def create
 @user = User.new(user_params)
 if @user.save
 redirect_to articles_path, notice: 'User successfully added.'
 else
 render action: :new
 end
 end

 def edit
 @user = current_user
 end

 def update
 @user = current_user
 if @user.update(user_params)
 redirect_to articles_path, notice: 'Updated user information successfully.'

http://gist.github.com/341628
http://gist.github.com/341632

CHAPTER 8 ■ ADVANCED ACTION PACK

173

 else
 render action: 'edit'
 end
 end

 private
 def set_user
 @user = current_user
 end

 def user_params
 params.require(:user).permit(:email, :password, :password_confirmation)
 end
end

Try it. If you attempt to add, edit, or delete an article, you’re asked to log in (Figure 8-6).

Figure 8-6. Authentication required

You don’t want to keep deleting a comment as a public task; therefore, authorization code is required in the
comments controller. First, you add a before_filter to authorize users before calling the destroy action. Next, in the
destroy action, you find the article, making sure it belongs to the current user by using current_user.articles.find.
Then, you find the comment on that article; and finally, you destroy it. Listing 8-25 shows the updated code, in bold,
for the comments controller.

Listing 8-25. Authorization Before Deleting a Comment in app/controllers/comments_controller.rb:
http://gist.github.com/388584

class CommentsController < ApplicationController
 before_filter :load_article, :except => :destroy
 before_filter :authenticate, :only => :destroy

http://gist.github.com/388584
http://gist.github.com/388584

CHAPTER 8 ■ ADVANCED ACTION PACK

174

 def create
 @comment = @article.comments.new(params[:comment])
 if @comment.save
 redirect_to @article, :notice => 'Thanks for your comment'
 else
 redirect_to @article, :alert => 'Unable to add comment'
 end
 end

 def destroy
 @article = current_user.articles.find(params[:article_id])
 @comment = @article.comments.find(params[:id])
 @comment.destroy
 redirect_to @article, notice: 'Comment deleted'
 end

 private
 def load_article
 @article = Article.find(params[:article_id])
 end

 def comment_params
 params.require(:comment).permit(:name, :email, :body)
 end
end

Adding Finishing Touches
You’re almost finished with your work in this chapter. Only a few tasks remain. You need to spruce up your templates a
bit and make them a little cleaner. You also need to make it possible for article owners to edit and delete their articles.
Finally, you want to update the layout and apply some CSS styles to make things look pretty. Ready? Let’s get started!

Using Action View Helpers
One of the ways you can clean up your templates is with helpers. Rails ships with a bevy of formatting helpers to assist
in displaying numbers, dates, tags, and text in your templates. Here’s a quick summary:

• Number helpers: The NumberHelper module provides methods for converting numbers into formatted
strings. Methods are provided for phone numbers, currency, percentages, precision, positional notation,
and file size. See http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html
for more information.

• Text helpers: The TextHelper module provides a set of methods for filtering, formatting, and
transforming strings that can reduce the amount of in-line Ruby code in your views. See
http://api.rubyonrails.org/classes/ActionView/Helpers/TextHelper.html for more
information.

• URL helpers: Rails provides a set of URL helpers that makes constructing links that depend on
the controller and action (or other parameters) ridiculously easy. For more information, see
http://api.rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html and
http://api.rubyonrails.org/classes/ActionController/Base.html.

http://api.rubyonrails.org/classes/ActionView/Helpers/NumberHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/TextHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/UrlHelper.html
http://api.rubyonrails.org/classes/ActionController/Base.html
http://api.rubyonrails.org/classes/ActionController/Base.html

CHAPTER 8 ■ ADVANCED ACTION PACK

175

A very handy URL helper is link_to, which you’ve used several times already. It creates a hyperlink tag of the
given name using a URL constructed according to the options hash given. It’s possible to pass a string instead of an
options hash to get a link tag that points to any URL. Additionally, if nil is passed as a name, the link itself becomes
the name. Here’s the fine print:

link_to(name, options={}, html_options={})

This generates an HTML anchor tag using the following parameters:

The first argument is the link’s name.•

The second argument is the URL to link to, given as a string, a named route, or a hash of •
options used to generate the URL. It can also be an object, in which case Rails replaces it with
its show action named route.

The third argument is a hash of HTML options for the resulting tag.•

In Ruby, if the last argument to a method is a hash, the curly braces are optional. Most link_to helpers therefore
look like this:

link_to 'New', new_article_path, id: 'new_article_link'

If you use all three arguments and pass in options for HTML (like a class or id attribute), you need to
disambiguate them. Consider the following example, which uses two hashes: one for the URL generation and another
for the HTML options:

link_to 'New', {controller: 'articles', action: 'new'}, class: 'large'

Notice that you need to use the curly braces for at least the first hash to inform Ruby that there are three
arguments. Using braces on the last hash of options is still optional, and you can just as easily include them:

link_to 'New', {controller: 'articles', action: 'new'}, {class: 'large'}

Escaping HTML in Templates
You should always escape any HTML before displaying it in your views to prevent malicious users from injecting
arbitrary HTML into your pages (which is how cross-site scripting attacks are often carried out). The rule of thumb is
that whenever you have data that are provided by the user, you can’t trust them blindly. You need to escape it. This
includes model attributes as well as parameters. Fortunately, Rails escapes all rendered strings for you.

Try adding a new article with some HTML markup in the body, saving, and visiting the show page. If you enter an
anchor HTML tag, for example, you see something like the screen shown in Figure 8-7. As you can see, Rails escapes
the HTML entered in the body field.

CHAPTER 8 ■ ADVANCED ACTION PACK

176

If you check the source code, you’ll see that the characters you entered have been escaped:

No link for you

Sometimes, you may want to display the strings entered by users without escaping them. To do that, Rails
provides a method on strings named html_safe that skips the HTML escaping process. To display the article’s body in
its raw format, which you’ll do shortly, you can call article.body.html_safe instead of article.body in the article
partial in app/views/articles/_article.html.erb.

Formatting the Body Field
Let’s improve the display of the body field. One of the aforementioned text helpers is simple_format. This helper
converts text to HTML using simple formatting rules. Two or more consecutive newlines are considered a paragraph
and wrapped in <p> tags. One newline is considered a line break, and a
 tag is appended. Listing 8-26 shows the
additions.

Figure 8-7. Escaped HTML in the article page

CHAPTER 8 ■ ADVANCED ACTION PACK

177

Listing 8-26. Formatting Helpers Added in app/views/articles/_article.html.erb:
http://gist.github.com/341839

<%= div_for article do %>
 <h3>
 <%= link_to article.title, article %>

 <%= link_to "Edit", edit_article_path(article) %>
 <%= link_to "Delete", article, :confirm => "Are you sure?",
:method => :delete %>

 </h3>
 <%= simple_format article.body %>
<% end %>

Adding Edit Controls
You’ve applied authentication filters, but you still don’t have a way to prevent users from editing or deleting articles
that belong to other users. To do this, you add a method to the Article model that can tell you whether the article in
question is owned by the user you pass in. Open the Article model and add the owned_by? method, as highlighted in
bold in Listing 8-27.

Listing 8-27. Updated app/models/article.rb: http://gist.github.com/388527

class Article < ActiveRecord::Base
 validates :title, :presence => true
 validates :body, :presence => true

 belongs_to :user
 has_and_belongs_to_many :categories
 has_many :comments

 scope :published, where("articles.published_at IS NOT NULL")
 scope :draft, where("articles.published_at IS NULL")
 scope :recent, lambda { published.where("articles.published_at > ?",
1.week.ago.to_date)}
 scope :where_title, lambda { |term| where("articles.title LIKE ?", "%#{term}%") }

 def long_title
 "#{title} - #{published_at}"
 end

 def published?
 published_at.present?
 end

 def owned_by?(owner)
 return false unless owner.is_a?(User)
 user == owner
 end
end

http://gist.github.com/341839
http://gist.github.com/388527

CHAPTER 8 ■ ADVANCED ACTION PACK

178

Now, let’s use this method in the article and comment partials in app/views/articles/_article.html.erb and
app/views/comments/_comment.html.erb, respectively, by adding links to edit or delete only if the article is owned by
the currently logged-in user, as shown in Listings 8-28 and 8-29.

Listing 8-28. Edit Controls for Article in app/views/articles/_article.html.erb: http://gist.github.com/341845

<%= div_for article do %>
 <h3>
 <%= link_to article.title, article %>
 <% if article.owned_by? current_user %>

 <%= link_to "Edit", edit_article_path(article) %>
 <%= link_to "Delete", article, confirm: "Are you sure?", method: :delete %>

 <% end %>
 </h3>
 <%= simple_format article.body %>
<% end %>

Listing 8-29. Edit Controls for Comment in app/views/comments/_comment.html.erb:
http://gist.github.com/388593

<%= div_for comment do %>
 <h3>
 <%= comment.name %> <<%= comment.email %>> said:
 <% if @article.owned_by? current_user %>

 <%= link_to 'Delete', [@article, comment],
confirm: 'Are you sure?', method: :delete %>

 <% end %>
 </h3>
 <%= comment.body %>
<% end %>

Note ■ When you try this in your browser, you may not see the edit and delete links for any of the articles because

their user_id field is nil. This is great console practice for you. Start your console with rails console, find your own

user section using user = User.find_by_email('email@example.com'), and update all articles in the system using

Article.update_all(["user_id = ?", user.id]).

Making Sure Articles Have Owners
You need to make sure that when you add an article, a user is assigned. To do that, you update the create method in
the articles controller to use the association between User and Article. When creating the @article variable, instead
of using Article.new, you use current_user.articles.new: it instantiates an article object with the user_id field
set to the ID of current_user. That’s exactly what you need.

Applying the same logic, you can change the edit, update, and destroy actions to retrieve only articles
belonging to the logged-in user. In code parlance, you’ll use current_user.articles.find wherever you were using
Article.find. Listing 8-30 shows the changes to make in app/controllers/articles_controller.rb.

http://gist.github.com/341845
http://gist.github.com/388593
http://gist.github.com/388593
http://email@example.com

CHAPTER 8 ■ ADVANCED ACTION PACK

179

Listing 8-30. Updated app/controllers/articles_controller.rb: http://gist.github.com/341925

class ArticlesController < ApplicationController
 before_action :authenticate, except: [:index, :show]
 before_action :set_article, only: [:show]

 # GET /articles
 # GET /articles.json
 def index
 @articles = Article.all
 end

 # GET /articles/1
 # GET /articles/1.json
 def show
 end

 # GET /articles/new
 def new
 @article = Article.new
 end

 # GET /articles/1/edit
 def edit
 @article = current_user.articles.find(params[:id])
 end

 # POST /articles
 # POST /articles.json
 def create
 @article = current_user.articles.new(article_params)

 respond_to do |format|
 if @article.save
 format.html { redirect_to @article, notice: 'Article was successfully created.' }
 format.json { render action: 'show', status: :created, location: @article }
 else
 format.html { render action: 'new' }
 format.json { render json: @article.errors, status: :unprocessable_entity }
 end
 end
 end

 # PATCH/PUT /articles/1
 # PATCH/PUT /articles/1.json
 def update
 @article = current_user.articles.find(params[:id])
 respond_to do |format|
 if @article.update(article_params)
 format.html { redirect_to @article, notice: 'Article was successfully updated.' }
 format.json { head :no_content }

http://gist.github.com/341925

CHAPTER 8 ■ ADVANCED ACTION PACK

180

 else
 format.html { render action: 'edit' }
 format.json { render json: @article.errors, status: :unprocessable_entity }
 end
 end
 end

 # DELETE /articles/1
 # DELETE /articles/1.json
 def destroy
 @article = current_user.articles.find(params[:id])
 @article.destroy
 respond_to do |format|
 format.html { redirect_to articles_url }
 format.json { head :no_content }
 end
 end

 private
 # Use callbacks to share common setup or constraints between actions.
 def set_article
 @article = Article.find(params[:id])
 end

 # Never trust parameters from the scary internet, only allow the white list through.
 def article_params
 params.require(:article).permit(:title, :location, :excerpt, :body, :published_at,
:category_ids => [])
 end
end

Adding Custom Helpers
Your blog application is looking pretty good, but let’s make it a bit more user friendly. One thing you can do is add
a helpful cancel link beside each submit button on the forms, so users can back out of editing. You could do this by
adding a link_to helper beside each button, but you’d need to do this for every form. Because you probably want to
repeat this pattern throughout the application, this could end up being a lot of duplication. Why not create a custom
helper to do this for you? Listing 8-31 shows the method submit_or_cancel added to the application_helper.

Listing 8-31. The submit_or_cancel Method in app/helpers/application_helper.rb:
http://gist.github.com/341856

module ApplicationHelper
 # Creates a submit button with the given name with a cancel link
 # Accepts two arguments: Form object and the cancel link name
 def submit_or_cancel(form, name='Cancel')
 form.submit + " or " +
 link_to(name, 'javascript:history.go(-1);', :class => 'cancel')
 end
end

http://gist.github.com/341856
http://gist.github.com/341856

CHAPTER 8 ■ ADVANCED ACTION PACK

181

Now, let’s use this helper on your forms. Open both the user and the article form partials in
app/views/users/_form.html.erb and app/views/articles/_form.html.erb, and update them so they look like
Listings 8-32 and 8-33, respectively.

Listing 8-32. Updated app/views/users/_form.html.erb: http://gist.github.com/341857

<%= form_for(@user) do |f| %>
 <% if @user.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@user.errors.count, "error") %>
prohibited this user from being saved:</h2>

 <% @user.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

 <div class="field">
 <%= f.label :email %>

 <%= f.text_field :email %>
 </div>
 <div class="field">
 <%= f.label :password %>

 <%= f.password_field :password %>
 </div>
 <div class="field">
 <%= f.label :password_confirmation %>

 <%= f.password_field :password_confirmation %>
 </div>
 <div class="actions">
 <%= submit_or_cancel(f) %>
 </div>
<% end %>

Listing 8-33. Updated app/views/articles/_form.html.erb: http://gist.github.com/341858

<%= form_for(@article) do |f| %>
 <% if @article.errors.any? %>
 <div id="error_explanation">
 <h2><%= pluralize(@article.errors.count, "error") %>
prohibited this article from being saved:</h2>

 <% @article.errors.full_messages.each do |msg| %>
 <%= msg %>
 <% end %>

 </div>
 <% end %>

http://gist.github.com/341857
http://gist.github.com/341858

CHAPTER 8 ■ ADVANCED ACTION PACK

182

 <div class="field">
 <%= f.label :title %>

 <%= f.text_field :title %>
 </div>
 <div class="field">
 <%= f.label :location %>

 <%= f.text_field :location %>
 </div>
 <div class="field">
 <%= f.label "Categories" %>

 <% for category in Category.all %>
 <%= check_box_tag 'article[category_ids][]', category.id,
@article.category_ids.include?(category.id), id: dom_id(category) %>
 <%= label_tag dom_id(category), category.name, class: "check_box_label" %>
 <% end %>
 </div>
 <div class="field">
 <%= f.label :excerpt %>

 <%= f.text_field :excerpt %>
 </div>
 <div class="field">
 <%= f.label :body %>

 <%= f.text_area :body %>
 </div>
 <div class="field">
 <%= f.label :published_at %>

 <%= f.datetime_select :published_at %>
 </div>
 <div class="actions">
 <%= submit_or_cancel(f) %>
 </div>
<% end >

As in the earlier examples, every time you copy and paste view code in more than one template, it means that you
very likely can extract it into a helper method.

Giving It Some Style
Your blog application could use a little varnish. Let’s update the layout and apply a style sheet.

Updating the Layout

Let’s update the main layout and add some style hooks that you can target via CSS. You also add some pieces to allow
the user to log in, log out, edit their password, and add a new article. The final result looks like the code in Listing 8-34,
with changes in bold.

CHAPTER 8 ■ ADVANCED ACTION PACK

183

Listing 8-34. Updated app/views/layouts/application.html.erb: http://gist.github.com/341867

<!DOCTYPE html>
<html>
<head>
 <title>Blog</title>
 <%= stylesheet_link_tag :all %>
 <%= javascript_include_tag :defaults %>
 <%= csrf_meta_tag %>
</head>
<body>
 <div id="header">
 <h1><%= link_to "Blog", root_path %></h1>
 <div id="user_bar">
 <% if logged_in? %>
 <%= link_to "New Article", new_article_path %> |
 <%= link_to "Edit Password", edit_user_path(current_user) %> |
 <%= link_to "Logout", logout_path %>
 <% else %>
 <%= link_to "Login", login_path %>
 <% end %>
 </div>
 </div>
 <div id="main">
 <%= content_tag(:p, notice, class: 'notice') if notice.present? %>
 <%= content_tag(:p, alert, class: 'alert') if alert.present? %>
 <%= yield %>
 </div>
 <div id="footer">
 A simple blog built for the book
Beginning Rails 4
 </div>
</body>
</html>

You add a link here to add a new article in the application layout; therefore, you no longer need that link on the
articles’ index page. Update the app/views/articles/index.html.erb file to remove the new article link. It should
look like the code in Listing 8-35.

Listing 8-35. Remove New Article Link from app/views/articles/index.html.erb: http://gist.github.com/341893

<h1>Listing articles</h1>

<div id="articles">
 <%= render @articles %>
</div>

Applying a Style Sheet

We’ve prepared a simple CSS that you can apply to make the application look pretty. Listing 8-36 shows the
application.css file, which you should create in public/stylesheets/application.css. You’re no longer using the
public/stylesheets/scaffold.css file; remove it to avoid any styling conflicts.

u

http://gist.github.com/341867
http://gist.github.com/341893

CHAPTER 8 ■ ADVANCED ACTION PACK

184

Listing 8-36. The app/assets/stylesheets/application.css File: http://gist.github.com/341881

/*
 * This is a manifest file that'll be compiled into application.css, which will include all the
files
 * listed below.
 *
 * Any CSS and SCSS file within this directory, lib/assets/stylesheets, vendor/assets/stylesheets,
 * or vendor/assets/stylesheets of plugins, if any, can be referenced here using a relative path.
 *
 * You're free to add application-wide styles to this file and they'll appear at the top of the
 * compiled file, but it's generally better to create a new file per style scope.
 *
 *= require_self
 *= require_tree.
 */

* {
 margin: 0 auto;
}

body {
 background-color: #fff;
 color: #333;
}

body, p, ol, ul, td {
 font-family: verdana, arial, helvetica, sans-serif;
 font-size: 13px;
 line-height: 18px;
}

pre {
 background-color: #eee;
 padding: 10px;
 font-size: 11px;
}

p {
 padding: 5px;
}

a {
 color:#D95E16;
 padding:0 2px;
 text-decoration:none;
}

a:hover {
 background-color:#FF813C;
 color:#FFFFFF;
}

http://gist.github.com/341881

CHAPTER 8 ■ ADVANCED ACTION PACK

185

.notice { color: green; }

.alert { color: red; }

#header, #main, #footer {
 width: 800px;
}

#header {
 font-family:"Myriad Web Pro",Helvetica,Arial,sans-serif;
 letter-spacing: 1px;
 border-bottom: 5px solid #333333;
 color:#333333;
 padding: 15px 0;
 height: 35px;
}

#header #user_bar {
 float: right;
 font-size: 10px;
}

#footer {
 border-top: 5px solid #C1C1C1;
 margin-top: 10px;
 clear:both;
 padding: 10px 0;
 text-align: center;
 font-size: 11px;
}

#header h1 {
 padding-top: 14px;
 float: left;
 font-size: 30px;
}

#header h1 a{
 color: black;
}

#header h1 a:hover {
 background-color: white;
 color: black;
 border-bottom: 4px solid #ccc;
}

#header p {
 float: right;
}

CHAPTER 8 ■ ADVANCED ACTION PACK

186

#main h1 {
 font-size: 16px;
 padding: 10px 0;
 border-bottom: 1px solid #bbb;
 margin-bottom: 10px;
}

#main table{
 margin: 0;
}

#main form{
 text-align: left;
}

#main form br{
 display: none;
 float: left;
}

#main form label {
 width: 150px;
 display: block;
 text-align: right;
 padding-right: 10px;
 float: left;
 line-height: 21px;
 vertical-align: center;
 background-color: #F0F0F0;
 border: 2px solid #ccc;
 margin-right: 10px;
}

#main form label.check_box_label {
 width: auto;
 display: inline;
 text-align: right;
 padding-right: 10px;
 line-height: 21px;
 vertical-align: center;
 background-color: #FFF;
 border: none;
}

#main form .field, #main form .actions {
 padding-top: 10px;
 clear: both;
}

CHAPTER 8 ■ ADVANCED ACTION PACK

187

#main form input[type=text], #main form input[type=password], #main form textarea {
 float: left;
 font-size: 14px;
 width: 250px;
 padding: 2px;
 border: 2px solid #ccc;
}

#main form input[type=checkbox] {
 margin: 4px;
 float: left;
}

#main form textarea {
 height: 150px;
}

#main form input[type=submit] {
 margin-left: 175px;
 float:left;
 margin-right: 10px;
 margin-bottom: 10px;
}

#main h3 {
 padding-top: 10px;
 height: 20px;
}

#main h3 .actions{
 display:none;
 font-weight: normal;
 font-size: 10px;
}

#main h3:hover .actions{
 display: inline;
}

.field_with_errors {
 display:table;
 float:left;
 margin:0;
 width:100px;
 margin-right: 10px;
}

#main form .field_with_errors label{
 border: 2px solid red;
 margin-right: 0px;
}

CHAPTER 8 ■ ADVANCED ACTION PACK

188

#main form .field_with_errors input, #main form .field_with_errors textarea{
 width: 250px;
 border: 2px solid red;
}

#error_explanation {
 width: 413px;
 border: 2px solid red;
 padding: 7px;
 padding-bottom: 12px;
 margin-bottom: 20px;
 background-color: #f0f0f0;
 margin: 0;
}

#error_explanation h2 {
 text-align: left;
 font-weight: bold;
 padding: 5px 5px 5px 15px;
 font-size: 12px;
 margin: -7px;
 background-color: #c00;
 color: #fff;
}

#error_explanation p {
 color: #333;
 margin-bottom: 0;
 padding: 5px;
 margin: 0;
}

#error_explanation ul li {
 font-size: 12px;
 list-style: square;
}

Yikes! That’s a lot of CSS! Don’t worry, though. Like all the other listings in the book, you can get the code from
the Gist URL in the listing caption. The code is also available on the book’s web site (http://www.apress.com) so you
can download it and copy it into your project. We certainly don’t expect you to type it all in.

With the CSS in place, your application is starting to look nice. If you’ve done everything correctly, it should look
a lot like Figure 8-8.

http://www.apress.com/

CHAPTER 8 ■ ADVANCED ACTION PACK

189

Summary
This chapter discussed a fair number of advanced topics, including nested resources, sessions and state, and how
to protect actions using filters. But we didn’t stop there. You also learned how to sanitize HTML to protect your
application from defacement by malicious users, and how to create your own helpers to improve your interface. You
even took the time to make your application look pretty, sprucing up the layout and adding some CSS.

The next chapters build on this knowledge, and we’ll start by going over how Rails handles JavaScript and CSS.

Figure 8-8. Final layout with CSS

191

CHAPTER 9

JavaScript and CSS

JavaScript and CSS (Cascading Style Sheets) are no longer relegated to supporting roles on the Web. They have
become first-class citizens, and it would seem pretty strange to build a web application without them. It’s now
common to have hundreds or thousands of lines of JavaScript, and just as many lines of style sheets. Rails applications
have always supported serving JavaScript and CSS, but it became clear that a better solution was needed. In Rails 3.1,
the asset pipeline was introduced. This made JavaScript and CSS a first-class citizen of the Rails application and
allowed for proper organization and handling of your scripts and styles. It handles combining and minifying files to
support quick download times and provides support for languages that compile down to JavaScript (CoffeeScript)
and CSS (SASS).

Note ■ If you need to get the code at the exact point where you finished Chapter 8, download the source code zip file

from the book’s page on www.apress.com and extract it onto your computer.

Asset Concatenation and Compression
Applications that have a heavy JavaScript component can have hundreds of individual .js files. If a browser has to
download all of these files, it causes a lot of overhead just starting and stopping the transfer of files. The asset pipeline
concatenates both your JavaScript and style sheets into files so that a browser only has to download one or two files
instead of hundreds. It also compresses, or minifies, the files. This removes things like comments, whitespace, and
long variable names from the final output. The final product is functionally equivalent, but usually much smaller. Both
of these features combine to make web applications load much faster and are transparent to the user.

Secondary Languages
Browsers have very strong support for both JavaScript and CSS, but if you want to use another language on the front
end, you’d be out of luck. The browser would at best ignore it and at worse throw errors all over the screen. The asset
pipeline allows you to use other languages that compile down to code that browsers understand. The two languages
that the asset pipeline supports out of the box are CoffeeScript, which compiles to JavaScript, and SASS, which
compiles to CSS.

Detailed description of CoffeeScript and SASS is out of the scope of this book, but you should know what they
are if you encounter them. For more information on CoffeeScript, visit http://coffeescript.org/, and for more
information on SASS, visit http://sass-lang.com/.

http://www.apress.com/
http://coffeescript.org/
http://sass-lang.com/

CHAPTER 9 ■ JAVASCRIPT AND CSS

192

Asset Pipeline Locations
The asset pipeline allows you to place files in three different locations, which have different purposes but are
functionally equivalent (Table 9-1).

In general, the asset pipeline stays out of the way, but it can empower you to do impressive things with your
assets. For more information on the asset pipeline, visit http://guides.rubyonrails.org/asset_pipeline.html.

Turbolinks
Rails 4 now includes the Turbolinks gem. This gem will speed up your application by using Ajax to request pages
instead of the more traditional page requests. It tracks files that are commonly shared across requests, like JavaScript
and style sheets, and only reloads the information that changes. It attaches itself to links on your page instead of
making those requests the traditional way. It makes an Ajax request and replaces the body tag of your document.
Turbolinks also keeps track of the URL and manages the back and forward buttons. It’s designed to be transparent to
both users and developers.

Turbolinks is turned on by default in Rails 4. It is included in the default application .js file. If you needed to
remove Turbolinks for some reason, you could do so by removing it from app/assets/javascripts/application.js,
as shown in Listing 9-1.

Listing 9-1. Remove This Line from app/assets/javascripts/application.js to Turn Turbolinks Off

//= require turbolinks

By default Turbolinks attaches itself to every link on the page, but you can disable it for specific links by attaching
a data-no-turbolink attribute to the link, as shown in Listing 9-2. This causes the link to behave in a traditional
fashion.

Listing 9-2. Rails link_to Helper with a No-Turbolink Attribute Attached

link_to "Some Link", "/some-location", 'data-no-turbolink' => true

Note■ Some JavaScript libraries aren’t compatible with Turbolinks. Listing these is out of the scope of this book, but

you can find more information at https://github.com/rails/turbolinks/blob/master/README.md. If you continue to

have problems, you can always disable Turbolinks.

Table 9-1. Locations for Files in the Asset Pipeline

File Location Description

app/assets This is for assets that are owned by the application. You can include images, style sheets, and
JavaScript.

lib/assets This location is for assets that are shared across applications but are owned by you. These assets
don’t really fit into the scope of this specific application but are used by it.

vendor/assets This location is for assets that are from an outside vendor, like JavaScript or CSS frameworks.

http://guides.rubyonrails.org/asset_pipeline.html
https://github.com/rails/turbolinks/blob/master/README.md

CHAPTER 9 ■ JAVASCRIPT AND CSS

193

Let’s Build Something!
We’ve talked about the features of Rails that support JavaScript and CSS, but let’s actually put JavaScript to work.
We’ve added our style sheets in Chapter 8, but this chapter will focus on making our application use Ajax to load and
submit forms.

Ajax and Rails
Ajax is a combination of technologies centered around the XMLHttpRequest object, a JavaScript API originally
developed by Microsoft but now supported in all modern browsers. Of course, you could interface with the
XMLHttpRequest API directly, but it wouldn’t be fun. A far better idea is to use one of several libraries that abstracts the
low-level details and makes cross-browser support possible.

Rails makes Ajax easier for web developers to use. Toward that end, it implements a set of conventions that
enable you to implement even the most advanced techniques with relative ease.

Most of the Ajax features you implement in Rails applications are coded using JavaScript; so, familiarity with
JavaScript code always helps and is pretty important for today’s web developers.

jQuery and DOM
jQuery is a JavaScript library that lets you build JavaScript in a cross-browser way. It provides functionality for
everything from traversing the Document Object Model (DOM) to making web requests, animation, and everything in
between. Although there are multiple JavaScript libraries available on the Web, jQuery is easily the most widely used.

jQuery provides several utility functions that make working with JavaScript better. Perhaps the most important of
these is the $() function, which is a selector function to access one or more elements in a web page. Truth be told, $()
is far more than a simple selector wrapper. The real magic stems from the fact that any element accessed using it is
automatically extended by jQuery.

The biggest part of the jQuery framework is its Document Object Model (DOM) extensions. These DOM
extensions allow you to write things like $('.comment').removeClass('active').hide();, which gets all the
elements with the CSS class name comment, removes the active class name, and hides all elements from the view.
The elements with the class name comment wouldn’t have these methods natively. Because they were fetched using
$(), jQuery makes those functions available.

Tip ■ Wikipedia defines DOM as follows: “The Document Object Model (DOM) is a cross-platform and

language-independent convention for representing and interacting with objects in HTML, XHTML, and XML documents”

(http://en.wikipedia.org/wiki/Document_Object_Model).

The $() function finds elements in a web page by matching them to a CSS selector. Table 9-2 lists some examples
of the most commonly used CSS selectors. For a complete list, see www.w3.org/TR/CSS2/selector.html.

Table 9-2. CSS Selectors

Function Description

$('#article_123') Returns the element matching the given ID article_123

$('.comment') Returns a list of elements with the class name comment

$('div.article') Returns a list of div elements with the class name article

http://en.wikipedia.org/wiki/Document_Object_Model
http://www.w3.org/TR/CSS2/selector.html

CHAPTER 9 ■ JAVASCRIPT AND CSS

194

Moving to Practice
Now that you know what Ajax is, how it works, and the reasons behind using a JavaScript framework such as jQuery,
you can apply some of this knowledge to enhance the usability of your application. Mainly, you use Ajax in your pages
when you think a snappier interaction is possible and recommended. Let’s begin Ajaxifying the blog application in the
article page.

Not All Users Comment

If you look at the article page, you quickly notice that every time users read a post, they’re presented with a form
for entering comments. Although reader participation is paramount, most users are only interested in reading the
content. You can modify the article page to not load the comment form automatically; instead, it will load the form
only after a user clicks the new comment link.

Loading a Template via Ajax

One of the rules of good interface design is to make things snappy. That is to say, the interface should be responsive
and quick to load. A good way to achieve this is to load elements (like forms or content areas) onto the page whenever
the user requests them. Modify the article’s show template, as shown in Listing 9-3.

Listing 9-3. The Article Partial in app/views/articles/show.html.erb: http://gist.github.com/353475

<%= render @article %>
<h3>Comments</h3>
<div id="comments">
 <%= render @article.comments %>
</div>
<%= link_to "new comment", new_article_comment_path(@article, :format => :js),
:remote => true, :id => 'new_comment_link' %>

The template hasn’t changed a lot: you no longer directly render the comment form, and you add a link called
new comment. The new link still uses the well-known link_to helper to generate a link; however, you pass in the
:remote => true option, which tells Rails that you want the request triggered by this link to hit the server using Ajax.

There are a couple of things to note in the use of link_to in Listing 9-3. First, you send the request to a URL that
already exists; the new_article_comment_path route identifies a path to a new comment. However, you pass in the
:format => :js argument, which tells Rails you’re requesting a JavaScript representation of your page, fitting your
intention. Second, you use the :id => 'new_comment_link' option to give the rendered HTML element an ID that
you can refer to later.

On the server side, you don’t need to make any changes to the comments controller. As currently implemented,
you don’t explicitly implement a new action; the default behavior in this case is to render the new template in
app/views/comments/new.html.erb. That isn’t really what you want—this template shouldn’t be the result of this
JavaScript call. Instead, you want a separate JavaScript template to be used as response for this action.

Responding to Requests with :format => :js

Your controller reads the format parameter passed in from the browser. To make sure you send a response that
includes JavaScript code, you must create a template with the .js.erb template extension. Create the app/views/
comments/new.js.erb template as per Listing 9-4. The following text explains all the lines in the template to make
sure you know what’s happening.

http://gist.github.com/353475

CHAPTER 9 ■ JAVASCRIPT AND CSS

195

Listing 9-4. The .js.erb New Comment Template in app/views/comments/new.js.erb:
http://gist.github.com/353484

$("<%= escape_javascript render(file: 'comments/new.html.erb') %>").insertAfter('#comments');
$('#new_comment_link').hide();

The first line renders the existing app/views/comments/new.html.erb template into a string variable that you
dynamically insert into the HTML page, right after the comments div—that’s achieved by using jQuery’s insertAfter
method, which, as its name implies, inserts a block of HTML after an existing HTML element. Table 9-3 lists similar
jQuery methods that you can use in place of insertAfter.

Table 9-3. jQuery Methods for Inserting HTML into a Page

Method Description

insertAfter(target) Inserts the preceding element after the target element passed as a parameter

insertBefore(target) Inserts the preceding element before the target element passed as a parameter

append(content) Appends the preceding element with the passed content element

prepend(content) Prepends the preceding element with the passed content element

Going back to Listing 9-4, the last line hides the new_comment_element, which contains the link to add a new
comment. Because you already have the comment form in your page, it makes little sense to keep that link around.
Hiding an element is achieved by calling jQuery’s hide method on the element you want to hide.

Note ■ In a similar fashion, you can call jQuery’s show method to display a hidden element. As you can see, it’s very

important that you know your way around jQuery to be able to build complex user interfaces.

Let’s see what you built in practice. Open your browser to any existing article, such as
http://localhost:3000/articles/2, and notice that the comments form is no longer there (Figure 9-1).

http://gist.github.com/353484
http://localhost:3000/articles/2

CHAPTER 9 ■ JAVASCRIPT AND CSS

196

As soon as you click the new comment link, the comment form pops into place, and you can add comments
(Figure 9-2). You achieved your goal of keeping the user interface cleaner, while allowing users to quickly access
functionality without having to move to a new page. That’s a good start.

Figure 9-2. The article page with the comment form and without the new comment link

Figure 9-1. The article page without the comment form

CHAPTER 9 ■ JAVASCRIPT AND CSS

197

Making a Grand Entrance

In the previous section, you added an element to the screen via Ajax—the comment form. It’s a pretty big form—it’s
a very obvious inclusion on the page and your users won’t miss it; however, sometimes you may want to add just
an extra link or highlight some text on a page. jQuery is so awesome that it provides a set of methods for adding
animation to a web page.

You use a simple one-line command to make sure users understand that something is being added to the page.
Be sure the template at app/views/comments/new.js.erb looks like the code in Listing 9-5.

Listing 9-5. The Updated New Comment Template in app/views/comments/new.js.erb:
http://gist.github.com/353497

$("<%= escape_javascript render(file: 'comments/new.html.erb') %>").insertAfter('#comments');

$('#new_comment').hide().slideDown();
$('#new_comment_link').hide();

The only change adds the $('#new_comment').hide().slideDown(); line, which makes the newly added
new_comment element appear in the page with a sliding motion.

Open your browser at any article page and look at the shiny effect that is being applied.

Note ■ You very likely want to learn more about all the available effects in jQuery. To do so, head over to

http://api.jquery.com/category/effects/.

Using Ajax for Forms

Another user-interaction improvement is to not refresh the page after a user adds a new record. In quite a few
applications, users may be required to enter a considerable amount of data in forms; so, this technique is important
to grasp.

In the same way that you made a link submit data via Ajax, you can add the remote: true option to the form_for
helper you’re using; this tells Rails you want the form data to be submitted via Ajax (Listing 9-6). By sticking with the
form_for helper, you don’t have to change the way you read parameters in controllers. The remote: true option is
one you’ll definitely use frequently.

Listing 9-6. The Updated Comment Form in app/views/comments/new.html.erb: http://gist.github.com/353505

<%= form_for([@article, @article.comments.new], remote: true) do |f| %>
 <div class="field">
 <%= f.label :name %>

 <%= f.text_field :name %>
 </div>
 <div class="field">
 <%= f.label :email %>

 <%= f.text_field :email %>
 </div>
 <div class="field">
 <%= f.label :body %>

 <%= f.text_area :body %>
 </div>

http://gist.github.com/353497
http://api.jquery.com/category/effects/
http://gist.github.com/353505

CHAPTER 9 ■ JAVASCRIPT AND CSS

198

 <div class="actions">
 <%= f.submit 'Add' %>
 </div>
<% end %>

Although the changes in the view are minimal, you have to make a few more changes in your controller layer.
You want to respond to JavaScript and HTML requests in different ways. Change the create method in your
comments controller to look like the code in Listing 9-7.

Listing 9-7. The Updated Comments Controller in app/controllers/comments_controller.rb:
http://gist.github.com/353507

class CommentsController < ApplicationController
 before_action :load_article
 before_action :authenticate, only: :destroy
 def create
 @comment = @article.comments.new(comment_params)
 if @comment.save
 respond_to do |format|
 format.html { redirect_to @article, notice: 'Thanks for your comment' }
 format.js
 end
 else
 respond_to do |format|
 format.html { redirect_to @article, alert: 'Unable to add comment' }
 format.js { render 'fail_create.js.erb' }
 end
 end
 end
 def destroy
 @article = current_user.articles.find(params[:article_id])
 @comment = @article.comments.find(params[:id])
 @comment.destroy
 redirect_to @article, notice: 'Comment Deleted'
 end
 private
 def load_article
 @article = Article.find(params[:article_id])
 end
 def comment_params
 params.require(:comment).permit(:name, :email, :body)
 end
end

The main method in this code is the respond_to helper. By using respond_to, you can have some code in the
format.html block that’s called when you receive a regular request and some code in the format.js block that’s
called when a JavaScript request is received. Hang on! There is no code in format.js! When no code is added to a
format block, Rails looks for a template named after the view, just like regular views, which means it looks for
create.js.erb. When a submitted comment fails validation, you also want to warn the user by displaying error
messages; for that, you use format.js { render 'fail_create.js.erb' } to explicitly render a specific template.

The new apps/views/comments/create.js.erb and app/views/comments/fail_create.js.erb templates are
shown in Listings 9-8 and 9-9, respectively.

http://gist.github.com/353507

CHAPTER 9 ■ JAVASCRIPT AND CSS

199

Listing 9-8. The Template in app/views/comments/create.js.erb: http://gist.github.com/353510

$('#comments').append("<%= escape_javascript(render(@comment)) %>");
$('#new_comment')[0].reset();

Listing 9-9. The Template in app/views/comments/fail_create.js.erb: http://gist.github.com/354866

alert("<%= @comment.errors.full_messages.to_sentence.html_safe %>");

In the create.js.erb template, you run a couple of simple JavaScript commands. First, you render the template
for a new comment—using render(@comment)—and append that HTML to the end of the comments div, achieved by
using jQuery’s append method. The $('#new_comment')[0].reset() line is a simple call to reset all the elements of
the new comment form, which is blank and ready to accept another comment from your user.

In the fail_create.js.erb template, you use the alert JavaScript function to display a dialog box with the
validation error message, as shown in Figure 9-3.

Give it a try: point your browser to an existing article, for example http://localhost:3000/articles/2, and
enter a few—or lots of—comments. As you can see, you can interact with the page in a much more efficient way:
there’s no need to wait until a full page-reload happens.

Figure 9-3. Displaying an error message

http://gist.github.com/353510
http://gist.github.com/354866
http://localhost:3000/articles/2

CHAPTER 9 ■ JAVASCRIPT AND CSS

200

Deleting Records with Ajax

To complete the “making things snappy” section, you may want to delete some of the comments that are added by
users. You can combine the techniques you’ve learned in this chapter to let users delete comments without delay.

You already have a link to delete comments in the comment template at app/views/comments/_comment.html.erb.
To use Ajax with that link, you again need to add the :remote => true option to the method call (Listing 9-10).

Listing 9-10. The Template in app/views/comments/_comment.html.erb: http://gist.github.com/354807

<%= div_for comment do %>
 <h3>
 <%= comment.name %> <<%= comment.email %>> said:
 <% if @article.owned_by? current_user %>

 <%= link_to 'Delete', [@article, comment], confirm: 'Are you sure?',
method: :delete, remote: true %>

 <% end %>
 </h3>
 <%= comment.body %>
<% end %>

The changes in the controller are also minimal. Use the respond_to and format block to make sure you support
both regular and JavaScript requests, as shown in Listing 9-11.

Listing 9-11. The Comments Controller in app/controllers/comments_controller.rb:
http://gist.github.com/354809

class CommentsController < ApplicationController
 before_action :load_article
 before_action :authenticate, only: :destroy
 def create
 @comment = @article.comments.new(comment_params)
 if @comment.save
 respond_to do |format|
 format.html { redirect_to @article, notice: 'Thanks for your comment' }
 format.js
 end
 else
 respond_to do |format|
 format.html { redirect_to @article, alert: 'Unable to add comment' }
 format.js { render 'fail_create.js.erb' }
 end
 end
 end
 def destroy
 @article = current_user.articles.find(params[:article_id])
 @comment = @article.comments.find(params[:id])
 @comment.destroy
 respond_to do |format|
 format.html { redirect_to @article, notice: 'Comment Deleted' }

http://gist.github.com/354807
http://gist.github.com/354809

CHAPTER 9 ■ JAVASCRIPT AND CSS

201

 format.js
 end
 end
 private
 def load_article
 @article = Article.find(params[:article_id])
 end
 def comment_params
 params.require(:comment).permit(:name, :email, :body)
 end
end

You wire up the delete link in the comment partial to send an Ajax request to the controller. The controller
responds to those Ajax requests with the default action, which is to render the app/views/comments/destroy.js.erb
file (Listing 9-12).

Listing 9-12. The app/views/comments/destroy.js.erb File: http://gist.github.com/354811

$("#<%= dom_id(@comment) %>").remove()

Open your browser to an article page—make sure you are logged in as the article owner—with some comments
you want to delete—or add lots of spam-like comments. See how quickly you can get rid of comments now? It’s a lot
better than waiting for page reloads.

Summary
To be sure, Ajax is a large topic. Entire books and conferences are devoted to this subset of technology, so it
goes without saying that this chapter only scratches the surface. Still, in short order, you’ve learned the basics of
implementing Ajax in Rails applications, and you know where to go when you need to dig deeper.

You learned how to make remote Ajax calls using the remote: true option for links and forms. You also used a
simple visual effect to show new elements on the page, thanks to the jQuery library.

Finally, you learned about using JavaScript templates—which have the .js.erb extension—to produce responses
to Ajax requests using JavaScript code.

At this stage, you have a solid grasp of the Action Pack side of web development with Rails. Next, you’ll learn how
to conquer another common component of web application development: sending e-mail.

http://gist.github.com/354811

203

CHAPTER 10

Sending and Receiving E-Mail

It’s a rare web application that doesn’t need to send e-mail from time to time. For example, you may want to send
messages to welcome users who sign up on your web site, relay passwords, or confirm orders placed with an online
store. Rails ships with a library called Action Mailer, which provides developers with an easy-to-use yet powerful tool
to handle e-mail.

This chapter explains how Action Mailer works and how to use it in your applications. You first learn how to
configure it, and then you’ll see a few examples of how to send e-mail in various formats. In addition to sending
e-mail, Action Mailer can also receive e-mail, an advanced topic that the chapter touches on briefly.

Note■ If you need to get the code at the exact point where you finished Chapter 9, download the source code zip file

from the book’s page on http://www.apress.com and extract it on your computer.

Setting Up Action Mailer
Like Active Record and Action Pack, Action Mailer is one of the components that makes up the Rails framework.
It works much like the other components of Rails: mailers are implemented to behave like controllers, and mailer
templates are implemented as views. Because it’s integrated into the framework, it’s easy to set up and use, and it
requires very little configuration to get going.

When you send e-mail using an e-mail client such as Outlook or a web-based e-mail application like Gmail
or Yahoo Mail, your messages are sent via a mail server. Unlike a web server, Rails doesn’t provide a built-in mail
server. You need to tell Action Mailer where your e-mail server is located and how to connect to it. This sounds a bit
complicated, but it’s really quite easy. Depending on the kind of computer you’re using, you may have a mail server
built in (this is true of most UNIX systems). If not, you can use the same server that you use to process your regular
e-mail. If this is the case, you can find your server information in your e-mail client settings, as provided by your
Internet service provider (ISP), or in the settings section of your web-based e-mail application, like Gmail.

Configuring Mail Server Settings
Before you can send e-mail from your Rails application, you need to tell Action Mailer how to communicate with
your mail server. Action Mailer can be configured to send e-mail using either sendmail or a Simple Mail Transfer
Protocol (SMTP) server. SMTP is the core Internet protocol for relaying e-mail messages between servers. If you’re on
Linux, OS X, or any other UNIX-based system, you’re in luck: you can use sendmail, and as long as it’s in the standard
location (/usr/bin/sendmail), you don’t need to configure anything. If you’re on Windows or if you want to use
SMTP, you have some work to do.

http://www.apress.com/

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

204

Action Mailer options are set at the class level on ActionMailer::Base. The best place to set these options is in
your environment files, located in the config directory of your application. You can also add your configuration in
an initializer file in config/initializers; doing so ensures that your settings apply for all environments. In most
cases, though, you have different settings for the development and production environments; so it may be wiser to
add settings in any of the environment-specific configuration files (config/environments/*.rb), because this takes
precedence over the global configuration.

This section describes how to set up Action Mailer to use SMTP, because it works on all systems and is the default
delivery method. To do this, you supply the SMTP settings via the smtp_settings option. The smtp_settings method
expects a hash of options, most of which are shown in Table 10-1.

Table 10-1. Server Connection Settings

Setting Description

Address The address of your mail server. The default is localhost.

port The port number of your mail server. The default is port 25.

domain If your e-mail server responds to different domain names, you may need to specify your
domain name here.

authentication If your mail server requires authentication, you need to specify the authentication type
here. This can be one of :plain, :login, or :cram_md5.

user_name The username you use to authenticate when you connect to the mail server, if your server
requires authentication.

password The password you use to authenticate when you connect to the mail server, if your server
requires authentication.

Listing 10-1 shows a typical configuration for a server that requires authentication, in this case Gmail. You
can use this sample configuration as a starting point to configure your connection. Change each of the settings
(authentication, username, password, and address) to connect to your own SMTP server. If you’re using sendmail as
the delivery method, add ActionMailer::Base.delivery_method = :sendmail; then, everything should “just work.”

Listing 10-1. Sample Action Mailer Configuration Using SMTP, in config/environments/development.rb:
https://gist.github.com/adamgamble/6190788

Blog::Application.configure do
 # Settings specified here will take precedence over those in config/environment.rb

 # In the development environment your application's code is reloaded on
 # every request. This slows down response time but is perfect for development
 # since you don't have to restart the webserver when you make code changes.
 config.cache_classes = false

 # DO not eager load code on boot.
 config.eager_load = false

 # Show full error reports and disable caching
 config.consider_all_requests_local = true
 config.action_controller.perform_caching = false

https://gist.github.com/adamgamble/6190788

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

205

 # Don't care if the mailer can't send
 config.action_mailer.raise_delivery_errors = false

 # Gmail SMTP server setup
 ActionMailer::Base.smtp_settings = {
 :address => "smtp.gmail.com",
 :enable_starttls_auto => true,
 :port => 587,
 :authentication => :plain,
 :user_name => "beginningrails@gmail.com",
 :password => 'pleasechange'
 }

 # Raise an error on page load if there are pending migrations
 config.active_record.migration_error = :page_load

 # Debug mode disables concatenation and preprocessing of assets.
 # This option may cause significant delays in view rendering with a large
 # number of complex assets
 config.assets.debug = true
end

Make sure you modify the options to your own credentials. Restart your server if it’s running, and your
application is ready to send e-mail.

Note ■ If you need to use any advanced Action Mailer settings, the Rails API has a good chunk of information at

http://api.rubyonrails.org/classes/ActionMailer/Base.html.

Configuring Application Settings
In addition to the mail server settings, Action Mailer has a set of configuration parameters you can tweak to make the
library behave in specific ways according to the application or the environment. You’ll stick with the defaults here, so
you don’t need to set up any special application settings. For reference, Table 10-2 lists the most common configuration
options. Just like the server settings, these can be specified in an initializer file or in the environment-specific
configuration files (config/environments/*.rb).

Table 10-2. Common Action Mailer Application Settings

Option Description

template_root Indicates the base folder from which template references will be made. The default is
app/views.

raise_delivery_errors Allows you to indicate whether you want errors to be raised when an error occurs
while trying to deliver e-mail.

perform_deliveries Indicates whether messages should really be delivered to the mail server.

(continued)

http://api.rubyonrails.org/classes/ActionMailer/Base.html

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

206

Note ■ When you create a new Rails application, the configuration files automatically use sensible defaults for each

of the development, test, and production environments. Take a quick look in config/environments to see how Action

Mailer behaves in development, production, and test mode to make sure you understand your application’s behavior.

Sending E-Mail
Now that you have Action Mailer configured, it’s time to see it in action. This section explores all the possibilities in the
Action Mailer world, starting with basic text-only e-mail and then adding extra e-mail options such as attachments.

To demonstrate Action Mailer, let’s enhance the blog application by allowing users to send e-mail to their
friends, so they can share information about a specific article. This is a common feature in today’s web applications,
affectionately referred to as “send to friend.”

By now, you know that Rails provides helpful generators to get started writing your own code. You saw generators
in action when you created models and controllers in previous chapters. The mailer generator works just like the
other generators.

Enter the following command to generate the Notifier class with one method named email_friend:

$ rails generate mailer Notifier email_friend

 create app/mailers/notifier.rb
 invoke erb
 create app/views/notifier
 create app/views/notifier/email_friend.text.erb
 invoke test_unit
 create test/functional/notifier_test.rb

The generator creates a mailer class named Notifier, containing the email_friend method you specified on the
command line. Notice that the generated Action Mailer class is created in the app/mailers directory; Notifier and
any Action Mailer class are subclasses of the ActionMailer::Base class. The generator also creates a template file in
the views directory (app/views/notifier/email_friend.text.erb) that corresponds to the email_friend method
(action) you use to set up the mailer message.

Just like controllers, Action Mailer classes contain methods that, when triggered, execute some code and render a
related view of the same name, unless otherwise specified.

Listing 10-2 shows the Notifier class located in app/mailers/notifier.rb. The email_friend method has
some code, which will be the starting point for most of the methods you write using Action Mailer.

Option Description

deliveries Keeps an array of all delivered e-mail when the delivery method is set to :test. This is
useful when you’re in testing mode.

default_charset Specifies the default character set to be used when sending messages. The default is
UTF-8.

default_content_type Specifies the default content type that will be used for outbound mail. The default is
text/plain.

Table 10-2. (continued)

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

207

Listing 10-2. Notifier Class in app/mailers/notifier.rb

class Notifier < ActionMailer::Base
 default :from => "from@example.com"

 # Subject can be set in your I18n file at config/locales/en.yml
 # with the following lookup:
 #
 # en.actionmailer.notifier.email_friend.subject
 #
 def email_friend
 @greeting = "Hi"

 mail :to => "to@example.org"
 end
end

Action Mailer classes have a class-wide configuration hash that you can modify using the default method.
Notice the first line in the Notifier class definition: it sets the sender address (using :from) for all e-mails sent from
this class to from@example.com.

In the email_friend method body, the first line defines an instance variable named @greeting; just like in
controllers, those variables are available in your views. Also in the email_friend method body, the mail method is
called with a parameter of :to => "to@example.org", specifying the e-mail address that will receive this message.
The mail method accepts an options hash that specifies the various headers of the message. Table 10-3 lists the
available methods you use to configure an individual message.

Table 10-3. Mailer Instance Variables

Method name Description Example

subject The subject of the e-mail message to be sent. :subject => "Action Mailer is
powerful"

To A string or array of e-mail addresses to which the
message will be sent.

:to => "friend@example.com"

from A string specifying the sender of the e-mail message. :from => "sender@example.com"

reply_to A string specifying the reply-to e-mail address. :reply => "sender@example.com"

date The date header. The default is the current date. :date => Time.now

cc A string or array of e-mail addresses to carbon copy
with the message.

:cc => "admin@example.com"

bcc A string or array of e-mail addresses to blind carbon
copy with the message.

:bcc => ["support@example.com",
"sales@example.com"]

The mailer generator creates a template named after the action in the Notifier class in the /app/views/
notifier folder: email_friend.text.erb. This is the template that generates the body of the e-mail sent when using
the email_friend method. This template works similarly to the templates used for regular views in Action Pack. It’s an
ERb file, which can contain text and markup mixed with some Ruby code. It also has the same one-to-one relationship
between action and view exhibited by Action Pack—each action in your mailer class expects one template in the
app/views directory.

http://from@example.com
http://to@example.org
http://friend@example.com
http://sender@example.com
http://sender@example.com
http://admin@example.com
http://support@example.com
http://sales@example.com

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

208

Handling Basic E-Mail
Let’s start enhancing the blog application by adding “notify a friend” functionality to the article page. The first
iteration is a very basic example that sends a text e-mail message containing a brief message.

The first piece of the puzzle is to make a change to the routes file, to include a route for the action that will be
called after the user submits the form. You add a member route to articles using the member method to give a
notify_friend_article route. Make sure your config/routes.rb file looks like the code in Listing 10-3.

Listing 10-3. Added a notify_friend Action to config/routes.rb: http://gist.github.com/355014

Blog::Application.routes.draw do
 root :to => "articles#index"
 resources :articles do
 member do
 post :notify_friend
 end
 resources :comments
 end
 resources :users
 resource :session
 match '/login' => "sessions#new", :as => "login"
 match '/logout' => "sessions#destroy", :as => "logout"
end

Note ■ Using the member method inside your resources block helps define a route that requires the id of the

resource. Custom member routes are similar to the default member routes, such as edit_article_path and

article_path. Following the same convention, you can define collection routes using the collection method. Custom

collection routes are similar to the default collection routes, such as articles_path, which don’t require an id.

You want to show users a link that slides down a form where they can enter the e-mail address of the friend
to whom they want to send a message. Let’s update the article’s show view to include the new link directly after
rendering the article’s partial. Add the code shown in Listing 10-4 in app/views/articles/show.html.erb.

Listing 10-4. “Notify a Friend” Functionality Added to app/views/articles/show.html.erb:
http://gist.github.com/355029

 <%= render @article %>

<%= link_to 'Email a friend', '#',
:onclick => "$('#notify_friend_form').slideDown()" %>
<%= render 'notify_friend' %>

<h3>Comments</h3>
<div id="comments">
 <%= render @article.comments %>
</div>

<%= link_to "new comment", new_article_comment_path(@article, :format => :js),
:remote => true, :id => 'new_comment_link' %>

http://gist.github.com/355014
http://gist.github.com/355029

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

209

Notice that you also render a partial named notify_friend. Create the partial in app/views/articles/_notify_
friend.html.erb so it looks like the code in Listing 10-5.

Listing 10-5. “Notify a Friend” Partial in app/views/articles/_notify_friend.html.erb:
http://gist.github.com/355030

<%= form_tag(notify_friend_article_path(@article), :id => 'notify_friend_form',
:style => 'display:none') do %>
 <div class="field">
 <%= label_tag :name, 'Your name' %>

 <%= text_field_tag :name %>
 </div>
 <div class="field">
 <%= label_tag :email, "Your friend's email" %>

 <%= text_field_tag :email %>
 </div>
 <div class="actions">
 <%= submit_tag 'Send' %> or
 <%= link_to 'Cancel', '#', :onclick => "$('#notify_friend_form').slideUp()" %>
 </div>
<% end %>

Now, when you go to any article page, you’ll see a link to e-mail a friend. Because you don’t want to show the
form all the time, you made the form hidden. If users are interested in recommending the article by sending an e-mail
to a friend, they can click the link, and the form will be revealed through the help of some clever JavaScript. The end
result is shown in Figures 10-1 and 10-2.

Figure 10-1. Article page without “notify a friend” form

http://gist.github.com/355030

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

210

The interface is ready to go, but the articles controller doesn’t know how to handle this request yet. Your form is
configured to submit to an action called notify_friend, but that action doesn’t exist. Update the articles controller
and add the notify_friend method, as shown in Listing 10-6.

Listing 10-6. The notify_friend Action Added to app/controllers/articles_controller.rb:
https://gist.github.com/adamgamble/19c6a5082bc625aecac4

def notify_friend
 @article = Article.find(params[:id])
 Notifier.email_friend(@article, params[:name], params[:email]).deliver
 redirect_to @article, :notice => "Successfully sent a message to your friend"
end

The action you just added is short and concise, but there’s something that deserves a closer look. To perform the
delivery, you call a class method on the Notifier class called email_friend; by calling deliver after email_friend,
Action Mailer executes the email_friend method in the Notifier class and generates an e-mail message as per that
method. After the e-mail message is created, it’s passed to the deliver method, which performs the actual delivery.

This is important. Every time you create a mail action, you call it directly from the mailer class (in this
case, Notifier), and then you call deliver. If you had a mailer class called BlogMailer and a mail action called
invitation, you’d call it using BlogMailer.invitation.deliver.

Before you try this, the email_friend method still needs a bit of work. You need to augment it so that it sets a
meaningful title and uses the name and email parameters you collect from the form and pass into the method.
Listing 10-7 shows these changes.

Listing 10-7. Updated Notifier Mailer in app/mailers/notifier.rb: http://gist.github.com/390971

class Notifier < ActionMailer::Base
 default :from => "from@example.com"

 def email_friend(article, sender_name, receiver_email)
 @article = article
 @sender_name = sender_name

Figure 10-2. Article page with visible “notify a friend” form

https://gist.github.com/adamgamble/19c6a5082bc625aecac4
http://gist.github.com/390971

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

211

 mail :to => receiver_email, :subject => "Interesting Article"
 end
end

Notice how you add three arguments: article, sender_name, and receiver_email. You start by defining two
instance variables @article and @sender_name to make them available in your view template. Then, you modify
the mail method call to send the e-mail to the receiver_email address with the subject “Interesting Article.” Next,
you want your e-mail message to have some sort of formatting and include the URL of your application. Change the
template file located in app/views/notifier/email_friend.text.erb and make it look like the code in Listing 10-8.

Listing 10-8. Notifier Template in app/views/notifier/email_friend.text.erb: http://gist.github.com/355053

Your friend <%= @sender_name %> thinks you may like the following article:

<%= @article.title %>: <%= article_url(@article, :host => "localhost:3000") %>

Now you can give this a try in your browser. Fill out the e-mail form using your own e-mail address, so you can
see what the e-mail message looks like when it is received. If all goes according to plan, you should receive a message
that looks something like Figure 10-3.

This is a plain text message, the default content type. The next section shows how to send e-mail messages that
use rich, HTML formatting.

Sending HTML E-Mail
So far, your e-mail message is pretty plain. To make it more interesting and informative, you can add a link to the
specific article being recommended. You can also make it more visually appealing for users with rich e-mail clients
(like Gmail) by adding some HTML formatting.

Making another analogy to controllers, whenever you want to render an e-mail template with HTML content,
you need to change the template extension from .text.erb to .html.erb; Rails takes care of setting the appropriate
e-mail headers.

Figure 10-3. Message delivered to user’s inbox

http://gist.github.com/355053

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

212

In this case, if you keep the .text.erb file and add a template with a .html.erb extension, Rails sends both
templates, representing the same e-mail, know as a multipart message. The e-mail client that receives a multipart
message recognizes that there are alternatives for the same message and chooses the most appropriate part based on
the environment or the user’s preferences.

Let’s put together an HTML template for the message in app/views/notifier/email_friend.html.erb. The file
should look like the code in Listing 10-9.

Listing 10-9. HTML email_friend Template in app/views/notifier/email_friend.html.erb:
http://gist.github.com/355076

<html>
<body>
<p>
 One of your friends, <%= @sender_name %>,
 thinks you like an article we have written.
</p>

<p>
 Come check all the information about <%= @article.title %> at
 <%= article_url @article, :host => 'localhost:3000' %>
</p>
</body>
</html>

Use the application to send yourself another e-mail. It looks pretty good, as shown in Figure 10-4. If your users
don’t have a rich e-mail client and can’t read HTML mail, they get the plain text version.

Figure 10-4. HTML message delivered to a user’s inbox

Note ■ If you think maintaining both text and HTML versions of an e-mail message is a lot of work, it may be safer to

stick with the HTML message.

http://gist.github.com/355076

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

213

Adding Attachments
In some cases, you may want to add attachments to an e-mail message. Action Mailer makes this a straightforward
task by providing the attachment helper. You tell attachment which file you want to attach to the e-mail, and it does
its magic.

Let’s walk through an example of attaching a file to an e-mail message. Assume that you want to send a photo
related to one of the articles in the blog application every time a user sends an e-mail about that article to a friend.
Just for demonstration, use the default Rails logo, which should be in the public/images directory (a vestige of the
“Welcome to Rails” index.html file you deleted in Chapter 7. To attach this image file to the e-mail you created in the
previous section, add a call to the attachments method in the email_friend method in the Notifier class, as shown
in Listing 10-10.

Listing 10-10. Adding an Attachment to the Mailer in app/models/notifier.rb: http://gist.github.com/355081

class Notifier < ActionMailer::Base
 default :from => "from@example.com"

 def email_friend(article, sender_name, receiver_email)
 @article = article
 @sender_name = sender_name

 attachments["rails.png"] = File.read(Rails.root.join("public/images/rails.png"))
 mail :to => receiver_email, :subject => "Interesting Article"
 end
end

When you call the attachments method, you first identify the name of the file the e-mail receiver sees; in this
case, the receiver sees a file named rails.png because you call attachments["rails.png"]. Next, you tell Rails where
the file you want to attach is located: you load the Rails logo from the project using the Rails.root method. The
resulting message looks like Figure 10-5.

Figure 10-5. Message with an attachment delivered to a user’s inbox

http://gist.github.com/355081

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

214

Tip ■ You can specify the body of an attachment by using the File.read method if the file you’re sending exists on

disk. Alternatively, you can generate the file on the fly if it’s a dynamic file, like a personalized PDF or Word document.

Letting Authors Know About Comments
Just to make sure you’ve grasped how to send e-mail from your Rails applications, this section quickly goes over the
complete flow to add another mailer action. If you recall, in Chapter 6 you added an observer to be invoked every time
a new comment is added.

In total, you change three files. First, you add a new action to the Notifier mailer class; second, you add a new
template with the contents of the e-mail to send; third, you change the observer to invoke the mailer when new
comments are added. Listings 10-11 to 10-13, respectively, show the code for these actions.

Listing 10-11. Adding the comment_added Method to app/models/notifier.rb: http://gist.github.com/358011

class Notifier < ActionMailer::Base
 default :from => "from@example.com"

 def email_friend(article, sender_name, receiver_email)
 @article = article
 @sender_name = sender_name

 attachments["rails.png"] = File.read(Rails.root.join("public/images/rails.png"))
 mail :to => receiver_email, :subject => "Interesting Article"
 end

 def comment_added(comment)
 @article = comment.article
 mail :to => @article.user.email,
:subject => "New comment for '#{@article.title}'"
 end
end

Listing 10-12. The comment_added Mailer Template in app/views/notifier/comment_added.html.erb:
http://gist.github.com/358023

<html>
<body>
 <p>
 Someone added a comment to one of your articles <i><%= @article.title %></i>.
 Go read the comment: <%= link_to @article.title,
article_url(@article, :host => 'localhost:3000') %>.
 </p>
</body>
</html>

http://gist.github.com/358011
http://gist.github.com/358023

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

215

Listing 10-13. Updates to app/model/comment.rb: https://gist.github.com/adamgamble/6190838

class Comment < ActiveRecord::Base
 belongs_to :article

 validates_presence_of :name, :email, :body
 validate :article_should_be_published

 after_create :email_article_author

 after_create :send_comment_email

 def article_should_be_published
 errors.add(:article_id, "is not published yet") if article && !article.published?
 end

 def email_article_author
 puts "We will notify #{article.user.email} the author in Chapter 9"
 end

 def send_comment_email
 Notifier.comment_added(self).deliver
 end
end

Now that those changes have been made, create an article with your user account and add some comments.
You should receive one e-mail message per comment. If you want to, you could add the comment text to the e-mail;
that way, you wouldn’t need to go to the article page to read the comment. You could easily implement that by
changing the mailer view.

Receiving E-Mail
So far, you’ve seen that Action Mailer has extensive support for sending all types of e-mail messages. But what if your
application needs to receive e-mail? You can handle incoming e-mail in a Rails application a few different ways. This
section explains how to use a Rails process and how to read e-mail from your mail server. The approach you choose
depends a lot on your operating system and e-mail server.

Using a Rails Process
In an Action Mailer class, you can write a receive method that receives a Mail::Message object as a parameter, which
corresponds to an incoming e-mail message your code can process. Inside the receive method, it’s easy to extract
details about the incoming e-mail, such as header, subject, body text, and attachments.

For example, the blog application can have a special e-mail address (such as new@blog.example.com) that can be
monitored to create a new article whenever an e-mail arrives. This way, users can send an e-mail to new@blog.example.com
and create a new article without needing to open their browsers. The implementation of this feature looks something like
the code in Listing 10-14.

https://gist.github.com/adamgamble/6190838
http://new@blog.example.com
http://new@blog.example.com

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

216

Listing 10-14. Example Mailer Class with receive Method

class ExampleMailer < ActionMailer::Base
 def receive(email)
 article = Article.new
 article.title = email.subject
 article.body = email.body
 article.save
 end
end

This code is pretty simple and takes care of receiving e-mail; however, this is just the first part of the solution.
The remaining part is tricky and may demand some research and system administration skills. You need to tell your
mail server that it should redirect messages sent to a specific address to a special process. In this case, the process
is the Rails runner script, which executes the Ruby code passed as a parameter as if it were running from within a
Rails application. You can see this technique in action by saving an e-mail message to any location on your disk and
invoking the receive method using the following command (POSIX only):

rails runner ExampleMailer.receive(STDIN.read) < email.txt

This chapter doesn’t go into the implementation details of configuring a script to route incoming e-mail to your
Rails process because it’s impossible to cover all set ups. There is a project called Griddler that makes this relatively
easy to do (https://github.com/thoughtbot/griddler).

Reading E-Mail Using POP or IMAP
If you don’t have control over the mail server being used and can’t write a server-side script, you can still read e-mail
from your mail server as your regular e-mail client does. To do this, you can create a separate Ruby script that fetches
e-mail and run it as a background process that polls for new messages.

The code in Listing 10-15 connects to a mail server through POP3 and checks a specific mailbox to see if any
new e-mail has arrived. If so, the script reads that message and passes it to the ExampleMailer.receive method for
processing. This example uses a POP3 (Post Office Protocol) server, but it could just as easily use an IMAP (Internet
Message Access Protocol) server. The only difference would be that you would use the Net::IMAP class instead of the
Net::POP3 class to connect to the mail server. Both classes are part of the Ruby Standard library.

Listing 10-15. Sample Ruby Script for Reading E-Mail Messages

Net::POP3.start("mail.example.com", nil, "username", "password") do |pop|
 if pop.mails.empty?
 logger.info "NO MAIL"
 else
 pop.mails.each do |email|
 begin
 logger.info "receiving mail..."
 ExampleMailer.receive(email.pop)
 email.delete
 rescue Exception => e
 logger.error "Error receiving email: #{Time.now.to_s} - #{e.message}"
 end
 end
 end
end

https://github.com/thoughtbot/griddler

CHAPTER 10 ■ SENDING AND RECEIVING E-MAIL

217

This script starts by trying to connect to the POP3 server with the credentials indicated on the first line. As soon
as the connection is established, it checks to see if there are any new e-mail messages by using the pop.mails.empty?
method. If there are new e-mail messages, it iterates through each of them, calling ExampleMailer.receive(email.pop).
After a message is processed, it’s deleted from the server to avoid reprocessing the same message the next time the script
is called.

Summary
This chapter explained how to send e-mail from your web applications using Action Mailer. You configured Action
Mailer to talk to your mail server and learned the most common configuration parameters you can use to fine tune
how Action Mailer works with your application.

You learned that Action Mailer allows you to send e-mail messages based on templates and how to use implicit
parts for text and HTML messages, as well as how to use the attachment helper to add attachments to your messages.

You also learned the basics on receiving e-mail using Action Mailer. This chapter only scratched the surface, this
being a rather advanced technique. Still, you have a good starting point should your application ever need to perform
this task, and you know where to look when you need more information.

This chapter brings us to the end of your tour of the main Rails libraries: Active Record, Action Pack, and Action
Mailer. The next chapter covers one of the most important techniques to improve the quality of your code: testing.

219

CHAPTER 11

Testing Your Application

Smart developers test their code. Take a minute to read that sentence again and let it sink in: smart developers test
their code. The fact is, testing is one of the most important things you can do to improve the quality of your code,
reduce the cost of change, and keep your software bug-free. Rails (and the Ruby community at large) takes testing
seriously. Not surprisingly, Rails goes out of its way to make testing hassle-free.

The basic idea of testing is simple: you write code that exercises your program and tests your assumptions.
Instead of just opening a browser and adding a new user manually to check whether the process works, you write
a test that automates the process—something repeatable. With a test in place, every time you modify the code that
adds a new user, you can run the test to see if your change worked—and, more important, whether your seemingly
innocuous change broke something else.

If you stop and think about it, you’re already testing your software. The problem is that you’re doing it manually,
often in an ad hoc fashion. You may make a change to the way users log in, and then you try it in your browser. You make
a change to the sign-up procedure, and then you take it for a spin. As your application grows in size, it becomes more and
more difficult to manually test like this, and eventually you miss something important. Even if you’re not testing, you can
be sure that your users are. After all, they’re the ones using the application in the wild, and they’ll find bugs you never
knew existed. The best solution is to replace this sort of visual, ad hoc inspection with automatic checking.

Testing becomes increasingly important when you’re refactoring existing code. Refactoring is the process of
improving the design of code without changing its behavior. The best way to refactor is with a test in place acting as
a safety net. Because refactoring shouldn’t result in an observable change in behavior, it shouldn’t break your tests
either. It’s easy, therefore, to see why many programmers won’t refactor without tests.

Given the importance placed on testing, it may seem odd that this book leaves a discussion of this until Chapter 11.
Ideally, you should be writing tests as you go, never getting too far ahead without testing what you’ve written. But we
decided that explaining how to test would be overwhelming while you were still learning the basics of Ruby and the
Rails framework. Now that you have a good deal of knowledge under your belt, it’s time to tackle testing.

Note ■ If you need to get the code at the exact point where you finished Chapter 10, download the zip file from

www.apress.com and extract it onto your computer.

How Rails Handles Testing
Because Rails is an integrated environment, it can make assumptions about the best ways to structure and organize
your tests. Rails provides:

Test directories for controller, model, mailer, helper, and integration tests•

Fixtures for easily working with database data•

An environment explicitly created for testing•

CHAPTER 11 ■ TESTING YOUR APPLICATION

220

The default Rails skeleton generated by the rails command creates a directory just for testing. If you open it,
you’ll see subdirectories for each of the aforementioned test types:

test
 |-- models <-- model tests
 |-- controllers <-- controller tests |-- fixtures <-- test data
 |-- helpers <-- helper test
 |-- mailers <-- mailer tests
 |-- integration <--
integration tests

In addition to the other directories, Rails creates the integration directory when you generate your first
integration test. There is also a fixtures directory. What are these for?

Fixtures are textual representations of table data written in YAML—a data-serialization format. Fixtures are
loaded into the database before your tests run; you use them to populate your database with data to test against.
Look at the users fixtures file in test/fixtures/users.yml, as shown in Listing 11-1.

Listing 11-1. Users Fixture in test/fixtures/users.yml

Read about fixtures at http://guides.rubyonrails.org/testing.html#the-low-down-on-fixtures

one:
 email: MyString
 password: MyString

two:
 email: MyString
 password: MyString

Rails generates the users fixtures file for you when you generate the user model. As you can see, the file has two
fixtures: one and two. Each fixture has both attributes email and password set to MyString; but, as you recall, you
renamed the password column hashed_password back in Chapter 6. Let’s update the users fixtures file to reflect the
new column name and use meaningful data. Listing 11-2 shows the updated fixture.

Listing 11-2. Updated Users Fixtures in test/fixtures/users.yml: http://gist.github.com/358067

eugene:
 email: 'eugene@example.com'
 hashed_password: 'e5e9fa1ba31ecd1ae84f75caaa474f3a663f05f4' # => secret

lauren:
 email: 'lauren@example.com'
 hashed_password: 'e5e9fa1ba31ecd1ae84f75caaa474f3a663f05f4' # => secret

Remember that every time you generated a model or a controller while building the blog application, Rails
automatically generated test files for you. This is another example of its opinionated nature—Rails thinks you should
test, so it goes out of its way to remind you.

You may also recall that Rails created three SQLite databases for the blog application: one for development
(which is all you’ve been using thus far), one for production, and one for testing. Not surprisingly, Rails uses the
testing database just for testing.

Rails drops and re-creates this test database on every run of the test suite. Make sure you don’t list your
development or production database in its place, or all your data will be gone.

http://guides.rubyonrails.org/testing.html#the-low-down-on-fixtures
http://gist.github.com/358067
http://eugene@example.com/
http://lauren@example.com/

CHAPTER 11 ■ TESTING YOUR APPLICATION

221

Unit Testing Your Rails Application
You know that Rails generated some tests automatically. Let’s open one of them now and take a look. Let’s start with
the Article test, located in test/model/article_test.rb, as shown in Listing 11-3.

Listing 11-3. Generated Article Unit Test in test/model/article_test.rb

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase
 # test "the truth" do
 # assert true
 # end
end

Although there’s not much to it (all it does is show you how to test that true is, in fact, true), this test gives you
a template from which to build your real tests. It has the following elements:

The test class is a subclass of Rails’s enhanced version of Ruby’s built-in testing framework, •
Test::Unit. It’s called ActiveSupport::TestCase.

Tests are implemented as blocks using the • test method, with the first parameter as the
description of that test—"the truth" in this case.

Within a test case, • assertions are used to test expectations. The “Testing with Assertions”
section later in this chapter explains how these work.

If you peek inside the test/model directory, you’ll see a similar test case for every model you’ve generated so far:
Article, Comment, Category, User, and Profile. Each looks almost exactly the same as the Article test. Let’s run the
unit tests now using the rake test:models command from your command prompt, and see what happens:

$ rake test:models
Run options: --seed 45237

Running tests:

Finished tests in 0.020474s, 0.0000 tests/s, 0.0000 assertions/s.

0 tests, 0 assertions, 0 failures, 0 errors, 0 skips

In this case, there are no tests yet (the ones generated are commented out). If there were tests, and the test passed
you would see a . (dot) character. When the test case produces an error, you would see an E. If any assertion fails to
return true, you would see an F. Finally, when the test suite is finished, it prints a summary.

CHAPTER 11 ■ TESTING YOUR APPLICATION

222

Testing the Article Model
Let’s test the Article model. If you recall from Chapter 5, one of the first things you did with your Article model
was basic CRUD operations. Well, testing that you can create, read, update, and delete articles is a great place to start.
Here’s a quick summary of the specific things you test in this chapter:

Creating a new article•

Finding an article•

Updating an article•

Destroying an article•

Before you begin, you’ll need to create a few fixtures (remember that a fixture is a textual representation of
test data).

Creating Fixtures

You create fixtures for articles. Open the test/fixtures/articles.yml file and replace its content with the code
as shown in Listing 11-4.

Listing 11-4. Articles Fixtures in test/fixtures/articles.yml: http://gist.github.com/358400

welcome_to_rails:
 user: eugene
 title: "Welcome to Rails"
 body: "Rails is such a nice web framework written in Ruby"
 published_at: <%= 3.days.ago %>

That’s all you need to do. The data in the fixtures are inserted automatically into your test database before your
tests run. With fixtures in place, you’re ready to start creating test cases.

Tip ■ Fixtures are parsed by ERb before they’re loaded, so you can use ERb in them just as you can in view templates.

This is useful for creating dynamic dates, as you do in published_at: <%= 3.days.ago %>.

The following sections present the test cases one at a time, beginning with create.

Adding a Create Test

Open the test/models/article_test.rb file and create the first test case by deleting the test "the truth" method
and replacing it with a test called test "should create article". Your file should look like Listing 11-5.

Listing 11-5. The Create Article Test in test/models/article_test.rb: http://gist.github.com/358401

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase
 test "should create article" do
 article = Article.new

http://gist.github.com/358400
http://gist.github.com/358401

CHAPTER 11 ■ TESTING YOUR APPLICATION

223

 article.user = users(:eugene)
 article.title = "Test article"
 article.body = "Test body"

 assert article.save
 end
end

The test "should create article" case is standard article-creation fare. You create a new article in the same
way you’d create one from the console. The only real difference is on the last line of the test case:

assert article.save

Note ■ Fixtures can be accessed in your test cases by name. Use fixture(:name), where fixture is the plural name

of the model and :name is the symbolized name of the fixture you’re after. This returns an Active Record object on which

you can call methods. Here, you get at the eugene user fixture using users(:eugene).

Before you go any further, let’s take a deeper look at assertions as they pertain to Test::Unit and
ActiveSupport::TestCase.

Testing with Assertions

Assertions are statements of expected outcome. As the README for Test::Unit states, assertions are like saying “I assert
that x should be equal to y.” If the assertion turns out to be correct, the assertion passes. If the assertion turns out to be
false, the assertion fails, and Test::Unit reports a failure.

Test::Unit ships with a bevy of built-in assertions, and Rails adds a bunch of its own. You see the Rails-added
assertions as you look at each test case; but first, here’s the standard set of Test::Unit assertions for reference:

assert(boolean, message=nil)
assert_block(message="assert_block failed.") do ... end
assert_equal(expected, actual, message=nil)
assert_in_delta(expected_float, actual_float, delta, message="")
assert_instance_of(klass, object, message="")
assert_kind_of(klass, object, message="")
assert_match(pattern, string, message="")
assert_nil(object, message="")
assert_no_match(regexp, string, message="")
assert_not_equal(expected, actual, message="")
assert_not_nil(object, message="")
assert_not_same(expected, actual, message="")
assert_nothing_raised(*args) do ... end
assert_nothing_thrown(message="") do ... end
assert_operator(object1, operator, object2, message="")
assert_raise(expected_exception_klass, message="") do ... end
assert_respond_to(object, method, message="")
assert_same(expected, actual, message="")
assert_send(send_array, message="")
assert_throws(expected_symbol, message="") do ... end

CHAPTER 11 ■ TESTING YOUR APPLICATION

224

The assert method is perhaps the most basic of the lot. It asserts that the return value of its first argument is
true. And you know that article.save returns true if the article saves and returns false otherwise. So, by asserting
article.save, you successfully test that the article was saved. Pretty easy, isn’t it?

Tip■ Geoffrey Grosenbach (a.k.a. Topfunky) has a useful cheat sheet that summarizes all available assertions.

You can download it from http://nubyonrails.com/articles/ruby-rails-test-rails-cheat-sheet.

Let’s run the test. This time, run only the models tests:

$ rake test:models

Started
.
Finished in 0.168879 seconds.

1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Just as the output from the test says, you ran one test (test "should create article"), which included one
assertion (assert article.save), and everything passed. Life is good!

Adding a Find Test

Next on the list is testing that you can successfully find an article. You use the data in the fixture you created to help
you. Add the method shown in Listing 11-6 after test "should create article".

Listing 11-6. Test Case for Finding an Article in test/models/article_test.rb: http://gist.github.com/358402

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase
 test "should create article" do
 article = Article.new

 article.user = users(:eugene)
 article.title = "Test article"
 article.body = "Test body"

 assert article.save
 end

 test "should find article" do
 article_id = articles(:welcome_to_rails).id
 assert_nothing_raised { Article.find(article_id) }
 end
end

http://nubyonrails.com/articles/ruby-rails-test-rails-cheat-sheet
http://gist.github.com/358402

CHAPTER 11 ■ TESTING YOUR APPLICATION

225

Here, you test that you can find an article of the given id. First, you grab the id attribute from the fixture, then you
test that you can use Article.find to retrieve it. You use the assertion assert_nothing_raised because you know
that find raises an exception if the record can’t be found. If no exception is raised, you know that finding works. Again,
run the test and see what happens:

$ rake test:models

Run options: --seed 36921

Running tests:

...

Finished tests in 0.068310s, 29.2781 tests/s, 14.6391 assertions/s.

2 tests, 1 assertions, 0 failures, 0 errors, 0 skips

Sure enough, finding works! So far, so good.

Adding an Update Test

Your next move is to test updating. Add the test "should update article" case, as shown in Listing 11-7.

Listing 11-7. Test Case for Updating an Article in test/models/article_test.rb: http://gist.github.com/358403

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase
 test "should create article" do
 article = Article.new

 article.user = users(:eugene)
 article.title = "Test article"
 article.body = "Test body"

 assert article.save
 end

 test "should find article" do
 article_id = articles(:welcome_to_rails).id
 assert_nothing_raised { Article.find(article_id) }
 end

 test "should update article" do
 article = articles(:welcome_to_rails)
 assert article.update_attributes(:title => 'New title')
 end
end

http://gist.github.com/358403

CHAPTER 11 ■ TESTING YOUR APPLICATION

226

First, you find the “Welcome to Rails” article from your fixture, and then you assert that changing the title via
update_attributes returns true. Once again, run the test and see what happens:

$ rake test:models

Run options: --seed 2804

Running tests:

...

Finished tests in 0.073883s, 40.6050 tests/s, 27.0700 assertions/s.

3 tests, 2 assertions, 0 failures, 0 errors, 0 skips

Adding a Destroy Test

Only one more test to go: destroy. You find an article, destroy it, and assert that Active Record raises an exception
when you try to find it again. Listing 11-8 shows the test.

Listing 11-8. Test Case for Destroying an Article in test/models/article_test.rb: http://gist.github.com/358404

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase
 test "should create article" do
 article = Article.new

 article.user = users(:eugene)
 article.title = "Test article"
 article.body = "Test body"

 assert article.save
 end

 test "should find article" do
 article_id = articles(:welcome_to_rails).id
 assert_nothing_raised { Article.find(article_id) }
 end

 test "should update article" do
 article = articles(:welcome_to_rails)
 assert article.update_attributes(:title => 'New title')
 end

 test "should destroy article" do
 article = articles(:welcome_to_rails)
 article.destroy
 assert_raise(ActiveRecord::RecordNotFound) { Article.find(article.id) }
 end
end

http://gist.github.com/358404

CHAPTER 11 ■ TESTING YOUR APPLICATION

227

The assert_raise assertion takes as an argument the class of the exception you expect to be raised for whatever
you do inside the given block. Because you’ve deleted the article, you expect Active Record to respond with a
RecordNotFound exception when you try to find the article you just deleted by id. Run the test and see what happens:

$ rake test:models

Run options: --seed 64949

Running tests:

....

Finished tests in 0.078197s, 51.1526 tests/s, 38.3644 assertions/s.

4 tests, 3 assertions, 0 failures, 0 errors, 0 skips

And there you have it. You’ve successfully tested article CRUD.

Testing Validations
You have a few validations on your Article model, specifically for the presence of a title and body. Because you want
to make sure these are working as expected, you need to test them. Add the method shown in Listing 11-9 to test that
you can’t create invalid articles.

Listing 11-9. Test Case for Validations in test/models/article_test.rb: http://gist.github.com/358405

require 'test_helper'

class ArticleTest < ActiveSupport::TestCase
 test "should create article" do
 article = Article.new

 article.user = users(:eugene)
 article.title = "Test article"
 article.body = "Test body"

 assert article.save
 end

 test "should find article" do
 article_id = articles(:welcome_to_rails).id
 assert_nothing_raised { Article.find(article_id) }
 end

 test "should update article" do
 article = articles(:welcome_to_rails)
 assert article.update_attributes(:title => 'New title')
 end

http://gist.github.com/358405

CHAPTER 11 ■ TESTING YOUR APPLICATION

228

 test "should destroy article" do
 article = articles(:welcome_to_rails)
 article.destroy
 assert_raise(ActiveRecord::RecordNotFound) { Article.find(article.id) }
 end

 test "should not create an article without title nor body" do
 article = Article.new
 assert !article.valid?
 assert article.errors[:title].any?
 assert article.errors[:body].any?
 assert_equal ["can't be blank"], article.errors[:title]
 assert_equal ["can't be blank"], article.errors[:body]
 assert !article.save
 end
end

This is pretty straightforward, although you may have to read it a few times before it clicks. First, you instantiate a
new Article object in the local variable article. Without having given it any attributes, you expect it to be invalid. So,
you assert that it’s not valid using assert !article.valid? (notice the !, which negates truth). Next, you access the
errors hash to explicitly check for the attributes you expect to be invalid:

assert article.errors[:title].any?
assert article.errors[:body].any?

You also want to check that the validation responses are what you expect. To do this, you use the assert_equal
assertion. Here’s its basic syntax:

assert_equal(expected, actual)

To check the error messages, you again access the errors hash, but this time you ask for the specific messages
associated with the given attribute:

assert_equal ["can't be blank"], article.errors[:title]
assert_equal ["can't be blank"], article.errors[:body]

Finally, you assert that article.save returns false using !article.save. Run the test one more time:

$ rake test:models

Run options: --seed 49599

Running tests:

.....

Finished tests in 0.108590s, 46.0446 tests/s, 82.8802 assertions/s.

5 tests, 9 assertions, 0 failures, 0 errors, 0 skips

CHAPTER 11 ■ TESTING YOUR APPLICATION

229

Feels good, doesn’t it? Life isn’t all roses, though, and requirements change. What if one day you decide to
make a change to the Article model and remove the validation requirements for the title attribute? If that were
to happen, your test would fail. If you want to try it, open the Article model in app/models/article.rb and remove
validates :title, :presence => true, and then run the tests again.

When your requirements change, you often need to update your tests. We recommend updating the tests first
(which should make them fail) and then updating your code (which makes them pass). This is also known as
test-driven development (TDD).

Functional Testing Your Controllers
Tests to check your controllers are called functional tests. When you tested your models, you didn’t test them in the
context of the web application—there were no web requests and responses nor were there any URLs to contend with.
This focused approach lets you hone in on the specific functionality of the model and test it in isolation. Alas, Rails is
great for building web applications; and although unit-testing models is important, it’s equally important to test the
full request/response cycle.

Testing the Articles Controller
Functional tests aren’t that much different from unit tests. The main difference is that Rails sets up request and
response objects for you; those objects act just like the live requests and responses you get when running the
application via a web server. If you open the articles controller test in test/functional/articles_controller_test.rb
and examine the first few lines, as shown in Listing 11-10, you can see how this is done.

Listing 11-10. Setup of a Functional Test in test/controllers/articles_controller_test.rb

require 'test_helper'

class ArticlesControllerTest < ActionController::TestCase
 # ...
end

Just as in the unit test, the first thing you do is require the test_helper. The test_helper.rb file sets up some
common environment variables and generally endows Test::Unit with specific methods that make testing Rails
applications easier.

Note ■ You can think of test_helper as being akin to application_helper. Any methods you define here are

 available to all your tests.

Notice that ArticlesControllerTest is actually a subclass of ActionController::TestCase, which performs
some magic for you behind the scenes. It prepares three instance variables for you to use in your tests: the first is
@controller as an instance variable of ArticlesController, after which it instantiates both @request and
@response variables, which are instances of ActionController::TestRequest and ActionController::TestResponse,
respectively. As you can no doubt tell by their names, these objects are made specifically for testing, and they’re
designed to simulate the Action Controller environment as closely as possible.

Most of the time, you don’t need to worry about all this. Still, it’s important to know what’s going on. Because the
test you’re looking at was created by the scaffold generator, it has quite a bit more code than you would get from the
standard controller generator. There’s a problem with this code, though: not all the test cases will pass—at least, not
without some modification. Warts and all, this gives you a good start and serves well as a template.

CHAPTER 11 ■ TESTING YOUR APPLICATION

230

As you look over the articles controller functional test file, notice that each test case tests a specific request for
an action on the controller. There’s a test for every action: index, show, new, create, edit, update, and destroy. Let’s
walk through each test case, making adjustments as you go.

Creating a Test Helper
Before you test your actions, a little foresight tells you that in order to create an article, your application expects a
logged-in user. So you need to simulate a logged-in user for your tests. This is a perfect job for a test helper. You can
create a helper method called login_as that accepts the name of the user for login. This method sets up the session
object, just as your controller expects. You can use this method for any test case that requires a login.

To begin, open the test_helper file in your editor and add the login_as method, as shown in Listing 11-11.
You can find the test helper file in test/test_helper.rb; the method you’re adding is highlighted in bold.

Listing 11-11. The login_as Test Helper in test/test_helper.rb: https://gist.github.com/adamgamble/6198360

ENV["RAILS_ENV"] = "test"
require File.expand_path(File.dirname(__FILE__) + "/../config/environment")
require 'rails/test_help'

class ActiveSupport::TestCase
 ActiveRecord::Migration.check_pending!

 # Setup all fixtures in test/fixtures/*.yml for all tests in alphabetical order.
 #
 # Note: You'll currently still have to declare fixtures explicitly in integration tests
 # -- they do not yet inherit this setting
 fixtures :all

 # Add more helper methods to be used by all tests here...
 def login_as(user)
 @request.session[:user_id] = users(user).id
 end
end

The login_as method is simple. All it does is manually set user_id in the @request.session object (just like your
login action does) to the id of the given user, as obtained from the fixture. If you give it the name of one of your users
fixtures, say, :eugene, it sets session[:user_id] to users(:eugene).id.

Now that you’ve created a way to simulate a logged-in user, you’re ready to proceed with your tests, beginning
with the index action.

Testing the Index Action

The updated setup method and test "should get index" are shown in Listing 11-12. Make sure yours looks like this
before you proceed.

https://gist.github.com/adamgamble/6198360

CHAPTER 11 ■ TESTING YOUR APPLICATION

231

Listing 11-12. Updated Test Case for the Index Action in test/controllers/articles_controller_test.rb:
http://gist.github.com/358409

require 'test_helper'

class ArticlesControllerTest < ActionController::TestCase
 setup do
 @article = articles(:welcome_to_rails)
 end

 test "should get index" do
 get :index
 assert_response :success
 assert_template 'index'
 assert_not_nil assigns(:articles)
 end

 test "should get new" do
 get :new
 assert_response :success
 end

 test "should create article" do
 assert_difference('Article.count') do
 post :create, :article => @article.attributes
 end
 assert_redirected_to article_path(assigns(:article))
 end

 test "should show article" do
 get :show, :id => @article.to_param
 assert_response :success
 end

 test "should get edit" do
 get :edit, :id => @article.to_param
 assert_response :success
 end

 test "should update article" do
 put :update, :id => @article.to_param, :article => @article.attributes
 assert_redirected_to article_path(assigns(:article))
 end

 test "should destroy article" do
 assert_difference('Article.count', -1) do
 delete :destroy, :id => @article.to_param
 end

 assert_redirected_to articles_path
 end
end

http://gist.github.com/358409

CHAPTER 11 ■ TESTING YOUR APPLICATION

232

The setup method is executed before every test case. In this case, the setup method assigns the :welcome_to_rails
record from the fixtures to an instance variable @article; the @article variable is available to all test cases in the
ArticlesControllerTest class.

Functional tests define methods that correspond to HTTP verbs (GET, POST, PUT, and DELETE), which you use to
make requests. The first line of the test "should get index" method makes a GET request for the index action using
get :index. Here’s the full syntax you use for these requests:

http_method(action, parameters, session, flash)

In the case of test "should get index", you have no parameters to submit along with the request, so your call
is simple. It makes a GET request to the index action just as if you had done so with a browser. After the request has
been made, you need to assert your expectations:

assert_response :success

The assert_response assertion is a custom assertion defined by Rails (that is, it’s not part of the standard
Test::Unit library), and it does exactly what its name implies: it asserts that there was a successful response to the
request.

Every time you make an HTTP request, the server responds with a status code. When the response is successful,
the server returns a status code of 200. When an error occurs, it returns 500. And when the browser can’t find the
resource being requested, it returns 404. In your assertion, you use the shortcut :success, which is the same as 200.
You could have used assert_response(200), but it’s easier to remember words like success or error than HTTP status
codes, which is why we avoid using the latter whenever possible. Table 11-1 lists the shortcuts available when using
assert_response.

Tip ■ You can pass an explicit status-code number to assert_response, such as assert_response(501) or its

 symbolic equivalent assert_response(:not_implemented). See http://iana.org/assignments/http-status-codes

for the full list of codes and default messages you can use.

You also want to assert that the proper template was rendered in response to the request, for which you
use another of Rails’s custom assertions: assert_template. Here, you expect to see the index template
(from app/views/articles/index.html.erb) to be rendered, so test this expectation:

assert_template 'index'

Table 11-1. Status-Code Shortcuts Known to assert_response

Symbol Meaning

:success Status code was 200

:redirect Status code was in the 300–399 range

:missing Status code was 404

:error Status code was in the 500–599 range

http://iana.org/assignments/http-status-codes

CHAPTER 11 ■ TESTING YOUR APPLICATION

233

You need to do one more thing: assert that the correct instance variables were assigned. If you look at the
articles controller, you see that you set an instance variable called @articles that contains the articles collection.
Rails gives you the ability to test whether this assignment was successful by way of the assigns method:

assert_not_nil assigns(:articles)

This asserts that @articles was, in fact, assigned (by virtue of the fact that it shouldn’t be nil). You can use this
technique to test for the existence of any instance variable set within your controllers. Useful, isn’t it? Using assigns
gives you access to the instance variable, so you can do with it as you please.

Testing the Show Action

Listing 11-13 shows the test "should show article" case.

Listing 11-13. Updated Test Case for the show Action in test/functional/articles_controller_test.rb:
http://gist.github.com/358410

require 'test_helper'

class ArticlesControllerTest < ActionController::TestCase
 setup do
 @article = articles(:welcome_to_rails)
 end

 test "should get index" do
 get :index
 assert_response :success
 assert_template 'index'
 assert_not_nil assigns(:articles)
 end

 test "should get new" do
 get :new
 assert_response :success
 end

 test "should create article" do
 assert_difference('Article.count') do
 post :create, :article => @article.attributes
 end

 assert_redirected_to article_path(assigns(:article))
 end

 test "should show article" do
 get :show, :id => @article.to_param

 assert_response :success
 assert_template 'show'

http://gist.github.com/358410

CHAPTER 11 ■ TESTING YOUR APPLICATION

234

 assert_not_nil assigns(:article)
 assert assigns(:article).valid?
 end

 test "should get edit" do
 get :edit, :id => @article.to_param
 assert_response :success
 end

 test "should update article" do
 put :update, :id => @article.to_param, :article => @article.attributes
 assert_redirected_to article_path(assigns(:article))
 end

 test "should destroy article" do
 assert_difference('Article.count', -1) do
 delete :destroy, :id => @article.to_param
 end

 assert_redirected_to articles_path
 end
end

The test "should show article" case is almost the same as test "should get index", but with one notable
difference: you need to identify the record you want to show. If you were requesting this in a browser, the URL would
look like /articles/1. Therefore, you need to pass in the :id parameter with a value of 1. If you look closely at the test
request, you can see how this is done:

get :show, :id => @article.to_param

@article.to_param by default gets the id attribute of the :welcome_to_rails article you’re getting from the
fixtures that are assigned to the @article variable. You should always use the to_param method instead of id because
it’s the method Rails uses to generate URLs internally. You can pass arbitrary parameters in this fashion. You see more
of this when you test the create and update actions, both of which require a set of article parameters.

One more thing to notice here: you can treat the results of assigns(:article) as you would any Article object
and call methods on it:

assert assigns(:article).valid?

So, not only can you assert that there is an instance variable named @article, but you can also assert that it
contains a valid Article object.

CHAPTER 11 ■ TESTING YOUR APPLICATION

235

Testing the New Action

Listing 11-14 shows the test "should get new" case.

Listing 11-14. Updated Test Case for the new Action in test/functional/articles_controller_test.rb:
http://gist.github.com/358413

require 'test_helper'

class ArticlesControllerTest < ActionController::TestCase
 setup do
 @article = articles(:welcome_to_rails)
 end

 test "should get index" do
 get :index
 assert_response :success
 assert_template 'index'
 assert_not_nil assigns(:articles)
 end

 test "should get new" do
 login_as(:eugene)
 get :new
 assert_response :success
 end

 test "should create article" do
 assert_difference('Article.count') do
 post :create, :article => @article.attributes
 end

 assert_redirected_to article_path(assigns(:article))
 end

 test "should show article" do
 get :show, :id => @article.to_param

 assert_response :success
 assert_template 'show'

 assert_not_nil assigns(:article)
 assert assigns(:article).valid?
 end

 test "should get edit" do
 get :edit, :id => @article.to_param
 assert_response :success
 end

http://gist.github.com/358413

CHAPTER 11 ■ TESTING YOUR APPLICATION

236

 test "should update article" do
 put :update, :id => @article.to_param, :article => @article.attributes
 assert_redirected_to article_path(assigns(:article))
 end

 test "should destroy article" do
 assert_difference('Article.count', -1) do
 delete :destroy, :id => @article.to_param
 end

 assert_redirected_to articles_path
 end
end

The test "should get new" case is pretty simple. First, you use the login_as helper method you created earlier
to log in as a user; then, you get the new action; and finally, you assert the success of the response.

Testing the Create Action

Listing 11-15 shows the test "should create article" case. Notice how you use the login_as helper, because this
action expects a logged-in user.

Listing 11-15. Test Case for the create Action in test/functional/articles_controller_test.rb:
http://gist.github.com/358414

require 'test_helper'

class ArticlesControllerTest < ActionController::TestCase
 setup do
 @article = articles(:welcome_to_rails)
 end

 test "should get index" do
 get :index
 assert_response :success
 assert_template 'index'
 assert_not_nil assigns(:articles)
 end

 test "should get new" do
 login_as(:eugene)
 get :new
 assert_response :success
 end

 test "should create article" do
 login_as(:eugene)
 assert_difference('Article.count') do
 post :create, :article => { :title => 'Post title',
 :body => 'Lorem ipsum..' }
 end

http://gist.github.com/358414

CHAPTER 11 ■ TESTING YOUR APPLICATION

237

 assert_response :redirect
 assert_redirected_to article_path(assigns(:article))
 end

 test "should show article" do
 get :show, :id => @article.to_param

 assert_response :success
 assert_template 'show'

 assert_not_nil assigns(:article)
 assert assigns(:article).valid?
 end

 test "should get edit" do
 get :edit, :id => @article.to_param
 assert_response :success
 end

 test "should update article" do
 put :update, :id => @article.to_param, :article => @article.attributes
 assert_redirected_to article_path(assigns(:article))
 end

 test "should destroy article" do
 assert_difference('Article.count', -1) do
 delete :destroy, :id => @article.to_param
 end

 assert_redirected_to articles_path
 end
end

To test the create action, you need to submit some form parameters to create a valid article. Fortunately, this is
easy. All you need to do is pass a hash of parameters that contains a valid set of article attributes, just as you would
using an HTML form (remember that HTML form parameters are converted into a hash object by Rails). Here’s how
it’s done:

post :create, :article => { :title => 'Post title',
 :body => 'Lorem ipsum..' }

Unlike the other test cases you’ve looked at so far, the test "should create article" case uses a request
method other than GET. To create a new article, you need to use the POST method. You formulate a POST request that
includes a params hash with a valid article.

Notice how you request the post to create an article inside the assert_difference method block? The
assert_difference method does a simple job: it takes a parameter and compares it with itself after running the
block content. It expects the difference to be 1 by default. For this case, it expects Article.count to return the same
count plus 1 after running the post request to create an article, which is the case in a successful create.

CHAPTER 11 ■ TESTING YOUR APPLICATION

238

Next, you come across another of Rails’s additions to Test::Unit, assert_redirected_to. As you can gather
from its name, it lets you assert that a redirect to the expected location took place in response to the request:

assert_redirected_to(options, message)

You’re really rolling now. The test "should get edit" case is straightforward, and test "should update
article" is similar to test "should create article". Listing 11-16 shows the updated methods.

Listing 11-16. Test Case for the create Action in test/functional/articles_controller_test.rb:
http://gist.github.com/358416

require 'test_helper'

class ArticlesControllerTest < ActionController::TestCase
 setup do
 @article = articles(:welcome_to_rails)
 end
 test "should get index" do
 get :index
 assert_response :success
 assert_template 'index'
 assert_not_nil assigns(:articles)
 end

 test "should get new" do
 login_as(:eugene)
 get :new
 assert_response :success
 end

 test "should create article" do
 login_as(:eugene)
 assert_difference('Article.count') do
 post :create, :article => { :title => 'Post title',
 :body => 'Lorem ipsum..' }
 end

 assert_response :redirect
 assert_redirected_to article_path(assigns(:article))
 end

 test "should show article" do
 get :show, :id => @article.to_param

 assert_response :success
 assert_template 'show'

 assert_not_nil assigns(:article)
 assert assigns(:article).valid?
 end

http://gist.github.com/358416

CHAPTER 11 ■ TESTING YOUR APPLICATION

239

 test "should get edit" do
 login_as(:eugene)
 get :edit, :id => @article.to_param
 assert_response :success
 end

 test "should update article" do
 login_as(:eugene)
 put :update, :id => @article.to_param, :article => { :title => 'New Title' }
 assert_redirected_to article_path(assigns(:article))
 end

 test "should destroy article" do
 assert_difference('Article.count', -1) do
 delete :destroy, :id => @article.to_param
 end

 assert_redirected_to articles_path
 end
end

Testing the Destroy Action

Listing 11-17 shows the test "should destroy article" case. Again, because this action expects a logged-in user,
you use the login_as helper to log in as :eugene.

Listing 11-17. Test Case for the destroy Action in test/functional/articles_controller_test.rb:
http://gist.github.com/358417

require 'test_helper'

class ArticlesControllerTest < ActionController::TestCase
 setup do
 @article = articles(:welcome_to_rails)
 end

 test "should get index" do
 get :index
 assert_response :success
 assert_template 'index'
 assert_not_nil assigns(:articles)
 end

 test "should get new" do
 login_as(:eugene)
 get :new
 assert_response :success
 end

http://gist.github.com/358417

CHAPTER 11 ■ TESTING YOUR APPLICATION

240

 test "should create article" do
 login_as(:eugene)
 assert_difference('Article.count') do
 post :create, :article => { :title => 'Post title',
 :body => 'Lorem ipsum..' }
 end

 assert_response :redirect
 assert_redirected_to article_path(assigns(:article))
 end

 test "should show article" do
 get :show, :id => @article.to_param

 assert_response :success
 assert_template 'show'

 assert_not_nil assigns(:article)
 assert assigns(:article).valid?
 end

 test "should get edit" do
 login_as(:eugene)
 get :edit, :id => @article.to_param
 assert_response :success
 end

 test "should update article" do
 login_as(:eugene)
 put :update, :id => @article.to_param, :article => { :title => 'New Title' }
 assert_redirected_to article_path(assigns(:article))
 end

 test "should destroy article" do
 login_as(:eugene)
 assert_nothing_raised { Article.find(@article.to_param) }

 assert_difference('Article.count', -1) do
 delete :destroy, :id => @article.to_param
 end
 assert_response :redirect
 assert_redirected_to articles_path

 assert_raise(ActiveRecord::RecordNotFound) { Article.find(@article.to_param) }
 end
end

First, you test that you can find the article in question, knowing full well that find will raise an exception if the
article doesn’t exist. Then, you formulate a DELETE request to the destroy action, passing in the id of the article to
destroy. You assert that the response is a redirect to the index action; and finally, you ensure that the article has been
deleted by asserting that Active Record raises a RecordNotFound exception.

CHAPTER 11 ■ TESTING YOUR APPLICATION

241

Now that you’ve fixed the articles controller test suite, let’s get Ruby to execute all methods and verify whether
you’ve really fixed everything:

$ ruby -Itest test/controllers/articles_controller_test.rb

Loaded suite test/controllers/articles_controller_test
Started
.......
Finished in 0.432005 seconds.

7 tests, 20 assertions, 0 failures, 0 errors, 0 skips

One Missing Test

Before you can run the complete functional test suite, you still have to fix one test. When you generated the Notifier
mailer, Rails added a mailer test file in the test/mailers directory, with tests that are now failing because of changes
you made in that class. Listing 11-18 shows an updated version of the test.

Listing 11-18. Updated test/mailers/notifier_test.rb File: http://gist.github.com/358418

require 'test_helper'

class NotifierTest < ActionMailer::TestCase
 test "email_friend" do
 article = articles(:welcome_to_rails)
 message = Notifier.email_friend(article, 'John Smith', 'dude@example.com')

 assert_equal "Interesting Article", message.subject
 assert_equal ["dude@example.com"], message.to
 assert_equal ["from@example.com"], message.from
 end
end

In this code, you use the message variable to represent the e-mail message generated by a call to Notifier.
email_friend(article, 'John Smith', 'dude@example.com'). You later use the message variable to verify that some
properties of the e-mail are as expected, using assert_equal: in this case, subject, sender, and receiver e-mail addresses.

Running the Full Test Suite
Now that your functional testing tour is complete, run the rake test:functionals command, which runs your entire
suite of functional tests:

$ rake test:functionals

Loaded suite
Started
...........
Finished in 0.665524 seconds.

8 tests, 23 assertions, 0 failures, 0 errors, 0 skips

http://gist.github.com/358418
http://dude@example.com/
http://dude@example.com/
http://from@example.com/
http://dude@example.com/

CHAPTER 11 ■ TESTING YOUR APPLICATION

242

Not bad—23 assertions all in less than one second! You’ve got to admit, this is a lot more efficient than manually
clicking through your application to test it. Moreover, because this uses the test database, you don’t risk polluting your
production database with bogus data while you test. Whenever you make a change to your articles controller, you
can run this test to see if you’ve broken any of your expectations.

Now that you have unit and functional tests for articles in place, let’s run the entire test suite, which runs both
your unit and functional tests. To do this, use the built-in Rake task, test:

$ rake test

Loaded suite
Started
.............
Finished in 0.230277 seconds.

13 tests, 32 assertions, 0 failures, 0 errors, 0 skips

Note ■ Some of the output is omitted here to cut down on the clutter. Your actual output will look slightly different,

but the summary (tests, assertions, failures, and errors) should be the same.

It may interest you to know that the default Rake task is to run all tests. That means running rake with no
arguments is the same as running rake test.

Integration Testing
Rails defines one more type of test, and it’s the highest level of the bunch. Integration tests go a little further than their
functional equivalents. Unlike functional tests, which test a specific controller, integration tests can span multiple
controllers and actions with full session support. They’re the closest you can get to simulating actual interaction with
a web application. They test that the individual pieces of your application integrate well together.

Integration Testing the Blog Application
Let’s get started by generating the integration test. Given that Rails ships with a generator for just about everything, it
shouldn’t surprise you that it includes one for generating integration tests. It works like the others you’ve already used:

$ rails generate test_unit:integration UserStories

create test/integration/user_stories_test.rb

Open the newly generated file and take a peek, as shown in Listing 11-19.

CHAPTER 11 ■ TESTING YOUR APPLICATION

243

Listing 11-19. User Stories Test in test/integration/user_stories_test.rb

require 'test_helper'

class UserStoriesTest < ActionDispatch::IntegrationTest
 # test "the truth" do
 # assert true
 # end
end

At this stage, it looks a lot like the other test files you’ve seen so far. Notice, however, that it’s a subclass of ActionC
ontroller::IntegrationTest. That’s about the only difference, but not for long.

Test cases are added to integration tests in exactly the same way unit and functional test cases are added: using
the test method with a description string and a block where you write your assertions. Integration test cases tend to
look deceptively like functional tests, but they have a few subtle differences, which we point out as you add them.

Listing 11-20 shows a test case that goes through the process of logging in a user.

Listing 11-20. Login Integration Test in test/integration/user_stories_test.rb: http://gist.github.com/358420

require 'test_helper'

class UserStoriesTest < ActionDispatch::IntegrationTest

 test "should login user and redirect" do
 get login_path

 assert_response :success
 assert_template 'new'

 post session_path, :email => 'eugene@example.com', :password => 'secret'

 assert_response :redirect
 assert_redirected_to root_path

 follow_redirect!

 assert_response :success
 assert_template 'index'
 assert session[:user_id]
 end
end

When your response is a redirect, you’re able to follow it, even when it redirects to another controller.
The follow_redirect! method does exactly what you might think: it lets you follow a single redirect response,
as long as the last response was, in fact, a redirect. If the last response wasn’t a redirect, an exception is raised.

Let’s add a test case for the logout action as well, as shown in Listing 11-21.

http://gist.github.com/358420
http://eugene@example.com/

CHAPTER 11 ■ TESTING YOUR APPLICATION

244

Listing 11-21. Logout Integration Test in test/integration/user_stories_test.rb: http://gist.github.com/358421

require 'test_helper'

class UserStoriesTest < ActionDispatch::IntegrationTest

 test "should login user and redirect" do
 get login_path

 assert_response :success
 assert_template 'new'

 post session_path, :email => 'eugene@example.com', :password => 'secret'
 assert_response :redirect
 assert_redirected_to root_path

 follow_redirect!

 assert_response :success
 assert_template 'index'
 assert session[:user_id]
 end

 test "should logout user and redirect" do
 get logout_path

 assert_response :redirect
 assert_redirected_to root_path
 assert_nil session[:user]

 follow_redirect!

 assert_template 'index'
 end
end

Again, you can follow the redirect and test that the correct template was rendered.
Let’s get a little fancier by testing that you can log in, create a new article, and log out, all in a single test. Combine

the login and logout tests you’ve already written and sandwich an article-creation test in the middle, as shown in
Listing 11-22.

Listing 11-22. Article Creation Integration Test in test/integration/user_stories_test.rb:
http://gist.github.com/358422

require 'test_helper'

class UserStoriesTest < ActionDispatch::IntegrationTest

 test "should login create article and logout" do
 # Login
 get login_path

http://gist.github.com/358421
http://eugene@example.com/
http://gist.github.com/358422

CHAPTER 11 ■ TESTING YOUR APPLICATION

245

 assert_response :success
 assert_template 'new'

 post session_path, :email => 'eugene@example.com', :password => 'secret'

 assert_response :redirect
 assert_redirected_to root_path

 follow_redirect!

 assert_response :success
 assert_template 'index'
 assert session[:user_id]

 # Create New Article
 get new_article_path

 assert_response :success
 assert_template 'new'

 post articles_path, :article => {:title => 'Integration Tests',
:body => 'Lorem Ipsum..'}

 assert assigns(:article).valid?
 assert_response :redirect
 assert_redirected_to article_path(assigns(:article))

 follow_redirect!

 assert_response :success
 assert_template 'show'

 # Logout
 get logout_path

 assert_response :redirect
 assert_redirected_to root_path
 assert_nil session[:user]

 follow_redirect!

 assert_template 'index'
 end
end

http://eugene@example.com/

CHAPTER 11 ■ TESTING YOUR APPLICATION

246

Here’s what you get when you run the test:

$ ruby -Itest test/integration/user_stories_test.rb

Loaded suite test/integration/user_stories_test
Started
.
Finished in 0.490546 seconds.

1 tests, 21 assertions, 0 failures, 0 errors, 0 skips

Great—and you’ve just tested the whole stack from dispatcher to database. Not too shabby, is it? If you’re thinking
that what you’ve just done looks a lot like you’re telling a story (Eugene logs in, Eugene creates article, Eugene logs
out), you’re right.

Story-Based Testing
Integration tests are great for creating story-based scenarios using a domain-specific language (DSL). They even
go so far as to allow you to test multiple users interacting! What are story-based tests? Well, suppose you could do
something like this:

test "creating an article" do
 eugene = registered_user
 eugene.logs_in 'eugene', 'secret'
 eugene.creates_article
 eugene.logs_out
end

Here, you’re telling an easy-to-understand story that requires no programming knowledge to follow. Eugene logs
in and proceeds to create a new article. When he is finished, he logs out. Behind the scenes, you can test every request,
response, and redirect, following Eugene’s path through the entire process, just as you did in the test "should login
create article and logout" case.

Integration tests provide a method called open_session that you can use to simulate a distinct user interacting
with the application as if from a web browser. Although this lets you simulate multiple connections with ease, you use
it to help create an object on which to define your custom story-based methods, like logs_in and creates_article.

Let’s reshape test "should login create article and logout" into methods you can add straight onto a new
session object. Listing 11-23 shows the updated user_stories_test.rb test.

Listing 11-23. Updated User Stories Integration Test in test/integration/user_stories_test.rb:
http://gist.github.com/358423

require 'test_helper'

class UserStoriesTest < ActionDispatch::IntegrationTest

 test "creating an article" do
 eugene = registered_user
 eugene.logs_in 'eugene@example.com', 'secret'
 eugene.creates_article :title => 'Integration tests', :body => 'Lorem Ipsum...'
 eugene.logs_out
 end

http://gist.github.com/358423
http://eugene@example.com/

CHAPTER 11 ■ TESTING YOUR APPLICATION

247

 private
 def registered_user
 open_session do |user|
 def user.logs_in(email, password)
 get login_path

 assert_response :success
 assert_template 'new'

 post session_path, :email => email, :password => password

 assert_response :redirect
 assert_redirected_to root_path

 follow_redirect!

 assert_response :success
 assert_template 'index'
 assert session[:user_id]
 end

 def user.logs_out
 get logout_path

 assert_response :redirect
 assert_redirected_to root_path
 assert_nil session[:user]

 follow_redirect!

 assert_template 'index'
 end

 def user.creates_article(article_hash)
 get new_article_path

 assert_response :success
 assert_template 'new'

 post articles_path, :article => article_hash

 assert assigns(:article).valid?
 assert_response :redirect
 assert_redirected_to article_path(assigns(:article))

 follow_redirect!

 assert_response :success
 assert_template 'show'
 end
 end
 end
end

CHAPTER 11 ■ TESTING YOUR APPLICATION

248

See how you create a private method called registered_user and create a new integration session inside it? The
open_session method yields a session object onto which you attach singleton methods (methods that exist only on a
particular instance):

def registered_user
 open_session do |user|
 def user.logs_in(email, password)
 #...
 end

 def user.logs_out
 #...
 end

 def user.creates_article(article_hash)
 #...
 end
 end
end

The return value of registered_user, then, is a fresh integration session object that responds to the methods
you’ve created. This means you can create as many user sessions as you want and simulate multiple connections to
the application. Listing 11-24 updates the test "creating an article" method and renames it test "multiple
users creating an article".

Listing 11-24. Updated Article-Creation Story Testing Multiple Users in test/integration/user_stories_test.rb:
http://gist.github.com/358424

require 'test_helper'

class UserStoriesTest < ActionDispatch::IntegrationTest
 fixtures :all

 test "multiple users creating an article" do
 eugene = registered_user
 lauren = registered_user

 eugene.logs_in 'eugene@example.com', 'secret'
 lauren.logs_in 'lauren@example.com', 'secret'

 eugene.creates_article :title => 'Integration Tests', :body => 'Lorem Ipsum...'
 lauren.creates_article :title => 'Open Session', :body => 'Lorem Ipsum...'

 eugene.logs_out
 lauren.logs_out
 end

 private
 def registered_user
 open_session do |user|
 def user.logs_in(email, password)
 get login_path

http://gist.github.com/358424
http://eugene@example.com/
http://lauren@example.com/

CHAPTER 11 ■ TESTING YOUR APPLICATION

249

 assert_response :success
 assert_template 'new'
 post session_path, :email => email, :password => password

 assert_response :redirect
 assert_redirected_to root_path

 follow_redirect!

 assert_response :success
 assert_template 'index'
 assert session[:user_id]
 end

 def user.logs_out
 get logout_path

 assert_response :redirect
 assert_redirected_to root_path
 assert_nil session[:user]

 follow_redirect!

 assert_template 'index'
 end

 def user.creates_article(article_hash)
 get new_article_path

 assert_response :success
 assert_template 'new'

 post articles_path, :article => article_hash

 assert assigns(:article).valid?
 assert_response :redirect
 assert_redirected_to article_path(assigns(:article))

 follow_redirect!

 assert_response :success
 assert_template 'show'
 end
 end
 end
end

This is only the tip of the iceberg. The sky is the limit for how creative you can get with this style of testing.

CHAPTER 11 ■ TESTING YOUR APPLICATION

250

Running the Full Test Suite
Now that you have a respectable number of tests for your application, let’s use Rake to run the entire suite. Because
the default Rake task is test, you can save yourself five keystrokes (a space counts as a keystroke!) and run your tests
with just rake:

$ rake

Loaded suite
Started
..........
Finished in 0.237562 seconds.

14 tests, 32 assertions, 0 failures, 0 errors, 0 skips

Take a moment to bask in the glory of a successful test run.

Summary
This chapter introduced you to the Rails philosophy behind testing and stressed its importance as part of the
development cycle. You’ve now been on a complete tour of the baked-in facilities Rails provides for testing. You
learned about testing your models with unit tests, testing your controllers with functional tests, and testing the whole
Rails stack with integration tests.

Testing is an important part of the development cycle. Despite the fact that we left it until near the end of this
book, it’s not something you should treat as an afterthought. Now that you know how to write a Rails application
and how to test it, you can combine the steps: write some code, and then test it. As you get into the code/test rhythm
(or better yet, test/code), you’ll find that you can write better, more reliable software. And you may sleep a little better
at night, too.

I’d be remiss if I didn’t mention some of the other test frameworks that are available from the Ruby community. In
fact, test frameworks become almost like a religion to developers. DHH famously loves the test unit, while many others
disagree. Rspec (http://rspec.info/) is a popular choice, as is minitest (https://github.com/seattlerb/minitest).
There is also cucumber (http://cukes.info/), which is built off of Rspec, but uses a language called Gherkin to let
you write tests. No matter which framework you decide to use, make sure you test early and often. Not only does it
ensure your application does what you expect, but it is also frequently used as a source of documentation by developers
moving into your project for the first time.

The next chapter will look at preparing your applications for a global audience through the use of Rails’s built-in
internationalization and localization support.

http://rspec.info/
https://github.com/seattlerb/minitest
http://cukes.info/

251

CHAPTER 12

Internationalization

Internationalization in Rails used to be a complex task until Rails version 2.2 came out with internationalization and
localization support built in. Since then, launching an application in another language or even multiple languages has
become a relatively simple task. According to Wikipedia, “Internationalization is the process of designing a software
application so that it can be adapted to various languages and regions without engineering changes. Localization
is the process of adapting software for a specific region or language by adding locale-specific components and
translating text” (http://en.wikipedia.org/wiki/Internationalization_and_localization).

This chapter explains internationalization and localization support in Rails. You first set up internationalization
in the blog application with English as the main language; then you localize it to another language; and, finally,
you support both languages and allow users to pick the language they want.

Internationalization and localization are long words, so developers use short names for them. The short name for
internationalization is i18n, which is the first and the last letters of the word with the count of how many characters
are in between. Following the same logic, localization’s short name is l10n.

Note ■ If you need to get the code at the exact point where you finished Chapter 11, download the source code zip file

from the book’s page on http://www.apress.com and extract it on your computer.

Internationalization Logic in Rails
The i18n and l10n support in Rails is based on a single module that takes care of all the translation and locale changes
for you; this module is called I18n. The I18n module’s main method is translate, which translates content by looking
for a translation text in a locale file, normally located in config/locales.

Locales are like languages but are more specific to regions. For example, en represents English in general,
whereas en-us represents US English and en-uk represents UK English. In Rails, those differences are reflected in the
translation files, mainly for localization options like time, date formats, and currency.

If you look in the config/locales directory, you’ll see a file called en.yml; it’s a YAML file that defines the English
translations for your application. Open the file and you’ll see something similar to the code in Listing 12-1.

Listing 12-1. The Default English Locale File in config/locales/en.yml

Files in the config/locales directory are used for internationalization
and are automatically loaded by Rails. If you want to use locales other
than English, add the necessary files in this directory.
#

http://en.wikipedia.org/wiki/Internationalization_and_localization
http://www.apress.com/

CHAPTER 12 ■ INTERNATIONALIZATION

252

To use the locales, use 'I18n.t':
#
I18n.t 'hello'
#
In views, this is aliased to just 't':
#
<%= t('hello') %>
#
To use a different locale, set it with 'I18n.locale':
#
I18n.locale = :es
#
This would use the information in config/locales/es.yml.
#
To learn more, please read the Rails Internationalization guide
available at http://guides.rubyonrails.org/i18n.html.

en:
 hello: "Hello world"

A translation file is a YAML file. It starts with the locale symbol, which is also the translation file name; in this
case, it’s en. Then, the file lists the translations in a key-value pair style: the en.yml example defines the translation of
hello as “Hello world.”

Now, let’s see the translation in action by trying the I18n module in the console. Launch it with rails console:

I18n.translate "hello"
=> "Hello world"
I18n.t "hello"
=> "Hello world"

You pass the key to the translate method, and it returns the corresponding value from the English locale file.
The I18n module has the t method as an alias for the translate method, which you used in the previous example.

The i18n works in Rails by having a set locale. At any time, you can determine the current locale by calling the
I18n.locale method. When you don’t set the locale yourself, it’s set to a default locale, normally en. You can access
the default locale by calling I18n.default_locale. Let’s check the current locale and the default locale in your
application:

I18n.locale
=> :en
I18n.default_locale
=> :en

To change the locale or the default locale, you can use the I18n.locale= and I18n.default_locale= methods.
Change the locale to Brazilian Portuguese, for which the locale symbol is pt-br, and try the translate method again:

>> I18n.locale = 'pt-br'
=> "pt-br"
>> I18n.translate "hello"
=> "translation missing: pt-br, hello"

http://guides.rubyonrails.org/i18n.html

CHAPTER 12 ■ INTERNATIONALIZATION

253

You don’t have a translation for hello in Brazilian Portuguese—the translate method returns a string saying
translation missing: pt-br, hello. To define the translation for hello in Brazilian Portuguese, you create a new
translation file named after the locale symbol pt-br.yml in config/locales, as shown in Listing 12-2.

Listing 12-2. The Brazilian Portuguese Locale File in config/locales/pt-br.yml: http://gist.github.com/360760

pt-br:
 hello: "Ola mundo"

Rails doesn’t reload locale files automatically, unlike other files. So, exit the console, restart it to make sure Rails
loads the new translation file, and try again:

>> I18n.locale
=> :en
>> I18n.locale = 'pt-br'
=> "pt-br"
>> I18n.t "hello"
=> "Ola mundo"

That’s how simple it is. All you need are the translation files, each with several translations in key-value pairs.
You access those translations by passing the corresponding key to the I18n.translate method or its alias I18n.t.

Rails manages all its internals using the I18n module. For example, all the Active Record validation messages you
saw in Chapters 5 and 6 are called by using the translate method and referring to a translation key. If you change the
locale, Rails has no translation for those error messages. Check it out:

>> I18n.locale = 'pt-br'
=> "pt-br"
>> article = Article.new
=> #<Article id: nil, title: nil, body: nil, published_at: nil, created_at: nil,
updated_at: nil, excerpt: nil, location: nil, user_id: nil>
>> article.save
=> false
>> article.errors.full_messages
=> ["Title translation missing: pt-br, activerecord, errors, models, article,
attributes, title, blank", "Body translation missing: pt-br, activerecord,
errors, models, article, attributes, body, blank"]

Active Record tried to get the translations for the error messages, but it couldn’t find them in the Brazilian
Portuguese translation file. Let’s add them by updating pt-br.yml so it looks like the code in Listing 12-3.

Listing 12-3. Updated Brazilian Portuguese Locale File in config/locales/pt-br.yml:
http://gist.github.com/360764

pt-br:
 hello: "Ola mundo"

 activerecord:
 errors:
 models:
 article:
 attributes:
 title:

http://gist.github.com/360760
http://gist.github.com/360764

CHAPTER 12 ■ INTERNATIONALIZATION

254

 blank: "não pode ficar em branco"
 body:
 blank: "não pode ficar em branco"

Notice how you nest the keys. The “translation missing” message you saw earlier in the console included a list of
names: pt-br, activerecord, errors, models, article, attributes, body, and blank. Those names represent the path
inside the pt-br translation file. I18n calls the blank key, for example, by using dots to connect it and its parents; the
translate call is I18n.translate('activerecord.errors.models.article.attributes.title.blank'). Now that
you’ve added the translation, try it from the console again (don’t forget to restart your console):

>> I18n.locale = 'pt-br'
=> "pt-br"
>> article = Article.new
=> #<Article id: nil, title: nil, body: nil, published_at: nil, created_at: nil,
updated_at: nil, excerpt: nil, location: nil, user_id: nil>
>> article.save
=> false
>> I18n.translate('activerecord.errors.models.article.attributes.title.blank')
=> "não pode ficar em branco"
>> article.errors.full_messages
=> ["Title não pode ficar em branco", "Body não pode ficar em branco"]

Congratulations! You just translated the validates :title, :presence => true error message for both the
title and body attributes of your Article model to Brazilian Portuguese. Now that you understand how I18n works,
let’s set it up in the blog application.

Setting Up i18n in the Blog Application
Rails at its core uses i18n. You’ll also need to use it. To do so, you must make sure that all hard-coded text and strings
are replaced with an I18n.translate method call.

This may sound like a lot of work, but it’s fairly simple in this case because your application is still small.
We encourage you to use the I18n.translate method in your project as early as possible; that way, you avoid doing
the text replacement later—it gets more difficult as your project grows.

Let’s begin with your models. The only one that uses strings is the Comment model, which includes a custom
validation with an error message. Replace this error message with an I18n.t call to a key, and add that key to your
en.yml translation file. Listing 12-4 shows how the comment model should look after you edit it.

Listing 12-4. Updated Comment Model in app/models/comment.rb: http://gist.github.com/360774

class Comment < ActiveRecord::Base
 belongs_to :article

 validates :name, :email, :body, :presence => true
 validate :article_should_be_published

 def article_should_be_published
 errors.add(:article_id, I18n.t('comments.errors.not_published_yet'))
if article && !article.published?
 end
end

http://gist.github.com/360774

CHAPTER 12 ■ INTERNATIONALIZATION

255

Notice how you use the dots notation in the comments.errors.not_published_yet key. It’s good practice to keep
the locale file organized; doing so helps you find the translation more easily when your file gets bigger. Because the
error message is added to the comment object, you add it under comments; and because it’s an error message, you drill a
step deeper and place it under errors.

Don’t forget to add the translation to your en.yml translation file. It should look like Listing 12-5 after you clean it
up and update it with the new translation.

Listing 12-5. Updated English Locale File in config/locales/en.yml: http://gist.github.com/360776

en:
 comments:
 errors:
 not_published_yet: is not published yet

Now, let’s move to controllers. If you check all the controllers, you see that you only need to translate the flash
messages. Listing 12-6 shows how ArticlesController should look after you update it.

Listing 12-6. Updated ArticlesController in app/controllers/articles_controller.rb:
https://gist.github.com/adamgamble/6190882

class ArticlesController < ApplicationController
 before_action :authenticate, except: [:index, :show]
 before_action :set_article, only: [:show]

 # GET /articles
 # GET /articles.json
 def index
 @articles = Article.all
 end

 # GET /articles/1
 # GET /articles/1.json
 def show
 end

 # GET /articles/new
 def new
 @article = Article.new
 end

 # GET /articles/1/edit
 def edit
 @article = current_user.articles.find(params[:id])
 end

 # POST /articles
 # POST /articles.json
 def create
 @article = current_user.articles.new(article_params)

http://gist.github.com/360776
https://gist.github.com/adamgamble/6190882

CHAPTER 12 ■ INTERNATIONALIZATION

256

 respond_to do |format|
 if @article.save
 format.html { redirect_to @article, notice: t('articles.create_success') }
 format.json { render action: 'show', status: :created, location: @article }
 else
 format.html { render action: 'new' }
 format.json { render json: @article.errors, status: :unprocessable_entity }
 end
 end
 end

 # PATCH/PUT /articles/1
 # PATCH/PUT /articles/1.json
 def update
 @article = current_user.articles.find(params[:id])
 respond_to do |format|
 if @article.update(article_params)
 format.html { redirect_to @article, notice: t('articles.update_success') }
 format.json { head :no_content }
 else
 format.html { render action: 'edit' }
 format.json { render json: @article.errors, status: :unprocessable_entity }
 end
 end
 end

 # DELETE /articles/1
 # DELETE /articles/1.json
 def destroy
 @article = current_user.articles.find(params[:id])
 @article.destroy
 respond_to do |format|
 format.html { redirect_to articles_url }
 format.json { head :no_content }
 end
 end

 def notify_friend
 @article = Article.find(params[:id])
 Notifier.email_friend(@article, params[:name], params[:email]).deliver
 redirect_to @article, :notice => t('articles.notify_friend_success')
 end

 private
 # Use callbacks to share common setup or constraints between actions.
 def set_article
 @article = Article.find(params[:id])
 end

CHAPTER 12 ■ INTERNATIONALIZATION

257

 # Never trust parameters from the scary internet, only allow the white list through.
 def article_params
 params.require(:article).permit(:title, :location, :excerpt, :body, :published_at,
:category_ids => [])
 end
end

There are two things to notice here. First, you call the t method without the I18n module, unlike what you did in
the console and the model; that’s because the I18n module is integrated with Action Pack to keep things cleaner in the
controllers, helpers, and views. Second, you also nest the messages under articles—again, to keep things cleaner.
You do the same with the other controllers, also nesting them under their corresponding name: users controller
translations go under users, the comments controller goes under comments, the application controller goes under
application, and the sessions controller goes under session.

Updating the rest of the controllers is fairly simple. You can do it yourself, or you can download the updated files
from http://www.apress.com.

Finally, let’s look at the views. They’re very similar, so you look at a single view here: Listing 12-7 shows the
article partial after using translations, with changes in bold. As with controllers, you can apply the rest of the
changes yourself using the Gist URLs http://gist.github.com/360814 and http://gist.github.com/360819.

Listing 12-7. Updated article Partial in app/views/articles/_article.html.erb:
http://gist.github.com/360814

<%= div_for article do %>
 <h3>
 <%= link_to article.title, article %>
 <% if article.owned_by? current_user %>

 <%= link_to t('general.edit'), edit_article_path(article) %>
 <%= link_to t('general.delete'), article,
:confirm => t('general.are_you_sure'), :method => :delete %>

 <% end %>
 </h3>
 <%= simple_format raw(article.body) %>
<% end %>

After updating your code, you’re one step away from completing the i18n setup. You still need to add the
translations to the default locale file en.yml. Listing 12-8 shows the updated config/locales/en.yml translation file.

Listing 12-8. English Locale File After Implementing i18n Support in config/locales/en.yml:
http://gist.github.com/360824

en:
 general:
 are_you_sure: Are you sure?
 back: Back
 cancel: Cancel
 create: Create
 delete: Delete
 edit: Edit
 editing: Editing
 footer: A simple blog built for the book

http://www.apress.com/
http://gist.github.com/360814
http://gist.github.com/360819
http://gist.github.com/360814
http://gist.github.com/360824

CHAPTER 12 ■ INTERNATIONALIZATION

258

 email_a_friend: Email a friend
 search: Search
 send_email: Send email
 show: Show
 title: Blog
 update: Update
 your_name: Your name
 your_friend_email: Your friend's email
 or: or
 application:
 access_denied: Please log in to continue
 articles:
 editing_article: Editing Article
 listing_articles: Listing Articles
 new_article: New Article
 article: article
 create_success: Article was successfully created.
 update_success: Article was successfully updated.
 articles: articles
 notify_friend_success: Successfully sent a message to your friend
 users:
 new_user: New user
 edit_password: Edit Password
 editing_user: Editing user
 create_success: User successfully added.
 update_success: Updated user information successfully.
 sessions:
 email: Email
 password: Password
 login: Login
 logout: Logout
 successful_login: Logged in successfully
 invalid_login: Invalid login/password combination
 logout_success: You successfully logged out
 comments:
 name: Name
 email: Email
 body: Body
 comments: Comments
 new_comment: New comment
 create_success: Thanks for your comment
 create_failure: Unable to add comment
 destroy_success: Comment deleted
 add: Add
 errors:
 not_published_yet: is not published yet

That’s about it—the blog application has i18n support now.
You must restart your server for Rails to load the translation file. After you do that, browse the site: you won’t see

any differences yet. Although i18n support is in place, you’re still using English as your locale. To see i18n in action,
let’s change the locale and try Brazilian Portuguese.

CHAPTER 12 ■ INTERNATIONALIZATION

259

Localizing the Blog Application to Brazilian Portuguese
Localizing an i18n-ready Rails application is amazingly simple. All you have to do is add a new translation file and
configure your Rails application to use that locale as the default locale, and you’re good to go.

Brazilian Portuguese is the locale to which you localize the blog application in this section. The locale symbol for
Brazilian Portuguese is pt-br; so, first you change the config/locales/pt-br.yml file, using the same keys as your
English translation file, but with Brazilian Portuguese text instead of English.

The separation between the translation files and your application code is very helpful; it gives you the ability
to send the translation file to a translator, for example. When you have it back, you plug it into your application and
you’re all set. Listing 12-9 shows the newly created Brazilian Portuguese translation file.

Listing 12-9. Brazilian Portuguese Locale File in config/locales/pt-br.yml: http://gist.github.com/391492

pt-br:
 general:
 are_you_sure: Tem certeza?
 back: Volta
 cancel: Cancelar
 create: Criar
 delete: Apagar
 edit: Editar
 editing: Editando
 footer: Um blog simples desenvolvido para o livro
 email_a_friend: Avisar um amigo
 search: Pesquisar
 send_email: Mandar email
 show: Mostrar
 title: Blog
 update: Atualizar
 your_name: Seu nome
 your_friend_email: O email do seu amigo
 or: ou
 application:
 access_denied: "Por favor, efetue o login para continuar"
 articles:
 editing_article: Editando Artigo
 listing_articles: Listando Artigos
 new_article: Novo Artigo
 article: artigo
 create_success: Artigo foi criado com sucesso.
 update_success: Artigo foi atualizado com sucesso.
 articles: artigos
 notify_friend_success: Seu amigo foi avisado a respeito desse artigo
 users:
 new_user: Novo Usuario
 edit_password: Editar senha
 editing_user: Editando usuario
 create_success: Usuario editado com sucesso.
 update_success: Usuario atualizado com sucesso.

http://gist.github.com/391492

CHAPTER 12 ■ INTERNATIONALIZATION

260

 sessions:
 email: Email
 password: Senha
 login: Logar
 logout: Desconectar
 successful_login: Logado com sucesso
 invalid_login: Senha ou Email invalidos
 logout_success: Voce desconectou do sistem com sucesso
 comments:
 name: Nome
 email: Email
 body: Conteudo
 comments: Comentarios
 new_comment: Novo Comentario
 create_success: Obrigado pelo comentario
 create_failure: Nao foi possivel adicionar o comentario
 destroy_success: Comentario deletado
 add: Adicionar
 errors:
 not_published_yet: ainda nao foi publicado

 activerecord:
 errors:
 models:
 article:
 attributes:
 title:
 blank: "não pode ficar em branco"
 body:
 blank: "não pode ficar em branco"

 date:
 formats:
 default: "%d/%m/%Y"
 short: "%d de %B"
 long: "%d de %B de %Y"

 day_names: [Domingo, Segunda, Terça, Quarta, Quinta, Sexta, Sábado]
 abbr_day_names: [Dom, Seg, Ter, Qua, Qui, Sex, Sáb]
 month_names: [~, Janeiro, Fevereiro, Março, Abril, Maio, Junho, Julho,
Agosto, Setembro, Outubro, Novembro, Dezembro]
 abbr_month_names: [~, Jan, Fev, Mar, Abr, Mai, Jun, Jul, Ago, Set, Out,
Nov, Dez]
 order: [:day, :month, :year]

You still have to tell Rails to use pt-br as the default locale. You do that by adding a configuration to your
config/application.rb file. Listing 12-10 shows the updated config/application.rb file with the added lines
in bold.

CHAPTER 12 ■ INTERNATIONALIZATION

261

Listing 12-10. Setting the Default Locale to Brazilian Portuguese in config/application.rb:
https://gist.github.com/adamgamble/6190889

require File.expand_path('../boot', __FILE__)

require 'rails/all'

Require the gems listed in Gemfile, including any gems
you've limited to :test, :development, or :production.
Bundler.require(:default, Rails.env)

module Blog
 class Application < Rails::Application
 # Settings in config/environments/* take precedence over those specified here.
 # Application configuration should go into files in config/initializers
 # -- all .rb files in that directory are automatically loaded.

 # Set Time.zone default to the specified zone and make Active Record auto-convert to this zone.
 # Run "rake -D time" for a list of tasks for finding time zone names. Default is UTC.
 # config.time_zone = 'Central Time (US & Canada)'

 # The default locale is :en and all translations from config/locales/*.rb,yml are auto loaded.

config.i18n.load_path += Dir[Rails.root.join('my', 'locales', '*.{rb,yml}').to_s]
 # config.i18n.default_locale = :de
 config.i18n.default_locale = 'pt-br'
 end
end

Restart the server, and check out your Brazilian Portuguese blog application. You’ve localized the application in
two simple steps: adding the translation file and setting up the locale. Figure 12-1 shows the blog application with its
Brazilian Portuguese face.

Figure 12-1. Brazilian Portuguese localized interface

https://gist.github.com/adamgamble/6190889

CHAPTER 12 ■ INTERNATIONALIZATION

262

Bilingual Blog
You know by now that all it takes to change the locale is to set the I18n.locale configuration to the locale of choice.
How about giving users the power to do that themselves? To do so, you implement a controller filter that sets the
locale depending on user input and provides the user with a language selector from which to choose the locale.

Let’s create a helper in the application helper called language_selector that shows the available locales for the
user to choose from. Listing 12-11 shows application_helper with the new helper method in bold.

Listing 12-11. language_selector Helper Method in app/helpers/application_helper.rb:
http://gist.github.com/360849

module ApplicationHelper
 # Creates a submit button with the given name with a cancel link
 # Accepts two arguments: Form object and the cancel link name
 def submit_or_cancel(form, name=t('general.cancel'))
 form.submit + " #{t('general.or')} " + link_to(name, 'javascript:history.go(-1);', :class =>
'cancel')
 end

 def language_selector
 if I18n.locale == :en
 link_to "Pt", url_for(:locale => 'pt-br')
 else
 link_to "En", url_for(:locale => 'en')
 end
 end
end

In the language selector method, you show a link to the language that isn’t currently selected. You do that by
linking to the URL you’re at, with an extra :locale parameter using the url_for helper with the :overwrite_params
option. The user should always be able to change the language; so you use this function in the application layout.
Listing 12-12 shows the updated application layout with the new helper call in bold.

Listing 12-12. Calling language_selector in app/views/layouts/application.html.erb:
http://gist.github.com/360851

<!DOCTYPE html>
<html>
<head>
 <title>Blog</title>
 <%= stylesheet_link_tag :all %>
 <%= javascript_include_tag 'jquery-1.4.2.min', 'rails', 'application' %>
 <%= csrf_meta_tag %>
</head>
<body>
 <div id="header">
 <h1><%= link_to t('general.title'), root_path %></h1>
 <%= language_selector %>
 <div id="user_bar">
 <% if logged_in? %>
 <%= link_to t('articles.new_article'), new_article_path %> |
 <%= link_to t('users.edit_password'), edit_user_path(current_user) %> |
 <%= link_to t('sessions.logout'), logout_path %>

http://gist.github.com/360849
http://gist.github.com/360851

CHAPTER 12 ■ INTERNATIONALIZATION

263

 <% else %>
 <%= link_to t('sessions.login'), login_path %>
 <% end %>
 </div>
 </div>
 <div id="main">
 <%= content_tag(:p, notice, :class => 'notice') if notice.present? %>
 <%= content_tag(:p, alert, :class => 'alert') if alert.present? %>
 <%= yield %>
 </div>
 <div id="footer">
 <%= t('general.footer') %>
Beginning Rails 4
 </div>
</body>
</html>

Finally, let’s create a before action in the application controller that sets the locale to the passed parameter.
Listing 12-13 shows the updated application controller with the new additions in bold.

Listing 12-13. Before Filter to Set the Locale in app/controllers/application_controller.rb:
http://gist.github.com/360856

class ApplicationController < ActionController::Base
 protect_from_forgery with: :exception
 before_action :set_locale

 protected
 # Set the locale from parameters
 def set_locale
 I18n.locale = params[:locale] unless params[:locale].blank?
 end

 # Returns the currently logged in user or nil if there isn't one
 def current_user
 return unless session[:user_id]
 @current_user ||= User.find_by_id(session[:user_id])
 end

 # Make current_user available in templates as a helper
 helper_method :current_user

 # Filter method to enforce a login requirement
 # Apply as a before_filter on any controller you want to protect
 def authenticate
 logged_in? || access_denied
 end

 # Predicate method to test for a logged in user
 def logged_in?
 current_user.is_a? User
 end

http://beginningrails.com/
http://gist.github.com/360856

CHAPTER 12 ■ INTERNATIONALIZATION

264

 # Make logged_in? available in templates as a helper
 helper_method :logged_in?

 def access_denied
 redirect_to login_path,
:notice => t('application.access_denied') and return false
 end

A before action in an application controller runs before any request reaches any controller action. You call the
set_locale method, which checks whether the locale parameter is provided and assigns it to I18n.locale.

Change the application locale configuration back to English—so users can select their language of choice—by
removing the config.i18n.default_locale line from config/application.rb (Listing 12-14).

Listing 12-14. Remove the Locale Configuration in config/application.rb: https://gist.github.com/
adamgamble/6190907

require File.expand_path('../boot', __FILE__)

require 'rails/all'

Require the gems listed in Gemfile, including any gems
you've limited to :test, :development, or :production.
Bundler.require(:default, Rails.env)

module Blog
 class Application < Rails::Application
 # Settings in config/environments/* take precedence over those specified here.
 # Application configuration should go into files in config/initializers
 # -- all .rb files in that directory are automatically loaded.

 # Set Time.zone default to the specified zone and make Active Record auto-convert to this zone.
 # Run "rake -D time" for a list of tasks for finding time zone names. Default is UTC.
 # config.time_zone = 'Central Time (US & Canada)'

 # The default locale is :en and all translations from config/locales/*.rb,yml are auto loaded.
 # config.i18n.load_path += Dir[Rails.root.join('my', 'locales', '*.{rb,yml}').to_s]
 # config.i18n.default_locale = :de
 end
end

Restart your server and try the application, as shown in Figure 12-2.

-

https://gist.github.com/adamgamble/6190907
https://gist.github.com/adamgamble/6190907

CHAPTER 12 ■ INTERNATIONALIZATION

265

The application loads in English because it’s the default locale. Click the Pt link, and see how everything switches
to Brazilian Portuguese, as shown in Figure 12-3.

Congratulations! Not only do you have a bilingual blog application, but you also know how easy it is to add more
languages.

Figure 12-2. Language selector in the English interface

Figure 12-3. Brazilian Portuguese interface with the language selector link

CHAPTER 12 ■ INTERNATIONALIZATION

266

Summary
After reading this chapter, you have what it takes to launch a multilingual Rails application. You understand the logic
behind the I18n module, how the translate method works, and how to create a translation file.

You worked on preparing your application for i18n support; you extracted the hard-coded text and strings into
translation keys, and you placed them in a locale translation file. Then, you localized the application to another
language. You wrapped up your effort by making the application bilingual so users can choose the language they
want. The next, and final, chapter in the book will cover how to deploy your Rails apps, and let the world enjoy the
fruits of your labors.

267

CHAPTER 13

Deploying Your Rails Applications

If you’re ready to turn the world on its head by unleashing your million-dollar web application to the public, then let
this chapter be your starting point.

The various web-application development platforms in use today have very different deployment methods.
If you’re using PHP, deployment is usually as simple as dropping the right files into a directory on the remote server
(usually via FTP) and then visiting them with your web browser. For PHP applications, there are thousands of hosts,
and deployment is simple enough for your parents to accomplish. However, as you all know, with simplicity comes a
lack of options. And as anyone who has developed in a language like PHP knows, simplicity can lead to some pretty
complicated situations with your development. Luckily, Rails deployment is nothing like PHP deployment.

In the opposite camp, Java/Struts people have some deployment schemes that would make a PhD candidate
panic and run away in a cloud of network diagrams. Java deployments can be terribly complex, with lots of little
details to worry about and huge amounts of memory required. Fortunately, Rails is much simpler than that.

With Rails there are a lot of different ways to deploy your application. This chapter will focus on the one that will
get your app out the door as simply and quickly as possible. Instead of configuring servers and building deploy scripts,
you’ll have your app running and live for the entire world to use in no time. You’ll use a PAAS (platform as a service)
called Heroku, which handles your servers and databases so you don’t have to think about it. You can concentrate on
building great applications. Although for a large production deployment Heroku can get pricey, for a developer with a
small app it’s completely free. Let’s dive in.

Set Up an Account with Heroku
The first step in this process is to set up an account with Heroku, don’t worry, it doesn’t cost anything and you won’t
need a credit card. Point your browser to www.heroku.com and you should see something like Figure 13-1.

http://www.heroku.com/

CHAPTER 13 ■ DEPLOYING YOUR RAILS APPLICATIONS

268

Click the sign up link and enter an e-mail address. Heroku will then send you an e-mail with a confirmation link.
Once you click that link, you’ll be asked for a password and password confirmation. You’re now the proud
owner of a shiny new Heroku account. This will let you deploy Rails (and other) apps to your heart’s content.

Heroku has a piece of software that facilitates interacting with your Heroku apps on your computer. It’s
called the Heroku Toolbelt (https://toolbelt.heroku.com/). Go to that URL and follow the instructions for
installing the Heroku Toolbelt. For Windows and OS X, it will be a package you download; for Linux there is an
install script.

Figure 13-1. Setting up a Heroku account

https://toolbelt.heroku.com/

CHAPTER 13 ■ DEPLOYING YOUR RAILS APPLICATIONS

269

Preparing Your Git Repository
Now that you have a Heroku account, you need to make a couple of small changes to your app so you can deploy it.
Heroku’s method of deployment is Git, a tool most developers are already using. If you are unfamiliar with Git, you
can check out Appendix C to get up to speed. Let’s set up a Git repository for your application now. Go to the terminal
and make sure you’re in the directory where your project is stored. Once there, type the following command:

$ git init

Initialized empty Git repository in /Users/adamgamble/rails/beginning_rails_4/.git/

You told Git that you want this directory to be a repository, meaning that Git will now keep track of the files you
want it to. Let’s tell it to keep track of all the files in this directory and make an initial commit:

$ git add .
$ git commit –m 'Initial Commit'

[master (root-commit) 7485c9c] Initial Commit
 121 files changed, 1980 insertions(+)
 create mode 100644 .gitignore
...

Your output might be slightly different, but it should add all files to your Git repository. This means that Git is now
keeping track of the files and will notice when you make changes. You can then either decide to commit those changes
or get rid of them. Once you have committed changes, Git has built-in support for pushing those changes to a remote
server. Likewise, it can pull the changes from a remote server to your local repository. This is why so many developers
use a source control system like Git, it makes it so easy to collaborate. It also happens to be the way you deploy your
application to Heroku.

So let’s tell Heroku we are ready to create an app. The first step is to create the app on Heroku. You can do this on
their web control panel, or you can do it from the command line. We prefer to use the command line interface. You
need to authenticate the Heroku Toolbelt you previously installed, but that’s a simple task. Once that is done, you can
move straight into creating your application on Heroku:

$ heroku login

Enter your Heroku credentials.
Email: adamgamble@gmail.com
Password (typing will be hidden):
Authentication successful.

$ heroku create

Creating floating-shore-4610... done, stack is cedar
http://floating-shore-4610.herokuapp.com/ | git@heroku.com:floating-shore-4610.git
Git remote heroku added

http://adamgamble@gmail.com/
http://floating-shore-4610.herokuapp.com/
http://git@heroku.com:floating-shore-4610.git

CHAPTER 13 ■ DEPLOYING YOUR RAILS APPLICATIONS

270

Notice that it called the app floating-shore-4610. If you don’t specify a name, Heroku will choose a random
name for you. If you would like to specify a name, type it after the Heroku create line, like so:

$ heroku create beginning-rails-4

Creating beginning-rails-4... done, stack is cedar
http://beginning-rails-4.herokuapp.com/ | git@heroku.com:beginning-rails-4.git

Since Heroku names must be unique, you obviously won’t be able to use beginning-rails-4, but you can be
creative and choose your own, like maybe chunky-bacon.

In your application’s folder there is a file named Gemfile. This file stores a list of all the “gems” your project uses.
Gems are little pieces of code that are easy to pull into your project to add features. Rails itself is a gem, and when
you started this project a whole host of gems were pulled in. You need to edit one line and add two more to support
deploying to Heroku. Open up your Gemfile and change the line that looks like this:

gem 'sqlite3'

to this:

gem 'sqlite3', group: [:development, :test]

Then below it, add these two lines:

gem 'rails_12factor', group: :production
gem 'pg', group: :production

Now save the Gemfile. Whenever you edit the Gemfile, you need to tell bundler (a gem manager) to make the
changes you just requested in the Gemfile. To do that type:

bundle --without production

This tells bundler to install the gems requested but skip the ones that were in the production group. Bundler
makes its changes and modifies a file called Gemfile.lock. You need to let Git know that you want to commit the
changes to this file:

$ git add Gemfile
$ git add Gemfile.lock
$ git commit -m "Added gems to support heroku deployment"

[master a9afc76] added gems to support heroku deployment
 2 files changed, 11 insertions(+), 1 deletion(-)

Now you’re ready to deploy your app! It’s as easy as one command:

$ git push heroku master

Counting objects: 138, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (127/127), done.

http://beginning-rails-4.herokuapp.com/
http://git@heroku.com:beginning-rails-4.git

CHAPTER 13 ■ DEPLOYING YOUR RAILS APPLICATIONS

271

Writing objects: 100% (138/138), 29.28 KiB, done.
Total 138 (delta 14), reused 0 (delta 0)

-----> Ruby/Rails app detected
-----> Using Ruby version: ruby-2.0.0
-----> Installing dependencies using Bundler version 1.3.2
 Running: bundle install --without development:test --path vendor/bundle
--binstubs vendor/bundle/bin --deployment
 Fetching gem metadata from https://rubygems.org/..........
 Fetching gem metadata from https://rubygems.org/..
 Installing rake (10.1.0)
 ...

-----> Compiled slug size: 33.9MB
-----> Launching… done, v5
 http://floating-shore-4610.herokuapp.com deployed to Heroku

To git@heroku.com:floating-shore-4610.git
 * [new branch] master -> master

There is a lot of output from the command, but at the end you will see:

http://floating-shore-4610.herokuapp.com deployed to Heroku

This means that the deployment worked. Now after running migrations on your app, you’ll be able to see the app
running on a real server!

$ heroku run rake db:migrate

Running 'rake db:migrate' attached to terminal… up, run.2873
== CreateArticles: migrating ===
-- create_table(:articles)
 -> 0.0258s
== CreateArticles: migrated (0.0358s) ==

...

Now point your web browser to the URL you picked (the-name-of-your-app.herokuapp.com, in my case its
http://floating-shore-4610.herokuapp.com/) and you will see your app!

Notice that none of your articles or users made it into the deploy. That’s because all of those data are stored
locally in your database, while Heroku has its own copy on the database. You can create users manually in the console
and then go from there filling your app with all the production data you need. To use the console on Heroku, it’s as
simple as typing:

$ heroku run console

You will then be presented with a console that looks just like the console you run locally.

https://rubygems.org/
https://rubygems.org/
http://floating-shore-4610.herokuapp.com/
http://git@heroku.com:floating-shore-4610.git
http://floating-shore-4610.herokuapp.com/
http://app.herokuapp.com/
http://floating-shore-4610.herokuapp.com/

CHAPTER 13 ■ DEPLOYING YOUR RAILS APPLICATIONS

272

That’s it!
That’s all there is to deploying your app with Heroku! Anyone with a web browser now has access to your application.
This deployment is suitable for most small apps and even larger applications if you decide. Heroku allows you to
purchase extra “dynos” or servers to scale your application to support heavier loads. You can do this by visiting
Heroku’s web console.

Deploying to Heroku is only one of the many different ways you can deploy your application. One of the
more popular, but more difficult, solutions is called Capistrano (https://github.com/capistrano/capistrano).
Capistrano deployment is out of the scope of this book, but you should be aware that it exists.

Whole books could be written on the topic of server set up and application deployment, but we tried to give you a
quick way to let the masses use your great application with as little pain as possible.

Summary
This chapter showed you how to deploy your application quickly and easily using the Heroku platform as a service.
It explained that you could develop web applications and not have to worry about your infrastructure. Although, for a
full-scale enterprise deployment, it’s probably best to call in the experts and build a solution from the ground up. Now
that you know how to get your application in the hands of the public, you can go about the business of being the next
billionaire startup, there isn’t anything stopping you!

https://github.com/capistrano/capistrano

273

APPENDIX A

Databases 101

Let’s begin with some simple definitions. A database is a piece of software that governs the storage, retrieval, deletion,
and integrity of data. Databases are organized into tables. Tables have columns (or if you prefer, fields), and data
are stored in rows. If you’re familiar with spreadsheets, then the idea is fairly similar. Of course, databases blow
spreadsheets out of the water in terms of power and performance.

Structured Query Language (SQL) is the standard way of communicating with databases. Using SQL, you can
view column information, fetch a particular row or a set a rows, and search for rows containing certain criteria. You
also use SQL to create, drop, and modify tables, as well as insert, update, and destroy the information stored in those
tables. SQL is a fairly large topic, so a complete treatment is beyond the scope of this book. That said, you need to
know the basics, so consider this a crash course.

Note ■ The output in this appendix assumes you’ve followed the code in the book up to Chapter 5. If you read this

appendix at a different point and implement the code, you may get different output.

Examining a Database Table
Here’s an example definition for a table called articles. Note that the examples use SQLite, as they do throughout
this book. If you’re following along using a different piece of database software, the response you see may be slightly
different or might not work at all. To start the SQLite utility tool, run the rails dbconsole command from the book’s
project folder on your computer:

sqlite> .tables

articles schema_migrations

You use the SQLite .tables command to peek at the tables that exist in the database.
As you can see, the database has two tables: articles and schema_migrations. You don’t get a lot of information

about the tables from the .tables command, but that can be achieved by querying an internal SQLite table called
sqlite_master:

sqlite> select sql from sqlite_master where name = 'articles';

CREATE TABLE "articles" ("id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
"title" varchar(255), "body" text, "published_at" datetime, "created_at" datetime,
"updated_at" datetime, "excerpt" varchar(255), "location" varchar(255))

APPENDIX A ■ DATABASES 101

274

The result of this command is an SQL statement that describes all the fields in the articles table. Each field
has a type, which defines the kind of data it can store. The id field has a type of integer; title has a type of varchar,
and body is a text field. Although it may sound strange, a type of varchar means the field has a variable number
of characters up to a defined maximum. In this case, the maximum is 255 characters, which is the typical limit for
varchar fields. (If you need to store more than 255 characters, use the text field type, like the body field.)

The id column is the one to pay attention to here. It’s the primary key—a unique identifier for a particular row.
Because this key is essential, it absolutely needs to be not null, and it must be unique; you let the database manage
its value by automatically incrementing its number each time a new row is created. Notice how this is specified in the
articles table column description: PRIMARY KEY AUTOINCREMENT NOT NULL. These are special commands that tell
SQLite how to handle this particular field.

Let’s look at some data from the articles table:

SELECT * FROM articles;

7|RailsConf|RailsConf is the official gathering for Rails developers..|2010-02-27..
8|RubyConf 2010|The annual RubyConf will take place in..|2010-05-19..

Here, you’re using the SQL SELECT command to view this table’s data. As you can see, you have two records in the
table. You probably have different records in your database; the main point here is understanding the commands to
see the data, not the data itself.

Working with Tables
The most common use of databases (not only in the context of Rails) is to implement CRUD functionality: create,
read, update, and delete. Corresponding to the CRUD components are the most commonly used SQL commands:
INSERT, SELECT, UPDATE, and DELETE, as shown in Table A-1.

Table A-1. Common SQL Commands

Operation SQL Command

Create INSERT

Read SELECT

Update UPDATE

Delete DELETE

The following sections use the articles table presented in the previous section to show some examples of how
these commands work. Remember that it’s not necessary to have a complete understanding of SQL to work with Rails.
The whole point of Active Record is to alleviate the tedium of needing to construct complex SQL statements to view
and otherwise manipulate your data.

Selecting Data
The SELECT statement is a powerful and useful SQL command. Using SELECT, you can query (or request information
from) the database and mine it for information. You can give SELECT any number of fields, a set of conditions to be
applied to the data to be returned, a limit on the number of rows it returns, and instructions on how to order its results.

APPENDIX A ■ DATABASES 101

275

Earlier, you used the SELECT statement to see the data in the articles table:

SELECT * FROM articles;

The asterisk (*) character is a wildcard that means every column. This statement says, “Show me the values in
every column for every row.” This is the easiest way to look at the contents of a table. But you don’t often need to see
every single row; and for tables with a lot of data, you could end up with a really large list. So, sometimes it isn’t very
efficient to select everything. Fortunately, you can also select specific columns by name. For example, to select only
the title column, do this:

sqlite> SELECT title FROM articles;

RailsConf
RubyConf 2010

Instead of returning all fields, this command returns only the one requested: title. To return both the title and
the body fields, add body to the list of columns to select:

sqlite> SELECT title, body FROM articles;

RailsConf|RailsConf is the official gathering for Rails developers..
RubyConf 2013|The annual RubyConf will take place in..

In both cases, the command returns all rows. If there were 100 rows in the table, they would all be returned.
But what if you need to find a particular row? This is where conditions come in to play. To supply conditions to a

SELECT statement, you use the WHERE clause:

SELECT fields FROM table WHERE some_field = some_value;

Let’s apply this to the articles table by finding a row by its primary key:

sqlite> SELECT * FROM articles WHERE id = 7;

7|RailsConf|RailsConf is the official gathering for Rails developers..|2010-02-27
00:00:00.000000|2013-04-02 22:45:03.777308|2013-04-02 22:45:03.777308||

This query returns only the row whose primary key, id, matches the condition. You can use this technique on any
field—id, title, or body—or all of them combined. Conditions can be chained together using AND and further modified
using OR. For example, the following query returns only records whose titles and authors match the specified criteria:

SELECT * FROM articles WHERE title = 'Beginning Rails' AND id = 2;

Inserting Data
To insert a row into a table, you use the INSERT command. INSERT requires a table name, a list of fields, and a list of
values to insert into those fields. Here’s a basic INSERT statement for the articles table:

sqlite> INSERT INTO articles (title, body) VALUES ('Intro to SQL',
'This is an introduction to Structured Query Language');

APPENDIX A ■ DATABASES 101

276

SQLite doesn’t give any indication that something happened, which means your command was accepted and
didn’t generate any errors. To see what was inserted, you again use the SELECT command:

sqlite> SELECT * FROM articles;

7|RailsConf|RailsConf is the official gathering for Rails developers..|2013-04-27..
8|RubyConf 2013|The annual RubyConf will take place in..|2013-04-19..
9|Intro to SQL|This is an introduction to Structured Query Language|||||

You now have three rows in your table. Notice that in the INSERT statement, you don’t specify the id field. That’s
because, as you recall, it’s handled automatically by the database. If you were to insert a value, you wouldn’t have a
reliable way to guarantee its uniqueness and could cause an error if you attempted to insert a duplicate value. The
database automatically inserts an id value into the field that’s greater than the biggest existing id.

Updating Data
If you want to change the values in a row, you use the UPDATE statement. UPDATE is similar to INSERT, except that like
SELECT, it can be modified (or constrained) by conditions. If you want to change the title for the “Intro to SQL” article,
you can do so like this:

sqlite> UPDATE articles SET title = 'Introduction to SQL' WHERE id = 9;

Again, SQLite is silent, which means the command has been accepted. The fact that you use the primary key
to find and update the row is significant. Although you can match any value in any column, the only surefire way to
ensure you’re updating the row you want is to use the primary key. You can confirm that the value was updated with
another query:

sqlite> SELECT title FROM articles WHERE id = 9;

Introduction to SQL

Sure enough, the title field has been updated.

Deleting Data
Of course, not all information in a database will stay there forever. Sometimes you need to delete records, such as
when a product goes out of stock or a user cancels their account. That’s the purpose of the DELETE statement. It works
a lot like the UPDATE statement, in that it accepts conditions and deletes the rows for any records that match the
conditions. If you want to delete the article with the id of 9, the DELETE statement is as follows:

sqlite> DELETE FROM articles WHERE id = 9;

SQLite receives the command and deletes the record identified by the id you specified. And, of course, if you
subsequently search for the record, you find that it no longer exists:

sqlite> SELECT * FROM articles WHERE id = 9;

APPENDIX A ■ DATABASES 101

277

Caution ■ When you use either the UPDATE or DELETE command, you’re making changes to existing data; so be careful

to use a WHERE clause to limit the records you’re updating or deleting. A good practice is to always run a SELECT command

first to make sure your query returns the records you’re expecting; then, later run the UPDATE or DELETE command.

Understanding Relationships
It’s good practice to avoid duplication in your database by creating distinct tables to store certain kinds of information.
You relate two tables to each other using an association. This makes more sense when you see it in action, so let’s look
at the articles table again. We added a column named author by running the ALTER TABLE articles ADD COLUMN
author varchar(255); SQL command so the table contains more data:

sqlite> SELECT * FROM articles;

+----+-----------------------+---------------------+
| id | title | author |
+----+-----------------------+---------------------+
1	ActiveRecord Basics	Jeffrey Hardy
2	Advanced ActiveRecord	Cloves Carneiro Jr.
3	Setting up Subversion	Cloves Carneiro Jr.
4	Databases 101	Jeffrey Hardy
+----+-----------------------+---------------------+

There’s quite a bit of duplication in the author field. This can potentially create problems. Although you could
search for all articles by a particular author using a standard SELECT query, what would happen if someone’s name
were misspelled? Any articles by the misspelled author wouldn’t show up in the query. And if there were such a typo,
you’d need to update a lot of records in order to fix it. Moreover, searching on a text field like author is both unreliable
and rather slow when compared with searching using an integer type.

You can improve this design significantly by putting authors in their own table and referencing each author’s
unique id (primary key) in the articles table instead of the name. Let’s do that now. Create a new table called
authors, and change the author field in the articles table so it can store an integer instead of text. The new authors
table looks like this:

sqlite> CREATE TABLE "authors" ("id" INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
"name" varchar(255));
sqlite> ALTER TABLE articles ADD COLUMN author_id integer;

Note how instead of a text field called author, you now have a numeric field called author_id that references the
author’s primary key from the authors table. This field holds a foreign key, which is a reference to the primary key
of the table it relates to: in this case, the author who wrote the article. For each author in the articles table, you use
INSERT to create a record in the authors table. You can then update the value of the author_id field using an UPDATE

APPENDIX A ■ DATABASES 101

278

statement for the dataset you’re working with. If you now look at the data from both tables, you’ll see that you’ve
eliminated the duplication:

sqlite> SELECT id, author_id, title FROM articles;

1|1|ActiveRecord Basics
2|2|Advanced ActiveRecord
3|2|Setting up Git
4|1|Databases 101

sqlite> SELECT * FROM authors;

1|Cloves Carneiro Jr.
2|Jeffrey Hardy

You can now use this relationship in your SELECT queries by joining the two tables together using their
association. In this association, the author_id in the articles table is equal to the id column in the authors table.
Adding the JOIN directive requires only a slight change to the SQL:

sqlite> SELECT articles.id, title, name FROM articles
JOIN authors ON articles.author_id = authors.id;

1|ActiveRecord Basics|Cloves Carneiro Jr.
2|Advanced ActiveRecord|Jeffrey Hardy
3|Setting up Git|Jeffrey Hardy
4|Databases 101|Cloves Carneiro Jr.

Now you get the author names returned with the query, which effectively spans two tables. This is the crux of
relational databases. Updating an author’s name is now easy because there is only one instance of a given author.
Updating that author affects all of that author’s associated articles:

sqlite> UPDATE authors SET name = 'Packagethief' WHERE id = 2;

This changes the name of the author with the id of 2 to Packagethief. When you run the JOIN query again, you’ll
see that all instances of the author’s name have been updated:

sqlite> SELECT articles.id, title, name FROM articles
JOIN authors ON articles.author_id = authors.id;

1|ActiveRecord Basics|Cloves Carneiro Jr.
2|Advanced ActiveRecord|Packagethief
3|Setting up Git|Packagethief
4|Databases 101|Cloves Carneiro Jr.

APPENDIX A ■ DATABASES 101

279

SQL and Active Record
This brings your database crash course to a close. This was by no means a complete reference, nor was it intended to
be. Its purpose was to illustrate the basics of how databases work and to introduce you to their native language: SQL.
Now that you have a taste, you can safely enter the world of Active Record, where most of this tedious work is handled
for you.

Why did we bother showing you this if Active Record takes care of most of it for you? Because it’s important to
know what Active Record is doing behind the scenes. Although you can effectively use Active Record like a black
box, you’ll eventually need to debug your programs and figure out why something isn’t working the way you expect.
Having a basic understanding of SQL helps. Moreover, every bit of SQL that Active Record generates is logged by Rails.
You can find the logs in the log/ directory of your application. Now, when you see these SQL commands in the logs,
you’ll have a good idea what they mean.

281

APPENDIX B

The Rails Community

Rails development is driven by a vibrant and passionate community of open source developers. The Rails community
encourages its members to participate actively in Rails development. You can start by asking questions and discussing
new features. As your knowledge increases, you can help others by writing about your own experiences in a personal
blog, answering questions on the mailing list, contributing to the wiki, and fixing bugs and writing patches to make
Rails even better. Whatever your intention, rest assured that participating in the community will help you get the most
out of Rails.

Beginning Rails 4 Channels
As a companion to this book, we’re opening a few communication channels with you. Feel free to contact us and other
readers using the medium you feel most comfortable with:

• Web site: A resource to update you about changes in Rails 4 and later versions that may affect
some of the code in the book and to direct you to more information in the Ruby and Rails
worlds. You can check our web site at http://beginningrails.com.

• Mailing list: A mailing list for those interested in exchanging ideas or asking questions to the
authors or other Rails developers. You can discuss changes in the Rails framework; or, if you
find a bug in the framework, you can discuss proposed solutions. You can subscribe to this list
at http://groups.google.com/group/beginning-rails.

• Twitter: The Twitter account is used to notify users about changes in Rails 4 and allows
direct conversation between the authors and you. You can follow us at
http://twitter.com/beginningrails.

Rails Mailing Lists
You can subscribe to several Rails-related mailing lists:

• Talk mailing list: A high-volume list where users can seek help, announce open source or
commercial Rails projects, and discuss any miscellaneous matters about the Rails framework.
You can subscribe to this list at http://groups.google.com/group/rubyonrails-talk.

• Core mailing list: A low-volume list for those interested in Rails development. This list is for
developers interested in discussing changes in the Rails framework itself. You can expect to
find technical threads about Active Record, Action Mailer, Action Pack, and Rails performance.
You can subscribe to this list at http://groups.google.com/group/rubyonrails-core.

http://beginningrails.com/
http://groups.google.com/group/beginning-rails
http://twitter.com/beginningrails
http://groups.google.com/group/rubyonrails-talk
http://groups.google.com/group/rubyonrails-core

APPENDIX B ■ THE RAILS COMMUNITY

282

• Security mailing list: A list for those who want to keep abreast of Rails security concerns.
You can subscribe to this read-only mailing list at http://groups.google.com/group/
rubyonrails-security.

Rails IRC Channel
If you want to interact with other Rails developers live, you can try the Rails IRC channel. Open your favorite IRC client
and connect to the Freenode IRC network at irc.freenode.net. Enter the #rubyonrails channel, and you’ll find
hundreds of Rails developers at any time of the day (or night) willing to help you and chat about their favorite web
framework. If you want to be seen as a caring community participant, make sure you follow some basic etiquette on
how to ask appropriate questions; look at www.slash7.com/pages/vampires for some guidelines.

Note ■ Internet Relay Chat (IRC) is a type of real-time Internet chat, where users talk about their interests in

topic-specific areas called channels. All you need to connect to IRC is IRC client software. The most commonly used IRC

clients are the shareware mIRC (http://mirc.com) for Windows and the open source Colloquy (http://colloquy.info)

for Mac.

Rails Blogs and Podcasts
The number of blogs dedicated to Rails information is rapidly growing and most of the new Rails features are covered
in blogs or podcasts even before they’re released to the public. You can subscribe to the blogs of your choice to keep
up with news in the Rails world.

The following are some of the more rewarding Rails-related blogs you can visit, including the official
Rails podcast:

• http://weblog.rubyonrails.org: The official Rails blog. You’ll find information about
upcoming releases, new functionality in Rails, and news that’s considered important (such as
documentation updates and Rails adoption worldwide).

• http://rubyflow.com: A Ruby community site where people post interesting and new things
about Ruby or Rails.

• http://railscasts.com: A great web site by Ryan Bates with a series of informative
screencasts that teach a wide range of Rails tricks, covering all aspects of the Rails framework.

• http://ruby5.envylabs.com: The Ruby5 podcast. In five minutes or less—or a bit more—you
can listen to Ruby and Rails news.

Rails Guides
The Rails community has started a documentation effort called Rails Guides, which you can find at
http://guides.rubyonrails.org. It’s a great effort to document various parts of the frameworks, from the basic
beginner-oriented documentation to more advanced material.

http://groups.google.com/group/rubyonrails-security
http://groups.google.com/group/rubyonrails-security
http://irc.freenode.net
http://www.slash7.com/pages/vampires
http://mirc.com/
http://colloquy.info/
http://weblog.rubyonrails.org/
http://rubyflow.com/
http://railscasts.com/
http://ruby5.envylabs.com/
http://guides.rubyonrails.org/

APPENDIX B ■ THE RAILS COMMUNITY

283

Rails APIs
It’s close to impossible to remember the names, methods, and possible parameters of all the functions and classes
in Ruby and Rails. To help you with your coding tasks, we recommend that you keep the Ruby and Rails application
programming interface (API) documentation open, or at least that you put them in your favorites. The API
documentation contains all the information about specific functions you’re trying to use, including the function
source code.

You can find the Rails API documentation at http://api.rubyonrails.org. The Ruby API is at
www.ruby-doc.org/core. For more user-friendly and searchable API documentation, go to
http://apidock.com/rails.

Rails Source and Issue Tracking
You can find the Rails source code at http://github.com/rails/rails. It’s powered by the GitHub application,
a hosting service for projects using the Git revision-control system. GitHub allows you to download the Rails source
code using a web interface. You can subscribe to the Git change log using RSS to be notified about changes to the
Rails source code.

You can also participate in the development of Rails by submitting bug reports and patches to the GitHub
account at http://www.github.com/rails/rails or by looking at the existing tickets and trying to fix them.

http://api.rubyonrails.org/
http://www.ruby-doc.org/core
http://apidock.com/rails
http://github.com/rails/rails
http://www.github.com/rails/rails

285

APPENDIX C

Git

Developers normally work in teams. You write plenty of code; sometimes you test some and decide to delete it, and
other times you decide to stick to it. Managing this can be a painful process, which is why you can use Source Control
Management (SCM) software: to help you focus on what you do best—writing beautiful code. Git is rapidly becoming
the preferred SCM of developers everywhere.

What Is Source Control Management?
SCM software helps you keep track of code changes and gives you the ability to easily collaborate on that code with
your teammates. The two main features of any SCM are:

• Versioning: When you’re using SCM for your project, files and directories in the project are
tracked. Every time you make changes to your files, you can save those changes as a new
version. Your project then has several versions—one for every change set—giving you the
ability to browse those changes and revert to any one at any time.

• File merging: Let’s say you worked on a file and your colleague, John, worked on that same file,
and you both committed (submitted) your files to the SCM system. Both files are merged by
SCM of your involvement; if SCM can’t handle the merge for any reason, it lets you know and
gives you some useful information about how to manually merge conflicting changes yourself.

How Does It Work?
Generally, when you add your code base to an SCM system, a repository is created, which is the store of all the
versions of your code base. Then, you can take a copy of that repository and work on it; this is normally called your
working copy. You can add files, change or delete some, and then commit those changes and send them back to the
repository as a new revision. If your colleague John is working with you on the same code base, he can check out or
pull those changes from the repository to update his working copy, letting the SCM take care of any necessary file
merging (Figure C-1).

APPENDIX C ■ GIT

286

Git
The Git SCM was developed by Linus Torvalds for managing the Linux Kernel source code. It’s also been used for
several million open source projects, including Rails.

Git is different from other SCMs because it’s a distributed source control system. This means that instead of
having a single repository on your server that all your teammates use to check out working copies (client-server or
centralized SCM), each team member has their own repository along with a working copy, and you all push a copy
of that repository to a remote repository.

This approach has some great benefits, such as the ability to work and commit your code, even if you’re offline,
and being able to operate on your repository more quickly.

Now that you have a good understanding of what an SCM is and how it works, let’s install Git and try it.

Installing Git
Installing Git is relatively easy. Thanks to open source contributions, several Git installation packages are available
to facilitate a quick installation for most platforms.

Installing on Windows

If you’re on Windows, you can install Git on your system using Git on Windows, also knows as msysGit, which is an
open source project available at https://code.google.com/p/msysgit/downloads/list?q=full+installer+official+git.

Download the Git installation executable from the download section of the project web site. The current
version at the time of this writing is Git 1.8.1.2, and it’s available to download at
https://msysgit.googlecode.com/files/Git-1.8.1.2-preview20130201.exe.

Figure C-1. SCM workflow

https://code.google.com/p/msysgit/downloads/list?q=full+installer+official+git
https://msysgit.googlecode.com/files/Git-1.8.1.2-preview20130201.exe

APPENDIX C ■ GIT

287

Start the installation following the default options. You end up with Git installed on your system. The package
also adds some interesting tools: Git GUI, which gives you a nice graphical interface to use Git; Git Bash, which you
use to execute Git commands; and three context menu items integrated with Windows Explorer—Git Init Here, Git
Bash, and Git GUI—to start the tools from the folder you’re calling them from.

Use the Git Bash tool to execute the commands mentioned in this appendix.

Installing on Mac OS X

To install Git on Mac OS X Leopard, you can either compile it from source using Macports or use Git OS X Installer,
which you can find at http://code.google.com/p/git-osx-installer/.

Download the Git OS X Installer from the project’s web site. The current version at the time of this writing is
Git 1.8.2.1, available to download from https://git-osx-installer.googlecode.com/files/git-1.8.2.1-intel-
universal-snow-leopard.dmg.

The file you download is a disk image; it has a package installer named git-1.8.2.1-intel-leopard.pkg.
Run the package installer, selecting the default options. When the installation is complete, Git is available from
the terminal.

Installing on Linux

Most Linux distributions ship with a package manager. The most common one is the Debian package manager apt,
and Git is part of its library.

To install Git using apt, run the following apt-get command from the terminal:

sudo apt-get install git

Accept if the package manager asks your permission to use additional disk space for this installation. When the
installation is complete, Git is ready to use.

Setting Global Parameters
Every commit you make in your repository has flags for the user who did the commit; those flags are the user’s name
and e-mail address. Now that you have Git installed on your system, it’s important to set a global username and e-mail
address for Git to use for any new repository you work on.

To set global parameters, you use the git config command with the --global option, followed by the
parameters you want to set. Listing C-1 shows the command to set up both the user.name and user.email
parameters.

Listing C-1. Setting the Global Git Username and E-Mail

git config --global user.name "dude"
git config --global user.email my.email@address.com

These parameters can be set on a repository level as well; you can do that by using the same commands but
without the --global option in your repository’s working directory.

http://code.google.com/p/git-osx-installer/
https://git-osx-installer.googlecode.com/files/git-1.8.2.1-intel-universal-snow-leopard.dmg
https://git-osx-installer.googlecode.com/files/git-1.8.2.1-intel-universal-snow-leopard.dmg

APPENDIX C ■ GIT

288

Initializing a Repository
The first thing you want to do is to start a new repository for your application. Begin by creating a test application:

$ rails testapp

create
create README
create .gitignore
create Rakefile
.
.
.
create tmp/cache
create tmp/pids
create vendor/plugins
create vendor/plugins/.gitkeep

Now, initialize a local repository for that application by calling git init in the application directory:

$ cd testapp
$ git init

Initialized empty Git repository in /tmp/testapp/.git/

The git init command initializes an empty local repository for the application, but it doesn’t add any files
to the repository. To determine which files you can add to the repository, you call the git status command:

$ git status

On branch master
#
Initial commit
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
.gitignore
Gemfile
README
Rakefile
app/
config.ru
config/
db/
doc/
lib/

APPENDIX C ■ GIT

289

public/
script/
test/
vendor/
nothing added to commit but untracked files present (use "git add" to track)

As you can see, all the folders and files of the Rails application are in the untracked files list, which means they’re
still untracked. To start tracking those files, you need to add them to the track list; as this indicates, you can do this by
using the git add command.

Ignoring Files
Before you add those files, let’s think a little: Do you want all your files to be tracked? Are there any files you don’t want
to track? Normally, those would be configuration files that contain passwords, such as database.yml, the tmp folder,
log files, and SQLite databases. If you add those files, your teammates will have this information, and it may even
conflict with their files.

To skip those files in any git add all and git status commands, and to tell Git to never bother you about
them again, you must configure Git to ignore them. You do that by declaring those files in a hidden configuration file
called .gitignore, which is normally stored at the root of your working copy (in this case, at the root of the testapp
directory). The .gitignore file is a regular text file; it is generated by Rails in all new projects. Edit it using your text
editor of choice so it looks like the code in Listing C-2.

Listing C-2. The .gitignore File Content in testapp/.gitignore: http://gist.github.com/287051

.bundle
config/database.yml
log/*.log
db/*.sqlite3
tmp/**/*

As you can see, the files and folders listed in the .gitignore file weren’t listed in the git status command you
issued earlier.

Adding and Committing
You can add the untracked files to your repository by using the git add command and passing a dot to it, which refers
to the current directory and all its content. Be cautious when using git add . to make sure you aren’t adding files that
don’t belong in the repository.

$ git add .

http://gist.github.com/287051

APPENDIX C ■ GIT

290

Try the git status command again:

$ git status

On branch master
#
Initial commit
#
Changes to be committed:
(use "git rm --cached <file>..." to unstage)
#
new file: .gitignore
new file: Gemfile
new file: README
new file: Rakefile
.
.
.
new file: script/rails
new file: test/performance/browsing_test.rb
new file: test/test_helper.rb
new file: vendor/plugins/.gitkeep
#

The git status command still shows all the files, because the git add command just added those files to be
committed, but they aren’t committed yet.

In order to commit the changes you added to the commit list, you have to call the git commit command.
Use the –m argument to include a message describing the purpose of and the changes in this commit:

$ git commit -m "Empty Rails application"

[master (root-commit) 046116c] Empty Rails application
 41 files changed, 8434 insertions(+), 0 deletions(-)
 create mode 100644 .gitignore
 create mode 100644 Gemfile
 create mode 100644 README
.
.
.
 create mode 100755 script/rails
 create mode 100644 test/performance/browsing_test.rb
 create mode 100644 test/test_helper.rb
 create mode 100644 vendor/plugins/.gitkeep

APPENDIX C ■ GIT

291

Congratulations—you’ve completed your first commit to your local repository! If you check the git status
command now, you’ll see that there are no changes to be added or committed:

$ git status

On branch master
nothing to commit (working directory clean)

Starting from this point, if you edit any file in your working copy, rename it, move it, or delete it, it will show in
your git status output, allowing you to pick which of those changes you would like to add to your commit list and
then commit them to your repository.

Branching and Merging
Let’s say you decide to work on a new feature for your project that you know will take you some time to finish.
Meanwhile, you want to be able to keep working on the main project without changes from the new feature breaking
your application. To implement this new feature in a separate copy of your project, you need to create a branch.
A branch is a duplicate of your project that you can work on in parallel with the master copy of the same project.

When you called the git init command earlier, Git initialized a new repository for your application with
a default branch called master. To create a new branch in the repository, use the git checkout –b command
followed by the name of the new branch you want to create:

$ git checkout -b articles

This command creates a new branch named articles as a duplicate of the current branch master. To see a list
of the branches in your project, you use the git branch command but without any parameters:

$ git branch

 articles
* master

You have two branches, articles and master. The asterisk in front of master indicates that it’s the current branch
you’re working on. To switch branches, use the git checkout command followed by the name of the branch you want
to switch to:

$ git checkout articles

Switched to branch 'articles'

The articles branch is the current branch now. You can confirm this by listing the branches again:

$ git branch

* articles
 master

APPENDIX C ■ GIT

292

Now, let’s implement a new feature—an articles scaffold:

$ rails generate scaffold Article title:string body:text

invoke active_record
create db/migrate/20130420235045_create_articles.rb
create app/models/article.rb
invoke test_unit
create test/unit/article_test.rb
create test/fixtures/articles.yml
route resources :articles
invoke scaffold_controller
create app/controllers/articles_controller.rb
invoke erb
create app/views/articles
create app/views/articles/index.html.erb
create app/views/articles/edit.html.erb
create app/views/articles/show.html.erb
create app/views/articles/new.html.erb
create app/views/articles/_form.html.erb
invoke test_unit
create test/functional/articles_controller_test.rb
invoke helper
create app/helpers/articles_helper.rb
invoke test_unit
create test/unit/helpers/articles_helper_test.rb
invoke stylesheets
create public/stylesheets/scaffold.css

You’re done with the new feature changes. It’s time to add the changes and commit them to the articles branch:

$ git add .
$ git commit -m "Adding Article scaffold"

[articles 33a538e] Adding Article scaffold
 15 files changed, 308 insertions(+), 0 deletions(-)
create mode 100644 app/controllers/articles_controller.rb
 create mode 100644 app/helpers/articles_helper.rb
 create mode 100644 app/models/article.rb
 create mode 100644 app/views/articles/_form.html.erb
 create mode 100644 app/views/articles/edit.html.erb
 create mode 100644 app/views/articles/index.html.erb
 create mode 100644 app/views/articles/new.html.erb
 create mode 100644 app/views/articles/show.html.erb
 create mode 100644 db/migrate/20130420235045_create_articles.rb
 create mode 100644 public/stylesheets/scaffold.css
 create mode 100644 test/fixtures/articles.yml
 create mode 100644 test/functional/articles_controller_test.rb
 create mode 100644 test/unit/article_test.rb
 create mode 100644 test/unit/helpers/articles_helper_test.rb

APPENDIX C ■ GIT

293

When you check the git status command now, you see that you have nothing to commit in the articles
branch:

$ git status

On branch articles
nothing to commit (working directory clean)

The articles branch now has an article scaffold, and the master branch doesn’t. If you switch back to the master
branch, notice that none of the article scaffold files exist there:

$ git checkout master

Switched to branch 'master'

You can modify the project in the master branch completely in isolation from the articles branch if you want
to, but for now let’s merge the articles branch into the master branch. You do that using the git merge command
followed by the branch name you want to merge into the current branch:

$ git merge articles

Updating 88c63c5..33a538e
Fast forward
app/controllers/articles_controller.rb | 83 ++++++++++++++++++++++++++
 app/helpers/articles_helper.rb | 2 +
 app/models/article.rb | 2 +
 app/views/articles/_form.html.erb | 24 ++++++++
 app/views/articles/edit.html.erb | 6 ++
 app/views/articles/index.html.erb | 25 ++++++++
 app/views/articles/new.html.erb | 5 ++
 app/views/articles/show.html.erb | 15 +++++
 config/routes.rb | 2 +
 db/migrate/20130420235045_create_articles.rb | 14 ++++
 public/stylesheets/scaffold.css | 60 ++++++++++++++++++
 test/fixtures/articles.yml | 9 +++
 test/functional/articles_controller_test.rb | 49 +++++++++++++++
 test/unit/article_test.rb | 8 +++
 test/unit/helpers/articles_helper_test.rb | 4 +
 15 files changed, 308 insertions(+), 0 deletions(-)
 create mode 100644 app/controllers/articles_controller.rb
 create mode 100644 app/helpers/articles_helper.rb
 create mode 100644 app/models/article.rb
 create mode 100644 app/views/articles/_form.html.erb
 create mode 100644 app/views/articles/edit.html.erb
 create mode 100644 app/views/articles/index.html.erb
 create mode 100644 app/views/articles/new.html.erb
 create mode 100644 app/views/articles/show.html.erb
 create mode 100644 db/migrate/20100420235045_create_articles.rb

APPENDIX C ■ GIT

294

 create mode 100644 public/stylesheets/scaffold.css
 create mode 100644 test/fixtures/articles.yml
 create mode 100644 test/functional/articles_controller_test.rb
 create mode 100644 test/unit/article_test.rb
 create mode 100644 test/unit/helpers/articles_helper_test.rb

The task is complete: you have developed a new feature in a separate branch without affecting the master
branch; and when you finished, you merged those changes back into master.

Remote Repositories and Cloning
As stated previously, Git is a distributed SCM; therefore, your repository is hosted locally on your machine, hidden
inside your working copy directory. No one else has access to it.

If you want to set up a repository that you and your team can work on, you first have to create a remote repository
that all of you can access and clone from. Your remote repository can be hosted on any machine that is available to all
developers who need access to the repository and have Git installed. It can be hosted on your local network, online,
or with a third-party Git hosting provider like the famous GitHub (http://github.com), which hosts Rails, as well
as many, many other projects.

We used Git for this book’s blog application, and we hosted the repository on GitHub. It’s publicly
available for you at http://github.com/adamgamble/blog/. This means you can clone a copy of the blog
repository to your machine and browse the code locally. To do that, you need the Public Clone URL, which is
git://github.com/adamgamble/blog.git. Let’s clone the blog application repository using the git clone command:

$git clone git://github.com/adamgamble/blog.git

Initialized empty Git repository in /tmp/blog/.git/
remote: Counting objects: 1085, done.
remote: Compressing objects: 100% (575/575), done.
remote: Total 1085 (delta 539), reused 898 (delta 436)
Receiving objects: 100% (1085/1085), 222.28 KiB | 362 KiB/s, done.
Resolving deltas: 100% (539/539), done.

Now you have a local copy of the blog application repository cloned to your machine. You can change files and
even commit them to your own local repository, but what you cannot do is share those commits with others. In order
to push your changes, you need write access to the remote repository, which you don’t have.

If you want to try that, sign up for a free account on GitHub and create a repository of your own there. You then
have two URLs: a public URL that everyone can see, and your clone URL, which gives you full access to this remote
repository.

The concept is simple: after you clone your own repository using your own URL, you can work normally in your
working copy, commit changes, and add and remove files. Whenever you want to share those commits with the rest of
the world, you push them to the remote repository on GitHub using the git push command. If you have teammates
pushing changes to the same repository, you can retrieve those changes by using the git pull command.

To sum up, you create a remote repository to allow more than one developer to work on the same repository.
Although all developers on the team have their own copies, they still need to push their copies to the remote
repository to allow the rest to pull from it and stay in synch.

When you sign up for a free account on GitHub, the repositories you create are publicly available for everyone
to clone from. If you want your repositories to be private, so only you and your teammates can access them, you can
either upgrade your account with GitHub or host them on your own server with your own setup.

http://github.com/
http://github.com/adamgamble/blog/
 http://git://github.com/adamgamble/blog.git
http://git//github.com/adamgamble/blog.git

APPENDIX C ■ GIT

295

Learning More
Git is a great tool and has a lot of commands; however, this appendix has covered only the basic features and
commands. We highly encourage you to read more. You can see a list of the most-used Git commands using
the git help command:

$ git help

usage: git [--version] [--exec-path[=GIT_EXEC_PATH]] [--html-path]
[-p|--paginate|--no-pager] [--bare] [--git-dir=GIT_DIR]
[--work-tree=GIT_WORK_TREE] [--help] COMMAND [ARGS]
The most commonly used git commands are:
 add Add file contents to the index
 bisect Find by binary search the change that introduced a bug
 branch List, create, or delete branches
 checkout Checkout a branch or paths to the working tree
 clone Clone a repository into a new directory
 commit Record changes to the repository
 diff Show changes between commits, commit and working tree, etc
 fetch Download objects and refs from another repository
 grep Print lines matching a pattern
 init Create an empty git repository or reinitialize an existing one
 log Show commit logs
 merge Join two or more development histories together
 mv Move or rename a file, a directory, or a symlink
 pull Fetch from and merge with another repository or a local branch
 push Update remote refs along with associated objects
 rebase Forward-port local commits to the updated upstream head
 reset Reset current HEAD to the specified state
 rm Remove files from the working tree and from the index
 show Show various types of objects
 status Show the working tree status
 tag Create, list, delete, or verify a tag object signed with GPG

See 'git help COMMAND' for more information on a specific command.

To learn more about a specific command, you can use git help COMMAND, which shows that command’s
documentation and how to use the command.

APPENDIX C ■ GIT

296

Other SCM Systems
Although Git is the most talked-about SCM nowadays, you may either be required to use a different SCM or may want
to investigate the alternatives. Here’s a list of other SCMs you could choose:

• Mercurial: Just like Git, Mercurial is a distributed SCM. Mercurial is often compared with Git
because of their similarities; feel free to try it if you want to explore another option. You can
find out more about Mercurial from its official web site: http://mercurial.selenic.com/.

• SVN (Subversion): This was the most prominent SCM for a while, but it has since been
overtaken by Git. You can find out more about Subversion from its official web site:
http://subversion.tigris.org/.

• CVS (Concurrent Versions System): This was one of the earliest SCM systems (initial release in
1990). It’s still popular, although because of some limitations, such as sparse Unicode support
and expensive branching operations, developers have begun moving toward other version
control systems like Subversion and Git. You can find out more about CVS from its official
web site: www.nongnu.org/cvs/.

Online Resources
After the beta launch of GitHub, Git received huge interest from developers, including the Rails core team—they
decided to switch from Subversion to Git and host the official Rails repository on GitHub. This attention to Git
encouraged more developers to try it, and a number of tutorials and blog posts began to appear in the community.

The following are some resources you can visit to dig deeper and learn more about Git:

• http://book.git-scm.com/: The Git Community Book. As the name implies, this book
is written by the Git community to the Git community. It’s a cumulative resource to help
newcomers to Git get started and quickly find what they’re looking for.

• http://peepcode.com/products/git: A 60-minute screencast by PeepCode, available with
an in-depth PDF explanation on how Git works under the hood.

http://mercurial.selenic.com/
http://subversion.tigris.org/
http://www.nongnu.org/cvs/
http://book.git-scm.com/
http://peepcode.com/products/git

Symbols���������
$() function, 193

A���������
Action Controller, 10
Action Pack, 151

controller generator
command, 152
empty stub, 152
form partial, 153–154
new and edit templates, 153
new user, 155
syntax, 151
user_params method, 155

controllers and templates
apply ilters, 172
article form, 167
articles index page, 166
authentication, 170
controller callbacks, 170

inishing touches
action view helpers, 174
article, 178
body ield, 176
custom helpers, 180
edit controls, 177
escape HTML, 175
layout style, 182
style sheet, 183

nested resources
application layout, 158
article partial, 158
article show page, 160
comment-named routes, 156
comments, 155
controller, 157
delete link, 160

generated named routes, 156
updated article, 157

sessions and login/logout logic
logging in, 163
log out, 164
resource, 161
session, 161
stateless, 161

Action Pack. See View and controller
Action View, 10
Active Record, 3, 10, 61, 81

callbacks
after_create method, 114
before_save method, 114
email_article_author

methods, 115
hashing algorithms, 117
models, 114
user model, 115

conventions, 63
CRUD

all records, 73
create method, 70
creating new records, 67
deleting with conditions, 78
ind method, 71
instance, 76
modeling process, 67
new constructor, 68
single record using irst, 72
single record using ID, 71
updating records, 75
using delete, 77
using destroy, 76
with conditions, 75

errors collection, 79–80
inding

array condition syntax, 102
association proxies, 104

Index

297

default scope, 105
inder methods, 104
log ile, 103
named scope, 106
SQL fragment, 102
where method, 101

fresh Article object, 79
full_messages method, 79
methods

basics, 81
command, 82
domain logic, 82
encapsulate, 82
fat models, 83
long_title methods, 82

ORM, 61
recalling speciic validations, 78
size, 80
SQL, 62
updated models, 119
validations

account model, 108
custom validation methods, 112

validations (see Built-in validations)
Active Record. See Associations
Ajax, 193
Apple Developer Tools (Xcode), 14
Application programming

interface (API), 283
Associations

articles and comments tables, 84
declaration, 84
foreign key reference, 83
foreign-key references, 84
many-to-many relationship

articles and categories, 96
seeding data, 98

new associated object, 92
one-to-many associations, 90
one-to-one associations, 85
options

default order, 94
dependencies, 95

primary key, 83
relationship, 83
rich many-to-many

associations, 99
user and proile models

command, 86
common has_one options, 90
console session, 88
create_proile method, 89
has_one and belongs_to

relationship, 89

migration, 86
one-to-one association, 87
user_id attribute, 88

users and article models, 90

B���������
Blog application, 242
Built-in validations

conirmation, 111
default options, 109
format options, 111
length/size, 110
method, 112
unique, 110
value has been entered, 109

C���������
Concurrent Versions System

(CVS), 296
Console

advantage, 64
Article model, 64
column_names class

method, 65
irb, 64
Ruby code, 64
subclassing and superclass, 65

Controller walk-through
action controller, 135
article form, 138
articles controller, 144
blog application, 130
edit and update actions, 146
error messages, 145
form helpers, 140
GET, 134
layouts, 136
named routes, 129
partials

collection, 149
local variables, 149
object partials, 149
staying DRY, 148

redirects, 134–135
rendering responses, 134
request parameters, 143
RESTful routes and

resources, 129
routing basics, 128
scafold generator, 131
templates, 135
validation errors, 142
views, 146

■INDEX

298

Active Record (cont.)

Crash course, RUBY class, 65
Create, read, update, and delete (CRUD)

creating new records, 67
deleting with conditions, 78
ind method, 71
instance, 76
modeling process, 67
new constructor, 68
reading records

all records, 73
single record using

irst, 72
single record using ID, 71
with conditions, 75

updating records, 75
using delete, 77
using destroy, 76

D���������
Databases 101, 273

Active Record, 279
database, 273
SQL, 273
SQL commands, 274

asterisk (*) character, 275
crux relational databases, 278
DELETE statement, 276
foreign key, 277
INSERT statement, 275
JOIN query, 278
primary key, 276
SELECT statement, 274, 277
UPDATE statement, 276
WHERE clause, 275

table creation, 273
primary key, 274
SELECT command, 274
type, 274

Debian-based variant. See Ubuntu Linux
Deploying rails applications, 267

Capistrano deployment, 272
Git Repository, 269

database, 271
Gemile.lock, 270
gems, 270
Heroku creation, 269
initial commit, 269
output, 271
remote server, 269

Heroku account, 267
Toolbelt, 268

PAAS, 267
Document Object Model (DOM), 193
Don’t repeat yourself (DRY), 6

E���������
E-mail

Action Mailer, 203
application settings, 205
mail server, 203
server connection, 204

receiving (see Receiving e-mail)
sending (see Sending e-mail)

Embedded Ruby (ERb), 124

F���������
File merging, 285
Foreign key, 277
Functional testing controllers

articles controller test, 229
full test suite, 241
helper method

article creation, 236
destroy article, 239
index action, 230
missing test, 241
new action, 235
show action, 233
test_helper ile, 230

overview, 229

G, H���������
Gemile.lock, 270
Git, 285

adding and committing, 289
branch, 291
checkout command, 291
clone command, 294
git help command, 295
GitHub, 294
git push command, 294
installing Git, 286

gitignore ile, 289
global parameters, 287
initialize local repository, 288
Linux, 287
Mac OS X Leopard, 287
Windows, 286

merge command, 293
Online Resources, 296
remote repository, 294
SCM (see Source Control Management (SCM))

I���������
InsertAfter method, 195
Integration testing

■INDEX

299

blog application, 242
overview, 242
singleton methods, 248
story-based testing, 246

Internationalization, 251
bilingual blog

before action, 263
calling language_selector, 262
language selector, 265
language_selector helper

method, 262
language selector link, 265
locale coniguration, 264

blog application-Brazilian Portuguese
default locale, 260
localized interface, 261
translation iles, 259

blog application-i18n
ArticlesController, 255
default locale ile, 257
translation, 255
updated article Partial, 257
updated comment model, 254

Rails
Brazilian Portuguese locale

iles, 253
error messages, 253
locales, 251
rails console, 252
translate method, 252
translation missing, 254

Internet Relay Chat (IRC) Channel, 282

J, K���������
JavaScript and CSS, 191

$() function, 193
Ajax, 193
asset concatenation and

compression, 191
Asset Pipeline, 192
secondary languages, 191

CSS Selectors, 193
DOM, 193
Grand Entrance, 197
insertAfter method, 195
jQuery, 193
js.erb template creation, 194
new comment element, 195
new comment link, 194, 196
Rails, 193
template show, 194
Turbolinks gem, 192
using Ajax, 197

controller comments updated, 198
create method, 198
delete records, 200
error message, 199
JavaScript request, 198
js.erb template creation, 198–199
remote, 197

JOIN query, 278

L���������
Lightweight methodologies, 4
Localization. See Internationalization

M, N���������
Mercurial, 296
Migration, 33
Model enhancement. See Active Record
Model-view-controller (MVC) pattern

characteristics, 7
controller layer, 8–9
cycle, 7
model layers, 8
spaghetti code, 7
view layer, 8, 10

O���������
Object-oriented (OO), 55
Object-relational gap., 63
Object-relational mapping (ORM), 61

P, Q���������
Platform as a service (PAAS), 267
Primary key, 274, 276
Principle of least surprise (POLS), 5

R���������
Rails, 1
Rails application. See also Action pack

action, 23
Active Record (see Active Record)
additional ields, 38
advantages, 2
agile principles, 4
Article model, 32
blog application

command line, 28
conig/database.yml File, 29
default SQLite database, 30
Rails directory structure, 28–29
users, 27

■INDEX

300

Integration testing (cont.)

browser issues, 2
built-in web server

commands, 20
welcome page, 21

console
advantage, 64
Article model, 64
column_names class method, 65
irb, 64
Ruby code, 64
subclassing and superclass, 65

controller, 22
controller generator, 35
convention over coniguration, 5
creating table

20130406203049_create_articles.rb, 33
db:migrate Rake task, 34
instance method, 34
migration, 33
rollback task, 34
timestamps method, 34

DRY principle, 6
ix, 2
generated iles, 41
history, 3
installation

RubyGems, 13
steps, 13

less software, 5
libraries, 10
Linux

apt-get update command, 17
Rails, 18
Ruby, 18
SQLite, 19

Mac OS X 10.8 Mountain Lion
command line tools, 14
Homebrew, 14
install Rails, 15
RVM, 15
Xcode, 14

modular, 10
MVC pattern

characteristics, 7
cycle, 7
layers of, 8
spaghetti code, 7

new project, 19
no silver bullets, 11
open source tool, 6
opinions, 6
project database, 30
Rails 4 release, 3
Ruby, 3
scafolding

Article model, 36
generator, 36
http://localhost\:3000/articles/new, 37
speed, 37

templates
app/views, 24
“Hello World” application, 25
result, 24

validations, 40
web-based software, 1
web framework, 2
Windows

Rails, 16
Ruby installation, 15
SQLite, 17

Rails community, 281
APIs, 283
Blogs and Podcasts, 282
communication channels, 281

Mailing list, 281
Twitter, 281
Web site, 281

Guides, 282
IRC Channel, 282
Mailing Lists, 281

Core mailing list, 281
Security mailing list, 282
Talk mailing list, 281

source and issue tracking, 283
Receiving e-mail

POP/IMAP, 216
Rails process, 215

Representational State Transfer
(REST), 126

Ruby installation
Linux, 18
Windows, 15

Ruby language, 45
blocks and iterators, 52
classes, 56
class variables, 51
constants, 51
control-low statements, 53
data types

array, 49
container objects, 49
hash objects, 50
numbers, 48
shovel operator, 50
strings, 47
symbols, 49

documentation, 59
instance variables, 51
interactive interpreter, 45
local variables, 51

■INDEX

301

methods, 54
objects, 55
operators, 52
overview, 45
style, 59
variables, 51

Ruby Version Manager (RVM), 15

S���������
Scafolding, 36
Sending e-mail

add attachments, 213
comments, 214
handling basic e-mail

article page, 209
message delivered, 211
notify_friend_article

route, 208
partial render, 209
updated notiier mailer, 210

HTML formatting, 211
mailer instance variables, 207
Notiier class, 206

Simple Mail Transfer Protocol
(SMTP), 203

Singleton methods, 248
Source Control Management (SCM)

CVS, 296
ile merging, 285
Mercurial, 296
SCM worklow, 286
SVN, 296
versioning, 285

SQLite
Linux, 19
Windows, 17

Story-based testing, 246
String interpolation, 47
Structured Query Language (SQL), 273
Subversion (SVN), 296

T���������
Test-driven development (TDD), 229
Testing applications. See also Unit testing

full test suite, 250
functional testing controllers

articles controller test, 229
full test suite, 241
overview, 229

functional testing controllers (see Testing
helper method)

integration testing

blog application, 242
overview, 242
story-based testing, 246

overview, 219
Rails handles testing

ixtures, 220
points, 219
rails command, 220
unit directory, 220
updated ixture, 220

refactoring existing code, 219
Testing helper method, 230

article creation, 236
destroy article, 239
index action, 230
missing test, 241
new case, 235
POST method, 237
show action, 233

Toolbelt, 268
Turbolinks gem, 192

U���������
Ubuntu Linux

apt-get update command, 17
Rails, 18
Ruby, 18
SQLite, 19

Unit testing
Article model

assertions, 223
create ixtures, 222
destroy test, 226
ind test, 224
overview, 222
test creation, 222
update test, 225

article test, 221
assertions, 221
command prompt, 221
elements, 221
overview, 221
test method, 221
validations, 227

V���������
Validation testing, 227
Versioning, 285
View and controller, 121. See also Controller

walk-through
Action pack components, 121

Action View library, 123
controllers, 122

■INDEX

302

Ruby language (cont.)

■INDEX

303

Embedded Ruby, 124
helpers, 125
method, 123
request cycle, 127
RESTful resources, 126
routing, 125
working deinition, 123

W, X���������
WHERE clause, 275

Y, Z���������
YAML, 30

Beginning Rails 4

Adam Gamble

Cloves Carneiro, Jr.

Rida Al Barazi

Beginning Rails 4

Copyright © 2013 by Adam Gamble, Cloves Carneiro, Jr., and Rida Al Barazi

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6034-9

ISBN-13 (electronic): 978-1-4302-6035-6

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Josh Adams
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan, Jonathan Gennick,

Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie, Jef Olson,
Jefrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade,
Steve Weiss, Tom Welsh

Coordinating Editor: Mark Powers
Copy Editor: Mary Bearden
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science +
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers
at www.apress.com/9781430260349. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code.

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781430260349
http://www.apress.com/source-code

To my dad, Gary, who always invested in and encouraged my love of technology.

vii

Contents

About the Authors ... xvii

About the Technical Reviewer ... xix

Introduction ... xxi

Chapter 1: Introducing the Rails Framework ■ ..1

The Rise and Rise of the Web Application ...1

The Web Isn’t Perfect ..2

The Good Web Framework ..2

Enter Rails ...3

Rails Is Ruby .. 3

Rails Encourages Agility .. 4

Rails Is Opinionated Software .. 6

Rails Is Open Source .. 6

The MVC Pattern ..7

The MVC Cycle ... 7

The Layers of MVC ... 8

The Libraries That Make Up Rails ..10

Rails Is Modular ...10

Rails Is No Silver Bullet ...10

Summary ...11

■ CONTENTS

viii

Chapter 2: Getting Started ■ ...13

An Overview of Rails Installation ...13

Installing on Mac OS X 10.8 Mountain Lion ...14

Installing the Apple Developer Tools (Xcode) ... 14

Installing Command Line Tools .. 14

Installing Homebrew .. 14

Installing RVM .. 15

Installing Rails ... 15

Installing on Windows ...15

Installing Ruby ... 15

Installing Rails ... 16

Installing SQLite ... 17

Installing on Linux ...17

Installing Ruby ... 18

Installing Rails ... 18

Installing SQLite ... 19

Creating Your First Rails Application ...19

Starting the Built-In Web Server .. 20

Generating a Controller .. 22

Creating an Action ... 23

Creating a Template ... 23

Summary ...25

Chapter 3: Getting Something Running ■ ...27

An Overview of the Project ..27

Creating the Blog Application ..27

Creating the Project Databases ... 30

Creating the Article Model ... 32

Creating a Database Table ... 33

Generating a Controller .. 35

Up and Running with Scaffolding .. 36

■ CONTENTS

ix

Adding More Fields .. 38

Adding Validations ... 40

Generated Files .. 41

Summary ...43

Chapter 4: Introduction to the Ruby Language ■ ..45

Instant Interaction ...45

Ruby Data Types ..46

Strings ... 47

Numbers .. 48

Symbols ... 49

Arrays and Hashes ... 49

Language Basics ...51

Variables .. 51

Operators ... 52

Blocks and Iterators ... 52

Control Structures ... 53

Methods ... 54

Classes and Objects ..55

Objects ... 55

Classes .. 56

Ruby Documentation ...59

Summary ...59

Chapter 5: Working with a Database: Active Record ■ ...61

Introducing Active Record: Object-Relational Mapping on Rails ...61

What About SQL? ... 62

Active Record Conventions .. 63

Introducing the Console ..64

Active Record Basics: CRUD ..67

Creating New Records ... 67

Reading (Finding) Records... 71

■ CONTENTS

x

Updating Records .. 75

Deleting Records ... 76

When Good Models Go Bad ...78

Summary ...80

Chapter 6: Advanced Active Record: Enhancing Your Models ■ ...81

Adding Methods ..81

Using Associations ..83

Declaring Associations .. 84

Creating One-to-One Associations ... 85

Creating One-to-Many Associations .. 90

Applying Association Options .. 94

Creating Many-to-Many Associations .. 96

Creating Rich Many-to-Many Associations .. 99

Advanced Finding ..101

Using the where Method ... 101

Using an SQL Fragment ... 102

Using an Array Condition Syntax.. 102

Using Association Proxies .. 104

Other Finder Methods .. 104

Default Scope .. 105

Named Scope .. 106

Applying Validations ..108

Using Built-In Validations ... 109

Building Custom Validation Methods ... 112

Making Callbacks ..114

Updating the User Model ... 115

Reviewing the Updated Models ...119

Summary ...120

■ CONTENTS

xi

Chapter 7: Action Pack: Working with the View and the Controller ■ 121

Action Pack Components ..121

Action Controller .. 122

Action View .. 123

Embedded Ruby ... 124

Helpers .. 125

Routing .. 125

RESTful Resources .. 126

Action Pack Request Cycle .. 127

A Controller Walk-Through ..128

Setting Up Routes .. 128

Revisiting the Scaffold Generator .. 131

Rendering Responses .. 134

Redirecting .. 134

Understanding Templates .. 135

Working with Layouts .. 136

Looking at the Article Form ... 138

Using Form Helpers ... 140

Processing Request Parameters ... 143

Revisiting the Controller .. 144

Displaying Error Messages in Templates ... 145

The edit and update Actions .. 146

Revisiting the Views .. 146

Staying DRY with Partials .. 148

Summary ...150

Chapter 8: Advanced Action Pack ■ ...151

Generating a Controller ...151

Nested Resources ...155

Sessions and the Login/Logout Logic ..161

Lying in State ... 161

Using the Session .. 161

■ CONTENTS

xii

Session as a Resource .. 161

Logging In a User ... 163

Logging Out a User .. 164

Improving Controllers and Templates ..166

Cleaning Up the Articles Index Page .. 166

Adding Categories to the Article Form ... 167

Using Controller Callbacks ... 170

Requiring Authentication with Filters .. 170

Applying Filters to Controllers ... 172

Adding Finishing Touches ..174

Using Action View Helpers ... 174

Escaping HTML in Templates ... 175

Formatting the Body Field ... 176

Adding Edit Controls .. 177

Making Sure Articles Have Owners ... 178

Adding Custom Helpers ... 180

Giving It Some Style... 182

Summary ...189

Chapter 9: JavaScript and CSS ■ ..191

Asset Concatenation and Compression ...191

Secondary Languages ... 191

Asset Pipeline Locations .. 192

Turbolinks ..192

Let’s Build Something! ..193

Ajax and Rails .. 193

jQuery and DOM ... 193

Moving to Practice ... 194

Summary ...201

■ CONTENTS

xiii

Chapter 10: Sending and Receiving E-Mail ■ ...203

Setting Up Action Mailer ..203

Configuring Mail Server Settings ... 203

Configuring Application Settings ... 205

Sending E-Mail ..206

Handling Basic E-Mail ... 208

Sending HTML E-Mail .. 211

Adding Attachments .. 213

Letting Authors Know About Comments .. 214

Receiving E-Mail ...215

Using a Rails Process .. 215

Reading E-Mail Using POP or IMAP ... 216

Summary ...217

Chapter 11: Testing Your Application ■ ..219

How Rails Handles Testing ..219

Unit Testing Your Rails Application ..221

Testing the Article Model ... 222

Testing Validations ... 227

Functional Testing Your Controllers ...229

Testing the Articles Controller .. 229

Creating a Test Helper ... 230

Running the Full Test Suite .. 241

Integration Testing ...242

Integration Testing the Blog Application .. 242

Story-Based Testing... 246

Running the Full Test Suite ..250

Summary ...250

■ CONTENTS

xiv

Chapter 12: Internationalization ■ ..251

Internationalization Logic in Rails ...251

Setting Up i18n in the Blog Application ...254

Localizing the Blog Application to Brazilian Portuguese ...259

Bilingual Blog ..262

Summary ...266

Chapter 13: Deploying Your Rails Applications ■ ...267

Set Up an Account with Heroku ...267

Preparing Your Git Repository..269

That’s it! ..272

Summary ...272

Appendix A: Databases 101 ■ ...273

Examining a Database Table ...273

Working with Tables ..274

Selecting Data ... 274

Inserting Data .. 275

Updating Data .. 276

Deleting Data ... 276

Understanding Relationships ..277

SQL and Active Record ..279

Appendix B: The Rails Community ■ ...281

Beginning Rails 4 Channels ...281

Rails Mailing Lists ...281

Rails IRC Channel ..282

Rails Blogs and Podcasts ..282

Rails Guides ...282

Rails APIs ...283

Rails Source and Issue Tracking ..283

■ CONTENTS

xv

Appendix C: Git ■ ..285

What Is Source Control Management? ..285

How Does It Work? ..285

Git ..286

Installing Git ... 286

Setting Global Parameters ... 287

Initializing a Repository ... 288

Ignoring Files ... 289

Adding and Committing ... 289

Branching and Merging ... 291

Remote Repositories and Cloning .. 294

Learning More ... 295

Other SCM Systems...296

Online Resources ..296

Index ...297

xvii

About the Authors

Adam Gamble is a professional web developer currently working for Isotope 11
in Birmingham, AL. He has over 10 years experience building web applications
for everything from startups to multiple Fortune 500 companies. His passion for
technology has enabled him to turn a hobby into a career that he loves. Adam was
born in Birmingham, Alabama and currently live there with his wife Monica.

Cloves Carneiro Jr is a software engineer with over 15 years of experience
creating web applications for companies in many ields, including startups and
telecommunication and inancial companies. He has been using Ruby on Rails
since its early days and has been a full-time Rails developer for six years. He
currently helps building and scaling services at LivingSocial. Born in Brazil and
having lived in many parts of the world, Cloves now lives in South Florida with his
wife, Jane, and children, Noah and Soia. He also maintains a personal web site at
http://www.clovescarneirojr.com/.

http://www.clovescarneirojr.com/

■ ABOUT THE AUTHORS

xviii

Rida Al Barazi is a passionate software engineer experienced in building smart
web applications for startups. He has been designing and building for the web
since 2002. He started working with Rails in 2005 and spoke at diferent web and
Rails conferences in North America, Europe, and the Middle East. Rida was raised
in Kuwait, grew up in Syria, started his career in Dubai and currently lives in
Toronto, Canada, with his wife, Norah. In his free time he enjoys music, concerts,
movies, traveling and meeting new people. Rida’s contact information can be
found on his website, www.rida.me.

http://www.rida.me

xix

About the Technical Reviewer

Josh Adams is a developer and architect with over eleven years of professional
experience building production-quality software and managing projects. Josh
is Isotope Eleven’s CTO and lead architect, and is responsible for overseeing
architectural decisions and translating customer requirements into working
software. Josh graduated from the University of Alabama at Birmingham (UAB)
with Bachelor of Science degrees in both Mathematics and Philosophy. When he’s
not working, Josh enjoys spending time with his family. He’d like to thank his wife
Kristen, and his children, Matthew and Gracie, for putting up with him.

	Beginning Rails 4
	Contents at a Glance

	Contents
	About the Authors
	About the Technical Reviewer
	Introduction

