
www.allitebooks.com

http://www.allitebooks.org

Sencha Touch Mobile
JavaScript Framework

Build web applications for Apple iOS and Google
Android touchscreen devices with this first HTML5
mobile framework

John E. Clark

Bryan P. Johnson

www.allitebooks.com

http://www.allitebooks.org

Sencha Touch Mobile JavaScript Framework

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2012

Production Reference: 1090212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK..

ISBN 978-1-84951-510-8

www.packtpub.com

Cover Image by Parag Kadam (paragvkadam@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
John E. Clark

Bryan P. Johnson

Reviewer
Dave Kinsella

Senior Acquisition Editor
Usha Iyer

Lead Technical Editor
Alina Lewis

Technical Editors
Apoorva Bolar

Naheed Shaikh

Copy Editor
Brandt D'Mello

Project Coordinator
Michelle Quadros

Proofreader
Aaron Nash

Indexer
Rekha Nair

Graphics
Manu Joseph

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Authors

John E. Clark holds a Master's Degree in Human-Computer Interaction from
Georgia Tech and an undergraduate degree in Music Engineering from Georgia
State University. John and his co-author, Bryan Johnson, worked together
at MindSpring, and later EarthLink, starting out in technical support and
documentation, before moving into application development, and finally,
management of a small development team. After leaving Earthlink in 2002, John
began working independently as a consultant and programmer, before starting
Twelve Foot Guru, LLC, with Bryan, in 2005.

John has been working with Sencha Touch since the first early beta releases. He
has also worked with Sencha's ExtJS since the early days, when it was still known
as YUI-Ext.

When he is not buried in code, John spends his time woodworking, playing guitar,
and brewing his own beer.

I would like to thank my family for all of their love and support.
I would also like to thank Bryan for his help, his patience, and his
continued faith in our efforts.

www.allitebooks.com

http://www.allitebooks.org

Bryan P. Johnson is a graduate of the University of Georgia. Bryan went to work
for MindSpring Enterprises in late 1995, where he met his co-author John Clark.
At MindSpring, and later Earthlink, for over seven years, Bryan served in multiple
positions, including Director of System Administration and Director of Internal
Application Development. After leaving Earthlink, Bryan took some time off to
travel before joining John in starting Twelve Foot Guru.

Bryan has worked with Sencha's products since the early days of YUI-Ext and has
used Sencha Touch since its first betas.

I would like to thank my family for their support and my co-author
John for his patience during the creation of this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Dave Kinsella has been a professional web developer since 1996. Over the years,
he has worked with many different technologies on projects ranging from public
websites and web applications to large intranet content management systems. He
has never considered himself to be a specialist in any particular field other than the
general topic of "Web Technology" and spends a lot of his spare time trying out new
ideas and techniques. Many of these can be found on his blog at webdeveloper2.com.

Dave is currently employed by Quantiv Limited, as the Head of Interactive
Design, where he designs and builds flexible web-based interfaces for complex
data-processing applications, using ExtJS and Sencha Touch.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Let's Begin with Sencha Touch! 7

Frameworks 8
Building from a foundation 10
Building with a plan 11
Building with a community 12

Mobile application framework 12
Native application versus web application 12
Web-based mobile frameworks 14
Web frameworks and touch 16

Designing applications for mobile and touch 17
Why touch? 18

Getting started with Sencha Touch 18
The API 19
Examples 20

The Kitchen Sink application 20
Learn 21
Forums 21

Setting up your development environment 21
Set up web sharing on Mac OSX 22
Install a web server on Microsoft Windows 23
Download and install the Sencha Touch framework 24

Additional tools for developing with Sencha Touch 25
Safari Web Inspector 25
Other Sencha products 26

Sencha Animator 26
Sencha.io 27
Sencha Touch Charts 27
RemoteJS and EventRecorder

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Third-party developer tools 28
Xcode 4 28
Android Emulator 30
YUI test 30
Jasmine 31
JSLint 31
Weinre 31

Summary 31
Chapter 2: Creating a Simple Application 33

Setting up your folder structure 33
Setting up your application folder 34
Creating the HTML application file 36

Starting from scratch with TouchStart.js 38
Controlling the container with layout 42
The panel 46
The TabPanel component 48
The list component 51
Testing and debugging the application 54

Parse errors 54
Case sensitivity 55
Missing files 55
Web Inspector console 55

Updating the application for production 57
Point to production library files 57
Remove debugging code 57
Going that extra mile 57

Putting the application into production 58
Summary 60

Chapter 3: Styling the User Interface 61
Styling components versus themes 61
UI styling for toolbars and buttons 62

Styling buttons 65
The tab bar 68

Sencha Touch themes 68
An introduction to SASS and Compass 68

Variables in SASS 69
Mixins in SASS 70
Nesting in SASS 71
Selector inheritance in SASS 74
Compass 75
SASS + Compass = themes 76

Table of Contents

[iii]

Setting up SASS and Compass 76
Installing Ruby 76
Installing SASS and Compass 77

Creating a custom theme 78
Base color 80
Mixins and the UI configuration 81
Adding new icon masks 83
Variables 84
More SASS resources 85

Designing for multiple devices 85
Images on multiple devices with Sencha.io Src 88

Specifying sizes with Sencha.io Src 89
Sizing by formula 90
Sizing by percentage 90
Changing file types 91

Summary 92
Chapter 4: Components and Configurations 93

The base component class 94
The Ext object and Ext.getCmp() 95

Layouts revisited 96
The card layout 97
The hbox layout 97
The vbox layout 99
The fit layout 101
Adding complexity 102

The TabPanel and Carousel components 107
TabPanel 107
Carousel 109

FormPanel 111
DatePicker 114
Sliders, spinners, and toggles 115

MessageBox and Sheet 116
MessageBox 116
Sheet 121
ActionSheet 124

Map 126
Lists 128

Grouped lists 130
Nested lists 131

Table of Contents

[iv]

Finding more information with the Sencha API 135
Finding a component 135
Understanding the component page 136

Summary 137
Chapter 5: Events 139

What are events? 139
Asynchronous versus synchronous 140

Listeners and handlers 141
Adding listeners and events dynamically 146
Custom events 146
Listener options 148
Scope 149
Removing listeners 150
Managed listeners 150
Handlers and buttons 151
Suspending and queuing events 152
Common events 153
Ext.util.Observable 154
Centralizing event handling with Observe 155
Capture: a tool for debugging 155

Event delegation 157
Events and memory 157
Delegating events 158

Touch-specific events 158
Additional information on events 162
Summary 163

Chapter 6: Getting Data In 165
Models 165

The basic model 166
Model validations 167
Model methods 169
Proxies and readers 170

Introduction to data formats 172
Arrays 172
XML 173
JSON 174
JSONP 176

Introduction to stores 176
A simple store 177

Table of Contents

[v]

Forms and stores 180
Specialty text fields 182

Mapping fields to the model 182
Clearing store data 185
Editing with forms 186

Switching handlers 187
Deleting from the Data Store 190
Summary 191

Chapter 7: Getting Data Out 193
Using data stores for display 193

Directly binding a store 193
Sorters and filters 195
Paging a data store 197
Loading changes in a store 199
Data stores and panels 200

XTemplates 204
Data manipulation 206
Looping through data 207

Numbering within the loop 208
Parent data in the loop 209

Conditional display 209
Arithmetic 211
Inline JavaScript 211
XTemplate member functions 212

isEmpty 214
Changing a panel's content with XTemplate.overwrite 215

Sencha Touch Charts 216
Installing Touch Charts 217
A simple pie chart 217
A bar chart 220

Summary 223
Chapter 8: The Flickr Finder Application 225

The basic application 225
Introduction to Model View Controller (MVC) 227
Building the foundation 229

Splitting up the pieces 231
Using the Flickr API 233

The SearchPhotos component 233
The SearchPhotos model 234
The SearchPhotos view 238

Table of Contents

[vi]

The SearchPhotos controller 241
Adding the PhotoDetails view 243

The savedphoto component 246
The SavedPhoto model 246
The SavedPhoto views 247
The SavedPhotos controller 250
Adding SavedPhotos to the viewport 253
Adding the Save button 254

Polishing your application 256
Animated transitions 256
Application icons 258

Try it yourself 260
Summary 260

Chapter 9: Advanced Topics 261
Talking to your own server 261

Using your own API 262
REST 264
Designing your API 264
Creating the model and store 265
Making a request 267
AJAX requests in an API 269

Going offline 270
Syncing local and remote data 270
Manifests 273
Setting up your web server 275

Updating your cached application 276
Interface considerations 276

Alerting your users 277
Updating your UI 278

Alternate methods of detecting offline mode 279
Getting into a marketplace 280

Compiling your application 280
PhoneGap 282
NimbleKit 283
Other options 284

Registering for developer accounts 284
Becoming an Apple developer 285
Becoming an Android Developer 286

Summary 286
Index 289

Preface
Since its initial launch, Sencha Touch has quickly become the gold standard for
developing rich mobile web applications with HTML5. Sencha Touch is the first
HTML5 mobile JavaScript framework that allows you to develop mobile web
applications that look and feel like native applications on both iPhone and Android
touchscreen devices. Sencha Touch is the world's first application framework built
specifically to leverage HTML5, CSS3, and JavaScript for the highest level of power,
flexibility, and optimization. It makes specific use of HTML5 to deliver components
such as audio and video, as well as a localStorage proxy for saving data offline.
Sencha Touch also makes extensive use of CSS3 in its components and themes, to
provide an incredibly robust styling layer, giving you total control over the look of
your application.

Sencha Touch enables you to design both Apple iOS and Google Android
applications without the need for learning multiple arcane programming languages.
Instead, you can leverage your existing knowledge of HTML and CSS to quickly
create rich web applications for mobile devices in JavaScript. This book will show
you how you can use Sencha Touch to efficiently produce attractive, exciting, and
easy-to-use web applications that keep your visitors coming back for more.

Sencha Touch Mobile JavaScript Framework teaches you all you need to get started
with Sencha Touch and build awesome mobile web applications. Beginning with
an overview of Sencha Touch, this book will guide you through creating a complete
simple application, followed by styling the user interface and the list of Sencha
Touch components, which are explained through comprehensive examples. Next,
you will learn about the essential touch and component events, which will help you
create rich dynamic animations. The book follows this up with information about
core data packages and how to deal with data, and wraps it up with building another
simple but powerful Sencha Touch application.

Preface

[2]

In short, this book has the step-by-step approach and extensive content to turn a
beginner to Sencha Touch into an ace, quickly and easily.

Exploit Sencha Touch, a cross-platform library aimed at next generation,
touch-enabled devices.

What this book covers
Chapter 1, Let's Begin with Sencha Touch!: This chapter provides an overview of Sencha
Touch and a walkthrough of the basics of setting up the library for development. We
will also talk about programming frameworks and how they can help you develop
touch-friendly applications quickly and easily.

Chapter 2, Creating a Simple Application: This chapter starts out by creating a simple
application and using it to discover the basic elements of Sencha Touch. We will also
explore some of the more common components, such as lists and panels, and we will
show you how to find common errors and fix them when they occur.

Chapter 3, Styling the User Interface: Once we have our simple application, we will
explore ways to change the look and feel of individual components, using CSS styles.
Then, we will dive into using Sencha Touch themes to control the look of your entire
application, using SASS and Compass.

Chapter 4, Components and Configurations: Here, we will examine the individual
components for Sencha Touch in greater detail. We will also cover the use of layouts
in each component, and how they are used to arrange the different pieces of your
application.

Chapter 5, Events: Following our look at the individual components, we will take a
look at the Sencha Touch events system, which allows these components to respond
to the user's touch and communicate with each other. We will cover the use of
listeners and handlers, and explore ways to monitor and observe events, so that we
can see what each part of our application is doing.

Chapter 6, Getting Data In: Data is a critical part of any application. Here, we will look
at the different methods for getting data into our application, using forms to gather
information from the user, and ways to verify and store the data. We will also talk
about the different data formats that are used by Sencha Touch and how we can
manipulate that data using Sencha Touch's models and stores.

Chapter 7, Getting Data Out: Once we have data in our application, we need to be able
to get it back out for display to the user. Here, we will discuss the use of panels and
xTemplates to display the data. We will also take a look at using our data to create
colorful charts and graphs, using Sencha Touch Charts.

Preface

[3]

Chapter 8, The Flickr Finder Application: Using the information we have learned about
Sencha Touch, we will create a more complex application that grabs photos from
Flickr, based on our current location. We will also use this as an opportunity to talk
about best practices for structuring your application and its files.

Chapter 9, Advanced Topics: For our final chapter, we will explore ways to synchronize
your data with a database server by creating your own API. Additionally, we will
look at ways to synchronize data between the mobile device and a database server,
compiling your application with PhoneGap and NimbleKit, as well as ways to get
started as an Apple iOS or Google Android developer.

What you need for this book
To accomplish the tasks in the book, you will need a computer with the following
software:

•	 Sencha Touch 1.1
•	 Sencha Touch Charts 1.0
•	 A programming editor such as BBEdit, Text Wrangler, UltraEdit, TextMate,

Aptana, Eclipse, or others
•	 A local web server, such as the built-in Apple OS X web server, Microsoft's

built-in IIS server, or the downloadable WAMP server and software package.

Links to these items are provided in Chapter 1, Let's Begin with Sencha Touch!, under
the section Setting up your development environment. Other optional, but helpful,
software will be linked in specific sections when needed.

Who this book is for
This book is ideal for anyone who wants to gain the practical knowledge involved in
using the Sencha Touch mobile web application framework to make attractive web
applications for mobiles. If you have some familiarity with HTML and CSS, this book
is for you. This book will give designers the skills they need to implement their ideas,
and provide developers with creative inspiration through practical examples. It is
assumed that you know how to use touchscreens, touch events, WebKit on mobile
systems, Apple iOS, and Google Android for mobiles.

Preface

[4]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "let's say we have an object called
wheeled vehicle."

A block of code is set as follows:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
 <title>TouchStart Application – My Sample App</title>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

var complexTest = new Ext.Container({
 layout: {
 type: 'vbox',

Any command-line input or output is written as follows:

C:\Ruby192>ruby -v

ruby 1.9.2p180 (2011-02-18) [i386-mingw32]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "choose
the Forum link at the top of the page and then find the Sencha Touch forums".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Let's Begin with
Sencha Touch!

With the growing popularity of mobile devices, cell phones, and tablet computers,
consumers have quickly moved to embrace touch-based operating systems and
applications. This popularity has given developers a wide variety of platforms to
choose from Apple's iOS (iPhones, iTouch, and iPad), Google's Android, Windows
Mobile 7, and many more. Unfortunately, this rich variety of platforms brings with it
an equally rich variety of programming languages to choose from. Picking any single
language often locks you into a specific platform or device.

Sencha Touch removes this obstacle by providing a framework based in JavaScript,
HTML 5, and CSS. These standards have gained strong support across most modern
browsers and mobile devices. By using a framework based on these standards, you
can deploy applications to multiple platforms, without having to completely rewrite
your code.

This book will help familiarize you with Sencha Touch, from the basic setup to building
complex applications. We will also cover some basics about frameworks and touch
applications in general, as well as provide tips on how to set up your development
environment and deploy your applications in a number of different ways.

In this chapter, we will cover the following:

•	 Frameworks
•	 Mobile application frameworks
•	 Designing applications for Touch
•	 Getting started with Sencha Touch
•	 Setting up your development environment
•	 Additional tools for developing with Sencha Touch

Let’s Begin with Sencha Touch!

[8]

Frameworks
A framework is a reusable set of code that provides a collection of objects and
functions that you can use to get a head start on building your application. The main
goal of a framework is to keep you from reinventing the wheel each time you build
an application.

A well-written framework also helps by providing some measure of consistency and
gently nudging you to follow standard practices. This consistency also makes the
framework easier to learn. The keys to this reusability and ease of learning are two
coding concepts called objects and inheritance.

Most frameworks, such as Sencha Touch, are built around an Object-Oriented
Programming (OOP) style. The idea behind OOP is that the code is designed around
simple base objects. A base object will have certain properties and functions that it
can perform.

For example, let's say we have an object called wheeled vehicle. Our wheeled
vehicle has a few properties that are listed as follows:

•	 One or more wheels
•	 One or more seats
•	 A steering device

It also has a few functions:

•	 Move Forward
•	 Move Backward
•	 Move Left
•	 Move Right
•	 Stop

This is our base object. Once this base object is created, we can extend it to add more
functionality and properties. This allows us to create more complex objects, such as
bicycles, motorcycles, cars, trucks, buses, and more. Each of these complex objects
does a lot more than our basic wheeled object, but it also inherits the properties and
abilities of that original object. We can even override the original functions, such
as making our Move Forward function go quicker for the car than for our bicycle,
if needed.

Chapter 1

[9]

This means we can build lots of different kinds of wheeled vehicles without having
to recreate our original work. We can even build more complex objects. For example,
once we have a generic car, we can build everything from a Volkswagen to a Ferrari,
just by adding in the new properties and functions for the specific model.

Let's take a more concrete example from Sencha Touch itself—the container object.

The container object is one of the basic building blocks of Sencha Touch. As the name
implies, it is designed to hold other items, such as buttons, fields, toolbars, and more.
The container object has over 40 different configuration options that control simple
things such as:

•	 Height
•	 Width
•	 Padding
•	 Margin

The configuration options also control more complex behavior, such as:

•	 Layout: Determines how items in the container will be positioned
•	 Listeners: Determine which events the container should pay attention to,

and what to do when it hears the event

The container also has over 60 methods or things that it can do. These methods
include simple things, such as:

•	 Show

•	 Hide

•	 Enable

•	 Disable

•	 Set Height
•	 Set Width

There are also more complex methods, such as:

•	 Query: Does a search for specific items within the container
•	 Update: Takes HTML or data, and updates the contents of the container

The container also has a number of properties that you can use and events that it can
listen for.

Let’s Begin with Sencha Touch!

[10]

This basic container object is used as a building block in Sencha Touch to create
buttons, panels, form fields, and other more complex objects. These subobjects or
child objects inherit all of the abilities and attributes of the container object (the
parent object). Each will include the same configuration options for height, width,
and so on. They will know how to do all the things a container can do—show, hide,
and so on.

Each of these child objects will also have additional unique configurations and
methods of their own. For example, buttons have an additional text property that
sets their title, and buttons can also tell when a user clicks on them. By extending the
container object, the person creating the button only had to write code for these extra
configurations and methods.

From a coding perspective, objects and inheritance mean that we can reuse a lot of
our work. It also means that, when we encounter a new language such as Sencha
Touch, we can use what we learn about the basic code objects to quickly understand
the more complex objects.

Building from a foundation
In addition to providing reusability, frameworks also provide you with a collection
of core objects and functions, commonly used to build applications. This keeps you
from starting from scratch each time you begin a new application.

These code objects typically handle most of the ways a user will input, manipulate,
or view data. They also cover the common tasks that occur behind the scenes in an
application, such as managing data, handling sessions, dealing with different file
formats, and formatting or converting different kinds of data.

Chances are, for most frameworks, any common task you wish to perform has
already been accounted for and is simply awaiting your discovery. Once you are
familiar with the wide range of objects and functions provided by a framework such
as Sencha Touch, you can develop your applications quickly and more efficiently:

Chapter 1

[11]

Building with a plan
One of the key things to look for in any framework is documentation. A framework
with no documentation, or worse yet, one with bad documentation, is simply an
exercise in frustration. Good documentation should provide low-level information
about every object, property, method, and event in the framework. It should also
provide more generalized information, such as examples of how the code is used
in various situations.

Documentation and examples are two of the places where Sencha Touch excels
as a framework. Extensive information is available on the main Sencha website,
http://www.sencha.com, under API Docs | Sencha Touch.

A well-designed framework also maintains a set of standards and practices.
These can be simple things like using camel case for variable names (for example,
myVariable) or more complex practices for commenting on and documenting the
code. The key to these standards and practices is consistency.

Let’s Begin with Sencha Touch!

[12]

Consistency allows you to quickly learn the language and understand intuitively
where to find the answers to your questions. It's a little like having a plan for
a building; you understand how things are laid out and how to get where you
need to go quickly.

A framework will also help you understand how to structure your own applications
by providing an example for both structure and consistency in coding.

In this regard, Sencha has made every effort to encourage consistency, observe
standards, and provide extensive documentation for the Sencha Touch framework.
This makes Sencha Touch a very effective first language for the beginning programmer.

Building with a community
Frameworks seldom exist in isolation. Groups of developers tend to collect around
specific frameworks and form communities. These communities are fantastic places
to ask questions and learn about a new language.

As with all communities, there are a number of unwritten rules and customs. Always
take the time to read through the forum before posting a question, just in case the
question has already been asked and answered.

Sencha Touch has an active developer community with a forum that can be accessed
from the main Sencha website: http://www.sencha.com/ (choose the Forum link at
the top of the page, and then find the Sencha Touch forums).

Mobile application framework
Mobile application frameworks need to address different functionalities from a
standard framework. Unlike a traditional desktop application, mobile devices
deal with touches and swipes instead of mouse clicks. The keyboard is part of the
screen, which can make traditional keyboard navigation commands difficult, if not
impossible. In order to understand these constraints, we can begin by looking at
different types of mobile frameworks and how they work.

Native application versus web application
There are two basic types of mobile application framework: one that builds native
applications and one that builds web-based applications, such as Sencha Touch.

Chapter 1

[13]

A native application is one that is installed directly on the device. It typically has
more access to the device's hardware (camera, GPS, positioning hardware, and so
on) and to other programs on the device, such as the address book and photo album.
Updates to a native application typically require each user to download a new copy
of the updated program.

Web-based applications, as the name implies, require a public web server that your
users will access, to use the application. Users will navigate to your application
website using the browser on their mobile device. As the application runs inside
the web browser, it has less access to the local file system and hardware, but it also
doesn't require the user to walk through a complex download and installation
process. Updates to a web-based application can be accomplished by making a single
update to the public web server. The program then updates automatically for anyone
who accesses the site.

Web-based applications can also be modified to behave more like a native application
or even be compiled by a separate program to become a full native application:

For example, users can navigate to the web application and then choose to save it to
the desktop of their mobile device. This places an icon on the screen, just like a native
application. It also removes the browser navigation from the application, making
the application appear just like a full native application. A properly designed web
application can use the device's built-in storage capabilities to store data locally and
even function when the device is offline.

Let’s Begin with Sencha Touch!

[14]

If you find that you need the full functionality of a native application, external
compilers such as PhoneGap (http://www.phonegap.com/) can take your web-
based application and compile it into a full native application that you can upload
and sell in Apple's App Store or Google's Android Marketplace. PhoneGap also
supplies programming hooks for you to access camera functionality, contact lists,
and more.

Web-based mobile frameworks
A web-based mobile framework depends on the web browser to run the application.
This is a critical piece of information for a couple of reasons.

First, the web browser has to be consistent across mobile platforms. If you have
previously done any website development, you are familiar with the painful issue
of browser compatibility. A website can look completely different, depending on
the browser. JavaScript that works in one browser doesn't work in another. People
also tend to hold on to older browsers without updating them. Fortunately, these
problems are less of an issue with most mobile devices, and no problem at all for
iOS and Android.

The web browser for both Apple's iOS and Google's Android is based on the WebKit
engine. WebKit is an open source engine that basically controls how the browser
displays pages, handles JavaScript, and implements web standards. What this
means for you is that your application should work the same on both platforms.

However, mobile devices that do not use WebKit (such as Windows Mobile) will
be unable to use your application. The good news is that, as more browsers adopt
HTML5 standards, this problem may also begin to disappear.

The second consideration for a web-based application is where it lives. A native
application gets installed on the user's device. A web-based application needs to
be installed on a public server. Users will need to be able to type a URL into their
web browser and navigate to your application. If the application only exists on your
computer, then you are the only one who can use it. This is great for testing, but
if you want to have other people using your application, you will need to have it
hosted on a public server.

The third consideration is connectivity. If a user cannot connect to the Internet,
then they won't be able to use your application. However, Sencha Touch can be
configured to store your application, and all of its data, locally. At first glance, this
ability seems to negate the problem of connectivity altogether, but it actually causes
problems when users connect to your application with more than one device:

Chapter 1

[15]

Server

with your

Application

Internet

A web-based application can be accessed from anywhere, with a web browser. The
same application can be accessed from a mobile device, a personal computer, and a
cell phone. This is a huge advantage for information-rich applications. For example,
in a web-based application, if I enter data into the application on my phone, I can log
in from my home computer and still see that data. This is because the data is stored
on the remote server with the application.

However, if I have set up my application to store everything locally, anything that
I enter in my cell phone stays within the cell phone and cannot be viewed from
another location, such as my home computer. If I use a computer to access the site,
it will create a second separate local set of data, tied to my home computer.

Fortunately, Sencha Touch can be set up to synchronize data between the server
and the various devices. When your application is connected to the Internet, it
will synchronize any existing offline data and use the remote server for storage of
anything done while online. This makes sure that your data is accessible to you
across all of your devices, while allowing you to work offline as needed.

www.allitebooks.com

http://www.allitebooks.org

Let’s Begin with Sencha Touch!

[16]

Web frameworks and touch
Standard web frameworks have previously been designed to work within a mouse
and keyboard environment, but mobile web frameworks also have to understand
the concept of touch for both navigation and data entry:

Most touch-based frameworks understand the following types of touch gestures:

•	 Tap: A single touch on the screen
•	 Double tap: Two quick touches on the screen
•	 Swipe: Moving a single finger across the screen from left to right or top to

bottom
•	 Pinch or spread: Touching the screen with two fingers and bringing them

together in a pinching motion, or spreading them apart to reverse the action
•	 Rotate: Placing two fingers on the screen and twisting them clockwise or

counter clockwise, typically to rotate an object on screen

These touch interactions were initially limited to native application frameworks, but
Sencha Touch and other web-based frameworks have made them available to the
web browser.

Now that we can use these touches and gestures for our mobile applications, we
should also consider how they change the way our users will interact with our
applications. We should also talk a bit about the potential issues with mobile
applications in general.

Chapter 1

[17]

Designing applications for mobile and
touch
Mobile applications require some changes in thinking. The biggest consideration is
one of scale. If you are used to designing an application on a 21 inch monitor, dealing
with a 3.5 inch phone screen can be a painful experience. Phones and mobile devices
also use a variety of screen resolutions:

•	 iPhone 4 and iPod Touch 4: 960 x 640
•	 iPhone 4 and iPod Touch 3: 480 x 320
•	 Android 4 Phones support four general sizes:

	° xlarge screens are at least 960 x 720
	° large screens are at least 640 x 480
	° normal screens are at least 470 x 320
	° small screens are at least 426 x 320

•	 iPad: 1024 x 768

When designing a mobile application, it's usually a good idea to mock up the design
to get a better idea of scale and where your various application elements will go.
There are a number of good layout programs available to help you with this:

•	 Omni Graffle for the Mac (http://www.omnigroup.com/products/
omnigraffle/)

•	 Balsamiq Mockups for Mac, Windows, and Linux (http://balsamiq.com/)
•	 DroidDraw for Mac, Windows, and Linux (http://www.droiddraw.org/)
•	 iMockups for the iPad (http://www.endloop.ca/imockups/)

Touch applications also have certain considerations to keep in mind. If you are
coming from a typical web development background, you might be used to using
events such as hover.

Hover is typically used in web applications to alert the user that an action can be
performed or to provide tool tips. For example, showing that an image or text can
be clicked by changing the color when the user hovers the mouse cursor. As touch
applications require the user to be in contact with the screen, there really is no
concept of hovering. Objects that the user can activate or interact with should be
obvious and icons should be clearly labeled.

Let’s Begin with Sencha Touch!

[18]

Unlike mouse-driven applications, touch applications are also typically designed
to mimic real world interactions. For example, turning the page of a book within a
touch application is usually accomplished by swiping your finger across the page
horizontally, in much the same way you would in the real world. This encourages
exploration of the application, but it also means that coders must take special care
with any potentially destructive actions, such as deleting an entry.

While it may seem like programming for touch requires quite a bit of extra work and
care, there are a number of advantages.

Why touch?
Before the advent of touch screens, applications were generally limited to input from
external keyboards and the mouse. Neither of these is very desirable in a mobile
platform. Even when full internal keyboards are used in non-touch based devices,
they can take up a tremendous amount of space on the device, which in turn limits
the available screen size. By contrast, a touch-based keyboard disappears when it
isn't needed, leaving a larger screen area available for display.

Slide out keyboards on mobile devices do not adversely affect the screen size,
but they can be cramped and uncomfortable to use. Additionally, a touch screen
keyboard allows for application-specific keyboards and keys, such as the addition
of the .com key when using a web browser.

Keyboards and mice also present a mental disconnect for some users. Using a mouse
on your desk to control a tiny pointer on a separate screen often leads to a sense that
you are not entirely in control over the activity. Whereas directly touching an object
on the screen and moving it, places you at the center of the activity. Because we
interact with the physical world by touching and moving objects by hand, a
touch-based application often provides a more intuitive User Interface (UI).

Touch technology is also beginning to make inroads into the desktop computer
arena. As this technology becomes cheaper and more common, the need for
touch-based applications will continue to grow.

Getting started with Sencha Touch
When getting started with any new programming framework, it's a good idea to
understand all of the resources available to you. Buying this book is a great start, but
there are additional resources that will prove invaluable to you as you explore the
Sencha Touch framework.

Chapter 1

[19]

Fortunately for us, the Sencha website provides a wealth of information to assist you
at every stage of your development.

The API
The Sencha Touch Application Programming Interface (API) documentation
provides detailed information on every single object class available to you with
Sencha Touch. Every class in the API includes detailed documentation for every
configuration option, property, method, and event, for that particular class. The
API also includes short examples and other helpful information.

The API documentation is available on the Sencha website, http://docs.sencha.
com/touch/1-1/.

A copy is also included as part of the Sencha Touch framework that you will
download to create your applications.

Let’s Begin with Sencha Touch!

[20]

Examples
The Sencha website also includes a number of example applications for you to look
at. By far, the most helpful of these is the Kitchen Sink application:

The Kitchen Sink application
The Kitchen Sink application provides examples for:

•	 User interface items, such as buttons, forms, toolbars, lists, and more
•	 Animations for things such as flipping pages or sliding in a form
•	 Touch events, such as, tap, swipe, and pinch
•	 Data handling for JSON, YQL, and AJAX
•	 Media handling for audio and video
•	 Themes to change the look of your application

Each example has a Source button in the upper-right corner, that will display the
code for the current example.

Chapter 1

[21]

The Kitchen Sink application also provides an Event Recorder and an Event
Simulator. These will allow you to record, store, and play back any touch events
fired by the device's screen.

These simulators demonstrate how to record actions inside your own application
for playback as a live demonstration or a tutorial. It can also be used for easily
repeatable testing of functionality.

You can play around with the Kitchen Sink application on any mobile device or on
a regular computer, using Apple's Safari web browser. The Kitchen Sink application
is available on the Sencha website, http://dev.sencha.com/deploy/touch/
examples/kitchensink/.

A copy of the Kitchen Sink application is also included as part of the Sencha Touch
framework that you will download to create your applications.

Learn
Sencha also has a section of the site devoted to more detailed discussions of
particular aspects of the Sencha Touch framework. The section is appropriately titled
Learn. This section contains a number of tutorials, screencasts, and guides, available
for you to use. Each section is labeled as Easy, Medium, or Hard, so that you have
some idea about what you are getting into.

The Learn section is available on the Sencha Website, at http://www.sencha.com/
learn/touch/.

Forums
Though mentioned before, the Sencha Forums are worth mentioning again. These
community discussions provide general knowledge, bug reporting, question-and-
answer sessions, examples, contests, and more. The forums are a great place to find
answers from people who use the framework on a daily basis.

Setting up your development environment
Now that you've familiarized yourself with the available Sencha Touch resources,
the next step is to set up your development environment and install the Sencha
Touch libraries.

Let’s Begin with Sencha Touch!

[22]

In order to start developing applications using Sencha Touch, it is highly
recommended that you have a working web server where you can host your
application. It's possible to develop Sencha Touch applications, viewing local
folders with your web browser. Without a web server you won't be able to test
your application using any mobile devices.

Set up web sharing on Mac OSX
If you are using Mac OSX, you already have a web server installed. To enable it,
launch your system preferences, choose Sharing, and enable Web Sharing. If you
haven't done so already, click on Create Personal Website Folder, to set up a web
folder in your home directory. By default, this folder is called Sites, and this is
where we will be building our application:

The sharing panel will tell you your web server URL. Remember this for later.

Chapter 1

[23]

Install a web server on Microsoft Windows
If you're running Microsoft Windows, you may be running Microsoft's Internet
Information Server (IIS). You can find out by going into your Control Panel and
choosing either of the following options:

•	 Program Features | Turn Windows features on or off (In Vista or Windows
7). Detailed instructions are at http://www.howtogeek.com/howto/
windows-vista/how-to-install-iis-on-windows-vista/.

•	 Add/Remove Programs | Add/Remove Windows Components (in
Windows XP). Detailed instructions are at http://www.webwiz.co.uk/kb/
asp-tutorials/installing-iis-winXP-pro.htm.

If you do not have IIS installed, or you are unfamiliar with its operation, we
recommend installing the Apache server for use with this book. This will allow
us to provide consistent instruction for both Mac and PC, in our examples.

One of the easiest ways to install Apache is to download and install the XAMPP
software package (http://www.apachefriends.org/en/xampp-windows.html).
This package includes Apache as well as PHP and MySQL. These additional
programs can be helpful as your skills grow, allowing you to create more complex
programs and data storage options.

After you've downloaded and run XAMPP, you'll be prompted to run the XAMPP
Control Panel. You can also run the XAMPP Control Panel from the Windows Start
menu. You should click on Start on the Apache line of the control panel to start your
web server. If you receive a notice from your firewall software, you should choose
the option to allow Apache to connect to the Internet:

Let’s Begin with Sencha Touch!

[24]

In the folder where you installed XAMPP, is a subdirectory called htdocs. This is
the web folder where we will be setting up Sencha Touch. The full path is usually
C:\xampp\htdocs. Your web server URL will be http://localhost/, and you'll
want to remember this for the next step.

Download and install the Sencha Touch
framework
In your web browser, go to http://www.sencha.com/products/touch/ and click
the Download button. Save the ZIP file to a temporary directory.

Please note that all examples in this book were written using
Sencha Touch version 1.1.0.

Unzipping the file you downloaded will create a directory called sencha-touch-
version (in our case it was sencha-touch-1.1.0). Copy this directory to your web
folder and rename it, dropping the version number and leaving just sencha-touch.

Now, open up your web browser and enter your web URL, adding sencha-touch to
the end. You should see the following Sencha Touch demo page:

Congratulations! You've successfully installed Sencha Touch.

Chapter 1

[25]

Additional tools for developing with
Sencha Touch
In addition to configuring a web server and installing the Sencha Touch libraries,
there are some additional development tools that you may want to take a look at,
before diving into your first Sencha Touch application. Sencha has several other
products you may find useful to use in your Sencha Touch app, and there are quite
a few third party tools that can help you develop and deploy your app. We're not
going to go into a lot of detail on how to set them up and use them, but these tools
are definitely worth looking into.

Safari Web Inspector
Bundled with the desktop version of the Safari web browser, the Safari Web
Inspector allows you to debug JavaScript and CSS, inspect HTML and your
browser's local storage, and much more.

We recommend using Safari to examine your Sencha Touch application during
development, and the Safari Web Inspector is a huge part of that. Both Chrome
and Firefox have similar tools (Chrome Developer Tools and Firebug for Firefox),
but as iOS devices use Safari for their web browser, we feel that using Safari for
your development helps keep things simple and provides a consistent browsing
experience. You can download it at http://www.apple.com/safari/download/.

Let’s Begin with Sencha Touch!

[26]

We will be using the Safari web browser for testing our examples throughout
this book:

In addition to Safari and the Web Inspector, there are a number of additional
packages that you can use to enhance and test your own projects.

Other Sencha products
Sencha offers several products that expand the capabilities of Sencha Touch.

Sencha Animator
Although Sencha Touch comes with a few built-in animations, with the Sencha
Animator desktop application, you can create professional animations that rival
Flash-based animations. Unlike Flash animations, though, Sencha Animator
animations run on most mobile browsers, making them perfect for adding extra
flare to your Sencha Touch application. You can download Sencha Animator at
http://www.sencha.com/products/animator/.

Chapter 1

[27]

Sencha.io
Sencha.io is Sencha's cloud computing service offering. Their initial service is called
Sencha.io Src and is a great way to incorporate images into your Sencha Touch
application. Sencha.io Src handles resizing, caching, and optimizing your images
across the various displays and resolutions used in mobile devices. You create a
single, high-resolution image, and Sencha.io Src handles the rest. It is available at
http://www.sencha.com/products/io/.

Sencha Touch Charts
Sencha Touch Charts brings powerful charting functionality to a touch environment,
with interactive functionality aimed directly at mobile devices. Create pie charts
and line, stacked, bar, and radar graphs, and easily fit them into your Sencha
Touch application. Sencha Touch Charts is available at http://www.sencha.com/
products/touch/charts:

Let’s Begin with Sencha Touch!

[28]

RemoteJS and EventRecorder
RemoteJS and EventRecorder are not official Sencha products, but they were
developed by Sencha and released as open source tools for debugging applications
running specifically on Android platforms.

RemoteJS allows you to perform remote debugging, using the Android SDK's
built-in emulator or your own Android device. Then, you can execute JavaScript
commands, through the RemoteJS interface, to inspect variables, and can run
functions to see their output.

EventRecorder allows you to record user interactions with your application, and
then play those interactions back at a later time. This allows you to test updates to
your application in a repeatable, automated manner, similar to the web application
testing tool Selenium.

Both RemoteJS and EventRecorder can be downloaded at https://github.com/
senchalabs/android-tools.

Third-party developer tools
You can also choose from a variety of developer tools, which you may find useful in
developing your Sencha Touch apps.

Xcode 4
Xcode 4 is Apple's complete development environment, designed for people
writing for any Apple platform—OSX, iPhone, or iPad. As such, it comes with
a lot of stuff that is not really necessary for writing Sencha Touch applications.
However, one thing that is included with Xcode 4, that can be very handy for Sencha
Touch developers, is the iOS Simulator. With the iOS Simulator, you can test your
application on various iOS devices, without having to actually own them.

Chapter 1

[29]

Downloading Xcode 4 requires membership in the Apple Developer program.
Once you've signed up for membership, you can download Xcode 4 from
http://developer.apple.com/xcode/:

Let’s Begin with Sencha Touch!

[30]

Android Emulator
Android Emulator is the Android counterpart to the iOS Simulator that comes with
Xcode 4. Android Emulator is part of the free Android SDK download (http://
developer.android.com/guide/developing/devices/emulator.html). Android
Emulator can be configured to mimic many specific Android mobile devices,
allowing you to test your application across a broad range of devices:

YUI test
A common part of any kind of programming is testing. YUI test, a part of Yahoo's
YUI JavaScript library, allows you to create and automate unit tests, just as JUnit for
Java does. Unit tests set up test cases for specific segments of code. Then, if in the
future, that code changes, the unit tests can be re-run to determine if the code still
passes. This is very useful, not only for finding errors in code, but also for ensuring
code quality before a release. YUI test can be found at http://yuilibrary.com/
yui/docs/test/.

Chapter 1

[31]

Jasmine
Jasmine is a testing framework similar to YUI test, but based on Behavioral Driven
Design (BDD). In BDD testing, you start with specifications, stories about what
your application should do in certain scenarios, and then write code that fits those
specifications. Both YUI test and Jasmine accomplish the same goals of testing
your code, just in different ways. Download Jasmine at http://pivotal.github.
com/jasmine/.

JSLint
Possibly the most useful JavaScript tool on this list, JSLint will examine your
code for syntax errors and code quality. Written by Douglas Crockford, one of the
fathers of JavaScript, JSLint will examine your code in great detail, which is great for
finding errors before you deploy your code. Download it at http://www.jslint.
com/lint.html.

Weinre
One of the biggest problems with testing web applications on mobile devices is the
lack of debugging tools. Emulators and simulators will get you most of the way there,
but there are always problems that you will only encounter when you actually test on
mobile devices. Weinre is an open source product from PhoneGap that provides you a
debug console similar to the Safari Web Inspector, but for web applications running on
mobile devices. It involves setting up a special server, but the instructions on the site
are pretty straightforward, and the benefits very much outweigh the effort it takes to
install. Weinre is available at http://phonegap.github.com/weinre/.

Summary
In this chapter, we've covered the fundamentals of web application frameworks and
why you should use Sencha Touch. We walked through setting up a development
environment and installing the Sencha Touch libraries. We also took a brief look at
some of the considerations in developing touch applications and some tools to make
your development life easier. You can find information at:

•	 Sencha Touch Learning Center (http://www.sencha.com/learn/touch/)
•	 Apple's iOS Human Interface Guidelines (http://developer.apple.com/

library/ios/#documentation/UserExperience/Conceptual/MobileHIG/
Introduction/Introduction.html)—an in depth guide to developing user
interfaces for iOS devices.

In the next chapter, we'll create our first Sencha Touch application and, in the
process, learn the basics of using Sencha Touch.

Creating a Simple Application
This chapter will walk you through creating a simple application in Sencha Touch.
We will cover the basic elements that are included in any Sencha Touch application,
and we will take a look at the more common components you might use in your own
applications: containers, panels, lists, toolbars, and buttons.

In this chapter, we will cover:

•	 Setting up your folder structure
•	 Starting from scratch with TouchStart.js
•	 Controlling the container using layouts
•	 Testing and debugging the application
•	 Updating the application for production
•	 Putting the application into production

Next, we will cover how to use the various containers to display text and other
items. We will then add additional components to create our first simple application.
Finally, we will take a look at debugging your application and give you some
pointers on what to do when things go boom.

Setting up your folder structure
Before we get started, you need to be sure that you've set up your development
environment properly, as outlined in the previous chapter.

Creating a Simple Application

[34]

Root folder
As noted in the previous chapter, you will need to have the folders and
files for your application located in the correct web server folder, on
your local machine.
On the Mac, this will be the Sites folder in your Home folder.
On Windows, this will be C:\xamp\htdocs (assuming you installed
xampp, as described in the previous chapter).

Through the rest of the book, we will refer to this folder as the root
folder of your local web server.

Setting up your application folder
Before we can start writing code, we have to perform some initial set up, copying
in a few necessary resources and creating the basic structure of our application
folder. This section will walk you through the basic setup for the Sencha Touch files,
creating your style sheets folder, and creating the index.html file.

1. Locate the Sencha Touch folder you downloaded in the previous chapter.

The code in this chapter was written using Sencha
Touch 1.1.0.

2. Create a folder in the root folder of your local web server. You may name it
whatever you like. I have used the folder name TouchStart in this chapter.

3. Create three empty sub folders called lib, app, and css in your
TouchStart folder.

4. Now, copy the resources and src folders, from the Sencha Touch folder
you downloaded earlier, into the TouchStart/lib folder.

5. Copy the following files from your Sencha Touch folder to your
TouchStart/lib folder:

	° sencha-touch.js

	° sencha-touch-debug.js

	° sencha-touch-debug-w-comments.js

Chapter 2

[35]

6. Create an empty file in the TouchStart/css folder called TouchStart.css.
This is where we will put custom styles for our application.

7. Create an empty index.html file in the main TouchStart folder. We will
flesh this out in the next section.

Icon files
Both iOS and Android applications use image icon files for
display. This creates pretty rounded launch buttons, found
on most touch-style applications.
If you are planning on sharing your application, you should
also create PNG image files for the launch image and
application icon. Generally, there are two launch images,
one with a resolution of 320 x 460 px, for iPhones, and one
at 768 x 1004 px, for iPads. The application icon should be
72 x 72 px. See Apple's iOS Human Interface Guidelines for
specifics, at http://developer.apple.com/library/
ios/#documentation/userexperience/conceptual/
mobilehig/IconsImages/IconsImages.html.

When you're done, your folder structure should look as follows:

www.allitebooks.com

http://www.allitebooks.org

Creating a Simple Application

[36]

Creating the HTML application file
Using your favorite HTML editor, open the index.html file we created when we
were setting up our application folder. This HTML file is where you specify links
to the other files we will need in order to run our application.

The following code sample shows how the HTML should look:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
 <title>TouchStart Application – My Sample App</title>

 <!-- Sencha Touch CSS -->
 <link rel="stylesheet" href="lib/resources/css/sencha-touch.css"
type="text/css">

 <!-- Sencha Touch JS -->
 <script type="text/javascript" src="lib/sencha-touch-debug.js"></
script>

 <!-- Application JS -->
 <script type="text/javascript" src="app/TouchStart.js"></script>

 <!-- Custom CSS -->
 <link rel="stylesheet" href="css/TouchStart.css" type="text/css">

 </head>
 <body></body>
</html>

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Comments
In HTML, anything between <!-- and --> is a comment, and it will
not be displayed in the browser. These comments are to tell you what
is going on in the file. It's a very good idea to add comments into your
own files, in case you need to come back later and make changes.

Chapter 2

[37]

Let's take a look at this HTML code piece-by-piece, to see what is going on in
this file.

The first five lines are just the basic set-up lines for a typical web page:

<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
 <title>TouchStart Application – Hello World</title>

With the exception of the last line containing the title, you should not need to change
this code for any of your applications. The title line should contain the title of your
application. In this case, TouchStart Application – Hello World is our title.

The next few lines are where we begin loading the files to create our application,
starting with the Sencha Touch files.

The first file is the default CSS file for the Sencha Touch library—sencha-touch.css.

 <link rel="stylesheet" href="lib/resources/css/ext-touch.css"
type="text/css">

CSS files

CSS or Cascading Style Sheet files contain style information for
the page, such as which items are bold or italic, which font sizes to
use, and where items are positioned in the display.

The Sencha Touch style library is very large and complex. It controls the default
display of every single component in Sencha Touch. It should not be edited directly.

The next file is the actual Sencha Touch JavaScript library. During development
and testing, we use the debug version of the Sencha Touch library, sencha-touch-
debug.js:

 <script type="text/javascript" src="lib/sencha-touch-debug.js"></
script>

The debug version of the library is not compressed and contains comments and
documentation. This can be helpful if an error occurs, as it allows you to see exactly
where in the library the error occurred.

Creating a Simple Application

[38]

When you have completed your development and testing, you should edit this line
to use sencha-touch.js instead. This alternate file is the version of the library that
is optimized for production environments and takes less bandwidth and memory
to use; but, it has no comments and is very hard to read.

Neither the sencha-touch-debug.js nor the sencha-touch.js files should ever be
edited directly.

The next two lines are where we begin to include our own application files. The
names of these files are totally arbitrary, as long as they match the name of the files
you create later, in the next section of this chapter. It's usually a good idea to name
the file the same as your application name, but that is entirely up to you. In this case,
our files are named TouchStart.js and TouchStart.css.

 <script type="text/javascript" src="app/TouchStart.js"></script>

This first file, TouchStart.js, is the file that will contain our JavaScript
application code.

The last file we need to include is our own custom CSS file, called TouchStart.css.
This file will contain any style information we need for our application. It can also be
used to override some of the existing Sencha Touch CSS styles.

 <link rel="stylesheet" href="resources/css/TouchStart.css"
type="text/css">

This closes out the </head> area of the index.html file. The rest of the index.html
file contains the <body></body> tags and the closing </html> tag.

If you have any experience with traditional web pages, it may seem a bit odd to have
empty <body></body> tags, in this fashion. In a traditional web page, this is where
all the information for display would normally go.

For our Sencha Touch application, the JavaScript we create will populate this area
automatically. No further content is needed in the index.html file, and all of our
code will live in our TouchStart.js file.

So, without further delay, let's write some code!

Starting from scratch with TouchStart.js
Let's start by opening the TouchStart.js file and adding the following:

new Ext.Application({
name: 'TouchStart',
launch: function() {

Chapter 2

[39]

var hello = new Ext.Container({
fullscreen: true,
html: '<div id="hello">Hello World</div>'
 });

this.viewport = hello;
 }
});

This is probably the most basic application you can possibly create: the ubiquitous
"Hello World" application. Once you have saved the code, use the Safari web
browser to navigate to the TouchStart folder in the root folder of your local
web server. The address should look like the following:

•	 http://localhost/TouchStart/, on the PC
•	 http://127.0.0.1/~username/TouchStart, on the Mac (username should

be replaced with the username for your Mac)

As you can see, all that this bit of code does is create a single window with the words
Hello World. However, there are a few important elements to note in this example.

The first line, NewExt.Application({, creates a new application for Sencha Touch.
Everything listed between the curly braces is a configuration option of this new
application. While there are a number of configuration options for an application,
most consist of at least the application's name and a launch function.

http://localhost/TouchStart/
http://localhost/TouchStart/
http://127.0.0.1/~username/TouchStart
http://127.0.0.1/~username/TouchStart

Creating a Simple Application

[40]

Namespace
One of the biggest problems with using someone else's code is
the issue of naming. For example, if the framework you are using
has an object called "Application", and you create your own object
called "Application", the two functions will conflict. JavaScript uses
the concept of namespaces to keep these conflicts from happening.
In this case, Sencha Touch uses the namespace Ext. You will see
this namespace used throughout the code in this book. It is simply a
way to eliminate potential conflicts between the frameworks' objects
and code, and your own objects and code.
Sencha will automatically set up a namespace for your own code as
part of the new Ext.Application object.
Ext is also part of the name of Sencha's web application framework
called ExtJS. Sencha Touch uses the same namespace convention
to allow developers familiar with one library to easily understand
the other.

When we create a new application, we need to pass it some configuration options.
This will tell the application how to look and what to do. These configuration
options are contained within the curly braces ({}) and separated by commas. The
first option is as follows:

name: 'TouchStart'

This sets the name of our application to whatever is between the quotes. This name
value should not contain spaces, as Sencha also uses this value to create a namespace
for your own code objects. In this case, we have called the application TouchStart.
The next option is where things start to get interesting:

launch: function() {
var hello = new Ext.Container({
fullscreen: true,
html: '<div id="hello">Hello World</div>'
 });

this.viewport = hello;
 }

The launch configuration option is actually a function that will tell the application
what to do once it starts up. Let's start backwards on this last bit of code for the
launch configuration and explain this.viewport.

Chapter 2

[41]

By default, a new application has a viewport. The viewport is a pseudo-container
for your application. It's where you will add everything else for your application.
Typically, this viewport will be set to a particular kind of container object.

At the beginning of the launch function, we start out by creating a basic container,
which we call hello:

var hello = new Ext.Container({
fullscreen: true,
html: '<div id="hello">Hello World</div>'
 });

Like the Application class, a new Ext.Container class is passed a configuration
object consisting of a set of configuration options, contained within the curly
braces ({}) and separated by commas. The Container object has over 40 different
configuration options, but for this simple example, we only use two:

•	 fullscreen sets the size of the container to fill the entire screen (no matter
which device is being used).

•	 html sets the content of the container itself. As the name implies, this can be a
string containing either HTML or plain text.

Admittedly, this is a very basic application, without much in the way of style. Let's
add something extra using the container's layout configuration option.

My application didn't work!
When you are writing code, it is an absolute certainty that you will,
at some point, encounter errors. Even a simple error can cause your
application to behave in a number of interesting and aggravating ways.
When this happens, it is important to keep in mind the following:

•	 Don't Panic.
•	 Retrace your steps and use the tools mentioned in the previous

chapter to track down the error and fix it. If anything from this
chapter does not work for you, jump to the Testing and debugging
section of this chapter for some pointers on where to start looking.

Creating a Simple Application

[42]

Controlling the container with layout
Layouts give you a number of options for arranging content inside containers.
Sencha Touch offers four basic layouts for containers:

•	 fit: A single item layout that automatically expands to take up the
whole container

•	 hbox: Arranges items horizontally in the container
•	 vbox: Arranges items vertically in the container
•	 card: Arranges items like a stack of cards where only the active card is

initially visible

In our previous example, we did not declare a layout. In general, you will always
want to declare a layout for any container. If you don't, the components inside the
container may not size themselves appropriately when they appear. This is not as
critical when the container only contains HTML.

Let's take our previous example and modify it a bit:

new Ext.Application({
name: 'TouchStart',
launch: function() {
var hello = new Ext.Container({
fullscreen: true,
layout: {
type: 'vbox',
align: 'stretch'
 },
items: [
 {
xtype: 'container',
flex: 2,
html: '<div id="hello">Hello World Top</div>',
cls: 'blueBox',
border: 1
 }, {
xtype: 'container',
flex: 1,
html: '<div id="hello">Hello World Bottom</div>',
cls: 'redBox',
border: 1
}, {
xtype: 'container',
height: 50,

Chapter 2

[43]

html: '<div id="footer">Footer</div>',
cls: 'greenBox'
 }

]
 });

this.viewport = hello;
 }
});

For this example, we have removed the line that previously set HTML, '<div
id="hello"> Hello World</div>', and replaced it with our layout configuration:

layout: {
type: 'vbox',
align: 'stretch'
 }

This configuration sets our main container layout to vbox (objects aligned vertically)
and stretches the boxes to take up the full horizontal width on the screen.

We have also added items to our container, after we set the layout. The items are a
collection of Sencha Touch components we want to include inside our container. The
items list is enclosed in brackets, and the individual components within the items
list are contained in curly braces.

In this case, we are going to include three additional containers inside of our
main container:

items: [
 {
xtype: 'container',
flex: 2,
html: '<div id="hello">Hello World Top</div>',
cls: 'blueBox',
border: 1
 }, {
xtype: 'container',
flex: 1,
html: '<div id="hello">Hello World Bottom</div>',
cls: 'redBox',
border: 1
 }, {
xtype: 'container',

Creating a Simple Application

[44]

height: 50,
html: '<div id="footer">Footer</div>',
cls: 'greenBox'
 }

]

One of the first things you will notice is the addition of a configuration called
an xtype.

In Sencha Touch, xtype: 'container' is just another way of saying new Ext.
Container. This is a much easier way to add items within an existing container and
has the added benefit of saving device memory. Almost every component used in
Sencha Touch has a unique xtype.

xtypes
When you use xtype, the component isn't created until it is
actually needed for display to the user. By contrast, any time
you use the new command, such as new Ext.Container, the
component is created in memory immediately.
The Sencha Touch API contains a list of the available xtype
components at http://dev.sencha.com/deploy/touch/
docs/ (search for Component).

The next configuration in the list is called flex. The flex configuration is unique
to the hbox and vbox layouts. It controls how much space the component will take
up, proportionally, in the overall layout. You may also have noticed that the last
container does not have a flex configuration. Instead, it has height: 80. The vbox
layout will interpret these values to lay out the container as follows:

1. Since we have one component with a height of 50, the vbox layout will leave
that component as 50 pixels tall.

2. The vbox layout will then use the flex values of the other two components as
a ratio. In this case, 2:1.

3. The end result is a container, 80 pixels high, on the bottom of the screen.
The other two containers will take up the rest of the available space. The
top container will also be twice as tall as the middle container.

In order to make these sizes clearer, we have also added a cls configuration to
each of the inner containers. The cls configuration sets a CSS class on the container,
allowing us to use our TouchStart.css file to add style changes for each of the
containers.

http://dev.sencha.com/deploy/touch/docs/
http://dev.sencha.com/deploy/touch/docs/

Chapter 2

[45]

Locate your TouchStart.css file, open it in your code editor, and add the following:

.blueBox {
background-color: #7FADCF;
}

.redBox {
background-color: #CE7E83;
}

.greenBox {
background-color: #7ECEA0;
}

Save your changes and reload the page in Safari:

As you can see from this example, we can easily nest containers to create more
complex layouts. We should also take into account the fact that each of these
containers can have a different layout and can contain its own items. It would be
easy enough to add buttons to our footer container on the bottom and make it into a
real working toolbar. However, we really don't need to, because Sencha Touch has
already provided us with a simpler way.

Creating a Simple Application

[46]

An important concept to understand when working with layouts is
that the layout configuration does not change where the container itself
lives, or how it looks, but only affects the items inside the container.
Additionally, all display components in Sencha Touch have a default
layout of fit. If you don't specify a different layout type, a fit layout
will be used. We will cover layouts in depth, later in the book.

The panel
As we noted previously, containers are a very basic object in Sencha Touch, and they
can be extended to create more complex objects with new features. The first of these
is Panel.

Like the container, a panel can have a layout, html, or items components and it can
be set to fullscreen. In fact, since it inherits from the container, it can do everything
a container can, and more.

One of the key advantages of a panel is the ability to have docked items. These
docked items can be used to make title bars, toolbars, and navigation bars. A simple
example would be the following:

new Ext.Application({
name: 'TouchStart',
launch: function() {

 this.viewport = new Ext.Panel({
fullscreen: true,
 bodyPadding: 5,
dockedItems: [
 {
dock : 'top',
xtype: 'toolbar',
title: 'Touch Start'
 },
 {
dock : 'top',
xtype: 'toolbar',
items: [
 {
text: 'Hello Button'
 }
]

Chapter 2

[47]

 }
],

html: 'Hello Panel'

 });
 }
});

This is similar to our first example, except we are now using a panel and we have
also taken a shortcut by directly setting the viewport method:

this.viewport = new Ext.Panel({

We also added a bit of visual appeal, in the form of padding, to the panel, by setting
bodyPadding to 5, but the big change is the docked items.

Much like when we added containers into our main container, the docked items are
shown as an array of components inside brackets. In this case, there are two items:
one for the title bar and a second for the button bar. Both of these items have an
xtype value toolbar.

Creating a Simple Application

[48]

The toolbar also inherits from our old friend, the container. This means it can also
have layout, html, and items components. As a dockedItems component, toolbar
also understands the concept of where it should be docked. The dock configuration
can be set to top, right, left, or bottom.

Our first toolbar simply sets a title configuration value instead of html or items.
However, the second toolbar is a bit different.

One of the interesting things you might have noticed in the second toolbar is that our
Hello Button doesn't actually have a configuration value for xtype. This is because
the toolbar assumes that all of its items are buttons, unless you tell it otherwise.
In this case, the button only has a text property. At this point, the button doesn't
do anything, but you can begin to see some of the possibilities for panel and its
dockedItems component.

It should also be noted that dockedItems components don't have to be toolbars.
They can actually be any kind of component you like. For example, if you want to
have a left sidebar, you could add a dockedItem component with an xtype value
of Panel and a dock setting of left, which would give you all the functionality of
a regular panel, pinned to the left side of your existing panel.

When do I use a panel instead of a container?
Since the panel does so much more than a container, the logical
question would be: why use the container at all?
The general rule of thumb is, if you need the extra functionality, use
the panel, component, and if you don't require docked items or a title
bar, use the container component. Using the container saves a bit
of memory and makes for cleaner, more understandable code.

While the panel is a good starting point for starting an application, Sencha Touch
also provides a more complex version of the panel called the TabPanel.

The TabPanel component
TabPanel components contain all of the core functions of the regular panel, but they
have a few extra advantages as well.

TabPanel is a very specialized panel that uses a card layout to quickly create
a switchable set of tabs for each item in the tab panel.

Chapter 2

[49]

The card layout can contain a number of different containers, but it only displays
them one at a time. Much like a deck of cards where only the top card is visible,
the card layout can only have one active item at a time. You can then change the
active item and the new card will automatically switch to the front, hiding the
previous card.

The TabPanel creates a card layout for all of its items by default. It also adds a
button in the tab bar for each of its items. These buttons automatically switch from
one card to the next, without any additional code.

To create this new TabPanel, let's modify our previous example. Instead of setting
the viewport method to a simple panel, we will set it to be a TabPanel and put our
old panel inside TabPanel. We will also add two empty containers, so we can see
how the tabs work:

new Ext.Application({
name: 'TouchStart',
launch: function() {

this.viewport = new Ext.TabPanel({
fullscreen: true,
cardSwitchAnimation: 'slide',
tabBar:{

Creating a Simple Application

[50]

dock: 'bottom',
layout: {
pack: 'center'
 }
 },
items: [{
xtype: 'panel',
title: 'Panel 1',
fullscreen: false,
html: '<div id="hello">Hello World</div>',
iconCls: 'info',
dockedItems: [
 {
dock: 'top',
xtype: 'toolbar',
title: 'About TouchStart'
 }
]
 }, {
xtype: 'container',
html: 'TouchStart container 2',
iconCls: 'home',
title: 'Panel 2'
 }, {
xtype: 'container',
html: 'TouchStart container 3',
iconCls: 'favorites',
title: 'Panel 3'
 }]
 });

 }
});

Looking at the code, you can see that TabPanel has a couple of new configuration
options. The first is the cardSwitchAnimation option, which we have set to slide.
Other options include:

•	 fade

•	 flip

•	 cube

•	 pop

•	 wipe

Chapter 2

[51]

You can also set this to false, which simply swaps the cards without any animation.

TabPanel also has a tabBar property that functions in much the same way as the
toolbar component from our previous examples. In this example, we have set
tabBar to appear at the bottom, and we have set the tabBar's layout to place all
of the buttons together (pack) in the middle (center) of the tabBar.

For the TabPanel items list, we have our original Hello World panel component
and a pair of simple container components. One difference you will see with these
items is that we now have configuration options for title and iconCls. These two
options control what appears on the tab for the item. iconCls can be set to one of
the included icons, or you can customize and include your own icons.

Icons
A full list of the available icons can be found in the Kitchen Sink
application (http://dev.sencha.com/deploy/touch/
examples/kitchensink/) under Interface | Icons. Click on
the Source button to see how the icons are used.

Now that we have our TabPanel component, load the application in Safari and click
through the tabs to see how they work. Change the cardSwitchAnimation option
and see what the other options look like. You can also try changing some of the
values for iconCls. When you are ready to move on, we will add something a bit
more interesting and complex to our TabPanel.

The list component
The list component in Sencha Touch allows you to display data in a list layout. This
seems pretty straightforward, but the list follows a slightly different pattern than the
previous components. Let's make some modifications to our current code and see
what some of those differences look like.

Find the set of parentheses that contain the first of our empty containers:

{
xtype: 'container',
html: 'TouchStart container 2',
iconCls: 'home',
title: 'Panel 2'
}

http://dev.sencha.com/deploy/touch/examples/kitchensink/
http://dev.sencha.com/deploy/touch/examples/kitchensink/

Creating a Simple Application

[52]

Replace that entire container component (including the {} at either end) with
the following:

{
xtype: 'list',
title: 'List',
fullscreen: false,
iconCls: 'bookmarks',
itemTpl: '{id} - {fullname}',
store: new Ext.data.Store({
model: 'ListItem',
data: [
 {id: 1, fullname: 'Aaron Karp'},
 {id: 2, fullname: 'Baron Chandler'},
 {id: 3, fullname: 'Bryan Johnson'},
 {id: 4, fullname: 'David Evans'},
 {id: 5, fullname: 'John Clark'},
 {id: 6, fullname: 'Norbert Taylor'}

]
 })
}

The first big difference we can see is that the list component does not declare a
layout. Instead, it uses an itemTpl object to control how the items within the list
are arranged. Notice that the elements in curly braces, '{id} - {fullname}',, also
appear in our data component, at the bottom of the list component. This means
that each row of the list will appear with the ID, a dash, and the value.

These itemTpl layout values are called XTemplates in Sencha Touch. The
XTemplates consists of a string with items in curly braces. When the list appears,
it will print out the XTemplates and substitute the items inside the {} with the
corresponding value listed in the data.

store is used to control the data for the list. It can keep the data locally, as in our
example, or it can retrieve the data from a server. The data within the store has to
conform to a model. The model describes what values are available to the store and
any special attributes they may have.

We will cover XTemplates, stores, and models in greater detail, later on in this book.
For now, we still need to create the actual model this store example needs. Right
now, the model configuration option for the store component is set to ListItem.

Chapter 2

[53]

At the top of the application, create a new line right after the launch function:

launch: function() {

Add the following code:

Ext.regModel('ListItem', {
fields: [
 {name: 'id', type: 'int'},
 {name: 'fullname', type: 'string'}
]
});

This will create the correct model for our store. The model creates an array of fields,
each of which has a name and a type. The name should match the one you use in the
itemTpl object and the data object for the store. The type configuration option lets
the store understand how to deal with the data when it is sorted or stored.

If everything has gone as planned, your second tab should now look as follows:

With each step of this example, we have gotten more and more complex. At
some point, it is very likely that an empty screen has greeted you instead of your
application. Before we go too far ahead, we need to take a look at what you should
do when things go boom.

Creating a Simple Application

[54]

Testing and debugging the application
The first place to start when testing an application in Safari is the Error Console.
From the Develop menu, select Show Error Console.

Parse errors
The Error Console in the previous screenshot tells us two very important things.
The first, is that we have SyntaxError: Parse error. This means that somewhere in
the code we did something that the browser didn't understand. Typically, this is
something such as:

•	 Forgetting to close a parenthesis, bracket, or brace, or adding an extra one
•	 Not having a comma between the configuration options, or adding an

extra comma
•	 Leaving out the semicolon at the end of one of the variable declarations
•	 Not closing quotes or double-quotes (also not escaping quotes

where necessary)

Chapter 2

[55]

The second critical bit of information is /app/TouchStart-4.js: 39. It tells us that:

•	 /app/TouchStart-4.js is the file where the error occurred
•	 39 is the line where the error occurred

Using this information, we should be able to track down the error quickly and fix it.

Case sensitivity
JavaScript is a case-sensitive language. This means that if you type xtype: 'Panel',
you will get the following in the Error Console:

Attempting to create a component with an xtype that has not been registered:
Panel

This is because Sencha Touch is expecting panel and not Panel.

Missing files
Another common problem is missing files. If you don't point your index.html file at
your sencha-touch-debug.js file correctly, you will get two separate errors:

1. Failed to load resource: the server responded with a status of 404
(Not Found)

2. ReferenceError: Can't find variable: Ext

The first error is the critical bit of information; the browser could not find one of the
files you tried to include. The second error is caused by the missing file and simply
complains that the Ext variable cannot be found. In this case, it's because the missing
file is sencha-touch-debug.js, which sets up the Ext variable in the first place.

Web Inspector console
Another feature of Safari Web Inspector that is incredibly useful for debugging
applications is the console. In your JavaScript code, add the following command:

console.log('Creating Application');

Add it just before this new Application line:

new Ext.Application({

Creating a Simple Application

[56]

You should see the text Creating Application in your Web Inspector's console tab.
You can also send variables to the console where you can view their contents, thus:

console.log('My viewport: %o', this.viewport);

This shows you the TabPanel component we created, if you place it after the this.
viewport = new TabPanel block of code. This is useful if, for some reason, you have
a component that is not displaying properly. Sending an object to the console allows
you to see the object as JavaScript sees it.

If you'd like to learn more about using the Safari Web Inspector
for debugging your application, visit Apple's Debugging your
Website page at http://developer.apple.com/library/
safari/#documentation/AppleApplications/Conceptual/
Safari_Developer_Guide/DebuggingYourWebsite/
DebuggingYourWebsite.html.

http://developer.apple.com/library/safari/#documentation/AppleApplications/Conceptual/Safari_Developer_Guide/DebuggingYourWebsite/DebuggingYourWebsite.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Conceptual/Safari_Developer_Guide/DebuggingYourWebsite/DebuggingYourWebsite.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Conceptual/Safari_Developer_Guide/DebuggingYourWebsite/DebuggingYourWebsite.html
http://developer.apple.com/library/safari/#documentation/AppleApplications/Conceptual/Safari_Developer_Guide/DebuggingYourWebsite/DebuggingYourWebsite.html

Chapter 2

[57]

Updating the application for production
When you're done writing and testing your application, and are comfortable that it's
ready for production, there are a few simple steps you should take before you release
your application into the wild.

Point to production library files
In our HTML file, we suggested loading the file sencha-touch-debug.js via the
script tag. You should definitely change this to sencha-touch.js, in order to reduce
load times and memory use. You may also have used the sencha-touch-debug.css
file to help with writing your own custom CSS. This should be changed back
to sencha-touch.css as well.

Remove debugging code
You should also go through your application's JavaScript code and remove any
console.log lines, alerts, or any other code you added to help you debug errors.
Many mobile devices don't understand debugging code, and those that do may
behave strangely if you leave it in place.

Be sure to test out your application again once you've removed
the debugging code, just to make sure you didn't delete any
other code by accident.

Going that extra mile
There are some optional steps you could take before putting your application into
production. With an application as simple as this one, these additional steps aren't
really necessary. With larger applications, however, they can help to speed up your
application and reduce its download size:

1. Minimize your JavaScript and CSS via a tool, such as YUI Compressor
(http://developer.yahoo.com/yui/compressor/) or Google's Minify
(http://code.google.com/p/minify/), to reduce file size.

2. Combine your separate graphics files into sprites to reduce load time.

http://developer.yahoo.com/yui/compressor/
http://developer.yahoo.com/yui/compressor/
http://code.google.com/p/minify/
http://code.google.com/p/minify/

Creating a Simple Application

[58]

The following are tools that can help you create sprites from your
image files:

•	 SpriteMe - http://spriteme.org/
•	 CSS Sprite Creator - http://www.floweringmind.com/

sprite-creator/

3. Prepare your application icon: create a 72px x 72px PNG file. Add
the following to the <head> element of your index.html file: <link
rel="apple-touch-icon" href="icon.png"/>.

Apple has a document explaining the guidelines for creating
icons for your application, at http://developer.apple.
com/library/ios/#documentation/userexperience/
conceptual/mobilehig/IconsImages/IconsImages.html.

Putting the application into production
Now that you've written and tested your application, and prepared it for production,
it's time to find somewhere for it to live. Since the method for putting an application
into production will vary based on your setup, we will be covering this task in very
general terms.

The first thing to do is to familiarize yourself with three basic pieces of the puzzle
for putting your application into production: web hosting, file transfer, and
folder structure.

While it is fine to develop your application on a local web server, if you want
anyone else to see it, you will need a publically accessible web server with a constant
connection to the Internet. There are a large number of web hosting providers, such
as GoDaddy, HostGator, Blue Host, HostMonsteror, and RackSpace.

Since our application is pure HTML/JavaScript/CSS, you don't need any fancy
add-ons, such as, databases or server side programming languages (PHP or Java),
for your web hosting account. Any account that can serve up HTML pages is good
enough. The key to this decision should be customer support. Make sure to check
the reviews before choosing a provider.

The hosting provider will also supply information on setting up your domain and
uploading your files to the web server. Be sure to keep good track of your username
and password, for future reference.

http://spriteme.org/
http://spriteme.org/
http://www.floweringmind.com/sprite-creator/
http://www.floweringmind.com/sprite-creator/
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html
http://developer.apple.com/library/ios/#documentation/userexperience/conceptual/mobilehig/IconsImages/IconsImages.html

Chapter 2

[59]

In order to copy your application to your web hosting account, you'll probably have
to familiarize yourself with a FTP (File Transfer Protocol) program such as FileZilla.
As with hosting providers, there is a huge selection of FTP programs. Most of them
follow a few basic conventions.

To begin with, you will need to connect to the web server with the FTP program.
You will need:

•	 A name or IP address for the web server
•	 Your web hosting username and password
•	 A connection port for the web server

Your web hosting provider should provide you with this information when you
sign up.

Creating a Simple Application

[60]

Once you are connected to the server, you will see a list of files on your local
machine, and files on your remote web server. You will need to move the TouchStart
files on the remote server to upload them. Your hosting provider will also provide
you with the name of a specific folder where these files need to go. The folder is
typically called something like httpd, htdocs, html, or public_html.

This brings us to our last consideration for uploading files: folder path.

The folder path affects how the application locates its files and resources. When you
upload the application to the remote web server, it can affect how your folder is seen
within the application. If you have any files referenced from an absolute path, such
as http://127.0.0.1/~12ftguru/TouchStart/myfile.js, then the file will not
work when you move things over to the web server.

Even relative URLs can become problematic when you transfer files to the remote
server. For example, if you have a file which uses the path /TouchStart/myFile.js,
and you upload the contents of the TouchStart folder instead of the folder itself, the
file path will be incorrect.

This is something to keep in mind if you find yourself with missing images or
other errors.

Again, your web hosting provider is your best resource for information. Be sure
to look for Getting Started documentation and don't be afraid to seek help from any
user forums that your hosting provider may have.

Summary
In this chapter, we created our first simple application. We showed some of the
basics of Sencha Touch components, including configuration and nesting of
components within one another. We discussed the differences between panel and
container components, and when to prefer one over the other; we also introduced
you to the TabPanel and list components. In addition, we explained some basic
debugging methodology and prepared our application for production.

In the next chapter, we will create a custom theme for our application through the
use of SASS and the Sencha Touch library's styling tools.

http://127.0.0.1/~12ftguru/TouchStart/myfile.js
http://127.0.0.1/~12ftguru/TouchStart/myfile.js

Styling the User Interface
Now that we have a basic application to build on, we are going to take a look at some
of the different visual elements you can use to customize your application. In this
chapter, we will:

•	 Take a closer look at toolbars and buttons, using layout, additional style, and
icons, to boost the visual appeal of the user interface

•	 Expand on our previous work with icons, including making your own
custom icons and using base64 to include icons in a stylesheet, without an
actual image file

•	 Talk about the considerations and shortcuts for working with different
devices and screen sizes

•	 Explore the incredibly powerful Sencha theme engine using SASS and
Compass to create complex visual skins using simple CSS style commands

Styling components versus themes
Before we get into this chapter, it's important to have a good understanding of the
difference between styling an individual component and creating a theme.

Almost every display component in Sencha Touch has an option to set its own style.
For example, a panel component can use a style in this way:

{
xtype: 'panel',
style: 'border: none; font: 12px Arial black',
html: 'Hello World'
}

Styling the User Interface

[62]

We can also set a style class for a component and use an external CSS file to define
the class, as follows:

{
xtype: 'panel',
cls: 'myStyle',
html: 'Hello World'
}

These are very useful options for controlling the display of individual components.
There are also certain style elements, such as border, padding, and margin, that can
be set directly in the components' configuration:

{
xtype: 'panel',
bodyMargin: '10 5 5 5',
bodyBorder: '1px solid black',
bodyPadding: 5,
html: 'Hello World'
}

These configurations can accept either a number to be applied to all sides or a CSS
string value, such as, 1pxsolidblack or 10555. The number should be entered
without quotes, but the CSS string values need to be within quotes.

These kinds of small changes can be helpful in styling your application, but what
if you need to do something a bit bigger? What if you want to change the color or
appearance of the entire application? What if you want to create your own default
style for your buttons?

This is where themes and UI styles come into play. We will start by taking a look at
the UI styles and then see how we can expand this concept to create an overall theme
for our applications.

UI styling for toolbars and buttons
Let's take another look at the simple application we created in the previous chapter
and use it to start our exploration of styles with toolbars and buttons.

Chapter 3

[63]

To begin our exploration of styling, we are going to add a second upper toolbar
to our application. Locate the dockedItems section of our code from the previous
example:

dockedItems: [
{
dock: 'top',
xtype: 'toolbar',
title: 'About TouchStart'
}
]

After the trailing curly brace for our first toolbar, let's add a second toolbar as
follows:

{
dock: 'top',
xtype: 'toolbar',
title: 'About TouchStart'
}, {

Styling the User Interface

[64]

dock: 'top',
xtype: 'toolbar',
items: [
{text: 'My Button'}
]
}

Don't forget to add a comma between the two toolbars.

Extra or missing commas
When working in Sencha Touch, one of the most common causes
of parse errors is an extra or missing comma. When you are
moving code around, always make sure you have accounted for
any stray or missing commas. Fortunately for us, the Safari Error
Console will usually give us a pretty good idea which line number
to look at for these types of parse errors.

When you take a look at the new toolbar, you will see that, as it has no title, it is
a bit shorter than the one above it. The title makes the top bar appear a bit bigger
than the other toolbar. You can control the height of the toolbar by adding a height
configuration to the toolbar, as follows:

{
dock: 'top',
xtype: 'toolbar',
height: 25,
items: [
{text: 'My Button'}
]
}

The height configuration takes a number (without quotes) to determine the height
of the toolbar. You can adjust this number to fit your preference.

The two toolbars, together, also appear a bit dark, so we are going to change the
appearance of the bottom bar using the ui configuration option:

{
dock: 'top',
xtype: 'toolbar',
ui: 'light',
items: [
{text: 'My Button'}
]
}

Chapter 3

[65]

There are two initial values for a toolbar UI: dark and light. dark is the default
value (used by the upper toolbar). When you save and reload the page in Safari,
you should see some contrast between the upper and lower toolbars.

Styling buttons
Buttons also have a ui configuration setting, but they have different options:

•	 normal: The default button
•	 back: A button with the left side narrowed to a point
•	 round: A more drastically rounded button
•	 small: A smaller button
•	 action: A brighter version of the default button
•	 forward: A button with the right side narrowed to a point

Buttons also have some color options built into the ui option. These color options are
confirm and decline. These options are combined with the previous shape options
using a hyphen. For example, confirm-small or decline-round.

Styling the User Interface

[66]

Let's add some new buttons and see how this looks. Locate the items list with our
button, in the second toolbar:

items: [
 {text: 'My Button'}
]

Replace that old items list with the following new items list:

items: [
 {
text: 'Back',
ui: 'back'
 }, {
text: 'Round',
ui: 'round'
 }, {
text: 'Small',
ui: 'small'
 }, {
text: 'Normal',
ui: 'normal'
 }, {
text: 'Action',
ui: 'action'
 }, {
text: 'Forward',
ui: 'forward'
 }
]

As buttons can actually be used anywhere, let's also add some to the panel
container, so we can see what the ui options, confirm and decline, look like.
Locate the following line in our first panel:

html: '<div id="hello">Hello World</div>',

Below that line, add the following:

items: [
 {
xtype: 'button',
text: 'Confirm',
ui: 'confirm',
width: 100
 }, {

Chapter 3

[67]

xtype: 'button',
text: 'Decline',
ui: 'decline',
width: 100
 }
],

There are two things you might notice in our panel buttons that differ from our
toolbar buttons. The first is that we declare xtype:'button' in our panel, but we
don't in our toolbar. This is because the toolbar assumes it will contain buttons, and
xtype only has to be declared if you use something other than a button. The panel
does not set default xtype attribute, so every item in the panel must declare one.

The second difference is that we declare width for the buttons. If we don't declare
width when we use a button in a panel, it will expand to the full width of the panel.
On the toolbar, the button auto-sizes itself to fit the text.

These simple styling options can help make your application easier to navigate and
provide the user with visual clues for important or potentially destructive actions.

Styling the User Interface

[68]

The tab bar
Like the toolbar, the tab bar at the bottom also understands the ui configuration
option for both light and dark. However, the tab bar also changes the icon
appearance, based on the ui option; a light toolbar will have dark icons and
a dark toolbar will have light icons.

These icons are actually black-and-white images that are used to create a mask over
the color of the tab bar. Later in the chapter, we will show you how to create your
own icon masks and integrate them into your application.

While we are on the subject of icons, we should also take a look at the basic icons
you will want to include with your application.

Sencha Touch themes
Themes in Sencha Touch are a powerful way to quickly change the overall look
and feel of your application. We will cover the installation process a bit later in this
chapter, but we do need to lay a bit of groundwork before we can get started. There
is a lot of conceptual information to cover, but the flexibility you gain will be well
worth the effort.

The first thing we need to cover is a basic overview of the tools used by Sencha
Touch that make theming your application possible: SASS and Compass.

If you are already familiar with SASS and Compass, or you
are more comfortable installing first and then covering the
concepts, you can skip ahead to the Setting up SASS and
Compass section.

An introduction to SASS and Compass
SASS stands for Syntactically Awesome Stylesheets, and it's used to extend
standard CSS to allow for variables, nesting, mixins, and selector inheritance. This
means that all of your regular CSS declarations will work just fine, but you also get
some extra goodies.

Chapter 3

[69]

Variables in SASS
Variables allow you to define specific values and then use them throughout the
stylesheet. Variables' names are arbitrary and start with a $. For example, we
can use SASS to define the following:

$blue: #4D74C1;
$red: #800000;
$baseMargin: 10px;
$basePadding: 5px;

We can then use these variables as part of our standard CSS declarations in the
SASS file:

.box1 {
border: 1px solid $blue;
padding: $basePadding;
margin: $baseMargin;
}

We can also use basic math functions, as follows:

.box2 {
border: 1px solid $blue;
padding: $basePadding * 2;
margin: $baseMargin / 2;
}

This creates a box with twice the padding and half the margin of the first box. This
is great for creating flexible, scalable layouts. By changing your base values, you
can quickly scale your application to deal with multiple devices, with multiple
resolutions and screen sizes.

Additionally, when you decide you want to change the shade of blue you are using,
you only have to change it in one place. SASS also has a number of built-in functions
for adjusting colors, such as:

•	 darken: Makes the color darker by percentage
•	 lighten: Makes the color lighter by percentage
•	 complement: Returns the complementary color
•	 invert: Returns the inverted color
•	 saturate: Saturates the color by a numerical amount
•	 desaturate: Desaturates the color by a numerical amount

Styling the User Interface

[70]

These functions allow you to do things such as the following:

.pullQuote {
border: 1px solid blue;
color: darken($blue, 15%);
}

There are also functions for numbers, lists, strings, and basic if-then statements. These
functions help make your stylesheet every bit as flexible as your programming code.

SASS functions
The full list of SASS functions can be found at
http://sass-lang.com/docs/yardoc/Sass/
Script/Functions.html.

Mixins in SASS
Mixins are a variation of the standard SASS variables. Avoid simply declaring
a single one-to-one variable, such as the following:

$margin: 10px;

Instead, you can use a mixin to declare an entire CSS class as a variable:

@mixinbaseDiv {
border: 1px solid #f00;
color: #333;
width: 200px;
}

You can then take that mixin and use it in the SASS file:

#specificDiv {
padding: 10px;
margin: 10px;
float: right;
@includebaseDiv;
}

This gives you all of the attributes of the baseDivmixin component, plus the specific
styles you declared in the #specificDiv class.

http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html
http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html

Chapter 3

[71]

You can also set your mixin to use arguments, to make it even more flexible. Let's
look at an alternative version of what we had previously:

@mixinbaseDiv($width, $margin, $float) {
border: 1px solid #f00;
color: #333;
width: $width;
margin: $margin;
float: $float;
}

This means we can set values for width, margin, and float, as part of our SASS code,
such as the following:

#divLeftSmall {
@includebaseDiv(100px, 10px, left);
}
#divLeftBig{
@includebaseDiv(300px, 10px, left);
}
#divRightBig {
@includebaseDiv(300px, 10px, right);
}
#divRightAlert {
@includebaseDiv(100px, 10px, right);
color: #F00;
font-weight: bold;
}

This gives us four div tags with slightly different properties. All of them share the
same base properties of the mixinbaseDiv class, but they have different values for
width and float. We can also override the values for mixinbaseDiv, by adding
them in after we include the mixin, as seen in our #divRightAlert example.

Nesting in SASS
SASS also allows nesting of CSS declarations. This not only lets you write styles that
more closely mirror the structure of your HTML, but also makes for cleaner, more
easily maintainable code.

In HTML, we often nest elements within one another to give the document a
structure. A common example of this would be an unordered list that contains
several list items, such as the following:

Main List Item 1
Main List Item 2

Styling the User Interface

[72]

Normally, to style this list via CSS, you would write rules for the ul elements,
separately from the rules for the li elements. The two rules might not even be near one
another in your CSS files, making debugging or modifying the styles more difficult.

In SASS, we can write the following:

ul {
width: 150px;
border: 1px solid red;

li {
margin: 1px;
border: 1px solid blue;
}

}

See how we nest the style declarations for our li element inside the style declaration
for ul? Not only does this match the structure of the HTML document, but when you
want to update the li element, you know that it can be found inside the ul element.

When you compile that with SASS, the resulting CSS has separate rules for the ul
and li elements:

ul {
width: 150px;
border: 1px solid red;
}
ul li {
margin: 1px;
border: 1px solid blue;
}

If you were to view this list in your browser, you would see a list with a red border
around it, and blue borders around each of the individual list items.

It's also possible to reference the item one level up in the nesting, via the ampersand
(&) character. This is useful when adding things like hover states to nested elements,
or more generally, keeping exceptions to your rules grouped together.

Chapter 3

[73]

Suppose we want to change the background color when we hover over one of our li
elements. We could add &:hover inside the li style declaration:

ul {
width: 150px;
border: 1px solid red;

li {
margin: 1px;
border: 1px solid blue;

&:hover {
background-color: #B3C6FF;
}

}

}

The &:hover gets translated into li:hover by the SASS compiler:

ulli:hover {
background-color: #B3C6FF;
}

The & special character doesn't have to be used at the beginning of a rule, either.
Say your designer has your li elements use a bigger border when they're located
in a special #sidebardiv component. You could write a separate rule after your
ul/li rules, or you could add the exception inside the li ruleset, using the
special & character:

ul {
li {
margin: 1px;
border: 1px solid blue;

&:hover {
background-color: #B3C6FF;
}
div#sidebar& {
border-width: 3px;
}
}
}

Styling the User Interface

[74]

This will be translated to the following rule:

div#sidebarul li { border-width: 3px; }

You can also nest CSS namespaces. In CSS, if properties all start with the same prefix,
such as font-, then you can nest them as well:

li {
font: {
family: Verdana;
size: 18px;
weight: bold;
}
}

Be sure to remember to put the colon after the namespace name. When compiled,
this will become the following:

li {
font-family: Verdana;
font-size: 18px;
font-weight: bold;
}

This works for any namespace CSS property, such as, border- or background-.

Selector inheritance in SASS
Selector inheritance in SASS is analogous to object inheritance in JavaScript. In the
same way, a panel component extends the container object, meaning that a panel
has all the properties and functions of a container, and then some. SASS lets you
have objects that inherit the styles of other objects.

Say we want to create some message box elements for our application, one for
informational messages and one for errors. First, we should define a generic box:

.messageBox {
margin: 10px;
width: 150px;
border: 1px solid;
font: {
size: 24px;
weight: bold;
}
}

Chapter 3

[75]

Now, in any class where we want to include the .messageBox styles, we just use the
@extend directive @extend.messageBox;, on a line by itself:

.errorBox {
@extend .messageBox;
border-color: red;
color: red;
}

.infoBox {
@extend .messageBox;
border-color: blue;
color: blue;
}

Then, in our HTML, we would just use the .errorBox and .infoBox classes:

<div class="infoBox">Here's some information you may like to have.</
div>
<div class="errorBox">An unspecified error has occurred.</div>

Put it all together and you will see the left box with a blue border and blue text.
The right box will have a red border and red text:

Compass
Just as Sencha Touch is a framework built on the lower-level languages of JavaScript,
CSS, and HTML, Compass is a framework built on SASS and CSS. Compass provides
a suite of reusable components for styling your application, such as:

•	 CSS Resets, which enforce a uniform appearance for most HTML across all
of the major web browsers.

•	 Mixins, which allow you to declare complex programmatic functions for
your CSS.

•	 Layouts and Grids, which enforce width and height standards, to assist in
keeping your layout consistent across all pages.

www.allitebooks.com

http://www.allitebooks.org

Styling the User Interface

[76]

•	 Image Spriting, which allows you to automatically generate a single image
from multiple smaller images (this is easier for the browser to download).
The CSS will automatically show just the portion of the image you need,
hiding the rest.

•	 Text Replacement, which allows you to automatically swap specific text
pieces within your document.

•	 Typography, which provides advanced options for using fonts within your
web pages.

Compass also incorporates, into its components, the latest in CSS best practices,
meaning that your stylesheet will be leaner and more efficient.

SASS + Compass = themes
Sencha Touch themes take SASS and Compass one step further, by providing
variables and mixins whose functionality is specific to Sencha Touch. The JavaScript
portion of Sencha Touch generates lots of very complex HTML, in order to display
the various components, such as toolbars and panels. Rather than having to learn all
of the intricate classes and HTML tricks used by Sencha Touch, you can simply use
the appropriate mixins to change the appearance of your application.

Setting up SASS and Compass
If you decide that you would like to create your own Sencha Touch theme, you
will have to install both SASS and Compass, which are separate libraries from
Sencha Touch.

Installing SASS and Compass requires us to do a bit of work on the command line.
Since both SASS and Compass are available as RubyGems, Windows users will first
need to install Ruby.

Installing Ruby
Mac users get a break, since Ruby is already installed on OSX by default. Windows
users should download the Ruby installer from http://rubyinstaller.org/.
(We recommend version 1.9.2.)

http://rubyinstaller.org/

Chapter 3

[77]

Run the installer and follow the onscreen instructions to install Ruby. Be sure to
check the box that says Add Ruby executables to your PATH. This will save you
a lot of typing on the command line, later on.

Once the installation is complete, open up the command line in Windows by
going to Start | Run, typing cmd, and pressing Enter. This should bring up the
command line.

Now, try typing ruby -v. You should see something such as the following:

C:\Ruby192>ruby -v

ruby 1.9.2p180 (2011-02-18) [i386-mingw32]

This means that Ruby is correctly installed.

Installing SASS and Compass
The instructions for installing SASS and Compass vary slightly for Mac and
Windows users.

Mac users will need to open the Terminal application and type the following:

sudo gem install haml

sudo gem install compass

Styling the User Interface

[78]

You will need to authenticate with your username and password to complete
the install.

Windows users need to open the command line and type the following:

gem install haml

gem install compass

Once the installation is complete, we are ready to set up our folders and begin using
SASS and Compass.

If you're not comfortable with this command line stuff, there
are two applications that bundle up Ruby, SASS, and Compass
for you, and run on both Windows and OSX:

•	 Scout : http://mhs.github.com/scout-app/
•	 Compass.app: http://compass.handlino.com/

Creating a custom theme
The next thing we need to do is create our own theme SCSS file. Locate the
sencha-touch.scss file in TouchStart/lib/resources/sass, and make a copy
of the file. Rename the new copy of the file to myTheme.scss.

Chapter 3

[79]

Now, we need to tell the index to look for our new theme. Using our previous
example files, open your index.html file, and locate the line that says the following:

<link rel="stylesheet" href="lib/resources/css/sencha-touch.css"
type="text/css">

Change the sencha-touch.css stylesheet reference in our index.html file to point
to myTheme.css:

<link rel="stylesheet" href="lib/resources/css/myTheme.css"
type="text/css">

SCSS and CSS
Notice that we are currently including a stylesheet from the css
folder, called sencha-touch.css, and we have a matching file
in the scss folder, called sencha-touch.scss. When the SCSS
files are compiled, it creates a new file in your css folder. This
new file will have a suffix of .css instead of .scss.
.scss is the file extension for SASS files. SCSS is short for
Sassy CSS.

Now that we have our paths set up, let's take a look at the theme file copy we made.
Open your myTheme.scss file. You should see the following:

@import 'sencha-touch/default/all';

@includesencha-panel;
@includesencha-buttons;
@includesencha-sheet;
@includesencha-picker;
@includesencha-tabs;
@includesencha-toolbar;
@includesencha-toolbar-forms;
@includesencha-carousel;
@includesencha-indexbar;
@includesencha-list;
@includesencha-list-paging;
@includesencha-list-pullrefresh;
@includesencha-layout;
@includesencha-form;
@includesencha-msgbox;
@includesencha-loading-spinner;

Styling the User Interface

[80]

This code grabs all of the default Sencha Touch theme files and compiles them into
a new CSS file located in the css folder. If you open up the sencha-touch.css file
in the lib/resources/css folder, you will see the compressed CSS file we were
previously using. This file is pretty huge, but it's all created from the basic commands.

The best part is that we can now change the entire color scheme of the application
with a single line of code.

Base color
One of the key variables in the Sencha Touch theme is $base_color. This color
and its variations are used throughout the entire theme. To see what we mean, let's
change the color of our theme to a nice forest green by adding the following to the
top of your myTheme.scss file (above all the other text):

$base_color: #546346;

Next, we need to re-compile the SASS file to create our stylesheet. From the
command line, you need to change into the sass folder where your myTheme.scss
file lives. Once you are in the folder, type the following into the command line and
hit Enter:

compass compile

This will update our myTheme.css file with the new $base_color value. Reload the
page in Safari, and you should see a new forest green look to your application.

Chapter 3

[81]

Notice that this one line of code has created variations for both our dark and light
toolbars. Changing the base color has also changed the icons for our tab bar at
the bottom.

This is all pretty cool, but what if we want to tweak individual parts of the theme?
Sencha Touch themes provides exactly what we need, using mixins and the ui
configuration option.

compass compile versus compass watch
Compass uses the compile command to create the new
stylesheet, based on your SCSS file. However, you can also
set Compass up to watch a particular file for changes and
automatically compile when anything new is added. This
command is entered on the command line as the following:
compass watch filename

This command will remain active as long as your terminal is
open. Once you close the terminal window, you will need to
run the command again, in order to make Compass watch
for changes.

Mixins and the UI configuration
As we have noted previously, the Sencha theme system is a set of predefined mixins
and variables that get compiled to create a CSS stylesheet. Each component has its
own mixins and variables for controlling styles. This means you can override these
variables or use the mixins to customize your own theme.

You can also use mixins to create additional options for the ui configuration option
(beyond the simple light and dark values that we have seen previously). For
example, we can modify the color of our toolbar by adding a new mixin to our
myTheme.sass file.

In your myTheme.sass file, locate the line that says the following:

@import 'sencha-touch/default/all';

After that line, add the following:

@includesencha-toolbar-ui('subnav', #625546, 'matte');

Styling the User Interface

[82]

This code tells SASS to create a new ui option for the toolbar. Our new option will be
called subnav, and it will have a base color of #625546. The last option sets the style
for the gradient. The available styles are:

•	 flat: No gradient
•	 matte: A subtle gradient
•	 bevel: A medium gradient
•	 glossy: A glassy style gradient
•	 recessed: A reversed gradient

Once you have saved the file, you will need to recompile the stylesheet, using the
compass compile command on the command line.

We also need to change the ui configuration option in our JavaScript file. Locate your
touchStart.js file in the app folder and open it up. Find the second toolbar in our
application, just above where we add the buttons. It should look like the following:

dock: 'top',
xtype: 'toolbar',
ui: 'light'

You will need to change ui:'light' to ui:'subnav' and save the file.

You can then reload the page to see your changes.

Chapter 3

[83]

Adding new icon masks
You can also use the mixins to add custom icon masks to your tab bar at the bottom,
using the pictos-iconmaskmixin component. There are two caveats to keep in
mind when using this function.

The first is that these icons are used as a mask for the button. This means that the
icon is a transparent PNG file that only uses the color black. This icon is then used
to screen a particular color by allowing it to show through any of the black areas.
For example, the actual PNG file for our info mask is on the far left in the following
screenshot. Depending on the ui configuration for the tab, it can appear in a number
of different colors, also shown as follows:

The original PNG file is also larger than our theme items, which allows the file to be
scaled to fit a number of different sizes.

The second consideration for using the pictos-iconmaskmixin component is that
it expects the icon file to be in a specific folder: /lib/resources/themes/images/
default/pictos. If you open this folder, you will see that there are already a
number of extra icons in the folder.

For example, we have an icon called "bolt", but if we try to use it as part of our
touchStart.js file, we end up with a blank square instead of the icon. We need
to use our mixin to actually add it to our SCSS and CSS files.

In your myTheme.sass file, locate the line that says:

@import 'sencha-touch/default/all';

After that line, add the following:

@includepictos-iconmask('bolt');

In this case, we are telling the mixin to include an icon mask for the bolt.png icon
file. The argument for the mixin is always the name of the file without the .png
extension. This is also the name we will use to add the icon to our JavaScript file.

In the touchStart.js file, locate the line that says:

iconCls: 'info',

Styling the User Interface

[84]

Replace the line with the following:
iconCls: 'bolt',

Save your changes and reload the page to see your new icon. Don't forget to
recompile the SASS file using compass compile on the command line.

You can also add your own custom mask files to this folder and call them, using
the same pictos-iconmaskmixin function in your SASS file, and adding the
corresponding iconCls configuration option to your js file. Just make sure they are
transparent PNG files with black icons, and that you put them in the correct folder,
that is, /lib/resources/themes/images/default/pictos.

Variables
Variables are also available for every component, and they are used to control
specific color, size, and appearance options. Unlike mixins, the variables target
a single setting for a component. For example, the button component includes
variables for the following:

•	 $button-gradient: The default gradient for all buttons
•	 $button-height: The default height for all buttons
•	 $button-radius: The default border radius for all buttons
•	 $button-stroke-weight: The default border thickness for all buttons

There are also variables for disabling all of the special CSS effects on all buttons
(gradients, text shadows, and drop shadows) as well as setting the default size for
toolbar icons.

For example, if we add $button-height: 2em; to our myTheme.scss file, then we can
recompile and see that buttons in our toolbar are now larger than they were before.

Chapter 3

[85]

You will also notice that our Confirm and Decline buttons did not change size. This
is because their UI configurations (confirm and decline) have already been defined
separately and include a specific height. If you wanted to change the size of these
two buttons, you would need to remove the UI configuration for both buttons.

More SASS resources
Using the mixins and variables included in the Sencha Touch theme, you can
change almost any aspect of your interface to look exactly how you want. There are
a number of online resources that will help you dig deeper into all of the possibilities
with SASS and Compass.

Additional resources
•	 A full list of the Sencha Touch theme mixins and variables is

available at http://dev.sencha.com/deploy/touch/
docs/theme/

•	 Learn more about SASS at http://sass-lang.com/
•	 The Compass home page has examples of sites using Compass,

tutorials, help, and more, at http://compass-style.org/

Designing for multiple devices
When creating stylesheets for your application, it's also important to consider the
appearance of your application on multiple devices. Each device will have its own
screen size, which limits the available area of your application.

What we really need is a way to determine the type of device we are on. We can
accomplish this by using the Sencha Touch is function. The is function simply
returns true or false for the following arguments:

•	 Android

•	 Blackberry

•	 Desktop

•	 Linux

•	 Mac

•	 Phone

•	 Tablet

•	 Windows

http://dev.sencha.com/deploy/touch/docs/theme/
http://dev.sencha.com/deploy/touch/docs/theme/
http://sass-lang.com/

Styling the User Interface

[86]

•	 iOS

•	 iPad

•	 iPhone

•	 iPod

You can also use standalone to detect if the application has been saved to the home
screen. For example, if you want check screen sizes, you can use something such as
the following:

if(Ext.is.Tablet || Ext.is.Desktop) {
// use full size elements here
} else {
// use phone size elements here
}

Basically, this code checks if the application is running on either a tablet or desktop.
If it is, we can then add code to create our full-sized interface. If is not running on
either of these two device types, we can create a smaller interface for phones, iPods,
and other smaller devices.

You can use these tests to resize your various components and change styles, based
on the device the application is running on. Here's an example:

if(Ext.is.Tablet || Ext.is.Desktop) {
 varfontSize = '12px';
 vardefaultUI = 'normal';
 varbuttonWidth = 100;
} else {
 varfontSize = '16px';
 vardefaultUI = 'large';
 varbuttonWidth = 200;
}

newExt.Application({
name: 'TouchStart',
launch: function() {
var about = new Ext.Panel({
fullscreen: true,
title: 'Touch Start',
html: 'Changing type sizes based on the device',
style: 'font-size: '+fontSize+';',
items: [{
xtype: 'button',
text: 'My button',
ui: defaultUI,
width: buttonWidth

Chapter 3

[87]

 }]
 });

this.viewport = about;
 }
});

This example code first checks to see if we are running on a tablet or a desktop
machine. If we are running on one of those two environments, we make our
font-size, defaultUI, and buttonWidth configuration options a default size.

If we are running on any other type of device (something with a small screen),
we make the font size and component sizes a bit larger to aid with visibility
and interaction.

Our application code then sets up a single panel with a button, both of which use
the size values we defined in the previous example.

These types of conditional style tweaks will help keep your application readable and
usable across multiple devices.

Styling the User Interface

[88]

Images on multiple devices with
Sencha.io Src
If your application uses images, you probably need something a bit more robust than
conditional styles, such as those used in the previous section. Creating individual
image sets for each device would be a nightmare. Fortunately, the folks at Sencha
have an answer to this problem: a web-based service called Sencha.io Src.

Sencha.io Src is a separate service from Sencha Touch and can be used in any
web-based application. The service works by taking an original image and resizing it
on the fly, to fit the current device and screen size. These images are also cached by
the service and optimized for quick, repeatable delivery. To use the Sencha.io Src
service, the only thing you need to change is the URL for your image.

For example, a basic HTML image tag looks like this:

The same image tag, using the Sencha.io Src service, would look like this:

<img src="http://src.sencha.io/http://www.mydomain.com/images/my-big-
image.jpg">

This passes the actual URL of your image to the system for processing.

Image URLs in Sencha.io Src
As you can see in the example, we are using a full image URL
(with http://www.mydomain.com/), instead of a shorter
relative URL (such as /images/my-big-image.jpg). Since
the Sencha.io Src service needs to be able to get directly to
the file from the main Sencha.io server, a relative URL will
not work. The image file needs to be on a publicly available web
server in order to work correctly.

Chapter 3

[89]

By using the service, our large image will be scaled to fit the full width of our
device's screen, no matter what size device we use. Sencha.io Src also keeps the
image proportions correct, without any squishing or stretching.

Specifying sizes with Sencha.io Src
We don't always use fullscreen images in our applications. We often use them for
things such as icons and accents, within the application. Sencha.io Src also lets us
specify a particular height and/or width for an image:

<img src="http://src.sencha.io/320/200/http://www.mydomain.com/images/
my-big-image.jpg">

Styling the User Interface

[90]

In this case, we have set the width of our image to be resized to 320 pixels, and
the height to 200 pixels. We can also constrain just the width, and the height will
automatically be set to the correct proportion:

<img src="http://src.sencha.io/320/http://www.mydomain.com/images/my-
big-image.jpg">

It is important to note that Sencha.io Src will only shrink images. It
will not enlarge them. If you enter a value larger than the dimensions of
the actual image, it will simply display at the full image size.
You full-size image should always be the largest size you will need
for display.

Sizing by formula
We can also use formulas to make changes based on the screen size of the device. For
example, we can use the following code to make our photo 20 pixels narrower than
the full width of the screen:

<img src="http://src.sencha.io/-20/http://www.mydomain.com/images/my-
big-image.jpg">

This is useful if you want to leave a small border around the image.

Sizing by percentage
We can also use percentage widths to set our image sizes:

<img src="http://src.sencha.io/x50/http://www.mydomain.com/images/my-
big-image.jpg">

The x50 part of our URL sets the image size to 50 percent of the screen width.

We can even combine these two elements to create a scalable image gallery:

<img src="http://src.sencha.io/-20x50-5/http://www.mydomain.com/
images/my-big-image.jpg">
<img src="http://src.sencha.io/-20x50-5/http://www.mydomain.com/
images/my-big-image.jpg">

Chapter 3

[91]

By using the formula -20x50-5, we take our original image, remove 20 pixels for our
margin, shrink it to 50 percent, and then remove an additional five pixels, to allow
for space between our two images.

Changing file types
Sencha.io Src offers some additional options you might find useful. The first lets
you change the file type for your image on the fly. For example, the following code
will return your JPG file as a PNG:

<img src="http://src.sencha.io/png/http://www.mydomain.com/images/my-
big-image.jpg">

Styling the User Interface

[92]

This can be useful when offering your applications' users multiple download options
for images.

This option can also be combined with the resizing options:

<img src="http://src.sencha.io/png/x50/http://www.mydomain.com/images/
my-big-image.jpg">

This would convert the file to PNG format and scale it to 50 percent.

By using the functions available in Sencha.io Src, you can automatically
size images for your application and provide a consistent look and feel across
multiple devices.

For a full list of all the functions you can use with Sencha.io Src, go to
http://www.sencha.com/learn/how-to-use-src-sencha-io/.

Summary
In this chapter, we covered how to style toolbars using the ui configuration option.
We also talked about how Sencha Touch uses SASS and Compass to create a robust
theme system. We included installation instructions for SASS and Compass and
provided an explanation of mixins, variables, nesting, and selector inheritance.
Finally, we touched upon designing interfaces for multiple devices and handling
automatic image resizing, using Sencha.io Src.

In the next chapter, we will dive right back into the Sencha Touch framework. We'll
review a bit of what we have previously learned about component hierarchy. Then,
we will cover some of the more specialized components that are available. Finally,
we'll give you some tips on finding the information you need in the Sencha Touch
API documentation.

Components and
Configurations

In this chapter, we are going to take a deeper look at the individual components
available in Sencha Touch. We will examine the layout configuration option and
how it affects each of the components.

Throughout the chapter, we will use the simple base components as a starting point
for learning about the more complex components. We'll also talk a bit about how to
access our components after they have been created.

Finally, we will wrap up with a look at how to use the Sencha Touch API
documentation to find detailed information on configurations, properties, methods,
and events for each component.

This chapter will cover the following topics:

•	 The base component class
•	 Layouts revisited
•	 The TabPanel and Carousel components
•	 The FormPanel components
•	 MessageBox and Sheet
•	 The map component
•	 The List and NestedList components
•	 Where to find more information on components

Components and Configurations

[94]

The base component class
When we talk about components in Sencha Touch, we are generally talking about
buttons, panels, sliders, toolbars, form fields, and other tangible items that we can
see on the screen. However, all of these components inherit their configuration
options, methods, properties, and events from a single base component with the
startlingly original name of component. This can obviously lead to a bit of confusion,
so we will refer to this as Ext.Component for the rest of this book.

One of the most important things to understand is that you will never actually use
Ext.Component directly. It is simply used as a building block for all of the other
components in Sencha Touch. However, it is important to be familiar with the base
component class, because anything it can do, all the other components can do.
Learning this one class can give you a huge head start on everything else. Some of
the more useful configuration options of Ext.Component are as follows:

•	 border

•	 cls

•	 disabled

•	 height/width
•	 hidden

•	 html

•	 margin

•	 padding

•	 scroll

•	 style

•	 ui

Since the other components, which we will cover in this chapter, inherit from the
base component class, they will all have these same configuration options.

Ext.Component also contains a number of useful methods that will allow you to get
and set properties on any Sencha Touch component. Here are a few of those methods:

•	 addCls and removeCls: Add or remove a CSS class from your component.
•	 destroy: Remove the component from memory.
•	 disable and enable: Disable or enable the component (very useful

in forms).

Chapter 4

[95]

•	 getHeight, getWidth, and getSize: Get the current height, width, or
size of the component. Size returns both height and width. You can also
use setHeight, setWidth, and setSize, to change the dimensions of
your component.

•	 show and hide: Show or hide the component.
•	 setPosition: Set the top and left values for the component.
•	 update: Update the content area of a component.

Unlike our configuration options, methods can only be used once the component
is created. This means we also need to understand how to get the component itself
before we can begin using the methods. This is where the Ext class comes into play.

The Ext object and Ext.getCmp()
The Ext object is created, by default, when the Sencha Touch library is loaded.
This object has methods that are used to create our initial application and its
components. It also allows us to talk to our other components after they have been
created. For example, let's take the very first code example we used in Chapter 2,
Creating a Simple Application:

new Ext.Application({
 name: 'TouchStart',
 launch: function() {
 var hello = new Ext.Container({
 fullscreen: true,
 html: '<div id="hello">Hello World</div>',
 id: 'helloContainer'
 });

 this.viewport = hello;
 }
});

Sharp-eyed readers will note that I have modified our original code a bit and
added an id configuration option to the container. This configuration option,
id: 'helloContainer' will allow us to grab the container, later on, using our
Ext class and the method getCmp().

For example, we can add the following code after this.viewport = hello;:

var myContainer = Ext.getCmp('helloContainer');
myContainer.update('Hello Again!');

Components and Configurations

[96]

By using Ext.getCmp, we get back the component with an id value of
helloContainer, which we then set to our variable myContainer. Using
this method returns an actual component, in this case a container.

Since we get this object back as a container component, we can use any of the
methods that the container understands. For our example, we used the update()
method to change the content of the container to 'Hello Again!'. Typically, these
types of changes will be generated by a button click and not in the launch function.
This example simply shows that we can manipulate the component on the fly even
after it gets created.

The ID configuration
It's a good idea to include an id configuration in all of your
components. This makes it possible to use Ext.getCmp() to get to
those components, later on, when we need them. Remember to keep
the ID of every component unique. If you plan on creating multiple
copies of a component, you will need to make sure that a unique ID is
generated for each copy.

The Ext.getCmp() method is great for grabbing Sencha Touch components and
manipulating them. We will be using this method in a few of our examples, in
this chapter.

Layouts revisited
Layouts are another area we need to expand upon. When you start creating your
own applications, you will need a firm understanding of how the different layouts
affect what you see on the screen. To this end, we are going to start out with a
demonstration application that shows how the different layouts work.

For the purposes of this demo application, we will create the different
components, one at a time, as individual variables. This is done
for the sake of readability and should not be considered the best
programming style. Remember that any items created this way will
take up memory, even if the user never views the component.
var myPanel = new Ext.Panel({ …

It is always a much better practice to create your components, using
xtype attibutes, within your main container:
items: [{ xtype: 'panel', …

This allows Sencha Touch to render the components as they are
needed, instead of all at once when the page loads.

Chapter 4

[97]

The card layout
To begin with, we will create a simple card layout:

new Ext.Application({
 name: 'TouchStart',
 launch: function() {
 var layoutPanel = new Ext.Panel({
 fullscreen: true,
 layout: 'card',
 id: 'layoutPanel',
 cardSwitchAnimation: 'slide',
 items: [hboxTest]
 });

 this.viewport = layoutPanel;
 }
});

This sets up a single panel with a card layout. The card layout arranges its items
similar to a stack of cards. Only one of these cards is active and displayed at a time.
The card layout keeps any additional cards in the background and only creates them
when the panel receives the setActiveItem() command.

Each item in the list can be activated by using setActiveItem() and the item
number. This can be a bit confusing, as the numbering of the items is zero-indexed,
meaning that you start counting at zero and not one. For example, if you want to
activate the fourth item in the list, you would use:

layoutPanel.setActiveItem(3);

In this case, we are starting out with only a single card/item called hboxTest. We
need to add this container to make our program run.

The hbox layout
Above the line that says var layoutPanel = new Ext.Panel({, in the preceding
code, add the following code:

var hboxTest = new Ext.Container({
 layout: {
 type: 'hbox',
 align: 'stretch'
 },
 items: [{

Components and Configurations

[98]

 xtype: 'container',
 flex: 1,
 html: 'My flex is 1',
 margin: 5,
 style: 'background-color: #7FADCF'
 }, {
 xtype: 'container',
 flex: 2,
 html: 'My flex is 2',
 margin: 5,
 style: 'background-color: #7FADCF'
 }, {
 xtype: 'container',
 width: 80,
 html: 'My width is 80',
 margin: 5,
 style: 'background-color: #7FADCF'
 }]
 });

This gives us a container with an hbox layout and three child items.

Child and parent
In Sencha Touch, we often find ourselves dealing with very large
arrays of items, nested in containers that are in turn nested in other
containers. It is often helpful to refer to a container as a parent
to any items it contains. These items are then referred to as the
children of the container.

The hbox layout stacks its items horizontally and uses the width and flex values
to determine how much horizontal space each of its child items will take up. The
align: 'stretch' configuration causes the items to stretch to fill all of the available
vertical space.

Chapter 4

[99]

If we run the code now, we should see this:

You should try adjusting the flex and width values to see how it affects the size
of the child containers. You can also change the available configuration options for
align (center, end, start, and stretch), to see the different options available.
Once you are finished, let's move on and add some more items to our card layout.

The vbox layout
Above our previous var hboxTest = new Ext.Container({ code, add the following:

var vboxTest = new Ext.Container({
 layout: {
 type: 'vbox',
 align: 'stretch'
 },
 items: [{
 xtype: 'container',
 flex: 1,
 html: 'My flex is 1',
 margin: 5,
 style: 'background-color: #7FADCF'
 }, {

Components and Configurations

[100]

 xtype: 'container',
 flex: 2,
 html: 'My flex is 2',
 margin: 5,
 style: 'background-color: #7FADCF'
 }, {
 xtype: 'container',
 height: 80,
 html: 'My height is 80',
 margin: 5,
 style: 'background-color: #7FADCF'
 }]
 });

This code is virtually identical to our previous hbox code, a container with three
child containers. However, this parent container uses layout: vbox, and the third
child container in the items list uses height instead of width. This is because the
vbox layout stacks its items vertically and uses the values for height and flex to
determine how much space the child items will take up. In this layout, the align:
'stretch' configuration causes the items to stretch to fill the horizontal space.

Now that we have our vbox container, we need to add it to the items in our main
layoutContainer. Change the items list in layoutContainer to say the following:

items: [hboxTest, vboxTest]

If we run the code now, it's going to look exactly the same as before. This is because
our card layout on layoutContainer can only have one active item. You can set
layoutContainer to show our new vbox by adding the following configuration to
our layoutContainer:

activeItem: 1,

Remember that our items are numbered starting with zero, so item 1 is the second
item in our list: items: [hboxTest, vboxTest].

Chapter 4

[101]

You should now be able to see the vbox layout for our application:

As with the hbox, you should take a moment to adjust the flex and width values
and see how it affects the size of the containers. You can also change the available
configuration options for align (center, end, start, and stretch), to see the
different options available. Once you are finished, let's move on and add some more
items to our card layout.

The fit layout
The fit layout is the most basic layout and it simply fits any child items to the
parent container. While this seems pretty basic, it can also have some unintended
consequences, as we will see in our example.

Above our preceding var vboxTest = new Ext.Container({ code, add the
following:

var fitTest = new Ext.Container({
 layout: 'fit',
 items: [{
 xtype: 'button',
 ui: 'decline',
 text: 'Do Not Press'
 }]
 });

Components and Configurations

[102]

This is a single container with a fit layout and a button. Now, all we need to do is
set the activeItem configuration on our main layoutContainer component by
changing activeItem: 1 to activeItem: 2.

If you reload the page now, you will see what we mean by unintended consequences:

As you can see, our button has expanded to fill the entire screen. We can change
this by declaring a specific height and width for the button (and any other items we
place in this container). However, fit layouts tend to work best for a single item that
is intended to take up the entire container. This makes them a pretty good layout for
child containers, where the parent container controls the overall size and position.

Let's add a bit of complexity to our application and see how this might work.

Adding complexity
For this example, we are going to create a nested container and add it to our card
stack. We will also add some buttons to make switching the card stack easier.

Our two new containers are variations on what we already have in our current
application. The first is a copy of our hbox layout with a few minor changes:

var complexTest = new Ext.Container({
 layout: {
 type: 'vbox',

Chapter 4

[103]

 align: 'stretch'
 },
 style: 'background-color: #FFFFFF',
 items: [{
 xtype: 'container',
 flex: 1,
 html: 'My flex is 1',
 margin: 5,
 style: 'background-color: #7FADCF'
 },
 hboxTest2, {
 xtype: 'container',
 height: 80,
 html: 'My height is 80',
 margin: 5,
 style: 'background-color: #7FADCF'
 }]
 });

You can copy and paste our old vboxTest code and change the first line to say
complexTest instead of vboxTest. You will also need to remove the second
container in our items list (parentheses and all) and replace it with hboxTest2.
This is where we will nest another container with its own layout.

Now, we need to define hboxTest2, by copying our previous hboxTest code, and
make a few minor changes. You will need to paste this new code up above where
you placed the complexTest code, otherwise you will get errors when we try to use
hboxTest2, before we actually define it:

var hboxTest2 = new Ext.Container({
 layout: {
 type: 'hbox',
 align: 'stretch'
 },
 flex: 2,
 style: 'background-color: #FFFFFF',
 items: [{
 xtype: 'container',
 flex: 1,
 html: 'My flex is 1',
 margin: 5,
 style: 'background-color: #7FADCF'
 }, {
 xtype: 'container',
 flex: 2,

Components and Configurations

[104]

 html: 'My flex is 2',
 margin: 5,
 style: 'background-color: #7FADCF'
 }, {
 xtype: 'container',
 width: 80,
 html: 'My width is 80',
 margin: 5,
 style: 'background-color: #7FADCF'
 }]
 });

After you paste in the code, you will need to change the variable name to hboxTest2,
and we will need to add a flex configuration to the main parent container. Since this
container is nested within our vbox container, the flex configuration is needed to
define how much space hboxTest2 will occupy.

Before we take a look at this new complex layout, let's make our lives a bit easier by
adding some buttons to switch between our various layout cards.

Locate layoutPanel and, underneath, where we define the active item, add the
following code:

dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 text: 'hbox',
 handler: function() {
 var cards = Ext.getCmp('layoutPanel');
 cards.setActiveItem(0);
 }},{
 text: 'vbox',
 handler: function() {
 var cards = Ext.getCmp('layoutPanel');
 cards.setActiveItem(1);
 }
 },{
 text: 'fit',
 handler: function() {
 var cards = Ext.getCmp('layoutPanel');
 cards.setActiveItem(2);
 }
 },{
 text: 'complex',
 handler: function() {

Chapter 4

[105]

 var cards = Ext.getCmp('layoutPanel');
 cards.setActiveItem(3);
 }
 }],
 }],

This code adds a toolbar to the top of our layoutPanel, with a button for each of our
layout cards.

Each button has a text configuration, which serves as the button's title, and a handler
configuration. The handler configuration defines what happens when the button is
clicked. For each of our buttons, we grab the layoutPanel, using Ext.getCmp():

var cards = Ext.getCmp('layoutPanel');

This lets us manipulate our variable cards, just as we would manipulate any other
panel with a card layout. We can then set the active item in each case by using
the following:

 cards.setActiveItem(x);

The x, in this case, would be replaced by the index of the item we want to activate
(remember that these go in order, starting with zero and not one).

Notice that we also leave the configuration option for activeItem in our
layoutPanel component. This will control which item is displayed when our
application starts.

If you refresh the page, you should be able to click through the buttons and see each
of our layouts, including the new complex layout.

Components and Configurations

[106]

As you can see from this example, our vbox layout splits the window into three
rows. The hbox layout, in the second row, splits it into three columns. Using these
types of nested layouts makes it pretty easy to create traditional layouts, such as
those used in e-mail or social networking applications.

For example, a typical e-mail application can be conceptually broken down into
the following:

•	 An application container with a Toolbar and a single container called Main
with a fit layout.

•	 The Main container will have an hbox layout and two child containers called
Left and Right.

•	 The Left container will have a flex of 1 and a vbox layout. It will have two
child containers called Mailboxes (with a flex of 3) and Activity (with a
flex of 1).

•	 The Right container will have a flex of 3 and a vbox layout. It will also have
two child containers called Messages (with a flex of 1) and Message (with a
flex of 2).

Toolbar

Main

Left Right

Mailboxes

Activity

Message

Messages

Chapter 4

[107]

Building container layouts such as these, is good practice. To see example code for
this container layout, take a look at the file TouchStart2b.js in the code bundle.
It's also a good idea to create some base layouts such as these, to use as templates
for getting a jumpstart on building your future applications.

Now that we have a better understanding of layouts, let's take a look at some of the
components we can use inside the layouts.

The TabPanel and Carousel components
In our last application, we used buttons and a card layout to create an application
that switched between different child items. While it is often desirable for your
application to do this programmatically (with your own buttons and code), you
can also choose to have Sencha Touch set this up automatically, using TabPanel
or Carousel.

TabPanel
TabPanel is useful when you have a number of views the user needs to switch
between, such as, contacts, tasks, and settings. The TabPanel component auto-
generates the navigation for the layout, which makes it very useful as the main
container for an application.

One of our early example applications in Chapter 2, Creating a Simple Application,
used a simple TabPanel to form the basis of our application. The following is a
similar code example:

new Ext.Application({
 name: 'TouchStart',
 launch: function() {

 this.viewport = new Ext.TabPanel({
 fullscreen: true,
 cardSwitchAnimation: 'slide',
 tabBar:{
 dock: 'bottom',
 layout: {
 pack: 'center'
 }
 },
 items: [{
 xtype: 'container',
 title: 'Item 1',
 fullscreen: false,

Components and Configurations

[108]

 html: 'TouchStart container 1',
 iconCls: 'info'
 }, {
 xtype: 'container',
 html: 'TouchStart container 2',
 iconCls: 'home',
 title: 'Item 2'
 }, {
 xtype: 'container',
 html: 'TouchStart container 3',
 iconCls: 'favorites',
 title: 'Item 3'
 }]
 });
 }
});

TabPanel, in this code, automatically generates a card layout; you don't have to
declare a layout. You do need to declare a configuration for the tabBar component.
This is where your tabs will automatically appear.

In our previous code example, we dock the toolbar at the bottom. This will generate
a large square button for each child item in the items list. The button will also use
the iconCls value to assign an icon to the button. The title configuration is used to
name the button.

If you dock the tabBar component at the top, it makes the buttons small and round.
It also eliminates the icons, even if you declare a value for iconCls, in your child
items. Only the title configuration is used when the bar is docked at the top.

Chapter 4

[109]

Carousel
The Carousel component is similar to TabPanel, but the navigation it generates is
more appropriate for things such as slide shows. It probably would not work as well
as a main interface for your application, but it does work well as a way to display
multiple items in a single swipeable container.

Similar to TabPanel, Carousel gathers its child items and automatically arranges
them in a card layout. In fact, we can actually make just some simple modifications
to our previous code to make it into a Carousel:

new Ext.Application({
 name: 'TouchStart',
 launch: function() {

 this.viewport = new Ext.Carousel({
 fullscreen: true,
 direction: 'horizontal',
 items: [{
 html: 'TouchStart container 1'
 }, {

Components and Configurations

[110]

 html: 'TouchStart container 2'
 }, {
 html: 'TouchStart container 3'
 }]
 });
 }
});

The first thing we did was create a new Ext.Carousel class instead of a new
Ext.TabPanel class. We also added a configuration for direction, which can be
either horizontal (scrolling from left to right) or vertical (scrolling up or down).

We removed the docked toolbar, because, as we will see, Carousel doesn't use
one. We also removed iconClass and title from each of our child items for the
same reason. Finally, we removed the xtype configuration, since the Carousel
automatically creates a panel for each of its items.

Unlike TabPanel, Carousel has no buttons, only a series of dots at the bottom,
with one dot for each child item. While it is possible to navigate using the dots, the
Carousel component automatically sets itself up to respond to a swipe on a touch
screen. You can duplicate this gesture in the browser by clicking and holding with
the mouse, while moving it horizontally. If you declare a direction: vertical
configuration in your Carousel, you can swipe vertically, to move between the
child items.

Chapter 4

[111]

Similar to the card layout in our example at the beginning of the chapter, both the
TabPanel and the Carousel components understand the activeItem configuration.
This lets you set which item appears when the application first loads. Additionally,
they all understand the setActiveItem() method that allows you to change the
selected child item after the application loads.

Carousel also has methods for next() and previous(), which allow you to step
through the items in order.

It should also be noted that, since TabPanel and Carousel both inherit from the
panel, they also understand any methods and configurations that panels and
containers understand.

Along with containers and panels, TabPanel and Carousel will serve as the main
starting point for most of your applications. However, there is another type of panel
you will likely want to use at some point: the FormPanel.

FormPanel
The FormPanel panel is a very specialized version of the panel, and as the name
implies, it is designed to handle form elements. Unlike panels and containers, you
don't need to specify the layout for FormPanel. It automatically uses its own special
form layout.

A basic example of creating a FormPanel would look something like this:

var form = new Ext.form.FormPanel({
 items: [
 {
 xtype: 'textfield',
 name : 'first',
 label: 'First name'
 },
 {
 xtype: 'textfield',
 name : 'last',
 label: 'Last name'
 },
 {
 xtype: 'emailfield',
 name : 'email',
 label: 'Email'
 }
]
});

Components and Configurations

[112]

For this example, we just create the panel and add items for each field in the
form. Our xtype tells the form what type of field to create. We can add this
to our Carousel and replace our first container, as follows:

this.viewport = new Ext.Carousel({
 fullscreen: true,
 direction: 'horizontal',
 items: [form, {
 layout: 'fit',
 html: 'TouchStart container 2'
 }, {
 layout: 'fit',
 html: 'TouchStart container 3'
 }]
 });

Anyone who has worked with forms in HTML should be familiar with all of the
standard field types, so the following xtype attribute names will make sense to
anyone who is used to standard HTML forms:

•	 checkboxfield

•	 fieldset

•	 hiddenfield

Chapter 4

[113]

•	 passwordfield

•	 radiofield

•	 selectfield

•	 textfield

•	 textareafield

These field types all match their HTML cousins, for the most part. Sencha Touch also
offers a few specialized text fields that can assist with validating the user's input:

•	 emailfield - Accepts only a valid e-mail address, and on iOS devices, will
pull up an alternate e-mail address and URL-friendly keyboard

•	 numberfield - Accepts only numbers
•	 urlfield - Accepts only a valid web URL, and also brings up the

special keyboard

These special fields will only submit if the input is valid.

All of these basic form fields inherit from the main container class, so they have all of
the standard height, width, cls, style, and other container configuration options.

They also have a few field-specific options:

•	 label - A text label to use with the field
•	 labelAlign - Where the label appears; this can be top or left, and defaults

to left
•	 labelWidth - How wide the label should be
•	 name - This corresponds to the HTML name attribute, which is how the value

of the field will be submitted
•	 maxLength - How many characters can be used in the field
•	 required - If the field is required in order for the form to submit

Form field placement
While FormPanel is typically the container you will use when displaying
form elements, you can also place them in any panel or toolbar, if desired.
FormPanel has the advantage of understanding the submit() method
that will post the form values via AJAX request or POST.
If you include a form field in something that is not a FormPanel, you
will need to get and set the values for the field using your own custom
JavaScript method.

Components and Configurations

[114]

In addition to the standard HTML fields, there are a few specialty fields available in
Sencha Touch. These include the datepicker, slider, spinner, and toggle fields.

DatePicker
datepickerfield places a clickable field in the form with a small triangle on the far
right side.

You can add a date picker to our form by adding the following code after the
emailfield item:

,{
 xtype: 'datepickerfield',
 name : 'date',
 label: 'Date'
}

When the user clicks the field, a DatePicker will appear, allowing the user to select a
date by rotating the month, day, and year wheels, by swiping up or down.

Chapter 4

[115]

Sliders, spinners, and toggles
Sliders allow for the selection of a single value from a specified numerical range. The
sliderfield value displays a bar, with an indicator, that can be slid horizontally
to select a value. This can be useful for setting volume, color values, and other
ranged options.

Like the slider, a spinner allows for the selection of a single value from a specified
numerical range. The spinnerfield value displays a form field with a numerical
value with + and - buttons on either side of the field.

A toggle allows for a simple selection between one and zero (on and off) and
displays a toggle-style button on the form.

Add the following new components to the end of our list of items:

,{
 xtype : 'sliderfield',
 label : 'Volume',
 value : 5,
 minValue: 0,
 maxValue: 10
},
{
 xtype: 'togglefield',
 name : 'turbo',
 label: 'Turbo'
},
{
xtype: 'spinnerfield',
minValue: 0,
maxValue: 100,
incrementValue: 2,
cycle: true
}

Components and Configurations

[116]

The following screenshot shows how the new components will look:

Our sliderfield and spinnerfield have configuration options for minValue and
maxValue. We also added an incrementValue attribute, to spinnerfield, that will
cause it to move in increments of 2 whenever the + or - button is pressed.

Using the form fields — We will cover sending and receiving data
with forms, later on in the chapters covering data management.

MessageBox and Sheet
At some point, your application will probably need to give feedback to the user, ask
the user a question, or alert the user to an event. This is where the MessageBox and
Sheet components come into play.

MessageBox
The MessageBox component creates a window, on the page, that can be used
to display alerts, gather information, or present options to the user. MessageBox
can be called in three different ways:

Chapter 4

[117]

1. Ext.Msg.alert takes a title, message text, and an optional callback function
to call when the OK button on the alert is pressed.

2. Ext.Msg.prompt takes a title, message text, and a callback function to call
when the OK button is pressed. The prompt command creates a text field
and adds it to the window automatically. The function, in this case, is passed
the text of the field for processing.

3. Ext.Msg.confirm takes a title, message text, and a callback function to call
when either one of the buttons is pressed.

The callback function
A callback function is a function that gets called automatically, in
response to a particular action taken by the user or the code. This
is basically the code's way of saying, "When you are finished
with this, call me back and tell me what you did". This callback
allows the programmer to make additional decisions based on
what happened in the function.

Let's try a few examples, starting with a simple message box:

new Ext.Application({
 name: 'TouchStart',
 launch: function() {

 this.viewport = new Ext.Panel({
 fullscreen: true,
 dockedItems: [{
 dock: 'top',
 xtype: 'toolbar',
 ui: 'light',
 items: [
 {
 text: 'Panic',
 handler: function() {
 Ext.Msg.alert('Don\'t Panic!', 'Keep Calm. Carry
On.');
 }
 }
]
 }]
 });
 }
});

Components and Configurations

[118]

This code sets up a simple panel with a toolbar and a single button. The button has a
handler that uses Ext.Msg.alert() to show our message box.

Escaping quotes
In our previous example, we use the string 'Don\'t Panic' as the
title for our message box. The \ tells JavaScript that our second single
quote is part of the string and not the end of the string. You can see
in the example that the \ disappears in our message box.

Now, let's add a second button to our dockedItems attribute for a Ext.Msg.prompt
style message box:

{
 text: 'Greetings',
 handler: function() {
 Ext.Msg.prompt('Greetings!', 'What is your name?', function(btn,
text) {
 var response = new Ext.MessageBox().show({
 title: 'Howdy',
 msg: 'Pleased to meet you '+text
 });
 });
 }
}

Chapter 4

[119]

This message box is a bit more complex. We create our Ext.Msg.prompt class with a
title, a message, and a function. The prompt will create our text field automatically,
but we need to use the function to determine what to do with the text the user types
in the field.

The function is passed a value for the button and a value for the text. Our function
grabs the text and creates a new message box to respond, with the name the user
typed into the field.

Why is the second MessageBox called differently?
When we call Ext.Msg, Sencha Touch creates a temporary object
with our title, message, and button. If we attempt to call Ext.Msg
again, within our response function, Sencha Touch just modifies
the existing promptMessageBox function. Since we just told that
MessageBox function to close, our prompt just disappears instead
of showing us the new message.
By using new Ext.MessageBox().show(), we tell the system we
need to create something separate from the original MessageBox.

The Ext.Msg.confirm MessageBox class is used for decisions the user needs to make
or confirmation of a particular action the system is going to take.

Components and Configurations

[120]

Let's add the following component to our list of items in the dockedItems
component:

{
 text: 'Decide',
 handler: function() {
 Ext.Msg.confirm('It\'s Your Choice...', 'Would you like to
proceed?', function(btn) {
 var response = new Ext.MessageBox().show({
 title: 'So be it!',
 msg: 'You chose '+btn
 });
 });
 }
}

Similar to the prompt version of the MessageBox function, the confirm version takes
a title, message, and a callback function. The callback function is passed the button
the user pressed (as the value btn), which can then be used to determine what steps
the system should take next.

In this case, we just toss up a dialog box to display the choice the user has made. You
can also use an if..then statement to take different actions, depending on which
button is pressed.

Chapter 4

[121]

Sheet
The Sheet component is similar to MessageBox function, in that it is typically
used to pop up new information or options on the screen. It also presents this new
information by appearing over the top of the existing screen. As with MessageBox,
no further actions can be taken until Sheet is closed or responded to in some fashion.

Let's add another button to our list of items in the dockedItems component. This
button will pop up a new Sheet:

{
 text: 'Sheet',
 handler: function() {
 var mySheet = new Ext.Sheet({
 height: 250,
 layout: 'vbox',
 stretchX: true,
 enter: 'top',
 exit: 'top',
 items: [{
 xtype: 'container',
 layout: 'fit',
 flex: 1,
 padding: 10,
 style: 'color: #FFFFFF',
 html: 'A sheet is also a panel. It can do anything the panel
does.'
 }, {
 xtype: 'button',
 height: 20,
 text: 'Close Me',
 handler: function() {
 this.up('sheet').hide();
 }
 }],
 listeners: {
 hide: {
 fn: function(){ this.destroy(); }
 }
 }
 });
 mySheet.show();
 }
}

Components and Configurations

[122]

There are a lot of new things here, but some should seem familiar. Our button starts
with the text for the button display and then creates a handler that tells the button
what to do when clicked.

We then create a new Ext.Sheet class. Since Sheet inherits from the panel, we have
familiar configuration options, such as height and layout, but we also have a few
new options. The stretchX and stretchY configurations will cause the Sheet to
expand to the full width (stretchX) or height (stretchY) of the screen.

The values for enter and exit control how the Sheet component will slide into
place on the screen. You can use top, bottom, left, and right.

Our Sheet uses a vbox layout with two items, a container object for our text and
a button object to hide the Sheet component when the user is finished reading it.
button itself contains an interesting bit of code:

this.up('sheet').hide();

When we refer to this, we are referring to the button object, since the function
occurs inside the button itself. However, we really need to get to the Sheet that the
button is contained by, in order to close it when the button is clicked. In order to do
this, we use a clever little method called up.

The up method will basically crawl upwards through the structure of the code,
looking for the requested item. In this case, we are searching by xtype and we have
requested the first Sheet encountered by the search. We can then hide the Sheet
with the hide() method.

Ext.ComponentQuery
When you want to get one component, and you've given it an ID,
you can use Ext.getCmp(), as we discussed earlier. If, instead, you
want to get multiple components, or one component based on where
it is in relation to another component, you can use query(), up(),
and down(). To hide a toolbar that's inside a panel you can do the
following:

panel.down('toolbar').hide();

Additionally, to get all toolbars in your application, you could do the
following:

var toolbars = Ext.ComponentQuery.query('toolbar');

Chapter 4

[123]

Once we hide the Sheet component, we still have a bit of a problem. The Sheet is
now hidden, but it still exists in the page. If we go back and click the button again,
without destroying the Sheet, we will just keep creating more and more new sheets.
That means more and more memory, which also means an eventual death spiral for
your application.

What we need to do is make sure we clean up after ourselves, so that the sheets don't
pile up. This brings us to the last part of our code and the listeners configuration
at the end:

listeners: {
 hide: {
 fn: function(){ this.destroy(); }
 }
 }

A listener listens for a particular event, in this case, the hide event. When the hide
event occurs, the listener then runs the additional code listed in the fn configuration.
In this case, we destroy the Sheet using this.destroy();.

We will cover listeners and events in detail, in the next chapter.

A word about this
When we use the variable this in our programs, it always refers
to the current item. In the case above, we used this in two separate
places, and it referred to two separate objects. In our initial usage,
we were inside the configuration options for the button, and so this
referred to the button. When we later used this as part of our listener,
we were inside the configuration for the sheet, and this referred to
the sheet.
If you find yourself getting confused, it can be very helpful to use
console.log(this);, to make sure you are addressing the correct
component.

Components and Configurations

[124]

You should now be able to click the Sheet button and view our new Sheet.

ActionSheet
ActionSheet is a variation on the standard Sheet designed to display a series of
buttons. This is a good option when you only need a quick decision from the user,
with obvious choices that don't require a lot of explanation. For example, a delete
confirmation screen would be a good use for an action sheet.

Let's add a new button to our layout that will pull up an ActionSheet component
for a delete confirmation:

{
 text: 'ActionSheet',
 handler: function() {
 var actionSheet = new Ext.ActionSheet({
 items: [
 {
 text: 'Delete',
 ui: 'decline'
 },
 {

Chapter 4

[125]

 text: 'Save',
 ui: 'confirm'
 },
 {
 text: 'Cancel',
 handler: function() {
 this.up('actionsheet').hide();
 }
 }
],
 listeners: {
 hide: {
 fn: function(){ this.destroy(); }
 }
 }
 });
 actionSheet.show();
 }
}

The ActionSheet is created in much the same fashion as our previous Sheet
example. However, the ActionSheet assumes that all of its items are buttons,
unless you specify a different xtype.

Our example has three simple buttons: Delete, Save, and Cancel. The Cancel button
will hide the ActionSheet and the other two buttons are just for show.

As with our previous example, we also want to destroy the ActionSheet when we
hide it. This prevents copies of the ActionSheet from stacking up in the background
and creating problems.

Components and Configurations

[126]

Clicking the ActionSheet button in our application should now display the
ActionSheet we created.

Map
Map is a very specialized container designed to work with the Google Maps API.
The container can be used to display much of the information that Google
Maps displays.

We are going to create a very basic example of the Map container for this section,
but we will come back to it in Chapter 9, Advanced Topics, and cover some of the
more advanced tricks you can use.

For this example, let's create a new JavaScript file:

new Ext.Application({
 name: 'TouchStart',
 launch: function() {
 var map = new Ext.Panel({
 fullscreen: true,
 items : [
 {
 xtype: 'map',
 useCurrentLocation: true

Chapter 4

[127]

 }
]});

 this.viewport = map;
 }
});

For this example, we are just creating a single Panel component with one item. The
item is a map and has the configuration useCurrentLocation: true. This means that
the browser will attempt to use our current location as the center of the map's display.
The user is always warned when this happens and given an option to decline.

Before we can see how this works, we need to make one change to our standard
index.html file. Underneath the line where we include our other JavaScript files, we
need to include a new file from Google:

 <!-- Google Maps API -->
 <script type="text/javascript" src="http://maps.google.com/maps/api/
js?sensor=true"></script>

This will include all of the functions needed for us to use the Google Maps API.

If you reload the page, you will be asked if you want to allow your current location
to be used by the application. Once you accept, you should see a new map with your
current location at the center.

Components and Configurations

[128]

You can also use the map property and the mapOptions configuration option to access
the rest of the Google Maps functionality. We will explore some of these options and
go into much greater detail in Chapter 9, Advanced Topics.

Google Maps API documentation
The full Google Maps API documentation can be found at http://
code.google.com/apis/maps/documentation/v3/
reference.html.

Lists
Sencha Touch offers a few different kinds of list components. Each of these list
components consists of four basic parts: the list panel, an XTemplate, a data store,
and a model.

•	 The list panel is in charge of gathering these other items as part of its
configuration options

•	 The XTemplate determines how each line in the list is displayed
•	 The data store contains all of the data that will be used in the list
•	 The model describes the data that gets used in the data store by specifying

the datatype (string, Boolean, int, and so on) and any special validation
methods or default values

In one of our first examples, we created a list object similar to this one:

new Ext.Application({
name: 'TouchStart',
launch: function() {

Ext.regModel('ListItem', {
 fields: [
 {name: 'first', type: 'string'},
 {name: 'last', type: 'string'}
]
});

this.viewport = new Ext.Panel({
 fullscreen: true,
 layout: 'fit',
 items: [
 {

Chapter 4

[129]

 xtype: 'list',
 itemTpl: '{last}, {first}',
 store: new Ext.data.Store({
 model: 'ListItem',
 data: [
 {first: 'Aaron', last: 'Karp'},
 {first: 'Baron', last: 'Chandler'},
 {first: 'Bryan', last: 'Johnson'},
 {first: 'David', last: 'Evans'},
 {first: 'John', last: 'Clark'},
 {first: 'Norbert', last: 'Taylor'}

]
 })
 }]
});

}
});

We start by creating our application as before. We then create the model that
describes the data we are going to use in our list:

Ext.regModel('ListItem', {
 fields: [
 {name: 'first', type: 'string'},
 {name: 'last', type: 'string'}
]
});

This code gives us three potential values for each ListItem component we will be
using in the list: first and last. It also tells us the datatype for each value; in this
case, both are strings. This lets the data store know how to handle sorting the data
and lets the XTemplate understand how the data can be used.

Once we have our model, we create a panel with a single item, which is our list. The
first configuration after our xtype is itemTpl: '{last}, {first}'. This sets our
XTemplate for the list to display as: the last name, followed by a comma, and then
the first name, for each person in the list. We will cover the XTemplates in greater
detail in Chapter 7, Getting Data Out.

Components and Configurations

[130]

The itemTpl object is followed by our store, which tells the list what data we have
available for display. The store also needs a configuration for model: ListItem;, so
it knows the model we are using. This will allow the store to sort the data correctly.

Notice that, right now, our list is not sorted alphabetically. We need to add a sorter to
the store underneath the configuration option for our model:

sorters: 'last'

This will sort our list by the value last.

Grouped lists
Grouping lists are also common to a number of applications. Typically, grouping is
used for lists of people or other alphabetical lists of items. Address books, or long
lists of alphabetical data, are great places for grouped lists. A grouped list places an
indexBar component on the screen, allowing the user to jump to a specific point in
the list.

To group our current list, we need to add two configuration settings to our list
component. Add the following code beneath where we declare xtype: 'list':

grouped: true,
indexBar: true,

Chapter 4

[131]

We also need to add a function to our store that will get the string used to display
our alphabetical indexBar. Add the following code beneath our sorters component
in the store component:

getGroupString : function(record) {
 return record.get('last')[0];
},

This code uses record.get('last') to get the last name of our contact. We also add
[0] to the end of our get function, which causes JavaScript to treat the last name
as an array of individual letters instead of as a string. The first element of our array
([0]) is the first letter of the last name for our contact. This lets the list know where
to scroll to when one of the letters on the indexBar is clicked.

Nested lists
The NestedList component automates the layout and navigation of a nested data
set. This can be very useful for situations where you have a list of items and details
for each item in the list. For example, let's assume we have a list of offices, each office
has a set of departments, and each department has people.

Components and Configurations

[132]

We can initially represent this, onscreen, as a list of offices. Clicking on an office takes
you to a list of departments within that office. Clicking on a department takes you to
a list of people in that department.

The first thing we need is a set of data to use with this list:

var data = {
 text: 'Offices',
 items: [{
 text: 'Atlanta Office',
 items: [{
 text: 'Marketing',
 items: [{
 text: 'David Smith',
 leaf: true
 }, {
 text: 'Alex Wallace',
 leaf: true
 }]
 },{
 text: 'Sales',
 items: [{
 text: 'Candice Adams',
 leaf: true
 }, {
 text: 'Mike White',
 leaf: true
 }]
 }
]
 },{
 text: 'Athens Office',
 items: [{
 text: 'IT',
 items: [{
 text: 'Baron Chandler',
 leaf: true
 }, {
 text: 'Aaron Karp',
 leaf: true
 }]
 },{
 text: 'Executive',
 items: [{

Chapter 4

[133]

 text: 'Bryan Johnson',
 leaf: true
 }, {
 text: 'John Clark',
 leaf: true
 }]
 }
]
 }]
};

This is a rather large and ugly-looking array of data, but it can be broken down into a
few simple pieces:

•	 We have one main item called Offices
•	 Offices has a list of two items, Atlanta Office and Athens Office
•	 The two items each have two departments
•	 Each department has two people

Each of our people in this list has a special attribute called leaf. The leaf attribute
tells our program that it has reached the end of the nested data. Additionally, every
item in our list has an attribute called text. This becomes important for both our
data model and our store.

Since we are only worried about displaying the value of text, our model becomes
very simple:

Ext.regModel('ListItem', {
 fields: [{name: 'text', type: 'string'}]
});

We can then create our store and add our data to it:

var store = new Ext.data.TreeStore({
 model: 'ListItem',
 root: data,
 proxy: {
 type: 'ajax',
 reader: {
 type: 'tree',
 root: 'items'
 }
 }
 });

Components and Configurations

[134]

For a NestedList we need to use a TreeStore and set the reader to use type:
'tree'.We set the root configuration to point to the variable data we defined
earlier. We also need to tell the store where it should start looking for data. In this
case, we set root: 'items' to tell the store proxy to begin looking in the first set of
items in our data.

Finally, we need to create our NestedList:

var nestedList = new Ext.NestedList({
 fullscreen: true,
 title: 'Minions',
 displayField: 'text',
 store: store
});

We set the NestedList component to fullscreen, we set a title, we tell it what field to
display, and finally, we point it to our store so it can grab the data we made.

Chapter 4

[135]

If you click through the nested list, you will notice that the click actions have been
added automatically, as well as the upper navigation and titles.

The NestedList provides a great starting point for displaying hierarchical data
quickly and efficiently on a small screen.

Finding more information with the
Sencha API
We have covered quite a bit of information in this chapter, but it's only a fraction of
the information that is available to you in the Sencha Touch API documentation.

At first, the API can seem a bit overwhelming, but if you understand the
organization, you can find the information you need, quickly. Here are a couple of
tips to get you started.

Finding a component
The left-hand side of the API is where you will browse and search for components.

Currently, the API only searches for words that begin with the search term. This
can be a bit frustrating since a search for "List" will not bring up the NestedList
component. This shortcoming will be addressed in the next major release, but until
then, it's important to remember when you are searching.

You can also browse by expanding and collapsing the items in the list. The buttons
near the top will expand or collapse all of the items in the list.

www.allitebooks.com

http://www.allitebooks.org

Components and Configurations

[136]

Understanding the component page
The information at the top of the individual component page provides a huge
jump-start in understanding how the component works.

A quick scan of the component hierarchy, on the right, will tell you which other
items the component inherits from. If you understand the base components, such as
the container and panel, you can quickly use that knowledge to guide you through
using the new component.

The buttons at the top of this section will jump automatically to the sections for:

•	 Config Options - The initial options that are used when the component
is created

•	 Properties - The information you can gather from the component after it
is created

•	 Methods - The things the component knows how to do, once it's created
•	 Events - The things the component pays attention to, once it's created

There is also a direct link button that will let you copy a direct link to the page you
are viewing. This can be helpful when sharing information.

Most of the common components also include examples at the top of the page.

Using these bits of information should provide you with a starting point for learning
any component in the API.

Chapter 4

[137]

Summary
In this chapter, we began with a look at the base component called Ext.Component.
We also showed how to grab a component after it gets created, so we can manipulate
it as needed. We then explored the layout for containers in more detail, showing how
it affects the child items inside the container.

The chapter also described a number of the more common and useful components in
Sencha Touch, including:

•	 Containers
•	 Panels
•	 TabPanel

•	 Carousel

•	 FormPanel

•	 FormItem

•	 MessageBox

•	 Sheet

•	 List

•	 NestedList

We closed out the chapter with a bit of advice on using the Sencha Touch API.

In the next chapter, we will cover the use of events in Sencha Touch.

Events
In the previous chapter, we took a closer look at the components available in Sencha
Touch. However, simply creating components isn't enough to build an application.
The components still need to communicate with each other in order to make our
application do anything truly useful. This is where events come into play.

In this chapter, we will examine events in Sencha Touch: what they are, why we need
them, and how they work. We will discuss how to use listeners and handlers to make
your application react to the user's touch as well as to events happening behind the
scenes. We will also cover some helpful concepts such as observable capture and
event delegation. We will finish up with a walkthrough of the touch-specific events
and a look at how you can get more information from the Sencha Touch API.

The chapter will cover the following points:

•	 Events
•	 Listeners and handlers
•	 Ext.util.Observable
•	 Event delegation
•	 Touch-specific events
•	 Additional information on events

What are events?
As programmers, we tend to think of code as an orderly sequence of instructions,
executing one line, and then the next, and the next. It's easy to lose sight of the
fact that our code really spends a lot of time sitting and waiting for the user to do
something. It's waiting for the user to press a button, open a window, or select from
a list. The code is waiting for an event.

Events

[140]

Typically, an event occurs right before or right after a component performs a specific
task. When the task is performed, the event is broadcast to the rest of the system,
where it can trigger specific code or be used by other components to trigger
new actions.

For example, a button in Sencha Touch will trigger an event whenever it is tapped.
This tap can execute code inside the button that creates a new dialog box, or a panel
component can "listen" to what the button is doing and change its color when it
"hears" the button trigger a tap event.

Given that most applications are intended for human interaction, it's safe to say that
a lot of the functionality of your programs will come from responding to events.
From a user's perspective, the events are what make the program actually "do"
something. The program is responding to the user's request.

In addition to responding to requests, events also have an important role to play in
making sure that things happen in the correct order.

Asynchronous versus synchronous
Albert Einstein once remarked, "The only reason for time is so that everything
doesn't happen at once". While this might seem like an offhand comment, it
actually has a great deal of relevance when it comes to writing code.

As we write our code in Sencha Touch, we are directing the web browser to create
and destroy components on the user's screen. The obvious limitation of this process
is that we cannot manipulate a component before it gets created, nor after it's
destroyed.

This seems pretty straightforward at first glance. You would never write a line
of code that tries to talk to a component on the line before you actually create the
component, so what's the problem?

The problem has to do with asynchronous actions within the code. While most of
our code will execute sequentially or in a synchronous fashion, there are a number
of cases where we will need to send out a request and get back a response before
we can proceed. This is especially true in web-based applications.

For example, let's say we have a line of code that builds a map using a request from
Google Maps. We will need to wait until we have received a response from Google
and rendered our map before we can begin fiddling about with it. However, we
don't want the rest of our application to freeze while we wait on the response. So, we
make an asynchronous request, one that happens in the background, while the rest
of our application goes about its business.

Chapter 5

[141]

These asynchronous requests are called AJAX requests. AJAX stands for
Asynchronous JavaScript and XML. If we configure one of our buttons to send out
an AJAX request, the user can still do other things while the application is waiting
for a response.

On the interface side of things, you will probably want to let the user know that we
made the request and are currently waiting for a response. In most cases, this means
displaying a "loading" message or animated graphic.

Using events in Sencha Touch, we can show the loading graphic by tying into the
beforerequest event in the AJAX component. Since we need to know when to make
the loading message disappear, our component will wait for the requestcomplete
event from our AJAX request. Once that event fires, we can execute some code to tell
the loading message to go away. We can also use the requestexception event to
inform the user whether errors occurred during the request.

Using this type of event-driven design allows you to respond quickly to the user's
actions, without making them wait for some of the more time-consuming requests
your code needs to perform. You can also use the events to inform the user of errors.
The key to events is getting your other components to "listen" for the event, and then
telling them how to handle the information they receive.

Listeners and handlers
Every component in Sencha Touch has a long list of events that it generates. Given
the number of components you will likely have in your application, a lot of chatter
is going on.

Imagine a party with 100 people, all having lots of different conversations. Now
imagine trying to pick out all of the useful information from each conversation.
It's impossible. You have to focus on a specific conversation in order to gather
anything useful.

In much the same way, components also have to be told what to listen for, or else,
such as our unfortunate partygoer, they would quickly be overwhelmed. Fortunately
for us, there's a confguration for that.

A listeners configuration tells the component what events it needs to pay attention
to. Listeners can be added like any other configuration option in Sencha Touch. For
example, the configuration option on a panel might look like the following:

listeners: {
 tap: {
element: 'body',

Events

[142]

fn: function(){ Ext.Msg.alert('Single Tap'); }
}
}

This configuration option tells the panel to listen for the tap event, when the user
taps once on the body element of the panel. When the tap event occurs, we execute
the function listed in the fn configuration option (this is typically referred to as a
handler). In this case, we pop up a message box with the words Single Tap.

Notice that the items in our listeners configuration are always part of an object
(curly braces on either side), even if there is only one event we are listening for. If
we were to add a second event, it would look like the following:

listeners: {
 tap: {
 element: 'body',
 fn: function(){ Ext.Msg.alert('Single Tap'); }
 },
 hide: {
 fn: function(){ this.destroy(); }
 }
}

We can also get information back from the listener and use it in our handler
functions. For example, the tap event sends back the event object, the DOM element
that was clicked, and the listener object itself, if we have the following listener on
a panel:

listeners: {
 tap: {
 element: 'body',
 fn: function(event, div, listener) {
 console.log(event, div, listener);
 }
 }
}

Chapter 5

[143]

When the user taps inside the panel, we will get the following information on
the console:

Arguments for events
You will notice that certain values are passed to our event
by default. These default values can be found in the Sencha
Touch API event documentation for each component, at
http://docs.sencha.com/touch/1-1/.
Each event will have its own default values. Select a
component from the Sencha API documentation, and then
click Events at the top of the page, to see a list of all events for
the component. The description of each event will include its
default arguments.

As you can see from the console, our event object contains a Unix timestamp for
when the tap occurred, the x and y coordinates of the tap itself, as well as the entire
content of the div tag that was tapped. You may have also noticed that our tap event
is referred to as a click event in our debug output. In Sencha Touch, the tap and
click events are aliased to one another. This preserves compatibility between the
desktop browser's traditional click event and the mobile browser's tap event.

We can use all of this information inside our function.

Events

[144]

For this example, we will create a simple panel with a red container. Our tap listener
will change the size of the red box to match where we tap on the screen:

new Ext.Application({
 name: 'TouchStart',
 launch: function() {
 var eventPanel = new Ext.Panel({
 fullscreen: true,
 layout: 'auto',
 items: [{
 xtype: 'container',
 width: 40,
 height: 40,
 id: 'tapTarget',
 style: 'background-color: #800000;',
 }],
 id: 'eventPanel',
 listeners: {
tap: {
 element: 'body',
 fn: function(event, div, listener) {
 var cmp = Ext.getCmp('tapTarget');
 cmp.setWidth(event.xy[0]);
 cmp.setHeight(event.xy[1]);
 console.log(event.xy);
 }
 }
 }
 });
 this.viewport = eventPanel;
 }
});

If we run this code with the console open, we can see that the X and Y coordinates
of where we tap appear in the console. Our box also grows or shrinks to match
these values.

Chapter 5

[145]

As you can see from the code, we listen for the tap event. We then grab the
container component using Ext.getCmp('tapTarget');, and change the size,
based on the value we got back from the tap event:

tap: {
 element: 'body',
 fn: function(event, div, listener) {
 var cmp = Ext.getCmp('tapTarget');
 cmp.setWidth(event.xy[0]);
 cmp.setHeight(event.xy[1]);
 console.log(event.xy);
 }
}

Since event.xy is an array, we need to grab the individual values using
event.xy[0] and event.xy[1].

Events

[146]

Adding listeners and events dynamically
Listeners can also be added to a component dynamically. If we were to add a new
listener to our previous example, it would look something as the following:

var cmp = Ext.getCmp('tapTarget');
cmp.on('resize',
function() {
var h = this.getHeight();
var w = this.getWidth();
this.update('height: '+h+'
width: '+w)
}, cmp);

This code will get the height and width of the container. It will then use the update
method to add the height and width as text to the container, when the resize
event fires.

However, there is one slight problem with this approach: the resize event only
fires when a container is manually resized by dragging the lower-left corner of a
manually-resizable container. Since ours is changed programmatically, the resize
event is never fired.

We can fix this by manually firing the event in our previous code using the
fireEvent() method:

listeners: {
 tap: {
 element: 'body',
 fn: function(event, div, listener) {
 var cmp = Ext.getCmp('tapTarget');
 cmp.setWidth(event.xy[0]);
 cmp.setHeight(event.xy[1]);
 console.log(event.xy);
 cmp.fireEvent('resize');
 }
 }
}

The fireEvent() method can be used with both existing events as well as your own
custom events.

Custom events
While Sencha Touch components respond to a large number of events, it can
sometimes be helpful to fire custom events within your application.

Chapter 5

[147]

For example, you could fire a custom event called vikinginvasion, using the same
type of syntax as our previous example:

cmp.fireEvent('vikinginvasion');

You can then add a listener in your code for vikinginvasion, along with a function
to handle the event:

var cmp = Ext.getCmp('tapTarget');
 cmp.on('vikinginvasion',
 function() {
alert("Man The gates!");
 }, this);

You can also check a component to see if it has a specific listener, using the
hasListener() method:

var cmp = Ext.getCmp('tapTarget');
if(cmp.hasListener('vikinginvasion') {
 console.log('Component is alert for invasion');
} else {
 console.log('Component is asleep at its post');
}

There are also a number of helpful options you can use to control how the listeners
will check for events.

Events

[148]

Listener options
For the most part, listeners can simply be configured with the event name, handler,
and scope, but sometimes you need a bit more control. Sencha Touch provides a
number of helpful options to modify how the listener works:

•	 delay: This will delay the handler from acting after the event is fired. It is
given in milliseconds.

•	 single: This provides a one-shot handler that executes after the next event
fires and then removes itself.

•	 buffer: This causes the handler to be scheduled to run as part of an
Ext.util.DelayedTask component. This means that if an event is fired,
we wait a certain amount of time before we execute the handler. If the same
event fires again within our delay time, we reset the timer before executing
the handler (only once).

•	 element: This allows us to specify a specific element within the component.
For example, we can specify a body within a panel for a tap event. This
would ignore taps to the docked items and only listen for a tap on the body
of the panel.

•	 target: This will limit the listener to the events coming from the target and it
will ignore the same event coming from any of its children.

Using the different listener options would look something like the following:

var cmp = Ext.getCmp('tapTarget');
cmp.on('vikinginvasion', this.handleInvasion, this, {
single: true,
delay: 100
});

This example would add a listener for vikinginvasion and execute a function
called this.handleInvasion. The handler would only execute once, after a
100-millisecond delay. It would then remove itself from the component.

This basic list of configuration options gives you quite a bit of flexibility when
adding listeners. However, there is one additional configuration option available
in listeners that will require a bit more explanation. It's called scope.

Chapter 5

[149]

Scope
Within your handler function is a special variable called this. Usually, this refers to
the component that fired the event, in which case, the scope would typically be set
to scope: this. However, it's possible to specify a different value for scope in your
listener configuration. From our previous example, a change in scope might look
like the following:

tap: {
 element: 'body',
 scope: eventPanel,
 fn: function(event, div, listener) {
 this.setWidth(event.xy[0]);
 this.setHeight(event.xy[1]);
 console.log(event.xy);
 }
}

In this example, the scope (and as such, the variable this) has been changed to our
eventPanel component. We can now set values directly, instead of having to use
Ext.getCmp('tapTarget'); to get the panel at the beginning of our function.

We can also set the scope component in a similar fashion, by using the on method
to add a listener:

var myPanel = new Ext.Panel({…});
var button = new Ext.Button({…});

button.on('click', function() {
 console.log('This should be myPanel:', this);
}, myPanel);

Here, we added myPanel as an argument after the handler definition, which means
that when the click event is fired and the handler function is called, you will be able
to access myPanel by referring to this.

Within handler functions, you aren't guaranteed to have access to the same variables
when you define the function. Changing the scope of a function can allow you to
access a specific variable that's not easy to get to with Ext.getCmp() or Ext.get().
It can also be a simple convenience for getting to the component you are most likely
to use in the function.

While scope may be a hard concept to grasp, it is a very useful part of the listener
configurations.

Events

[150]

Removing listeners
Normally, listeners are removed automatically when a component is destroyed.
However, sometimes you will want to remove the listener before the component is
destroyed. To do so, you'll need a reference to the handler function you created the
listener with.

So far, we've been using anonymous functions to create our listeners, but if we're
going to remove the listener, we have to do it a bit differently:

var myPanel = new Ext.Panel({…});

var myHandler = function() {
 console.log('myHandler called.');
};

myPanel.on('click', myHandler);

This can be a good practice, since it allows you to define the handler functions
once and reuse them wherever you need them. It also allows you to remove the
handler later:

myPanel.removeListener('click', myHandler);

In Sencha parlance, on() is an alias for addListener()
and un() is an alias for removeListener(), meaning
that they do the exact same thing. Feel free to use
whichever you prefer, when dealing with events.

Managed listeners
In some cases, listeners are part of a relationship between two objects, and when one
of the objects is destroyed, the listener is no longer necessary.

For example, say you have two panels, panel1 and panel2, and you want to
change the size of panel1 to match the size of panel2, whenever panel2 is resized.
You could put a listener on the resize event for panel2, but if panel1 were to be
destroyed, the listener would still be there.

You could add an additional listener to panel1 that would wait for the destroy
event and then remove the listener from panel2, but that could become
cumbersome quickly.

Chapter 5

[151]

You can get around this particular problem by using a managed listener. A managed
listener works a little bit differently from a regular listener:

var panel1 = new Ext.Panel({…});
var panel2 = new Ext.Panel({…});

panel1.addManagedListener(panel2, 'resize',
 function() {
 console.log('Panel 2 was resized.');
panel1.setSize(panel2.getSize());
 }
);

This can get a bit confusing, because when we call panel1.on() or panel1.
addListener(), we're adding a listener to panel1. However, when we call
addManagedListener(), the first argument is actually a different component we're
adding the listener to. In this case, we're adding a resize listener to panel2 that will
automatically be removed if panel1 is destroyed.

Essentially, addManagedListener adds listeners that clean up after themselves,
which can help greatly with memory management.

Handlers and buttons
As you might have noticed from some of our previous code, buttons have a default
configuration called handler. This is because the purpose of a button is generally to
be clicked or tapped. The handler configuration is just useful shorthand for adding
the tap listener. As such, the following two pieces of code do exactly the same thing:

var button = new Ext.button({
text: 'press me',
 handler: function() {
 this.setText('Pressed');
 }
})

var button = new Ext.button({
 text: 'press me',
 listener: {
tap: {
 fn: function() {
 this.setText('Pressed');
 }
 }
 }
});

Events

[152]

This same default handler behavior applies to tabs as well. The handler simply
serves as a quick way to access the most routinely used event for the component.

Suspending and queuing events
Sometimes, you will want to keep components from firing events. Perhaps you want
to do some additional processing on data returned from an AJAX query, or you want
to write some custom code to handle resizing your component. Observable gives
you a way to do so via the suspendEvents() and resumeEvents() methods. You
can call these methods on any object that extends Observable, such as a panel:

var myPanel = new Ext.Panel({…});

myPanel.suspendEvents();

myPanel.setHeight(100);
myPanel.setWidth(100);

myPanel.resumeEvents();

Normally, the setHeight() and setWidth() functions cause the resize event to
fire. In this example, though, we essentially put the panel to sleep while we resize it,
and then wake it back up when we're done. In this case, the resize event will never
fire, so any components listening for that event will never hear it.

Note that we only suspended events on the myPanel object. If we had resized
another panel at the same time, then that panel's events would still have fired.

This is very useful when you need to do things behind the scenes in your application,
but sometimes you'll want to have the events fire after you're done with your work,
so that the other components can catch up. In that case, simply pass true as the
argument to suspendEvents():

myPanel.on('resize', function() {
 console.log('Resized!');
});

myPanel.suspendEvents(true);

myPanel.setHeight(100);
myPanel.setHeight(100);
console.log('Resuming Events.');
myPanel.resumeEvents();

Chapter 5

[153]

You can see how the Resuming Events line comes before the resize events.
This is because we didn't fire any events until after the console.log() and
resumeEvents() calls.

You should be very careful with suspending events. Much of the built-in Sencha
Touch functionality relies heavily on events, and suspending them can cause
unexpected behavior.

Common events
Let's take a look at our old friend Ext.Component and see some of the common
events available to us. Remember, since most of our components will inherit from
Ext.Component, these events will be common across most of the components we use.

Most of our events will fall into two categories. The first set of events revolves
around the creation of the component.

When the web browser executes your Sencha Touch code, it writes the components
into the web page as a series of div, span, and other standard HTML tags. These
elements are also linked to code within Sencha Touch that standardizes the look
and functionality of the component for all supported web browsers. This process is
referred to as rendering the component.

Events

[154]

This rendering takes place in a number of stages, each of which fires an event:

•	 beforerender: Before the render process begins
•	 added: When the component is added to the container
•	 beforeactivate: Before the component is visually activated
•	 activate: When the component is visually activated
•	 render: After the component's HTML is rendered
•	 afterrender: After rendering is finished

These events give you a number of places to interact with your component before,
during, and after the rendering process.

The second set of events is concerned with the actions taken by or done to the
component itself. These events include:

•	 show: Fires when the show method is used on the component
•	 hide: Fires when the hide method is used on the component
•	 destroy: Fires when the component is destroyed
•	 disable: Fires when the disable method is used on the component
•	 enable: Fires when the enable method is used on the component
•	 orientationchange: Fires when the orientation of the device is changed
•	 remove: Fires when the component is removed from a container
•	 resize: Fires after the component is resized

These events provide a way to base the actions of your code on what is being done
by, or done to, your components.

Each component will also have some specific events associated with it. For a list of
these events, please consult the API docs at http://docs.sencha.com/touch/1-1/.
Just select a component from the list on the left side and click the Events button at
the top of the page.

Ext.util.Observable
Ext.util.Observable is the base class that handles listening to, and firing of,
events for all Sencha Touch components. Any class that fires events extends Ext.
util.Observable. For the most part, you won't need to directly use Ext.util.
Observable itself, since it comes built into almost every Sencha Touch component,
but there are a few cases where using it directly can make things easier.

http://docs.sencha.com/touch/1-1/

Chapter 5

[155]

Centralizing event handling with Observe
Sometimes, over the course of building an application, you will find yourself adding
the same listeners to the same kind of objects multiple times. For large applications,
this can take up quite a bit of memory. That's where Ext.util.Observable.
observe() comes in. This method will allow you to add listeners to a class, instead
of a particular instance of that class. Normally, when we add listeners, we do
something such as this:

var panel = new Ext.Panel({…});
panel.on('resize', function(){…});

The listener will only run if that exact panel is resized. To add a listener to all Ext.
Panel components, you can pass the component constructor you want to observe,
then add your listeners:

Ext.util.Observable.observe(Ext.Panel);
Ext.Panel.on('resize', function(){…});

You'll notice that we didn't create a new panel here. Instead, we added the resize
listener to Ext.Panel itself. Now, any panel you create with the new Ext.Panel()
component, it will have the resize listener enabled automatically.

Additionally, this gives you a single place to update when you need to make changes
to the resize listener and function. This type of class-based listener can save time,
memory, and a lot of headaches.

Capture: a tool for debugging
Ext.util.Observable.capture is a static method. This means you won't have to
create a new instance of an object—you can call it directly. This method will call a
handler for every single event that an object fires, which can come in handy when
you're trying to figure out if you've added listeners to the proper event and if those
events are firing.

Events

[156]

Using our resizing eventPanel example, add the following line after this.viewport
= eventPanel;:

Ext.util.Observable.capture(eventPanel, function() {
 console.log('The eventPanel fired an Event:', arguments);
});

As you can see, this generates a lot of console lines. The first argument to the
function will always be the event name, and the subsequent arguments will be the
arguments that are typically passed to that particular event. If you want to start
capturing events only after a certain known event fires, you can add the capture
statement to a listener. For example, if you wanted to only start capturing events
after the panel was rendered, you would do something such as the following:

listeners: {
 render: {
 fn: function(myPanel) {
 Ext.util.Observable.capture(eventPanel,
 function() {
 console.log('The eventPanel fired an Event:', arguments);
 });
 }
 }
}

Chapter 5

[157]

Now, Ext.util.Observable.capture will only be started once the render event
has fired. From that point on, it will continue to capture all events fired by the panel.

You can stop capturing with Ext.util.Observable.releaseCapture(), as well.
Say we want to stop capturing events after a resize event. Then, in our capture
function, we could do the following:

Ext.util.Observable.capture(eventPanel, function() {
 console.log('The eventPanel fired an Event:', arguments);
 if (arguments[0] == 'resize') {
 Ext.util.Observable.releaseCapture(eventPanel);
 }
});

Even with releaseCapture() handy, you want to
be very sure to remove any capture statements from
your code before deploying in production, as they can
be very memory- and processor-intensive.

Event delegation
When a component in Sencha Touch fires an event, the event "bubbles up" the chain
to the parent component. This gives us some interesting opportunities with regards
to memory and efficiency.

Events and memory
One of the common uses of event delegation is in lists. Let's say, we have a list of
people such as those you would find in a common address book. When a name in
the address book is clicked, we switch to the details panel with all of the contact
information. This is a pretty straightforward setup most of us would recognize.

However, let's say we want to add a phone icon to each of our list items. When the
phone icon gets clicked, the person's phone number is dialed. You might be inclined
to add a click handler for each icon, but this is a very bad idea, because all of those
listeners take up space in memory.

An address book with 400 people would have 400 listeners. This will slow down a
web-based application, as it tries to listen to 400 separate elements within the DOM
(in addition to everything else in your code that has a listener).

However, you can get around this problem using event delegation.

Events

[158]

Delegating events
Let's start with a very simplified version for our contact list:

var contactList = new Ext.List({
 tpl: '<tpl for="."><img src="images/phone.
png"/><h1>{contactName}</h1></tpl>',
 listeners: {
 el: {
 tap: callContact,
 delegate: 'img'
 }
 }
});

Unlike our previous examples, where we instructed the component which event to
listen to, in this case, we tell the component where to listen for the event. In this case,
we chose el, which is a property common to all components and basically means
within the item (we could also use body).

Now that the component knows where to listen, we tell it what to listen for on the
line tap: callContact. This also tells the List component what to run when the
tap event occurs.

The last line, delegate: 'img' delegates the event to any img tag inside our List
component. In this case, it would be our phone.png icon on each row of the list.

The result is a single listener, which checks to see if an image is tapped in our list.

This saves on memory, and also means that if you add or remove any list items, you
don't have to add and remove listeners, too.

Touch-specific events
In addition to component events, Sencha Touch also understands a number of touch-
specific events. These events include:

•	 touchstart: An event that records the initial contact point with the device.
•	 touchend: An event that records where the contact ended on the device.
•	 touchmove: An event that records where the touch moved (this one will

fire off as a series of events that map the path of the user's touch along
the screen).

•	 touchdown: An event that records when the element is touched as part of a
drag or swipe.

Chapter 5

[159]

•	 dragstart: An event that records when the element is initially dragged.
•	 drag: Similar to touchmove, drag tracks the path of the element,

when dragged.
•	 dragend: An event that records where the element stopped being dragged.
•	 singletap: A single tap on the screen. This will fire once for the first tap,

when a screen is double-tapped. It will not fire on the second tap.
•	 tap: A tap on the screen. This will fire both for the first and second tap, when

a screen is double tapped.
•	 doubletap: Two quick taps on the screen.
•	 taphold: A tap and hold on the screen.
•	 tapcancel: An event that fires when you stop tap holding.
•	 swipe: A single finger brushed across the screen from left to right.
•	 pinch: Two fingers brought together in a pinching motion.
•	 pinchstart: Where the pinch started.
•	 pinchend: Where the pinch ended.

There is one small caveat to note with these touch-specific events: with the
exception of tap and doubletap, Sencha Touch is actually receiving the events
from the web browser rather than the component itself. Since the web browser
is doing our listening for us, we need to attach our listener to something the web
browser understands.

This means that instead of binding the event to the component itself, we have to bind
the event to the underlying element of the component.

Component versus element
One of the harder concepts for people new to web programming is
the relationship between the web browser and the Sencha Touch
components. At its core, when a Sencha Touch component is
rendered in the web browser, it gets translated into a complex series
of div and span that the web browser can read and display. When
we refer to the underlying element of the component, we are talking
about one of these div containers.

Since a WebKit-based browser, such as Safari or Chrome, is designed to understand
all of our touch-specific events, the Sencha Touch component can be instructed to
monitor a div tag on the web page to see if these events occur.

Events

[160]

Additionally, since the component can only monitor a div tag, it can only do it
after the div tag has been rendered to the web page. This means we have to set our
component to listen for the render event, and then tell it to add the monitoring. It
looks something like the following:

new Ext.Application({
 name: 'TouchStart',
 launch: function() {
 var eventPanel = new Ext.Panel({
 fullscreen: true,
 layout: 'fit',
 html: 'Tap Me',
 id: 'eventPanel',
 listeners: {
 afterRender: function() {
 this.mon(this.el, {
 swipe: this.event2Console
 });
 }
 },
 event2Console: function(e) {
 console.log(e);
 }
 });
 this.viewport = eventPanel;
 }
});

We create our panel, as usual, and we add a listener for afterRender. This tells the
panel that, once it exists within the browser window, it should execute the following
code (in this case, we want it to run):

this.mon(this.el, {
 swipe: this.event2Console
});

This will cause Sencha Touch to listen for browser events generated by panel's DOM
element, rather than the panel itself. The element then listens for the swipe event to
occur. When the swipe event occurs, we execute our function this.event2Console.

Notice that we did things a bit differently this time. Usually, we create the function
as part of the listener:

this.mon(this.el, {
 swipe: function(e) {
 console.log(e);
 }
}

Chapter 5

[161]

Instead of that, we added the function onto the component itself, just as a
configuration object:

event2Console: function(e) {
 console.log(e);
}

We then referenced the function as this.event2Console. This can be incredibly
useful when you want to call the function from multiple places within the
component. Both methods will produce the same result: a console log with
our event object.

As you can see, we get a considerable amount of information from this event,
including direction, distance, deltaX, time, and an event type. We can use this
information as follows:

this.update(e.type+':'+e.direction+':'+e.distance);

This method can be added to our this.event2Console function, to update our
panel with the type, direction, and distance of our swipe. Give it a try.

Also, play around with changing the swipe event in the code to any of the other
functions in the list. Get a feel for what triggers each event and what information
they return.

By using these touch events and the other events built into Sencha Touch, your
program should be able to respond to just about any situation.

Events

[162]

Additional information on events
The best place to get information about events is the Sencha Touch API docs at
http://docs.sencha.com/touch/1-1/. Select a component in the list on the left,
and look for the Events button at the top. You can click Events to go to the beginning
of the section or hover your mouse pointer to see the full list of events and select a
specific event from that list.

Clicking the down arrow next to the event will display a list of parameters for the
event and any available examples on how the event can be used.

Another good place to find out about touch-specific events is the Kitchen Sink
example application (http://dev.sencha.com/deploy/touch/examples/
kitchensink/). Inside the application is a Touch Events section. This section allows
you to tap or click on the screen to see which events are generated from the different
taps and gestures.

The WebKit team at Sencha Touch has also created an event recorder for Android.
You can get more information at http://www.sencha.com/blog/event-recorder-
for-android-web-applications/.

http://docs.sencha.com/touch/1-1/
http://www.sencha.com/blog/event-recorder-for-android-web-applications/
http://www.sencha.com/blog/event-recorder-for-android-web-applications/

Chapter 5

[163]

Summary
In this chapter, we have covered a basic overview of events, and how to use listeners
and handlers to get your program to respond to these events. We also covered a few
of the more common events and took an in-depth look at Ext.util.Observable,
which handles the events for every component in the Sencha Touch framework.

We talked about event delegation and the potential memory issues that can occur
with listeners. We finished up the chapter with a look at touch-specific events and
some tips on finding additional information about events.

In the next chapter, we will cover how to get and store data in Sencha Touch, using
JSON, data stores, models, and forms.

Getting Data In
One of the key aspects of any application is the handling of data—getting data into
the application so that you can manipulate and store it, and then getting it out again
for display. We will spend the next two chapters covering data handling in Sencha
Touch. This first chapter on data will focus on getting data into your application.

We will start with a discussion of the data models that are used to describe your
data. We will then talk about readers that gather the data and the stores used to hold
the data for use in our application. Once we have a grasp on where the data goes, we
will cover how to use forms to get it there. We will look at how to validate your data
and provide you with some examples of form submission. We will finish up with a
look at getting the data back into a form for editing. This will serve as our starting
point for the next chapter on data, which will cover getting data back for display.

This chapter covers the following topics:

•	 Data models
•	 Data formats
•	 Data stores
•	 Using forms and data stores

Models
The first step in working with data in a Sencha Touch application is to create a model
of the data. If you are used to database-driven applications, it's helpful to think of
the model as being a database schema: it's a construct that defines the data we are
going to store, including the datatype, validations, and structure. This provides the
rest of our application a common map for understanding the data being passed back
and forth.

Getting Data In

[166]

The basic model
At its most basic, the model describes the data fields using Ext.regModel(), such as:

Ext.regModel('User', {
 fields: [
 {name: 'firstname', type: 'string'},
 {name: 'lastname', type: 'string'},
 {name: 'username', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'email', type: 'string'},
 {name: 'active', type: 'boolean', defaultValue: true},
]
}

The first line declares that we have named our new model User. We then describe
our data fields as an array of fields with a name, a type, and an optional default
value. The name is simply how we want to refer to the data in our code. The valid
datatypes are:

•	 auto: A default value that just accepts the raw data without conversion
•	 string: Converts the data into a string
•	 int: Converts the data into an integer
•	 float: Converts the data into a floating point integer
•	 boolean: Converts the data into a true or false Boolean value
•	 date: Converts the data into a JavaScript Date object

The default value can be used to set a standard value to be used, if no data is
received for that field. In our example, we set the value of active to true. We can
use this when creating a new user instance with Ext.ModelMgr.create():

var newUser = Ext.ModelMgr.create({
 firstname: 'Nigel',
 lastname: 'Tufnel',
 username: 'goes211',
 age: 39,
 email: 'nigel@spinaltap.com'
}, 'User');

Notice that we did not provide a value for active in our new user instance, so it
just uses our default value. This can also help when the user doesn't remember
to enter in a value. We can also double-check the information our user enters by
using validations.

Chapter 6

[167]

Model validations
Model validations ensure that we are getting the data we think we are getting. These
validations serve two functions. The first is to provide the guidelines for how data is
entered. For example, we would typically want a username to consist only of letters
and numbers; the validation can enforce this constraint and inform the user when
they use the wrong character.

The second is security. Malicious users can also use the form field to send
information that might potentially be harmful to our database. For example, sending
DELETE * FROM users; as your username can cause problems if the database is not
properly secured. It is always a good idea to validate data, just in case.

We can declare validations as part of our data model, in much the same way that
we declare our fields. For example, we can add the following to our User model:

Ext.regModel('User', {
 fields: [
 {name: 'firstname', type: 'string'},
 {name: 'lastname', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'username', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'active', type: 'boolean', defaultValue: true},
],
 validations: [
 {type: 'presence', field: 'age'},
 {type: 'exclusion', field: 'username', list: ['Admin', 'Root']},
 {type: 'length', field: 'username', min: 3},
 {type: 'format', field: 'username', matcher: /([a-z]+)[0-9]{2,3}/}
]
}

In our example, we have added four validations. The first one tests for the presence
of an age value. If there is no value for age, we get an error. The second validator,
exclusion, tests for things we don't want to see as a value for this field. In this
case, we have a list of two items for username that we don't want to see: Admin and
Root. The third validator tests to make sure that our value for username is at least
three characters long. The final validator checks the format of our username using a
regular expression.

Getting Data In

[168]

Regular expressions
Regular expressions (also called RegEx) are an extremely powerful tool
for matching the structure of a string. You can use RegEx to search for
particular characters, words, or patterns, within a string. A discussion of
regular expressions would require its own book, but there are a number
of good online resources available.

•	 Good tutorials are available at: http://www.zytrax.com/
tech/web/regex.htm

•	 A searchable database of regular expressions can be found at:
http://regexlib.com

•	 A wonderful regular expression tester is also available at:
http://www.rexv.org/

We can test our validations by using the validate method on our new User instance:

var newUser = Ext.ModelMgr.create({
 firstname: 'Nigel',
 lastname: 'Tufnel',
 username: 'goes211',
 email: 'nigel@spinaltap.com'
}, 'User');

var errors = newUser.validate();
console.log(errors);

Notice that we intentionally dropped the age off this time, to give us an error. If we
take a look at our console, we can see the error object that we get back:

http://www.zytrax.com/tech/web/regex.htm
http://www.zytrax.com/tech/web/regex.htm
http://regexlib.com
http://regexlib.com
http://www.rexv.org/
http://www.rexv.org/

Chapter 6

[169]

This is the console output for our errors object. The errors object includes a
method called isValid(), which will return true or false. We can use this method
to test for errors and return a message to the user, using something as follows:

 if(!errors.isValid()) {
 alert("The field: "+errors.items[0].field+ " returned an error:
"+errors.items[0].message);
 }

Here, we test for the length of our errors object. This will be zero if there are no
errors. In this case, our errors object has a length of 1, so we grab the field that
returned the error and the message it generated. These are included in the items
list of the errors object. If there were more than one error, we would need to loop
through the items list, to grab all of the errors.

We can also change the default error message by setting additional configuration
options on the validations for:

•	 exclusionMessage: Used when we get an excluded value for a field
•	 formatMessage: Used when we get an improperly formatted value for a field
•	 inclusionMessage: Used when we do not get an included value for a field
•	 lengthMessage: Used when we get a value for a field that does not meet our

required length
•	 presenceMessage: Used when we do not reserve a required value for a field

Customizing these errors will help the user understand exactly what went wrong
and what needs to be done to correct the problem.

Model methods
Our models can also contain methods that can be called on any instance of our
model. For example, we can add a method called deactivate to our model, by
adding the following to our User model, after the fields list:

deactivate: function() {
 if(this.get('active')) {
 this.set('active', false);
 }
}

Getting Data In

[170]

This function tests to see if our current value of active is true. If it is, we set it
to false. Once we create our newUser, as we did previously, we can then call the
function as follows:

newUser.deactivate();

These model methods provide a great way to implement common functions in
your model.

CRUD
While model methods might look like a good place for adding
functions to save our model, you really don't need to. These types
of functions—Create, Read, Update, and Destroy—are often
referred to by the unattractive acronym CRUD, and they are
handled automatically by Sencha Touch. We will go over these
functions a bit later in this chapter.

Now that we have our model's fields, validations, and functions defined, we need a
way to pass data to and from the model for the storing and retrieving of our users.
This is where the proxy and reader come in.

Proxies and readers
In the model, the proxy and reader form a partnership to store and retrieve data
for use by the model. The proxy tells a model where its data will be stored, and
the reader tells the model what format is being used to store the data.

There are two main types of proxies: local and remote. A local proxy stores its data
locally on the device with one of three proxy types:

•	 LocalStorageProxy - Saves the data to local storage via the browser. This
data is persistent across sessions, unless deleted by the user.

•	 SessionsStorageProxy - Saves its data to session storage via the browser.
This data is removed when the session ends.

•	 MemoryProxy - This holds the data in local memory. When the page is
refreshed, the data is deleted.

The remote proxy has two basic types:

•	 AjaxProxy: Sends requests to a server within the current domain
•	 ScriptTagProxy: Sends requests to a server on a different domain

Chapter 6

[171]

For this chapter and the next, we will be dealing mostly with local proxies. We will
cover remote proxies and synchronizing data in Chapter 9, Advanced Topics.

The proxy can be declared as part of the model, shown as follows:

proxy: {
 type: 'localstorage'
 id: 'userProxy',
}

All proxies require a type (local storage, session storage, and so on.), and some
require a unique ID, so it's a good idea to just get into the habit of giving all of
your proxies an ID.

We can also add a reader to this proxy configuration. The reader's job is to tell our
proxy which format to use for sending and receiving data. The reader understands
the following formats:

•	 Array: A simple JavaScript array.
•	 XML: Extensible Markup Language format.
•	 JSON: JavaScript Object Notation format.
•	 JSONP: JSON with padding. Typically used for communication with a remote

server.

The reader gets declared as part of the proxy:

proxy: {
 type: 'localstorage',
 id: 'userProxy',
 reader: {
 type: 'json'
 }
}

Proxies and readers
Please note that the proxies and readers can also be declared
as part of the data store and should ideally be declared in
both places.

Getting Data In

[172]

Introduction to data formats
Before we move on to data stores, we need to take a brief look at data formats. The
three currently supported by Sencha Touch are Array, XML, and JSON. For each
example, we will take a look at how the data would appear for a simple contact
model with three fields: an ID, a name, and an e-mail.

Arrays
An ArrayStore data format uses a standard JavaScript array, which would look
something such as this, for our contact example:

[
 [1, 'David', 'david@gmail.com'],
 [2, 'Nancy', 'nancy@skynet.com'],
 [3, 'Henry', 'henry8@yahoo.com']
]

One of the first things we notice about this type of array is that there are no field
names included as part of a JavaScript array. This means if we want to refer to the
fields by name in our template, we have to set up our model to understand where
these fields should be mapped, by using the mapping configuration option:

Ext.regModel('Contact', {
 fields: [
 'id',
 {name: 'name', mapping: 1},
 {name: 'email', mapping: 2}
],
 proxy: {
 type: 'memory',
 reader: {
 type: 'array'
 }
 }
});

This sets up our id field as index 0 of our data, which is our default. We then use
the mapping configuration to set name and email as index 1 and 2, respectively,
of the items in our data array. We can then set the template values for the display
component using the configuration:

itemTpl: '{name}: {email}'

Chapter 6

[173]

While arrays are typically used for simple data sets, a larger or nested data set can
become very unwieldy using the simple JavaScript array structure. This is where
our other formats come in.

XML
XML or Extensible Markup Language should be a familiar looking format to anyone
who has worked with HTML web pages in the past. XML consists of data nested
within a series of tags that identify the name of each part of the dataset. If we put
our previous example into XML format, it would look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<contact>
<id>1</id>
<name>David</name>
<email>david@gmail.com</email>
</contact>
<contact>
<id>2</id>
<name>Nancy</name>
<email>nancy@skynet.com</email>
</contact>
<contact>
<id>3</id>
<name>Henry</name>
<email>henry8@yahoo.com</email>
</contact>

Notice that XML always begins with a version and encoding line. If this line is not
set, the browser will not interpret the XML correctly and the request will fail.

We also include tags for defining the individual contacts. One advantage of this is
that we can now nest data as shown:

<?xml version="1.0" encoding="UTF-8"?>
<total>25</total>
<success>true</success>
<contacts>
<contact>
<id>1</id>
<name>David</name>
<email>david@gmail.com</email>
</contact>
<contact>
<id>2</id>
<name>Nancy</name>

Getting Data In

[174]

<email>nancy@skynet.com</email>
</contact>
<contact>
<id>3</id>
<name>Henry</name>
<email>henry8@yahoo.com</email>
</contact>
</contacts>

In this nested example, we have each individual contact tag nested inside a
contacts tag. We also have tags for our total and success values.

Since we have a nested data structure, we will also need to let the reader know
where to look for the pieces we need.

reader: {
 type: 'xml',
 root: 'contacts',
 totalProperty : 'total',
 successProperty: 'success'
}

The root property tells the reader where to start looking for our individual contacts.
We also set a value outside of our contacts list for totalProperty. This tells the store
that there are a total of 25 contacts, even though the store only receives the first three.
The totalProperty property is used for paging through the data (that is, showing
three of 25).

The other property outside of our contacts list is successProperty. This tells the
store where to look to see if the request was successful.

The only disadvantage of XML is that it's not a native JavaScript format, so it adds a
little bit of overhead when it's parsed by the system. Typically, this is only noticeable
in very large or deeply nested arrays, but it can be an issue for some applications.

Fortunately for us, we can also use JSON.

JSON
JSON or JavaScript Object Notation has all of the advantages of XML, but as a
native JavaScript construct, it has less overhead associated with parsing. If we
look at our data set as JSON, we would see the following:

[
 {
 "id": 1,

Chapter 6

[175]

 "name": "David",
 "email": "david@gmail.com"
 },
 {
 "id": 2,
 "name": "Nancy",
 "email": "nancy@skynet.com"
 },
 {
 "id": 3,
 "name": "Henry",
 "email": "henry8@yahoo.com"
 }
]

We can also nest JSON in much the same way we do with XML:

{
 "total": 25,
 "success": true,
 "contacts": [
 {
 "id": 1,
 "name": "David",
 "email": "david@gmail.com"
 },
 {
 "id": 2,
 "name": "Nancy",
 "email": "nancy@skynet.com"
 },
 {
 "id": 3,
 "name": "Henry",
 "email": "henry8@yahoo.com"
 }
]
}

The reader would then be set up just as our XML reader, but with the type listed
as JSON:

reader: {
 type: 'json',
 root: 'contacts',
 totalProperty : 'total',
 successProperty: 'success'
}

Getting Data In

[176]

As before, we set properties for both totalProperty and successProperty. We also
provide the reader with a place to start looking for our contacts list.

JSONP
JSON also has an alternate format called JSONP, or JSON with padding. This
format is used when you need to retrieve data from a remote server. We need this
option because most browsers follow a strict same origin policy when handling
JavaScript requests.

The same origin policy means that a web browser will permit JavaScript on the page
to run as long as the JavaScript is running on the same server as the web page. This
will prevent a number of potential JavaScript security issues.

However, there are times when you will have a legitimate reason for making a
request from a remote server, say querying an API from a web service such as
Flickr. Because your app isn't likely to be running on flickr.com, you'll need to use
JSONP, which simply tells the remote server to encapsulate the JSON response in a
function call.

Luckily, Sencha Touch handles all of that for us. When you set up your proxy and
reader, set the proxy type to scripttag, and set your reader up like you would a
regular JSON reader. This tells Sencha Touch to use Ext.data.ScriptTagProxy
to do the cross-domain request, and Sencha Touch takes care of the rest.

If you'd like to see JSONP and Ext.data.ScriptTagProxy
in action, we use both to build the Flickr Finder application in
Chapter 8, The Flickr Finder Application.

While we have a number of formats to choose from; we will be using the JSON
format for all of our examples, moving forward, as we talk about data stores.

Introduction to stores
Stores, as the name implies, are used to store data. As we have seen in previous
chapters, list components require a store in order to display data, but we can also
use a store to grab information from forms and hold it for use anywhere in our
application.

Chapter 6

[177]

The store, in combination with the model and proxy, works in much the same way as
a traditional database. The model provides the structure for our data (say a schema
in a traditional database), and the proxy provides the communication layer to get the
data in and out of the store. The store itself holds the data and provides a powerful
component interface for sorting, filtering, saving, and editing data.

The store can also be bound to a number of components, such as lists, nested lists,
select fields, and panels, to provide data for display.

We will cover display, sorting, and filtering in Chapter 7, Getting Data Out, but for
now, we are going to look at saving and editing data with the store.

A simple store
As this chapter is concerned with getting data into the store, we are going to start out
with a very simple local store for our example:

var contactStore = new Ext.data.Store({
 model: 'Contact',
 storeId: 'contactStore',
 proxy: {
 type: 'localstorage',
 id: 'myContacts',
 reader: {
 type: 'json'
 }
 },
 autoLoad: true
});

This example sets up the model for the store and then tells the proxy to store all the
data as part of HTML5's local storage capability. We also set the store to autoLoad,
which means that it will load the data as soon as the store is created.

We also need to set up our model correctly, in order to use this store. Even though
we have the proxy listed as part of the store, it's a good idea to have it on the model
as well. There will be times where we need to directly manipulate (update) the
model, without getting the store first:

Ext.regModel('Contact', {
 fields: [
 {name: 'id', type:'int'},
 {name: 'name', type: 'string'},
 {name: 'email', type: 'string'}
],

Getting Data In

[178]

 proxy: {
 type: 'localstorage',
 id: 'myContacts',
 reader: {
 type: 'json'
 }
 },

});

This is our simple model with three items: an ID, a name, and an e-mail. We would
then create a new contact as we did before:

 var newContact = Ext.ModelMgr.create({
 name: 'David',
 email: 'david@msn.com'
 }, 'Contact');

Notice that we don't set the ID this time. We want the store to set that for us (similar
to the way auto-increment works in a typical database). We can then add this new
contact to the store and save it as this:

var addedUser = contactStore.add(newContact);
contactStore.sync();

The first line adds the user to the store, and the second line saves the contents of the
store. By splitting out the add and sync functionalities, you can add multiple users
to the store and then perform a single save, as the following:

 var newContact1 = Ext.ModelMgr.create({
 name: 'David',
 email: 'david@msn.com'
 }, 'Contact');

 var newContact2 = Ext.ModelMgr.create({
 name: 'Bill',
 email: 'bill@yahoo.com'
 }, 'Contact');

var addedContacts = contactStore.add(newContact1, newContact2);
contactStore.sync();

Chapter 6

[179]

In both cases, when we add contacts to the store, we set up a return variable to grab
the return value of the add method. This method returns an array of contacts, which
will now have a unique ID as part of each contact object. We can take a look at these
values by adding a couple of console logs after our sync:

console.log(addedContacts);
console.log(addedContacts[0].data.name+': '+addedContacts[0].data.id);
console.log(addedContacts[1].data.name+': '+addedContacts[1].data.id);

This will show that two contact objects in an array are returned. It also shows how
to get at the data we need from those objects, by using the index number of the
specific contact in the array. We can then drill down into the data for a name and
the new ID that was assigned when we synced.

Now that we have a general idea of how to get data into a store, let's take a look at
how to do it with a form.

Getting Data In

[180]

Forms and stores
For this example, we are going to use the same store and model as our previous
example, but we will add a list and a form, so that we can add new contacts and
see what we have added. Let's start with the list:

this.viewport = new Ext.Panel({
 fullscreen: true,
 layout: 'fit',
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items: [{
 text: 'Add',
 handler: function() {
 addNewContact.show()
 }
 }]
 }],
 items: [
 {
 xtype: 'list',
 itemTpl: '{name}: {email}',
 store: contactStore
 }]
});

Chapter 6

[181]

Most of the code here is pretty familiar from previous examples. We have a single
panel with a list component. Our list has a template (itemTpl) that uses the same
field names as our contact model and arranges how those will be displayed. We
have also added a docked toolbar with our new Add button. The button has a very
simple function that will show the addNewContact sheet, which we will create next:

var addNewContact = new Ext.Sheet({
 height: 250,
 layout: 'fit',
 stretchX: true,
 enter: 'top',
 exit: 'top',
 items: […]
});

This gives us our new sheet that will appear when we click the Add button. Now, we
need to add our form fields to the items section of the sheet we just created:

{
 xtype: 'formpanel',
 padding: 10,
 id: 'contactForm',
 items: [
 {
 xtype: 'textfield',
 name : 'name',
 label: 'Full Name'
 },
 {
 xtype: 'emailfield',
 name : 'email',
 label: 'Email Address'
 }
]
}

We start by creating our formpanel component and then adding textfield
and emailfield to the items list of formpanel. Make sure you include an id
configuration on the form. This will allow us to get to it when we need to.

Getting Data In

[182]

Specialty text fields
Sencha Touch uses specialty text fields, such as emailfield, urlfield, and
numberfield, to control which keyboard is used by the mobile device, as in
these iPhone examples:

•	 The URL Keyboard replaces the traditional Space bar with keys for dot (.),
slash (/), and .com

•	 The Email Keyboard shortens the Space bar and makes room for @ and
dot (.)

•	 The Number Keyboard initially presents the numeric keyboard instead of
the standard QWERTY keyboard

These specialty fields do not automatically validate the data the user enters. Those
kinds of validations are handled through model validations.

Specialty keyboards
Please note that Android and iOS have slightly different special
keyboards, so you may find some variation between the two. It is
usually helpful to run your application through both the Android and
iOS simulators to ensure that the correct keyboard type is being used.

Mapping fields to the model
You will also notice that the name of each field in our form matches the name used
by our contact model; this will allow us to easily create our contacts and add them
to the store. However, before we get there, we need to add two buttons (Save and
Cancel) to tell the form what to do.

Chapter 6

[183]

After the emailfield object in our form, we need to add the following:

{
 xtype: 'button',
 height: 20,
 text: 'Save',
id: 'saveButton'
 margin: 10,
 handler: function() {
 this.up('sheet').hide();
 }
 }, {
 xtype: 'button',
 height: 20,
 margin: 10,
 text: 'Cancel',
 handler: function() {
 this.up('sheet').hide();
 }
}

This gives us two buttons at the bottom of our form. Right now, both our Save
button and our Cancel button do the same thing: they call a function to hide the
sheet that holds our form. This is a good starting point, but we need a bit more
to get our Save button to save our data.

Getting Data In

[184]

Since we were good little coders and named our fields to match our model, we can
just use the following code in our button handler to add our form to our store:

handler: function() {
 var form = this.up('form');
 var record = Ext.ModelMgr.create(form.getValues(), 'Contact');
 contactStore.add(record);
 contactStore.sync();
 form.reset();
 this.up('sheet').hide();
 }

The first line uses the up method to grab the form that surrounds the button. Our
second line uses form.getValues() and pipes the output directly into a new
Contact model, using the create() method from our previous examples. We can
then add the new contact to the store and sync, as we did before.

The last bit of cleanup we need to do is to clear all of the form values by using
form.reset() and then hide the sheet, as before. If we don't reset the fields, the
data would still be there the next time we showed the form.

The list connected to the store will refresh, when we sync the store, and our new
contact will appear.

Since this store uses local storage for holding the data, our list will stay in place, even
after we quit the Safari browser. This can be a bit of a pain when you are testing an
application, so let's take a look at how to clear out the store.

Chapter 6

[185]

Clearing store data
Local and session storage saves information on our local machine. Since we plan on
doing lots of testing as we code, it's a good idea to know how to clear out this kind of
data without removing other data that you might still need. To clear out the data for
your local or session store, take the following steps:

1. Open up Web Inspector from the Develop menu and select the
Resources tab.

2. In the Local Storage or Session Storage section (depending on which
method you use), you should see your application's database. Once you
select the database, you can delete specific records or empty out the database
completely. Just select the records on the right side of the screen, and click
the X at the bottom to delete the record.

3. You can also reset the value for the counter by double-clicking on it and then
changing the number. Be careful that you do not create multiple records with
the same number. This will cause big problems.

4. Once you are finished in the Resources section, let's move on to editing data
with our forms.

Getting Data In

[186]

Editing with forms
Now that we have taken a look at the basics of getting data into a store, let's look at
how to edit that data, using a few modifications to our current form.

The first thing we want to add is an itemTap listener on our list. This will let us tap
an item in the list and bring up the form, with the selected entry included in the
fields for us to edit. The listener looks like the following:

listeners: {
 itemTap: {
 fn: function(list,index){
 var rec = list.getStore().getAt(index);
 var form = Ext.getCmp('contactForm');
 form.load(rec);
 addNewContact.show()
 }
 }
}

Our itemTap listener will automatically get back a copy of the list and the index
of the item that got tapped. We can then grab the store behind our list using list.
getStore() and grab the tapped item using getAt() and the index value that was
passed to us.

It is often useful to chain functions together in this fashion, especially if the piece you
need only has to be used once. For example, we could have done:

var store = list.getStore();
var rec = store.getAt(index);

This would also let us use that store variable in a number of places within the
function. Since we only need it to grab the record, we can do both of these lines
as a single line:

var rec = list.getStore().getAt(index);

After we get the data record, we grab our form by using the ID of the form
component and the Ext.getCmp() function. Now that we have the form, we can
load the record and show the addNewContact sheet that contains our form.

As before, since we only use the form to do one thing, we could shorten the loading
of the data record to the following:

Ext.getCmp('contactForm').load(rec);

Chapter 6

[187]

We have included it here as two lines, just to show that either will work.

Now that the code is in place, you can tap any item in your list and see the edit form.
This form looks exactly the same as before, but it now has the data, for the contact we
clicked, filled in.

There's still one more problem to be dealt with; our Save button is hard coded to
add a new record to the store. If we tap Save right now, we will just end up with
multiple copies of the same contact. We need to make a change to our form, to let
us switch what the Save button does, depending on whether we are editing or a
creating new contact.

Switching handlers
In order to change the handler the button fires to save our contact, we need to
separate the bulk of code from the button itself. To begin, locate the handler for our
Save button, and copy the current function to your clipboard. Next, we want to
replace that function with the name of an external function:

handler: addContact

Getting Data In

[188]

Now, we have to create the new addContact function for this handler to use. In our
JavaScript file, right before where we create our addNewContact sheet, add a new
function called addContact, and paste in the code from our old handler function.
It should look as follows:

var addContact = function() {
 var form = this.up('form');
 var record = Ext.ModelMgr.create(form.getValues(), 'Contact');
 contactStore.add(record);
 contactStore.sync();
 form.reset();
 this.up('sheet').hide();
};

This is the same old form-saving function we used on our button before, and it will
work just fine for adding new contacts. Now, we need to create a similar function
to update our contacts when we click on them in the list.

Up above our addContact function, add the following code:

var updateContact = function() {
 var form = this.up('form');
 var record = contactStore.getById(form.record.data.id);
 form.updateRecord(record);
 contactStore.sync();
 form.reset();
 this.up('sheet').hide();
};

This does almost the exact same thing as our other function. However, instead of
grabbing the form fields and creating a new record, we grab the record from the
store using contactStore.getById(). This record is the one we need to update
with our new information.

We can find the ID for the record by looking at the form. Since we loaded the record
into our form before we started editing, we can grab the ID we need with form.
record.data.id.

Our record variable is now set to the old information from the data store. We can
then pass that record to form.updateRecord();, which will overwrite the old
information in the store record with our current form values. The ID will stay the
same as we do not pass a new value for that.

Chapter 6

[189]

After we update the record, we just sync, reset, and hide, as before.

Now that the code for our two functions is in place, we need to switch the handler
for our Save button based on if the user clicked the Add button at the top of our list
or selected an item in the list.

Let's start with the Add button. Locate the handler for our Add button at the top
of our list object. We need to add some code to this button that will change the
handler on the Save button:

handler: function() {
 var button = Ext.getCmp('saveButton');
 button.setHandler(addContact);
 button.setText('Create');
 addNewContact.show()
}

As our form button has a unique ID of id: 'saveButton', we can grab it with Ext.
getCmp() and make a few changes. The first is to update the handler to see our new
addContact function, and the second is to change the text of the button to Create.
We can then call addNewContact.show(), as before.

Our Add button is now set to show the form and change the text and handler for
the button.

Now, we need to do something similar to the tap hander on our list:

itemTap: {
 fn: function(list,index){
 var rec = list.getStore().getAt(index);
 var form = Ext.getCmp('contactForm');
 form.load(rec);
 var button = Ext.getCmp('saveButton');
 button.setHandler(updateContact);
 button.setText('Update');
 addNewContact.show();
 }
}

Getting Data In

[190]

Here, we still need to grab our data record and load it into the form, but now, we
grab our saveButton method and make changes to the handler and text as well. The
changes point the Save button to our updateContact function and change the text
to update.

Deleting from the Data Store
If you remember earlier, when we talked about CRUD functions, you can see that
we have successfully covered Create, Read, and Update. These are all handled
automatically by the store with very little code required. What about Delete?

As it turns out, Delete is just as simple as our other store methods. We can use either
of two methods: the first is remove()—it takes a record as its argument—and the
second is removeAt, which takes an index to determine which record to remove. We
could implement either of these as part of our edit form, by adding a new button at
the bottom of the form, as this:

{
 xtype: 'button',
 height: 20,
 margin: 10,
 text: 'Delete',
 ui: 'decline',

Chapter 6

[191]

 handler: function() {
 var form = this.up('form');
 contactStore.remove(form.record);
 this.up('sheet').hide();
 }}

Using removeAt requires the index of the store record, so we could do the same thing
by changing the remove line to:

contactStore.removeAt(form.record.data.id);

That takes care of all of our basic Create, Read, Edit, and Delete functions. As long
as you remember to set up your model and match your field names, the store will
handle most of the basics automatically.

Further Information:
Sencha has a number of good tutorials on using forms and stores,
including a video presentation located at http://docs.sencha.
com/touch/1-1/#!/video/26784522.

You should also check out Using the Data Package in Sencha
Touch at http://www.sencha.com/learn/using-the-data-
package-in-sencha-touch/.

Summary
In this chapter, we covered the data model that forms the basic structure for all
of our data in Sencha Touch. We looked at the proxy and reader, which handle
communications between the data store and our other components. We also talked
about the data store, which holds all of our data in Sencha Touch. Finally, we took a
look at how you can use forms to get data in and out of the stores, as well as at how
to delete the data when it is no longer needed.

In our next chapter, we will take a look at all of the other things we can do with
data once we get it out of the store.

http://docs.sencha.com/touch/1-1/#!/video/26784522
http://docs.sencha.com/touch/1-1/#!/video/26784522

Getting Data Out
In the last chapter, we looked at how you can get data into a Sencha Touch data
store. In this chapter, we will look at:

•	 Using data stores for display
•	 Binding, sorting, filtering, paging, and loading data stores
•	 Working with XTemplates
•	 Looping through data in an XTemplate
•	 Conditional display and inline functions in XTemplates
•	 Inline JavaScript and member functions in XTemplates
•	 Using Sencha Touch Charts to display store data

Using data stores for display
Being able to store data in your application is only half the battle. You need to be
able to easily get the data back out and present it in a meaningful way to the user.
Lists, panels, and other data-capable components in Sencha Touch offer three
configuration options to help you accomplish this task: store, data, and tpl.

Directly binding a store
Dataviews, lists, nested lists, form select fields, and index bars are all designed to
display multiple data records. Each of these components can be configured with a
data store from which to pull these records. We introduced this practice earlier on
in the book:

new Ext.Application({
name: 'TouchStart',
launch: function() {

Getting Data Out

[194]

Ext.regModel('Contact', {
fields: [
 {name: 'first', type: 'string'},
 {name: 'last', type: 'string'},
 {name: 'admin', type: 'boolean'}
]
});

this.viewport = new Ext.Panel({
fullscreen: true,
layout: 'fit',
items: [
 {
xtype: 'list',
itemTpl: '{last}, {first}',
store: new Ext.data.Store({
model: 'Contact',
storeId: 'contactStore',
proxy: {
type: 'localstorage',
id: 'myContacts',
reader: {
type: 'json'
 }
 },
autoLoad: true
 })
 }]
});

}
});

The store configuration takes model, storeId, and proxy components as part of its
setup. This will grab all of the store's data and pull it into the list for display. This is
pretty familiar to us now, but what if we only want some of the data, or if we need
the data in a specific order?

As it turns out, Sencha Touch stores can be sorted and filtered both when they are
first created and later, if we need to change the filtering or sorting in response to
the user.

Chapter 7

[195]

Sorters and filters
Sorters and filters can be used in a number of ways. The first way is to set up a
default configuration on the store as part of its creation.

var myStore = new Ext.data.Store({
model: 'Contact',
 storeId: 'contactstore',
sorters: [
 {
property : 'lastLogin',
direction: 'DESC'
 },
 {
property :'first',
direction: 'ASC'
 }
],

filters: [
 {
property: 'admin',
value: true
 }
]
});

Our sorters component is set as an array of property and direction values. These
are executed in order, so our example sorts first by lastLogin (most recent first);
within lastLogin, we sort by name (alphabetically ascending).

Our filters are listed as property and value pairs. In our example, we want the store
to show us admin only. The store might actually store non-admins as well, but here
we are requesting that those be filtered out initially.

Sorters and filters can also be modified after the initial load-in by using one of the
following methods:

•	 clearFilter: Clears all filters on the store, giving you the full content of
the store.

•	 filter: Takes a filter object, just like the one in our previous configuration
example, and uses it to limit the data as requested.

Getting Data Out

[196]

•	 filterBy: Allows you to declare a function that is run on each item in the
store. If your function returns true, the item is included. If it returns false,
then the item is filtered out.

•	 sort: Takes a sort object just like the ones in our configuration example and
uses it to sort the data as requested.

If we use our previous example store, changing the sort order would look like this:

myStore.sort({
property : 'last',
direction: 'ASC'
});

Filtering has to take into account any previous filters on the store. In our current
store example, we are set to filter out anyone without an admin value of true. If we
try the following code, we will not get back anything in the list, because we have
effectively told the store to filter by both the new (admin = false) and previous
(admin = true) filter:

myStore.filter({
property : 'admin',
value: false
});

As admin is a Boolean value, we get back nothing. We have to clear out the old
filter first:

myStore.clearFilter();
myStore.filter({
property : 'admin',
value: false
});

This example will clear the old 'admin only' filter from the store and return a list of
everyone who is not an admin.

Sorting and filters provide a powerful tool for manipulating data inside the data
store. However, there are a few other situations we should also take a look at. What
do you do when you have too much data, and what do you do when you need to
reload the data store?

Chapter 7

[197]

Paging a data store
In some cases, you will end up with more data than your application can
comfortably manage in a single bite. For example, if you have an application with
300 contacts, the initial load-in time might be more than you really want. One way to
handle this is with paging in the data store.

Paging allows us to grab the data in chunks and send the next or previous chunk of
data, as the user needs it. We can set up paging using the pageSize configuration:

var myStore = new Ext.data.Store({
model: 'Contact',
storeId: 'contactStore',
proxy: {
type: 'localstorage',
id: 'myContacts',
reader: {
type: 'json'
 }
 },
autoLoad: true
 })

We can then move through the data using the paging functions:

myStore.nextPage();
myStore.PreviousPage();
myStore.loadPage(5);

This code moves forward one page, back one page, and then jumps to page five.

If we jump to page five and it doesn't exist, things will probably go poorly for our
application (that is, it will go kaboom!). This means we need a good way to figure
out how many pages we actually have, which means we need to know the total
number of records in our data store.

We could try using the getCount() method for the data store, but this only returns
the number of currently cached records in the store. Since we are paging through the
data and not loading everything available, this would be the same as our maximum
page size of 40. We need to set up our stores' reader to get this information.

We can set a configuration on the reader for totalProperty, such as this:

var myStore = new Ext.data.Store({
model: 'Contact',
storeId: 'contactStore',
 pageSize: 40,

Getting Data Out

[198]

proxy: {
type: 'localstorage',
id: 'myContacts',
reader: {
type: 'json'
 }
 },
autoLoad: true
 });

This tells our reader to look for an extra property, called totalContacts, in the data
it collects. Our data that we pull into the store will also have to be set up to include
this new property as part of the data string. How this is done will be determined
largely by how your data is created and stored, but in a JSON data array, the format
would look something like the following:

{
"totalContacts: 300,
 "contacts":[…]
}

All of our actual contacts would appear within the brackets, and the totalContacts
property would be in the root of our array.

Once our data is set up in this fashion, we can grab the total contacts, as follows:

var total = myStore.getProxy().getReader().totalContacts

We can then divide by myStore.pageSize, to determine the total number of pages in
our data. We can also grab the current page with myStore.currentPage. These two
variables will allow us to display the users' current locations in the pages (that is,
page five of eight).

One thing to be aware of, is that this total is not the number of records currently in
the store. Instead, it is the total number of records available from the server. To find
the total number of records in the store, you would use the following:

myStore.getCount();

Also, if you filter your stores' data, the number returned by getCount() will be
the number of records that matched the filter, not the total number of records in
the store.

Now, we need to account for what happens when the data behind our store changes.

Chapter 7

[199]

Loading changes in a store
When we use a data store to pull from an external source, such as a file, a website, or
a database, there is always the chance that the data will change at the external source.
This will leave us with stale data in the store.

Fortunately, there is an easy way to deal with this using the load() function on the
store. The load() function works as follows:

myStore.load({
scope: this,
callback: function(records, operation, success) {
console.log(records);
 }
});

The scope and callback functions are both optional. However, callback offers us
an opportunity to do a number of interesting things, such as compare our old and
new records, or alert the user visually once the new records are loaded.

Another consideration, when loading data stores, is whether to auto load the store as
part of its creation or load it later. A good rule of thumb is to only auto load the data
stores that you know will initially be displayed. Any subsequent stores can be set to
load when the component they are bound to is shown.

For example, let's say we have a list of system users that will only be accessed
occasionally within the program. We can add a listener to the component list itself,
shown as follows:

listeners: {
show: {
fn: function(){ this.getStore().load(); }
 }
}

This code will load the store only if the list component is actually shown.
Loading stores in this fashion saves us time when launching our application and
saves memory.

We can also save time and memory by using the store to feed multiple components,
such as a list of data and a details panel.

Getting Data Out

[200]

Data stores and panels
Unlike lists, where a number of records can be displayed, a panel typically displays a
single record. However, we can still grab this information from our data store in the
same way we do for a list.

Let's start with a variation of our contacts example from the beginning of the chapter;
we will build a list of names using first and last, and then add a details panel that
shows the full name, e-mail address, and phone number for the selected name.

We start with our model first:

Ext.regModel('Contact', {
fields: [
 {name: 'first', type: 'string'},
 {name: 'last', type: 'string'},
 {name: 'address', type: 'string'},
 {name: 'city', type: 'string'},
 {name: 'state', type: 'string'},
 {name: 'zip', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'birthday', type: 'date'}
]
});

This gives us our first and last values, which we will use for our initial list, and
the email, birthday, and address information which we will use for the details.

Our list component stays basically the same as before. Since list uses the template
itemTpl: '{last}, {first}', it simply ignores the values for address, city,
state, zip, email, and birthday. However, since these values are still part of the
data record, we can still grab them and use them in our panel to display details.

Before we can add our panel, we need to change our viewport method over to use a
card layout. This will let us switch between the list and the details with a single tap:

this.viewport = new Ext.Panel({
fullscreen: true,
layout: 'card',
id: 'cardStack',
activeItem: 0,
items: [
 {
xtype: 'list',
itemTpl: '{last}, {first}',
store: new Ext.data.Store({

Chapter 7

[201]

model: 'Contact',
storeId: 'contactStore',
proxy: {
type: 'ajax',
url: 'api/contacts.json',
reader: {
type: 'json',
root: 'children'
 }
 },
autoLoad: true
 })
 }]
});

In this code, we have changed our original example to set the viewport method to a
card layout, with the activeItem component as 0. In this case, item 0 is our list. We
also added an id , so we can grab the panel and change the active item later.

Sharp-eyed readers will also notice that we have changed our store to use AJAX
as the proxy with a URL of api/contacts.json. This means that, when the store
loads, it will look for a local file in the api folder, called contacts.json. This file
will contain some test data we have thrown together, which looks something like
the following:

{
 "children":[
 {
 "first":"Ila",
 "last":"Noel",
 "email":"ante.ipsum@Sedmalesuada.ca",
 "address":"754-6686 Elit, Rd.",
 "city":"Hunstanton",
 "state":"NY",
 "zip":34897,
 "birthday":"Tue, 16 Oct 1979 04:27:45 -0700"
 }, …
]
}

By setting this store to look at a local text file. This lets us add data quickly for
testing, by adding additional new children to the text file.

Getting Data Out

[202]

Test data is your friend
Whenever you put together an application and test it, you
will probably need some data in order to make sure things are
working correctly. It's often very tedious to enter this information
into a text file manually, or enter it in data forms over and
over again. Fortunately, there is a website at http://www.
generatedata.com/ that will generate random data in a
number of formats. Just provide the field names and types, and
then tell it how many records you need. Click the button, and you
get back random data, ready for testing. Best of all, it's free.

Once you have your data and the new viewport set up, load the page to make sure
things are working correctly.

Now, we need to add data in our detailsPanel component. Let's start simple for
this first part and add a new panel item after our list:

{
xtype: 'panel',
id: 'detailsPanel',
tpl: '{first} {last}
{address}
{city}, {state} {zip}
{email}<
br>{birthday}',
dockedItems: [{
xtype: 'toolbar',
dock: 'top',
items: [{

http://www.generatedata.com/

Chapter 7

[203]

text: 'Back',
ui: 'back',
handler: function() {
Ext.getCmp('cardStack').setActiveItem(0);
}
}]
}]
}

Here, we just set id so we can grab the panel when we need to. We also add a simple
template. We include some HTML line breaks to lay out the data better. Finally, we
add a Back button which will bring us back to our main list.

The last thing we need to do is add a listener to our list to load the data into the panel:

listeners: {
itemTap: {
fn: function(list,index){
var record = list.getStore().getAt(index);
Ext.getCmp('detailsPanel').update(record.data);
Ext.getCmp('cardStack').setActiveItem(1);
 }
 }
}

The nice thing about this is that we don't really need to load anything new. The list
already has access to all of the extra data through the data store. We just grab the
store and use the index object that gets passed as part of our itemTap component.
Then, we take the data from the record variable and pass it to the panel as part of
the update function. Finally, we set the active item to our detailsPanel component.
The result looks as follows, when we tap an item in the list:

Getting Data Out

[204]

The detailsPanel component includes not only the first and last name from our list,
but the address, e-mail, and birthday data, as well. All of this data comes from the
same data store; we simply use the templates to choose which pieces to display.

Speaking of templates, ours looks a little bit dull, and the birthday is a bit more
specific than we really need. There must be something we can do to dress this
up a bit.

XTemplates
As we have seen from a number of previous examples, the XTemplate is a structure
that contains HTML layout information and placeholders for our data.

So far, we have only created very basic templates for our list and panel, using the
data values and a bit of HTML. We have also created them as part of the component
itself, as a single string. This could become unwieldy very quickly. However, we can
also set these templates up as separate components:

var myTemplate = new Ext.XTemplate(
 '{first} {last}
',
 '{address}
',
 '{city}, {state} {zip}
',
 '{email}
',
 '{birthday}'
);

This would create a template that looks exactly like what we had before. It's just a lot
easier to read and maintain in this configuration. Here, we can have as many lines as
we want, enclosed in quotes and separated by commas.

We can then add it to our panel with tpl: myTemplate.

This allows us to easily create something a bit more pretty than our old template:

var myTemplate = new Ext.XTemplate(
 '<div style="padding:10px;">{first} {last}
',
 '{address}
',
 '{city}, {state} {zip}
',
 '{email}
',
 '{birthday}</div>'
);

Chapter 7

[205]

This makes our display look a bit better.

We can also use these same types of XTemplates with our main list to give it a bit
more style. For example, adding the following as the itemTpl component for our
list will place an adorable kitten picture next to each name in the list:

var listTemplate = new Ext.XTemplate(
 '<div class="contact-wrap" id="{first}-{last}">',
 '<div class="thumb" style= "float: left;"><img src="http://
placekitten.com/36/36" title="{first}"></div>',
 '{first} {last}</div>'
);

For this example, we just added some HTML to lay out each line of data and then
used a random image generation service to place a 36 x 36 random kitten picture,
which will line up next to our names on the left. (You can also use this to display
the contact's picture).

Getting Data Out

[206]

At this point, we are still just playing with basic HTML, but XTemplates are much
more powerful than that.

Data manipulation
Since XTemplates are components in Sencha Touch, they allow us to directly
manipulate the data within the template in a number of ways. The first thing
we can do is clean up that ugly birthday.

Since the birthday is listed in our model as being a date object, we can treat it like
one, in the template. We can replace the current birthday line of our template with
the following:

 'Birthday: {birthday:date("n/j/Y")}</div>'

This will use our value of birthday and the format function date. date uses the
string "n/j/Y" to convert birthday into a more readable format. These format
strings can be found on the date page of the Sencha Touch API.

Sencha Touch includes a number of formatting functions that can be used in this
fashion. Some of the functions include:

•	 date: Formats a date object using the specified formatting string (the format
strings can be found on the date page of the Sencha Touch API).

•	 ellipsis: Truncates the string to a specified length and adds … to the end
(note that the … is considered to be part of the total length).

Chapter 7

[207]

•	 htmlEncode and htmlDecode: Converts HTML characters (&, <, >, and ') to
and from HTML.

•	 leftPad: Pads the left side of the string with a specified character (good for
padding numbers with leading zeros).

•	 toggle: A utility function that switches between two alternating values.
•	 trim: Removes any white space from the beginning and end of the string. It

leaves spaces within the string intact.

The basic functions can be used inside the HTML of our XTemplate to format our
data. However, the XTemplate has a few additional tricks up its sleeve.

Looping through data
In a list view, the XTemplate for the itemTpl component is automatically applied to
each item in the list. However, you can also loop through your data manually, using
the following syntax:

'<tpl for=".">',
'{name}</br>',
'</tpl>'

When you use the <tpl> tag, it tells the XTemplate we are exiting the realm of
HTML and making some decisions within the template. In this case, <tpl for=".">
tells the code to start a loop and use the root node of our data. The closing </tpl>
tells the loop to stop.

Since we can have complex nested data with both XML and JSON, it can also be
helpful to loop the data in places besides the root node. For example, let's say we
have an array of states, and each state contains an array of cities. We could loop
through this data as follows:

'<tpl for=".">',
'{name}</br>',

'<tpl for="cities">',
'{name}</br>',
'</tpl>'

'</tpl>'

Our first <tpl> tag begins looping through our states, printing the name. After the
name is printed, it looks for a child array within the individual state, called cities.

Getting Data Out

[208]

This time, when we use the variable {name}, it's inside of our child loop, so it prints
the name of each city in the state before moving on to the next state in the loop.

Notice that, when we use a field name inside our <tpl> tags, we do
not use the curly braces like this: {cities}. Since we are outside of
the HTML piece of our template, Sencha Touch assumes "cities"
is a variable.

We can even access an array nested in each city, for example postal codes, by adding
another loop:

'<tpl for=".">',
'{name}</br>',

'<tpl for="cities">',
'{name}</br>',

'<tpl for="cities.postal">',
'{code}</br>',
'</tpl>'

'</tpl>'

'</tpl>'

In this case, we have used <tpl for="cities.postal"> to indicate that we will
loop through the postal codes data array within the cities data array. Our other
array loops execute as before.

Numbering within the loop
When you are working inside a loop, it's often helpful to be able to count the cycles
in the loop. You can do this by using {#} in your XTemplate:

'<tpl for=".">',
'{#} {name}</br>',
'</tpl>'

This will print the current loop number next to each name in the loop. This would
work in a similar fashion for nested data:

'<tpl for=".">',
'{#} {name}</br>',

'<tpl for="cities">',
'{#} {name}</br>',
'</tpl>'

'</tpl>'

Chapter 7

[209]

The first {#} will display where we are in the main loop and the second {#} will
display where we are in the cities loop.

Parent data in the loop
In cases where we have nested data, it can also be helpful to be able to get to the
parent properties from within the child loop. You can do this by using the parent
object. Using our nested example with states, cities, and counties, this would look
as follows:

'<tpl for=".">',
'{name}</br>',

'<tpl for="cities">',
'{parent.name} - {name}</br>',

'<tpl for="cities.postal">',
'{parent.name} - {code}</br>',
'</tpl>'

'</tpl>'

'</tpl>'

While inside our cities loop, {parent.name} would display the state name for that
city. When we are inside our cities.postal loop, {parent.name} would display
the city name associated with that postal code.

Using this {parent.fieldname} syntax, we can get to any of the parent's values
from within the current child item.

Conditional display
In addition to looping, XTemplates offer some limited conditional logic for use
in your template. This is limited because, instead of the familiar programming
concept of if…else…then, Sencha Touch only offers if…then. For example, we could
use the if statement in our states and cities to only display cities with a population
above 2,000:

'<tpl for=".">',
 '{name}</br>',
 '<tpl for="cities">',
 '<tpl if="population > 2000">',
 '{name}</br>',
 '</tpl>',
 '</tpl>',
'</tpl>'

Getting Data Out

[210]

If we wanted to color code our cites based on whether they are over or under our
population target, then we couldn't use if… else… then. We would have to do it as
two opposite if statements:

'<tpl for=".">',
 '{name}</br>',
 '<tpl for="cities">',
 '<tpl if="population > 2000">',
 '<div class="blue">{name}</div>',
 '</tpl>',
 '<tpl if="population < 2000">',
 '<div class="red">{name}</div>',
 '</tpl>',
 '</tpl>',
'</tpl>'

Now, you are probably already asking yourself why we are using > and <
instead of > and <. The reason is because anything in our conditional statement needs
to be HTML-encoded, in order for the XTemplate to correctly parse it. This can be a
bit confusing at first, but the key things to remember are as follows:

•	 Use > instead of >.
•	 Use < instead of <.

Chapter 7

[211]

•	 Use equals as normal == However, if you are comparing a string value,
you have to escape the single quotes such as this: '<tpl if="state ==
\'PA\'">'.

•	 You will need to encode ", if it is part of your conditional. So if you are
searching for the word "spam" including the quotes, you would have to
encode this as"spam".

Arithmetic
In addition to conditional logic, the XTemplates also support basic math
functionality for the following:

•	 Addition (+)
•	 Subtraction (-)
•	 Multiplication (*)
•	 Division (/)
•	 Modulus—the remainder of one number divided by another (%)

For example:

'<tpl for=".">',
 '{name}</br>',
 '<tpl for="cities">',
 '{name}</br>',
 'Population: {population}</br>',
 'Projected Population for next year: {population * 1.15}</br>',
 '</tpl>',
'</tpl>'

This would give us our initial population value followed by a projected population
of 1.15 times the current population. The math functions are included within the
curly braces around our variable.

Inline JavaScript
We can also execute arbitrary inline code as part of our Xtemplate. We can do this by
placing the code within a combination of brackets and curly braces: {[…]}. There are
also a few special attributes we can access within this code:

•	 values: The values in the current scope
•	 parent: The values of the current parent object

Getting Data Out

[212]

•	 xindex: The current index of the loop you are on
•	 xcount: The total number of items in the current loop

For example, we can make sure our state and city names are uppercase, and alternate
colors on our list of cities with the following XTemplate:

'<tpl for=".">',
 '{[values.name.toUpperCase()]}</br>',
 '<tpl for="cities">',
 '<div class="{[xindex % 2 === 0 ? "even" : "odd"]}">',
 '{[values.name.toUpperCase()]}</br>',
 '</div>',
 '</tpl>',
'</tpl>'

In this case, we use {[values.name.toUpperCase()]} to force the name of the state
and the city to be uppercase. We also use {[xindex % 2 === 0 ? "even" : "odd"]} to
alternate our row colors, based on the remainder of the current count divided by 2
(the modulus).

Even with the ability to write inline JavaScript, there are a number of cases where
you might require something a bit more robust. This is where the XTemplate
member functions come into play.

XTemplate member functions
An XTemplate member function allows you to attach a JavaScript function to your
XTemplate and then execute it inside the template by calling this.function_name.

The functions are added to the end of the template and a template can include
multiple member functions. These member functions are wrapped in a set of curly
braces in a fashion similar to listeners:

{
myTemplateFunction: function(myVariable) {
 …
 },
myOtherTemplateFunction: function() {
 …
 }
}

We can use these member functions to make up for the lack of a native if…then…
else option within the template. Let's use our previous states and cities example,
and expand our color coding a bit.

Chapter 7

[213]

'<tpl for=".">',
 '{name}</br>',
 '<tpl for="cities">',
 '<div class="{[this.setPopulationStyle(values.
population)]}">{name}</div>',
 '</tpl>',
 '</tpl>',
'</tpl>',
{
setPopulationStyle: function(population) {
if(population >= 4000) {
return 'red';
 } else if(population <= 3999 && population >= 2000) {
return 'orange';
 } else if(population <= 1999&& population >= 1000) {
return 'blue';
 } else {
return 'grey';
 }
 }
}

For this example, we have created a member function called setPopulationStyle,
that we pass our population variable into. As our function can execute any JavaScript
we desire, we can use our if…then…else logic here, setting a class for our population
in the template. We can then call the function inside our template with {[this.
setPopulationStyle(values.population)]}, which will print out our class name,
based on the value of our population.

Getting Data Out

[214]

We can also use our member functions to help us test for the presence or absence of
data. This comes in very handy for controlling your template. For example, let's start
with a contacts template with a name, address, and e-mail, such as the following:

var myTemplate = new Ext.XTemplate(
 '<div style="padding:10px;">{first} {last}
',
 '{address}
',
 '{city}, {state} {zip}
',
 '{email}
',
 'Birthday: {birthday:date("n/j/Y")}</div>'
);

If we have no data for the address, city, and state, we will end up with some empty
lines and a stray comma. Since our zip variable is an integer according to our model,
it will show up as 0 if we don't have a value stored for it.

We need a way to check and see if we have data for these items before we print
it out.

isEmpty
As it turns out, native JavaScript is very problematic when it comes to detecting an
empty value. Depending on the function, JavaScript might return the following:

•	 null
•	 undefined

Chapter 7

[215]

•	 an empty array
•	 an empty string

For most of us, these are pretty much the same thing; we didn't get back anything.
However, to JavaScript, these return values are very different. If we try to test for
data with if(myVar == '') and we get back null, undefined, or an empty array,
JavaScript will return false.

Fortunately, Sencha Touch has a handy little function called isEmpty(). This
function will test for null, undefined, empty arrays, and empty strings, all in one
function. However, Sencha Touch does not have an opposite function for has data,
which is what we really want to test for. Thanks to template member functions, we
can write our own.

var myTemplate = new Ext.XTemplate(
 '<div style="padding:10px;">{first} {last}
',
 '<tpl if="!Ext.isEmpty(address)">',
 '{address}
',
 '{city}, {state} {zip}
',
 '</tpl>',
 '{email}
',
 'Birthday: {birthday:date("n/j/Y")}</div>'

We don't even need a member function for this data check. We can add <tpl
if="!Ext.isEmpty(address)"> to our template and check for the address in line
with our template. The Ext.isEmptyfunction class takes the address data and
checks to make sure it is not ! (empty). If the address is not empty, we print the
address and if it is empty, we do nothing.

Changing a panel's content with
XTemplate.overwrite
In our previous examples, we have declared our XTemplate as part of our panel or
list, using tpl or itemtpl. However, it can also be helpful to overwrite a template
programmatically, after the list or panel is displayed. You can do this by declaring a
new template and then using the panel's (or list's) overwrite command to combine
the template and the data, and overwrite the content area of your panel or list.

var myTemplate = new Ext.XTemplate(
'<tpl for=".">',
 '{name}</br>',
 '<tpl for="cities">',
 '- {name}
',
 '</tpl>',

Getting Data Out

[216]

 '</tpl>',
'</tpl>'
);

myTemplate.overwrite(panel.body, data);

Our overwrite function takes an element (Ext or HTML) as the first argument. So,
instead of just using panel, we need to use the body element of the panel as panel.
body. We can then supply a record from a data store or an array of values, as our
second argument for the new template to use.

While XTemplates are an extremely powerful way to display our data, they are still
very text heavy. What if we want to display data as something a bit more colorful?
Let's take a look at Sencha Touch Charts.

Sencha Touch Charts
So far, we have only looked at data stores and records as a way to display text data,
but with the release of Sencha Touch Charts, we are a now able to display complex
graphical data as part of our applications.

These new components use data stores to display a wide range of chart and graph
types, including the following:

•	 pie
•	 bar
•	 line
•	 scatter

Chapter 7

[217]

•	 series
•	 treemap
•	 worldmap

While a full exploration of the chart components would be worthy of a book by itself,
we want to provide an overview of how these components interact with the data
store and, hopefully, peak your curiosity.

Installing Touch Charts
Sencha Touch Charts are a separate download from the main Sencha Touch
framework, and you can find them at http://www.sencha.com/products/touch/
charts/.

You will need to unzip the touch-charts folder and move it into your folder, much
in the same way we set up our Sencha Touch framework in Chapter 2, Creating a
Simple Application. You will also need to include the touch-charts-debug.js and
touch-charts-demo.css files in your main index.html file (both files are in the
touch-charts folder). Follow the previous instructions in Chapter 2, Creating a Simple
Application, for including JavaScript files.

A simple pie chart
Once the files are included, we can start a new JavaScript file for our Charts example.
We will start with a data store:

Ext.setup({
onReady: function() {
var mystore = new Ext.data.JsonStore({
fields: ['month', 'sales'],
data: [
 {'month': 'June', 'sales': 500},
 {'month': 'July', 'sales': 350},
 {'month': 'August', 'sales': 200},
 {'month': 'September', 'sales': 770},
 {'month': 'October', 'sales': 170}
]
 });
 }
});

http://www.sencha.com/products/touch/charts/

Getting Data Out

[218]

Our store declares two field types, month and sales, and our data array holds five
sets of month and sales values. This will feed into our pie chart:

var chartPanel = new Ext.chart.Panel({
title: 'Pie Chart',
fullscreen: true,
items: {
cls: 'pie1',
theme: 'Demo',
store: mystore,
insetPadding: 20,
legend: {
position: {
portrait: 'bottom',
landscape: 'left'
 }
 },
series: [{
type: 'pie',
field: 'sales',
showInLegend: true,
label: {
field: 'month'
 }
 }]
 }
 });

Much like our other panel components, an Ext.chart.Panel class takes
configurations for title and fullscreen. It also takes a list of items to include
in the body of the panel. In the case of a chart panel, this item will be a single
chart component.

The chart component takes configurations options for cls (a CSS class), a theme,
a data store component, and insetPadding component to keep the chart from
bumping up against the top and sides of the page.

Next, we have a configuration for our legend chart. This provides a color-coded
reference for all of our chart values. We can use a position configuration to designate
how the legend should appear in both portrait and landscape modes.

The final piece is our series configuration. In our example, we have set the type of
chart we will see, which field the chart uses to draw the pie slices, whether to show
the legend or not, and lastly, the label we will use for our legend.

Chapter 7

[219]

The series configuration
The series configuration controls most of the look and feel of our
charts: shadows, animation handling, gradients, as well as the
actual type of chart we want (pie, column, bar, scatter, and so on).
A series will be composed of an array of items that control the
positioning of each of our chart elements as well as the value from
our store that we are using for that element. This also means that
each type of chart will have a slightly different set of requirements
and options for its series data. Consult the API Drawing and
Charting documentation to see examples of the different types
of series configurations: http://docs.sencha.com/touch-
charts/1-0/#!/guide/drawing_and_charting.

When we load it all up, our chart looks as follows:

If you click on any of the months on the legend, you can turn them on and off in the
chart. This functionality happens automatically, without any additional code.

A pie chart works well for very simple, single-series data, but what happens if we
have data for several years? Let's see how a bar chart might work to display this
kind of data.

Getting Data Out

[220]

A bar chart
For our bar chart, let's replace our chart data store with this one:

var mystore = new Ext.data.JsonStore({
fields: ['month', 'data'],
data: [
 {'month': 'June', '2008': 500, '2009': 400, '2010': 570},
 {'month': 'July', '2008': 350, '2009': 430, '2010': 270},
 {'month': 'August', '2008': 200, '2009': 300, '2010': 320},
 {'month': 'September', '2008': 770, '2009': 390, '2010': 670},
 {'month': 'October', '2008': 170, '2009': 220, '2010': 360}
]
});

This data set has multiple series of data we need to display (five months, with three
years for each month). An effective bar chart will need to display a row for each
month and separate bars within the month for each of our years.

We can start by changing the title of our chart panel to bar chart. Then, we can replace
our chart items, as follows:

items: {
cls: 'bar1',
theme: 'Demo',
store: mystore,
animate: true,
legend: {
position: {
portrait: 'right',
landscape: 'top'
 },
labelFont: '17px Arial'
 },
axes: [{
type: 'Numeric',
position: 'bottom',
fields: ['2008', '2009', '2010'],
title: 'Sales',
minimum: 0
 },
 {
type: 'Category',
position: 'left',
fields: ['month'],

Chapter 7

[221]

title: 'Month of the Year'
 }],
series: [{
type: 'bar',
xField: 'month',
yField: ['2008', '2009', '2010'],
axis: 'bottom',
showInLegend: true
 }]
}

Like our pie chart, the bar chart component takes configurations options for cls
(a CSS class), a theme, a data store, and new option called animate. This option
will make our bars animate as we turn on and off different items in the legend.

We then have our legend as before, followed by a new configuration option called
axes. Since a bar chart operates along an X and a Y axis, we need to specify which
of our data points should feed each axis.

First up is our sales data for each year. The data is numeric, positioned along the
bottom and given a title of sales. We also specify the fields that will be used for this
access and what our minimum value should be (this is the number that will appear
on the far left of our bar chart and will usually be zero).

The next axis is our category data (which will also be used for our legend). In this
case, our position is left, our field is month, and our title is Month of the Year.
This closes out our axes configuration.

Finally, we have our series configuration, which sets this up as a bar graph. Unlike
our previous pie chart example, which only tracked sales data, the bar chart is
tracking sales data for two separate points (month and year), so we need to assign
our xField and yField variables and declare an axis location. This location should
match the axis where you are displaying numerical data (in our case, the data is on
the Y axis, which is on the bottom). We close out by using showInLegend to display
our legend.

Getting Data Out

[222]

The final chart should look as follows:

Charts are an incredibly robust way to use stores to display
data, and we don't really have time to go through them all here,
but you can explore all of the capabilities of Sencha Charts at
http://www.sencha.com/products/touch/charts/.
You can also find examples of each kind of chart at http://
dev.sencha.com/deploy/touch-charts-1.0.0/
examples/. Remember that you need to view these examples
with a WebKit browser (Safari or Chrome).
The full Touch Charts API documentation is available at
http://docs.sencha.com/touch-charts/1-0/.

http://www.sencha.com/products/touch/charts/
http://www.sencha.com/products/touch/charts/
http://dev.sencha.com/deploy/touch-charts-1.0.0/examples/
http://dev.sencha.com/deploy/touch-charts-1.0.0/examples/
http://dev.sencha.com/deploy/touch-charts-1.0.0/examples/
http://docs.sencha.com/touch-charts/1-0/
http://docs.sencha.com/touch-charts/1-0/

Chapter 7

[223]

Summary
In this chapter, we have explored the way data stores can be used to display both
simple and complex data. We talked about binding, sorting, paging, and loading
data stores. We then walked through using data stores with both lists and panels.

We covered how to lay out your application by using XTemplates to control how
the data from stores and records will appear. We explored how to manipulate and
loop through our data inside an XTemplate as well as how to use conditional logic,
arithmetic, and inline JavaScript. We finished up our conversation on XTemplates
by discussing member functions and some of their uses.

We closed out our chapter with a look at using the Sencha Touch Charts package
to display our store data graphically.

In our next chapter, we will explore putting all of the information from our previous
chapters together into a full-scale application.

The Flickr Finder Application
So far, we have looked at Sencha Touch components individually or in small, simple
applications. In this chapter, we are going to create a well-structured and more
detailed application, using Sencha Touch. This will include:

•	 An introduction to the Model View Controller (MVC) design pattern
•	 Setting up a more robust folder structure
•	 Setting up the main application files
•	 Using the Flickr API
•	 Registering components
•	 Setting up the SearchPhotos component
•	 Setting up the SavedPhotos component
•	 Adding the finishing touches to publish the application

The basic application
The basic idea for this application will be to use the Flickr API to discover photos
taken near our location. We will also add the ability to save interesting photos we
might want to look at later.

When you are first creating an application, it's always a good idea to sketch out the
interface. This gives you a good idea of the pieces you will need to build and also
allows you to navigate through the various screens the way a user would. It doesn't
need to be pretty; it just needs to give you a basic idea of all the pieces involved in
creating the application.

The Flickr Finder Application

[226]

Aim for something very basic, such as this:

Next, you will want to tap your way through the paper interface, just like you would
with a real application, and think about where each tap will take the user, what
might be missing, and what might be confusing for the user.

Our basic application needs to be able to display a list of photos as well as a close-up
of a single photo. When we tap a photo in the list, we will need to show the larger
close-up photo. We will also need a way to get back to our list when we are finished.

When we see a photo we like, we need to be able to save it, which means we will
need a button to save the photo as well as a separate list of saved photos and a
close-up single view for the saved photo, as well.

Chapter 8

[227]

Once we are happy with the drawings, we can start putting together the code to
make our paper mock-up into something like this:

Introduction to Model View Controller
(MVC)
Before we get started building our application, we should spend some time talking
about structure and organization. While this might seem like a boring detour into
application philosophy, it's actually one of the most critical considerations for
your application.

First consider the monolithic application, with everything in one enormous file. It
seems crazy, but you will encounter hundreds of applications that have been coded
in just this fashion. Attempting to debug something such as this is a nightmare.
Imagine finding the missing closing curly brace inside of a component array 750 lines
long. Yuck!

The question then becomes one of how to break up the files in a logical fashion.

Model View Controller, or MVC, organizes the application files based on the
functionality of the code:

•	 Models describe your data and its storage
•	 Views control how the data will be displayed
•	 Controllers handle the user interactions by taking input from the user and

telling the views and model how to respond, from the user's input

The Flickr Finder Application

[228]

This means each part of your application will have separate files for each of these
parts. Let's take a look at how this is structured:

Our css folder contains our local style sheets and our lib folder contains our Sencha
Touch library files, just as before, but we have some new folders named models,
controllers, and views, inside our app folder.

Our model files will contain code for creating our models and the stores that will
contain our data. There will be one model file for each of our different datatypes
(we will talk about how to split out the datatypes in the next section).

Our controller files will contain most of the functionality for the application: loading
the data into the store, getting the data back out for display, and listening for any
input from the user. These controller files will also be split into separate files for
each type of data that we deal with.

The views folder will contain all of our display information for each of our
data pieces. Since we will likely have multiple views for each of our datatypes
(for example, a form and a list), we will probably split these views out into separate
sub folders, one per datatype.

By splitting the files out this way, it is much easier to reuse code across applications.
For example, let's say you build an application that has a model, controller, and
views for a user. If you want to create another application that needs to deal with
users, you can simply copy over the individual files for the model, views, and
controller into your new application. If all the files are copied over, then the user
code should work just as it did in the previous application.

Chapter 8

[229]

If we build a monolithic application, you would have to hunt though the code and
grab out bits and pieces, and reassemble them in the new application. This would be
a slow and painful process. By separating our components by functionality, it's much
easier to reuse code between projects.

Building the foundation
Before we can build the application, we need to set up our HTML file that will link
to the rest of our files and serve as the overall container for our application:

<!doctype html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Flickr Findr</title>

<meta name="viewport" content="width=device-width, user-scalable=no,
initial-scale=1.0; maximum-scale=1.0; user-scalable=0;" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<link rel="apple-touch-icon" href="apple-touch-icon.png" />

<link rel="stylesheet" href="lib/resources/css/sencha-touch.css"
type="text/css">
<link rel="stylesheet" href="css/flickrfindr.css" type="text/css">
</head>
<body>
<script type="text/javascript" src="lib/sencha-touch-debug.js"></
script>

<div id="sencha-app">
<script type="text/javascript" src="app/app.js"></script>

<!-- Place your view files here -->
<div id="sencha-views">

</div>

<!-- Place your model files here -->
<div id="sencha-models">

</div>

<!-- Place your controller files here -->
<div id="sencha-controllers">

The Flickr Finder Application

[230]

</div>
</div>
</body>
</html>

This basic HTML file setup links to all of our various JavaScript files and the Sencha
Touch framework. In the body of the index.html file, we have also created three
sections for our model, view, and controller files. As you create each file, you will
need to add a link to the file in the appropriate section of the index file.

Placing models, views, and controllers in the page body
In a typical HTML page, JavaScript is placed in the <head></head>
tags. When the browser loads that page, it must load everything
in the head tag before loading the rest of the page. Once the head
tag is fully loaded, any HTML within the <body></body> tags
gets rendered, and any files in the body tags are loaded serially. By
moving our components inside the <body></body> tag, we can load
the pieces the user will see first, at the top of our list. This leads to a
slightly quicker load time from the user's perspective.

Next, we need a way to launch the initial application, and a basic structure where we
can place our different data views for display.

This foundation begins with two files: one called viewport.js, in the views folder,
and another called app.js, in the main app folder. Let's take a look at these files.

The code for our app.js file is pretty simple:

FlickrFindr = new Ext.Application({
defaultTarget: "viewport",
name: "FlickrFindr",
launch: function() {
this.viewport = new FlickrFindr.Viewport();
 }
});
Ext.namespace('FlickrFindr.view', 'FlickrFindr.model', 'FlickrFindr.
store', 'FlickrFindr.controller');

This is the file that initially declares our viewport method and launches our
application. We also create the initial namespace for our models, views, and
controllers. As we mentioned back in Chapter 2, Creating a Simple Application,
namespace makes sure that when I call FlickrFinder.Viewport(), I don't
end up getting the generic Ext.Viewport instead.

Chapter 8

[231]

Namespace bug
There is currently a namespace bug in Sencha Touch 1.1, in the Ext.
Application setup. Currently, as stated in the documentation,
when the application is created, Ext calls the ns function to create the
namespaces we need for our application. Unfortunately, the function
ns does not actually exist in version 1.1 of Sencha Touch, so the
namespaces are not created automatically. The upshot of this is that
we have to create them manually (no matter what the Sencha Touch
1.1 documentation might tell you).

The launch function creates our new FlickrFindr.Viewport() method, which we
will define in our viewport.js file.

As before, our viewport is simply an extension of a standard Ext.Panel component.
In the viewport.js file, add the following:

FlickrFindr.Viewport = Ext.extend(Ext.Panel, {
layout : 'card',
fullscreen: true,

initComponent: function() {
Ext.apply(this, {
items: [
{ xtype: searchphotos }
]
 });

FlickrFindr.Viewport.superclass.initComponent.apply(this, arguments);
 }
});

This viewport will be the skeleton of our application, which will hold our other
components. However, unlike our previous examples, the bulk of our individual
component code is going to live in separate files. Our items section lists a single
component with an xtype attribute of searchphotos. We will create this component
in the The SearchPhotos component section.

Splitting up the pieces
The next thing we need to consider is how our application gets split into our separate
MVC pieces. For example, if your application tracks people and what car they own,
you would likely have a model and controller for the people, and a separate model
and controller for the cars. You would also likely have multiple views for both cars
and people, such as add, edit, list, details, and so on.

The Flickr Finder Application

[232]

In our application, we will be dealing with two different types of data. The first is
our search data for our photos and the second is our saved photos.

If we break this down into models, views, and controllers, we get something such
as the following:

Our controllers are separated out by functionality for saved photos and
search photos.

Since they are dealing with the same type of data, each of our controllers can use the
same model, but they will need different stores, since they're each using different
actual data sets. Our data stores will be part of the model file, so we have left the two
models as separate blocks in our diagram (since they will still be separate files).

For views, our search needs a list view for Search Photos and a Photo Details view.
The saved photos will also need a view for the list of saved photos and a view for
editing/adding the saved photos.

Naming conventions
There are a few naming conventions when you use an MVC structure.
While they are not required, they are strongly recommended. The
conventions will make it easier to understand for anyone else who has
to work with your code. The controller is typically a plural word or
words. A model is a singular version of the controller name. Finally, the
default view for the controller should be named the same (remember, the
models, views, and controllers are in separate folders). This will make it
clear which pieces belong together within your code.

Now that we have an idea of how our application needs to be laid out, we have one
last task to perform before we get started. We need to get an API key from Flickr.

Chapter 8

[233]

Using the Flickr API
A majority of popular web applications have made an API (Application
Programming Interface) available for use in other applications. This API works
in much the same way as our Sencha Touch framework. The API provides a list of
methods that can be used to read from, and even write data to, the remote server.

These APIs typically require a key in order to use them. This allows the service to
keep track of who is using the service and curtail any abuses of the system. API keys
are generally free and easy to acquire.

Go to the Flickr API site, http://www.flickr.com/services/api/, and look for the
phrase API Keys. Follow the link and apply for an API key, using the form provided.
When you receive your API key, it will be a 32-character long string composed of
numbers and lowercase letters.

Each time you send a request to the Flickr API server, you will need to transmit this
key as well. We will get to that part a bit later.

The Flickr API covers a little over 250 methods. Some of these require you to be
logged in with a Flickr account, but the others only require an API key.

For our purposes, we will be using a single API method called flickr.photos.
search, which requires no login. This method looks for photos, based on some
criteria. We will be using the current latitude and longitude of the device to get
back photos within a specified distance from our current location.

Our search results come back to us as a big bundle of JSON that we will need to
decode for display.

Once you have the API key, we can begin setting up our models, views, and
controllers.

The SearchPhotos component
We will start building with our search component. To begin with, we need to
add links in our main index.html to the files we will be creating. If you remember
from the beginning of the chapter, we left ourselves some placeholders for adding
in our models, views, and controllers. Let's add those in now, before we create the
actual files:

<!-- Place your view files here -->
<div id="sencha-views">
<script type="text/javascript" src="app/views/Viewport.js"></script>

http://www.flickr.com/services/api/
http://www.flickr.com/services/api/

The Flickr Finder Application

[234]

<script type="text/javascript" src="app/views/SearchPhotos.js"></
script>
<script type="text/javascript" src="app/views/PhotoDetails.js"></
script>
</div>

<!-- Place your model files here -->
<div id="sencha-models">
<script type="text/javascript" src="app/models/SearchPhoto.js"></
script>
</div>

<!-- Place your controller files here -->
<div id="sencha-controllers">
<script type="text/javascript" src="app/controllers/SearchPhotos.
js"></script>
</div>

The sencha-views section has our main viewport, our SearchPhotos (list) view,
and our PhotoDetails view.

Our sencha-models section contains our SearchPhoto model that will be used by
all our views.

The sencha-controllers section contains our single SearchPhoto controller that
will handle communication between our views and models.

Now that these links are in place, we can start building the actual files.

The best place to start with new components is the model. Typically, if we understand
the data we need to store and display, we can use that to determine how the rest of
the application should be built.

The SearchPhotos model
Our search results will be constrained, in part, by the data we can get back from
the Flickr API. However, we also want to display the images as part of our search
results. This means we need to look at the Flickr API and see what is required to
display an image from Flickr in our application.

If we take a look at http://www.flickr.com/services/api/misc.urls.html, we
see that Photo Source URLs in Flickr has the following structure:

http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{secret}.jpg

Chapter 8

[235]

This means that, in order to display each photo, we need:

•	 farm-id: The group of servers the image is on
•	 server-id: The specific server the image is on
•	 id: The unique ID for the image
•	 secret: A code used by the Flickr API to route requests

These are all things that we get back as part of our flickr.photos.search request.
We also get back the title for the photo, which we can use as part of our display.

Given these criteria, we need a SearchPhotos.js file in our models folder, with the
following code:

Ext.regModel('FlickrFindr.model.SearchPhoto', {
fields: [
 {
name: 'id',
type: 'int'
 },
 {
name: 'owner',
type: 'string'
 },
 {
name: 'secret',
type: 'string'
 },
 {
name: 'server',
type: 'int'
 },
 {
name: 'farm',
type: 'int'
 },
 {
name: 'title',
type: 'string'
 }
]
});

The Flickr Finder Application

[236]

We register our model, just as before, and then declare which fields we are using.

Remote loading
It's a good idea to get into the habit of using the full namespace of
FlickrFindr.model.SearchPhoto. The next version of Sencha
Touch will support remote loading for components. This means
that you will not need to include all the files as part of your index.
Sencha Touch will grab the component files and load them only
when needed. It will do this based on the full name; the model is
part of our main Flickr Finder application in the models folder
and it's called SearchPhoto.js.

Next, we need to add some code to our SearchPhoto.js file, in the model folder.
Beneath the model attribute, we need to add the following:

Ext.regStore('FlickrFindr.store.SearchPhotos', {
model: 'FlickrFindr.model.SearchPhoto',
autoLoad: false,
proxy: {
type: 'scripttag',
callbackParam: 'jsoncallback',
url: 'http://api.flickr.com/services/rest/',
extraParams: {
 'method': 'flickr.photos.search',
 'api_key': '783f66a1146d0be1ee5975785e6eb7a7',
 'format': 'json',
 'per_page': 25
 },
reader: {
type: 'json',
root: 'photos.photo'
 }
 }
});

Here, we register the FlickrFindr.store.SearchPhotos store, the same way we
registered a model. We are using the scripttag proxy.

If you remember from Chapter 6, Getting Data In, this proxy type is used for handling
requests to a separate server, much like JSONP. These cross-site requests require
a callback function in order to process the data returned by the server. However,
unlike JSONP, the scripttag proxy will handle the callback functionality for us
almost automatically.

Chapter 8

[237]

We say almost, because Flickr's API expects to receive the callback variable as:

jsoncallback =a_really_long_callback_function_name

By default, the store sends this variable as:

callback =a_really_long_callback_function_name

Fortunately, we can change this by setting this configuration option:

callbackParam: 'jsoncallback'

The next section sets the URL for contacting the Flickr API, which is url: 'http://
api.flickr.com/services/rest/'. This URL is the same for any requests to the
Flickr API. The extraParams setting is the piece that actually tells the API what to
do. Let's take a closer look at that piece:

extraParams: {
 'method': 'flickr.photos.search',
 'api_key': 'your-api-key-goes-here',
 'format': 'json',
 'per_page': 25
 }

The extraParams are a set of keys and values that are posted to the URL. Notice
that, unlike the configuration options, extraParams have both sides of the : in
quotes. This can trip you up if you forget.

In this case, Flickr's API needs the following information:

•	 method: The method we are calling
•	 api_key: Our own personal API key (the one in the example is fake; you will

need to supply your own API key in order for this to work)
•	 format: This is how we want to get the information back
•	 per_page: This sets how many images we want to get back from our request

Once we get our data back, we pass it to the reader:

reader: {
type: 'json',
root: 'photos.photo'
 }

The Flickr Finder Application

[238]

Since we set 'format': 'json', we need to set type: 'json' in our reader
function, We also need to tell the reader function where to start looking for photos
in the json array that gets returned from Flickr. In this case, root: 'photos.photo'
is the correct value.

Now that we have our data model and store set up, we need two views: the
SearchPhotos view and the PhotoDetails view.

The SearchPhotos view
Create a SearchPhotos.js file in our views folder. This will be the first of our
two views. Each view represents a single Sencha Touch display component. In this
case, we will be using an Ext.Panel class for display and an XTemplate to lay out
the panel.

Our XTemplate looks as follows:

FlickrFindr.view.SearchPhotoTpl = new Ext.XTemplate(
'<div class="searchresult">',
'<img src="{[this.getPhotoURL("s", values)]}" height="75"
width="75"/>',
' {title}</div>',
{
getPhotoURL: function(size, values) {
size = size || 's';
var url = 'http://farm' + values.farm + '.static.flickr.com/' + values.
server + '/' + values.id + '_' + values.secret + '_' + size + '.jpg';
return url;
 }
});

The first part of our XTemplate supplies the HTML we are going to populate with
our date. We start by declaring a div tag with a class of searchresult. This gives
us a class we can use later on to specify which photo result is being tapped.

Next, we have an image tag, which needs to include a Flickr image URL for the
photo we want in the list. We could assemble this string as part of the HTML of
our XTemplate, but we are going to take the opportunity to add some flexibility,
by making this into a function on our XTemplate.

Flickr offers us a number of sizing options when using photos in this way. We can
pass any of the following options along as part of our Flickr image URL:

•	 s: Small square, 75x75
•	 t: Thumbnail, 100 on longest side

Chapter 8

[239]

•	 m: Small, 240 on longest side
•	 -: Medium, 500 on longest side
•	 z: Medium, 640 on longest side
•	 b: Large, 1024 on longest side
•	 o: Original image, either a JPG, GIF, or PNG depending on source format

We want to set our function up to take one of these options along with our template
values and create the Flickr image URL. Our function first looks to see if we were
passed a value for size, and if not, we set it to s, by default, using size = size || 's';.

Next, we assemble the URL using our XTemplate values and the size. Finally, we
return the URL for use in our XTemplate HTML. This will let us create a thumbnail
for each of our images.

Now, we need a place to put the template and our images:

FlickrFindr.view.SearchPhotos = Ext.extend(Ext.Panel, {
id: 'searchphotos',
layout: 'card',
fullscreen: true,

initComponent: function() {
Ext.apply(this, {
dockedItems: [],
items: [
 {
xtype: 'list',
store: 'FlickrFindr.store.SearchPhotos',
itemTpl: FlickrFindr.view.SearchPhotoTpl
 }
]
 });

FlickrFindr.view.SearchPhotos.superclass.initComponent.apply(this,
arguments);
 }
});

Ext.reg('searchphotos', FlickrFindr.view.SearchPhotos);

We create our FlickrFindr.view.SearchPhotos model by extending the
Ext.Panel class. This panel will have a card layout, so we can switch between
our list of photo thumbnails and a details page.

The Flickr Finder Application

[240]

The initComponent configuration will set our dockedItems and items components
for the panel. To start with, we only have a single list component, which uses our
store and itemTpl objects, that we created previously.

The last two lines initialize the component and then register our new xtype attribute
of the searchphotos component.

At this point, our application doesn't do much of anything, because the store isn't
loading anything. We also have to tell the store our current location in order to get
the photos nearby. It would also be nice if the application did this when it started up.

In order to accomplish these goals, we need to add a listener on our list component
(after the items section):

listeners: {
render: function() {
var dt = new Date().add(Date.YEAR, -1);
var geo = new Ext.util.GeoLocation({
autoUpdate: false
 });
geo.updateLocation(function(geo) {
var easyparams = {
 "min_upload_date": dt.format("Y-m-d H:i:s"),
 "lat": geo.latitude,
 "lon": geo.longitude,
 "accuracy": 16,
 "radius": 10,
 "radius_units": "km"
 };
this.getStore().load({
params: easyparams
 });
 }, this);
 }
}

Here, we have added a listener for the render function. This will fire once when the
application starts.

In order to make sure we only get recent photos, we create a new date object that
will hold the date one year ago, (new Date().add(Date.YEAR, -1);, for us to use
later on.

Chapter 8

[241]

We also set up a new GeoLocation object using the following:

var geo = new Ext.util.GeoLocation({
autoUpdate: false
 });

By setting autoUpdate: false, we only get the location data once. This will keep us
from beating the user's battery to death by constantly updating our location.

As we have turned autoUpdate off, we need to manually trigger and update using
geo.updateLocation() and pass it a function to run. The first thing our function
does is to set up an array of Flickr API parameters we can then pass on to our store:

var easyparams = {
 "min_upload_date": dt.format("Y-m-d H:i:s"),
 "lat": geo.latitude,
 "lon": geo.longitude,
 "accuracy": 16,
 "radius": 10,
 "radius_units": "km"
};

The store takes anything we define as params and transmits it as a set of POST
variables, as part of the load request. In this case, we send the parameters to Flickr's
API and Flickr returns photos based on these variables.

The first parameter sets the minimum date for the photos we are interested in seeing.
The other parameters set our current location via latitude and longitude from our
GeoLocation object.

The accuracy parameter uses a range of 1 (World Level) to 16 (Street Level) and we
have set this to 16. We are also setting a radius of 10 km for our search. We will play
around with these elements later, in our advanced search.

Once all of our parameters are set, we still have one last thing to add, the
SearchPhotos controller.

The SearchPhotos controller
The controller is where the bulk of our action code will go. Make a new file called
SearchPhotos.js and put it in the controllers folder. Add the following code
to the file:

Ext.regController('searchphotos', {
showResults: function() {
var results = Ext.getCmp('searchphotos');

The Flickr Finder Application

[242]

results.setActiveItem(0);
 }
});

This code registers our controller and the first function sets the active item on our
searchphotos container to our list (item 0).This function will be used as part of our
Back button, later in the code. Let's give it a try in Safari.

If we load up our application in Safari, we will first get an alert asking if Safari can
use our current location:

This alert allows users to decline the application access to their current location and
ensures user privacy.

If you click Allow, our list will render and begin loading photos.

Chapter 8

[243]

You should now see a list of photos near your location.

Flickr API explorer
If you are not getting back any results, you might want to try the Flickr
API tester web page. This page will let you enter your parameters into a
web form and see what you get back from the flickr.photos.search
API request http://www.flickr.com/services/api/explore/
flickr.photos.search. This will let you know if you are simply
having a code issue, or if nobody has actually taken photos in your area.

Now that we have our photos working, it would be nice to see them in a larger
format, so let's add our details view.

Adding the PhotoDetails view
First, we need to add the tap handler to our current list in the views/SearchPhotos.
js file. This handler will swap our card layout to the details view, when an item in
the list is tapped.

Underneath our listener for the render event, let's add one for tap handling:

itemtap: function(list, item) {
var photo = list.getStore().getAt(item);

Ext.dispatch({
controller: 'searchphotos',
action: 'showDetails',
args: [photo]
 });
}

As part of our function, we are passed the item number of the photo that was tapped.
We need the actual data record from the store in order to display the details. We do
this with var photo = list.getStore().getAt(item).

Next, we use a method called Ext.Dispatch(). This method allows us to send
commands and arguments back to the controller. In this case, we are calling
showDetails and passing the photo record from the store.

The Flickr Finder Application

[244]

The last thing we need to do in this file is add our details component into our items
list. After the list component, add the following:

{
xtype: 'photodetails'
}

This adds a new component with an xtype attribute of photodetails. We will
create this view after we add the showDetails code to our controller. We should
be done with the views/SearchPhotos.js file for now. Let's move back to our
controller file.

In the controller/SearchPhotos.js file, we need to add the code to display our
photo in the PhotoDetails view (don't worry, we'll create that next). We can add the
following new function after the showResults function:

showDetails: function(interaction) {
var photo = interaction.args[0];
var results = Ext.getCmp('searchphotos');
results.down('photodetails').update(photo.data);
results.setActiveItem(1);
}

For this function, we have been passed the photo record as part of an array of
arguments, so we grab it with var photo = interaction.args[0]. Next, we get our
searchphotos component and use the down method to find our photodetails item
(which was part of the list of items in the searchphotos component). We then load
the photoDetails with our photo data. Now, we can switch the card layout to show
our details, using results.setActiveItem(1).

Now that our controller understands what to do with the photo it's receiving from
our tap event, we need to create the PhotoDetails view that will actually display
the photo. This file should be placed in the views folder.

Our PhotoDetails view looks as follows:

FlickrFindr.view.PhotoDetails = Ext.extend(Ext.Panel, {
id: 'photodetails',
fullscreen: true,
tpl: '<h1>{title}</h1><img src="http://src.sencha.io/x100/x100/http://
farm{farm}.static.flickr.com/{server}/{id}_{secret}_b.jpg">',
dockedItems: [
 {
xtype: 'toolbar',
items: [
 {

Chapter 8

[245]

text: 'Back',
ui: 'back',
handler: function() {
Ext.dispatch({
controller: 'searchphotos',
action: 'showResults'
 });
 }
 }
]
 }
],
initComponent: function() {
FlickrFindr.view.PhotoDetails.superclass.initComponent.apply(this,
arguments);
 }
});

Ext.reg('photodetails', FlickrFindr.view.PhotoDetails);

We start this file out much like our SearchPhotos view. We extend panel and give it
an id and a tpl component.

We create the image link as part of the template, instead of adding it in as a function,
as we did in the previous SearchPhotostpl model. This is simply to show that
either way will work just fine. In this tpl component, we also added a reference to
Sencha.io to resize our image based on the device:

http://src.sencha.io/x100/x100/http://farm{farm}.static.flickr.com/
{server}/{id}_{secret}_b.jpg

By using x100/x100, we can automatically resize the image to the full screen size of
whatever device we run it on.

Next, we set up our dockedItems component with a Back button, so we can return
to the list of photos. This button uses Ext.Dispatch to call the showResults function
we added previously for the controller (the one that sets our card layout back to the
list view).

Finally, we initialize our component and register our new xtype attribute, the same
way we did with the SearchPhotos view.

The Flickr Finder Application

[246]

Once we have the code for our view in place, we should be able to see our details by
clicking on a file in the list.

Now that we can view our photos at full size, let's set up a savedphoto component
that will allow us to save a link to any photos we like.

The savedphoto component
Our savedphoto component will need to store the information for a single photo
from our search results. We will also need a list view for our saved photos and a
details view, just like our previous SearchPhotos and PhotoDetails models.

Since our savedphoto model is simply displaying a subset of all of our photos, we
can reuse a considerable amount of our code for this part of the application.

The SavedPhoto model
Since our SavedPhotos and our SearchPhotos models are storing the exact same
type of data, we don't need to create a new model. However, we do need a separate
data store, one that will store our SavedPhotos model locally.

Chapter 8

[247]

Let's add a SavedPhotos.js file to our models folder:

Ext.regStore('FlickrFindr.store.SavedPhotos', {
model: 'FlickrFindr.model.SearchPhoto',
autoLoad: true,
proxy: {
type: 'localstorage',
id: 'flickr-bookmarks'
 }
});

Here, we just register our FlickrFindr.store.SavedPhotos class and reuse our
model from FlickrFindr.model.SearchPhoto. We also want this store to load up
when the application launches. Since it is grabbing local data, this should not present
a huge load for the application.

We set our proxy to store the data locally and assign the store an id component,
flickr-bookmarks, so we can grab it later.

Once you are finished with the models/SavedPhotos.js file, make sure to link to it
in the index file.

The SavedPhoto views
For the SavedPhoto views, we need a list and a detail view. These views will be very
close to what we already have for our SearchPhotos and PhotoDetails models. In
fact, we can start by making copies of those two files and tweaking our layouts a bit.

In the views folder, make a copy of SearchPhotos.js and rename it to
SavedPhotos.js. You will also need to replace all the occurrences of SearchPhotos
and searchphotos, with SavedPhotos and savedphotos, respectively (remember
that JavaScript is case-sensitive). Your code should look as follows:

FlickrFindr.view.SavedPhotos = Ext.extend(Ext.Panel, {
id: 'savedphotos',
layout: 'card',
fullscreen: true,

initComponent: function() {
Ext.apply(this, {
dockedItems: [{
xtype: 'toolbar',
dock: 'top',
title: 'Saved Photos',
items: []

The Flickr Finder Application

[248]

 }],
items: [
 {
xtype: 'list',
store: 'FlickrFindr.store.SavedPhotos',
itemTpl: FlickrFindr.view.SearchPhotoTpl,
listeners: {
itemtap: function(list, item) {

var photo = list.getStore().getAt(item);

Ext.dispatch({
controller: 'savedphotos',
action: 'showDetails',
args: [photo]
 });
 }
 }
 },
 {
xtype: 'savedphotodetails'
 }
]
 });

FlickrFindr.view.SavedPhotos.superclass.initComponent.apply(this,
arguments);
 }
});

Ext.reg('savedphotos', FlickrFindr.view.SavedPhotos);

You will notice that we did not include a template in this file; we are just reusing
our FlickrFindr.view.SearchPhotoTpl class from the SearchPhotos.js file. It
is perfectly fine to create a separate template, but reusing saves us a bit of memory
and time.

Other than that, the file is largely the same as our SearchPhotos.js file: We create
a panel with a card layout and add a toolbar. We have two items in the card layout:
a list and a details panel (which we will create next). We set up our itemTap event
to contact the controller and fire the showDetails function. Finally, we initialize the
component and register an xtype attribute of savedphotos, for the component.

Chapter 8

[249]

While it might seem a bit redundant to have two files
that are so similar, it should be noted that they both read
from different data stores, and they need to be addressed
differently by the controllers. We are also going to make
a few tweaks to the look of our different views, before it's
all over.

For our SavedPhotoDetails model, we will take a similar approach. Copy the
PhotoDetails.js file to your views folder and rename it to SavedPhotoDetails.
js. This file will display a single saved photo. However, unlike the details for our
search photos, this saved photo details panel does not need a Save button.

You will need to modify the file to remove the Save button:

FlickrFindr.view.SavedPhotoDetails = Ext.extend(Ext.Panel, {
id: 'savedphotodetails',
fullscreen: true,
tpl: '<h1>{title}</h1><img src="http://src.sencha.io/x100/http://
farm{farm}.static.flickr.com/{server}/{id}_{secret}_b.jpg">',
dockedItems: [
 {
xtype: 'toolbar',
items: [
 {
text: 'Back',
ui: 'back',
handler: function() {
Ext.dispatch({
controller: 'savedphotos',
action: 'showSavedPhotos'
 });
 }
 }
]
 }
],
initComponent: function() {
FlickrFindr.view.SavedPhotoDetails.superclass.initComponent.
apply(this, arguments);
 }
});

Ext.reg('savedphotodetails', FlickrFindr.view.SavedPhotoDetails);

The Flickr Finder Application

[250]

As before, this is much the same as the PhotoDetails file we created earlier; we
have switched the names and changed our Back button to show our SavedPhotos
list instead of the main photos list.

When you are finished with the two views, add them into the sencha-views class
of our index.html, thus:

<div id="sencha-views">
<script type="text/javascript" src="app/views/Viewport.js"></script>
<script type="text/javascript" src="app/views/SearchPhotos.js"></
script>
<script type="text/javascript" src="app/views/PhotoDetails.js"></
script>
<script type="text/javascript" src="app/views/SavedPhotos.js"></
script>
<script type="text/javascript" src="app/views/SavedPhotoDetails.js"></
script>
</div>

Now, we can move on to the controller for our savedphotos component.

The SavedPhotos controller
Create a new file called SavedPhotos.js in our controller folder. This file will
have a structure similar to that of our other controller file; first we register the
controller, and then we add functions:

Ext.regController('savedphotos', {

showDetails: function(interaction) {
var photo = interaction.args[0];
var savedPhotos = Ext.getCmp('savedPhotos');
savedphotos.down('savedphotodetails').update(photo.data);
savedphotos.setActiveItem(1, 'slide');
 },
showSavedPhotos: function() {
var savedPhotos = Ext.getCmp('savedPhotos');
savedPhotos.setActiveItem(0, {
type: 'slide',
direction: 'right'
 });
 }

});

Chapter 8

[251]

The first function, showDetails, is passed an array, called interaction, from our
tap event (even though the user only taps one item, it is still passed as part of an
array). We then grab our savedphotodetails component, by using the down method
to search by id, and update the content area, using the data from the photo. Finally,
we set the active item to 1, which is our savedphotodetails component, and
animate the change using the slide animation.

If you remember, our showSavedPhotos function is tied to the Back button on our
savedphotodetails component. This function selects the card layout for our main
savedphotos panel (using Ext.getCmp('savedphotos')) and sets the active item
back to 0, returning it to the savedphotos list.

Now, we need to add one more function to our controller. This one will allow us to
pop up an alert when the user saves a photo and will ask them to name the photo.
Since we only need a single text field, we probably don't need to create a separate
form view; we can just use the Ext.Msg component.

Above the showDetails function, we need to add the following code:

addSavedPhoto: function() {
var panel = Ext.getCmp('photodetails');

Ext.Msg.prompt('Save Photo', 'Please enter a description:',
function(btn, value) {
if (btn == 'ok') {
var savedPhotoStore = Ext.StoreMgr.get('FlickrFindr.store.
SavedPhotos');

var savedPhoto = Ext.ModelMgr.create(panel.data, 'FlickrFindr.model.
SearchPhoto');
savedPhoto.set('title', value);
savedPhotoStore.loadRecords([savedphoto], true);
savedPhotoStore.sync();

var tabPanel = Ext.getCmp('viewport');
tabPanel.setActiveItem(1); //switch to the savedphoto view.
 }
 }, this, true, //multiline
panel.data.title, // value
 {
focus: true,
autocorrect: true,
maxlength: 255
 });
}

The Flickr Finder Application

[252]

Our addSavedPhoto function first grabs the current photo details panel. This gives
us access to all of the data currently stored in the panel.

Then the function shows off some of the power of the simple Ext.Msg component.
Let's list out what we have here, before moving in for a closer look. First, by
declaring Ext.Msg.prompt, we tell the message box that we are prompting the user
to give us some information in a text field. Then, the Ext.Msg component sets
the following:

•	 A title for the pop up
•	 The text for the pop up
•	 The function that received the button that got pressed, and the value of our

text field
•	 A scope for the function (this)
•	 The value true (right after scope is set to this), which makes the text field

capable of multiple lines
•	 A value to set as the default for our text field
•	 focus, autocorrect, and maxlength, which are three of the configuration

options for the prompt configuration

The title and text are pretty straightforward, but let's take a closer look at the
function. The function is called when the user clicks any of the buttons on the
message dialog. The function is passed the name of the button that was pressed,
and in the case of a prompt, the value of the text field.

To process this information and get it into our data store, we first grab the store using:

var savedPhotoStore = Ext.StoreMgr.get('FlickrFindr.store.
SavedPhotos');

Next, we create a new savedphoto component (FlickrFindr.model.SearchPhoto),
using the model manager, and fill the data in with our current panel data (this is our
current photo data). We also set the title to match the value the user entered into the
message field:

var savedPhoto = Ext.ModelMgr.create(panel.data, 'FlickrFindr.model.
SearchPhoto');
savedphoto.set('title', value);

Once this is complete, we load the new savedphoto component in and sync the store
to save our data:

savedPhotoStore.loadRecords([savedphoto], true);
savedPhotoStore.sync();

Chapter 8

[253]

Once we are finished, we grab our main viewport and switch back to our
savedphotos list:

var tabPanel = Ext.getCmp('viewport');
tabPanel.setActiveItem(1);

The rest of our Ext.Msg.prompt code sets the configuration options for the message
box, providing the function scope, setting our text field to be multiline, giving a
default value for our text area, and adding some additional configuration options.

This last group of values is called promptConfig and it's an optional set of
configurations for the text area of the message box. Ours sets the focus on the text
area (when the box appears), turns on auto-correct, and sets a maximum text length
of 255 characters.

Multiline bug
There is currently a bug in Sencha Touch 1.1 if multiline is set
to true. The bug causes the maximum length of the field to
default to 0, if you are using the Safari or Chrome browsers. The
workaround is to set the maxlength to an actual number in the
prompt configuration.

When you are finished with the controller code, remember to link to it in the
index.html file:

<div id="sencha-controllers">
<script type="text/javascript" src="app/controllers/SearchPhotos.
js"></script>
<script type="text/javascript" src="app/controllers/SavedPhotos.js"></
script>
</div>

Now that we are done with the savedphotos controller, we can add the savedphotos
component into our viewport.

Adding SavedPhotos to the viewport
When our viewport started out, we only had one item, the SearchPhotos
component. Now that we have two separate lists, a tab panel would make more
sense. Let's change the viewport.js code to look like this:

FlickrFindr.Viewport = Ext.extend(Ext.TabPanel, {
id: 'viewport',
fullscreen: true,
cardSwitchAnimation: 'slide',

The Flickr Finder Application

[254]

tabBar: {
dock: 'bottom',
layout: {
pack: 'center'
 }
 },
initComponent: function() {
Ext.apply(this, {
items: [{
xtype: 'searchphotos',
title: 'Search',
iconCls: 'search'
 },
 {
xtype: 'savedPhotos',
title: 'Saved Photos',
iconCls: 'favorites'
 }]
 });

FlickrFindr.Viewport.superclass.initComponent.apply(this, arguments);
 }
});

The first change we made was to swap out Ext.Panel for Ext.TabPanel, in our
extend function.

Since the TabPanel needs a cardSwitchAnimation component for switching the
tabs, and a tabBar component for showing the tabs, we added those as well.

Next, we added our panels for searchphotos and savedphotos, along with titles
and an iconCls attribute for each. This will show up as part of our tabs at the
bottom of the application.

The last thing we need to do is add our Save button, so that the user can save a
specific photo.

Adding the Save button
The Save button needs to appear when the user is looking at a specific photo. This
means we need to add it to our PhotoDetails.js view.

Chapter 8

[255]

In the views folder, open the PhotoDetails.js file. Currently, our dockedItems
component only has a Back button. We want to add a Save button on the right-hand
side of the toolbar:

dockedItems: [
 {
xtype: 'toolbar',
items: [
 {
text: 'Back',
ui: 'back',
handler: function() {
Ext.dispatch({
controller: 'searchphotos',
action: 'showResults'
 });
 }
 }, {
xtype: 'spacer'
 },
 {
text: 'Save',
ui: 'action',
handler: function() {
Ext.dispatch({
controller: 'savedPhotos',
action: 'addSavedPhoto'
 });
 }
 }
]
}
]

We have actually added two items to our toolbar; the first one is a spacer
component. The spacer component is a specialty toolbar component that shifts
every item after the spacer over to the right side of the toolbar.

The second item is our Save button. This button's handler uses the dispatch
function to tell our controller to run the addSavedPhoto function.

The Flickr Finder Application

[256]

Once this code is added and saved, our application should be ready to use.

Polishing your application
Now that we've finished our application, we will want to add some finishing
touches to really make our application shine and add a level of professionalism
to the completed product. The good news is that all of these are easily and
quickly implemented.

Animated transitions
One thing you'll notice is that, when we go from our SearchPhotos list view to the
PhotoDetails view, we just jump from one to another via setActiveItem(). It can
be a little jarring. In our SavedPhotos views, however, we snuck in some animations
as the second argument to the setActiveItem() call. Going back and adding those
same animations to our SearchPhotos controller will not only make the behavior
more consistent, but it'll also make for a cleaner-feeling interface.

Chapter 8

[257]

In the controllers/SearchPhotos.js file, find the showDetails function and
change the following line:

results.setActiveItem(1);

Change it to:

results.setActiveItem(1, 'slide');

The 'slide' animation will slide the PhotoDetails card in from the right, while
sliding the SearchPhotos list out to the left. When we go back to the SearchPhotos
list from the PhotoDetails view, we want to slide in the other direction. That takes a
bit more configuration. Find the showResults function in the same controller file and
change the following line:

results.setActiveItem(0);

Change it to:

results.setActiveItem(0, {
type: 'slide',
direction: 'right'
});

This will slide everything out to the right and in from the left, reversing the direction
when we first went to our PhotoDetails view. There are more settings and
animation types listed in the documentation, under Ext.Anim.

When you go from one web page to another, the new page simply replaces the old.
But, in most mobile applications, moving from one view to another involves an
animation. These sorts of animated transitions are easy to add and are important,
because they help distinguish your application and make it feel more organic than
a run-of-the-mill web page.

The Flickr Finder Application

[258]

Application icons
As mentioned back in Chapter 1, Let's Begin with Sencha Touch!, users can navigate to
your web application and then choose to save it to the desktop of their mobile device.
When someone installs your application in this fashion, you can specify which icon is
displayed on his or her home screen.

We've already got the code for this in our index.html file:

<link rel="apple-touch-icon" href="apple-touch-icon.png" />

Even though this says "apple-touch-icon", most mobile devices, including
Android devices, recognize the tag. Apple recommends that your application icon
be 57 x 57 px, for some devices, and 114 x 114 px, for newer devices. It's safest to
create your icon at a larger size, as it will be automatically scaled down, if necessary.
Additionally, on Apple iOS devices, the corners will be automatically rounded and a
glossy effect will be added.

If you want your icon left as it is, you can use the following tag:

<link rel="apple-touch-icon-precomposed" href="apple-touch-icon.png"
/>

Chapter 8

[259]

The corners will still be automatically rounded, but the gloss effect will not be
applied. Also, note that older Android versions (1.5 and 1.6) will only recognize
the –precomposed tag.

The text that's displayed on mobile devices' home screens, under
your icon, will be whatever was placed in the <title></title>
tags in your index.html file.

You can also specify different sizes of application icons for different device types:

<link rel="apple-touch-icon" href="apple-touch-icon.png" />

<link rel="apple-touch-icon" sizes="72x72" href="ipad-apple-touch-
icon.png" />

<link rel="apple-touch-icon" sizes="114x114" href="iphone4-apple-
touch-icon.png" />

This will allow you to customize the detail in the icon for different devices.

Apple iOS devices also allow you to specify a splash screen image that is displayed
while your application is loading:

<link rel="apple-touch-startup-image" href="startup-image.png">

This image should be 320 x 460 px and in portrait orientation for iPhones. However,
iPads can have different sized startup images, depending on whether they're in
landscape or portrait orientation—748 x 1024 px for portrait and 1004 x 768 kpx
for landscape.

You can specify different startup image sizes using media queries:

<link rel="apple-touch-startup-image" href="ipad-landscape-startup-
image.png" media="screen and (min-device-width: 481px) and (max-
device-width: 1024px) and (orientation:landscape)" />

<link rel="apple-touch-startup-image" href="ipad-portrait-startup-
image.png" media="screen and (min-device-width: 481px) and (max-
device-width: 1024px) and (orientation:portrait)" />

<link rel="apple-touch-startup-image" href="iphone-startup-image.png"
media="screen and (max-device-width: 320px)" />

The Flickr Finder Application

[260]

Media queries are a powerful tool for specifying configurations based not on the
actual device but on its physical characteristics, such as screen size or pixel depth.

If you'd like to learn more about media queries, a good place to
start is this article: http://thinkvitamin.com/design/
getting-started-and-gotchas-of-css-media-queries/.

Try it yourself
There's still plenty of room for improvement in our application, but we will leave
this as extra credit for the reader. Some things you might want to try:

•	 Adding paging, so that you can load more than the first page of 25 photos
•	 Adding an expert search, where you can set your location manually or widen

the search radius
•	 Changing the theme and making the templates more appealing
•	 Adding the ability to save locations as well as photos

Try using the MVC organization techniques we have covered in this chapter, to
expand the application and sharpen your skills.

Summary
In this chapter, we gave you an introduction to the Model View Controller (MVC)
design pattern. We talked about setting up a more robust folder structure and
created your main application files. We started our application with an overview of
the Flickr API and explored how to register our various model, view, and controller
components. We then set up our components for the SearchPhotos and the
SavedPhotos models. We wrapped up the chapter with some hints for putting the
finishing touches on your application and talked about a few extra pieces you might
want to add to the application.

In the next chapter, we will cover a few advanced topics like building your
own API's, creating offline applications using a manifest system, and compiling
applications with a program such as PhoneGap.

http://thinkvitamin.com/design/getting-started-and-gotchas-of-css-media-queries/
http://thinkvitamin.com/design/getting-started-and-gotchas-of-css-media-queries/

Advanced Topics
In this chapter, we will explore a few high-level topics designed to point you in the
right direction when building Sencha Touch applications, such as:

•	 Talking to your own server
•	 Going offline
•	 Compiling your application
•	 Getting into the marketplace

Talking to your own server
Up to this point, we have used local storage as a way to create a database directly
on the device that is running our program. While this is very useful, it can also be
limiting in a few ways:

•	 If any data is tied to the device, you cannot view the data from two
different devices

•	 If the device is stolen/broken/lost or is otherwise unavailable, you also
lose data

•	 Options for sharing are limited to transferring copies of the data
•	 Collaborative editing of the data is not possible

Each of these concerns can be addressed by storing the data in an external database,
such as MySQL, PostgreSQL, or Oracle. These databases can run on the same server
as our application, and they can handle multiple connections from different devices.
Since all of the devices contact a single central database, sharing data across devices
becomes much easier to accomplish.

Advanced Topics

[262]

Unfortunately, the Sencha Touch framework doesn't communicate directly with
these types of external databases. In order to use a Sencha Touch application with
an external database, we need to use a third party API, or create our own.

Using your own API
In the previous chapters, we have learned about using external APIs to work with
data from services such as Flickr and Google. These APIs make it possible to grab
data stored in the databases for these various services, but what about when you
need to get data in and out of your own database server?

As it turns out, the best way to do this with Sencha Touch is to create your very own
API. In order to do this, we need to step back and talk a little bit more about what an
API is and what it does.

At its most basic, an API serves as a translator between the storage part of the
application and the interface part of the application. The frontend makes a request
to the API for data (say, a list of contacts), and the API pulls information from the
database. The API then translates that data into JSON or XML and sends it back to
the frontend for display.

While this might seem an unnecessary separation for an application, it actually has
a number of benefits.

First, it allows the backend and the frontend to be written in different programming
languages. This is important to us, because JavaScript, while it is a wonderful
language for creating interfaces, is not a great way to talk with more robust database
systems, such as MySQL, PostgreSQL, Microsoft SQL Server, or Oracle. The code for
an API can be created in a database-friendly language, such as PHP, RUBY, or PERL.

We will be using PHP for our examples, but the choice of API
language is entirely up to you. We are also going to be very general
when covering the PHP side of things. Our goal is to communicate
the concept rather than providing specific PHP code.

The second benefit is that multiple applications can use the API to access the data.
This makes it much easier to share data between users and also makes it possible to
provide completely different applications with the same data set (as the Flickr API
does). We don't even have to care what programming language is used to build the
frontend, as the API handles the translation.

Chapter 9

[263]

Let's reexamine our FlickrFindr store to explore how this works:

Ext.regStore('FlickrFindr.store.SearchResults', {
 model: 'FlickrFindr.model.SearchResult',
 autoLoad: false,
 proxy: {
 type: 'scripttag',
 callbackParam: 'jsoncallback',
 url: 'http://api.flickr.com/services/rest/',
 extraParams: {
 'method': 'flickr.photos.search',
 'api_key': '783f66a1146d0be1ee5975785e6eb7a7',
 'format': 'json',
 'per_page': 25
 },
 reader: {
 type: 'json',
 root: 'photos.photo'
 }
 }
});

We pointed this store to a particular URL (http://api.flickr.com/services/
rest/) and passed along a set of parameters as extraParams. We also passed along
our location, radius, and accuracy settings, in the listener portion of our controller:

listeners: {
 render: function() {
 var dt = new Date().add(Date.YEAR, -1);
 var geo = new Ext.util.GeoLocation({
 autoUpdate: false
 });
 geo.updateLocation(function(geo) {
 var easyparams = {
 "min_upload_date": dt.format("Y-m-d H:i:s"),
 "lat": geo.latitude,
 "lon": geo.longitude,
 "accuracy": 16,
 "radius": 10,
 "radius_units": "km"
 };
 this.getStore().load({
 params: easyparams
 });
 }, this);
 }
}

http://api.flickr.com/services/rest/

Advanced Topics

[264]

Each of these parameters is sent along as a set of post variables to the Flickr API
URL. Flickr then performs the function flickr.photos.search, using the variables
we supplied. The API then assembles the results into JSON format and passes them
back to us.

This is what is referred to as a REST request.

REST
REST stands for Representational State Transfer, which is an overly complicated
way to say that we want to use the standard methods already built into HTTP in
order to communicate. These methods allow HTTP to send data via POST, PUT,
DELETE, and GET.

Sencha Touch version 1.1 is a strict REST implementation that uses these four
separate methods to handle CRUD functions: POST handles the creating of new
records, GET handles the reading of records, PUT handles the updating of existing
records, and DELETE handles the deleting of records. (This will likely change with
the next version, but for now, this is the way it works.)

If you have worked with forms on the web, you will likely be familiar with GET and
POST. Both are used as a way to pass extra variables to a web page for processing.
For example, GET uses a URL to pass its variables, such as the following:

http://www.my-application.com/users.php?userID=5&access=admin

This sends userID=5 and access=admin to the web page for processing.

POST, PUT, and DELETE variables are sent as part of the HTTP request and do not
appear in the URL. However, they transmit the same kind of data as key-value pairs.

Designing your API
It's a good idea, before you start coding, to think about how you would like your API
to work. APIs can get complex rather quickly, and spending some time figuring out
what it will and won't do can help you greatly as you build your application.

Different programmers have different philosophies on how to build APIs, so what
we present here is just one possible approach.

Sencha Touch's models and proxies come with several methods, specifically the
CRUD functions (Create, Read, Update, and Delete), which map quite well to API
calls. This makes them a good place to start. First, make a list of what models you
think you will need. For each model, you will need Create, Read, Update, and Delete.

Chapter 9

[265]

Then, you should take a careful look at the models to see which may need additional
API methods. A good example is a user model. You will definitely need the basic
CRUD methods, but you will probably also need an authentication method to log
the user in, and perhaps an additional method for checking permissions.

You may find, as you go, that you need to add additional API methods to specific
models, but the standard CRUD functions should give you a good start at designing
your API.

Creating the model and store
For this example, we will use a variation of the Bookmarks model and store from our
FlickrFindr application, in the last chapter.

Since our Bookmarks component would now be pulled from a database, we need
some extra options on the model. Instead of using the SearchResults model, as
we did before, we will use a new model such as the following:

Ext.regModel('FlickrFindr.model.Bookmark', {
 fields: [
 {
 name: 'id',
 type: 'int'
 },
 {
 name: 'owner',
 type: 'string'
 },
 {
 name: 'secret',
 type: 'string'
 },
 {
 name: 'server',
 type: 'int'
 },
 {
 name: 'farm',
 type: 'int'
 },
 {
 name: 'title',
 type: 'string'
 }

Advanced Topics

[266]

],
 proxy: {
 type: 'rest',
 url : '/api/bookmarks.php'
 }
});

Here, we have added a rest proxy and url values to our model. This will allow us
to save, edit, and delete, directly from the model.

For example, to save a new bookmark, we can call the following code in
Sencha Touch:

var bookmark = Ext.ModelMgr.create({id: 6162315674, owner: 15638,
secret:'d94d1629f4', server:6161, farm:7, title:'Night Sky'},
'FlickrFindr.model.Bookmark');

bookmark.save();

This code will do a POST to /api/bookmarks.php, with all of our bookmark variables
as key-value pairs.

Similarly, we can take an existing bookmark, change some of the information, and
then call bookmark.save(). If we do this on an existing bookmark, the model will
send the variables as part of a PUT request to /api/bookmarks.php.

As you might expect, calling user.destroy() will send our variables to /api/
bookmarks.php, as part of a DELETE request.

We also have to modify our Bookmarks store in a similar fashion:

Ext.regStore('FlickrFindr.store.Bookmarks', {
 model: 'FlickrFindr.model.Bookmark',
 storeID: 'BookmarkStore',
 emptyText: 'No Bookmarks To List',
 autoload: true,
 proxy: {
 type: 'rest',
 url: '/api/bookmarks.php',
 reader: {
 type: 'json',
 root: 'children'
 }
 }
});

Chapter 9

[267]

As before, the big difference with this store is the proxy configuration. We are using
the same /api/bookmarks.php file to process our requests. In this case, the store will
use the GET request method, when contacting the /api/bookmarks.php file.

Our reader has a root property of children. This means that the data coming back
should look something like the following:

{
"total": 2,
 "children":[
 {
 "id":"6162315674",
 "owner":"Noel",
 "secret":"d94d1629f4",
 "server":"6161",
 "farm":7,
 "title":"Night Sky"
 },
 {
 "id":"6162337597",
 "owner":"Noel",
 "secret":"f496834m347",
 "server":"6161",
 "farm":7,
 "title":"Ring of Fire"
 }
]
}

Our store will begin looking for records inside the children array, and it will use the
default variable of total to get the total number of records.

Making a request
Once our model and store understand how to make these requests, our PHP-
based API file has to decide what to do with them. This means we have to set our
bookmarks.php file to process the requests. At a very high level, this means doing
something such as the following:

<?PHP
$action = $_SERVER['REQUEST_METHOD'];

if($action == 'GET') {
 // read - return a list of bookmarks as JSON
} else if($action == 'POST') {

Advanced Topics

[268]

 // add a new user
} else if($action == 'PUT') {
 // save the edit of an existing user
} else if($action == 'DELETE') {
 // delete an existing user
}
?>

The <?PHP and ?> tags simply denote the beginning and end of PHP code.

The $action = $_SERVER['REQUEST_METHOD']; line grabs the request method, and
then we make our code decisions (add, edit, read, or delete), based on that result.

We don't want to get too far into code-specific examples,
as these will vary greatly, depending on the language and
database you want to use for your API. You will need to
consult a guide for your specific API programming language, to
learn how to interact appropriately with your chosen database.

One thing to note when performing add, edit, and delete functions is that the data
that comes to your functions will arrive as an array of records such as this:

{"records":[{"id":6162315674,"owner":"46992422@N08","secret":"d94d1629
f4","server":6161,"farm":7,"title":"foo"}]}

This means that, for any add, edit, and delete options, you will need to loop
through the values for each record and make your database changes for each
one. While you could conceivably access the record directly with something like
records[0].id, looping through the values allows you to take advantage of the data
store's ability to sync multiple changes at once.

When your API sends back the results of the operation, Sencha Touch expects you
to return the full record (or records) that were sent to the API in the first place. For
example, if you create a new record, the API should, after a successful save, return
that record as part of the results. If you modify several records and save them, the
API should return all the modified records if they saved correctly. The reason for this
is that it's possible that your API will make additional changes to the records that
should be reflected in your JavaScript code. Returning the full records ensures that
your JavaScript application stays up-to-date with any changes made by your API.

Chapter 9

[269]

For example, we can add a number of bookmarks to the store instead of creating
them directly through the model, as we did previously. When we call the sync()
function on the store, it will send the data to our API as an array of bookmarks:

{"records":[{"id":6162315674
 "owner":"46992422@N08",
 "secret":"d94d1629f4",
 "server":6161,
 "farm":7,
 "title":"foo"},
 {"id":"6162337597",
 "owner":"Noel",
 "secret":"f496834m347",
 "server":"6161",
 "farm":7,
 "title":"Ring of Fire"}]}

This way, if we allow for looping in our API, we don't have to worry if the request
came from the model or the store. From a receiving standpoint, the API only has to
worry if the request is POST (add), PUT (edit), GET (read), or DELETE (delete).

However, there are also times where we need to communicate directly with the API
and perhaps get back a more complete response. This is where an AJAX request can
come in handy.

AJAX requests in an API
When working with an external database, there are often times when we need
to make data changes outside of a specific model. We might also need to receive
responses that are more complex than those available to the data store in the current
version of Sencha Touch. In these cases, we can use an AJAX request object to send
data directly to our backend for processing.

For example:

Ext.Ajax.request({
 url: '/api/bookmarks.php',
 method: 'GET',
 params: {
 id: '6162337597'
 },
 success: function(result, request) {
 var json = Ext.decode(result.responseText);
console.log(json.bookmark);
 },

Advanced Topics

[270]

failure: function(response, opts) {
 console.log('server-side failure with status code ' +
response.status);
 }
});

This code makes a direct GET request to /api/bookmarks.php and passes an id of
6162337597, as part of the request. The API can then use this information to grab a
specific bookmark and return it to the AJAX request as JSON.

Success or failure is indicated by returning an appropriate HTTP status code. If
you're returning a successful message, simply outputting JSON will return an
acceptable status code. To indicate failure, you would return an error code in the
400 or 500 range. In PHP, that may look as follows:

<?PHP
header("Status: 400 Bad Request – Invalid Username");
?>

You'll need to look up how to send HTTP response headers in the documentation for
your preferred API programming language.

For a list of HTTP status codes, visit http://restpatterns.org/
HTTP_Status_Codes.

Going offline
Inevitably, people using your application will find themselves without Internet
access. With traditional web applications, this typically means that the application
was inaccessible and unusable. But with some careful planning, you can make your
mobile application available offline.

Syncing local and remote data
The first thing to think about is your data: what data will your users need even if
they are offline? Let's use a simple address book example. You would probably have
a model for the contacts, and a store that queried your remote address book server,
with perhaps a list view to display the contacts:

Ext.regModel('Contact', {
 fields: [
 {name: 'id', type: 'int'},
 {name: 'firstname', type: 'string'},

http://restpatterns.org/HTTP_Status_Codes

Chapter 9

[271]

 {name: 'lastname', type: 'string'},
 {name: 'email', type: 'string'}
]
});

Ext.regStore('ContactStore', {
 model: 'Contact',
 proxy: {
 type: 'scripttag',
 url: 'http://mycontactserver.com/api',
 },
 autoLoad: true
});

var ContactView = Ext.extend(Ext.List, {
 store: 'ContactStore',
 itemTpl: '{firstname} {lastname} – {email}'
});

Ext.reg('contactview', ContactView);

This is a very simple example, and we've left out creating an index.
html file or adding the list to a viewport, even though those would
both be necessary to make this application actually work.

You'll notice that our application uses a scripttag proxy, which is fine if we
only wanted to load its data from a remote server. If we want our application to
work offline, we will have to provide some local storage. Additionally, when the
user comes back online, we will want them to be able to retrieve updated contact
information from the remote server.

This means we'll need two stores, our current store, which uses a scripttag proxy,
and a new store, to keep a copy of the data in local storage for when we go offline.
The new store looks as follows:

Ext.regStore('OfflineContactStore', {
 model: 'Contact',
 proxy: {
 type: 'localstorage',
 id: 'contacts'
 },
 autoLoad: true
});

Advanced Topics

[272]

Our next task is to make sure that the offline store has the most recent data from the
online store. We do this by adding a listener to the online store's load event. Each
time the online store loads new data, we'll update the offline store. In this way, the
offline store works as a cache for the online data:

Ext.regStore('ContactStore', {
 model: 'Contact',
 proxy: {
 type: 'scripttag',
 url: 'http://mycontactserver.com/api',
 reader: {
 type: 'json'
 }
 },
 autoLoad: true,
 listeners: {
 load: function() {
 var offlineContacts = Ext.StoreMgr.get('OfflineContactStore');

 offlineContacts.each(function(record) {
 offlineContacts.remove(record);
 });
 offlineContacts.sync();

 this.each(function(record) {
 offlineContacts.add(record.data);
 });

 offlineContacts.sync();

 }
 }
});

The load event is called whenever the online store successfully loads new data. In
our handler, we first retrieve the offline store and clear it (otherwise, we would end
up duplicating our data each time we loaded the online store). Then, we use the
online store's .each() function to iterate through every record, adding that record's
data to the offline store.

Chapter 9

[273]

The .each() function
.each() is a function, provided by stores, that allows you to call
a function for each record in that store. The function takes the
individual record as a single argument. This allows you to perform
operations on all the records, one at a time, rather than querying
for them individually.

Now, every time the online store updates, the offline store updates, too. More
importantly, though, when the online store is unable to update, the offline store
will still have data in it. Since the offline store will always have data to display,
even when the online store doesn't, we should use the offline store as the store for
our list, so that we're always displaying something to our users. So, we change the
ContactView variable as follows:

var ContactView = Ext.extend(Ext.List, {
 store: 'OfflineContactStore',
 tpl: '{firstname} {lastname} – {email}'
});

Our online store will still auto load when our application starts, even though it's not
bound to our list any more, and if the user is online, all of the data in both stores will
be updated.

Of course, there are other ways you could accomplish the same goal. You could use
the Ext.List component's bindStore function to switch between the two stores,
and the online store's scripttag proxy exception event to discover when you'd
gone offline.

Or, you could look at the value of the window.navigator.onLine variable to
determine your online state and set up your stores accordingly. We'll talk about
both the scripttag proxy's exception event and the window.navigator.onLine
variable, later in this chapter.

Manifests
Now that we've ensured that our data is available offline, we need to make sure that
the rest of our application is available as well. This includes all of our JavaScript
code, HTML, styles, and images. If our user has gone offline, they won't be able to
load our application unless they've got a local copy to work from. That's where the
Application Cache comes in.

Advanced Topics

[274]

HTML5 provides a mechanism for telling a web browser what parts of your
application to store for offline use. This isn't a functionality provided by Sencha
Touch, but it is something you should be familiar with, nonetheless.

The way you specify which files to cache is via a manifest. Let's create one for our
simple address book application. Open up an empty text file and add the following:

CACHE MANIFEST
Simple Address Book v1.0

CACHE:
index.html
app/app.js
css/my-app.css
lib/resources/css/sencha-touch.css
lib/sencha-touch.js

Everything else requires us to be online.
NETWORK:
*

Then, save the file as cache.manifest. All lines starting with a hash (#) are
comments and are ignored.

The first section following the term CACHE: is a list of files that the mobile device
should save for offline use. If you have any images or other files that you use, those
should be listed here as well.

The NETWORK: section lists all of the files that should only be available online. The
asterisk (*) means everything not listed in the CACHE: section should be available
online only.

Most browsers limit offline storage to 5MB. This includes both the
files listed in your manifest as well as any data in local storage stores.
So, if you've got an exceptionally big application, you may want to be
selective about what you allow your application to do offline.

In order to let browsers know about your manifest, you have to add a reference to it
to the index.html file. However, this isn't done in the same way we link to CSS or
JavaScript files. Instead, we add an attribute to the opening html tag:

<html manifest="cache.manifest">

Chapter 9

[275]

Now, when you launch your browser, you should see our files listed in the
Application Cache, in the developer console (Click the Resource tab and then
the Application Cache):

Setting up your web server
Initially, you may find that your manifest isn't working properly. Usually, this
means that your web server isn't configured to serve manifest files in the way
mobile browsers expect.

Web servers use something known as MIME Types to tell browsers how to handle
certain files. MIME Types can get pretty complicated, but for manifests, all you
have to do is add the following MIME Type to your server. You should consult the
documentation for your web server for instructions, but we will take the Apache
web server as an example.

For Apache, you should add the following to your httpd.conf file:

AddType text/cache-manifest .manifest

Then, restart your web server, for the changes to take effect.

Advanced Topics

[276]

For IIS, you will want to use the Administration UI to add the MIME Type.

Take a look at the following links for setting up your web server:

•	 For more on setting up Apache: http://httpd.apache.
org/docs/current/mod/mod_mime.html.

•	 For more on setting up IIS: http://technet.microsoft.
com/en-us/library/cc753281(WS.10).aspx.

Updating your cached application
Once your application has been cached locally, the mobile device will no longer
query your server to download your application files. This means that when you
release updates or new versions of your application, users who've already cached
your application won't get your updates.

The only way to force users to download the new version of your code is to update
the manifest file itself. That's why we added these lines at the top:

CACHE MANIFEST
Simple Address Book v1.0

Just update the version number and save the file:

CACHE MANIFEST
Simple Address Book v1.1

This changes the manifest file, which will cause anyone with cached copies to
redownload all of the files in the CACHE: section of the manifest.

If you want to learn more about the Application Cache and manifest
files, check out the Beginner's Guide to Using the Application Cache, at
http://www.html5rocks.com/en/tutorials/appcache/
beginner/.

Interface considerations
It's also important to let your users know when they're working in offline mode.
Most devices have an online icon in a status bar, but even so, it's not always apparent
to the user when they've gone offline. This means that you may want to let them
know when you put your application in offline mode.

http://httpd.apache.org/docs/current/mod/mod_mime.html
http://httpd.apache.org/docs/current/mod/mod_mime.html
http://technet.microsoft.com/en-us/library/cc753281(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc753281(WS.10).aspx
http://www.html5rocks.com/en/tutorials/appcache/beginner/
http://www.html5rocks.com/en/tutorials/appcache/beginner/
http://www.html5rocks.com/en/tutorials/appcache/beginner/

Chapter 9

[277]

Alerting your users
In our address book example, we have an online store that updates a second offline
store. The offline store holds the data that the user sees displayed in the Ext.List
class. However, we never explicitly tell the user when they've gone offline. In our
first example, we don't even keep track of online or offline status ourselves, because
the application will work in either mode.

If we wanted to tell our users when the application has gone offline, the most reliable
method is by waiting for the online store's request to time out. In the proxy, let's add
a timeout component and a function to call when timeout occurs:

proxy: {
 type: 'scripttag',
 url: 'http://mycontactserver.com/api',

 timeout: 2000,
 listeners: {
 exception:function () {
 Ext.Msg.alert('Offline Mode', 'Network unreachable, we have
entered offline mode.');

 }
 }
}

The exception function will only be called after the timeout has elapsed. Timeouts
in Sencha Touch are listed in milliseconds, so in this case, 2000 means two seconds.
If the store doesn't get a response from the server in two seconds, the user is shown
an alert informing them that the application has gone offline.

This is a good place to add other offline logic:

•	 If you've set up polling on your store, so that it automatically refreshes every
so often, you may wish to turn it off

•	 If there are special offline UI elements, you can enable them here
•	 If you have a lot of offline logic, you will probably want to put the code in

a separate function, so that you don't have to go hunting for it in the proxy
configuration

If you are using the MVC structure discussed in the previous chapter, the controller
would be a good place for this kind of logic.

Advanced Topics

[278]

Updating your UI
Another way to visually inform your users that they are in offline mode is to change
the color or style of your application. While setting up an entirely different theme for
offline mode may be overkill, there is a handy way to specify an offline stylesheet.

Let's create a file called my-app-offline.css and save it to our css folder. In the
file, put the following:

.x-list .x-list-item {
 color: #f00;
}

This will turn the contact-list text red. Now, we need to load it when we're offline.

The Application Cache manifest file can have a section called FALLBACK:, which is
used to substitute an alternate file when a particular file is unreachable. Let's add
this to the bottom of our cache.manifest file:

FALLBACK:
css/my-app.css css/my-app-offline.css

You should also change the css/my-app.css line from the CACHE: section to
reference css/my-app-offline.css, instead:

CACHE MANIFEST
Simple Address Book v1.2

CACHE:
index.html
app/app.js
css/my-app-offline.css
lib/resources/css/sencha-touch.css
lib/sencha-touch.js

Everything else requires us to be online.
NETWORK:
*

FALLBACK:
css/my-app.css css/my-app-offline.css

Chapter 9

[279]

In the index.html file, you should leave css/my-app.css in the style tag, as that
will be the file that's loaded when we're online. When we're offline, however, the
manifest tells our mobile browser to silently use css/my-app-offline.css, instead.

Now, when your application is offline, it will automatically use my-app-offline.
css instead of my-app.css. You could also use this to provide an offline version of
images, or even of JavaScript files, if you wanted to completely segregate online and
offline functionality. It should be noted that this method doesn't work if someone is
online and then goes offline while using your application, say if they went through a
tunnel and lost signal. In that case, you would want to use the event listener method
to switch your user to offline mode.

Alternate methods of detecting offline mode
As mentioned previously, there are two alternate methods of detecting offline mode,
the navigator.onLine and online/offline browser events.

The variable navigator.onLine will be true, if the browser is online, and false if it is
not. In our previous exception function, we could add code to check it and change
our message accordingly:

exception:function () {
 if (navigator.onLine) {
 Ext.Msg.alert('Network Error', 'We have an Internet connection, but
there is a problem communicating with the server.');

Advanced Topics

[280]

 } else {
 Ext.Msg.alert('Offline Mode', 'No Internet Connection, we have
entered offline mode.');
 }
}

Alternately, we can set up listeners for the browser's online and offline events:

window.addEventListener("offline", function(e) {
alert("Application is offline.");
});
window.addEventListener("online", function(e) {
alert("Application is online.");
});

You'll notice that we did not use Sencha Touch's event management here. This is
because Sencha Touch does not provide custom events for online and offline
events, so we have to use the browser's event listener function.

Not all desktop browsers support the navigator.onLine or
online/offline events, so, if you are making your application
available to desktop users as well, you should use something like
the timeout exception and manifest cache techniques, instead.

Getting into a marketplace
Sencha Touch applications offer developers a way to reach a wide audience using
existing web technologies. Users can access an application via the web and even
save it to their devices for offline use. While this flexibility is extremely valuable, you
may also want to distribute your application through the various application stores
available for Apple and Android.

In this section, we will take a look at some of the options available and the potential
hurdles for releasing a compiled application.

Compiling your application
A compiled application is one that runs natively on the device in question. For
Apple's iOS products, this means Objective C, and for Google's Android OS, this
means Java. Both iOS and Android use their own Software Development Kits
(SDK) to create these native applications.

Chapter 9

[281]

An SDK is similar in functionality to something like Sencha Touch's framework,
but they are much more complex and tied to a specific platform (iOS or Android).
Since a native application is the only type that can be sold in the various App Stores
for Android and iOS, we need a way to translate our Sencha Touch JavaScript into
something the SDK can use.

Fortunately, Sencha Touch developers have a few options for translating their
JavaScript-based applications into either of these languages and creating compiled
applications.

The two most popular translation programs are PhoneGap and NimbleKit.

Both PhoneGap and NimbleKit use specialized templates that allow you to take
your existing code and pull it into the SDK for iOS or Android. The templates create
special folders and translation files that allow the SDK to create native applications
with your Sencha Touch code. We will look at obtaining these SDKs in the Registering
for developer accounts section.

Advanced Topics

[282]

In addition to translating your Sencha Touch application to a native application,
PhoneGap and NimbleKit also allow you to access some of the native features of the
device. These features include things such as access to the file system on the device,
access to the camera, and access to sound and vibration options on the device.

Let's take a look at these two options.

PhoneGap
PhoneGap offers a wide range of native functions through a global object called
navigator. This object allows you to make JavaScript calls by using commands
in your JavaScript, such as this:

navigator.camera.getPicture(...)
navigator.compass.getCurrentHeading(…)

The first command opens the camera on the device and lets your application take a
picture. The picture is returned as a data string to your application, where you can
manipulate it in JavaScript.

The second function returns the orientation of the device in degrees. This can be very
useful in games where the play can be driven by the tilt of the device.

PhoneGap also offers access to:

•	 Accelerometer: Gets information from the device's motion sensor
•	 Camera: Takes a photo using the device's camera
•	 Capture: Captures audio or video
•	 Compass: Obtains the direction that the device is pointing
•	 Connection: Checks the network status and gets cellular network

information
•	 Contacts: Works with the onboard contact database
•	 Device: Gathers device-specific information
•	 Events: Listens to native events on the device
•	 File: Reads and writes to the native file system
•	 Geolocation: Gathers more detailed location information
•	 Media: Plays back audio files
•	 Notification: Creates device notifications
•	 Storage: Stores data directly on the device

Chapter 9

[283]

PhoneGap also offers options for compiling your applications for the Blackberry,
WebOS, and Symbian platforms.

Take a look at the following links for more resources on PhoneGap:

•	 Download: http://phonegap.com/download/
•	 Installation: http://phonegap.com/start/
•	 Full API documentation: http://docs.phonegap.com/

en/1.2.0/index.html

•	 Step-by-step tutorial: http://www.sencha.com/learn/a-
sencha-touch-mvc-application-with-phonegap/

NimbleKit
NimbleKit works in much the same way as PhoneGap, by providing a template
add-on to the existing iOS development kit. The template allows you to move
your code into a specialized folder that the SDK can then translate into a compiled,
native application.

Advanced Topics

[284]

Like PhoneGap, NimbleKit also provides access to the native files, system, audio,
video, contacts, databases, mail, and other device features. However, NimbleKit is
specific to iOS applications and carries a price tag of $99.

Take a look at the following links for more resources on NimbleKit:

•	 Download: http://nimblekit.com/
•	 Documentation: http://nimblekit.com/

documentation.php

•	 Step-by-step tutorial: http://www.sencha.com/
learn/enhancing-ios-sencha-touch-apps-with-
nimblekit/

Other options
Recently, PhoneGap launched a cloud-based service for compiling applications,
called PhoneGap: Build (https://build.phonegap.com/). This unique service
does away with the need to download the SDKs for each platform you wish to
compile for. Files are simply uploaded to the Build service, and the system generates
the application for the platforms you specify. This service is still very early in
development but looks promising.

Additionally, Sencha Touch 2, with the ability to compile applications for both iOS
and Android built right into the framework, has been launched. More information
can be found at http://docs.sencha.com/touch/2-0/#.

As with any of these options, you will need to be a licensed developer on the
platform you want to compile for. This can be a bit of a lengthy process, so let's
take a look at what's involved.

Registering for developer accounts
In order to publish your application to the Apple Store, or to the Android
Marketplace, you are going to have to sign up for their respective developer
accounts. Both stores charge you a fee to become a developer and require quite a bit
of information about you. They require this information for several reasons. First,
they have to know who you are so that you can get paid for apps that you sell in
their stores. Second, they need to know how to contact you if there's a problem with
your application. And last, they need to be able to track you down if you try to do
something evil with your application. Not that you would, of course!

http://nimblekit.com/
http://nimblekit.com/
http://nimblekit.com/documentation.php
http://nimblekit.com/documentation.php
http://docs.sencha.com/touch/2-0/
http://docs.sencha.com/touch/2-0/

Chapter 9

[285]

In order to publish your application to either App Store, you will need to be a
registered developer for that store. You will also need to download and install the
appropriate SDK for that store, in order to be able to package up your application
appropriately.

Becoming an Apple developer
To become an Apple developer, first you must go to http://developer.apple.
com/programs/register/.

You will either need to supply your existing Apple ID or sign up for a new one,
fill out some lengthy profile information, agree to some legal documents, and
then perform an e-mail verification. From there, you will have access to the Apple
developer center. The two points of most interest to us as mobile developers are the
iOSDev Center and the iOS Provisioning Portal.

http://developer.apple.com/programs/register/

Advanced Topics

[286]

The iOSDev Center is where you can download the iOS SDK (known as Xcode) as
well as read documentation, see sample code and how-tos, and view some videos on
iOS development.

The iOS Provisioning Portal is where you add your application to the Apple Store or
publish test versions of your application.

In order to use Xcode or publish your application to the Apple
Store, you must have a computer running OSX. Windows and
Linux computers cannot run Xcode or publish to the Apple Store.

Becoming an Android Developer
Signing up for the Android Market is a very similar process. First, go to
https://market.android.com/publish/signup.

There, you will be asked to fill out more profile information and pay your developer
registration fee. You will also want to download the Android SDK at http://
developer.android.com/sdk/index.html, although unlike Apple's SDK, the
Android SDK will work on Windows, OSX, or Linux.

The Android Developer Dashboard also has links to guides, reference material, and
instructional videos.

Summary
In this chapter, we covered a few advanced topics for the aspiring Sencha Touch
developer. We first talked about creating your own API to communicate with a
database server. We covered the REST method of communication for sending and
receiving data from the server and discussed some options for building your
own API.

More resources on creating an API:

•	 How to create an API: http://www.
webresourcesdepot.com/how-to-create-an-api-
10-tutorials/

•	 Creating an API-centric web application: http://net.
tutsplus.com/tutorials/php/creating-an-api-
centric-web-application/

https://market.android.com/publish/signup
https://market.android.com/publish/signup
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://www.webresourcesdepot.com/how-to-create-an-api-10-tutorials/
http://www.webresourcesdepot.com/how-to-create-an-api-10-tutorials/
http://www.webresourcesdepot.com/how-to-create-an-api-10-tutorials/

Chapter 9

[287]

We then covered how to take your application offline using manifests and the
Application Cache. We talked about best practices for alerting the user that the
application is offline and about how you can detect the availability of an Internet
connection using Sencha Touch and the device's web browser.

More resources on how to take your application offline:

•	 Taking Sencha Touch applications offline: http://www.
sencha.com/learn/taking-sencha-touch-apps-
offline/

•	 The HTML manifest attribute: http://www.w3schools.
com/html5/att_html_manifest.asp

We closed the chapter with a look at getting into the application marketplace by
compiling your application with PhoneGap or NimbleKit. We also talked about
the process for becoming an Apple or Android developer so you can sell your
application in the marketplace.

More resources on building Sencha Touch applications:
•	 Building a Sencha Touch application with PhoneGap:

http://www.sencha.com/learn/a-sencha-touch-
mvc-application-with-phonegap/

•	 Enhancing iOS Sencha Touch applications with NimbleKit:
http://www.sencha.com/learn/enhancing-ios-
sencha-touch-apps-with-nimblekit/

http://www.sencha.com/learn/a-sencha-touch-mvc-application-with-phonegap/
http://www.sencha.com/learn/a-sencha-touch-mvc-application-with-phonegap/
http://www.sencha.com/learn/a-sencha-touch-mvc-application-with-phonegap/

Index
Symbols
.com key 18
.each() 273
</html> tag 38

A
accuracy parameter 241
ActionSheet 124-126
Add button 189
addContact function 188
addSavedPhoto function 255
AJAX 141
AJAX requests

in API 269
Android 4 Phones 17
Android Developer

becoming 286
Android Emulator

about 30
URL 30

Android SDK 286
API

about 19, 233
AJAX requests 269, 270
designing 264

Apple developer
becoming 285, 286

application
case sensitivity 55
debugging 54-56
errors, parsing 54
mising files 55
putting, into production 58-60
testing 54-56

Web Inspector console 55
application, compiling

NimbleKit 283, 284
PhoneGap 282
PhoneGap:Build 284

application folder, folder structure
icon files 35
setting up 34

application marketing
about 280
application, compiling 280-282

application offline status
cached application, updating 276
detecting, methods 279
local data, syncing 270-273
manifest 273, 274
remote data, syncing 270-273
UI, alerting 278, 279
users, alerting 277
web server, setting up 275

Application Programming Interface. See
API

Asynchronous JavaScript and XML. See
AJAX

B
bar chart 220-222
Balsamiq Mockups

URL 17
base component class

about 94, 95
Ext.getCmp() 95, 96
Ext object 95, 96

basic application 225-227
beforerequest event 141

[290]

Behavioral Driven Design (BDD) 31
buttons

styling 62-67
styling, options 65

C
callback function 117
Carousel component 109-111
Cascading Style Sheet. See CSS
chart component 218
clearFilter method 195
click event 143
comments 36
common events

activate 154
added 154
afterrender 154
beforeactivate 154
beforerender 154
common events 153
render 154

Compass
installing 77

compass compile 81
compass watch 81
component

styling 61, 62
versus element 159

component page 136
Config Options 136
configuration option 141
configuration options, on validations

exclusionMessage 169
formatMessage 169
inclusionMessage 169
lengthMessage 169
presenceMessage 169

Confirm and button 85
container object 9
create() method 184
CRUD 170
CRUD functions 264

Create 170
Destroy 170
Read 170
Update 170

CSS 37
CSS Resets 75
CSS Sprite Creator 58
custom events 146
custom theme

base color 80, 81
creating 78, 79
Mixins 81, 82
new icon masks, adding 83
UI configuration 81, 82
variables 84, 85

D
database

direct creation, limitation 261
data formats

about 172
arrays 172
JSON 174, 175
JSONP 176
XML 173, 174

data handling
about 165
formats 172
models 165

data models. See models
data stores

delete function, using 190
formats 176
using, for display 193

data stores, using for display
about 193, 194
changes, loading 199
filters, using 195, 196
paging, setting up 197, 198
panels 200-204
sorters, using 195, 196

datatypes
auto 166
boolean 166
date 166
float 166
int 166
string 166

data, XTemplate
count cycles, adding within loop 208

[291]

looping 207, 208
parent data, adding 209

date function 206
Decline buttons 85
destroy event 150
developer accounts

registering for 284, 285
developer accounts registration

Apple developer, becoming 285
development environment

Sencha Touch framework, downloading 24
setting up 22
web server, installing, on Microsoft Win-

dows 23, 24
web sharing, setting up on Mac OSX 22

Download button 24
DroidDraw

URL 17

E
element

versus component 159
ellipsis function 206
event delegation

about 157
steps 158
using, in list 157

event handling
centralizing, Ext.util.Observable.observe()

method 155
EventRecorder 28
events

about 136, 139, 140, 162
asynchronous 140, 141
common events 153
destroy 154
disable 154
enable 154
hide 154
orientationchange 154
remove 154
resize 154
show 154
synchronous 140, 141
touch-specific events 158

exception function 277

Ext.Component
configuration options 94
methods 94

Ext.Container class 41
Ext.Dispatch() method 243
Extensible Markup Language format. See

XML
Ext.get() 149
Ext.getCmp() function 95, 96, 149, 186
Ext.isEmptyfunction class 215
Ext object 95, 96
Ext.util.Observable 154
Ext.util.Observable.capture() 155-157

F
fields

mapping, to model 182, 184
file transfer 58
FileZilla 59
filterBy method 196
filter method 195
fireEvent() method 146
Flickr API 233
Flickr API explorer 243
Flickr Finder Application

about 176
animated transitions 256, 257
basic application 225
finishing touches, adding 256
foundation, building 229, 230
icons 258, 259

FlickrFindr.Viewport() method 231
FlickrFindr.view.SearchPhotoTpl class 248
fn configuration option 142
folder structure 58

application folder, setting up 34, 35
HTML application file, creating 36-38
setting up 33

FormPanel
about 111-114
DatePicker 114
field-specific options 113
sliders 115, 116
specialized text fields 113
spinners 115, 116
toggles 115, 116

[292]

forms
handlers, switching 187-189
store data, editing 186

foundation, building
controllers, placing 230
Flickr API, using 233
models, placing 230
namespace bug 231
pieces, splitting up 231
steps 229, 230
views, placing 230

framework
about 8
building, from foundation 10, 11
building, with community 12
building, with plan 11, 12
inheritance 8
objects 8

FTP (File Transfer Protocol) 59
fullscreen sets 41

G
getCount() method 197
Google Maps API documentation 128
grouped lists 130, 131

H
handlers

about 141-152
and buttons 151

hasListener() method 147
hide event 123
Hover 17
HTML application file, folder structure

creating 36-38
htmlDecode function 207
htmlEncode function 207
html sets 41

I
icon files 35
ID configuration 96
Image Spriting 76
iMockups for the iPad 17
incrementValue attribute 116

installing
Compass 77
SASS 77
Sencha Touch Charts 217

Internet Information Server (IIS) 23
iOSDev Center 285
iOS Provisioning Portal 285
iOS Simulator 28
iPad 17
iPhone 4 17
iPod Touch 3 17
iPod Touch 4 17
is function 85
isValid() method 169

J
Jasmine

about 31
URL 31

JavaScript Object Notation format. See
JSON

JSLint
about 31
URL 31

JSON 171-175
JSONP 176

K
Kitchen Sink application 20
Kitchen Sink example 162

L
launch function 39
layouts

about 9, 96
card layout 97
complexity, adding 102-107
fit layout 101, 102
hbox layout 97-99
vbox layout 99-101

Layouts and Grids 75
layouts, for container

card 42
example 42-45
fit 42

[293]

hbox 42
vbox 42

Learn section
URL 21

leftPad function 207
list component 51-53
listeners

about 141-145
adding 146
adding dynamically 146
addManagedListener 151
addung dynamically 146
custom events 146, 147
Ext.util.Observable 154
options 148
removing 150
scope 149

Listeners 9
listeners configuration 141
listeners, options

buffer 148
element 148
single 148
target 148

lists
about 128, 129
grouped lists 130, 131
nested lists 131-133

load() function 199
local proxy

LocalStorageProxy 170
MemoryProxy 170
SessionsStorageProxy 170

M
Mac OSX

web sharing, setting up 22
managed listeners

about 150
working 151

map 126-128
MessageBox

about 116, 118
callback function 117
calling 119, 120

Methods 136

Microsoft Windows
web server, installing 23, 24

MIME Types 275
Mixins 75
mobile

screen resolutions 17
mobile application frameworks

about 12
native applications 12
touch 16
web-based applications 12
web-based mobile frameworks 14, 15
web frameworks 16

models
about 52, 165
basic model 166
creating 265-267
methods 169
proxy 170
readers 170
validating 167-169

models methods 170
Model View Controller. See MVC
Move Backward function 8
Move Forward function 8
Move Left function 8
Move Right function 8
multiline bug 253
multiple devices

designing for 85-87
MVC

about 225-227
application files, organizing 227, 228
controller files 228
css folder 228
model files 228
naming conventions 232
structure 228
views folder 228

N
Namespace 40
namespace bug 231
native applications

about 12
example 13

[294]

nested lists 131-135
NimbleKit

about 283, 284
references 284

O
Object-Oriented Programming. See OOP
objects 8
Omni Graffle for the Mac 17
on method 149
OOP 8
overwrite function 216
own API

using 262, 263

P
panel

about 46-48
using 48

parent attribute 211
PhoneGap:Build 284
PhoneGap

about 14, 282
access, granting to 282
references 283

pictos-iconmaskmixin function 84
precomposed tag 259
production application

about 57
debugging code, removing 57
setting up 57, 58

Properties 136
proxy

local proxy 170
remote proxy 170

Q
Query method 9

R
Regular expressions (RegEX) 168
releaseCapture() 157
RemoteJS 28

remote proxy
AjaxProxy 170
ScriptTagProxy 170

removeAt
using 190

remove() method 190
Representational State Transfer. See REST
request

making 267-269
requestcomplete event 141
requestexception event 141
resize event 146, 152
resize listener 155
REST 264
resumeEvents() method 152
Root folder 34
Ruby

installing 76, 77
RubyGems 76

S
Safari Web Inspector 25
SASS

about 68
additional resources 85
compass 75
compass combination, themes 76
functions 70
installing 77
mixins 70, 71
nesting 71-74
Ruby, installing 76
selector inheritance 74
setting up 76
variables 69

SASS functions 70
Sassy CSS. See SCSS
saveButton method 190
savedphoto component

about 246
adding, to viewport 253, 254
Save button, adding 254-256
SavedPhoto model 246
SavedPhotos controller 250-253
SavedPhoto views 247-250

scope 149

[295]

SCSS 79, 80
SDK 280
SearchPhotos component

about 233
PhotoDetails view, adding 243-245
SearchPhotos controller 241-243
SearchPhotos model 234-236
SearchPhotos view 238-241

Sencha Animator
about 26
download link 26

Sencha API
component, finding 135

Sencha.io
about 27
download link 27

Sencha.io Src
images, creating on multiple devices 88
Image URLs 88, 89
size, specifying 89, 90

Sencha Touch
events 139
about 7
API 19
developing, additional tools used 25
examples 20
examples, Kitchen Sink application 20, 21
forums 21
Learn section 21
starting with 18
simple application, creating 33
themes 68

Sencha Touch API
xtype 44

Sencha Touch API event documentation
143

Sencha Touch applications
AJAX requests, in API 269
API, designing 264
building 261
model, creating 265-267
own API, using 262, 263
request, making 267, 268
REST 264
store, creating 265-267

Sencha Touch Charts
about 27, 216

bar chart 220-222
chart, displaying 216
graph types, displaying 216
installing 217
series configuration 219
simple pie chart 217, 218
URL 27

Sencha Touch development
additional tools, using 25-28
EventRecorder, using 28
RemoteJS, using 28
Safari Web Inspector, using 25
Sencha Animator, using 26
Sencha.io, using 27
Sencha Touch Charts, using 27
third-party developer tools 28

series configuration 219
setActiveItem() command 97
setActiveItem() method 111
setHeight() functions 152
setWidth() functions 152
Sheet

about 121-123
Ext.ComponentQuery 122

showDetails function 256, 257
showResults function 257
simple pie chart 217-219
size specifying, Sencha.io Src used

by formula 90
by percentage 90, 91
file types, changing 91, 92

Software Development Kits. See SDK
sort method 196
Specialty keyboards 182
SpriteMe 58
stop function 8
store

creating 265-267
store data

about 176
clearing 185
editing 187
editing, with forms 186
form, adding 180, 181
simple store 177-179
specialty text field 182

submit() method 113

[296]

suspendEvents() method 152
swipe event 161
sync() function 269
Syntactically Awesome Stylesheets. See

SASS

T
tab bar 68
TabPanel component 48-51, 107, 108
tap event 142, 145 140
Text Replacement 76
theme

styling 61, 62
themes, Sencha Touch 68
third-party developer tools, Sencha Touch

development
Android Emulator 30
Jasmine 31
JSLint 31
Weinre 31
Xcode 4 28
YUI test 30

this.event2Console function 161
toggle function 207
toolbar

styling 62-64
totalProperty property 174
touch

advantages 18
need for 18

touch gestures
double tap 16
pinch 16
rotate 16
spread 16
swipe tap 16
tap 16

touch-specific events
about 158
dotauble tap 159
drag 159
dragend 159
dragstart 159
pinch 159
pinchend 159
pinchstart 159

singletap 159
swipe 159
tap 159
tapcancel 159
taphold 159
touchdown 158
touchend 158
touchmove 158
touchstart 158

TouchStart.js
application error, showing 41
starting, from scratch 38-41

trim function 207
Typography 76

U
UI toolbar

dark value 65
light value 65

updateContact function 190
update method 146
update() method 96
Update method 9
up method 122
User Interface (UI) 18

V
validate method 168
values attribute 211
viewport method 200

W
web-based applications 12, 13
web-based mobile frameworks 14, 15
web hosting 58
WebKit engine 14
Weinre

about 31
URL 31

X
xampp 34
XAMPP software package 23
Xcode 286

[297]

Xcode 4
about 28
URL 29

xcount attribute 212
xindex attribute 212
XML 171
XTemplate

about 204-206
arithmetic functionality 211
conditional display 209, 210
data, looping 207
data, manipulating 206
Inline JavaScript 211, 212
member functions 212-214

member functions, isEmpty 214, 215
panel content changing, XTemplate.over-

write used 215, 216
xTemplates 52
xtypes 44

Y
YUI test

about 30
URL 30

Z
zip variable 214

Thank you for buying
Sencha Touch Mobile JavaScript Framework

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Sencha Touch Cookbook
ISBN: 978-1-84951-544-3 Paperback: 350 pages

Over 100 recipes for creating HTML5-based cross-
platform apps for touch devices

1. Set up your production environment

2. Add life to your application using animations
and media

3. Make your application available offline.

4. Engage users by responding to the events

PhoneGap Beginner's Guide
ISBN: 978-1-84951-536-8 Paperback: 328 pages

Build cross-platform mobile applications with the
PhoneGap open source development framework

1. Learn how to use the PhoneGap mobile
application framework

2. Develop cross-platform code for iOS, Android,
BlackBerry, and more

3. Write robust and extensible JavaScript code

4. Master new HTML5 and CSS3 APIs

5. Full of practical tutorials to get you writing
code right away

Please check www.PacktPub.com for information on our titles

jQuery 1.4 Reference Guide
ISBN: 978-1-84951-004-2 Paperback: 336 pages

A comprehensive exploration of the popular
JavaScript library

1. Quickly look up features of the jQuery library

2. Step through each function, method, and
selector expression in the jQuery library with
an easy-to-follow approach

3. Understand the anatomy of a jQuery script

4. Write your own plug-ins using jQuery's
powerful plug-in architecture

Appcelerator Titanium
Smartphone App Development
Cookbook
ISBN: 978-1-84951-396-8 Paperback: 308 pages

Over 80 recipes for creating native mobile
applications specifically for iPhone and Android
smartphones - no objective-C or Java required

1. Leverage your JavaScript skills to write mobile
applications using Titanium Studio tools with
the native advantage!

2. Extend the Titanium platform with your own
native modules

3. A practical guide for packaging and submitting
your apps to both the iTunes store and Android
Marketplace

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Let’s Begin with Sencha Touch!
	Frameworks
	Building from a foundation
	Building with a plan
	Building with a community

	Mobile application framework
	Native application versus web application
	Web-based mobile frameworks
	Web frameworks and touch

	Designing applications for mobile and touch
	Why touch?

	Getting started with Sencha Touch
	The API
	Examples
	The Kitchen Sink application

	Learn
	Forums

	Setting up your development environment
	Set up web sharing on Mac OSX
	Install a web server on Microsoft Windows
	Download and install the Sencha Touch framework

	Additional tools for developing with Sencha Touch
	Safari Web Inspector
	Other Sencha products
	Sencha Animator
	Sencha.io
	Sencha Touch Charts
	RemoteJS and EventRecorder

	Third-party developer tools
	Xcode 4
	Android Emulator
	YUI test
	Jasmine
	JSLint
	Weinre

	Summary

	Chapter 2: Creating a Simple Application
	Setting up your folder structure
	Setting up your application folder
	Creating the HTML application file

	Starting from scratch with TouchStart.js
	Controlling the container with layout
	The panel
	The TabPanel component
	The list component
	Testing and debugging the application
	Parse errors
	Case sensitivity
	Missing files
	Web Inspector console

	Updating the application for production
	Point to production library files
	Remove debugging code
	Going that extra mile

	Putting the application into production
	Summary

	Chapter 3: Styling the User Interface
	Styling components versus themes
	UI styling for toolbars and buttons
	Styling buttons
	The tab bar

	Sencha Touch themes
	An introduction to SASS and Compass
	Variables in SASS
	Mixins in SASS
	Nesting in SASS
	Selector inheritance in SASS
	Compass
	SASS + Compass = themes

	Setting up SASS and Compass
	Installing Ruby
	Installing SASS and Compass

	Creating a custom theme
	Base color
	Mixins and the UI configuration
	Adding new icon masks
	Variables
	More SASS resources

	Designing for multiple devices
	Images on multiple devices with
Sencha.io Src
	Specifying sizes with Sencha.io Src
	Sizing by formula
	Sizing by percentage
	Changing file types

	Summary

	Chapter 4: Components and Configurations
	The base component class
	The Ext object and Ext.getCmp()

	Layouts revisited
	The card layout
	The hbox layout
	The vbox layout
	The fit layout
	Adding complexity

	The TabPanel and Carousel components
	TabPanel
	Carousel

	FormPanel
	DatePicker
	Sliders, spinners, and toggles

	MessageBox and Sheet
	MessageBox
	Sheet
	ActionSheet

	Map
	Lists
	Grouped lists
	Nested lists

	Finding more information with the Sencha API
	Finding a component
	Understanding the component page

	Summary

	Chapter 5: Events
	What are events?
	Asynchronous versus synchronous

	Listeners and handlers
	Adding listeners and events dynamically
	Custom events
	Listener options
	Scope
	Removing listeners
	Managed listeners
	Handlers and buttons
	Suspending and queuing events
	Common events
	Ext.util.Observable
	Centralizing event handling with Observe
	Capture: a tool for debugging

	Event delegation
	Events and memory
	Delegating events

	Touch-specific events
	Additional information on events
	Summary

	Chapter 6: Getting Data In
	Models
	The basic model
	Model validations
	Model methods
	Proxies and readers

	Introduction to data formats
	Arrays
	XML
	JSON
	JSONP

	Introduction to stores
	A simple store
	Forms and stores
	Specialty text fields

	Mapping fields to the model
	Clearing store data
	Editing with forms
	Switching handlers

	Deleting from the Data Store
	Summary

	Chapter 7: Getting Data Out
	Using data stores for display
	Directly binding a store
	Sorters and filters
	Paging a data store
	Loading changes in a store
	Data stores and panels

	XTemplates
	Data manipulation
	Looping through data
	Numbering within the loop
	Parent data in the loop

	Conditional display
	Arithmetic
	Inline JavaScript
	XTemplate member functions
	isEmpty

	Changing a panel’s content with XTemplate.overwrite

	Sencha Touch Charts
	Installing Touch Charts
	A simple pie chart
	A bar chart

	Summary

	Chapter 8: The Flickr Finder Application
	The basic application
	Introduction to Model View Controller (MVC)
	Building the foundation
	Splitting up the pieces
	Using the Flickr API

	The SearchPhotos component
	The SearchPhotos model
	The SearchPhotos view
	The SearchPhotos controller
	Adding the PhotoDetails view

	The savedphoto component
	The SavedPhoto model
	The SavedPhoto views
	The SavedPhotos controller
	Adding SavedPhotos to the viewport
	Adding the Save button

	Polishing your application
	Animated transitions
	Application icons

	Try it yourself
	Summary

	Chapter 9: Advanced Topics
	Talking to your own server
	Using your own API
	REST
	Designing your API
	Creating the model and store
	Making a request
	AJAX requests in an API

	Going offline
	Syncing local and remote data
	Manifests
	Setting up your web server
	Updating your cached application

	Interface considerations
	Alerting your users
	Updating your UI

	Alternate methods of detecting offline mode

	Getting into a marketplace
	Compiling your application
	PhoneGap
	NimbleKit
	Other options

	Registering for developer accounts
	Becoming an Apple developer
	Becoming an Android Developer

	Summary

	Index

