
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

PHP6
Get more out of

WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in

our P2P forums

Wrox Online Library
Hundreds of our books are available online

through Books24x7.com

Wrox Blox
Download short informational pieces and

code to keep you up to date and out of

trouble!

Chapters on Demand
Purchase individual book chapters in pdf

format

Join the Community
Sign up for our free monthly newsletter at

newsletter.wrox.com

Browse
Ready for more Wrox? We have books and

e-books available on .NET, SQL Server, Java,

XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?

Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

http://www.allitebooks.org

www.allitebooks.com

Professional PHP6

Introduction .. xxix

Part I: Fundamentals of Professional De velopment
Chapter 1: Introduction to Object-Oriented Programming3

Chapter 2: Unified Modeling Language (UML) ..31

Chapter 3: Putting Objects to Work ...49

Chapter 4: Design Patterns ...75

Chapter 5: Collections ..103

Chapter 6: Database Abstraction with PDO ...127

Part II: Lear ning Advanced De velopment Techniques
Chapter 7: Object Relation Mapping ...155

Chapter 8: Event-Driven Programming ...187

Chapter 9: Logging and Debugging ...201

Chapter 10: Writing and Using Web Services ..225

Chapter 11: Communicating with Users ..247

Chapter 12: Sessions and Authentication ..275

Chapter 13: Application Architecture ..305

Chapter 14: PHP Application Frameworks ...355

Part III: A Real-W orld Case Study
Chapter 15: Project Overview ...383

Chapter 16: Project Management ...393

Chapter 17: Project Planning ..415

Chapter 18: Systems Architecture ..431

Continues

http://www.allitebooks.org

www.allitebooks.com

Chapter 19: Building the Application ...441

Chapter 20: Quality Assurance and Testing ...535

Chapter 21: Deployment ...555

Part IV: Pushing PHP to Its Limits
Chapter 22: Content Management in the PHP World 571

Chapter 23: Handling High Traffic and High Availability593

Chapter 24: PHP Advocacy ...619

Chapter 25: Your Career As a PHP Professional ...627

Part V: Appendixes
Appendix A: Version Control ..635

Appendix B: PHP IDEs ..647

Appendix C: Performance Tuning PHP ..659

Appendix D: Best Practice PHP Installation ...671

Index ...681

http://www.allitebooks.org

www.allitebooks.com

Professional

PHP6

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

Professional

PHP6

Ed Lecky-Thompson

Steven D. Nowicki

Thomas Myer

Wiley Publishing, Inc.

http://www.allitebooks.org

www.allitebooks.com

Professional PHP6
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-39509-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Lecky-Thompson, Ed.
 Professional PHP6 / Ed Lecky-Thompson, Steven D. Nowicki, Thomas Myer.
 p. cm.
 Includes index.
 ISBN 978-0-470-39509-7 (pbk.)
 1. PHP (Computer program language) 2. Web sites—Design. I. Nowicki, Steven D. II. Myer,
 Thomas. III. Title.
 QA76.73.P224L423 2009
 006.7'6—dc22

2009004148

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically
disclaim all warranties, including without limitation warranties of fitness for a particular purpose. No
warranty may be created or extended by sales or promotional materials. The advice and strategies contained
herein may not be suitable for every situation. This work is sold with the understanding that the publisher is
not engaged in rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the publisher nor the
author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in
this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may
make. Further, readers should be aware that Internet Web sites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

www.wiley.com
http://www.wiley.com/go/permissions
http://www.allitebooks.org

www.allitebooks.com

To Marie, for being my drinking buddy
— Ed Lecky-Thompson

To Hope, for loving me anyway
— Tom Myer

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

About the Authors
Ed Lecky-Thompson was a founding partner of Brandspace before starting his own interactive agency
in 2003. Currently, he heads up U.K. digital specialists Galileo (www.galileodm.com), where he runs
thriving digital relationship marketing and online public relations accounts for top blue chips (including
Microsoft and a major U.S. financial services group). He has written several books on PHP over the past
five years, as well as writing for php|architect magazine. Ed was nominated for a New Media Age
Effectiveness Award in 2004 for his work with First Leisure Corporation as head of new media.

Steven D. Nowicki is a senior software developer at AdKnowledge, Inc., and has more than 13 years of
experience with software development and technology management in New York, London, and Los
Angeles. He has been the lead software architect for several multimillion-dollar Web applications and
dozens of large-scale, mission-critical PHP implementations, including enterprise resource planning,
CRM systems, and high-volume analytics. This is his third book on PHP.

Thomas Myer is a technical book author, consultant, and Web developer. In 2001, he founded Triple Dog
Dare Media in Austin, Texas. Triple Dog Dare Media focuses its attention on helping companies create
CodeIgniter-based applications such as content management, portals, and eCommerce systems. He is the
author of No Nonsense XML Web Development with PHP (Sitepoint, 2004) and Lead Generation on the Web
(O’Reilly, 2007). His newest book is Professional CodeIgniter (Wrox, 2008). He has also authored dozens of
technical and business articles for IBM DeveloperWorks, Amazon Web Services, AOL, Darwin Magazine,
and others.

Acquisitions Editor

Jenny Watson

Development Editor

Kevin Shafer

Technical Editor

Ben Schupak

Production Editor

Rebecca Coleman

Copy Editor

Luann Rouff

Editorial Manager

Mary Beth Wakefield

Production Manager

Tim Tate

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Associate Publisher

Jim Minatel

Project Coordinator, Cover

Lynsey Stanford

Proofreader

Publication Services, Inc.

Indexer

J & J Indexing

Credits

 Acknowledgments

 The authors would like to extend their thanks to the PHP, Linux, Apache, MySQL and PostgreSQL
development communities for creating and maintaining such great products, and with such a wealth of
supporting documentation. It ’ s their sheer flexibility and extensibility as packages that makes them
viable for the enterprise in the first place; and that ’ s why this book has been made possible.

 We ’ d like to pass on our thanks to everyone at Wiley for their support during the book ’ s development,
including Sara Shlaer and Jenny Watson, and Kevin Shafer and Ben Schupak for their support and
patience throughout 2008.

 Also, a special thank - you to all those who bought Professional PHP5 , and whose feedback (good and bad)
has enabled us to create (it is hoped) an even better product in Professional PHP6 .

 Ed would like to thank everybody who’s put up with him for the past twenty-seven years; and to
acknowledge the patience of all of his team at Galileo, especially David, Steve and Greg. Thanks also to
Annabel, Laurence, and Angie for being such great mentors.

 Tom Myer would like to thank the PHP community for all the feedback, encouragement, and great
conversations. You ’ re the best — keep on codin ’ .

Contents

Introduction xxix

Part I: Fundamentals of Professional De velopment

Chapter 1: Introduction to Object-Oriented Programming 3

What Is Object-Oriented Programming? 3

OOP Advantages 4

A Real-World Example 4

Understanding OOP Concepts 5

Classes 6

Objects 6

Inheritance 15

Interfaces 25

Encapsulation 27

Changes to OO in PHP6 29

Summary 30

Chapter 2: Unified Modeling Language (UML) 31

Requirements Gathering 31

Interviewing the Client 32

Use Case Diagrams 33

Class Diagrams 35

Modeling the Domain 35

Relationships 37

Implementation 39

Activity Diagrams 42

Sequence Diagrams 44

State Diagrams 46

Component and Deployment Diagrams 47

Summary 48

Contents

xvi

Chapter 3: Putting Objects to Work 49

Creating the Contact Manager 49

The Contact Manager UML Diagrams 50

The PropertyObject Class 56

The Contact Type Classes 58

The DataManager Class 62

The Entity, Individual, and Organization Classes 64

Making Use of the System 71

Summary 74

Chapter 4: Design Patterns 75

The Composite Pattern 76

Implementation 78

Considerations 82

The Observer Pattern 83

Widgets 84

Considerations 89

The Decorator Pattern 89

Implementation 92

Using the Decorator 93

Considerations 94

The Facade Pattern 95

The Builder Pattern 96

Implementation 97

Considerations 100

Summary 100

Chapter 5: Collections 103

Purpose of the Collection Class 103

Designing the Collection Class 105

Collection Class Basics 106

The addItem Method 106

The removeItem and getItem Methods 107

Other Methods 108

Using the Collection Class 108

Implementing Lazy Instantiation 109

Callbacks 110

The setLoadCallback Method in the Collection Class 115

Using the Collection Class 119

Improving the Collection Class 125

Summary 126

Contents

xvii

Chapter 6: Database Abstraction with PDO 127

PHP and Databases 128

PHP’s Database Support 128

PHP and PostgreSQL 128

Recap 129

The Problem 132

Wrapper Classes 133

Summing Up 134

Database Abstraction 134

What’s Needed 134

Introducing PDO 135

Getting Started with PDO 135

Working with PDO 136

The PDO Class 137

Executing Queries 138

The PDOStatement Class 139

Prepared Statements 139

Write-Only Statements 141

Transactions and Committals 142

Constants 143

Handling Errors 143

Advanced PDO Techniques 145

Large Objects 146

Database-Specific Functions 147

Persistent Connections 147

Stored Procedures 148

Singleton Instantiation 149

Limitations of PDO 150

Query Syntax 150

Feature Emulation 150

Non-SQL Data Sources 151

Beyond PDO 151

Summary 152

Part II: Lear ning Advanced De velopment Techniques

Chapter 7: Object Relation Mapping 155

Types of Classes 155

Utility Classes 156

Business Classes 156

www.allitebooks.com

Contents

xviii

Business Objects in Detail 157

The Design 157

Prototyping 158

Adding Data Binding 160

A Working Business Object 162

Ensuring Requirements Are Met 166

Understanding How It Works 169

Limitations 172

A Smarter Approach 173

Lazy Instantiation 173

Property Monitoring 173

Reusability 173

DataBoundObject Class 173

Design 174

The Code 175

Example Implementation 178

Understanding How It Works 180

Benefits 184

Summary 185

Chapter 8: Event-Driven Programming 187

Understanding Events 187

Using OOP to Handle Events 188

Designing an Event-Driven Solution 189

Implementing the Solution 191

Implementing Security 196

Pausing for Thought 198

Summary 199

Chapter 9: Logging and Debugging 201

Creating a Logging Mechanism 201

Simple File Logging 201

Example File System Layout 202

The Logger Class 203

Extending the Logger Class 208

Creating a Debugging Mechanism 219

Summary 223

http://www.allitebooks.org

Contents

xix

Chapter 10: Writing and Using Web Services 225

SOAP 226

SOAP and PHP6 226

The PHP6 SOAP Extension 227

Making a SOAP Client 230

Looking Under the Hood 232

Exception Handling in the SOAP Client 239

Making a SOAP Server 240

Creating and Registering Functions 240

Creating the WSDL Document 241

REST 243

REST and PHP6 244

Implementing the REST Client 244

Making a REST Server 245

Summary 246

Chapter 11: Communicating with Users 247

Why Communicate? 247

Reasons to Communicate with Users 248

Thinking Outside the Web Browser 250

Types of Communication 250

All Communications Have . . . 250

Not All Communications Have . . . 251

What About Recipients? 251

Communication As a Class Hierarchy 251

The Recipient Class: A Quick Test of OOP-Like Thinking 252

The Communication Class 255

E-mailing Your Users 259

Building a Test Version 259

Getting the Message Across 263

Being Smart with Templates 268

Using MIME 270

Other Communication Subclasses 270

SMS Text Messaging 270

Fax 271

Other Considerations 271

Blocking Activity 271

Deliverability 272

Summary 274

Contents

xx

 Chapter 12: Sessions and Authentication 275

Introduction to Sessions 276

How HTTP Works 276

Definition of a Session 278

Perpetuation of a Session 279

Session Security 281

Good Session Practice 285

How PHP Implements Sessions 287

Basic PHP Sessions 288

Limitations of Basic PHP Sessions 290

Creating an Authentication Class 290

Connecting PHP Session Management to a Database 290

Introducing the HTTPSession Class 292

Database Schema 292

The Code: HTTPSession.phpm 293

The Code: Testing the HTTPSession Class 297

How the HTTPSession Class Works 300

Performance Considerations 302

Putting It All Together 304

Summary 304

Chapter 13: Application Architecture 305

Introducing MVC 306

The Model 306

The View 307

The Controllers 307

MVC in Web Applications 308

MVC in PHP 309

The MVC Mini Toolkit 311

Introducing the Toolkit 311

Using the Toolkit 324

A Word about PRG 331

The Toolkit in the Wild 332

True Templating 333

Recapping Native PHP Templating 333

The Pitfalls of Native Templating 333

True Templating with Smarty Templates 334

Installing Smarty 334

Using Smarty 335

Contents

xxi

Advanced Smarty 340

When to Use Smarty vs. Traditional Templating 342

A Spot of Modeling Work 343

Introducing Unit Testing 343

Introduction to PHPUnit 346

Why Bother? 351

Summary 352

Chapter 14: PHP Application Frameworks 355

Introduction to Frameworks 355

Application Structure 356

Separation of Code and Display Logic 356

Validation 357

URL Rewriting 357

Form Persistence 358

Object Relation Mapping 358

Database Abstraction 359

Utility Classes 359

Use Case Scenario 359

Underlying Database 360

An Example Application 361

Introducing Ulysses 361

Installing Ulysses 361

Working with Ulysses 363

Setting Up 363

Business Objects 364

Servlets 366

Processing User Input 371

Persistence 372

Validation 373

A Quick Check 374

Saving Input 374

Heading Home 375

A Quick Summary 375

Some Other Contenders 377

Prado 377

Zend Framework 378

Deployment Considerations 379

Summary 380

Contents

xxii

Part III: A Real-W orld Case Study

Chapter 15: Project Overview 383

Widget World 384

The Widget World Landscape 386

The Technical Layer 386

The Financial Layer 386

The Political Layer 386

You 387

Is It Really About Technology? 387

The Development Approach 387

What This Means to You 389

The Technology 391

Summary 392

Chapter 16: Project Management 393

Do Your Homework 394

Why Is the Project Happening? 394

Who Is the Project For? 394

What Is the History of the Project? 396

What Are the Anticipated Prerequisites of the Project? 397

Receiving the Formal Brief 397

Business Requirements 398

Scope 399

Timelines 400

Budget 401

Commercial Terms 403

Future Plans 404

Look and Feel 404

Technology 405

Support 405

What Now? 405

Constructing the Pitch 406

Pitches Versus Quotes 406

Pitches Versus Specifications 406

Who to Involve When Pitching 407

When to Go the Extra Mile 408

When to Say No 408

Structuring the Pitch 409

Contents

xxiii

Choosing Your People 410

Project Manager 410

Account Manager 411

Lead Architect 411

Software Architects and Engineers 412

Client-Side Developers 412

Information Architects 412

Senior Designers 413

Studio Artists 413

Doubling Up of Roles 413

Working Practices 413

Your Client’s Role 414

Summary 414

Chapter 17: Project Planning 415

Choosing a Process 415

The Waterfall Process 416

The Spiral Process 417

Making the Decision 419

Common Process Practices 419

Specification Phase 419

Design Phase 422

Build Phase 424

Testing Phase 424

Handover 425

Programming Methodologies and Practices 425

Test-Driven Development 425

Extreme Programming 426

Change Management 428

Specification Revisions 428

Specification Changes That Arise After Sign-Off 429

Disputes Arising from Differences in Interpretation 429

Bugs Reported by the Client 429

Summary 430

Chapter 18: Systems Architecture 431

What Is Systems Architecture? 431

Why Is It Important? 432

What Needs to be done? 432

Contents

xxiv

Determining Business Requirements 433

Determining Hardware Requirements 434

Web Servers 434

Database Servers 434

Load Balancing 435

Firewall 436

Understanding the Physical Environment and Connectivity 436

Calculating CIR 437

Calculating Monthly Transfer 438

Rack Space Considerations 438

Network Considerations 438

Storage Considerations 439

Managing Maintenance 439

Summary 439

Chapter 19: Building the Application 441

Starting the Project: Monday 441

Getting an Earful 442

Story Weight Estimation 444

Release Planning 450

Starting the Work 451

Outlining the Details of Story 9 451

Writing Tests 452

PHPUnit 453

Creating the Login Screen 460

The Next Story 464

Re-estimating 474

Cleaning Up 475

Refactoring Code 476

Finishing the Iteration 483

Story 14: Changing the Week Recalls a Previous Week 483

Story 15: Per-Week Items on the Customer Contact Report 484

Travel Expense Report 492

Travel Expense Item 494

Travel Expense Week 496

The Spike 499

More Travel Expense Week Tests 500

Satisfying the Travel Expense Week Tests 502

The Finalized Travel Expense Report 514

Mock Objects 529

Summary 533

Contents

xxv

Chapter 20: Quality Assurance and Testing 535

Introduction to QA 535

Why You Should Aim High 536

What Is Quality? 537

Measurable and Quantifiable Quality 538

Testing 540

Unit Testing 540

Functional Testing 541

Load Testing 542

Usability Testing 543

Fault Tracking 543

Effective Fault Management Using Mantis 544

Getting the Most out of Mantis 554

Summary 554

Chapter 21: Deployment 555

Devising Development Environments 555

The Studio Development Environment 556

The Studio Staging Environment 557

The Live Staging Environment 557

The Live Production Environment 559

Development Databases 559

The Deployment Workflow 560

Automated Version Control Repository Extraction 562

Using rsync 564

Keeping Servers in Sync with rsync 566

A Word About FTP 567

Summary 567

Part IV: Pushing PHP to Its Limits

Chapter 22: Content Management in the PHP World 571

What Is Content Management? 571

A Brief History of Content Management 573

Examples of PHP CMSs 575

Drupal 575

Joomla! 578

ExpressionEngine 580

Frog CMS 583

Contents

xxvi

Building Your Own System 585

Content-Related Issues 586

Administrators and Privileges 588

Workflow 589

Templates 590

Summary 591

Chapter 23: Handling High Traffic and High Availability 593

Understanding the Terms 593

High Availability 594

High Traffic 594

Platforms 595

Exterior Network 595

Interior Network 596

Hardware 597

Operating System 598

Web Server 598

Application Server 599

Database 599

Software Architecture 600

Impact Factors 601

Server Load 601

Component Failure 602

Network Load 602

Network Failure 602

Mitigation Techniques 603

Load Balancing 603

Geographic Balancing 605

NIC Teaming 606

Disk Fault Tolerance 606

Power Redundancy 607

Multi-segment Topologies 608

Database Clustering and Replication 610

Traffic Calculus 611

Caching 613

Content Generation 614

Asset Servers 615

Content Delivery Networks 615

Real-World Examples 615

Flickr 616

Wikipedia 616

Summary 618

Contents

xxvii

Chapter 24: PHP Advocacy 619

Low Overhead 619

Linguistic Simplicity 621

Weakly Typed Languages 621

Reduced Punctuation 621

Commonly Understood Syntax 622

Cross-Platform Support 622

Ubiquity 624

Power 624

Summary 625

Chapter 25: Your Career As a PHP Professional 627

Motivation 627

Your Career As a Developer 628

More Than Web Development Skills 628

Soft Skills 629

Academic Skills 630

Community Skills 630

Summary 631

Part V: Appendixes

Appendix A: Version Control 635

Appendix B: PHP IDEs 647

Appendix C: Performance Tuning PHP 659

Appendix D: Best Practice PHP Installation 671

Index 681

www.allitebooks.com

http://www.allitebooks.org

 Introduction

 Professional PHP6 was written for PHP developers who are interested in expanding and leveraging their
development skills by taking advantage of the features of the sixth major release. This demographic is
not set in stone, of course, because experienced .NET and Java 2 Enterprise Edition (J2EE) developers
should catch on quickly, too. However, inexperienced PHP developers (or those with no software
development experience) are highly encouraged to start with Beginning PHP6, Apache, MySQL 6 Web
Development (Wiley, 2009).

 What Does This Book Cover?
 The beauty of PHP is its accessibility and shallow learning curve. Virtually anyone with basic computing
knowledge can pick it up and start putting together simple, dynamic Web sites. Indeed, it is qualities like
these that have led to PHP powering more than 20 million Web sites across the globe, a figure that is
growing by the thousands every day. However, that very accessibility has led to a lack of uniformity in
development approach, and perhaps an absence of the application of industry - standard best practices.
Put simply, a lot of PHP code isn ’ t that great .

 As a result, this book ventures beyond mere syntax and is designed to help you deliver better - quality
software in a shorter amount of time. If you ’ ve ever been told not to use PHP because it ’ s “ not enterprise
grade, ” then this book is for you, because you ’ re about to learn how to prove such doubters wrong.
Much of what you ’ ll learn (although written with PHP6 in mind) is not limited to the PHP language.
Many of the development techniques are directly translatable into other traditional high - level languages,
and the skills you ’ ll learn here will follow you the rest of your career.

 Who Is This Book For?
 This book covers some advanced techniques in PHP, so the book assumes that you have a solid
grounding in the basics of PHP application development. You don ’ t necessarily have to be familiar with
PHP6 to get started, however. If you ’ ve been working in PHP5 until the recent launch of version 6, you ’ ll
be fine. Throughout the book, the authors have carefully ensured that any differences between PHP6 and
PHP5 are highlighted prominently. If you ’ re still plodding along with PHP4, don ’ t worry — you won ’ t
be left behind either — just be sure that you start right at the beginning.

 To sum it up, the authors assume that you have what might be called a working knowledge of PHP. If you
have that and are eager to learn how you can become a true PHP professional , then this book is for you.

 You might be a Web developer for a big software company. Your company may have been working in
PHP for years, or maybe it ’ s eager to take the first steps away from .NET, Java, and other Web
development platforms in an effort to discover the myriad of benefits associated with PHP.

Introduction

xxx

 You may be a lone (or “ almost lone ”) Web professional in an otherwise nontechnical company, assigned
the task of implementing some huge project — perhaps a staff intranet or new corporate Web presence —
looking for an appropriate development platform.

 You may just be curious. Perhaps you ’ re a student in university or college who ’ s eager to supplement
what you ’ re learning in school with some professional code and project - management techniques
plucked straight from the world of commercial Web development.

 You might have a background in .NET or Java, and you may have heard good things about PHP and
how its latest incarnation finally makes it a truly credible professional Web development environment.
Perhaps you ’ re skeptical, and you want to see whether what you ’ ve heard about PHP6 is true.

 Whoever you are, as long as you know the basics of PHP and are eager to learn a whole lot more from
people who not only know PHP inside and out, but also love using it and get paid for doing so, then this
book is for you.

 What You Need to Use This Book
 Here ’ s the minimum that you ’ ll need to get the most from this book:

 A development workstation (running Windows, Mac OS X, or Linux, with a basic text editor or
development environment of your choice) and a Web browser to try out the examples

 An installation of PHP and Apache, which needs to be configured roughly in line with the setup
detailed in Appendix D

 Most of the examples in this book also require an installation of a database compatible with PHP
Data Objects (PDO) — examples are written for MySQL or PostgreSQL

 Ideally, you should also try to secure the following:

 An Internet connection, as numerous URLs are scattered throughout this book, and you ’ ll
undoubtedly want to go see them

 A lot of free time, an open mind, and a willingness to try new things

 How This Book Is Structured
 This section outlines the structure of the book; check the table of contents for more detail. Although you
should feel free to dip in and out of the chapters to get information on a topic as and when you need it, if
you ’ re not familiar with object - oriented programming (OOP) development, or, more important, how it is
implemented in PHP6, you should definitely start by reading Part I. The rest of the book makes use of
these techniques from cover to cover, so it ’ s vital for you to have the basic grounding in OOP before
trying to press on with the trickier stuff.

❑

❑

❑

❑

❑

Introduction

xxxi

 Part I: Fundamentals of Professional Development
 The book starts by outlining basic OOP concepts — both the theory behind them and their practical
application and implementation in PHP6. This is of vital importance, as understanding the rest of this
book is absolutely dependent on having a thorough understanding of OOP. Indeed, you ’ ll notice that not
a single line of procedural code appears anywhere within these pages. If you have a good grounding in
.NET or J2EE, you won ’ t need to spend long here — just enough time to see how PHP implements
standard OOP patterns.

 The book then looks at other tools made available by PHP6 (but rarely used by less - experienced
developers), including namespaces, collections, iterators, and collections, and shows their usefulness in
common design patterns.

 Naturally, no professional title would be complete without a discussion of databases and their roles in
enterprise application development. By introducing PDO in Chapter 7 , the discussion can also introduce
PostgreSQL, the database of choice for the examples in this book (although most of the concepts you ’ ll
meet are entirely database - agnostic, meaning they will work perfectly with MySQL, SQL Server, and
other database platforms).

 Part II: Learning Advanced Development Techniques
 Because the first part of the book deals exclusively with the ins and outs of high - end PHP6 techniques,
the second section is much more philosophical, teaching you how best to approach common software
development challenges by using those techniques. This is sometimes called software architecture — the
effective design of well - built software.

 Among other topics, you ’ ll be introduced to Object Relation Mapping (ORM), event - driven
programming (EDP), logging and debugging techniques, how to communicate with users, session
management, authentication, and designing and developing Web services.

 Crucially, two quite meaty chapters on the most high - level aspects of technical design are included, as
well as a discussion of the various PHP development frameworks on the market (and the pros and cons
of each), and why using a framework makes sense in the first place. This is important, as one of those
frameworks has been chosen for the examples shown in the rest of the book.

 Part III: A Real - World Case Study
 There ’ s no substitute for trying something out yourself. Since the previous two parts of the book covered
the theory, this third section is about putting it all into practice.

 Rather than dive in, you ’ ll learn some project - management fundamentals first, as well as how the
systems and network architecture will underpin it. You will then put to use the software architecture and
advanced development techniques you learned in the first two sections by rapidly building the
application from the ground up using an MVC framework.

 Having built the application, you ’ ll learn the importance of quality assurance (QA) and testing, and how
to approach it on a medium - to large - scale project, as well as an often overlooked topic: how to actually
get your project live (otherwise known as deployment).

Introduction

xxxii

 Part IV: Pushing PHP to Its Limits
 The final section of the book is about providing you (as an aspiring PHP professional) with some truly
impartial advice from developers just like you — people who have been there, done that, and bought the
T - shirt.

 As such, this section includes four “ hot topics ” that are the subject of much online and offline debate
among those who use PHP every day of their working lives. With some dispassionate analysis, you ’ ll be
equipped with the hard facts you need to know in order to make your own decisions, as well as form
educated opinions of your own.

 You ’ ll learn about PHP - driven content management systems (CMSs) and content management
frameworks (CMFs), both off - the - shelf and home - grown. You ’ ll be shown how PHP can play a starring
role in powering high - traffic or high - availability Web sites such as Flickr and Facebook. You ’ ll also learn
how to convince skeptical colleagues or clients that PHP can easily take on the might of .NET and Java,
and win hands down. Most important of all, you ’ ll take a look at the career path that might lie ahead for
you as a PHP professional — a look, it is hoped, that will convince you to stick with the language for a
long time to come.

 Appendixes
 The appendixes are home to some important topics that wouldn ’ t neatly fit into any of the previous four
sections. In Appendix A you ’ ll learn about version control — why it ’ s important and how to implement
it on a large project using CVS or Subversion (SVN). In Appendix B you ’ ll meet a number of PHP
development integrated development environments (IDEs), enabling you to cast aside your rusty, old
text editor in favor of a slicker, PHP - tailored solution.

 Appendix C provides a discussion about how to performance - tune your PHP applications to get the
most out of them (even on slower server hardware), while Appendix D offers a simple cheat sheet for
setting up PHP and Apache on Linux, Mac OS X, and Windows.

 The Bigger Picture
 We sincerely hope that you ’ ll help us, the authors, in raising the bar concerning the quality of software
found in both professional production environments and in projects found on the Internet. Professionally
and philosophically, none of us codes alone, so maybe together we can help to make our existence just a
little bit better.

 Conventions
 To help you get the most from the text and to keep track of what ’ s happening, we ’ ve used a number of
conventions throughout the book.

Introduction

xxxiii

 Boxes like this one hold important, not - to - be forgotten information that is directly
relevant to the surrounding text.

 Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

 As for styles in the text:

 We italicize important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show filenames, URLs, and code within the text like so: persistence.properties

 We present code in two different ways:

In code examples, we highlight new and important code with a gray background.

The gray highlighting is absent from code that’s less important in the present
 context, or has been shown before.

 Source Code
 As you work through the examples in this book, you may choose to enter all the code manually or use
the source code files that accompany the book. All the source code used in this book is available for
download at www.wrox.com . When you ’ re at the site, locate the book ’ s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book ’ s detail page to
obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 39509 - 7.

 After you download the code, just decompress it with your favorite compression tool. Alternately, go to
the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see the
code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books (such as a spelling mistake or a
faulty piece of code), we would be very grateful for your feedback. By sending in errata, you may save
another reader hours of frustration and, at the same time, you will be helping us provide even higher -
 quality information.

❑

❑

❑

❑

www.wrox.com
www.wrox.com/dynamic/books/download.aspx

Introduction

xxxiv

 To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book ’ s errata, is also available at www.wrox.com/misc - pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport and
complete the form there to send us the error you have found. We ’ ll check the information and, if appropriate,
post a message to the book ’ s errata page, and fix the problem in subsequent editions of the book.

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a Web - based
system for you to post messages relating to Wrox books and related technologies, and to interact with
other readers and technology users. The forums offer a subscription feature to e - mail you topics of
interest of your choosing when new posts are made to the forums. Wrox authors, editors, other industry
experts, and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as provide any optional information you
choose, and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

 After you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the “ Subscribe to this Forum ” icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

www.wrox.com
www.wrox.com/contact/techsupport
http://p2p.wrox.com
http://p2p.wrox.com
www.wrox.com/misc - pages/booklist.shtml
www.p2p.wrox.com
www.p2p.wrox.com

Part I

Fundamentals of
Professional
Development

Chapter 1: Introduction to Object-Oriented Programming

Chapter 2: Unifi ed Modeling Language (UML)

Chapter 3: Putting Objects to Work

Chapter 4: Design Patterns

Chapter 5: Collections

Chapter 6: Database Abstraction with PDO

 Introduction to Object -
 Oriented Programming

 Object - oriented (OO) software development can be a confusing topic for developers who create
primarily procedural code, but it doesn ’ t need to be. In this chapter, you ’ ll explore some of the
basic theory behind OO, and learn its (sometimes daunting) multisyllabic terminology. You ’ ll also
learn why you should be interested in OO techniques, how they can greatly improve the speed
with which you develop complex applications, and see the ease with which you can modify those
applications.

 The next few chapters expand on the ideas presented here and familiarize you with some slightly
more advanced topics. If you have already had exposure to OO development outside of PHP 6,
you can probably skip this chapter and the next. However, this material serves as a good review, so
it is recommended that you read it through.

 What Is Object - Oriented Programming?
 Object - oriented programming (OOP) requires a different way of thinking about how you construct
your applications. Objects enable you to more closely model in code the real - world tasks,
processes, and ideas that your application is designed to handle. Instead of thinking about an
application as a thread of control that passes chunks of data from one function to the next, an OOP
approach enables you to model the application as a set of collaborating objects that independently
handle certain activities.

 As an analogy, when a house is being constructed, the plumbers deal with the pipes, and
the electricians deal with the wires. The plumbers don ’ t need to know whether the circuit in the
bedroom is 10 amps or 20 amps. They must concern themselves only with their own activities.
A general contractor ensures that each subcontractor is completing the work that needs to be
accomplished, but isn ’ t necessarily interested in the particulars of each task. An OOP approach is
similar in that each object hides from the others the details of its implementation. How it does its

www.allitebooks.com

Part I: Fundamentals of Professional Development

4

job is irrelevant to the other components of the system. All that matters is the service that the object is
able to provide.

 The concepts of classes and objects, and the ways in which you can leverage these ideas in the
development of software, are the fundamental ideas behind OOP. This is, in a sense, the opposite of
procedural programming, which is programming using functions and global data structures. As you ’ ll
see, an OO approach provides significant benefits over procedural programming and (with the new
implementation of OO support that first appeared in PHP5, and was further improved in PHP6) some
large performance boosts as well.

 OOP Advantages
 One of the main benefits of OOP is the ease with which you can translate individual business
requirements into individual modules of code. Because an OOP approach enables you to model your
application based on the idea of real - world objects, you can often identify a direct correlation between
people, things, and concepts, and equivalent classes. These classes have the same properties and
behaviors as the real - world concepts they represent, which helps you to quickly identify what code must
be written and how different parts of the application must interact.

 A second benefit of OOP is code reuse. You frequently need the same types of data in different places in
the same application. For example, an application that enables a hospital to manage its patient records
would definitely need a class called Person . A number of people are involved in patient care — the
patient, the doctors, the nurses, hospital administrators, insurance claims people, and so on. At each step
in the care of the patient, that patient ’ s record requires a note about which person was performing a
given action (such as prescribing medicine, cleaning wounds, or sending a bill to an insurance carrier)
and verifying that the person is allowed to perform that action. By defining a generic class called Person
that encompasses all the properties and methods common to all these people, you get an enormous
amount of code reuse that isn ’ t always possible in a procedural approach to programming.

 What about other applications? How many applications can you think of that, at some point, handle
information about individuals? Probably quite a few. A well - written Person class could easily be copied
from one project to another with little or no change, instantly giving you all the rich functionality
required for dealing with information about people that you developed previously. This is one of the
biggest benefits of an OO approach — the opportunities for code reuse within a given application, as
well as across different projects.

 Another OOP advantage comes from the modularity of classes. If you discover a bug in your Person
class, or you want to add to or change the way that class functions, you have only one place to go. All
the functionality of that class is contained in a single file. Any processes of the application that rely on
the Person class are immediately affected by changes to it. This can vastly simplify the search for bugs,
and makes the addition of features a relatively painless task.

 A Real - World Example
 They might seem trivial in a smaller application, but in a more complex software architecture, the
benefits of modularity can be enormous. One of the authors of this book worked on a project involving
more than 200,000 lines of procedural PHP code. Easily, 65 percent of the time spent fixing bugs was
devoted to uncovering where certain functions were located and determining which data interacted with

http://www.allitebooks.org

Chapter 1: Introduction to Object-Oriented Programming

5

which functions. A subsequent rewrite of that software in an OO architecture resulted in dramatically
less code. Had the application been implemented in such a manner in the first place, it would have
resulted in not only less development time from the outset, but also the discovery of fewer bugs (the
smaller the amount of code, the fewer the opportunities for problems) and a faster turnaround time on
bug fixes.

 Because an OO approach easily lends itself to a system of clearly documenting the structure of an
application (see Chapter 2), learning the structure of an existing application is much easier when you are
new to the development team. In addition, you have a framework to aid you in determining the
appropriate location for new functionality you might develop.

 Larger projects often have a multimember software development team, usually composed of
programmers with varying degrees of ability. Here, too, an OO approach has significant benefits over a
procedural approach. Objects hide the details of their implementation from the users of those objects.
Instead of needing to understand complex data structures and all the quirks of the business logic, junior
members of the team can (with just a little documentation) begin using objects created by more
experienced members. The objects themselves are responsible for triggering changes to data or the state
of the system.

 When the large application mentioned previously was still written using procedural code, new members
of the software development team often took up to two months to learn enough about the application to
be productive. After the software was rebuilt using objects, new members of the team usually took no
more than a couple of days to begin making substantial additions to the code base. They were able to use
even the most complex objects quickly because they did not need to fully understand the particulars of
how the functionality contained within those objects was implemented.

 Now that you have a good idea about why you should consider using an OO paradigm as your
programming method of choice, you should read the next few sections to gain a better understanding of
the fundamental concepts behind OO. If all goes well, through the course of the next two chapters you
will begin to see the benefits of this approach for yourself.

 Understanding OOP Concepts
 This section introduces the primary concepts of object - oriented programming and explores how they
interact; Chapter 3 looks at the specifics of implementing them in PHP6. This chapters covers the
following topics:

 Classes — The “ blueprints ” for an object and the actual code that defines the properties and
methods

 Objects — Running instances of a class that contain all the internal data and state information
needed for your application to function

 Inheritance — The ability to define a class of one kind as being a subtype of a different kind of
class (much the same way a square is a kind of rectangle)

 Polymorphism — Allows a class to be defined as being a member of more than one category of
classes (just as a car is “ a thing with an engine ” and “ a thing with wheels ”)

❑

❑

❑

❑

Part I: Fundamentals of Professional Development

6

 Interfaces — A way of specifying that an object is capable of doing something without actually
defining how it is to be done (e.g., a dog and a human are “ things that walk, ” but they do it very
differently)

 Encapsulation — The ability of an object to protect access to its internal data

 If any of these terms seem difficult to understand, don ’ t worry. The material that follows will clarify
everything. Your newfound knowledge may even completely change the way you approach your
software development projects.

 Classes
 In the real world, objects have characteristics and behaviors. A car has a color, a weight, a manufacturer,
and a gas tank of a certain volume. Those are its characteristics. A car can accelerate, stop, signal for a
turn, and sound the horn. Those are its behaviors. Those characteristics and behaviors are common to all
cars. Although two particular cars in the same parking lot may have different colors, all cars have a color.
Using a construct known as a class, OOP enables you to establish the idea of a car as being something
with all those characteristics. A class is a unit of code (composed of variables and functions) that
describes the characteristics and behaviors of all the members of a set. A class called Car would describe
the properties and methods common to all cars.

 In OO terminology, the characteristics of a class are known as its properties . Properties have a name and a
value. Some allow their value to be changed; others do not. For example, in the Car class, you would
probably have such properties as color and weight . Although the color of the car can be changed by
giving it a new paint job, the tare weight of the car (without cargo or passengers) is a fixed value.

 Some properties represent the state of the object. State refers to those characteristics that change because
of certain events but are not necessarily directly modifiable on their own. In an application that simulates
vehicle performance, the Car class might have a property called velocity . The velocity of the car is not
a value that can be changed on its own, but rather is a by - product of the amount of fuel being sent to the
engine, the performance characteristics of that engine, and the terrain over which the car is traveling.

 The behaviors of a class are known as its methods . Methods of classes are syntactically equivalent to
functions found in traditional procedural code. Just like functions, methods can accept any number of
parameters, each of any valid data type. Some methods act on external data passed to them as
parameters, but they can also act on the properties of their object, either using those properties to inform
actions made by the method (such as when a method called accelerate examines the remaining
amount of fuel to determine whether the car is capable of accelerating) or to change the state of the object
by modifying values such as the velocity of the car.

 Objects
 To begin with, you can think of a class as a blueprint for constructing an object. In much the same way
that many houses can be built from the same blueprint, you can build multiple instances of an object
from its class; but the blueprint doesn ’ t specify details such as the color of the walls or the type of
flooring. It merely specifies that those things will exist. Classes work much the same way. The class
specifies the behaviors and characteristics the object will have, but not necessarily the values of those
characteristics. An object is a concrete entity constructed using the blueprint provided by a class. The

❑

❑

Chapter 1: Introduction to Object-Oriented Programming

7

idea of a house is analogous to a class. Your house (a specific instance of the idea of a house) is analogous
to an object.

 With a blueprint in hand and some building materials, you can construct a house. In OOP, when you use
the class to build an object, this process is known as instantiation . Instantiating an object requires two
things:

 A memory location into which to load the object. This is automatically handled for you by PHP.

 The data that will populate the values of the properties. This data can come from a database, a
flat text file, another object, or some other source.

 A class can never have property values or state. Only objects can. You must use the blueprint to build the
house before you can give it wallpaper or vinyl siding. Similarly, you must instantiate an object from
the class before you can interact with its properties or invoke its methods. Classes are manipulated at
design time when you make changes to the methods or properties. Objects are manipulated at run - time
when values are assigned to their properties, and their methods are invoked. The problem of when to
use the word class and when to use the word object is something that often confuses those new to OOP.

 After an object is instantiated, it can be put to work implementing the business requirements of the
application. Let ’ s look at exactly how to do that in PHP.

 Creating a Class

 Starting with a simple example, save the following in a file called class.Demo.php :

 < ?php

 class Demo {

 }

? >

 There you have it — the Demo class. Although not terribly exciting just yet, this is the basic syntax for
declaring a new class in PHP. Use the keyword class to let PHP know you ’ re about to define a new
class. Follow that with the name of the class and braces to indicate the start and end of the code for
that class.

 It ’ s important to have a clearly defined convention for organizing your source code files. A good rule to
follow is to put each class into its own file and to name that file class.[ClassName].php .

 You can instantiate an object of type Demo like this:

 < ?php

 require_once(‘class.Demo.php’);

 $objDemo = new Demo();

? >

❑

❑

Part I: Fundamentals of Professional Development

8

 To instantiate an object, first ensure that PHP knows where to find the class declaration by including the
file containing your class (class.Demo.php in this example); then invoke the new operator and supply
the name of the class, followed by opening and closing parentheses. The return value of this statement is
assigned to a new variable, objDemo in this example. Now you can invoke the $objDemo object ’ s
methods and examine or set the value of its properties — if it actually has any.

 Even though the class you ’ ve created doesn ’ t do much of anything just yet, it ’ s still a valid class
definition.

 Adding a Method

 The Demo class isn ’ t particularly useful if it isn ’ t able to do anything, so let ’ s look at how you can create a
method. Remember, a method of a class is basically just a function. By coding a function inside the
braces of your class, you ’ re adding a method to that class. Here ’ s an example:

 < ?php

 class Demo {

 function sayHello($name) {
 print “Hello $name!”;
 }

 }

? >

 An object derived from your class is now capable of printing a greeting to anyone who invokes the
 sayHello method. To invoke the method on your $objDemo object, you need to use the operator - > to
access the newly created function:

 < ?php

 require_once(‘class.Demo.php’);

 $objDemo = new Demo();

 $objDemo- > sayHello(‘Steve’);

? >

 The object is now capable of printing a friendly greeting. The - > operator is used to access all methods
and properties of your objects.

 For readers who have had exposure to OOP in other programming languages, note that the - > operator
is always used to access the methods and properties of an object. PHP does not use the dot operator (.)
in its OO syntax at all.

 Adding a Property

 Adding a property to your class is just as easy as adding a method. You simply declare a variable inside
the class to hold the value of the property. In procedural code, when you want to store some value, you
assign that value to a variable. In OOP, when you want to store the value of a property, you also use a
variable. This variable is declared at the top of the class declaration, inside the braces that bracket the

Chapter 1: Introduction to Object-Oriented Programming

9

class ’ s code. The name of the variable is the name of the property. If the variable is called $color , you
will have a property called color .

 Open the class.Demo.php file and add the following highlighted code:

 < ?php

 class Demo {

 public $name;

 function sayHello() {
 print “Hello $this- > name!”;
 }

 }
? >

 This new variable, called $name , is all you have to do to create a property of the Demo class called name .
To access this property, you use the same - > operator as that of the previous example, along with the
name of the property. The rewritten sayHello method shows how to access the value of this property.

 Create a new file called testdemo.php and add the following:

 < ?php

 require_once(‘class.Demo.php’);

 $objDemo = new Demo();
 $objDemo- > name = ‘Steve’;

 $objAnotherDemo = new Demo();
 $objAnotherDemo- > name = ‘Ed’;

 $objDemo- > sayHello();
 $objAnotherDemo- > sayHello();

? >

 Save the file and then open it in your Web browser. The strings “ Hello Steve! ” and “ Hello Ed! ” print to
the screen.

 The keyword public is used to let the class know that you want to have access to the following variable
from outside the class. Some member variables of the class exist only for use by the class itself and
should not be accessible to external code; these variables are declared as private or protected (more
on that later). In this example, you want to be able to set and retrieve the value of the property name .
Note that the way the sayHello method works has changed. Instead of taking a parameter, it now
fetches the name value from the property.

 You use the variable $this so that the object can get information about itself. You might have multiple
objects of a class, for example, and because you don ’ t know in advance what the name of an object
variable will be, the $this variable enables you to refer to the current instance.

Part I: Fundamentals of Professional Development

10

 In the previous example, the first call to sayHello prints “ Steve ” and the second call prints “ Ed ” . This
is because the $this variable allows each object to access its own properties and methods without
having to know the name of the variable that represents it in the exterior application. Previously, you
learned that some properties influence the action of certain methods, such as the example in which
the accelerate method of the Car class needs to examine the amount of fuel remaining. The code
inside accelerate would use code such as $this - > amountOfFuel to access this property.

 When accessing properties, you need only one $. The syntax is $obj - > property , not $obj -
 > $ property. This fact often causes confusion for those new to PHP. The property variable is declared as
public $property and accessed using $obj - > property .

 In addition to the variables that store the values for the properties of the class, other variables may be
declared for use by the internal operations of the class. Both kinds of data are collectively referred to as
the class ’ s internal member variables . Some of these are accessible to code outside the class in the form
of properties. Others are not accessible and are strictly for internal housekeeping. For example, if the
 Car class needed to get information from a database for whatever reason, it might keep a database
connection handle in an internal member variable. This database connection handle is obviously not a
property of the car, but rather something the class needs to carry out certain operations.

 Protecting Access to Member Variables

 As the previous example shows, you can set the value of the name property to just about anything you
want — including an object, an array of integers, a file handle, or any other nonsensical value.
However, you don ’ t get an opportunity to do any sort of data validation or update any other values
when the name property is set.

 To work around this problem, always implement your properties in the form of functions called
get[property name] and set[property name] . Such functions are known as accessor methods ,
and are demonstrated in the following example.

 Change class.Demo.php as shown here:

 < ?php
class Demo {
 private $_name;

 public function sayHello() {
 print “Hello “ . $this- > getName() . “!”
 }

 public function getName() {
 return $this- > _name;
 }

 public function setName($name) {
 if(!is_string($name) || strlen($name) == 0) {
 throw new Exception(“Invalid name value!”);
 }

 $this- > _name = $name;
 }
}
? >

Chapter 1: Introduction to Object-Oriented Programming

11

 Edit testdemo.php as shown here:

 < ?php

require_once(‘class.Demo.php’);

$objDemo = new Demo();
$objDemo- > setName(‘Steve’);

$objDemo- > sayHello();

$objDemo- > setName(37); //would trigger an error

? >

 As you can see, the member access level of name has changed from public to private and has been
prefixed with an underscore. The underscore is a recommended naming convention to indicate private
member variables and functions; however, it is merely a convention — PHP does not require it. The
keyword private protects code outside the object from modifying this value. Private internal member
variables are not accessible from outside the class. Because you can ’ t access these variables directly,
you ’ re forced to use the getName() and setName() accessor methods to obtain this information,
ensuring that your class can examine the value before allowing it to be set.

 In this example, an exception is thrown if an invalid value is supplied for the name property.
Additionally, the public access specifier for the functions has been added. Public is the default visibility
level for any member variables or functions that do not explicitly set one, but it is good practice to
always explicitly state the visibility of all the members of the class.

 A member variable or method can have three different levels of visibility: public, private, and protected.
 Public members are accessible to any and all code. Private members are accessible only to the class itself.
These are typically items used for internal housekeeping, and might include such things as a database
connection handle or configuration information. Protected members are available to the class itself and to
classes that inherit from it. (Inheritance is defined and discussed in detail later in this chapter.)

 By creating accessor methods for all your properties, you make it much easier to add data validation or
new business logic, or make other changes to your objects later. Even if the current business
requirements for your application involve no data validation of a given property, you should still
implement that property with get and set functions so that you can add validation or business logic
functionality in the future.

 Always use accessor methods for your properties. Changes to business logic and data validation
requirements in the future will be much easier to implement.

 Initializing Objects

 For many of the classes you will create, you will need to do some special setup when an object of that
class is first instantiated. You might need to fetch some information from a database or initialize some
property values, for example. By creating a special method called a constructor , implemented in PHP
using a function called _construct() , you can perform any activities required to instantiate the object.
PHP will automatically call this special function when instantiating the object.

Part I: Fundamentals of Professional Development

12

 For example, you could rewrite the Demo class in the following way:

 < ?php
class Demo {

 private $name;

 public function __construct($name) {
 $this- > name = $name;
 }

 function sayHello() {
 print “Hello $this- > name!”;
 }
}
? >

 The _construct function will be automatically invoked when you instantiate a new object of class
 Demo . Note that you will need to update testdemo.php to pass the name in the constructor, rather than
in the setter method.

 In PHP 4, object constructors were functions with the same name as the class. PHP version 5 changed
this to use a unified constructor scheme. For backward compatibility, PHP first looks for a function
called __ construct , but if none is found, it will still look for a function with the same name as
the class (public function Demo() in the preceding example). While this backward compatibility
has been maintained in PHP 6, there is no guarantee it will be preserved in future versions.

 If you have a class that does not require any special initialization code to be run, you don ’ t need to create
a constructor. As you saw in the first version of the Demo class, PHP automatically does what it needs to
do to create that object. Create a constructor function only when you need one.

 Destroying Objects

 The object variables that you create are removed from system memory when the requested page has
completed running, when the variable falls out of scope, or when it is explicitly set to null. In PHP 6, you
can trap the destruction of the object and take actions when that happens. To do so, create a function
called __destruct with no parameters. Before the object is destroyed, this function is called
automatically, if it exists.

 Calling this function gives you the opportunity to perform any last - minute clean - up (such as closing file
handles or database connections that might have been opened by the class), or any other last - minute
housekeeping that might be needed before the object is destroyed.

 The following example fetches the properties of an object from a database. If any properties of the object
are changed, they are automatically saved back to the database when the object is destroyed. This
eliminates the need to explicitly call a save method. The destructor also closes the open database
connection handle.

 As with most of the database examples in this book, this one uses PostgreSQL as its platform. The
authors firmly believe that the advanced features, transaction support, and robust stored procedure
mechanism of PostgreSQL make it a superior alternative to MySQL and other open - source relational
database management systems (RDBMSs) for large - scale enterprise software development. If you don ’ t

Chapter 1: Introduction to Object-Oriented Programming

13

have a PostgreSQL environment at your disposal, or if you prefer MySQL (as many do), feel free to make
the appropriate modifications for the database platform you use.

 Create a table called “ widget ” using the following SQL statement:

CREATE TABLE “widget” (
 “widgetid” SERIAL PRIMARY KEY NOT NULL,
 “name” varchar(255) NOT NULL,
 “description” text
);

 Insert some data:

INSERT INTO “widget” (“name”, “description”)
VALUES(‘Foo’, ‘This is a footacular widget!’);

 Create a file called class.Widget.php and enter the following code:

 < ?php

class Widget {

 private $id;
 private $name;
 private $description; private $hDB;
 private $needsUpdating = false;

 public function __construct($widgetID) {
 //The widgetID parameter is the primary key of a
 //record in the database containing the information
 //for this object

 //Create a connection handle and store it in a private member variable
 //This code assumes the DB is called “parts”
 $this- > hDB = pg_connect(‘dbname=parts user=postgres’);
 if(! is_resource($this- > hDB)) {
 throw new Exception(‘Unable to connect to the database.’);
 }

 $sql = “SELECT \”name”, \”description\” FROM widget WHERE widgetid =
 $widgetID”;
 $rs = pg_query($this- > hDB, $sql);
 if(! is_resource($rs)) {
 throw new Exception(“An error occurred selecting from the database.”);
 }

 if(! pg_num_rows($rs)) {
 throw new Exception(‘The specified widget does not exist!’);
 }
 $data = pg_fetch_array($rs);
 $this- > id = $widgetID;

www.allitebooks.com

Part I: Fundamentals of Professional Development

14

 $this- > name = $data[‘name’];

 $this- > description = $data[‘description’];
 }

 public function getName() {
 return $this- > name;
 }

 public function getDescription() {
 return $this- > description;
 }

 public function setName($name) {
 $this- > name = $name;
 $this- > needsUpdating = true;
}
 public function setDescription($description) {
 $this- > description = $description;
 $this- > needsUpdating = true;
 }

 public function __destruct() {
 if($this- > needsUpdating) {

 $sql = ‘UPDATE “widget” SET ‘;
 $sql .= “\”name\” = ‘” . pg_escape_string($this- > name) . “’, “;
 $sql .= “\”description\” = ‘” .
 pg_escape_string($this- > description) . “’”;
 $sql .= “WHERE widgetID = “ . $this- > id;

 $rs = pg_query($this- > hDB, $sql);
 }

 //We ’ re done with the database. Close the connection handle.
 pg_close($this- > hDB);
 }
}
? >

 The constructor to this object opens a connection to a database called parts using the default super - user
account postgres . This connection handle is preserved in a private member variable for use later.
The ID value passed as a parameter to the constructor is used to construct a SQL statement that
fetches the information for the widget with the specified primary key in the database. The data from
the database is then assigned to private member variables for use with the get and set functions. Note
that if anything should go wrong, the constructor throws exceptions, so be sure to wrap any attempts to
construct a Widget object in try... catch blocks.

 The two accessor methods, getName() and getDescription(), enable you to fetch the values of the
private member variables. Similarly, the setName() and setDescription() methods enable you to
assign a new value to those variables. Note that when a new value is assigned, the needsUpdating
value is set to true . If nothing changes, then nothing needs to be updated.

http://www.allitebooks.org

Chapter 1: Introduction to Object-Oriented Programming

15

 To test this, create a file called testWidget.php with the following content:

 < ?php

require_once(‘class.Widget.php’);

 try {
 $objWidget = new Widget(1);
 print “Widget Name: “ . $objWidget- > getName() . “ < br > \n”;

 print “Widget Description: “ . $objWidget- > getDescription() . “ < br > \n”;
 $objWidget- > setName(‘Bar’);
 $objWidget- > setDescription(‘This is a bartacular widget!’);

 } catch (Exception $e) {
 die(“There was a problem: “ . $e- > getMessage());
 }

? >

 Access this file in your Web browser. The first time it runs, the output should be something like the
following:

Widget Name: Foo
Widget Description: This is a footacular widget!

 Any subsequent call should display as follows:

Widget Name: Bar
Widget Description: This is a bartacular widget!

 Look at how powerful this technique can be. You can fetch an object from the database, change a
property of that object, and automagically write the changed information back to the database with just a
few lines of code in testWidget.php . If nothing changes, you don ’ t need to go back to the database, so
you save load on the database server and improve the application ’ s performance.

 Users of the object do not necessarily need to understand its internals. If a senior member of the software
development team wrote the Widget class, he or she could give this object to a junior member, who
perhaps doesn ’ t understand SQL as well, and the junior member of the team could put this object to use
without any knowledge whatsoever of where the data comes from or how to save changes to it. In fact,
you could change the data source from a PostgreSQL database to a MySQL database or even an XML file
without the junior team member ever knowing or having to touch any of the code that uses this class.

 Inheritance
 If you were creating an application to handle inventory at a car dealership, you would probably need
classes such as Sedan , PickupTruck , and MiniVan that would correspond to the same types of
automobiles in the dealer ’ s inventory. Your application would need not only to show how many of these
items you have in stock, but also to report on the characteristics of these vehicles so that the salespeople
could give the information to customers.

Part I: Fundamentals of Professional Development

16

 A sedan is a four - door car, and you would probably want to record the back - seat space and the trunk
capacity. A pickup truck doesn ’ t have a trunk, but does have a cargo bed with a certain capacity, and the
truck itself has a towing capacity (the maximum weight of any cargo that can be safely carried). For a
minivan, you would probably need to list the number of sliding doors (either one or two) and the
number of seats inside.

 However, each of these vehicles is really just a different type of automobile, and as such would share
a number of characteristics in your application (such as color, manufacturer, model, year, vehicle
identification number, and so on). To ensure that each of the classes has these same properties, you could
just copy the code that creates those properties into each of the files containing your class definitions.
As mentioned earlier in this chapter, one of the benefits of an OOP approach is code reuse. Therefore, of
course, you don ’ t need to copy code, but instead can reuse the properties and methods of these classes
through a process called inheritance . Inheritance is the ability for one class to assume the methods and
properties of a parent class.

 Inheritance enables you to define a base class, in this case Automobile . You can say that other classes are
also a type of Automobile , and as such have all the same properties and methods that all Automobile s
have. Because a Sedan is an Automobile , it therefore automatically inherits everything defined by the
 Automobile class without your having to copy any code. That way, you need to write only the
additional properties and methods of the Sedan class that are not shared by all automobiles. In other
words, the only work left for you to do is define the differences; the similarities between the classes are
inherited from the base class.

 The ability to reuse code is one benefit, but there ’ s a second major advantage to using inheritance.
Suppose that you have a class called Customer with a method buyAutomobile . This method would
take one parameter, an object of class Automobile , and its internal operations would print the
paperwork needed to document the sale, and decrement the car in question from the inventory system.
Because all Sedan s, PickupTruck s, and MiniVan s are Automobile s, you can pass objects of these
classes to a function expecting an Automobile . Because the three specific types inherit from the more
generic parent class, you know that they will all have the same base set of properties and methods. As
long as you need only the methods and properties common to all Automobile s, you can accept objects
of any class that inherits from Automobile .

 Consider the example of cats. All cats share some properties. They eat, sleep, purr, and hunt. They also
have shared properties — weight, fur color, whisker length, and running speed. However, lions have a
mane of a certain length (at least, the male lions do), and they growl. Cheetahs have spots. Domesticated
cats have neither of these things, yet all three animals are cats.

 In PHP you specify that a class is a subset of another by using the keyword extends , which tells PHP
that the class you are declaring should inherit all the properties and methods from its parent class, and
that you are adding functionality or providing some additional specialization to that class.

 If you had to design an application to handle zoo animals, you ’ d probably need to have classes Cat ,
 Lion , and Cheetah . Before writing any code, plan your class hierarchy in Unified Markup Language
(UML) diagrams so you have something to work from when you write the code and the documentation
of those classes. (UML is examined in more detail in Chapter 2, so don ’ t worry if you don ’ t completely
understand what ’ s shown here.) Your class diagram should indicate a parent class Cat , with subclasses
 Lion and Cheetah inheriting from it. Figure 1 - 1 shows that diagram.

Chapter 1: Introduction to Object-Oriented Programming

17

 Both the Lion and Cheetah classes inherit from Cat , but the Lion class also implements the property
 maneLength and the method roar() , whereas Cheetah adds the property numberOfSpots .

 The Cat class, class.Cat.php , should be implemented as follows:

 < ?php

 class Cat {
 public $weight; //in kg
 public $furColor;
 public $whiskerLength;
 public $maxSpeed; //in km/hr
 public function eat() {
 //code for eating...
 }

 public function sleep() {
 //code for sleeping...
 }

 public function hunt(Prey $objPrey) {
 //code for hunting objects of type Prey
 //which we will not define...
 }

 public function purr() {
 print “purrrrrrr...” . “\n”;
 }
 }
? >

 This simple class sets up all the properties and methods common to all cats. To create the Lion and
 Cheetah classes, you could copy all the code from the Cat class to classes called Lion and Cheetah .
However, this generates two problems.

Cat

Lion

+weight

+furColor

+whiskerLength

+runningSpeed

+eat()

+sleep()

+purr()

+hunt(objPrey:Prey)

+maneLength

Cheetah

+numberofSpots

+roar()

Figure 1-1: Class diagram for cats

Part I: Fundamentals of Professional Development

18

 First, if you find a bug in the Cat class, you must remember to fix it in the Lion and Cheetah classes as
well. This creates more work for you, not less (and creating less work is supposed to be one of the
primary advantages of an OO approach).

 Second, imagine that you had a method of some other class (maybe CatLover) that looked like this:

public function petTheKitty(Cat $objCat) {
 $objCat- > purr();
}

 Although petting a lion or cheetah may not be a terribly safe idea, they will purr if they let you get close
enough to do so. You should be able to pass an object of class Lion or Cheetah to the petTheKitty()
function.

 Therefore, you must take the other route to create the Lion and Cheetah classes, which is to use
inheritance. By using the keyword extends and specifying the name of the class that is extended, you
can easily create two new classes that have all the same properties as a regular cat but provide some
additional features. Consider this example, which you can type into class.Lion.php :

 < ?php
 require_once(‘class.Cat.php’);

 class Lion extends Cat {
 public $maneLength; //in cm

 public function roar() {
 print “Roarrrrrrrrr!”;
 }
 }
? >

 That ’ s it! With the Lion class extending Cat , you can now do something like the following:

 < ?php
 include(‘class.Lion.php’);

 $objLion = new Lion();
 $objLion- > weight = 200; //kg = \s450 lbs.
 $objLion- > furColor = ‘brown’;
 $objLion- > maneLength = 36; //cm = \s14 inches
 $objLion- > eat();
 $objLion- > roar();
 $objLion- > sleep();
? >

 As shown here, you can invoke the properties and methods of the parent class Cat without having to
rewrite all that code. Remember that the extends keyword tells PHP to automatically include all the
functionality of a Cat , along with any Lion - specific properties or methods. It also tells PHP that a Lion

Chapter 1: Introduction to Object-Oriented Programming

19

object is also a Cat object, and you can now call the petTheKitty() function with an object of class
 Lion even though the function declaration uses Cat as the parameter hint:

 < ?php
 include(‘class.Lion.php’);

 $objLion = new Lion();
 $objPetter = new CatLover();
 $objPetter- > petTheKitty($objLion);
? >

 In this way, any changes you make to the Cat class are automatically inherited by the Lion class. Bug
fixes, changes to function internals, or new methods and properties are all passed along to the subclasses
of a parent class. In a large, well - designed object hierarchy, this can make bug fixing and the addition of
enhancements very easy. A small change to one parent class can have a large effect on the entire
application.

 In this next example, you ’ ll see how a custom constructor can be used to extend and specialize a class.
Create a new file called class.Cheetah.php and enter the following:

 < ?php
 require_once(‘class.Cat.php’);

 class Cheetah extends Cat {
 public $numberOfSpots;

 public function __construct() {
 $this- > maxSpeed = 100;
 }
 }
? >

 Enter the following code into testcats.php :

 < ?php
require_once(‘class.Cheetah.php’);

 function petTheKitty(Cat $objCat) {
 if($objCat- > maxSpeed < 5) {
 $objCat- > purr();
 } else {
 print “Can’t pet the kitty - it’s moving at “ .
 $objCat- > maxSpeed . “ kilometers per hour!”;
 }
 }
 $objCheetah = new Cheetah();
 petTheKitty($objCheetah);

 $objCat = new Cat();
 petTheKitty($objCat);
? >

Part I: Fundamentals of Professional Development

20

 The Cheetah class adds a new public member variable called numberOfSpots and a constructor that
did not exist in the parent Cat class. Now, when you create a new Cheetah , the maxSpeed property
(inherited from Cat) is initialized to 100 kilometers per hour (roughly 60 miles per hour), which is the
approximate maximum speed of a cheetah over short distances. Note that because a default value for
the Cat class isn ’ t specified, the maxSpeed evaluates as 0 (actually, null) in the petTheKitty() function.
As those who have ever had a house cat know, the amount of time they spend sleeping means that their
maximum speed probably is approaching 0 !

 By adding new functions, properties, or even constructors and destructors, the subclasses of a parent
class can easily extend their functionality and, with a minimum amount of code, add new features and
capabilities to your application.

 When you can say that one class is a special type of some other class, use inheritance to maximize the
potential for code reuse and increase the flexibility of your application.

 Overriding Methods

 Just because a child class inherits from a parent class doesn ’ t mean that the child class necessarily needs
to use the parent class ’ s implementation of a function. For example, if you were designing an application
that needed to calculate the area of different geometric shapes, you might have classes called Rectangle
and Triangle . Both of these shapes are polygons, and as such these classes will inherit from a parent
class called Polygon .

 The Polygon class will have a property called numberOfSides and a method called getArea . All
polygons have a calculable area; however, the methods for calculating that area can be different for
different types of polygons. (A generic equation exists for the area of any polygon, but it is often less
efficient than the shape - specific equations for the simple polygons being used here.) The formula for the
area of a rectangle is w * h , where w is the width of the rectangle and h is the height. The area of a
triangle is calculated as 0.5 * h * b , where h is the height of a triangle with base b . Figure 1 - 2 shows
the area of two types of polygon.

Area of a Triangle � (1/2 h) � b

Area of a Rectangle � w � h

h

b w

h

Figure 1-2: Area of two polygons

 For each subclass of Polygon that you create, you will probably want to substitute an equation for the
default implementation of the area method with one specific to the type of polygon class. By redefining
that method for the class, you can provide your own implementation.

Chapter 1: Introduction to Object-Oriented Programming

21

 In the case of the Rectangle class, you would create two new properties, height and width , and override
the Polygon class ’ s implementation of the getArea() method. For the Triangle class, you would
probably add properties to store information about the three angles, the height, and the length of the base
segment, and override the getArea() method. By using inheritance and overriding methods of the parent
class, you can allow the subclasses to specialize their implementations of those methods.

 A function that takes a Polygon as a parameter and needs to print the area of that polygon will then
automatically call the getArea() method of the subclass of Polygon that was passed to it (that is,
 Rectangle or Triangle). This capability for an OOP language to automatically determine at run - time
which getArea() method to call is known as polymorphism . Polymorphism is the ability of an
application to do different things based on the particular object it is acting on. In this case, that means
invoking a different getArea() method.

 Override a method in a subclass when the parent class ’ s implementation is different from that required
by the subclass. This allows you to specialize the activities of that subclass.

 Sometimes you want to retain the implementation provided by the parent class, but also perform some
additional activities in the method of the subclass. For example, if you have an application that manages
a nonprofit organization, you would probably have a class called Volunteer that would have a method
called signUp() ; this method would enable the volunteer to sign up for a community service project
and add the user to the list of volunteers for that activity.

 You might, however, have some users with restrictions (such as a criminal background) that should
prevent them from signing up for certain projects. In this case, polymorphism enables you to create a
class called RestrictedUser with an overridden signUp() method that first checks the restrictions
on the user account against the properties of the project, preventing users from signing up if their
restrictions do not allow them to volunteer for a particular activity. If their restrictions do not prohibit
them from participating, then you should invoke the actions of the parent class to complete their
registration.

 When you override methods of the parent class, you do not necessarily need to completely rewrite the
method. You can continue to use the implementation provided by the parent, but add additional
specialization for your subclass. In this way, you can reuse code and also provide customizations as
required by the business rules.

 The capability of one class to inherit the methods and properties of another class is one of the most
compelling features of an OO system, and one that enables you to gain an incredible level of efficiency
and flexibility in your applications.

 In the following example, you ’ ll create two classes — Rectangle and Square . A square is a special
kind of rectangle. Anything you can do with a rectangle you can do with a square; however, because a
rectangle has two different side lengths and a square has only one, you need to do some things
differently.

Part I: Fundamentals of Professional Development

22

 Create a file called class.Rectangle.php and add the following code:

 < ?php

 class Rectangle {
 public $height;
 public $width;

 public function __construct($width, $height) {
 $this- > width = $width;
 $this- > height = $height;
 }

 public function getArea() {
 return $this- > height * $this- > width;
 }

 }
? >

 This is a fairly straightforward implementation of a class to model a rectangle. The constructor takes
parameters for the width and height, and the area function calculates the area of the rectangle by
multiplying them together.

 Now, take a look at class.Square.php , shown here:

 < ?php
 require_once(‘class.Rectangle.php’);

 class Square extends Rectangle {
 public function __construct($size) {
 $this- > height = $size;
 $this- > width = $size;
 }

 public function getArea() {
 return pow($this- > height, 2);
 }

 }
? >

 This code overrides both the constructor and the getArea() method. For a rectangle to be a square, all
four sides must be of the same length. As a result, you need only one parameter for the constructor. If
more than one parameter is passed to the function, any values after the first parameter are ignored.

 PHP does not raise an error if the number of parameters passed to a user - defined function is greater
than the number of parameters established in the function declaration. In a few cases, this is actually
desired behavior. If you ’ d like to learn more, see the PHP documentation of the built - in
 func_get_args() function.

 The getArea() function also was overridden. The implementation in the Rectangle class would
have returned a perfectly correct result for the Square objects. The method was overridden to
improve application performance (although, in this case, the performance benefit is minuscule).

Chapter 1: Introduction to Object-Oriented Programming

23

It is faster for PHP to fetch one property and compute its square than to fetch two properties and
multiply them together.

 By overriding constructors, destructors, and methods, you can alter aspects of how subclasses operate.

 Preserving the Parent ’ s Functionality

 Sometimes you want to preserve the functionality provided by the parent. You don ’ t need to completely
override the function; you just need to add something to it. You could copy all the code from the parent
method into the subclass ’ s method, but as you ’ ve already seen, OOP offers you better ways of doing this
than just copying lines of code.

 To call the functionality provided by the parent, use the syntax parent::[function name] . When you just
want to add additional behavior to a method, first you call parent::[function name] and then add your
additional code. When extending a function in this way, always call the method on the parent before doing
anything else. Doing so ensures that any changes to the operation of the parent won ’ t break your code.

 Because the parent class may be expecting the object to be in a certain state, or may alter the state of the
object, overwrite property values, or manipulate the object ’ s internal data, always invoke the parent
method before adding your own code when extending an inherited method.

 The following example has two classes: Customer and SweepstakesCustomer . A supermarket has an
application that, from time to time, switches which class is being used in the cash register application
when certain promotions are run. Each customer who comes in has his or her own ID value (which
comes from a database), as well as a customer number (which indicates how many customers have come
to the supermarket before him or her). For these sweepstakes, the millionth customer wins a prize.

 Create a file called class.Customer.php and add the following code:

 < ?php

 class Customer {
 public $id;
 public $customerNumber;
 public $name;

 public function __construct($customerID) {
 //fetch customer infomation from the database
 //
 //We’re hard coding these values here, but in a real application
 //these values would come from a database
 $data = array();
 $data[‘customerNumber’] = 1000000;
 $data[‘name’] = ‘Jane Johnson’;

 //Assign the values from the database to this object
 $this- > id = $customerID;
 $this- > name = $data[‘name’];
 $this- > customerNumber = $data[‘customerNumber’];
 }
 }
? >

www.allitebooks.com

Part I: Fundamentals of Professional Development

24

 Now create a file called class.SweepstakesCustomer.php and enter this code:

 < ?php
 require_once(‘class.Customer.php’);

 class SweepstakesCustomer extends Customer {
 public function __construct($customerID) {
 parent::__construct($customerID);

 if($this- > customerNumber == 1000000) {
 print “Congratulations $this- > name! You ’ re our “ .
 “millionth customer!” .
 “You win a year’s supply of frozen fish sticks! “;
 }

 }

 }
? >

 How Inheritance Works

 The Customer class initializes values from the database based on the customer ID. You would most
likely retrieve the customer ID from a loyalty program swipe card such as the type available at most
larger grocery store chains. With the customer ID, you can fetch the customer ’ s personal data from the
database (just hard - coded in this example), along with an integer value representing how many
customers have entered the store before that customer. Store all this information in public member
variables.

 The SweepstakesCustomer class adds a bit of extra functionality to the constructor. You first invoke the
parent class ’ s constructor functionality by calling parent::_construct and passing to it the
parameters it expects. You then look at the customerNumber property. If this number is the millionth,
you inform this customer that he or she has won a prize.

 To see how to use this class, create a file called testCustomer.php and enter the following code:

 < ?php

 require_once(‘class.SweepstakesCustomer.php’);
 //since this file already includes class.Customer.php, there’s
 //no need to pull that file in, as well.

 function greetCustomer(Customer $objCust) {
 print “Welcome back to the store $objCust- > name!”;
 }

 //Change this value to change the class used to create this customer object
 $promotionCurrentlyRunning = true;
 if ($promotionCurrentlyRunning) {

http://www.allitebooks.org

Chapter 1: Introduction to Object-Oriented Programming

25

 $objCust = new SweepstakesCustomer(1000000);
 } else {
 $objCust = new Customer(1000000);
 }

 greetCustomer($objCust);

? >

 Run testCustomer.php in your browser with the $promotionCurrentlyRunning variable set first to
 false and then to true . When the value is true , the prize message is displayed.

 Interfaces
 Sometimes you have a group of classes that are not necessarily related through an inheritance - type
relationship. You may have totally different classes that just happen to share some behaviors in common.
For example, both a jar and a door can be opened and closed, but they are in no other way related. No
matter the kind of jar or the kind of door, they both can carry out these activities, but there is no other
common thread between them.

 What Interfaces Do

 You see this same concept in OOP as well. An interface enables you to specify that an object is capable of
performing a certain function, but it does not necessarily tell you how the object does so. An interface
is a contract between unrelated objects to perform a common function. An object that implements
this interface is guaranteeing to its users that it is capable of performing all the functions defined by the
interface specification. Bicycles and footballs are totally different things, but objects representing those
items in a sporting goods store inventory system must be capable of interacting with that system.

 By declaring an interface and then implementing it in your objects, you can hand completely different
classes to common functions. The following example demonstrates the rather prosaic door - and - jar
analogy.

 Create a file called interface.Openable.php :

 < ?php

 interface Openable {
 public function open();
 public function close();
 }

? >

 Just as you name your class files class.[class name].php , you should use the same convention with
interfaces and call them interface.[interface name].php .

 You declare the interface Openable using a syntax similar to that of a class, except that you substitute
the word interface for the word class . An interface does not have member variables, and it does not
specify an implementation of any of its member functions.

Part I: Fundamentals of Professional Development

26

 Because no implementation is specified, you declare these functions to be abstract . Doing so tells PHP
that any class implementing this interface is responsible for providing an implementation of the
functions. If you fail to provide an implementation of all the abstract methods of an interface, PHP will
raise a run - time error. You may not selectively choose some of the abstract methods to implement; you
must provide implementations of them all.

 How Interfaces Work

 The Openable interface is a contract with other parts of the application that says any class implementing
this interface will provide two methods, called open() and close() , that take no parameters. With this
agreed - upon set of methods, you can allow very different objects to pass into the same function without
the need for an inherited relationship to exist between them.

 Create the following file, called class.Door.php :

 < ?php

require_once(‘interface.Openable.php’);

class Door implements Openable {

 private $_locked = false;

 public function open() {
 if($this- > _locked) {
 print “Can’t open the door. It’s locked.”;
 } else {
 print “creak... < br > ”;
 }
 }

 public function close() {
 print “Slam!! < br > ”;
 }

 public function lockDoor() {
 $this- > _locked = true;
 }
 public function unlockDoor() {
 $this- > _locked = false;
 }

 }
? >

 Now create a file called class.Jar.php :

 < ?
require_once(‘interface.Openable.php’);

class Jar implements Openable {
 private $contents;
 public function __construct($contents) {

Chapter 1: Introduction to Object-Oriented Programming

27

 $this- > contents = $contents;
 }

 public function open() {
 print “the jar is now open < br > ”;
 }

 public function close() {
 print “the jar is now closed < br > ”;
 }
}
? >

 To use these files, create a new file called testOpenable.php in the same directory:

 < ?php
 require_once(‘class.Door.php’);
 require_once(‘class.Jar.php’);

 function openSomething(Openable $obj) {
 $obj- > open();
 }

 $objDoor = new Door();
 $objJar = new Jar(“jelly”);

 openSomething($objDoor);
 openSomething($objJar);
? >

 Because both the Door class and the Jar class implement the Openable interface, you can pass both to
the openSomething() function. Because that function accepts only something that implements the
 Openable interface, you know that you can call the functions open() and close() within it. However,
you should not attempt to access the contents property of the Jar class or utilize the lock() or
 unlock() functions of the Door class within the openSomething() function, because that property and
those methods are not part of the interface. The interface contract guarantees that you have open() and
 close() and nothing else.

 By using interfaces in your application, you can allow completely different and unrelated objects to talk
to each other with a guarantee that they will be able to interact on the terms specified in the interface.
The interface is a contract to provide certain methods.

 Encapsulation
 As mentioned earlier in this chapter, objects enable you to hide the details of their implementation from
users of the object. You do not need to know whether the Volunteer class mentioned earlier stores
information in a database, a flat text file, an XML document, or another data - storage mechanism in order
to be able to invoke the signUp() method. Similarly, you do not need to know whether the information
about the volunteer contained within the object is implemented as single variables, an array, or even
other objects.

Part I: Fundamentals of Professional Development

28

 This ability to hide the details of implementation is known as encapsulation . Generally speaking,
encapsulation refers to two concepts: protecting a class ’ s internal data from code outside that class, and
hiding the details of implementation.

 The word encapsulate literally means to place in a capsule, or outer container. A well - designed class
provides a complete outer shell around its internals, and presents an interface to code outside the class
that is wholly separated from the particulars of those internals. By doing so, you gain two advantages:

 You can change the implementation details at any time without affecting code that uses your
class.

 Because you know that nothing outside your class can inadvertently modify the state or
property values of an object built from your class without your knowledge, you can trust the
state of the object and the value of its properties to be valid and to make sense.

 The member variables of a class and its functions have a visibility. Visibility refers to what can be seen by
code outside the class. As mentioned earlier in this chapter, private member variables and functions are
not accessible to code outside the class and are used for the class ’ s internal implementation. Protected
member variables and functions are visible only to the subclasses of the class. Public member variables
and functions are usable by any code, inside or outside the class.

 Generally speaking, all internal member variables of a class should be declared private. Any access
needed to those variables by code outside the class should be done through an accessor method. You
don ’ t let someone who wants you to try a new food blindfold and force - feed you; you need to be able to
examine the item and determine whether you want to allow it into your body. Similarly, when an object
wants to allow code outside it to change properties or in some other way affect its internal data, by
encapsulating access to that data in a public function (and by keeping the internal data private), you
have the opportunity to validate the changes and accept or reject them.

 For example, if you are building an application for a bank that handles details of customer accounts,
you might have an Account object with a property called totalBalance and methods called
 makeDeposit() and makeWithdrawal() . The total balance property should be read - only. The only
way to affect the balance is to make a withdrawal or a deposit. If the totalBalance property were to
be implemented as a public member variable, you could write code that would increase the value of
that variable without having to actually make a deposit. This approach, obviously, would be bad for
the bank.

 Instead, you should implement this property as a private member variable and provide a public method
called getTotalBalance() , which returns the value of that private member variable. Because the
variable storing the value of the account balance is private, you can ’ t manipulate it directly; and because
the only public methods that affect the account balance are makeWithdrawal() and makeDeposit() ,
you have to actually make a deposit if you want to increase the value of your account.

 By allowing you to hide the details of implementation and protect access to internal member variables,
an object - oriented software development approach gives you a flexible, stable application.

 Encapsulation of internal data and method implementations enables an object - oriented software system
to protect and control access to data and hide the details of implementation.

❑

❑

Chapter 1: Introduction to Object-Oriented Programming

29

 Changes to OO in PHP 6
 Support for objects in PHP goes all the way back to PHP 3. There was never any intention of supporting
the idea of classes or objects, but some limited support was added, almost as an afterthought, to provide
 “ syntactic sugar ” (to use Zeev Suraski ’ s phrase) for associative arrays. Object support in PHP was
originally designed as a convenient way of grouping data and functions, but only a small subset of the
features traditionally associated with a full - blown object - oriented programming language was included.
As PHP grew in popularity, the use of an OO approach became increasingly common in large
applications. However, the poor internal implementation became limiting.

 Most notably, there was no support for real encapsulation. You could not specify member variables or
methods to be private or protected. Everything was public — which, as you ’ ve seen, can be
problematic.

 Additionally, there was no support for abstract interfaces or methods. Methods and member variables
could not be declared static. There were no destructors. All these concepts are familiar to anyone with a
background in another OOP language, and the lack of these features in PHP ’ s object model could make
the transition from a language such as Java (which does support all these ideas) to PHP difficult. For
those who have previous experience with PHP 4, Table 1 - 1 lists some of the new features in the PHP

Table 1-1: Object Model Evolution from PHP 4 to PHP 5 and 6

New Feature Benefit

Private, protected member
variables and methods

Real encapsulation and data protection are now possible in
PHP.

Improved dereferencing support Statements such as $obj->getSomething()->doSomething()
are now possible.

Static member variables and
methods

Methods that can be called statically are now clearly
identifiable. Class-level constants help control pollution of the
global namespace.

Unified constructors All class constructors are now called __construct(). This
helps with encapsulation of overridden subclass constructors,
and makes it easier to alter inheritance when multiple classes
are involved in a tree of inheritance.

Destructor support Through the __destruct()method, classes in PHP can now
have destructors. This feature allows actions to be carried out
when the object is destroyed.

Support for abstract classes and
interfaces

You can define required methods in a parent class while
deferring implementation to a subclass. Abstract classes can’t
be instantiated; only their non-abstract subclasses can.

Parameter type hints You can specify the class for function parameters that are
expecting an object. function foo(Bar $objBar) {...
allows you to be sure that the data type of the parameter is
what you expect.

Part I: Fundamentals of Professional Development

30

object model that appeared starting in PHP 5. For those already familiar with OOP in PHP 5, little has
changed in version 6.

 Summary
 In this chapter, you explored the concept of object - oriented programming (OOP). A class was shown as a
blueprint for creating objects. Objects are run - time bundles of data and functions created from a class
definition. They have characteristics, called properties , and behaviors, called methods . Properties can be
thought of as variables, and methods as functions.

 Some classes share a common parent type. For example, squares (children) are a type of rectangle
(parent). When you declare a class to be a subtype of a parent class, it inherits the methods and
properties of the parent. You have the option to override inherited methods. You can completely
re - implement the method, if you so choose, or continue to use the parent ’ s implementation but also
add specializations particular to the subclass (or not override the method at all).

 Encapsulation is an important concept to OOP. It refers to the capability of a class to protect access to its
internal member variables and shield users of that class from the particulars of its implementation.
Member methods and properties have three levels of visibility: private, protected, and public. Private
members can be used only by the class ’ s internal operations. Protected members are visible to subclasses.
Public members can be used by code outside the class.

 Object - oriented (OO) support in PHP received a major overhaul with the introduction of PHP 5 and the
Zend Engine 2. New features and significant performance improvements since PHP version 5, and
further enhanced in PHP 6, make PHP a real OOP language.

 Chapter 2 discusses the Unified Modeling Language (UML), a system for diagramming OO software
architecture that will provide you with the tools for describing and planning the architecture of even the
most complex applications.

 Unified Modeling Language
(UML)

 If you ’ re the only programmer working on a small project, drawing a small sketch of the
application on paper or keeping the design completely in your mind is often sufficient. A solo
programmer can usually complete a project without any problems this way.

 Suppose, however, that you were to get a larger project requiring two developers. You ’ re the one
who ’ s responsible for designing the system, and the second developer is there to help you write the
code. How would you communicate the design of this system to the other person? You could describe
in words what classes were necessary, and provide a description of how the system functions both
for the end user and internally. After a while, you might end up with a lot of text describing
the system. If you imagine a larger project, it quickly becomes clear that describing a large software
system purely in words is not practical; and if you created diagrams of your own design, then you
would have the added task of explaining your system of notation to the other members of the team.

 The Unified Modeling Language (UML) was designed to solve this problem. UML is primarily a
language of standardized diagrams, each of which lends itself to describing a particular area of
software design. UML gives everyone the same way of “ speaking ” about a system, and provides a
powerful method of visualizing it.

 In this chapter, you ’ ll work through the design and development of a hypothetical band - tracking
system called BandSpy. In the process, you ’ ll learn about UML diagrams and where they fit into
the process.

 Requirements Gathering
 Here ’ s the hypothetical scenario for this chapter. A client from a record company has contacted
you to develop a Web - based system to track the bands that the client represents. During an initial
phone conversation, the client explains that BandSpy should enable Web users to view details

32

Part I: Fundamentals of Professional Development

about the different bands the company represents, and check out upcoming concerts. Someone from the
record company should be able to add new bands to the system, edit existing band information, and
book new concert performances for the bands. Although your conversation with the client is informal, it
begins a key part of the software design: the requirements - gathering phase. In this phase, you ’ ll want to
determine exactly what the software needs to do to satisfy its users.

 Interviewing the Client
 Speaking on the phone, you arrange to meet with the client. After some quality get - to - know - you time,
the meeting progresses to a further discussion of the system. The attendees of the meeting are Bill (the
owner of the company), Jane (the operations manager), and Tom (the company “ computer guy ”).

 During your initial interviews, getting a feel for the roles of the people who are involved is important.
You can infer that the people attending the meeting have some interest in how the software works. That
interest, however, may or may not always be beneficial to the outcome of the project.

 The key person to identify during requirements gathering is the person who has detailed knowledge of
the domain — the area that the software will model. That could include someone who previously did
manually what the software will now automate, or it could be someone who knows how the business
works and what the software must do to correctly model it. This person is often referred to as a domain
expert.

 Over the course of the interview, Jane does most of the talking. She describes what they ’ re hoping the
system can accomplish and how the company currently handles this process. It ’ s a good bet that Jane is
your domain expert. During further interviews, speaking to her directly will be useful. Bill stays quiet
most of the time; he probably has other matters to attend to. Tom mentions that he ’ ll be the one actually
entering the data into the system. You note that you may have to devote a little time to explaining the
use of the administration tools to him.

 During the course of the meeting you take notes on what Jane says the system must do, and you come
out with the following list:

 Users can visit the BandSpy Web site and browse information about bands. Band information
includes the type of band, musicians in the band, and what instruments they play.

 Users can view information about upcoming performances that might include one or multiple
bands.

 A site administrator can add new information about bands.

 A site administrator can edit existing band information.

 A site administrator can add a new performance. Adding a new performance includes booking a
venue and generating tickets. Separate third - party companies handle both the venue booking
and the tickets. These companies have reservation systems that you will need to notify via the
BandSpy software.

 Now that you have a list of requirements, it ’ s time to start putting the UML diagrams to work.

❑

❑

❑

❑

❑

Chapter 2: Unifi ed Modeling Language (UML)

33

 Use Case Diagrams
 Use case diagrams show the system from the task - oriented perspective of a user. One use case represents a
task the user is trying to accomplish with the system. Figure 2 - 1 shows a very simple use case diagram
for users visiting the BandSpy site and browsing band information.

User

browse band info

Figure 2-1: A simple use case diagram

 The stick figure is called an actor , and the bubble is the use case . The line indicates that this actor can
perform the connected use case. In use case diagrams, the actor is usually a role associated with a
person, although it can represent an external system that acts upon your system.

 Notice that the use case “ browse band info ” is rather general. A high level of detail isn ’ t necessary here.
You just want to be able to cover all the use cases the system should be capable of handling. If necessary,
use cases can be broken down into their separate scenarios. A scenario is the sequence of steps comprising
the use case. For example, the scenario for the previous use case is as follows:

 1. The user goes to the BandSpy Web site.

 2. The user navigates the site using the menu.

 3. The user examines band/musician/concert information.

 Figure 2 - 2 shows the use case diagram for the administrative tasks.

Administrator

add band info

modify band info

book a performance

Figure 2-2: Use case diagram for the administrator

tasks

www.allitebooks.com

34

Part I: Fundamentals of Professional Development

 The administrative use cases are the separate tasks that the administrator might attempt when using the
BandSpy system. The client has mentioned that he would like the administrative section of the site to
require a password - protected login. Because logging into the system can be thought of as a task itself,
you can use an include to show that this use case is part of all three other use cases. Figure 2 - 3 shows
the use of an include , indicated by a dashed line.

Administrator

add band info

modify band info log into system

book a performance

<<include>>

<<include>>

<<include>>

Figure 2-3: Indicating an include in a use case diagram

 Multiple actors may appear within a use case diagram. Often, different actors may share a use case.
Figure 2 - 4 shows the completed use case diagram for the BandSpy system. Because both the
administrator and the regular users can look up band information, they share that use case. Additionally,
the use case shows the nonhuman actor (the venue booking system) performing the task of updating
information about an upcoming performance.

http://www.allitebooks.org

Chapter 2: Unifi ed Modeling Language (UML)

35

 Class Diagrams
 Although the use case diagrams provide a useful way to express what capabilities the system will have
for various actors, they do little to explain the inner workings of the software. This is the point at which
you can start using the other UML diagrams, as well as your knowledge of objects, to define those inner
workings in more detail.

 Modeling the Domain
 After the interviews with the client are complete, and the use cases have been finalized, you can move on
to the process of designing the software to model the domain. One thing that this means is developing
the system so that its classes are closely modeled after what they represent in real life. For instance, in
this example application, users can see information about different types of musicians, so it ’ s probably a
good idea to have a Musician class or, even better, a Musician interface that all different types of
musicians can implement.

 Class diagrams are probably the most important diagrams to use and understand. They provide a good
balance of detail and flexibility. They provide a description of the domain you ’ re modeling, and allow a
varying level of detail — from a very high level to very specific — about the exact methods and
properties of a class. In addition, they ’ re useful for describing interesting object - oriented (OO) concepts
such as design patterns, which are covered in Chapter 4.

Venue Booking System

Administrator

update performance

information

add band info

modify band info

book a performance

lookup band info

log into system

<<include>>

<<include>>

<<include>>

User

Figure 2-4: Showing multiple actors sharing a common task

36

Part I: Fundamentals of Professional Development

 Figure 2 - 5 shows the basics of a class diagram. The top box in the rectangle shows the name of the class.
The middle box shows its attributes, and the bottom box shows its operations. In PHP, the terms “ attributes ”
and “ operations ” translate to member variables and methods, respectively, in the Musician class.

Musician

�type:String

�firstName:String

�lastName:String

�bandName:String

�getBand():String

�getName():String

�getType():String

�setBand()

�setType()

�setName()

Figure 2-5: A class diagram

 The attribute types are indicated after the colon. In this simple example, all the attribute types are
strings. The minus sign (�) says that the attributes are private members of the class. The plus sign (+) in
front of the operations indicates that they are public. If an operation returns a value, its type is shown
after the colon. Again, in this example, they are all strings.

 The following is the PHP code for Musician shown in the class diagram. Type this into a file called
 class.Musician.php :

class Musician {

 private $last;
 private $first;
 private $bandName;
 private $type;

 function __construct($last, $first, $musicianType) {
 $this- >last = $last;
 $this- >first = $first;
 $this- >type = $musicianType;
 }

 public function getName() {
 echo $this- >first . $this- > last;
 }

 public function getBand() {
 echo $this- > bandName;
 }

 public function getMusicanType() {
 echo $this- >type;
 }

 public function setName($first, $last) {
 $this- >first = $first;

Chapter 2: Unifi ed Modeling Language (UML)

37

 $this- >last = $last;
 }

 public function setBand($bandName) {
 $this- >bandName = $bandName;
 }
 public function setMusicianType($musicianType) {
 $this- > type = $musicianType;
 }
}

 Relationships
 If your application had only one class, it might not be particularly helpful to draw diagrams. Because the
BandSpy system requires more than one class, you must think about how the objects will interact with
one another. In the previous example, strings were used as the data type for all the member variables.
Generally, this is not a good idea. If a musician were a part of a band, then it would make sense that you
would want more than just the name of the band. For example, you might want the other members of
the band, what genre of music they play, and so on. This type of thinking will guide you during the
design phase of your software. Certain member variables will require a higher degree of complexity, and
therefore must be broken out into their own classes.

 Associations

 If you take a look at Figure 2 - 6 , you can see that the bandName attribute moved over into an attribute of the
 Band class. In addition, note that this diagram does not show every attribute and method in the classes.

�getMusicians()

 ...

Band

�bandName

�bandMusicians

�performances

 ...�getBand():Band

�setBand()

 ...

Musician

�band:Band

 ...

1*

Figure 2-6: Associating the Musician and Band

classes

 When using class diagrams, you need to show only what is important in the context of the diagram.
Simple accessor methods for private member variables are assumed, and hence left out. When a class
diagram is incomplete, you can use ellipses (. . .) to show that certain information is intentionally omitted.

 The line connecting the two classes is a type of relationship known as an association. For this example, the
association is one - to - many — one Band may have many Musicians , or, conversely, many Musicians
can be in one Band , as denoted by the * and 1 beneath the association.

 The association line can also show navigability. In this example, the line without any arrowheads shows
that you can move in both directions, also known as bi - directional navigability. In other words, each class
has an internal reference to the other one. If the association allows you to navigate in only one direction,
it is referred to as unidirectional navigability . Figure 2 - 7 shows the relationship between the Musician
class and the Instrument class. The Musician class has access to any Instrument s in its internal
collection, but the Instrument is not aware of which Musician possesses it.

38

Part I: Fundamentals of Professional Development

 Realizations and Generalizations

 As mentioned previously, creating a Musician interface that all other musician type classes could
implement would be a better idea. This way, you can derive other classes (such as Guitarist and
 Drummer) that follow the rules governing how Musician behaves in your system. As long as you follow
the contract of the Musician interface, you can have confidence that your derived classes will play along
correctly.

 When you want to indicate an interface and the classes that implement it, you show a relationship
between them called a realization. A dashed line shows a realization, with a hollow arrowhead at the end
pointing to the interface. Interfaces in UML diagrams are similar to standard class diagrams, but are
shown using the word interface in guillemots above the interface name. Figure 2 - 8 displays two classes,
 Drummer and Guitarist , implementing the Musician interface.

Musician

�instruments[*]:Instrument

Instrument

1 *

Figure 2-7: Unidirectional navigability

Guitarist Drummer

ClassicalGuitarist RockGuitarist

«interface»

Musician

Figure 2-8: Indicating generalization and realization

 When you want to indicate inheritance either from an abstract class or from another concrete one, you can
use a generalization. A generalization is identical to a realization, except that the line is not dashed. Figure 2 - 8
also shows the subclassing of Guitarist to create the RockGuitarist and ClassicalGuitarist classes.

 Composites

 Often, the useful relationships of classes are not based on associations or inheritance, but rather on the
way classes are grouped. Consider the example of a drum set. In this example application, the
 Instrument interface is implemented in a concrete class such as Guitar or Piano , as shown in Figure 2 - 9 .
In addition, the DrumSet , Drum , and Cymbal classes implement it as well. The new notation of the lines
with the black diamonds indicates that the DrumSet is a composite of the Drum and Cymbal classes. One
instance of DrumSet will contain instances of the Drum and Cymbal classes.

Chapter 2: Unifi ed Modeling Language (UML)

39

 A composite is a strict relationship characterized by two rules. First, the parts of a composite may not be
shared elsewhere. In other words, an instance of Drum belonging to an instance of DrumSet may not
belong to any other DrumSet . The second rule is that when an instance of DrumSet is deleted, its
composite parts should also be deleted.

 A more general type of composite is called an aggregate. The notation for an aggregate is the same as a
composite, except that the diamond is hollow. Aggregates are allowed to share instances of other classes,
and therefore are not required to delete them when they themselves are deleted.

 Implementation
 Now that you ’ ve covered the basics of class diagrams, take a look at a bit of sample code based on some
of the concepts just covered. Save all of this code into a single file called test_music.php :

<?php

 interface Band {
 public function getName();
 public function getGenre();
 public function addMusician(Musician $musician);
 public function getMusicians();
 }

 interface Musician {
 public function addInstrument(Instrument $instrument);
 public function getInstruments();
 public function assignToBand(Band $band);
 public function getMusicianType();
 }

 interface Instrument {
 public function getName();
 public function getCategory();
 }

 class Guitarist implements Musician {
 private $last;

Instrument

<<interface>>

Piano DrumSet Drum Cymbal

1
1

*
*

Guitar

Figure 2-9: Indicating composites

40

Part I: Fundamentals of Professional Development

 private $first;
 private $musicianType;
 private $instruments;
 private $bandReference;

 function __construct($first, $last) {
 $this->last = $last;
 $this->first = $first;
 $this->instruments = array();
 $this->musicianType = “guitarist”;
 }

 public function getName() {
 return $this->first . “ “ . $this->last;
 }

 public function addInstrument(Instrument $instrument) {
 array_push($this->instruments, $instrument);
 }

 public function getInstruments() {
 return $this->instruments;
 }

 public function getBand() {
 return $this->bandReference;
 }

 public function assignToBand(Band $band) {
 $this->bandReference = $band;
 }

 public function getMusicianType() {
 return $this->musicianType;
 }

 public function setMusicianType($musicianType) {
 $this->musicianType = $musicianType;
 }

 }

 class LeadGuitarist extends Guitarist {
 function __construct($last, $first) {
 parent::__construct($last, $first);
 $this->setMusicianType(“lead guitarist”);
 }
 }

 class RockBand implements Band {
 private $bandName;
 private $bandGenre;
 private $musicians;

Chapter 2: Unifi ed Modeling Language (UML)

41

 function __construct($bandName) {
 $this->bandName = $bandName;
 $this->musicians = array();
 $this->bandGenre = “rock”;
 }

 public function getName() {
 return $this->bandName;
 }

 public function getGenre(){
 return $this->bandGenre;
 }

 public function addMusician(Musician $musician){
 array_push($this->musicians, $musician);
 $musician->assignToBand($this);
 }

 public function getMusicians() {
 return $this->musicians;
 }
 }

 class Guitar implements Instrument {

 private $name;
 private $category;

 function __construct($name) {
 $this->name = $name;
 $this->category = “guitar”;
 }

 public function getName() {
 return $this->name;
 }

 public function getCategory() {
 return $this->category;
 }
 }

 // Test Objects
 $band = new RockBand(“The Variables”);
 $bandMemberA = new Guitarist(“Jack”, “Float”);
 $bandMemberB = new LeadGuitarist(“Jim”, “Integer”);

 $bandMemberA->addInstrument(new Guitar(“Gibson Les Paul”));
 $bandMemberB->addInstrument(new Guitar(“Fender Stratocaster”));
 $bandMemberB->addInstrument(new Guitar(“Hondo H-77”));

Download at WoweBook.com

42

Part I: Fundamentals of Professional Development

 $band->addMusician($bandMemberA);
 $band->addMusician($bandMemberB);

 foreach($band->getMusicians() as $musician) {
 echo “Musician “.$musician->getName() . “
”;
 echo “is the “ . $musician->getMusicianType() . “
”;
 echo “in the “ . $musician->getBand()->getGenre() . “ band
”;
 echo “called “ . $musician->getBand()->getName() . “
”;

 foreach($musician->getInstruments() as $instrument) {
 echo “And plays the “ . $instrument->getName() . “ “;
 echo $instrument->getCategory() . “
”;
 }
 echo “<p>”;
 }
?>

 Although this example is fairly simple, it illustrates an important aspect of object - oriented programming
(OOP). Notice how no conditional branching occurs when the objects are tested at the end. You don ’ t
need to find out what type of Musician or Instrument you ’ re dealing with before calling its methods.
Because the rules of the interface were followed, you can trust that the objects will all respond
appropriately and uniquely to their implementation. As discussed in Chapter 1, this is what ’ s referred to
as polymorphism . Anytime you need to add another type of Musician , you can just write the new class,
defining its behavior behind the standard Musician interface.

 Activity Diagrams
 Jane mentioned in an earlier meeting that the BandSpy application will need to hook into two other
third - party systems — the ticketing system and the venue reservation system — when a new
performance is added. To understand the order of events necessary to accomplish this task, you can
draw an activity diagram. Activity diagrams are good in any situation when you need to understand the
flow of activities going on within a use case. In this example, the use case is the BandSpy administrator
booking a performance.

 Further conversations with Jane reveal that the BandSpy system will have to not only send a message to
the venue reservation system, but also receive information back from both systems. The venue system
will send a confirmation that the venue is available, and the ticketing system will transmit ticketing
information (such as pricing). If the administrator attempts to book a venue on a date or time that is not
available, the venue system will indicate that fact to BandSpy. The administrator will be notified and
may try to book another date.

 Figure 2 - 10 shows the activity diagram for the process described here. Activity diagrams begin with a
solid black circle called the starting point. From there, the flow of the process follows the arrows (known
as transitions) into rounded rectangles representing activities .

Chapter 2: Unifi ed Modeling Language (UML)

43

BandSpy System Venue Reservation System Ticket System

update performance information

Add Performance

Make Venue System

Alert Administrator

Reduce Message

Check Availability

Send Confirmation

[venue not available]

[venue available]

Generate Tickets

Send Ticket Data

Figure 2-10: An activity diagram

44

Part I: Fundamentals of Professional Development

 A black hollow diamond indicates a decision point. As the name suggests, the flow of transitions is split,
based on some decision or condition. In the diagram, the decision is whether the venue is available on
the requested date.

 After the decision, a large black bar called a fork splits the flow to two different activities. In the venue
system, a confirmation is generated and sent back to the BandSpy system, where the ticket system is
fired up to start generating tickets for the event. Information from both the ticket system and the venue
system is sent back to BandSpy, where it meets up in another black bar called a join. The join indicates
that both external systems messages must reach the join for the activity diagram to proceed to its final
step: storing and updating information about the new performance.

 The three large rectangles dividing the activities particular to each system are called swimlanes. Although
swimlanes are not mandatory, they often help to clarify the diagram when multiple systems are
involved.

 Sequence Diagrams
 You may have noticed that the BandSpy application has a hierarchy of classes. Band classes contain
 Musician s that have Instrument s that may be composites of other Instrument s. During the use of the
application, messages are relayed through the object relationships. You can think of method calls as a
kind of message that one object might call on another. For example, if an instance of Band needed to
know what Instrument s its Musician s were playing, it would send a message to call
 getInstruments() to all its Musician s. Another way of saying this is that Band is calling
the getInstruments() method on all its Musician s.

 It ’ s useful to visualize how messages move between different objects, and UML provides another
diagram that ’ s designed to represent that movement: the sequence diagram.

 Sequence diagrams can usually be tied to an individual use case. The previous discussion on use cases
contained a general “ browse band info ” use case. To illustrate the sequence diagram, you can break the
 “ browse band info ” use case down into more specific cases. Figure 2 - 11 shows some more specific use
cases for the “ User ” actor.

User
see upcoming

band performances

view musicians
in band

look up instruments
by band

Figure 2-11: More specific use cases for

the User

Chapter 2: Unifi ed Modeling Language (UML)

45

 For the “ lookup instruments by band ” use case, the sequence diagram should show all the objects
involved and the messages passed between them to complete the tasks. Figure 2 - 12 shows the sequence
diagram.

User

System Band Musician Instrument

getName()

getInstruments()

getBandMembers()

getBandByName()

viewInstruments()

Figure 2-12: A sequence diagram

 The boxes at the top show the instances of objects involved in the sequence. In general, a box with an
underlined name denotes an instance, rather than a class. The dashed line descending from the object is
the object ’ s lifeline. In this case, the lifeline doesn ’ t indicate the creation or deletion of any of your objects —
 before this use case was acted upon, all the objects were already there. However, it is possible to indicate
the instantiation of an object by using a “ create ” message and a large X at the bottom of the object ’ s
lifeline to show its deletion.

 The vertical rectangle shows the object ’ s activation — that is, the time during which the object is involved
in the execution of a particular operation. Time in this case is represented vertically, so the longer an
object ’ s activation (denoted by the length of the rectangle that represents it), the longer it is involved in
the operation.

 Another object in the application, the System object, is introduced in this diagram. In the BandSpy
application, the System object will receive all messages from the Web GUI, rather than allow it to
interact directly with your other objects. This way, the application has a single point of entry.

46

Part I: Fundamentals of Professional Development

 Arrows indicate messages. They ’ re named with the corresponding method names of the objects, but it ’ s
okay to be less formal about it and just use a non - methodlike name for the message. Taking the messages
step by step, the sequence is as follows:

 1. A user requests to see all instruments of a particular band by typing in the band ’ s name.

 2. The System object looks up the band reference by performing a self - call on its own utility method.

 3. The System object uses the found band reference and calls the getBandMembers method on it.

 4. The Band object calls the getInstruments method of its assigned musicians.

 5. The Musician object calls the getName method on each of its assigned instruments.

 6. The Instrument names are returned to the system object for display to the user.

 State Diagrams
 State diagrams are handy when you want to show the changes to a single object ’ s state during its life
cycle. State changes can be simple differences in member variables, or more complex behavior such as
polling for a response from an external source.

 In BandSpy, the Performance class has a life cycle that ’ s worth documenting with a state diagram.
When a new Performance object is created, it must contact the venue reservation system and await a
confirmation. If the response from the venue system says the reservation is good, the performance must
be permanently stored. If the reservation is not accepted, the Performance object should inform the
system and then be destroyed. In Figure 2 - 13 , a state diagram shows the various states for the object.

initializing

dispatching message awaiting confirmation

notify system

destroy

[confirmation ok]

[confirmation failed]

store

if the venue reservation system fails
to respond in 1 minute, consider the
confirmation failed.

Figure 2-13: A state diagram

Chapter 2: Unifi ed Modeling Language (UML)

47

 The solid circle shows the start of the object ’ s life cycle, and arrows indicate transitions from one state to
another. After the new Performance is initialized and dispatches a message to the venue system, the
awaiting confirmation state polls until it receives a message back from the venue system.

 One new symbol in Figure 2 - 13 is a note indicating that the awaiting confirmation state should wait one
minute to receive a reply from the venue system. A note can be used in any UML diagram where you
want to add extra information such as this.

 Component and Deployment Diagrams
 The last diagram discussed in this chapter is the component diagram, which provides a high - level, abstract
view of your software. For the BandSpy component diagram, the majority of the code is reduced to a
single component on the Web server. Technically, elements such as the Web server are parts of another
UML diagram called a deployment diagram. Deployment diagrams show some of the physical elements of
your application ’ s infrastructure (such as the different servers on which your application runs).

 In Figure 2 - 14 , the large cube - shaped boxes are called nodes. Think of a node as a separate piece of physical
hardware, or, in a more conceptual sense, as a defined, separate system of software such as a Web browser.

Web browser

BandSpy GUI

venue reservation system

reservation application

reservation api

Web server

BandSpy Application

BandSpy Database

two-way communication between

BandSpy and third-party venue

reservation system

http

tcp/ip

System

Figure 2-14: A deployment diagram

48

Part I: Fundamentals of Professional Development

 The components are the smaller rectangles within the nodes. Dashed arrows are dependencies. The
BandSpy Web GUI is dependent upon the BandSpy application on the Web server. The reverse is not
true, however; another client could access the system. Solid lines show a connection between nodes —
 for example, the Web browser communicating over HTTP.

 The small circles are a kind of shorthand to show an interface. As mentioned earlier, this example
application has a single System interface that all clients must use. Another interface is shown within the
venue reservation system node. The company that manages the system has provided you with a list of
the public methods you can use. You don ’ t need to know any of the inner workings of the venue system;
you just need to know the methods of the Application Programming Interface (API) used in the
reservation system.

 Summary
 UML provides you with a standardized, flexible language to design and model your software. This
chapter discussed the following UML diagrams:

 Use case diagrams

 Class diagrams

 Activity diagrams

 Sequence diagrams

 State diagrams

 Component and deployment diagrams

 You also learned some concepts about software architecture, such as domain modeling and gathering
requirements.

 Remember, using every diagram is not necessary. The use case and class diagrams are almost always
useful, but the other diagrams are not worth drawing for every class or use case in your software. You
need an activity diagram only if you want to get a better idea of the processes within a single use case.
Use a state diagram if you have an object whose state changes in a complex way during one or more use
cases and you need to make clear how it will work. A few sequence diagrams are usually necessary, but
don ’ t try to diagram every message passed between every instance in your application.

 Chapter 4 discusses software design patterns, which are a way of describing reusable object relationships
that you can use to solve various problems in software development. Because each design pattern is
described with a UML class diagram, you ’ re in good shape to learn about them when you get to that
chapter.

 Chapter 3 starts to look at how you actually implement the concepts examined in this chapter and
in Chapter 1 to make functioning PHP code. You will be using class diagrams to describe the code you
will write, so you ’ ll start to get a sense for how they ’ re used and why they ’ re an important tool to
leverage when designing the application architecture.

❑

❑

❑

❑

❑

❑

 Putting Objects to W ork

 Now that you have gained a good understanding of object - oriented (OO) basics from Chapter 1 ,
let ’ s push on with a slightly more complex look at how you can build a real application using OO
techniques.

 The sample application in this chapter is a contact manager that is intended to manage data about
individuals and organizations, and to enable users to look up and edit contact information
associated with them. The discussion in this chapter is designed to present you with a good
grounding in the issues behind creating working OO applications. Along the way, this chapter also
demonstrates how the major principles behind the OO paradigm (such as code reuse,
encapsulation, inheritance, and, of course, abstraction) can be applied.

 Creating the Contact Manager
 A contact management application enables the user to track individuals and organizations, their
contact information (such as address, e - mail, and phone number), and the relationships between
them. This is basically what Microsoft Outlook ’ s address book does.

 Here ’ s a quick, high - level description of what you might expect from this sort of program:

 The application will track information about individuals and organizations in a database,
and display it on a Web page.

 Contacts can have zero or more addresses, e - mail addresses, and phone numbers.

 An individual has just one employer (an organization).

 An organization has zero or more employees (individuals).

❑

❑

❑

❑

50

Part I: Fundamentals of Professional Development

 You can now take a look at how to begin putting together this solution using UML. One caveat, however,
should be made clear before you begin. This chapter demonstrates how, while designing an application,
your thinking might evolve as you discover new and better ways of implementing the solution. As a
result, the chapter should be read more as a progressive evolution and development of the sample
application, rather than as a straightforward listing of its code. A concrete example such as this can help
you gain a better understanding of how the principles of object - oriented programming (OOP) work.

 The Contact Manager UML Diagrams
 Fire up the UML diagramming application of your choice and create a new file called ContactManager.
[extension] , where [extension] is the default file extension for your application (for example, .dia
for diagrams created using Dia, and so on).

 First, create classes for the different kinds of contact information that you want to represent. For this
sample application, these are address, e - mail address, and phone number classes — but you could create
classes for whatever type of contact information you require. Table 3 - 1 shows the sample application
properties.

Table 3-1 Contact Infor mation Classes

Class Properties

Address street1

street2

city

state

zip (zip code)

type (home, work, and so on)

Email email

type

PhoneNumber number

extension

type

Chapter 3: Putting Objects to Work

51

 These classes just store and display data, so you don ’ t need to define any methods at this time, and the
third sections of the class symbols are empty. The properties are all public, so they ’ re prefixed with a
plus sign. Figure 3 - 1 shows the current UML representation of these classes.

Address Email

+street1

+street2

+city

+state

+zip

+type

+email

+type

PhoneNumber

+number

+extension

+type

Figure 3-1: Basic contact types

Individual

+firstname

+lastname

+employer: Organization

+title

+id

+addresses: Address[]

+emails: EmailAddress[]

+phonenumbers: PhoneNumber[]

+addEmail(objEmail:Email)

+addAddress(objAddress:Address)

+addPhone(objPhone:PhoneNumber)

Address

+street1

+street2

+city

+state

+zip

+type

Email

+email

+type

PhoneNumber

+number

+extension

+type

Figure 3-2: The Individual class and contact

types

 Next, you should map out the Individual and Organization classes. An individual has a first name, a
last name, an employer, a job title, a unique identifier (the id field from the database), and a collection
(of e - mails, addresses, and phone numbers). You must also be able to add contact types. Figure 3 - 2
shows the UML diagram with the Individual class.

52

Part I: Fundamentals of Professional Development

 An organization has a name, a unique identifier, collections of contact types (much as an individual
does), methods to add them, and a collection of employees. Figure 3 - 3 shows the UML diagram with the
 Organization class.

 The diagram shows the Individual and Organization classes sharing a lot of the same properties and
methods. This is generally an indication that you could save yourself a lot of work and improve the
flexibility of your application by using inheritance. You can create another class (Entity , in this
example) in which you combine the features common to the Individual and Organization classes,
and then enable them to share the same code. In a UML diagram, you indicate properties and methods
only on the class that actually implements them. In this case, you must move all the common properties
and methods of the Individual and Organization classes to the symbol representing the Entity
class, as shown in Figure 3 - 4 . You repeat them in the child class (child classes inherit members from their
parent classes) only if the child overrides the implementation.

Organization

+name

+id

+employees: Individual[]

+addresses: Address[]

+emails: EmailAddress[]

+phonenumbers: PhoneNumber[]

+addEmail(objEmail:Email)

+addAddress(objAddress:Address)

+addPhone(objPhone:PhoneNumber)

Individual

+firstname

+lastname

+employer: Organization

+title

+id

+addresses: Address[]

+emails: EmailAddress[]

+phonenumbers: PhoneNumber[]

+addEmail(objEmail:Email)

+addAddress(objAddress:Address)

+addPhone(objPhone:PhoneNumber)

Address

+street1

+street2

+city

+state

+zip

+type

Email

+email

+type

PhoneNumber

+number

+extension

+type

Figure 3-3: The Individual and Organization contact types

Chapter 3: Putting Objects to Work

53

Address

+street1

+street2

+city

+state

+zip

+type

Entity

+addEmail(objEmail:EmailAddress)

+addAddress(objAddress:Address)

+addPhone(objPhone:PhoneNumber)

Individual

+firstname

+lastname

+name

+employer: Organization

+title

Organization

+employees: Individual

Email

+email

+type

PhoneNumber

+number

+extension

+type

+name

+id

+addresses: Address

+phonenumbers: PhoneNumber

+emails: EmailAddress

Figure 3-4: The Entity class, a common superclass of Individual and

Organization

 In this case, the name property of the Entity class is overridden in the Individual class. When you
retrieve the name property of an Individual, you ’ ll return “ lastname , firstname ” . This way, you can
hand the Organization or Individual classes to a function that will just print a name without having
to use separate functions.

 UML also defines symbols to indicate relationships. In this example, you need something to show that
the Individual and Organization classes inherit from the Entity class. As you have seen, the UML
specification calls this relationship generalization, and indicates it by an open - headed arrow that points
from the child class(es) to the parent class, as shown in Figure 3 - 5 .

54

Part I: Fundamentals of Professional Development

 Now it ’ s clear that the Individual and Organization classes inherit from the Entity class. Using
connectors to indicate inheritance makes it easy to glance at the diagram and see how the classes relate
to one another.

 There ’ s another type of connection you need to show — the Entity class, which uses the Address ,
 Email , and PhoneNumber classes. The UML specification calls this relationship a composite , and you
indicate it by using a black diamond on the end of the line attached to the user of the class, as shown in
Figure 3 - 6 . The classes being used also have a property called multiplicity (that is, how many of them are
used). In this example, an entity may have zero, one, or more of any of the contact types, so you write
 0..* on the connector line closest to the item being used to indicate that a class may have 0 or more of
the class to which it points.

 Figure 3 - 6 also shows that notation. By revealing this relationship in the diagram, you can clearly see
which parts of the application will be affected by a change to another part. Here, a change to the Email ,
 Address , or PhoneNumber classes will have an impact on the Entity , Individual , and Organization
classes.

Entity

+name

+id

+addresses: Address

+phonenumbers: PhoneNumber

+emails: EmailAddress

+addEmail(objEmail:EmailAddress)

+addAddress(objAddress:Address)

+addPhone(objPhone:PhoneNumber)

Individual

+firstname

+lastname

+employer: Organization

+title

Organization

+employees: Individual

Address

+street1

+street2

+city

+state

+zip

+type

Email

+email

+type

PhoneNumber

+number

+extension

+type

Figure 3-5: Generalization, indicated by an open-headed arrow

Chapter 3: Putting Objects to Work

55

 An Entity has a PhoneNumber , an Email , and an Address ; and in all three cases, it may have zero or
more of that item. Because Individual and Organization inherit from Entity , both of these also have
zero or more of the contact types.

 This is the basic structure of the application as understood so far. Of course, you could make plenty of
improvements to it by thinking of how you actually begin implementing it in real life. There are a few
important points to note regarding this. In the next section, you ’ ll work on the application. More UML is
shown a little later in this chapter to give you a clear idea of what the final product looks like.

 Recall from the encapsulation discussion in Chapter 1 that it ’ s always a good idea to protect your data in
private member variables, and to use accessor methods to provide access to those properties. Also recall
that using __get and __set makes this process a bit easier. You can see just by looking at the class
diagrams shown earlier in this chapter that all your classes have fairly simple property requirements.
Because you know about inheritance and how to use it to your advantage in PHP, you can remove the
functionality from being tied to just the Entity class, and create a class that will enable you to reuse its
code in other classes — in effect, adding another layer of abstraction to facilitate better use of the
functions common to all the classes. This parent class will be called PropertyObject .

 In the real world, you would probably also want to add a layer of abstraction when dealing with data as
a matter of good practice. To this end, creating a DataManager class is probably a good idea. One more
thing to consider is that, at present, you have no unified facility for data validation, so you need an
interface for anything that can be validated. Quickly, here ’ s the code for the interface:

 < ?php
 interface Validator {
 public function validate();
 }
? >

0..*

0..*

0..*
Entity

+name

+id

+addresses: Address

+phonenumbers: PhoneNumber

+emails: EmailAddress

+addEmail(objEmail:EmailAddress)

+addAddress(objAddress:Address)

+addPhone(objPhone:PhoneNumber)

Individual

+firstname

+lastname

+employer: Organization

+title

Organization

+employees: Individual

Address

+street1

+street2

+city

+state

+zip

+type

Email

+email

+type

PhoneNumber

+number

+extension

+type

Figure 3-6: Composite, indicated by using a black diamond on the end of the line

56

Part I: Fundamentals of Professional Development

 Name the file interface.Validator.php . Now put it to some use with the new PropertyObject
class, which is shown in the next section.

 The PropertyObject Class
 The code that follows shows how to integrate the Validator interface with the PropertyObject class.
Enter the code in a file called class.PropertyObject.php :

 < ?php
require_once(‘interface.Validator.php’);

abstract class PropertyObject implements Validator {

 protected $propertyTable = array(); //stores name/value pairs
 //that hook properties to
 //database field names
 protected $changedProperties = array(); //List of properties that
 //have been modified

 protected $data; //Actual data from
 //the database

 protected $errors = array(); //Any validation errors
 //that might have occurred
 public function __construct($arData) {
 $this- > data = $arData;
 }

 public function __get($propertyName) {
 if(!array_key_exists($propertyName, $this- > propertyTable)) {
 throw new Exception(“Invalid property \”$propertyName\”!“);
 }
 if(method_exists($this, ‘get’ . $propertyName)) {
 return call_user_func(
 array($this, ‘get’ . $propertyName));
 } else {
 return $this- > data[$this- > propertyTable[$propertyName]];
 }
 }

 public function __set($propertyName, $value) {
 if(!array_key_exists($propertyName, $this- > propertyTable)) {
 throw new Exception(“Invalid property \”$propertyName\”!”);
 }
 if(method_exists($this, ‘set’ . $propertyName)) {
 return call_user_func(
 array($this, ‘set’ . $propertyName),
 $value);
 } else {

 //If the value of the property really has changed
 //and it’s not already in the changedProperties array,
 //add it.

Chapter 3: Putting Objects to Work

57

 if($this- > propertyTable[$propertyName] != $value & &
 !in_array($propertyName, $this- > changedProperties)) {
 $this- > changedProperties[] = $propertyName;
 }
 //Now set the new value
 $this- > data[$this- > propertyTable[$propertyName]] = $value;
 }
 }

 public function validate() {

 }
}
? >

 Take a closer look at what ’ s happening here. You ’ ve created four protected member variables. Protected
member variables are visible only to subclasses of a class; they aren ’ t visible to the code that uses those
objects.

 $propertyTable will contain a mapping of human - readable property names to field names in your
database. A common naming convention for database fields involves the use of a prefix to indicate data
type. For example, entities.sname1 might be a field in the table entities of type string , containing
the first name. However, sname1 isn ’ t a terribly friendly name for an object property, so it ’ s useful to
provide a mechanism to translate database field naming conventions to friendly property names.

 $changedProperties is an array that stores a list of the names of the properties that have been modified.

 $data will be an associative array of database field names and values. The array will be supplied to the
constructor with the data structure coming directly from pgsql_fetch_assoc() . This approach makes
constructing a useful object directly from a database query a lot easier, as you ’ ll see shortly.

 The last member variable, $errors , will contain an array of field names and error messages in the event
that the validate method (required by the Validate interface) should fail.

 The class is declared abstract for two reasons. First, the PropertyObject class on its own is not very
useful. The classes that extend PropertyObject still have some work to do before you can use its
methods. Second, you have not provided an implementation of the required method validate() .
Because you are still labeling that method abstract in PropertyObject , you must also label the class
itself abstract , forcing all inheriting classes to implement that function. Anything that attempts to use
classes that extend PropertyObject , but not implement the function, will cause a run - time error.

 Next you see the greatly simplified constructor. The constructor merely accepts the associative array that
will most likely be populated from a database query, and assigns it to the protected member variable
 $data . Most subclasses of PropertyObject will need to override the constructor and do something a
little more interesting.

 Finally, note the internals of the __get() and __set() accessor methods. Because you are storing data
in the $data member, you must be able to map property names to the actual field names in the database.
The lines containing the following code are doing just that:

$this- > data[$this- > propertyTable[$propertyName]]

58

Part I: Fundamentals of Professional Development

 By fetching and assigning values to the $data member using their database field names, rather than
their property names, you are implementing a form of data persistence.

 If the workings of the $data and $propertyTable members aren ’ t clear to you yet, don ’ t worry. They
will be as soon as you see an example.

 The Contact Type Classes
 Now that you have the PropertyObject class, you can start putting it to some use. The files that follow
are for the Address , Email , and PhoneNumber classes.

 In the code, you ’ ll see a reference to a class called DataManager , which will be a wrapper class for all the
database functions you need to use. This wrapper enables you to have one central place for all your data -
 interaction code. You ’ ll examine that class very soon.

 Enter the code that follows (the Address class) into a file called class.Address.php :

 < ?php
 require_once(‘class.PropertyObject.php’);

 class Address extends PropertyObject {

 function __construct($addressid) {
 $arData = DataManager::getAddressData($addressid);

 parent::__construct($arData);

 $this- > propertyTable[‘addressid’] = ‘addressid’;
 $this- > propertyTable[‘id’] = ‘addressid’;
 $this- > propertyTable[‘entityid’] = ‘entityid’;
 $this- > propertyTable[‘address1’] = ‘saddress1’;
 $this- > propertyTable[‘address2’] = ‘saddress2’;
 $this- > propertyTable[‘city’] = ‘scity’;
 $this- > propertyTable[‘state’] = ‘cstate’;
 $this- > propertyTable[‘zipcode’] = ‘spostalcode’;
 $this- > propertyTable[‘type’] = ‘stype’;
 }

 function validate() {
 if(strlen($this- > state) != 2) {
 $this- > errors[‘state’] = ‘Please choose a valid state.’;
 }

 if(strlen($this- > zipcode) != 5 & &
 strlen($this- > zipcode) != 10) {
 $this- > errors[‘zipcode’] = ‘Please enter a 5- or 9-digit zip code’;
 }

 if(!$this- > address1) {
 $this- > errors[‘address1’] = ‘Address 1 is a required field.’;
 }

Chapter 3: Putting Objects to Work

59

 if(!$this- > city) {
 $this- > errors[‘city’] = ‘City is a required field.’;
 }

 if(sizeof($this- > errors)) {
 return false;
 } else {
 return true;
 }
 }

 function __toString() {
 return $this- > address1 . ‘, ‘ .
 $this- > address2 . ‘, ‘ .
 $this- > city . ‘, ‘ .
 $this- > state . ‘ ‘ . $this- > zipcode;
 }

}

? >

 Because the PropertyObject class took care of so much of the work, only two methods in the Address
class needed to be implemented (a __toString() implementation was thrown in just for fun). In the
constructor, you see for the first time how the $propertyTable array works. The list of properties
required in the class was specified in the Address class UML diagram created during the initial
architecture of the application (in the beginning of this chapter).

 Based on the properties of this object, you can also make some decisions about the structure of the
database table. Generally, you need one field for each property; and because this class has to relate back
to the Entity class, you need to store some reference to the parent Entity . Use the following SQL
statement to create the Entity and Address tables:

CREATE TABLE “entity” (
 “entityid” SERIAL PRIMARY KEY NOT NULL,
 “name1” varchar(100) NOT NULL,
 “name2” varchar(100) NOT NULL,
 “type” char(1) NOT NULL
);

CREATE TABLE “entityaddress” (
 “addressid” SERIAL PRIMARY KEY NOT NULL,
 “entityid” int,
 “saddress1” varchar(255),
 “saddress2” varchar(255),
 “scity” varchar(255),
 “cstate” char(2),
 “spostalcode” varchar(10),
 “stype” varchar(50),
 CONSTRAINT “fk_entityaddress_entityid”
 FOREIGN KEY (“entityid”) REFERENCES “entity”(“entityid”)
);

60

Part I: Fundamentals of Professional Development

 A properly named database field indicates its data type by using a one - character prefix, letting you know
what kind of data goes in the field. Having naming conventions is just as important for database design
as it is for your code.

 The propertyTable array is set up in the Address class to map friendly property names (such as city,
state, and zip code) to the less friendly database field names (such as scity , cstate , and
 spostalcode). Note that you can map multiple property names to the same database field name in
 propertyTable . This mapping enables you to refer to the primary key of the address by either
 $objAddress- > addressid or $objAddress-> id .

 What ’ s incredibly exciting about the Address class is that the overwhelming majority of the code is
spent implementing business logic and data validation. There ’ s almost no extraneous code here. Its sole
responsibility is to populate itself and validate its own contents. Everything else is left up to the
 DataManager class (which you ’ ll see in detail shortly) and the PropertyObject .

 Following is the code for the Email class, which should look very familiar. Enter it into a file called
 class.EmailAddress.php :

 < ?php

 require_once(‘class.PropertyObject.php’);

 class Email extends PropertyObject {

 function __construct($emailid) {

 $arData = DataManager::getEmailData($emailid);

 parent::__construct($arData);

 $this- > propertyTable[‘emailid’] = ‘emailid’;
 $this- > propertyTable[‘id’] = ‘emailid’;
 $this- > propertyTable[‘entityid’] = ‘entityid’;
 $this- > propertyTable[‘email’] = ‘semail’;
 $this- > propertyTable[‘type’] = ‘stype’;
 }

 function validate() {
 if(!$this- > email) {
 $this- > errors[‘email’] = ‘You must set an email address.’;
 }

 if(sizeof($this- > errors)) {
 return false;
 } else {
 return true;
 }
 }

 function __toString() {
 return $this- > email;
 }
 }
? >

Chapter 3: Putting Objects to Work

61

 This file has very little ancillary code; it ’ s just fetching the code from the database and setting up the
 propertyTable . Everything else is data validation. Again, the UML diagram was the guide to deciding
on the properties of the Email class and the structure of the corresponding database table.

 The database table for the entityemail table looks like this:

CREATE TABLE “entityemail” (
 “emailid” SERIAL PRIMARY KEY NOT NULL,
 “entityid” int,
 “semail” varchar(255),
 “stype” varchar(50),
 CONSTRAINT “fk_entityemail_entityid”
 FOREIGN KEY (“entityid”) REFERENCES “entity”(“entityid”)
);

 The PhoneNumber class works very much like Address and Email . Here ’ s the code to enter into
class.PhoneNumber.php :

 < ?php
 require_once(‘class.PropertyObject.php’);

 class PhoneNumber extends PropertyObject {

function __construct($phoneid) {
 $arData = DataManager::getPhoneNumberData($phoneid);

 parent::__construct($arData);

 $this- > propertyTable[‘phoneid’] = ‘phoneid’;
 $this- > propertyTable[‘id’] = ‘phoneid’;
 $this- > propertyTable[‘entityid’] = ‘entityid’;
 $this- > propertyTable[‘number’] = ‘snumber’;
 $this- > propertyTable[‘extension’] = ‘sextension’;
 $this- > propertyTable[‘type’] = ‘stype’;

 }

 function validate() {
 if(!$this- > number) {
 $this- > errors[‘number’] = ‘You must supply a phone number.’;
 }

 if(sizeof($this- > errors)) {
 return false;
 } else {
 return true;
 }
 }

 function __toString() {
 return $this- > number .
 ($this- > extension ? ‘ x’ . $this- > extension : ‘’);
 }
 }
? >

62

Part I: Fundamentals of Professional Development

 And here ’ s the SQL statement to create the entityphone table:

CREATE TABLE “entityphone” (
 “phoneid” SERIAL PRIMARY KEY NOT NULL,
 “entityid” int,
 “snumber” varchar(20),
 “sextension” varchar(20),
 “stype” varchar(50),
 CONSTRAINT “fk_entityemail_entityid”
 FOREIGN KEY (“entityid”) REFERENCES “entity”(“entityid”)
);

 The DataManager Class
 Let ’ s now take a look at that DataManager class. It and the other database code samples in this chapter
(and in the rest of this book) use PostgreSQL, although a class like this would work just as well with
MySQL, Oracle, or any other RDBMS. Chapter 6 examines a more sophisticated way of handling
database abstraction, but for now let ’ s keep it simple using the PHP PostgreSQL functions.

 The primary responsibility of the DataManager class is to put all the data access code into a single
location, making it much easier to change the database type or connection parameters later. All the
class ’ s methods have been declared static because the class doesn ’ t rely on any member variables. Note
the use of the static function variable in getConnection() . This is used to ensure that only one database
connection is open during a single page request. A lot of overhead is associated with establishing a
database connection, so eliminating unnecessary connections helps to improve performance. Create a file
called class.DataManager.php and enter the following class code:

 < ?php

require_once(‘class.Entity.php’); //this will be needed later
require_once(‘class.Individual.php’);
require_once(‘class.Organization.php’);

class DataManager {

 private static function _getConnection() {
 static $hDB;

 if(isset($hDB)) {
 return $hDB;
 }

 $hDB = pg_connect(“host=localhost port=5432 “ .
 “dbname=[your db name] user=[your user name]
 password=[your password]”)
 or die(“Failure connecting to the database!”);
 return $hDB;
 }

 public static function getAddressData($addressID) {
 $sql = “SELECT * FROM \”entityaddress\” WHERE\”addressid\” = $addressID”;
 $res = pg_query(DataManager::_getConnection(), $sql);

Chapter 3: Putting Objects to Work

63

 if(! ($res & & pg_num_rows($res))) {
 die(“Failed getting address data for address $addressID”);
 }

 return pg_fetch_assoc($res);
 }

 public static function getEmailData($emailID) {
 $sql = “SELECT * FROM \”entityemail\” WHERE\”emailid\” = $emailID”;
 $res = pg_query(DataManager::_getConnection(), $sql);
 if(! ($res & & pg_num_rows($res))) {
 die(“Failed getting email data for email $emailID”);
 }

 return pg_fetch_assoc($res);
 }

 public static function getPhoneNumberData($phoneID) {
 $sql = “SELECT * FROM \”entityphone\” WHERE \”phoneid\” = $phoneID”;
 $res = pg_query(DataManager::_getConnection(), $sql);
 if(! ($res & & pg_num_rows($res))) {
 die(“Failed getting phone number data for phone $phoneID”);
 }

 return pg_fetch_assoc($res);
 }
}
? >

 The DataManager class provides the data structures used to populate the $data member of your
 PropertyObject subclasses. Separate functions return the data for each of the types. You ’ ll be adding a
few new functions to this class a bit later in this chapter. Note that the values supplied to pg_connect
do not need the square brackets. All of the values in the square brackets (including the brackets
themselves) should be replaced with the appropriate connection details for your server.

 All the methods of this class are declared to be static . Remember that static methods are those
requiring all member variables to be static, too. You don ’ t need to instantiate static classes to use their
methods. There are several scenarios in which this makes sense. Consider a class called Math that
exposes methods such as squareRoot() , power() , and cosine() , and has properties including the
mathematical constants e and pi . All instances of this class perform the same math. The square root of 2
doesn ’ t change; 4 raised to the third power will always be 64; and the two constants are, well, constant.
There ’ s no need to create separate instances of this class because its state and properties never change. A
class called Math implemented in this manner should allow for all its functions to be called statically.

 The DataManager class is much the same. All the functions are self - contained. No nonstatic member
variables are present for the functions to interact with. The class exposes no properties. You can invoke
the methods of the class using the static method operator :: as a result. Because all the methods you ’ ve
created are static, you need never instantiate the object with $obj = new DataManager() and then call
methods using syntax such as $obj - >getEmail() . Instead, you can use the simple syntax
 DataManager::getEmail() .

64

Part I: Fundamentals of Professional Development

 The Entity, Individual, and Organization Classes
 With all the supporting classes in place, you can move on to the core of the application: the Entity class
and its subclasses.

 First, ensure that you ’ re updating your UML diagram as you make changes to the object hierarchy so
that you keep track of what you (or the development team) are doing. You ’ ve created the
 PropertyObject class and made all your classes inherit from it, with one exception — the new
 DataManager class, which does not inherit from anything, but rather merely provides data abstraction
functionality. The PropertyObject implements an abstract interface called Validator . Figure 3 - 7
shows the updated diagram.

DataManager

+getEmailData()

+getAddressData()

+getPhoneNumberData()

+...()

0.. *
0.. *

0.. *

#propertyTable
#changedProperties
#data
#errors

+_construct(arData:Array)

+_get(propertyName)

+_set(propertyName,value)

<<Validator>>

PropertyObject

Validator

Entity

+name

+id

+addresses: Address

+phonenumbers: PhoneNumber

+emails: EmailAddress

+addEmail(objEmail:EmailAddress)

+addAddress(objAddress:Address)

+addPhone(objPhone:PhoneNumber)

Individual

+firstname

+lastname

+employer: Organization

+title

Organization

+employees: Individual

Address

+street1

+street2

+city

+state

+zip

+type

Email

+email

+type

PhoneNumber

+number

+extension

+type

+validate()

+validate()

Figure 3-7: Updated UML diagram

Chapter 3: Putting Objects to Work

65

 Now you can begin to develop the Entity , Individual , and Organization classes. The following
code shows the fully implemented Entity class called class.Entity.php :

 < ?php

 require_once(‘class.PropertyObject.php’);
 require_once(‘class.PhoneNumber.php’);
 require_once(‘class.Address.php’);
 require_once(‘class.EmailAddress.php’);

 abstract class Entity extends PropertyObject {
 private $_emails;
 private $_addresses;
 private $_phonenumbers;

 public function __construct($entityID) {
 $arData = DataManager::getEntityData($entityID);

 parent::__construct($arData);

 $this- > propertyTable[‘entityid’] = ‘entityid’;
 $this- > propertyTable[‘id’] = ‘entityid’;
 $this- > propertyTable[‘name1’] = ‘sname1’;
 $this- > propertyTable[‘name2’] = ‘sname2’;
 $this- > propertyTable[‘type’] = ‘ctype’;
 $this- > _emails = DataManager::getEmailObjectsForEntity($entityID);
 $this- > _addresses = DataManager::getAddressObjectsForEntity($entityID);
 $this- > _phonenumbers = DataManager::
 getPhoneNumberObjectsForEntity($entityID);
 }

 function setID($val) {
 throw new Exception(‘You may not alter the value of the ID field!’);
 }

 function setEntityID($val) {
 $this- > setID($val);
 }

 function phonenumbers($index) {
 if(!isset($this- > _phonenumbers[$index])) {
 throw new Exception(‘Invalid phone number specified!’);
 } else {
 return $this- > _phonenumbers[$index];
 }
 }

 function getNumberOfPhoneNumbers() {
 return sizeof($this- > _phonenumbers);
 }

66

Part I: Fundamentals of Professional Development

 function addPhoneNumber(PhoneNumber $phone) {
 $this- > _phonenumbers[] = $phone;
 }

 function addresses($index) {
 if(!isset($this- > _addresses[$index])) {
 throw new Exception(‘Invalid address specified!’);
 } else {
 return $this- > _addresses[$index];
 }
 }

 function getNumberOfAddresses() {
 return sizeof($this- > _addresses);
 }

 function addAddress(Address $address) {
 $this- > _addresses[] = $address;
 }

 function emails($index) {
 if(!isset($this- > _emails[$index])) {
 throw new Exception(‘Invalid email specified!’);
 } else {
 return $this- > _emails[$index];
 }
 }

 function getNumberOfEmails() {
 return sizeof($this- > _emails);
 }

 function addEmail(Email $email) {
 $this- > _emails[] = $email;
 }

 public function validate() {
 //Add common validation routines
 }
 }
? >

 By moving all the accessor method functionality to the parent PropertyObject class, you simplify the
 Entity class and ensure that it is focused only on the code required to implement an entity.

 The Entity class is declared abstract because it isn ’ t useful on its own. All entities are either
 Individual s or Organization s. You do not want to be able to instantiate objects of class Entity .
Declaring it abstract prevents the class from being instantiable.

Chapter 3: Putting Objects to Work

67

 You ’ ve added requests to a few new functions of the DataManager :: getEntityData() and
get[x]ObjectsForEntity() . getEntityData() returns the data required to instantiate an entity, just
as functions you ’ ve already seen do for the contact types. The following shows the code for the new
functions in class.DataManager.php :

// top of file omitted for brevity
 ...
 die(“Failed getting phone number data for phone $phoneID”);
 }
 return pg_fetch_assoc($res);
 }

 public static function getEntityData($entityID) {
 $sql = “SELECT * FROM \”entity\” WHERE \”entityid\” = $entityID”;
 $res = pg_query(DataManager::_getConnection(),$sql);
 if(! ($res & & pg_num_rows($res))) {
 die(“Failed getting entity $entityID”);
 }
 return pg_fetch_assoc($res);
 }
? >

 To add the get[x]ObjectsForEntity() functions, place the following code at the end of
 class.DataManager.php , just after the getEntityData function:

public static function getAddressObjectsForEntity($entityID) {
 $sql = “SELECT \”addressid\” from \”entityaddress\” WHERE “ .
 “\”entityid\” = $entityID”;
 $res = pg_query(DataManager::_getConnection(), $sql);
 if(!$res) {
 die(“Failed getting address data for entity $entityID”);
 }
 if(pg_num_rows($res)) {
 $objs = array();
 while($rec = pg_fetch_assoc($res)) {
 $objs[] = new Address($rec[‘addressid’]);
 }
 return $objs;
 } else {
 return array();
 }
 }

 public static function getEmailObjectsForEntity($entityID) {
 $sql = “SELECT \”emailid\” from \”entityemail\”
 WHERE \”entityid\” = $entityID”;
 $res = pg_query(DataManager::_getConnection(), $sql);
 if(!$res) {
 die(“Failed getting email data for entity $entityID”);
 }

 if(pg_num_rows($res)) {
 $objs = array();

68

Part I: Fundamentals of Professional Development

 while($rec = pg_fetch_assoc($res)) {
 $objs[] = new EmailAddress($rec[‘emailid’]);
 }
 return $objs;
 } else {
 return array();
 }
 }

 public static function getPhoneNumberObjectsForEntity($entityID) {
 $sql = “SELECT \”phoneid\” from \”entityphone\” “ .
 “WHERE \”entityid\” = $entityID”;
 $res = pg_query(DataManager::_getConnection(), $sql);

 if(!$res) {
 die(“Failed getting phone data for entity $entityID”);
 }

 if(pg_num_rows($res)) {
 $objs = array();
 while($rec = pg_fetch_assoc($res)) {
 $objs[] = new PhoneNumber($rec[‘phoneid’]);
 }
 return $objs;
 } else {
 return array();
 }
 }

 These functions take an entity ID value. They query the database to determine whether any e - mails,
addresses, or phone numbers exist for the entity in question. If they do, then the functions build an array
of EmailAddress , Address , or PhoneNumber objects by passing each ID to the constructor for
the appropriate object type. This array is then passed back to the Entity object, where it is stored in the
appropriate private member variable.

 With the Entity class doing all the heavy lifting, the remaining work is fairly simple. You just need to
implement the Individual and Organization classes. Create a file called class.Individual.php
and enter the following:

 < ?php

require_once(‘class.Entity.php’);
require_once(‘class.Organization.php’);

class Individual extends Entity {

 public function __construct($userID) {
 parent::__construct($userID);

 $this- > propertyTable[‘firstname’] = ‘name1’;
 $this- > propertyTable[‘lastname’] = ‘name2’;
 }

Chapter 3: Putting Objects to Work

69

 public function __toString() {
 return $this- > firstname . ‘ ‘ . $this- > lastname;
 }

 public function getEmployer() {
 return DataManager::getEmployer($this- > id);
 }

 public function validate() {
 parent::validate();

 //add individual-specific validation
 }

}
? >

 That ’ s short and sweet. Inheritance makes this easy. The Individual class sets up a few new
properties that make accessing the first and last name of the individual easier, instead of having to use
the rather ugly name1 and name2 properties defined in the Entity class. It also defines a new method,
 getEmployer() , which requires a new function in the DataManager . You get to that function as soon as
you have your Organization class, which is shown in the following code. Create a file called
class.Organization.php and enter this code into it:

 < ?php

require_once(‘class.Entity.php’);
require_once(‘class.Individual.php’);

class Organization extends Entity {

 public function __construct($userID) {
 parent::__construct($userID);
 $this- > propertyTable[‘name’] = ‘name1’;
 }

 public function __toString() {
 return $this- > name;
 }

 public function getEmployees() {
 return DataManager::getEmployees($this- > id);
 }

 public function validate() {
 parent::validate();
 //do organization-specific validation
 }

}

? >

70

Part I: Fundamentals of Professional Development

 Again, this is a fairly simple class, thanks to the power of inheritance. You declare a property called name
that makes it easier to obtain the one and only name that an organization has (the sname2 property goes
unused for organizations).

 To add the functions getEmployer() and getEmployees() to the DataManager class, append the
following code to the end of class.DataManager.php :

public static function getEmployer($individualID) {
 $sql = “SELECT \”organizationid\” FROM \”entityemployee\” “ .
 “WHERE \”individualid\” = $individualID”;
 $res = pg_query(DataManager::_getConnection(),$sql);
 if(! ($res & & pgsql_num_rows($res))) {
 die(“Failed getting employer info for individual $individualID”);
 }

 $row = pgsql_fetch_assoc($res);

 if($row) {
 return new Organization($row[‘organizationid’]);
 } else {
 return null;
 }
 }

 public static function getEmployees($orgID) {
 $sql = “SELECT \”individualid FROM \”entityemployee\” “ .
 “WHERE \”organizationid\” = $orgID”;
 $res = pgsql_query(DataManager::_getConnection(), $sql);

 if(! ($res & & pgsql_num_rows($res))) {
 die(“Failed getting employee info for org $orgID”);
 }
 if(pgsql_num_rows($res)) {
 $objs = array();
 while($row = pgsql_fetch_assoc($res)) {
 $objs[] = new Individual($row[‘individualid’]);
 }
 return $objs;
 } else {
 return array();
 }
 }

 These two functions rely on the presence of a table called entityemployee , shown in the following
code. This table relates individuals to the organizations by which they are employed. For example,
employees of the same company would have different individual IDs, but the same organization IDs.

CREATE TABLE “entityemployee” (
 “individualid” int NOT NULL,
 “organizationid” int NOT NULL,
 CONSTRAINT “fk_entityemployee_individualid”

Chapter 3: Putting Objects to Work

71

 FOREIGN KEY (“individualid”) REFERENCES “entity”(“entityid”),
 CONSTRAINT “fk_entityemployee_organizationid”
 FOREIGN KEY (“organizationid”) REFERENCES “entity”(“entityid”)
);

 One last function is needed to make the entire system work — the DataManager method for listing all
the entities in the database. It ’ s called getAllEntitiesAsObjects() and it finishes all the work you
need to do on your objects. Add this method to class.DataManager.php :

 public static function getAllEntitiesAsObjects() {
 $sql = “SELECT \”entityid\”, \”type\” from \”entity\””;
 $res = pgsql_query(DataManager::_getConnection(), $sql);
 if(!$res) {
 die(“Failed getting all entities”);
 }

 if(pgsql_num_rows($res)) {
 $objs = array();
 while($row = pgsql_fetch_assoc($res)) {
 if($row[‘type’] == ‘I’) {
 $objs[] = new Individual($row[‘entityid’]);
 } elseif ($row[‘type’] == ‘O’) {
 $objs[] = new Organization($row[‘entityid’]);
 } else {
 die(“Unknown entity type {$row[‘type’]} encountered!”);
 }
 }
 return $objs;
 } else {
 return array();
 }
 }

 DataManager enables you to enumerate over all the contacts in your system. It examines the value of the
 ctype field in the entity table to determine whether the entry is an Individual or an Organization ,
and then instantiates an object of the appropriate type and adds it to the array that the function returns.

 Making Use of the System
 By now, you can see the real power of an OOP approach. The following code, called test.php , will
display a view of all the contacts in your database, including all their contact details:

 < ?php

require_once(‘class.DataManager.php’); //everything gets included by it

function println($data) {
 print $data . “ < br > \n”;
}

72

Part I: Fundamentals of Professional Development

$arContacts = DataManager::getAllEntitiesAsObjects();

foreach($arContacts as $objEntity) {

 if(get_class($objEntity) == ‘Individual’) {
 print “ < h1 > Individual - {$objEntity- > __toString()} < /h1 > ”;
 } else {
 print “ < h1 > Organization - {$objEntity- > __toString()} < /h1 > ”;
 }

 if($objEntity- > getNumberOfEmails()) {
 //We have emails! Print a header
 print “ < h2 > Emails < /h2 > ”;

 for($x=0; $x < $objEntity- > getNumberOfEmails(); $x++) {
 println($objEntity- > emails($x)- > __toString());
 }
 }

 if($objEntity- > getNumberOfAddresses()) {
 //We have addresses!
 print “ < h2 > Addresses < /h2 > ”;

 for($x=0; $x < $objEntity- > getNumberOfAddresses(); $x++) {
 println($objEntity- > addresses($x)- > __toString());
 }
 }

 if($objEntity- > getNumberOfPhoneNumbers()) {
 //We have phone numbers!
 print “ < h2 > Phones < /h2 > ”;

 for($x=0; $x < $objEntity- > getNumberOfPhoneNumbers(); $x++) {
 println($objEntity- > phonenumbers($x)- > __toString());
 }
 }

 print “ < hr > \n”;

} //End foreach

? >

 You can enter the data into your own tables, because that will help you to figure out how everything
goes together. You may want to try to imitate the results shown in Figure 3 - 8 (by navigating to test.php
in your browser).

Chapter 3: Putting Objects to Work

73

 In only 50 lines of code (including blank lines), you can display nearly everything there is to show about
the entities in your system. Employer and employees aren ’ t shown here; again, that is an exercise for you
to try. The line that calls the get_class function in test.php will give you some ideas for figuring out
which class you ’ re dealing with so that you ’ ll know whether to call getEmployer() on an Individual ,
or getEmployees() on an Organization .

Figure 3-8: Results of the sample application

74

Part I: Fundamentals of Professional Development

 Summary
 UML diagrams are an essential tool for planning complex (and even not so complex) applications.
Properly designed diagrams enable you to document intricate systems in a clearer way than text alone
allows. When you use class diagrams as part of your routine software development process, it is much
easier to see how your classes and database tables should be designed.

 Take full advantage of the OO features in PHP6 to help you rapidly develop applications and establish a
code base that ’ s easier to maintain, offers a greater degree of flexibility and extensibility, and reduces the
total volume of code required to implement the business requirements.

 By separating the software architecture into a business logic layer (like the Individual class) and a data
access layer (like the DataManager class), you make it easy to change the underlying data source, table
structure, or queries without disrupting the rest of the application. Objects that are responsible for
implementing business logic aren ’ t cluttered with the data access mechanism, the presence of which can
confuse and obscure the business rules.

 Chapter 4 takes a look at a new way of thinking about software architecture that improves code
reusability and maintainability, and provides a different level of abstraction when designing classes.

 Design P atter ns

 In previous chapters of this book, you learned that objects can descend from parent objects via
inheritance. You ’ ve also seen how objects can contain references to other objects (such as a
 DrumSet object holding Drum objects). In general, the technique of composing an object from other
objects is referred to as object composition.

 Both inheritance and object composition are powerful tools in designing object - oriented (OO)
software, and allow for a wide variety of design choices. Of course, having many choices does not
always make decisions easier. How would you design your application so that it ’ s easy to maintain
and extend? How would you write a component that the other members of your team could use
through a simple interface? When writing software, you can solve certain problems on your own
using your experience, intelligence, luck, large doses of caffeinated beverages, or any combination
of the above.

 You ’ ve probably reused existing code of your own to solve a problem. Perhaps you have a
standard script for connecting to a database. Design patterns are a bit different in that they are not
simply about reusing code; they are more abstract and generalized than that. The same design
pattern can show up in completely different types of software. Design patterns are about reusing
ideas for organization and composition, not just repurposing the same execution. After you know
a pattern, you should be able to recognize where it would be useful. Then you can go ahead and
implement it — knowing that it ’ s an accepted solution.

 A design pattern is a specific way of solving a particular problem. In this book, it represents the
way an object or set of objects is structured, how they collaborate and communicate with other
objects in the pattern. Each pattern has a descriptive name (such as Observer or Observable),
and each pattern has a specific design that can be shown in a class diagram.

 Patterns can be confusing at first. If this initial description doesn ’ t seem clear, don ’ t be concerned.
You ’ ll be working through five different patterns in this chapter, building on some of the code you
saw in the last few chapters.

76

Part I: Fundamentals of Professional Development

 The Composite Pattern
 You ’ ve already had a little experience with one pattern — the composite — from the Instrument
interface in Chapter 2 . Take a look at the class diagram again in Figure 4 - 1 .

Instrument

Guitar Piano

<<interface>>

DrumSet Drum Cymbal

1 1 *
*

 Figure 4 - 1: Use case diagram indicating composites

 Figure 4 - 1 shows that a DrumSet object can be composed of both Drum and Cymbal objects. Drum and
 Cymbal can be thought of as children of the DrumSet object. A DrumSet can be composed of any number
of Drums and Cymbals . Notice, though, that both DrumSet and its children are all of the same type —
 namely, Instrument . When a client object interacts with DrumSet , it does so through the same interface
as it would to interact with its children. This relationship is known as the composite pattern .

 Figure 4 - 2 shows the general case for the composite.

<<interface>>

Component

Composite

–children

�add()

�remove()

�getChild()

�hasChildren()

�add()

�remove()

�getChild()

�hasChildren()

1

*

Figure 4-2: General case

for the composite

Chapter 4: Design Patterns

77

 The composite pattern has two parts: the Component abstract class and the Composite , which is
a concrete implementation of the Component class. All Composite objects descend from the abstract
 Component class. Any Component can contain other Component s. A Component containing other
components can be thought of as a Composite . A Component with no children can be thought of as an
empty Composite .

 Some implementations of Composite make a distinction between Composite objects and Leaf
objects. Leaf objects are Components that can ’ t contain children. To simplify this example, all
 Components have the ability to be a Composite .

 Moving back from the general case, it will be necessary to make a change in the design and switch the
 Instrument interface to an abstract class. Interfaces and abstract classes are similar because neither one
can be used directly to instantiate an object. The key difference is that an abstract class can have some
fully implemented methods, whereas interfaces just have method declarations.

 Use abstract classes when you want to maintain the same methods in all your subclasses but have some
general functionality that can be shared by the subclasses. Use interfaces when the implementations will
differ across most or all of the methods in subclasses. Figure 4 - 3 shows the new class diagram. Note that
abstract class diagrams are indicated with italics.

 The association line indicates that each concrete instance of AbstractInstrument may contain any
number (including zero) of other instances of AbstractInstrument .

�name

�category

�instruments

�add(AbstractInstrument)

�remove(AbstractInstrument)

�hasChildren():boolean

�getChildAt(int)

�getDescription()

�add(AbstractInstrument)

�remove(AbstractInstrument)

�hasChildren():boolean

�getChildAt(int)

�getDescription()

Concrete Instrument

1

*

AbstractInstrument

Figure 4-3: New class diagram

78

Part I: Fundamentals of Professional Development

 Implementation
 The following PHP code shows the implementation of the composite pattern:

 < html >
 < body >
 < head >
 < style >
body {font : 12px verdana; font-weight:bold}
td {font : 11px verdana;}
 < /style >
 < /head >

 < ?php

abstract class AbstractInstrument {

 private $name;
 private $category;
 private $instruments = array();

 public function add(AbstractInstrument $instrument) {
 array_push($this- > instruments, $instrument);
 }

 public function remove(AbstractInstrument $instrument) {
 array_pop($this- > instruments);
 }

 public function hasChildren() {
 return (bool)(count($this- > instruments) > 0);
 }

 public function getChild($i) {
 return $instruments[i];
 }

 public function getDescription() {
 echo “- one “ . $this- > getName();
 if ($this- > hasChildren()) {
 echo “ which includes: < br > ”;
 foreach($this- > instruments as $instrument) {
 echo “ < table cellspacing=5 border=0 > < tr > < td > & nbsp; & nbsp; & nbsp;
 < /td > < td > -”;
 $instrument- > getDescription();
 echo “ < /td > < /tr > < /table > ”;
 } }
 }

 public function setName($name) {
 $this- > name = $name;
 }

Chapter 4: Design Patterns

79

 public function getName() {
 return $this- > name;
 }

 public function setCategory($category) {
 $this- > category = $category;
 }

 public function getCategory() {
 return $this- > category;
 }
}

class Guitar extends AbstractInstrument {
 function __construct($name) {
 parent::setName($name);
 parent::setCategory(“guitars”);
 }
}

class DrumSet extends AbstractInstrument {
 function __construct($name) {
 parent::setName($name);
 parent::setCategory(“drums”);
 }
}

class SnareDrum extends AbstractInstrument {
 function __construct($name) {
 parent::setName($name);
 parent::setCategory(“snare drums”);
 }
}

class BaseDrum extends AbstractInstrument {
 function __construct($name) {
 parent::setName($name);
 parent::setCategory(“base drums”);
 }
}

class Cymbal extends AbstractInstrument {
 function __construct($name) {
 parent::setName($name);
 parent::setCategory(“cymbals”);
 }
}

$drums = new DrumSet(“tama maple set”);
$drums- > add(new SnareDrum(“snare drum”));
$drums- > add(new BaseDrum(“large bass drum”));

80

Part I: Fundamentals of Professional Development

$cymbals = new Cymbal(“zildjian cymbal set”);
$cymbals- > add(new Cymbal(“small crash”));
$cymbals- > add(new Cymbal(“large high hat”));
$drums- > add($cymbals);

$guitar = new Guitar(“gibson les paul”);

echo “List of Instruments: < p > ”;
$drums- > getDescription();
$guitar- > getDescription();

? >

 < /body >
 < /html >

 Notice that all the concrete instruments (such as DrumSet and Guitar) descend from the
 AbstractInstrument class. Also notice that all the subclasses inherit the implemented methods in
the abstract class. To implement the getDescription() method, the current instrument is checked to
see whether it has children. If it does, then the method is called recursively until it travels through the
entire tree. Figure 4 - 4 shows the output from composite.php .

Figure 4-4: Output from composite.php

Chapter 4: Design Patterns

81

 This code listing exhibits several combined class definitions, code demonstrating the use of those classes,
and inline HTML. This is done strictly as a means of keeping this book from becoming excessively long.
In your code, you will want to have a separate file for each class, and separate the business logic from the
class definitions. You ’ ll learn more about a design pattern for doing this in Chapter 13 .

 Historically (in PHP 4), the & symbol caused the object (in this case, of type AbstractInstrument) to be
passed by reference:

public function add(AbstractInstrument & $instrument) {

 This is important because otherwise an entirely new local copy would be used within the function.
However, because PHP 6 automatically passes objects by reference, the & is not required. For the
purposes of this discussion, this behavior is desired because you actually want to work on the original
object, rather than a copy of it. Figure 4 - 5 shows the object diagram for the previous code after the
instruments and their child instruments have been assembled. Object diagrams are similar to class
diagrams, except that they show instances of objects indicated with their names underlined. In addition,
they represent the object relationships in the system at a point in time.

DrumSet

Snare Drum Cymbal

CymbalCymbal

Guitar

Bass Drum

Figure 4-5: Object diagram

 In this example, the concrete instrument classes don ’ t really differ in great detail, except for overriding the
 getDescription() method in the Guitar class. Consider, though, if you needed to add methods to contact
a manufacturer to get stocking information. If each manufacturer had a favored way to receive contact from
the system, you could specify that in a contact() method. You would first add an abstract method to
 AbstractInstrument , and then you would implement it in each subclass. Adding the abstract method
ensures that you won ’ t forget to implement it in the subclasses. If you don ’ t, you ’ ll get an error.

 If you were certain that no additional functionality needed to be added to your instruments, you could
just create a GenericInstrument class that inherited from AbstractInstrument . This way, when you
created, say, a cymbal, you would use the following:

$cymbals = new GenericInstrument(“zildjian cymbal set”);

82

Part I: Fundamentals of Professional Development

 The key point here is that anyone or anything accessing the Instrument interface (be it you, another
programmer, or another part of the application) doesn ’ t need to know how it was implemented. Calling
 getDescription() returns a description of the tree structure of an Instrument whether it has children
or not, or its children have children, and so on. The caller of the method doesn ’ t need to know whether it
has children.

 Because the interface is the same for all instrument objects but they do not respond in the same way, the
instrument objects can be thought of as polymorphic. The basic description of polymorphism is same
interface, different implementation or, more generally, same interface, different behavior.

 Considerations
 The composite pattern described here is very flexible. There are no constraints on which instrument may
have children. Consider adding the following line:

$cymbals- > add(new Cymbal(“large high hat”));
$drums- > add($cymbals);

$cymbals- > add($drums);

$guitar = new Guitar(“gibson les paul”);

 Adding the drums to the cymbals that already belong to drums creates a circular reference. When
calling getDescription() , a line like this can crash a Web server. You might want to safeguard against
such mistakes. One strategy would be to check during the add() method to see whether the instrument
being added already contains a reference to the one calling the method. If so, you could report an error.

 You also might want to experiment with groups of instruments that cannot have things added to them.
One option is to individually go to each class definition and override the add() method so that it does
nothing. Another option is to create a new abstract class from which all single instruments descend. This
abstract class could have an add() method that either does nothing or reports an error. This is more in
keeping with the composite pattern discussed previously, in which two classes descend from
 Component . One is a Leaf that cannot have children, and the other is a Composite that can. The class
diagram for this is shown in Figure 4 - 6 .

Leaf Composite

Component
*

1

Figure 4-6: Class diagram showing two classes descending

from Component

Chapter 4: Design Patterns

83

 One other consideration is constraining certain instruments from being added to composites. Perhaps
you don ’ t want to allow a Guitar object to be added to a DrumSet . In that case, you could define certain
legal types based on the category attribute for subject-verb agreement: Implementing any or all of these
features would be worthwhile to try on your own.

 The Observer Pattern
 Often, you ’ ll have data in your application that changes over time. For example, suppose you have some
GUI components that are required to show this data and then update the data when it changes. How
would you handle it? One solution might be to pass the newly updated data to a method of the GUI
component so that it could redraw the information. A problem with this approach is remembering to do
that each time the data is updated. What if it ’ s not clear how often the data will be updated, and whether
you want the GUI to update automatically when it does?

 The observer pattern solves this problem by using two interfaces: Observer and Observable . As the
name suggests, the Observer “ watches ” the Observable to see whether it changes.

 Keeping the theme of human senses, an Observer is sometimes called a Listener , but for this
chapter, we ’ ll stick with the former name.

 In its most basic implementation, the Observable can add Observers . Observable is then responsible
for notifying them if anything about its state has changed, and the Observer is responsible for reacting
to the change. In this example, the data is the Observable and the GUI components are the Observers .
If the data changes, those changes will automatically be reflected in any GUI component that is an
 Observer of the data. Figure 4 - 7 demonstrates the observer pattern.

Update(Observable)

�observers

�addObserver(Observer)

�notifyObservers()

Update(Observable)

�observers

�addObserver(Observer)

�notifyObservers()

Observer retrieves current
information from the
passed Observable object

1 *

ConcreteObservable

Observable <<interface>>

Observer

ConcreteObserver

Figure 4-7: Observer pattern

84

Part I: Fundamentals of Professional Development

 Widgets
 Continuing with the previous example, you ’ ll use the observer pattern to handle displaying price
information for some of the instruments within graphical elements on a Web page. First, you must define
some simple graphical components. These components will be basic HTML table structures whose
functionality will be contained within an object. Such components are often referred to using the
all - purpose term of widgets.

 The widgets must display the same instrument information. For this example, that information is just the
instrument ’ s name and price.

 Designing the Widgets

 A graphical widget will have two responsibilities. It needs to draw its own HTML so that it can be seen
on a Web page, and it needs to update the data it displays. You may have noticed (from Figure 4 - 7) that
an Update method is defined in the Observer interface.

 Each widget is an Observer . The item being observed is the data representing the instrument name and
price information. The data source is Observable .

 All widgets, then, should implement the Observer interface. In addition, each one should descend from
an abstract class that defines some shared functionality between widget objects. This is an example of
using interfaces and abstract classes together. Because the update() method is the same for all widgets,
it can be implemented in the abstract class. The class diagram is shown in Figure 4 - 8 .

update(Observable)

ConcreteWidget

#internalData

<<interface>>

Observer

AbstractWidget

�draw()

�update(Observable)

�draw()

Figure 4-8: abstract class

diagram

Chapter 4: Design Patterns

85

 Now, all concrete implementations of widgets will descend from the AbstractWidget class. The
 AbstractWidget class, in turn, implements the Observer interface. Notice that the update() method
in the class diagram for AbstractWidget is not shown in italics. This means that the method is actually
implemented at that point. The # symbol indicates that the internalData property is protected. That
means subclasses of AbstractWidget have access to it. If it were private, subclasses would not be able
to access it.

 Take a look at the following Widget code, in a file called abstract_widget.php :

 < ?php
interface Observer {
 public function update(Observable $subject);
}

abstract class Widget implements Observer {
 protected $internalData = array();
 abstract public function draw();
 public function update(Observable $subject) {
 $this- > internalData = $subject- > getData();
 }
}

class BasicWidget extends Widget {

 function __construct() {

 }

 public function draw() {
 $html = “ < table border=1 width=130 > ”;
 $html .= “ < tr > < td colspan=3 bgcolor=#cccccc >
 < b > Instrument Info < b > < /td > < /tr > ”;
 $numRecords = count($this- > internalData[0]);
 for($i = 0; $i < $numRecords; $i++) {
 $instms = $this- > internalData[0];
 $prices = $this- > internalData[1];
 $years = $this- > internalData[2];
 $html .= “ < tr > < td > $instms[$i] < /td > < td > $prices[$i] < /td >
 < td > $years[$i] < /td > < /tr > ”;
 }
 $html .= “ < /table > < br > ”;
 echo $html;
 }
}

class FancyWidget extends Widget {

 function __construct() {

 }

public function draw() {

86

Part I: Fundamentals of Professional Development

 $html = “ < table border=0 cellpadding=5 width=270 >
 < tr > < td colspan=3 bgcolor=#cccccc >
 < b > < span > Our Latest Prices < span > < b >
 < /td > < /tr >
 < tr > < td > < b > instrument < /b > < /td >
 < td > < b > price < /b > < /td > < td > < b > date issued < /b >
 < /td > < /tr > ”;

 $numRecords = count($this- > internalData[0]);

 for($i = 0; $i < $numRecords; $i++) {

 $instms = $this- > internalData[0];
 $prices = $this- > internalData[1];
 $years = $this- > internalData[2];
 $html .= “ < tr > < td > $instms[$i] < /td > < td >
 $prices[$i] < /td > < td > $years[$i]
 < /td > < /tr > ”;
 }

 $html .= “ < /table > < br > ”;
 echo $html;

 }}
? >

 There are two concrete Widget implementations: FancyWidget and BasicWidget . Both implement the
 draw() method required from the abstract parent class they extend, yet the implementations are
different. Both also inherit the update() method from the parent class.

 You might be wondering about the benefit of using the Observer interface when you could just put the
single method in the subclasses anyway. Earlier PHP versions provided no direct way to ensure that a
method parameter was of a certain type. A feature that first appeared in PHP 5 called class type hints
serves as a way of guaranteeing that the correct type of object is passed as an argument. In the following
function declaration, the reference passed as an argument must be of type Observer , or you get an error:

public function addObserver(Observer $observer) {

 If a particular method takes an Observer as an argument (as is the case with the Observable
addObserver() method), you know it ’ s safe to pass a Widget to it. That ’ s because all Widget objects are
of type Observer . All widgets descend from the AbstractWidget , which implements Observer . Thus,
the widgets themselves are also that type.

 Another question arises: Why not just require the method addObserver() to take a Widget ? That way,
you could also do away with the Observer interface. Suppose, however, that you wanted to create
another type of Observer that wasn ’ t a Widget . Then the class type hint would prevent you from
passing any other type of object to the addObserver() method.

Chapter 4: Design Patterns

87

 The DataSource

 The DataSource object encapsulates the name, price, and date of issue for a group of musical
instruments. It ’ s also the Observable object. The key methods in Observer are addObserver() and
 notifyObservers() . Any Observer (in this case, any Widget) that needs to “ watch ” the DataSource
can be added to it using addObserver() . The following code comprises observable.php :

 < ?php
abstract class Observable {

 private $observers = array();

 public function addObserver(Observer $observer) {
 array_push($this- > observers, $observer);
 }

 public function notifyObservers() {
 for ($i = 0; $i < count($this- > observers); $i++) {
 $widget = $this- > observers[$i];
 $widget- > update($this);
 }
 }

}

class DataSource extends Observable {

 private $names;
 private $prices;
 private $years;

 function __construct() {
 $this- > names = array();
 $this- > prices = array();
 $this- > years = array();

 }

 public function addRecord($name, $price, $year) {
 array_push($this- > names, $name);
 array_push($this- > prices, $price);
 array_push($this- > years, $year);
 $this- > notifyObservers();

 }

 public function getData() {
 return array($this- > names, $this- > prices, $this- > years);
 }
}
? >

88

Part I: Fundamentals of Professional Development

 The addRecord() method enables you to add a new instrument to the internal storage of the
 DataSource object. Notice, though, that the addRecord() method does one more thing:

$this- > notifyObservers();

 Any time the DataSource object has its internal data altered, it notifies all its observers. Observers are
added using the previously mentioned addObserver() method. After an observer is added, it ’ s stored in
the internal $observers array. When notifyObservers() is called, the method iterates through the
 $observers array, calling the update() method for each Observer stored in the array.

 The sole parameter of the update method is a copy of the Observable object itself:

$widget- > update($this);

 This allows the Widget (the Observer) to get a copy of the most current state of the DataSource (the
 Observable). Note that the Widget is passed by value — a copy of DataSource , rather than the actual
reference. This way, the DataSource ’ s internal information is not shared.

 Connecting Observer and Observable

 Now that you ’ ve done all the difficult work up front, the payoff is an easy - to - use and flexible system for
connecting an Observer Widget to the Observable DataSource . Take a look at the following
example, in a file called widget.php :

 < ?php
require_once(“observable.php”);
require_once(“abstract_widget.php”);

$dat = new DataSource();
$widgetA = new BasicWidget();
$widgetB = new FancyWidget();

$dat- > addObserver($widgetA);
$dat- > addObserver($widgetB);

$dat- > addRecord(“drum”, “$12.95”, 1955);
$dat- > addRecord(“guitar”, “$13.95”, 2003);
$dat- > addRecord(“banjo”, “$100.95”, 1945);
$dat- > addRecord(“piano”, “$120.95”, 1999);

$widgetA- > draw();
$widgetB- > draw();

? >

 All you have to do is create your DataSource and Widget objects. Then you can add the Widget objects
as observers of the DataSource . Now you ’ re free to add as many records as needed to the DataSource
object, not concerning yourself about updating the widgets — it all happens automatically. Finally, when
you call draw() on the widgets, they will display themselves with the correct data.

Chapter 4: Design Patterns

89

 If you were designing a desktop application, you could include a redraw() function in the
 update() method of the Observer . This way, you wouldn ’ t need to call draw() explicitly, but instead
have the component redraw itself automatically in response to the DataSource being updated. In a
purely server - side Web application, there ’ s no way to redraw a component unless you reload the page.

 Another cool feature of the observer pattern is that you can define multiple DataSource s. You just tell
the DataSource which widget you want listening to it, and you can reuse the same widget for different
 DataSource s. Figure 4 - 9 shows the result of running the previous code.

Our Latest Prices

instrument

drum

guitar

banjo

piano

price

$12.95

$13.95

$100.95

$120.95

date issued

1955

2003

1999

1945

Instrument Info

drum $12.95 1955

guitar $13.95 2003

banjo $100.95 1945

piano $120.95 1999

Figure 4-9: Result of running widget.php

 Considerations
 The observer pattern is useful when you have a source of data that you would like to connect to different
representations. The examples in this chapter have used a simple DataSource object, but you can create
more complex data sources, such as ones that retrieve data from a database or an XML file. You could
design a Widget that could observe either an XML DataSource or a database DataSource . As long as
the DataSource object had the same interface, it wouldn ’ t matter how it retrieved its data.

 The Widgets in this example are coded to display a table with three columns (as shown in Figure 4 - 9),
but they could be more flexible. If you want to get creative, try redesigning them so that they can display
an arbitrary number of columns. You could also try using a little helper object instead of the arrays to
transfer the information between Observable and Observer .

 The Decorator Pattern
 The two concrete widgets created for the observer pattern have a different appearance. If you needed to
add a new style of widget, you would subclass Widget and implement the draw() method to write the
HTML. For example, say that you needed to add a feature to all existing widgets, such as a border. You
could go into each draw() method and add some more HTML to each, but then the border would be
hard - coded and all widgets would be forced to have a border.

90

Part I: Fundamentals of Professional Development

 Alternatively, you could create a new set of subclasses of existing concrete widgets that implemented the
border in the draw() method. If you had only two widgets (as in the Observer example), this might be
an option — you would end up with four widgets. However, if you had five widgets to start with, it
might not seem so appealing. Suddenly you have a lot of widget classes to worry about.

 There is another way to handle situations like this, one that doesn ’ t require you to create a new subclass
for every widget to which you want to add a border: Using the decorator pattern enables you to add
features or functionality to existing objects without using inheritance. Figure 4 - 10 shows the class
diagram for the decorator pattern.

ConcreteWidget

�draw()
�draw()

widget

ConcreteDecorator

Decorator’s draw() method
also calls the draw() method
of its stored Widget object

#internalData

�draw()

�update(Observable)

<<interface>>

Observer

update(Observable)

AbstractWidget

Figure 4-10: Class diagram for the decorator pattern

 The class diagram indicates that Decorator s are a type of Widget , too. This is good, because you don ’ t
want to change the way you access a Widget , whether it ’ s decorated or not. Take a look at the code of
the following Decorator (saved as border_decorator.php) that draws a border around a Widget :

Chapter 4: Design Patterns

91

 < ?php
require_once(“abstract_widget.php”);

class BorderDecorator extends Widget {

 private $widget;

 function __construct(Widget $widget) {
 $this- > widget = $widget;
 }

 public function draw() {

 echo “ < table border=0 cellpadding=1 bgcolor=#3366ff > ”;
 echo “ < tr bgcolor=#ffffff > < td > ”;
 $this- > widget- > draw();
 echo “ < /td > < /tr > < /table > ”;

 }

 public function update(Observable $subject) {
 $this- > widget- > update($subject);
 }

}
? >

 This example moves all the classes and interfaces into their own files, and uses require_once to
import them. The draw() method generates some HTML to draw a table. Notice that in the middle of
drawing this border table, the draw() method calls the draw() method of the Widget that was passed in
the constructor. Because of this, the Widget gets some extra “ decoration ” around it — namely, the
border. An example of how you use the Decorator follows:

$widgetA = new BorderDecorator(new BasicWidget());

 After the decorator pattern is set up, you need only to pass it a Widget object. Then you can use
the decorated Widget exactly the same way as you would a regular one. Figure 4 - 11 shows the
 BasicWidget object with the BorderDecorator applied to it.

Instrument Info

drum $12.95 1955

guitar $13.95 2003

banjo $100.95 1945

piano $120.95 1999

Figure 4-11: BasicWidget

with the BorderDecorator

applied

92

Part I: Fundamentals of Professional Development

 Implementation
 There are some small (but important) changes in the implementation of the Widget objects to
accommodate the decorator pattern. First, the protected InternalData array in the abstract Widget
class (abstract_widget.php) has been changed to a private reference to the DataSource object stored
in the $subject variable, as shown here:

abstract class Widget implements Observer {

 private $subject;

 abstract public function draw();

 public function update(Observable $subject) {
 $this- > subject = $subject;
 }

 public function getSubject() {
 return $this- > subject;
 }
}

 Next, during the implemented draw() methods in each concrete Widget class, the Widget accesses its
subject by calling its inherited getSubject() method:

public function draw() {

 $data = $this- > getSubject()- > getData();

 $numRecords = count($data[0]);
 $html = “ < table border=1 width=130 > ”;
 $html .= “ < tr > < td colspan=3 bgcolor=#cccccc >
 < b > Instrument Info < b > < /td > < /tr > ”;
 for($i = 0; $i < $numRecords; $i++) {
 $instms = $data[0];
 $prices = $data[1];
 $years = $data[2];
 $html .= “ < tr > < td > $instms[$i] < /td > < td > $prices[$i]
 < /td > < td > $years[$i] < /td > < /tr > ”;
 }
 $html .= “ < /table > ”;
 echo $html;

}

 Finally, because the Decorator class is what is actually assigned as an observer of the DataSource
object, it must, in turn, pass the DataSource down to its Widget object when the Decorator ’ s
 update() method is called. This allows the Widget object to have access to the data:

public function update(Observable $subject) {
 $this- > widget- > update($subject);
}

Chapter 4: Design Patterns

93

 Using the Decorator
 After you ’ ve done the work developing the Decorator classes, you ’ ll find that it is a very flexible and
powerful pattern. Not only is it easy to use, but different Decorator s can be combined to give multiple
effects to the same widget. Decorator s can even be applied in different order. Another Decorator class
follows. Save the file as closebox_decorator.php :

 < ?php require_once(“abstract_widget.php”);

class CloseBoxDecorator extends Widget {

 private $widget;

 function __construct(Widget $widget) {
 $this- > widget = $widget;
 }

 public function draw() {
 print ‘ < table border=0 cellspacing=1 bgcolor=”#666666” > ’;
 print ‘ < tr bgcolor=#666666 > ’;
 print ‘ < td align=right > ’;
 print ‘ < table width=10 height=10 bgcolor=”cccccc” > ’;
 print ‘ < tr > < td > < b > x < /b > < /td > < /tr > ’;
 print ‘ < /table > ’;
 print ‘ < /td > ’;
 print ‘ < /tr > ’;
 print ‘ < tr bgcolor=#ffffff > ’;
 print ‘ < td > ’;

 $this- > widget- > draw();

 print ‘ < /td > ’;
 print ‘ < /tr > ’;
 print ‘ < /table > ’;
 }

 public function update(Observable $subject) {
 $this- > widget- > update($subject);
 }
}

 The preceding Decorator applies a simple menu bar with a closed box on it. Combining the two
 Widget s with the two Decorator s is easy. Save the following file as decorator.php :

 < ?php
require_once(“abstract_widget.php”);
require_once(“closebox_decorator.php”);
require_once(“border_decorator.php”);
require_once(“observable.php”);

$dat = new DataSource();
$widgetA = new BasicWidget();
$widgetB = new FancyWidget();

94

Part I: Fundamentals of Professional Development

$widgetB = new BorderDecorator($widgetB);
$widgetB = new CloseBoxDecorator($widgetB);

$widgetA = new CloseBoxDecorator($widgetA);
$widgetA = new BorderDecorator($widgetA);

$dat- > addObserver($widgetA);
$dat- > addObserver($widgetB);

$dat- > addRecord(“drum”, “$12.95”, 1955);
$dat- > addRecord(“guitar”, “$13.95”, 2003);
$dat- > addRecord(“banjo”, “$100.95”, 1945);
$dat- > addRecord(“piano”, “$120.95”, 1999);

$widgetB- > draw();
echo “ < br > ”;
$widgetA- > draw();
? >

 Notice that the first Widget has its Decorator s applied in one order, and the second has them applied
in the opposite order. Figure 4 - 12 shows the result of this code.

Our Latest Prices

instrument

drum

guitar

banjo

piano

price

$12.95

$13.95

$100.95

$120.95

date issued

1955

2003

1999

1945

Instrument Info

drum $12.95 1955

guitar $13.95 2003

banjo $100.95 1945

piano $120.95 1999

Figure 4-12: Result of code for

decorator.php

 Considerations
 The Decorator s in this section all have hard - coded color values. There ’ s no reason that you can ’ t alter
them to be more flexible. The BorderDecorator class can be changed to allow for a specified border
width and color. You can use some JavaScript to make the CloseBoxDecorator actually hide itself

Chapter 4: Design Patterns

95

when the Close box is clicked. To increase maintainability of the code, you can (and probably should) use
a templating system to divorce the HTML markup from the class definition.

 Remember that the decorator pattern need not be limited to purely graphical elements. In the case of the
 Widgets , the decorator pattern generated additional HTML to alter their look. You could instead have a
data structure of some kind and use a Decorator to add additional information to it. For example, if
you had a fragment of XML, you could use a Decorator to embed it in a larger XML structure.

 The Facade Pattern
 The best way to understand the facade pattern is to look at a component diagram of a system before and
after using a facade.

 Figure 4 - 13 shows the front end of a Web site communicating with an application on the Web server. On
the right side of the diagram, the front - end code is accessing various objects in the application. On the
left, showing the facade, the front end communicates only with the facade object, which in turn delegates
responsibilities to the internal objects.

web browser

Web front end

web browser

Web front end

Web server Web server

httphttp

Facade

Figure 4-13: Front end of a Web site communicating with an application on the Web server

96

Part I: Fundamentals of Professional Development

 Suppose that you designed a small Web application. Over time, your client kept adding new features to
it, and gradually the number of classes in the application increased. Certain pages on your Web site
started building up many calls to the various objects. Such pages might resemble the following example:

$dbManager = new DBManager();
$userArray = $dbManager- > getNewUsers();
$emailer = new Emailer();
$stats = new StatLog();

for ($i = 0; $i < count($userArray[$i]; $i++) {

 $user = $userArray[$i];
 $userPref = $user- > getMailPreference();
 $userMail = $user- > getEmail();

 if ($userPref == true) {
 $emailer- > sendMailToUser($userMail);
 } else {
 $stats- > storeUnmailedUser($user- > getID());
 }
}

 The preceding hypothetical code would send an e - mail to new users who indicated they want to receive
mail. If they don ’ t want to receive mail, their userID would be sent to a part of the application that
manages statistics about users. Although this code isn ’ t too ugly, if you had to mix in large amounts of
HTML and get information back to report to the user, it might become unwieldy. Following is another
version of using the facade pattern:

Application::mailNewUsers();

 Now, any time this functionality is required, the front end just requests it from the facade (in this case,
the Application class). All messages from the front end of the site go through the Application class
and never interact directly with the other objects in the system. The Application object ’ s methods can
be static because you don ’ t even need an instance of the Application class.

 Notice that the client of the Application class doesn ’ t need to know how it works internally. One good
result of this (in addition to cleaner code) is that it enables a separation of front - end presentation and
back - end functionality. The less your application is tied up in a particular presentation of HTML, the more
likely it is to be reusable elsewhere. There ’ s more discussion of this good design practice in Chapter 13 .

 The Builder Pattern
 If you look back at the composite pattern, you ’ ll notice that the objects that made up the composite were
manually created, as shown in the following example:

$drums = new DrumSet(“tama maple set”);
$drums- > add(new SnareDrum(“snare drum”));
$drums- > add(new BaseDrum(“large bass drum”));

Chapter 4: Design Patterns

97

$cymbals = new Cymbal(“zildjian cymbal set”);
$cymbals- > add(new Cymbal(“small crash”));
$cymbals- > add(new Cymbal(“large high hat”));
$drums- > add($cymbals);

 The code creating this DrumSet composite is not particularly complex, but what if you needed to create
 Instrument or Instrument composite objects for many different Musician objects, and those
 Musician objects in turn were composites of a Band object?

 It wouldn ’ t be impossible to write out the code that created the new objects and then added them,
although it might start to get tedious if you had several bands with several musicians in them, each with
their own set of instruments. If you needed to create bands in response to the actions of a user (perhaps
through a GUI), then it might start to get difficult — especially if you had to hard - code each type of
band, with the required musicians and instruments.

 Implementation
 Say that you were required to create a wizard that generated a Band for an end user. The user would
choose from a list of genres (for example, rock, country, salsa, heavy metal, and so on), and the resulting
 Band would be returned, assembled with its musicians and their instruments. Figure 4 - 14 shows the
class diagram for the builder pattern .

<interface>

Builder

createDrummer

createGuitarist

createDrummer

createGuitarist

<<creates>>
Band

Musician

Instrument

RockBandBuilder

�band:RockBand

createDrummer

createGuitarist

CountryBandBuilder

�band:CountryBand

Figure 4-14: Class diagram for the builder pattern

 For this example, the builder pattern creates Band s that have only two types of Musician s — guitarists
and drummers:

 < ?php

interface Builder {
 public function buildDrummer();
 public function buildGuitarist();
}
? >

98

Part I: Fundamentals of Professional Development

 Each time a concrete builder class is instantiated, it creates a Band object. Take a look at the following
code for the RockBandBuilder class:

 < ?php

require_once(“interface_builder.php”);
require_once(“class_rockband.php”);
require_once(“class_musician.php”);
require_once(“class_instrument.php”);

class RockBandBuilder implements Builder {

 private $band;

 function __construct($name) {
 $this- > band = new RockBand($name);
 }

 public function getBand() {
 return $this- > band;
 }

 public function buildDrummer() {
 $musician = new Musician(“rock drummer”);
 $drumset = new Instrument(“rock drum kit”);
 $drumset- > add(new Instrument(“cymbal”));
 $drumset- > add(new Instrument(“bass drum”));
 $drumset- > add(new Instrument(“snare drum”));
 $musician- > addInstrument($drumset);
 $this- > band- > addMusician($musician);
 }

 public function buildGuitarist() {

 $musician = new Musician(“rock guitarist”);
 $guitar = new Instrument(“electric guitar”);
 $musician- > addInstrument($guitar);
 $this- > band- > addMusician($musician);
 }

}
? >

 Note how the implementation of the constructor in RockBandBuilder creates a RockBand . Similarly, the
constructor of CountryBandBuilder creates a CountryBand , as shown next, in the file countryband_
builder.php :

 < ?php
require_once(“interface_builder.php”);
require_once(“class_musician.php”);
require_once(“class_countryband.php”);
require_once(“class_instrument.php”);

class CountryBandBuilder implements Builder {

Chapter 4: Design Patterns

99

 private $band;

 function __construct() {
 $this- > band = new CountryBand();
 }

 public function getBand() {
 return $this- > band;
 }

 public function buildDrummer() {

 $musician = new Musician(“washboard player”);
 $drumset = new Instrument(“washboard”);
 $musician- > addInstrument($drumset);
 $this- > band- > addMusician($musician);

 }

 public function buildGuitarist() {

 $musician = new Musician(“country guitarist”);
 $guitar = new Instrument(“acoustic guitar”);
 $musician- > addInstrument($guitar);
 $this- > band- > addMusician($musician);
 }
}
? >

 Check out the buildDrummer() method from RockBandBuilder . Now compare it to the one from
 CountryBandBuilder . Notice how each method creates not only the Musician object, but also
the instruments for that musician. Because of the Builder interface, both Builder s are required to
implement the buildDrummer() and buildGuitarist() methods, but they each construct a Musician
in a completely different way, including the Instrument objects belonging to that musician.

 You may have noticed that the Musician and Instrument classes are no longer subclassed into specific
subtypes such as Guitarist . This demonstrates that Builder s can be implemented to create different
objects (as in the constructor), or the same objects with different parameters and operations (as in the
 buildDrummer() method).

 The Director

 Builder patterns have one final important aspect, called the Director . The Director is responsible for
calling the methods of the Builder to create the finished product, which, in this case, is a Band object. In
this example, the Director will be the Application object similar to the one described in the
discussion of the facade pattern. The Application class follows in a file called application.php :

 < ?php

class Application {

 public static function createBand(Builder $builder) {

100

Part I: Fundamentals of Professional Development

 $builder- > buildGuitarist();
 $builder- > buildDrummer();

 return $builder- > getBand();

 }
}
? >

 The Application class has one method, createBand , which takes a Builder as its argument. The
 Application then calls the create methods of the passed Builder object. Note two important points
here. First, the Application decides which methods of the Builder it wants to call. Second, it doesn ’ t
care which type of Builder is passed to it.

 Finally, here is how you would use the Application (also known as the Director) and Builder
together. Simply create an instance of the appropriate Builder object and pass it to the createBand
method of the Application :

$builder = new RockBandBuilder();
$band = Application::createBand($builder);

 The Application object and Builder work together to build the correct Band object step by step. The
 Band object is manipulated and stored in the Builder until it ’ s requested by the getBand method.

 Considerations
 The builder pattern is useful for assembling composites and hierarchical object structures such as the
 Band -> Musician -> Instrument one. Although having the builder return a completed object is useful,
don ’ t forget that the Band object returned by the builder is still the same as any Band object you might
have created by hand. That means that it can still be altered after its construction.

 The Director class can be modified to allow for more than one creation method. In the case of the
 Application object, you had only one method, createBand , but having methods that called different
configurations using the same builder is possible. For example, you could have methods such as
 createTrio . By passing different Builder objects, the same method would assemble either a rock trio
or a country trio.

 Summary
 This chapter demonstrated five different design patterns:

 Composite

 Observer

 Decorator

 Facade

 Builder

❑

❑

❑

❑

❑

Chapter 4: Design Patterns

101

 Although each pattern handles a different design issue, one feature is common to them all. After the
work to develop and implement the pattern is finished, the code to actually use it is very simple and
flexible. Patterns enable developers and software designers to share complex ideas with just a single
term. They ’ re also reusable ideas. The same design pattern can be a solution in very different types of
software. Often, you ’ ll see design patterns incorporated into a language or framework — so if you know
about them, you ’ ll understand how they are supposed to work within that language.

 The five patterns presented here are just a small subset of the design patterns that exist. You should
continue to explore design patterns on your own — they ’ re a great tool for a serious developer. The
seminal text on design patterns is Design Patterns: Elements of Reusable Object - Oriented Software , by Erich
Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides (Addison - Wesley, 1994). The book uses
C++ and the somewhat obscure language Smalltalk for most of its examples, but the design patterns
they describe are applicable to developers in any language. The book is sufficiently influential — it is
usually known as the “ GOF ” book, short for “ gang of four, ” referring to the four authors. The
professional PHP developer can benefit from an understanding of the power of design patterns and from
specific examples of them when planning any application architecture.

 Chapter 5 looks at the Collection class, the first in a series of utility classes this book discusses that you
can use as part of your application development toolkit.

 Collections

 Now that you ’ ve learned the ins and outs of object - oriented (OO) application design in PHP, you
might be tempted to dive in and start coding your application. With your new - found knowledge,
you ’ re certainly ready to do just that, but you will almost certainly be taking the longest route to
get there. There are a number of shortcuts you can take along the way, in the form of a series of
utilities and reusable classes that together comprise an immensely powerful, easy - to - use
development toolkit. This book introduces you to some useful toolkit components, piece by piece,
and shows you (with real - world examples) just how useful it can be. The first class in your toolkit
is called Collection , and that ’ s what you ’ ll meet in this chapter.

 The Collection class is an OO replacement for the traditional array data type. Much like an
array, it contains member variables, although those variables tend to be other objects, rather than
simpler data types such as strings, integers, and so forth. The class then provides simple methods
to enable you to add member variables, remove them, and fetch them for use in applications. As
you ’ ll see in this chapter, it has numerous advantages over using a simple array for storing a series
of instantiated objects.

 As with many of the chapters in this book, in this chapter you will not only utilize the code for the
class itself, but also see exactly how it is put together, based on original design requirements that
will be determined. Along the way, topics such as lazy instantiation using callbacks are discussed,
as well as how to put the Collection class to use, and what possible improvements could be
made to it in the future.

 Purpose of the Collection Class
 Applications frequently have objects that contain a group of other objects. For example, if you
were building an application for a university ’ s registrar ’ s office, you would need to have a
 Student class and a Course class. A Student object would probably have more than one Course

104

Part I: Fundamentals of Professional Development

object associated with it. The most obvious way to construct this would be to have an array of Course
objects as a member variable of the Student object, as shown here:

/* student class */
class Student {
 public $courses = array();
 // ... other methods/properties
}

/* using the student class */
$objStudent = new Student(1234); //constructor not shown above
foreach($objStudent- > courses as $objCourse) {
 print $objCourse- > name;

}

 Of course, if the most obvious approach were the best possible approach, this book wouldn ’ t require this
chapter. The previous method has a few problems:

 Exposing the array of Course objects as a public member variable breaks encapsulation. There is
no opportunity to validate changes to the array, or to change the state of the Student object,
should that be necessary.

 It ’ s not obvious from this implementation how the courses will be indexed in the array, and how
to traverse that array to find a specific Course object in which you might be interested.

 Most important, to ensure that the courses array is available to any code that might want to use
the Student object, you must pull up all the course information from the database at the same
time as the student information. This means that even if you want to print only the student ’ s
name, you must fetch all the information about courses, unnecessarily increasing load on the
database server and bogging down the entire application.

 The Collection class is designed to solve all these problems. It provides an OO wrapper around an
array, and implements a mechanism that enables lazy instantiation . Lazy instantiation defers creation of
the members of the collection until they are actually needed. It ’ s called “ lazy ” because the object
determines on its own when to instantiate its component objects, rather that create them when it is
instantiated. When you create a Student object, the Course objects should not be created at the same
time. Only when you first attempt to access the courses should they be created, and this should happen
automatically without requiring you to do anything special.

 The functional requirements of the Collection class are as follows:

 1. Establish a wrapper around an array of objects.

 2. Provide methods to add, remove, and fetch the member objects in a predictable, obvious way.

 3. Enable you to easily determine how many member objects exist in the collection.

 4. Enable you to use lazy instantiation to save system resources.

❑

❑

❑

Chapter 5: Collections

105

 Designing the Collection Class
 Before writing any code, you should ensure that you ’ ve carefully planned the classes you ’ ll create. Based
on the written functional requirements in items 1, 2, and 3 from the previous list, you can establish a
class diagram that looks something like Figure 5 - 1 .

Collection

–members

+addItem()

+removeItem()

+getItem()

+length()

Figure 5-1: Class

diagram

 To handle the operations to add, remove, and get members “ in a predictable, obvious way, ” users of this
object must be allowed to specify a useful key name when adding the objects. The key works just like a
string index in an associative array, specifying the location in the collection into which the member object
of the collection will be stored. This key can then be used for retrieving or removing the object later. To
use the previous example of the registrar ’ s office application, the key for each course might be the course
code (for example, CS101 for a beginning computer science class). In some cases, you won ’ t have a
meaningful key value to use. In this situation, the collection should be able to determine a valid key on
its own. Figure 5 - 2 shows the updated UML diagram.

Collection

−members

+addItem(obj:mixed, key:String=null)

+removeItem(key:String)

+getItem(key:String)

+length()

Figure 5-2: Updated UML diagram

 The obj parameter to addItem() is the item being added to the collection. This item is usually an object,
but it can be any valid data type. The key parameter to addItem() , removeItem() , and getItem() is a
string (optional in addItem()) representing the key.

 Later in this chapter, after the basic code for manipulating the collection ’ s contents has been established,
you ’ ll refer to this diagram to see how the lazy instantiation code will work. One final thing to note here
is that length() simply returns the number of items currently in the collection.

106

Part I: Fundamentals of Professional Development

 Collection Class Basics
 Based on the UML diagram in Figure 5 - 2 , the skeleton for the Collection class looks like this:

 < ?php
class Collection {

 private $_members = array();

 public function addItem($obj, $key = null) {
 }

 public function removeItem($key) {
 }

 public function getItem($key) {
 }

 public function length() {
 }

}

? >

 Later in this chapter, the discussion will assume the code is in a file called class.Collection.php . The
 $_members variable provides a location in which to store the objects that are members of the collection.
 addItem() enables you to add a new object to the collection. removeItem() removes an object.
 getItem() returns the object, and length() returns the number of items in the collection. The
 Collection class does not require a constructor.

 The addItem Method
 When adding a new object to the collection, that object is inserted into the $_members array, at the
location specified by $key . If no key is provided, you ’ ll allow PHP to pick one. If an attempt is made to
add an object to the collection using a key that already exists, an exception should be thrown to prevent
inadvertent overwriting of information:

class Collection {

 private $_members = array();
 public function addItem($obj, $key = null) {

 if($key) {

 //Throw exception if this key is already in use.
 if(isset($this- > _members[$key])) {
 throw new KeyInUseException(“Key \”$key\” already in use!”);
 } else {
 $this- > _members[$key] = $obj;
 }

Chapter 5: Collections

107

 } else {
 $this- > _members[] = $obj;
 }

 }

}

 As with most of the subclasses of Exception used in this book, KeyInUseException has no body, and
instead inherits everything from the default Exception class that ships with PHP 6:

class KeyInUseException extends Exception { }

 The KeyInUseException class provides a means of letting users of the object know when they might be
overwriting information by specifying the same key more than once. The value of the key is used as the
index in the $_members array. If no key is specified, PHP picks a numeric index for this element. In
either case, the object is inserted into the array at that location.

 Subclasses of Collection can override the addItem() method with a type hint that ensures that the
items being added are of the correct type for the desired collection. Here ’ s an example:

 < ?php
class CourseCollection extends Collection {
 public function addItem(Course $obj, $key = null) {
 parent::addItem($obj, $key);
 }
}
? >

 Using this technique, with very little code you can create subclasses that enforce a data type for the
members of the collection.

 The removeItem and getItem Methods
 The removeItem() and getItem() methods take a key as a parameter, which indicates what items are
being removed or fetched. An exception should be thrown if an invalid key is supplied:

public function removeItem($key) {
 if(isset($this- > _members[$key])) {
 unset($this- > _members[$key]);
 } else {
 throw new KeyInvalidException(“Invalid key \”$key\”!”);
 }
 }

 public function getItem($key) {
 if(isset($this- > _members[$key])) {
 return $this- > _members[$key];
 } else {
 throw new KeyInvalidException(“Invalid key \”$key\”!”);
 }

 }

108

Part I: Fundamentals of Professional Development

 The InvalidKeyException class is just as simple as the KeyInUseException class:

class KeyInvalidException extends Exception { }

 Other Methods
 Because the $key parameter to the addItem() method is optional, you won ’ t necessarily know the key
used for each item in the collection. A function called keys() enables you to provide a listing of those
keys to any external code that might need it. The keys will be returned as an array:

public function keys() {
 return array_keys($this- > _members);

}

 You might want to know how many items are in the collection. The sizeof PHP function returns the
number of elements in an array, so you ’ ll use that to implement your length() method:

public function length() {
 return sizeof($this- > _members);
}

 Because getItem() throws an exception if an invalid key is passed, you need to have a means of
determining whether a given key exists in the collection. The exists() method enables you to check
before calling getItem() :

public function exists($key) {
 return (isset($this- > _members[$key]));
}

 This approach enables you to either use a try ... catch block to trap for invalid keys, or call the
 exists() method before calling getItem() , depending on which method is more convenient.

 Now that you ’ ve added all the basic methods to the class, you can move on to see how the Collection
class is used.

 Using the Collection Class
 To use the Collection class as it stands now, create a file called class.Collection.php and save the
code for the Collection class in it. Create files for the KeyInvalidException and
 KeyInUseException classes. Be sure to add require_once statements to the top of class.
Collection.php to pull in those exception classes. Save the following code in testCollection.php :

 < ?php
require_once(‘class.Collection.php’);

/* a silly class for testing */
class Foo {
 private $_name;
 private $_number;

Chapter 5: Collections

109

 public function __construct($name, $number) {
 $this- > _name = $name;
 $this- > _number = $number;
 }
 public function __toString() {
 return $this- > _name . ‘ is number ‘ . $this- > _number;
 }
}

$colFoo = new Collection();
$colFoo- > addItem(new Foo(“Steve”, 14), “steve”);
$colFoo- > addItem(new Foo(“Ed”, 37), “ed”);
$colFoo- > addItem(new Foo(“Bob”, 49));

$objSteve = $colFoo- > getItem(“steve”);

print $objSteve; //prints “Steve is number 14”
$colFoo- > removeItem(“steve”); //deletes the ‘steve’ object

try {
 $colFoo- > getItem(“steve”); //throws KeyInvalidException
} catch (KeyInvalidException $kie) {
 print “The collection doesn’t contain anything called ‘steve’”;
}

? >

 This example may not be particularly interesting yet, but it should give you some idea of how the
 Collection class is used. The next section discusses how to handle lazy instantiation, which is one of
the primary benefits of this class.

 Implementing Lazy Instantiation
 Recall that lazy instantiation refers to the ability of the Collection class to defer creation of its members
until such time as they are needed. In the registrar ’ s application discussed at the beginning of this
chapter, a Student object has multiple Course objects associated with it. When you want to use
a Student object to display the name of a student, you do not need any of the information about that
student ’ s courses. However, for the sake of a consistent interface, the Course objects should be available
as member variables of the Student object.

 To keep things simple when displaying a list of courses for a given student, the software interface should
allow you to write code like this:

 < ?php

 $objStudent = StudentFactory::getStudent(12345); //12345 is the student ID
 print “Name: “ . $objStudent- > name . “ < br > \n”;
 print “Courses: < br > \n”;
 foreach($objStudent- > courses as $objCourse) {
 print $objCourse- > coursecode . “ - “ . $objCourse- > name . “ < br > \n”;
 }

? >

110

Part I: Fundamentals of Professional Development

 For now, it ’ s enough to know that the StudentFactory is a class with a static method getStudent that
returns a new student object, given the ID as a parameter. It does all the heavy lifting in the database.
You should assume that the Student class constructor takes care of populating the list of courses;
but if you just have a listing of students by name (as in the next example), you shouldn ’ t have to incur
the overhead of fetching the unwanted courses. Again, assume the StudentFactory is a class that
creates Student objects by interrogating the database for you. In this case, you retrieve a collection of
students by searching by their last name:

 < ?php

 $colStudents = StudentFactory::getByLastName(“Smith”);
 print “ < h1 > Students With the Last Name ‘Smith’ < /h1 > ”;
 foreach($colStudents as $objStudent) {
 print $objStudent- > name . “ < br > \n”;
}
? >

 In this case, getting the course information would be totally unnecessary because you ’ re merely
displaying the name, but how can you keep the simple interface of the Student class without forcing the
database activity?

 You could add methods such as $objStudent -> loadCourses() that would populate the collection and
have to be called before interacting with the courses collection, but that isn ’ t terribly intuitive, and it
clutters the interface. You could do something like the following:

CourseFactory::getCoursesForStudent($objStudent)

 That would return a collection of courses for a given student, but again, it ’ s not obvious to someone who
just joined your development team that such a function must be called to get the Course objects for a
given student.

 There is a better way, and it involves using callbacks.

 Callbacks
 If you ’ ve ever done any JavaScript programming and assigned some activity to happen in the onclick
event for some object, you ’ ve used a callback. A callback is a nifty programming trick in which you tell
the application to perform a function when some event happens. That event is out of your control — you
don ’ t necessarily know when it will happen. You tell the application to take care of performing that
function if and when the event takes place.

 Many times in JavaScript, an onSubmit event handler is created for a form that allows client - side data
validation to happen if the user tries to submit that form. You don ’ t know when the user is going to
submit the form, or even whether the user will do that at all. After the event handler is specified, the
JavaScript engine takes care of the rest. You can also use this technique in server - side application
development.

Chapter 5: Collections

111

 When you ’ re designing the Student class for the registrar ’ s application, you don ’ t know whether
or when the course collection will be accessed by the code that uses the class. Because fairly significant
overhead is associated with getting the Course objects, this is a great time to take advantage of a
callback. You need to be able to tell the course collection, “ If someone tries to talk to you, you need to
populate yourself first. ”

 However, because the Collection class is a generic member of the reusable toolkit, you don ’ t want to
hard - code the name of a function inside the class (this obviously limits the reusability of the class), and
you don ’ t want to have to create a new subclass of Collection every time you want to use it (because
this is creating more work for you, not less). Instead, you should be able to supply the name of a
procedural function, or supply a reference to an object and specify the method on that object that you
want to call to populate the collection. To do so, you need to understand a special built - in PHP function.

 Using call_user_func

 When you want to call a function, you usually invoke the literal name of the function. However, PHP
also enables you to call functions (and methods on objects) using string variables. The following is
perfectly valid PHP code:

 < ?php
 $myFunc = “pow”;
 print $myFunc(4, 2); //prints 16, or pow(4, 2)

? >

 PHP evaluates the variable name and executes the function with that name. This works for compiled - in
core functions, as well as user - defined functions. You can perform the same trick with a method of an
object, as shown here:

 < ?php
 $myMethod = ‘sayHello’;
 $obj = new Person();
 $obj- > $myMethod();
? >

 Assuming that you have a class called Person with a method called sayHello() , this would work just
fine. (You can also invoke static methods that way — that is, Person::$myMethod() .)

 The only problem with this trick is that it ’ s not at all obvious that $obj -> $myMethod() is calling $obj ->
 sayHello() . This would be even more confusing if the value of $myMethod were passed in as a
parameter to some wrapper function. PHP provides a built - in method for doing the same thing, in a
manner a little less confusing and far more transparent.

 The function call_user_func() takes one mandatory parameter to define the function to be called, and
zero or more additional parameters to be passed as parameters to the user - defined function. The
function definition is as follows:

mixed call_user_func (callback function [, mixed parameter [, mixed ...]])

112

Part I: Fundamentals of Professional Development

 The value of the callback function parameter takes one of three forms:

 string $functionName — A string corresponding to the name of the procedural function to
be called

 array(object $object, string $functionName) — An array consisting of an
instantiated object and a string corresponding to the name of the method to be called on that
object

 array(string $className, string $functionName) — An array consisting of the name
of a class and a string corresponding to the name of a static method of that class

 Here are a few examples of using this function:

 < ?php

class Bar {

 private $_foo;

 public function __construct($fooVal) {
 $this- > _foo = $fooVal;
 }

 public function printFoo() {
 print $this- > _foo;
 }

 public static function sayHello($name) {
 print “Hello there, $name!”;
 }

}

//procedural function - not part of the Bar class
function printCount($start, $end) {
 for($x = $start; $x < = $end; $x++) {
 print “$x “;
 }
}

/* ex. 1 */
//prints 1 2 3 4 5 6 7 8 9 10
call_user_func(‘printCount’, 1, 10);

/* ex. 2 */
//calls $objBar- > printFoo()
$objBar = new Bar(‘elephant’);
call_user_func(array($objBar, ‘printFoo’));

/* ex. 3 */
//calls Bar::sayHello(‘Steve’)

❑

❑

❑

Chapter 5: Collections

113

call_user_func(array(‘Bar’, ‘sayHello’), ‘Steve’);

/* ex. 4 */
//This throws a fatal error “Using $this when not
//in object context” because the function call
//is Bar::printFoo, which is not a static method
call_user_func(array(‘Bar’, ‘printFoo’));

? >

 The first example of calling call_user_func is straightforward. You pass the name of the procedural
function as a string, and supply the two parameters it expects.

 In the second example, you pass an array as the first parameter. Because the first element of that array is
an object, the method printFoo() is invoked on that object.

 In the third and fourth examples, the first element in the array is a string. Therefore, PHP attempts to
statically invoke the method on the specified class. If the method doesn ’ t exist, or relies on nonstatic class
variables (that is, $this), then you will encounter a fatal run - time error. This is what happens in the last
line when you try to statically invoke printFoo() .

 Terminology reminder: static methods are those that do not rely on nonstatic class
member variables and can be invoked without first instantiating an object of that
class. The invocation syntax is ClassName::methodName() . The keyword $this is
not available to statically invoked methods.

 Implementing a Callback

 You can use call_user_func to create a callback in one of your classes. By creating a method that
allows the same types of parameters as call_user_func , you can allow code outside your class to
specify a function or method to be invoked when certain events in your class happen.

 To create a callback in one of your classes, take the following steps:

 1. Determine which events will be raised by your class.

 2. For each of those events, create an on[EventName] method that takes two parameters:

 The name of the function

 Optionally, an object (an instantiated object variable) or class name (a string)

 3. For each event, create a private member variable in your class that will store those parameters as a
string (if no object or class name was provided), or as an array (if the second parameter had a value).

 4. At each point in the class where these callbacks should be triggered, query the private member
variable created in Step 3 to see whether it has been set. If so, call call_user_func() , passing
in the value of that variable.

❏

❏

114

Part I: Fundamentals of Professional Development

 The following example shows how to create an onspeak() event in a class called Dog . Create a function
called onspeak() that takes a function name as a string and optionally, an object or class name.
Construct the string or array that should be passed to call_user_func() , and test the value to ensure
that it ’ s callable. If it is, then store the value in a private member variable for later use. Have a look at the
 bark() method to see how this value is used:

 < ?php
class Dog {
 private $_onspeak;

 public function __construct($name) {
 $this- > _name = $name;
 }

 public function bark() {
 if(isset($this- > _onspeak)) {
 if(! call_user_func($this- > _onspeak)) {
 return false;
 }
 }

 print “Woof, woof!”;
 }

 public function onspeak($functionName, $objOrClass = null) {
 if($objOrClass) {
 $callback = array($objOrClass, $functionName);
 } else {
 $callback = $functionName;
 }

 //make sure this stuff is valid
 if(!is_callable($callback, false, $callableName)) {
 throw new Exception(“$callableName is not callable “ .
 “as a parameter to onspeak”);
 return false;
 }

 $this- > _onspeak = $callback;
 }
} //end class Dog

//procedural function
function isEveryoneAwake() {
 if(time() < strtotime(“today 8:30am”)||
 time() > strtotime(“today 10:30pm”)) {
 return false;
 } else {
 return true;
 }
}

$objDog = new Dog(‘Fido’);
$objDog- > onspeak(‘isEveryoneAwake’);

Chapter 5: Collections

115

$objDog- > bark(); //polite dog

$objDog2 = new Dog(‘Cujo’);
$objDog2- > bark(); //always barks!

//Throws exception when onspeak is called.
$objDog3 = new Dog(‘Lassie’);
$objDog3- > onspeak(‘nonExistentFunction’, ‘NonExistentClass’);
$objDog3- > bark();
? >

 The isEveryoneAwake() function checks to see whether the current time is between 8:30 A.M. and 10:30
P.M. If so, return true , allowing the dog to bark. If not, return false , keeping the dog silent. (If only real
dogs could be programmed with callbacks.) This approach works only for $objDog because $objDog2
did not have the callback set.

 Note the use of the is_callable() function in onspeak() . This is another built - in PHP function, as is
 call_user_func() . It ’ s basically a sanity check on the parameters passed to the onspeak() method.
When you pass in the parameters to $objDog3 -> onspeak() , the nonexistent function and class will
cause an exception to be thrown.

 The setLoadCallback Method in the Collection Class
 Now that you ’ ve seen how callbacks can work, you need to understand how to put them to work in the
 Collection class to give it one of its more important advantages — lazy instantiation.

 Consider the Student class from the registrar ’ s application. You want to be able to keep the very simple
interface you saw at the beginning of the chapter, in which the courses are a member variable of the
 Student object, but you shouldn ’ t have to suffer the overhead of fetching the course list every time you
fetch a Student object. Instead, you need to enable a callback on the Collection class that will tell it to
call some function before allowing any external code to interact with it.

 Each call to addItem() , getItem() , length() , exists() , and keys() should first ensure that the
collection has been loaded, and if not, invoke any callback functions that might be specified. The
function specified in the callback is responsible for populating the collection. You also need some sort of
flag to indicate whether the callback has been invoked. This flag will prevent unnecessarily repeated
attempts to load a collection that has already been loaded, because that could have a detrimental impact
on performance.

 The following code shows the complete Collection class with the modifications necessary to
implement the lazy instantiation capabilities of this class (shown highlighted):

 < ?php
class Collection {

 private $_members = array(); //collection members

 private $_onload; //holder for callback function

 private $_isLoaded = false; //flag that indicates whether the callback
 //has been invoked

116

Part I: Fundamentals of Professional Development

 public function addItem($obj, $key = null) {

 $this- > _checkCallback(); //_checkCallback is defined a little later

 if($key) {

 //Throw exception if this key is already in use.
 if(isset($this- > _members[$key])) {
 throw new KeyInUseException(“Key \”$key\” already in use!”);
 } else {
 $this- > _members[$key] = $obj;
 }

 } else {
 $this- > _members[] = $obj;
 }

 }

 public function removeItem($key) {

 $this- > _checkCallback();

 if(isset($this- > _members[$key])) {
 unset($this- > _members[$key]);
 } else {
 throw new KeyInvalidException(“Invalid key \”$key\”!”);
 }

 }

 public function getItem($key) {

 $this- > _checkCallback();

 if(isset($this- > _members[$key])) {
 return $this- > _members[$key];
 } else {
 throw new KeyInvalidException(“Invalid key \”$key\”!”);
 }

 }

 public function keys() {

 $this- > _checkCallback();

 return array_keys($this- > _members);
 }

 public function length() {

 $this- > _checkCallback();

Chapter 5: Collections

117

 return sizeof($this- > _members);
 }

 public function exists($key) {

 $this- > _checkCallback();

 return (isset($this- > _members[$key]));
 }

 /**
 * Use this method to define a function to be
 * invoked prior to accessing the collection.
 * The function should take a collection as a
 * its sole parameter.
 */
 public function setLoadCallback($functionName, $objOrClass = null) {

 if($objOrClass) {
 $callback = array($objOrClass, $functionName);
 } else {
 $callback = $functionName;
 }

 //make sure the function/method is valid
 if(!is_callable($callback, false, $callableName)) {
 throw new Exception(“$callableName is not callable “ .
 “as a parameter to onload”);
 return false;
 }
 $this- > _onload = $callback;

 }

 /**
 * Check to see if a callback has been defined and if so,
 * whether or not it has already been called. If not,
 * invoke the callback function.
 */
 private function _checkCallback() {

 if(isset($this- > _onload) & & !$this- > _isLoaded) {
 $this- > _isLoaded = true;
 call_user_func($this- > _onload, $this);
 }

 }

}
? >

 The setLoadCallback() function enables you to supply the name of a function and optionally, the
name of a class or object variable that will be invoked to populate this collection. If a callback is supplied
to the collection, then the $_onload private member variable is populated with the string or array to be
passed to call_user_func . Note that, just as in the example using the Dog class previously, there ’ s a bit
of sanity checking to ensure that the callback is callable.

118

Part I: Fundamentals of Professional Development

 All the other methods of the Collection class have had the line $this - >checkLoadCallback() added
as the first line in the function declaration. Adding this line forces the collection to check for the existence
of an as - yet uninvoked callback, and will cause that function to be called. Before calling the callback
function, you set a flag to ensure that you call that function only once. Note the check for $this ->
 isLoaded . Any function used as a load callback with the Collection class should expect exactly one
parameter, which will be of type Collection . A reference to the current collection (using the $this
variable) is passed to the callback function with the following line:

call_user_func($this- > _onload, $this)

 This enables the callback function to operate directly on the collection object that caused the function to
be invoked. The example that follows shows how this would work in a real situation.

 Create a class called NightClub . This class has a name property and a collection of Singer objects.
Sometimes you just need to display the name of the club. Sometimes you want to do something with the
collection of singers. As a result, you use the setLoadCallback() method of the collection object to
ensure that you don ’ t execute any unnecessary code.

 Here are the NightClub and Singer classes. Name the file club_singer.php :

 < ?php
require_once(“class.Collection.php”);

class Singer {
 public $name;

 public function __construct($name) {
 $this- > name = $name;
 }
}

class NightClub {
 public $name;
 public $singers;

 public function __construct($name) {
 $this- > name = $name;
 $this- > singers = new Collection();
 $this- > singers- > setLoadCallback(‘loadSingers’, $this);
 }

 public function loadSingers(Collection $col) {
 print “(We’re loading the singers!) < br > \n”;
 //these would normally come from a database
 $col- > addItem(new Singer(‘Frank Sinatra’));
 $col- > addItem(new Singer(‘Dean Martin’));
 $col- > addItem(new Singer(‘Sammy Davis, Jr.’));
 }
}
? >

Chapter 5: Collections

119

 Note the print statement in the loadSingers() method. Having this here is just for demonstration
purposes. Run the following code (you can add it to the bottom of the previous code, if you wish), and
you ’ ll see that the print statement does not appear on the screen:

 < ?php
$objNightClub = new NightClub(‘The Sands’);
print “Welcome to “ . $objNightClub- > name . “. < br > \n”;
? >

 Now try it again, this time doing something with the $singers collection:

 < ?php
$objNightClub = new NightClub(‘The Sands’);
print “Welcome to “ . $objNightClub- > name . “. < br > \n”;

print “We have “ . $objNightClub- > singers- > length() . “ singers “ .
 “for your listening pleasure this evening.”;

? >

 Running this should result in the following output:

Welcome to The Sands.
(We’re loading the singers!)
We have 3 singers for your listening pleasure this evening.

 As you can see, this makes using the singers collection extremely easy. If you were to create the
 NightClub class, you could hand that class off to a more junior member of your software development
team, who could then use that class to display the screen output shown in the example without any
knowledge of how or when that collection was loaded. In addition, you ensure that the application isn ’ t
taking up any more system resources than are absolutely necessary.

 The next section returns to the registrar ’ s office example and shows how to put all this to good use in a
real - world application.

 Using the Collection Class
 As already mentioned previously in this chapter, the registrar ’ s office application involves a class called
 Student that contains a collection of Course objects. Both classes are fairly simple. The UML class
diagram is shown in Figure 5 - 3 .

Student
0 *

+id

+name

+courses

Course

+id

+coursecode

+name

…

Figure 5-3: UML class diagram

120

Part I: Fundamentals of Professional Development

 Of course, a Course should also have a collection of students , but the code will be quite similar, so
after you ’ ve seen how to implement the courses collection for the Student class, you can update the
UML diagram and add the necessary code to support the students collection on the Course class.

 For the Collection class, we ’ ll use the code exactly as it appears in the example with the NightClub
object previously, so if you ’ ve already created that class you don ’ t need to make any changes. If you
haven ’ t already created a file containing that class and you want to try the example out for yourself, do
so now.

 From the UML diagram shown in Figure 5 - 3 , you can see that the Course class is quite simple, having
only a name, a course code, and an ID. The course code is the course identifier, such as CS101 for a
beginning computer science class. The name is the full name of the course. The ID is the numeric
primary key from the database. In a real application, you would probably want to have access to a list of
prerequisites (another collection), a syllabus outline, information about the instructor, and so on. Again,
these are left as an exercise for you to complete on your own.

 Have a look at the code:

 < ?php
class Course {
 private $_id;
 private $_courseCode;
 private $_name;

 function __construct($id, $courseCode, $name) {
 $this- > _id = $id;
 $this- > _courseCode = $courseCode;
 $this- > _name = $name;
 }

 public function getName() {
 return $this- > _name;
 }

 public function getID() {
 return $this- > _id;
 }

 public function getCourseCode() {
 return $this- > _courseCode;
 }

 public function __toString() {
 return $this- > _name;
 }
}
? >

 According to the class diagram, a course has two properties: $id and $name . Because this part of the
application should not allow the name or ID of the class to be modified, private member variables are
used to store those values, and the getID() and getName() methods retrieve them. When you build
the parts of the application that do allow these values to be modified (the course administration tools),

Chapter 5: Collections

121

you can add setID() and setName() methods. These methods should probably utilize some sort of
security mechanism to ensure that no unauthorized individuals are modifying properties of a course.

 This code also includes a __toString() method. This “ magic ” method can be defined by any object in
PHP 6. It enables you to write code like this:

print “This course is called “ . $objCourse . “ < br > ”;

 $objCourse is obviously not a string, but because the special __toString() method has been defined,
PHP will use the return value of that method when attempting to coerce the variable from an object to a
string.

 Because the courses collection should only ever consist of Course objects, create a subclass of
 Collection called CourseCollection . Override the addItem() method to include a type hint that
allows only Course objects to be added to the collection:

 < ?php
require_once(‘class.Collection.php’);

class CourseCollection extends Collection {
 public function addItem(Course $obj, $key = null) {
 parent::addItem($obj, $key);
 }
}
? >

 This enables PHP to do some type checking to ensure that everything in the courses collection is exactly
what you expect it to be — a Course object.

 The Student class has the properties $id and $name , which represent the unique identifier and name of
that student, respectively. It must also have a property called $courses , which is a collection of the
courses for which the student is currently registered:

 < ?php
class Student {
 private $_id;
 private $_name;

 public $courses;

 public function __construct($id, $name) {
 $this- > _id = $id;
 $this- > _name = $name;

 $this- > courses = new CourseCollection();
 $this- > courses- > setLoadCallback(‘_loadCourses’, $this);
 }

 public function getName() {
 return $this- > _name;
 }

122

Part I: Fundamentals of Professional Development

 public function getID() {
 return $this- > _id;
 }

 private function _loadCourses(Collection $col) {
 $arCourses = StudentFactory::getCoursesForStudent($this- > _id, $col);
 }

 public function __toString() {
 return $this- > _name;
 }

}
? >

 Just as in the Course class, implement the $id and $name properties as private member variables and
provide getID() and getName() functions. For now, leave the $courses member as a public member
variable. Note the creation of a __toString() method for this class also. This makes it a little bit easier
to display the most common string representation of any object (in this case, the name of the student).

 In the constructor, call setLoadCallback() and pass in the name of the loading method _
loadCourses() and a reference to the object where that method exists (namely, $this).

 The _loadCourses() method takes a Collection as its only parameter, as required by the
setLoadCallback() function, and uses a static method of the StudentFactory class (discussed next).
This method requires the ID of the student and is passed a Collection object into which to load the
courses.

 The StudentFactory class contains two static methods that do all the work of loading the student and
course information in the database. For this application, three tables must be created in your database:
 student , course , and studentcourse . The purpose of the first two tables should be fairly obvious —
to store the basic information about the students and the courses. The third table has two fields:
 studentid and courseid . It creates the association between students and courses.

 The following SQL statements are for PostgreSQL (the preferred database server for the examples in this
book); but with only minor modifications, it would also work for most RDBMSs:

CREATE TABLE “student” (
 “studentid” SERIAL NOT NULL PRIMARY KEY,
 “name” varchar(255)
);

CREATE TABLE “course” (
 “courseid” SERIAL NOT NULL PRIMARY KEY,
 “coursecode” varchar(10),
 “name” varchar(255)
);

CREATE TABLE “studentcourse” (
 “studentid” integer,

Chapter 5: Collections

123

 “courseid” integer,
 CONSTRAINT “fk_studentcourse_studentid”
 FOREIGN KEY (“studentid”) REFERENCES “student”(“studentid”),
 CONSTRAINT “fk_studentcourse_courseid”
 FOREIGN KEY (“courseid”)
REFERENCES “course”(“courseid”)
);

CREATE UNIQUE INDEX “idx_studentcourse_unique” ON
 “studentcourse”(“studentid”, “courseid”);

 Be sure that the foreign keys are created and don ’ t overlook the unique constraint of the studentcourse
table. A student should not be able to register twice for the same course, and this constraint enforces this
fact at the database level.

 Insert some sample data into each of the three tables. Statements like the following should work for the
purposes of this exercise:

INSERT INTO “student”(name) VALUES(‘Bob Smith’); -- studentid 1
INSERT INTO “student”(name) VALUES(‘John Doe’); -- studentid 2
INSERT INTO “student”(name) VALUES(‘Jane Baker’); -- studentid 3

INSERT INTO “course”(“coursecode”, “name”)
 VALUES(‘CS101’, ‘Intro to Computer Science’); -- courseid 1
INSERT INTO “course”(“coursecode”, “name”)
 VALUES(‘HIST369’, ‘British History 1945-1990’); -- courseid 2
INSERT INTO “course”(“coursecode”, “name”)
 VALUES(‘BIO546’, ‘Advanced Genetics’); -- courseid 3

INSERT INTO “studentcourse”(“studentid”, “courseid”) VALUES(1, 1);
INSERT INTO “studentcourse”(“studentid”, “courseid”) VALUES(1, 2);
INSERT INTO “studentcourse”(“studentid”, “courseid”) VALUES(1, 3);
INSERT INTO “studentcourse”(“studentid”, “courseid”) VALUES(2, 1);
INSERT INTO “studentcourse”(“studentid”, “courseid”) VALUES(2, 3);
INSERT INTO “studentcourse”(“studentid”, “courseid”) VALUES(3, 2);

 The last six statements should be adjusted, depending on the studentid and courseid values that
result from the insert statements into student and course .

 With the database tables created and populated with sample data, you can write and test the
 StudentFactory class. This class has two static methods: getStudent() and
 getCoursesForStudent() . The former is responsible for creating a Student object, given a student ID.
The latter populates the courses collection for a given student.

 The following code does not demonstrate the use of any particular database functions, so some
pseudocode is standing in for the calls to actual database functions. Chapter 6 shows you how to use
the PHP Data Objects (PDO) database abstraction functions. For now, you should feel free to substitute

124

Part I: Fundamentals of Professional Development

the explicit calls to pg_connect , pg_query , and so on (or whatever the appropriate PHP functions are
for your database type):

 < ?php
class StudentFactory {

 public static function getStudent($id) {
 $sql = “SELECT * from \”student\” WHERE \”studentid\” = $id”;
 $data = $db- > select($sql); //pseudo code. Assume it returns an
 //array containing all rows returned
 //by the query.

 if(is_array($data) & & sizeof($data)) {
 return new Student($data[0][‘studentid’], $data[0][‘name’]);
 } else {
 throw new Exception(“Student $id does not exist.”);
 }
 }

 public static function getCoursesForStudent($id, $col) {
 $sql = “SELECT \”course\”.\”courseid\”,
 \”course\”.\”coursecode\”,
 \”course\”.\”name\”
 FROM \”course\”, \”studentcourse\” WHERE
 \”course\”.\”id\” =
 \”studentcourse\”.\”courseid\” AND
 \”studentcourse\”.\”studentid\” = $id”;

 $data = $db- > select($sql); //same pseudo code in getStudent()

 if(is_array($data) & & sizeof($data)) {
 foreach($data as $datum) {
 $objCourse = new Course($datum[‘courseid’], $datum[‘coursecode’],
 $datum[‘name’]);
 $col- > addItem($objCourse, $objCourse- > getCourseCode());
 }
 }

 }
}
? >

 The getStudent() method returns a new Student object populated with the appropriate data. If no
student exists in the database with that ID, then an exception is thrown. All calls to StudentFactory::
getStudent() should be wrapped in a try...catch statement.

 The getCoursesForStudent() method is passed the $courses collection from within _
loadCourses() . The database query selects all the data from the course table, employing an implicit
 JOIN to the studentcourse table to get the courses associated with the specified student.

 Based on the data returned from the database (if any), new Course objects are added to the collection.
Note that you are using the coursecode value as the key when adding the Course to the courses
collection.

Chapter 5: Collections

125

 Because all objects in PHP 6 are passed by reference, you are able to alter the contents of the collection
from within getCoursesForStudent() , and see those changes manifest in the $courses variable of
the Student object. If the phrase “ passed by reference ” doesn ’ t mean much to you, see the discussion in
Chapter 4 on the difference between function parameters passed by value versus those passed by
reference.

 To finally put all this good stuff to some use, try the following code:

 < ?php
$studentID = 1; //use a valid studentid value from your student table

try {
 $objStudent = StudentFactory::getStudent($studentID);
} catch (Exception $e) {
 die(“Student #$studentID doesn’t exist in the database!”);
}

print $objStudent . ($objStudent- > courses- > exists(‘CS101’) ? ‘ is ‘ : ‘ is not ‘) .
 ‘currently enrolled in CS101’;
//displays: “Bob Smith is enrolled in CS101”
? >

 In a deployed application, you should do something a bit more graceful than an abrupt termination of
the application if the specified student isn ’ t found, but this gives you an idea of why that try...catch
statement must be used.

 After getting $objStudent , this code displays a simple message letting you know whether this student
is enrolled in CS101. Upon invoking the exists() method, the courses collection is populated from the
database, courtesy of StudentFactory . Because the course code was used as the key when adding
 Course objects to the collection, you can use the course code (‘ CS101 ’) as the parameter to exists() .

 Improving the Collection Class
 You might be wondering how you could possibly improve the Collection class. How could it be more
powerful, useful, or exciting? Well, the problem is that you don ’ t yet have a simple way to iterate over
the entire collection — displaying a list of the courses, for example. Right now, you can jump directly
only to those items that you already know are in the collection. Obviously, you don ’ t always know what
the contents of the collection are before you set out to use it, so you need a way to write code like this:

 < ?php
$objStudent = StudentFactory::getStudent(1);
foreach($objStudent- > courses as $objCourse) {
 print $objStudent . ‘ is currently enrolled in ‘ . $objCourse . ‘ < br > \n”;
}

? >

 If you were to try to run that code now, you would either get an error or see nothing at all (depending on
the error_reporting level) because $objStudent - >courses is not an array (it ’ s a Collection). In
PHP 4, the only data type that could be used as the operand of a foreach statement was an array. With

126

Part I: Fundamentals of Professional Development

the release of PHP 5 (and still in PHP 6), you have two new built - in interfaces, Iterator and
 IteratorAggregate , that enable you to use foreach on objects, as long as they implement those
interfaces.

 Summary
 The Collection class is a very useful OO alternative to the traditional array, and one that you can
usefully employ in virtually any application you might build. It provides careful management of its
members and a consistent API that makes it easy to write code that uses the class.

 Subclassing Collection and overriding the addItem() method to include a type hint on the first
parameter enables you to control the type of objects that are added to the collection. Although not
strictly necessary, this approach provides an extra level of error checking.

 By wrapping all calls to addItem() , getItem() , and removeItem() in try...catch blocks, you have
complete control over any errors that may occur in those methods. Be sure to handle these errors with
something a bit more graceful than the call to die() shown in the examples.

 Callbacks are an incredibly powerful technique that you can use to implement lazy instantiation, which
conserves system resources and ensures that you ’ re manipulating only the data that it is absolutely
necessary to manipulate. When you have a complex hierarchy of objects, you can use callbacks to
automatically handle the instantiation of child objects, and defer the creation of those not absolutely
necessary for the current application activity. Be sure that you understand how this works and see
whether you can find other uses for this technique.

 Chapter 6 introduces a powerful database abstraction extension that is the authors ’ preferred way to
access relational databases and avoid some of the pitfalls associated with using the native PostgreSQL
(or MySQL, or Oracle, or whatever) functions for PHP.

 Database Abstraction
with PDO

 Virtually every serious Web application you ’ ll build will use some sort of data - storage mechanism.
Such data storage is typically used to store application settings, user registrations, dynamic
content — more or less anything in your application that will be dynamic (that is, it could change at
some stage, either as a result of something one of your users does or as a result of a change in the
business that owns the application).

 For all but the very smallest applications, the accepted choice for data storage tends to be a
relational database management system (RDBMS). The benefits are clear: scalability, ease of
interrogation, reliability, resilience, integrity of data — the list goes on. It ’ s also a virtual necessity
should you ever desire something other than PHP to get its hands on your data. By using a
platform - agnostic container for your data, you ’ re not limiting yourself artificially should you, for
example, ever determine that a .NET application might need to use that data, too.

 Indeed, so prolific is the combination of “ PHP - and - a - database ” that virtually all beginners ’ books
introduce the MySQL database in the very first chapter. The acronym LAMP (Linux, Apache,
MySQL, and PHP) has cropped up in recent years — and searching Google for the phrase “ PHP
and MySQL ” yields more than 2 million hits.

 Unfortunately, as with so much in PHP, the way most people learn to work with databases in their
early years of PHP education is rarely considered best practice. Building applications that are
scalable, extensible, easy to port, and easy to maintain requires a different approach.

 In this chapter, you ’ ll learn just that. You ’ ll start off with a recap of PHP ’ s database support, as well
as remind yourself how database connectivity has been handled in PHP since its introduction
many years ago. By considering hypothetical examples, you ’ ll learn about the limitations of this
approach. Then, you ’ ll meet PHP Data Objects (PDO) and learn how PDO can provide a more
enterprise - ready approach.

Part I: Fundamentals of Professional Development

128

 PHP and Databases
 PHP has enjoyed widespread support for RDBMSs since the early days of PHP 3. Whereas some older
Web application development technologies (notably PERL) were not purpose - built, and some other
technologies (notably Java) have far wider appeal outside of Web development, PHP specializes in
building database - driven Web applications.

 PHP ’ s Database Support
 Out of the box, PHP can support more than 20 different RDBMSs, and individual vendors frequently
release their own extensions to PHP. All the popular flavors are catered to, including, perhaps most
importantly, the big four: MySQL, Oracle, SQL Server, and PostgreSQL.

 Despite its utility, database support in PHP is considered an extension. This means it is not considered
part of the core language and, as a result, must be enabled either during compilation (on UNIX
platforms), or at run - time (on Windows platforms) by enabling the appropriate DLL in php.ini .

 The technique for enabling each supported RDBMS varies in any given installation of PHP. The
following URLs address the ever - useful php.net reference site:

 MySQL — http://uk.php.net/manual/en/mysql.installation.php

 PostgreSQL — http://uk.php.net/manual/en/pgsql.installation.php

 MS SQL Server — http://uk.php.net/manual/en/mssql.installation.php

 Oracle — http://uk.php.net/manual/en/oci8.setup.php

 You can easily determine what database support is enabled in your own installation of PHP by using the
 phpinfo() statement.

 Fire up your favorite text editor and start a new PHP document called phpinfo.php . Enter the
following:

 < ?php
 phpinfo();
? >

 Now fire up your Web browser and point it at the script you just created. With luck, you ’ ll see a full
breakdown of PHP ’ s configuration. Using your browser ’ s search functionality, look for the string mysql ,
 postgresql , mssql , or oci8 , as appropriate. If you find a section with that title, then chances are good
that your build of PHP has support for that database enabled.

 If not, it ’ s time to re - install. Luckily, you ’ ll find information on that in Appendix D, where you ’ ll be
introduced to the best - practice installation of PHP and Apache on Linux, Mac OS X, and even Windows.

 PHP and PostgreSQL
 This is the first chapter in this book that covers database connectivity. Virtually every subsequent
chapter will feature it in some capacity — hardly surprisingly when you consider this is a book about
enterprise - grade development in PHP.

❑

❑

❑

❑

Chapter 6: Database Abstraction with PDO

129

 That ’ s why it ’ s essential to understand this important topic right here and now. The database platform
you choose for your project comes down to a number of important factors, and a true professional will
almost certainly end up working with all four of the platforms mentioned previously at some point in
his or her career.

 Having said that, there will be moments where the choice is wide open, and it comes down to personal
preference. The authors of this book prefer PostgreSQL in such circumstances. It ’ s free, fast, well
supported, extensible, scalable, and reliable, and sports an enterprise - grade feature set that pips MySQL
to the post. There ’ s no doubt this view goes against the grain, but, then again, so does the idea of PHP in
the enterprise in the first place.

 The important point here is that you realize that this is a personal preference; ultimately, it does not matter .
Computer - related religious wars over anything (operating systems, languages, Web servers, databases)
are deeply tiresome and are the hallmark of the spotty teenaged programmer, not a professional. For
every so - called expert who advocates platform X, you ’ ll find another who advocates platform Y, and
who can probably do so every bit as eloquently.

 So, to be blunt, get over it . This chapter (and, indeed, the rest of this book) will demonstrate to you why
properly developed PHP applications are “ database agnostic ” — just as they are “ Web - server agnostic ”
and “ operating - system agnostic. ” This book isn ’ t about “ LAMP ” or “ LAPP ” ; if you took the
nomenclature to its natural conclusion, this book is really about “ XXXP ” — that is, just PHP.

 However, where you find examples in this book, they will be in PostgreSQL. You ’ ll find more
information about its installation and configuration in Appendix D. If this choice bothers you intensely,
the authors implore you to bite your tongue for the purposes of the broader education this book
provides — and then go ahead and use whatever you like in your own projects. As this chapter and the
next demonstrate, you won ’ t have to change very much to make the switch.

 Recap
 Let ’ s recap how database connectivity in PHP has worked since the dawn of time. The following
assumes a working installation of PHP, with PostgreSQL support enabled, and a working installation of
PostgreSQL on the same box.

 Create a new database in PostgreSQL at your console as follows:

 $ /usr/local/pgsql/bin/createdb chaptersix
CREATE DATABASE

 This syntax assumes PostgreSQL is installed on a Linux or other UNIX platform in the directory /usr/
local/pgsql . If you ’ re running on Windows or Mac OS X, this might well be different. The PostgreSQL
installer might have added the bin directory to your path. If this is the case, you can just enter createdb
chaptersix .

 The CREATE DATABASE message indicates that the database was created successfully from the console.
That ’ s great, but your application must be able to connect to that database. Your application won ’ t run

Part I: Fundamentals of Professional Development

130

from the console, so it will need its own login credentials to authenticate. Therefore, create a new user
called chaptersix that can connect to your new database:

 $ /usr/local/pgsql/bin/createuser - P chaptersix
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n
CREATE ROLE

 At the first prompt, enter a password for the new role. For the purposes of this test, let ’ s keep that as
 chaptersix as well. Not exactly secure, but it ’ ll do fine for test purposes.

 Naturally, the latter three prompts should elicit a response in the negative. This isn ’ t any special kind of
user; it needs minimum privileges as a result.

 You now have an empty database, and login credentials for your application to use. Let ’ s create a sample
table:

 $ /usr/local/pgsql/bin/psql chaptersix
Welcome to psql 8.2.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

chaptersix=# CREATE TABLE “ user ” (
chaptersix(# “ id ” SERIAL PRIMARY KEY NOT NULL,
chaptersix(# “ username ” character varying(32),
chaptersix(# “ password_hash ” character varying(32),
chaptersix(# “ first_name ” character varying(64),
chaptersix(# “ last_name ” character varying(64));
NOTICE: CREATE TABLE will create implicit sequence “ user_id_seq ” for serial column
 “ user.id ”
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index “ user_pkey ” for
 table “ user ”
CREATE TABLE

 In case it ’ s not clear from this snapshot, here ’ s what you ’ re entering at the PostgreSQL console:

CREATE TABLE “ user ” (
 “ id ” SERIAL PRIMARY KEY NOT NULL,
 “ username ” character varying(32),
 “ password_hash ” character varying(32),
 “ first_name ” character varying(64),
 “ last_name ” character varying(64));

 Because the user you created was unprivileged, it was created with no access rights to the table you just
created. You must tell PostgreSQL that it ’ s OK for the user called chaptersix to access the database
called chaptersix , and that this user has full read/write access to the relations in that database.

Chapter 6: Database Abstraction with PDO

131

 Assuming you ’ re still in your PostgreSQL console session (and you will be unless you ’ ve exited it by
typing \q and pressing Enter), you can run the following two SQL statements to set the privileges that
you need:

chaptersix=# GRANT ALL PRIVILEGES ON “ user ” TO “ chaptersix “ ;
GRANT
chaptersix=# GRANT ALL PRIVILEGES ON “ user_id_seq ” TO “ chaptersix “ ;
GRANT

 Notice that you must grant privileges on both the database table and the sequence associated with it.

 Finally, for the purposes of this exercise, let ’ s put some data into the table you created. PostgreSQL
allows you to do that en masse using the COPY statement, but for entering dummy data, it is fussy.
Instead, let ’ s just use some old - fashioned INSERT statements to put four test rows into the database, as
shown here:

INSERT INTO “ user “ (“ username ” , “ password_hash ” , “ first_name ” , “ last_name “)
 VALUES(‘ ed ’ , md5(‘ berkhamsted ’), ‘ Ed ’ , ‘ Lecky - Thompson ’);
INSERT INTO “ user “ (“ username ” , “ password_hash ” , “ first_name ” , “ last_name “)
 VALUES(‘ steve ’ , md5(‘ newyork ’), ‘ Steve ’ , ‘ Nowicki ’);
INSERT INTO “ user “ (“ username ” , “ password_hash ” , “ first_name ” , “ last_name “)
 VALUES(‘ marie ’ , md5(‘ leicester ’), ‘ Marie ’ , ‘ Ellis ’);
INSERT INTO “ user “ (“ username ” , “ password_hash ” , “ first_name ” , “ last_name “)
 VALUES(‘ harriet ’ , md5(‘ cambridge ’), ‘ Harriet ’ , ‘ Frankland ’);

 Assuming it all went in without errors, you should see four instances of the following message:

INSERT 0 1

 You ’ re finished with the PostgreSQL console now. You can exit it by typing \q and pressing Enter.

 Now you have a database set up, a user configured, and a test table with data all set up. It ’ s time to
refamiliarize yourself with how PHP works with the database. Fire up your text editor and bang out the
following code. Call it dbtest.php and place it somewhere in your Web server ’ s document root:

 < ?php
 $ objHandle = pg_connect(“ host=localhost port=5432 dbname=chaptersix user=chaptersix
 password=chaptersix ”);

if (! $ objHandle) {
 echo “ An error occurred connecting.\n “ ;
 exit;
}
 $ objResult = pg_query($ objHandle, “ SELECT * FROM \ “ user\ “ “);
if (! $ objResult) {
 echo “ An error occurred querying.\n “ ;
 exit;
};
 $ arRowHash = pg_fetch_all($ objResult);
for ($ i=0; $ i > =sizeof($ arRowHash) - 1; $ i++) {
 print “ Row $ i < br / > \n “ ;

Part I: Fundamentals of Professional Development

132

 foreach ($ arRowHash[$ i] as $ key = $ value) {
 print “ - Column $ key, value $ value < br / > \n “ ;
 };
};
pg_close($ objHandle);
? >

 Point your Web browser at the previous code, and you ’ ll see the following output:

Row 0
 - Column id, value 1
 - Column username, value ed
 - Column password_hash, value fb097067945b57d5943bf9a49b7b7f12
 - Column first_name, value Ed
 - Column last_name, value Lecky - Thompson
Row 1
 - Column id, value 2
 - Column username, value steve
 - Column password_hash, value 369389d19e24204b4927e30dd7c39efc
 - Column first_name, value Steve
 - Column last_name, value Nowicki
Row 2
 - Column id, value 3
 - Column username, value marie
 - Column password_hash, value 16ba4bec9c54a088c9762527601b355a
 - Column first_name, value Marie
 - Column last_name, value Ellis
Row 3
 - Column id, value 4
 - Column username, value harriet
 - Column password_hash, value efa93cabd5de7d42d6a31d41c33043ab
 - Column first_name, value Harriet
 - Column last_name, value Frankland

 If you find yourself getting one of the deliberately trapped error messages instead, check your PHP error
log to find out why. You might have forgotten to set permissions correctly, or you might not have
started PostgreSQL to allow TCP/IP connections from external data sources. See Appendix D for the
PostgreSQL setup you need.

 It is hoped that all went well, and that the previous code seems pretty straightforward. It certainly
shouldn ’ t be something you haven ’ t met before.

 There are essentially four procedural functions being called here: pg_connect , pg_query , pg_fetch_
all , and pg_close . They do pretty much what their names suggest they do. The prefix pg_ indicates
that they are PostgreSQL - specific functions; in a similar vein, MySQL - specific functions begin mysql_ ,
Oracle ’ s begin oci_ , and SQL Server ’ s begin mssql_ .

 The Problem
 This state of affairs is, frankly, a mess. PHP is pretty much unique in that it has almost no predefined
classes. Almost every method exists in a sort of global namespace. It ’ s not part of a parent class, meaning
it ’ s really a “ function. ” This is a throwback from PHP 3, for which OOP support was, shall we say,

Chapter 6: Database Abstraction with PDO

133

limited. It means that every database PHP wants to support creates at least 30 or so functions in this
global namespace.

 It gets worse. Check out the syntax for mysql_query and pg_query . You ’ d expect it to be the same,
right? Wrong, as shown here:

resource mysql_query (string $ query [, resource $ link_identifier])
resource pg_query (resource $ connection , string $ query)

 That ’ s right. Despite being essentially identical in functionality, these two methods take their parameters
in a different order .

 This adds to a difficult situation. PHP has excellent database support (in terms of the breadth and depth
of platforms supported), but an appalling implementation (mainly for historical reasons). As a result of
this messy inconsistency, PHP database - driven applications built in this officially sanctioned way
become a major headache to maintain — and an impossibility to scale or port.

 Wrapper Classes
 To address this disparity, as well as to bring some sense of order to the myriad database functions
created in the global namespace, various third - party developers have, in recent years, attempted to
create wrapper classes around these database methods.

 A good example is MDB2, which is part of the PEAR repository. (See http://pear.php.net/package/
MDB2 for more information and comprehensive documentation.)

 A typical session with MDB2 might look like the following. No need to try this out — it ’ s just an
illustration:

 < ?php
require_once ‘ MDB2.php ’ ;
 $ dsn = ‘ pgsql://chaptersix:chaptersix@localhost/chaptersix ’ ;

 $ mdb2 = MDB2::factory($ dsn);

if (PEAR::isError($ mdb2)) {
 echo ($ mdb2 - getMessage(). ‘ - ’ . $ mdb2 - getUserinfo());
}

 $ query = ‘ SELECT * FROM “ user ” ’ ;
 $ result = $ mdb2 - query($ query);

if (PEAR::isError($ result)) {
 echo ($ result - getMessage(). ‘ - ’ . $ result - getUserinfo());
 exit();
}
while ($ array = $ result - fetchRow()) {
 var_dump($ array);
};
 $ result - free();
? >

Part I: Fundamentals of Professional Development

134

 You can probably guess the output. All such classes do is provide an interface to the existing PHP global
methods — but with some degree of consistency between platforms.

 As a PEAR class, this means that this MDB2 package is semi - official — but the emphasis there is on
 “ semi. ” It ’ s just not quite pervasive enough, meaning that the choice of wrapper in use in any given
project (if, indeed, one has been used at all) can be unpredictable. How many of you have chanced upon
a legacy PHP project with some class called DatabaseConnection or similar? Perhaps this is something
the original author brewed himself or herself?

 Summing Up
 To recap the problem: PHP ’ s database support is a chronic mess — a hodgepodge of static methods
inside the global namespace that have arisen from the language growing too quickly by too many
authors over the past several years.

 The mess manifests itself as an inconsistency in approach, which makes portability between databases a
virtual nonstarter. Some may argue “ this doesn ’ t matter ” — but don ’ t be fooled. It does matter. You may
be confident in your choice of RDBMS now, but what if its manufacturer is bought out by a big
corporation that decides to stop developing it? What if a new release of that same RDBMS changes the
way it works? Portability — and consistency — matters. That ’ s why Java has Java Database Connectivity
(JDBC), and .NET has ADO.NET. Even the much criticized Coldfusion has something along these lines,
in the form of Coldfusion Data Sources.

 Finally, as with so much in PHP, a well - meaning (but ill - advised) cabal of third - party developers have
attempted to tackle the problem themselves — and made it somewhat worse. Virtually every PHP
developer has recognized that the by - the - book approach is out of kilter with common sense; but every
one has had his or her own unique approach, leading to an array of amateur classes to provide cleaner
interfaces to PHP ’ s database functions. Some are good, some are less than good, but none is official, and,
hence, none has achieved widespread usage.

 Mercifully, PHP 6 has brought us a solution.

 Database Abstraction
 The approach just discussed is generally described as database abstraction . At the simplest level, what this
involves is any technique that decreases the number of points at which database - specific code occurs.

 By decreasing the frequency of such touchpoints, the application becomes easier to maintain (because
less code is required for simple database operations) and more portable (because the number of places
where code may need changing is reduced), thus simplifying migration.

 What ’ s Needed
 What is required is a universal, officially PHP - sanctioned approach for database abstraction. What is
needed is something that achieves the goals of consistency and portability, while providing a universally
accepted approach around which all developers can unite.

Chapter 6: Database Abstraction with PDO

135

 Given that other platforms such as .NET and Java 2 Enterprise Edition (J2EE) already have established
mechanisms for database abstraction, something similar to their admittedly rather slick approach would
be advisable, too.

 Introducing PDO
 Thankfully, as of PHP 5.2 (and, by implication, PHP 6), the PHP community has been gifted with PHP
Data Objects (PDO).

 PDO provides a database - agnostic mechanism for connecting to, reading, and manipulating myriad
RDBMS platforms in PHP. It enables developers to assume a consistent approach across each database
platform, easing portability and scalability, as well as eliminating the need for fly - by - night third - party
abstraction layers.

 Getting Started with PDO
 For PHP developers familiar with the traditional database connectivity methods, PDO will seem at first
a little unusual in its approach. In fact, its particular techniques are often seen in other development
platforms and their abstraction layers. Other platforms such as .NET, J2EE, and even PERL practically insist
upon the use of their respective abstraction layers. PHP is virtually unique in recommending in official
documentation using techniques for “ raw ” connectivity. As a result, what is probably second nature to
developers working in other languages seems especially unusual to PHP developers new to PDO.

 Don ’ t worry, however. There ’ s a solid rationale behind every aspect of the PDO approach; and as you
meet the layer throughout the rest of this chapter, it will soon become apparent why certain techniques
and approaches have been adopted.

 Enabling PHP Support

 Earlier in this chapter, you were reminded how to enable database support within PHP:

 On UNIX platforms, by compiling in the relevant library during installation

 On Windows platforms, by enabling the appropriate DLL in php.ini

 Unfortunately, simply enabling database support for your RDBMS of choice does not enable PDO itself,
nor does it enable PDO support for that platform. As such, you must further configure PHP to enjoy
PDO connectivity to the database of your choice.

 There is one “ gotcha ” to be aware of. PDO support does not replace traditional PHP database support. It
merely provides an additional interface to it. As a result, you must still enable base support for your
database platform. Following is a checklist:

 Enable base PostgreSQL support — with - pgsql

 Enable PDO support — enable - pdo=shared

 Enable PostgreSQL on PDO — with - pdo - pgsql=/usr/local/pgsql

❑

❑

❑

❑

❑

Part I: Fundamentals of Professional Development

136

 Full instructions on enabling PDO and the necessary support for your RDBMS can be found at
www.php.net/manual/en/pdo.installation.php . You may also consult Appendix D, where a best -
 practice PHP and Apache installation enabling PostgreSQL support with PDO can be found for the Mac,
Windows, and Linux platforms.

 Connecting and Disconnecting

 The best way to check whether your PHP installation is correctly configured to work with PDO and the
database platform of your choice is to try to make a quick connection.

 For now, you won ’ t do any work with PDO — just connect and disconnect right away:

 < ?php
 $ strDSN = “ pgsql:dbname=chaptersix;host=localhost;port=5432;user=chaptersix;
 password=chaptersix “ ;

// Let ’ s connect
try {
 $ objPDO = new PDO($ strDSN);
 print “ Successfully connected \n “ ;
} catch (PDOException $ e) {
 echo “ An error occurred connecting: “ . $ e - > getMessage() . “ \n “ ;
 exit(0);
}

// Let ’ s disconnect
 $ objPDO = NULL;
print “ Successfully disconnected.\n “ ;

php? >

 This example uses the same test PostgreSQL database you populated earlier in this chapter. If you still
have it set up and working, you should see the following output:

Successfully connected Successfully disconnected.

 If something ’ s not right, you should see an error message such as the following generated by PDO:

An error occurred connecting: SQLSTATE[08006] [7] FATAL: database “ chaptersix ”
 does not exist

 The message comes straight from the RDBMS in question, so it is hoped that it is relatively easy to track
down. Again, if the example earlier in this chapter was working for you, and you have PDO support
enabled correctly, there ’ s no reason why this example shouldn ’ t fire off without any problems.

 Working with PDO
 Since you ’ re now connected successfully to a simple PostgreSQL database via PDO, it ’ s time to get into
a bit more detail about what ’ s going on under the hood.

Chapter 6: Database Abstraction with PDO

137

 The PDO Class
 You probably noticed in the previous example that there ’ s no “ connect ” method in PDO, nor is there any
 “ disconnect ” method. This is quite deliberate. The act of instantiating a new instance of the global PDO
class establishes a connection to the database. Disconnecting happens automatically at the end of the
script or, alternatively, when the class is destroyed by setting it to null.

 As a result, connecting to the database is a simple as the following:

 $ objPDO = new PDO($ strDSN);

 Disconnecting is as simple as this:

 $ objPDO = NULL;

 As such, the PDO class itself is best described as a symbolic representation of a database connection; an
instance of the class can only exist once a connection has been established.

 You ’ ll doubtlessly notice the single parameter you are passing to the constructor of the PDO class. This
is known as a database source name (DSN) . This is a concatenated string that describes the protocol,
hostname, username, password, port, and database name. In some cases, other parameters can be
passed, and in other cases, parameters can be omitted and the default assumed (such as in the case of
TCP/IP port, which in the case of PostgreSQL is usually 5432).

 PDO supports a handful of formats for valid DSN strings, but the following is the most common:

protocol:key=value;key=value;key=value [etc]

 Here, protocol refers to the PDO driver to use — pgsql for PostgreSQL, mysql for MySQL, mssql for
MS SQL Server, and oci for Oracle.

 Each key/value pair is used to specify a particular attribute for the connection. They are many and
varied, but the following are most commonly used:

 host — Hostname of the database (or IP address)

 user — Username

 password — Password (plain text)

 port — TCP/IP port (only supported if not connecting to localhost)

 dbname — Database name

 For a full list of parameters for the database of your choice, refer to the PHP manual ’ s database of
supported drivers at www.php.net/manual/en/pdo.drivers.php . After choosing your driver, you
will see a list of supported parameters enumerated.

❑

❑

❑

❑

❑

Part I: Fundamentals of Professional Development

138

 Executing Queries
 So far, you ’ ve learned how to connect and disconnect using the PDO driver, and you should understand
how to pass connection parameters to customize your connection.

 Now you can see how to execute a simple query using your instantiated PDO object. The following
snippet of code should be inserted between your simple connection and disconnection code:

// Let ’ s interrogate the database
 $ i = 0;
 $ strQuery = “ SELECT * FROM \ “ user\ “ “ ;
 $ objStatement = $ objPDO - query($ strQuery);
foreach ($ objStatement as $ arRow) {
 print “ Row $ i < br / > \n “ ;
 foreach ($ arRow as $ key = $ value) {
 if (!is_numeric($ key)) print “ - Column $ key, value
 $ value < br / > \n “ ;
 };
 $ i++;
};

 If all goes well, then you should be able to see exactly the same output you generated earlier in the
chapter using procedural database connectivity.

 It ’ s worth taking a little time to understand what ’ s happening here. It will make your life considerably
easier when you get into the more advanced material later in this chapter.

 The query() method of the PDO class quickly and “ unfussily ” executes the query specified and
returns an instantiated class of type PDOStatement . The beauty of the PDOStatement class is that it
implements the interface known as Traversible ; that means it supports direct iteration. Therefore, you
can execute a foreach() statement on an instance without worrying about how the class works under
the hood.

 Well, that is, almost. Iterating over the class results in associative arrays, each one equaling one row
of output; but each associative array entry contains both key/value and index/value data. That ’ s why
you need the is_numeric() clause to filter out the index/value stuff — try removing it and see what
happens.

 The preceding illustrates two points. First, it is hoped that it shows you that interrogating a database
using PDO need not necessarily be any more code - intensive than using procedural code. Second, it also
demonstrates that this quick - and - dirty approach doesn ’ t exactly give you much flexibility.

 What would happen if, rather than iterate directly over the PDOStatement object returned directly, you
intercepted it, and worked with it in a little more detail?

Chapter 6: Database Abstraction with PDO

139

 The PDOStatement Class
 The PDOStatement class represents a single statement to be executed against a given session within
PDO, both before the query in question has been executed and afterward .

 Instances of PDOStatement are never created directly. Instead, the PDO class itself provides the
 prepare() method, which generates an instance of PDOStatement . In turn, the mechanisms for
interrogating the return data held by PDOStatement are considerably more sophisticated than simply
using direct iteration over the class instance.

 Modify the preceding block of code to read as follows:

// Let ’ s interrogate the database
 $ i = 0;
 $ strQuery = “ SELECT * FROM \ “ user\ “ “ ;
 $ objStatement = $ objPDO - prepare($ strQuery);
 $ objStatement - execute();
while ($ arRow = $ objStatement - fetch(PDO::FETCH_ASSOC)) {
 print “ Row $ i < br / > \n “ ;
 foreach ($ arRow as $ key = $ value) {
 print “ - Column $ key, value $ value < br / > \n “ ;
 };
 $ i++;
};

 Refresh the page. You should see a familiar sight — yes, that ’ s right, exactly the same output as before.

 However, you ’ re being a little smarter here by making two big changes. First, rather than call the
 query() method of the PDO class, you ’ re calling the prepare() method. The key difference is that
although an instance of PDOStatement is being returned, the query is not yet being executed. In the
preceding example, you ’ re executing the query more or less immediately; but as you ’ ll see shortly, by
separating out the preparation of the statement and the execution of the query, you ’ re allowing yourself
an opportunity to further manipulate the statement prior to execution.

 The second big change you ’ re making is to use the fetch() method of PDOStatement to fetch each row
returned by the database one at a time, rather than use foreach() to iterate over the instance of
 PDOStatement itself. This gives you the flexibility to pass a parameter — a constant, namely PDO::
FETCH_ASSOC . This means the data returned is an associative array containing only key/value data —
 not mixed with index/value data as before.

 Notice, too, that it ’ s easy to return just one row at a time. The fetch() method returns false as soon as
there are no further rows to return. A similarly structured method fetchAll() enables you to return all
rows at once in a single array of associative arrays.

 Prepared Statements
 One of the core uses of prepared statements is to provide a convenient mechanism to pass variable
parameters into SQL queries.

Part I: Fundamentals of Professional Development

140

 A classic example is a scenario in which you may want to retrieve information on a particular row or
rows by using a WHERE clause. Naturally, this is technically possible without using any SQL - specific
techniques:

// Let ’ s interrogate the database
 $ i = 0;
 $ strUsername = ‘ ed ’ ;
 $ strQuery = “ SELECT * FROM \ “ user\ ” WHERE username = ‘ $ strUsername ’ “ ;
 $ objStatement = $ objPDO - prepare($ strQuery);
 $ objStatement - execute();
while ($ arRow = $ objStatement - fetch(PDO::FETCH_ASSOC)) {
 print “ Row $ i < br / > \n “ ;
 foreach ($ arRow as $ key = $ value) {
 print “ - Column $ key, value $ value < br / > \n “ ;
 };
 $ i++;
};

 As you ’ d expect, this code returns just the row you want — in the example data, the row for the user
named ‘ ed ’ .

 In the preceding example, though, you are relying on PHP to merge the variable parameter (in this case,
the username) with the hard - coded SQL (the statement). An alternative approach is to use the database
engine to undertake the “ merge. ” Try the following:

// Let ’ s interrogate the database
 $ i = 0;
 $ strUsername = ‘ ed ’ ;
 $ strQuery = “ SELECT * FROM \ “ user\ ” WHERE username = :username “ ;
 $ objStatement = $ objPDO - prepare($ strQuery);
 $ objStatement - bindParam(‘ :username ’ , $ strUsername, PDO::PARAM_STR);
 $ objStatement - execute();
while ($ arRow = $ objStatement - fetch(PDO::FETCH_ASSOC)) {
 print “ Row $ i < br / > \n “ ;
 foreach ($ arRow as $ key = $ value) {
 print “ - Column $ key, value $ value < br / > \n “ ;
 };
 $ i++;
};

 The results should be exactly the same — only data about the username ‘ ed ’ is returned. In this case, as
promised, the SQL engine is undertaking the merge.

 Notice that the SQL query string being passed to the prepare() method contains an unquoted
parameter prefixed with a colon — namely, :username . This indicates to the PDO engine that you plan
to fill that in a bit later.

 The bindParam() method does just that — takes a variable and passes it to the PDO engine, telling it
where to tie it into the original SQL statement. The constant PDO::PARAM_STR tells the PDO engine that
the parameter being passed is a string. This is important, because the onus is on the PDO engine and the
RDBMS to apply the quotes necessary to construct the final SQL.

Chapter 6: Database Abstraction with PDO

141

 The bindValue() method works similarly, but it won ’ t accept a PHP variable as a parameter — it wants
a hard - coded value instead. Similarly, bindParam() will fail if you try to pass it a hard - coded value — it
wants a variable passed by reference.

 There are four key benefits to this approach.

 First (and foremost) is the benefit of abstraction. If MS SQL Server likes its parameterization to be
represented using square brackets ([and]), and PostgreSQL likes single quotes (‘ and ’), then a natural
barrier to portability is introduced. By having PDO and the database itself handle such database - specific
nuances, this particular barrier is removed.

 The second issue is the particularly hot topic of security — specifically, vulnerability to SQL injection
attacks. Web - based applications that pass HTTP POST or GET parameters toward a database as statement
input parameters are particularly vulnerable to such an attack. Input parameters can be manipulated
adversely in an attempt to execute malicious queries other than those originally intended. For more
information, see the informative Wikipedia article at http://en.wikipedia.org/wiki/SQL_injection .

 One solution to avoiding SQL injection is escaping — that is, pre - parsing HTTP POST and GET parameters
to escape any characters with special meaning in SQL (such as square brackets and apostrophes). This is
not foolproof, however, especially when using unusual non - ASCII character sets such as Unicode.

 It also introduces a portability problem — compare databases that escape apostrophes using a backslash
(\ ’) versus those that escape by using double - entry (’ ’).

 Using parameterized prepared statements closes this issue down once and for all. The escaping of values
(including the encapsulation in delimiters as needed) is handled entirely by PDO and the database itself.
The onus is therefore no longer on the developer to mitigate against SQL injection throughout — which,
on a large project, can be a serious boon, even to an experienced developer.

 Finally, there is the issue of performance. By using a single prepared statement, the underlying database
can be made aware that a popular query (such as the example shown earlier) in an application is, in fact,
structurally the same throughout, with only a parameter or set of parameters changing each time. This
enables the database ’ s own caching and memory - management techniques to self - optimize to allow those
queries to execute as quickly as possible each time. When parameters are passed in outside of the
database engine ’ s consciousness, such optimizations cannot occur.

 Write - Only Statements
 In the previous examples, you ’ ve learned how to use PDO to extract data from the database using
 SELECT statements; but, naturally, not all statements result in data being returned — UPDATE , DELETE
and INSERT statements spring to mind.

Part I: Fundamentals of Professional Development

142

 Your technique should be much the same as before, however:

 $ strQuery = “ INSERT INTO \ “ user\ “ (“ username ” , “ password “) VALUES
 (:username, :password) “ ;
 $ strUsername = ‘ newuser ’ ;
 $ strPassword = ‘ mypassword ’
 $ objStatement = $ objPDO - > prepare($ strQuery);
 $ objStatement - > bindParam(‘ :username ’ , $ strUsername, PDO::PARAM_STR);
 $ objStatement - > bindParam(‘ :password ’ , $ strPassword, PDO::PARAM_STR);
 $ blSuccess = $ objStatement - execute();

 Notice that you capture the return parameter when executing the query. This enables you to perform
some very basic error checking regarding whether the execution was successful. This isn ’ t really
sufficient for an enterprise - grade application, as you might expect. Later in this chapter, you ’ ll learn
about some of PDO ’ s purpose - built error - handling techniques.

 Transactions and Committals
 As you ’ d probably expect, by default, PDO assumes that write operations to the database should commit
automatically. In the previous example, the insertion into the database happens right away — as soon as
the execute() statement is called against the PDOStatement object.

 Naturally, this isn ’ t always desirable. Most databases provide support for transactions, meaning that
multiple database operations can be committed in a single operation and cancelled wholesale should
some condition be (or not be) met. The classic example is one of a monetary transfer between two bank
accounts. The withdrawal of money from the sender account and the receipt of money in the recipient
account must happen atomically — that is, either both must occur or neither should occur. In other words,
if, having deducted the money from the sender account, a failure occurs that prohibits the crediting of
the recipient ’ s account, then the original operation removing money from the sender should be
cancelled, too.

 Control of transactions takes place against instances of the PDO class — not PDOStatement . Three
operations are possible: starting a new transaction, committing (completing) a transaction, and rolling
back (canceling) a transaction. These are accomplished using the beginTransaction() , commit() , and
 rollBack() methods of PDO. Have a look at the following snippet of code:

 < ?php
 $ objPDO = new PDO($ strDSN);
 $ objPDO - setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

try {

 // begin the transaction
 $ objPDO - beginTransaction();

 $ objPDO - exec($ strQuery1);
 $ objPDO - exec($ strQuery2);

 // commit the transaction
 $ objPDO - commit();

Chapter 6: Database Abstraction with PDO

143

} catch (Exception $ e) {

 // rollback the transaction
 $ objPDO - rollBack();

 echo “ Failed: “ . $ e - getMessage();
}
? >

 This example assumes a connection is made to the DSN described by $ strDSN . In turn, a transaction
commences, which encapsulates two interdependent queries described by $ strQuery1 and
 $ strQuery2 .

 Should any error occur at any stage, an exception will be generated, thus preventing the execution of any
further code. All those transactions that have been executed since the transaction being initiated will be
rolled back (that is, undone).

 Transactions are a huge topic in and of themselves, and a complete discussion is outside the scope of this
chapter. However, you will undoubtedly encounter them again throughout your programming career, so
it is hoped that this section has proven a useful primer.

 Constants
 Throughout this chapter, you have seen numerous references to static constants exposed by the PDO
class — such as PDO::PARAM_STR , PDO::ERRMODE_EXCEPTION , PDO::FETCH_ASSOC , and more.

 These constants are used to define column data types, specify different fetch modes, set operational
properties and attributes, and change row retrieval cursor behavior.

 A full list of constants can be found at www.php.net/manual/en/pdo.constants.php .

 Handling Errors
 Any enterprise - grade application needs exceptional exception handling (pun intended).
Although you can mitigate against errors caused by everyday events (such as users failing to enter
a password correctly) by using simple techniques in your PHP code, it ’ s also a good idea to ensure
that you ’ re coping gracefully with any unexpected eventualities that might arise as a result of your
application ’ s communication with your underlying database. This would include failing to connect to
the database in the first place; failed authentication; missing relations (tables and/or columns),
constraint violations; and more — anything your PHP couldn ’ t know about on its own.

 How you handle the existence of an error is up to you — but graceful degradation is the goal. In
Chapter 20 , you ’ ll learn more about quality assurance and its importance in your application. The
mechanism you use to handle exceptions in your application plays a big part in achieving a high
degree of quality.

 By default, PDO operates in what is called silent mode . This means errors won ’ t be detected if you
don ’ t explicitly look for them using the errorCode() and errorInfo() methods on either (or both)
PDO or PDOStatement .

Part I: Fundamentals of Professional Development

144

 The errorCode() method will return a five - character error code — for example, 45S02 , which reflects
what is known as the SQLSTATE of the last operation on the PDO instance or PDOStatement instance, as
appropriate. Your database of choice should provide a list of SQLSTATE values in its own documentation;
PostgreSQL provides one at www.postgresql.org/docs/8.2/static/errcodes - appendix.html .

 The errorInfo() method will return a little more detail. A three - element array is your reward. The first
element contains the same information as errorCode() ; the second contains any driver - specific (e.g.,
PostgreSQL - specific) error code; and the third contains a human - readable error message from the
database itself.

 Both of these methods are useful, but it does require you (as a developer) to test for an error at virtually
every stage. This isn ’ t really appropriate for production - grade applications and will quickly result in
unwieldy code. You should instead tell PDO to throw an exception whenever it encounters a problem —
 and trap that exception yourself. This gives you the power to handle that error with whatever leniency
or severity you deem appropriate as a developer. However, it does place the onus on you to ensure that
every single possible error is caught. Any uncaught exceptions will cause a big, ugly PHP error — not
something you want your users to see.

 You can tell PDO to work in this way by using the following:

 $ objPDO - setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 This needs to be called more or less immediately after instantiating the PDO class, before you even try the
first query preparation.

 Any PDO usage, then, must be wrapped inside try/catch pairs. Here ’ s a complete example you can try
for yourself:

 < ?php
 $ strDSN = “ pgsql:dbname=chaptersix;host=localhost;port=5432;user=chaptersix;
 password=chaptersix “ ;

// Let ’ s connect
try {
 $ objPDO = new PDO($ strDSN);
 $ objPDO - setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

// Let ’ s interrogate the database
 $ i = 0;
 $ strQuery = “ SELECT * FROM \ “ udser\ “ “ ;
 $ objStatement = $ objPDO - prepare($ strQuery);
 $ objStatement - execute();
while ($ arRow = $ objStatement - fetch(PDO::FETCH_ASSOC)) {
 print “ Row $ i < br / > \n “ ;
 foreach ($ arRow as $ key = $ value) {
 print “ - Column $ key, value $ value < br / > \n “ ;
 };
 $ i++;
};

// Let ’ s disconnect

Chapter 6: Database Abstraction with PDO

145

 $ objPDO = NULL;

} catch (PDOException $ e) {
 echo “ An error occurred connecting: “ . $ e - getMessage() . “ < br / > \n “ ;
 list($ strCode, $ strCode2, $ strInfo) = $ objPDO - errorInfo();
 print “ PDO: - Code was ‘ $ strCode ’ , < br / > - Driver code was ‘ $ strCode2 ’ , < br / > -
 Info string was ‘ $ strInfo ’ “ ;
 if ($ objStatement instanceof PDOStatement) {
 list($ strCode, $ strCode2, $ strInfo) = $ objStatement - errorInfo();
 print “ < br / > < br / > PDO Statement: - Code was ‘ $ strCode ’ , < br / > - Driver
 code was ‘ $ strCode2 ’ , < br / > - Info string was ‘ $ strInfo ’ “ ;
 };
 exit(0);
}

php? >

 Run this code (which contains a deliberate error), and you should see something like this:

An error occurred connecting: SQLSTATE[42P01]: Undefined table: 7 ERROR:
 relation “ udser ” does not exist
PDO: - Code was ‘ 00000 ’ ,
 - Driver code was ‘ 7 ’ ,
 - Info string was ‘ ERROR: relation “ udser ” does not exist ’

PDO Statement: - Code was ‘ 42P01 ’ ,
 - Driver code was ‘ 7 ’ ,
 - Info string was ‘ ERROR: relation “ udser ” does not exist ’

 It is hoped that this kind of verbosity makes it very easy to see the error you ’ ve trapped — you ’ ve made
an honest typo. Fix it, refresh, and you should see some very familiar output.

 This example has fallen over and died when trapping the error. Naturally, in your enterprise - grade, real -
 world application, you ’ ll want to be a bit smarter than this. Rather than simply dump the information
available to you to the screen, you ’ d be wise to use a switch() statement or similar to make some
decision regarding what error message to display — if, indeed, you display one at all.

 One final word of warning: Don ’ t tell the user too much. Not only is this tiresome and useless from a
usability point of view (why would the user care what table is missing?), but it also exposes your
database schema to the outside world. From a security perspective, that ’ s best avoided.

 Advanced PDO Techniques
 So far, you ’ ve learned about the basics of PDO. It is hoped that you ’ re now confident how to use it in
your projects in place of traditional procedural connectivity or third - party unofficial wrapper classes.

 There are a few topics that are still worth covering, though. Don ’ t expect too much detail here — they ’ re
big topics in their own right, and some of them you ’ ll meet in more detail later in this book. However, by
scratching the surface of each here, you can learn why you should not be tempted to revert back to bad
habits as the complexity of your projects increases.

Part I: Fundamentals of Professional Development

146

 Large Objects
 There ’ s some debate in programming circles over whether it ’ s a good idea to store large objects in a
database. The term large object (LOB) typically refers to any one columnar value of a given row exceeding
around 4,098 bytes.

 This could be plain text. For example, you could be storing a complex piece of HTML representing the
body of an HTML e - mail in a database. It could equally be binary data. For example, you may want to
store a large user - uploaded image in a database.

 The reason for the debate is the enormous processing burden involved in storing and making available
what is essentially a chunk of unstructured data in a structured environment. Consider, for example,
displaying a user - uploaded image in the course of rendering a Web page. If that Web page could simply
retrieve that image from the file system of a Web server, then that ’ s easy. If, however, that Web page
must retrieve the image from a PHP script, which, in turn, must retrieve binary data from a database,
then that ’ s not so easy.

 A compromise solution is often achievable, however. For example, you could use the database to store
a “ master copy ” of such large objects, but then use offline generation scripts to create a file - system - stored
cache. This gives you the best of both worlds: using a single database to store all variable data, but using
a file system and simple Web server to serve up static content.

 The mechanism by which large objects are stored in databases varies from platform to platform.
Mercifully, each PDO driver knows the best way to get that data to and from the database and takes care
of it for you.

 The PDO::PARAM_LOB constant represents a neat way of treating large object return data from a
PDO - supported database, as shown in the following example. This represents the code to a script that
might be used to dump images straight into HTML < img > tags:

 < ?php
 $ db = new PDO($ strDSN);

 $ stmt = $ db - prepare(“ SELECT \ “ bindata\ ” FROM \ “ jpeg_image\ ” WHERE id = :imageid “);
 $ stmt - bindParam(‘ :imageid ’ , $ _GET[“ id “], PDO::PARAM_INT);
 $ stmt - execute();
 $ stmt - bindColumn(1, $ binData, PDO::PARAM_LOB);
 $ stmt - fetch(PDO::FETCH_BOUND);

header(“ Content - Type: image/jpeg “);
fpassthru($ binData);
exit(0);
? >

 If you named this script dumpimage.php , you might invoke it using an image tag that looks like this:

 < img src= “ dumpimage.php?id=12345 ” / >

 Notice that you bind the input parameter representing the image identifier in the normal way, taking
care to tell PDO that it must be an integer by using the constant PDO::PARAM_INT . Also notice, though,

Chapter 6: Database Abstraction with PDO

147

that you use a method of PDOStatement called bindColumn() . This has the unusual behavior of
allowing subsequent invocations of fetch() to populate given PHP variables without further notice.

 In this case, using bindColumn() tells PDO that the first (leftmost) column of its return data should be
fed into a PHP variable $ binData — one feeding per row called using fetch() . By specifying a data
type of PDO::PARAM_LOB , the fetch() method will store that data in that variable using PHP ’ s closest
approximation of a large object — namely, a stream .

 A file stream in PHP can be sent straight to standard output using fpassthru() — and this is exactly
what you use to dump the image binary data straight to the browser, taking care to first issue a suitable
MIME type as a header.

 It ’ s worth noting that PHP assumes you ’ re using a database ’ s preferred large object metaphor. If you ’ re
not (for example, if you are storing Base64 encoded data as a string), then this technique will fail. In
PostgreSQL, large objects are implemented using object identifier (OID) references and are largely taken
care of by the database “ behind the scenes. ” More reading than you could ever wish for can be found at
 www.postgresql.org/docs/8.1/static/largeobjects.html .

 Database - Specific Functions
 PDO does its best to emulate behavior (or gracefully fail) when a specific request cannot be fulfilled on
the database platform in use. Indeed, certain database behavior is unarguably peculiar to that specific
platform. It would, therefore, be asinine for PDO to attempt to provide universal implementation, only
for it to fail on 19 out of 20 RDBMSs.

 For this reason, certain methods of the PDO and PDOStatement classes are only available when PDO has
been instantiated using a particular driver.

 For example, the creation of large objects (as just discussed) in PostgreSQL is achieved through the
allocation of a new OID from the central large object repository, which spans multiple tables and
databases, and is therefore essentially unique per - installation. This behavior is niche to say the least,
and, as such, PDO exposes a PostgreSQL - only method, PDO::pgsqlLOBCreate() , to achieve it. See
 www.php.net/manual/en/function.pdo - pgsqllobcreate.php for the full syntax.

 This is a sensible approach. However good PDO ’ s intentions may be, perfect database abstraction is
something of a pipe dream, as you ’ ll see in the next section. When methodology truly is unique to a
particular platform, the developers have allocated a unique method to achieve it.

 Hence, individual driver - specific methods and constants can be located on the PDO drivers ’ function
references found at www.php.net/manual/en/pdo.drivers.php . Be sure to consult it if your database
of choice is often prone to nonconformist tendencies.

 Persistent Connections
 Generally speaking, a new TCP/IP connection to the database is formed whenever an instance of the
 PDO class is created as an object. In turn, this connection is closed when that object is destroyed.

 For high - traffic connections, this may not always be preferable. Using persistent connections means PHP
will keep the established connection open after the script terminates. When the script runs again in

Part I: Fundamentals of Professional Development

148

another session, an existing idle connection will be “ hijacked ” for immediate use. It ’ s like keeping the
phone permanently dialed to your favorite pizza place, and then just lifting the handset to your ear
when you get hungry.

 This provides performance benefits. Because there is overhead associated with opening and closing
sockets, by keeping those connections open, that overhead is eliminated.

 Using persistent connections is easy, as shown here:

 < ?php
 $ objPDO = new PDO($ strDSN, NULL, NULL,array(
 PDO::ATTR_PERSISTENT = true
));
? >

 Notice the blank parameters after the DSN. If you ’ re populating the username and password in the DSN,
then these parameters (normally used for specification of username and password) are not required.
The fourth parameter (an array of driver - specific parameters) features the parameter PDO::ATTR_
PERSISTENT set to true .

 Note one drawback, and one prerequisite. The drawback is that those connections are “ reserved ” by
PHP, meaning other applications (including command - line PHP scripts you may have to regularly
perform batch jobs on) can ’ t use those connections to talk to your database. The prerequisite is that in
order to maintain the connection beyond the script execution, PHP must be running as a Web server
module — not a CGI script. If you follow the installation instructions in Appendix D, however, then this
shouldn ’ t be an issue.

 Stored Procedures
 Many database platforms support stored procedures . This means that certain common procedures and
functions can be coded into the database schema — rather than developed in the application development
language (such as PHP). As a result, for example, methods such as getNearestStore() can be called directly
from SQL syntax — rather than having to construct multiple queries to achieve the same effect in PHP.

 There are certain advantages to this approach. Some RDBMSs are able to cache the data sets involved in
calls to stored procedures intelligently. As a result, subsequent calls to these stored procedures are able to
enjoy performance benefits. In addition, should other platforms (perhaps .NET applications or PERL
scripts) need to access the same data and execute those same procedures, there are code savings to be
realized.

 Calling a stored procedure is no different from calling any SQL statement. The syntax depends on the
RDBMS in question. MySQL uses the CALL() statement; PostgreSQL simply invokes the function as if it
were built in. Passing parameters is achieved in exactly the same way, as shown here:

 $ iUserID = 12345;
 $ objStatement = $ objPDO - prepare(“ SELECT getNearestStore(:userid) “);
 $ objStatement - bindParam(“ :userid ” , $ iUserID, PDO::PARAM_INT);
// call the stored procedure
 $ objStatement - execute();

Chapter 6: Database Abstraction with PDO

149

 Keep in mind that stored procedures severely limit database portability — one of the key aims of the
PDO project. To that end, use them sparingly and judiciously.

 Singleton Instantiation
 On a typical PHP project, only one connection to one database is required. For that reason, instantiating
multiple instances of the PDO class shouldn ’ t happen in a given request — after all, one instance equals
one connection.

 This can be a tricky rule to stick to, though. You ’ ll notice as you start to build increasingly sophisticated
projects that your database access requirements are split across multiple classes. If each method of each class
needs access to your database, how do you share access to a single connection across each of those classes?

 The answer is a singleton class, a class with a single factory method that returns an instance of PDO for
your application. This method is pretty smart. It figures out whether or not an instance of PDO has
already been returned to your application. If one hasn ’ t, then it creates a new instance of PDO and returns
a reference to it. If it has, then it returns a reference to the existing instance:

 < ?php
class PDOFactory {

 public static function GetPDO($ strDSN, $ strUser, $ strPass, $ arParms) {
 $ strKey = md5(serialize(array($ strDSN, $ strUser, $ strPass, $ arParms)));
 if (!($ GLOBALS[“ PDOS “][$ strKey] instanceof PDO)) {
 $ GLOBALS[“ PDOS “][$ strKey] = new PDO($ strDSN,
 $ strUser, $ strPass, $ arParms);
 };
 return($ GLOBALS[“ PDOS “][$ strKey]);
 }

}
? >

 This class enables you to create new instances of PDO without ever worrying about duplicate
connections. Provided that the DSN, username, password, and parameter array are identical on each
occasion, you ’ ll never get a duplicate — just the original.

 Therefore, in your code, look for the following:

 $ objPDO = new PDO($ strDSN, NULL, NULL, array(PDO::ATTR_PERSISTENT = > true));

 Instead of the preceding syntax, use the following:

 $ objPDO = PDOFactory::GetPDO($ strDSN, NULL, NULL, array(PDO::ATTR_PERSISTENT = >
 true));

 The effect is the same — you get an instance of the PDO object — but you ’ re guaranteed not to get more
than one per script execution, regardless of the class from which you request the instance.

Part I: Fundamentals of Professional Development

150

 Limitations of PDO
 So far in this chapter, you ’ ve seen PDO in something of a positive light — a simple, straightforward, and
officially sanctioned mechanism that can provide uniform database abstraction in your PHP applications,
regardless of your choice of RDBMS.

 In the aim of true portability between platforms, though, it is fair to say that PDO has its limitations.
Understanding and recognizing where it can (and cannot) help you is the hallmark of a true PHP
professional. As you ’ ll see in subsequent chapters, there are techniques well beyond the realm of
database abstraction that can ease portability and scalability.

 Query Syntax
 Consider the following SQL query:

SELECT TOP 10 * FROM [user]

 Now consider this query:

SELECT * FROM “ user ” LIMIT 10;

 These two queries are obviously different on the surface. As you may have guessed, however, they result
in identical output when executed in their respective databases. The first query is Transact - SQL, and
hence compatible with MS SQL Server and Sybase. The latter is PostgreSQL — or indeed MySQL.

 However, the differences run deeper. Consider the following:

SELECT * FROM user

 Now consider this:

SELECT * FROM “ user ”

 Both the former and the latter are perfectly permissible in MySQL. However, only the latter is
permissible in PostgreSQL because “ user ” is a reserved word, so quotation marks are required — not
optional. By now you have no doubt spotted the argument. Although SQL allows a great deal of
commonality between various RDBMSs, each dialect of SQL is subtly different. PDO can accommodate
minor differences such as escaping and enquoting, but it can ’ t accommodate fundamental differences
in syntax.

 Such shortcomings naturally limit portability — the whole purpose of PDO.

 Feature Emulation
 Similarly, certain RDBMSs support entire feature sets absent in others. A case in point is transaction
support — notably absent in older versions of MySQL, as well as flat - file databases such as SQLite and
Access.

Chapter 6: Database Abstraction with PDO

151

 PDO will do its best to emulate software - level features not inherent in the RDBMS in question. When it
can ’ t do this, unfortunately, it will rarely throw an error — instead, it just won ’ t work. A good example is
 PDO::lastInsertID() — a useful method designed to return the auto - incremented numeric identifier
assigned from the last INSERT statement executed by your application. Regrettably, if your database
driver doesn ’ t support this method, then you may not get a meaningful or consistent result.

 The moral of the story here is to be very sure that your RDBMS supports what you are trying to do before
you try to do it. If it doesn ’ t, then you may not find an error is thrown as you would expect; rather, PDO
may try to be helpful and end up thoroughly confusing in the process.

 Non - SQL Data Sources
 Finally, it ’ s worth touching on the concept of a data source . PDO assumes that any data source your
application may use will be a traditional, off - the - shelf database (such PostgreSQL or Oracle), or a flat - file
solution (such as Access or SQLite). Increasingly, however, this isn ’ t always the case; applications
frequently make use of remote data sources run over Web services of one form or another.

 A good example would be a business that starts out small — maybe running a single PostgreSQL or
MySQL database — and then decides to franchise out its business model. The same code that powered
that small business may be required to be rolled out across the franchise, but instead of using a simple
installation of an RDBMS, make use of central Web services that provides access to the same
approximate model of data on a distributed basis.

 In such a scenario, PDO falls short of expectations. There is no mechanism to port from using a
traditional database with PDO to using a more distributed model such as that described here. Writing
your own PDO drivers is certainly possible, but not in PHP. Patches in C++ to the PHP core are required,
with all the inherent difficulties associated with maintainability.

 Beyond PDO
 There ’ s one final point worth making — and that is that PDO does not write SQL for you. This is quite
deliberate. Refer to the PDO documentation at www.php.net/manual/en/intro.pdo.php and you ’ ll
clearly see that PDO advertises itself as “ data access abstraction, ” rather than “ database abstraction. ”

 This might sound like semantics, but the distinction is important. PDO still requires you to possess a
near - encyclopedic knowledge of the RDBMS of your choice — its peculiarities, specific features, and
limitations. This is arguably not a bad thing, but you may well find yourself frustrated at having to write
and rewrite repetitive SQL statements to do simple things such create, read, update, and delete entities.

 Fret not. In Chapter 7 , you ’ ll learn about Object Relation Mapping (ORM) and how it can save you a
whole heap of time by constructing common SQL queries on your behalf.

Part I: Fundamentals of Professional Development

152

 Summary
 This important chapter introduced you to PHP Data Objects (PDO). You learned how PDO can play an
important role in guaranteeing your application ’ s portability and scalability across seemingly disparate
database platforms.

 You started off with a recap of PHP ’ s basic database support by creating, connecting to, reading, and
manipulating a simple PostgreSQL database. By considering hypothetical examples, you saw how PHP ’ s
built - in procedural database access limits the scalability and portability of your application; and even
saw how well - meaning (but ultimately fruitless) efforts by third parties have already attempted to
address the problem.

 You were introduced to “ the official way ” to undertake database access in PHP6 — namely, PDO. From
the ground up, you learned how to recreate the simple data access techniques you were used to in PHP 4
and 5 using preferred PHP techniques.

 Finally, you were given a crash course in some of the advanced mechanisms PDO makes available to
developers, with a view to learning each technique in greater detail later in the book. You were also
shown some of PDO ’ s limitations (not insignificant in some cases), which demonstrate that it only goes
some of the way in addressing the issues at hand.

 Chapter 7 is of equal importance. You ’ ll be introduced to Object Relation Mapping (ORM), which
enables you to write even less SQL when building common database applications. It ’ s something you ’ ve
probably bumped into before without even realizing it, but the power of PDO enables it to go one step
further than it has done historically. Your newly found knowledge of PDO will give you a newly found
appreciation of what ORM can do for your applications, and why it ’ s so important.

Part II

Learning Advanced
Development

Techniques

Chapter 7: Object Relation Mapping

Chapter 8: Event-Driven Programming

Chapter 9: Logging and Debugging

Chapter 10: Writing and Using Web Services

Chapter 11: Communicating with Users

Chapter 12: Sessions and Authentication

Chapter 13: Application Architecture

Chapter 14: PHP Application Frameworks

 Object Relation Mapping

 Chapter 6 introduced you to PHP Data Objects (PDO), which provides a form of simple database
abstraction to enable a greater degree of portability, scalability, and ease of maintenance for
enterprise - grade PHP applications.

 The tail end of the chapter, however, described some of the limitations of PDO. As you discovered,
PDO never generates SQL statements for you; it still relies on you, as the developer, to craft every
one from scratch. That ’ s sometimes quite desirable, especially for performance reasons; but more
often than not, it ends up violating a golden rule of enterprise level development: Don ’ t Repeat
Yourself (DRY, for short).

 In this chapter, you ’ ll see how even relatively simple applications that use databases to hold
business data run the risk of code repetition, with the myriad risks associated with it. You ’ ll see
how the use of a further degree of abstraction, Object Relation Mapping (ORM), can minimize
the amount of code you must write to achieve the most common database operations.

 By gaining an understanding of the principles behind ORM, when you ’ re introduced to a key part
of your enterprise PHP 6 toolkit, DataBoundObject , you ’ ll understand not just what it does, but
also how it works under the hood. This is an important chapter, so don ’ t move on until it has fully
sunk in.

 Types of Classes
 The first few chapters of this book provided you with a crash course in the principles behind
object - oriented programming (OOP). Your take on those chapters will have depended on whether
you are familiar with objects in other development languages such as Java 2 Enterprise Edition
(J2EE) and .NET. If you are, it is hoped that you breezed through those first few pages and gained
an understanding of “ how PHP does it. ” If you aren ’ t, then it is hoped that you are now fully
versed in not only how to write OOP code in PHP, but also why you should .

Part II: Learning Advanced Development Techniques

156

 In this chapter, you will be dealing with a particular kind of class, though — a business class . For that
reason, it ’ s worth understanding the differences between the various types of classes you ’ ll encounter (or
write) in your PHP programming career. After all, you must be able to identify when the ORM model
(which applies only to business classes) is actually appropriate to use.

 Utility Classes
 One of the first guiding principles of OOP development is that “ everything should be an object. ” In other
words, the idea of using procedural code — that is, including functions inside the global namespace —
 should be consigned to your mental wastebasket.

 This leaves developers with something of a conundrum. If you ’ re not allowed to have sets of functions
anymore, then where do you put all those useful bits of code that do things such as encryption, sending
e - mails, doing math, and so forth?

 The answer is that you wrap them inside a helper class (also called a utility class). In this way, you group
together methods with a common purpose inside a single class, usually (though not always) as static
methods. For example, a single global function called EncryptString()might instead be replaced by a
static method in a class called Encryption , and hence be invoked using Encryption::
EncryptString() instead.

 PHP is one of relatively few modern development languages that has such niche methods in the global
namespace — that is, outside of a class of any descriptions. True proponents of OOP in PHP often decry
this fact and vigorously write wrapper classes to attempt to eliminate the need for global methods — for
example, a class called String such that $ objString - > getLength() may be used instead of
 strlen($ strVar) .

 This book does not go quite that far. After all, the authors quite like writing base64_encode($ s) instead
of Convert.ToBase64String(System.Text.Encoding.ASCII.GetBytes(s)) (a tip of the hat to
.NET there); but you will certainly find that this book does advocate grouping together common
developer - authored methods into single classes.

 It ’ s worth stating that these classes are normally “ data stateless. ” That is, they do not create, read,
update, or delete in external data sources, such as file systems, Web services or, crucially, databases.
Should you find yourself needing a class to do just that, then a business class is a far better bet.

 Business Classes
 As a rule, a business class is a class (or a business object , once it ’ s been instantiated) that represents a single
(usually changeable) entity that your application is designed to support. Note that the word “ business ”
is misleading — after all, not all applications are written for a business — but these classes most
definitely do represent “ things ” that are created, read, updated, or deleted by your application.

 Developers often cite the example of an e - commerce site, which has users who generate orders, which
consist of a shopping cart full of products, and a credit card transaction used to pay for that cart of
products. In that one sentence you can find five potential business classes:

 A class User that represents a user on the site

 A class Order that represents an order placed by a “ user ”

❑

❑

Chapter 7: Object Relation Mapping

157

 A class Product that represents a product a “ user ” may buy as part of his or her “ order ”

 A class Cart that represents a temporary storage area for products that may (or may not) form
an “ order ” at some point in the future

 A class CardPayment that represents a credit card payment used to pay for an “ order ”

 As you can see, each of these five classes has a semantic meaning outside the inner workings of the
application itself. You could easily explain to a nontechnical suit within the business what a “ user ” or
 “ order ” is without too much difficulty. That ’ s where the phrase “ business object ” comes from, although
some use the term domain object .

 Business Objects in Detail
 Now that you broadly understand what a business object is, and where you might use one in your
application, it ’ s worth taking a look at how you might implement one in practice. In this section, you ’ ll
see the evolution of a simple class designed to represent a user on a system.

 The Design
 Before pressing keys on the keyboard, it ’ s useful to design the class on paper. The User class represents a
single registered user in this hypothetical application. As a simple application, only a few fields are
prompted for at registration:

 First name

 Last name

 Username

 Password (which is stored encrypted)

 E - mail address

 You may want to store a few more pieces of information about each user, though:

 Date of last login

 Time of last login

 Date account was created

 Time account was created

 With this design in mind, you can easily fashion an early prototype for your class.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Part II: Learning Advanced Development Techniques

158

 Prototyping
 You can now build a very simple class that represents the design. The following source code
demonstrates an early prototype of the User class — you might want to call it userv1.phpm to
distinguish it from later versions you ’ ll build this chapter:

 < ?php

class User {

 private $ FirstName;
 private $ LastName;
 private $ Username;
 private $ Password;
 private $ EmailAddress;

 private $ DateLastLogin;
 private $ TimeLastLogin;
 private $ DateAccountCreated;
 private $ TimeAccountCreated;

 public function __call($ strFunction, $ arArguments) {

 $ strMethodType = substr($ strFunction, 0, 3);
 $ strMethodMember = substr($ strFunction, 3);
 switch ($ strMethodType) {
 case “ set “ :
 return($ this - > SetAccessor($ strMethodMember,
 $ arArguments[0]));
 break;
 case “ get “ :
 return($ this - > GetAccessor($ strMethodMember));
 };
 return(false);
 }

 private function SetAccessor($ strMember, $ strNewValue) {
 if (property_exists($ this, $ strMember)) {
 if (is_numeric($ strNewValue)) {
 eval(‘ $ this - > ’ . $ strMember . ‘ = ’ . $ strNewValue
 . ‘ ; ’);
 } else {
 eval(‘ $ this - > ’ . $ strMember . ‘ = “ ’ . $ strNewValue
 . ‘ “ ; ’);
 };
 } else {
 return(false);
 };
 }

 private function GetAccessor($ strMember) {
 if (property_exists($ this, $ strMember)) {

Download at WoweBook.com

Chapter 7: Object Relation Mapping

159

 eval(‘ $ strRetVal = $ this - > ’ . $ strMember . ‘ ; ’);
 return($ strRetVal);
 } else {
 return(false);
 };
 }

}

? >

 Naturally, the newly created prototype class is of little use without some PHP to test it out. Here ’ s a
quick example you can quickly call up in your Web browser:

 < ?php

 require(“ userv1.phpm “);

 $ objUser = new User();
 $ objUser - > setFirstName(“ Ed “);
 $ objUser - > setLastName(“ Lecky - Thompson “);
 $ objUser - > setUsername(“ ed “);

 print “ First name is “ . $ objUser - > getFirstName() . “ < br / > “ ;
 print “ Last name is “ . $ objUser - > getLastName() . “ < br / > “ ;
 print “ Username is “ . $ objUser - > getUsername() . “ < br / > “ ;

? >

 Try the preceding little bit of code. You ’ ll need to save it in the same directory as the class — and it is
hoped that you ’ ll see the following fairly predictable output:

First name is Ed
Last name is Lecky - Thompson
Username is ed

 You ’ re already doing a few fairly clever things here, so it ’ s worth stepping through the class step-by-step
to ensure that it all makes sense to you.

 First of all, notice that all the member variables discussed earlier in the chapter are being declared as
private, not public:

 private $ FirstName;
 private $ LastName;
 private $ Username;
 private $ Password;
 private $ EmailAddress;

 private $ DateLastLogin;
 private $ TimeLastLogin;
 private $ DateAccountCreated;
 private $ TimeAccountCreated;

Part II: Learning Advanced Development Techniques

160

 This is a good practice. The member variables are not something you want outside code to touch or
inspect directly, as it wrests control away from where the magic can happen — that is, your class.
Therefore, you use accessor methods. These methods enable you to access each member variable via an
aptly named method, as you saw in the previous test. For example, to get the “ last name ” property (a
member variable called LastName), you use a method called getLastName() . Similarly, to set it you
would use setLastName() .

 However, with so many member variables, it would be a pain to have to write two accessor methods for
each — so you don ’ t. You make use of a PHP feature called object overloading, which enables you to
describe the behavior that PHP should exhibit when your code calls a method that doesn ’ t (on the face of
it) exist.

 The two physical methods, SetAccessor() and GetAccessor() , provide a useful “ map ” between all
your virtual accessor methods and the behavior you want when those accessor methods are used.
In this case, nothing clever happens. The methods simply provide a public interface to public member
variables and use PHP ’ s eval() function to write PHP code on - the - fly; but as you ’ ll see shortly, these
two methods provide a useful “ trap ” in which other code may be executed as part of your setting and
getting.

 Adding Data Binding
 Your class works, and you ’ ve written a short test to prove that to yourself. You ’ ve even saved yourself
maintenance headache by defining overloaded virtual accessor methods. If you need to add an extra
member variable in the future, then you simply add it to the class definition, with no extra code
required.

 Crucially, however, your class lacks something — data binding. Right now, as soon as you create a new
user, it exists only for the lifetime of that HTTP request. Assuming your users ’ registrations are to last a
while longer than that, you ’ ll need to store your users in a database.

 Naturally, the way to do that is to create a database table (or relation) that matches (or maps to) your
 object . Suddenly, the title of this chapter — “ Object Relation Mapping ” — makes a bit of sense.

 Before you create a table, you must create a database to hold it. If you followed Chapter 6 to the letter,
then this task is unlikely to present you with any problems:

 $ /usr/local/pgsql/bin/createdb chapterseven
CREATE DATABASE

 Next, create a user of the same name to access the database:

 $ /usr/local/pgsql/bin/createuser - P chapterseven
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n
CREATE ROLE

Chapter 7: Object Relation Mapping

161

 As before, open the PostgreSQL console to create the relevant database table:

 $ /usr/local/pgsql/bin/psql chapterseven
Welcome to psql 8.2.4, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

chapterseven=# CREATE TABLE “ system_user ” (
chapterseven(# “ id ” SERIAL PRIMARY KEY NOT NULL,
chapterseven(# “ first_name ” character varying(64),
chapterseven(# “ last_name ” character varying(128),
chapterseven(# “ username ” character varying(32),
chapterseven(# “ md5_pw ” character varying(32),
chapterseven(# “ email_address ” character varying(128),
chapterseven(# “ date_last_login ” date,
chapterseven(# “ time_last_login ” time,
chapterseven(# “ date_account_created ” date,
chapterseven(# “ time_account_created ” time
chapterseven(#);
NOTICE: CREATE TABLE will create implicit sequence “ system_user_id_seq ” for
 serial column “ system_user.id ”
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index “ system_user_pkey ”
 for table “ system_user ”
CREATE TABLE
chapterseven=#

 The final step is to give the user ‘ chapterseven ’ full access to the table ’ system_user ’ . Therefore, you
would use the following while still in the PostgreSQL console:

chapterseven=# GRANT ALL PRIVILEGES ON “ system_user ” TO “ chapterseven “ ;
GRANT
chapterseven=# GRANT ALL PRIVILEGES ON “ system_user_id_seq ” TO “ chapterseven “ ;
GRANT

 You ’ re all set. There ’ s no need to create any test data. The test code you will meet later in this chapter
creates a test entry for you.

 Data Requirements

 Before meeting any more code, it ’ s worth considering in some detail exactly what you want out of your
data - bound User class.

 Ever heard of “ CRUD ” ? It stands for “ create, read, update, and delete ” — and it refers to the four most
common data operations you will typically perform on a data - bound object:

 Create — Obviously, you want to be able to create new instances of users in your database table
by creating a new instance of the class. Typically, you ’ ll set some attributes using the various
accessor methods, and then call some sort of method to commit the new object to the database,
generating an appropriate INSERT statement in the process.

❑

Part II: Learning Advanced Development Techniques

162

 Read — You ’ ll also be interested in being able to create new instances of the User object that
represent exiting users in the database. For example, you may know that you ’ re interested in a
user with the ‘ id ’ of 345 — perhaps in common parlance referred to as “ user 345. ” You ’ ll need
some mechanism of instantiating the class with that identifier, populating its properties so they
mirror that of the underlying database table entry, and enabling the user of accessor methods to
retrieve those properties.

 Update — In the same vein as the reading capabilities defined earlier, you ’ ll want your business
object to allow for the updating of an existing user ’ s current properties. Therefore, having
instantiated a new user in exactly the same way described previously, you ’ ll want to provide
accessor methods to enable properties to be updated and, crucially, a mechanism to commit all
those changes to the database.

 Delete — Finally, there will be times when the user in question will never be needed again, so the
underlying database table entry will never be needed again. Therefore, a mechanism is needed
to destroy the object and underlying database table entry, provided that the object instance in
question represented a bona fide database entry.

 Relation Mapping

 You will have noticed in the example prototype class that you provided virtual accessor methods
to every property of the User object — for example, SetFirstName() , SetLastName() ,
 GetFirstName() , GetLastName() , and so forth.

 This is a good practice. Some alternative approaches you may have seen in the past use generic methods
called GetField() and SetField() , which take the name of a database column as a string parameter.
While this is suitably flexible, it is less than ideal. The purpose of database abstraction of any kind is
to remove programmer dependency on underlying database knowledge. This approach requires
knowledge of database column names, which may not necessarily be the same as your member variable
names. For example, compare SetFirstName() versus SetField(“ first_name “) .

 Indeed, it is often undesirable to use the same name for a member attribute and database column name.
Many RDBMSs frown upon the use of capital letters in relation names, yet using capitalization in PHP
variable and member names can greatly increase readability, particularly when capitalizing the first
letter of each discrete English word in your variable name (a technique known as StudleyCaps).

 As a result, there must be some mechanism in your data - bound business object to map column names
to class member variables. This way, when your class executes INSERT , UPDATE , SELECT , and DELETE
statements, it can easily translate between column names and database table column names, and
vice versa.

 A Working Business Object
 Based on the previous discussion, the next step is to construct a fully working version of your original
prototype, which binds itself to your underlying database, but, on the surface, works almost exactly the
same way.

 The key word there is almost . You ’ ll notice changes to the addition of a constructor that allows the
invoker to pass a numeric identifier, if known. This enables the class to be instantiated to represent an
existing user in the database, rather than a brand - new one. This identifier is then stored in a new

❑

❑

❑

Chapter 7: Object Relation Mapping

163

member variable, ‘ id ’ . The constructor also sets up the relation map, which maps relation names to
member variable names.

 In addition, notice the use of a Save() method to commit changes (INSERT or UPDATE , as required); and
a MarkForDeletion() method to allow destruction.

 Meet the Code

 You can enter the following code for the class and save it as userv2.phpm . It ’ s a long piece of code, so be
careful to ensure that you don ’ t accidentally introduce any carriage returns or linefeeds where code
spans the width of this book ’ s page:

 < ?php

class User {

 private $ ID;
 private $ objPDO;
 private $ strTableName;
 private $ arRelationMap;
 private $ blForDeletion;

 private $ FirstName;
 private $ LastName;
 private $ Username;
 private $ Password;
 private $ EmailAddress;

 private $ DateLastLogin;
 private $ TimeLastLogin;
 private $ DateAccountCreated;
 private $ TimeAccountCreated;

 public function __construct(PDO $ objPDO, $ id = NULL) {
 $ this - > strTableName = “ system_user “ ;
 $ this - > arRelationMap = array(

 “ id ” = > “ ID ” ,
 “ first_name ” = > “ FirstName ” ,
 “ last_name ” = > “ LastName ” ,
 “ username ” = > “ Username ” ,
 “ md5_pw ” = > “ Password ” ,
 “ email_address ” = > “ EmailAddress ” ,
 “ date_last_login ” = > “ DateLastLogin ” ,
 “ time_last_login ” = > “ TimeLastLogin ” ,
 “ date_account_created ” = > “ DateAccountCreated ” ,
 “ time_account_created ” = > “ TimeAccountCreated “);

 $ this - > objPDO = $ objPDO;
 if (isset($ id)) {
 $ this - > ID = $ id;
 $ strQuery = “ SELECT “ ;
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 $ strQuery .= “ \ “ ” . $ key . “ \ ” , ” ;

Part II: Learning Advanced Development Techniques

164

 }
 $ strQuery = substr($ strQuery, 0, strlen($ strQuery) - 1);
 $ strQuery .= “ FROM “ . $ this - > strTableName . “ WHERE
 \ “ id\ ” = :eid “ ;
 $ objStatement = $ this - > objPDO - > prepare($ strQuery);
 $ objStatement - > bindParam(‘ :eid ’ , $ this - > ID,
 PDO::PARAM_INT);
 $ objStatement - > execute();
 $ arRow = $ objStatement - > fetch(PDO::FETCH_ASSOC);
 foreach($ arRow as $ key = > $ value) {
 $ strMember = $ this - > arRelationMap[$ key];
 if (property_exists($ this, $ strMember)) {
 if (is_numeric($ value)) {
 eval(‘ $ this - > ’ . $ strMember . ‘ =
 ‘ . $ value . ‘ ; ’);
 } else {
 eval(‘ $ this - > ’ . $ strMember . ‘ =
 “ ’ . $ value . ‘ “ ; ’);
 };
 };
 };
 };
 }

 public function Save() {
 if (isset($ this - > ID)) {
 $ strQuery = ‘ UPDATE “ ’ . $ this - > strTableName . ‘ ” SET ‘ ;
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 eval(‘ $ actualVal = & $ this - > ’ . $ value . ‘ ; ’);
 if (isset($ actualVal)) {
 $ strQuery .= ‘ “ ’ . $ key . “ \ ” = : $ value, “ ;
 };
 }
 $ strQuery = substr($ strQuery, 0, strlen($ strQuery) - 2);
 $ strQuery .= ‘ WHERE “ id ” = :eid ’ ;
 unset($ objStatement);
 $ objStatement = $ this - > objPDO - > prepare($ strQuery);
 $ objStatement - > bindValue(‘ :eid ’ , $ this - > ID,
 PDO::PARAM_INT);
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 eval(‘ $ actualVal = & $ this - > ’ .
 $ value . ‘ ; ’);
 if (isset($ actualVal)) {
 if ((is_int($ actualVal)) ||
 ($ actualVal == NULL)) {
 $ objStatement - > bindValue
 (‘ : ’ . $ value, $ actualVal, PDO::PARAM_INT);
 } else {
 $ objStatement - > bindValue
 (‘ : ’ . $ value, $ actualVal, PDO::PARAM_STR);
 };
 };
 };

Chapter 7: Object Relation Mapping

165

 $ objStatement - > execute();
 } else {
 $ strValueList = “ “ ;
 $ strQuery = ‘ INSERT INTO “ ’ . $ this - > strTableName . ‘ “ (’ ;
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 eval(‘ $ actualVal = & $ this - > ’ . $ value . ‘ ; ’);
 if (isset($ actualVal)) {
 $ strQuery .= ‘ “ ’ . $ key . ‘ ” , ‘ ;
 $ strValueList .= “ : $ value, “ ;
 };
 }
 $ strQuery = substr($ strQuery, 0, strlen($ strQuery) - 2);
 $ strValueList = substr($ strValueList, 0,
 strlen($ strValueList) - 2);
 $ strQuery .= “) VALUES (“ ;
 $ strQuery .= $ strValueList;
 $ strQuery .= “) “ ;
 unset($ objStatement);
 $ objStatement = $ this - > objPDO - > prepare($ strQuery);
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 eval(‘ $ actualVal = & $ this - > ’ . $ value . ‘ ; ’);
 if (isset($ actualVal)) {
 if ((is_int($ actualVal)) ||
 ($ actualVal == NULL)) {
 $ objStatement - > bindValue
 (‘ : ’ . $ value, $ actualVal, PDO::PARAM_INT);
 } else {
 $ objStatement - > bindValue
 (‘ : ’ . $ value, $ actualVal, PDO::PARAM_STR);
 };
 };
 }
 $ objStatement - > execute();
 $ this - > ID = $ this - > objPDO - > lastInsertId
 ($ this - > strTableName . “ _id_seq “);
 }
 }

 public function MarkForDeletion() {
 $ this - > blForDeletion = true;
 }

 public function __destruct() {
 if (isset($ this - > ID)) {
 if ($ this - > blForDeletion == true) {
 $ strQuery = ‘ DELETE FROM “ ’ .
 $ this - > strTableName . ‘ ” WHERE “ id ” = :eid ’ ;
 $ objStatement = $ this - > objPDO - > prepare($ strQuery);
 $ objStatement - > bindValue
 (‘ :eid ’ , $ this - > ID, PDO::PARAM_INT);
 $ objStatement - > execute();
 };
 }

Part II: Learning Advanced Development Techniques

166

 }

 public function __call($ strFunction, $ arArguments) {

 $ strMethodType = substr($ strFunction, 0, 3);
 $ strMethodMember = substr($ strFunction, 3);
 switch ($ strMethodType) {
 case “ set “ :
 return($ this - > SetAccessor
 ($ strMethodMember, $ arArguments[0]));
 break;
 case “ get “ :
 return($ this - > GetAccessor($ strMethodMember));
 };
 return(false);
 }

 private function SetAccessor($ strMember, $ strNewValue) {
 if (property_exists($ this, $ strMember)) {
 if (is_numeric($ strNewValue)) {
 eval(‘ $ this - > ’ . $ strMember .
 ‘ = ‘ . $ strNewValue . ‘ ; ’);
 } else {
 eval(‘ $ this - > ’ . $ strMember .
 ‘ = “ ’ . $ strNewValue . ‘ “ ; ’);
 };
 } else {
 return(false);
 };
 }

 private function GetAccessor($ strMember) {
 if (property_exists($ this, $ strMember)) {
 eval(‘ $ strRetVal = $ this - > ’ . $ strMember . ‘ ; ’);
 return($ strRetVal);
 } else {
 return(false);
 };
 }

}

? >

 Ensuring Requirements Are Met
 The preceding piece of code is pretty daunting, and the longest piece of code you have met in this book
so far. Don ’ t worry; you will learn how it works in more detail in the following sections. For now, it ’ s
important to try it out to ensure that it fulfills all of the requirements you drafted previously — namely,
CRUD (create, read, update, and delete).

Chapter 7: Object Relation Mapping

167

 Create

 Try out the following piece of code. You ’ ll need userv2.phpm (created previously) and pdofactory
.phpm (found in Chapter 6) in order for it to work.

 < ?php

 require(“ userv2.phpm “);
 require(“ pdofactory.phpm “);

 print “ Running ... < br / > “ ;

 $ strDSN = “ pgsql:dbname=chapterseven;host=localhost;port=5432 “ ;
 $ objPDO = PDOFactory::GetPDO($ strDSN, “ chapterseven ” , “ chapterseven ” ,
 array());
 $ objPDO - > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $ objUser = new User($ objPDO);

 $ objUser - > setFirstName(“ Steve “);
 $ objUser - > setLastName(“ Nowicki “);
 $ objUser - > setDateAccountCreated(date(“ Y - m - d “));

 print “ First name is “ . $ objUser - > getFirstName() . “ < br / > “ ;
 print “ Last name is “ . $ objUser - > getLastName() . “ < br / > “ ;

 print “ Saving ... < br / > “ ;

 $ objUser - > Save();

 print “ ID in database is “ . $ objUser - > getID() . “ < br / > “ ;

? >

 It is hoped that you see the following output:

Running ...
First name is Steve
Last name is Nowicki
Saving ...
ID in database is 1

 Take a look at the database, too. You should be able to see the following entry:

chapterseven=# SELECT first_name, last_name, date_account_created FROM
 “ system_user ” WHERE id=1;
 first_name | last_name | date_account_created
 - - - - - - - - - - - - + - - - - - - - - - - - + -
 Steve | Nowicki | 2008 - 05 - 26
(1 row)

 Notice that you didn ’ t specify every column, but it didn ’ t matter. Because other columns had no NOT
NULL constraints, they were effectively optional and were left blank.

Part II: Learning Advanced Development Techniques

168

 Read

 Here ’ s a much simpler piece of code that makes use of the record you just inserted:

 < ?php

 require(“ userv2.phpm “);
 require(“ pdofactory.phpm “);

 print “ Running ... < br / > “ ;

 $ strDSN = “ pgsql:dbname=chapterseven;host=localhost;port=5432 “ ;
 $ objPDO = PDOFactory::GetPDO($ strDSN, “ chapterseven ” , “ chapterseven ” ,
 array());
 $ objPDO - > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $ objUser = new User($ objPDO, 1);
 print “ First name is “ . $ objUser - > getFirstName() . “ < br / > “ ;

? >

 The output should be exactly what you would expect:

Running ...
First name is Steve

 By passing in an ID of ‘ 1 ’ to the object, it is automatically populated with the data from the table
represented by that ID — in this case, your good friend Steve.

 Update

 Here ’ s another piece of code you can try that demonstrates updating Steve ’ s entry in the database:

 < ?php
 require(“ userv2.phpm “);
 require(“ pdofactory.phpm “);

 print “ Running ... < br / > “ ;

 $ strDSN = “ pgsql:dbname=chapterseven;host=localhost;port=5432 “ ;
 $ objPDO = PDOFactory::GetPDO($ strDSN, “ chapterseven ” , “ chapterseven ” ,
 array());
 $ objPDO - > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

 $ objUser = new User($ objPDO, 1);
 $ objUser - > setFirstName(“ Steven “);
 $ objUser - > Save();

? >

Chapter 7: Object Relation Mapping

169

 Give this a shot. You won ’ t see much output of interest, but you should see that the underlying database
table has been updated, and that Steve is now called Steven, as shown here:

chapterseven=# SELECT first_name, last_name, date_account_created FROM
 “ system_user ” WHERE id=1;
 first_name | last_name | date_account_created
 - - - - - - - - - - - - + - - - - - - - - - - - + -
 Steven | Nowicki | 2008 - 05 - 26
(1 row)

 You could have made more than one update in this session — one column, all of them, or anything in
between.

 Delete

 Here ’ s one final piece of code for you to try before you discover how the underlying class works:

 < ?php

 require(“ userv2.phpm “);
 require(“ pdofactory.phpm “);

 print “ Running ... < br / > “ ;

 $ strDSN = “ pgsql:dbname=chapterseven;host=localhost;port=5432 “ ;
 $ objPDO = PDOFactory::GetPDO($ strDSN, “ chapterseven ” , “ chapterseven ” ,
 array());
 $ objPDO - > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $ objUser = new User($ objPDO, 1);
 $ objUser - > MarkForDeletion();

? >

 Run this one in your browser. Again, you won ’ t see output of much interest, but you should observe that
in the underlying database, Steve has firmly disappeared:

chapterseven=# SELECT first_name, last_name, date_account_created FROM
 “ system_user ” WHERE id=1;
 first_name | last_name | date_account_created
 - - - - - - - - - - - - + - - - - - - - - - - - + -
 (0 rows)

 That ’ s enough practice. Now it ’ s time for some theory.

 Understanding How It Works
 It is hoped that you ’ ve demonstrated to yourself by now that the class works and works well. It ’ s a big
piece of code, but the code that makes use of the class is small and lightweight. This is crucial in best -
 practice PHP: Keep things in reusable classes, and keep the complexity away from your general
application logic.

Part II: Learning Advanced Development Techniques

170

 The following discussion assumes an understanding of how the first version of the class presented
earlier in this chapter works in practice. If that didn ’ t make sense, then it would be good to review that
material before continuing.

 New Member Variables

 You should notice that the following member variables have been added to the class:

 private $ ID;
 private $ objPDO;
 private $ strTableName;
 private $ arRelationMap;
 private $ blForDeletion;

 All these member variables have been declared as private, as they have no place being accessed or
modified from outside the class itself.

 The member variable $ ID , as you might expect, stores the unique identifier assigned to the row in the
database table. It ’ s assumed throughout the class that this is numeric, that it increments automatically,
and that it ’ s called ‘ id ’ in the table. If not, then it should be easy enough to adapt the class as needed.

 An instance of the PDO object is stored in $ objPDO . This is passed in for the first time in the constructor,
and retained as a member variable throughout the lifetime of the class. In your own applications, you
will probably want to make use of the PDOFactory class to generate a singleton instance of the PDO
object, in order to avoid redundant multiple connections to the same DSN. That instance can then be
passed into your business classes as (and when) you instantiate them.

 Because the table name cannot be assumed from the name of the class (in this case, for example, the
name of the class is ‘ User ’ , but the table is called ‘ system_user ’), it is necessary to make use of a
member variable solely to store the name of the corresponding database table. This is set inextricably in
the constructor.

 An associative array, $ arRelationMap , is used to map table names (as the array key) to member
variable names (as the array value). Member variable names are stored without the leading dollar sign.
Again, this is set in the constructor.

 Finally, a simple Boolean flag is used to indicate whether or not the object has been marked for
permanent destruction. When set to true , the destructor of the class will invoke a physical deletion in
the underlying database. In practice, of course, enterprise - class applications rarely call for business
records to be permanently destroyed (for reasons such as adoption of the Sarbanes - Oxley Act). However,
you may decide to vary the behavior in the destructor — for example, to set a ‘ disabled ’ flag on the
record or somehow otherwise prohibit its future inclusion in general selections.

 Constructor

 The addition of a standard constructor enables several operations to be automatically executed upon
instantiation of an object of the class.

Chapter 7: Object Relation Mapping

171

 First and foremost, the table name and relation map as described previously are defined. Although hard -
 coded here, in more complex applications these may be stored in separate PHP structures, or even XML,
to ease maintainability.

 The constructor allows for an instance of the PDO object to be passed in, which is stored by reference in
the object ’ s cluster of member variables. It also allows an ID (a numeric identifier that represents an
existing user) to be passed, although this is made firmly optional. However, if one has been passed, then
the database is immediately interrogated to retrieve the current columnar values of that record. Those
columnar values are then used to populate the member variables representing the properties of the
business object.

 This interrogation is performed by progressively constructing a SELECT statement. First, the keyword
 SELECT is appended to with a list of column names separated by commas. The final vestigial comma is
then discarded. The keyword FROM is then appended, followed by the table name, and a WHERE clause
demanding the record represented by the ID value in question. Note the use of parameterized query
parameters in the WHERE clause; sadly, this technique cannot reliably be used to populate table and
column (relation) names.

 With the query then executed, the results are used to progressively populate the properties of the class
using the relevant accessor methods. The class can then be considered ‘ loaded ’ , and any subsequent
calls to ‘ get ’ accessor methods will yield the expected value.

 Save() Method

 The Save() method is an additional method provided to enable you, as a developer, to commit changes
you have made to the class in memory to the underlying database.

 This is a semi - smart method, in that it figures out whether it needs to build an INSERT statement (as
indeed it will if this is a new object and hence no ID is yet allocated), or whether to build an UPDATE
statement if this is an existing object. Either way, parameterized query syntax is used for columnar
values (but not table or column names).

 In the event that an INSERT statement is generated, PDO ’ s lastInsertId() method is used to capture
the ID of the row just inserted. When working with PostgreSQL, this method must be passed the name
of the sequence associated with the table ’ s ID, usually in the form tablename_id_seq . Having been
determined, this ID is then stored in the “ ID ” property of the object and can be retrieved using
 getID() just like any other property.

 MarkForDeletion() Method

 This accessor method enables the class object to be marked for permanent deletion upon destruction.
The threat is carried through by the destructor.

 Destructor

 The destructor does nothing other than to delete the underlying database table entry in the event that the
object has been marked for destruction using the MarkForDeletion() method.

Part II: Learning Advanced Development Techniques

172

 Limitations
 By now, it is hoped that you have worked your way through the class and, using the examples supplied
here, have proven to yourself that it does actually work. Furthermore, the benefits should be clear. A
relatively complex class means that your application code can be kept lightweight, simple, and portable.

 There are a few limitations to this approach, though.

 Impact on the Database

 When instantiating the class with an existing ID for reading, updating, or deleting, a SELECT query is
automatically executed to transfer the contents of the underlying database table entry directly into the
class object. This is usually, but not always, desirable.

 Consider a hypothetical method in a factory class that produces a collection or array of User objects. For
example, your Product class may well have a method called GetOrderingUsers() that will return all
those users who have ordered that product. The result may be an array of a hundred or so User objects.
That ’ s all well and good, but how likely are you to need all 100 of those objects at once? Hardly at all —
 it ’ s far more likely that you will paginate over them five or so at a time.

 By simply creating the object with an existing ID, however, you are forcing a SELECT query to be
generated. As a result, in the previous example, 100 SELECT queries will hammer the database in one go,
rendering 95 of them totally redundant.

 Database queries are expensive, so anything that can be done to minimize them should (and must)
be done.

 Unnecessary Queries

 When creating a brand - new instance of a User , the INSERT statement that is built is reasonably smart in
that it includes only those columns that have been set; don ’ t set (for example) the ‘ date created ’
property, and it won ’ t be included in the INSERT statement.

 Unfortunately, this technique is dependent on the use of the isset() method to determine whether or
not a property has been assigned a value. That ’ s fine when dealing with a brand - new object; but when
working with an existing User , every property is assigned a value as it is read from the database. As a
result, isset() simply replies “ yes! ” when called; therefore, a call to Save() will yield an UPDATE
statement that updates every column in the table — whether it has actually been changed or not. Not
only is this wasteful, it can also have undesirable effects if other applications connected to the database
commit changes to other columns between the initial SELECT and the final UPDATE being executed.

 Code Duplication

 Finally, read the class source code again. How much of that class is actually specific to the User object
and/or its underlying table? Not a great deal.

 As a result, this complex code is going to end up being duplicated repeatedly for every business object in
your application, which disregards the well - respected philosophy of DRY (Don ’ t Repeat Yourself).

Chapter 7: Object Relation Mapping

173

 A Smarter Approach
 Notice that you ’ ve been building something of a straw man throughout this chapter — that is, building
something up only to tear it down again in one fell swoop. Don ’ t worry. You ’ ll see in this section that 80
percent of the code you ’ ve written so far can be reused to form a third version of your business object,
along with a portable, reusable, generic class you can add to your toolkit.

 Lazy Instantiation
 You saw in the previous section how the immediate execution of a SELECT query upon instantiation can
exert unnecessary stress on the underlying database. A remedy to this particular problem is what is
known as lazy instantiation .

 This means that the class is wired to accept exactly the same input parameters to its constructor as
before, but is engineered to delay behavior resulting from that instantiation until the last possible
moment.

 In practice, this means deliberately delaying the SELECT query until the very first ‘ get ’ accessor call is
executed. At that point, it is possible to infer accurately that the query is absolutely necessary and
execute it immediately. Thereafter, it need not be executed again for the lifetime of the class.

 Property Monitoring
 The issue of the overly zealous UPDATE statement needlessly firing against all columns should be easy to
fix. All that is required is to maintain a register of columns (in the form of an array stack) that have been
updated since the class was first instantiated.

 At the point at which the Save() method is called, this register can be consulted such that the UPDATE
statement that is built is deliberately curtailed to include only those columns that have been modified.

 Reusability
 Finally, the easiest way to encourage portability and minimize (or even eliminate) unnecessary code
duplication is to deliberately abstract away the code that is not specific to the business object in question.

 That code can then be placed into an abstract class , which can be extended for each unique case, the
extension containing only what is particular to the entity in question — in this case, a User .

 DataBoundObject Class
 With all of this in mind, this section introduces you to a new class, DataBoundObject , that takes the
bulk of the code you ’ ve already written and places it in an abstract, reusable package that you can
subclass for your own business objects.

 It also addresses the two other key limitations of the second version of the User class you ’ ve created —
 namely, the impact on the underlying database and the perils of unnecessarily aggressive queries.

Part II: Learning Advanced Development Techniques

174

 Design
 Before jumping in at the deep end and meeting the code, it ’ s worth thinking about what ’ s involved in
producing a suitable reusable class to meet the agreed requirements.

 By producing an abstract class , you are both providing final methods that child classes need not
reproduce (and, optionally, via the ‘ final ’ keyword, cannot overload), as well as declaring certain
methods that must be implemented by the child.

 It ’ s worth considering, therefore, what methods and member variables are generic (that is, they can be
defined in full in the abstract class) and those that are class - specific (and, therefore, something you expect
the child class to define). Think of it as dividing assets following a divorce settlement; you ’ re asking, who
gets what?

 In terms of member variables, the following from the original User class can remain in the abstract
parent:

 private $ ID;
 private $ objPDO;
 private $ strTableName;
 private $ arRelationMap;
 private $ blForDeletion;

 There ’ s nothing class - specific about these member variables; therefore, they will form part of your new
abstract class.

 Conversely, consider the following:

 private $ FirstName;
 private $ LastName;
 private $ Username;
 private $ Password;
 private $ EmailAddress;

 private $ DateLastLogin;
 private $ TimeLastLogin;
 private $ DateAccountCreated;
 private $ TimeAccountCreated;

 Between them, these comprise the User - specific member variables and should, therefore, reside firmly
within the child class.

 In terms of methods, all of the methods defined in the User class are already completely generic, relying
as they do on other member variables that describe the table and its columns. However, some of the
hard - coding of detail in the constructor must be moved into the child; and to this end, new abstract
methods can be defined in the parent class for required implementation in the child.

 With this in mind, it ’ s time to meet the class itself.

Chapter 7: Object Relation Mapping

175

 The Code
 Here ’ s the class in all its glory. You should save this as databoundobject.phpm :

 < ?php

abstract class DataBoundObject {

 protected $ ID;
 protected $ objPDO;
 protected $ strTableName;
 protected $ arRelationMap;
 protected $ blForDeletion;
 protected $ blIsLoaded;
 protected $ arModifiedRelations;

 abstract protected function DefineTableName();
 abstract protected function DefineRelationMap();

 public function __construct(PDO $ objPDO, $ id = NULL) {
 $ this - > strTableName = $ this - > DefineTableName();
 $ this - > arRelationMap = $ this - > DefineRelationMap();
 $ this - > objPDO = $ objPDO;
 $ this - > blIsLoaded = false;
 if (isset($ id)) {
 $ this - > ID = $ id;
 };
 $ this - > arModifiedRelations = array();
 }

 public function Load() {
 if (isset($ this - > ID)) {
 $ strQuery = “ SELECT “ ;
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 $ strQuery .= “ \ “ ” . $ key . “ \ ” , ” ;
 }
 $ strQuery = substr($ strQuery, 0, strlen($ strQuery) - 1);
 $ strQuery .= “ FROM “ . $ this - > strTableName . “ WHERE
 \ “ id\ ” = :eid “ ;
 $ objStatement = $ this - > objPDO - > prepare($ strQuery);
 $ objStatement - > bindParam(‘ :eid ’ , $ this - > ID,
 PDO::PARAM_INT);
 $ objStatement - > execute();
 $ arRow = $ objStatement - > fetch(PDO::FETCH_ASSOC);
 foreach($ arRow as $ key = > $ value) {
 $ strMember = $ this - > arRelationMap[$ key];
 if (property_exists($ this, $ strMember)) {
 if (is_numeric($ value)) {
 eval(‘ $ this - > ’ . $ strMember .
 ‘ = ‘ . $ value . ‘ ; ’);
 } else {
 eval(‘ $ this - > ’ . $ strMember .
 ‘ = “ ’ . $ value . ‘ “ ; ’);

Part II: Learning Advanced Development Techniques

176

 };
 };
 };
 $ this - > blIsLoaded = true;
 };
 }

 public function Save() {
 if (isset($ this - > ID)) {
 $ strQuery = ‘ UPDATE “ ’ . $ this - > strTableName . ‘ ” SET ‘ ;
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 eval(‘ $ actualVal = & $ this - > ’ . $ value . ‘ ; ’);
 if (array_key_exists($ value, $ this - > arModifiedRelations)) {
 $ strQuery .= ‘ “ ’ . $ key . “ \ ” = : $ value, “ ;
 };
 }
 $ strQuery = substr($ strQuery, 0, strlen($ strQuery) - 2);
 $ strQuery .= ‘ WHERE “ id ” = :eid ’ ;
 unset($ objStatement);
 $ objStatement = $ this - > objPDO - > prepare($ strQuery);
 $ objStatement - > bindValue(‘ :eid ’ , $ this - > ID, PDO::PARAM_INT);
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 eval(‘ $ actualVal = & $ this - > ’ . $ value . ‘ ; ’);
 if (array_key_exists($ value, $ this - > arModifiedRelations)) {
 if ((is_int($ actualVal)) || ($ actualVal == NULL)) {
 $ objStatement - > bindValue(‘ : ’ . $ value, $ actualVal,
 PDO::PARAM_INT);
 } else {
 $ objStatement - > bindValue(‘ : ’ . $ value, $ actualVal,
 PDO::PARAM_STR);
 };
 };
 };
 $ objStatement - > execute();
 } else {
 $ strValueList = “ “ ;
 $ strQuery = ‘ INSERT INTO “ ’ . $ this - > strTableName . ‘ “ (’ ;
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 eval(‘ $ actualVal = & $ this - > ’ . $ value . ‘ ; ’);
 if (isset($ actualVal)) {
 if (array_key_exists($ value, $ this - > arModifiedRelations)) {
 $ strQuery .= ‘ “ ’ . $ key . ‘ ” , ‘ ;
 $ strValueList .= “ : $ value, “ ;
 };
 };
 }
 $ strQuery = substr($ strQuery, 0, strlen($ strQuery) - 2);
 $ strValueList = substr($ strValueList, 0, strlen($ strValueList) - 2);
 $ strQuery .= “) VALUES (“ ;
 $ strQuery .= $ strValueList;

Chapter 7: Object Relation Mapping

177

 $ strQuery .= “) “ ;

 unset($ objStatement);
 $ objStatement = $ this - > objPDO - > prepare($ strQuery);
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 eval(‘ $ actualVal = & $ this - > ’ . $ value . ‘ ; ’);
 if (isset($ actualVal)) {
 if (array_key_exists($ value, $ this - > arModifiedRelations)) {
 if ((is_int($ actualVal)) || ($ actualVal == NULL)) {
 $ objStatement - > bindValue
 (‘ : ’ . $ value, $ actualVal, PDO::PARAM_INT);
 } else {
 $ objStatement - > bindValue
 (‘ : ’ . $ value, $ actualVal, PDO::PARAM_STR);
 };
 };
 };
 }
 $ objStatement - > execute();
 $ this - > ID = $ this - > objPDO - > lastInsertId($ this - > strTableName . “ _id_seq “);
 }
 }

 public function MarkForDeletion() {
 $ this - > blForDeletion = true;
 }

 public function __destruct() {
 if (isset($ this - > ID)) {
 if ($ this - > blForDeletion == true) {
 $ strQuery = ‘ DELETE FROM “ ’ . $ this - > strTableName . ‘ ” WHERE
 “ id ” = :eid ’ ;
 $ objStatement = $ this - > objPDO - > prepare($ strQuery);
 $ objStatement - > bindValue(‘ :eid ’ , $ this - > ID, PDO::PARAM_INT);
 $ objStatement - > execute();
 };
 }
 }

 public function __call($ strFunction, $ arArguments) {

 $ strMethodType = substr($ strFunction, 0, 3);
 $ strMethodMember = substr($ strFunction, 3);
 switch ($ strMethodType) {
 case “ set “ :
 return($ this - > SetAccessor($ strMethodMember, $ arArguments[0]));
 break;
 case “ get “ :
 return($ this - > GetAccessor($ strMethodMember));
 };
 return(false);

Part II: Learning Advanced Development Techniques

178

 }

 private function SetAccessor($ strMember, $ strNewValue) {
 if (property_exists($ this, $ strMember)) {
 if (is_numeric($ strNewValue)) {
 eval(‘ $ this - > ’ . $ strMember . ‘ = ‘ . $ strNewValue . ‘ ; ’);
 } else {
 eval(‘ $ this - > ’ . $ strMember . ‘ = “ ’ . $ strNewValue . ‘ “ ; ’);
 };
 $ this - > arModifiedRelations[$ strMember] = “ 1 “ ;
 } else {
 return(false);
 };
 }

 private function GetAccessor($ strMember) {
 if ($ this - > blIsLoaded != true) {
 $ this - > Load();
 }
 if (property_exists($ this, $ strMember)) {
 eval(‘ $ strRetVal = $ this - > ’ . $ strMember . ‘ ; ’);
 return($ strRetVal);
 } else {
 return(false);
 };
 }

}

? >

 As you can see, the code has become somewhat longer, so take even more care than you did before when
entering this into your editor to ensure that no errant line breaks make their way in.

 Example Implementation
 Naturally, the abstract class isn ’ t of much use without a corresponding implementation that matches
your original — namely, a new version of the User object. You can call the following code userv3.phpm :

 < ?php

class User extends DataBoundObject {

 protected $ FirstName;
 protected $ LastName;
 protected $ Username;
 protected $ Password;
 protected $ EmailAddress;

 protected $ DateLastLogin;
 protected $ TimeLastLogin;

Chapter 7: Object Relation Mapping

179

 protected $ DateAccountCreated;
 protected $ TimeAccountCreated;

 protected function DefineTableName() {
 return(“ system_user “);
 }

 protected function DefineRelationMap() {
 return(array(

 “ id ” = > “ ID ” ,
 “ first_name ” = > “ FirstName ” ,
 “ last_name ” = > “ LastName ” ,
 “ username ” = > “ Username ” ,
 “ md5_pw ” = > “ Password ” ,
 “ email_address ” = > “ EmailAddress ” ,
 “ date_last_login ” = > “ DateLastLogin ” ,
 “ time_last_login ” = > “ TimeLastLogin ” ,
 “ date_account_created ” = > “ DateAccountCreated ” ,
 “ time_account_created ” = > “ TimeAccountCreated “));

 }
}

? >

 That ’ s all well and good, but you must also prove to yourself that the third version of your user object
works exactly the same as your second version — at least in terms of its interface to the outside world.
This all - in - one example showcases creation, reading, updating, and deletion.

 < ?php
 require(“ pdofactory.phpm “);
 require(“ databoundobject.phpm “);
 require(“ userv3.phpm “);

 print “ Running ... < br / > “ ;

 $ strDSN = “ pgsql:dbname=chapterseven;host=localhost;port=5432 “ ;
 $ objPDO = PDOFactory::GetPDO($ strDSN, “ chapterseven ” , “ chapterseven ” ,
 array());
 $ objPDO - > setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $ objUser = new User($ objPDO);

 $ objUser - > setFirstName(“ Steve “);
 $ objUser - > setLastName(“ Nowicki “);
 $ objUser - > setDateAccountCreated(date(“ Y - m - d “));

 print “ First name is “ . $ objUser - > getFirstName() . “ < br / > “ ;
 print “ Last name is “ . $ objUser - > getLastName() . “ < br / > “ ;

 print “ Saving ... < br / > “ ;

 $ objUser - > Save();

 $ id = $ objUser - > getID();

Part II: Learning Advanced Development Techniques

180

 print “ ID in database is “ . $ id . “ < br / > “ ;

 print “ Destroying object ... < br / > “ ;
 unset($ objUser);

 print “ Recreating object from ID $ id < br / > “ ;
 $ objUser = new User($ objPDO, $ id);

 print “ First name is “ . $ objUser - > getFirstName() . “ < br / > “ ;
 print “ Last name is “ . $ objUser - > getLastName() . “ < br / > “ ;

 print “ Committing a change Steve will become Steven,
 Nowicki will become Nowickcow < br/ > “ ;
 $ objUser - > setFirstName(“ Steven “);
 $ objUser - > setLastName(“ Nowickcow “);
 print “ Saving ... < br / > “ ;
 $ objUser - > Save();
? >

 Give this a shot, ensuring that you save it into the same directory as its required classes. You should see
output similar to the following:

Running ...
First name is Steve
Last name is Nowicki
Saving ...
ID in database is 167
Destroying object ...
Recreating object from ID 167
First name is Steve
Last name is Nowicki
Committing a change Steve will become Steven, Nowicki will become Nowickcow
Saving ...

 As you can see, the newly formed lightweight User class works exactly the same as your second version,
but it is a great deal smaller and more portable and doesn ’ t suffer from the same issues identified earlier
in the chapter, as you ’ ll prove to yourself throughout the following discussions.

 Understanding How It Works
 Because there ’ s a great deal of similarity between the code, it is hoped that a quick run through it won ’ t
seem too frightening.

 First and foremost, notice that the class is declared abstract:

abstract class DataBoundObject {

Chapter 7: Object Relation Mapping

181

 This tells PHP to expect one or more abstract methods — methods that you will define but not implement
in the parent class. This enables you to dictate the structure of those methods in terms of parameter
quantity and order, as well as insist that any class that extends the abstract class must implement those
methods.

 Moving on, you ’ ll see that a number of protected member variables are declared:

 protected $ ID;
 protected $ objPDO;
 protected $ strTableName;
 protected $ arRelationMap;
 protected $ blForDeletion;
 protected $ blIsLoaded;
 protected $ arModifiedRelations;

 These non - class - specific variables link the object to the underlying relational database. Note the addition
of a variable holding the database table name, as well as an associative array indicating which fields
have been modified during the lifetime of the child object.

 In addition, the member variables are declared protected . This means that, while not publicly accessible
outside the class, they are available to child classes of the parent.

 Two abstract methods are defined:

 abstract protected function DefineTableName();
 abstract protected function DefineRelationMap();

 These methods must be implemented in the child class and are tasked simply with setting the table name
and relation map.

 The constructor actually calls upon those two methods, assuming (as it may rightly do) that the child
class has implemented them:

 public function __construct(PDO $ objPDO, $ id = NULL) {
 $ this - > strTableName = $ this - > DefineTableName();
 $ this - > arRelationMap = $ this - > DefineRelationMap();
 $ this - > objPDO = $ objPDO;
 $ this - > blIsLoaded = false;
 if (isset($ id)) {
 $ this - > ID = $ id;
 };
 $ this - > arModifiedRelations = array();
 }

 You ’ ll notice that the constructor, as before, takes an instance of PDO and, optionally, an identifier, which
would indicate that the entity in question already exists in the database. The constructor also sets the
 ‘ loaded ’ state to false , indicating that no data has yet been drawn in from the underlying database.
The array of modified relations is also reset.

 The new Load() method draws on code that was previously in the constructor, used to populate the
object with data from the database in the event that an identifier has been passed when instantiating the

Part II: Learning Advanced Development Techniques

182

class. By placing such code in a separate method, it is no longer invoked automatically upon
instantiation.

 public function Load() {
 if (isset($ this - > ID)) {
 $ strQuery = “ SELECT “ ;
 foreach ($ this - > arRelationMap as $ key = > $ value) {
 $ strQuery .= “ \ “ ” . $ key . “ \ ” , ” ;
 }
 $ strQuery = substr($ strQuery, 0, strlen($ strQuery) - 1);
 $ strQuery .= “ FROM “ . $ this - > strTableName . “ WHERE
 \ “ id\ ” = :eid “ ;
 $ objStatement = $ this - > objPDO - > prepare($ strQuery);
 $ objStatement - > bindParam(‘ :eid ’ , $ this - > ID,
 PDO::PARAM_INT);
 $ objStatement - > execute();
 $ arRow = $ objStatement - > fetch(PDO::FETCH_ASSOC);
 foreach($ arRow as $ key = > $ value) {
 $ strMember = $ this - > arRelationMap[$ key];
 if (property_exists($ this, $ strMember)) {
 if (is_numeric($ value)) {
 eval(‘ $ this - > ’ . $ strMember .
 ‘ = ‘ . $ value . ‘ ; ’);
 } else {
 eval(‘ $ this - > ’ . $ strMember .
 ‘ = “ ’ . $ value . ‘ “ ; ’);
 };
 };
 };
 $ this - > blIsLoaded = true;
 };
 }

 Once the loading is complete, the ‘ blIsLoaded ’ flag is set to true. This prevents the class from
unnecessarily invoking the Load() method for the remainder of the child object ’ s lifetime.

 The Save() method is virtually unchanged from the original data - enabled User class. The only key
difference is the test to establish whether a given property has been modified or not:

if (array_key_exists($ value, $ this - > arModifiedRelations)) {
 $ strQuery .= ‘ “ ’ . $ key . “ \ ” = : $ value, “ ;
};

 This way, if a given field has not been modified, then it will not be included in the UPDATE or INSERT
statement that is generated. Naturally, this same test is applied when populating the prepared statement
parameters:

if (array_key_exists($ value, $ this - > arModifiedRelations)) {
 if ((is_int($ actualVal)) || ($ actualVal == NULL)) {
 $ objStatement - > bindValue(‘ : ’ . $ value, $ actualVal,PDO::PARAM_INT);
 } else {
 $ objStatement - > bindValue(‘ : ’ . $ value, $ actualVal, PDO::PARAM_STR);
 };
};

Chapter 7: Object Relation Mapping

183

 Testing twice in this way is important; PDO will complain rigorously if you attempt to bind a value to a
non - existent parameter.

 The methods that mark for deletion, destructor, and ‘ call ’ overload method (__call()) all remain
unchanged from the original User class.

 The two accessor methods have been slightly adapted:

 private function SetAccessor($ strMember, $ strNewValue) {
 if (property_exists($ this, $ strMember)) {
 if (is_numeric($ strNewValue)) {
 eval(‘ $ this - > ’ . $ strMember . ‘ = ‘ .
 $ strNewValue . ‘ ; ’);
 } else {
 eval(‘ $ this - > ’ . $ strMember . ‘ = “ ’ .
 $ strNewValue . ‘ “ ; ’);
 };
 $ this - > arModifiedRelations[$ strMember] = “ 1 “ ;
 } else {
 return(false);
 };
 }

 Notice now that the modified relations map is adjusted to indicate that the relation in question has been
modified. This data is used by Save() to build a more concise UPDATE or INSERT statement as needed:

 private function GetAccessor($ strMember) {
 if ($ this - > blIsLoaded != true) {
 $ this - > Load();
 }
 if (property_exists($ this, $ strMember)) {
 eval(‘ $ strRetVal = $ this - > ’ . $ strMember . ‘ ; ’);
 return($ strRetVal);
 } else {
 return(false);
 };
 }

 Finally, the ‘ get ’ accessor has had a small modification, as you can see from looking at the earlier code.
The class is tested to determine whether the ‘ loaded ’ flag is set to true . If it is not, then the
 Load() method is called before attempting to evaluate and return the property.

 What about the class itself? As shown in the code for userv3.phpm , it has become much smaller. Notice
first that it subclasses from DataBoundObject :

class User extends DataBoundObject {

 As a result, your application must ensure that not only is a require() statement present for the class
itself, but also, equally important, that one is present for the DataBoundObject class.

Part II: Learning Advanced Development Techniques

184

 Individual member variables remain much the same:

 protected $ FirstName;
 protected $ LastName;
 protected $ Username;
 protected $ Password;
 protected $ EmailAddress;

 protected $ DateLastLogin;
 protected $ TimeLastLogin;
 protected $ DateAccountCreated;
 protected $ TimeAccountCreated;

 Notice that the variables are declared ‘ protected ’ — this is important, as it permits the parent class to
access and manipulate those variables directly.

 Finally, you can see the implementation of the two all - important abstract methods:

 protected function DefineTableName() {
 return(“ system_user “);
 }

 protected function DefineRelationMap() {
 return(array(

 “ id ” = > “ ID ” ,
 “ first_name ” = > “ FirstName ” ,
 “ last_name ” = > “ LastName ” ,
 “ username ” = > “ Username ” ,
 “ md5_pw ” = > “ Password ” ,
 “ email_address ” = > “ EmailAddress ” ,
 “ date_last_login ” = > “ DateLastLogin ” ,
 “ time_last_login ” = > “ TimeLastLogin ” ,
 “ date_account_created ” = > “ DateAccountCreated ” ,
 “ time_account_created ” = > “ TimeAccountCreated “));

 }

 These were declared in the parent class as abstract, so you are obliged in your child class to provide an
implementation using the same method name (keeping in mind that PHP is case sensitive). Neither
method takes any parameters. Instead, two simple values are returned — one is a string indicating the
name of the underlying database table, and the other is a simple associative array mapping relation
names to PHP member variables.

 Benefits
 Before closing, it ’ s worth taking a minute to reflect on the benefits of the approach discussed in this
chapter. What you ’ ve been able to do is construct a reusable, portable, PDO - enabled toolkit class that
enables you to create data - bound business objects in moments.

 Indeed, the example User class itself contains not a jot of SQL — it doesn ’ t need to, as all of the standard
CRUD (create, read, update, delete) methods can be generated for you on request. Not only is your code
more lightweight, your application is also more portable. Should you later decide to port from, say,
MySQL to PostgreSQL, or, indeed, the other way around, very little should need changing.

Chapter 7: Object Relation Mapping

185

 The “ abstract class ” approach is neat, too. You are not in the least bit limited as to what you can do in
your child class. The previous example was simple, but naturally you can add your own methods, too —
 some of which will probably make use of SQL more complex than simple CRUD operations. In addition,
there ’ s nothing to stop you from delegating relation mapping to something a bit more readable than
PHP — maybe an XML document, for example.

 In a big project with 20 or more business objects, ORM starts to make a lot of sense. You ’ ll wonder how
you ever lived without it.

 Summary
 In this vital chapter, you were introduced to a further layer of database abstraction — that of object
relation mapping (ORM). Having been introduced formally to the two varieties of classes you are likely
to meet in the course of your enterprise - grade PHP projects (namely, business objects and utility classes),
and having learned about the measures you can use to help identify each, you were introduced to a
simple example of a stateless business object representing a hypothetical commercial entity.

 With an understanding of how such a business object works on a functional level, but does not retain
data, you were introduced to a traditional approach to retention by binding to a database relation —
 namely, a specific table within a relational database — and shown how it can enable and facilitate
persistence of your object ’ s properties in a manner largely suitable for an enterprise - grade project.

 Finally, by recognizing the limitations of your business object, you built and examined a reusable,
toolkit - ready enterprise class for the development of data - enabled objects in your own projects. By
maintaining an identical interface to your business - specific class, you proved to yourself that a common
business problem could be solved by abstracting away business - specific issues into subclasses of a
toolkit - ready module.

 In Chapter 8 , you ’ ll discover that PHP, despite being developed from the ground up as a procedural Web
application development language, is ideally suited for developing event - driven applications as well.

 Event - Driven Programming

 Sometimes it is useful to think of an application in terms of events and how best to handle them,
rather than look at that application ’ s architectural design from a traditional object - oriented (OO)
perspective. That ’ s not to say that you must discard an OOP approach altogether to implement
event handling, but rather that you build classes around the events relevant to the application.
This approach is rather radical, but for many applications, you may find that it gives you a
massively powerful mechanism for approaching the software architecture of the whole project.

 Events occur pretty much all the time, and some of the best examples of event - driven
programming are the applications you use every day, such as to manage e - mail or write text. For
the end user of traditional desktop GUI applications, event handling is of paramount importance
because these applications are designed to lurk around until the user does something, and then
react accordingly. Of course, the same is now true for many Web - based applications.

 Nearly all actions taken by a user, and even those taken by the applications themselves, can be
thought of as an event. A rather contrived example of an event not initiated by a user is your
machine ’ s clock. If you wanted to create an application that performed various actions depending
on the time, you could capture certain changes in time as an event, and bundle it off to a piece of
code that deals with it accordingly.

 Whatever needs to be done, applications have various ways to implement a solution, and PHP 6 is
no different in this regard. There is, of course, no new extension or library to deal with events,
because the way you deal with them is more about how you “ think ” about designing an
application, rather than how you actually implement it. In other words, they need no special
underlying technology. Let ’ s take a look at one way to handle events in PHP.

 Understanding Events
 An event is any occurrence to which your application can react. You will almost certainly have
already written applications that have handled events in some capacity or another. When
something happens or some condition is suddenly met, deciding what action to take in your code

188

Part II: Learning Advanced Development Techniques

(no matter how trivial) is a form of event handling. For example, imagine that you have implemented a
database holding a number of records, and you want your customers to be able to work on those records
via a Web interface. You would probably realize that the users must at least be able to view and update
records, so your likely reaction would be to create functions to view and edit records.

 Deciding which function to call depends entirely on the input provided by the user. Accordingly, the
interface you develop needs to present the various options, and enable users to decide which ones they
want. After the user has decided, the application must respond accordingly by calling the correct
functions, which will handle the request.

 Typically, you might create a home page with two buttons, one offering the option to view the records
and another to edit them. The following code snippet might suffice as a mechanism to handle that choice:

switch($_GET[‘action’]) {
 case “edit_record”:
 edit_record();
 break;
 case “view_record”:
 view_record();
 break;
}

 As you can see, the previous snippet of code is designed to interpret information from $_GET (in other words,
the user ’ s request) and make a decision about what response to take, based on what the user has requested.
That ’ s it — you have handled an event that was fired by the simple action of a user clicking a button.

 This principle stands for pretty much any event you could possibly imagine. For those of you who use
Outlook or something similar, system - generated events are commonplace. Warnings about meetings and
deadlines pop up all the time based on a specific event firing (for example, the system ’ s clock reaching a
certain time).

 Of course, how you implement the code to handle events is up to you. Using a switch statement is not
the only way; any sort of loop could enable you to respond to events. An if / else block would work
just as well in the previous example.

 You may be wondering what all the fuss is about events. After all, what you ’ ve seen so far seems simple
enough. Why can ’ t you just leave it at that? The problem with what has been discussed so far is that you
could easily end up with a big mess if your application changes or grows after your initial development
run. What starts off as a nice simple if statement could grow to monstrous proportions, rendering any
attempts to understand it in the future very difficult indeed. This has obvious implications as your
application ’ s needs become more complex. Accordingly, you should use the simple methods alluded to
previously only for very simple requirements, where you can be sure the code is at no time going to
blossom into a full - blown enterprise application.

 Using OOP to Handle Events
 To implement effective event - driven solutions in your own PHP applications, it is best to take a step back
and determine (from a high - level perspective) how these applications should behave. A more
sophisticated approach to implementing events would enable you to more easily control their behavior

Chapter 8: Event-Driven Programming

189

exactly as you wish, should the need ever arise. Creating an OO solution to event - driven programming
is the answer.

 Not only will using classes and objects help you maintain uncluttered code, it also enables you to create
an easily extensible architecture. Extensibility in application development is a worthy goal these days, so
this is a good thing. There are plenty of other benefits, too, which are explored in some detail later in this
chapter. Additionally, considering an OO approach should alert you to the fact that a design pattern
might well exist that could fit the event - driven model quite well.

 Let ’ s build a picture of what is needed to implement proper event handling using an OO approach. You
can then see whether a pattern (or patterns) exists that will fit this model appropriately.

 Designing an Event - Driven Solution
 There are three main steps to take when designing any event - driven application:

 1. First determine how you will go about capturing the events the application must handle. This is
difficult to discuss in an abstract manner, as your approach to capturing these events depends
on exactly what type of events you ’ re trying to capture.

 2. You need a way of deciding how to go about handling the captured events. Depending on the
specific application you are considering, there may be a number of questions worth posing at
this early stage. For example, it ’ s worth determining how many distinct sources will be sending
events to your event handler. In addition, you must decide whether the application will handle
just one class of event or a number of different classes, and if necessary, how handlers will
effectively differentiate between them.

 3. Finally, after you have determined the events applicable to your application and decided how
they will be handled, you must design the handlers necessary to carry out whatever tasks the
application requires in response to each event. The types of responses an event could elicit are
almost unlimited — anything from directing users to a new page, to updating a record, to firing
more events. All of these could be regarded as proper responses.

 Effectively, what has just been described is the use of a reactor, or dispatcher class, to take an event and
ensure that the correct handler deals with it. Let ’ s explore this idea a little further.

 In keeping with the initial example, let ’ s assume that a user of this application will want to edit or view
records of some form or another. You could expect a URL such as the following to be requested as a
result of a user ’ s input returned from a form:

http://myserver/interface.php?event=edit

 It ’ s fairly clear from the URL that the event being triggered is an edit event, whatever that may mean.
By passing this event to the dispatcher class, that determines which handlers to call based on what is
required from the application. After the dispatcher determines which handler to call (in this case, by
checking the values associated with the $_GET or $_POST array keys), the actual processing of the
request is done by the relevant handler, and not by the dispatcher.

190

Part II: Learning Advanced Development Techniques

 The handlers themselves are an exercise in OOP in their own right. Indeed, one effective way to
implement individual handlers in your application is to extend a generic parent handler class. Using
inheritance makes implementing new handlers easy, as the functionality common to all event handlers
can be kept hidden away inside the parent class. For example, code to establish database connections can
be made available to subclasses of handler that may require access to such a connection.

 You can begin by mapping the perceived course of actions for this example by drawing the activity
diagram shown in Figure 8 - 1 .

Capture Event

Pass Event Handle

Receive Event Handle

Check for Handler

Call Handler

Accept Handle

[Handler Absent]

[Handler Present]

Process Event

User Interface Dispatcher Event Handlers

 Figure 8 - 1: Activity diagram to map the perceived course of actions.

Chapter 8: Event-Driven Programming

191

 This is a pretty simple representation, but for the purposes of this example you needn ’ t worry about the
niceties behind the implementation. Admittedly, a virtually unlimited number of concerns could well be
brought to bear here on the strength of this illustration — security, database, handler registration, and
multiple event sources are just some of the valid considerations you might need to take into account at
this stage.

 Having said that, you are now equipped with a basic model to work from, so go ahead and look at the
class diagram shown in Figure 8 - 2 that is derived from these perceived requirements.

Event_Handler

Handler_View Handler_Edit

Dispatcher «interface»

Handled
-handle

+handle the event()

-handle

+handled event()

-handle

+handled event()

+dbconn()

+handled event()

+handled event(): abstract

Figure 8-2: Class diagram derived from the perceived requirements.

 There is no need to be too concerned about the code driving the user interface here, because choices
concerning such matters are better made by the end user, not the software architect. Concentrate instead
on representing in your class diagram the dispatcher and handlers . This application provides just the bare
bones in terms of functionality. This example concentrates instead on the event - driven paradigm and the
advantages derived from using it.

 Implementing the Solution
 Recall from the class diagram that you are making use of an interface to implement each event handler.
The use of an interface to enforce the existence of certain methods within each handler is crucial to this
example, and is good practice in general, as it standardizes the way in which your handlers are built.
This is important, because your application may grow to the point at which third - party developers want
to add functionality of their own. Having an interface promotes the “ plug - and - play ” aspect of your code —
 that is, makes your code more extensible.

 Aside from being extensible, there are several other advantages yet to be gained. After presenting the
classes in this section, the discussion examines how easy it is to implement fine - grained security using
this model. First, let ’ s look through the code class by class.

192

Part II: Learning Advanced Development Techniques

 class.Dispatcher.php

 To begin, the code for the Dispatcher class looks something like this:

 < ?php
require_once(‘class.Event_Handler.php’);
require_once(‘class.Handler_View.php’);
require_once(‘class.Handler_Edit.php’);

class Dispatcher
{

 private $handle;

 function __construct($event_handle){
 $this- > handle = $event_handle;
 }

 function handle_the_event(){
 $name = “handler_{$this- > handle}”;
 if (class_exists(“$name”)){
 $handler_obj = new $name($this- > handle);
 $response = $handler_obj- > handled_event();
 return $response;
 }else{
 echo “I can’t handle this!”;
 }
 }
}
? >

 Crucially, the constructor is responsible for capturing the event handle and retaining it within the class
so that it can be used later to decide what action to take. The event handle may be needed as part of the
event handler ’ s processing, so let ’ s pass this value on to any handlers you may call upon. Of course,
the handlers might need additional information, too.

 As part of this application, when querying the database for existing records, the user might want to
return only records in a certain range. When this crops up, you can simply capture the delimiter
parameters as part of the event, as demonstrated in the following URL:

http://myserver/interface.php?event=edit & first=2 & last=7

 It is a simple enough job to populate a suitable array (for example, $event_parameters) as part of the
constructor. These values can then be passed on to the handler, which uses them to return records within
only the specified range. Let ’ s stick to simply sending the actual event handle for this example.

 The handle_the_event() function relies on you and your development team sticking to a particular
naming convention for any new event handler classes. If someone wanted to add functionality to this
application, he or she would need to be aware that each handler ’ s name is in the following form:

class Handler_(Unique_Event_Handle)
{
 //Handle the event with handle Unique_Event_Handle
}

Chapter 8: Event-Driven Programming

193

 In this case, you have only two event handlers: Handler_View and Handler_Edit . The handle_the_
event() method in our Dispatcher class checks whether the relevant handler exists within the PHP
namespace before creating an instance of the pertinent handler object. If not, it confesses:

echo “I can’t handle this!”;

 Notice that the instantiation of the handler passes the event handle into the constructor, in case it is
needed. In the same way, you could pass an array of values here for use in the handler ’ s processing, as
shown here:

$handler_obj = new $name($this- > handle);

 Don ’ t concern yourself too much with the action of the handler — you simply want to pass off any
information that you collect in the dispatcher to the correct handler without having to worry about what
it might actually be doing with that information.

 The next step is to call the handled_event() method to extract any response from the handler that
might have resulted from its handling of the event:

$response = $handler_obj- > handled_event();

 As you have already seen in the class diagram, both the existence and precise format of the handled_
event() function is enforced through the use of an interface. The consequence of this is that the
dispatcher can safely call the handled_event() method on its instantiated handler to retrieve a
response, even if that method simply returns NULL . Once the response from the handler (if any) has been
returned, the dispatcher ’ s work is done.

 Now, let ’ s take a look at the handlers ’ side of things.

 interface.Handled.php

 The interface ensures that you implement the handled_event() function in any handler classes you
might develop. As mentioned previously, this is important from the perspective of the dispatcher, but if
you do intend to take on larger game, this is where you can enforce the existence of any other important
methods that might be relevant to your event handlers. Such methods can then either be implemented in
the parent handler and overridden by the children, or be simply declared abstract, passing the
implementation off to the children handlers directly. As you can see from the following interface code,
for this example you stick to simply requiring the existence of the handled_event() method:

 < ?php
interface Handled {
 function handled_event();
}
? >

 The handled_event() method itself is implemented either by the parent event handler class for your
application or by its children. Let ’ s look first at the parent event handler class.

194

Part II: Learning Advanced Development Techniques

 class.Event_Handler.php

 The parent event handler class is really more of a utility class specifying how to handle lower - level
events that may occur in your application. In this specific example, it creates a database connection. The
 common_db.inc file contains a db_connect() function that creates a database connection — pretty
straightforward stuff, and the implementation of such a method is left to you. However, if you are
creating an application of any serious magnitude, the best way to approach such a challenge is to make
use of a database abstraction layer, as explored in Chapter 6.

 Of course, you may consider adding any number of appropriate methods here, depending on the nature of
the problem you are solving. For now, here ’ s the code for a simple class.Event_Handler.php :

 < ?php
require_once (“interface.Handled.php”);
require_once(‘common_db.inc’);

abstract class Event_Handler
{
 function dbconn(){
 $link_id = db_connect(‘sample_db’);
 return $link_id;
 }

 abstract function handled_event();
}
? >

 Because you are unlikely to know what each event is going to do, you declare the handled_
event() function abstract so that the descendent handler classes can each implement it as they see fit. In
order to allow this, you will notice that the whole class has been declared abstract. This has no real
bearing on the application itself, because you will never directly instantiate this class — the dispatcher
will figure out which descendent event handler to instantiate, and do so directly.

 class.Handler_View.php

 This descendent handler gives a quick demonstration of the type of code you can usefully execute within
a typical handler. Notice how you are forced to give an implementation of handled_events() , as this
has been declared as an abstract method in the parent handler class. The following code shows how to
view a few records pulled straight from a database:

 < ?php
require_once(‘class.Event_Handler.php’);

class Handler_View extends Event_Handler
{
 private $handle;

 function __construct($event_handle){
 $this- > handle = $event_handle;
 }

 function handled_event(){
 echo “The event, $this- > handle, is now handled. < BR >

Chapter 8: Event-Driven Programming

195

 It is, I promise! < BR > < BR > Your records are as follows: < BR > < BR > ”;

 $id = parent::dbconn();
 $result = pg_query($id, “SELECT * FROM user”);
 while($query_data = pg_fetch_row($result)) {
 echo “’”,$query_data[1],”’ is a “,$query_data[4],” < br > ”;
 }
 }
}
? >

 Of course, the actual data being pulled out of here is irrelevant — this is just an example. If you want to
try it out, however, simply hook this up to an example database of your own and query it as you like,
changing the SQL statement.

 Note that, in the constructor, the handler still holds onto the event handle passed to it, by saving it into a
local private member variable. It ’ s not actually used in this example, but it does demonstrate that you
can get such parameters through to the handlers, if necessary.

 class.Handler_Edit.php

 Let ’ s take a look at another descendent handler. This demonstration of an edit handler simply returns a
message to the user when invoked:

 < ?php
require_once(‘class.Event_Handler.php’);

class Handler_Edit extends Event_Handler {
 private $handle;

 function __construct($event_handle){
 $this- > handle = $event_handle;
 }

 function handled_event(){
 echo “This is event $this- > handle, which is now handled - no
 kidding! < BR > ”;
 }
}
? >

 As usual, you capture the event handle and store it locally. In this case, the handler does actually use it as
part of its event processing. Admittedly, the handled_event() method implementation is nothing
special; it simply returns a message confirming that the event has been dealt with.

 That ’ s about it for setting things up. Let ’ s now explore how easy it is to modify the application and get
great results with little effort.

196

Part II: Learning Advanced Development Techniques

 Implementing Security
 Assume that you wanted to limit the functionality of the application depending on who was using it —
 which is not an uncommon requirement. An application with such a requirement could be something
like a wiki, which should allow certain trusted sources to edit whatever they like, but limit others to only
read (and not change) the content.

 First, have the application create a new session after you have successfully validated the user. You can
then populate the session variable with relevant details concerning who the user is. In this case, you use
a session variable that contains the user ’ s name. This means that you now have access to the current
user ’ s details from virtually anywhere in your application, including from within your event handlers.
You can use this information to determine whether or not to allow the event to take place at all.

 Add the following method to each of the descendent event handler classes whose use you wish to
restrict. As you can see, the method simply checks the author ’ s name currently held in the session, and if
the name being offered isn ’ t acceptable, the method will consider the user unauthorized to perform the
requested action:

function secure_handler(){
 if ($_SESSION[‘name’] == “David”){
 $this- > handled_event();
 } else {
 echo “Sorry ${_SESSION[‘name’]} you are not authorized!”;
 }
}

 You need to change one line in the dispatcher to ensure that only the secure method is used when
handling the event. Open the file and find the following line:

$response = $handler_obj- > handled_event();

 Change the preceding line as follows:

$response = $handler_obj- > secure_handler();

 You also need to ensure that you keep to the design principles you first set out by ensuring that the
existence of this method in the children handlers is enforced via the use of the interface. This means that
the parent handler must at least contain an abstract representation of the secure_handler() function.

 Add the following line to the interface:

abstract function secure_handler();

 There is no way to know precisely what level of permission each event will require; it may well differ
from event to event. Accordingly, the parent event handler does not directly implement the secure
handler itself. Instead, much in the same way as the regular handler method previously discussed, it
passes responsibility for its implementation to its children, by again declaring the method abstract:

abstract function secure_handler();

Chapter 8: Event-Driven Programming

197

 Each descendent event handler is now required to implement both a handled_event() and secure_
handler() method as specified by the interface. To determine whether to allow the event to take place,
each event handler ’ s secure_handler() method could retrieve its own permission setting from a file
held by the administrator. This file would, of course, be encrypted (or at least held somewhere secure),
and would most likely be editable by the wiki administrator, such that he or she could change which
handlers were available to which users.

 Here is a little example user interface that would make use of the secure, event - oriented application:

 < ?php
require_once (‘class.Dispatcher.php’);
session_start();

? >
 < html >
 < head >
 < title > Secure, Event Driven Record Viewer! < /title >
 < /head >
 < body >
 < form method=”GET” ACTION=” < ?=$_SERVER[‘PHP_SELF’]? > ” >
 < input type=”submit” name=”event” value=”View” / >
 < input type=”submit” name=”event” value=”Edit” / >
 < /form >
 < /body >
 < /html >

 < ?php
function handle() {
 $event = $_GET[‘event’];
 $disp = new dispatcher($event);
 $disp- > handle_the_event();
}

$_SESSION[‘name’] = “Horatio”;

handle();
? >

 The session variables would normally be set during the user ’ s login, but for brevity ’ s sake, let ’ s assume
that Horatio wants in — hence the reason this has been hard - coded. By way of example, let ’ s check
whether you can allow Horatio to use the edit function. You quite rightly expect the output shown in
Figure 8 - 3 if Horatio clicks the Edit button.

198

Part II: Learning Advanced Development Techniques

 As you can see, Horatio ’ s attempts to edit records are stopped in their tracks, as only David may edit
records.

 The power of this approach should be making itself clearer now. You have seen security as an example of
how easy it is to modify the application, but this approach can apply to any number of new requirements
that might arise.

 Pausing for Thought
 Many issues must be carefully considered when designing a well - architected, enterprise - level, event -
 driven application. Improvements to your event - handling methodology could include some sort of
handler registration, for example. This would mean that when a user logs onto a site (logging on, in this
case, would be an event captured by the application), the application could automatically check which
handlers are available to the user. This is achieved through the use of a default handler, which retrieves a
list of the user ’ s permissible handlers from a database and returns that information to the presentation
layer.

 Armed with this information, the presentation layer would know which buttons to render for the user.
The administrator would get many buttons, whereas a visitor might have only one View button. If access
is restricted to a View button, there is little chance that an untrusted user can maliciously modify
anything to which he or she has no access.

 A second issue to consider (albeit closely related to the first) before using this method for your next big
contract is how to get the dispatcher to include the correct PHP project files in the first place. Because the
dispatcher instantiates the event handlers, it must have the correct classes included. In this example, you
simply included every handler class that you would need. For larger applications, this approach would
be wasteful, because you might be including a hundred classes and only ever use one of them.

 One way to rectify this issue is to mark certain handlers as being available by default, with the rest being
made available on a per - user basis. Each user stored in the database would have (among other
properties) a field containing a list of handlers available to that user. This information could be used to
automatically include the relevant handlers in the dispatcher at the same time as the relevant buttons are
being added to the user interface.

Figure 8-3: Output if Horatio clicks the Edit button.

Chapter 8: Event-Driven Programming

199

 Finally, your various events may be fired by different entities, so you may want to consider adding
functionality to determine what entity is invoking that event, and return an appropriate response based
largely on that determination. This may be useful, for example, should you want to return some piece of
data either in machine - readable XML format or in human - readable HTML, depending on which entity
has invoked the event.

 One design pattern that may interest you is the reactor pattern . This deals with multisource, enterprise -
 level event handling, and is definitely worth a look if you are serious about using events. Remember that
a design pattern may exist that fits your requirements. The reactor pattern is very similar to what you
have done in this chapter, but has added capabilities that enable your handlers to easily differentiate
between event sources. For more information on this, see Pattern - Oriented Software Architecture, Volume 2,
Patterns for Concurrent and Networked Objects by Douglas C. Schmidt, Michael Stal, Hans Rohnert, and
Frank Buschmann (Wiley, 2000).

 Summary
 This chapter has served as an introduction to event - driven programming in PHP. You should now have a
good idea of how the event - driven paradigm can be implemented using simple OOP.

 Creating an event - driven application is a problem - specific business, and much attention should be paid
to the environment in which the intended application will run. Event - driven programming has
applications in many areas of computing, but good candidates are often those programs that have
graphical user interfaces.

 Finally, through the discussion in this chapter, you have seen how the power and elegance inherent in
OOP can be effectively complemented by designing applications using an event - driven programming
paradigm.

 Chapter 9 takes a look at implementing an effective logging and debugging mechanism in your
application, to aid you and your development team during both the development and the testing phases
of your project.

 Logging and Debugging

 In every application you build, robust logging and debugging mechanisms can save you hours of
effort trying to track down problems that might occur.

 Logs can be used to help you analyze historical usage patterns that can ’ t be obtained through the
Web server log, such as server load, specific SQL statements that were executed, or application -
 specific messages that wouldn ’ t otherwise be captured.

 A debugging mechanism enables you to examine the values of variables, see which conditional
loops are being executed, or otherwise determine the state of the application at run - time, without
having to litter your code with print statements that need to be deleted before you deploy. After
you ’ ve worked through the code in this chapter, you ’ ll have a set of classes that should be a part of
every project you work on.

 Creating a Logging Mechanism
 The primary purpose of logging is to enable you to see what the application was doing, or how it
was performing, at some time in the past. A properly written log will enable you to do a historical
analysis of system behavior to determine whether changes must be made.

 Simple File Logging
 The easiest way to handle logging is to write the information to a file. Usually, the user ID from
which your Web server process is running does not have the access needed to write to the file
system, except for a temporary directory (/tmp on most UNIX systems), which isn ’ t necessarily
the best location in which to keep important application log files. To allow the Web server user to
be able to write to a file, create a dedicated directory in which to store your log files:

202

Part II: Learning Advanced Development Techniques

 Create a folder above the document root of your application called logs and ensure that the Web server
user has write permissions to this folder. (Use chmod 744 and chown nobody , or the name of your
Apache user, on UNIX systems. Windows users should consult the relevant documentation for your
version of Windows).

/www
|
|
+---./mysite
 |
 |
 +---htdocs
 | |
 | |
 + + ---images
 | |
 | + ---css
 |
 +---logs

 Example File System Layout
 To write to a file in PHP, use fopen() to get a file handle and specify that you want to open the file for
writing. Use fwrite() to write data to the file, and fclose() to close the file. The following code defines
and then demonstrates a simple method called logMessage() , which uses these basic methods to write
to a predefined log file:

 < ?php

function logMessage($message) {
 $LOGDIR = ‘/www/mysite/logs/’; //chmod 744 and chown nobody
 $logFile = $LOGDIR . ‘mysite.log’;
 $hFile = fopen($logFile, ‘a+’); //open for appending, create
 //the file if it doesn’t exist
 if(! is_resource($hFile)) {
 printf(“Unable to open %s for writing. Check file permissions.”, $logFile);
 return false;
 }

 fwrite($hFile, $message);
 fclose($hFile);

 return true;
 }

logMessage(“Hello, log!\n”);
? >

 If you run this code, and you have all the permissions correctly set on the $LOGDIR directory, you should
see the message Hello, log! in the mysite.log file. For the most rudimentary needs, this function
might be sufficient; but for a real application, you ’ ll want to track more than just the message. The log
should be a “ machine - parsable ” file, meaning that you should be able to process the log data using a

Chapter 9: Logging and Debugging

203

separate application that analyzes the information held within it. The log should include the date and
time of each message, some sense of the severity or importance of the message, and some remark about
which module of the application generated the message.

 The Logger Class
 The class in the following code sample provides an OO mechanism for generating a more detailed log
file than that created using the code in the previous section. Create a file called class.Logger.php .
This file will contain the Logger class, which enables you to write information in a tab - delimited format
to a text file on the server, tracking the timestamp, the log level (which is the severity of the message), the
message itself, and an optional module name. The module name can be any string that helps to identify
which part of the application generated the message. The code for the Logger class is as follows:

 < ?php

class Logger {

 private $hLogFile;
 private $logLevel;

 //Log Levels. The higher the number, the less severe the message
 //Gaps are left in the numbering to allow for other levels
 //to be added later
 const DEBUG = 100;
 const INFO = 75;
 const NOTICE = 50;
 const WARNING = 25;
 const ERROR = 10;
 const CRITICAL = 5;

 //Note: private constructor. Class uses the singleton pattern
 private function __construct() {

 //This is pseudo code that fetches a hash of configuration information
 //Implementation of this is left to the reader, but should hopefully
 //be quite straightforward.
 $cfg = Config::getConfig();

 /* If the config establishes a level, use that level,
 otherwise, default to INFO
 */
 $this- > logLevel = isset($cfg[‘LOGGER_LEVEL’]) ?
 $cfg[‘LOGGER_LEVEL’] :
 Logger::INFO;

 //We must specify a log file in the config
 if(! (isset($cfg[‘LOGGER_FILE’]) & & strlen($cfg[‘LOGGER_FILE’]))) {
 throw new Exception(‘No log file path was specified ‘ .
 ‘in the system configuration.’);
 }

204

Part II: Learning Advanced Development Techniques

 $logFilePath = $cfg[‘LOGGER_FILE’];

 //Open a handle to the log file. Suppress PHP error messages.
 //We’ll deal with those ourselves by throwing an exception.
 $this- > hLogFile = @fopen($logFilePath, ‘a+’);

 if(! is_resource($this- > hLogFile)) {
 throw new Exception(“The specified log file $logFilePath “ .
 ‘could not be opened or created for ‘ .
 ‘writing. Check file permissions.’);
 }

 //Set encoding type to ISO-8859-1
 stream_encoding($this- > hLogFile, ‘iso-8859-1’);
 }

 public function __destruct() {
 if(is_resource($this- > hLogFile)) {
 fclose($this- > hLogFile);
 }
 }

 public static function getInstance() {

 static $objLog;

 if(!isset($objLog)) {
 $objLog = new Logger();
 }

 return $objLog;
 }

 public function logMessage($msg, $logLevel = Logger::INFO, $module = null) {

 if($logLevel > $this- > logLevel) {
 return;
 }

 /* If you haven’t specifed your timezone using the
 date.timezone value in php.ini, be sure to include
 a line like the following. This can be omitted otherwise.
 */
 date_default_timezone_set(‘America/New_York’);

 $time = strftime(‘%x %X’, time());
 $msg = str_replace(“\t”, ‘ ‘, $msg);
 $msg = str_replace(“\n”, ‘ ‘, $msg);

 $strLogLevel = $this- > levelToString($logLevel);

Chapter 9: Logging and Debugging

205

 if(isset($module)) {
 $module = str_replace(“\t”, ‘ ‘, $module);
 $module = str_replace(“\n”, ‘ ‘, $module);
 }

 //logs: date/time loglevel message modulename
 //separated by tabs, new line delimited
 $logLine = “$time\t$strLogLevel\t$msg\t$module\n”;
 fwrite($this- > hLogFile, $logLine);
 }

 public static function levelToString($logLevel) {
 switch ($logLevel) {
 case Logger::DEBUG:
 return ‘Logger::DEBUG’;
 break;
 case Logger::INFO:
 return ‘Logger::INFO’;
 break;
 case Logger::NOTICE:
 return ‘Logger::NOTICE’;
 break;
 case Logger::WARNING:
 return ‘Logger::WARNING’;
 break;
 case Logger::ERROR:
 return ‘Logger::ERROR’;
 break;
 case Logger::CRITICAL:
 return ‘Logger::CRITICAL’;
 break;
 default:
 return ‘[unknown]’;
 }
 }
}
? >

 This class should seem straightforward enough. Note that you create a private constructor to prevent
having to open the file handle several times during the execution of a page request. The
 getInstance() method allows code that will use this class to get an instance of it. This is known as the
 singleton pattern, which you first saw in Chapter 4 .

 The first few lines of the file establish a number of logging level constants. These constants enable you to
control what information is logged. While developing the first version of an application, for debugging
purposes you ’ ll probably want to log quite a bit of information to help you track down bugs. When the
application is finally put into production, you ’ ll want to log less information to save on system resources.
Logging less information also increases the signal - to - noise ratio, meaning there is more useful
information in a given number of lines of log information. When an application is running in a
production environment, much of the debugging information you used during development will be of
little use when trying to track down problems, which makes finding those problems in the log more
difficult.

206

Part II: Learning Advanced Development Techniques

 In the constructor, two pieces of information are pulled from a global array of configuration information:
the name of the log file and the current debugging level. For this example, you can assume that there is
only one log file per application. Later in this chapter, you ’ ll look at ways to extend this class to provide
even more functionality and greater flexibility regarding where information is logged.

 Store the logging level in a private member variable that will be used later to determine which
information is written to the log file. The log filename is checked to ensure that it has a value, and that
the Web server user can actually open or create the log file for appending. The a+ parameter to
 fopen() means “ open this file for appending and if it doesn ’ t exist, create it. ” Store the file handle as
another private member variable. If, for any reason, you can ’ t create a valid file handle, the constructor
throws an exception.

 Any attempt to call Logger::getInstance() should be wrapped in a try...catch block because of
the possibility of failure arising from incorrect permissions on the log file, or lack of disk space on the
volume on which it resides. In the event that this happens, the entire application should not cease to
work because of the logger. You should catch this exception and take appropriate action, perhaps by
sending an e - mail to a systems administrator. (See Chapter 11 for a robust e - mailing class you can use.)

 This class also has a destructor that closes the file handle if it is open. If the file path wasn ’ t valid, then
the file handle will not be a valid resource. Even though the exception was thrown in the constructor, the
destructor is still called when the object is de - allocated from memory. Therefore, some code has been
added to ensure that yet another error isn ’ t generated by trying to close a file handle that was never
opened successfully in the first place.

 The getInstance() method in the Logger class has a static variable that stores an instance of the class
in between invocations of the getInstance() method. The first time the method is called, that variable
will be null , resulting in the creation of a new instance of Logger . If the log file path is invalid, then
the exception will bubble up to this method. On subsequent calls to this method, the variable will
store the reference created during the first invocation, and that original instance will be returned. Using
the singleton pattern here enables you to save the system resources required to open and close the file
handle when creating and destroying instances of the Logger class.

 The logMessage() method does all the hard work. It takes the message text, the logging level, and an
optional module name. If the current systemwide logging level configuration parameter (assigned to the
private member variable $logLeve l in the constructor) is at least as large as the log level specified in
the second parameter to this function, an entry in the log file is created. If the current application logging
level is less than the level specified in the second parameter, then no entry is created. This enables you to
control what is entered into the log.

 For each message sent to the logMessage() method, a log level should be supplied indicating the
severity of the message. For example, if you ’ re printing just the contents of some variable to the log for
debugging purposes, the second parameter to logMessage() should be Logger::DEBUG . Then, when
deploying the code to the production server, you should set the $cfg[‘ LOGGER_LEVEL ’] parameter to
 Logger::WARNING or higher. This will stop debug messages from being printed to the log, saving CPU
cycles and restricting the content in the log to errors of varying severity.

 logMessage() generates a timestamp on line 84 using PHP ’ s strftime() function, which takes a format
string as its first parameter and a UNIX timestamp as the second. The format string used in the code
sample uses the system default short date representation (%x) and the system default time representation
(%X). For example, on a server located in the United States, output from strftime(‘ %x %X ’ , time())}

Chapter 9: Logging and Debugging

207

 is in the form 07/14/2008 03:55:25 (meaning July 14, 2008, at 3:55:25 in the morning). If your
computer is located in other parts of the world, the date representation would be shown appropriately for
your location (in this case, that would likely mean 14/07/2008).

 If you want more control over the formatting of the timestamp in the log, see the documentation for the
 strftime() function at www.php.net/strftime . If your log requires higher time resolution than
one second, you can use the microtime() function to get milliseconds. Again, see the documentation
for more information on how to use this function.

 Note that PHP 6 is a bit stricter than previous versions about how it determines the current time zone.
Web servers are often not in the same time zone as the programmer, and many servers do not have a
correct time zone setting for the location they are in. As a result, every application should specify its time
zone either in php.ini , or by using the date_default_timezone_set() function, with the latter
option generally invoked as part of the application ’ s configuration at the beginning of every page
request (rather than on a function - specific basis, as shown in the example code).

 After creating a textual representation of the timestamp, logMessage() must do some formatting of the
message. Because you want to create a log file that is easily machine - readable, separate the fields on each
line of the log with a tab (\t). Each log entry is separated by a newline character (\n). Because of this,
you must remove any tabs or new lines that might exist in the message because these would corrupt the
log file and make it difficult to parse with a log analyzer. Replace the tabs with four spaces (the default
number of characters occupied by a tab in most text editors) and replace new lines with a space. If the
 $module parameter has a value, then the same replacements should be made. If you are logging
information for which tabs and newline characters are meaningful and cannot be discarded, consider
replacing them with the standard conventions of \t and \n , which would enable you to restore the
original value when analyzing the data.

 The only other thing of interest that happens here is the conversion of the numeric log level constant to
a string. Because PHP sees the constants as their actual numeric value, there is no easy way to convert
the name of a constant to a string representation of that constant name. As a result, the string
representations are hard - coded into the method levelToString() . The switch statement loops
through the constants and returns the name of the constant. Although the break statements are not
technically necessary, they are added for clarity. Also not actually necessary is the declaration of this
method as static, but because it doesn ’ t depend on any of the member variables, and because you may
find a need to print the log level in code outside this class, declaring the method static makes it easy to
write code such as echo Logger::levelToString($cfg[‘ LOGGER_LEVEL ’]) , for example.

 The following code sample shows how you might be able to use the Logger class in a real application:

 < ?php
require_once(‘class.Config.php’);
require_once(‘class.Logger.php’);

//Again, the implementation of this class is left to the user, but an
//example of how it could work will be provided in the code download
//that accompanies the book on wrox.com
Config::addConfig(‘LOGGER_FILE’, ‘/var/log/myapplication.log’);
Config::addConfig(‘LOGGER_LEVEL’, Logger::INFO);

$log = Logger::getInstance();

208

Part II: Learning Advanced Development Techniques

 if(isset($_GET[‘fooid’])) {

 //not written to the log - the log level is too high
 $log- > logMessage(‘A fooid is present’, Logger::DEBUG);

 //LOG_INFO is the default so this would get printed
 $log- > logMessage(‘The value of fooid is ‘ . $_GET[‘fooid’]);

 } else {

 //This will also be written, and includes a module name
 $log- > logMessage(‘No fooid supplied’,
 Logger::CRITICAL,
 “Foo Module”);

 throw new Exception(‘No foo id!’);
}
? >

 If $_GET[‘ fooid ’] is set, then two calls to logMessage() are made, but only one message will actually
be written to the file because of the configured logging level. The contents of the log will look something
like the following:

03/17/04 03:58:42 Logger::INFO The value of fooid is 25

 Here you see the timestamp, the logging level of the message, and the message itself.

 If $_GET[‘ fooid ’] is not set, then you will see the following log entry:

03/19/04 05:30:07 Logger::CRITICAL No fooid passed from
 http://localhost/testLogger.php Foo Module

 In this case, the testLogger.php page failed to pass fooid to the page that invoked the logger, so the
 Logger::CRITICAL error was written to the file.

 Extending the Logger Class
 Logging to a text file is an incredibly useful way to store log data. There are literally thousands of
utilities you can use to parse and analyze this data — from simple UNIX utilities (such as sed and grep)
to fancy commercial log analysis software packages costing tens of thousands of dollars. Sometimes,
however, a text file isn ’ t the most convenient storage medium. You might want to use a relational
database or integrate with your platform ’ s system logger to centralize all your application logs.
Additionally, the Logger class as developed thus far is capable of writing only to a single file, no matter
where in the application it is invoked. There are several circumstances in which you might want to keep
separate logs for different sections of an application, or for different tasks performed. In this section,
you ’ ll extend the Logger class to be able to integrate with any data storage medium and support
multiple logs in a single application.

Chapter 9: Logging and Debugging

209

 In Chapter 6 you learned how the PDO class can connect to a completely different database back end by a
simple change to its connection string. By connecting with “ mysql:host=localhost;dbname=mydb ” ,
you can connect to a MySQL database running on the local machine and use to the database called
 “ mydb ” . To connect to a PostgreSQL database, the connection string looks like “ mysql:host=localhost;
dbname=yourdb ” , which connects to a PostgreSQL database instance on the local machine and uses the
database called “ yourdb ” . After a connection has been established using this common connection string
syntax, everything else about the use of the PDO class is identical, regardless of which RDBMS you ’ re
connected to. You can use a very similar construct to enable your Logger class to connect to any kind of
storage medium.

 The goal of the enhanced Logger class is to use a similar syntax for establishing a connection to a storage
medium for log data. Because you ’ ll be able to use different storage media, you should also be able to
store different logs for different parts of the application. The new Logger class should support some sort
of “ registry ” of log connections. For example, you should be able to have a log called “ errors ” and one
called “ queries, ” which will store error messages and SQL statements, respectively. The following
sample code represents what you should be able to do with the redesigned class:

 < ?php

Logger::register(‘errors’, ‘file:///var/log/error.log’);
Logger::register(‘app’,
 ‘pgsql://postgres@db/errors?table=applog & timestamp=dtlog & ’ .
 ‘msg=smesg & level=slevel & module=smod’);

$objQLog = Logger::getInstance(‘app’);

$sql = “SELECT * FROM foo”;
$objQLog- > logMessage(“Selecting all foos”);

try {
 Database- > getInstance()- > select($sql);
} catch (DBQueryException $e) {
 $objErrLog = Logger::getInstance(‘errors’);
 $objErrLog- > logMessage($e- > getMessage(), LOGGER_CRITICAL);
}
? >

 Showing this code before showing the new class that drives it may be a little confusing, but sometimes
it ’ s easier to design a class by first knowing how you want to be able to use it. In a real application, you
would put the first two lines in a globally included file. These two lines establish two different logs:

 app — The app log will store its log messages in a PostgreSQL database, in a table called applog
using the field names specified for the timestamp, message, logging level, and module.

 errors — The error log will be a text file located in /var/log/error.log .

 In the main part of the application, you would store most messages in the app log for later analysis. Any
errors that occur will be stored in the errors log, which is a text file. A text file is used for the errors
because one of the errors may be an inability to connect to the database.

❑

❑

210

Part II: Learning Advanced Development Techniques

 Parsing the Connection String

 The first step in creating the new Logger class is to be able to parse strings of the form scheme://user:
password@host:port/path?query#fragment . Luckily, PHP provides an incredibly handy function
for doing just that. The parse_url() function takes a string in this general form and returns an array
containing the elements from the URL that exists. (The array keys are the same as the names used in the
previous string.) If one or more of the elements do not exist, then no item with that key is added to the
array (as opposed to having a null entry for that key.)

 Consider the following example:

$url = “ftp://anonymous@ftp.gnu.org:21/pub/gnu/gcc”
$arParts = parse_url($url);
var_dump($arParts);

//prints out:
Array (
 [scheme] = > ftp
 [user] = > anonymous
 [host] = > ftp.gnu.org
 [port] = > 21
 [path] = > /pub/gnu/gcc
)

 Note that the password, query, and fragment keys do not appear in the array, because they do not appear
in the URL.

 Redesigning Logger to Use the Connection String

 Logger will use the scheme part of this array to determine which logging back end to use. The
 register() method is used to establish a new connection, and takes a canonical name and a URL as
parameters. Because the register() method was statically invoked in the sample code, you ’ ll need to
use some sort of intermediate function that allows both the register() and the
 getInstance() methods to talk to the same set of information.

 The following code shows the new register() method and the reworked getInstance() and
constructor. In fact, this code sample represents the entirety of the new Logger class. The parts that have
changed are highlighted. Save these changes to class.Logger - enhanced.php :

 < ?php

class Logger {
 private $hLogFile;
 private $logLevel;

 //Log Levels. The higher the number, the less severe the message
 //Gaps are left in the numbering to allow for other levels
 //to be added later
 const DEBUG = 100;
 const INFO = 75;
 const NOTICE = 50;

Chapter 9: Logging and Debugging

211

 const WARNING = 25;
 const ERROR = 10;
 const CRITICAL = 5;

 //Note: private constructor. Class uses the singleton pattern
 private function __construct() {

 }

 public static function register($logName, $connectionString) {

 $urlData = parse_url($connectionString);

 if(! isset($urlData[‘scheme’])) {
 throw new Exception(“Invalid log connection string $connectionString”);
 }

 @include_once(‘Logger/class.’ .
 $urlData[‘scheme’] . ‘LoggerBackend.php’);

 $className = $urlData[‘scheme’] . ‘LoggerBackend’;

 if(! class_exists($className)) {
 throw new Exception(‘No logging backend available for ‘ .
 $urlData[‘scheme’]);
 }

 $objBack = new $className($urlData);

 Logger::manageBackends($logName, $objBack);
 }

 public static function getInstance($name) {
 return Logger::manageBackends($name);
 }

 private static function manageBackends(
 $name,
 LoggerBackend $objBack = null) {

 static $backEnds;

 if(! isset($backEnds)) {
 $backEnds = array();
 }

 if($objBack == null) {
 //we must be retrieving
 if(isset($backEnds[$name])) {
 return $backEnds[$name];
 } else {

212

Part II: Learning Advanced Development Techniques

 throw new Exception(“The specified backend $name was not “ .
 ‘registered with Logger.’);
 }

 } else {
 //we must be adding
 $backEnds[$name] = $objBack;
 }
 }

 public static function levelToString($logLevel) {
 switch ($logLevel) {
 case Logger::DEBUG:
 return ‘Logger::DEBUG’;
 break;
 case Logger::INFO:
 return ‘Logger::INFO’;
 break;
 case Logger::NOTICE:
 return ‘Logger::NOTICE’;
 break;
 case Logger::WARNING:
 return ‘Logger::WARNING’;
 break;
 case Logger::ERROR:
 return ‘Logger::ERROR’;
 break;
 case Logger::CRITICAL:
 return ‘Logger::CRITICAL’;
 break;
 default:
 return ‘[unknown]’;
 }
 }
}

? >

 In the preceding code, Logger pulls in the file that defines an abstract class called LoggerBackend ,
which serves as the base class for the classes that will do the actual work of writing to a given logging
mechanism. Logger ’ s constructor is now empty, but is still declared to be private to prevent its
instantiation outside the getInstance() method.

 The new static method, register() , is responsible for instantiating a LoggingBackend object based
on the scheme part of the URL specified in the second parameter. To do so, it makes a call to parse_
url() to determine the scheme. If no scheme was present in the URL, register() throws an exception.
If the scheme is present, an attempt is made to include_once a file called Logger/class
.[scheme]LoggerBackend.php , and the class contained therein is instantiated by passing the
 $urlData array. If the file isn ’ t found, the code throws an exception. include_once is used here instead
of require_once because if you use require_once and the file isn ’ t found, a fatal exception is thrown,
and application execution terminates.

Chapter 9: Logging and Debugging

213

 If the specified LoggerBackend class is properly instantiated, the new instance is passed, along with the
canonical name specified in the first parameter to register() to the private function
 manageBackends() . This function exists because all public methods of Logger are now static. As a
result, the class can ’ t use any member variables to store the instantiated back - end objects.
 manageBackends() contains a static variable that takes the place of a class member. If the function has
two parameters, it stores the LoggerBackend object in the $backEnds array using the $name parameter
as a key. If only one parameter is specified (the $name parameter), manageBackends() returns the
 LoggerBackend object stored in $name (if one exists).

 The new getInstance() method no longer returns a Logger object, but instead returns an instantiated
 LoggerBackend . It does so by calling manageBackends() with only one parameter, the canonical name
of the particular log requested. If the named log wasn ’ t previously registered, or was unable to be
instantiated during register() , manageBackends() throws an exception that will bubble up to
 getInstance() .

 The LoggerBackend Class

 The manageBackends() , register() , and getInstance() methods all interact with LoggerBackend
objects. This class provides a concrete constructor (a construct that exists and is callable) and an abstract
method called logMesage() , which you probably remember from the original Logger class. The
latter method is unchanged in number and type of parameters from the code presented previously.
However, in the LoggerBackend class, the logMessage() method is abstract — no actual function body
exists, just the declaration of a function that must be implemented by classes that inherit from
 LoggerBackend . The constructor of the class takes the array output from parse_url() and stores it in a
protected member variable. No other methods are defined by the LoggerBackend class.

 Save the following as Logger/class.LoggerBackend.php :

 < ?php
abstract class LoggerBackend {
 protected $urlData;

 public function __construct($urlData) {
 $this- > urlData = $urlData;
 }

 abstract function logMessage($message, $logLevel = Logger::INFO, $module);
}
? >

 The class itself should be declared abstract because it contains one abstract method and because there is
no practical use for an instance of LoggerBackend . Only the subclasses of LoggerBackend will do any
real work.

 Subclassing LoggerBackend

 In order for the new and improved Logger class to be able to do anything, you ’ ll need to create at least
one subclass of LoggerBackend . Because you already have some code that will log information to a file,
this will be the easiest LoggerBackend subclass to create first.

214

Part II: Learning Advanced Development Techniques

 Create a file called class.fileLoggerBackend.php (pay attention to capitalization in the filename)
and enter the following code:

 < ?php

require_once(‘class.LoggerBackend.php’);

class fileLoggerBackend extends LoggerBackend {

 private $logLevel;
 private $hLogFile;

 public function __construct($urlData) {

 parent::__construct($urlData);

 $this- > logLevel = Config::getConfig(‘LOGGER_LEVEL’);

 $logFilePath = $this- > urlData[‘path’];

 if(! strlen($logFilePath)) {
 throw new Exception(‘No log file path was specified ‘ .
 ‘in the connection string.’);
 }

 print “Logging data to $logFilePath”;

 //Open a handle to the log file. Suppress PHP error messages.
 //We’ll deal with those ourselves by throwing an exception.
 $this- > hLogFile = @fopen($logFilePath, ‘a+’);

 if(! is_resource($this- > hLogFile)) {
 throw new Exception(“The specified log file $logFilePath “ .
 ‘could not be opened or created for ‘ .
 ‘writing. Check file permissions.’);
 }

 //Set encoding type to ISO-8859-1
 stream_encoding($this- > hLogFile, ‘iso-8859-1’);

 }

 public function logMessage($msg, $logLevel = LOGGER_INFO, $module = null) {
 if($logLevel > $this- > logLevel) {
 return;
 }

 /* If you haven’t specifed your timezone using the
 date.timezone value in php.ini, be sure to include
 a line like the following. This can be omitted otherwise.
 */
 date_default_timezone_set(‘America/New_York’);
 $time = strftime(‘%x %X’, time());
 $msg = str_replace(“\t”, ‘ ‘, $msg);

Chapter 9: Logging and Debugging

215

 $msg = str_replace(“\n”, ‘ ‘, $msg);

 $strLogLevel = Logger::levelToString($logLevel);

 if(isset($module)) {
 $module = str_replace(“\t”, ‘ ‘, $module);
 $module = str_replace(“\n”, ‘ ‘, $module);
 }

 //logs: date/time loglevel message modulename
 //separated by tabs, new line delimited
 $logLine = “$time\t$strLogLevel\t$msg\t$module\n”;
 fwrite($this- > hLogFile, $logLine);

 }
}
? >

 Much of this code should look familiar to you. It is taken nearly verbatim from the original Logger class.
The fileLoggerBackend class will respond to logs registered with the file:// scheme. It writes the
log to the file specified in the path component of the parse_url() array. To register a log of this type,
the URL should be something like file:///var/log/app.log . Note that these components are
 file:// (ending in two forward slashes) and /var/log/app.log (starting with one forward slash).
There are three initial forward slashes in the file scheme.

 To use this back end, you can write code such the following (just like what you saw at the beginning of
this section):

 < ?php
 require_once(‘class.Logger.php’);
 Logger::register(‘app’, ‘file:///var/log/applog.log’);
 $log = Logger::getInstance(‘app’);
 $log- > logMessage(‘This is a new log message!’, LOGGER_CRITICAL, ‘test’);
? >

 This registers a fileLoggerBackend with the Logger class called ‘ app ’ , which writes to the file /var/
log/applog.log .

 Logging to a Database Table

 You can use this same process of subclassing LoggerBackend to create a mechanism for logging to any
conceivable data repository. The following code shows a PostgreSQL back end, but the same principles
can be used to log to any database platform.

 This class has a significantly longer constructor. The connection parameters and the names of the fields
in the database to which the information is written should all be representable in the connection string,
with sensible defaults for those items that can be optional. As a result, the code must check to see
whether certain values are set before building up connection strings and field names. None of this code

216

Part II: Learning Advanced Development Techniques

is very interesting, but all of it is included here to show how to parse the connection string to
allow a flexible PostgreSQL logging mechanism. This code should be saved in
Logger/class.pgsqlLoggerBackend.php :

 < ?php

require_once(‘class.LoggerBackend.php’);

class pgsqlLoggerBackend extends LoggerBackend {

 private $logLevel;
 private $hConn;
 private $table = ‘logdata’;
 private $messageField = ‘message’;
 private $logLevelField = ‘loglevel’;
 private $timestampField = ‘logdate’;
 private $moduleField = ‘module’;

 public function __construct($urlData) {

 parent::__construct($urlData);

 $this- > logLevel = Config::getConfig(‘LOGGER_LEVEL’);

 $host = $urlData[‘host’];
 $port = $urlData[‘port’];
 $user = $urlData[‘user’];
 $password = $urlData[‘pass’];
 $arPath = explode(‘/’, $urlData[‘path’]);
 $database = $arPath[1];

 if(!strlen($database)) {
 throw new Exception(‘pgsqlLoggerBackend: Invalid connection string.’ .
 ‘No database name was specified’);
 }

 $connStr = ‘’;
 if($host) {
 $connStr .= “host=$host “;
 }

 if($port) {
 $connStr .= “port=$port “;
 }
 if($user) {
 $connStr .= “user=$user “;
 }

 if($password) {
 $connStr .= “password=$password “;
 }

Chapter 9: Logging and Debugging

217

 $connStr .= “dbname=$database”;

 //Suppress native errors. We’ll handle them with an exception
 $this- > hConn = pg_connect($connStr);

 if(! is_resource($this- > hConn)) {
 throw new Exception(“Unable to connect to the database using $connStr”);
 }

 //Take the query string in the form var=foo & bar=blah
 //and convert it to an array like
 // array(‘var’ = > ‘foo’, ‘bar’ = > ‘blah’)
 //Be sure to convert urlencoded values
 $queryData = $urlData[‘query’];
 if(strlen($queryData)) {
 $arTmpQuery = explode(‘ & ’,$queryData);

 $arQuery = array();
 foreach($arTmpQuery as $queryItem) {
 $arQueryItem = explode(‘=’, $queryItem);
 $arQuery[urldecode($arQueryItem[0])] = urldecode($arQueryItem[1]);
 }
 }

 /* None of these items is mandatory. The defaults are
 established in the private member declarations at the top
 of the class. These variables establish the name of the
 table and the names of the fields within that table
 that store the various elements of the log entry.
 */

 if(isset($arQuery[‘table’])) {
 $this- > table = $arQuery[‘table’];
 }

 if(isset($arQuery[‘messageField’])) {
 $this- > messageField = $arQuery[‘messageField’];
 }
 if(isset($arQuery[‘logLevelField’])) {
 $this- > logLevelField = $arQuery[‘logLevelField’];
 }

 if(isset($arQuery[‘timestampField’])) {
 $this- > timestampField = $arQuery[‘timestampField’];
 }
 if(isset($arQuery[‘moduleField’])) {
 $this- > logLevelField = $arQuery[‘moduleField’];
 }
 }

 public function logMessage($msg, $logLevel = Logger::INFO, $module = null) {

218

Part II: Learning Advanced Development Techniques

 if($logLevel < = $this- > logLevel) {

 $strLogLevel = Logger::levelToString($logLevel);

 $msg = pg_escape_string($msg);

 if(isset($module)) {
 $module = “’” . pg_escape_string($module) . “’”;
 } else {
 $module = ‘NULL’;
 }

 $arFields = array();
 $arFields[$this- > messageField] = “’” . pg_escape_string($msg) . “’”;
 $arFields[$this- > logLevelField] = pg_escape_string($logLevel);
 $arFields[$this- > timestampField] = “CURRENT_TIMESTAMP”;
 $arFields[$this- > moduleField] = $module;

 $sql = ‘INSERT INTO ‘ . $this- > table;
 $sql .= ‘ (‘ . join(‘, ‘, array_keys($arFields)) . ‘)’;
 $sql .= ‘ VALUES (‘ . join(‘, ‘, array_values($arFields)) . ‘)’;

 pg_exec($this- > hConn, $sql);
 }
 }
}
? >

 In the constructor, the class parses out the query part of the URL to determine the table name and the
names of the fields in which the log information is stored. The assumption is that the table will be
created using a SQL statement such as the following. The field names don ’ t matter (because they ’ re
configurable in the connection string), but the data types in your table should be the same (or compatible
data types):

create table logdata (
 message text,
 loglevel smallint,
 logdate timestamp,
 module varchar(255)
);

 To use the new PostgreSQL logger, the code should look something like the following:

 < ?php

require_once(‘class.Config.php’);
require_once(‘class.Logger-enhanced.php’);

Config::addConfig(‘LOGGER_LEVEL’, Logger::INFO);

Chapter 9: Logging and Debugging

219

Logger::register(‘app’, ‘pgsql://steve:pass@localhost/mydb?table=logdata’);

$log = Logger::getInstance(‘app’);

if(isset($_GET[‘fooid’])) {

 //not written to the log - the log level is too high
 $log- > logMessage(‘A fooid is present’, Logger::DEBUG);

 //LOG_INFO is the default, so this would get printed
 $log- > logMessage(‘The value of fooid is ‘ . $_GET[‘fooid’]);

 } else {

 //This will also be written and includes a module name
 $log- > logMessage(‘No fooid supplied’,
 Logger::CRITICAL,
 “Foo Module”);

 throw new Exception(‘No foo id!’);
}
? >

 The connection string passed to Logger::register() specifies a log called app that connects to a
PostgreSQL database running on localhost . The LoggerBackend connects as the user steve to the
database called mydb . The table into which the log entries are written is called logdata . Had you not
specified any of these parameters, the defaults declared as the class ’ s private member variables would
have been used. Of course, this back end can easily be modified to support any type of database for
which there is a PHP module (including MySQL and SQL Server).

 This example used the native PostgreSQL functions, rather than leveraging PDO. You could also
construct a PDO back end that could connect to any database for which drivers are available using the
appropriately structured connection string passed to Logger::register in the form pdo://user:
pass@hostname/database?driver=[pdo driver name] .

 Creating a Debugging Mechanism
 Although a logging mechanism as robust as the one you just created has nearly infinite possibilities for
flexibility and storage, sometimes it ’ s far more convenient to print debugging messages to the browser
window, rather than have to pore through a big log file; but just as the Logger class was meant to
prevent having dozens of print statements that must be manually deleted prior to deployment, the
debugging mechanism enables the developer to print messages to the screen in such a way that they can
easily be removed at deploy time.

 The Debugger class stores the debug messages in the session, and then prints them out at the bottom of
a screen at the end of a page request. This centralizes debug output into one location on the screen,
making it easier to find the specific output for which you ’ re looking. It also enables you to print large
amounts of data without disturbing the structure of the user interface, and makes suppressing the debug
output easy.

220

Part II: Learning Advanced Development Techniques

 The reason you store this information in the session is because not every page request generates output.
For example, when saving information to the database by posting a form, you should usually issue a
302 redirect to prevent data modification when a user presses the reload button on his or her browser.
A 302 redirect refers to the HTTP response code issued by the browser when you issue code such as
 header(‘ Location: [url] ’) .

 Debugger has two primary functions:

 The DEBUG function writes code to the debug array in the session with an optional key and
debug level. The debug level works just like the logging level in the Logger class. The lower the
logging level value, the higher its priority.

 The debug_print function should be invoked at the bottom of every page that generates
output. It takes the array from the session and generates an HTML table containing the contents
of the array. When it is finished printing, it removes the information from the session. This way,
page requests that do not generate output will still have their debugging information preserved.

 The code for this class is as follows. Call this class.Debugger.php :

 < ?php

define(‘DEBUG_INFO’, 100);
define(‘DEBUG_SQL’, 75);
define(‘DEBUG_WARNING’, 50);
define(‘DEBUG_ERROR’, 25);
define(‘DEBUG_CRITICAL’, 10);

session_start();

class Debugger {

 public static function debug($data, $key = null, $debugLevel = DEBUG_INFO) {

 if(! isset($_SESSION[‘debugData’])) {
 $_SESSION[‘debugData’] = array();
 }

 if($debugLevel < = Config::getConfig(‘DEBUG_LEVEL’)) {
 $_SESSION[‘debugData’][$key] = $data;
 }
 }

 public static function debugPrint() {

 $arDebugData = $_SESSION[‘debugData’];
 print Debugger::printArray($arDebugData);

 $_SESSION[‘debugData’] = array();

 }

❑

❑

Chapter 9: Logging and Debugging

221

 public static function printArray($var, $title = true) {

 $string = ‘ < table border=”1” > ’;
 if ($title) {
 $string .= “ < tr > < td > < b > Key < /b > < /td > < td > < b > Value < /b > < /td > < /tr > \n”;
 }

 if (is_array($var)) {
 foreach($var as $key = > $value) {
 $string .= “ < tr > \n” ;
 $string .= “ < td > < b > $key < /b > < /td > < td > ”;

 if (is_array($value)) {
 $string .= Debugger::printArray($value, false);
 } elseif(gettype($value) == ‘object’) {
 $string .= “Object of class “ . get_class($value);
 } else {
 $string .= “$value” ;
 }

 $string .= “ < /td > < /tr > \n”;
 }
 }

 $string .= “ < /table > \n”;
 return $string;
 }

}
? >

 The five constants defined at the top of the file define debugging levels that work in exactly the same
way as the logging level constants in class.Logger.php . The debug() method expects to find an array
called $cfg in the global namespace that contains an element DEBUG_LEVEL defining the current debug
level for the whole application.

 By default, the debug level is DEBUG_INFO , though the third parameter of debug() enables you to set it
to any level. This way, you can display as much or as little debugging information as you want by
simply altering $cfg[‘ DEBUG_LEVEL ’] .

 The $key parameter is an option label for the information in the debugging array. Though it is second
in the parameter list, it will appear in the leftmost column of the table that is eventually produced by
 debugPrint() .

 The debugPrint() function just passes the debug information from the session to the
 printArray() method, which does all the real heavy lifting. After printing the debug information,
 debugPrint() then blows out the session array to clear the debug information for the next page view.

222

Part II: Learning Advanced Development Techniques

 printArray() takes an array of at least one dimension and prints an HTML table that shows the
contents of that array. Multidimensional arrays are properly handled. Objects have only their class name
printed.

 The following code shows how this class is used:

 < ?php

 require_once(‘class.Debugger.php’);
 require_once(‘class.Config.php’);

 Config::addConfig(‘DEBUG_LEVEL’, DEBUG_INFO);

 $myData = array();
 $myData[] = ‘hello’;
 $myData[] = array(‘name’ = > ‘Bob’,
 ‘colors’ = > array(‘red’, ‘green’, ‘blue’));

 Debugger::debug($myData, ‘my data’);
 $x = 5 + 8;
 Debugger::debug($x, ‘x’);

 Debugger::debugPrint();

? >

 This example is easier to appreciate by looking at Figure 9 - 1 , which shows the output from the
 debugPrint() function as rendered on the screen.

 Figure 9 - 1: Screen output from the debugPrint() function

Chapter 9: Logging and Debugging

223

 Summary
 The Logger class can be extended to support logging information to virtually any conceivable data
repository. Just create and use the back end that best supports your needs. For most uses, the
 fileLoggerBackend class should be the most appropriate, but there are some definite advantages to
using a database.

 The Debugger class gives you functionality similar to the Logger class, but enables the information to
be displayed on the screen and stored in the session for display, even if the original page request contains
no output.

 In Chapter 10 , you ’ ll learn how you can use PHP 6 to write and interact with Web services, which enable
you to interact with data and functionality provided by third parties.

 Writing and Using W eb
Ser vices

 With the vast array of modules and PEAR packages available to you when building an application
in PHP, it might seem like there ’ s not much that PHP can ’ t do for you to facilitate the
implementation of fairly complex business requirements in a short period of time. From image
manipulation and complex date/time arithmetic to transactional database interactions, PHP does,
indeed, provide a lot right out of the box. However, there are a number of features you might want
to provide in your application that you can ’ t, either because you lack the data and obtaining it
would be too onerous (for example, rolling your own search engine for the entire Web) or because
the application logic is far more complex than your project ’ s budget would allow (for example,
creating an interactive geographic information systems application).

 Thankfully, a number of application providers expose the functionality of their applications
through an application programming interface (API) that allows for the exchange of data in a
markup - free manner. Typically, this involves making a call via HTTP, using a request structured
according to certain rules and markup formats, and receiving a response in a structured manner,
typically XML but often in other formats as well (CSV, JSON, and so on). Because this response is
structured data, rather than data containing HTML or other stylized output, you can use it and
display it in any manner you like.

 If your application is HTML, then you convert the output to HTML. If your application is Flash,
then you can output in a manner most appropriate for your Flash application. Furthermore, your
interaction with a Web service need not have any output to the user, but might be used instead to
populate or augment data in your database (for example, using a geo - location service to get values
for the latitude and longitude of a list of locations).

 Leveraging a Web services API from another application enables you to create “ mashups ” of that
application with your own data and functionality. This chapter describes several methods of
interacting with Web services APIs, including some of the more popular commercial services such
as Google and Yahoo!. You ’ ll learn how you can combine data from them to create your own
application. Finally, you ’ ll learn how you can expose the features of your application to others so

226

Part II: Learning Advanced Development Techniques

that they can take advantage of your application, and you ’ ll discover how you can benefit from this
approach as well.

 There are numerous different standards for interacting with a Web services API. The term “ Web
services ” in no way implies any one of them in particular. That term merely connotes the idea of a
remote call into another application via HTTP. The actual nature of the communication is governed by
one of several established data exchange protocols, typically overseen by the W3C. This chapter covers a
few of the most popular protocols for Web services.

 SOAP
 Simple Object Access Protocol (SOAP) is the most robust of the Web services protocols, allowing for the
discovery of application features, the automatic determination of data types, data validation capabilities,
and complex request - and - response data structures. SOAP uses an XML schema for data exchange,
usually layered over HTTP for the communications protocol (though there are mostly theoretical
implementations using SMTP or other protocols for the communications layer).

 The downside to all of this robustness is that the capability for a fairly complex (meaning flexible and
potentially sophisticated) request - and - response structure means that the data structure is necessarily
complicated (meaning difficult to understand and difficult to implement). As a result, a number of PHP
packages have been developed that act as wrappers over the actual implementation of the XML data
structures and HTTP interactions.

 XML is a huge topic, and this chapter does not cover it in great detail. You should have a basic
knowledge of XML in order to understand and use this chapter. If you ’ re not familiar with XML but
would like a good grounding, you might want to take a look at Beginning XML, Fourth Edition (Wiley,
2007). The next part of this chapter looks at how SOAP can be used to implement XML - based Web
services in PHP 6.

 SOAP and PHP 6
 SOAP is a messaging protocol that is platform agnostic — that is, happy to use a variety of Internet
protocols such as HTTP, SMTP, and even MIME. You already know that it makes use of XML as part of
its information exchange methodology, and the only other thing to note here is that Web Service
Description Language (WSDL) is also used to make your life easier. This discussion looks at how you
can use the services that are to be accessed by SOAP. WSDL, as well as all other aspects of SOAP, are
examined in more detail a little later in the chapter.

 What does SOAP do? The simple answer is that it enables you to pass structured, typed data in a
decentralized, distributed environment. This means that you can pass a request from a GNU/Linux
server running a PHP application in your data center to a J2EE application on a Solaris machine on
another continent, and expect a perfectly coherent response. Using SOAP, many of the data - conversion
and systems - integration problems of the past are solved, and a remote procedure call mechanism that
works for all platforms with a viable XML parser is available and well documented. (Currently, nearly
every major platform that would be deployed in an enterprise capacity has XML parsing capabilities and
an HTTP implementation available.)

Chapter 10: Writing and Using Web Services

227

 Following are the different libraries that implement SOAP in PHP:

 The PHP 6 SOAP extension — Bundled with PHP 6

 PEAR::SOAP — http://pear.php.net/package/SOAP

 NuSOAP — http://sourceforge.net/projects/nusoap/

 Depending on what you feel most comfortable with, you can choose whatever you like. For the purposes
of this chapter, we ’ ll look only at the use of the SOAP extension that is bundled with PHP 6. It has been
completely revamped for PHP 6. Because it is implemented in C, it will be considerably faster than the
other modules, which are implemented in earlier versions of PHP.

 The PHP6 SOAP Extension
 As of this writing, you must manually add the SOAP extension to the php.ini file, extension= php_
soap.dll , for Windows, or compile with - - enable - soap for Linux versions. In addition, note that a
number of online sources say the SOAP extension is enabled by default, but the snapshot of PHP 6
currently being used does not have it enabled by default. By the time this book hits the shelves, the
default policy may have changed, so take a look at the phpinfo() output of your PHP distribution to
determine whether SOAP must be manually enabled.

 There are a couple of things to note with regard to configuring SOAP in PHP 6. One of the biggest
drawbacks to using SOAP is that you end up relying on the speed of your server ’ s Internet connection
because the SOAP client making the request must first download the WSDL document in order to know
how to make a function call to the target service. Obviously, downloading a file over a slow connection
(or perhaps more important, one with a high latency, or “ ping time ”) could present the greatest
bottleneck in terms of the time it takes for a given task to be executed.

 The solution is provided in the form of PHP configuration settings, which enable you to specify whether
you want to cache WSDL pages, where you want them cached, and how long you want to use that
cached copy of the files. This means that your application ’ s execution time is “ charged ” only once in
order to download the WSDL; from then on, you use the cached version.

 If you think that this will significantly enhance the performance of your application, you can add the
following lines to your php.ini file (substituting whatever values you deem necessary):

; SOAP

;Boolean paramater to indicate whether caching should occur
soap.wsdl_cache_enabled = “1”

;directory where files are to be cached
soap.wsdl_cache_dir = “/tmp/wsdlcache”

;time, given in seconds, to use the cached copy - ttl = time to live
soap.wsdl_cache_ttl = “86400”

 The functions provided with PHP 6 can nominally be divided into three categories. The main two are
 SoapClient and SoapServer functions, with the other category handling miscellaneous functions.
Each of these is briefly examined in the next few sections, but for more comprehensive coverage, see the
documentation at www.php.net/soap .

❑

❑

❑

228

Part II: Learning Advanced Development Techniques

 SoapClient Functions

 In keeping with all things object - oriented, available SOAP functions are exposed through the use of
SOAP objects, and you can instantiate a generic SoapClient object to work with as follows:

$client = new SoapClient (mixed wsdl [, array options]);

 The first parameter can take either the null value (if you aren ’ t using WSDL) or the Uniform Resource
Identifier (URI) of the WSDL document to be used. The options parameter that follows should be
passed as an array, and can be used to provide proxy settings or stipulate the SOAP specification to
which the SOAP client should adhere. For example, to create a SOAP client that uses encoded SOAP
messages and RPC style, you can use the following:

$client = new SoapClient(null,
 array(‘location’ = > “http://localhost/my_soap.php”,
 ‘uri’ = > “http://my_uri/”,
 ‘style’ = > SOAP_RPC, ‘use’ = > SOAP_ENCODED));

 After you have the SOAP client instantiated, several methods are provided by PHP 6 that you can call in
the resulting client object. The more important of those methods are as follows:

 __call — Use this to make a SOAP call directly. Usually, you can simply call the SOAP
functions as a SoapClient method, but this may come in handy for transmitting SOAP headers
and footers, for example.

 __getFunctions — This exposes the functions provided by a given Web service.

 __getLastRequest — As the name implies, you can retrieve the previous request made by the
SOAP client, but only if your SoapClient instance was created with the trace option set to
 true in the options array parameter.

 __getLastResponse — Similarly, you can use this to determine the previous response received
by the SOAP client, provided that your SoapClient has the trace option enabled.

 __getTypes — This will return a list of SOAP types (that is, structures and objects defined and
implemented by the Web service). It can be used only if your SoapClient was instantiated in
WSDL mode (i.e., supplied with a WSDL URI as its first argument).

 You will learn how to create and use a SOAP client a little later. For the moment, let ’ s continue to explore
the other SOAP functionality provided by PHP 6.

 SoapServer Functions

 Of course, accessing information from a client is not the only way developers use SOAP. Providing
the server is high up on the Web service to - do list, and PHP 6 provides some methods to create SOAP
servers.

 As with the SoapClient , you have a constructor that can be used to create the SoapServer object as
follows:

$server = new SoapServer (mixed wsdl [, array options])

❑

❑

❑

❑

❑

Chapter 10: Writing and Using Web Services

229

 You can either specify the WSDL document to use in the first parameter, or leave it as null . If the first
option is null , you must set the uri option as part of the options array in much the same way as the
 SoapClient . Following are the available server methods:

 addFunction — This allows functions to be added to service SOAP requests.

 getFunctions — This returns a list of the functions available on the server.

 handle — This takes values from either the single soap_request parameter or, in its absence,
the global variable $HTTP_RAW_POST_DATA , and deals with the given request, returning a
response to the client.

 setClass — This allows PHP methods (and entire classes) to be added to the server in order to
handle SOAP requests.

 setPersistence — Assuming that you have used setClass to add the server ’ s functionality,
this can be used to perpetuate data between requests in a session.

 Miscellaneous Functions

 The final few SOAP functions deal with a couple of different issues, the most important of which is
exception handling. You can create a SoapFault object to return fault responses from the server as
follows:

$fault = new SoapFault (string faultcode, string faultstring [,
 string faultactor [, mixed detail [, string faultname
 [, mixed headerfault]]]]);

 If a SoapClient has its exceptions option set to 0 , the requested method will return the SoapFault
object on any failure. With this in mind, you can use the following function (just a function, not part of
any class) to test whether a function call failed:

is_soap_fault ($methodresult)

 This returns true if the result parameter passed in is, in fact, an instance of the SoapFault object.

 Apart from these exception - related issues, PHP 6 ’ s SOAP extension also implements the SoapVar object,
which can be used to set type properties when not in WSDL mode. It is instantiated like this:

$type = new SoapVar (mixed data, int encoding [, string type_name [, string
type_namespace [, string node_name [, string node_namespace]]]]);

 SoapHeader , as the name implies, enables you to pass raw SOAP headers between client and server.
This can be done from either the _call() or the _handle() functions:

client- > __call(“myFunction”, null, null,
 new SoapHeader(‘http://thenamespace.org/mynamespace/’, ‘myExample’,
 ‘an example’));

❑

❑

❑

❑

❑

230

Part II: Learning Advanced Development Techniques

 Finally, you are also given the SoapParam object to pass name and value pairs as SOAP parameters from
clients that are not in WSDL mode. For example, to supply parameters to a SOAP server ’ s method call,
you can say something like this:

$client- > __call (“getSoapMethod”, array(new SoapParam($value, “name”)));

 With that, you now have a brief idea of how the first bundled SOAP extension goes about using SOAP.
You can use this to create an example SOAP client, as well as a simple SOAP server.

 Making a SOAP Client
 The examples in this section leverage the Web services functionality exposed by Amazon.com . You can
use Amazon ’ s SOAP API to fetch things such as prices, descriptions, images, and related items for
anything being sold at Amazon.com . Notice that Amazon has made things quite easy in that it has
provided the URI (see the following code snippet) for the appropriate WSDL document, which, as you
know, will tell your SOAP client how to use the service.

 Recall from earlier in the chapter that when you are creating a new SoapClient object, you can choose
whether or not to use WSDL mode. Because you have a WSDL link, let ’ s use it. Save this code to soap.php :

 < ?php
$client = new SoapClient(
“http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl”);
? >

 That ’ s pretty much it. If you had chosen not to use WSDL mode, or if it were not made available to you,
you would have to add the array options such as location, URI, style, and so on.

 Assuming that the Web service is working, then your work is done. From the Web site, you can click the
Analyze WSDL link to see the service definitions, but let ’ s instead use some of the native PHP 6
functions to determine how you can use this service.

 The best way to do this is simply to dump the output of the __getFunctions() function to the screen,
like so:

 < ?php
$client = new SoapClient(
“http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl”);
var_dump($client- > __getFunctions());
? >

 Save this code as soap_functions.php and navigate to it in your browser. You will see something
similar to Figure 10 - 1 .

Chapter 10: Writing and Using Web Services

231

 This output indicates that you have many methods available to you. The most immediately useful of
these is ItemSearch . Before you can invoke any function in the Amazon SOAP API, you must sign up
for a free Amazon Web Services (AWS) account by going to http://aws.amazon.com/ and clicking the
Sign Up Now button to get a new account. Once you have an AWS access ID, you can query the server
for the details of the books on PHP 6:

 < ?php
$client = new SoapClient(
“http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl”);

$request = array(
 ‘SearchIndex’ = > ‘Books’,
 ‘Keywords’ = > ‘PHP 6’
);

$params = array(
 ‘AWSAccessKeyId’ = > ‘[your Amazon AWS Access Key]’,
 ‘Operation’ = > ‘ItemSearch’,
 ‘Request’ = > $request
);

$out = $client- > ItemSearch($params);

foreach($out- > Items- > Item as $item) {
 print ‘ < a href=”’ . $item- > DetailPageURL . ‘” > ’ .
 $item- > ItemAttributes- > Title . “ < /a > < br > \n”;
}
? >

Figure 10-1: Listing available functions from Amazon.com’s SOAP API

232

Part II: Learning Advanced Development Techniques

 Save this code as php6_books.php and navigate to it in your browser. If all is well, you will see
something similar to Figure 10 - 2 .

Figure 10-2: Output from an Amazon.com SOAP API search

 By the time this book goes to press, there may be more or fewer search results for the specified query.

 As you can see, you can easily get the details for any item in the Amazon product catalog with only a
few lines of code. Of course, a little more is going on under the hood. Let ’ s take a more detailed look at
what ’ s happening here.

 Looking Under the Hood
 Although the programming interface of PHP 6 ’ s SOAP extension is simple to use, a lot of work goes into
ensuring that all communications are carried out correctly. Understanding the WSDL document ’ s role in
this is important, because this determines how communication will be carried out between client and
server. Basically, you can think of WSDL as an extensible, XML - based means of defining Web services as
a set of endpoints that can operate on messages .

 This discussion examines in detail the WSDL document utilized in the previous example, and looks at
the request and response SOAP messages that were passed between the client and server in order to
get the book price.

 The WSDL Document

 A WSDL document is divided into various sections, which together make up the contract by which the
clients and servers of this Web service must communicate. WSDL documents are structured to contain
several major components, as well as some slightly less important ones. Not all of the following elements
must be included in any given scenario:

Chapter 10: Writing and Using Web Services

233

 definitions — The root element. This defines the name and target namespaces.

 types — This describes the data types to be used. It is not required and defaults to the W3C
XML Schema specification if no types are defined.

 message — This describes either a request or a response message.

 portType — This defines (or describes) an operation, which usually consists of the request and
response messages together — a round - trip.

 bindings/operation — This describes how messages are to be transported. It contains
elements such as binding and message coding style.

 service — As the name implies, this gives the address for the required service.

 documentation — This simply allows the service provider to provide a description of its
service.

 import — This enables you to decouple your WSDL documents into different elements so that
they can be stored in different documents to be imported as and when required.

 This chapter doesn ’ t spend much time discussing WSDL, but to take a more in - depth look at it, go to
 www.w3.org/TR/wsdl .

 As you can see from the first piece of XML that follows, you define which version of XML you are using
(1.0), and then declare the definitions element. The definitions element is always the root
element, and defines the namespaces used in the document:

 < ?xml version=”1.0” encoding=”UTF-8”? >
 < definitions xmlns=http://schemas.xmlsoap.org/wsdl/
xmlns:soap=http://schemas.xmlsoap.org/wsdl/soap/
xmlns:xs=http://www.w3.org/2001/XMLSchema
xmlns:tns=http://webservices.amazon.com/AWSECommerceService/2008-10-06
targetNamespace=”http://webservices.amazon.com/AWSECommerceService/2008-10-06” >

 The next section of the Amazon WSDL document defines the various data types used in requests and
responses. From the function listing in Figure 10 - 1 , you can see that the function ItemSearch takes a
single argument of type ItemSearch . The definition of this type can be found in the WSDL document:

 < xs:element name=”ItemSearch” >
 < xs:complexType >

 < xs:sequence >

 < xs:element name=”MarketplaceDomain” type=”xs:string”
 minOccurs=”0”/ >
 < xs:element name=”AWSAccessKeyId” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”SubscriptionId” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”AssociateTag” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”XMLEscaping” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Validate” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Shared” type=”tns:ItemSearchRequest”
 minOccurs=”0”/ >

❑

❑

❑

❑

❑

❑

❑

❑

234

Part II: Learning Advanced Development Techniques

 < xs:element name=”Request” type=”tns:ItemSearchRequest”
 minOccurs=”0” maxOccurs=”unbounded”/ >

 < /xs:sequence >
 < /xs:complexType >
 < /xs:element >

 Note that the Request element (which is what was used in php6_books.php to provide the search
query) is another custom data type, called ItemSearchRequest , and is specified in the WSDL file as
follows:

 < xs:complexType name=”ItemSearchRequest” >
 < xs:sequence >
 < xs:element name=”Actor” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Artist” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Availability” minOccurs=”0” >
 < xs:simpleType >
 < xs:restriction base=”xs:string” >
 < xs:enumeration value=”Available”/ >
 < /xs:restriction >
 < /xs:simpleType >
 < /xs:element >
 < xs:element ref=”tns:AudienceRating” minOccurs=”0”
 maxOccurs=”unbounded”/ >
 < xs:element name=”Author” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Brand” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”BrowseNode” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”City” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Composer” type=”xs:string” minOccurs=”0”/ >
 < xs:element ref=”tns:Condition” minOccurs=”0”/ >
 < xs:element name=”Conductor” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Count” type=”xs:positiveInteger” minOccurs=”0” >
 < xs:annotation >
 < xs:appinfo >
 < aws-se:restricted
 xmlns:aws-se=
 “http://webservices.amazon.com/
 AWS-SchemaExtensions” >
 < aws-se:excludeFrom > public < /aws-se:excludeFrom >
 < aws-se:excludeFrom > partner < /aws-se:excludeFrom >
 < /aws-se:restricted >
 < /xs:appinfo >
 < /xs:annotation >
 < /xs:element >
 < xs:element name=”Cuisine” type=”xs:string” minOccurs=”0”/ >
 < xs:element ref=”tns:DeliveryMethod” minOccurs=”0”/ >
 < xs:element name=”Director” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”FutureLaunchDate” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”ISPUPostalCode” type=”xs:string” minOccurs=”0”/ >

Chapter 10: Writing and Using Web Services

235

 < xs:element name=”ItemPage” type=”xs:positiveInteger” minOccurs=”0”/ >
 < xs:element name=”Keywords” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Manufacturer” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”MaximumPrice” type=”xs:nonNegativeInteger”
 minOccurs=”0”/ >
 < xs:element name=”MerchantId” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”MinimumPrice” type=”xs:nonNegativeInteger”
 minOccurs=”0”/ >
 < xs:element name=”MusicLabel” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Neighborhood” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Orchestra” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”PostalCode” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Power” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Publisher” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”ResponseGroup” type=”xs:string” minOccurs=”0”
 maxOccurs=”unbounded”/ >
 < xs:element name=”ReviewSort” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”SearchIndex” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Sort” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”State” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”TagPage” type=”xs:positiveInteger” minOccurs=”0”/ >
 < xs:element name=”TagsPerPage” type=”xs:positiveInteger”
 minOccurs=”0”/ >
 < xs:element name=”TagSort” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”TextStream” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”Title” type=”xs:string” minOccurs=”0”/ >
 < xs:element name=”ReleaseDate” type=”xs:string” minOccurs=”0”/ >
 < /xs:sequence >
 < /xs:complexType >

 Of course, you didn ’ t create a data structure with all of these parameters. You only used the mandatory
 SearchIndex element and the Keywords element to define your search criteria. You can get very
specific with the search criteria used, specifying publisher, price range, and other details. Clearly, some
of these elements (such as Cuisine and MusicLabel) do not apply to books, but to other items in the
Amazon product catalog.

 Next in the WSDL document are the message elements. This section provides the request and response
message names, and specifies the types they will use (refer to the documentation at www.php.net/
manual/en/ref.soap.php for a list of what types are defined for use with the SOAP extension). These
are the message definitions for the ItemSearch function:

 < message name=”ItemSearchRequestMsg” >
 < part name=”body” element=”tns:ItemSearch”/ >
 < /message >

 < message name=”ItemSearchResponseMsg” >
 < part name=”body” element=”tns:ItemSearchResponse”/ >
 < /message >

236

Part II: Learning Advanced Development Techniques

 The portType element defines the function called ItemSearch , which consists of the input and output
messages specified in the previous snippet:

 < portType name=”AWSECommerceServicePortType” >
 [snip]

 < operation name=”ItemSearch” >
 < input message=”tns:ItemSearchRequestMsg”/ >
 < output message=”tns:ItemSearchResponseMsg”/ >
 < /operation >

 [snip]
 < /portType >

 The portType element ’ s name attribute specifies which of the available bindings is to be used for the
operations defined in each portType section. The AWSECommerceServicePortType is defined lower in
the WSDL document in a binding element:

 < binding name=”AWSECommerceServiceBinding”
 type=”tns:AWSECommerceServicePortType” >
 < soap:binding style=”document” transport=
 “http://schemas.xmlsoap.org/soap/http”/ >

 [snip]

 < operation name=”ItemSearch” >
 < soap:operation soapAction=”http://soap.amazon.com”/ >
 < input >
 < soap:body use=”literal”/ >
 < /input >
 < output >
 < soap:body use=”literal”/ >
 < /output >
 < /operation >

 [snip]

 < /binding >

 The binding definition specifies the transport to be used in sending requests and receiving responses (in
this case, HTTP, which is the most common SOAP transport protocol).

 The binding name refers to a service that defines the specific URL to be used when sending requests
to the remote server:

 < service name=”AWSECommerceService” >
 < port name=”AWSECommerceServicePort” binding=
 “tns:AWSECommerceServiceBinding” >
 < soap:address location=”http://soap.amazon.com/onca/soap?Service=
 AWSECommerceService”/ >
 < /port >
 < /service >
 < /definitions >

Chapter 10: Writing and Using Web Services

237

 By looking through the WSDL document, you are able to determine the parameters needed by each
function, and their return types. It is important to understand how to read a WSDL document so that
you can more effectively debug communications problems and error message returned by the remote
system. However, for normal operations, PHP enables you to avoid wading through a huge pile of XML
by interpreting the WSDL document for you.

 Let ’ s now look at how requests and responses are formed. You should already have an idea from the
WSDL document, but PHP can provide further assistance here.

 The Request and Response Envelopes

 The PHP 6 SOAP extension provides a couple of functions that can be used to look at the requests and
responses from the client. Open the php6_books.php file from earlier in this chapter and modify it like
this:

 < ?php

$client = new SoapClient(
“http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl”,

array(‘trace’ = > 1));

$request = array(
 ‘SearchIndex’ = > ‘Books’,
 ‘Keywords’ = > ‘PHP 6’
);

$params = array(
 ‘AWSAccessKeyId’ = > ‘[your Amazon AWS Access Key]’,
 ‘Operation’ = > ‘ItemSearch’,
 ‘Request’ = > $request
);

$out = $client- > ItemSearch($params);

foreach($out- > Items- > Item as $item) {
 print ‘ < a href=”’ . $item- > DetailPageURL . ‘” > ’ . $item- > ItemAttributes- > Title .
 “ < /a > < br > \n”;
}

print “ < pre > ” . htmlentities(print_r($client- > __getLastRequest(), true)) .
 “ < /pre > \n”;
print “ < pre > ” . htmlentities(print_r($client- > __getLastResponse(), true)) .
 “ < /pre > \n”;

? >

238

Part II: Learning Advanced Development Techniques

 This gives you the output shown in Figure 10 - 3 .

Figure 10-3: The request and response XML

 Using this output, you can see exactly what was sent to the Web server and the full contents of the XML
response it produced. You can quite easily relate how the message transmission was defined in the
WSDL document to the actual XML produced by the SOAP extension. For example, you can see that
the keywords and search index choices are sent as strings:

 < ?xml version=”1.0”? >
 < SOAP-ENV:Envelope xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
 xmlns:ns1=”http://webservices.amazon.com/AWSECommerceService/2008-10-06” >
 < SOAP-ENV:Body >
 < ns1:ItemSearch >
 < ns1:AWSAccessKeyId > [Your Key] < /ns1:AWSAccessKeyId >
 < ns1:Request >
 < ns1:Keywords > PHP 6 < /ns1:Keywords >
 < ns1:SearchIndex > Books < /ns1:SearchIndex >
 < /ns1:Request >
 < /ns1:ItemSearch >
 < /SOAP-ENV:Body >
 < /SOAP-ENV:Envelope >

 Next, you have the response envelope (which is too long to reprint here) that is returned by the Web
service server. Once again, you can relate it to the WSDL document quite easily. For example, among
other things, you will notice that the title is part of the ItemAttributes element and is a string.

Chapter 10: Writing and Using Web Services

239

 What has not yet been covered is what happens in the event that an invalid SearchIndex is specified, or
some other error occurs. Of course, you must implement some sort of error handling. There are several
ways to do this, and you can choose which methods work best for your application. As you might guess,
you can use PHP 6 ’ s SOAP implementation to make things slightly more robust.

 Exception Handling in the SOAP Client
 Recall from an earlier discussion that a SoapFault object is readily available for your use. Open your
 soap.php file and modify it to use an invalid function name, as shown in the following code snippet
(save it as soapfaults.php):

 < ?php
$client = new SoapClient(

 “http://webservices.amazon.com/AWSECommerceService/
 AWSECommerceService.wsdl”,
 array(‘trace’ = > 1, ‘exceptions’ = > 0));

$request = array(
 ‘SearchIndex’ = > ‘Books’,
 ‘Keywords’ = > ‘PHP 6’
);

$params = array(
 ‘AWSAccessKeyId’ = > ‘[Your Key]’,
 ‘Operation’ = > ‘ItemSearch’,
 ‘Request’ = > $request
);

$out = $client- > ItemSearchError($params);

if(is_soap_fault($out)) {
 print “Something went wrong! < br > \n”;
 print $out- > faultstring;
 exit;
} else {

 foreach($out- > Items- > Item as $item) {
 print ‘ < a href=”’ . $item- > DetailPageURL . ‘” > ’.
 $item- > ItemAttributes- > Title .
 “ < /a > < br > \n”;
 }

}
? >

 Having the exceptions array option set to 0 means that the SoapClient object will automatically return
a SoapFault object if something goes wrong. Use the is_soap_fault function to determine whether or
not the returned value is a SoapFault object.

 The SoapFault class exposes the properties faultcode (a number) and faultstring (a string),
detailing the exact problem. You should get results similar to what is shown in Figure 10 - 4 , explaining
(quite correctly) that you have requested an invalid method.

240

Part II: Learning Advanced Development Techniques

 If you prefer to use try...catch with PHP 6 exceptions, then set the exceptions parameter to 1 .
Obviously, there are plenty of ways to go about implementing exception handling, and you should pick
the method that fits in with your application as a whole. The point of this section is simply to alert you
to the available functionality.

 Making a SOAP Server
 Most often, you ’ ll want to create a server that provides its clients with a useful service, which can be
absolutely anything, ranging from book price quotes to employee information to domain name
verification. In this section, you create a server that you can connect to with a client to receive a short
message. This discussion uses a short WSDL document to describe how the two parts of the SOAP
application can communicate. (You have already seen a WSDL document in action, so it won ’ t be
discussed again in detail.)

 Creating and Registering Functions
 This trivial example receives a name string from the client and returns a message to the effect that you
should be glad SOAP is so reliable. Open a new code file called soapserver.php :

 < ?php function sayHello($name){
 $salutation = “You, $name, will be delighted to know I am working!”;
 return $salutation;
}

$server = new SoapServer (“greetings.wsdl”);
$server- > addFunction(“sayHello”);
$server- > handle();
? >

Figure 10-4: Checking for errors using the SOAP extension

Chapter 10: Writing and Using Web Services

241

 Although this example is actually a simple “ hello world ” example, you do not have to go much further
in terms of making something truly useful. For example, if you wanted a Web service to return results
from a database, you would merely need to substitute a couple of functions that returned the relevant
results into your SOAP server file, add the functions to the server, modify the WSDL quickly to reflect
these changes, and away you go.

 The preceding code has a function entitled sayHello() , which is the only method this fledgling service
provides. The server can then be created referencing the greetings.wsdl document (which is defined
in a moment), the sayHello() function added with the PHP 6 addFunction() method (discussed
earlier in the section “ Soapserver Functions ”), and then handle() doing the hard work of processing the
request and responding. That ’ s all you need from the server ’ s perspective.

 Creating the WSDL Document
 To make the service work nicely for a client, you just need to tell prospective clients how they can expect to
communicate with the server via the WSDL document. The whole concept of WDSL is not rehashed here,
but the following is a good example of what you can use with the simple Web service. Naturally, it is
entitled greetings.wsdl :

 < ?xml version =”1.0” encoding =”UTF-8” ? >
 < definitions name=”greetings”
 targetNamespace=”http://server.local/sayHello”
 xmlns:tns=” http://server.local/sayHello “
 xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
 xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
 xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
 xmlns=”http://schemas.xmlsoap.org/wsdl/” >

 < message name=”sayHelloRequest” >
 < part name=”name” type=”xsd:string”/ >
 < /message >
 < message name=”sayHelloResponse” >
 < part name=”salutation” type=”xsd:string”/ >
 < /message >

 < portType name=”sayHelloPortType” >
 < operation name=”sayHello” >
 < input message=”tns:sayHelloRequest”/ >
 < output message=”tns:sayHelloResponse”/ >
 < /operation >
 < /portType >

 < binding name=”sayHelloBinding” type=”tns:sayHelloPortType” >
 < soap:binding style=”rpc”
 transport=”http://schemas.xmlsoap.org/soap/http”/ >
 < operation name=”sayHello” >
 < soap:operation soapAction=”” / >

242

Part II: Learning Advanced Development Techniques

 < input >
 < soap:body use=”encoded” namespace=””
 encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” / >
 < /input >
 < output >
 < soap:body use=”encoded” namespace=””
 encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” / >
 < /output >
 < /operation >
 < /binding >
 < documentation > This is Wiley”s SOAP server Example < /documentation >
 < service name=”sayHelloService” >
 < port name=”sayHelloPort” binding=”sayHelloBinding” >
 < soap:address location=”http://server.local/soap/soapserver.php”/ >
 < /port >
 < /service >
 < /definitions >

 With that, you ’ re all set. Remember, though, that you must set the address location URI to the correct
value for your setup.

 Now, all that remains is to make use of the new server. The following file, called soapclient.php , does that:

 < ?php $client = new SoapClient(“greetings.wsdl”);
print_r($client- > sayHello(“Steve”));
? >

 Navigating to this file will give you the slightly terse (yet reasonably accurate) results displayed in
Figure 10 - 5 , varying according to which name you have substituted.

Figure 10-5: Result of navigating to soapclient.php

Chapter 10: Writing and Using Web Services

243

 Clearly, this example is trivial and not terribly useful on its own, but it is hoped that it gives you some
ideas about how to implement your own SOAP server. You can expose any aspect of your application
that would be useful to others, or that you would like to access via Ajax or Flash. In a typical application
using an MVC architecture, you would create a separate controller to handle the SOAP inputs and
outputs, with the corresponding views rendered using the SOAP extension to create the XML output
automatically. You are otherwise able to completely reuse the application logic encapsulated in the
model classes, which enables you to create a Web services API for many of your applications with fairly
little additional code or time investment.

 While SOAP is the granddaddy of Web services, enabling fully automated discovery of data types,
functions, and their return types, in practice, very little of this sort of automated discovery actually
happens. In general, you know which functions you want, where to find them, and their return values.
You know this from reading the API documentation, rather than writing code to discover this
information automatically.

 The complexity of the WSDL document for a large Web services API can be a barrier to understanding the
functionality offered. Additionally, the step of downloading the WSDL file (even when it has been cached
on the server ’ s hard drive) adds additional computation time to each request. For many of the (generally
fairly simple) requests you might make to a remote Web service (or services) that you might want to
expose in your own application, the overhead of a SOAP request is overkill. Fortunately, there are
alternative schemas for implementing Web service clients and servers. One of the most popular is called
 Representational State Transfer (REST) .

 REST
 First formally described by Roy Fielding (one of the principal authors of the HTTP specification) as part
of his doctoral dissertation in 2000, REST takes an entirely different approach to Web services. Instead of
using all of the overhead and complexity of SOAP ’ s WSDL document and XML envelope structure,
REST instead uses the primary HTTP verbs of GET , POST , PUT , and DELETE to request and manipulate
resources, uniquely identified by a URL that clearly identifies the resource requested.

 To show a very simple example of what a typical REST request might look like, consider an online
bookstore application. To access the resource descriptor for a book with the ISBN 0470395097, you might
use a URL such as http://example.com/books/0470395097 . Typically, you would expect this to
return an XML document with the details for the book, though nothing in the REST architecture defines
the return data type. Such a URL could return an image, an HTML document, a CSV file, or any other
data type.

 Because all REST operations follow a simple URL structure that identifies the resource to be created,
read, updated, or deleted, you can fairly easily understand what it is you are getting by looking at the
URL of the resource to be fetched. The easier - to - use REST interfaces use a neat and simple URL structure
like that in the example. Others, such as the Amazon REST interface (which is discussed shortly), use
slightly “ uglier ” syntax, involving query string parameters, but the basic idea is the same.

244

Part II: Learning Advanced Development Techniques

 REST and PHP 6
 Because REST is nothing more than simple HTTP interactions at its core, there isn ’ t a PHP extension for
REST as you have with SOAP. In fact, REST is an architecture design, not a protocol like SOAP is. The
simplest way to implement REST in PHP is to use the curl extension to implement the client and server
components yourself. You could go even more low - level and use the socket functions, but the curl
extension makes things a lot easier.

 The return value from the typical REST operation is usually (but not necessarily) an XML document.
Let ’ s use the simplexml extension to parse and manipulate the sent and received data. This is by far the
easiest way to deal with XML in PHP 6.

 If you ’ re not already familiar with the functions in this extension, consult the documentation at
 http://php.net/simplexml .

 The SOAP extension uses the relatively complicated (but standardized) XML envelope structure and
return values, which is predefined in the WSDL document. REST, conversely, drops the overhead
and complexity of the envelope and WSDL file; but the trade - off is that the developer must get closer to
the XML than is required with the SOAP extension. Understanding how to create and parse XML
documents is an essential skill for the professional developer, and is necessary to understanding much of
the discussion in the remainder of this chapter.

 Implementing the REST Client
 Let ’ s return to the Amazon.com API for a REST example, as Amazon conveniently offers both SOAP and
REST APIs. It is worth noting that the simpler REST interface accounts for more than 85 percent of the
requests to the Amazon Web Services system, with SOAP only accounting for the remaining 15 percent.
You will soon see why so many developers prefer the REST interface.

 The complete documentation for the Amazon REST interface can be found at http://aws.amazon.
com/documentation/ . In brief, like the SOAP interface, the Amazon REST API requires you to obtain
an AWS access ID. All requests are made from the same base URL, which (unlike the simpler URL
structure in the previous pseudo - example) uses a parameterized query.

 The following simple example shows how to do an ItemSearch for PHP 6 books using the REST API.
Note that it uses the PHP curl extension, which must be enabled on your PHP installation. Enter the
following code into php6_books.php :

 < ?php

//Base URL for all AWS REST operations
define(‘AWS_BASE_URL’,
 ‘http://ecs.amazonaws.com/onca/xml?Service=AWSECommerceService’);
//AWS Access Key ID
define(‘AWS_ACCESS_KEY_ID’, ‘[Your AWS Key]’);

$params = array();
$params[‘Operation’] = ‘ItemSearch’;
$params[‘SearchIndex’] = ‘Books’;

Chapter 10: Writing and Using Web Services

245

$params[‘Keywords’] = ‘PHP 6’;

//Construct the URL
$url = AWS_BASE_URL . ‘ & AWSAccessKeyId=’ . AWS_ACCESS_KEY_ID;
foreach($params as $name = > $value) {
 //Need to URL encode in case there are spaces or other funny chars
 //in the values
 $value = urlencode(unicode_encode($value, ‘ISO-8859-1’));
 $url .= “ & $name=$value”;
}

$hc = curl_init($url);
curl_setopt($hc, CURLOPT_RETURNTRANSFER, 1);
$xml = curl_exec($hc);

$out = new SimpleXMLElement($xml);

foreach($out- > Items- > Item as $item) {
 print ‘ < a href=”’ . $item- > DetailPageURL . ‘” > ’ .
 $item- > ItemAttributes- > Title . “ < /a > < br > \n”;
}

? >

 This code sample is fairly similar to the SOAP example of the same name, but it uses the far more
familiar curl extension and basic XML processing, instead of the SOAP extension (with which many
developers may not be familiar). Depending on how you have PHP configured, you could also simply
use file_get_contents($url) to fetch the XML, if HTTP requests are allowed in that function (this is
a php.ini setting). This example also has the benefit of enabling you to debug problems by simply
entering the $url value into your Web browser and looking at the output in the browser window. The
SOAP extension keeps you far enough away from the actual interactions with the remote server that
debugging basic connection problems can often be difficult and time - consuming.

 The returned XML structure lacks the outer envelope section of the SOAP transaction, but it is otherwise
the same. Therefore, this examination does not include a discussion of the iteration over the Items ,
because the code is identical.

 Making a REST Server
 The creation of a service using the REST architecture is also much more straightforward than using the
SOAP extension, which involves the registering of functions with the SOAP extension. The following
example architecture uses the $_SERVER value PATH_INFO to fetch anything that might be in the query
string after the name of the PHP file, but before the query string (that is, before the ? in the URL):

 < ?php

$DEFAULT_ACTION = ‘badAction’;

$pathInfo = isset($_SERVER[‘PATH_INFO’]) ? $_SERVER[‘PATH_INFO’] : ‘’;

246

Part II: Learning Advanced Development Techniques

$pathParts = explode(‘/’, substr($pathInfo, 1));
$action = isset($pathParts[0]) ? $pathParts[0] : $DEFAULT_ACTION;

if(function_exists($action)) {
 $action($pathParts);
} else {
 badAction();
}

//REST functions

function badAction($parts = null) {
 print ‘The function specified is invalid’;
}

function sayHello($parts) {
 $name = isset($parts[1]) ? $parts[1] : ‘undefined’;
 $xml = new SimpleXMLElement(‘ < message > Hello, ‘ . $name . ‘ < /message > ’);
 header(‘Content-Type: text/xml’);
 print $xml- > asXML();
}

? >

 To invoke the service, an example URL might be http://server.local/rest/restserver.php/
sayHello/Steve , which would produce the following output:

 < ?xml version=”1.0”? >
 < message > Hello, Steve < /message >

 Note that the additional parameters have been supplied in the URL, rather than appending them to the
query string. This is not essential, and you should feel free to use query string parameters if you prefer;
but the cleaner URL structure is aesthetically pleasing, and makes the API simple to document.

 Summary
 The capability to leverage Web services enables you to include data and functionality from other
applications, and provide additional, powerful features to your application that you might not otherwise
be able to include. Exposing features of your application to others provides opportunities to increase the
overall utility of your code, and possibly drive traffic to your Web site.

 Chapter 11 takes a look at better ways for generating e - mail and other communications with your users.

Download at WoweBook.com

 Communicating with User s

 The Web is a simple method of communication when you come right down to it. The end user
requests a page, things happen in the background, and the Web server fires back some content in
response. That ’ s the HTTP protocol summed up in one, pithy sentence; but if you limit yourself
simply to talking to users through the HTTP protocol, you ’ re missing out on a very big part of
what makes a truly impressive user interface.

 In this chapter, you learn about the building blocks of user communication, and how it translates
into a natural PHP object hierarchy. You ’ ll see how you can extend and develop this hierarchy to
support virtually any form of electronic communication. You ’ ll also look at practical examples of
implementing some functionality that PHP doesn ’ t provide, and that you may find useful in your
day - to - day development.

 Perhaps most important, you ’ ll learn why you should communicate with your users in the first place.

 Why Communicate?
 In the early days of the Web, long before PHP came onto the horizon, the user experience — that is,
the emotional impact on the user of using your Web site — was largely unimportant. Content was
key. In fact, content was all there was. The Web was little more than a magazine with convenient
tabs for ease of turning the pages.

 No more. The Web is increasingly accepted as a superb mechanism for implementing thin client
applications, from the simple Webmail facilities of an entertainment portal to the sophisticated
multi - user inventory control network of a big corporation. This sheer flexibility and reach is, after
all, why you decided to learn PHP in the first place.

 Unfortunately, the adoption of the Web as a means for implementing thin client solutions has been
less than plain sailing. Many authors have omitted (perhaps with the best of intentions) providing
modern - day equivalents of the key features that made thin client architectures of yesteryear usable.

Part II: Learning Advanced Development Techniques

248

 One of the biggest of these is the capacity for communicating with users outside the context of the
immediate user interface. Consider an abstract example. The immediate user interface of a telephone
consists of the mouthpiece and earpiece, yet all telephones include ringers so that you know when a call
is incoming. This is an example of notifying the user of an event.

 A second example is the fax machine. Many fax machines print a delivery report when a fax has been
sent successfully. This report is auxiliary to the keypad and LCD display, which constitute the immediate
user interface, and is an example of keeping the user informed .

 One final example. If you have ever applied for a bank loan over the phone, you have doubtlessly found
that acquiring debt in a matter of minutes is remarkably easy (although, these days, perhaps not as easy
as it was since the previous edition of this book). Still, the bank sends papers for you to sign to your
registered home address. Even if you are approved in principle over the phone, the money doesn ’ t go
anywhere near your checking account until you sign and return the papers they sent you. This is an
example of using communication with the user as a form of security, a form of validation .

 There are other examples, but this chapter examines how those mentioned here have an impact on the
real world, and how you act on them through OOP mechanisms.

 Reasons to Communicate with Users
 Notifying, informing, and validating — let ’ s take these three examples and try applying them to the Web. In
this way, you can discover why you might want your application to notify, inform, or validate your users.

 Notification

 A number of scenarios can arise in which you may want to notify your users of something through a
means other than a Web browser. This issue is particularly relevant if you remember that HTTP is what
is known as a stateless protocol. It is not particularly easy to get the Web browser to sit there and wait for
something to happen before informing the user. You can do it in various ways, but none is particularly
pretty.

 Imagine that your application has a sophisticated reporting system that enables users to request that
reports be generated on all manner of business details. Particularly if those reports are extremely SQL
intensive, a strong argument can be made for generating those reports offline — that is, independently of
the user ’ s Web browser - initiated request. That way, the user is not presented with any excessively long
HTTP request in order to view the report.

 It is simply not realistic to guarantee that users will not give up and click the Stop button halfway
through a two - minute wait for a page to be generated. In a real - world scenario, users would use the Web
browser to order the report, doing so with the understanding that the system would notify them when
the report is ready (probably by e - mail or some other mechanism).

 In another example, imagine that a subscription Web site is set up to bill the user ’ s credit card
automatically every month on the first of the month. It wouldn ’ t be terribly good customer service if,
because the user ’ s credit card had been declined during that month ’ s billing process, the user were
simply unable to log in to the Web site. Instead, you would issue what is sometimes known as an
 exceptional notification — a notification that occurs as a result of something out of the ordinary (typically,
bad) happening. In this case, it would be in the form of an e - mail inviting the user to log on and provide
details for another valid credit card.

Chapter 11: Communicating with Users

249

 Notification is not restricted to e - mail, of course. Operators of data centers all over the world have fallen
in love with text message notifications to their cellular phones to advise them when vital servers or
processes have fallen over, regardless of where they are at the time. These have largely replaced pagers
outside the United States.

 Information

 Communicating information to users differs slightly from notification in that it is not necessarily event
driven. Instead, it is a fully expected communication issued with the intent of updating the user about
the status of something. Compare the arrival of the morning newspaper on your front porch with a
sudden notice from the Emergency Alert System during a television show. You expect the newspaper ’ s
arrival, but the notice of impending blizzards in Tampa Bay come as a bit of a surprise.

 A good example of keeping users informed is that of a weekly newsletter from a subscriber Web site.
This could be something automatically generated by tabulating an extract of that week ’ s news stories, or
it could be something put together by an editorial team. Either way, you ’ re keeping your users
up - to - date.

 Another good example is an order update from an online “ e - tailer. ” If seven days have passed without
the arrival of the books you ordered, you might be getting worried, and you would undoubtedly be
reassured by an e - mail explaining that the books are still on order. Again, this is not a notification.
Nothing has changed. Nothing is new. It ’ s just a quick update for the purposes of reassurance.

 This means of communication is perfectly adaptable to other information methods — fax, text message,
snail mail, you name it. You ’ ll see shortly that the various communications media you may previously
have thought to be completely different are, in fact, virtually identical (at least from a software
architecture perspective).

 Validation

 Validation is often a means of communicating once for the purpose of communicating again. You
validate a destination address of some description so that you may reassure yourself of its accuracy
should you need to use it again. Alternatively, you may have some piece of information your user wants,
but to be doubly sure of the requesting user ’ s identity, you will send that information only to the user ’ s
registered address.

 The bank loan example earlier in this chapter represents the more serious side of things. After all, the
bank wants to verify your correct address so that it can send the repo men in if your repayments are
tardy. Numerous Web sites, however, validate e - mail addresses in this way for later direct marketing
usage. The simple way to do this is to send out an activation link (usually presenting some kind
of unique key stored against the user ’ s record in the database) to the e - mail address offered by the user.
The user must click the link to activate his or her membership.

 Similar methods can be used to throw a rope to users who have forgotten their passwords, although it
isn ’ t usually either a good or feasible idea to reveal their passwords via e - mail. You shouldn ’ t be storing
user passwords unencrypted or in any reversible form, or transmitting them in plain text over e - mail.
You can certainly provide them with a highly obfuscated link (generally of limited - time validity) for the
purposes of gaining temporary access to your site so that they may set a new password.

Part II: Learning Advanced Development Techniques

250

 In Europe (where it is increasingly common to communicate with Web site visitors via their cell phones
as well as via e - mail), some sites send an activation code as a short text message to the cell phone
number the user offered at registration. The user must then enter that activation code on the site to prove
the validity of the number he or she provided.

 As an aside, this Short Message Service (SMS) code - sending technique can actually be used as a poor
man ’ s form of second - layer authentication. Authentication on systems is generally provided by one or
more of three keys. These are something you are (a fingerprint, iris scan, or even originating IP address),
 something you know (a password), and something you have (a key or a fob). Each of these is a factor . The
accepted wisdom is for any system guarding any type of sensitive data to implement more than one of
these mechanisms. By sending a unique code to a registered mobile phone upon entry of a username and
password, that extra layer of protection is provided.

 Thinking Outside the Web Browser
 By realizing the potential of alternative communication mechanisms (particularly e - mail), you offer users
a far more enhanced user experience on your site. In the next section, you’ll explore how you can
implement this in PHP (beyond the mail() function, of course).

 It ’ s probably worth stressing that using the mail() function in PHP to send e - mail
from your code is analogous to what a six - year - old ’ s paper - cup phone is to digital
telephony. It should never appear in serious production sites.

 Types of Communication
 Before you get down and dirty with some communication code, take a step back from the problem for a
second. Doing so can give you a better grasp on the obvious outbound communication class hierarchy in
front of you, which you will have to write yourself because PHP doesn ’ t provide it. What do all
communications have in common?

 All Communications Have . . .
 You can quite reasonably say that all communications have the following:

 Recipients — One or more people to receive the communication. This communication can be in
the form of e - mail addresses, fax numbers, mobile phone numbers, postal addresses, post office
boxes, pigeonholes, and so on.

 A message — The actual body of what you want to send. The message can be transmitted in plain
text or HTML (for an e - mail), a letter - size bitmap (for a fax), 160 characters of text (for a text
message), a stream of 11 KHz audio (for an automated phone call), and so on.

❑

❑

Chapter 11: Communicating with Users

251

 Not All Communications Have . . .
 On the flip side, you must also understand the differences between the various types of communication.
Not all communications have the following:

 Subjects — Typically, only e - mails have subjects.

 Content variants — E - mails these days are often sent with both HTML and plain - text versions
entwined in one MIME package (more on this later).

 Attachments — These are e - mail and text - message specific.

 Revealing of or differentiation between carbon and blind carbon recipients — If you send a fax, text
message, or letter to more than one person, no one will know who else received the message
unless you make a list and add it in the body.

 What About Recipients?
 A recipient of an e - mail message is a totally different kind of recipient from a recipient of a text message.
Take a look at the comparison shown in Table 11 - 1 .

Table 11-1 Comparison of Recipients

Type of Communication Recipient Component Format

Email Name String

Address String following RFC822 specification

SMS text message to
cell phone

Number String, consisting of plus sign,
country prefix, and local number

Fax Number String, consisting of telco-understood
telephone number

Letter Full name String

House number Integer

Street String

Town/city String

State String

Zip String matching U.S. Postal Service
ZIP format

 Communication As a Class Hierarchy
 There are many possibilities to consider if you are to construct a class hierarchy. You must understand
that although communications have much in common, fundamental differences exist between one media
form and another, as do totally different methods of addressing.

❑

❑

❑

❑

Part II: Learning Advanced Development Techniques

252

 The Recipient Class: A Quick Test of OOP - Like Thinking
 All messages have recipients (and often more than one). Given that these recipients are clearly more
involved than strings, it would be nice to have a class to represent them with such useful methods as
 isValid() to determine whether the recipient is a valid one.

 The difficulty is obvious. How are you to implement such a class effectively when so much variation in
the data is required?

 You could create a single Recipient class covering all possible scenarios, but this isn ’ t particularly
OOP - compliant because large numbers of member methods and variables are peculiar to one form of
communication and irrelevant to others. The solution must be to have some kind of generic Recipient
class, with each special case having a class in its own right; but how do you relate these special - case
recipients to the master Recipient class?

 First, reject the use of traditional class inheritance. Although technically feasible, it ’ s still a misuse of
OOP design. Superclasses (that is, classes that are extended to form subclasses) must be classes in their
own right. Ford is a subclass of superclass Car , but although Ford may contain additional or even
overloaded methods or member variables, certain characteristics of Car indicate that it is (or once was)
an object of use in its own right. It has its own methods (such as Drive and Shift) and its own member
variables (such as Registration and Color), and these are not likely to be overloaded. A recipient of a
particular ilk (such as that for an e - mail) could have member variables and methods of its own just like
the Ford , but it would not inherit any of them from a parent generic recipient superclass. For reasons
that a glance at Table 11 - 1, shown previously, should make apparent, a generic recipient cannot have any
useful member variables or methods. Accordingly, you must reject the use of class inheritance.

 The answer becomes apparent if you consider the bigger picture. What is your communications
framework likely to want from these recipient objects? In fact, you can limit it to just two methods that
will be accessed by the communications framework: isValid() and getStringRepresentation() .
These two would return a usable string representation of the framework, dependent on the context. Any
other methods (setHouseNumber , for example) are for use by your application solely for populating the
recipient. You can quite safely say that the communications framework will never touch them.

 Therefore, the task can be summarized as follows: Create some means for a number of distinct classes
representing recipients of different types of communications media to be universally accessed by an
external framework of other classes, such that additional distinct classes may be added later without any
modification to that external framework.

 The solution is to create an interface for the generic recipient class (not really a class at all). That interface
provides definitions for these two key methods (isValid() and getStringRepresentation()), which
the individual recipient objects must provide exactly as shown.

 Consider the following code snippet, which provides just such a generic interface. You may wish to save
this code as recipient.phpm at this stage:

 < ?php
interface Recipient {
 public function isValid();
 public function getStringRepresentation();
}
? >

Chapter 11: Communicating with Users

253

 You might be tempted to implement an abstract recipient class to almost exactly the same effect, but this
would be bad design rearing its ugly head once more. Again, remember that the recipient as you
understand it has no useful properties and no useful methods. It would be fatuous to try to extend it in
any way that infers class status when you merely want to provide a common means for other classes to
interface with a collection of unrelated classes. If you have doubts regarding the lack of commonality of
the various recipient classes, refer to Table 11 - 1.

 The EmailRecipient Class

 Take a look at how to implement this. You won ’ t reproduce every single type of recipient, so look at a
simple one — the EmailRecipient class. You can save this code as emailrecipient.phpm — you ’ ll
need this too, throughout this chapter. Start it by declaring a class that implements the Recipient
interface declared previously:

 < ?

class EmailRecipient implements Recipient {

 Add some member variables to store important properties of your e - mail recipient. As shown in Table 11 - 1,
an e - mail recipient has both a recipient name and a recipient address:

private $recipient_name;
private $recipient_address;

 Now you must provide an implementation of every method declared in the Recipient interface. In fact,
there are just two. The first will validate your recipient after it has been set up by whatever application is
using it. Be careful when entering the regular expression checked by preg_match() — it needs to go on
a single line in your editor:

 public function isValid() {
 if (preg_match(“/[\ < \ > \r\n]{1,}/”, $this- > recipient_name)) {
 return(false);
 };
 if (preg_match(“/^([A-Z0-9._%-]+)(\@)([A-Z0-9._%-]+)(\.)
 ([A-Z0-9._%-]{2,4})$/i”, $this- > recipient_address)) {
 return(true);
 } else {
 return(false);
 };
 }

 What ’ s going on here is straightforward. A couple of regular expression matches are performed on the
recipient. First, the recipient name is validated to ensure that it consists of one or more valid characters.
Then the e - mail address is checked against a regular expression to ensure its conformity to RFC 822
format.

Part II: Learning Advanced Development Techniques

254

 Next, you must provide some means to get an intelligent (that is, readily usable) string representation of
your recipient:

public function getStringRepresentation() {
 $strMyRepresentation = “”;
 if ($this- > recipient_name) {
 $strMyRepresentation .= $this- > recipient_name . “ “;
 };
 $strMyRepresentation .= “ < ” . $this- > recipient_address . “ > ”;

 return($strMyRepresentation);
}

 Because the readily accepted format for e - mail addresses is First Name Last Name < user@example
.com > , that is the format used here.

 The remainder of the class is dedicated to accessor methods — that is, methods to get and set the various
properties of the e - mail recipient. As shown, you have provided an easy means to set all these within the
constructor. For other recipients (such as those of a snail mail letter), doing this may be cumbersome:

 public function __construct($strRecipientAddress, $strRecipientName = “”) {
 $this- > recipient_name = $strRecipientName;
 $this- > recipient_address = $strRecipientAddress;
 }
 public function setRecipientName($strRecipientName) {
 $this- > recipient_name = $strRecipientName;
 }

 public function setRecipientAddress($strRecipientAddress) {
 $this- > recipient_address = $strRecipientAddress;
 }

 public function getRecipientName() {
 return($this- > recipient_name);
 }

 public function getRecipientAddress() {
 return($this- > recipient_address);
 }
}

 That concludes the e - mail recipient class, an implementation of the generic Recipient interface. If you
wanted to save this as emailrecipient.phpm at this stage, no one would hold it against you.

 Even though you haven ’ t reached the communication framework yet, you can test this by using the
following snippet of sample code. You might want to call this test1.php so that you can pull it up in a
browser when you ’ re done:

 < ?php
require(“recipient.phpm”);
require(“emailrecipient.phpm”);

$objEmailRecipient = new EmailRecipient(“fiona@example.com”, “Fiona Chow”);
if ($objEmailRecipient- > isValid()) {

Chapter 11: Communicating with Users

255

 print “Recipient is valid! “;
 print “The string representation of this recipient would be: “ .
 htmlentities($objEmailRecipient- > getStringRepresentation());
} else {
 print “Recipient is not valid!”;
};
? >

 This yields the following output:

Recipient is valid! The string representation of this recipient would be:
Fiona Chow < fiona@example.com >

 If you take a quick look at the EmailRecipient class in more detail, you can see just how simple it is.
The two private member variables are specific to this class, as are the constructor and the (somewhat
superfluous) setRecipientName and setRecipientAddress accessor methods and their
(less superfluous) get counterparts.

 Because you have declared this class to implement the Recipient interface, you are obliged to provide
the two methods so described in that interface. If you do not, then PHP helpfully returns an error
message.

 In the getStringRepresentation method, you simply glue the pieces together to form a usable
RFC822 - compliant representation of the recipient ’ s name and e - mail address. This is something you can
drop straight into an SMTP session.

 In the isValid method, you check the recipient ’ s name for any bad characters that might confuse the
SMTP server. Then you check the e - mail address for basic syntactical validity against a regular
expression.

 Other Implementations

 You have just implemented an EmailRecipient class to encapsulate neatly the concept of e - mail
recipients. Other types of communication have their own types of recipient, and each needs an
implementation of the Recipient interface, too.

 You can follow a very similar procedure to implement such alternative recipient types. First, ensure that
sufficient member variables exist to hold every property of that recipient type, and that you have
suitable Get and Set accessor methods to read and write to those member variables. Second, implement
the mandatory methods required by the Recipient interface: the validator method and the string
representation method.

 The Communication Class
 Even though recipients are different by nature, with streamlined interface access to any and all recipient
objects, you can greatly simplify your communication class.

 A communication object is literally that — a single communication by whatever method. We don ’ t
particularly mind which method, nor do we even allude to which ones are possible.

Part II: Learning Advanced Development Techniques

256

 The communication class will never itself be instantiated. Instead, it will be extended by a class
representing the particular form of communication to be used: EmailCommunication ,
 SMSCommunication , and so forth.

 Unlike the generic recipient construction, however, it will have useful methods of its own. For this
reason, it really will be a genuine class and not just an interface. However, one method — send — will
be declared as abstract so that it is implemented only in subclasses.

 Subclasses of Communication may, of course, have methods and member variables of their own that
supplement those of their superclass. A likely use for this would be methods that somehow manipulate
the message property of Communication in some way. An example is a method in SMSCommunication
in which to load a bitmap (.BMP) file to send as a cellular phone operator logo in place of a standard text
message.

 Storing Recipients Using a Collection

 Whatever type of communication your class may represent, the preceding discussion should have made
it clear that it will always have recipients of some sort or another. For that reason, a protected member
variable (not private — it needs to be accessible by child objects) is needed to store such recipients. An
array is an obvious choice, but it gives you little flexibility and requires a lot of coding on your part.

 In Chapter 5 , though, you were introduced to the concept of collections — essentially an object - oriented
mechanism for storing groups of objects together as a single variable. The following class is a stripped -
 down, pared - back version of the Collection class you met in that chapter. It will make the rest of the code
in this chapter a lot easier to follow. You should save the following as collection.phpm and keep it
aside — you ’ ll need it shortly:

 < ?php
class Collection implements Iterator {

 protected $_members = array(); //collection members in a linear array
 protected $_keys = array(); //names of keys in numeric order to match
 //linear array
 protected $position = 0; //current position

 public function __construct() {
 $this- > position = 0;
 $this- > _members = array();
 $this- > _keys = array();
 }

 public function rewind() {
 $this- > position = 0;
 }

 public function current() {
 return($this- > _members[$this- > position]);
 }

 public function addItem($obj, $key = NULL) {
 $this- > _members[] = $obj;
 if (!$key) {

Chapter 11: Communicating with Users

257

 $key = sizeof($this- > _members) - 1;
 };
 $this- > _keys[] = $key;
 $this- > position = sizeof($this- > _members);
 }

 public function key() {
 return($this- > _keys[$this- > position]);
 }

 public function next() {
 ++$this- > position;
 }

 public function valid() {
 return(isset($this- > _members[$this- > position]));
 }

 public function length() {
 return sizeof($this- > _members);
 }

 public function exists($key) {
 // resolve key to index
 $idx = -1;
 for ($i=0; $i < =sizeof($this- > _keys)-1; $i++) {
 if ($this- > _keys[$i] = $key) {
 $idx = $i;
 };
 }
 if ($idx == -1) {
 return(false);
 };
 return (isset($this- > _members[$i]));
 }

}

? >

 With the collections class in place, you can code up a communication class to make use of it.

 The Communications Class Itself

 Take a look at the following code, which you should save as communication.phpm . Note that it makes
use of the simple collection class you just wrote in order to store its collection of recipients:

 < ?php

abstract class Communication {

 protected $arRecipientCollection;
 private $strMessage;

Part II: Learning Advanced Development Techniques

258

 protected $strErrorMessage;
 protected $errorCode;

 abstract public function send();
 public function __construct() {
 $this- > strMessage = “”;
 }

 public function addRecipient($objRecipient, $strIdentifier = “”) {
 $strRecipient = $objRecipient- > getStringRepresentation();
 if (!$strIdentifier) {
 $strIdentifier = $strRecipient;
 };
 $this- > arRecipientCollection- > addItem($objRecipient, $strIdentifier);
 }
 public function removeRecipient($strIdentifier) {
 $this- > arRecipientCollection- > removeItem($strIdentifier);
 }
 protected function _setMessage($strMessage) {
 $this- > strMessage = $strMessage;
 }

 protected function _getMessage() {
 return($this- > strMessage);
 }

 public function getErrorMessage() {
 return($this- > strErrorMessage);
 }

 public function getErrorCode() {
 return($this- > errorCode);
 }
} ? >

 As you can see, you declare the recipient collection as protected. This means that although it cannot be
tinkered with from within your application ’ s code, it can be tinkered with by subclasses of the
 Communication class — which is a good thing.

 You probably have noticed how these examples brazenly add recipient objects passed to addRecipient
to the recipient collection, even though you have absolutely no idea of what type that object is, and
equally no idea of what type of collection arRecipientCollection is. You may assume that this is a
recipe for run - time errors, but in fact it is the subclass that initializes the collection, and it will make it a
collection of whatever it wants. As long as whatever is passed as a recipient object supports the interface
developed earlier, and is of the same type as the type required by the subclass, there will be no problems.

 Use the string representation of the object as a suitable key for the collection. The message property
remains private and can be manipulated using _setMessage and _getMessage , accessible only from
the subclass. Don ’ t worry about the error message and error code member variables yet. You ’ ll meet
those a bit later.

Chapter 11: Communicating with Users

259

 How do you use this in practice? Quite simply, you extend it to form a useful subclass. In the next
section, you ’ ll take a look at EmailCommunication , which, as the name suggests, is used for sending a
message to one or more EmailRecipient objects.

 E - mailing Your Users
 EmailCommunication is the subclass to Communication . First, you need some simple way of enforcing
the recipient collection of the superclass to contain only EmailRecipient objects. You can do this by
reworking the Collection class slightly to form a subclass called EmailRecipientCollection . This
may, by definition, consist only of EmailRecipient members:

 < ?php
class EmailRecipientCollection extends Collection {
 public function addItem(EmailRecipient $obj, $key = null) {
 parent::addItem($obj, $key);
 }
} ? >

 Note that this offers no new functionality. It merely offers the enforcement, through Class Type Hints, of
the class type to which new members must adhere.

 With this class now understood by PHP and saved as emailrecipientcollection.phpm , you can
implement the EmailCommunication class itself.

 Building a Test Version
 It ’ s a good idea to first build an implementation of reduced functionality to test the OOP interfaces. After
all, if you can get that right, the rest should be fairly straightforward. By using some strategic printouts,
you can see what ’ s going on and confirm that the logic works.

 After you are certain the logic and, hence, the OOP integration and interfaces work correctly, you can
concentrate on the implementation — that is, getting the e - mail out the door.

 Start the class in a fairly standard manner, declaring it and its two properties: one a visible address and the
other is a collection of visible carbon copy addresses. You do not need to worry about blind carbon copy
addresses; they are not visible and therefore can be handled solely by the parent Communication class:

 < ?php
class EmailCommunication extends Communication {

 private $objApparentPrimaryRecipient; // Visible To: address
 private $arObjApparentSecondaryRecipients; // Visible Cc: address(es)

Part II: Learning Advanced Development Techniques

260

 Next, provide a means to set the primary recipient of the e - mail. Note that the class adds to the main
recipient collection of the parent class (generic), while also setting the primary visible recipient (specific
to the EmailCommunication class):

 public function setPrimaryRecipient($objRecipient) {
 if (!($this- > arRecipientCollection- > exists(
 $objRecipient- > getStringRepresentation()))) {
 parent::addRecipient($objRecipient);
 };
 $this- > objApparentPrimaryRecipient = clone $objRecipient;
 }

 The methods for adding and removing carbon copy (Cc:) recipients are much the same. Again, you
manipulate both the parent collection and the local apparent recipients array:

 public function addCarbonRecipient($objRecipient) {
 if (!($this- > arRecipientCollection- > exists(
 $objRecipient- > getStringRepresentation()))) {
 parent::addRecipient($objRecipient);
 };
 if (!($this- > arObjApparentSecondaryRecipients- > exists(
 $objRecipient- > getStringRepresentation()))) {
 $this- > arObjApparentSecondaryRecipients- > addItem(
 $objRecipient, $objRecipient- > getStringRepresentation());
 };
 }

 public function removeCarbonRecipient($objRecipient) {
 if ($this- > arRecipientCollection- > exists(
 $objRecipient- > getStringRepresentation())) {
 parent::removeRecipient($objRecipient);
 };
 if ($this- > arObjApparentSecondaryRecipients- > exists(
 $objRecipient- > getStringRepresentation())) {
 $this- > arObjApparentSecondaryRecipients- > removeItem(
 $objRecipient- > getStringRepresentation());
 };
 }

 The same principle applies for adding and removing blind recipients, except that you do not touch the
apparent recipients list:

 public function addBlindRecipient($objRecipient) {
 if (!($this- > arRecipientCollection- > exists(
 $objRecipient- > getStringRepresentation()))) {
 parent::addRecipient($objRecipient);
 };
 }

 public function removeBlindRecipient($objRecipient) {
 if (!($this- > arRecipientCollection- > exists(
 $objRecipient- > getStringRepresentation()))) {
 parent::removeRecipient($objRecipient- > getStringRepresentation());
 };
 }

Chapter 11: Communicating with Users

261

 Now turn your attention to the constructor, which must initialize the superclass collection to be a
collection of the appropriate type, and the local collection of apparent recipients to be another collection
of the same type (though not necessarily with the same contents). Note that you also call the parent class
constructor when you ’ re finished:

public function __construct() {
 // Superclass collection
 $this- > arRecipientCollection = new EmailRecipientCollection();
 // Local collection of visible (CC:) recipients
 $this- > arObjApparentSecondaryRecipients = new EmailRecipientCollection();
 parent::__construct();
}

 Now comes the dummy send method, used to ensure that your class works correctly:

 public function send() {
 print “ACTUAL RECIPIENTS < BR > < BR > ”;
 foreach ($this- > arRecipientCollection as $strRecipientIdentifier = >
 $objEmailRecipient) {
 print “NAME: “ . $objEmailRecipient- > getRecipientName() . “ < BR > ”;
 print “EMAIL ADDRESS: “ . $objEmailRecipient- >
 getRecipientAddress() . “ < BR > ”;
 };

 print “ < BR > < BR > APPARENTLY TO RECIPIENT < BR > < BR > ”;
 print “NAME: “ . $this- > objApparentPrimaryRecipient- >
 getRecipientName() . “ < BR > ”;
 print “EMAIL ADDRESS: “ . $this- >
 objApparentPrimaryRecipient- > getRecipientAddress() . “ < BR > ”;

 print “ < BR > < BR > APPARENT SECONDARY RECIPIENTS < BR > < BR > ”;
 foreach ($this- > arObjApparentSecondaryRecipients as
 $strRecipientIdentifier = > $objEmailRecipient) {
 print “NAME: “ . $objEmailRecipient- > getRecipientName() . “ < BR > ”;
 print “EMAIL ADDRESS: “ . $objEmailRecipient- >
 getRecipientAddress() . “ < BR > ”;
 };
 }
}

 Let ’ s examine the previous code in a bit more detail. First, notice the member properties:

private $objApparentPrimaryRecipient; // Visible To: address
private $arObjApparentSecondaryRecipients; // Visible Cc: address(es)

 These two member properties exist in addition to the master recipient list inherited from the
 Communication superclass. They represent a single EmailRecipient object representing to whom the
e - mail is directly addressed (the “ To: ” line) and a collection of EmailRecipients representing any
Carbon Copy (Cc:) addresses. These two member properties are not, strictly speaking, important in
determining who gets the message. That is still handled by the collection in the superclass. However,
they exist for the purpose of formatting the e - mail so that the “ master ” and “ Cc: ” recipients appear in the
right place in the message headers.

Part II: Learning Advanced Development Techniques

262

 The constructor method concerns itself with the setup of these two additional private member variables,
and calls the superclass constructor for good measure.

 The various methods used for adding and removing the master recipient, carbon copy recipients, and
blind carbon copy recipients all work in much the same way. They check to see whether an object of that
key (the key being the string representation of the recipient object) exists in the collection before
performing the relevant operation. This is achieved using the exists method provided by the
 collection object.

 Take a look at some test addresses just to prove that it works. You can then go back and look at the way
you actually send the mail. To execute the following code, you need to require() all the classes
developed so far in this chapter. Call this test2.php so you can see it in your Web browser:

 < ?php
require(“collection.phpm”);
require(“communication.phpm”);
require(“emailcommunication.phpm”);
require(“recipient.phpm”);
require(“emailrecipient.phpm”);
require(“emailrecipientcollection.phpm”);
$objEmail = new EmailCommunication;
$objEmailRecipient = new EmailRecipient(“ed@example.com”,
 “Ed Lecky-Thompson”);
$objEmailCCRecipient = new EmailRecipient(“ted@example.com”,
 “Ted Lecky-Thompson”);
$objEmailBCCRecipient = new EmailRecipient(“zed@example.com”,
 “Zed Lecky-Thompson”);
$objEmail- > setPrimaryRecipient($objEmailRecipient);
$objEmail- > addCarbonRecipient($objEmailCCRecipient);
$objEmail- > addBlindRecipient($objEmailBCCRecipient);
$objEmail- > send(); ? >

 Run the preceding code. You should get output like that shown here:

ACTUAL RECIPIENTS

NAME: Ed Lecky-Thompson
EMAIL ADDRESS: ed@example.com
NAME: Ted Lecky-Thompson
EMAIL ADDRESS: ted@example.com
NAME: Zed Lecky-Thompson
EMAIL ADDRESS: zed@example.com

APPARENTLY TO RECIPIENT

NAME: Ed Lecky-Thompson
EMAIL ADDRESS: ed@example.com

APPARENT SECONDARY RECIPIENTS

NAME: Ted Lecky-Thompson
EMAIL ADDRESS: ted@example.com

Chapter 11: Communicating with Users

263

 This looks pretty healthy. As you can see from the code, Ed is the main recipient of this e - mail, while Ted
has been Cc ’ d, and Zed has been Bcc ’ d. When Ed receives the mail, he will be able to see his name on the
To: line, and Ted ’ s on the Cc: line. Ed won ’ t know Zed got the mail. When Ted receives the mail, he will
see much the same. Again, he won ’ t know Zed was Bcc ’ d on this important message. When Zed
receives the mail, he won ’ t see his name anywhere, but he ’ ll be able to deduce that he must have been
Bcc ’ d on the original message.

 The output from this dummy test implementation shows that the code is correct. The list of actual
recipients displays all three genuine recipients of the e - mail. The primary recipient is correct, and the
Cc ’ d recipient is listed correctly, too.

 Getting the Message Across
 You must do a couple of things to make the EmailCommunication class function properly.

 First, you must get the body of the e - mail built and slotted into the message member variable. A simple,
plain - text e - ail consists of two parts: the header and the body. Conveniently enough, the two are
separated by nothing more complex than a blank line. The header contains the sender ’ s address, the
recipient ’ s address, the subject, the Cc: addresses, and a myriad of other bits and pieces.

 Now, add two member variables: one for the subject line and one for the sender. The sender can again be
an EmailRecipient object because a sender has a name and an address, just like a recipient:

private $objApparentSender; // Visible From: address
private $strSubjectLine; // Subject line

 The use of some basic methods will allow users of the class to set these properties.

 For the time being, assume that you ’ re dealing with purely plain text e - mails. You add a simple method
to allow public setting of the message property. The message property is synonymous with the body of
the e - mail, because the headers will be managed separately:

public function setSubject($strSubject) {
 $this- > strSubjectLine = $strSubject;
}

public function setMessageBody($strMessageBody) {
 $this- > _setMessage($strMessageBody);
}

public function setSender($objSender) {
 $this- > objApparentSender = $objSender- > __clone();
}

 All that remains to do now is to convert the send() method into something that assembles a header and
a body, glues them together, and spits them out to the Internet.

 How do you go about doing that? The easiest way is with PEAR ’ s Net_SMTP package, which gels quite
neatly with this setup, and again provides a good example of why PEAR is so useful in avoiding
reinventing the wheel in your application development. The Net_SMTP package may already be installed
in your PHP setup. If not, install it in the usual way.

Part II: Learning Advanced Development Techniques

264

 The basic syntax for using the Net_SMTP package is simple. You can feed it the assembled message as - is
with no changes. Just tell it the operands to use when talking to the mail server. The minimum that the
mail server requires is a sender and a list of recipients. The server doesn ’ t look at your headers. This is
why blind carbon copies work. Although the server is told to deliver the message to that recipient, the
recipient is never listed anywhere in the headers.

 The following example shows a basic usage of Net_SMTP , step by step, assuming that the completed
message is in $full_message _ content and that an array of recipients exists in $rcpt :

if (! ($smtp = new Net_SMTP(“mail”))) {
 die(“Unable to instantiate Net_SMTP object\n”);
}

 First, you instantiate a new instance of the Net_SMTP class with the name of your SMTP server, and die
if you are unable to do so for some reason:

if (PEAR::isError($e = $smtp- > connect())) {
 die($e- > getMessage() . “\n”);
}

 Next, you ensure that you can connect to the SMTP server you just specified; if not, you die :

if (PEAR::isError($smtp- > mailFrom(“sender@example.com”))) {
 die(“Unable to set sender\n”);
}

 In this case, the sender was set to be sender@example.com :

foreach($rcpt as $recipient) {
 if (PEAR::isError($res = $smtp- > rcptTo($rcpt))) {
 die(“Unable to add recipient: “ . $res- > getMessage() . “\n”);
 }
}

 Now loop through your array of recipients, adding each into the Net_SMTP class instance and dying if
any single recipient proves impossible to add:

if (PEAR::isError($smtp- > data($full_message_content))) {
 die(“Unable to send data\n”);
}
$smtp- > disconnect();

 Finally, you send your message and disconnect from the SMTP server.

 Note that this example uses mail as the hostname of the remote SMTP server. If you ’ re running on Linux
or something similar, then you can probably stick a reference to the hostname mail in your /etc/hosts
file pointing to 127.0.0.1 and everything will work fine out of the box. Otherwise, you must locate the
nearest friendly SMTP server to relay for you, and use that instead.

Chapter 11: Communicating with Users

265

 Now take a look at the following finished EmailCommunication class, complete with an SMTP send
through Net_SMTP :

class EmailCommunication extends Communication {
 private $objApparentSender; // Visible From: address
 private $strSubjectLine; // Subject line
 private $objApparentPrimaryRecipient; // Visible To: address
 private $arObjApparentSecondaryRecipients; // Visible Cc: address(es)

 public function __construct() {
 // Superclass collection
 $this- > arRecipientCollection = new EmailRecipientCollection();
 // Local collection of visible (CC:) recipients
 $this- > arObjApparentSecondaryRecipients = new EmailRecipientCollection();
 parent::__construct();
 }

 public function setPrimaryRecipient($objRecipient) {
 if (!($this- > arRecipientCollection- > exists(
 $objRecipient- > getStringRepresentation()))) {
 parent::addRecipient($objRecipient);
 };
 $this- > objApparentPrimaryRecipient = clone $objRecipient;
 }

 public function addCarbonRecipient($objRecipient) {
 if (!($this- > arRecipientCollection- > exists(
 $objRecipient- > getStringRepresentation()))) {
 parent::addRecipient($objRecipient);
 };
 if (!($this- > arObjApparentSecondaryRecipients- > exists(
 $objRecipient- > getStringRepresentation()))) {
 $this- > arObjApparentSecondaryRecipients- > addItem(
 $objRecipient, $objRecipient- > getStringRepresentation());
 };
 }

 public function removeCarbonRecipient($objRecipient) {
 if ($this- > arRecipientCollection- > exists(
 $objRecipient- > getStringRepresentation())) {
 parent::removeRecipient($objRecipient);
 };
 if ($this- > arObjApparentSecondaryRecipients- > exists(
 $objRecipient- > getStringRepresentation())) {
 $this- > arObjApparentSecondaryRecipients- > removeItem(
 $objRecipient- > getStringRepresentation());
 };
 }

 public function addBlindRecipient($objRecipient) {
 if (!($this- > arRecipientCollection- > exists(

Part II: Learning Advanced Development Techniques

266

 $objRecipient- > getStringRepresentation()))) {
 parent::addRecipient($objRecipient);
 };
 }

 public function removeBlindRecipient($objRecipient) {
 if (!($this- > arRecipientCollection- > exists(
 $objRecipient- > getStringRepresentation()))) {
 parent::removeRecipient($objRecipient- > getStringRepresentation());
 };
 }

 public function setSubject($strSubject) {
 $this- > strSubjectLine = $strSubject;
 }

 public function setMessageBody($strMessageBody) {
 $this- > _setMessage($strMessageBody);
 }

 public function setSender($objSender) {
 $this- > objApparentSender = $objSender- > __clone();
 }

 public function send() {

 // Establish headers
 $strHeaders .= “From: “ .
 $this- > objApparentSender- > getStringRepresentation() . “\n”;
 $strHeaders .= “To: “ .
 $this- > objApparentPrimaryRecipient- > getStringRepresentation() . “\n”;
 foreach ($this- > arObjApparentSecondaryRecipients as $strRecipientIdentifier = >
 $objEmailRecipient) {
 $strHeaders .= “Cc: “ . $objEmailRecipient- > getStringRepresentation() . “\n”;
 };
 $strHeaders .= “Date: “ . date(“D, M j H:i:s T Y O”) . “\n”;

 // Establish body
 $strBody = $this- > _getMessage();

 // Pull together to form complete email, correctly formatted
 $strFullEmail = $strHeaders . “\n” . $strBody;

 if (! ($smtp = new Net_SMTP(“mail”))) {
 $this- > strErrorMessage = “Unable to instantiate Net_SMTP object”;
 $this- > errorCode = 1;
 return(false);
 }

 if (PEAR::isError($e = $smtp- > connect())) {
 $this- > strErrorMessage = $e- > getMessage();

Chapter 11: Communicating with Users

267

 $this- > errorCode = 2;
 $smtp- > disconnect();
 return(false);
 }

 if (PEAR::isError($smtp- > mailFrom(
 $this- > objApparentSender- > getStringRepresentation()))) {
 $this- > strErrorMessage = “Unable to set sender”;
 $this- > errorCode = 3;
 $smtp- > disconnect();
 return(false);
 }

 // Send to each recipient
 foreach ($this- > arRecipientCollection as $strRecipientIdentifier = >
 $objEmailRecipient) {
 $strThisAddress = $objEmailRecipient- > getRecipientAddress();
 if (PEAR::isError($res = $smtp- > rcptTo($strThisAddress))) {
 $this- > strErrorMessage = “Unable to add recipient “ . $strThisAddress;
 $this- > errorCode = 4;
 $smtp- > disconnect();
 return(false);
 };
 };

 if (PEAR::isError($smtp- > data($strFullEmail))) {
 $this- > strErrorMessage = “Unable to send data to server”;
 $this- > errorCode = 5;
 $smtp- > disconnect();
 return(false);
 }
 $smtp- > disconnect();
 return(true);

 }
};

 Note a few things about this approach. First, when a recipient is added as the primary recipient or a
member of the carbon copy (Cc:) list, you can add the recipient to the collection held in the parent
superclass, and then clone the recipient object before adding to the list of apparent recipients. This step
isn ’ t vital, but it means that you can implement your own _clone() method in your EmailRecipient
class, if you want, to modify the behavior taken when this copy is made.

 Second, this example uses the error code and error message member variables of the Communication
superclass. These are accessible through public functions. You can use these to debug your applications.
E - mail can be an unpredictable phenomenon at times, and failure can occur through any number of
scenarios, including a failure to reach the SMTP server, being denied permission to send e - mail to your
particular IP address, or having a recipient be rejected outright by the SMTP server.

 Third, the code date(“ D, M j H:i:s T Y O ”) is used to construct the e - mail header ’ s date property.
A quick glance at the PHP documentation reminds you that this produces a timestamp in the format
 Tue, Jul 20 22:58:58 BST 2004 +0100 , which is the format required in e - mail headers.

Part II: Learning Advanced Development Techniques

268

 To test the final working class, you can knock out some code like the following:

$objEmail = new EmailCommunication;
$objEmailRecipient = new EmailRecipient(“ed@example.com”, “Ed Lecky-Thompson”);
$objEmailCCRecipient = new EmailRecipient(“cc@example.com”, “Ted Lecky-Thompson”);
$objEmailSender = new EmailRecipient(“info@example.com”, “Test Sender”);
$objEmail- > setPrimaryRecipient($objEmailRecipient);
$objEmail- > setSender($objEmailSender);
$objEmail- > setMessageBody(“Hello,\n\nThis is a short test email.\n\nGoodbye!”);
$objEmail- > setSubject(“Test Subject”);
$objEmail- > addCarbonRecipient($objEmailCCRecipient);
$objEmail- > addBlindRecipient($objEmailBCCRecipient);

if ($objEmail- > send()) {
 print “DONE! All went well! Mail sent successfully.”;
} else {
 print “Sorry, didn’t send mail successfully.”;
};

 Being Smart with Templates
 In Chapter 13 we talk about how separating application and display logic from each other through the
model - view - controller (MVC) paradigm is generally an excellent idea, one well worth pursuing in your
own application architecture.

 Chapter 13 also covers a package called Smarty, which helps you do just that, and describes how
useful it can be in traditional Web application implementation. Smarty has another use that is often
overlooked: It can produce template - driven e - mail output.

 As you know, nine times out of ten, the e - mails you send your users will be virtually the same. A few
tags, or the first name after “ Dear, ” or an account number might change, but not much else.

 Splicing variables into strings is fine for smaller operations, but when those e - mails start to get bigger
and more unwieldy, and even contain printed array structures, things will get tough. The solution is to
use the TemplatedEmailCommunication class.

 The TemplatedEmailCommunication class makes full use of Smarty. If you haven ’ t read Chapter 13
yet, now would be an excellent time. You need to know how Smarty works in order to pull this off.

 The class you ’ re about to create actually extends EmailCommunication , so have that up and running
first; and have Smarty installed and working, too:

class TemplatedEmailCommunication extends EmailCommunication {

 private $path_to_template_file;
 private $objSmarty;

 public function __construct($strPathToTemplateFile) {
 $this- > objSmarty = new Smarty;

Chapter 11: Communicating with Users

269

 $this- > path_to_template_file = $strPathToTemplateFile;
 parent::__construct();
 }

 public function setParameter($strParameter, $strValue) {
 $this- > objSmarty- > assign($strParameter, $strValue);
 }

 public function parse() {
 $this- > setMessageBody($this- > objSmarty- > fetch($this
- > path_to_template_file));
 }
}

 The preceding code is simple but effective. Now try the following code. It needs to point to a simple
Smarty template, so first create a template file named test.tpl as follows:

Name: {$name}
Favorite Food: {$favefood}

 Next, enter the PHP code that follows. Ensure that it resides in the same directory as your Smarty
template, or modify the first line to point to the right path. You ’ ll see that it ’ s very similar to the last time
you took EmailCommunication for a drive, but the differences in the code are highlighted for you:

$objEmail = new TemplatedEmailCommunication(“test.tpl”);
$objEmail- > setParameter(“name”, “Ed”);
$objEmail- > setParameter(“favefood”, “Steak”);
$objEmail- > parse();

$objEmailRecipient = new EmailRecipient(“ed@example.com”, “Ed Lecky-Thompson”);
$objEmailSender = new EmailRecipient(“info@example.com”, “Test Sender”);
$objEmail- > setPrimaryRecipient($objEmailRecipient);
$objEmail- > setSender($objEmailSender);
$objEmail- > setSubject(“Test Subject”);

if ($objEmail- > send()) {
 print “DONE! All went well! Mail sent successfully.”;
} else {
 print “Sorry, didn’t send mail successfully.”;
};

 This produces the following output in the body of the sent e - mail:

Name: Ed
Favorite Food: Steak

 As you can see, the parse() method constructed the body of the e - mail for you. Smarty parsed the
template according to the two parameters you gave it; but rather than use the traditional
 display() method, you use fetch() to capture its output into a string. You then set the message body
to be that string and you ’ re all set to send the e - mail.

 Note that by extending the EmailCommunication class, you ’ ve not only avoided reinventing the wheel with
respect to recipient management and SMTP connectivity, but also kept the TemplatedEmailCommunication
class down to just a few lines of code, making it much easier to tinker with.

Part II: Learning Advanced Development Techniques

270

 Of course, what has been demonstrated here is but a small subset of what is possible with Smarty, but it
does show just how easy Smarty is to adapt for e - mail.

 Using MIME
 You ’ ve probably noticed that so far this chapter has dealt almost exclusively with simple, plain text
e - mails. These are easier to deal with, but inevitably, occasions will for arise for sending HTML e - mail, or
maybe even templated HTML e - mail. And what about attachments? How do you handle those? MIME is
the answer, and it is an enormous topic.

 Mercifully, PEAR has it largely covered. See http://pear.php.net/package/Mail_Mime for more
details. The suggested approach is to extend EmailCommunication to form RichEmail
Communication , which sports additional methods such as setHTMLContent , setPlainText Content ,
 addAttachment , and so forth.

 This discussion will not go into more detail; but if you have the hang of this chapter, you can probably
integrate MIME functionality into the classes you ’ ve already built without difficulty. Download and
install the PEAR package from http://pear.php.net/package/Mail_Mime and read the
documentation thoroughly. Constructing the relevant new RichEmailCommunication class should be
straightforward enough.

 You can find out more about MIME in the Usenet comp.mail.mime FAQ, the latest version of which is
available in the newsgroup and is replicated across the Web, such as at www.uni-giessen.de/faq/
archiv/mail.mime-faq.part1-9/ .

 Other Communication Subclasses
 This chapter sticks firmly to e - mail simply because it ’ s the most common form of communicating with
users on the Web. It ’ s free, and everyone knows the basics.

 However, the whole point of the Communication class is that it can be extended to form virtually
anything — a fax, an SMS, a voice call. This section describes a few ways you can go about implementing
such facilities.

 SMS Text Messaging
 A number of gateway providers have sprung up in the last year or so who will send messages on your
behalf for a small fee. Rather than use physical cellular phones to send the messages, they use direct
links straight into the cellular networks, which saves time and money.

 The interface is usually via SOAP (introduced in Chapter 10) or even just a simple HTTP POST . Search
the Web for “ SMS Gateways ” if you ’ re curious.

 The more instant alternative is via a serial cable to your cellular phone, if your phone supports it. Again,
the Web has more details on the API for communicating with your phone in this way. The trick is to treat
it as though it were a modem; a Hayes - compatible AT command set is perfect for such communication.
You can find more information at www.cellular.co.za/sms_at_commands.htm .

Chapter 11: Communicating with Users

271

 Fax
 Rather than physically render a fax page and fire it down a modem, a far simpler solution is to use one
of the many e - mail - to - fax gateways in existence today. Most of these will accept a TIFF or similar file
e - mailed as an attachment to a special e - mail address, and send the fax on your behalf. By using PHP ’ s
built - in graphics functions, you should be able to compose a TIFF on the fly, e - mail it to such a catcher
address, and create an instant, dynamically produced fax as a result.

 An example of such a service is eFax. See www.efax.com for more information.

 Other Considerations
 Before wrapping up this chapter, there are a couple of other things worth considering. If you ’ re building
an enterprise - class application that makes use of user communications, such little details can make the
difference between a really slick user experience (one that will make your users want to come back for
more) and something half - baked.

 Blocking Activity
 Blocking refers to an activity in a piece of procedural code that must complete before any other code can
complete. If that activity takes a while, well, then that ’ s just tough — everything else must wait.

 Sending e - mail is just such an activity. Sending an e - mail (as shown earlier in this chapter) is an intensive
activity: making a connection to an SMTP server, waiting to be authenticated, passing the message body,
and waiting for the server to accept. Depending on how busy the server is, this could take anywhere
from a fraction of a millisecond to — wait for it — maybe four or five seconds.

 Those four or five seconds are added to the HTTP request — there ’ s no two ways about it. If your user ’ s
HTTP request has generated an e - mail, then that delay will be felt by that user before the e - mail is sent
and the request fulfilled. At best, the user might think something ’ s gone wrong; at worst, that user will
hit the Stop button and give up.

 Remember, too, that SMTP servers fail or become unavailable from time to time. If you ’ re dependent on
that server being available to implement some vital piece of functionality (a forgotten password e - mail,
for example), then a SMTP server being down essentially makes that functionality unavailable, too.

 It ’ s not just e - mail. If you ’ re sending SMS text messages using a GSM modem, what if someone yanks
the power cord from that modem? If you ’ re sending faxes, what if your fax service goes down? The list
goes on.

 Maintaining a Job Queue

 The solution to this conundrum is actually delightfully simple. Go back to something you know won ’ t
block — or at least shouldn ’ t. It ’ s your database, and it probably forms the backbone of your application.

Part II: Learning Advanced Development Techniques

272

 Create a simple table to hold the e - mails you need to send. It might look something like this:

CREATE TABLE “scheduled_email” (
 “id” SERIAL PRIMARY KEY NOT NULL,
 “subject_line” character varying(256) NOT NULL,
 “sender_name” character varying(256) NOT NULL,
 “sender_address” character varying(256) NOT NULL,
 “recipient_name” character varying(256) NOT NULL,
 “recipient_address” character varying(256) NOT NULL,
 “reply_to_name” character varying(256) NOT NULL,
 “reply_to_address” character varying(256) NOT NULL,
 “html_content” text,
 “text_content” text,
 “status” character varying(1) NOT NULL
);

 It is hoped that most of these columns are self - explanatory. Perhaps the only one that requires
explanation is the column named status .

 The idea is simple. When you want to send an e - mail, don ’ t connect to the SMTP server directly.
Instead, create an entry in the table scheduled_email , setting the status flag to N — meaning “ Not
Processed Yet. ”

 That ’ s it — that ’ s all your code does. All that is required is a simple INSERT statement into your
database, something that should take only fractions of a second. The blocking problem disappears.

 Of course, you still have to actually send the e - mail. That ’ s where your processor script comes in. Write a
simple piece of PHP code that looks for entries in the scheduled_email table whose status is N . Then,
for each entry, send the e - mail via SMTP. For each e - mail processed, set its status to C for “ Completed. ”
That way, your script won ’ t accidentally send it again the next time it runs.

 That script must be placed in your system ’ s scheduled task system — cron on Mac OS X and UNIX, and
Scheduled Tasks on Windows. Set it to run once a minute, and process any entries “ Not Processed Yet. ”

 Be careful to ensure that only one copy of your script runs at a time, though. Otherwise, you might find
that two instances of the script attempt to send the same e - mail for you. You can mitigate against this
too, though. Consider setting the status of an e - mail to S (for “ Started ”) before you start sending it. That
way, even if two copies of your script begin running at the same time, there ’ s no chance of them both
attempting to send the same e - mail.

 The net effect of what you ’ re doing here is taking an unpredictable task (the act of sending an e - mail)
and replacing it with something predictable (inserting a record into the database). The unpredictable task
is kept offline, well away from the user ’ s Web browser.

 Deliverability
 One of the very hottest topics of the past few years is spam and junk mail. Recent estimates suggest that
as many as 75 percent of the literally hundreds of millions of e - mails sent through the Internet each day
are spam. Not only does this provide an immense irritation to end users, it also wastes bandwidth and
CPU clock cycles, both of which cost money.

Chapter 11: Communicating with Users

273

 As a result, efforts have been made to limit the deliverability of suspected spam wherever possible. The
most prominent of these is the junk mail filter — not only the one built into most modern e - mail clients,
but also those installed at the perimeters of major ISP e - mail infrastructures, as well as those of the major
Web - based e - mail providers (such as Hotmail, Gmail, and Yahoo!).

 These junk mail systems are becoming increasingly aggressive in determining what they believe to be
spam. Of course, they use traditional Baysian algorithms to look at the subject line and message body for
 “ spammy ” words — “ refinance, ” “ pills, ” “ meds, ” and so forth. The presence of such attributes add to a
 “ score ” — which, if it goes above a certain value, means that e - mail is junked. Increasingly, ISPs are also
using sophisticated checks that, if passed, can rapidly detract from that score. As a result, legitimate
senders can more reliably get e - mails through, even if they exhibit characteristics that could otherwise be
considered “ spammy. ”

 For enterprise Web application builders, this is, of course, important. If you are, for example, sending
regular e - mail newsletters, the last thing you want is for your e - mail to be junked as a false positive. This
can happen more easily than you think. For example, if you were a major retail bank, an e - mail to your
customers about a great mortgage offer could easily make it into junk.

 With that in mind, what techniques can you use to help tell those junk mail filters that you ’ re a legitimate
sender — and that they should let you through (within reason) no matter what?

 SPF Records

 Sender Policy Framework (SPF) records allow the DNS records for the domain name from which the
e - mail originates to be impregnated with additional information specifying which physical servers may
send e - mails for that domain name.

 This means that recipient e - mail servers can check quickly whether or not the sender domain name is
likely to be legitimate, or whether it is spoofed. If it is legitimate, then a corresponding SPF record will
 “ marry ” that domain name to the originating server. This sort of match is not a characteristic usually
associated with a spam e - mail. The sender domain is usually completely false or, at a minimum, has
nothing to do with the originating mail server — especially given that so - called “ open relays ” are the
source of 90 percent of spam e - mail.

 More information can be found at http://en.wikipedia.org/wiki/Sender_Policy_Framework .

 Sender ID

 Sender ID is impregnated into the DNS records for the sending domain, just like an SPF record. The
syntax is subtly different, but provides broadly the same purpose. It tells recipients about the domain
name in question, and which servers might have been used to legitimately send e - mails through that
domain. It differs from SPF records in its exact syntax and implementation. It is, for all intents and
purposes, a competing product.

 Most domains choose to implement both formats to ensure optimum compatibility. For more
information, see http://en.wikipedia.org/wiki/Sender_ID .

 Domain Keys and DKIM

 Domain Keys Identified Mail (DKIM) provides a mechanism for e - mail dispatch systems to digitally sign
an e - mail at the header level. This signature can be double - checked against the official DNS records for
that domain to assess whether it is genuine.

Part II: Learning Advanced Development Techniques

274

 Such a mechanism does not guarantee that the e - mail is not spam, but it does enable it to be traced back
very easily. To this end, if an ISP receives too many complaints against a given domain, it can be blocked,
along with its domain key. Hence, upon receiving an e - mail, an ISP can verify the authenticity of the
sending domain, and consult its internal records to determine whether or not it has been previously
reported as a spammer. If it has been, then the message will likely be rejected.

 For more information, see http://en.wikipedia.org/wiki/DomainKeys_Identified_Mail .

 Broadcast E - mail Providers

 If all this sounds like a lot of hassle, you ’ re right — it is. Standard SMTP from your own Web or
application server is a tough way to go these days. All it takes is one overzealous user to hit the “ This is
spam ” button, and your reputation goes down the drain. Unless you ’ re prepared to sit around
monitoring spam feedback loops — disputing each and every case that comes your way from ISPs —
 there is a better way.

 A new breed of broadcast e - mail providers has sprung up in the past few years. These companies have
one purpose and one purpose only: to send out (legitimate) bulk e - mail on behalf of their clients, as fast
as possible, as cheaply as possible, and with as high a degree of deliverability as possible.

 These broadcast e - mails are sent as part of marketing activity — for example, a weekly newsletter from
your Web site — but there ’ s no reason at all you couldn ’ t use the same provider to send your triggered
e - mails, too. That way, your triggered e - mails (such as order confirmations and so forth) will come from
the same domain as your broadcast e - mails, with all the deliverability techniques described previously
already established and in place.

 The broadcast e - mail providers also take care of monitoring for you. They ’ ll deal with any spam
complaints, and monitor any particular e - mail copy that is frequently being junked. You can also avail
yourself of some very sophisticated reporting on opens, click - throughs, and so forth.

 Most of the broadcast e - mail providers provide an API to enable you to send such triggered e - mails from
your own applications. A good example is e Circle, (www.ecircle.com/en/home.html), which provides
synchronous and asynchronous APIs, and even PHP code samples. You can get more details at http://
developer.ecircle-ag.com/ . E - mails start at a few dollars per thousand, so as long as you aren ’ t
processing millions of e - mails per month, you ’ ll find that the extra investment makes sense.

 Summary
 In this chapter, you learned about communicating with your users, not just through a Web browser, but
through that most vital of modern media: electronic mail.

 You were weaned off PHP ’ s mail() function early on by looking at how communications with users can
be represented in an elegant class hierarchy. You also created the EmailRecipient and
 EmailCommunication classes as part of that hierarchy, robust and stable enough for everyday use.

 You learned how Smarty can play a big part in enabling you to produce template - driven e - mails, and
about some of the more advanced possibilities for the class framework discussed.

 In Chapter 12 , you meet two of the most important concepts in building enterprise PHP applications:
sessions and authentication.

 Sessions and
Authentication

 Despite the advancements of PHP in recent years that have brought it to the full - featured,
object - oriented (OO) Web application development platform it has become today, it still relies (as
do all other languages of its ilk) on the basics. That is, it relies on the HTTP protocol, as well as the
most basic building block of any kind of interactivity on the Web, the Common Gateway Interface
(CGI) functionality that HTTP provides.

 When people speak of HTTP, they often describe it as stateless — meaning that no “ memory ” is
retained from one user ’ s request to the next. The request is made via GET or POST , data is returned,
and the request is completed — and, as far as the Web server is concerned, forgotten.

 This characteristic isn ’ t of much use if you ’ re trying to build complex Web applications that
emulate the functionality of their equivalent desktop counterparts. You must be able to keep track
of users ’ previous actions (not just what they ’ re doing right at this moment) in order to be able to
produce meaningful output.

 Thankfully, PHP provides a way around this: sessions . This technique enables you to maintain
certain stateful information from one request by the user to the next. This leads very neatly to one
of the most common and useful applications of session handling — that of authentication and user
state persistence.

 The first half of this chapter discusses PHP ’ s built - in session - handling features. You ’ ll see that
although (on the surface) the functionality available to you may seem basic, it can be extended and
adapted to provide an enormous degree of flexibility (including integrating with third - party
databases). You ’ ll also learn the ins and outs of session security so that you can devise session
architectures that keep hackers at bay.

276

Part II: Learning Advanced Development Techniques

 In the second half of the chapter, you ’ ll learn how to apply this knowledge of session management to
develop an essential component of your toolkit: a reusable, scalable, and highly secure session
management and authentication class that can be deployed on almost any enterprise - grade PHP
application.

 Introduction to Sessions
 Before getting into how sessions work in PHP and the benefits they can bring to your application, let ’ s
look at the broader concept of sessions in general. What are they, how do they work, and why are they so
important?

 How HTTP Works
 Consider how a Web request actually works. When the user ’ s Web browser makes a request, it presents
(among other bits and pieces) the following core information to the Web server:

 Method of request (either GET or POST) and the protocol version used (1.0 or 1.1)

 The actual document required (for example, /index.php)

 The server hostname from which the document is being requested (which is important, because
many Web sites are hosted on a single server with a single IP address)

 The GET or POST request parameters (for example, foo=bar , username=fred ,
 password=letmein) in URL - encoded format

 The browser type (known as the user agent — essentially variant, platform, and version)

 Any cookies stored on the client ’ s machine that have been previously issued by the server of
which the client is now making a request

 If you want to see this in action, telnet to port 80 on the Web server of your choice, and issue something
that looks like the following:

GET /pub/WWW/TheProject.html HTTP/1.1
User-Agent: CERN - LineMode/2.15 libwww/2.17b3
Host: www.w3.org

 The easiest way to do this is to paste this code into the text editor of your choice, manipulate it to your
liking, and then paste it in one fell swoop at the console. In response to your request, the Web server will
spit out an appropriate Web page, which you should be able to see in your telnet session.

 You would not be dense if you struggled to see how this protocol could be anything but stateless — at
the time of a given request, the server, after all, is completely unaware of what went on during a
previous request.

 This approach causes problems because although the Web server sees a user ’ s requests as stateless, the
user does not. The user remembers perfectly well what was done at the time of the last page requested
and expects (rather reasonably) the Web server to do the same. A particularly good example of this is

❑

❑

❑

❑

❑

❑

277

Chapter 12: Sessions and Authentication

when a username and password are required to access a particular page resource. The user expects to
enter this information once and only once. The application should remember the details and not ask for
them again, should the user need to request a similarly restricted page on the site.

 After all, this is generally how computers have worked for decades. Mirroring this functionality in your
Web applications is vital for the sake of your users ’ collective sanity.

 In the early days of the Web, this functionality was sometimes provided by the server ’ s checking of the
remote IP address of the connecting user against a database. When the user first logged in, the IP address
was recorded, and subsequent requests (within a given time frame) from that IP were assumed to have
come from the same user.

 This was fine in an Internet with no firewalls, Network Address Translation (NAT), proxy servers, or
other such pesky intrusions. Today ’ s Internet is quite different, of course. Some consumer ISPs will
actually present completely different external proxy server addresses with each request a user makes to
your Web site — a side effect of their own proxy load - balancing technology.

 Another common solution to the problem is to use HTTP authentication, which does not depend on a
consistent IP address from request to request. If you ’ ve ever visited a Web site and been presented
with a box that looks something like what is shown in Figure 12 - 1 , then you ’ ve met HTTP
authentication.

 Figure 12 - 1: HTTP authentication dialog box

 Provided from the very early days of the Web, HTTP authentication allows certain files and directories
on Web servers to be restricted to a group of users. Traditionally, this user list was a simple plain - text file
containing pairs of usernames and (barely) encrypted passwords; but recent advances have enabled
Apache to directly consult a MySQL database for this information.

 This method works well, and after you have issued a username and password for a given directory on a
Web server, any subsequent requests to files in that directory or its subdirectories (whatever they may
be) will be automatically presented to the Web server alongside that username and password.

278

Part II: Learning Advanced Development Techniques

 This method is of little use when building PHP applications, however. It is rare to want to protect
specific scripts, or even directories. Far more likely is the need to restrict functionality delineated in some
way that is recognized and understood in PHP, but not necessarily in Apache. Even though replicating
the HTTP headers required to emulate this functionality from within PHP itself is feasible, it ’ s rarely
desirable, for a number of reasons:

 You have almost no control over the appearance of this box, so it ’ s not exactly a user - friendly
approach.

 You can ’ t ask for any other information (for example, to pose a security question such as “ What
is your mother ’ s maiden name? ”)

 You can ’ t store any information against the request other than the identity to which the user
has logged in.

 The list goes on. Thankfully, a third and far more desirable solution is available, and that is to use
sessions.

 Definition of a Session
 Strictly speaking, a session is defined as a series of consecutive HTTP requests made at designated time
intervals by a single user from a single computer on a single Web application.

 The general methodology behind sessions is that the first request made by a user will generate a new
session, should one not yet exist. Subsequent requests are considered to be part of that session, unless
they are made outside some arbitrary time period (the session timeout period).

 There is, therefore, a verifiable relationship between sessions and requests. Many requests can yield a
single session, so a single session can belong to many requests. It ’ s a one - to - many relationship, thinking
in database terms. You ’ ll see quite shortly that you can encapsulate this quite neatly in a class hierarchy.

 A session is normally used to determine the currently connected user of an application, if any. After a
user has successfully logged in for the first time, the application ’ s database should record the user ’ s user
ID against that session, such that any subsequent requests proffering that session are understood to have
been made by that user and no other.

 The real meat of a session is the session identifier . This uniquely identifies the session, which may exist
concurrently with hundreds of other user sessions. When a session ID is generated and sent to the client
for the first time, it is important for the session identifier to be both unique and obscure enough that
another, valid session ID could not easily be “ invented ” by a potentially hostile third party. For example,
although issuing session numbers 1, 2, 3, 4, and so on, would certainly satisfy the requirement for
uniqueness, it fails to satisfy the security side of the requirement, because a user who has been allocated
session number 3 could simply suddenly claim to be session number 4 and potentially gain access to
another user ’ s account as a result.

 Session identifiers are more often than not 32 - character strings consisting of numbers and letters. This is
how PHP ’ s built - in session handling (discussed later in the chapter) generates session identifiers. The
stumbling of one user across a valid session ID of another is unlikely, therefore, except through brute force
— and later in this chapter you ’ ll learn about a couple of easy ways to stop that from happening, too.

❑

❑

❑

279

Chapter 12: Sessions and Authentication

 Perpetuation of a Session
 With the first of the user ’ s requests made and a session identifier generated for that request, you are
faced with the challenge of ensuring that the session identifier in question is perpetuated with each
subsequent request.

 There are two ways to do this: URL rewriting and cookies. A good way to begin is to look at the
principles of these without getting bogged down just yet in how PHP ’ s own session handling works.

 URL Rewriting

 This is the simplest form of session perpetuation. It involves ensuring that every single link, form target,
and JavaScript relocation is doctored to include the session identifier as a GET or POST parameter, as
appropriate.

 Consider the following example. Assume for the sake of argument that PHP has decided upon the
following session identifier:

abcde1234567890abcde1234567890ab

 Say that you want this session identifier to be issued with every subsequent request by the Web browser.
Wherever you have anchor links in your HTML, you must arrange for PHP to doctor them so that

 < A href=”mybasket.php” > Go to my basket < /A >

 becomes

 < A href=”mybasket.php?session_id=abcde1234567890abcde1234567890ab
“ > Go to my basket < /A >

 Obviously, you would not hard - code this into your HTML. Rather, you would work out some clever way
to infuse your HTML on - the - fly with such session identifiers, probably using regular expressions.

 It would also be necessary for PHP to doctor form targets, so that

 < FORM method=”POST” action=”mybasket.php” >

 becomes

 < FORM method=”POST” action=”mybasket.php” >
 < INPUT type=”HIDDEN” name=”session_id” value=”abcde1234567890abcde1234567890ab” >

 Your PHP would even need to update any JavaScript you might have, to make

window.location.replace(“index.php”)

 become

window.location.replace(“index.php?session_id=abcde1234567890abcde1234567890ab”)

280

Part II: Learning Advanced Development Techniques

 Indeed, there may well be rare cases of URLs being missed and, consequently, the session lost. The really
unpleasant part about URL rewriting is that if you lose the session on one request, it ’ s lost forever, so
thoroughness is essential; but this is not the only pitfall.

 How do you bookmark pages in this way? If you bookmark the page you ’ re on, you ’ ll also record the
session identifier, and this won ’ t be valid next time you log in. Therefore, you have to manually scrub
out the session identifier when you bookmark.

 The biggest and most prevalent pitfall comes when people try to copy and paste links to their friends
and colleagues. Joe User simply will not think to strip out the session identifier before he e - mails or
instant messages a link to a page on your site to his friends, or sticks it on his Facebook page. As a result,
when his friend clicks the link, one of two things will happen, depending on the level of security you ’ ve
implemented. Either the friend will gain full access to the user ’ s original login, or the system will freak
out at a potential security breach because the user is claiming to be the rightful owner of a valid session
without presenting other credentials associated with that session.

 There is a better way, but it ’ s not without its share of (largely unwarranted) controversy — using cookies.

 Cookies

 Although URL rewriting is (theoretically speaking) the simplest form of session perpetuation, using
cookies is even simpler in terms of the amount of code required.

 Cookies are little nuggets of information sent by a Web browser along with the HTML output of a page.
The Web browser is instructed to record that information and then volunteer it with every subsequent
request made to that Web server.

 Much the same as variables, cookies have a name and a value. Some also have a validity (how long it
lasts) and a scope (which server or servers should receive it). With each request to the Web server, the
user ’ s Web browser offers the name and value of any cookies within the scope of that Web server ’ s
domain that have yet to expire. Expired cookies are deleted automatically by the Web browser, but live
cookies can also be instantly deleted by the Web server if necessary.

 The implementation is simple. As with the previous example, assume that the session identifier is as
follows:

abcde1234567890abcde1234567890ab

 With the first request made by the user ’ s Web browser in a session, this session identifier must be
pushed to the user ’ s Web browser so that the Web browser knows to offer it on subsequent requests.
Accordingly, a cookie is sent to the user ’ s Web browser instructing it to save the value
 abcde1234567890abcde1234567890ab to an appropriately named identifier.

 With each subsequent request made to the Web server, PHP looks for a cookie offering a valid session
identifier, with that validity remaining to be checked against some external set of rules and/or a
database of valid sessions. If a valid session identifier has been offered as part of the cookies sent by the
Web browser, PHP can assume this to be the correct session identifier and proceed with the script as
normal. If none is offered, or that which is offered is deemed to be invalid, then a new session identifier
is generated and, in turn, sent as a cookie, as in the previous step.

281

Chapter 12: Sessions and Authentication

 This cycle continues from request to request throughout the remainder of the user ’ s session.

 For the name for your cookie, you should stick with something easily identifiable such as session_id .
The scope should be restricted to your own Web server (or, in a pinch, domain), and the validity equal to
the maximum dwell time you think users will need on your site. For example, if you don ’ t think a typical
user will ever use the site for more than half an hour, setting a validity period of 30 minutes isn ’ t a bad
idea.

 Historically, there has been controversy surrounding the privacy of the use of cookies. The bulk of that
controversy has arisen from a mixture of the ignorance of those detractors, some instances of
extraordinarily poor site design (often by agencies and brands that should know better), and perhaps
some commercially unscrupulous site operators.

 Despite the controversy, there is absolutely no reason for any user to fear a simple session identifier
being issued through a cookie. However, do ensure that you restrict the scope of the cookie to your
server and your server only, so that it is not inadvertently sent to any other sites that may attempt to use
it for tracking purposes. In addition, it makes sense to post a clear and concise privacy policy on your
Web site that explains to your users the purpose of the cookies you use, and the steps you have taken to
safeguard users ’ privacy and security.

 In addition, remember that cookies should only be used to store session identifiers, and never any data
associated with that session. Such data, held on your server, is properly secured and kept away from
prying eyes. A session identifier is meaningless outside the context of your application, so it puts little at
risk. It ’ s a bit like losing your house key. If you were dumb enough to attach a tag with your address to
it, then you ’ d better get your locks changed pretty quickly. If you didn ’ t, you have nothing to worry
about.

 Despite all this, some potential pitfalls do exist, as the next section explains.

 Session Security
 Is a session identifier really secure in itself? There are certainly a few risks associated with using session
identifiers as the sole means of identifying logged - in users on your site, but, mercifully, there are
countermeasures you can take to help minimize those risks.

 Guessing at Valid Sessions

 If a malicious visitor to your site happens to fashion a valid session identifier, he or she can hijack the
session of another visitor. After all, if user A is making request after request using session identifier X,
and then malicious user B comes along and uses session identifier X to make a request as well, your Web
site will assume that user B is user A, and user B will have access to everything user A has access to,
potentially exposing sensitive information.

 For this scenario to be realized, the potential hacker needs to guess at a valid session identifier. How
feasible is doing so in a real - world situation?

 Consider your 32 - character hexadecimal string. This could be generated in any number of ways, but
assume that it is largely random. With 32 bytes, and 16 possible characters for each byte (a through f, and
0 through 9), you have 16 32 possible combinations for your session identifier. That ’ s a big number — too

282

Part II: Learning Advanced Development Techniques

big to print here. It would take an awfully long time for a potential hacker to cycle through all possible
session identifiers — 00000000000000000000000000000000, 00000000000000000000000000000001, 0000000
0000000000000000000000002, and so on, all the way up to ffffffffffffffffffffffffffffffff. Even if you could
manage to test 100 per second by using multiple computers, it would take you 107,902,830,708,060,141,88
9,705,291,549 years. The Arizona Cardinals might have won the Super Bowl by then.

 However, what if the identifier were not just random hexadecimal digits, but an MD5 serialization of a
10 - digit number? If the hacker actually knew this fact, there would only be 10,000,000,000 combinations
to cycle through, given that the MD5 hash of any given number is a constant answer. It would be a very
trivial matter to knock up a script (perhaps even in PHP) to try an MD5 serialization of each number on
a loop until it struck one that actually worked.

 Consider what might happen if the user requested an “ update my details ” page (mydetails.php). This
page behaves in one of two ways, depending on whether a valid session was issued with the request:

 If a valid session is issued and the session is known to be logged in, then the page displays the
user ’ s details, and allows the user to reset his or her password (among other things).

 If a valid session is not issued, then the page issues a 302 redirect to a login page (with a view
that, once the correct username and password is given, a session is issued, and the user
permitted to update his or her details as originally planned).

 The mischievous script would have to iterate through these 10 billion combinations while making an
HTTP request to mydetails.php with each one. If it gets a 302 redirect, it ignores it and moves on. If it
gets the contents of the “ my details ” page, it resets the user ’ s password to 12345 by submitting the form
on the page, making a note of the username, and moving on to the next session.

 Leave this running for a few weeks, and it can absolutely be guaranteed that the script would have
chanced upon a few valid sessions during its run. It may even have alerted the hacker via e - mail or an
SMS text message when it struck a user account whose password it managed to reset. Keep in mind that
with a fast connection (and the ability to run multiple instances of this script across multiple servers), a
really determined hacker can get through many thousands of session identifiers every second.

 If the hacker didn ’ t know how your session identifiers were formed, you would be fairly safe. Using a
random number between two limits is a pretty bad idea, however, even if the hacker didn ’ t know what
those limits were. It would be a simple matter to write a script to bombard your site with cookie - less
requests, each of which would generate a new session. Soon enough, the laws of probability would dictate
that your hacker would be furnished with a complete database of all feasible MD5 - encoded session
identifiers (all 10 billion, in the previous example). The hacker wouldn ’ t be able to reverse - engineer these
to work out how they were formed, but doing so isn ’ t necessary. The hacker can simply feed the list of
pre - hashed identifiers into his or her brute - force script — something known as a dictionary attack .

 The only way to prevent such analysis is to ensure that sessions are single use . This means that the same
session identifier will never be generated twice, or at least not within a considerable time span of its first
generation. A good way to do this is to construct your session identifier based on a combination of a
random number and the current timestamp. That way, any script constructed to fish for a complete
database of session identifiers will be practically useless, because its database of valid session identifiers
will (theoretically) grow to near - infinity.

❑

❑

283

Chapter 12: Sessions and Authentication

 Obliterating Session Guessing

 One simple way to completely obliterate session guessing is to send as a second cookie a supplemental key
alongside the session identifier. This key would be completely random and generated at the time the
session is formed. There would be no obvious link between the two. The key associated with that session
would be stored in the database.

 With each request, both the session identifier cookie and the session key cookie would be transmitted.
Even if the session offered is valid, PHP would still check that the key transmitted matches the key
originally issued and, if not, immediately cancel and invalidate the session. By canceling the session
offered, any attempt to force further possible combinations of key against that session would be
pointless, because the first wrong key issued would invalidate that session anyway. The only downside
to this approach is that your legitimately logged - in user would be logged out as the session was
cancelled, but it ’ s better to be inconvenienced and safe than hacked.

 For true randomness when generating such keys, try to avoid using any kind of randomization whose
seed is based on the system clock. Using truly random seeds such as processor temperature, server
process identifiers, and network interface statistics produce a more satisfactory random number.
Sequential digits of pi also work well, provided you never use the same digit again.

 Discovery of Valid Sessions

 Discovery of valid sessions is a less prominent threat, but a more difficult one to protect against.
Essentially, the risk is that a malicious third party can somehow gain access to the cookies on your
legitimate user ’ s machine, and use them to gain access to the user ’ s session.

 Unfortunately, this technique is not immune to the session key methodology discussed previously. If a
hacker can gain access to the session cookie, the secondary key cookie is just as easily obtainable.

 There are a few scenarios in which this could happen:

 A session cookie is “ mis - issued ” by your site so that its scope is broader than it needs to be. A
malicious Web site within that overly broad scope then visited by the user would be made privy
to that session cookie, too. The operators of that site could then use the cookie to hijack your
session on the original site. The user does not even necessarily have to visit a malicious site.
Literally millions of pieces of HTML spam e - mail every day are sent out containing images, the
purpose of which is simply to cause its recipient to make a Web request, with the hope that
session cookies from other poorly constructed sites will be offered accidentally.

 A physical intrusion to the machine could allow access to the cookies stored on it, from which
data on valid sessions could be extracted.

 An intrusion to the machine that somehow modifies the HOSTS file could redirect traffic
supposedly for your site ’ s hostname to a third - party site. This third - party site may even relay
the genuine data from your Web server, such that the user is none the wiser. It would, crucially,
collect the session identifier for later use.

 A poorly configured network could allow session identifiers to be sniffed in HTTP traffic by
malicious systems administrators on - site.

❑

❑

❑

❑

284

Part II: Learning Advanced Development Techniques

 A malicious employee of an ISP that employs proxy servers (transparent or otherwise) could
easily enable transmitted session identifiers to be logged.

 The first of these scenarios is easy to overcome. When issuing cookies from your site, always get the
scope correct — same hostname, same protocol (HTTP or HTTPS), and same directory. This most basic of
errors is exploited with such frequency only because of the frequency with which it is made in the first
place.

 A physical intrusion is almost impossible to guard against. Any physical exploitation is attributable more
to lackluster physical security of the location from which the site is being accessed than to anything else.
Good session practice (see the following section) can help minimize the risk of this kind of occurrence.

 Another major problem is the modification of the HOSTS file of a machine allowing name servers to be
overridden transparently. It is remarkable there are not more e - mail worms in circulation that exploit
this, but it is only a matter of time. The HOSTS file exists on almost every variant of Windows imaginable,
and on Mac OS X and other UNIX platforms, too. Unless a tight local administration rights policy has
been set up, users can modify it themselves. An e - mail worm distributed as an attachment (as are most
modern worms) exploiting this vulnerability would work as follows:

 1. The user regularly visits www.myfictionalbank.com to use an online checking account
management facility. This resolves to 10.123.123.123.

 2. An attachment (which might be .vbs , .scr , .pif or any of the other numerous file extensions
that still aren ’ t universally blocked by e - mail clients) has a viral payload that creates an entry in
your HOSTS file pointing to a malicious foreign IP address, which is actually a server owned by
the hacker. The IP address is 192.168.123.123, and is probably located somewhere in Eastern
Europe.

 3. The next time the user logs into his or her online banking account, he or she enters www.
myfictionalbank.com and appears to get the account login page as normal. In fact, the
connection is being made to the malicious Web server. The malicious server, in turn, makes a
real - time HTTP connection to the real bank ’ s Web server and mirrors every request made by the
user, as if a marionette. It retransmits all the data returned by the real bank ’ s Web server. The
only data not relayed back in this way is that generated when the user ’ s session details
(immediately after login) are instantly recorded by the malicious relay server, which then seizes
control of the session, denying the real user any further access. In just a few seconds, several
thousands of dollars of the user ’ s hard - earned cash are on their way to Eastern Europe.

 Of course, a scam like this wouldn ’ t last long. The bank would get wind of it pretty quickly and block off
the malicious server ’ s IP address, or take other steps to make such a scam impossible; but it does serve
to illustrate just how easily this kind of attack can be pulled off.

 On - site exploitation is as big a threat as exploitation from Eastern Europe, particularly in big companies.
Many corporate networks may be switched at their most central point, but when floor socket availability
starts to get tight, most systems administrators slap in a hub. It ’ s cheap and quick, and the two PCs on
that hub can immediately sniff each other ’ s traffic. If a savvy user is on the same hub as a colleague
whose session the user wishes to seize, some simple traffic - sniffing software can retrieve those session
identifiers.

❑

285

Chapter 12: Sessions and Authentication

 Finally, keep in mind that many ISPs these days use transparent proxy servers. That is, all HTTP traffic is
intercepted and relayed through a standard proxy server without the user ’ s explicit knowledge (and
without any kind of configuration required on the user ’ s part). Ostensibly, this is to improve
performance by caching commonly requested pages and images at the ISP so that they are only one hop
away from the user. The more genuine reason is that ISPs are under increasing pressure in the current
climate to maintain very detailed logs of the behavior of their customers on the Web. This is not for
commercial reasons, but rather for the purpose of handing over this information to law enforcement
agencies should they demand it. The potential for abuse of this facility is quite obvious. If cookies are
logged, seizing them is a simple matter for a bored systems administrator.

 Good Session Practice
 As you have seen, physically obtaining the session identifier (and session key, if available) is very
difficult to guard against. The most effective barriers to such exploitation are physical, political, or
economic in nature. They certainly have nothing to do with PHP.

 Nonetheless, you can do a few neat things in your code should you wish to minimize the risk of these
theoretical exploits being put into practice.

 Use Session Timeouts

 First and foremost, use session timeouts. These are not the same as session expiration times. When
issuing a cookie to a user, you will almost certainly give it an expiration time, but this does not guard
against the user walking away from his or her computer and forgetting to log out. Using session
timeouts involves recording the timestamp of each request against the session and then, with each
subsequent request made against that session, measuring the time elapsed since the last request. If it
exceeds five or ten minutes, you would be strongly advised to revoke the session and request the user to
log in again.

 This is a remarkably effective measure. Many of the attacks described earlier rely on being able to make
use of a session perhaps only some moments after the user has finished with it. By reducing the window
of opportunity to just a few minutes, you reduce the effectiveness of those attacks.

 The implementation of session timeouts has nothing to do with cookies. Rather, the code you implement
to handle sessions has responsibility for measuring the time elapsed between requests, and determining
when to revoke a session because of a timeout. Later in this chapter, you ’ ll find out about the
 HTTPSession class, which can do just that.

 Use Low Expiry Times

 Having a low expiration time in your session cookie does make sense. Users don ’ t mind being asked to
log in again occasionally, so setting an expiration time of an hour or so is fine. If you do this, be sure to
build the rest of your application so that the interruption to the user is minimal. For example, if you are
building a Webmail application, don ’ t instruct your code to arbitrarily end a user ’ s session if he or she is
in the middle of sending out an e - mail message. Try to design sympathetically.

 As mentioned previously, you will see how to effectively implement a low cookie expiration time later in
this chapter.

286

Part II: Learning Advanced Development Techniques

 Check User Agent Consistency

 One simple check you can make involves recording the user ’ s Web browser user agent against the
session. This is the string issued by the Web browser identifying the manufacturer, browser name,
version, and platform. It is by no means unique to that computer, but there are so many different
browsers and browser versions in use that there is a strong chance that any two computers produce
slightly different user agent strings.

 By ensuring that subsequent requests against a session carry the same user agent as the original request,
you provide an additional line of defense against session hijacking. Interestingly, the user agent string
that Internet Explorer produces can be modified in the Windows registry. System administrators can take
advantage of this fact by making their network ’ s workstations have organization - specific user agent
strings. This further strengthens the usefulness of this security mechanism.

 Don ’ t Be Afraid to Ask Users to Log in Again

 If you ’ re about to let the user place an order, or view and update his or her details, don ’ t be afraid to ask
for the username and password again. That way, should a hacker succeed in taking over a session, the
damage that can be done will be limited to some degree. Many large commercial sites employ this
practice, and the user will not be too irritated with this request if it is used judiciously.

 Watch for Unusual Traffic

 If you ’ re feeling particularly brave, you could construct some algorithms to watch for unusual traffic
against a particular session in order to determine multiple usage. How you define “ unusual traffic ” is
open to debate, but you could, for example, raise an alarm if more than one request is made in any one -
 second period, and cancel the session as a result. Alternatively, you could map the physical navigation of
your site to likely user paths, and ensure that the requests made by the user ’ s session are following one
of those paths.

 For example, on an e - commerce site, should the user request the index of a particular product category
with one request, it is exceedingly unlikely that he or she would then immediately select the View
Product page for a product that falls outside that category. To do that, he or she must have accessed it
from a bookmark or third - party link, or have typed in the URL. However, if your algorithms are not
rock - solid, the false - positives rate could easily start to disgruntle your users.

 Watch for Bizarre IP Address Variance

 Although it is not legitimate to determine the validity of a session based on the consistency of the IP
address, it is still possible to detect some possible break - in attempts by keeping an eye on its variance.
Load - balancing proxy servers are likely to change the IP address with each request, but by how much? It
is incredibly unlikely that anything but the last two octets would change. Certainly, the request would
most definitely remain within the same net block (that is, the owner of the block would be consistent
from request to request). An excellent way to check this is to consult RIPE, ARIN, and so on, in real time.

 In your application, you would simply devise a low - overhead means of checking the net block owner,
utilizing some kind of caching technology, if possible. If requests of the same session seem to be coming
from different owners, it ’ s worth raising the alarm and destroying the session.

287

Chapter 12: Sessions and Authentication

 Avoiding Storing Session Variables on the Client Side

 One obvious benefit of sessions is the capability to associate the value of relevant variables to a session.
These variables could be the contents of a shopping basket, or the population of a search form, for
example.

 Nevertheless, storing this information on the client side is best avoided. For one thing, this can get
privacy activists very upset. For another, the value of those variables is open to modification outside the
control of your code (either malicious or accidental).

 Pumping that much data upstream with each HTTP request can be quite inefficient. Keep in mind that
most broadband connections are asymmetric, meaning that they upload slower than they download.
Therefore, if you are storing 16KB worth of session variables on the client side, that will add a second or
so to each request. That may not sound like much, but it can quickly drive users crazy, so using cookies
in this manner is not good practice.

 All you need to store on the client side is the session identifier (and supplemental security key, if used).
Store everything else on the server side somewhere, out of harm ’ s reach, and associate those variables
with the session identifier in question.

 Consider Using a Second Security Factor

 Some retail banks have started employing two - factor authentication for parts of their consumer online
banking operations. This second factor usually takes the form of a smart card reader and a card issued to
the customer by mail.

 While most online banking operations can be undertaken without it (to limit inconvenience), certain
crucial activities (usually, transferring money to a brand - new recipient) requires the entry of a one - time -
 use code generated by the card reader. This ensures that the operator of the bank has possession of the
card reader itself. In many of the circumstances described earlier, this would be unlikely; hence, the
opportunity for fraud is greatly reduced with only minimal inconvenience to the end user.

 The lesson of this part of the chapter is that 100 percent security is always just out of reach. However,
there are always steps you can take to minimize your own exposure.

 How PHP Implements Sessions
 PHP enables you to implement a highly effective session - management infrastructure in your
applications, but you must do a lot of the difficult work yourself.

 As you ’ ll see in this section, PHP ’ s built - in session handling isn ’ t really appropriate for enterprise - class
applications. Luckily, it has been made extensible enough to give you a head start when you ’ re writing
your own more robust solution.

288

Part II: Learning Advanced Development Techniques

 Basic PHP Sessions
 Enter the following code and save it as firstpage.php :

 < ?php

 session_start();
 $_SESSION[‘favorite_artist’] = ‘Tori Amos’;

? >
Currently, my favorite artist is Tori Amos. It may also interest you to
know that my identifier for this browser session, as allocated by PHP, is
 < ?=session_id()? > .
 < BR > < BR >
 < A href=”secondpage.php” > Go to the second page < /A >

 Now start a brand - new bit of code. Call this secondpage.php :

 < ?php

session_start();

? > Having checked, I can tell you that my favorite artist is still
 < ?=$_SESSION[‘favorite_artist’]? > . At the moment, my identifier for this
 browser session, as allocated by PHP, is < ?=session_id()? > .
 < BR > < BR >
 < A href=”firstpage.php” > Go back to the first page < /A >

 Run the first of these and you should get some predictable output. Let ’ s say that your favorite artist is
Tori Amos, and PHP has given you a session identifier, as shown in the following output:

Currently, my favorite artist is Tori Amos. It may also interest you to know that
my identifier for this browser session, as allocated by PHP, is
balq167m1gor56oqjlc5e1dca2.
Go to the second page

 You can see that the session identifier is 26 characters in length. PHP actually uses the full alphabet, as
well as 0 – 9. This increases the number of possible session identifiers to 36 26 . If you click the link to take
you to the second page, you should see something that looks like this:

Having checked, I can tell you that my favorite artist is still Tori Amos. At the
moment, my identifier for this browser session, as allocated by PHP is
balq167m1gor56oqjlc5e1dca2.
Go back to the first page

 Note two important things here. The session identifier is the same, and the second script seems to have
remembered your musical preferences.

 This result is obtained in a straightforward manner. First, use session_start() to tell PHP to enable
sessions, well before the first character of HTML of the script. Using session_start() is important,
because the session data sent to the Web browser must go in the HTTP headers, and the first use of any
HTML (or even whitespace) precludes this from happening.

289

Chapter 12: Sessions and Authentication

 Second, register a session variable by adding to the $_SESSION global associative array (or hash). This
can be placed anywhere in the script because it won ’ t send anything to the Web browser. It just makes a
note on the server side, as you will see shortly.

 On the second page, call session_start() just as you did on the first to enable session management,
but now you can read from $_SESSION just as you wrote to it on the first page. Lo and behold, the value
 Tori Amos has been successfully retained from one page to the next. This value has been inextricably
associated with the session identifier, which explains why the server remembered it.

 How does PHP remember the session identifier from the first page to the second? Take a look on your
server in /tmp . Perform a directory listing using ls for all files starting with sess_ (the word sess
followed by an underscore):

$ cd /tmp
$ ls -la sess_*

 It is hoped that you ’ ll see a directory listing that looks something like this:

-rw-r--r-- 1 nobody users 33 2008-08-17 15:23 sess_balq167m1gor56oqjlc5e1dca2

 Notice a file called sess_ , followed by the session ID you were allocated in the previous example. Open
it using the editor of your choice:

pico -w sess_balq167m1gor56oqjlc5e1dca2

 You should see something that looks like this:

favorite_artist|s:9:”Tori Amos”;

 For those in Windows, PHP sessions are most likely to be stored in C:\TEMP , but it depends on how you
have configured PHP and Apache (or your Web server of choice). If you can ’ t find any, you can use
Windows ’ built - in search functionality to find files beginning with sess_ (session, and an underscore).
Don ’ t forget to include hidden files and folders. You can then open the session (once found) using
Notepad or a similar text editor.

 The output of the session file looks quite straightforward. It is hoped that you noticed the session
variable you created and its contents in plain text in a simple “ key - value ” pair.

 In fact, the format of what ’ s on display might look eerily familiar. It ’ s the output from the PHP function
 serialize() , a string representation of a PHP data structure.

 Regardless of the complexity or size of the data structure you create in the $_SESSION variable, PHP will
store its contents in this file by default. The location for storing such files, as well as how long they are
stored, are all settings that can be altered in php.ini .

 That ’ s really all there is to native PHP sessions. Let ’ s look now at some of their limitations to see why
they can ’ t be used in an enterprise environment.

290

Part II: Learning Advanced Development Techniques

 Limitations of Basic PHP Sessions
 There are a few key problems with implementing sessions in this manner, most of which relate to the
way in which PHP stores its session data on disk.

 What if you have multiple Web servers servicing your request with a load - balancer appliance round -
 robin dividing traffic between them? You would have to implement some kind of shared /tmp using
NFS, which would be dreadfully slow.

 Second, if you ’ re running on a shared Web server (with a hosting company, for example), the directory
listing of /tmp is readable by all, even if the contents of its files are not. Given that PHP uses the session
identifiers as part of the filename, a malicious fellow user on that Web server could quite easily get a full
listing of all the session identifiers created, as well as when they were created. This would once again
open the door for easy session hijacks, as discussed earlier.

 Third, this implementation of session handling is not very secure. Not one of the additional measures
discussed earlier is employed for additional security, nor is it easily possible to employ them in this state.
Therefore, as far as a secure environment for a production Web site using sessions is concerned, PHP
session handling in its off - the - shelf state isn ’ t really a viable option.

 The fourth limitation is speed. By storing session data on disk, it becomes necessary for PHP to read and
write to the disk with virtually every request. This can keep the disk very busy (unnecessarily busy, in
fact), and slow down requests for all involved. Thus, the level of traffic that a single server can sustain is
reduced, potentially increasing your exposure to higher hardware budgets.

 Finally, given that you store the rest of your application ’ s data in a database, you are bound to have
times when you need to construct queries that consult both session variables and database tables in
tandem. With session data totally exterior to the database, you must first extract that data using PHP and
then inject it into an SQL statement. Serious performance implications are associated with this approach
when compared to conducting a single SQL query to extract the data you need. On a production server,
for example, this could become quite a serious issue. The solution to this problem is to integrate the PHP
session management with a database.

 Creating an Authentication Class
 In the final part of this chapter, you ’ ll learn how to adapt PHP ’ s session - handling technology to talk to a
PostgreSQL database, which will be used to store the session data hitherto stored on disk. At the same
time, you ’ ll put together a class to handle user authentication that you should be able to reuse on any
project.

 Connecting PHP Session Management to a Database
 Getting PHP to use a database as opposed to the server ’ s disk to store its data is far easier than you
might expect. The following examples use PostgreSQL, but this method can easily be adapted to work
with MySQL, XML flat files, or whatever you prefer.

291

Chapter 12: Sessions and Authentication

 The key to all this is just one PHP function: session_set_save_handler . If you take a look at the PHP
manual reference entry for the function, you can see its syntax quite clearly:

bool session_set_save_handler (string open, string close, string
read, string write, string destroy, string gc)

 The idea is simple. You call this function before session_start() is used on any page that employs
sessions. The function instructs PHP as to which custom functions to call when certain session behavior
takes place (such as when a session is started, finished, read to, written from, or destroyed). There are
certain requirements regarding the parameters passed into these methods, as well as the value they must
return. These are outlined in some detail on the PHP manual page for session_set_save_handler ,
but the following sections cover the basics.

 The open() Function

 The open() function is called whenever session_start() is called. PHP passes two values: the path in
which it thinks the session should be stored if it is to be saved on disk (which can be ignored for the
purposes of this discussion) and the cookie name (for example, PHPSESSID) it is using for the session. It
needs to return a true value in order for the session to be regarded by PHP as having been successfully
created.

 The close() Function

 The close() function (not to be confused with the destroy() function) is called at what is effectively
the end of the execution of any PHP script that uses session handling. For your purposes, it need do
nothing other than return a true value, although it might be nice to close its database connection if it
isn ’ t going to be used anymore. In most production environments, you ’ ll be using a globally accessible
handle to a database that ’ s already open for other purposes, so you ’ ll no doubt have code in place to
close it down again at the end of the script anyway. In practice, therefore, all this function needs to return
is a true value.

 The read() Function

 The read() function is used whenever an attempt to retrieve a variable from the $_SESSION hash is
made. It takes the session identifier as its sole operand, and expects a serialized representation of $_
SESSION in its entirety to be returned. You won ’ t actually be using this in your class because you ’ ll be
doing your own session variable handling.

 The write() Function

 The write() function is used whenever an attempt to change or add to $_SESSION is made. It takes the
session identifier, followed by the preserialized representation of $_SESSION , as its two parameters. It
expects true to be returned if the data is successfully committed. This method is called even if no
session variables are registered, and it is the first time the generated session ID is revealed to you.

 The destroy() Function

 The destroy() function is called whenever the session_destroy function is used in code. It must
return true upon execution.

292

Part II: Learning Advanced Development Techniques

 The gc() Function

 The gc() (garbage cleanup) function should be able to accept the “ maximum lifetime of session cookies ”
parameter as its only operand and get rid of any sessions older than that lifetime. It should return true
when it ’ s done. This function appears to be called just before open() so that PHP rids itself of any
expired sessions before they may be used.

 Introducing the HTTPSession Class
 The HTTPSession class is a convenient way of implementing an object - oriented approach to session
management, as well as providing basic authentication methods for your applications. Here, you will
implement your own methods to replace those of PHP, using the session_set_save_
handler() method discussed previously.

 It will be an entirely self - contained class that hides all of PHP ’ s session_ functions from your
application ’ s main body.

 It also provides session variable handling, which bypasses PHP ’ s own. Rather than store multiple
variables in a single serialized hash, your methodology will use separate table rows for each variable.
This could speed up access immensely. Note, however, that the previous session - handling instruction
method was not designed to cope with class methods, so you have to be rather cunning in your
implementation.

 Database Schema
 The class depends upon three tables existing. The SQL (PostgreSQL flavor) to recreate these tables is in
the following code. Create a new database with these tables in them before you go any further.

 You can customize the user table to suit your needs. You will probably want to store more than just first
name and last name. Note that a column called last_impression has been included, too. This is used
to store the time and date when the user last made an impression (that is, requested a page) against his
or her session. This is used to calculate session timeouts.

CREATE TABLE http_session (
 “id” SERIAL PRIMARY KEY NOT NULL,
 “ascii_session_id” character varying(32),
 “logged_in” bool,
 “user_id” int4,
 “last_impression” timestamp,
 “created” timestamp,
 “user_agent” character varying(256)
);

CREATE TABLE “user” (
 “id” SERIAL PRIMARY KEY NOT NULL,
 “username” character varying(32),
 “md5_pw” character varying(32),
 “first_name” character varying(64),
 “last_name” character varying(64)
);

293

Chapter 12: Sessions and Authentication

CREATE TABLE “session_variable” (
 “id” SERIAL PRIMARY KEY NOT NULL,
 “session_id” int4,
 “variable_name” character varying(64),
 “variable_value” text
);

 As you can see, the sessions are stored as indexed by a standard serial ID, rather than by their PHP -
 generated session ID. This enables far faster indexing when you look at session variables (numbers
always index better than strings).

 It ’ s worth creating a test user at this stage (e.g., username ‘ ed ’ , password ‘ 12345 ’). You need to know
the MD5 representation of this password to enter it into the database. Of course, in the real world, you ’ d
have an application to do this, but for now here ’ s the SQL you need to make the examples that follow
work:

INSERT INTO “user”(username,md5_pw,first_name,last_name) VALUES
(‘ed’,’827ccb0eea8a706c4c34a16891f84e7b’, ‘Ed’, ‘Lecky-Thompson’);

 First, take a look at the complete code for the class HTTPSession.phpm . Don ’ t worry. You ’ ll go through
it all, including how to tell session_set_save_handler to use class methods, right after you ’ ve tried
it.

 The Code: HTTPSession.phpm
 Remember that you use the phpm extension to explicitly signify this as a class, rather than a template or
an executable script in its own right.

 Note that the long SQL statements in this class must be entered on one line ; they must not wrap onto
multiple lines. If you use the code available on www.wrox.com , you won ’ t have a problem.

 < ?php
 class HTTPSession {
 private $php_session_id;
 private $native_session_id;
 private $dbhandle;
 private $logged_in;
 private $user_id;
 private $session_timeout = 600; # 10 minute inactivity timeout
 private $session_lifespan = 3600; # 1 hour session duration

 public function __construct() {
 # Connect to database
 $this- > dbhandle = pg_connect(“host=db dbname=prophp6 user=ed”) or die
 (“PostgreSQL error:-- > “ . pg_last_error($this- > dbhandle));
 # Set up the handler
 session_set_save_handler(
 array(& $this, ‘_session_open_method’),
 array(& $this, ‘_session_close_method’),

294

Part II: Learning Advanced Development Techniques

 array(& $this, ‘_session_read_method’),
 array(& $this, ‘_session_write_method’),
 array(& $this, ‘_session_destroy_method’),
 array(& $this, ‘_session_gc_method’)
);
 # Check the cookie passed - if one is - if it looks wrong we’ll
 # scrub it right away
 $strUserAgent = $_SERVER[“HTTP_USER_AGENT”];
 if ($_COOKIE[“PHPSESSID”]) {
 # Security and age check
 $this- > php_session_id = $_COOKIE[“PHPSESSID”];
 $stmt = “select id from \”http_session\” where ascii_session_id =
 ‘” . $this- > php_session_id . “’ AND ((now() - created) < ‘ “ .
 $strUserAgent .$this- > session_lifespan . “ seconds’) AND
 user_agent=’” . “’ AND ((now() - last_impression) < =
 ‘”.$this- > session_timeout.” seconds’
 OR last_impression IS NULL)”;

 $result = pg_query($stmt);
 if (pg_num_rows($result)==0) {
 # Set failed flag
 $failed = 1;
 # Delete from database - we do garbage cleanup at the same time
 $maxlifetime = $this- > session_lifespan;
 $result = pg_query(“DELETE FROM \”http_session\”
 WHERE (ascii_session_id =
 ‘”. $this- > php_session_id . “’) OR (now() - created
 > ‘$maxlifetime seconds’)”);
 # Clean up stray session variables
 $result = pg_query(“DELETE FROM \”session_variable\” WHERE
 session_id NOT IN (SELECT id FROM \”http_session\”)”);
 # Get rid of this one... this will force PHP to give us another
 unset($_COOKIE[“PHPSESSID”]);
 };
 };

 # Set the life time for the cookie
 session_set_cookie_params($this- > session_lifespan);
 # Call the session_start method to get things started
 session_start();
 }

 public function Impress() {
 if ($this- > native_session_id) {
 $result = pg_query(“UPDATE \”http_session\” SET last_impression = now()
 WHERE id = “ . $this- > native_session_id);
 };
 }

 public function IsLoggedIn() {
 return($this- > logged_in);
 }

295

Chapter 12: Sessions and Authentication

 public function GetUserID() {
 if ($this- > logged_in) {
 return($this- > user_id);
 } else {
 return(false);
 };
 }

 public function GetUserObject() {
 if ($this- > logged_in) {
 if (class_exists(“user”)) {
 $objUser = new User($this- > user_id);
 return($objUser);
 } else {
 return(false);
 };
 };
 }

 public function GetSessionIdentifier() {
 return($this- > php_session_id);
 }

 public function Login($strUsername, $strPlainPassword) {
 $strMD5Password = md5($strPlainPassword);
 $stmt = “select id FROM \”user\” WHERE username = ‘$strUsername’
 AND md5_pw = ‘$strMD5Password’”;
 $result = pg_query($stmt);
 if (pg_num_rows($result) > 0) {
 $row = pg_fetch_array($result);
 $this- > user_id = $row[“id”];
 $this- > logged_in = true;
 $result = pg_query(“UPDATE \”http_session\” SET logged_in = true,
 user_id = “ . $this- > user_id . “ WHERE id = “ .
 $this- > native_session_id);
 return(true);
 } else {
 return(false);
 };
 }

 public function LogOut() {
 if ($this- > logged_in == true) {
 $result = pg_query(“UPDATE \”http_session\” SET logged_in = false,
 user_id = 0 WHERE id = “ . $this- > native_session_id);
 $this- > logged_in = false;
 $this- > user_id = 0;
 return(true);
 } else {
 return(false);
 };
 }

296

Part II: Learning Advanced Development Techniques

 public function __get($nm) {
 $result = pg_query(“SELECT variable_value FROM session_variable WHERE
 session_id = “ . $this- > native_session_id . “ AND
 variable_name = ‘” . $nm . “’”);
 if (pg_num_rows($result) > 0) {
 $row = pg_fetch_array($result);
 return(unserialize($row[“variable_value”]));
 } else {
 return(false);
 };
 }

 public function __set($nm, $val) {
 $strSer = serialize($val);
 $stmt = “INSERT INTO session_variable(session_id, variable_name,
 variable_value) VALUES(“ . $this- > native_session_id .
 “, ‘$nm’, ‘$strSer’)”;
 $result = pg_query($stmt);
 }

 private function _session_open_method($save_path, $session_name) {
 # Do nothing
 return(true);
 }

 private function _session_close_method() {
 pg_close($this- > dbhandle);
 return(true);
 }

 public function _session_read_method($id) {
 # We use this to determine whether or not our session actually exists.
 $strUserAgent = $_SERVER[“HTTP_USER_AGENT”];
 $this- > php_session_id = $id;
 # Set failed flag to 1 for now
 $failed = 1;
 # See if this exists in the database or not.
 $result = pg_query(“select id, logged_in, user_id from \”http_session\”
 where ascii_session_id = ‘$id’”);
 if (pg_num_rows($result) > 0) {
 $row = pg_fetch_array($result);
 $this- > native_session_id = $row[“id”];
 if ($row[“logged_in”]==”t”) {
 $this- > logged_in = true;
 $this- > user_id = $row[“user_id”];
 } else {
 $this- > logged_in = false;
 };
 } else {
 $this- > logged_in = false;

297

Chapter 12: Sessions and Authentication

 # We need to create an entry in the database
 $result = pg_query(“INSERT INTO http_session(ascii_session_id,
 logged_in,user_id, created, user_agent) VALUES
 (‘$id’,’f’,0,now(),’$strUserAgent’)”);
 # Now get the true ID
 $result = pg_query(“select id from \”http_session\” where
 ascii_session_id = ‘$id’”);
 $row = pg_fetch_array($result);
 $this- > native_session_id = $row[“id”];
 };
 # Just return empty string
 return(“”);
 }
 public function _session_write_method($id, $sess_data) {
 return(true);
 }

 private function _session_destroy_method($id) {
 $result = pg_query(“DELETE FROM \”http_session\” WHERE
 ascii_session_id = ‘$id’”);
 return($result);
 }

 private function _session_gc_method($maxlifetime) {
 return(true);
 }

 }
? >

 The Code: Testing the HTTPSession Class
 Before going through the code, test the class for an imaginary user logging in and out. The following
simple script shows the class in action:

 < ?php
 require_once(“HTTPSession.phpm”);
 $objSession = new HTTPSession();
 $objSession- > Impress();
? >
HTTPSession Test Page
 < HR >
 < B > Current Session ID: < /B > < ?=$objSession- > GetSessionIdentifier();? > < BR >
 < B > Logged in? < /B > < ?=(($objSession- > IsLoggedIn() == true) ?
“Yes” : “No”)? > < BR >
 < BR > < BR >
Attempting to log in ...
 < ?php
 $objSession- > Login(“ed”,”12345”);
? >
 < BR > < BR >

298

Part II: Learning Advanced Development Techniques

 < B > Logged in? < /B > < ?=(($objSession- > IsLoggedIn() == true) ?
“Yes” : “No”)? > < BR >
 < B > User ID of logged in user: < /B > < ?=$objSession- > GetUserID();? > < BR >

 < BR > < BR >
Now logging out...
 < ?php
 $objSession- > Logout();
? >

 < BR > < BR >
 < B > Logged in? < /B > < ?=(($objSession- > IsLoggedIn() == true) ?
“Yes” : “No”)? > < BR >
 < BR > < BR >

 After running this, you should see output similar to the following:

UserSession Test Page
Current Session ID: 51bd591g054sn3bp2dsur4pme3
Logged in? No

Attempting to log in ...

Logged in? Yes
User ID of logged in user: 1

Now logging out ...
Logged in? No

 If you click Refresh in your Web browser several times, you should get the same output repeatedly. The
session identifier is perpetuated, therefore remaining the same.

 If you want to prove to yourself that the logged - in state of the session really is maintained, try
commenting out the Logout line (which reads < ?php $objSession - > Logout(); ? >) and clicking
Refresh. You should see that the Logged in? statement at the top of the page repeatedly returns Yes .

 It ’ s worth looking at the database, too. As soon as the user is logged in successfully, that flag is set
against the session in the database table, and remains until either the session itself is deleted or the
explicit LogOut method is called:

prophp5=# SELECT * FROM http_session ;
 id | ascii_session_id | logged_in | user_id | last_impression
 | created | user_agent

-----+----------------------------+-----------+---------+----------------------
-----+----------------------------+--

 168 | 51bd591g054sn3bp2dsur4pme3 | f | 0 |2008-02-23 07:31:04.33
 4694 | 2008-02-23 06:54:31.802746 | Mozilla/4.0 (compatible; MSIE 6.0;
 Windows NT 5.1; .NET CLR 1.1.4322)
(1 row)

299

Chapter 12: Sessions and Authentication

 Now try the session variable functionality:

 < ?php
require_once(“HTTPSession.phpm”);

$objSession = new HTTPSession();
$objSession- > Impress();

? >
HTTPSession Variable Test Page
 < HR >
 < B > Current Session ID: < /B > < ?=$objSession- > GetSessionIdentifier();? > < BR >
 < B > Logged in? < /B > < ?=(($objSession- > IsLoggedIn() == true) ? “Yes” :
“No”)? > < BR >
 < BR > < BR >
 < B > Current value of TESTVAR: < /B > [< ?=$objSession- > TESTVAR? >] < BR >
 < BR > < BR >
Setting TESTVAR to ‘foo’
 < BR > < BR >
 < ?php
 $objSession- > TESTVAR = ‘foo’;
? >
 < B > Current value of TESTVAR: < /B > [< ?=$objSession- > TESTVAR? >] < BR >
 < BR > < BR >

 Run this (just once, for now) and you will see something like the following:

UserSession Variable Test Page

Current Session ID: 51bd591g054sn3bp2dsur4pme3
Logged in? No

Current value of TESTVAR: []

Setting TESTVAR to ‘foo’
Current value of TESTVAR: [foo]

 Click Refresh and you will see that the value of TESTVAR is perpetuated. The top current value statement
will read foo as well:

UserSession Variable Test Page

Current Session ID: 51bd591g054sn3bp2dsur4pme3
Logged in? No

Current value of TESTVAR: [foo]

Setting TESTVAR to ‘foo’
Current value of TESTVAR: [foo]

300

Part II: Learning Advanced Development Techniques

 A quick glance at the session_variable table in the database shows what is actually stored:

prophp5=# SELECT * FROM session_variable;
 id | session_id | variable_name | variable_value
----+------------+---------------+----------------
 6 | 168 | TESTVAR | s:3:”foo”;
(1 row)

 As you can see, using serialization to store the data follows PHP. However, unlike PHP, you use a new
row for each variable. This enables more than one variable to be stored, separately serialized, against an
individual session. With PHP ’ s native session variable handling, all variables are lumped together in a
single associative array that is then serialized. This can have very serious performance implications.
Serialization and deserialization have a fair amount of overhead, and PHP is not the quickest language
in the world when it comes to string processing — that honor probably goes to PERL. With this in mind,
the decision is duly made to go against the grain on this occasion.

 Clearly, the HTTPSession class is incredibly easy to use, but let ’ s take a look at the class itself in more
detail, to both understand the logic behind it and be fully equipped to deploy it in production
applications.

 How the HTTPSession Class Works
 Start by looking at the private member variables of the class, shown in Table 12 - 1 .

 Table 12 - 1 Private Member V ariables

 Variable Purpose

 php_session_id The 32 - character PHP - generated session ID

 native_session_id The native session ID used to identify the session in the database. This is
never sent to the Web browser, and is used only for the purpose of
database entity relationships.

 dbhandle A database connection handle. In production environments, this would be
declared elsewhere as a global resource, and the HTTPSession class
would make use of it just like any other.

 logged_in Is this session a logged - in session? If this is true , then a user ID will be
available.

 user_id The ID (from the database table) of the currently logged - in user

 session_timeout An inactivity timeout. If a period of time greater than this elapses between
reported impressions, then the session is destroyed. Measured in seconds,
so 600 = 10 minutes.

 session_lifespan The maximum age of the session. This is given to PHP for the purpose of
setting the cookie, and is used in garbage cleaning SQL to keep the
database free of dead sessions. Also measured in seconds, so 3600 = 1
hour.

301

Chapter 12: Sessions and Authentication

 The Constructor

 You want your class to be plug - and - play. This enables the programmer to instantiate it once and forget
about it.

 The constructor does the following:

 Sets up the database connection. This would normally be handled by another class in a
production environment.

 Tells PHP how to handle session events in the custom class (discussed in further detail shortly)

 Checks whether an existing session identifier is being offered by the client before PHP has a
chance to get its hands on it (which would be the case if the user is in the middle of a session
instead of starting a new one). It also performs various checks on age, inactivity, and the
consistency of the reported HTTP user agent. If it fails, remove it altogether (and any garbage
found) so that PHP can issue a new session from scratch.

 Sets up the session lifespan parameter (which PHP will obey when issuing the cookie itself)

 Tells PHP to go ahead and start the session in the normal way

 Note the interesting syntax used for session_set_save_handler :

session_set_save_handler(
 array(& $this, ‘_session_open_method’),
 array(& $this, ‘_session_close_method’),
 array(& $this, ‘_session_read_method’),
 array(& $this, ‘_session_write_method’),
 array(& $this, ‘_session_destroy_method’),
 array(& $this, ‘_session_gc_method’)
);

 Although largely undocumented, parameters for this method do not necessarily have to be strings
representing procedural function names within current PHP scope.

 Instead, you may pass an array of two components. The first is a reference to an instance of a class (in
this case, & $this refers to this instance of the class). The second is the name of the method of that class.

 The session_read_method() Handler

 Because the first method called by PHP ’ s own session management after a valid session ID has been
decided upon (through generation of a brand - new session or the presentation of a still - valid cookie by
the Web browser), you use this method to ensure that the session database is kept fully up - to - date.

 If the 32 - character session identifier supplied by PHP does exist in the database, then the class member
variables (logged_in and user_id) are updated against the database record. If it does not, then it is
inserted with defaults in place.

 The Impress() Function

 This method touches the session to indicate that a new page impression has taken place. Generally, this
method would be called on any page that uses the session class directly after it has been instantiated.

❑

❑

❑

❑

❑

302

Part II: Learning Advanced Development Techniques

 The last impression column in the database is used for determining session timeouts, so it is very
important to call this method if you want a given page to count against a user ’ s accrued inactivity
timeout.

 If you are using any form of an include() or require() statement at the top of your pages to include a
library of code (or, indeed, other include() or require() statements), you might consider placing the
session invocation and impression inside this file. That way, you won ’ t ever forget to include them.

 The IsLoggedIn() Function

 This method simply reports from the private member variable whether this session has undergone a
successful login in its lifespan that has not been rescinded by means of a logout() .

 The GetUserID() and GetUserObject() Functions

 If a user is logged in, then these two functions return, respectively, the ID of the logged - in user (from the
user table defined in the database) and, if possible, an instantiated object of the user class, should one exist.

 One has not been defined in this chapter because it is slightly outside the scope of session management,
but you will almost certainly want to develop one for any serious production application because you
will almost certainly frequently want to read and write the properties of your currently logged - in user.

 The class assumes that your User class (however it works under the hood) is instantiated on the exterior
using the user ID as the sole operand of the constructor. Therefore, this would work well with the
discussion of DataBoundObject in Chapter 7 , “ Object - Relation Mapping, ” although you would
additionally have to pass an instance of PDO that matches the database credentials used by the class.

 The GetSessionIdentifier() Function

 This method returns the 32 - character PHP session identifier, rather than the internal (database) identifier.
This is the property more likely to be used in applications because the internal identifier is only really
meaningful to PostgreSQL, and is never exposed to the application or Web browser.

 The _get() and _set() Overload Methods

 Taking advantage of PHP 6 ’ s support for overloading the inspection and assignment of ostensibly public
member variables, the overload methods provide their own session variable functionality. Quite simply,
a variable for a given session is set by merely assigning a value to an appropriately named member
variable of the session class. Likewise, it is read by simply reading it, as if it were a publicly declared
member variable.

 PHP will automatically realize that this is not a native member variable, and therefore call the relevant
methods _get() or _set() to either get or set the value in the session variable table, respectively. This
means that you can ’ t use session variables with the same name as any of the methods or members of the
session class. For example, a session variable name called user_id is out of the question.

 Performance Considerations
 Note that while the previous session class is database driven, it doesn ’ t make use of PHP Data Objects
(PDOs) which, as you discovered in Chapter 6 , is most certainly the preferred mechanism for managing
database communication in PHP 6.

303

Chapter 12: Sessions and Authentication

 This is a conscious decision. PDO has performance overhead. In isolation, they ’ re miniscule (not
noticeable to the human eye), but nevertheless, there is an overhead in providing that layer of abstraction
in order to keep your code nice and clean — and if there ’ s one thing that needs to run as fast as possible,
it ’ s session management. Don ’ t forget that in a session - enabled application, every single HTTP request will
invoke the session class, and, as a result, every single request will hit the database. If you also have the
additional overhead of PDO in the way, those tiny fractions of seconds on each request will soon add up.

 The solution is to bite your tongue, accept that architecturally it ’ s not that “ clean, ” but understand that it
has a performance gain. After all, no one ’ s going to use your Web site if it ’ s slow as heck, even if it is
very well built. Your users don ’ t care about the architecture; they ’ ll just see that the site is slow and never
come back again.

 Alternative Storage

 Using a database to store session data is certainly attractive. It ’ s scalable — you can add more servers
using the same database server, or more database servers replicating between one another. It ’ s easy to
debug — if you ’ re not sure why something isn ’ t working, just look in the session tables. It makes writing
queries easy — you can use your session tables in an INNER JOIN to write sleek, single SQL queries. It ’ s
also a darn sight faster than using flat files, which is PHP ’ s default solution.

 However, if raw speed is what you seek, then neither a disk nor a database is the way to go — memory
is. If your application is going to be the next Facebook, this might be worth looking at. Memory is
certainly superfast; and if you ’ re using the same memory as your application server to store your session
data, it ’ ll be considerably faster than database or disk. Do keep in mind, though, that such an approach
doesn ’ t satisfy the scalability test entirely. You couldn ’ t load - balance between multiple servers if they
were all using their own memory to store session data — and memory is always lost should the server
power down. It ’ s also a pain to debug, because there ’ s no easy human access to the memcached server, as
there is with an SQL database ’ s console.

 If you ’ d like to experiment, though, feel free. It ’ s another technique to add to your arsenal. The solution
you ’ re looking for is almost certain to use memcached . You can download it from www.danga.com/
memcached/ , but you ’ ll also need the event notification library libevent from www.monkey.org/
~provos/libevent/ , which must be installed first.

 memcached provides a sort of brain - dead key - value database server. Give it a key and a value, and it ’ ll
store that value against that key. Give it that key again, and it ’ ll tell you the value you stored against it.
That ’ s it — no queries, no tables, no usernames and passwords, and certainly no clever stored
procedures. Because it is simple, it is lightning fast, as you ’ ll discover. Just start up the memcached server
by telling it how much of your precious physical RAM it can eat (generally not more than 25 percent of
what you have installed) and off you go.

 PHP has (sort of) built - in support for reading and writing to a memcached server — see http://
uk.php.net/manual/en/ref.memcache.php for more information. You must install a PECL module
and tell php.ini about it first — but once you have, you ’ ll see that simple methods are made available
to connect to, disconnect from, read from, and write to a memcached server.

 Some example code can be found at www.php.net/manual/en/function.session - set - save -
 handler.php , but the best approach is probably to amend the HTTPSession class in this chapter to
support both database and memcached as a storage mechanism. That way, you can simply flip a switch
to choose between database storage and memory storage, and keep your client - side code identical.

304

Part II: Learning Advanced Development Techniques

 Putting It All Together
 The HTTPSession class built in this chapter is a fully reusable, modular component. It can be easily
included in virtually any project that requires maintaining session data, as well as support the
authentication of registered users.

 This discussion has provided an object - oriented interface to PHP ’ s own session management and
replaced its session variable functionality with a more flexible variant, whereby each variable is stored
separately for the sake of speed and cleaner code.

 Integration with your own applications should be most straightforward. You may find that you need to
extend its functionality to suit your own needs, but because it is a self - contained class it is significantly
easier than extending PHP ’ s session management out of the box.

 It ’ s also worth pointing out that the only additional security mechanism incorporated from earlier in the
chapter is the user agent check. Should you require firmer security, you may wish to explore integrating
other security functionality, such as the IP variance analysis discussed earlier.

 Summary
 In this chapter, you learned about sessions: why they ’ re useful, how to best implement them in your
applications, and how to avoid some of the security pitfalls normally associated with them through some
strategic security measures.

 You also learned about PHP ’ s traditional implementation of sessions, and why it is largely inadequate
for professional software architects. You looked at how you can easily extend and adapt it to make it far
more functional and scalable.

 Finally, you used this knowledge to build a single, modular, self - contained HTTPSession class that can
be easily integrated into your future applications. You also looked briefly at the performance
considerations associated with using databases to store sessions, and explored the possibility of using
memory - based storage as an alternative.

 Speaking of future applications, you ’ re almost ready to embark upon a case study. In the next couple of
chapters, you ’ ll learn how the tools you ’ ve amassed for your arsenal over the past 12 chapters are best
used in the design of an application — a technique known as application architecture .

 Chapter 13 discusses the fundamentals of sound application design — that is, faced with a set of
functional requirements, how you can best apply best practice business analysis techniques to design a
robust, scalable, and secure software architecture.

 Application Architecture

 When PHP first arrived on the scene in the latter half of the 1990s, a minor revolution took place.
Highly interactive and feature - rich Web applications, once the exclusive preserve of large
corporations able to commission expensive development shops or hire large in - house teams, were
springing up left, right, and center. Suddenly, some seemingly sophisticated interactive Web
content, which went well beyond the traditional (and now largely forgotten) guest book CGI
script, was appearing in some very surprising places.

 A driving factor behind this revolution was the enormous accessibility and shallow learning curve
of PHP. It ’ s not just that the “ hello world ” program was refreshingly easy to implement. Even
traditionally complex procedures such as database integration became possible with just a few
lines of code. This contrasted markedly with the notoriously fiddly PERL and the loudly
trumpeted (but generally impenetrable) Java Servlet Engine.

 The problem, however, was that this accessibility became quickly abused. In some cases, it resulted
in complex applications being built by inexperienced development staff. In others, previously
dedicated professionals (perhaps understandably) let their traditional values lapse slightly in the
face of enormous temptation to take advantage of the simplicity PHP offered.

 The risk associated with this kind of development is obvious. Such abuse has led to
unmaintainable applications on a shocking scale, along with well - documented cases of instability,
unreliability, and even exploitable security holes.

 Although many programming languages such as Java and .NET enforce good programming
practices through their design, PHP requires self - discipline. The difference between a seasoned
PHP professional and a bedroom coder is exactly that — self - discipline. It ’ s that self - discipline that
necessitates good project planning; and a big part of project planning is application architecture .

 In this chapter, you ’ ll learn the basis of sound application architecture, and why something called
 MVC is a great methodology to use in your own programming. You ’ ll build a useful toolkit for
handling some core parts of the MVC principles, and learn how to use them in your applications.

306

Part II: Learning Advanced Development Techniques

 Finally, you ’ ll be introduced to two effective ways to implement the use of templates in your
applications, and how to use templates alongside the MVC toolkit you ’ ve just met.

 Introducing MVC
 The M is for model, the V is for view, and the C is for controller — but what does it all mean? MVC is
best described as what is often known as a design pattern, a description of a reusable solution to a
recurring problem given a particular context. Design patterns exist so that the challenges faced when
designing large - scale applications may be approached in a consistent manner. Best practices can be
achieved by tackling the architecture in a tried - and - tested manner.

 In this case, the problem is how to best separate the user interface of a program (the view), the business
and utility classes that actually do the complex thinking (the model), and its inner processing and
decision making (the controller) in such a way that they represent three distinct, separable components.
The solution (as you might have guessed) is MVC.

 Why is this approach needed?

 First, separation yields interchangeability. By keeping three components separate, yet having them talk
to one other in a consistent manner, you can swap any component out should you need to. For example,
if you need to rebuild your Web application to work on PDAs instead of Web browsers, you can swap
out your view component for one that renders content especially for the PDA, rather than the Web
browser. If you need to accept data via voice input, rather than mouse clicks, you can swap out that same
component for one that uses VoiceXML.

 Second, debugging to catch hard - to - trace bugs, as well as maintenance programming after release, are
made immeasurably simpler if there is a separation of logic in sensible places. The rationale behind
using object - oriented programming (detailed in the first few chapters of this book) also applies here. It ’ s
much better to have a lot of small components that talk to each other than just a handful of huge,
unwieldy files filled to the brim with code. A complex software architecture can be made a great deal
simpler by separating components in this way.

 Finally, you may wish to implement multiple controllers and views for your single - model application. To
take the earlier example of PDAs, if you choose an MVC architecture, you can implement the necessary
controllers and views to support traditional Web browsers, PDAs, cellular phones, voice, tablet PCs, and
even legacy browsers — all of which will use the same model, even if they use different views and
controllers. Without MVC, you ’ ll find yourself unable to reuse the code behind the model, and you ’ ll be
burdened with all the problems associated with unnecessary duplication.

 As you can see, MVC is a great design pattern, and one that you should endeavor to use whenever
possible. The following sections examine each of the three components in turn, how they interact with
one another, and, most important, where MVC sits in the context of Web application architecture in PHP.

 The Model
 The model is the very heart of your application. Generally speaking, it refers to the suite of classes you
have developed to handle the various processes involved in your application ’ s behavior. It concerns

Chapter 13: Application Architecture

307

itself with retrieving the data behind the output (perhaps from a database), as well as manipulating data
as a result of user input. It connects directly to the controller, and has no visibility to (nor sight of) the
view. The controller supplies the model with its instructions; the view manipulates the data retrieved
from the controller into human - usable output.

 The key test to determine whether or not your model is compliant with all this is to ask yourself: Is there
anything Web - specific in my model classes? If there is, then you ’ re not doing it right. Talk of pages, user
flow, navigations, cookies, sessions — all things related to the Web — should be firmly within your
controllers. Anything to do with user input (or the presentation of output) should be within your view.

 If you can take the classes that comprise your model and drop them into, say, a command - line
application, a behind - the - scenes daemon, or even a desktop application without any changes being
required, then you can be sure you ’ re doing it right.

 The View
 The view is at the sharp end of the application. It presents data from the controller that the user has
requested, or information that the controller considers the user needs to know. It enables the user to feed
back to the controller by means of its user interface (typically, links and form input).

 In practice, the view is comprised of a series of page templates in HTML, or whatever markup language
is appropriate for the application in question — perhaps Wireless Markup Language (WML) for a mobile
application, for example. There is typically limited back - end logic within the view to control things such
as conditionals (whether things should or should not be displayed), dynamic content areas (e.g.,
showing a user ’ s username in the navigation bar), and loops (for displaying tables of data). There should
be no direct references to classes, and certainly no communication with databases.

 Crucially, there is no direct link between the view and the model. In order for the view to access
the heavy lifting contained within the model, the view must issue a command to the controller. The
controller will then pass that message on to the model if it deems it necessary.

 The Controllers
 The third element of the MVC paradigm is the controller. This is best thought of as the owner of the
user journey through your application. When a user requests a page, this request is passed through a
controller. The controller will then pass data into (and retrieve data out of) the model as necessary, and
then pass that information back to the user by way of the view.

 The controller is, in effect, a form of abstraction. The view talks in terms of pages, navigations, clicks,
form inputs, and so forth (very “ Web ” stuff), but the model talks in terms of getting properties, setting
properties, performing tasks, and so on (very “ business ” stuff). There must be a translation layer
between the two — and that ’ s exactly what the controller does.

 In practice, an application ’ s controllers consist of a series of executable scripts (for the purposes of this
book, PHP scripts) to which pages in the Web application may GET or POST . The controller decides what
to do with each request based on the user ’ s current page, the user ’ s action on that page, conditions of the
page (such as form input states), external conditions (session data, for example), and a myriad of other
climatic factors. It will then communicate to and from the model as necessary, before directing the user to
another view state.

308

Part II: Learning Advanced Development Techniques

 Figure 13 - 1 shows the role of the controllers in your application.

Model

Model

View ViewBusiness
Object

Business
Object

Business
Object

Utility
Class

Utility
Class

Utility
Class

Starting page Finishing page

Web
Page

Web
Page

User Action
(GET or POST)

Render
Output

Controller

Figure 13-1 The model-view-controller (MVC) paradigm

 MVC in Web Applications
 MVC is not a new concept. Indeed, it is considered by some to be the evolution of the input, processing,
and output (IPO) model, which was the best - practice model applied to the linear, text - only applications of
yesteryear. The application of MVC in a Web context is relatively simple.

 The model is represented by your suite of classes, assuming that you have followed an object - oriented
approach in your application. In any Web language, these classes perform the core communication with
any external data source, make critical application decisions, and perform parsing and processing on
both input and output.

 The view is represented by the Web browser, or rather what is displayed in it. Upon making a request
(be it a simple request for a page or an instruction to update or query a database), the output determined
by the model is actually displayed by the Web browser.

 Perhaps confusingly, the controller is also represented by the Web browser, or, rather, the user ’ s actions
within it. Whether just a series of links or a complex form, the GET and POST requests made by the user ’ s
browser represent the effort to get data into the model in the first place. These actions are passed through
the controller.

Chapter 13: Application Architecture

309

 MVC in PHP
 As discussed earlier, PHP ’ s simplicity and accessibility can easily be abused to the point where
applications become unmaintainable. Specifically, this abuse takes the form of combining model,
view, and controller into a single PHP script. In fact, the term script is appropriate only in such an
approach. In a proper MVC application, there are no scripts, only components.

 How Not to Do It

 Ask any inexperienced PHP developer to create a guest book application and he or she will probably
come up with a single file. The file would be called guestbook.php and would handle both displaying
existing entries and adding new ones to the database. Stepping through the code, it might look
something like this:

 1. Look at the GET parameters passed to it to determine which page of the guest book to show.

 2. If no page is specified, then decide to show page 1.

 3. See whether a parameter called NewGuestBookEntry has been passed. If so, check whether it
conforms to various validity constraints (length and content) and enter it into the database. If
not, write an error message and quit.

 4. Get the current guest book entries from the database matching this page number.

 5. Write them out in an HTML table (embedded right in the script).

 6. Write out the HTML form pointing to this same script, allowing the user to add an entry.

 This approach has a number of problems, quite apart from using GET instead of POST to effect a change
in a database. (Strictly speaking, the associated RFC states that this is a bad idea.)

 If you think back to the reasons in favor of MVC — such as interchanging controllers and views, ease of
maintenance and initial development, and multiple simultaneous controllers and views — you can see
that in all three cases we encounter difficulties.

 Instead, let ’ s take a look at a more mature approach to development that enables you to follow the MVC
design pattern.

 Getting It Right: An MVC Approach

 The first rule of MVC in PHP is to split up your files . There are a number of possible approaches to this
task, but many favor taking the step of actually using different file extensions to represent different roles
in the MVC pattern, and then using require_once at the appropriate time to link them together.

 The documented practice of naming files to be included or required with an extension . inc should
not be followed, as it tells you nothing about the content of that file, and thus encourages role overlap
between files.

 You may wish to try something like what is shown in Table 13 - 1 .

310

Part II: Learning Advanced Development Techniques

 Table 13 - 1 A Suggested Approach to F ile - Naming

 Extension Component Role

 .php Controller Behavioral logic — the communications infrastructure between
model and view

 .phpm Model PHP classes — the heart of the application

 .phtml View The rendering of both the results of the user ’ s input and the
interface to enable the user to make further input

 The word “ view ” is a bit misleading because, of course, the Web browser is used not just to render
output, but also to accept input. In this case, the view represents the user interface to your application —
 typically HTML.

 If you are unsure as to what code should appear in which modules, you can rely on a few rules to ensure
that you ’ re following this methodology:

 .php (controllers) should never contain SQL queries or HTML.

 .phpm (classes) should never contain HTML.

 .phtml (templates) should never contain SQL queries, and only very basic PHP (for/if/while).

 What you are accomplishing in this separation is a very primitive form of templating known as native
templating . In such a setup, PHP is used to render the output of the application in a separate template file
(in this case, the .phtml file). That output is decided upon by presentation of the user ’ s input by the
controller (the .php file) to the classes (the .phpm files).

 This is implemented in practice as follows:

 1. The .php file is the actual recipient of the GET or POST request (hence, there is no need to
reconfigure Apache to support these new extensions).

 2. The .php file is home to all require() statements needed to import the necessary classes that
comprise the model (with each class stored in a .phpm file).

 3. The .php controller examines the input in GET and POST parameters and determines a course of
action. It passes that data (in either a raw or processed form) into methods of these classes that
have been made available to it through inclusion in the previous step.

 4. The classes in question parse the input data, update and query databases or other data sources
as necessary, and return data to the .php file.

 5. The .php file then examines the output from those classes. It may make decisions based on that
output, deliver the output in some processed state, or simply deliver it as is. The delivery,
however, is always performed through the construction of a single supervariable (usually a hash
or an associative array) that contains, unformatted, the output you want to display to the user.

❑

❑

❑

Chapter 13: Application Architecture

311

 6. The .php file then includes the appropriate .phtml file, which effectively takes over
execution.

 7. The .phtml file recurses that supervariable, displaying it in whatever form is appropriate, and
rendering whatever new user input components are required, such that the user is presented
with the finished Web page.

 This may sound more complex than it actually is; in fact, it is a remarkably simple process. You ’ ll see
some examples later in this chapter showing how this native templating is best implemented. For now,
you ’ ll take a look at a few toolkit classes that can help you in the quest to use an MVC design pattern in
PHP by vastly simplifying some of the steps set out previously.

 Later in this chapter, you ’ ll learn how this toolkit integrates neatly with the native templating techniques
just discussed.

 The MVC Mini Toolkit
 The mini toolkit you are about to meet makes sticking to an MVC design pattern a whole lot easier. The
toolkit concerns itself only with the controller element of the MVC trio. You ’ ve already looked at the
model side of things in Chapter 7 . Later you ’ ll meet an off - the - shelf PEAR package called Smarty that
allows for an effective implementation of the view components.

 Introducing the Toolkit
 The mini toolkit enables you to handle the connection between view and model in a consistent, clean,
and clear manner. The core of this is a request object that seeks to provide a more object - oriented
perspective on the user ’ s input into your application. As well as sporting the usual means for
interrogating the user ’ s input directly, it supports the concept of applying constraints to each parameter,
such that you may easily specify in your code what you are and are not prepared to accept.

 Such error - checking practices are almost certainly not new to you, of course. However, the concept of
constraints enables you to separate the view and model by providing a universal approach to your
controller development. Because the model may now assume that its input is within expected
parameters, you can divorce cleanly such code from methods within the model, safe in the knowledge
that it has been vetted by the controllers of your MVC design pattern.

 This is an entirely appropriate approach. After all, sanity checks are not core to your model ’ s
functionality. By leaving responsibility for such checks well outside the model itself, you can also apply
different rules for different controllers and different views talking to the same model. This is very much
in keeping with the philosophy behind MVC.

 You may want to extend or modify these classes to suit your own needs better. What is provided here is
a very basic implementation. For example, you may want to examine the feasibility of adding methods
to automatically perpetuate GET and POST variables using hidden form parameters, without having to
turn to session variables. This may prove useful for the purposes of pagination forward and backward
through a data set of search results, maintaining those search criteria with each request for a new page.
Such functionality could easily be integrated into the request object itself. In Chapter 14 , you ’ ll meet a
number of PHP frameworks that have already done just that.

312

Part II: Learning Advanced Development Techniques

 In addition, the pre - packaged constraint types supplied here are not exhaustive. However, a quick
glance at the code should make it quite clear how easily you can add your own, should your application
require them.

 Constants

 You do need to define a number of constants in order for your classes to work seamlessly together. They
define the three types of parameter (GET , POST , and Cookies), as well as the various types of constraint
you can apply. As previously mentioned, you should feel free to define additional constraints that may
suit your application, as long as you also remember to implement them in the Request class.

 Examine the following code and save it in a file called constants.phpm :

 < ?php // Constants

define(VERB_METHOD_COOKIE, 1);
define(VERB_METHOD_GET, 2);
define(VERB_METHOD_POST, 4);
define(CT_MINLENGTH, 1);
define(CT_MAXLENGTH, 2);
define(CT_PERMITTEDCHARACTERS, 3);
define(CT_NONPERMITTEDCHARACTERS, 4);
define(CT_LESSTHAN, 5);
define(CT_EQUALTO, 6);
define(CT_MORETHAN, 7);
define(CT_NOTEQUALTO, 8);
define(CT_MUSTMATCHREGEXP, 9);
define(CT_MUSTNOTMATCHREGEXP, 10);
? >

 Note the two numbering schemes as an approach in defining these constants. These are an
 exponential sequence to define the three verbs of parameters offered in an HTTP request, and
a purely sequential sequence to define the constraint types.

 The reason for the two differing approaches touches briefly on the properties of bitwise logic . Because this
subject has not been touched upon elsewhere in the book, let ’ s take a brief look at it here.

 Consider the following piece of code:

$var3 = ($var1 & & $var2);

 The conditional statement here clearly requires that $var1 is true (either literally, or as some nonzero or
non - empty value), and that $var2 is true (employing traditional use of the & & operator to express
Boolean logic). If both are true , $var3 will also be true . This if fairly basic, but there is a second form of
comparison logic that uses the same basic operators, AND and OR .

 Consider the following:

$var3 = ($var1 & $var2);

 Note the single ampersand. This indicates that you want to perform bitwise (rather than Boolean) logic to
effect the comparison. What then takes place (assuming that $var1 and $var2 are integers) is that the

Chapter 13: Application Architecture

313

corresponding binary bits of each value are subject to the traditional Boolean comparison (with 1
meaning true and 0 meaning false). If $var1 is 34 and $var2 is 11, then the following applies:

34 = 00100010
11 = 00001011
34 & 11 = 00000010 = 2

 Accordingly, the bitwise logic of 34 and 11 yields 2, because it is only in the 2 column where both bits are
 1 in each number.

 What does this have to do with constants? Put simply, it enables you to combine constants to form a
single value (which consists of the arithmetic sum of its constituent constants), and then easily determine
later what those constituent constants are.

 If each constant represents the incrementing decimal value of a single bit of a binary number (essentially,
a power of 2), then when summed together, the resulting binary number will have bits set to 1
representing those constants that have been included in that sum:

CONST_A = 1 = 00000001
CONST B = 2 = 00000010
CONST C = 4 = 00000100
CONST D = 8 = 00001000
CONST E = 16 = 00010000

 For example, say that you want to define a parameter consisting of constants B , D , and E combined
(whatever that might mean). Simply add the values 2, 8, and 16 together to get a value of 26. Take a look
at what 26 looks like in binary, next to its constituent components:

CONST B = 2 = 00000010
CONST D = 8 = 00001000
CONST E = 16 = 00010000
CONST_B+D+E = 26 = 00011010

 Notice that you can clearly recognize that the constituent constants of the combination are B , D , and E ;
but how do you test for this in code?

 Enter and run the following code from the command line (rather than in a Web browser). Normally,
you ’ d just type php at a command prompt to do this, but if the PHP executable isn ’ t in your path, you ’ ll
need to hunt it down first — try /usr/local/php/bin on UNIX:

 < ?php
define(‘CONST_A’, 1);
define(‘CONST_B’, 2);
define(‘CONST_C’, 4);
define(‘CONST_D’, 8);
define(‘CONST_E’, 16);

$myCombinedConstant = CONST_B + CONST_D + CONST_E;

if ($myCombinedConstant & CONST_A) {
 print “Combined constant contains A\n”;
};

314

Part II: Learning Advanced Development Techniques

if ($myCombinedConstant & CONST_B) {
 print “Combined constant contains B\n”;
};
if ($myCombinedConstant & CONST_C) {
 print “Combined constant contains C\n”;
};
if ($myCombinedConstant & CONST_D) {
 print “Combined constant contains D\n”;
};
if ($myCombinedConstant & CONST_E) {
 print “Combined constant contains E\n”;
};
? >

 Press Ctrl+D (UNIX) or Ctrl+Z (Windows) to finish typing your script. You will see output similar to the
following:

Combined constant contains B
Combined constant contains D
Combined constant contains E

 As you have probably deduced, the test to determine whether a combined constant contains a particular
original constant is simply to perform a bitwise AND against that original constant. This will produce a
nonzero (that is, true) value only if the bit in question is set both in the original constant and in the
combined constant you are testing.

 Note how this tactic is adopted in the constants for expressing request methods, but not in the constants
used to express constraint types. This is because the code might allow the combination of request
methods as a parameter for a method at some stage in the future. However, the nature of constraint
types means that one constraint object has one constraint type. To combine constraints, therefore, their
objects must be combined (not the constants behind them). Accordingly, note how a linear (1, 2, 3, 4, 5)
numbering system has been adopted for these constants, because they will never be added together in
the way described in this section.

 The Request Class

 The request object itself represents the request made by the user in order to generate the page. Those of
you who have ever worked in .NET may be familiar with using a pre - instantiated object to access
parameters, but this Request class is somewhat more sophisticated.

 Unlike .NET, you must instantiate the request object yourself, but you will notice that the constructor
written requires no parameters. It examines the existing (and globally accessible) $_REQUEST , $_COOKIE ,
 $_POST , and $_GET hashes itself quite successfully in order to populate its various member variables.

 You could start to make use of the request object right away. By using the various methods supplied
to retrieve parameters, you could build your application. Doing this, however, disregards the
tremendously useful syntax validation methods provided by the Constraint class and its sister
 ConstraintFailure class.

Chapter 13: Application Architecture

315

 Examine the following source code, called request.phpm , in detail:

 < ?
require_once(“constants.phpm”);
require_once(“constraint.phpm”);
require_once(“constraintfailure.phpm”);
class request {
 private $_arGetVars;
 private $_arPostVars;
 private $_arCookieVars;
 private $_arRequestVars;
 private $_objOriginalRequestObject;

 private $_blIsRedirectFollowingConstraintFailure;

 private $_blRedirectOnConstraintFailure;
 private $_strConstraintFailureRedirectTargetURL;
 private $_strConstraintFailureDefaultRedirectTargetURL;

 private $_arObjParameterMethodConstraintHash;
 private $_arObjConstraintFailure;
 private $_hasRunConstraintTests;

 function __construct($check_for_cookie = true) {
 // Import variables
 global $_REQUEST;
 global $_GET;
 global $_POST;
 global $_COOKIE;
 $this- > _arGetVars = $_GET;
 $this- > _arPostVars = $_POST;
 $this- > _arCookieVars = $_COOKIE;
 $this- > _arRequestVars = $_REQUEST;
 if ($check_for_cookie) {
 if ($this- > _arCookieVars[“phprqcOriginalRequestObject”]) {
 $cookieVal = $this- > _arRequestVars[“phprqcOriginalRequestObject”];
 $this- > _blIsRedirectFollowingConstraintFailure = true;
 if (strlen($cookieVal) > 0) {
 $strResult = setcookie (“phprqcOriginalRequestObject”, “”,
 time() - 3600, “/”);
 $origObj = unserialize(stripslashes($cookieVal));
 $this- > _objOriginalRequestObject = & $origObj;
 $this- > _arRequestVars[“phprqcOriginalRequestObject”] = “”;
 $this- > _arGetVars[“phprqcOriginalRequestObject”] = “”;
 $this- > _arPostVars[“phprqcOriginalRequestObject”] = “”;
 };
 $this- > _blIsRedirectOnConstraintFailure = true;
 } else {
 $this- > _blIsRedirectOnConstraintFailure = false;
 };
 } else {

316

Part II: Learning Advanced Development Techniques

 $this- > _blIsRedirectOnConstraintFailure = false;
 };
 $this- > _arObjParameterMethodConstraintHash = Array();
 $this- > _arObjConstraintFailure = Array();
 $this- > _blHasRunConstraintTests = false;
 }

 function IsRedirectFollowingConstraintFailure() {
 return($this- > _blIsRedirectOnConstraintFailure);
 }

 function GetOriginalRequestObjectFollowingConstraintFailure() {
 if ($this- > _blIsRedirectOnConstraintFailure) {
 return($this- > _objOriginalRequestObject);
 };
 }

 function SetRedirectOnConstraintFailure($blTrueOrFalse) {
 $this- > _blRedirectOnConstraintFailure = $blTrueOrFalse;
 }

 function SetConstraintFailureRedirectTargetURL($strURL) {
 $this- > _strConstraintFailureRedirectTargetURL = $strURL;
 }

 function SetConstraintFailureDefaultRedirectTargetURL($strURL) {
 $this- > _strConstraintFailureDefaultRedirectTargetURL = $strURL;
 }
 function GetParameterValue($strParameter) {
 return($this- > _arRequestVars[$strParameter]);
 }

 function GetParameters() {
 return($this- > _arRequestVars);
 }

 function GetCookies() {
 return($this- > _arCookieVars);
 }

 function GetPostVariables() {
 return($this- > _arPostVariables);
 }

 function GetGetVariables() {
 return($this- > _arGetVariables);
 }

 function AddConstraint($strParameter, $intMethod, $objConstraint) {
 $newHash[“PARAMETER”] = $strParameter;
 $newHash[“METHOD”] = $intMethod;

Chapter 13: Application Architecture

317

 $newHash[“CONSTRAINT”] = $objConstraint;
 $this- > _arObjParameterMethodConstraintHash[] = $newHash;
 }

 function TestConstraints() {
 $this- > _blHasRunConstraintTests = true;
 $anyFail = false;
 for ($i=0; $i < =sizeof($this- > _arObjParameterMethodConstraintHash) -1; $i++) {
 $strThisParameter =
 $this- > _arObjParameterMethodConstraintHash[$i] [“PARAMETER”];
 $intThisMethod = $this- > _arObjParameterMethodConstraintHash[$i][“METHOD”];
 $objThisConstraint =
 $this- > _arObjParameterMethodConstraintHash[$i] [“CONSTRAINT”];
 $varActualValue = “”;
 if ($intThisMethod == VERB_METHOD_COOKIE) {
 $varActualValue = $this- > _arCookieVars[$strThisParameter];
 };
 if ($intThisMethod == VERB_METHOD_GET) {
 $varActualValue = $this- > _arGetVars[$strThisParameter];
 };
 if ($intThisMethod == VERB_METHOD_POST) {
 $varActualValue = $this- > _arPostVars[$strThisParameter];
 };
 $intConstraintType = $objThisConstraint- > GetConstraintType();
 $strConstraintOperand = $objThisConstraint- > GetConstraintOperand();
 $thisFail = false;
 $objFailureObject = new constraintfailure($strThisParameter,
 $intThisMethod, $objThisConstraint);
 switch ($intConstraintType) {
 case CT_MINLENGTH:
 if (strlen((string)$varActualValue) < (integer) $strConstraintOperand) {
 $thisFail = true;
 };
 break;
 case CT_MAXLENGTH:
 if (strlen((string)$varActualValue) > (integer) $strConstraintOperand) {
 $thisFail = true;
 };
 break;
 case CT_PERMITTEDCHARACTERS:
 for ($j=0; $j < =strlen($varActualValue)-1; $j++) {
 $thisChar = substr($varActualValue, $j, 1);
 if (strpos($strConstraintOperand, $thisChar) === false) {
 $thisFail = true;
 };
 };
 break;
 case CT_NONPERMITTEDCHARACTERS:
 for ($j=0; $j < =strlen($varActualValue)-1; $j++) {
 $thisChar = substr($varActualValue, $j, 1);
 if (!(strpos($strConstraintOperand, $thisChar) === false)) {

318

Part II: Learning Advanced Development Techniques

 $thisFail = true;
 };
 };
 break;
 case CT_LESSTHAN:
 if ($varActualValue > = $strConstraintOperand) {
 $thisFail = true;
 };
 break;
 case CT_MORETHAN:
 if ($varActualValue < = $strConstraintOperand) {
 $thisFail = true;
 };
 break;
 case CT_EQUALTO:
 if ($varActualValue != $strConstraintOperand) {
 $thisFail = true;
 };
 break;
 case CT_NOTEQUALTO:
 if ($varActualValue == $strConstraintOperand) {
 $thisFail = true;
 };
 break;
 case CT_MUSTMATCHREGEXP:
 if (!(preg_match($strConstraintOperand, $varActualValue))) {
 $thisFail = true;
 };
 break;
 case CT_MUSTNOTMATCHREGEXP:
 if (preg_match($strConstraintOperand, $varActualValue)) {
 $thisFail = true;
 };
 break;
 };
 if ($thisFail) {
 $anyFail = true;
 $this- > _arObjConstraintFailure[] = $objFailureObject;
 };
 };
 if ($anyFail) {
 if ($this- > _blRedirectOnConstraintFailure) {
 $targetURL = $_ENV[“HTTP_REFERER”];
 if (!$targetURL) {
 $targetURL = $this- > _strConstraintFailureDefaultRedirectTargetURL;
 };
 if ($this- > _strConstraintFailureRedirectTargetURL) {
 $targetURL = $this- > _strConstraintFailureRedirectTargetURL;
 };
 if ($targetURL) {
 $objToSerialize = $this;
 $strSerialization = serialize($objToSerialize);
 $strResult = setcookie (“phprqcOriginalRequestObject”,

Chapter 13: Application Architecture

319

Table 13-2 Member V ariables

Member Variable Role

$_arGetVars A copy of $_GET, an associative array of HTTP GET variables
passed in this request

$_arPostVars A copy of $_POST, an associative array of HTTP POST
variables passed in this request

$_arCookieVars A copy of $_COOKIE, an associative array of pre-existing
cookies passed in this request

$_arRequestVars A copy of $_REQUEST, an associative array of GET and POST
variables, as well as cookies, combined into one. Where GET/
POST variables or cookies of the same name exist, precedence
is determined by PHP.INI.

$_objOriginalRequestObject In the event that the user has been redirected back to the
original page by the request object as a result of passing
parameters that failed constraint tests, this will contain a copy
of the original request object supplied.

$_blIsRedirectFollowing

ConstraintFailure
A Boolean variable determining whether this request has been
created as a result of a redirect following a constraint test failure

$_blRedirectOnConstraint

Failure
In the event that a constraint test is failed, should the request
object automatically redirect the browser back to the original
page, or to some other URL?

 $strSerialization, time() + 3600, “/”);
 header(“Location: $targetURL”);
 exit(0);
 };
 };
 };
 return(!($anyFail)); // Returns TRUE if all tests passed, otherwise returns
 // FALSE
 }
 function GetConstraintFailures() {
 if (!$this- > _blHasRunConstraintTests) {
 $this- > TestConstraints();
 };
 return($this- > _arObjConstraintFailure);
 }
}
? >

 Take a look at each of the member variables shown in Table 13 - 2 . These are all private, and accessor
methods are provided to get to or set their useful values. Hungarian notation has been used — that is, a hint
is included as to which data type each member variable should contain at the start of the variable ’ s name.

(continued)

320

Part II: Learning Advanced Development Techniques

Table 13-2 (continued)

Member Variable Role

$_strConstraintFailure

RedirectTargetURL
In the event that a constraint test is failed and _blRedirect
OnConstraintFailure is set to true, this specifies whether the
request object should be diverted to a particular URL. If this is
left blank, the referring URL shall be used.

$_strConstraintFailure

DefaultRedirectTargetURL
In the event that _strConstraintFailure
RedirectTargetURL is not set, _blRedirectOn
ConstraintFailure is set to true, and no referring URL is
available, this specifies the URL to which the browser should
be redirected.

$_arObjParameterMethod

ConstraintHash
An array of constraints, the indices of which contain three
keyed components in a hash: the parameter name on which
the constraint applies; the method in which this parameter is
expected to be passed (as a constant); and the constraint object
expressing the test to be applied.

$_arObjConstraintFailure An array of constraint failure objects, should any constraints
have failed, assuming that the tests have been run

$_blHasRunConstraintTests A Boolean variable expressing whether the constraint tests
have yet been run on this request object

Table 13-3 Methods Pro vided by the Request Object

Method Role

__construct Instantiates the request object. Does not take any
required parameters. Instead, it consults $_REQUEST, $_
POST, $_GET, and $_COOKIE, and populates member
variables (see Table 13-2) as appropriate. In addition, the
existence of a cookie called
phprqcOriginalRequestObject is checked for. Should
it exist, another request object is assumed to be passed
back as a result of throwback following constraint test
failures. The cookie is nullified at this stage to prevent an
infinite loop when the original request object is created.
Its contents are then unserialized (via the stripslashes
PHP function) into a new request object, which is then
made available for interrogation through the
GetOriginalRequest

ObjectFollowingConstraintFailure accessor method
(detailed in this table).

 Table 13 - 3 shows the methods provided by the request object.

Chapter 13: Application Architecture

321

Method Role

IsRedirectFollowing

ConstraintFailure
If the page being displayed has been automatically loaded
following a 302 redirect issued as a result of a constraint
test failure, then this method returns true.

GetOriginalRequest

ObjectFollowing

ConstraintFailure

If the page being displayed has been automatically loaded
following a 302 redirect issued as a result of a constraint
test failure, then this method returns the request object
that existed when that page was called, just before the
constraint tests failed.

SetRedirect

OnConstraintFailure
Accepting true or false as a parameter, this method
enables you to tell the request object whether it should
perform a 302 redirect upon any constraint tests failing.
The target for that redirect is set using the SetCons
traintFailureRedirectTargetURL and
SetConstraintFailureDefaultRedirectTargetURL
methods.

SetConstraintFailure

RedirectTargetURL
Sets the target for a 302 redirect following a constraint
failure. If one is not set, then either the referring page
(which is normally the desired target) is used or, if that is
not available, a default URL is used (which is set using
the SetConstraintFailure
DefaultRedirectTargetURL method).

SetConstraintFailure

Default

RedirectTargetURL

In the event that no target URL is set using the preceding
accessor method, the referring page is used should a
referral become necessary as a result of a constraint test
failing. If no referring page is available (for example, as a
result of a user visiting from a bookmark), the default
URL specified using this method is used instead.

GetParameterValue Returns the value of the specified parameter. This value is
pulled directly from $_REQUEST, so the precedence of
search for GET variables, POST variables, and COOKIE
variables depends on PHP’s overall configuration.

GetParameters Returns a hash of parameters — essentially, a direct copy
of $_REQUEST

GetCookies Returns a hash of cookies — essentially, a direct copy of
$_COOKIE

GetPostVariables Returns a hash of POST variables — essentially, a direct
copy of $_POST

GetGetVariables Returns a hash of GET variables — essentially, a direct
copy of $_GET

(continued)

322

Part II: Learning Advanced Development Techniques

 Don ’ t worry if the theory isn ’ t quite clear from Table 13 - 3 . Later in this chapter, you ’ ll find a practical
example showing how to employ this class and the rest of the toolkit in the real world. All should
become clear then.

 Now let ’ s take a look at the Constraint class and its close cousin, the ConstraintFailure class.

 The Constraint Class

 The Constraint class exists only as an object - oriented encapsulator. It does not concern itself with the
code necessary to test whether the constraint is passed. As you have just seen, this is handled by the
 request object.

 Enter the following code in a file called constraint.phpm :

 < ?php
require_once(“constants.phpm”);
class constraint {
 private $_intConstraintType;
 private $_strConstraintOperand;

Table 13-3 (continued)

Method Role

AddConstraint Adds a constraint to this request. A constraint is applied to a
single parameter and specifies a condition that must be met
in order for that constraint to be considered met.
This method takes the name of the parameter, the delivery
method (VERB_METHOD_GET, VERB_METHOD_POST, or VERB_
METHOD_COOKIE as a constant) and a constraint object
(discussed shortly) as its parameters. After a constraint is
added, it cannot be removed. More than one constraint may
be applied to a single parameter.

TestConstraints Tests each constraint in turn and makes a note of any that fail
by populating the member variable
$_arObjConstraintFailure, accessible using
GetConstraintFailure. In the event that
$_blRedirectOnConstraintFailure is set to true, it
redirects automatically to the appropriate URL, having first
issued a temporary cookie that is a serialized representation
of the current request object.

GetConstraintFailures When a call to TestConstraints() indicates that one or
more constraints fail, this method will return an array of
ConstraintFailure objects representing all such failures.
This method will need to be accessed from the original
request object, accessed using
GetOriginalRequestObjectFollowingConstraint

Failure (described earlier in this table).

Chapter 13: Application Architecture

323

 function __construct($intConstraintType, $strConstraintOperand) {
 $this- > _intConstraintType = $intConstraintType;
 $this- > _strConstraintOperand = $strConstraintOperand;
 }

 function GetConstraintType() {
 return($this- > _intConstraintType);
 }

 function GetConstraintOperand() {
 return($this- > _strConstraintOperand);
 }
}
? >

 Note how the constructor takes the constraint type (chosen from one of the constraint types that have
been enumerated as constants) as its first parameter, and the operand as its second parameter. The
meaning of the operand depends on the type of constraint. Its interpretation is up to the request object
in its implementation of each type of constraint. For example, for a CT_MAXLENGTH constraint, the
operand should contain the maximum length of the parameter. For a CT_PERMITTEDCHARS constraint,
the operand should contain a string containing all permitted characters that may exist in the parameter.

 To accommodate this flexibility, the operand is a string. However, it will be cast back to its most
appropriate native form when the test takes place.

 Note that you do not store the name of the parameter being tested in a constraint object. A constraint is
simply a condition, and it can be applied to any (or even multiple) parameters using the methods in the
 request object. For that reason, to encapsulate neatly any given failure of a constraint, you must also
store the parameter and delivery method that have provoked the failure. This is done using an instance
of the ConstraintFailure class.

 The ConstraintFailure Class

 A ConstraintFailure object is instantiated whenever a particular constraint fails. Its constructor
expects the name of the parameter, the delivery method (VERB_METHOD_GET , VERB_METHOD_POST , or
 VERB_ METHOD_COOKIE), and the original constraint object that caused the failure.

 In normal use, the GetFailedConstraintObject method will be used to determine the nature of the
constraint that failed through the use of the native Constraint class methods described previously.

 Take a look at the following code, in a file called constraintfailure.phpm :

 < ?php
require_once(“constants.phpm”);
require_once(“constraint.phpm”);
class constraintfailure {
 private $_strParameterName;
 private $_intVerbMethod;
 private $_objFailedConstraintObject;

324

Part II: Learning Advanced Development Techniques

 function __construct($strParameterName, $intVerbMethod,
 $objFailedConstraintObject) {
 $this- > _strParameterName = $strParameterName;
 $this- > _intVerbMethod = $intVerbMethod;
 $this- > _objFailedConstraintObject = $objFailedConstraintObject;
 }

 function GetParameterName() {
 return($this- > _strParameterName);
 }

 function GetVerbMethod() {
 return($this- > _intVerbMethod);
 }

 function GetFailedConstraintObject() {
 return($this- > _objFailedConstraintObject);
 }
};
? >

 This class neatly encapsulates a failure that has occurred as a result of the user ’ s input to the page not
meeting your acceptance criteria.

 As shown in the preceding code, it contains the name of the parameter that has failed, the method (GET ,
 POST , or Cookie) in which the parameter was passed, and the constraint (expressed as a constraint
object) test that has failed.

 Instances of this object can be retrieved from the Request class using the GetConstraintFailures
method, provided that the Request class has been instantiated in the context of a 302 redirect following
redirection caused by constraint failures.

 Using the Toolkit
 Now that you ’ ve learned a little bit about the basic classes that constitute the toolkit, it ’ s worth looking at
how you ’ d go about implementing this in a real - world application.

 You ’ ll also see in this example a practical case of an MVC approach as defined earlier in the chapter —
 namely, the use of native PHP templating. (The section “ True Templating ” later in this chapter goes into
further detail about how this works.)

 Assume that you have a search engine consisting of two pages: a search page in which the terms are
entered, and a search terms page in which the results are displayed.

 search.php

 The initial search controller has the following jobs:

 Require all the necessary components.

 Define the template file (search.phtml).

❑

❑

Chapter 13: Application Architecture

325

 Define an associative array ($displayHash) to contain the content to be rendered by the
template file (the view).

 Check to see whether this page has been reached as a result of a referral following a constraint
failure (as opposed to simply being requested by a user for the first time):

 If so, set part of the $displayHash to indicate this, and retrieve the original failed
 request object from the current request object (which has been made available through
the temporary cookie).

 Retrieve an array of constraintfailure objects from this retrieved request object.

 Loop through these constraintfailure objects, populating a newly formed array in
 $displayHash with the type of failure in each case.

 Require the template file for immediate rendering.

 The code for search.php (not search.phtml — you ’ ll get to that) is reproduced here:

 < ?php
require_once(“constants.phpm”);
require_once(“request.phpm”);
require_once(“constraint.phpm”);
require_once(“constraintfailure.phpm”);

$strTemplateFile = “search.phtml”;

$displayHash = Array();

$objRequest = new request();
$blHadProblems = ($objRequest- > IsRedirectFollowingConstraintFailure());

$displayHash[“HADPROBLEMS”] = $blHadProblems;

if ($blHadProblems) {
 $objFailingRequest =
 $objRequest- > GetOriginalRequestObjectFollowingConstraintFailure();
 $arConstraintFailures = $objFailingRequest- > GetConstraintFailures();
 $displayHash[“PROBLEMS”] = Array();
 for ($i=0; $i < =sizeof($arConstraintFailures)-1; $i++) {
 $objThisConstraintFailure = & $arConstraintFailures[$i];
 $objThisFailingConstraintObject =
 $objThisConstraintFailure- > GetFailedConstraintObject();
 $intTypeOfFailure = $objThisFailingConstraintObject- > GetConstraintType();
 switch ($intTypeOfFailure) {
 case CT_MINLENGTH:
 $displayHash[“PROBLEMS”][] = “Your search term was too short.”;
 break;
 case CT_MAXLENGTH:
 $displayHash[“PROBLEMS”][] = “Your search term was too long.”;
 break;
 case CT_PERMITTEDCHARACTERS:
 $displayHash[“PROBLEMS”][] = “Your search term contained characters
 I didn’t understand.”;

❑

❑

❏

❏

❏

❑

326

Part II: Learning Advanced Development Techniques

 break;
 };
 };
};

require_once($strTemplateFile);
exit(0);
? >

 Note the exit statement at the end. While it ’ s not strictly necessary, it does prevent you from
accidentally writing code after the template has been handed control.

 Now let ’ s take a look at the template itself.

 search.phtml

 The template has the sole responsibility of intelligently rendering the contents of $displayHash with
appropriate surrounding HTML. Note how you do not need to declare $displayHash as global. The act
of requiring the template glues it to the end of the original script. The PHP interpreter treats it as a single
script at the point of execution.

 In this particular template, in addition to rendering the straightforward HTML required to create the
search form, you must render any error messages generated as a result of a failed search that has just
taken place.

 It ’ s worth remarking that the following HTML is very, very simple — not exactly whizzbang semantic
XHTML with all the latest CSS. It is hoped that you ’ ve realized that this is merely for clarity in these
examples. In your own applications, your templates will doubtlessly be considerably bigger and more
sophisticated.

 Save the following as search.phtml (as opposed to search.php , which was already created):

 < html >
 < head >
 < title > Ed’s Search Page < /title >
 < /head >

 < body >
 < H1 > Ed’s Search Page < /H1 >
 < hr >
You can search for types of steak here.
 < BR > < BR >
 < ? if ($displayHash[“HADPROBLEMS”]) { ? >
 < B > Sorry, there < ?=((sizeof($displayHash[“PROBLEMS”]) > 1) ? “were problems” :
 “was a problem”)? > with your search! < /B >
 < ? for ($i=0; $i < =sizeof($displayHash[“PROBLEMS”])-1; $i++) { ? >
 < ?=$displayHash[“PROBLEMS”][$i]? >
 < ? }; ? >
 < ? }; ? >
 < FORM METHOD=”POST” ACTION=”searchresults.php” >
 < TABLE BORDER=”0” >

Chapter 13: Application Architecture

327

 < TR >
 < TD > Type of Steak < /TD >
 < TD > < INPUT TYPE=”TEXT” NAME=”typeOfSteak” > < /TD >
 < /TR >
 < /TABLE > < BR >
 < INPUT TYPE=”SUBMIT” >
 < /FORM >

 < /body >
 < /html >

 Note how simple the PHP is, including very basic statements such as if and for . As a rule, if you find
yourself writing code of greater complexity in a template file, then it is most likely in the wrong place,
and should be in either the controller page (.php) or one of the classes (.phm).

 Later in this chapter, you ’ ll learn about an alternative for using these simple statements in templates, a
method that doesn ’ t use PHP at all: true templating .

 If you fire up search.php in your browser, you should see that it successfully renders a standard search
form, as shown in Figure 13 - 2 .

Figure 13-2 Standard search form from search.php

 Obviously, the search page needs a target. This is provided using two distinct files: a controller and a
template.

 searchresults.php

 The search results page will be the immediate target of the search page and has the job of determining
whether its input is acceptable.

 It does not have the job of informing the user whether the input is not acceptable. Instead, the user will
be diverted via a 302 HTTP redirect back to the original search page, which then explains the
shortcomings.

328

Part II: Learning Advanced Development Techniques

 The conditions that apply in the following example relate to the only search parameter passed to the
script — the search string provided by the user. It must contain between 4 and 11 characters, which must
be letters, not numbers:

 Do not try to run this code directly in your Web browser. It expects to be invoked
from the search page.

 < ?
require_once(“constants.phpm”);
require_once(“request.phpm”);
require_once(“constraint.phpm”);
require_once(“constraintfailure.phpm”);

$strTemplateFile = “searchresults.phtml”;

$displayHash = Array();
session_start();

if ($_POST) {

 $objRequest = new request();
 $objRequest- > SetRedirectOnConstraintFailure(true);

 $objConstraint = new constraint(CT_MINLENGTH, “3”);
 $objRequest- > AddConstraint(“typeOfSteak”, VERB_METHOD_POST, $objConstraint);
 $objConstraint = new constraint(CT_MAXLENGTH, “12”);
 $objRequest- > AddConstraint(“typeOfSteak”, VERB_METHOD_POST, $objConstraint);
 $objConstraint = new constraint(CT_PERMITTEDCHARACTERS,
 “ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz”);
 $objRequest- > AddConstraint(“typeOfSteak”, VERB_METHOD_POST, $objConstraint);

 $objRequest- > SetConstraintFailureDefaultRedirectTargetURL(“/search.php”);
 $objRequest- > TestConstraints();

 # If we’ve got this far, tests have been passed - perform the search.
 $displayHash[“RESULTS”] = Array();
 $arSteaks = array(“fillet”, “rump”, “sirloin”, “burnt”);

 for ($i=0; $i < =sizeof($arSteaks)-1; $i++) {
 if (!(strpos(trim(strtolower($arSteaks[$i])),
 strtolower(trim($objRequest- > GetParameterValue(“typeOfSteak”))))
 === false)) {
 array_push($displayHash[“RESULTS”], $arSteaks[$i]);
 };
 };

 $_SESSION[‘dh’] = $displayHash;
 header(“Location: searchresults.php”);
 exit(0);

Chapter 13: Application Architecture

329

} else {

 $displayHash = $_SESSION[‘dh’];
 require_once($strTemplateFile);
 exit(0);

};
? >

 Note that the $displayHash template content variable is defined again just as the request object is
instantiated again.

 First and foremost, the controller tests whether it has been called as a result of an HTTP POST . If it has,
then each constraint on input is defined as a new instance of a constraint object. It is then added using
 AddConstraint , specifying the delivery method (POST , in this case) and the parameter name as
additional operands.

 To negate the need for the referral page to be available, you specify a default URL (the original search
page). If you are trying out this example, you will need to adjust the path to this chapter ’ s scripts
accordingly.

 A single method is then called: TestConstraints() . This performs the tests necessary to validate
whether all the constraints you have expressed have been met. If one has not, then it is added to the
array of constraint failures contained in this request object.

 At the end of these tests, if any one of them has resulted in failure, the request object is authorized to
force the user back to the search page, as a result of the use of SetRedirectOnConstraintFailure() .
First, it serializes a snapshot of the request object as it stands on this page, and then pushes this as a
cookie to the browser. When the user returns to the search page, this cookie will be parsed by the
 request object to determine what went wrong.

 If a redirect takes place, then the template is not displayed at all. As a result, users are none the wiser
that they have hit the second page at all. This improves the user experience. Users do not feel as if they
have “ left ” the original search page. Hence, they instantly recognize that something is wrong.

 Assuming that the tests passed, the search can go ahead. In the example, notice that the search
mechanism is pretty simple. In a real - world scenario, external classes would undoubtedly be used to
execute the search.

 After a search results variable has been populated, it is stored temporarily in the session. A redirect is
then issued to reload the page using HTTP GET . Upon reload, the template can be displayed by bringing
back the value of the display hash from the session. Notice how, upon reload, the validation and search
are not performed, as the if ($_POST) conditional evaluates to false .

330

Part II: Learning Advanced Development Techniques

 searchresults.phtml

 The following search results template is extremely simple. It merely displays the results of the search.
There is no provision in the example for displaying a your search produced no results message.
However, the implementation of such a message would be relatively straightforward.

 < html >
 < head >
 < title > Ed’s Search Page < /title >
 < /head >

 < body >
 < H1 > Search Results < /H1 >
 < hr >
Here are the results of your search.
 < UL >
 < ? for ($i=0; $i < =sizeof($displayHash[“RESULTS”])-1; $i++) { ? >
 < LI > < ?=$displayHash[“RESULTS”][$i]? > < /LI >
 < ? }; ? >
 < /UL >
 < A HREF=”search.php” > Go back and search for more steaks! < /A >
 < /body >
 < /html >

 Try It!

 Assuming that you ’ ve entered the code for the previous four files, you can open the search page
(search.php) again (as you did before) and enter some search terms.

 First, try an example that should work just fine. Enter fil as your search term and click the Submit Query
button. This should bring back fillet as a search result, as shown in Figure 13 - 3 .

Figure 13-3 Bringing back “fillet” as a search result

Chapter 13: Application Architecture

331

 Assuming that works fine, it ’ s time to try out the real purpose of the toolkit: handling things when bad
input is supplied. Try offering fi as a search term. This is only two characters in length, so it should fail,
as shown in Figure 13 - 4 .

Figure 13-4 Failing attempt to enter a search term

 As you can see, you are immediately redirected back to the search page and an error message is
displayed.

 The searchresults.php ran three constraint tests against your search parameter and failed on one.
That one failure caused a bounce back to the search page, but not before a snapshot serialization of the
 request object you had generated had been taken.

 That snapshot was issued to your browser as a cookie immediately before you were redirected back to
the original page. The search page then detected the presence of that cookie, and knew that you had been
referred back to it following a failure as a result. It then proceeded to read the constraint failures that
were embedded in that object, and display them to you one at a time.

 Try entering a string that is too long (myfavoritesteak) or a term that contains invalid characters (such as
 11431) and you will see similar failure messages. Enter something like my 1st choice , which violates
more than one constraint, and you should be chastised twice.

 A Word about PRG
 Before moving on, it ’ s worth taking a moment to explore something you implemented in the previous
example without even realizing it — a design pattern known as post - redirect - get, or PRG.

 In the original HTTP protocol, HTTP GET was designed to display pages of content or information, and
HTTP POST was designed to perform some action (especially one that modified data). Therefore,
virtually all < form > implementations would make use of HTTP POST . The only ones that would use GET
would be those concerned with simple logic such as pagination. As a rule of thumb, anything that either
changed data at the remote host or required considerable processing to take place should have used
HTTP POST .

332

Part II: Learning Advanced Development Techniques

 However, both HTTP GET and HTTP POST can send output to the Web browser in just the same way. It ’ s
perfectly viable for an HTTP POST to result in output being sent to the Web browser — but what happens
if you click Refresh (or press F5) on such a page? Figure 13 - 5 illustrates just that.

Figure 13-5 Error message when

attempting to refresh the page

 The dialog shown in Figure 13 - 5 is a royal pain, but it exists to protect users from themselves. Who is to
say what would happen if the page were resubmitted? If this were an “ add to cart ” page, an item could
be added to the shopping cart more than once. If it were a “ pay for order ” page, the order could be paid
for more than once.

 Using PRG, this dialog never appears. Every HTTP POST (no matter how trivial) results in a subsequent
HTTP GET , initiated using a 302 redirect — in practice, something achieved using the header() function
in PHP. This tells the browser to request a different page, rather than render any output. You can store
whatever output of your page should be temporarily in the session, or even in a client - side cookie in a
pinch. Just don ’ t render it to the browser, as sending even a single byte of HTML will make redirection
impossible.

 This whole process is virtually invisible to the end user, but it means that should the user refresh the
page following an HTTP POST , it will, in fact, be the subsequent HTTP GET the user is refreshing, not
the POST at all. This GET should be benign. It should simply render output in a matter - of - fact kind of
way. The refresh, therefore, is of no great consequence.

 For more information about this, use Google to search for “ post - redirect - get, ” or see
 http://en.wikipedia.org/wiki/Post/Redirect/Get .

 The Toolkit in the Wild
 By this point in the chapter, you have built a mini toolkit that enables you to easily handle requests and
constraints as part of using an MVC design pattern in your projects. You have also learned a simple
method for using templates in native PHP.

 The built - in constraints in the request object you have created here are relatively simple and,
admittedly, could be quite easily implemented in raw PHP within your control page. Constraints really
come into their own when they become complex, such as when they need to query a data source to
determine validity. On occasions such as this, it may make sense to “ genericize ” your request object,
and then extend it to form multiple request objects (perhaps one per page) that handle a different range
of constraints in each case.

 Later in this chapter, you ’ ll learn about Smarty — an entirely different way of doing templating.

Chapter 13: Application Architecture

333

 True Templating
 You ’ ve now met “ native ” PHP templating, but what is “ true ” templating, and how is it different?

 Recapping Native PHP Templating
 The early parts of this chapter familiarized you with the concept of MVC. By now, you should realize
that approaching large PHP projects using some variety of templating makes sense.

 So far, all the templating you ’ ve looked at has revolved around the principle of populating a single,
multidimensional hash of content, and then injecting HTML (or some other markup language) with that
content using simple PHP statements such as if , for , while , or others.

 However, the very fact that you are required to discipline yourself into only using certain PHP keywords
within the templates points to some very clear pitfalls with this approach. Anything that requires self -
 discipline — rather than enforces hard - and - fast rules — is open to abuse.

 The Pitfalls of Native Templating
 The first and most obvious problem is that you are using a very powerful language (PHP) to do a very
simple job (spitting out content). The problem is not a performance issue, though. It ’ s simply that by
using PHP to take care of the content rendering, you are introducing yet another point in your project
where things can go wrong.

 Think of the common problems you face when writing big classes — typographical errors, misspelling
variable names, or accidentally reusing counter variables in heavily nested for loops. All these problems
are just as constant if you also use PHP for your templating.

 The second (and perhaps more serious) problem becomes obvious when you consider larger projects.
One of the big advantages of using MVC in PHP projects is that the view (that is, any templates
required) can be delegated to developers skilled in the art of design and HTML, but possibly not so
skilled with PHP. This enables the relatively expensive software architects and engineers to work
on the heavy - duty PHP driving the model of the project, and the less - expensive Web developers to
work on the interface.

 As producing valid, semantic, and accessible XHTML/CSS fast becomes an art form in and of itself, this
not only makes economic and commercial sense, it enables individuals to play to their strengths. Few
PHP gurus have an encyclopedic knowledge of the subtle nuances of IE6 Quirks Mode.

 However, if you choose to use PHP templating, then the Web developers have no choice but to write in
PHP. Admittedly, there ’ s not much PHP they need to know. It ’ s the kind of PHP that could easily go on a
cheat sheet. The problem is not so much one of a learning curve, but rather one of danger. PHP, after all,
does not restrict what these Web developers may or may not use in their templates. Rather, they must
restrict themselves. Infinite loops, dangerous system calls, and other potentially critical mistakes are just
a tiny typographical error away.

 If there were some way to enable Web developers to render the output of a page using flexible tags as
part of an arbitrary language, rather than using PHP, this problem could easily be negated. Smarty
provides just such a solution.

334

Part II: Learning Advanced Development Techniques

 True Templating with Smarty Templates
 Smarty is a package for PHP that enables developers to easily prepare output for a template, and then
leave the template to display it in whatever way it sees fit.

 Smarty is unique in that it provides not just simple “ dump value ” methodology, but also allows loops,
conditionals, and the traversing of multidimensional arrays. In a nutshell, it replicates all the traditional
simple PHP methods used in native PHP templating, without using PHP at all.

 Another big advantage of Smarty is its speed. Believe it or not, it actually works by creating native PHP
from the template. That native PHP is then cached, such that if the template is not changed with
subsequent requests, the template itself does not have to be translated into PHP again. It is simply pulled
straight from the cache and executed. After that first initial execution, there is no speed penalty
whatsoever.

 Installing Smarty
 Installing Smarty is straightforward. Unlike many other template engines, however, it is not a traditional
PEAR package, so you have to download and install it manually.

 Currently, Smarty resides at www.smarty.net .

 The following instructions assume you ’ re running on Mac OS X, UNIX, or Linux. If you ’ re running
on Windows, instructions are provided at http://smarty.incutio.com/
?page=SmartyInstallationWindows . After you have downloaded it, unpack it:

root@linuxvm:~# tar -xzvf Smarty-2.6.2.tar.gz
Smarty-2.6.2/
Smarty-2.6.2/COPYING.lib
Smarty-2.6.2/.cvsignore
Smarty-2.6.2/BUGS
Smarty-2.6.2/demo/
...
Smarty-2.6.2/misc/smarty_icon.README
Smarty-2.6.2/misc/smarty_icon.gif
root@linuxvm:~#

 Next, you must shift the libraries provided by Smarty to somewhere PHP can see them. Generally, all
you need to do is copy the full contents of the libs/ subfolder into /usr/local/lib/php , like so:

root@linuxvm:~/Smarty-2.6.2# cp -r libs/ /usr/local/lib/php

 Next, you must hook up your application to use Smarty. Immediately beneath the PHP files that will be
using Smarty in your application, you must create directories called templates , templates_c , cache ,
and configs :

root@linuxvm:~# cd public_html/tests/prophp6/mvc/
root@linuxvm:~/public_html/tests/prophp6/mvc# mkdir templates_c
root@linuxvm:~/public_html/tests/prophp6/mvc# mkdir configs
root@linuxvm:~/public_html/tests/prophp6/mvc# mkdir templates
root@linuxvm:~/public_html/tests/prophp6/mvc# mkdir cache

Chapter 13: Application Architecture

335

 Mercifully, Smarty is sympathetic to the needs of real - world projects, for which configuration steps such
as these might not always be possible (such as when your PHP scripts reside in multiple directories). You
can also manually specify where these folders should exist from within your PHP code. You will learn
how later in this chapter.

 Next, you need to set some permissions on two of these folders: template_c and cache . Set the
ownership of these folders to be that of the username of your Web server. In most cases, this is
the nobody user, but it may also be apache or various others. If you are unsure, you can check by
issuing the following:

ps axuw | grep httpd | grep -v grep | awk ‘{print $1}’ | tail -1

 What is important here is that this user, and the group of which that user is a member, can read and
write to these folders freely. Set permissions as follows:

chown nobody.users ./cache
chown nobody.users ./template_c
chmod 770 ./cache
chmod 770 ./template_c

 The mode 770 means that the owner of these folders may read, write, and execute the contents, and that
no one else may. If this bothers you, and you are unable to become the root on this machine, you may
want to use 775 instead, which allows others read and write access. You may, however, rightly deem this
to be a security risk.

 Using Smarty
 A typical Smarty implementation consists of a controller (much as before) ending in .php , and a
template file representing the view, this time ending in .tpl .

 smartytest.php

 Take a look at the following very simple example:

 < ?
require(‘Smarty.class.php’);

$objSmarty = new Smarty;
$strTemplate = “smartytest.tpl”;

$objSmarty- > assign(“test_variable”, “This is the value of my test variable”);

$objSmarty- > display($strTemplate);
? >

 You must also enter the template code for this script, which must reside in the folder called template
that you have created underneath this one.

336

Part II: Learning Advanced Development Techniques

 smartytest.tpl

 Take a look at the following code:

 < html >
 < head >
 < title > Untitled < /title >
 < /head >

 < body >
 This is my template! < BR >
 The value of the variable is: {$test_variable}

 < /body >
 < /html >

 You ’ ve probably guessed that the output from running smartytest.php (which then invokes the
output template smartytest.tpl) is something like the following:

This is my template!
The value of the variable is: This is the value of my test variable

 As you can see, you have assigned your Smarty template object a variable called test_variable , the
output of which has successfully been rendered by using the syntax {$test_variable } in the template
itself.

 This is simple enough, but how do you go about expressing arrays, displaying content conditionally, and
taking advantage of all the functionality traditionally available in the native PHP templating discussed
earlier?

 Linear Arrays in Smarty

 Pushing a linear array to Smarty and then recursing its contents are relatively simple. Consider the
following code in your PHP control script:

$objSmarty- > assign(“FirstName”,array(“John”,”Mary”,”James”,”Henry”));

 As you can see, you can assign PHP variables to your Smarty template object in exactly the same way as
you would assign a normal garden - variety string. To render it, you typically use the Smarty equivalent
of a for loop, as shown here:

{section name=x loop=$FirstName}
 {$FirstName[x]} < BR >
 {/section}

 The output is predictable enough:

John
Mary
James
Henry

Chapter 13: Application Architecture

337

 Associative Arrays in Smarty

 You can approach associative arrays (hashes) in a very similar manner to how you approach linear
arrays. Consider the following control code to supply the Smarty template:

$arHash[“Name”] = “Ed”;
$arHash[“Age”] = 27;
$arHash[“Location”] = “London”;
$objSmarty- assign(“Writer”, $arHash);

 Again, the approach for assignment appears to be very similar. The following shows how you can now
render the output in your template:

The author of this chapter is {$Writer.Name}, {$Writer.Age} years of age,
currently residing in {$Writer.Location}.

 Notice the simple syntax of {$X.Y} , where X is the name of the Smarty variable, and Y is the key from
the hash that has been assigned to it. This yields the following output:

The author of this chapter is Ed, 27 years of age, currently residing in London.

 Conditionals in Smarty

 What if you want to display content only if a certain condition is met? This would be of particular
interest to you in displaying error messages. You would want to display the error only if an error has
definitely occurred.

 You assign variables in your controller as follows:

$objSmarty- > assign(“isError”, 1);
$objSmarty- > assign(“ErrorText”, “You did not specify a search term.”);

 The following template logic can support this:

{if $isError == 1}
 The following error occurred: {$ErrorText}
{/if}

 As you can see, a conditional expression is very similar to what you would use in PHP to perform the
test. This will render only the introductory text, and the error itself, if isError is set to 1 :

The following error occurred: You did not specify a search term.

 To prove this to yourself, change the assignment to isError in your controller to 0 . The output is not
rendered at all.

 This is somewhat laborious, though. In native PHP templating, you would probably just check whether
an error message has been defined. You can also do that in Smarty:

{if $ErrorText}
 The following error occurred: {$ErrorText}
{/if}

338

Part II: Learning Advanced Development Techniques

 This completely negates the need to explicitly tell Smarty whether an error exists. It can determine this
for itself by looking for a non - blank value in the conditional.

 Rewriting search.php with Smarty

 Now you can put these skills into practice with a slightly more complex example. Using Smarty, you can
quite easily rewrite the search.php and search.phtml pair from the first part of the chapter.

 Look at the content you are creating in search.php so that you know what you have to reproduce using
Smarty. Currently, by the time it reaches search.phtml , the $displayHash variable may contain the
following:

 HADPROBLEMS — A true / false variable, which, again, you can represent as an ordinary
variable in Smarty

 PROBLEMS — An array of strings, each of which is a problem that has been experienced, only to
be echoed if HADPROBLEMS is set to true

 Quickly modify search.php so that it looks like the following. The shaded area indicates the code that ’ s
been modified or added from the original version:

require_once(“constants.phpm”);
require_once(“request.phpm”);
require_once(“constraint.phpm”);
require_once(“constraintfailure.phpm”);

$strTemplateFile = “s_search.tpl”;

require(“Smarty.class.php”);
$objSmarty = new Smarty;

$objRequest = new request();
$blHadProblems = ($objRequest- > IsRedirectFollowingConstraintFailure());

if ($blHadProblems) {
 $objSmarty- > assign(“HADPROBLEMS”, “true”);
};

if ($blHadProblems) {
 $objFailingRequest =
 $objRequest- > GetOriginalRequestObjectFollowingConstraintFailure();
 $arConstraintFailures = $objFailingRequest- > GetConstraintFailures();
 $problemArray = Array();
 for ($i=0; $i < =sizeof($arConstraintFailures)-1; $i++) {
 $objThisConstraintFailure = & $arConstraintFailures[$i];
 $objThisFailingConstraintObject =
 $objThisConstraintFailure- > GetFailedConstraintObject();
 $intTypeOfFailure = $objThisFailingConstraintObject- > GetConstraintType();
 switch ($intTypeOfFailure) {
 case CT_MINLENGTH:

❑

❑

Chapter 13: Application Architecture

339

 $problemArray[] = “Your search term was too short.”;
 break;
 case CT_MAXLENGTH:
 $problemArray[] = “Your search term was too long.”;
 break;
 case CT_PERMITTEDCHARACTERS:
 $problemArray[] = “Your search term contained characters I
 didn’t understand.”;
 break;
 };
 };
};

if ($problemArray) {
 $objSmarty- > assign(“PROBLEMS”, $problemArray);
};
$objSmarty- > display($strTemplateFile);

 Create a corresponding template file in the templates subfolder called s_search.tpl :

 < !DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” >

 < html >
 < head >
 < title > Ed’s Search Page < /title >
 < /head >

 < body >
 < H1 > Ed’s Search Page < /H1 >
 < hr >
You can search for types of steak here.
 < BR > < BR >
{if $HADPROBLEMS}
 < B > Sorry, there were problems with your search! < /B >
 {section name=x loop=$PROBLEMS}
 {$PROBLEMS[x]}
 {/section}
{/if}
 < FORM METHOD=”GET” ACTION=”searchresults.php” >
 < TABLE BORDER=”0” >
 < TR >
 < TD > Type of Steak < /TD >
 < TD > < INPUT TYPE=”TEXT” NAME=”typeOfSteak” > < /TD >
 < /TR >
 < /TABLE > < BR >
 < INPUT TYPE=”SUBMIT” >
 < /FORM >
 < /body >
 < /html >

 Run the revised search.php and try to generate errors as you did before. You ’ ll notice that the output
upon receiving such errors is almost exactly the same, so the template conversion has been a resounding
success.

340

Part II: Learning Advanced Development Techniques

 There is one small problem, however. If you generate only one error, you will still receive a message
stating that “ there were problems, ” rather than “ there was a problem, ” with your search.

 In the original .PHTML native PHP template, you accounted for this using the following:

 < B > Sorry, there
 < ?=((sizeof($displayHash[“PROBLEMS”]) > 1) ? “were problems” : “was a problem”)? >
with your search! < /B >

 Thankfully, you can account for this in Smarty, too. All you need to do is measure the size of the array
and adjust the output accordingly, exactly as you do in native PHP:

 < B > Sorry, there {if $PROBLEMS[1]}were problems{else}was a problem{/if}
with your search! < /B >

 There is some slight cheating going on, however. There is no way in Smarty to measure the size of an
array without calling upon PHP code, so the code simply checks for the existence of a second element in
the array. If it exists, then the user sees the plural text. Otherwise, the user sees the singular text.

 If you modify your template to use this new code, you should find that the output of the script is exactly
the same now as it was when you used native PHP templating in the first half of the chapter. You could,
of course, rewrite searchresults.php and searchresults.phtml using the same technique. Why not
try doing that now?

 Advanced Smarty
 Now that you ’ ve familiarized yourself with basic Smarty use, it ’ s worth looking in a little more detail at
some of the more advanced features it offers.

 Run - time Configuration

 As mentioned at the beginning of this section, you may well find yourself confronted with situations in
which creating subfolders under every single location where .php files reside is undesirable. Thankfully,
Smarty enables you to specify these locations at run - time:

$smarty- > template_dir = ‘/web/www.mydomain.com/smarty/guestbook/templates/’;
$smarty- > compile_dir = ‘/web/www.mydomain.com/smarty/guestbook/templates_c/’;
$smarty- > config_dir = ‘/web/www.mydomain.com/smarty/guestbook/configs/’;
$smarty- > cache_dir = ‘/web/www.mydomain.com/smarty/guestbook/cache/’;

 Multidimensional Arrays

 Multidimensional arrays may be treated in much the same manner as their single - dimensional
counterparts, whether they are associative, linear, or a mixture:

$multiArray = Array(Array(“x”,”o”,”x”),Array(“o”,”x”,”x”),
Array(“o”,”o”,”x”)); $objSmarty - > assign(“TicTacToBoard”, $multiArray);

 Tie this to the following template:

Chapter 13: Application Architecture

341

 < TABLE BORDER=”1” >
 {section name=y loop=$TicTacToBoard}
 < TR >
 {section name=x loop=$TicTacToBoard[y]}
 < TD > {$TicTacToBoard[y][x]} < /TD >
 {/section}
 < /TR >
 {/section}
 < /TABLE >

 This is the expected, familiar Tic - Tac - Toe board, with X winning down the left - to - right diagonal.

 Variable Modifiers

 Variable modifiers may be used by template designers to perform very simple modifications to
the variables they have received:

$smarty- > assign(‘bookTitle’, “Professional PHP5”);

 Couple this with the template code:

{$bookTitle|replace:”PHP5”:”PHP6”}

 The output is very much as expected.

 Functions

 Smarty defines a number of functions in its language. It considers some to be built - in — that is, unable to
be modified or overwritten. The functions provided in Smarty are really better described as methods,
in that they do not generally perform any function on an input, unlike the modifiers you have just met
(such as replace , which changes its input before rendering it).

 One very useful example is the strip function, which enables you to neatly lay out HTML properly
tabulated and spaced, safe in the knowledge that any extraneous white space will be stripped out before
it is sent to the browser. This makes the templates very easy to maintain:

{strip}
 < table border=”0” >
 < tr >
 < td >
 Here is some content.
 < /td >
 < /tr >
 < /table >
{/strip}

 This is a great deal easier for a human being to read. When the HTML is sent to the browser, however,
how it looks behind the scenes is far less important than how it is displayed to the user. The {strip } tag
removes any whitespace for you that might disturb the output:

 < table border=”0” > < tr > < td > Here is some content. < /td > < /tr > < /table >

342

Part II: Learning Advanced Development Techniques

 Capturing Output

 Sometimes, rather than simply spit the parsed template output directly to screen, you may want to
capture it into a variable. For example, this can be particularly useful should you want to render XML
content using Smarty, and then pass it through an XSL stylesheet to actually render it to the Web
browser. Alternatively, you may not want to pass the rendered content at all. For example, you may be
sending an HTML e - mail. Here, Smarty is very useful indeed, as you may have discovered in Chapter 11 :

// capture the output
$strOutput = $objSmarty- fetch(“index.tpl”);

 Simply assign the rendered template ’ s output HTML to the variable $strOutput , with which you can
then do whatever you desire.

 Including Other Templates

 Smarty even enables you to include other templates, which will be parsed in the normal way. You could
use this to add common headers and footers to your pages:

{include file=”header.tpl”}

 Further Reading

 The functionality of Smarty is enormous and far beyond the scope of this chapter. Having been
introduced to some examples of standard usage, however, you should now be well equipped to explore
its features further.

 The obvious starting point is the Smarty reference site at www.smarty.net/manual/en/ All modifiers,
functions, and even obscure configuration parameters are documented here in full. Conveniently, the
documentation is divided into two sections that target both programmers (the people doing the PHP)
and HTML template developers.

 When to Use Smarty vs. Traditional Templating
 The decision to use Smarty over traditional native PHP templating should not be taken lightly. Although
Smarty is clearly a great tool for simple templating, its functionality is still only a subset of what might
be needed in large - scale projects.

 Although it can be extended with native PHP through the use of the {php } and {/php } tags, doing so
rather defeats the purpose of using safe templates in the first place. Indeed, Smarty ’ s own Web site states
that “ embedding PHP code into templates is highly discouraged. ”

 The skills and experience of any other developers working with you on the project are likely to be the
deciding factor. If you are the sole engineer working on a project, it is almost certainly better to use
native templating. Conversely, if the project requires a number of designers and HTML specialists
working on the output from your scripts, Smarty templates are a much safer bet, because they allow
such individuals to manipulate the display logic of your application to their hearts ’ content, without
touching the PHP code behind it.

Chapter 13: Application Architecture

343

 A Spot of Modeling Work
 So far, this chapter has examined the controller (the bit that handles the user journey through the site and
all of the logic associated with it) and the view (the bit at the front end that handles the display of output
data and the capture of input data); but you ’ ve not yet examined the model in much detail.

 This is a conscious decision. The model is the bit that is truly independent of your choice of controller
implementation, or your choice of templating system. It doesn ’ t matter; it should never change. Your
model should comprise a suite of reusable, modular classes — smart building blocks that you can click
in and out of your project as and when you need.

 In Chapter 7 , you saw how the classes that comprise your application ’ s model can be divided broadly
into utility classes (which do useful things such as sending e - mail, handling external data providers, and
so forth) and business objects (which represent useful entities in your application such as orders,
customers, products, and so forth).

 The difference in nomenclature is revealing: a utility class , and a business object . As a rule of thumb, a
utility class is never instantiated. It is used statically because, by its very definition, there should never
be any difference between one instance and another. Conversely, a business object is almost always
instantiated (although it may have static methods), as one or more instances are usually recorded in the
underlying data source. Put another way, your application will typically have many “ users, ” but only
one “ e - mail sending facility. ”

 Earlier in this chapter, you learned that if you have the separation of MVC just right, you should
theoretically be able to drop your business and utility classes into an entirely different application — not
even a Web - based application — and they will still work. As it happens, there ’ s a good reason you might
want to do that, and it ’ s called unit testing .

 Introducing Unit Testing
 Ensuring that a component does exactly what you want it to do is an essential step in application
development. As you have already learned elsewhere in this book, it is vital that components are tested
 before they are integrated within the bigger picture application. Always write the application around the
core components. Never write your core components around your application.

 For slightly more complex classes (or even hierarchies of several classes), devising a suitable test strategy
can appear to be quite tricky. The temptation to resort to spitting out huge chunks of data with
var_dump() or using the error log can be overwhelming, but you should resist it, because you can save
yourself a great deal of time by using a prewritten unit testing framework . Not only that, but a coherent,
thorough, and professional approach to testing is something you can actively demonstrate to your clients
(or your boss), whereas having hundreds of error_log() statements is not.

 Here ’ s a quick checklist for you. Does the following approach seem familiar?

 1. Write the class.

 2. Produce a short test script that require s the class, instantiates it, calls some methods, and spits
out some output.

 3. Run the script.

344

Part II: Learning Advanced Development Techniques

 4. Check the output of the script against what you expected (in your head).

 5. If the output looks good, move on. If not, adjust the class and repeat Steps 3 and 4 until the
output appears to work.

 6. Possibly many weeks later, integrate the component into the mother application.

 It sounds almost comical, but this kind of process is actually more widespread than you might think. The
problem with approaching your component testing this way is that it ’ s neither thorough nor systematic.
In other words, not only are you potentially testing only a small subset of your component, you ’ re also
taking longer than you really need to. Furthermore, if you do find problems, your short test script won ’ t
be of much help when it comes to tracking them down. You ’ ll have to decide whether your test is
successful or not every time you test.

 Thankfully, there is another way. Revise the component test workflow to look more like this:

 1. Design the interface (but not the implementation) of the class.

 2. Create a test suite for the (empty) class, and check that it tests okay.

 3. Write the implementation of the class.

 4. Run the test suite again.

 5. Fix any errors that are causing unexpected results and then go back to Step 4.

 6. Integrate the component into the other application.

 Next, you ’ ll take a look at these steps in more detail to discover exactly what is meant by a “ test suite. ”
The concept of the test case is covered a little later in this chapter.

 Designing the Interface of Your Class

 Let ’ s first recap some object - oriented programming (OOP) edicts. In OOP design, it ’ s often said that
the most important part of your object hierarchy is the interface, and the least important part is the
implementation.

 This might sound odd, but think of it as follows. If you ’ re designing a user class, what ’ s actually going
through your head?

 “ I ’ ll need to have username, first name, last name, and encrypted password properties, and I ’ ll need methods to tell
my application which security groups this user belongs to, and a method to work out how long it ’ s been since their
last login, and . . . ”

 You ’ re being smart without even realizing it. You ’ re listing to yourself the methods and member
variables of the object. This is the business analysis of object modeling. What you ’ re not trying to do
is to figure out how long it has been since the user ’ s last login. In fact, there ’ s probably more than one
way to do that. It doesn ’ t really matter. Whichever way you go about it won ’ t affect your interface.

 In fact, the interfaces of your application ’ s suite of classes is subjective. In other words, some analytical
skill is required in translating paper specifications into a class hierarchy with methods and member
variables. Conversely, making those methods do what they say they will do is objective. It either works as
expected or it doesn ’ t work. As a PHP professional, you might prefer to have a junior software engineer

Chapter 13: Application Architecture

345

(if you ’ re fortunate enough to have one working under you) handling this detail, so that you can make
the big decisions at the top.

 Approaching this in terms of a unit - testing - friendly workflow is simple. On the first draft of your class,
 leave all the methods completely blank . Use nothing but white space between opening and closing braces.
You ’ ll look at this in more detail later in this chapter.

 Creating a Test Suite for Your Class

 With the skeleton class to test, it ’ s not a bad idea to go ahead and create your test suite. Right now, you ’ ll
learn about the theory. The specifics of how to implement this with a particular testing framework are
covered later in this chapter.

 The function of a test suite is to provide a simple, black - box solution for testing your class. When
invoked, it hooks directly into the important functionality of your class, performs a series of tests, and
then states whether those tests were successful. It is truly an appliance.

 The nature of these tests is important to understand. You implement a test suite by extending what is
known as the test case class . This is provided as part of the unit testing framework you choose to use
(in this case, PHPUnit, which is covered in much more detail later in this chapter). You must be careful
with certain administrative bits and pieces in the extended class (largely relating to instructing the test
unit how to instantiate and destroy the test class); but after that, it ’ s up to you to provide a test method
for every actual method in the test class.

 The test methods must be named according to the unit testing framework ’ s requirements so that it
knows to execute them as part of the test suite ’ s run - time behavior. They are responsible for testing the
core functionality of the test class.

 Each test method follows the same basic pattern:

 1. Decide upon some input parameters for the test class method.

 2. Determine (as a human being!) the result expected to be returned from the test class method,
based on those input parameters.

 3. Call that method (with those input parameters) and trap the result.

 4. Assert the result to be equal to the expected result.

 You don ’ t need to worry about doing anything else. You should assume that the test suite functionality
provided by your unit testing framework knows what to do when that assertion is or isn ’ t true. This is
certainly true of PHPUnit, which you ’ ll meet shortly.

 By creating your test case class, you have effectively provided the modus operandi — that is, the
operational inner workings — for your test suite.

 At this stage, you would run your black box for the first time and watch it fail spectacularly. It will fail,
of course, because you don ’ t have any implementation in your class yet, so by definition any values
returned won ’ t be what is expected (or “ asserted ”). You should, however, at least be able to get your first
idea of what the test results will roughly look like when the implementation has been taken care of.

346

Part II: Learning Advanced Development Techniques

 Writing the Implementation of Your Class

 Without altering the interface of your class, go about writing your code to make it work. There ’ s no need
to test anything as you go; this is what the test suite is for. However, you may want to do a syntax check
along the way to ensure that you haven ’ t made any typos. A test suite is really for rooting out logic
errors, rather than compilation errors.

 In case you ’ ve not encountered it before, you can perform a syntax check at the command line by using
 php with the - l parameter, followed by the filename of the class or script whose syntax you want to
check.

 If your class talks to a database, it may not be a bad idea to also check any database SQL queries before
you walk away from the implementation. Because PHP isn ’ t closely linked into the database server,
rooting out malformed SQL syntax may be easier to do now than after you discover that your test suite
fails on one or more methods. In addition, keep in mind that because data in a database can change
independently from your code, you ’ ll find it tricky to accurately predict the expected output of methods
that do query a database.

 Take a look at the following sample query, pulled from a typical user class:

$sql = “SELECT group_id FROM user_group WHERE user_id = $user_id”;

 Substitute the $user_id for a sensible value and confirm that the query works in the PostgreSQL (or
other) console. If it does, you ’ re in business.

 Assuming that your PHP syntax and SQL queries check out okay and you ’ ve implemented all your
methods, you can go ahead and start testing.

 The Second Run

 Fire up your test suite black box once more. Now that you ’ ve implemented your class, you should have
more luck with the test results than the last time you ran it. If your class didn ’ t pass all the tests, it ’ s time
to retrace your steps using traditional debugging techniques.

 After your test suite runs with a 100 percent success rate, you can be fully confident that your class is
ready for the production environment, and you can accordingly integrate it into the mother application.

 Introduction to PHPUnit
 PHPUnit is developed by Sebastian Bergmann and is one of a small number of PHP unit testing
frameworks currently available. You might prefer PHPUnit to some of its competitors because it is free,
easy to use, and, best of all, available from PEAR.

 Perhaps rather confusingly, two packages are readily available for PHP, both of which are named
PHPUnit and both of which perform essentially the same task. Indeed, they even share a similar
implementation. The implementation examined in this chapter is by Sebastian Bergmann, which is better
suited for PHP 6.

 The PHPUnit package is effectively a suite of classes, rather than a single class. This chapter focuses on
its test case and test suite functionality. There is more to PHPUnit, of course. If you ’ re curious, when

Chapter 13: Application Architecture

347

you ’ re finished with this chapter, you may want to take a look at www.sebastian - bergmann.de/
PHPUnit/ , which goes into more detail.

 Those of you with a Java background may have already drawn comparisons to JUnit (www.junit.org),
and you would be right to do so; PHPUnit is, in fact, loosely based on JUnit. Much of this chapter ’ s
content may, therefore, already be familiar to you. What you may not be familiar with is just how easily
this powerful methodology can be put to use in PHP 6.

 Installing PHPUnit

 A good starting point is to get your PHP setup equipped with PHPUnit. It is not part of the PEAR
Foundation Classes, so you need to install it yourself. Even if you have previously installed it, it might
not be a bad idea now to check whether you are running the latest version.

 Use the standard PEAR syntax to execute an installation of PHPUnit. If you are running the latest
version, PEAR will tell you. If not, or you don ’ t have it installed, you will see output similar to the
following (on a UNIX - like environment):

root@genesis:~# pear install PHPUnit
downloading PHPUnit-0.6.2
...done: 11,551 bytes
install ok: PHPUnit 0.6.2
root@genesis:~ #

 If you want (or need) to install manually (for example, on a production environment in which you are
not blessed with root access to the server), simply visit the PEAR package page at www.phpunit.de/ .
Download and decompress the archive into an appropriate place. After everything ’ s installed correctly
you can continue safely.

 Test Cases

 This section takes a look at how to create a test case using PHPUnit. Assume that you have a test class
saved in a separate file, testclass.phpm . Because you ’ re still looking at the theory of PHPUnit, it
doesn ’ t matter too much at this stage what ’ s in that class. Something similar to the following will suffice
for now:

 < ?php
class TestClass {
 private $testVar;

 function myMethod($strParam) {
 $this- > testVar = $strParam;
 return(‘expected result’);
 }

};

 You can now create the test case in a separate PHP file, testcase.phpm . The first two lines of the test
case should include both the necessary PHPUnit class and the test class file(s):

require_once(“testclass.phpm”);
require_once(“PHPUnit.php”);

348

Part II: Learning Advanced Development Techniques

 Assuming that you used PEAR to install PHPUnit, it should be able to find PHPUnit.php just fine. If
not, and you had to install it manually, then you may have to help PHP out by pointing it to the correct
file, as follows:

require_once(“/home/ed/myphplibs/PHPUnit.php”);

 In this case, PHPUnit is installed in /home/ed/myphplibs .

 Now take a look at how to extend the PHPUnit_TestCase class to form your very own test case with
some pseudocode:

class MyTestCase extends PHPUnit_TestCase
{
 var $objMyTestClass;

 function __construct($name) {
 $this- > PHPUnit_TestCase($name);
 }

 function setUp() {
 $this- > objMyTestClass = new TestClass();
 }

 function tearDown() {
 unset($this- > objMyTestClass);
 }

 function testMyMethod() {
 $actualResult = $this- > objMyTestClass- > myMethod(‘parameter’);
 $expectedResult = ‘expected result’;
 $this- > assertTrue($actualResult == $expectedResult);
 }
}

 You can now go through this step by step. Consider the first line of code:

class MyTestCase extends PHPUnit_TestCase

 Name the class whatever you want. Ensure that it extends PHPUnit_TestCase , however.

 Next, take a look at this line:

var $objMyTestClass;

 The only member variable your extended test case class needs is a single instance of your test class.
However, in more complex situations you may want to use multiple instances of the same class, or even
more than one class. However, try to keep the number of classes involved in any given test case to a
minimum, for the sake of simplicity. Certainly, you should never group unrelated classes together in a
single test case.

Chapter 13: Application Architecture

349

 Consider this code:

function __construct($name) {
 $this- PHPUnit_TestCase($name);
}

 The constructor for your extended test case class falls here. Its only job is to call its parent constructor.
Note the non - optional $name parameter, however, which is used by the test suite class.

 Now take a look at the following code:

function setUp() {
 $this- > objMyTestClass = new TestClass();
}

function tearDown() {
 unset($this- > objMyTestClass);
}

 These two methods are best described as virtual constructors and destructors. These are called before
and after the various test functions are executed. Usually, their only job is to instantiate a working
instance of your test class into the member variable you defined earlier.

 The following code is where the real meat of your test case is defined:

function testMyMethod() {
 $actualResult = $this- > objMyTestClass- > myMethod(‘parameter’);
 $expectedResult = ‘expected result’;
 $this- > assertTrue($actualResult == $expectedResult);
}

 Here, you declare one method for each method of your test class that you want to test. The method must
begin with the word test in order for it to be automatically executed by the test suite. You should name
the method test , followed by the name of the real method in your test class. This makes things a great
deal clearer if you need to look at the test case again.

 The actual functionality of this method is largely up to you. Ultimately, however, you will be doing four
things:

 1. Declaring (that is, hard - coding) or determining a test parameter to pass into your test class ’ s
method

 2. Declaring or determining the expected result based on that parameter

 3. Calling the method with that parameter and capturing the actual result

 4. Comparing the actual result to your hypothesis

350

Part II: Learning Advanced Development Techniques

 That comparison should be done using one of a number of assertion methods provided by PHPUnit. It is
these assertions that enable the test suite to report test results. Essentially, it is the accuracy of your
assertions that will be reported.

 Numerous assertion methods are available — assertEquals , assertTrue , assertFalse ,
 assertNotNull , assertNull , assertSame , assertNotSame , assertType , and assertRegExp . They
pretty much all do exactly what you ’ d expect from their name. However, if you ’ re curious and need
definitive explanations, check out /usr/local/lib/php/PHPUnit/Assert.php or the file
Assert.php in the directory in which you installed PHPUnit.

 You may be wondering why having so many assert methods is necessary. Surely all comparisons can
be handled using assertEquals and making liberal use of appropriate built - in PHP functions, right?
This is true. All the variations are really just a convenience to make your code a little easier to read, and
to enable you to avoid using double negatives and so forth. In later versions of PHPUnit, the assertions
actually provide assertion - specific details with any failed test (such as showing the two types in
question in assertType , and which characters don ’ t actually match when comparing two strings).

 The Test Suite

 Having developed your test case class, using it in a test suite is actually a relatively simple mechanism.
You might name the following testsuite.php :

 < ?php
require_once ‘testcase.php’;
require_once ‘PHPUnit.php’;

$objSuite = new PHPUnit_TestSuite(“MyTestCase”);
$strResult = PHPUnit::run($objSuite);

print $strResult- > toString();
? >

 Replace MyTestCase with the actual name of your test case class. If you run this from the command line
(as opposed to using your Web browser), you ’ ll get output that looks something like this if things
worked:

TestCase objMyTestClass- > myMethod() passed

 It will look like the following if things didn ’ t work:

TestCase objMyTestClass- > myMethod() failed: expected true, actual false

 Note that if you want to run in a Web browser, rather than at the command line, you should use toHTML
rather than the toString method on the output string so that carriage returns are converted to < br / >
and so forth.

Chapter 13: Application Architecture

351

 Why Bother?
 At first glance, it might be difficult to see the immense advantages arising from using this method of
testing over a more quick - and - dirty method involving the server error log (such as the one somewhat
contemptuously described earlier). The following sections describe why you should be using unit testing
frameworks.

 Regression Testing

 The vast majority of code you ’ ll ever work on will, at some stage, need to evolve. It may not necessarily
be you who works on it, but you can be fairly certain that it won ’ t remain untouched for too long.

 For example, you might need to rework an existing method to make it provide exactly the same
functionality as it did before but with a big performance increase. The only way to do this is to
completely rewrite the method, keeping the interface the same but with an optimized inner algorithm.
In this kind of example, your testing suite is immensely useful. Simply run it before and after your new
algorithm has been developed, and confirm that you get the same results both times.

 A more likely scenario is that your class must be extended with a new method to support some new
business requirement. Even then, your testing suite is useful in its unmodified form. You can ensure that
your new method does not in any way impact the functionality of any other methods. After verifying
this, you can simply extend your test case class to test your new method.

 Either way, you can see that using unit testing frameworks for this kind of testing (commonly known as
 regression testing) makes good sense.

 Framework Usability

 Your test case classes may have wider uses than you think. Other classes you develop with similar or
identical interface functionality can be quickly and reliably tested using your existing test suites.

 In particular, you may have inherited classes that overwrite the functionality of their parent class.
Alternatively, taking advantage of PHP 6 ’ s object model, you may have classes that implement abstract
interfaces. A good example of this is objects representing entities stored in a database, which will almost
certainly have getProperty and setProperty methods, and so forth, as you saw in Chapter 7 . With
little or no adaptation, you can use a standard test suite to provide an instant and reliable commentary
on the functionality of such generic classes.

 Demonstrable Quality Assurance

 A professional software development environment can often contain a complex hierarchy of individuals
involved on any given project — from the project manager right through to the lead architect, the
software engineers, the designers, and others.

 In this kind of environment, literally tens of thousands of lines of code can be churned out every day. It
is simply impossible for the project ’ s lead architect to test every single component his or her developers
produce.

352

Part II: Learning Advanced Development Techniques

 With this kind of structured testing methodology, the management buzzword of empowerment becomes
an achievable reality. That is to say, engineers can be safely trusted to test their own code, because this
methodology encourages a thoroughness that is often absent in other, more haphazard component -
 testing techniques. Lead architects can easily standardize quality assurance across all component
production, and have far greater confidence in his or her team ’ s output as a result.

 The formal nature of this process is likely to be viewed favorably by nontechnical individuals with a
keen interest in the progress of a project (such as project and account managers).

 Reducing the Burden of Functional Testing

 It ’ s often said that the least sexy part of the project life cycle is functional testing. Whether this statement
is fair or not, it is certainly an additional cost that must be borne and budgeted for.

 By requiring the development team to take ownership of the functional testing of its own components,
the need for exhaustive and extensive functional testing of the completed application can be greatly
reduced. It is not eliminated entirely, however; and as you will learn in Chapter 20 , it is still vitally
important.

 Developing the Model in Isolation

 In a typical Web application development project, the most contentious aspect of the build itself is often
the look and feel and user journey — in other words, it is often the information architecture
(“ wireframes ”), site map, and page treatments that are signed off last. Because these together form a
dependency that holds up the development of any finished HTML, software engineers can often be
waiting with little to do, wondering when they can get started.

 However, debate over the user journey, page layout, site maps, navigation, or creative implementation
shouldn ’ t necessarily mean that decisions over business objects cannot be taken in a separate
developmental branch. For example, if you know that user registration is a requirement in the finished
application, and you can make educated guesses about which fields will be required during registration,
then it is within your power to deduce that a business class (probably a data - bound object, as covered in
Chapter 7) called User must be built, as well as a utility class called Registration .

 Moreover, you can probably deduce what member variables and methods these classes should have, too.
Develop those methods in isolation within a test suite, test them, and be confident that you can “ drop
them ” into the application once other elements of the project plan have fallen into place.

 Summary
 In this chapter, you learned about the model - view - controller (MVC) design pattern, and its
importance in sound application architecture.

 As well as learning the theory behind MVC methodology, you were introduced to two very different
ways in which that methodology can be followed. First, you met an MVC toolkit that enables you to
implement a request and constraint object hierarchy in your projects to better enforce the separation
between model, view, and controller.

Chapter 13: Application Architecture

353

 Then you were introduced to the concept of templating, and how and why it proves to be an excellent
example of best - practice MVC compliance. You also met post - redirect - get (PRG) and saw why the best
implementations of MVC make use of it.

 You also looked at Smarty templates in some detail, and saw just how easily you can convert native PHP
templates into Smarty templates in just a few minutes, as well as how some of the advanced features of
Smarty can provide a valid templating choice for all but the most complex projects.

 Finally, you looked at the role of the model in the MVC paradigm, and how unit testing can provide a
useful mechanism for developing the model in isolation.

 In Chapter 14 , you ’ ll look at some ready - made, off - the - shelf toolkits that (among other functionality) try
to provide MVC - like architecture out - of - the - box. It ’ s an entirely different approach to “ rolling your own ”
as you did in this chapter, but, as you ’ ll see, it does have its benefits.

 PHP Application
Framewor ks

 As the name suggests, this book is a professional title, pitched squarely at developers looking to
make a career out of writing code in PHP — or hobbyists who want to do it “ how the pros do it. ”

 Such titles are available for virtually all Web application development languages — .NET, classic
ASP, ColdFusion, JSP, and so forth — because for each and every one of those languages there is a
need to differentiate between “ how to get started ” and “ how to do it right. ”

 PHP, however, probably needs books like this more than any other development language. As
mentioned numerous times throughout this book, one of PHP ’ s greatest assets is also one of its
greatest weaknesses — its simplicity and shallow learning curve. Like a powerful European sports
car, it is phenomenally dangerous in the wrong hands. Therefore, throughout this book, we have
been at pains to demonstrate best practices across every programming discipline — objects and
classes, database abstraction, event - driven programming, logging and debugging, communicating
with users, and much more.

 This chapter introduces you to something supremely useful: the concept of application frameworks ,
which remove a lot of the hassle for you by forcing you to do things right from the word “ go. ”
Make no mistake, the previous 13 chapters were vital to give you the “ why ” as well as the “ how ” —
 but now you know “ why ” you can make life considerably easier for yourself by letting something
else take care of the best practices for you.

 Introduction to Frameworks
 In simple terms, a framework is a pre - prepared set of code that provides you with a pre drawn
pencil sketch on which to paint your completed application. In some cases, the framework is
simply a collection of PHP classes. The onus is then on you, as a developer, to use them properly.
In other cases, a more intimate relationship with the application server is achieved, which means
that compliance is enforced — rather than requested.

356

Part II: Learning Advanced Development Techniques

 A huge number of frameworks have made it into the marketplace. Virtually all are free. Some are better
maintained than others. Some are better supported than others. Crucially, only one has a notional nod of
assent from the PHP development community. In each case, though, they attempt to address a number
of core objectives — some frameworks implementing more than others.

 Application Structure
 If you ’ ve ever been unfortunate enough to encounter a junior developer ’ s PHP project for maintenance
purposes, you no doubt have been unsure exactly where to start. Furthermore, you ’ ve no doubt
discovered a myriad of files and folders with no obvious place for anything, some code in classes, some
not; some HTML held in templates, some written from code; some images in the database, others on disk —
it ’ s probably not a pleasant memory, to say the least.

 That PHP leaves the structure and layout of an application to the developer is something of a double -
 edged sword. In the right hands, it allows for enormous flexibility. There is no “ scaffolding ” required to
start a project, as there is in the likes of Ruby on Rails (RoR), and so no constraints are placed from the
outset. In the wrong hands (or in the absence of comprehensive architectural documentation), this can
understandably lead to confusion.

 Many application frameworks attempt to redress this by imposing on the developer a semi - rigid
application structure. This can be as simple as a preferred directory hierarchy — perhaps allocating a
folder for utility classes, one for templates, and one for business objects. At a more sophisticated level, it
can get intimately involved at the HTTP request level, and “ route ” requests through a set of classes that
must conform to a predetermined structure.

 This is particularly true in the case of those frameworks that implement model - view - controller (MVC) to
its natural conclusion. In such frameworks, an HTTP request to /admin/edituser.php?id=12345
would not be permitted. Instead, an equivalent request such as /user/edit/12345 might automatically
invoke an “ edit ” method of a “ user ” class — a class that must implement a very specific interface.

 Such an approach is pretty radical. It disposes entirely with the concept of PHP as a linear scripting
language, and instead divides applications into component parts driven by user behavior. As you ’ ll see
later in this chapter, this can speed up authoring code and reduce unnecessary duplication — but it can
also be a little unduly constraining for advanced developers.

 Separation of Code and Display Logic
 Even when a PHP framework chooses not to implement the kind of radical MVC methodology
discussed in the previous section, virtually all will insist upon a best - practice separation of code and
display logic, as endorsed throughout this book.

 This can be achieved in a number of different ways. Some will simply look to separate scripts into two
sets of PHP code (one for behavioral logic, and another for display logic with intermingling HTML).
Others will make use of an off - the - peg templating platform such as Smarty. Others will “ roll their own ”
templating system.

357

Chapter 14: PHP Application Frameworks

 You should only look for a framework that uses a proprietary templating system if you are absolutely
certain you are happy sticking with that framework for life, given that individual template portability is
likely to be impossible. That ’ s a decision you should make in the context of understanding that certain
PHP frameworks are labors of love rather than money, and are not necessarily going to be maintained or
supported forever.

 Validation
 Validation of user input against pre - defined constraints is vital for any application, big or small. Certain
requirements are undeniably straightforward to implement yourself — such as checking that an e - mail
address is valid. Others are more complex — perhaps guarding against creating a duplicate record in a
database table.

 Whatever the requirement, a consistent and easily maintainable approach to validating user input is a
must. Rather than roll your own, many frameworks provide their own implementation, covering
constraint class definitions, erroneous input reporting, fault stacks, and constraint polymorphism.

 In a simple project, most will never be used, but that uniform approach provides a degree of scalability
and maintainability that simply “ hacking something in yourself ” just won ’ t do.

 Naturally, if you have your own suite of validation classes to which you are heavily wedded, most
frameworks will not shirk at their usage in lieu of those that come in the box.

 URL Rewriting
 There ’ s no doubt that as Web applications have become more sophisticated, so, too, have the URLs that
comprise all HTTP GET requests become more bloated, long, and unattractive.

 It ’ s not just aesthetic. There are genuine issues with long and complex URLs. Users copying and pasting
URLs to friends and colleagues using IM, e - mail, or Facebook often make errors when URLs are too
long. Memorability becomes an issue when URLs need to be cited only from recall. Search engines prefer
short, human - readable URLs that relate to the content contained therein. In addition, complex “ techie ”
URLs help expose the inner workings of your application — a temptation for hackers.

 Therefore, many frameworks provide some mechanism for URL rewriting — either static (such that, as a
developer, you may specify that, for example, /Home , in fact, represents /home.php) or dynamic (as
mentioned in the earlier discussion of MVC).

 This is normally achieved through close cooperation with the Web server. It is, after all, the Web server
that first intercepts HTTP requests before handing them over to PHP. It is therefore nearly impossible to
achieve the effects discussed previously without changes at the server level. Normally, with Apache, this
is accomplished with mod_rewrite .

 Thankfully, as a developer, you don ’ t have to think about it too much. Most frameworks that provide
URL rewriting will either configure your Web server for you or provide simple step - by - step instructions
for you to follow. You do need to consider what implications this might have when deploying to your
production environment, though — a topic we ’ ll return to later.

358

Part II: Learning Advanced Development Techniques

 Form Persistence
 When you first started building Web applications, you probably suffered a brief, mild depression when
you realized that while HTML has support for a whole host of Windows - like form controls (text boxes,
radio buttons, check boxes, drop - down lists, and so forth), HTTP has no support for persisting the value
or state of those controls between requests.

 Therefore, even with the most fantastic validation (as discussed earlier), the onus is still on the developer
to ensure that the value of those controls is persisted between requests, such that if users are “ thrown
back ” to a form with errors (missing a mandatory field, for example), everything they have entered thus
far is retained — exactly as they would expect.

 This means that text boxes contain the text that the user entered, radio buttons and check boxes are
selected exactly as they were by the user, and drop - down lists are dropped down to (as you might have
guessed) whatever option the user chose.

 This isn ’ t just important for form validation. In certain Web applications, it may be valuable to retain a
value even if a user navigates through to another page. For example, a sophisticated “ advanced search ”
page may contain several form controls. If users want to modify their search terms slightly to generate a
whole new set of results, it is rather churlish to expect them to reenter every single criterion. By storing
form state data in sessions, a more “ Windows - like ” experience can be achieved.

 It ’ s certainly possible to achieve this effect yourself. Indeed, when you started working with PHP, you
probably hacked in some procedural code to achieve exactly this. As you progressed, you probably
wrote your own library for regular re - use. (How many of those do you have now? Most likely a few.)

 Most frameworks have such functionality available out of the box — indeed, it ’ s one of the features
that ’ s more difficult to turn off. Therefore, if you ’ re going to use one of the frameworks discussed in this
chapter, it ’ s best to dump your own in favor of the officially sanctioned route.

 Object Relation Mapping
 Earlier in this book, you were introduced to the concept of Object Relation Mapping (ORM). You will
recall that it provides a layer of abstraction when building applications that feature an object model with
a suite of “ business objects ” — classes that represent instances of entities stored in a database.

 By using ORM, common database functions (such as creating, reading, updating, and deleting) can be
performed without writing any SQL. The ORM layer takes care of it for you. This not only means you
wind up writing less code (thus speeding up development and reducing errors), it also adds a degree of
portability to other database platforms not normally realistic or achievable.

 You have also learned about DataBoundObject — an abstract class you can extend to provide a simple
business object implementation, which connects seamlessly to an underlying database table. As you
might expect, most PHP application frameworks appreciate the benefits of this approach and therefore
provide you with something quite similar, an implementation of their own — called something suitably
pithy and catchy like GenericObject , DataObject , or ActiveRecord . They ’ re all designed to do much
the same thing, although few provide an implementation quite as architecturally correct as
 DataBoundObject , as they do not necessarily take advantage of the full feature set of PHP 6.

359

Chapter 14: PHP Application Frameworks

 As with so much in these frameworks, you aren ’ t duty - bound to make use of their pre - supplied
implementation — unless, that is, you are planning to use one of the MVC frameworks in which the
model and view are inextricably linked, something you ’ ll learn more about later.

 Database Abstraction
 In Chapter 6 , you were introduced to PHP Data Objects (PDO), and you were coached intensely on why
it is a Good Thing. It is hoped that, therefore, you ’ re already fully sold on the concept of database
abstraction, and why PDO — the officially PHP-sanctioned mechanism for database abstraction — is the
way to go.

 It is a pity, then, that a number of PHP frameworks still choose to provide their own abstraction classes.
They may have the best of intentions at heart, but by attempting to force authors to go against the
generally accepted principles of PHP, they are encouraging poor code. You should take the moral high
ground and boycott such homemade abstraction layers. Stick to PDO, and throw anything that comes in
the framework in the trash.

 Utility Classes
 Most (if not all) of the PHP frameworks you ’ ll encounter will include a number of utility classes that
don ’ t really seem to fit anywhere. These are classes that perform useful library functions such as
encryption, sending e - mail, authenticating users, and so forth — things that (arguably) should have been
built into the PHP language in the first place.

 You ’ ve probably built up your own library of code over time, so you shouldn ’ t necessarily shy away
from sticking with it if the idea of throwing it away in favor of someone else ’ s code jars a little. Library
code tends to be a deeply personal thing, and working with the unfamiliar library code base of a
framework is a little like putting on a pair of someone else ’ s shoes — they may be functional, but they
just don ’ t feel right.

 Also remember that utility classes provided by frameworks are likely to be afterthoughts at best — or at
worst, something thrown in from the framework author ’ s own personal collection.

 Use Case Scenario
 Before you learn about some framework contenders, let ’ s consider a sample application that might
benefit from the framework treatment.

 The application that follows has a simple task: enable users to sign up for a company ’ s e - mail newsletter.
It must validate first name, last name, and e - mail address; ensure that the record does not already exist
in the database; throw errors if any validation errors occur; and thank the user after they are successfully
signed up. It ’ s a common PHP application, but consider the following challenges you face:

 Validating first name, last name, and e - mail address

 Creating a business object that represents a newsletter subscriber

❑

❑

360

Part II: Learning Advanced Development Techniques

 Ensuring that a subscriber does not already exist before accepting the submission

 Informing users of errors, and allowing them to correct them

 Persisting form data

 Using database abstraction to ensure portability

 Separating business logic from display logic

 All of these challenges should be reasonably straightforward if you ’ ve already read the rest of this book
in detail — it ’ s certainly all been covered; but you would be forgiven for sighing when you realize just
how much work you must do to build what is, after all, a pretty trivial application.

 In the sections that follow, you will see examples of three PHP application frameworks. In one, you ’ ll
implement a fully complete application that does exactly what has been discussed earlier. In the others,
you ’ ll see a short overview so that you can try them out for yourself.

 They all attempt to make the headaches cited previously far easier to contend with by employing some
of the techniques you met earlier in this chapter. They all have their pros and cons. Later in this chapter,
you ’ ll see the kinds of considerations you must take into account when deciding which framework to
deploy in your own enterprise project.

 Underlying Database
 It ’ s worthwhile having a sample database in place when exploring these frameworks, and a sample
database table within that database. To continue the example requirement suggested earlier, you can
create a single database table that contains details of subscribers to the company ’ s newsletter.

 Start up a console on your development server, and create a database called newsletter :

$ /usr/local/pgsql/bin/createdb newsletter
CREATE DATABASE

 With that database created, create a user called newsletter that can connect to that database. For the
purposes of this chapter, use the password password . You might want to pick something more secure
for a production environment (just a thought). Here ’ s the code:

$ /usr/local/pgsql/bin/createuser newsletter -P
Enter password for new role:
Enter it again:
Should the new role be a superuser? n
Should the user be allowed to create databases? n
Should the user be allowed to create more new roles? N
CREATE ROLE

 Great. Now open the database in the PostgreSQL console and create the table. Here ’ s the SQL syntax
you ’ ll need:

CREATE TABLE “subscriber” (
 “id” SERIAL PRIMARY KEY NOT NULL,
 “first_name” character varying (128),

❑

❑

❑

❑

❑

361

Chapter 14: PHP Application Frameworks

 “last_name” character varying (256),
 “email_address” character varying(256) NOT NULL,
 “date_of_signup” date NOT NULL,
 “time_of_signup” time NOT NULL,
 “remote_addr” character varying(15) NOT NULL
);

GRANT ALL PRIVILEGES ON “subscriber” TO “newsletter”;
GRANT ALL PRIVILEGES ON “subscriber_id_seq” TO “newsletter”;

CREATE UNIQUE INDEX “em_unq_idx” ON “subscriber”(“email_address”);

 That unique index at the end isn ’ t strictly necessary, as you ’ ll be sense - checking to ensure that the
current subscriber does not exist as part and parcel of your data input validation; but it ’ s good from a
belt - and - braces point of view. Should you ever want to extend your application to allow data
manipulation from a third - party source, the uniqueness of your subscriber database can be guaranteed.

 An Example Application
 With your sample database in place, it ’ s now time to start looking at some individual frameworks. They
all seek to achieve much the same goal, but they all approach it slightly differently. Like boxers versus
briefs versus going “ commando, ” a lot of it comes down to personal preference.

 Let ’ s start by looking at a complete application written in a newcomer PHP framework developed
especially for PHP 6 — Ulysses .

 Introducing Ulysses
 Ulysses is an open - source, object - oriented PHP application development framework available free under
the BSD (Berkeley) license. This means that regardless of the ultimate goal of your project (altruistic,
commercial, or downright Mephistophelean), it ’ s free to download, use, and deploy. Support and
documentation is available on a commercial basis.

 Installing Ulysses
 To download Ulysses, visit the project ’ s Web site at www.ulyssesframework.com . You ’ ll be redirected
to the project ’ s home page on SourceForge, from which you can download the latest version.

 Move the downloaded .tgz file into /usr/local/lib/php — or wherever your PHP libraries are
normally kept. Then, unarchive it using the following standard syntax:

tar -xzvf ulysses-3.0.23.tar.gz

362

Part II: Learning Advanced Development Techniques

 You should see that a folder /usr/local/lib/php/ulysses is created, resplendent with numerous
classes and helper files.

 Ulysses is only compatible with the Apache Web server, and you must configure virtual hosts
that make use of the framework in a certain fashion so as to enable the “ short ” URLs you ’ ll
meet later. Apache must also be compiled with mod_rewrite support. If you follow the best -
practice installation discussed in Appendix D, this will be the case. If not, see either
 http://httpd.apache.org/docs/1.3/mod/mod_rewrite.html (for Apache 1.3.x)
or http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html (for Apache 2.x) for details
about how to get it installed.

 Ulysses Web applications work on a “ one per virtual host ” basis — you cannot have multiple Web sites
operating on a single host. A virtual host entry will look something like the following. If you are creating
a brand - new virtual host, you should place such an entry right at the very tail end of your Apache
configuration file (httpd.conf):

 < VirtualHost >
ServerName newsletter.example.com
ServerAdmin ed@example.com
CustomLog /home/ed/logfile_newsletter common
ErrorLog /home/ed/errlog_ newsletter
DocumentRoot /home/ed/public_html/newsletter
Alias /ulysses/ “/usr/local/lib/php/ulysses/”
RewriteEngine on
RewriteRule ^(\/)([A-Z]{1,})(.*)$ /ulysses/php/controller.php?page=$2$3 [QSA,PT]
RewriteRule ^/$ /Home [QSA,L,R]
 < /VirtualHost >

 Following are the four vital lines:

Alias /ulysses/ “/usr/local/lib/php/ulysses/”
RewriteEngine on
RewriteRule ^(\/)([A-Z]{1,})(.*)$ /ulysses/php/controller.php?page=$2$3 [QSA,PT]
RewriteRule ^/$ /Home [QSA,L,R]

 The first line maps a virtual directory to the path to the PHP framework. The second enables the Apache
URL rewriting engine. The third and final lines tell Apache to redirect any requests that begin with a
capital letter to the Ulysses framework ’ s core controller.

 This means that requests that look like the following will be redirected to the Ulysses engine:

http://www.example.com/Home

 However, requests that look like the following will not:

http://www.example.com/home

 This means that images, CSS stylesheets, and everything static will not be served through the engine —
 so long as you don ’ t use capital letters to begin directory names.

363

Chapter 14: PHP Application Frameworks

 The final line makes requests to / (for example, http://www.example.com/) direct to the “ starting ”
servlet for your application — normally called Home .

 Working with Ulysses
 With Ulysses installed on your Web server, it ’ s available to all of your PHP projects from this point on —
 you don ’ t have to install it ever again. It ’ s now time to start making use of the code base it has to offer.

 Create a project folder for your example application. In the virtual host example cited earlier, you ’ ve
used /home/ed/public_html/newsletter — so just create a folder that matches the virtual host
you ’ ve created for your application.

 Although Ulysses doesn ’ t enforce an especially rigid directory structure, there are a few folders you must
create:

/your/web/root/tpl
/your/web/root/phpm
/your/web/root/phpm/business
/your/web/root/phpm/utility
/your/web/root/phpm/controls
/your/web/root/phpm/custom
/your/web/root/phpm/settings

 Any other folders you might create (for images, CSS stylesheets, JavaScript, and so forth) are entirely up
to you.

 However, keep in mind the following:

 You must place your page templates (which normally contain HTML) under tpl .

 You must place your business objects under phpm/business , and utility classes under
 phpm/utility .

 You must place your application settings under phpm/settings .

 Keep to these simple rules and you should be fine.

 Setting Up
 There are a few files you ’ ll need to create under phpm/settings . These define the root database for your
application (although you can define as many as you want), and the directory location in which the
in - built session class will save its sessions.

 Create phpm/settings/constants.phpm as shown here:

 < ?
 define(“BASE_SESSION_PATH”, “/tmp”);
? >

❑

❑

❑

364

Part II: Learning Advanced Development Techniques

 For the purposes of this exercise, you ’ re storing your sessions on disk — something that, if you ’ ve been
following along in this book from the first page, you know is frowned upon. You can, of course, use a
TMPFS or RAM drive instead — a much better bet when you deploy onto production servers.
Alternately, you can swap the Ulysses session class for one of your own, which uses databases or
 memcache .

 Now you need to tell your application where to find your database. Create phpm/settings/dbaccess
.phpm as follows:

 < ?
 // Definitions for connecting to a postgreSQL database.
 define(“DATABASE_USERNAME”, “newsletter”);
 define(“DATABASE_PASSWORD”, “password”);
 define(“DATABASE_HOSTNAME”, “localhost”);
 define(“DATABASE_BASENAME”, “newsletter”);
 define(“DATABASE_DRIVER”, “pgsql”);
 define(“PDO_DSN”, DATABASE_DRIVER . “:dbname=” . DATABASE_BASENAME .
 “;user=” . DATABASE_USERNAME . “;password=” . DATABASE_PASSWORD .
 “;host=” . DATABASE_HOSTNAME);
? >

 If you ’ ve deviated from the database name, username, or password suggested earlier in this chapter, this
is where you need to change it. Of course, being PDO, you could just as easily specify a MySQL database
here.

 Finally, you need to tell Ulysses to include these database settings, so create phpm/requires.phpm as
shown here. (Ulysses will automatically load this class for every page.)

 < ?
require(“$appDir/phpm/settings/dbaccess.phpm”);
? >

 Don ’ t worry that you haven ’ t defined the variable $appDir — you don ’ t need to, as Ulysses will figure it
out for you.

 Business Objects
 Only one business object is required in this hypothetical application — one that represents a subscriber
in your newsletter subscription database. Ulysses prefers that you use DataBoundObject as your
 “ active record ” pattern class — but, in practice, you can use whatever you wish. DataBoundObject is,
however, included out - of - the - box.

 You can save the following code as phpm/business/subscriber.phpm :

 < ?php

class Subscriber extends DataBoundObject {

 protected $FirstName;
 protected $LastName;
 protected $EmailAddress;

365

Chapter 14: PHP Application Frameworks

 protected $DateOfSignup;
 protected $TimeOfSignup;
 protected $RemoteAddr;

 protected function DefineTableName() {
 return(“subscriber”);
 }

 protected function DefineRelationMap() {
 return(array(
 “id” = > “ID”,
 “first_name” = > “FirstName”,
 “last_name” = > “LastName”,
 “email_address” = > “EmailAddress”,
 “date_of_signup” = > “DateOfSignup”,
 “time_of_signup” = > “TimeOfSignup”,
 “remote_addr” = > “RemoteAddr”));
 }

}

? >

 If you ’ ve read Chapter 7 , this code should look pretty straightforward — you ’ ve created a business
object called Subscriber that is allied to the table subscriber in your database, and you have mapped
the necessary columns out.

 There ’ s a method missing, though. One central requirement of this application is “ no duplicates ” — that
is, someone should only be able to sign up once. Therefore, you should add a standard static method
that will check for the existence of a specified e - mail address:

 static function checkExists($strEmail) {
 $strEmail = strtolower($strEmail);
 $strSQL = “SELECT \”id\” FROM \”subscriber\” WHERE
 lower(\”email_address\”) = :email”;
 $objPDO = PDOFactory::GetPDO();
 $objStatement = $objPDO->prepare($strSQL);
 $objStatement->bindParam(‘:email’, $strEmail, PDO::PARAM_STR);
 $objStatement->execute();
 $arRow = $objStatement->fetch(PDO::FETCH_ASSOC);
 $id = $arRow[“id”];
 return ($id > 0);
 }

 Add this method to your class and save it. You ’ ll call this method whenever your user enters an e - mail
address, to ensure that it does not already exist. If it does, then this method will return true and your
application will decline to save the record (and inform the user as such).

 You must also make Ulysses aware of your subscriber class, so modify phpm/requires.phpm and
add the following line:

require(“$appDir/phpm/business/subscriber.phpm”);

 In so doing, the business class will be loaded with every HTTP request made to the Ulysses engine.

366

Part II: Learning Advanced Development Techniques

 Servlets
 In the Ulysses framework, HTTP GET and POST requests are made to servlets . If you are familiar with
Java, then this is already a well - known phenomenon to you. It is a class with two mandatory abstract
methods: one to handle GET requests, and another to handle POST requests.

 A request on your Web server made to www.example.com/Home will, in fact, look for a servlet called
 HomeServlet . A request made to www.example.com/Signup will look for a servlet called
 SignupServlet — and so on.

 Each servlet is trained to automatically seek out a matching page template for that servlet when called
using HTTP GET . The expected behavior of any servlet invoked using HTTP POST is to redirect the user
to another servlet via HTTP GET — a best - practice model discussed earlier in this book called Post -
 Redirect - Get (PRG).

 You can create your first servlet now. Create phpm/servlets/homeservlet.phpm as shown here:

 < ?

 class HomeServlet Extends Servlet {

 public function __construct($objSmarty, $objSession, $queryStringParms,
 $strPageIdentifier) {

 parent::__construct($objSmarty, $objSession, $queryStringParms,
 $strPageIdentifier);
 }

 public function _doGet($objSmarty, $objSession, $queryStringParms) {

 }

 public function _doPost($objSmarty, $objSession, $queryStringParms) {

 }

 }
? >

 Not much to it, is there? This is what ’ s known as a blank servlet — a servlet that does nothing other than
try to load the corresponding page template and display it — provided it is called using HTTP GET . If
HTTP POST is used, the Ulysses engine will automatically cause the browser to request the page again
using HTTP GET .

367

Chapter 14: PHP Application Frameworks

 You can now create a dummy template to go with it. Create the following template and save it as tpl/
home.tpl . Note the capitalization — templates must always begin with a lowercase letter, and the
corresponding class with an uppercase letter:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns= “http://www.w3.org/1999/xhtml” lang= “en” xml:lang= “en” >
 < head >
 < /head >
 < body >
 < h1 > Home Page < /h1 >
 < /body >
 < /html >

 With the servlet and template created, you should now be able to request the URL /Home (note the
capital letter) on your virtual host, and see exactly what you would expect — an empty page, but for the
heading “ Home Page. ”

 This isn ’ t very exciting, so let ’ s change that. In Ulysses, you add elements to a page using controls — a bit
like the controls you might have used in Visual Basic. Controls are used for input fields such as text
boxes and radio buttons, but also for labels that display dynamic information. Controls must be declared
in both the servlet and the template — in the template so the Ulysses engine knows where to combine
them with your HTML, and in the servlet so they can be declared as classes.

 That all page controls are classes might seem extreme at first, but when you consider that classes can be
overridden and extended, it starts to make sense. Don ’ t like the text box class that comes in the box? Just
extend it and override whatever methods you like.

 Modify the Home Page servlet you just created (servlets/homeservlet.phpm) so it looks like the
following. (You ’ re putting the additional code in the constructor and the member variable declaration space.)

 < ?

 class HomeServlet Extends Servlet {

 public $objTitle;
 public $objFirstName;
 public $objLastName;
 public $objEmail;
 public $objStatusLabel;
 public $objSuccessLabel;

 public $objFirstNameLabel;
 public $objLastNameLabel;
 public $objEmailLabel;

 public function __construct($objSmarty, $objSession, $queryStringParms,
 $strPageIdentifier) {

368

Part II: Learning Advanced Development Techniques

 $this- > objTitle = new Title(“Email Bulletin Signup”, “default”);
 $this- > objFirstName = new TextBox(“firstname”);
 $this- > objLastName = new TextBox(“lastname”);
 $this- > objEmail = new TextBox(“email”);

 $this- > objStatusLabel = new Label(“status”);
 $this- > objSuccessLabel = new Label(“success”);

 $this- > objFirstNameLabel = new Label(“firstnamelabel”, “First
 Name”);
 $this- > objLastNameLabel = new Label(“lastnamelabel”, “Last Name”);
 $this- > objEmailLabel = new Label(“emaillabel”, “Email Address *”);

 parent::__construct($objSmarty, $objSession, $queryStringParms,
 $strPageIdentifier);
 }

 public function _doGet($objSmarty, $objSession, $queryStringParms) {

 }

 public function _doPost($objSmarty, $objSession, $queryStringParms) {

 }

 }
? >

 You must also modify the ultra - simple template you created. Do that now, replacing the HTML with the
following:

 < ?xml version=”1.0” encoding=”utf-8”? >
 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >
 < html xmlns= “http://www.w3.org/1999/xhtml” lang=“en” xml:lang=“en” >
 < head >
 < tpl:title id=”default” / >
 < style type=”text/css” >
 .erroneous { color: red; }
 < /style >
 < /head >
 < body >
 < h1 > Signup < /h1 >
 < tpl:if $success neq “” >
 < div id=”submission” >
 < p class=”successText” >
 < tpl:label id=”success” / >
 < /p >

369

Chapter 14: PHP Application Frameworks

 < p class=”summaryText” >
 You can unsubscribe
 at any time by using the
 link at the top of the emails
 we’ll send you.
 < /p >
 < p class=”summaryText” >
 Why not visit our company web site?
 < a href=”http://www.example.com” > Click here < /a >
 to go there now.
 < /p >
 < /div >
 < tpl:else >
 < p >
 Hello; we’d very much like for you to sign up to our
 email newsletter.
 < /p >
 < p >
 We won’t sell your email address and it’s easy to
 unsubscribe (just click on the link at the top of one
 of our emails).
 < /p >
 < form method=”post” action=”/Signup” >
 < label for=”firstname” > < tpl:label id=
 “firstnamelabel” / > < /label >
 < tpl:textbox id=”firstname” / > < br / >
 < label for=”lastname” > < tpl:label id=
 “lastnamelabel” / > < /label >
 < tpl:textbox id=”lastname” / > < br / >

 < label for=”email” > < tpl:label id=”emaillabel” / > < /label >
 < tpl:textbox id=”email” / > < br / >
 < input type=”submit” value=”Sign Up” / >
 < tpl:if $status neq “” >
 < p class=”errorText” >
 < tpl:label id=”status” / >
 < /p >
 < /tpl:if >
 < br / > < br / >
 < i > * Required Field < /i >
 < /form >
 < /tpl:if >

 < /body >
 < /html >

 Fire up a Web browser and point it to /Home on your virtual host. You should see something that looks
like Figure 14 - 1 .

 OK, it ’ s not that pretty, but it ’ s more or less what you ’ d expect from a newsletter signup page.

370

Part II: Learning Advanced Development Techniques

 If you look again at the servlet, it should be reasonably easy to figure out what ’ s going on behind the
scenes:

$this- > objTitle = new Title(“Email Bulletin Signup”, “default”);
$this- > objFirstName = new TextBox(“firstname”);
$this- > objLastName = new TextBox(“lastname”);
$this- > objEmail = new TextBox(“email”);
$this- > objStatusLabel = new Label(“status”);
$this- > objSuccessLabel = new Label(“success”);
$this- > objFirstNameLabel = new Label(“firstnamelabel”, “First Name”);
$this- > objLastNameLabel = new Label(“lastnamelabel”, “Last Name”);
$this- > objEmailLabel = new Label(“emaillabel”, “Email Address *”);

 Each of these lines represents the declaration of a control on the page. The syntax for declaring a title
control (which emulates an HTML title tag) is simple — title text first, followed by an identifier:

$this- > objTitle = new Title(“Email Bulletin Signup”, “default”);

 The corresponding entry in the template is simple, too:

 < tpl:title id=”default” / >

 The Ulysses framework, when parsing the template, will look for an instance of the Title class declared
in the corresponding servlet, extract its textual value, and render the necessary HTML title tag:

 < title > Email Bulletin Signup < /title >

 Figure 14 - 1 Sample newsletter signup page

371

Chapter 14: PHP Application Frameworks

 Other controls work in a similar fashion. Labels and text boxes are declared in this example. Notice how
labels do not necessarily have to have an initial value — which is useful if you are using labels to
(maybe) display error messages on a conditional basis. The status label and success label work
exactly this way — and conditional syntax in the template ensures they are only displayed if they are
non blank:

 < tpl:if $status neq “” >
 < p class=”errorText”>
 < tpl:label id=”status” / >
 < /p >
 < /tpl:if >

 This template syntax may look familiar to you. Indeed, it should — it ’ s just the Smarty template engine
in disguise, something you met earlier in this book.

 Processing User Input
 Should you try to submit the data capture form as it stands, you ’ ll meet a 404 error — for the simple
reason that the target of the form does not exist. Review the template:

 < form method=”post” action=”/Signup” >

 As you can see, the form is attempting to post to /Signup , which implies that a servlet called
 SignupServlet must be created, and its _doPost() method populated.

 This servlet serves two functions: validating user input and, if it passes, saving the entry into the
database. It only has one ultimate course of action: passing control back to the original submitting
servlet. In so doing, it can “ talk ” to the servlet it is about to pass control back to, setting values of page
controls such as labels and text boxes.

 The following code comprises signupservlet.phpm in phpm/servlets . There ’ s no corresponding
template, as this servlet has no GET method:

 < ?

 class SignupServlet Extends Servlet {

 public function __construct($objSmarty, $objSession, $queryStringParms,
 $strPageIdentifier) {

 }

 public function _doGet($objSmarty, $objSession, $queryStringParms) {
 header(“Location: /Home”);
 exit(0);
 }

 public function _doPost($objSmarty, $objSession, $queryStringParms) {
 $objServlet = Servlet::GetReferringServlet();

 # Validate

Download at WoweBook.com

372

Part II: Learning Advanced Development Techniques

 $strFN = $objServlet- > objFirstName- > GetValue();
 $strLN = $objServlet- > objLastName- > GetValue();
 $strEM = $objServlet- > objEmail- > GetValue();

 $objServlet- > objEmailLabel- > strCSSClass = “”;

 If (strlen($strEM)<1) {
 $objServlet- > objEmailLabel- > strCSSClass = “erroneous”;
 };

 try {
 If (strlen($strEM)<1) {
 throw new Exception(“Sorry, you didn’t fill in all
 required fields. Please try again.”);
 };
 if (Subscriber::checkExists($strEM)==true) {
 $objServlet- > objEmailLabel- > strCSSClass = “erroneous”;
 throw new Exception(“Sorry, a subscriber by this
 address already exists. Please try again.”);
 };
 if (preg_match(‘/^[a-z0-9!#$% & *+-=?^_`{|}~]+
 (\.[a-z0-9!#$% & *+-=?^_`{|}~]
 +)*@([-a-z0-9]+\.)+([a-z]{2,
 6})$/ix’, $strEM) < = 0) {
 $objServlet- > objEmailLabel- > strCSSClass = “erroneous”;
 throw new Exception(“Sorry, that email address isn’t
 valid. Please try again.”);
 };
 } catch (Exception $e) {
 $objServlet- > objStatusLabel- > SetCaption($e- > getMessage());
 $objServlet- > redirectTo();
 };

 # TODO - Save here

 }

 }
? >

 You ’ ll notice there ’ s a TODO here. If all validation is successful, you want to save the record to the
database. You ’ ll fill that bit in shortly. For now, it ’ s omitted for clarity.

 Persistence
 The first thing you ’ ll notice is that there ’ s no explicit code to handle the persistence of user input controls
such as text boxes. Great news — it ’ s not needed. The Ulysses framework takes care of it for you. As
soon as you submit a page, its entire contents (or state) is captured and held in the session. If the user
returns to that page for any reason, the form will appear in exactly the state it was submitted.

373

Chapter 14: PHP Application Frameworks

 This holds equally true for non - user modifiable controls — labels, for example. If the value (that is,
content) of a label is modified either in the servlet itself or in a foreign servlet (as is perfectly
permissible), then that value is retained for the remainder of that user ’ s session.

 During application development, you may find this frustrating from time to time. You may want to
 “ reset ” a page to its natural state, and not have your test input cluttering up text boxes. What ’ s the
easiest way to do this? Simply flush your browser ’ s cookies. Your session will be lost, a new one
generated, and the page reset to its “ natural ” state.

 Validation
 A few checks are performed on user input during the signup process. The only non - optional field is an e -
 mail address; first and last name are considered optional. For that reason, all checks relate to the e - mail
address field — is it present, is it valid, and, most important of all, has it already been submitted?

 Only if all three checks are passed will the user ’ s input be saved. Otherwise, the user is admonished
suitably and asked to correct it.

 The first thing you ’ ll notice is that the value of the user input isn ’ t retrieved using $_POST . Instead,
Ulysses gives you access to a foreign servlet ’ s controls, as shown here:

 $objServlet = Servlet::GetReferringServlet();
 $strFN = $objServlet- > objFirstName- > GetValue();
 $strLN = $objServlet- > objLastName- > GetValue();
 $strEM = $objServlet- > objEmail- > GetValue();

 This is useful, because there may well be times when you don ’ t want raw POST data. Since you can
access any method the page control exposes, you are not just limited to GetValue() . Indeed, that
method can be overloaded, meaning the manner in which its value is returned can be refined within the
control class itself — and not within your servlet.

 Ulysses does not provide any special validation routines. You can either roll your own or use one of the
many available PEAR classes to do the trick. In this case, the validation is so simple that native PHP code
is used to check that the e - mail address is valid, that it has been provided, and that it is not already in the
database.

 Should any of those checks fail, an exception is thrown. When it is caught, the status label of the
original servlet is set to an error message passed to the exception. Its redirectTo() method is then
invoked, which throws the user back to the home page:

} catch (Exception $e) {
 $objServlet- > objStatusLabel- > SetCaption($e- > getMessage());
 $objServlet- > redirectTo();
 };

 When the home page reloads, the updated status label indicates to the user that there is a problem, and
the user is invited to correct the submission.

374

Part II: Learning Advanced Development Techniques

 Notice how CSS classes are used to highlight incorrectly filled fields:

$objServlet- > objEmailLabel- > strCSSClass = “erroneous”;

 This enables the e - mail address label to be highlighted in red, which shows the user at a glance where
the error lies.

 A Quick Check
 Before proceeding any further, prove to yourself that the code works by attempting to submit the form
with an empty e - mail address field. You should see something similar to Figure 14 - 2 .

 Figure 14 - 2 Result of submitting a form without an e - mail

address

 When viewed on your screen, the “ Email Address ” field is highlighted in red, and a message
admonishing the user is presented.

 Click Refresh in your browser, and you ’ ll see that the page state is still retained — and, importantly,
there ’ s no resubmission of the form.

 Saving Input
 Remember the earlier block of servlet code where you saw a comment saying TODO ? That was where you
were going to save the subscriber if the submission was successful (that is, all validation checks were
passed).

375

Chapter 14: PHP Application Frameworks

 You can put that code in now by substituting that comment with the following. This code will only ever
be reached if no exceptions are invoked that cause premature termination of the servlet:

 $objSubscriber = new Subscriber(PDOFactory::GetPDO())
 $objSubscriber- > setDateOfSignup(date(“Y-m-d”));
 $objSubscriber- > setTimeOfSignup(date(“H:i:s”));
 $objSubscriber- > setRemoteAddr($_SERVER[“REMOTE_ADDR”]);
 $objSubscriber- > setEmailAddress($strEM);
 $objSubscriber- > setFirstName($strFN);
 $objSubscriber- > setLastName($strLN);
 $objSubscriber- > Save();
 $subID = $objSubscriber- > getID();
 if ($subID < = 1) {
 $objServlet- > objStatusLabel- > SetCaption(“Sorry, a technical
 fault meant we couldn’t save
 your details. Please try again
 in a minute or two.”);
 $objServlet- > redirectTo();
 } else {
 $objServlet- > objStatusLabel- > SetCaption(“”);
 $objServlet- > objSuccessLabel- > SetCaption(“Thank you,
 your details have been saved. Your
 subscriber ID is “ .
 sprintf(“%08d”, $subID) . “.”);
 $objServlet- > redirectTo();
 };

 If you read Chapter 7 , the preceding code should be pretty straightforward to follow. You are creating a new
instance of the Subscriber class, setting its properties, and saving it. Note that you are using PDOFactory
to retrieve an instance of the PDO object. PDOFactory is included in the Ulysses framework, so you don’t
need to explicitly include() or require() it in your code. When called with no parameters, the Ulysses-
provided variant of PDOFactory will use the database settings you defined earlier in phpm/settings/
dbaccess.phpm, so now would be a good time to double check that you have them entered correctly.

 Having saved it, the code checks to ensure that a valid entry was created in the database by testing its ID.
One of two possible routes is as follows. If it is unsuccessful (that is, not saved), then the origin servlet ’ s status
is set to an error message, and the redirection performed. If it is successful (that is, saved), then the origin
servlet ’ s status is made blank (that is, no error), and the success text label set to a congratulatory message.

 Heading Home
 Finally, you can prove to yourself that all is working correctly by filling out the form with no mistakes
and submitting it.

 You should see something similar to Figure 14 - 3 .

 You may want to check the underlying PostgreSQL database just to be sure the record went in
successfully, and that the ID in the database matches the one displayed on the screen (52 in Figure 14 - 3).

 A Quick Summary
 Well, there it is — the Ulysses framework in a nutshell. Cast your mind back to earlier in the chapter where
you considered the key features of most frameworks. How well does Ulysses fit the brief in each case?

376

Part II: Learning Advanced Development Techniques

 Application structure — Ulysses uses a servlet metaphor, not dissimilar to Java servlets. In so
doing, it consigns the original concept of a PHP “ script ” to the trash can — and enforces a rigid
structure in the process. There is some mandatory directory organization for things such as
utility classes and business objectives, but not to the restrictive extent required by some other
frameworks.

 Separation of code and display logic — Each servlet in a Ulysses application has a corresponding
template. In fact, such templates are based loosely on the Smarty platform. Because templates
are built by placing controls on a page, this template paradigm is rigorously enforced. Indeed,
any attempt to place HTML code inside a servlet will cause a parser error.

 Validation — This is one area where Ulysses is weak. There ’ s no built - in system for validation —
 you are instead encouraged to roll your own or make use of PEAR. Having said that, the page
control metaphor makes validation exceptionally easy, and the presentation of errors to the user
is made with considerably less hassle by virtue of the servlet metaphor.

 URL rewriting — Not only is URL rewriting built into Ulysses, unlike many other frameworks it
is non - optional and completely transparent. This ensures a degree of security. There is no scope
for users to attempt to invoke the controller PHP script themselves, and many cross - site -
 scripting (XSS) vulnerabilities are rendered null and void.

 Form persistence — This is Ulysses ’ sweet spot: it ’ s completely automatic. Every page servlet that
features a form submitting to another servlet will have its state saved automatically at the time
of submission. This means the value of every text box, label, check box, radio button, drop - down
list — indeed, any control whatsoever — will be saved into the user session. Even if the user
then navigates to another page and then back again to the form entry page, that state will be
retained transparently.

❑

❑

❑

❑

❑

 Figure 14 - 3 Result of submitting a correct form

377

Chapter 14: PHP Application Frameworks

 Object Relation Mapping — Ulysses reproduces verbatim the DataBoundObject class you met
earlier in this book — and it ’ s included as part of the archive you downloaded earlier. Having
said that, you are free to use your own. Unlike many frameworks, business objects are not tied
inextricably to page logic, so should you prefer to use an active record class from PEAR, you can
do so easily.

 Database abstraction — As a PHP 6 – specific framework, Ulysses does not itself feature any
database abstraction layers. PHP 6 best practice is to use PDO, and that ’ s exactly what you ’ re
expected to do. If, for some reason, you prefer to use another layer, or indeed no layer at all,
that ’ s fine, too — again, Ulysses doesn ’ t get too heavily involved in database access.

 Utility classes — Finally, how does Ulysses fare on the provision of utility or “ helper ” classes?
Not well, but that ’ s by design. This is an exceptionally lightweight framework at just 18KB, and,
as such, authors are encouraged to either write their own or make use of the PEAR repository.

 Some Other Contenders
 You ’ ve now met the Ulysses framework in detail, and built a sample application that showcases some of
its neat features. Indeed, it ’ s the favorite framework of the authors of this book — the one we use every
day ourselves. It does some things very well indeed, but there may be times you find it a little
lightweight, given the amount of code you ’ ll still end up writing. That “ lightweightedness ” gives you
enormous flexibility — but some may prefer true “ point and shoot ” coding.

 In addition, although Ulysses is downloadable free of charge, free documentation is non - existent. It is
only provided to commercial customers, along with telephone and e - mail support — meaning you have
to pay for it.

 Finally, although it is in heavy use around the world, Ulysses does not have the official seal of approval
from anybody in the official PHP community itself — meaning that just occasionally, client IT
departments may raise an eyebrow at its selection.

 With those three factors in mind, it ’ s only fair to look at a couple of other frameworks. You ’ re not about
to meet anything containing the same depth of detail you just did when checking out Ulysses, but in
both of the following cases, you are invited to recreate the sample newsletter signup application as an
exercise. This should give you a feel for which you prefer.

 Of course, there are literally hundreds of other frameworks out there. An excellent online resource,
www.phpframeworks.com , maintains an up - to - date database of the most common. If you have time on
your hands, feel free to experiment.

 Prado
 The Prado Framework (www.pradosoft.com) is designed for PHP 5, and is not (as of this writing)
available for PHP 6. It should, however, be completely backwardly compatible.

 It is a component - based and event - driven framework with some similarities to Ulysses, and is one of the
most popular frameworks used by large digital advertising agencies in their own development. For that
reason, it is one of the most common to feature on the resumes of hungry young software engineers.

❑

❑

❑

378

Part II: Learning Advanced Development Techniques

 Prado makes use of a “ scaffolding ” application, something that may be familiar to you if you have ever
encountered Ruby on Rails. This application creates a skeleton application in a directory of your choice,
the foundation on which you can build your own project. It includes a single controller — index.php —
 generated in the root directory of your application, which is used to render every page.

 Just as Ulysses has the concept of servlets, so, too, does Prado have its own metaphor for requests —
 pages . Each page consists of a .page file (which is its HTML template) and a .php file (which contains
the page logic itself).

 Prado page templates make use of page components — buttons, labels, text boxes, and so forth. Unlike
Ulysses, however, these components are event - driven. That is, an event is wired up to each one to handle
events such as onClick — much like a Visual Basic application. This wiring up takes place in the
template, but the actual event code is placed in the code - behind file (that is, the corresponding .php
class for that page).

 Much like Ulysses, the state of controls can be modified from within events, allowing for a continuation
of the Visual Basic – style rapid application development metaphor. It ’ s taken to an even more extreme
degree in Prado. Even textual links on a page can be given an onClick event, just as with ASP.NET. The
old models of GET and POST are more or less killed off.

 The slight downside to this approach is that the Web just isn ’ t designed for event - driven programming.
As a result, many of the events Prado can “ listen for ” are (just as in .NET) heavily dependent on the use
of JavaScript. That can impact your site ’ s accessibility for people with disabilities, and can have
implications on search engine optimization and bookmarking — just something to be aware of.

 Having said that, Prado is immensely powerful, simple, and easy to learn. It ’ s also one of the most rapid
ways to build an application. It ’ s not quite as lightweight as Ulysses, and doesn ’ t feature such
sophisticated page - state management techniques, but it is arguably more widely used — an important
consideration when choosing a framework.

 A short “ hello world ” demonstration movie can be found at www.pradosoft.com/docs/movies/
HelloWorld.mov (QuickTime format), and is well worth a watch.

 Zend Framework
 The Zend Framework (http://framework.zend.com/) is about the closest thing that PHP has to an
officially sanctioned framework. That ’ s because it ’ s from Zend, the folks who write the engine at the
heart of PHP. The people who put the framework together also put PHP together — so they know what
they ’ re talking about.

 The Zend Framework is what may be called a “ traditional ” MVC framework. If you ’ ve ever used Java,
you may well have used Struts. It ’ s no coincidence that the Zend Framework has distinct similarities
with Struts. It ’ s been designed with easy adoption in mind, meaning that those who have used such
traditional MVC frameworks in the past should pick it up with no problems. Conversely, those who are
familiar only with Ulysses or Prado will find it more challenging, as it is not event - driven, and does not
sport a simple “ page and page component ” model.

379

Chapter 14: PHP Application Frameworks

 In the Zend Framework, a single front controller (actually comprised of two files: a master index page and
a boot strapper) handles all HTTP requests — no exceptions. As part of its logic, it inspects the URL and
attempts to pass off control to a further page controller . An application, therefore, comprises several page
controllers, all of which handle distinct pieces of site functionality. That accounts for the “ controller ” part
of the MVC paradigm.

 Templates in the Zend Framework are actually just PHP files — albeit with the .phtml extension to
avoid confusion. The full suite of PHP functionality is, therefore, available to you in such templates — a
loaded gun that must be treated with extreme care in the name of following best practices. That ’ s the
 “ view ” in the MVC paradigm.

 The “ model ” is where it gets controversial — you are more or less compelled to use Zend ’ s built - in
functionality for mapping classes to database tables. It ’ s nothing like the ORM that you met earlier in
this book, and it certainly may not be to your taste.

 The Zend Framework is something of a behemoth — a wealth of functionality for validation, persistence,
ORM, and a lot more. It ’ s fair to say that it ’ s enterprise - grade — plenty of big applications out there are
using it — and because it ’ s from Zend it will be around more or less forever, and well maintained in the
process.

 There are two big downsides. First, it ’ s Zend ’ s way or the highway. Unlike Ulysses and Prado, it ’ s very
difficult to escape the officially sanctioned Zend Framework route — so using your own ORM class, for
example, is a definite no - no. Second, don ’ t think you ’ re going to save precious hours not writing code —
 you won ’ t. Zend applications are some of the biggest on a KLOC metric (thousands of lines of code). The
Zend Framework is more about enforcing a “ way of doing things ” than providing you with helpful
shortcuts to instant application gratification.

 It ’ s definitely an acquired taste, so the best suggestion, as always, is to try it out for yourself. The quick -
 start guide at http://framework.zend.com/docs/quickstart should provide you with everything
you need to recreate the newsletter application you met earlier in this chapter. Grab a strong coffee and
get going.

 Deployment Considerations
 Keep in mind that most PHP frameworks (including all those met in this chapter) often have reasonably
in - depth server integration requirements. This means that they may require installation into a root -
 owned directory (such as /usr/local/lib/php), changes to Apache or global PHP configuration, or
installation of PEAR or PECL dependencies.

 That pretty much rules out using a framework on a shared hosting environment; but with virtual
dedicated server prices starting at $20 per month, that probably won ’ t be much of an issue.

 Consider two things, though. First (and foremost), are the joys of version management. The more
industrious framework authors keep theirs up to date and, in so doing, generally release a new version
every few weeks — sometimes with new features, yes, but typically with bug fixes. You ’ ll obviously
want to stay current, but what if a new version of the framework “ breaks ” your code? Consider, too,

380

Part II: Learning Advanced Development Techniques

how you would cope if your development environment ran a different version than your production
environment — would you perhaps encounter the dreaded “ works on my machine ” scenario? What if
you had a new version of your application to deploy that used a newer version of the framework; which
would you deploy to production first? The new framework version, or your new code? Most likely,
you ’ d have to take the whole site down for a few moments while you did both.

 For larger projects, also consider that you may well not have full control of the production environment.
This is especially true when deploying to production environments run by big corporations, whose IT
departments generally want to retain control of the hosting of all Web applications. You may have
encountered this tricky state of affairs before — perhaps you develop on Linux, and your client uses
Solaris servers. Using a PHP framework adds a whole new dimension. You ’ ll have to brief your client
well in advance regarding your requirements for the installation of your chosen framework, Apache, and
PHP configuration changes, and PEAR class installation. It ’ s all doable, of course — it ’ s just something
else to add to your to - do list.

 Having said all that, your client ’ s IT department will probably breathe a sigh of relief to hear you ’ re
using an industry - accepted framework. It will make your application easier for them to maintain should
they ever inherit it.

 Summary
 In this crucial chapter, you were introduced to the concept of a Web application development framework —
specifically, those that provide an out - of - the - box toolkit for developing PHP applications using some of
the best - practice methodologies discussed in this book.

 You were introduced to the facilities provided by frameworks — enforced structures, database
abstraction, form validation, MVC routing, and ORM. Furthermore, you learned about the benefits of
using a framework rather than rolling your own, especially for bigger projects. You then met several off -
 the - shelf frameworks, all of them free, and learned how you ’ d implement a simple Web application in
one. In so doing, you saw the pros and cons of each, most likely drawing the conclusion that “ none of
them is perfect. ”

 Still, each one is better than trying to reinvent the wheel. Therefore, with that in mind, you should
consider their deployment in any medium to large - scale PHP application — especially one with a large,
dispersed development team.

 In Chapter 15 , you ’ ll start getting your hands dirty — and it ’ s about time, too. You ’ ll be putting the last
14 chapters of theory to work in the most compelling way possible — a real, live project. Welcome, then,
to the wonderful world of widgets.

Part III

A Real-World
Case Study

Chapter 15: Project Overview

Chapter 16: Project Management

Chapter 17: Project Planning

Chapter 18: Systems Architecture

Chapter 19: Building the Application

Chapter 20: Quality Assurance and Testing

Chapter 21: Deployment

 Project Over view

 In the previous two parts of this book, you learned about the fundamentals of architecting and
building enterprise - grade Web applications in PHP.

 You started out in the first chapter by acquainting yourself fully with object - oriented programming
(OOP), and learned not only why it ’ s the right approach for large - scale projects, but also how PHP
6 provides a relatively robust implementation for you to work with. You then moved on to
databases, learning about how PDO provides one layer of database abstraction, and ORM yet
another. Finally, you learned the principles of effective software architecture, including how best to
implement session management and model - view - controller (MVC) project layout.

 Along the way, it is hoped that you noticed that the chapters were littered with short examples
demonstrating the concepts being discussed. If you didn ’ t try those examples out then, you are
strongly advised to do so right now. You ’ ll find that things sink in a lot better that way when it is
time to write the software.

 Don ’ t kid yourself — writing software is difficult. If it were easy, then you wouldn ’ t be bothering
to read this book, and we ’ d all be enslaved by machines by now — so thank your blessings that it ’ s
not a trivial task.

 Why should software development be difficult? It requires no purchase of paint or canvas, and it
binds you by few physical constraints. It should be the ultimate blank slate. Yet, one of your
biggest impediments is that of logically painting yourself into a corner. In essence, your own mind
is one of your biggest enemies.

 Another constraint is time. Although few things are technically beyond your means, as a mortal
you cannot possibly physically create something as powerful and flexible as the entirety of the
GNU/Linux operating system in just two weeks.

 In addition, for whom is this software being written? Yourself? Your friends? A rather common
scenario is writing custom software for a client. The fantasy client used as an example in this
chapter is called “ Widget World. ” The type of scenario it presents is very common, because the

Part III: A Real-World Case Study

384

majority of software is not written for consumers, but rather to meet the specifications of businesses,
governments, and other groups.

 This chapter assumes that you ’ re an average developer, working on an average project at an average
company with average clients. For simplicity ’ s sake, however, this example project has some perhaps
uncommon traits:

 You are developing a new product. (A much more common scenario would call on you to
modify a currently existing system.)

 You are working alone (because you are reading this text alone). In the real world, you would
most likely be working closely with, or interfacing with, other developers.

 Widget World
 Widget World designs, produces, and sells widgets. It has a dedicated, distributed sales staff that scours
the globe attending the latest widget conventions and approaching widget - friendly businesses. Widget
World engages in old - fashioned cold - calling, and creates a grassroots suburban Widget Ware sales - party
network.

 Widget World is also the victim of its own success. Like many businesses, it has not planned for double -
 digit growth, and it is failing to keep its sales force supplied with information about sales opportunities
and the latest in widget technology. Nor is it managing to obtain quick and timely feedback from the
sales staff in order to capitalize on trends in widget fashion.

 Widget World cannot hire enough summer interns to work the phones and fax machines to keep
the widgets flowing. The Widget Master is well aware that Widget World needs to be more efficient.
Therefore, after looking at commercial offerings, the Widget Master has decided to commission the
writing of specialized software called the Widget World Sales Force Automation Tool (WW - SFAT).

 Although the Widget Master holds the purse strings, she utilizes the Widget marketing department to
forecast the latest trends, which in turn helps plan the road map of Widget World.

 The Widget marketers depend upon the regional Widget sales managers (both Eastern and Western) to
keep them supplied with up - to - date information. Widget marketers also let the managers know about
the pricing of widgets in reference to their competitors.

 The regional Widget sales managers reward and motivate their widget sales personnel by supplying
them with timely information regarding widget hot spots. They also set quotas, cut bonus checks, and
ensure that all salespeople are doing their best to put a Widget on every desktop.

 The WW - SFAT manager is a newly created position with input from both Widget marketing and regional
Widget managers. The WW - SFAT manager is charged with creating a process, as well as accompanying
software, to solve the problem of automating the streamlining of the Widget World sales force ’ s daily
operating procedures.

❑

❑

Chapter 15: Project Overview

385

 The WW - SFAT manager is also given the significant (and crucial) power of “ stopping the buck ” —
 whatever the WW - SFAT manager decides goes. This power is critical to the success of the project,
because it limits the number of meetings and documentation required. The WW - SFAT manager is also
dedicated to working closely with you on this project. Because you know nothing of widgets or sales,
and you are charged with streamlining the Widget World sales force ’ s existing paper - based phone and
fax system of tracking salespeople and contacts, you have a million questions. Figure 15 - 1 shows the
current tracking form in use.

Figure 15-1: Current Widget World tracking form

Part III: A Real-World Case Study

386

 Here are a few questions that might occur to you:

 “ Do you want to see the time in 12 - or 24 - hour format? ”

 “ Do different time zones matter? ”

 “ By what date should X ’ s report be submitted? ”

 “ What happens if X ’ s report is not in by the required date? ”

 “ How are expenses reimbursed? ”

 “ How often does the federal mileage reimbursement change? ”

 “ Does the federal mileage reimbursement need to be historical? Retroactive? ”

 The Widget World Landscape
 The following discussion details the makeup of the Widget World landscape. These include the technical,
financial, and political layers, as well as your role in them.

 The Technical Layer
 If you ’ ve been paying close attention, you ’ ll notice that information needs to flow from the Widget sales
personnel up the chain to the Widget Master, and back down again. In this case, information flow is
definitely a two - way street:

 Widget marketing needs the sales information summarized by region.

 Widget sales managers need to track various aspects of their personnel.

 The Financial Layer
 This project should save Widget World money by making the staff more efficient, which is ultimately
why the Widget Master is willing to invest money in the project. However, it ’ s currently a toss - up as to
what would save money quicker — supplying the Widget World sales staff members with more
information or receiving more information back from them.

 The Political Layer
 One of the Widget regional managers secretly distrusts Widget marketing. He thinks that the Widget
marketing department will use his supplied information as a tool to retire him early. The Widget sales
staff welcomes the use of hard numbers to show how hard it ’ s working — it keeps the regional managers
honest and indicates who ’ s getting promoted based on nepotism instead of on the basis of performance.
Widget marketers want to have press releases with nice - looking graphs that they can show to their golf
buddies.

❑

❑

❑

❑

❑

❑

❑

❑

❑

Chapter 15: Project Overview

387

 You
 You landed this job by responding to an ad in your local paper that said “ Widget World Needs a Sales
Force Automation Tool Developer. ” You were contacted by the WW - SFAT manager, passed the Widget
World technical examination (in part because of your dedicated study of Professional PHP 6!), and arrived
at your job eager to start your new career in software development.

 It happens to be 8:00 A.M. on Monday, and you ’ ll never be this naive again.

 Is It Really About Technology?
 WW - SFAT requirements appear to consist vaguely of the following:

 Sales contact reports

 Sales lead reports

 Sales contact management lists distributed by e - mail, BlackBerry, fax, and Web reports

 Widget production feed based upon sales performance

 Widget marketing reports and full - color, glossy, ready - to - print graphs

 Widget accounting reports

 Training

 It ’ s really the embodiment of a common scenario: a typical project using best - of - breed development
techniques to keep the customer happy. However, even though the “ customer ” may appear to be just
like the WW - SFAT manager, the customer doesn ’ t live in a vacuum. All the actors here have a vested
interest in the outcome of their portion of the project.

 The Development Approach
 You ’ ll begin to utilize some development practices typified by extreme programming (XP). Don ’ t let the
name fool you. XP is a collection of agile development methodologies, and the following list of practices
were best characterized by Kent Beck and Cynthia Andres in Extreme Programming Explained: Embrace
Change, Second Edition (Addison - Wesley, 2004):

 Planning — Determine the scope of the project by combining business priorities and technical
estimates, continually updated.

 Small releases — Get the system used to the people who will be using it, and release new versions
on a very short schedule.

❑

❑

❑

❑

❑

❑

❑

❑

❑

Part III: A Real-World Case Study

388

 Simple Design — Keep the design as simple as possible at all times. Complexity is removed on an
ongoing basis.

 Testing — Developers continually write unit tests to ensure that the system runs flawlessly at all
times. Customers write tests to demonstrate that features work as required.

 Refactoring — Restructure the code without modifying the behavior to keep it easy to read, to
remove duplication, or to simplify it.

 On - site customer — The WW - SFAT manager is half your team, and is available at all times to
answer business - related questions.

 These practices enable you to manage the complexity and scope of both the project and the software that
you are developing. A typical system flows similarly to the curve shown in Figure 15 - 2 . By managing
complexity from many different angles, you can make the curve drastically different, as shown in
Figure 15 - 3 .

❑

❑

❑

❑

C
o
s
t

o
f
C

h
a
n
g
e

Requirements Analysis Design Implementation Testing Production

Figure 15-2: Typical system flow

Chapter 15: Project Overview

389

 Creating features as you need them is a great way to manage the complexity of your system. The cost
of adding features later is not significantly higher than it is now (whenever “ now ” would be in the
process), which means that you aren ’ t forced to guess about what you think you ’ ll require in the future,
and you can avoid building features that won ’ t be used for some time to come.

 Think of it like this: Using the traditional approach to complexity, if the cost to you (in time) is $5.00 to
add a feature now, but later that same feature would cost you $100.00, it would be safer to add it now;
but if you can manage to set it up such that the cost to add the same feature now is $5.00 and the cost
to add it later is $6.00, then you gain little by adding it now. Omit it for now; your system stays simpler,
and you end up only with features that are used from the outset.

 What This Means to You
 Consider the traditional waterfall approach first documented by Dr. Winston W. Royce (see “ Managing
the Development of Large Software Systems: Concepts and Techniques, ” Proceedings of IEEE WESCON,
August 1970). Figure 15 - 4 represents this concept, which calls for the following:

 Two weeks of gathering requirements

 Two weeks of analyzing and debating them

 Two weeks of designing the system

 Eight weeks of coding it

 Four weeks of quality assurance (QA) and other testing

❑

❑

❑

❑

❑

C
o
s
t

o
f

C
h
a
n
g
e

Time

Figure 15-3: Changing the curve by managing complexity

Part III: A Real-World Case Study

390

 Although it ’ s very regimented, the waterfall model tends to be implemented as a shotgun approach, and
it has a couple of weaknesses:

 It lacks flexibility and assumes that design will be done correctly the first time. With a span of
weeks between phases, little or no time is available for a feedback loop — and, of course,
hindsight is 20 – 20.

 It is hard to predict needed features because requirements are more than likely to change.

❑

❑

System
Requirements

Software
Requirements

Analysis

Program
Design

Coding

Testing

Operations

Figure 15-4: Waterfall approach

Chapter 15: Project Overview

391

 This certainly sounds almost like a setup for failure, which is why you ’ re going to follow Kent Beck ’ s
principles (listed previously) in order to create a small, flexible system that is thoroughly tested as you
write the code. You will work closely with your WW - SFAT manager and get all required questions
answered. Your WW - SFAT manager has a wide breadth of Widget World business experience and will
use the system on a daily basis.

 This also means that you ’ ll fix problems that you see and remove functionality that is no longer
required. You ’ ll stick to the “ once and only once ” rule, which means that you ’ ll consolidate duplicate
logic, and you ’ ll be ruthless about it. Refactoring mercilessly keeps your entire system lean and
powerful.

 Finally, you ’ ll have your unit tests. By testing every piece of functionality that you create, you ’ ll always
have a fully tested system. A fully tested system is very powerful because it makes you keenly aware of
breakages and symptoms that are caused by secondary or tertiary bugs. A fully tested system lets you
know instantly when something went wrong.

 Having the safety net of a well - written test suite enables you to indulge in modifying features drastically.
The test suite does not shackle you unnecessarily, but rather allows you to be a bolder developer by
letting you take your system in different directions as (and when) business needs change.

 This is really just a 10 - minute introduction to XP, which is one of the more agile development
methodologies. It ’ s okay if you don ’ t quite buy everything that you ’ ve just read, because you ’ ll explore
in the next few chapters how this methodology truly pays off. Soon, you ’ ll realize that by using the
practices described here, you ’ ll not only be shipping software that is small, fast, and flexible, but also
adapting a process that enables your client to be actively involved in the development process.

 The Technology
 Although you ’ ve been warned about not building too much up front, these are some of the technological
features that you ’ ll be touching upon:

 Unified Modeling Language (UML) — Where appropriate, the design snapshots (class and
sequence diagrams) will be shown in UML. A quick cheat - sheet is available.

 Design patterns — This includes how to effectively use them and spot them in your code.

 Collections and iterators — Where they make sense and where they don ’ t

 Dispatchers — Just to get a taste of event - driven programming

 Simple Object Access Protocol (SOAP) — This will be used for one of the data feeds.

❑

❑

❑

❑

❑

Part III: A Real-World Case Study

392

 Summary
 Now that you understand the background of Widget World and its business needs, you can soon get to
work utilizing the development techniques that were briefly outlined here.

 Rather than follow the regimented waterfall development approach, you can use a more flexible
approach that highlights quick releases, simple design, a well - tested code - base, a dedication to
continuous code improvement, and a means of having continuous feedback with access to the customer.

 By utilizing this approach, you can produce an application that is capable of delivering business value in
the first release, measurable in days and weeks, rather than in months and years.

 So, what ’ s next? You could go ahead and put a project plan together — all the hard work that will ensure
your project is delivered on time, on budget, and to a high standard — but it ’ s far better to get an
understanding of what makes a project a true success before you throw yourself in at the deep end.

 In Chapter 16, you ’ ll start learning just that — a series of techniques that together are usually called
 project management methodologies. You ’ ll have just one chapter of theory before getting back to planning
the tool itself. Only then can you get your favorite editor out and actually build the tool.

 Project Management

 Many traditional Web project leads come from a project management background. They entered
the industry having left university or college as a “ junior producer ” and rose through the ranks to
be finally given the freedom and latitude to run their own projects. But while many excellent
project management professionals do indeed follow such a path, in recent years there has been a
trend toward software development professionals sidestepping — that is, laying down their
development tools in favor of a chance to run a team of former colleagues and play a crucial role in
the success (or failure) of the project.

 Indeed, such a development is quite welcome, if truth be told. If you ’ ve ever found yourself
frustrated as a software developer with your project lead, chances are good it ’ s been because they
 “ just don ’ t get it. ” In practice, no matter how talented project managers are, if they have no
experience writing code, then they often find it difficult to appreciate your point of view.

 Even if you are never confronted with your own project to manage, you will find it immensely
useful to understand what the project manager (who is running the show) must contend with on a
daily basis. It will make you stronger as a software architect and as an individual to understand
and be sympathetic to the skills required to run a successful development project from start to
finish.

 Moreover, in the event that you do find yourself in charge of a team of bright - eyed young
developers one day, you ’ ll find that the skills gleaned from this chapter and the next will serve
you well.

 This chapter discusses how to collate business requirements into a coherent brief, and how to
respond appropriately with a rock - solid specification and project plan. You ’ ll learn how to identify
and select the key personnel who will report to you, as well as how to guide and manage them
throughout the project life cycle. You ’ ll also look at a couple of programming paradigms, discover
how to evaluate their usefulness for your own project, and look at the two key approaches to
tackling the development work on the shop floor. Finally, you ’ ll discover how to effectively
manage your working relationship with your clients.

394

Part III: A Real-World Case Study

 Admittedly, this chapter doesn ’ t have a whole lot to do with the specifics of PHP 6. Nonetheless,
the material covered here is very relevant to any PHP project you might work on, even though the
techniques demonstrated apply just as much to ASP.NET, Java — any language. They are included
in this book nonetheless because they might well revolutionize the way you tackle big projects.

 Do Your Homework
 Generally, the most common, visible first step for a project occurs when a project manager tells a senior
member of his development staff that he has something new for the team to work on, something that
often happens as nothing more than an informal chat around the office water cooler or during a smoke
break. In practice, of course, the idea behind the project starts much further back. Tracing the roots of any
given project is essential. A project management methodology can be successful only if it is applied from
the very beginning of the project.

 Before you take steps to receive the formal brief for the project, there are a few key questions to ask —
 your homework, if you will. These questions taken together will form the foundation of the strategy you
adapt when receiving the formal brief. The first question to ask is, “ Why? ”

 Why Is the Project Happening?
 This simple question has an enormous influence on everything you do from here on in because the way
in which you approach and build your project (from start to finish) should be determined by its intended
function.

 Typical scenarios underlying the need for a new Web site or application might include the following:

 Starting a new business for which “ the business is the application ”

 Replacing an existing application that is failing or no longer adequate

 Taking over where an existing supplier has failed to deliver either on time, on budget, or what is
required (or, in some cases, all three)

 There are, of course, other reasons that may require a new project to be taken on, and not all of them are
as critical as the three listed here. For example, you may simply find yourself having to implement the
pet project of a VP or executive. Whatever it is, determining the raison d ’ ê tre of the project is a number -
 one priority.

 Who Is the Project For?
 This is sometimes not as easy a question to answer as you might think. At the simplest level, the project
is for another department within your own company or organization, a new customer, or an existing
customer. Remember that you must identify the recipient of the project in the sense of who has
actually commissioned the work. If a man goes to the store to buy his wife nail polish, he ’ s not the real
customer — he ’ s simply carrying out the real customer ’ s request.

❑

❑

❑

Chapter 16: Project Management

395

 Similarly, your client may be commissioning this work only to satisfy some requirement of a third party
to whom he or she is responsible. These ultimate end users of the product are known as domain experts ,
and you ignore them at your peril.

 The end users for your product will often be the most hands - on people in your client ’ s organization, and
as such their needs for the project will often be immensely different from the requisitioning individual
who approaches you as a potential supplier.

 Identifying Roles and Agenda

 By way of example, say that you are the chief technical officer (CTO) of a medium - size organization, and
that you have been commissioned by the human resources (HR) director to build a new intranet for your
whole company. You have both permanent and contract staff at your disposal. What do you think the
various agendas of each role (you, the client, and the domain experts) are?

 To take a slightly cynical perspective on things, the scenario most likely looks something like this:

 You (as a developer) want to deliver a high - quality, effective, efficient, and satisfactory solution
as quickly as possible, and with as little investment as possible, so that you look good to your
client, your peers, and your boss.

 The HR director wants you to deliver a high - quality, effective, efficient, and satisfactory solution
that makes him or her look good.

 Daily users of the intranet (the domain experts) want you to deliver a high - quality, effective,
efficient, and satisfactory solution that does what they want it to do.

 Notice that the only really selfless agenda here is held by the domain experts. The secret is to ensure that
all three agenda are met. The first two are incredibly easy to meet; the latter is the most difficult. But by
concentrating on the third, the first two will generally drop into place by default.

 Therefore, this is your sweet spot: look after the domain expert . Everything you design or build, and every
decision you take in the process, should have the domain expert firmly in mind. Sure, you may use Pico
to edit text files, or Google Chrome to browse the Web, but does your user? Probably not. Rather than
take the moral high ground (“ well, they should be using Pico ”), you should deliver what it is they
actually want and need.

 Realizing the difference between “ being right ” and “ doing right ” is what defines the gap between a
bedroom coder and a software development professional.

 Manipulating Roles to Your Advantage

 Consider this: Your client is merely a conduit to the domain experts on a project, no matter what else he
or she might tell you. Although it is a lot easier for your client to express immense pleasure with what
you ’ ve built at the point of delivery and walk away, if the domain experts don ’ t like it, the axe will fall
on the client ’ s head — and so, in turn, will it fall on yours some days, weeks, or months later. It is very
much in the client ’ s interest to represent the needs of the domain experts from the outset.

 A good client will be able to sympathize with the true needs and requirements of his or her domain
experts and to assemble them into a single, harmonious voice for you to listen to. However, in practice,
you will need to prod, probe, and cajole your client into representing the realistic and reasonable
requirements of his or her domain experts properly.

❑

❑

❑

396

Part III: A Real-World Case Study

 If you feel that your client is not representing his or her domain experts sufficiently, it is vitally important
that you suggest that he or she reimplement the consultative process. This can be accomplished through
the following:

 A brainstorming session

 An anonymous suggestion box approach

 Appointing a working party to represent the needs of the domain experts, and involving them
in the project process

 It is vitally important that if the roles aren ’ t clearly carved out from the start, you must help carve them
out. That way, when you do receive the formal brief for the project, you ’ ll be able to respond to it, safe in
the knowledge that what you ’ re responding to is, in fact, what is really required.

 What Is the History of the Project?
 It is also vitally important to establish whether this project has any baggage attached to it. A fresh project
is always exciting, but it may not actually be as fresh on the inside as it appears on the outside. Having a
good handle on the history of the project enables you to tweak certain aspects of your approach
accordingly.

 Generally speaking, a project has serious baggage only if another attempt has been made to get it off the
ground previously — a false start . If you know this to be the case, then you should immediately make
yourself aware of the following potential baggage, no matter how long ago that previous attempt was
made:

 Departed staff — If this project was previously handled by a member of staff who has since
resigned, been fired, or been moved to other duties in the organization, beware. It is almost
inevitable that the client considers the former staff member to have failed in his or her appointed
task. The trick here is to gain a good idea of the strengths and weaknesses of the new
representative that the client puts forward to work with you. This is addressed a bit more later
in this chapter.

 Departed supplier — If you are undertaking the project as a replacement for another supplier
(either commercial or internal), it is worth sizing up the reasons why the client dropped that
supplier in the first place; or, indeed, why the supplier dropped the client — it does happen
from time to time. If necessary, dig around with other former clients of that supplier to examine
their experiences, and shape your approach according to any useful information you acquire.
The client will want to trust you from the outset, so give him or her good reason to.

 Difficulties working with in - house staff — If a project has been outsourced by a company to you,
you may experience difficulties working with the client company ’ s IT department. Sometimes
this situation can arise even when no attempt to start the project has ever been made internally,
but there has been an expectation that one should have been made. The best advice is to get that
IT department involved from the start. Give that department a call while you ’ re writing the
technical specification — it will be caught well and truly off guard and may even prove to be a
great help as a result.

❑

❑

❑

❑

❑

❑

Chapter 16: Project Management

397

 What Are the Anticipated Prerequisites of the Project?
 You should be aware of these as early in the project life cycle as possible, because they may even
influence your decision as to whether you wish to proceed. Some typical prerequisites might include the
following:

 Platform — Does the client require the project to be built in ASP.NET, J2EE, or some other
development language not overly familiar to you as a PHP professional? There may be sound
commercial reasons for this, and this is the most common reason for determining PHP is
inappropriate for a given piece of work

 Deployment — Does the client need this application to be deployed onto existing servers? If so, is
the client happy for you to reconfigure those servers if necessary?

 Timescales — Does the client have any specific expectations about delivery from the outset,
possibly to meet some internal target or deadline?

 Budget — Does the client have a specific budget? Is it realistic?

 It is very important to get these prerequisites established before you embark upon the process of
receiving the brief. After all, if you can ’ t fulfill the prerequisites, there ’ s little point in moving to the
next step.

 Receiving the Formal Brief
 Having done your homework, you should receive the formal brief. The most important part of any brief
is to get it in writing. By this stage, you ’ ve probably already received a fair bit of information about the
project, but getting the brief in writing ensures that you and your team are able to respond to it in the
most effective manner possible.

 If your client is only prepared to brief you in person, rather than provide any kind of written
documentation, be sure to take detailed notes, and then write them up .

 Quite rarely, however, will the initial brief be in a satisfactory form — whether verbal or written. As
a result, it ’ s often up to you to turn the client ’ s wishes into a coherent brief in a format you can all work
with. Rather than make this a separate document in its own right, it is often best to incorporate this as
part of your pitch, which is examined later.

 Getting a client to articulate his or her requirements is one of the toughest things you ’ ll ever have to do
as a project manager. Worse still, clients rarely differentiate between incorrect assumptions you ’ ve made
based on the absence of information and assumptions you ’ ve made that are simply plain wrong. The
way around this problem is to ensure that all the assumptions and guesses you ’ re making in your pitch
are based on the best and most exhaustive information available to you. Therefore, you must be
thorough in extracting the minutiae of the client ’ s business requirements at this early stage.

 Whenever possible, try to glean a phone conversation or, ideally, a meeting with the client, before
writing the brief and responding to it.

❑

❑

❑

❑

398

Part III: A Real-World Case Study

 If you are fortunate enough to get a phone conversation or meeting with the client from which
you construct the formal brief, it ’ s important that you ask the right questions. You must focus on a
number of key areas that are covered here. After you have covered these, you will be in a position to
write your brief.

 Business Requirements
 Establish exactly what the broad requirements of the system or application you are building are at this
stage. Focus on asking questions about the goals of the domain experts, rather than the anticipated
solution the client has in mind.

 It doesn ’ t matter if the solution you recommend is nothing like what the client is expecting, as long
as you can precisely map your decisions to the goals of the domain experts on a “ cause-and-effect ”
basis. These mappings form the basis of your overall solution ’ s rationale and are a key component of
your pitch.

 Ask leading questions. Try to listen rather than talk. The unprompted musings of the client can be
immensely useful in optimizing your proposal to best suit his or her needs, even at a subconscious level.
Try to effect a strong mix of commercial and logistical probing. For example, the following generic
questions may be useful:

 What other solutions have you looked at?

 Why have you rejected them?

 Who will the end users of this system be?

 How are you currently handling this process without a system in place?

 What benefits do you think the system might bring?

 What kind of return on investment are you looking for?

 How will you measure that return?

 What are the three most important requirements you have of a supplier who wants to provide
this solution to you?

 How many other suppliers have you looked at?

 How satisfied have you been with the proposals you have received to date?

 Do you have a time frame for choosing a supplier, and what is driving this time frame?

 What people are likely to be involved in the decision - making process, and what are their roles?

 What are the biggest concerns you have about this project moving forward?

 Have other suppliers addressed those concerns to your satisfaction?

 Again, don ’ t be afraid to let the client do most of the talking. Try to avoid letting individual points
drop as you scribble down notes. Instead, ask probing questions to extract that “ extra ten percent ” from
the client.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Chapter 16: Project Management

399

 Here ’ s an example dialogue between supplier and client:

 Supplier: Do you have a time frame for choosing a supplier?

 Client: Absolutely. We ’ ll have made our decision by the thirtieth.

 Supplier: The thirtieth of this month? Really. You guys are keen to get this off the ground, then?

 Client: Definitely. We have a big advertising campaign starting next month.

 Supplier: Oh, right. Is this system likely to be a big part of that advertising campaign?

 Client: Yes. If we have the build under way by then, it will definitely be a big selling point.

 Compare the same dialogue without the additional probing:

 Supplier: Do you have a time frame for choosing a supplier?

 Client: Absolutely. We ’ ll have made our decision by the thirtieth.

 Supplier: Great, thanks.

 Notice the extra information gleaned from the probing:

 The client has an advertising campaign taking place next month.

 The client would like to be able to show the unfinished system to prospective clients as part of
his or her sales pitch.

 This information is no secret, and the client isn ’ t holding back deliberately — it just hasn ’ t occurred to
him or her to mention it. But, make no mistake about it — this extra information should be very useful to
you indeed.

 The moral of the story is don ’ t be afraid to take an interest in what your client is saying, and ask the extra
questions that might get you that extra nugget of information. It might just give you an edge over your
competition.

 Scope
 After you have established the broader business requirements of the system and worked out exactly
what problem or need the client is trying to solve or fulfill, it ’ s worth probing the client some more about
the scope of requirements. Let ’ s be clear about what is meant by the term scope here. By establishing
scope, you are looking at how far you are going to go to solve that problem or fulfill that need.

 People often speak of scope - creep or feature - creep, but in practice it ’ s a misused phrase. It actually refers to
the magnitude of what ’ s required growing in the middle of the project without regard to commercial
impact. It does not refer to requirements themselves changing. There ’ s no phrase for that; that ’ s just poor
planning.

 By establishing the scope now, you can prevent scope creep from happening as much as possible. The
specifications you produce enable you to enforce this chosen scope by mapping it to the specific
components of functionality that will be included in the build process.

400

Part III: A Real-World Case Study

 Scope is almost always artificially throttled by time and money, but it can be a useful exercise to help
manage expectations even at this early stage by drawing phase boundaries. Nine times out of ten,
suggesting a two - phase approach to the client can help you immensely, because the client will instantly
illustrate for you the kind of functionality that might drop into a second phase of development and the
kind of functionality that is required now. Commit to just the latter of these, and you have your initial
scope well and truly defined.

 If the client is reluctant to look at dividing the project into phases, then a more direct approach is needed.
Explain to the client that the only limitations to meeting his or her requirements are those of time and
money, and that understanding what the absolutely essential components of the project are now can
make his or her life easier, as he or she will be able to interpret proposals on delivery time and cost
on a more equal footing. If no other suppliers are pitching for the work, explain to the client that
establishing scope now will save huge amounts of time later, and enable the project to progress more
quickly with fewer revisions to specifications.

 It ’ s important to discuss scope in the context of time and budget. Rather than ever say no to your clients,
you can tell them when their requirements are likely to stretch the time line or cost them more than they
have budgeted for. Let ’ s look at those now.

 Timelines
 Establishing timelines is about much more than just figuring out when the client needs the system to be
delivered. It ’ s vitally important to set milestones and agree to them with the client, even at this early
stage. You should try to gauge milestones for the following:

 The date by which the proposal is required

 The date by which a decision will be made on a chosen supplier (if appropriate)

 The date by which any written specifications are required from the supplier

 The date by which any written specifications will be signed off by the client or, if amendments
will be required, those amendments will be tabled

 The date by which the specification process (including all amendments) must be finished

 The date by which any designs produced by the supplier must be put forward for initial
approval

 The date by which any designs (including all amendments) must be finished

 The date by which the build must commence

 The date by which the build must be completed to beta standard

 The date by which the build must be completed to finished standard

 The date by which testing must take place

 The date by which the handover of the finished product must take place

 Of course, asking for all these dates from clients can overwhelm or even irritate them. To avoid this, pick
what you consider to be the key milestones and fill in the blanks yourself. You can even have a positive
effect on the client ’ s view of your processes at this early stage by announcing where the dates will fit
together. Consider the following snippet of dialogue:

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Chapter 16: Project Management

401

 Supplier: When do you need the completed system to be handed over?

 Client: We need to be up and running with the staff by the first of June.

 Supplier: In that case, we should aim to have the system handed over to you by May 22, to allow
a few days for any last - minute tweaks and changes that might need to be taken care of.

 Don ’ t forget to note all milestones carefully throughout the briefing process and, when necessary, guide
the client away from any unrealistic expectations, as shown in the following example:

 Supplier: When do you need the completed system to be handed over?

 Client: We need to be up and running with the staff by the first of May.

 Supplier: I think that, given the kind of scope we ’ ve agreed on, that is going to be a difficult date
to meet. I would suggest a delivery date of May 22 is probably closer to the mark, which should
have you up and running shortly afterward. I think we have two options. We can either reduce
the scope of the system at this stage, or we have to look at a slightly later delivery date.

 Client: Well, in all honesty, we could live with the May 22. We ’ d rather get it right first time.

 Notice how passive language is used to explain to the client that his or her date is unrealistic. You do not
 “ tell ” the client, because he or she may well think you are attempting a “ we know best ” tactic, which
might offend. Rather, you “ suggest, ” and in many cases (as in the preceding example) you ’ ll often find
that there is a little more room for maneuver than originally stated.

 Always be sure to point out unrealistic dates; never let them slip through unchecked. The client will expect
anything unattainable to be pointed out now. If it is not mentioned until your written proposal comes
through, you risk alienating the client, especially if they have already told others involved in the project of
the anticipated dates. Essentially, anything not contradicted will be taken as tacit agreement, so beware.

 It is hoped that you know your own estimating skills. If you frequently go over your initial estimate in
practice, work out by how much, and then use this as your contingency margin. If you ’ re following the
techniques in this book, you ’ ll deliver quicker than your competitors anyway, so there ’ s no harm in
adding 20 percent contingency to protect yourself, especially if your contract calls for ever - terrifying
penalty clauses for late delivery.

 Budget
 Budget can be a thorny issue. Even if you are delivering a solution internally, you still have your direct
costs to think about. Many larger companies bill each other ’ s cost centers for internal activity, so
budgeting and negotiations can be just as intense for internal work as they are for an external commission.

 Don ’ t ask the budget question too early. It is immensely off - putting. Clients expect to be asked about it,
but they may quickly judge what they deem to be your own priorities as a supplier based on the order in
which you ask questions. The right time is probably close to when the subject of scope is raised, because
you have already established that scope is more than likely going to be limited by time and money. Keep
in mind that your client may ask about your rate card (that is, the rates at which your personnel are
charged out) before overall project budgets are broached. You shouldn ’ t shy away from answering this
question. It is hoped that you ’ re proud of your charge - out rate; you know it ’ s good value, and you know
it reflects your seniority.

402

Part III: A Real-World Case Study

 A good way to phrase the overall budget question would be as follows: “ When I ’ ve looked at
implementing similar solutions to this for companies like Acme in the past, they have typically been
expecting to invest between $ 35,000 and $ 65,000. Does that sound like the kind of ballpark you had in
mind for this project? ”

 First of all, note that you haven ’ t asked what the budget is. Rather, you have suggested the following:

 You have worked on similar projects in the past — positive

 You have worked with companies like Acme in the past — positive

 These companies have invested anywhere between $ 35,000 and $ 65,000 — neutral

 The emphasis on the positives in your interrogation means that any negative thoughts associated with
determining budget will not kick in quite as automatically as they would if you were to ask the question
directly.

 Second, note that you have offered a ballpark range. This range is, in fact, quite broad. Always do this;
to be too specific at this stage suggests arrogance with respect to an understanding of the client ’ s
requirements, which you don ’ t have yet. By suggesting a broad price range, you suggest subconsciously
to the client that you still have yet to zero in on exactly what is required. Ensure that the minimum you
suggest is the absolute minimum you ’ re prepared to do the work for, and that the maximum is about 40
to 50 percent more than that figure. That way, if the client agrees, you know for sure that you will have a
profitable job on your hands. By how much remains to be seen, true; but you ’ ve negated the chances of
a loss - maker.

 Finally, note the phrase “ they have typically been expecting to invest. ” This is used in preference to “ we
have typically quoted them ” for a good reason — namely, you are suggesting that these companies
actually anticipated spending this amount before they spoke to you, not that this is the amount you
quoted them.

 Of course, this does not answer the eternal question of “ What is your budget? ” What it does, generally
speaking, is implant a firm idea in the head of the client as to what the project is actually worth in
market terms.

 Upon becoming aware of this knowledge, if the client realizes that there simply isn ’ t the budget to
proceed, he or she will usually tell you. This obviously isn ’ t a good thing in itself, but it does enable you
to judge very quickly whether the time you spent receiving the brief is time well spent.

 Consider the following two approaches. In both dialogues, the supplier needs to charge around $ 15,000
just to break even on the application. The client ’ s budget is only $ 5,000. Here is the first scenario:

 Supplier: Did you have a budget in mind?

 Client: I ’ d rather not give you a budget. When we ’ ve done that with suppliers in the past,
they ’ ve simply come back and quoted what I told them my budget was. I ’ d rather you just come
up with a quote and I ’ ll tell you whether it ’ s doable or not.

 Supplier: OK, no problem.

❑

❑

❑

Chapter 16: Project Management

403

 Contrast that with the following:

 Supplier: John, I wanted to broach with you the issue of budget. When I ’ ve looked at
implementing similar solutions like this in the past, clients have typically been expecting to
invest between $ 15,000 and $ 22,000. Does that sound like the kind of ballpark you had in mind
for this project? ”

 Client: Oh . . . no, it really isn ’ t. I ’ m afraid the maximum we can afford to part with is $ 5,000,
maybe $ 7,000 at a push.

 Supplier: Okay, John. In that case, I ’ m afraid I don ’ t think we ’ re going to be able to do business
on this occasion unless you ’ re prepared to narrow down the scope of work considerably. You
might find that a smaller local supplier is a better bet.

 In neither situation does the supplier get the business; but in the second situation, the supplier knows
immediately that there ’ s no sale in sight, whereas in the first situation, days would be lost creating a
comprehensive pitch, only to be turned down later.

 Note also that you suggest an alternative for the client — that he or she might want to approach a
smaller local supplier. It can grate a little bit, sending business elsewhere — but it ’ s a refreshing
approach. Your prospective client will appreciate your honesty, and you might get one or two
unexpected benefits: You might be bought a beer by that other supplier, and the lost client might even
recommend you to somebody in the future — “ Hey, these guys I spoke to a few months ago were too
expensive for us, but they might be right for you. ”

 Don ’ t be embarrassed to ask about money; it ’ s the lifeblood of any business. Confront the issue honestly
and pick your language and your timing carefully.

 Commercial Terms
 It ’ s not a bad idea to talk about commercial terms, even at this early stage. If you ’ ve established that the
client is happy to pay approximately $ 50,000 to have his or her project developed to completion, this is
certainly a good start — but certain technicalities that often don ’ t get mentioned can pour cold water on
this head start very quickly.

 Payment terms do matter, especially if you ’ re a small supplier. If your project won ’ t involve any direct
costs (such as hardware, software, media costs, and so on), then it ’ s just a question of cash flow — you
have to do a piece of work and then wait to be paid. If you ’ re going to be purchasing external goods or
services, then you should ensure that you ’ re not parting with the cash sooner than you will be getting
paid by your client. Otherwise, you ’ re basically acting as a lender to your client.

 As with budgetary concerns, it ’ s far better to get the issue of commercial terms out of the way early. That
way, if they prove to be stumbling blocks, you can be aware of them now and back out if necessary. The
following questions are probably more relevant to smaller businesses rather than enormous technology
agencies, but they are still worth asking if you have any payment - related concerns:

 “ We normally like to ask our clients for an up - front percentage contribution so that we can cover
any incidental costs during the build process. Would this be a problem? ”

 “ Because we ’ re a small company, we have to be quite firm with our payment terms. All our
invoices are strictly 30 days. Do you think this would be all right with your accounts payable
guys? ”

❑

❑

404

Part III: A Real-World Case Study

 Again, phrasing is very important here. For example, using the friendly interrogative statement “ Would
this be a problem? ” is highly recommended. You are far more likely to solicit a sympathetic “ Oh, no,
I wouldn ’ t think so ” response, rather than something more aggressive or perfunctory.

 Another stock phrase is “ Do you think this would be something that could prevent us from doing
business together? ” It sounds incredibly emotive, but it suggests “ no ” as an appropriate answer in its
tone, and so is much more likely to solicit that kind of answer. Positive responses are useful not just
because they ’ re what you want to hear, but also because they ’ re what the client wants to say.

 By leaving your clients with a positive impression of the meeting, you ’ re leaving them with a positive
impression of you as an individual.

 It ’ s also worth being up front with your client about markup. If you ’ re buying in external goods
or services, you may well charge them forward to your client at a small markup to cover your
administrative costs — probably a flat percentage (15 percent is typical). Ensure that your client knows
you are doing this. Again, being honest will engender an atmosphere of trust and respect.

 Future Plans
 As far as is reasonably possible, you should endeavor to press clients for their future plans for the
system. You may well have determined what is “ in scope, ” but it is equally important to know what is
both “ out of scope ” and likely to become a requirement in the future.

 As a software architect, you may be more than familiar with the concept of “ coding yourself into a
corner. ” The best project managers are aware of these concepts, too, which is yet another reason why
many of the best project managers tend to have backgrounds in architecture (something that was posited
at the very beginning of the chapter).

 With that in mind, determine as early as possible what is likely to become a requirement at a later date,
even if it is conceivable (or likely) that another supplier will be taking on the work. Showing interest in
what is clearly not going to be paid for or carried out at this stage demonstrates a commitment to
avoiding “ hit and run ” programming and demonstrates that you are the kind of supplier with whom the
client can forge a long - term relationship.

 Look and Feel
 There is no excuse these days for even the simplest or most functional of Web applications not to look
good. Design must be an integral part of your process, not just an afterthought, and this should be
emphasized to the client whenever possible.

 Determine at this stage whether any requirements or specific requests exist on the part of the client with
respect to the look and feel of what is being produced. For example, is there an expectation that a

 Research suggests that a meeting in which parties have used positive words and
body gestures leaves a far better impression than one littered with “ no ” and shakes
of the head.

Chapter 16: Project Management

405

particular corporate branding will be followed? Does the system need to closely resemble an existing
system? How likely is it that the branding will change, and how often?

 Technology
 There ’ s a good chance that the individual you are dealing with from the client company is not a technical
person. For most projects, this is understandable because the commercial or functional goals of the
required system (for which you are receiving the brief) are unlikely to be technical in nature. Even with
this in mind, it is an immensely good idea at this stage to ask probing questions about technology.

 Essentially, you must gauge how much free rein you have regarding making these decisions. At the very
least, in your written proposal you need to outline the platform and infrastructure choices you have
made and be able to justify them if necessary. Aim to ask the kinds of questions that will determine
whether the client is happy for you to code with PHP, what deployment issues there may be, and what
security issues might need to be addressed.

 If any restrictions you discover appear to be onerous, then this may be another red flag — a sign that you
need to cut your losses and pull out. As a PHP professional, if the client insists on ASP.NET and SQL
Server, then you would be wise to think about declining the work or, alternatively, trying to understand
why the client has decided that. Maybe you could convince the client that PHP is the way to go — but
only if there ’ s no underlying commercial reason adhering them to that alternate platform.

 Either way, it is a conversation you must have early to prevent any fruitless pitching. It is another sign
of a true professional that you know when to walk away. If your client is wired up to the hilt with
Microsoft - based hardware and software with a suite of incumbent .NET applications, why would you
try to pitch a PHP - based solution?

 Support
 If there is one issue you should always try to raise with the client, it ’ s the issue of after - production
support. It may not have even crossed a client ’ s mind, but it ’ s extremely useful to establish what the
client ’ s expectations are and how they jibe with your own.

 Determining who will create user - orientated documentation (if required), who is to provide support
after the system is deployed, and what kind of service the client expects during handover are all
important issues to address. If the client appears at a loss, attempt to suggest suitable answers to your
own questions, and gain the client ’ s tacit approval for inclusion in your pitch.

 Bizarrely, many clients unused to contracting Web development professionals seem to labor under the
delusion that they can expect lifetime after - sales support and maintenance without additional charge.
It ’ s worth ensuring that this isn ’ t the case on your project, and if it is, setting the client straight.

 What Now?
 Now that you have a formal brief and have talked at length with your client about time, budget, design,
technology, and support, it ’ s time to proceed with winning the business. If you ’ re in the fortunate
position of developing a project for another department in your own organization, you can probably
skip the next section, as it probably won ’ t be a pitch situation in the first place.

406

Part III: A Real-World Case Study

 However, if you need to actually convince the client of your worthiness as a supplier and provide a fully
costed proposal in the process, read on.

 Constructing the Pitch
 The pitch itself can take many forms. It can be a presentation, a mock - up, a sample system, or even a
demo of a similar solution you ’ ve worked on in the past. Regardless of the scenario, a written
component is typically part of every pitch, and that is what this section addresses.

 The first question, of course, is whether you need a pitch at all — or whether a mere quotation will
suffice.

 Pitches Versus Quotes
 It goes without saying that you must provide (at the very least) a quote for the work you ’ ve been briefed
about. When to expand that quote into a full - fledged pitch, however, can be a tricky decision.

 Consider the last time that you, as a consumer, were actively “ sold to. ” It was probably the last time you
bought a car, a high - end TV or home entertainment system, or a new kitchen. You expect to be pitched
when you are looking at $ 400 televisions, so why is it that when you go to the store to buy $ 400 worth of
groceries for the family during the holiday season, you aren ’ t pitched to in the supermarket?

 The difference is pretty clear. The television is a long - term expense; the groceries will be gone in a few
weeks. Think along the same lines with the work you ’ re quoting. Try not to get too hung up on the cash
value. Consider instead what the work you ’ re proposing means to the client. If it will have a long - term
impact, then you need to sell it, so you need to produce a pitch. If it ’ s simply a short - term requirement —
 a consumable — then, more than likely, all you need is a quote.

 Examples of work that may require only a quote would include specific changes to an existing
application (provided that they are relatively simple) or the installation and configuration of PHP, Linux,
MySQL, and Apache on a rack of servers. In both cases, there isn ’ t a great deal to say — so don ’ t say it.

 If you are providing only a quote, it may be useful to have a few pages of stock library material (call it
 “ propaganda ”) about your business — perhaps outlining some of your key skills, experience, past
clients, and so on. This can be handed over with your quote in case anyone at the client company needs
to see some traditional sales material.

 For the rest of this section, let ’ s assume that you ’ ve gone the whole hog and opted for a pitch, rather than
a quote.

 Pitches Versus Specifications
 If you ’ re serious about winning the business, plan to put some serious effort into your pitch. This is not a
bad thing in itself, but you do need to be very careful not to fall into a very serious trap — that is,
actually producing a specification, rather than a pitch.

Chapter 16: Project Management

407

 You ’ ll meet up with specifications later. Essentially, they are detailed blueprints for the system you will
be building. At the pitch stage, however, you want to be careful not to get into that level of detail. Not
only will you be doing more work than necessary, you may be giving away free advice if you don ’ t
eventually win the pitch.

 Think carefully about what you are trying to accomplish with your pitch. You are trying to convince the
client company of the following:

 You have fully understood the client ’ s brief.

 You have devised an efficient, effective, and innovative response to the client ’ s brief.

 You are able to deliver the solution you are recommending within the client ’ s required time
frame.

 You are able to deliver the solution at price X and have arrived at that price in a methodical
manner.

 You are the kind of supplier with whom the client should do business.

 Going into intense detail on the functionality or technology behind the system does not contribute to
accomplishing these aims and, therefore, should be omitted.

 Sometimes, a degree of upward management of the client is required to justify the absence of full
functionality in the pitch document. Be totally candid. Explain to the client that you have adopted a
rigorous specification process to ensure that the system is delivered exactly to the client ’ s requirements.
At this stage, you are a high - quality solution provider who has fully understood the requirements
(rather than the specifics) of the system. If the client accepts these assertions, then he or she must, by
inference, accept that you are able to fully provide the required system.

 If you ’ re still pressed for more detail, proceed with caution. Don ’ t sell yourself short by giving away free
advice at the drop of a hat.

 Who to Involve When Pitching
 By now, you probably have a good idea of who you want to involve in the project if you win the
business. You ’ ll learn more about this later in the chapter; but for now, it ’ s worth considering who you
should be involving in putting together the pitch. Because the pitch is your responsibility, ultimately any
editorial decisions about its content lie with you.

 That said, be aware that there is an element of creativity involved in the pitch process! You must
clearly demonstrate an edge over other suppliers competing for the business, as well as the competence
to deliver the required solution within the budgetary constraints of your client. With this in mind, it ’ s
definitely worthwhile to get people who may be able to contribute to the creative process involved at
this early stage.

 Because you are not getting bogged down in specifics, however, it is not necessary to have more than
maybe one senior technologist and one senior creative on board, assuming that you have such people at
your disposal. How the three of you arrive at the content of the pitch is very much up to you. Producing
the entire document in a brainstorming environment, with the project manager in the driving seat, has
proven to be a lot more effective than simply dividing the pitch into assignable chunks and gluing it
together later.

❑

❑

❑

❑

❑

408

Part III: A Real-World Case Study

 When to Go the Extra Mile
 Some clients will really make you work to win the business. In many cases, it ’ s well worth it. At other
times, it can be too much of a risk. Knowing when and when not to go the extra mile is an essential skill.
Don ’ t think of this as being lazy; your time may be far better served chasing down other potential
business leads rather than pouring effort into an unlikely candidate.

 The extra steps sometimes requested by clients may include on - site presentations, demonstrations of
similar systems you have developed in the past, and even references and testimonials from previous
clients. Some will ask for proof of financial standing, too (such as accounts, bank statements, and copies
of tax returns). The questions you should ask yourself at this point are the following:

 How likely are you to win the business?

 What are the costs involved in taking these extra steps?

 What are other suppliers doing?

 If you ’ re getting strong signals from the client that you are close to closing the deal, you should most
certainly consider proceeding. If, however, the client isn ’ t making the right noises, the decision may
already be tilting in someone else ’ s favor, in which case you should decline the invitation to provide
more information.

 Always assess the cash cost (travel, consumables) and effective costs (time expressed as potential lost
revenue) of taking these extra steps. As a rule, if the costs appear to be approaching anything more than
5 percent of the value of the project, definitely consider taking a step back.

 If you can, try to dig around to see what other suppliers are up to. Having a friendly insider at the client
can be hugely useful here. A receptionist, for example, is clearly not a decision maker, but probably
keeps his or her ear quite close to the ground. Try to glean what knowledge you can; if your competitors
are going the extra mile, then so should you.

 When to Say No
 Curiously, few professionals consider when it is appropriate to decline to pitch on a particular piece of
business, and yet it is just as important to know when to walk away as it is to know when to grab a brief
with both hands and give it everything you have.

 Aside from the obvious (such as lacking the necessary skills or personnel, or the client lacking the
necessary budget), you should always keep a close eye out for the following:

 “ Just curious ” briefs — The client has no real authority to commission you to carry out the
project, but has read about it in a trade journal and is curious to know how much it would cost.
Typical warning signs include being briefed by a junior - level member of staff who makes
frequent references to needing to talk to the boss.

 “ Driving down a quote ” briefs — The client has already picked a supplier, but wants to drive that
supplier ’ s quote down by obtaining quotes from other suppliers to use as leverage.

❑

❑

❑

❑

❑

Chapter 16: Project Management

409

 Pet projects — Typically, the brief is given by a relatively senior player in the company, but no
one else seems to be involved or have any interest. Although the money can certainly be there
for such projects, if that senior player disappears, it ’ s quite likely that your project will, too.

 Always keep the dollar in mind. If the project seems like more trouble than it ’ s worth, then don ’ t be
afraid to take a step backward. The client may even respect you for it.

 Structuring the Pitch
 The written aspect of your pitch can follow almost any structure you wish, as long as it is consistent from
pitch to pitch. This is particularly important if you are likely to be producing multiple proposals for a
single client; consistency from document to document is crucial.

 A few key points are worth following:

 Present an introduction — Always date the pitch, title it with the name of the client (not your
name), and add the line “ prepared for X, ” where X is the name of your principal contact at the
company — it ’ s an instant points - winner.

 Always reproduce the brief ’ s key points as your first section — If the client has provided a written
brief, do not reproduce it verbatim, but summarize it in approximately half a page. Many clients
will make their decision based on just the first page of your proposal, and the price — so use the
space wisely.

 Propose your solution — Include simple Visio diagrams or illustrations, if necessary, and describe
your solution in full in not more than two or three pages. Again, don ’ t get bogged down in
detail. This is a ten - mile - high, top - down overview of the system — your own creative
interpretation of the brief you have just described. Provide bulleted points of “ neat features ”
and ideas you have, rather than simply list components.

 Always provide a clear “ investment summary ” — Call it this, rather than a quote. Investment has a
much more positive connotation, suggesting long - term benefits to the client. Of course, don ’ t try
to hide the price from the client. Show clearly how you have arrived at the price, and include
details about any commercial terms you are proposing.

 If you have quoted for this client before, ensure that your quote is consistent with previous
quotes. For example, if you have worked at a flat rate of $ 800 per day on previous quotations,
don ’ t be tempted to use a daily rate of more than $ 800 per day on this occasion without being
fully prepared to justify it when the client picks it up.

 Go into some detail — Talk about your process (if you have one), your company, and its history
and background. Name - drop previous satisfied clients if possible, especially if they ’ re well -
 known names.

 Be candid about dates — Explain to the client both how long it will take you to do the work, when
you expect to hand over, and when you expect the client to be able to start using the system.
Emphasize that you are fastidious when it comes to keeping deadlines. Provide a simple
GANTT chart, if necessary, showing any dependencies — particularly those for which you need
the client ’ s involvement.

 Set objectives and expectations — Include a “ what - to - do - next ” line advising the client how to
contact you with questions, and how to proceed if client wants to get started right away.

❑

❑

❑

❑

❑

❑

❑

❑

❑

410

Part III: A Real-World Case Study

 If you had a face - to - face meeting or telephone call when receiving the brief, try to refer to some of the
leading questions you asked and the answers provided. Remind the client of these answers, and show
how you have used them to drive the decisions you have made thus far. For example, “ You told us when
we met that you required the system to be accessible as an XML Web service. We have, therefore,
included in our proposed solution the capability to ”

 If you ’ re sending the document electronically, try to use PDFs, rather than MS Word documents or any
other proprietary format. In addition, always follow up with a phone call to check whether the client has
received the document, but resist the temptation to chase the client at this point. Let at least a week go by
before any follow - up phone call.

 Most important, if you ’ ve promised the client the pitch document by a certain time and date, don ’ t miss
the deadline. First impressions count, and you get to make only one.

 Remember that you won ’ t win them all, no matter how good you are.

 Unless your strike rate is proving disastrous, however, don ’ t dwell on any missed pitches. Move on, and
try to get some friendly feedback from the client as to what you could do to improve your approach next
time around.

 Assuming you get the go - ahead from the client, you will have to assemble a project team pretty quickly.
Let ’ s look at that now.

 Choosing Your People
 Before you can get started moving the project forward, you must assemble a team to work on delivery.
Set aside a full day for this process if possible — and make it clear to the client what you ’ re doing.
How big this team ends up being is obviously governed by the resources available to you and the
requirements of the project. This section looks at the different roles in the project and how they all fit
together.

 Project Manager
 If you ’ re reading this chapter, this is a role that you will probably occupy. The project manager
(sometimes called a producer, depending on locality) has responsibility for the day - to - day running of the
project, from the pitch right through to delivery and handover. Generally speaking, the project manager
works directly with the senior members of the build team and, if no account manager is handling the
relationship with the client, with the client directly.

 The project manager sets internal deadlines and objectives that are compatible with the broader goals for
delivery of the project, manages progress, and identifies and resolves any conflicts or difficulties
encountered by the build team throughout the process.

 It is not a technical role in itself, but having a thorough understanding of the work undertaken by
software architects, software engineers, and others is all but essential to be an effective project manager.
The ideal project manager, therefore, is an approachable, technically aware, highly organized and
efficient individual, with a proven track record in delivering projects on time and within budget.

Chapter 16: Project Management

411

 Any given project should need only one project manager unless a specific requirement to the
contrary exists.

 Account Manager
 If available, an account manager is a valuable addition to your project team. The account manager
provides the sole point of contact between you (the supplier) and your client. All communications in
either direction are channeled through the account manager.

 Should the client have a particular request for the build team, the client would put it to the account
manager, who would, in turn, pass the request on to the project manager. The project manager would
then handle the request internally, working with the build team as appropriate.

 The account manager does not get involved in the day - to - day running of the project itself, but is instead
concerned with managing the relationship between client and supplier. However, it is important that the
account manager and project manager communicate on a regular basis so that the account manager can
keep the project manager abreast of the expectations of and feedback from the client, and the project
manager can make the account manager aware of the progress and attainment (or otherwise) of key
project milestones.

 An account manager is not essential but often provides a closer, more fruitful relationship with the client,
because this role does not have the team - focused responsibilities of that of the project manager. By the
same token, however, this can sometimes lead to account managers being rather too quick to agree to
demands of clients, because the burden of the actual implementation of such demands does not fall on
the account manager ’ s shoulders.

 The ideal account manager is a gregarious and warm individual — the kind of person who can easily
strike up and maintain a rapport with everyone he or she meets. In addition, the account manager must
be sympathetic to limitations regarding what can and cannot be accomplished by the rest of the project
team and be able to communicate these limitations to the client when necessary.

 As with the project manager, only one account manager should be assigned to any given project.

 Lead Architect
 The lead architect for the project is the technical decision maker for the entire project life cycle. It is his or
her responsibility to translate the immediate requirements of the project (on a day - to - day basis) into
decisions about how those requirements should be realized through technology.

 The lead architect on any given project will always be a software architect, rather than an engineer, and
hence considerably more experienced. However, the lead architect must also have some degree of project
management experience to ensure that his or her decisions are client - led. The lead architect should also
possess exceptional team - management abilities, because more junior technologists will report directly to
him or her.

 In addition to possessing thorough competence as a software architect, the lead architect must have a
thorough understanding of systems and networks, such that he or she may suitably devise any
deployment infrastructures that the project may require.

412

Part III: A Real-World Case Study

 Typical software architecture duties undertaken by the lead architect include creation or ratification (or
both) of the database schema and object model for the project, maintaining coding standards, and
holding regular code reviews.

 Given the scope of this position ’ s duties, only one lead architect should be assigned to any given project.

 Software Architects and Engineers
 Any given project requires a number of software architects and engineers to work on the back - end
technology behind the application (in the case of this book, PHP). The difference between the two roles is
one of seniority.

 A software architect has a degree of autonomy (within the confines and standards set by the lead architect)
to make decisions about architecture, layout, structure, infrastructure, and coding standards. By contrast,
a software engineer must follow the edicts and standards set forth by the software architect.

 If resources do not allow for the use of client - side developers (see the next section), software engineers
may also be assigned the task of developing templates and HTML for use on the site.

 Of course, there need be no limit to the number of architects and engineers that can be assigned to a
project.

 Client - Side Developers
 The responsibility of client - side developers is solely to produce the HTML, CSS, and JavaScript that
provide the user interface to the application being developed. Generally, they will work in a template -
 driven environment — for example, using Smarty Templates. There is not generally any requirement for
them to know PHP or any other server - side scripting language.

 They work with the senior designers and studio artists on any given project to receive the designs for
preparation in HTML, but will report directly to the lead architect.

 There is no limit to the number of client - side developers who may be deployed on any given project.

 Information Architects
 On all but the very simplest applications, you ’ ll want some dedicated resource to take care of the all -
 important information architecture of your build — that is, the design and production of wireframes in
Visio or some similar package. These wireframes can form part of the functional specification process,
and can be used as a starting point for designers who want to produce creative treatments for the project.

 Information architects are something of a specialist breed. They are an odd hybrid of technical,
commercial, and creative. It is not really a technique to teach or learn, but rather a skill with which its
best practitioners have a natural affinity.

Chapter 16: Project Management

413

 Senior Designers
 The design process is headed up by senior designers, who are responsible for the overall conceptual
design of the application being produced. These are the team members who will produce initial designs
for approval by the client and make broader decisions regarding fonts, colors, and imagery. They work
with the lead architect in making such decisions to ensure that the concepts being created are within the
technical constraints of the project.

 Usually, a project has no more than two senior designers, one of whom typically assumes a leading role.

 Studio Artists
 Senior designers have a more junior resource at their disposal, too — that of studio artists. Not assigned
creative concepts per se, studio artists are still skilled in Photoshop, Illustrator, and other design
packages and typically respond systematically to requests for particular components. For example, the
production of a navigation bar with a certain set of captions would normally fall under the responsibility
of a studio artist.

 Studio artists typically work only with existing templates, styles, and colors specified by the senior
designers on a project.

 Any number of studio artists may be deployed on a given project.

 Doubling Up of Roles
 Resourcing can often be a challenge, even for the biggest of agencies. With this in mind, the following
pointers may be helpful, should you be forced to double up roles:

 Project managers often make effective account managers, provided that they are client - facing by
nature. They can also, in a pinch, undertake basic information architecture.

 The lead architect can obviously perform all the roles normally performed by software architects
and software engineers.

 Software engineers usually can do the development work assigned to client - side developers.

 Senior designers can, of course, perform all the duties normally assigned to more junior studio
artists.

 Working Practices
 To the extent possible, it ’ s a very good idea to have your project team work in one room together. That
way, the often talked about and largely theoretical concept of synergy becomes one step closer — that is
to say, that extra competitive edge derived from having a workforce whose strength is greater than the
sum of its individuals. Perhaps more important, having your whole team under one roof makes your job
as project manager that much easier.

❑

❑

❑

❑

414

Part III: A Real-World Case Study

 Your Client ’ s Role
 It is just as important for your client to define distinct roles for the project and assign personnel to those
roles as it is for you to have your own team structured correctly. This is obviously something over which
you have considerably less control than you have over the allocation of roles in your own project team.

 If at all possible, however, you should ensure that your client assigns a relationship manager to act as
your first point of contact with the client — to handle, raise, and address any queries regarding the
project, as well as any commercial queries. The client should also assign an internal project manager
should the client be required to provide any regular input into the project — typically, providing content.
This individual is responsible for managing or carrying out any work at the client ’ s end needed to
provide you with this content.

 Summary
 In this chapter, you learned (in some detail) the basics of successful management of a software
application project. You learned the importance of receiving a brief, including the key questions you
should be asking to gain a competitive edge over other suppliers, as well as how to respond to that brief,
including how and when to construct a suitable proposal.

 In Chapter 17 , you ’ ll learn about different software development processes and methodologies, how
they apply to your team, and how to determine which is best for you.

 Project Planning

 In truth, you ’ ll rarely develop big sites on your own. As your development career progresses,
you ’ ll find yourself taking a more senior role in ever - bigger projects. Yet, developing complex,
dynamic PHP - based Web sites and applications alongside a team of technical and business
professionals is not a simple prospect. You ’ ll be faced with many challenges, some of which won ’ t
be entirely technical in nature.

 The business - planning framework that you choose to work with will certainly affect the direction
in which your software project grows. Choosing a process that offers a strict (yet comfortable)
structure will place limits on how dynamically your project can change, but conversely reward
you with a paper trail and a detailed road map to follow. Taking a more dynamic approach to
planning may, however, mitigate the risk associated with technical or business unknowns.

 The decision regarding which approach to system planning best fits your project is not one to take
lightly, and you should be familiar with all planning options before making that decision,
regardless of your personal or professional preferences.

 Choosing a Process
 Now that you have your project team together, no doubt you ’ re eager to get started delivering the
solution that your client is so eagerly awaiting. Before you begin, however, you must determine
which process to adapt for building the finished product.

 The internationally renowned Project Management Institute (PMI) advocates a number of
standards and practices in the field of project management. This includes training and
accreditation, and the definition and documentation of a number of formal approaches to project
planning and execution.

416

Part III: A Real-World Case Study

 See www.pmi.org for more information about PMI.

 There are a few to choose from, but the two most fundamental processes are known as the waterfall
process and the spiral process . Both of these processes have the same basic stages (or phases) and elements
in common. The difference lies in the order and manner in which they are approached. Both processes
share the following four consecutive phases:

 1. Specification

 2. Design

 3. Build

 4. Test

 The Waterfall Process
 In the waterfall process, the entire project is treated as a single solution to be delivered in its entirety —
 it ’ s only done when it ’ s done, in effect. Figure 17 - 1 shows the approximate process that is followed.

Develop next

level product

Concept

Design

Implement

Evaluate alternatives,

identify, resolve risks

Determine objectives,

alternatives,

constraints

Plan next

phase

Prototype

Requirements

 Figure 17 - 1: Waterfall process

Chapter 17: Project Planning

417

 The most important principle of the waterfall process is that none of the project phases may begin until
its predecessor has been completed in full. For example, the written specification for the entire project
must be completed and approved in full before the design and architecture phase for the project is
completed. Only then can the build process of the project be completed and approved. Finally, the test
phase of the project may take place.

 This traditional process is fine in principle but it has some latent problems in practice. For example, if
an error is made during a particular phase that is not detected until later, that phase and all phases
following it may need to be repeated, which is immensely time - consuming and expensive. An error at
the specification stage not picked up by the client until delivery will require re specification, redesign,
rebuild, and retesting.

 Another potential problem can arise because the solution is built in one fell swoop, making it very
difficult to offer the client anything partly finished to play with early on in the development process.
If the client wants to provide early demos, or just needs reassurance as to progress, these can be very
difficult to accomplish until very late in the project life cycle.

 The Spiral Process
 The spiral process has the same core components as those of the waterfall process: specification, design
and architecture, build, and test. However, rather than approach the entire solution as a single entity to
which these four steps are applied, the system is divided into individual components, and the process is
then applied to each component.

 A component may be either a discrete piece of functionality, or a partial evolution (or layer) of a piece of
functionality. For each component, the four phases are applied: specification of that component, followed
by the design and architecture of that component, followed by the build of that component, followed by
testing of that component — all in isolation.

 The process is called the spiral because you follow the path of a spiral — progressing down the path
but passing the same four compass points (each of the four phases) again and again, as shown in
Figure 17 - 2 .

418

Part III: A Real-World Case Study

 The big advantage of this process is that if an error is spotted at any stage during the four phases,
then the steps backward that must be retaken are much smaller because you are dealing with only one
discrete component, rather than the entire application. In addition, the client is able to play with the first
components of your application much sooner, which can have huge political benefits.

 Note that the testing phase in the waterfall process deviates slightly from the spiral process in that the
tests applied with each new component should ideally include all the previous tests from previous
components, too. This is to ensure that no new piece of functionality is causing a previously tested and
signed - off piece of functionality to fail — a process known as regression testing.

START

Specification

Design and

Architecture

Build

First

Component

First

Component

First

Component

First

Component

Second

Component

Second

Component

Second

ComponentSecond

Component

Third

Component

Third

Component

Third

Component

Third

Component

Testing

FINISH

 Figure 17 - 2: Spiral process

Chapter 17: Project Planning

419

 Making the Decision
 This chapter does not advocate either process over the other. Later in this book, you ’ ll see one of the
processes again in the context of the planned Widget World sales force automation application, but
for now, let ’ s leave the door wide open. Which method you choose depends very much on the project
at hand.

 Although the spiral process certainly has huge advantages from a change - request and exception -
 handling perspective, the additional paperwork and administrative involvement has a cost to it, too,
which must be weighed equally.

 Your own experience will give you a feel for both processes. In many cases, the decision comes down to
personal preference as much as anything else. If you ’ re the project lead, you ’ ll doubtlessly be given
latitude to exercise your discretion in choosing an approach. Whichever way you go, there are common
steps and a best practice for each one, so let ’ s take a look at those next.

 Common Process Practices
 As mentioned previously, both the waterfall and spiral approaches are consistent in their insistence that
all development must have a specification phase, followed by a design phase, followed by a build phase,
followed by a testing phase.

 The difference lies in how much specification, design, build, and testing is done with each iteration,
and the size of the chunks in which it is done. Moreover, the words specification , design , build , and test are
very much open to interpretation in and of themselves. Let ’ s examine a little more closely now how you
might implement each phase, regardless of whether you have chosen a waterfall or spiral approach for
your project.

 For the purposes of this example and to maintain clarity of language, let ’ s assume that you have adopted
a waterfall approach for your project. Hence, this examination describes the phases in application to an
entire project, rather than an individual component. However, if a spiral approach has been adopted,
you can apply exactly the same methodology to each component in your spiral.

 Specification Phase
 In many respects, the specification phase is the most difficult part of any project, often much trickier
than the build process itself. This is particularly true if you are assigned to build a slightly mundane
system (a front end to a simple database, for example). The task of development is not particularly
challenging; it is the task of getting it right for the client the first time that ’ s difficult.

 This phase is about ensuring that you know what you ’ re planning to build and, more important, that
the client knows what it is you ’ re planning to build — and that it matches the client ’ s original business
requirements as closely as possible. The easiest approach to adopt here is to produce paper specifications
for the project — both a functional specification and a technical specification.

420

Part III: A Real-World Case Study

 Functional Specification

 The functional specification for a project describes in detail the functionality of the system at a predesign
level. It should be written in plain English, and not place too much emphasis on (or provide a rationale
behind) technology - led decisions. As a rule, roughly follow your pitch document (if you wrote one) and
reproduce the brief in some detail here. It provides an excellent starting point for seeking affirmation
from the client that the terms of reference for the project remain the same.

 This is where the similarities with your pitch end, however. All the detail that you were implored not to
include in your pitch document should be included here. Remove any ambiguity from areas you would
rather not repeat in case you get it wrong. Getting the level of detail right is a fine balancing act. Too
much, and the document becomes unreadable; too little, and there is too much scope for interpretation
or later disagreement over functionality.

 With this in mind, try to be clear in any areas you think could be open to interpretation. For example, if
you use the phrase “ users will be able to upload photographs to associate with their profile, ” the client is
unlikely to latch on to the fact that you have omitted the number of photographs or what format they
may be in. In this case, when a scenario crops up whereby a user wants to upload 800 .pcx files but your
application cannot support it, you may be in trouble. Instead, try to use phrases such as “ users will be
able to upload a maximum of eight photographs in JPEG format to associate with their profile. ”

 By the same token, however, mind - numbing detail should be avoided, because huge amounts of
information can overwhelm, frustrate, or irritate even the most patient of clients. If you find yourself
using a sentence such as “ The page will have a Home button that, when clicked, will take the user to the
home page, ” you ’ re guilty. Furthermore, just as overly technical information can be daunting, overly
simplistic information can seem condescending.

 The litmus test for whether a specification is on the money is whether you could give it to five different
teams of competent development and design staff, and, in each of the five cases, have roughly the same
thing built. At the same time, though, you should leave open to interpretation any decisions that may
best be left to a later phase or to others on the project. For example, sentences such as “ The page will
have a Home button positioned 124 pixels from the left side of the screen, ” should be avoided, because
this decision should be left to a senior designer during the design phase.

 In your functional specification, try to lay out the document as clearly and consistently as possible. The
following is a suggested layout from start to finish:

 Replication of the client ’ s original brief (or your Scope of Work document, if you produced one).
Try to limit this to not more than half a page, and ensure that it is in your own words.

 An explanation regarding what this document provides, what is expected of the client, and what
other documents you will deliver as part of the specification process. At this stage, be clear that
this is a document you expect the client to physically sign off on before you move forward.

 Explain (in not more than half a page) a top - line summary of your proposed solution, and list
the components it is likely to entail.

 For each component, provide a detailed explanation of its functionality, including typical usage
walk - throughs for “ dummy ” users.

 Provide diagrams if you genuinely feel it will improve clarity; otherwise, avoid them. No matter
how hard you stress that they are only diagrams, clients invariably interpret them as completed

❑

❑

❑

❑

❑

Chapter 17: Project Planning

421

designs, with predictable consequences. The same pitfall is equally true with “ wireframes ”
(sometimes called information architecture), which you will meet later in this chapter.

 Complete the document with an explanation of what the client must do next if he or she wants
to ask questions or make changes, or wants to sign off on the document. Explain the next stages
after the document has been signed off on, and gently advise that previously agreed on delivery
milestones are all subject to timely agreement to this document.

 In practice, you will likely require at least two or three iterations of the specification before the client is
happy. Indeed, you should be wary of any client who immediately signs off on an initial specification.
Nine times out of ten, this implies that the client hasn ’ t read it.

 Technical Specification

 Whereas the functional specification describes what you plan to do, the technical specification describes
 how you plan to do it. The level of detail you need to include here varies dramatically from client to
client. Generally, if the client has an IT department taking a keen interest in the project, then you will
need to provide an exhaustive level of detail, right down to your coding practices. Otherwise, you can
usually get away with providing the following:

 Suggested language for build (with rationale and explanations), as well as comparisons and
rejections of other, rival languages

 Suggested database platform (with rationale and explanations), as well as comparisons and
rejections of other database platforms

 Suggested operating system for Web and database servers — again, with comparisons to other
platforms and reasons for their rejection

 An explanation of the hosting and deployment plans for the project (if any), including detail on
bandwidth requirements, and so on, where appropriate.

 An explanation as to what this document provides, what is expected of the client, and what
other documents you will deliver as part of the specification process. Be clear that this technical
specification relates directly to the functionality the client has already signed off on in the
functional specification.

 If you have chosen to adopt a spiral process for your project, it is not necessary to provide a technical
specification for every traversal of your spiral. Instead, provide a single technical specification at the
beginning of the project, and explain to the client that this specification relates to the implementation of
all individual components to follow.

 With many clients (especially those not equipped with their own technology department), this document
may prove to be quite alien. If so, you have two options:

 Go to great lengths to explain the document in detail with the client to ensure that the client is
happy with the decisions you ’ ve made.

 Let the client sign it blindly (which the client may be more than happy to do).

 Sometimes, the latter decision is easiest. After all, most clients believe that they are paying you to tell
them what is technically sound, not to ask their permission.

❑

❑

❑

❑

❑

❑

❑

❑

422

Part III: A Real-World Case Study

 Design Phase
 The word design may prove to be misleading here. It relates both to graphic design and to software
design; but of course the two are very different disciplines, and you should be aware of the distinction.
Still, it is almost inevitable that the client will want to see some individual graphic designs for the key
components of the project as soon as possible.

 It is absolutely fine for the senior designer on a project to take responsibility for and produce these
designs, as long as it is done closely in consultation with the lead architect to ensure the technical
feasibility of what is being proposed. Skilled senior designers will be aware of technical limitations, and
therefore require less guidance when designing for the Web.

 Again, expect to produce a few iterations of the designs before you get them exactly right. This can be
immensely tricky. Clients have their own unique vision of what is wanted, and they may struggle to
articulate it to you as the supplier. Sometimes clients only know that what you have produced is not
what they want, and they will not hesitate to make this clear to you.

 When presenting designs to a client, sometimes it is useful to have the senior designer present the
designs, possibly even using a laptop loaded with graphics and RAD software so that suggested changes
can be made in front of the client. A reaction such as “ That ’ s it, that ’ s how I want it, ” can be most
gratifying, as well as commercially useful.

 Creative Specification

 With the key designs signed off on, it is a very useful exercise to produce what is known as a creative
specification , or style guide . This document is not normally presented to the client for inspection, although,
if the client is very protective of branding or has in - house graphics staff, it may not be a bad idea.

 The traditional purpose of this document is to communicate the artistic vision of the senior designer to
more junior studio artists and to ensure that any future design work carried out on the project is also
consistent with that vision.

 The style guide includes details of fonts, colors, layout, logos, backgrounds — all the components that
make up the broader artistic vision. This guide ensures that if a request is made, such as “ produce a
button that says Add to Basket,” the result looks exactly like the senior designer would want.

 Information Architecture

 Possibly the most controversial component of the design phase is that of information architecture,
sometimes called page maps . Essentially a wireframe, black - and - white model of a given page in the user ’ s
Web browser, it attempts to articulate the user interface (UI) without communicating any facets of the
design. It enables the general UI to be approved separately from the graphic design, when commercial or
political pressures mean this could be useful, or when no specific graphic design has been produced for
this page.

 In addition, it can be given to the development team, along with the creative specification, such that they
can directly commission studio artists and client - side developers to produce designs and HTML code
needed to deliver some particular component. In practice, however, wireframes have two major pitfalls.

Chapter 17: Project Planning

423

 First, it is often difficult for clients to separate the concepts of UI and design. This can mean that
presenting completed information architecture to a client can be a tiresome and stress - inducing task,
because the client perceives your wireframe diagrams as the finished look and feel, and balks at the
prospect. As a result, feedback will often not relate to the user interface at all — for example, your client
may ask you to “ make that button a bit bigger. ” Obviously, you must make it clear exactly what you are
presenting from the outset, but even with that in mind, it can be a hugely frustrating process trying to
coach clients unfamiliar with the process in order to eke out vital feedback on the UI.

 Second, the personnel remit for actually producing information architecture is hard to define. Graphic
designers are rarely experts at producing “ interfaces ” per se and are often loathe to using Visio and other
packages required to produce these deliverables. Project managers are usually far too busy. As a result,
the task often falls on the shoulders of the lead architect. Given that the role of imparting a vision for the
production of particular components to software architects and engineers is at the heart of the remit of
the lead architect anyway, the arguments for documenting this vision are weakened.

 Software Architecture: Ten - Point Plan

 Again, another piece of documentation that you may or may not want to present to the client for
approval is the software architecture plan . This is often called a ten - point plan, because it is generally a
series of short, punchy bulleted points outlining the best approach to the actual project or component in
hand, instead of being a prose - heavy document.

 The production of this document is very much the remit of the lead architect, who normally produces it
well after the technical specification has been approved and signed off on. As such, it doesn ’ t concern
itself with technology options, hardware, hosting, and so forth. Rather, it concentrates on issues such as
database schema, object models, and implementation of design patterns such as MVC.

 The lead architect communicates the document to his or her software architects, who in turn interpret it
as they see fit. In theory, the “ architectural vision ” should cascade down to software engineers working
beneath them, too.

 Whether you choose to show this document to your client depends on the ability and capabilities of
technical personnel provided by your client. If your client has no one sufficiently technical (for example,
if they have general IT practitioners, but no development function), then feedback is unlikely to be
forthcoming. If they do sometimes undertake their own development work, then it would be advisable
to see the buy - in of those developers at a senior level, too. (Your client should be able to make the
necessary introductions.)

 Keep in mind, however, that no matter how robust your software architecture is, a risk of “ not invented
here ” syndrome exists. You may well find your clients ’ developers picking holes in your approach on a
point of principle. Such people are best humored (to a point), but don ’ t be afraid to let your clients
know if they are starting to affect delivery dates. You ’ ll be amazed how quickly they are motivated to
back down.

424

Part III: A Real-World Case Study

 Build Phase
 With all design parameters agreed upon, the build process itself can commence. There is no written
documentation to accompany this phase, but a few points are worth keeping in mind:

 Always maintain both development servers and a staging server, as well as the production
server. These do not necessarily have to be separate physical servers, but it is vitally important
that you can release partly completed stages of development to the client in order to document
the progress you are making. You may also decide to expose a “ bleeding ” server, on which the
client can check progress at any time — with the proviso in place that what the client sees is a
work in progress, and might not necessarily work perfectly.

 Try to adapt a programming methodology, if one is appropriate to your project. These are
discussed in more detail later in this chapter in the section “ Programming Methodologies and
Practices. ”

 It is the responsibility of the lead architect to manage the build process and ensure that his or her
team delivers all components on time, and at the required standard, so that the entire system can
be delivered to the project manager as a completed package, rather than piecemeal.

 Always maintain fastidious version control. Elsewhere in this book, you ’ ll learn about
Subversion, a free solution to this often problematic issue.

 Testing Phase
 Having built the solution, it is vital for you to conduct suitable testing — both to assure yourself of the
quality of what you have produced, and to reassure the client that he or she doesn ’ t have to perform
exhaustive testing.

 The testing you conduct should always be accompanied with written reports detailing your findings. For
obvious reasons, don ’ t release these reports until you are 100 percent happy that the testing has been a
complete success.

 Functional Testing

 Functional testing ensures that the product works exactly as expected, both that it fulfills the specification
exactly and that it is free from errors or malfunction. Be systematic. Test each area of functionality
relentlessly, using a number of different data sets and/or input parameters. Record your findings
systematically, so that you can, in effect, demonstrate a “ checked off ” status in the box next to each
distinct feature.

 Of course, always stress to your development team that it is vital to “ test as they go ” as far as possible,
and never turn in code they know to be seriously buggy. You might consider using a bug - tracking
system such as Mantis (www.mantisbt.org) to maintain a centralized repository of bugs as each is
discovered, assign the bugs to developers, and annotate them appropriately.

 Load Testing

 If the application you are building is likely to be a high - traffic one either now or at some point in the
future, it makes sense to know how much it can take before it falls over.

❑

❑

❑

❑

Chapter 17: Project Planning

425

 Load testing can be conducted only if you can deploy the application onto a realistic environment,
usually the production server. There is no point in testing your application on your Xeon - driven
Linux development server if you know you ’ ll be forced to deploy onto a Sun box running Solaris.
A number of packages are available, the most popular of which is probably LoadRunner (visit
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto & cp=

1 - 11 - 126 - 17%5E8_4000_100 & jumpid=reg_R1002_USEN for more information). Similar results,
however, can be achieved using a suite of custom - built test scripts.

 The key to load testing is to never be afraid to turn the volume up as high as it will go until the speakers
explode. Simply knowing that the client ’ s traffic expectations can be handled is good, but knowing
exactly how much more they can handle beyond that is even better. The client will be gratified if you can
provide an exact figure, such as “ the site will handle 1,000 simultaneous users without any problems. ”

 Handover
 Having produced a thoroughly documented, well - designed, fully tested piece of software, it is vital to
arrange a proper handover meeting with the client. This is the client ’ s final sign - off — either for the
whole project or for this component, depending on which process (described earlier in the chapter) you
decided to adapt.

 During the handover process, you should ensure that the client is fully comfortable with the inner
workings of the finished product. An element of training may be required as a result. In addition,
remember what you ’ re there to do — hand over the project. Presenting the client with a DVD containing
a copy of the source code can have a symbolism that is hard to measure.

 It is almost inevitable that small change requests will crop up during the handover process. Later in this
chapter, you will learn how to handle them.

 Programming Methodologies and Practices
 Let ’ s look briefly at the build process itself. There are a couple of best - practice methodologies you may
want to adapt during the build process, regardless of the overall project process you have chosen.

 Test - Driven Development
 In Chapter 13 , you briefly met PHPUnit, and you learned how to use it to build unit testing frameworks.
This knowledge can only be applied, of course, if you have built your application in a unit - driven
fashion.

 Test - driven development requires that you write the test before the code. The act of writing the test for
the class in which you intend to code forces you to think about exactly how you plan to use a particular
class, what it needs to do, and what its interface should be. PHPUnit (available through PEAR at
 http://pear.php.net) is a good framework for testing.

 You want to confirm that your unit test works before attempting to write the class itself. This may
require using a dummy class with the same interface as that of your real class to make the test run and
naturally fail.

426

Part III: A Real-World Case Study

 After being constructed, the unit tests for that class will probe the interface of your PHP class and
analyze in detail the data that is returned. As a developer, your responsibility is to code the class in order
to satisfy your unit tests.

 Try to keep your unit tests as generic as possible. If you have numerous classes with similar interfaces,
you can combine your unit tests into a single PHPUnit instance.

 Using unit testing has numerous advantages, which are explored in more detail later in this book when
you start to build the discovernewbands.com portal. Whether it ’ s right for your project is, once again,
a judgment call. It is a testing methodology arguably much better suited to larger projects with more
distinct components than to simple traditional “ database applications. ”

 Extreme Programming
 The concept of extreme programming (XP) is perhaps the truest example of a programming paradigm. It is
a paradigm in the sense that it is perhaps more ambitious than it is practical in every development case
and is not without its share of critics. However, as a working model, it has many facets from which to
pick and choose as required.

 It ’ s just one example of what are sometimes called agile development methodologies — a suite of variably
unorthodox approaches that claim to be better suited to twenty - first-century application development.

 Understanding XP

 The effectiveness of XP is realized through a number of distinct working practices. They are too
numerous to list in full, but let ’ s look at a few in detail.

 The main goal of XP is to deliver quality software driven by the needs of the client. It achieves this goal
by managing complexity. As a system grows increasingly complex, the cost to add and modify features
increases. Conversely, if the system does not get unnecessarily complex, then the cost of adding
features later is roughly the same as adding features now.

 This is a very powerful weapon, because traditional methodologies tend to follow the curve whereby the
software modification cost increases exponentially as more time is spent with all the phases of
development.

 For example, it is more cost effective to add features in the requirements phase than during
implementation, when it costs significantly more; but suppose your project development followed a
curve whereby the costs of change grow more slowly and level off more quickly. If you had the freedom
to add, remove, and modify features whenever you ’ d like, then there would be pressure or reason to
try to predetermine the entire feature set during the initial phases of the project.

 As clearly outlined by Kent Beck and Cynthia Andres in Extreme Programming Explained, Embrace Change,
Second Edition (Addison - Wesley, 2004), the act of XP is that of following a set of practices:

 Planning — Determine the scope of the project by combining business priorities and technical
estimates, continually updated.

 Small releases — Get the system to the people who will be using it, and release new versions on a
very short schedule.

❑

❑

Chapter 17: Project Planning

427

 Simple Design — Keep the design as simple as possible at all times. Complexity is removed on an
ongoing basis.

 Testing — Developers continually write unit tests to ensure that the system runs flawlessly at all
times. Customers write tests to demonstrate that features work as required.

 Refactoring — Restructure the code without modifying the behavior in order to keep it easy to
read, to remove duplication, or to simplify it.

 On - site customer — The client should always be available to answer questions at all times
throughout the development process.

 The client, always being available throughout the build process, is in effect made part of the development
process, instead of simply driving it forward through his or her requirements. If at all possible, this is
best accomplished by having the client (preferably some reasonably technical representative with
domain expertise) on site at key stages during the development process.

 Don ’ t worry about clients unnecessarily harassing your team. As long as they are suitably involved, your
team will upward - manage the clients. This tenet of XP is particularly important in the attainment of
elevated customer satisfaction. There can be no cries of “ this isn ’ t what I wanted ” if the customer has
been involved from day one.

 By creating unit tests for your classes before the classes themselves, you save time if your code doesn ’ t
work the first time. Across a larger project with a number of distinct classes, this time savings can easily
amount to days.

 Using unit testing brings with it other benefits. First, psychologically, it conditions software architects
and engineers to consider more fully and thoroughly the requirements of a given component, meaning
that the finished product is often a closer fit to the true requirements than a non - unit - driven approach
would have permitted. In addition, there is a positive, direct impact on coding style that is highly
beneficial to all those involved in the development process.

 Second, it ensures that coding standards are determined early on in the project, and that the entirety of
the development team sticks to them. There is no “ code ownership, ” so any developer is allowed to
modify any piece of code, as long as the unit tests continue to work.

 Perhaps the most famous aspect of XP is that it permits two software engineers (or perhaps a software
architect and an engineer) to code at a single workstation simultaneously. Generally, the best
configuration is for both individuals to sit side by side, but with one driving (that is, controlling
keyboard and mouse) and another guiding the code - authoring process. With two people actively
involved in the development of each piece of code, the business and technical expertise is not stuck
inside any single developer ’ s head, which allows for a more even distribution of information and avoids
having the project be dependent on any specific developer. Besides, the old clich é is true: Two heads are
almost always better than one; and pair programming doesn ’ t just affect the quality of code, it also
reduces the number of bugs.

 The most controversial of XP ’ s tenets is that overtime (that is, working programmers until they collapse)
is frowned upon, even “ banned. ” The argument is that when a project is properly specified, budgeted,
and managed, there should be no need for overtime in the first place; and when overtime is generally
needed, the project is doomed to late completion anyway.

❑

❑

❑

❑

428

Part III: A Real-World Case Study

 When to Use XP

 XP is most at home when the project in question has a high element of risk attached to it. Perhaps there is
a tight deadline to be met. Maybe some unknown quantity or dynamic requirement means that the
proposed solution is not cast - iron guaranteed to meet the eventual needs of the client. Conceivably, the
solution being proposed is so cutting - edge that it carries the risk of simply not working.

 The actual development team should be small — not fewer than two, and not more than 10 or 11 — and
all members of the project team (not just the development team) are free to take ownership of the build
process.

 The desired results of XP are as follows:

 The productivity of those in the development team is greatly increased.

 Client satisfaction is more easily attained.

 High standards of quality are attained and maintained.

 The client ’ s requirements are met more precisely.

 Deadlines are met with greater accuracy and consistency.

 There is a huge amount of debate among the programming community over both the relative success
and the feasibility of XP. Often, enormous commercial pressures mean that it is simply an impossible
paradigm to follow. As with any paradigm, however, it is simply a model — something to aim for.
You can find a great deal more detail on the practices and recommendations of XP at http://www
.extremeprogramming.org/ .

 Change Management
 In almost every project of any scale, change requests will be made by the client. Managing these changes
is enormously important. Not only must you assess the commercial impact of any changes you make,
but you must also understand the enormous disruption that can occur through major changes to a well -
 entrenched software or systems architecture.

 This section looks at some of the most common varieties of change requested by clients, and the best way
to handle each of them.

 Specification Revisions
 These are not only inevitable, but should be actively encouraged. Your client will want to make changes
to the specification you have produced, because it is almost certain that you will not quite have managed
to hit the nail on the head first time around.

 Collate any change requests together into 48 - hour periods. Use a change management package such
as Microsoft Project or BaseCamp (http://www.basecamphq.com) if necessary. Every 48 hours,
incorporate the previous two days ’ changes into a new release of the specification, and offer it back to
the client.

❑

❑

❑

❑

❑

Chapter 17: Project Planning

429

 Be sure to make the client aware of any requests that will (for one reason or another) prove unfeasible as
soon as they are put forward. This is why it ’ s vital that work - in - progress meetings with clients are
attended by somebody with practical knowledge of application development; simply sending “ suits ” is
counterproductive.

 Specification Changes That Arise After Sign - Off
 If the client requests changes after signing off on the specification, you may have a problem on your
hands. First, don ’ t panic. You have the moral high ground. The client ’ s signature on your specification is
an affirmation that he or she was 100 percent happy with what has been produced. Should you feel the
need to bill the client for the change, you are, strictly speaking, within your rights to do so.

 Before you make a decision, however, consult the rest of your team. Try to determine how far into the
design and/or build phases your team has progressed. Try to quantify, in terms of work hours, the kind
of disruption that is involved in rewinding the process back to the specification stage so that the
requested change can be made.

 If you can put a price tag on the work, make a judgment call as to whether it is worth passing this cost
on to the client. It is normally considered to be in the interest of good client relations to show some grace
and flexibility in these situations, unless they become a regular occurrence.

 If you decide to proceed with the change, be sure to make it very clear to the client the time impact it will
have, and come to an agreement concerning any revised milestones that the change may necessitate.
Ensure that your project team concurs, and that the new timelines include a contingency margin.

 Disputes Arising from Differences in Interpretation
 Sometimes, a client can query the interpretation of a specification and request changes as a result. These
queries are always difficult to manage. After all, you cannot accuse the client outright of simply being
wrong. The best approach with these situations is to do your best to avoid them altogether in the first
place by being as fastidious and specific as possible in your specification, avoiding ambiguity wherever
possible.

 When ambiguity does crop up, however, be prepared to negotiate with the client. Listen carefully to the
client ’ s concerns, and endeavor to understand his or her point of view. Discuss with your team the time
required to make the changes in question, and then put them to a simple commercial test: In terms of cold,
hard cash, is it worth arguing the point?

 Bugs Reported by the Client
 Be careful to determine whether the client is concerned about a bug or a change to the system. At this
stage, any post - handover changes requested by the client are almost certainly outside the scope of
the specification, and as such should be considered additional, billable work.

 Always respond to bugs reported by the client as a priority, even if they appear to be nonbugs (for
example, the client has made an error). Use a bug - tracking system such as Mantis to keep track of all
bugs reported, and give clients access so that they may report their own. Encourage clients to use this
system in preference to immediately calling you about it.

430

Part III: A Real-World Case Study

 Clients are generally sympathetic to bugs; most people these days are enlightened enough to accept that
 “ these things happen. ” Responding quickly, efficiently, and systematically (even after the system has
gone live) can mean the difference between being on the receiving end of sympathy versus angry
telephone calls.

 Summary
 You now know the value of ensuring that a tight methodology is maintained even after you ’ ve won the
business, right through to the completion of the project. You ’ ve met the various people who might play a
part in your project and have looked at two different methodologies for running the show itself. You ’ ve
also examined a couple of theoretical paradigms, which you might want to apply during the build
process itself.

 Finally, this chapter provided a brief overview of change management and how to best deal with the
situations that can arise as a result.

 In Chapter 18 , you ’ ll look at how to plan a suitable hardware and systems infrastructure for your project.

 Systems Architecture

 Having now read through a few hundred pages of software architecture details, you may be
tempted to immediately head out and start building your latest project. You ’ ve planned the
system, chosen your people, selected an appropriate methodology, and gleaned specifications
detailing the business requirements and the feature set. However, the final consideration to be
made — the systems architecture — should not be undertaken lightly.

 This chapter familiarizes you with the basis of systems architecture — what it is, why it ’ s
important, and how to effectively undertake a systems design most appropriate for your project,
based on the decisions you ’ ve already made about the architecture of the application itself.

 What Is Systems Architecture?
 At its simplest, systems architecture refers to the infrastructure supporting the application you ’ re
planning to build. In general, this refers to the following:

 The nature of the hardware on which your application will be deployed

 The specific manner in which the server (or servers) will be configured, connected, and
secured

 The use of specialized appliances such as firewalls, load balancers, switches, and routers

 The physical location of this equipment, and the provisioning of electricity and Internet
connectivity

 As you might have guessed, this is a big topic. The discussion over the next few pages merely
scratches the surface, but it is hoped that it provides enough detail to get you thinking about the
systems requirements, and to encourage you to explore additional resources to learn more.

❑

❑

❑

❑

432

Part III: A Real-World Case Study

 Why Is It Important?
 Getting the right infrastructure for your application is vitally important. As an application developer,
you may have just one development server in your studio. This may double up as both a Web server and
a database server, maybe running both MySQL and PostgreSQL. If you develop in more than just PHP,
you may have other application servers and programming language environments (for example, J2EE,
Python, Ruby, and so on). This machine probably lives in a server closet in your office, along with your
company ’ s other infrastructure. In some cases, this environment may very well match that of a simple
shared - hosting environment onto which smaller applications will be deployed. However, enterprise -
 class applications generally require more fault tolerance, performance capabilities, and security than a
single server can provide.

 One of the authors of this book recently deployed an application moving more than 2 TB of data per
month through a popular and heavily advertised Web application for a major packaged goods
manufacturer. The $20 per month shared hosting environment typical of smaller home - grown
applications would quickly topple under the demands of this sort of load. However, through careful
planning, a thorough understanding of the media buy (the amount and nature of the advertising
planned for the site), a careful analysis of the application performance parameters, and knowledge of
systems architecture principles, a hosting arrangement was designed that was able to quickly scale to
that level of throughput with no interruptions.

 Later in this book, you ’ ll learn more about the principles of quality assurance (QA) , which are also critical
to avoiding unplanned interruptions. You can save yourself a lot of time and trouble now by designing
an effective systems architecture to complement and support the software architecture you ’ ve already
developed.

 What Needs to Be Done?
 Your systems architecture is effectively a battle plan for your live environment. You may well wish to
draw up a separate document to support it, or incorporate the plan in your existing technical
specification. In either case, obtaining buy - in from key stakeholders is essential, because the costs can be
substantial. Failure to coordinate between marketing activities and technology expectations are a
frequent source of problems and unplanned outages.

 Carefully informed assumptions about the expected load and planned spikes in traffic form the heart of
your systems architecture. As it is developed between you and your client, this knowledge can be
translated into effective systems decisions.

 Following are the key decisions to be made:

 Hosting — Where is the application to be physically housed? Is it a suitable environment (that is,
air conditioned and equipped with uninterruptible power supplies)? If it is part of an existing
corporate data center, have reasonable provisions been made for the additional demands on
bandwidth, and have security considerations been taken into account?

 Internet connectivity — What kind of link to the Internet is required? Who will provide it? How
much is it likely to cost? What sort of redundancy is built in, in case of an outage from the ISP?

 Servers — How many servers are required to support the application, and what are their
specifications?

❑

❑

❑

Chapter 18: Systems Architecture

433

 Network — What kind of topology is best to support those servers?

 Redundancy and resilience — What kind of guaranteed availability is required? Can there be a
single point of failure?

 Maintenance — Who will be responsible for maintaining each server and its software?

 Security — How will the infrastructure be secured from the outside world?

 Each of these decisions is examined in more detail later in this chapter; but first, let ’ s face it, the
rhetorical questions just posed will rarely be questions you can put directly to your client.

 Although you may be confronted from time to time with projects for which the client takes full
ownership of systems architecture and simply wants you to build the application (in which case, you can
skip to the next chapter), it is far more likely that you ’ re expected to make the big decisions based on
what the client has told you, or based on the answers to questions you ’ ve asked.

 It is far more likely, therefore, that you ’ re the one who will have to ask the questions. These questions
should be designed to fill a veritable stockpile of information, which you can then use to design your
environment. In the next section, you ’ ll look at what questions you should ask.

 Determining Business Requirements
 As part of the initial discovery phase, it is essential that you determine client hosting requirements as
early as possible. Following are several key considerations:

 Who is responsible for hosting the application? — Some clients have an existing IT department that
is well versed in setting up Web application environments. Many do not, in which case the
responsibility will likely fall to you and your team.

 Is there existing infrastructure that should be or can be leveraged? — There is no point in creating
unnecessary infrastructure if a perfectly good environment already exists. If it either does not
exist or is not perfectly good, then the investment is justified.

 Are there other systems with which this application must communicate? — For example, if
authentication and authorization must happen against a client ’ s Windows Active Directory (AD)
system, then the hosting must be arranged in a manner to allow PHP to get past any security
barriers to communicate with the AD systems. For example, if an application must present
billing data from a mainframe, how will that information be made available to PHP?

 What is the planned traffic level? — This is often a difficult question to answer, but there are a few
ways to get to a reasonable number other than blind guessing, or coming up with overly
optimistic “ hoped for ” numbers. For example, you can look at the media buy. If there will be 100
million standard banner ad impressions over three months, you can assume an average click -
 through rate of 0.1 percent. This would result in an expected traffic volume of 33,000 visitors per
month (on average), or about one thousand visitors per day. This is an effective way to
determine traffic levels for a marketing - oriented site. For a more transactional model (for
example, an application designed to process insurance claims information), you can determine
expected traffic levels by looking at historical data on the typical number of claims processed
per day.

❑

❑

❑

❑

❑

❑

❑

❑

434

Part III: A Real-World Case Study

 What is the budget? — Complex managed - hosting platforms can cost thousands of dollars per
month, and require 12 - month (or longer) contract commitments. If this is what the application
requires to handle the expected traffic volume, is the cash available to pay for it?

 Are there any particularly complex security considerations or regulatory requirements? — A Web site
that collects e - mail addresses for marketing purposes requires reasonable security. However, an
application that collects social security numbers and credit card details requires an entirely
different configuration and further consideration. If the application is for a heavily regulated
industry (such as banking), there may be additional regulatory requirements.

 What are the storage requirements? — If this is a primarily read - only application, you can examine
the PHP, database, images, and other assets to immediately determine storage requirements.
However, for anything with user inputs, you must carefully plan the storage considerations.
Again, keep in mind any regulatory requirements that may necessitate keeping far more
information (especially in regard to application logs, e - mails, and backups) than you might have
otherwise planned for. Growth in the number of application users should be mapped to an
average storage requirement per user.

 Finally, what are the backup requirements? — If the application is primarily read - only, and the
data, source code, and other assets are otherwise backed up elsewhere (for example, in a
subversion repository), a far simpler backup strategy is required than for a heavily
transactional Web site (such as an e - commerce application), or a write - heavy application
(such as a wiki or popular blog).

 These business requirements directly translate into systems architecture considerations, which you can
now begin to examine.

 Determining Hardware Requirements
 There are several pieces of hardware to consider, each with an important role. In smaller installations, a
single piece of hardware may perform multiple functions that in a larger architecture may be handled by
a dedicated appliance.

 Web Servers
 As the front line of user activity, this is where the execution of the PHP code will take place, along with
the serving of HTML, images, and other assets. These machines will be running Apache or another
HTTP daemon, and they represent the first place to consider some redundancy, in the form of multiple
load - balanced machines. RAID 1 (mirrored) hard drives should also be considered to protect against
catastrophic hardware failure (which happens to hard drives more often than you might think).

 Database Servers
 A dedicated machine or array of machines to handle database transactions is strongly recommended for
reasonably well - trafficked Web sites. By offloading the heavy data - crunching to separate hardware, you
enable slow queries to proceed without interrupting the performance of more routine front - end
application functionality. RAID 5 hard disks are strongly recommended here, as is some redundancy in

❑

❑

❑

❑

Chapter 18: Systems Architecture

435

the form of multiple, clustered database machines. Both PostgreSQL and MySQL now have fairly robust
clustering support, as well as abundant documentation on how to best implement it.

 Load Balancing
 Wherever more than one machine is handling the same function, something must determine to which
physical machine the requests are directed. There are three ways to implement load balancing:

 DNS - based load balancing

 Software - based load balancing

 Dedicated load balancing

 DNS - Based Load Balancing

 DNS - based load balancing involves making DNS records for a single hostname that points to more than
one IP address. For example, normally, you might have a DNS entry that looks like this:

$ORIGIN example.com.

www IN A 192.168.111.222

 You could instead specify a pool of addresses for that same record, as shown here:

$ORIGIN example.com.
www IN A 192.168.111.222
www IN A 192.168.111.223
www IN A 192.168.111.224

 When clients attempt to resolve the address of your Web server, their computers will be presented with
an address at random from the pool of addresses you have specified. Accordingly, different clients will
use different Web servers. This method is very easy to implement.

 The downside to this approach is twofold. First, many operating systems (Windows in particular)
cache the IP address after performing a name lookup. This means that subsequent requests to the same
hostname will continue to send traffic to that machine, regardless of how much additional load is
already on that box. Second, if that machine should go down, then the Web site appears to the user
to be broken, because the user ’ s operating system will not attempt another name resolution.

 Software - Based Load Balancing

 The second method is to use software - based load balancing on the Web servers themselves. In a system
with two Web servers, a common IP address is shared on a virtual network interface between them. (This
is the IP address to which the www hostname will resolve.) The software allows the servers to negotiate
among themselves which machine will handle the next incoming request. This is fairly simple to set up
for two machines, but when there are more than two servers, it starts to get a little hairy.

 Dedicated Load Balancing

 The third method is to use a dedicated load - balancer. This can be either commodity hardware running
Linux and an open - source load - balancing application, or a dedicated commercial appliance. This
machine is assigned the public IP address, and the Web servers are assigned private, nonroutable IP

❑

❑

❑

436

Part III: A Real-World Case Study

addresses on an internal network shared by the Web servers and the load balancer. The load balancer
handles the incoming request and forwards it to the machine best able to handle it.

 Possible load balancing methods include the following:

 Round - robin — Directs each request to the next machine in the list of available machines

 Session - based — Directs all requests in a particular session to the same machine. (A given user
will have all of his or her activity handled by a single physical machine.)

 Methods — These can examine the number of connections to each machine, directing the request
to the machine with the smallest load.

 The load balancer will automatically remove a machine from the pool if it should become unavailable
(for example, in the event of a crash). Where a dedicated load balancer is used, always consider using a
redundant pair. You can have 20 Web servers, but if even one load balancer fails, no one will be able to
reach those Web servers, and the application is down.

 Firewall
 Intrusion prevention and detection is the topic of countless books, and is not covered in depth here.
While each machine is capable of running its own firewall software, a dedicated appliance has the
benefits of a single point of administration, and offloads the CPU burden for packet analysis to a
machine not otherwise involved with application processing. As with load balancers, it would behoove
the application architect to consider using a redundant pair of firewalls in case one fails.

 Understanding the Physical Environment

and Connectivity
 The physical location of the servers is an important consideration for performance, security, and
reliability. Without a doubt, the best approach here is a dedicated data center. The sole purpose of such a
facility is to provide a secure, air - conditioned, controlled environment for servers and other equipment,
and the provision of bandwidth and IP addresses.

 Because these facilities house servers designed solely for remote access, they are often rather
inhospitable environments for human beings. The use of carcinogenic fire retardants has been outlawed
in most states and countries, but the intense air conditioning can provide even the fittest and healthiest
software architect with a wheeze upon exit. However, this environment is perfect for servers.

 There are two types of data centers: carrier - specific and carrier - neutral. A carrier - specific data center
is typically owned by the ISP providing bandwidth and connectivity. Therefore, only that particular
ISP is available for connectivity. A carrier - neutral center concerns itself only with housing equipment,
 and enables you to connect with any number of ISPs providing connectivity there.

 Both have their advantages and disadvantages. Carrier - specific centers tend to have a more integrated
support and billing approach, which can certainly cut down on the hassle. With a carrier - neutral center,
however, should one ISP prove unreliable or inappropriate (or you just fancy a change), you can move

❑

❑

❑

Chapter 18: Systems Architecture

437

your equipment without physically moving it at all. Either way, you will typically be presented with a
product that consists of a certain amount of rack space, a suite of IP addresses (or, in some cases, a range of
addresses and a single IP on their network, requiring you to fit a router of your own), and a handoff — a
physical Ethernet link into your ISP ’ s network. Your ISP will, of course, give you a decent helping of
support and assistance in getting up and running, but it ’ s important that you order the right product in the
first place.

 Your ISP will sell you either a quantity of bandwidth measured as a committed information rate (CIR), in
megabits, or a quantity of monthly transfer, measured in gigabytes.

 Calculating CIR
 A CIR will almost always be the more expensive option, but it is essential for bigger sites. It enables you
to push as much traffic as possible within a given bandwidth. To calculate a CIR, consider the number of
simultaneous sessions your application is likely to support.

 Suppose, for example, that your Webmail Web application must support a total of 1,000 simultaneous
sessions. This represents 1,000 people all using the application at any given point in time. It does not
represent 1,000 simultaneous connections. The distinction is important. When using any given
application, each session consists of a flurry of HTTP requests (page plus images), followed by a pause
while content is read, followed by another flurry of HTTP requests, and so on. With this in mind,
connectivity is being made only a given percentage of the time.

 It is also important to understand the likely dwell time on each page. This is something only user testing
can determine accurately, but you could estimate it to be something like 30 seconds for a typical Web
page on a consumer Web site, or 60 seconds on a Web application (such as a Webmail application).

 If you assume that each page takes approximately 10 seconds to load, then on a Web application, there
will be a pattern per session of 10 seconds of traffic, followed by 60 seconds of no traffic, followed by
10 seconds of traffic, and so on.

 With one quick and slightly crude calculation (that is, 10 seconds divided by 60 seconds), you can see
that at any given moment in time, there is about a 15 percent possibility that any given session is
transferring data. The number of simultaneous connections is, therefore, likely to be equal to 15 percent
of your simultaneous sessions for a Web application, or 2 percent for a Web site.

 In the preceding example of 1,000 simultaneous sessions, you can tell that this represents 150
simultaneous connections; but with some users on 6 Mb cable modem connections, and others on 56 KB
dial - ups, how do you know what bandwidth requirement this represents?

 This is where the data mined from your client comes in handy. The client may well have some figures on
his or her projected demographic. People in offices, for example, are all likely to have T1 or T3 lines, but
these are likely to be shared among other people in each office. For home users, you can use national
figures on broadband penetration to figure out the likely percentage on broadband, as well as the likely
percentage on dial - up. Even better, if you have access to server logs for similar past projects, dig them
out and do the math yourself.

438

Part III: A Real-World Case Study

 Calculating Monthly Transfer
 Another option available to you is a monthly transfer limit, an “ all you can eat ” of the ISP ’ s bandwidth
within that limit. Depending on the type of site involved, this may work out to be less expensive. For
example, if you have a huge surge of users at 6:00 P.M., but a lot of dead time elsewhere, this option could
be appropriate for you.

 To calculate your monthly transfer requirement, simply multiply the number of monthly user sessions
you expect to receive by the amount of data each will transfer.

 For example, if a typical session consists of 10 requests, and each request has an average page weight of
50 KB, each user session will consume about a half - megabyte of transfer. If 5,000 regular users each use
the system once a day, this represents 5,000 sessions per day, or 2.5 GB of transfer. During a month, this
works out to 75 GB.

 Rack Space Considerations
 How much rack space you require is obviously determined by the number of servers you ’ ll be using.
Keep in mind, though, that any network appliances (such as switches and routers) also take up space.

 In planning for future expansion, you may wish to allow a certain amount of free rack space beyond
your immediate requirements. If you buy only five units in a shared rack, for example, it is almost
inevitable that space on either side of you will be sold by your ISP more or less right away, and that
future equipment may have to be sited elsewhere as a result.

 Network Considerations
 Hooking all this equipment up might seem to be the simple part, but a bit of planning in this department
can save you grief and heartache later.

 Consider the traffic going across each interface and try to plan around that. For example, a database -
 heavy Web application will have enormous amounts of traffic going to and from the database server,
traffic that is completely unrelated to the Web request being made by the client Web browser. With this
in mind, you should consider having a separate interface on each Web server linking into the database
server.

 Such a configuration is common. You have a core switch into which all your Web servers link, and into
which your firewall ’ s internal interface will link, too. Your database switch is linked to the secondary
NIC of each Web server, and to the NIC of each database server you use.

 As a result, traffic between Web servers and database servers doesn ’ t interfere with true Web traffic — a
performance increase. If you are using a high - end switch, you can even use a virtual local area network
(VLAN) to separate, say, 24 ports into two virtual switches of 12 ports each — one for the Web servers
and firewall, as well as one for the database servers and secondary Web server NICs.

 A side - effect of this configuration is yet another layer of protection for your databases. With no exposed
interface to the Internet, they are yet another step away from being compromised.

Chapter 18: Systems Architecture

439

 Storage Considerations
 With a large application requiring the storage of large amounts of data, the onboard hard disks in a
rack - mountable server may be insufficient. Storage area networks (SANs) are frequently available from
the better - managed hosting providers, and often allow for a nearly limitless (and expandable) amount of
hard disk space, which is ideal for storage - intensive applications that must quickly scale.

 Other storage solutions include drive enclosures, which in their more sophisticated forms enable
multiple servers to connect to the same drive array. There are also Web - services - based solutions
(such as Amazon ’ s S3) that use a third party to store data and provide an API for upload and retrieval.

 Managing Maintenance
 Managed hosting providers will perform basic maintenance on your servers (including kernel patches,
software installation, and updates), and provide support with general systems administration. Whether
you opt for this solution or decide to take care of these tasks yourself depends on both you and your
relationship with your client.

 If you do decide to bear the burden, then you should devise a weekly action plan for server maintenance.
This should be a list of tasks to perform weekly to ensure that your servers are clean, efficient, and up - to -
 date. Tasks for your action plan should include the following:

 Kernel version — Is each server running the latest version?

 Apache and PHP versions — Is each server running the latest version?

 PHP dependencies — Are libxml , libxslt , and expat all up - to - date?

 Disk space — Does each server have enough space on each partition? Are any log files growing
out of control and in need of trimming? Apache, in particular, will not allow you to exceed 2 GB
in size for any given log file, and will crash quite spectacularly if you do.

 Summary
 In this chapter, you learned about the importance of a robust systems architecture for your application.
With a definition of systems architecture in hand, you then learned about the right questions to ask your
client to determine, in plain English, the exact system requirements.

 Next, you learned how to take that information and translate it into justifiable technical decisions. This
way, when your project goes live, you won ’ t encounter nasty surprises.

 How you present this information is largely up to you. A three - or four - page guide for your client ’ s
reference might be enough, or you may wish to incorporate it into your technical specification. The
important thing is to do the planning immediately, well ahead of application development. Load testing
later on will ensure that your theories are correct. It ’ s better to have slightly wrong predictions now than
to have no predictions at all.

 Following the project management methodologies and design patterns you have learned so far,
Chapter 19 explores how you can use the toolkit components and your newfound knowledge to put
together a sales force automation project.

❑

❑

❑

❑

 Building the Application

 Now that you understand how the technology works, this is your chance to put it together as a
cohesive whole. This chapter is about developing software from the ground up, and because it is a
small project you ’ ll be utilizing many of the techniques of extreme programming (XP).

 With all the fanfare and drama of starting on a new important project, it ’ s easy to mentally jump
ahead and begin thinking about how to do things when you should be trying your best to consider
 what should be done.

 Therefore, put your computer away. Forget about your logins, passwords, databases, and, just for
now, you won ’ t need PHP either. Instead, you ’ ll be using a technology that humans have spent the
last few millennia refining — paper.

 Yes, paper is technology. It ’ s ubiquitous, inexpensive, readable even if wet, and requires no
batteries (unless you ’ re in the dark). The same media type supports both write - only, rewriteable,
and color and black - and - white inks. When paper is cut into small index - size cards, it can be used
quite nicely for representing your PHP classes. Not only are these cards moveable, they can be
mounted on a wall, traded, stapled, clipped, sorted, and stored.

 In short, your design and development process depends just as much on social interaction, wits,
and thousand - year - old technology as it does on computer hardware and software.

 Star ting the Project: Monday
 You arrive at work well rested and happy. Although the Widget World IT department is busily
setting up your computer for your first day of work, fortunately, your office - supply closet contains
what you need for today ’ s work:

 Pens

 3 × 5 index cards

 4 × 6 index cards

❑

❑

❑

442

Part III: A Real-World Case Study

 Bridget (the Widget World sales force automation tool manager) sits near you and is ready to work with you
on your first day. Bridget mentions that because Edwina (the Widget World eastern regional sales manager)
is in the office today, she has scheduled a meeting. Harold is a salesperson who happens to be working in the
office because of conflicts; he will be available for the next two weeks. Wade (the Widget World accountant)
is also there, and he is available for you 100 percent between 9:30 A.M. and lunchtime, every day (if needed).

 Off to the meeting, and don ’ t forget your cards.

 Getting an Earful
 At the beginning of the meeting, after everyone has been introduced, you explain that you ’ re here to collect
 stories about what they would like from the new system, and how they ’ d like to use the new system.

 Using your thousand - year - old technology of pen and paper, document the stories. Put each one on a separate
card and insist that Wendy, Wade, and Edwina all partake in the fun. Of course, they may have questions
about what is and is not technically possible, who must sign off on what, and how the workflow goes.

 Keep in mind that each story (or feature) should be broken down so that each is about the same size. In
the context of this exercise, size means the amount of effort that it would take for you to implement the
story. This is probably the most difficult part as you (the developer) keep everything in perspective.

 Determining the correct size for each story as a unit of time is not a trivial task. Try to keep the unit of
time from around a minimum of half a day to a maximum of up to a week or two. Again, each story
should be roughly the same size. The story size and time estimates will be used later to help you
determine the amount of work you ’ re doing, and how to better estimate future tasks.

 For example, if one of the features is “ build a rocket ship, ” break it down into smaller, more manageable
chunks, such as “ the escape pod should be launched within 10 seconds after the escape hatch is closed. ”

 Your nearly all - day session results in the following stories. Documenting the person who suggested it (or
insisted on it) is not mandatory, but a method of doing so is displayed here to give you an idea of how
the process is often worked out. Beginning with physical forms (see Figure 19 - 1) is often a good starting
point because it fits with the current workflow and structure:

 Story 1 — Edwina: “ We track the salesperson ’ s contacts using this faxable form, which is how
we determine where to send them next depending on the feedback. Having access to this
information in some sort of electronic format would be great. ”

 Story 2 — Wade: “ Collecting all the daily travel expenses and receipts of the salespeople is time -
 consuming and error - prone. We ’ d like to collect them on a weekly basis, subtotaled by date and
category. ”

 Story 3 — Harold: “ Sometimes I need to explain a certain expense. For example, I put $30 under
 “ postage ” for a special FedEx delivery. I ’ d like a way to add comments at the bottom of the
expense report. ”

 Story 4 — Wade and Harold: “ The expense report should subtotal the items in a manner similar
to a spreadsheet. ”

 Story 5 — Wade: “ I ’ d like to be notified, with a summary, when an expense report is submitted. ”

 Story 6 — Edwina: “ I ’ d like to be notified, with a summary, when a contact report is submitted. ”

 Story 7 — Harold: “ I ’ d like each salesperson to receive the same notifications, just so they have
the option of double - checking. ”

❑

❑

❑

❑

❑

❑

❑

Chapter 19: Building the Application

443

 Story 8 — Edwina: “ The mailroom needs to be notified when a contact report contains a
literature request. ”

 Story 9 — Edwina and Harold: “ Each salesperson needs to have his or her own private login. ”

 Story 10 — Wade: “ I don ’ t authorize the cash advances but I still need to track them. Add “ Less
Cash Advance ” to the expense report. ”

 Story 11 — Harold: “ The cash advances come from multiple sources, so allow the salespeople to
control the amount. Don ’ t automatically debit it from a special account; just allow it to be
entered in the expense report. ”

 Story 12 — Wade: “ Store the amount of the cash advance so that I can track the total amount per
salesperson. ”

 Story 13 — Wade: “ I ’ d like to be able to get the data from the expense reports in order to feed it
into my special spreadsheets. ”

❑

❑

❑

❑

❑

❑

Figure 19-1: Faxable form

444

Part III: A Real-World Case Study

 At this point, you have a plan for implementing the first revision of the software that Widget World
needs in order for its sales force to be more productive.

 This should round out your first day at work. The client stories that you collected today are the seeds of
a plan that is based on the needs of your clients. Of course, you ’ re not going to start writing the software
yet, because your plan is not yet complete.

 Story Weight Estimation
 Now that your story sizes are roughly in the same ballpark in relation to each other, you can sit down
and try to estimate how much effort it will take to implement each one. This is done by assigning a
numerical value to each story. A simple project might have only three values:

 1 (light)

 2 (medium)

 3 (heavy)

 Another option is to take a stab at guessing the relative weight of each story implementation by the
number of perfect - engineering time units that it would take to implement it. A perfect - engineering time
unit is the number of hours, days, or weeks that you envision a task taking if absolutely nothing goes
wrong, and your performance is stellar.

 For example, consider Story 9: “ Each salesperson needs to have his or her own private login. ” Think
about that for a moment: “ Private login ” means that you shouldn ’ t be dependent on something like
Apache ’ s built - in security, but it could run the gambit from PHP sessions to URL rewriting, including
something in between the two.

 However, let ’ s face it: Sessions are not that difficult to do correctly if done early. Therefore, if you were
using the simple point scale, it would be rated as a “ 1 (light). ” If your points are based on “ perfect
engineering half - days, ” it would probably still be rated as a “ 1. ” However, if your points are based on
 “ perfect engineering weeks, ” and the particular story would be complete in a matter of hours, it ’ s an
indication that this particular story needs to be more uniform in size with your other stories, which are
presumably based on “ perfect engineering weeks ” rather than days or half - days.

 Let ’ s walk through a few more stories. Consider Story 13: “ I ’ d like to be able to get the data from the
expense reports in order to feed it into my special spreadsheets. ” Wade needs access to the expense -
 report data in a format that is importable by spreadsheet software.

Although the point system is based on “perfect engineering half-days,” the word “perfect” here is
deliberately given some often all-too-necessary wiggle room in its exact meaning . For example, this story
was submitted by Wade, the Widget World accountant, and it may very well apply only to his role as an
accountant. This means that, in addition to using a login screen, you ’ ll need to classify the users of the
system into Wade and not - Wade — that is, accountant and user. Write that information directly on the card.

 Spreadsheets can readily import data from files using comma - separated values (CSV files), which
technically isn ’ t challenging because it ’ s simply a different view of the data set. Therefore, adding a user
classification system and outputting a data set as CSV would probably collectively rate as about one
perfect engineering day, or in your system of perfect engineering half - days, 2 points.

❑

❑

❑

Chapter 19: Building the Application

445

 Take a look at Story 5. Wade needs to be “ notified, with a summary, when an expense report is
submitted. ” This is directly dependent upon the expense report described in Story 2, which includes
 “ collecting all the travel expenses and receipts. ” Write that dependency on the card, and estimate the
story as being “ slightly easier than Story 2. ” Estimate the value after estimating Story 2.

 Now, consider Story 6. Edwina needs to be “ notified, with a summary, when a contact report is
submitted. ” Note that the functionality is similar to that of Story 5, so write it on each card.

 Next, work through each story, estimating how long it will take, writing required features on each, and
noting dependencies between them. Feel free to break stories up if they are too big; conversely,
consolidate them if they are too small.

 Here is the list you now have:

 Story 1: “ Track the salesperson ’ s contacts using this faxable form. ”

 Basic employee information: 1 point

 Each distributor/customer can be unique

 One - to - many relationship between salesperson and customer: 1 point

 Putting it all together (making sure that the Web form works and so on) would be another point, for a
total of 3 points, or two perfect - engineering days.

 Story 2: “ Collect the daily travel expenses and receipts of each salesperson on a weekly basis,
subtotaled by day and category. ”

 This is the Travel Expense Report

 One - to - many relationship between salesperson and customer

 It should look sort of like a spreadsheet. This is a nontrivial request: 4 points

 Broken down by category: 1 point

 Getting everything right: 2 points

 7 points total

 Story 3: “ Comments at the bottom of the expense report. ”

 Should probably be rolled into Story 2

 That makes the relationship more interesting — rather than just being an employee - to -
 daily expense, you ’ re now charged with an employee - to - daily expense and employee - to -
 weekly comments of daily expenses, as shown in Figure 19 - 2 : 2 points total

 Keep as a separate story, but note that it ’ s dependent upon Story 2

2 points total

❑

❏

❏

❏

❑

❏

❏

❏

❏

❏

❏

❑

❏

❏

❏

❏

446

Part III: A Real-World Case Study

 Story 4: “ The expense report should subtotal the items in a manner similar to a spreadsheet. ”

 Although just front - end work, it ’ ll be time - consuming: 4 points

 4 points total

 Story 5: “ Notify accountant, with a summary, when an expense report is submitted. ”

 Via e - mail

 E - mail configuration, management, and so on: 1 point

 Dependent upon Story 2 : 1 point

 2 points total

 Story 6: “ Notify sales manager, with a summary, when a contact report is submitted. ”

 Each sales manager has multiple salespeople.

 One - to - many relationship: 2 points

 Dependent upon Story 5 but easy: 1 point

 3 points total

 Story 7: “ Notify salespeople with expense - report details. ”

 If dependent upon Story 2: 2 points

 If dependent upon Story 5: 1 point

 1 or 2 total points

 Story 8: “ The mailroom needs to be notified when a contact report contains a literature request. ”

 Conditional notification: 1 point

 If dependent upon Story 2 or Story 5: 1 or 2 points

 2 or 3 total points

 Story 9: “ Each salesperson needs to have his or her own private login. ”

 Authentication: 2 points

 Authorization: 2 points

 4 points total

❑

❏

❏

❑

❏

❏

❏

❏

❑

❏

❏

❏

❏

❑

❏

❏

❏

❑

❏

❏

❏

❑

❏

❏

❏

Figure 19-2: Comments at bottom of expense report

Chapter 19: Building the Application

447

 Story 10: “ Add ‘ Less Cash Advance ’ to the expense report. ”

 Same problem as Story 3 (comments on expense report).

 Dependent on Story 2.

 Not debited, so no account tracking needed

 Persisted, not calculated: 2 points

 2 points total

 Story 11: “ Allow the salespeople to control the amount of cash advances. Don ’ t automatically
debit it from a special account; just allow it to be entered in the expense report. ”

 Dependent on Story 10.

 This story is not really a story. It is a critique of the current system. Remove this story and
add note: “ Not debited ” on Story 10.

 0 points

 Story 12: “ Store the amount of the cash advance so that I can track the total amount per
salesperson. ”

 Dependent on Story 10.

 This story is trivial. Add note: persisted.

 0 points

 Story 13: “ Export expense report data for spreadsheets. ”

 Accountant only: 1 point

 Work: 2 points

 3 points total

 You ’ ve now broken the stories down and made your first pass at estimation. This step may take several
iterations and require going back to ask the clients such questions as the following:

 Can the notifications be done utilizing e - mail?

 Are there three types of users: managers, salespeople, and accountants?

 Can the accountant accept CSV for the expense report export?

 How does the accountant want to specify the export? (It could be done by employee, by
employee and date, or something different such as by sales manager.)

 After all the questions are answered, however, you still aren ’ t out of the woods. After all, you don ’ t
actually know whether the system supports outgoing e - mail; and even if it does, do you know how to do
it in PHP?

❑

❏

❏

❏

❏

❏

❑

❏

❏

❏

❑

❏

❏

❏

❑

❏

❏

❏

❑

❑

❑

❑

448

Part III: A Real-World Case Study

 Refining Your Estimation

 Talk with your clients and get the answers to your new questions. It ’ s important that they be available
because you don ’ t want these issues to hold up your work. In addition, each of your clients (Wendy,
the project manager; Wade, the accountant; Edwina, the sales manager; and Harold, the salesperson)
will be using the system in some respect, so it ’ s really their project and you ’ re the one who makes it go.

 Meanwhile, your client questions have been answered:

 Q: Can the notifications be done utilizing e - mail?

 A: Yes, and any summaries associated with the e - mail should be included as attachments.

 Q: Are there indeed three types of users: managers, salespeople, and accountants?

 A: Yes.

 Q: Can the accountant accept CSV for the expense report export?

 A: Yes, he does it all the time.

 Q: How does the accountant want to specify the export: by employee, by employee and date, or
by something different, such as sales manager?

 A: Just by employees and date.

 That leaves you with only the technical questions:

 How do you e - mail something using PHP?

 What about e - mail attachments?

 The Spike

 Of course, the last two questions are rhetorical technical questions. Your clients do not have the answers
to your technical questions — that ’ s your area. At this point, you don ’ t have enough information to make
a complete estimate.

 It ’ s time to do some homework, called a spike . Although the work may seem tangential, it is required in
order to determine whether your line of thought will pay off or, in this case, answer a technical question.

 Set aside some time to determine the if or how questions that invariably show up. These things may take
some time, possibly a day or two, but in this case the answer is arrived at in short order. A walk through
the PHP API reveals the following:

mail(“wade@widgetworld.com”, “Email Spike Test”, “One\nTwo\nThree”);

 Yes, PHP can send e - mail in an easy fashion, so now you must test it or talk to the administrator in order
to get it working.

 As for e - mail attachments — those are not so easy. PHP does not support attaching e - mail as an
easy - to - use function, but that ’ s because the MIME e - mail definition is well documented in RFCs such as
RFC 822 (message headers), 2045 (MIME), and 2046 (MIME types). Therefore, a lot of reading and a little
bit of coding result in this tidbit:

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Chapter 19: Building the Application

449

$mime_boundary = “ < < < -==+X[“.md5(time()).”]”;
$headers .= “MIME-Version: 1.0\r\n”;
$headers .= “Content-Type: multipart/mixed;\r\n”;
$headers .= “ boundary=\””.$mime_boundary.”\””;
$message .= “This is a multi-part message in MIME format.\r\n”;
$message .= “\r\n”;
$message .= “-”.$mime_boundary.”\r\n”;
$message .= “Content-Type: text/plain; charset=\”iso-8859-1\”\r\n”;
$message .= “Content-Transfer-Encoding: 7bit\r\n”;
$message .= “\r\n”;

 The preceding code adheres to the aforementioned RFCs, which define the MIME mail headers (the lines
defined in $headers) and the message content before the message is finally put together and passed off to
your Message Transfer Agent (MTA). Reading through RFCs can be tortuous work, so be sure to test it on
a real mail system, using the same mail clients that your customers use, and get it working without error.

 This will easily burn off at least one point.

 Estimation Tips

 Now that all your remaining technical questions have been laid to rest, you can confidently go ahead
and fill in your story estimates:

 Story 1: Customer Contact Report, 3 points

 Story 2: Travel Expense Report, 7 points

 Story 3: Expense Report Comments, 2 points

 Story 4: Expense Report as Spreadsheet, 4 points

 Story 5: Accountant Notification, 3 points

 Story 6: Sales Manager Notification, 3 points

 Story 7: Sales Person Notification, 1 point

 Story 8: Mail Room Notification, 2 points

 Story 9: Authentication and Authorization, 4 points

 Story 10: Persisted Expense Report Cash Advance, 2 points

 Story 11: 0 points

 Story 12: 0 points

 Story 13: Expense Report Export, 3 points

 Total points: 34

 Don ’ t fall into the trap of assuming that 34 points is only 17 perfect engineering days, because the
keyword here is “ perfect. ” You ’ ll have meetings to attend, there will be fast and slow days, not to mention
having to deal with changes in the plans, and many more human and otherwise imperfect items.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

450

Part III: A Real-World Case Study

 Plus, this is really only your first estimate. After each story has been completed, you ’ ll write down
exactly how much real time it took, and after a week or two, your estimates will grow more precise, as
will your point - to - time estimates.

 For now, you ’ re happy.

 Release Planning
 After speaking more with Wendy, Wade, Edwina, and Harold, you realize that the first “ release ” of this
project falls into three distinct segments. (You can think of them as buckets.) All parties agree that the
segments need to be released, roughly, in this order:

 Customer Contact Report

 Story 9: Authentication and Authorization, 4 points

 Story 1: Customer Contact Report, 3 points

 Story 6: Sales Manager Notification, 3 points

 Story 8: Mail Room Notification, 2 points

 Travel Expense Report

 Story 2: Travel Expense Report, 7 points

 Story 3: Expense Report Comments, 2 points

 Story 10: Persisted Expense Report Cash Advance, 2 points

 Story 4: Expense Report as Spreadsheet, 4 points

 Travel Expense Services

 Story 5: Accountant Notification, 3 points

 Story 7: Sales Person Notification, 1 point

 Story 13: Expense Report Export, 3 points

 The decision they put forth is that the Customer Contact Report is needed in a more timely manner than
the Travel Expense Report. The Customer Contact Report is also a much “ simpler ” input form with less
interaction than the Travel Expense Report, yet the Customer Contact Report would also represent
nearly an end - to - end test of the system as a whole.

 Each of the buckets in which the stories fall is called an iteration , and in this case each one should take no
longer than three weeks to complete. For now, this is the overall plan, and the end of each iteration
should produce something that your client can use.

❑

❏

❏

❏

❏

❑

❏

❏

❏

❏

❑

❏

❏

❏

Chapter 19: Building the Application

451

 Therefore, your first goal is to create the Customer Contact Report, complete with logins and
notifications for the salespeople. After you complete the first iteration, you ’ ll see how well your
estimates worked out in several respects:

 In relation to each other

 In relation to your original estimates

 In relation to time or your points per week

 The end of each iteration is when you take a step back and measure the progress, get feedback from the
client, and adjust the plan in accordance with the evolving needs and goals of your client. Don ’ t sweat it
too much; this process is designed to be flexible and responsive to the needs of both you and your
clients.

 Thus far, you have learned how to divide your problem space into user - defined stories, and how stories
can be created and broken out into more stories or consolidated into fewer stories of roughly the same
size. Story estimation is an ongoing process, and feedback (such as a tangential spike) will help to solve
technical issues.

 It is important to work with your clients to determine what is most important to them, and to give them
honest feedback regarding the difficulty of each requested feature. This enables you to make better and
more timely estimates. It enables your clients to see the system in action, and to make informed decisions
regarding the current state of the system.

 Star ting the Work
 Now, you and your clients understand exactly what will be implemented in the first iteration, or the
Customer Contact Report:

 Story 9: Authentication and Authorization, 4 points

 Story 1: Customer Contact Report, 3 points

 Story 6: Sales Manager Notification, 3 points

 Story 8: Mail Room Notification, 2 points

 Outlining the Details of Story 9
 “ Each salesperson needs to have his or her own private login. ”

 This presumes, for one thing, that a “ salesperson ” exists as a logical entity (not necessarily a PHP class,
yet), so let ’ s outline its needs.

 There exists the need for basic human - readable user information:

First Name
Last Name

❑

❑

❑

❑

❑

❑

❑

452

Part III: A Real-World Case Study

 Yes, you are a number as well as a name:

Employee ID

 Because the user must log in to the system, let ’ s allow him or her to choose both a login name and a
password:

Login Name
Login Password

 You also need to know the role in which the person accesses the system. Although a person ’ s role may be
related to a job title, titles tend to be ephemeral. In addition, you must determine only one of three roles:
salesperson, accountant, or sales manager.

Company Role

 This raises some good questions. Can someone be in more than one role at a time? Can someone both be
an accountant and a sales manager? What about a salesperson and a sales manager? Wendy answers your
questions by saying, “ Probably not; Wade and Edwina ’ s responsibilities don ’ t overlap. ” Popping
your head into Wade ’ s tidy cubicle confirms your hypothesis, as does a phone call to Edwina. Roles,
therefore, are exclusive.

 Because you are taking care of authentication, let ’ s decide how to use the system.

 Writing Tests
 Ask yourself a few questions:

 How do you want to enable login?

 For what purpose should the login be used? Should it be simple authentication?

 Who should use the login feature?

 You know what the user consists of:

Employee ID
First Name
Last Name
Company Role

 You also know what is required for authentication:

Login Name
Login Password

 Recall from Chapter 12 the HTTPSession class. Don ’ t go looking for it just yet; you won ’ t need it right
now — but this is a plausible choice to use with two yet - to - be - defined classes, WidgetSession and
 WidgetUser :

❑

❑

❑

Chapter 19: Building the Application

453

 < ?php
$session = new WidgetSession(); // inherited from HTTPSession
$session- > impress();
// authentication
$session- > login(“ed”,”12345”);
if ($session- > isLoggedIn() == false) exit;
$user = $session- > getUser(); // returns WidgetUser
print $user- > first_name;
print $user- > last_name;
print $user- > email;
// authorization
print $user- > role;
print $user- > isSalesPerson();
print $user- > isSalesManager();
print $user- > isAccountant();
? >

 Keep in mind that the preceding code snippet is only “ a plausible scenario. ” It ’ s not yet a formalized test
or running code. It is what exists solely in your mind regarding the use of new classes. When you are
happy with this “ what - if ” scenario, you formalize its use in a test. Let ’ s continue and write some tests!

 PHPUnit
 The idea here is to write the test to simulate the way in which you plan on using the software associated
with your current story. It ’ s called test - driven development, and, in addition to its development strengths,
you end up with a great suite of tests. You met it first in Chapter 13 when you looked at application
architecture. It is hoped that you still have PHPUnit installed.

 Testing the application in the same manner in which you will be using it forces you
to look at the function or object and nail down the arguments and other elements.
This avoids creating functionality that isn ’ t used, or is used in the wrong places.

 Far from “ tying you down, ” having a testing suite provides you with a great degree of freedom, because
you know instantly whether you happened to break distant parts of the system by adding new features
or modifying existing code.

 Here are some new tests that are designed to reflect the common usage scenario. Save the following as
 test.widgetsession.php :

 < ?php

require_once (“widgetsession.phpm”);
require_once (“lib/phpunit/phpunit.php”);

class TestWidgetSession extends TestCase {

 private $_session;
 function setUp() {
 $dsn = array (‘phptype’ = > “pgsql”, hostspec’ = > “localhost”,

454

Part III: A Real-World Case Study

 ‘database’ = > “widgetworld”,
 ‘username’ = > “wuser”,
 ‘password’ = > “foobar”);
 $this- > _session = new WidgetSession($dsn, true);
 }

 function testValidLogin() {
 $this- > _session- > login(“ed”,”12345”);
 $this- > assertEquals(true, $this- > _session- > isLoggedIn());
 }

 function testInvalidLogin() {
 $this- > _session- > login(“ed”,”54321”); // fail
 $this- > assertEquals(false, $this- > _session- > isLoggedIn());
 }

 function testUser() {
 $user = $this- > _session- > getUser();
 $this- > assertEquals(“Lecky-Thompson”, $user- > last_name);
 $this- > assertEquals(“Ed”, $user- > first_name);
 $this- > assertEquals(“ed@lecky-thompson.com”, $user- > email);
 }

 function testAuthorization () {
 $user = $this- > _session- > getUser();
 $this- > assertEquals(“Sales Person”, $user- > role);
 $this- > assertEquals(true, $user- > isSalesPerson());
 $this- > assertEquals(false, $user- > isSalesManager());
 $this- > assertEquals(false, $user- > isAccountant());
 }
}
$suite = new TestSuite;
$suite- > addTest(new TestWidgetSession(“testValidLogin”));
$suite- > addTest(new TestWidgetSession(“testInvalidLogin”));
$suite- > addTest(new TestWidgetSession(“testUser”));
$suite- > addTest(new TestWidgetSession(“testAuthorization”));
$testRunner = new TestRunner();
$testRunner- > run($suite);
? >

 However, when the preceding is run, you get the following error:

Class ‘WidgetSession’ not found in test.widgetsession.php on line 16

 For now, let ’ s mock up appropriate dummy WidgetSession and WidgetUser classes so that the
tests can at least run. Incorporate the following code at the top of the previous listing for
test.widgetsession.php :

Chapter 19: Building the Application

455

class WidgetSession {

 public function __construct ($one, $two) {}
 public function login() {}
 public function isLoggedIn() { return null; }
 public function getUser() {
 return new WidgetUser();
 }
}

class WidgetUser {
 public $first_name = “”;
 public $last_name = “”;
 public $email = “”;

 public function isSalesPerson() { return null; }
 public function isSalesManager() { return null; }
 public function isAccountant() { return null; }
}

 Now run the tests again in test.widgetsession.php . Here is the corresponding output from
PHPUnit:

TestWidgetSession - testValidLogin FAIL
TestWidgetSession - testInvalidLogin FAIL
TestWidgetSession - testUser FAIL
TestWidgetSession - testAuthorization FAIL
4 tests run.
9 failures.
0 errors.
Failures
 1. testValidLogin
 true type:boolean
 null type:NULL
 2. testInvalidLogin
 false type:boolean
 null type:NULL
 3. testUser
 Lecky-Thompson type:string
 type:string
 4. testUser
 Ed type:string
 type:string
 5. testUser
 ed@lecky-thompson.com type:string
 type:string
 6. testAuthorization
 Sales Person type:string
 type:string
 7. testAuthorization
 true type:boolean
 null type:NULL

456

Part III: A Real-World Case Study

 8. testAuthorization
 false type:boolean
 null type:NULL
 9. testAuthorization
 false type:boolean
 null type:NULL

 At this point of the development process, every one of your tests should run without syntax error but
fail. This is because you haven ’ t yet implemented any of the functionality for which the tests are
designed! So, yes, the first time you run the tests, you should be happy that they all fail. Remember that
the tests are based on the common usage scenario, and that you should be testing all the features
required by the scenario.

 It is now your responsibility to implement the actual code that is required to pass the tests. The login and
session process can be fixed quite easily, because that behavior is found in HTTPSession .

 Take care of the low - hanging fruit in regard to the WidgetSession . Because WidgetSession is adding
functionality to HTTPSession , it makes sense to extend HTTPSession . Therefore, start with your
spoofed WidgetSession class and extend HTTPSession in test.widgetsession.php so that it now
contains working code:

require(“httpsession.phpm”);
class WidgetSession extends HTTPSession {

 public function getUser() {
 return new WidgetUser();
 }
}

 Now rerun the test.widgetsession.php tests:

TestWidgetSession - testValidLogin ok
TestWidgetSession - testInvalidLogin ok
TestWidgetSession - testUser FAIL
TestWidgetSession - testAuthorization FAIL
4 tests run.
7 failures.
0 errors.

 By utilizing the functionality inherent in HTTPSession , you ’ ve already passed half the tests.

 Still editing test.widgetsession.php , start work on the WidgetUser objects by first overriding
 HTTPSession ’ s getUserObject() function to return a WidgetUser class. Modify the declaration of
 WidgetSession as shown here:

class WidgetSession extends HTTPSession {

 public function getUserObject() {
 $uid = $this- > GetUserID(); // calling up from HTTPSession
 if ($uid == false) return null;
 // pull ourselves out of the database

Chapter 19: Building the Application

457

 $stmt = “select * FROM \”user\” WHERE id = “.$uid;
 $result = $this- > getDatabaseHandle()- > query($stmt);
 return new WidgetUser($result- > fetchRow());
 }
}

 Your WidgetUser class must hold its state. However, the WidgetUser class is getting pumped out from
a database, which can return data in an associative array. Therefore, just store WidgetUser ’ s state in an
associative array.

 Of course, __set and __get both need to be redefined. Still editing test.widgetsession.php :

class WidgetUser {
 protected $contentBase = array();

 function __construct($initdict) {
 $this- > contentBase = $initdict; // copy
 }

 function __get ($key) {
 if (array_key_exists ($key, $this- > contentBase)) {
 return $this- > contentBase[$key];
 }
 return null;
 }

 function __set ($key, $value) {
 if (array_key_exists ($key, $this- > contentBase)) {
 $this- > contentBase[$key]=$value;
 }
 }

 public function isSalesPerson() { return null; }
 public function isSalesManager() { return null; }
 public function isAccountant() { return null; }
}

 Once again, rerunning test.widgetsession.php results in most of the user tests passing, with one
notable exception:

1. testUser
 ed@lecky-thompson.com type:string
 null type:NULL

 Hmmm, let ’ s look closer at the PostgreSQL version of the user table that was defined in Chapter 12:

CREATE TABLE “user” (id serial PRIMARY KEY,
 username varchar(32) default NULL,
 md5_pw varchar(32) default NULL,
 first_name varchar(64) default NULL,
 last_name varchar(64) default NULL
);

458

Part III: A Real-World Case Study

 You can see that the user table is missing e - mail, so you must add it to make the table look like this:

CREATE TABLE “user” (
 id serial PRIMARY KEY,
 username varchar(32) default NULL,
 md5_pw varchar(32) default NULL,
 first_name varchar(64) default NULL,
 last_name varchar(64) default NULL,
 email varchar(255) default NULL
);

 You can use the syntax ALTER TABLE “ user ” ADD “ email ” varchar(255) to achieve this.

 Run the test.widgetsession.php tests:

TestWidgetSession - testValidLogin ok
TestWidgetSession - testInvalidLogin ok
TestWidgetSession - testUser ok
TestWidgetSession - testAuthorization FAIL
4 tests run.
4 failures.

 Zero errors.

 Now that the testUser passes, pay attention to the testAuthorization . Because “ role ” is not
included in the database yet, add that as well. (The default value of ’ s ’ is short for “ salesperson. ”)

ALTER TABLE “user” ADD “role” char(1) default ‘s’;

 The table will now look like this:

CREATE TABLE “user” (
 id serial PRIMARY KEY,
 username varchar(32) default NULL,
 md5_pw varchar(32) default NULL,
 first_name varchar(64) default NULL,
 last_name varchar(64) default NULL,
 email varchar(255) default NULL,
 role char(1) NOT NULL default ‘s’
);

 Putting some state - retrieval accessor methods into WidgetUser solves most of the remaining issues.
You ’ re still editing the class WidgetUser , currently temporarily homed in test.widgetsession.php .:

public function isSalesPerson() {
 if ($this- > role == “s”) return true;
 return false;
}

public function isSalesManager() {
 if ($this- > role == “m”) return true;
 return false;
}

Chapter 19: Building the Application

459

public function isAccountant() {
 if ($this- > role == “a”) return true;
 return false;
}

 However, the test still fails on “ role ” because it expects a human - readable string, and instead is limited
to the single digits of s , m , and a :

1. testAuthorization
 Sales Person type:string
 s type:string

 Recall from earlier what is being tested for:

function testAuthorization () {
 $user = $this- > _session- > getUser();
$this- > assertEquals(“Sales Person”, $user- > role);

 $this- > assertEquals(true, $user- > isSalesPerson());
 $this- > assertEquals(false, $user- > isSalesManager());
 $this- > assertEquals(false, $user- > isAccountant());
}

 Note that because of the nature of the next problem, when $user - >role is called, the expectation is to
get “ Sales Person. ” Keep in mind that that role is directly from the database, so either change the
database or change your software instead.

 How about this idea: Because you ’ d like to continue to directly access $user - >role in the __get
function, you can determine which role is being queried for and dispatch it to a getRole() function.

 Here it is:

class WidgetUser {
 protected $contentBase = array();
 protected $dispatchFunctions = array (“role” = > “getrole”);

 function __construct($initdict) {
 $this- > contentBase = $initdict; // copy
 }

 function __get ($key) {
 // dispatch by function first
 if (array_key_exists ($key, $this- > dispatchFunctions)) {
 $funcname = $this- > dispatchFunctions[$key];
 return $this- > $funcname();
 }

 // otherwise return based on state
 if (array_key_exists ($key, $this- > contentBase)) {
 return $this- > contentBase[$key];
 }

460

Part III: A Real-World Case Study

 return null;
 }

 function __set ($key, $value) {
 if (array_key_exists ($key, $this- > contentBase)) {
 $this- > contentBase[$key]=$value;
 }

 }

 public function getRole() {
 switch ($this- > contentBase[“role”]) {
 case “s”: return (“Sales Person”);
 case “m”: return (“Sales Manager”);
 case “a”: return (“Accountant”);
 default: return (“”);
 }
 }

 public function isSalesPerson() {
 if ($this- > contentBase[“role”] == “s”) return true;
 return false;
 }

 public function isSalesManager() {
 if ($this- > contentBase[“role”] == “m”) return true;
 return false;
 }
 public function isAccountant() {

 if ($this- > contentBase[“role”] == “a”) return true;
 return false;
 }
}

 Note that isSalesPerson() , isSalesManager() , and isAccountant() all access contentBase ,
rather than call $this - role . Otherwise, it would be dispatched through the getRole() function, which
returns human - readable results such as “ Sales Manager. ” It is not a good idea to try to return Boolean
values based on human - readable results because they could change on a whim.

 Creating the Login Screen
 Now that your WidgetUser and WidgetSession objects are working, it ’ s time to use them with a
real login.

 Although the login screen is not terribly complicated, you ’ ll continue to use Smarty as the templating
system, simply for its convenience.

Chapter 19: Building the Application

461

 Here ’ s your initial index.php file:

 < ?php
require_once (“Smarty.class.php”); require_once (“widgetsession.phpm”);
$session = new WidgetSession(array (‘phptype’ = > “pgsql”,
 ‘hostspec’ = > “localhost”,
 ‘database’ = > “widgetworld”,
 ‘username’ = > “wuser”,
 ‘password’ = > “foobar”));
$session- > Impress();
$smarty = new Smarty;
if ($_REQUEST[“action”] == “login”) {
 $session- > login($_REQUEST[“login_name”],$_REQUEST[“login_pass”]);
 if ($session- > isLoggedIn()) {
 $smarty- > assign_by_ref(“user”, $session- > getUserObject());
 $smarty- > display (“main.tpl”);
 exit;
 } else {
 $smarty- > assign(‘error’, “Invalid login, try again.”);
 $smarty- > display (“login.tpl”);
 exit;
 }
} else {
 if ($session- > isLoggedIn() == true) {
 $smarty- > assign_by_ref(“user”, $session- > getUserObject());
 $smarty- > display (“main.tpl”);
 exit;
 }
}
$smarty- > display (“login.tpl”);
? >

 The logic for the screen is as follows. If the action variable of the form is login , it indicates that a login
attempt is trying to be made, so an attempt to log in is made by calling $session - login() . A positive
result is dealt with by rendering the main menu. A negative result causes an error variable to be set, and
the login screen is again presented to the user.

 Of course, if you ’ re not trying to log in, $session - isLoggedIn() is checked to confirm the login status
with the session. If the user is logged in, the main menu screen is displayed. Otherwise, the login screen
is again redisplayed.

 The two screens, login and main , along with the header and footer, are all simple.

 Following is the code for login.tpl :

{include file=”header.tpl” title=”Widget World Login”}
 < h3 > Please Login: < /h3 > < p >
{section name=one loop=$error}{sectionelse}
 < font color=”#FF0000” > {$error} < /font > < p >
{/section}
 < form action=”index.php” method=”post” >
 < table border=”0” >

462

Part III: A Real-World Case Study

 < tr >
 < td width=”20” > < /td >
 < td > User: < /td >
 < td > < input name=”login_name” type=”text” size=”20” maxsize=”50” > < /td >
 < /tr >
 < tr >
 < td width=”20” > < /td >
 < td > Password: < /td >
 < td > < input name=”login_pass” type=”password” size=”20” maxsize=”50” > < /td >
 < /tr >
 < tr >
 < td width=”20” > < /td >
 < td > < /td >
 < td > < input type=”submit” value=” Login “ > < /td >
 < /tr >
 < /table >
 < input type=”hidden” name=”action” value=”login” >
 < /form >
{include file=”footer.tpl”}

 Following is the code for header.tpl :

 < !DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” >
 < html >
 < head >
 < meta HTTP-EQUIV=”content-type” CONTENT=”text/html; charset=ISO-8859-1” >
 < title > {$title|default:”no title”} < /title >
 < /head >
 < h1 > Widget World < /h1 >
 < hr > < p >

 Following is the code for footer.tpl :

 < br/ > < br/ >
 < hr/ >
For Widget World use only - testing environment.
 < /body >
 < /html >

 Following is the code for main.tpl :

{include file=”header.tpl” title=”Widget World Menu”}
Welcome {$user- > first_name} the {$user- > role}!
 < table border=”0” cellspacing=”8” cellpadding=”8” >
{strip}
{section name=security show=$user- > isAccountant()}
 < tr > < td > < h3 > Accountant functionality goes here. < /h3 > < /td > < /tr >
{/section}
 < tr >
 < td valign=”top” >

Chapter 19: Building the Application

463

 < h3 > < a href=”travel-expenses.php” > New Travel Expenses < /a > < /h3 >
 < /td >
 < /tr >
 < tr >
 < td valign=”top” >
 < h3 > < a href=”customer-contacts.php” > New Customer Contacts < /a > < /h3 >
 < /td >
 < /tr >
{/strip}
 < /table >
{include file=”footer.tpl”}

 Figure 19 - 3 shows what this looks like. After you are logged in, you get the menu shown in Figure 19 - 4 .
If you change ed to be an accountant by changing his role to be a , then ed would have a slightly different
view, as displayed in Figure 19 - 5 .

Figure 19-3: Login screen

Figure 19-4: Main menu

464

Part III: A Real-World Case Study

 Congratulations! Your first story is now complete. You have done a lot of work with PHP sessions,
database lookups, PEAR::DB , and PHPUnit to accomplish the functionality required to determine who is
logging in and what that user should be able to do, which is not at all a trivial feat.

 Take a nice little break, and enjoy munching on a biscuit; there is a lot more work coming up.

 The Next Story
 Your previous story (Story 9: “ Authentication and Authorization ”) was worth 4 points. Write down how
long in days or half days it took you to accomplish this 4 - point task.

 Recall that this iteration of the Customer Contact Report is comprised of the following:

 Story 9: Authentication and Authorization, 4 points (done)

 Story 1: Customer Contact Report, 3 points

 Story 6: Sales Manager Notification, 3 points

 Story 8: Mail Room Notification, 2 points

 Time to get back to work.

 Customer Contact Requirements

 Recall from earlier in this chapter (refer to Figure 19 - 1) what the Weekly Contact Report requires. The
data requirements for this look something like the following:

CREATE TABLE contact_visits (
 emp_id integer NOT NULL,
 week_start date NOT NULL,
 seq integer NOT NULL,
 company_name varchar(40) default NULL,
 contact_name varchar(40) default NULL,
 city varchar(40) default NULL,
 state varchar(40) default NULL,

❑

❑

❑

❑

Figure 19-5: View for Ed

Chapter 19: Building the Application

465

 accomplishments text,
 followup text,
 literature_request text
);
CREATE UNIQUE INDEX cv_pk on contact_visits (emp_id,week_start,seq);
CREATE INDEX cv_emp_id ON contact_visits (emp_id);
CREATE INDEX cv_week_start ON contact_visits (week_start);
CREATE INDEX cv_seq ON contact_visits (seq);

 The data is per week, is associated with the employee, and is unique when completed with the
SEQuence column. There may be a lot.

 Note that state is 40 characters long in order to accommodate non - U.S. states, as well as provinces in
Canada and Mexico. Also note that the Customer Contact Report contains the employee ’ s department,
which currently doesn ’ t exist in the user table. Go ahead and add it:

CREATE TABLE “user” (
 id serial PRIMARY KEY,
 username varchar(32) default NULL,
 md5_pw varchar(32) default NULL,
 first_name varchar(64) default NULL,
 last_name varchar(64) default NULL,
 email varchar(255) default NULL,
 role char(1) NOT NULL default ‘s’,
 department varchar(40) NOT NULL default ‘s’
);

 Customer Contact Tests

 Think about how you intend to use the customer contacts. From this input screen, nearly all the form
data is provided to you via the Web server, which means that when you prepare to persist it, you ’ ll need
the employee ID available from WidgetSession .

 In addition, consider what minimum information you ’ ll require before dumping into the table:
id , week_start , and sequence with this PHPUnit test:

function testValidContactVisit() {
 $cv = new ContactVisit (
 array (‘emp_id’ = > “1”,
 ‘seq’ = > “1”,
 ‘week_start’ = > “1980-01-01”,
 ‘company_name’ = > “test one”,
 ‘contact_name’ = > “Big One”,
 ‘city’ = > “Columbus”,
 ‘state’ = > “OH”,
 ‘accomplishments’ = > “phone call”,
 ‘followup’ = > “”,
 ‘literature_request’ = > “”));
 $this- > assertEquals(true, $cv- > isValid(), “valid log”);
}

466

Part III: A Real-World Case Study

 This testing is the minimum information required by ContactVisit . Thus, if emp_id , seq , and week_
start contain any values, then isValid() will return true . Conversely, the opposite should also be tested:

function testInvalidContactVisit() {
 $cv = new ContactVisit (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “”, // date required
 ‘company_name’ = > “test one”,
 ‘contact_name’ = > “Big One”,
 ‘city’ = > “Columbus”,
 ‘state’ = > “OH”,
 ‘accomplishments’ = > “phone call”,
 ‘followup’ = > “”,
 ‘literature_request’ = > “”));
 $this- > assertEquals(false, $cv- > isValid(), “invalid visit”);
}

 Because the visits each require a unique sequence value, they might as well determine their order
themselves:

function testSequence() {
 $cv1 = new ContactVisit(array());
 $this- > assertEquals(1, $cv1- > seq);
 $cv2 = new ContactVisit(array());
 $this- > assertEquals(2, $cv2- > seq);
}

 Note that by creating ContactVisits , the sequence (seq) of each new ContactVisit is automatically
incremented, which eliminates the need to require the container to assign each one a unique sequence
number.

 Persistence is still in a state of flux, but this will certainly work:

 function testPersistence() {
 $this- > _session- > getDatabaseHandle()- > query(“delete FROM
 contact_visits WHERE emp_id = 1 and week_start = ‘1980-01-01’”);
 // remove multiples
 $cv = new ContactVisit (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-01”,
 ‘seq’ = > 1,
 ‘company_name’ = > “test one”,
 ‘contact_name’ = > “Big One”,
 ‘city’ = > “Columbus”,
 ‘state’ = > “OH”,
 ‘accomplishments’ = > “phone call”,
 ‘followup’ = > “”,
 ‘literature_request’ = > “”));
 $result = $this- > _session- > getDatabaseHandle()- > query(“select * FROM
 contact_visits WHERE emp_id = 1 and week_start = ‘1980-01-01’”);
 $this- > assertEquals(0, $result- > numRows());

Chapter 19: Building the Application

467

 $cv- > persist();
 $result = $this- > _session- > getDatabaseHandle()- > query(“select * FROM
 contact_visits WHERE emp_id = 1 and week_start = ‘1980-01-01’”);
 $this- > assertEquals(1, $result- > numRows());
 }

 Note that week_start ’ s value of New Year ’ s Day, 1980, was chosen for a reason:

 It is not the start of a normal week, which, for Americans, is normally Sunday.

 It stands out in your mind, so if something goes horribly wrong and it ends up in the production
database, it ’ s easily recognized as not being a real contact.

 Before running the tests, don ’ t forget to stub out ContactVisit to ensure that the tests successfully FAIL
(yet syntactically execute) before correctly satisfying the tests. Here are the contents of contact.phpm :

class ContactVisit {

 function __construct ($results) { }
 public function isValid() { return null; }
 public function persist() { }
 public function getSequence() { return null; }
}

 Satisfying the Tests

 Because the visits are going to be in sequence, utilize a static variable so that the sequence count is
shared across all instances of the class. Incrementing it in the constructor also ensures that all your bases
are covered without requiring any more plumbing. Implement the constructor of ContactVisit in
 contact.phpm :

class ContactVisit {

 function __construct ($results, $dbh = null) {

 static $sequence = 0;

 $this- > dbh = $dbh;

 $this- > contentBase = $results; // copy

 $sequence = $sequence + 1; // increment across class

 $this- > contentBase[“seq”] = $sequence;

 }

public function isValid() { return null; }
 public function persist() { }
 public function getSequence() { return null; }
}

❑

❑

468

Part III: A Real-World Case Study

 In addition, note that ContactVisit must store a reference to the database. This is in addition to the
normal data (company name, city, state, and so on), so return ContactVisit ’ s state in the last return of
 ContactVisit ’ s __get() function. Here it is in contact.phpm :

function __get ($key) {
 if (array_key_exists ($key, $this- > contentBase)) {
 return $this- > contentBase[$key];
 }
 return $this- > $key;
}

 Put it all together, add some functions for generating its required SQL, and you ’ re set. The file contact.
phpm is as follows:

class ContactVisit {

protected $contentBase = array();
protected $dbh = null; // database handle

 function __get ($key) {
 if (array_key_exists ($key, $this- > contentBase)) {
 return $this- > contentBase[$key];
 }
 return $this- > $key;
 }
 function __construct ($results, $dbh = null) {
 static $sequence = 0;
 $this- > dbh = $dbh;
 $this- > contentBase = $results; // copy
 $sequence = $sequence + 1; // increment across class
 $this- > contentBase[“seq”] = $sequence;
 }

private function isEmpty($key) {
if (array_key_exists($key, $this- > contentBase) == false) return true;
if ($this- > contentBase[$key] == null) return true;
if ($this- > contentBase[$key] == “”) return true;
return false;
}
public function isValid() {
if ($this- > isEmpty(“emp_id”) == true) return false;
if ($this- > isEmpty(“week_start”) == true) return false;
if ($this- > isEmpty(“company_name”) == true) return false;
return true;
}
private function implodeQuoted (& $values, $delimiter) {
$sql = “”;
$flagIsFirst = true;
foreach ($values as $value) {
if ($flagIsFirst) {
$flagIsFirst = false;
} else {
$sql .= $delimiter;
}

Chapter 19: Building the Application

469

if (gettype ($value) == “string”) {
$sql .= “’”.$value.”’”;
} else {
$sql .= $value;
}
}
return $sql;
}
private function generateSqlInsert ($tableName, & $metas, & $values) {
return “insert into “.$tableName.
“ (“.implode ($metas, “, “).”) “.
“ values (“.$this- > implodeQuoted ($values, “, “).”) “;
}

public function persist() {
if ($this- > isValid() == false) return false;
$sql = $this- > generateSqlInsert (“contact_visits”,
array (“emp_id”,
“week_start”,
“seq”,
“company_name”,
“contact_name”, “city”,
 “state”,
 “accomplishments”,
 “followup”,
 “literature_request”),
 array ($this- > emp_id,
 $this- > week_start,
 $this- > seq,
 $this- > company_name,
 $this- > contact_name,
 $this- > city,
 $this- > state,
 $this- > accomplishments,
 $this- > followup,
 $this- > literature_request));
 if (DB::isError ($this- > dbh- > query($sql))) return false;
 return true;
 }
}

 Briefly, the methods implemented are as follows:

 isValid() satisfies both of your validity tests. isValid() relies upon isEmpty() , which is
simply a convenience function.

 persist() satisfies your persistence test. persist() calls generateSqlInsert() , which
generates a SQL INSERT statement based on the table name, table meta - information, and the
values you ’ d like to insert. generateSqlInsert() , in turn, calls implodeQuoted() , which
adds SQL quotes to values that are strings.

 Both implodeQuoted() and generateSqlInsert() insist that the arrays are passed by reference, rather
than by value. Of course, the default behavior of PHP 6 is to pass objects by reference, but arrays are
passed by value in the default case.

❑

❑

470

Part III: A Real-World Case Study

 Creating the Screen

 Consider the following form, called customer - contacts.tpl :

{include file=”header.tpl” title=”Widget World - Customer Contact”}
 < h3 > Customer Contact Report < /h3 >
 < form action=”customer-contacts.php” method=”post” >
 < table border=”0” width=”100%” >
 < tr >
 < td > < b > Employee Name: < /b > < /td > < td > {$user- > first_name} {$user- > last_name} < /td >
 < td > < b > Department: < /b > < /td > < td > {$user- > department} < /td >
 < /tr >
 < tr >
 < td > < b > Number: < /b > < /td > < td > {$user- > id} < /td > < td > < b > Start Week: < /b > < /td >
 < td > < SELECT NAME=”week_start” >
 {html_options values=$start_weeks output=$start_weeks
 selected=$current_start_week}
 < /SELECT >
 < /td >
 < /tr >
 < /table >
 < br > < br >
 < hr >
 < p > < font size=”+1” >
 < b > Significant Distributors and Customers Visited: < /b >
 < /font >
 < br >
 (also distributors/OEM/prospects) < p >
 < table border=”0” >
{section name=idx loop=$max_weekly_contacts}{strip}
 < tr >
 < td width=”20” > < /td >
 < td > < b > Company < /b > < /td >
 < td > < b > Contact < /b > < /td >
 < td > < b > City < /b > < /td >
 < td > < b > State < /b > < /td >
 < td > < b > FollowUp < /b > < /td >
 < td > < b > Literature Request < /b > < /td >
 < /tr >
 < tr >
 < td width=”20” > < /td >
 < td > < input name=”company_name_{$smarty.section.idx.index}”
 size=”20” maxlength=”50” > < /td >
 < td > < input name=”contact_name_{$smarty.section.idx.index}”
 size=”20” maxlength=”50” > < /td >
 < td > < input name=”city_{$smarty.section.idx.index}”
 size=”20” maxlength=”50” > < /td >
 < td > < input name=”state_{$smarty.section.idx.index}”
 size=”10” maxlength=”50” > < /td >
 < td > < input name=”followup_{$smarty.section.idx.index}”
 size=”20” maxlength=”2000” > < /td >
 < td > < input name=”literature_request_{$smarty.section.idx.index}”
 size=”20” maxlength=”2000” > < /td >
 < /tr >

Chapter 19: Building the Application

471

 < tr >
 < td width=”20” > < /td >
 < td colspan=”7” > < b > Accomplishments: < /b > < /td >
 < /tr >
 < tr >
 < td width=”20” > < /td >
 < td colspan=”7” >
 < TEXTAREA NAME=”accomplishments_{$smarty.section.idx.index}”
 ROWS=4 COLS=95 > < /TEXTAREA > < br > < br >
 < /td >
 < /tr >
{/strip}{/section}
 < /table >
 < br > < hr >
 < input type=”hidden” name=”action” value=”persist_contact” >
 < br > < br >
 < center >
 < input type=”submit” name=”submit” value=” Save “
 onclick=”return checkInputs(this.form);” >
 < /center >
 < /form >
{include file=”footer.tpl”}

 Note that the main loop, {section name=idx} loop=$max_weekly_contacts} , iterates and creates
unique names of inputs: company_name_{$smarty.section.idx.index}} , which are then operated
on.

 Smarty offers the handy feature of populating drop - down boxes based on an array of dates for the
current week:

 < SELECT NAME=”week_start” >
 {html_options values=$start_weeks
 output=$start_weeks selected=$current_start_week}
 < /SELECT >

 You may have noticed that the input screen is rather Spartan in appearance because it uses regular
HTML, rather than something stricter with better cross - platform browser compatibility (such as XHTML
and CSS). This is because, at this point in the process, you ’ re more interested in getting the system to
work than appearance, because the definition may change slightly in the near future. Later in the
process, the display can be spruced up.

 Feeding the Beast

 Even though ContactVisits know how to persist themselves, it takes a surprising amount of work to
gather together several weeks ’ worth of drop - down information, and then save all contacts to the
database. Here is the required functionality, simply placed in functions in customer - contacts.php :

 < ?php
require_once (“Smarty.class.php”);
require_once (“widgetsession.phpm”);
$session = new WidgetSession(array (‘phptype’ = > “pgsql”,
 ‘hostspec’ = > “localhost”,

472

Part III: A Real-World Case Study

 ‘database’ = > “widgetworld”,
 ‘username’ = > “uwuser”,
 ‘password’ = > “foobar”));
$session- > Impress();
$smarty = new Smarty;
$GLOBALS[“max-weekly-contacts”] = 5;

function getStartDateOffset ($i) {
 if ($i < 0) $i = 5;
 $dates = array(“Sunday” = > 0, “Monday” = > -1, “Tuesday” = > -2,
 “Wednesday” = > -3, “Thursday” = > -4, “Friday” = > -5,
 “Saturday” = > -6);
 return date(“Y-m-d”, mktime (0,0,0,date(“m”),
 date(“d”)+$dates[date(“l”)]-(($i-5)*7),date(“Y”)));
}
function getCurrentStartWeek () {
 if (strlen($_REQUEST[“week_start”]) > = 8) return $_REQUEST[“week_start”];
 return getStartDateOffset(-1); // this sunday
}
function getStartWeeks () {
 $sudayArray = array();
 for ($i=20; $i > 0; $i-) {
 array_push($sudayArray, getStartDateOffset($i));
 }
 return ($sudayArray);
}
function persistContactVisits (& $dbh, $emp_id) {
 $dbh- > query(“delete from contact_visits where emp_id
 = “.$emp_id.” and week_start = ‘”.getCurrentStartWeek().”’”);
 $seq = 0;
 for ($i = 0; $i < $GLOBALS[“max-weekly-contacts”]; $i++) {
 $cv = new ContactVisit (
 array (“emp_id” = > $emp_id,
 “week_start” = > getCurrentStartWeek(),
 “company_name” = > $_REQUEST[“company_name_”.$i],
 “contact_name” = > $_REQUEST[“contact_name_”.$i],
 “city” = > $_REQUEST[“city_”.$i],
 “state” = > $_REQUEST[“state_”.$i],
 “accomplishments” = > $_REQUEST[“accomplishments_”.$i],
 “followup” = > $_REQUEST[“followup_”.$i],
 “literature_request”= > $_REQUEST[“literature_request_”.$i]),
 $dbh);
 $cv- > persist();
 }
}
$user = $session- > getUserObject();
// display

Chapter 19: Building the Application

473

if ($_REQUEST[“action”] != “persist_contact”) {
 $smarty- > assign_by_ref (“user”, $user);
 $smarty- > assign(‘start_weeks’, getStartWeeks());
 $smarty- > assign(‘current_start_week’, getCurrentStartWeek());
 $smarty- > assign(“max_weekly_contacts”, $GLOBALS[“max-weekly-contacts”]);
 $smarty- > display(‘customer-contacts.tpl’);
 exit();
}
// persist contact visits
require_once (“contact.phpm”);
persistContactVisits ($session- > getDatabaseHandle(), $user- > id);
$smarty- > display(‘thankyou.tpl’);
? >

 The interesting features of this begin with getStartDateOffset() , which populates the Date drop -
 down by returning the day of the start week based on an integer offset passed in:

function getStartDateOffset ($i) {
 if ($i < 0) $i = 5;
 $dates = array(“Sunday” = > 0, “Monday” = > -1, “Tuesday” = > -2,
 “Wednesday” = > -3, “Thursday” = > -4, “Friday” = > -5,
 “Saturday” = > -6);
 return date(“Y-m-d”, mktime (0,0,0,date(“m”),
 date(“d”)+$dates[date(“l”)]-(($i-5)*7),date(“Y”)));
}

 It works by associating the weekday (say, Tuesday), retrieved by the use of date(“ l ”) to access the
 $dates array, which returns an integer representing the number of days away from the target day of
Sunday. When you know the date of the closest Sunday, the Sunday + week offset is calculated by
multiplying the closest Sunday date by 7, and then adding those days to the current Sunday. Thus,
regardless of the current day of the week, a Sunday +/ – $i weeks is returned.

 However, because getStartWeeks() returns an array of 20 Sundays by counting from 20 to 0,
getStarteDateOffset() also automatically adds 5 weeks to the default. As a result, the drop - down
selection box for Week has 15 past weeks, the current Sunday, and 4 weeks in the future.

 The heavy lifting is done by persistContactVisits() , which removes the old contacts, creates new
 ContactVisit s, and calls persist() on each one in order to save the results in the database.

 Figure 19 - 6 shows the features in action.

474

Part III: A Real-World Case Study

 Now, with two stories under your belt, you can take a decadent 10 - minute break before heading off to
get Wendy, Wade, Edwina, and Harold using the application. You ’ ll need the rest.

 Re - estimating
 The good news is that Wendy, Wade, Harold, and Edwina love the application; but they are only human,
and they have brought up some quite reasonable requests:

 Include a Logout button.

 Don ’ t allow access to customer - contacts.php without first logging in.

 Changing the week should bring up a previously saved week.

 In the Customer Contact screen, also track the following: number of shop calls, number of
engineer calls, number of distributor calls, approximate mileage, territory worked, and territory
comments on a per week basis.

 The number of contacts may occasionally change. Can that be configurable?

 Doing some quick estimates, you figure the new tasks as follows:

 Include a Logout button: 1/2 point

 Don ’ t allow access to customer - contacts.php without first logging in: (bug) 1/2 point

❑

❑

❑

❑

❑

❑

❑

Figure 19-6: Drop-down list in the Customer Contact Report

Chapter 19: Building the Application

475

 Changing the week should bring up a previously saved week: 1 point

 In the Customer Contact screen, also track number of shop calls, number of engineer calls,
number of distributor calls, approximate mileage, territory worked, and territory comments on a
 per week basis: 1 point

 Configure the number of contacts, which may occasionally change: 1/2 point

 The original plan was as follows:

 Story 9: Authentication and Authorization, 4 points (done)

 Story 1: Customer Contact Report, 3 points (mostly done)

 Story 6: Sales Manager Notification, 3 points

 Story 8: Mail Room Notification, 2 points

 Considering that the half - pointers don ’ t really count but the new ones do, you discuss it with your
clients and determine that they ’ d prefer it in this order:

 Story 9: Authentication and Authorization, 4 points (done)

 Story 1: Customer Contact Report, 3 points (mostly done)

 Story 14: Changing the week recalls a previous week: (new)

 Story 15: Per - week items on the customer contact report: (new)

 They ’ d also prefer to get the spreadsheet in the next iteration before requiring the notifications, so these
can be dropped for now:

 Story 6: Sales Manager Notification, 3 points

 Story 8: Mail Room Notification, 2 points

 Back to work.

 Cleaning Up
 Before taking off and completing your new stories, consider the state of your current corps of code. Yes,
some bits are a bit ugly, but it ’ s completely functional. Some bits are obviously copied and pasted from
other places, but it works. It does, however, include a great testing suite.

 Don ’ t kick yourself for a few warts on a fully tested, working product. It happens, and it ’ s called code
debt . Just as in real life, when you ’ re in a hurry or circumstances require, you can go beyond your means
monetarily by going into debt.

 Now that you have a bit of time to clean things up, it ’ s time to work off the debt. It ’ s easy, although it ’ s
best if you follow good development guidelines as you code in order to be as productive as you can
without going into debt.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

476

Part III: A Real-World Case Study

 To what is this referring? Take a look at your current working files:

index.php
customer-contacts.php
contact.phpm
test.contact.php
widgetsession.phpm
test.widgetsession.php
templates/customer-contacts.tpl
templates/footer.tpl
templates/header.tpl
templates/login.tpl
templates/main.tpl
templates/thankyou.tpl

 Now ask yourself the following: Are all these files required in the root directory? What if you keep only
client “ landing points ” in there?

 Follow that lead and get rid of those PHP - module (.phpm) files and tests. These are certainly things that
a regular Web browser shouldn ’ t accidentally land on. Move them into the following hierarchy:

index.php
customer-contacts.php
lib/contact.phpm
lib/test.contact.php
lib/widgetsession.phpm
lib/test.widgetsession.php
templates/customer-contacts.tpl
templates/footer.tpl
templates/header.tpl
templates/login.tpl
templates/main.tpl
templates/thankyou.tpl

 This is now much better because your root directory has only two files, and they ’ re both landed upon by
the Web browser. You also might consider moving your testing files (test.*) into another separate
directory. However, creating a directory doesn ’ t pay off if it contains only one or two files; do it when
you have at least four testing files to drop in.

 After you ’ ve moved the files, go through them and ensure that you update your includes and requires,
and ensure that your tests continue to run. Cleaning house is slightly less fun, but you end up with the
same nice feeling afterward.

 Refactoring Code
 Keep some basic tasks in mind when developing your code:

 Keep it simple.

 Don ’ t create things you won ’ t use.

 Remove duplication (an idea also known as once and only once).

 Remove unused functionality, including classes and functions.

❑

❑

❑

❑

Chapter 19: Building the Application

477

 The last item is especially difficult to attain because writing code is hard, so why throw away “ good
work ” ? For the same reason that you prune your plants: Getting rid of the dead wood leads to a
healthier overall system.

 Besides, your code is in a source code repository, right? Use CVS, Subversion, SourceSafe, or whatever
you have at hand, but put all your files into your source code repository.

 Just keep the coding guidelines in mind when knocking out your simple half - point tasks (such as the
Logout button) because the footer.tpl is used everywhere:

 < br > < br >
 < a href=”index.php?action=logout” > Logout < /a > < br >
 < hr >
For Widget World use only - testing environment.
 < /body >
 < /html >

 Now, before you modify the index, look at the copy - and - paste at the top of customer - contacts.php
and index.php . Both of those files start with the following:

require_once (“Smarty.class.php”); require_once (“widgetsession.phpm”);
$session = new WidgetSession(array (‘phptype’ = > “pgsql”,
 ‘hostspec’ = > “localhost”,
 ‘database’ = > “widgetworld”,
 ‘username’ = > “wuser”,
 ‘password’ = > “foobar”));
$session- > Impress();
$smarty = new Smarty;

 It violates the “ once and only once ” rule, so remove it — just cut it out and put it in another file. For now,
put it in lib/common.php .

 In addition, you really shouldn ’ t have logins and passwords in your Web space, so pull the content out
and put it another file that is accessible by PHP, but well outside the Web root where Apache can serve it
up to the curious and/or malicious.

 Remember that because we ’ re dealing with settings (per request), add a setting for the maximum weekly
contacts. All this should be placed in a new file ../../../../settings.php , located inconveniently
outside of the Web root so that someone cannot use your own Web server to read the configuration file
and consequently gain access to your database:

 < ?php
/*
 * database setup
 */
$GLOBALS[“db-type”] = “pgsql”;
$GLOBALS[“db-hostname”] = “localhost”;
$GLOBALS[“db-username”] = “wuser”;
$GLOBALS[“db-password”] = “foobar”;
$GLOBALS[“db-name”] = “widgetworld”;
/*

478

Part III: A Real-World Case Study

 * 3rd party environment
 */
$GLOBALS[“smarty-path”] = “/usr/lib/php/smarty/”;
/*
 * system settings
 */
$GLOBALS[“max-weekly-contacts”] = 5;
? >

 Your lib/common.php file should contain the following:

 < ?php
require_once (“../../../../settings.php”);
require_once (“./lib/widgetsession.phpm”);
require_once ($GLOBALS[“smarty-path”].’Smarty.class.php’); $smarty = new Smarty;
$session = new WidgetSession(array (‘phptype’ = > $GLOBALS[“db-type”],
 ‘hostspec’ = > $GLOBALS[“db-hostname”],
 ‘database’ = > $GLOBALS[“db-name”],
 ‘username’ = > $GLOBALS[“db-username”],
 ‘password’ = > $GLOBALS[“db-password”]));
$session- > Impress();
? >

 While you ’ re at it, you might as well require a login for every page other than index.php , which is
currently the only page utilizing the login feature. Append this to your common.php :

/*
 * require login
 */
$scriptname = end(explode(“/”, $_SERVER[“REQUEST_URI”]));
if ($scriptname < > “index.php”) {
 if ($session- > isLoggedIn() == false) {
 Header (“Location: index.php”);
 }
}

 Now turn your attention to index.php , which, after you ’ ve added the logic to handle the logout, looks
like this (yes, it handles all cases):

 < ?php
require_once (“lib/common.php”);
if (array_key_exists(“action”, $_REQUEST)) {
 switch ($_REQUEST[“action”]) {
 case “login”:
 $session- > login($_REQUEST[“login_name”],$_REQUEST[“login_pass”]);
 if ($session- > isLoggedIn()) {
 $smarty- > assign_by_ref(“user”, $session- > getUserObject());
 $smarty- > display (“main.tpl”);
 exit;
 } else {
 $smarty- > assign(‘error’, “Invalid login, try again.”);

Chapter 19: Building the Application

479

 $smarty- > display (“login.tpl”);
 exit;
 }
 break;
 case “logout”:
 $session- > logout();
 $smarty- > display (“login.tpl”);
 exit;
 break;
 default:
 $smarty- > display (“login.tpl”);
 exit;
 }
} else {
 if ($session- > isLoggedIn() == true) {
 $smarty- > assign_by_ref(“user”, $session- > getUserObject());
 $smarty- > display (“main.tpl”);
 exit;
 }
}
$smarty- > display (“login.tpl”);
? >

 When you ’ re trying to log in, you either succeed and go to main.tpl , or fail and go back to the
login.tpl . When logging out, you want to log out and go to login.tpl . If there is no action assigned,
then you check the login status with $session -> isLoggedIn() . Finally, the last line displays login.tpl ,
even though it ’ s a logical impossibility (currently) for your code to ever reach that point in execution. It may
be in the future, however, so it ’ s wise to use this as a “ catch - all ” in case you ever slip up.

 Even though the preceding code technically works, something just isn ’ t quite right about it. The code
needs to determine which screen to display, but it is dependent on both the login status and the request
variables that represent state. The code ends up looking too verbose, so you should take a few minutes to
see what can be done to make it a bit more readable — in other words, it ’ s time to refactor .

 Refactoring is an ongoing process that may at first seem to be a subjective process, but you ’ ll still
objectively end up with a better - looking code base because of it. There is a technique for refactoring out
similarities by creating similarities. It seems a little weird at first, but if your code smells as though it is a
candidate for the removal of duplication (also known as a “ Once and Only Once ” refactoring), then this
technique is probably worth looking into.

 Examine the code and consider how you can logically create similarities with what is already there. For
example, the following continues to be perfectly legal PHP — it passes the tests and continues to work
on the browser side:

 < ?php
require_once (“lib/common.php”);
if (array_key_exists(“action”, $_REQUEST)) {
 switch ($_REQUEST[“action”]) {
 case “ login ” :

$session- > login($_REQUEST[“login_name”],$_REQUEST[“login_pass”]);
if ($session- > isLoggedIn()) {

480

Part III: A Real-World Case Study

$smarty- > assign_by_ref(“user”, $session- > getUserObject());
 $smarty- > display (“main.tpl”);
 exit;
 } else {
 if (array_key_exists(“login_name”, $_REQUEST)) {
 $smarty- > assign(‘error’, “Invalid login, try again.”);
 }
 $smarty- > display (“login.tpl”);
 exit;

 }

 break;
 case “logout”:
 $session- > logout();
 if ($session- > isLoggedIn()) {
 $smarty- > assign_by_ref(“user”, $session- > getUserObject());
 $smarty- > display (“main.tpl”);
 exit;
 } else {
 if (array_key_exists(“login_name”, $_REQUEST)) {
 $smarty- > assign(‘error’, “Invalid login, try again.”);
 }
 $smarty- > display (“login.tpl”);
 exit;
 }
 exit;
 break;
 default:
 if ($session- > isLoggedIn()) {
 $smarty- > assign_by_ref(“user”, $session- > getUserObject());
 $smarty- > display (“main.tpl”);
 exit;
 } else {
 if (array_key_exists(“login_name”, $_REQUEST)) {
 $smarty- > assign(‘error’, “Invalid login, try again.”);
 }
$smarty- > display (“login.tpl”);

 exit;

 }
 exit;
 }
} else {
 if ($session- > isLoggedIn()) {
 $smarty- > assign_by_ref(“user”, $session- > getUserObject());
 $smarty- > display (“main.tpl”);
 exit;
 } else {
 if (array_key_exists(“login_name”, $_REQUEST)) {
 $smarty- > assign(‘error’, “Invalid login, try again.”);
 }

Chapter 19: Building the Application

481

 $smarty- > display (“login.tpl”);
 exit;
 }

}
$smarty- > display (“login.tpl”);
? >

 What you just did was intentionally create similarities by adding the highlighted conditional within
your current logical structure. It ’ s copy - and - paste programming at its worst, but for a good reason.

 Next, copy the similarities verbatim and create a function passing in any local state that is required. This
particular refactoring is called “ Extract Method, ” and is described by Martin Fowler in Refactoring
(Addison - Wesley, 1999):

function displaySmartyPage (& $smarty, { & $session, $pageToDisplay) {
 if ($session- > isLoggedIn()) {
 $smarty- > assign_by_ref(“user”, $session- > getUserObject());
 $smarty- > display ($pageToDisplay);
 exit;
 } else {
 if (array_key_exists(“login_name”, $_REQUEST)) {
 $smarty- > assign(‘error’, “Invalid login, try again.”);
 }
 $smarty- > display (“login.tpl”);
 exit;
 } }

 With the new function displaySmartyPage() at your disposal, what remains with index.php is the
following:

if (array_key_exists(“action”, $_REQUEST)) {
 switch ($_REQUEST[“action”]) {
 case “login”:
 $session- > login($_REQUEST[“login_name”],$_REQUEST[“login_pass”]);

 displaySmartyPage ($smarty, $session, “main.tpl”);
 break;

 case “logout”:
 $session- > logout();

 displaySmartyPage ($smarty, $session, “main.tpl”);
 break;
 default:

 displaySmartyPage ($smarty, $session, “main.tpl”);
 }
} else {

 displaySmartyPage ($smarty, $session, “main.tpl”);
}

displaySmartyPage ($smarty, $session, “main.tpl”);

482

Part III: A Real-World Case Study

 Now that the code is clearer to read, it ’ s obvious that your logic can be refactored to the following:

if (array_key_exists(“action”, $_REQUEST)) {
 switch ($_REQUEST[“action”]) {
 case “login”:
 $session- > login($_REQUEST[“login_name”],$_REQUEST[“login_pass”]);
 break;
 case “logout”:
 $session- > logout();
 break;
 }
}
displaySmartyPage ($smarty, $session, “main.tpl”);

 Because the displaySmartyPage() function is being called only once, you probably can now see why
you refactored out the code into the displaySmartyPage() function.

 Now that the displaySmartyPage() function code is unnecessary, you reverse your previous
refactoring of “ Extract Method ” and refactor it back using the “ Inline Method ” technique (also described
in Martin Fowler ’ s Refactoring). It ’ s exactly the opposite:

 < ?php
require_once (“lib/common.php”);
if (array_key_exists(“action”, $_REQUEST)) {
 switch ($_REQUEST[“action”]) {
 case “login”:
 $session- > login($_REQUEST[“login_name”],$_REQUEST[“login_pass”]);
 break;
 case “logout”:
 $session- > logout();
 break;
 }
}
if ($session- > isLoggedIn()) {
 $smarty- > assign_by_ref(“user”, $session- > getUserObject());

$smarty- > display (“main.tpl”);
} else {
 if (array_key_exists(“login_name”, $_REQUEST)) {
 $smarty- > assign(‘error’, “Invalid login, try again.”);
 }
 $smarty- > display (“login.tpl”);
}
? >

 With just a little bit of effort, you significantly reduced the complexity, removed extraneous Smarty calls,
and reduced the total line count by more than one third.

 As you ’ ve seen, reducing complexity can lead to some surprising savings, and the code is easier to read
and understand. Of course, you should try to stay out of code debt by exercising the “ once and only
once ” rule. Given a choice, keep the solution simple, and don ’ t be afraid to remove unneeded
functionality.

Chapter 19: Building the Application

483

 Finishing the Iteration
 Keeping in mind your newfound skills in refactoring, tackle the remaining stories with an eye toward
removing duplication and making the code simpler.

 Story 14: Changing the Week Recalls a Previous Week
 Recalling state is not difficult because the ContactVisit state practically begs it. You quickly get
halfway there by adding the following function to customer - contacts.php :

function gatherContactVisits ($dbh, $emp_id) {
 $result = $dbh- > query (“select * from contact_visits where
 emp_id = “.$emp_id.” and week_start =
 ‘”.getCurrentStartWeek().”’ order by seq”);
 if (DB::isError($result)) {
 return array();
 }
 $visits = array();
 while ($row = & $result- > fetchRow()) {
 array_push ($visits, new ContactVisit($row));
 }
 return $visits;
}

 You should be lazy about calling the gatherContactVisits() function because the act of recalling
 ContactVisits() from the database might not be required each time (for example, when
 ContactVisits() are being saved).

 Now, assign the contact visit data by reference to ContactVisits and recall it for display like so in
 customer - contacts.tpl :

 < input name=”company_name_{$smarty.section.idx.index}” size=”20”
 maxlength=”50” value=”{$contactVisits[idx]- > company_name}” >

 You have everything except for the reload if the week is changed in the drop - down. Here is a cute trick:
Drop - downs don ’ t normally cause submits to happen, but in this case you need to force it.

 In order to force a submit, you create a hidden form with the week_start value defined in it. When the
date is changed, call the JavaScript function reload , which, in turn, populates the week_start with
whatever was selected. Then, “ submit ” it with a new action:

{literal}
 < SCRIPT TYPE=”text/javascript” >
 < !-
function reload () {
 window.document.forms[0].week_start.value =
 window.document.forms[1].week_start.value // hidden form
 window.document.forms[0].submit(); // hidden form
}

484

Part III: A Real-World Case Study

// - >
 < /SCRIPT >
{/literal}

 < h3 > Customer Contact Report < /h3 >

 < form action=”customer-contacts.php” method=”post” >
 < input type=”hidden” name=”action” value=”reload_contact” >
 < input type=”hidden” name=”week_start” value=”” >
 < /form >

 < form action=”customer-contacts.php” method=”post” >
 < table border=”0” width=”100%” >
 < tr >
 < td > < b > Employee Name: < /b > < /td > < td > {$user- > first_name} {$user- > last_name} < /td >
 < td > < b > Department: < /b > < /td > < td > {$user- > department} < /td >
 < /tr >
 < tr >
 < td > < b > Number: < /b > < /td > < td > {$user- > id} < /td >
 < td > < b > Start Week: < /b > < /td >

 < td >
 < SELECT NAME=”week_start” onchange=”reload()” >
 {html_options values=$start_weeks output=$start_weeks
 selected=$current_start_week}
 < /SELECT >
 < /td >
 < /tr >

 < /table >
 < br > < br > < hr >

 Story 15: Per - Week Items on the Customer Contact

Report
 The elements of concern are number of shop calls, number of engineer calls, number of distributor calls,
approximate mileage, territory worked, and territory comments. All these occur on a per - week basis.

 Realize that you ’ re looking at a many - to - one ratio of contact visits to the new structure, Contact :

CREATE TABLE contact (
 emp_id integer NOT NULL default ‘0’,
 week_start date NOT NULL,
 shop_calls integer default NULL,
 distributor_calls integer default NULL,
 engineer_calls integer default NULL,
 mileage decimal(9,2) default NULL,
 territory_worked varchar(60) default NULL,
 territory_comments text
);
CREATE UNIQUE INDEX co_pk on contact (emp_id,week_start);
CREATE INDEX co_emp_id ON contact (emp_id);
CREATE INDEX co_week_start ON contact (week_start);

Chapter 19: Building the Application

485

 Not a problem, because Contact is used in much the same way as ContactVisits . Create a test for
contact persistence:

 function testContactPersistence() {
 $this- > _session- > getDatabaseHandle()- > query(“delete FROM contact WHERE
 emp_id = 1 and week_start = ‘1980-01-01’”); // remove multiples
 $c = new Contact (
 array (“emp_id” = > “1”,
 “week_start” = > “1980-01-01”,
 “shop_calls” = > 2,
 “distributor_calls” = > 3,
 “engineer_calls” = > 4,
 “mileage” = > 50,
 “territory_worked” = > “Central Ohio”,
 “territory_comments” = > “Buckeyes are great. “),
 $this- > _session- > getDatabaseHandle());
 $result = $this- > _session- > getDatabaseHandle()- > query(“select * FROM
 contact WHERE emp_id = 1 and week_start = ‘1980-01-01’”);
 $this- > assertEquals(0, $result- > numRows());
 $c- > persist();
 $result = $this- > _session- > getDatabaseHandle()- > query(“select * FROM
 contact WHERE emp_id = 1 and week_start = ‘1980-01-01’”);
 $this- > assertEquals(1, $result- > numRows()); }

 Contact also shares the same scope as ContactVisits . This is a big hint, because the two classes do
pretty much the same thing and share the same scope. They ’ re typically an easy refactoring target.
Looking deeper into the classes, you see that your hunch is correct, and that the new Contact class, and
the existing ContactVisit and WidgetUser classes, contain common functionality.

 As you may recall from earlier, the footprint of ContactVisit and WidgetUser is as follows:

class ContactVisit {
 protected $contentBase = array();
 protected $dbh = null; // database handle
 function __get ($key) {}
 function __construct ($results, $dbh = null) {}
 private function isEmpty($key) {}
 public function isValid() {}
 private function implodeQuoted (}
 private function generateSqlInsert ($tableName, & $metas, & $values) {}
 public function persist() {}
}

class WidgetUser {

 protected $contentBase = array();

 protected $dispatchFunctions = array (“role” = > “getrole”);
 function __construct($initdict) {}

 function __get ($key) {}

486

Part III: A Real-World Case Study

 function __set ($key, $value) {}
 public function getRole() {}
 public function isSalesPerson() {}
 public function isSalesManager() {}
 public function isAccountant() {}
}

 This is a great use of “ Extract Class ” (see Refactoring) refactoring in order to consolidate the code. The
consolidation moves a lot of persistence functionality up into a new class called PersistableObject :

class PersistableObject {

 protected $contentBase = array();

 protected $dbh = null; // database handle
 protected $dispatchFunctions = array (“role” = > “getrole”);

 function __get ($key) {
 // dispatch by function first
 if (array_key_exists ($key, $this- > dispatchFunctions)) {
 $funcname = $this- > dispatchFunctions[$key];
 return $this- > $funcname();
 }
 // then state
 if (array_key_exists ($key, $this- > contentBase)) {
 return $this- > contentBase[$key];
 }
 // then self
 return $this- > $key;
 }

 function __construct ($results, $dbh = null) {
 $this- > dbh = $dbh;
 if ($results < > null) {
 $this- > contentBase = $results; // copy
 }
 }
 public function implodeQuoted (& $values, $delimiter) {
 $sql = “”;
 $flagIsFirst = true;
 foreach ($values as $value) {
 if ($flagIsFirst) {
 $flagIsFirst = false;
 } else {
 $sql .= $delimiter;
 }
 if (gettype ($value) == “string”) {
 $sql .= “’”.$value.”’”;
 } else {
 $sql .= $value;
 }

Chapter 19: Building the Application

487

 }
 return $sql;
 }
 public function generateSqlInsert ($tableName, { & $metas, & $values) {
 return “ insert into “.$tableName.
 “ (“.implode ($metas, “, “).”) “.
 “ values (“.$this- > implodeQuoted ($values, “, “).”) “;
 }
 public function generateSqlUpdate ($tableName, { & $metas, & $values) {
 $sql = “ update “.$tableName.” set “;
 for ($i=0; $i < count($metas); $i++) {
 $sql .= $metas[$i].” = “.$vaules[$i].”, “;
 }
 return $sql;
 }
 public function generateSqlDelete ($tableName) {
 return “ delete from \””.$tableName.”\” where “.$this- > getSqlWhere();
 }

 // note: should be implemented by concrete classes
 public function getSqlWhere() {

 return “”;
 }

 public function isValid() {
 return true;
 }
 public function persistWork ($tablename, $meta) {
 if ($this- > isValid() == false) return false;
 $values = array();
 foreach ($meta as $mvalue) {
 array_push ($values, $this- > $mvalue);
 }

 if (strlen($this- > getSqlWhere()) > 0) {
 $sql = $this- > generateSqlDelete ($tablename);
 $this- > dbh- > query($sql);
 }

 $sql = $this- > generateSqlInsert ($tablename, $meta, $values);
 if (DB::isError ($this- > dbh- > query($sql))) return false;
 return true;
 } }

 You may have noticed that the addition of generateSqlUpdate and generateSqlDelete enables
 PersistableObject to respectively update and delete itself in the database. Of course, both of these
functions require a SQL WHERE clause so that not every record in the table is updated or deleted. This is
why child classes (such as ContactVisit) have the responsibility of defining what makes them unique;
they do this by implementing the getSqlWhere function.

488

Part III: A Real-World Case Study

 Moving the persistence functions (implodeQuoted , generateSqlInsert , isValid , persistWork) and
persistence state (contentBase , dispatchFunctions) into PersistableObject enables Contact ,
 ContactVisit , and WidgetUser to be implemented in a much shorter form:

class Contact extends PersistableObject {
 function __construct ($results, $dbh = null) {
 parent::__construct ($results, $dbh);
 }

 public function persist() {
 return $this- > persistWork (“contact”,
 array (“emp_id”,
 “week_start”,
 “shop_calls”,
 “distributor_calls”,
 “engineer_calls”,
 “mileage”,
 “territory_worked”,
 “territory_comments”));
 }

 public function getSqlWhere() {
 return “ emp_id = “.$this- > emp_id.” and
 week_start = ‘”.$this- > week_start.”’”;
 }
}

class ContactVisit extends PersistableObject {

 function __construct ($results, $dbh = null) {
 parent::__construct ($results, $dbh);
 static $sequence = 0;
 $sequence = $sequence + 1; // increment across class
 $this- > contentBase[“seq”] = $sequence;
 }

 private function isEmpty($key) {
 if (array_key_exists($key, $this- > contentBase) == false) return true;
 if ($this- > contentBase[$key] == null) return true;
 if ($this- > contentBase[$key] == “”) return true;
 return false;
 }
 public function isValid() {
 if ($this- > isEmpty(“emp_id”) == true) return false;
 if ($this- > isEmpty(“week_start”) == true) return false;
 if ($this- > isEmpty(“company_name”) == true) return false;
 return true;
 }

 public function persist() {
 return $this- > persistWork (“contact_visits”,
 array (“emp_id”,
 “week_start”,
 “seq”,

Chapter 19: Building the Application

489

 “company_name”,
 “contact_name”,
 “city”,
 “state”,
 “accomplishments”,
 “followup”,
 “literature_request”));
 }

}
class WidgetUser extends PersistableObject {
 function __construct($initdict) {
 parent::__construct ($initdict);
 $this- > dispatchFunctions = array (“role” = > “getrole”);
 $this- > contentBase = $initdict; // copy
 }

 public function getRole() {
 switch ($this- > contentBase[“role”]) {
 case “s”: return (“Sales Person”);
 case “m”: return (“Sales Manager”);
 case “a”: return (“Accountant”);
 default: return (“”);
 }
 }
 public function isSalesPerson() {
 if ($this- > contentBase[“role”] == “s”) return true;
 return false;
 }
 public function isSalesManager() {
 if ($this- > contentBase[“role”] == “m”) return true;
 return false;
 }
 public function isAccountant() {
 if ($this- > contentBase[“role”] == “a”) return true;
 return false;
 }
 }

 Boy, it sure is great to have all those unit tests to indicate when something goes wrong. One obstacle
you ’ ll face is deciding how your target classes are used and how they differ from one another. For
example, Contact and ContactVisit are subtly different in that you persist only valid
 ContactVisits , but there is always a possibly empty (but still instantiated) Contact .

 In addition, notice that Contact implements the getSqlWhere function so that it can be deleted and
updated. However, remember that ContactVisit is deleted before insertions take place, and
 WidgetUser is only persisted to the database, thus not requiring it to implement the getSqlWhere
function.

 However, the differences between Contact and ContactVisits have less to do with the classes
themselves than with the business rules and the environment in which they exist. Therefore, even
though your classes are starting to consolidate and share code, their respective unit tests should continue
to test individual class diversity.

490

Part III: A Real-World Case Study

 Now customer - contacts.tpl needs a new section in order to display the new Contact information:

 < table border=”0” >
 < tr >
 < td > Number of Shop Calls: < /td >
 < td > < input name=”shop_calls” size=”7” maxlength=”17”
 value=”{$contact- > shop_calls}” > < /td >
 < td width=”20” > < /td >
 < td > Number of Engineer Calls: < /td >
 < td > < input name=”engineer_calls” size=”7” maxlength=”17”
 value=”{$contact- > engineer_calls}” >
 < /td >
 < /tr >
 < tr >
 < td > Number of Distributor Calls: < /td >
 < td > < input name=”distributor_calls” size=”7” maxlength=”17”
 value=”{$contact- > distributor_calls}” > < /td >
 < td width=”20” > < /td >
 < td > Approximate Mileage: < /td >
 < td > < input name=”mileage” size=”7” maxlength=”17”
 value=”{$contact- > mileage}” > < /td >
 < /tr >
 < tr >
 < td > Territory Worked: < /td >
 < td colspan=”2” > < input name=”territory_worked”
 value=”{$contact- > territory_worked}” > < /td >
 < /tr >
 < tr >
 < td colspan=”7” >
 Territory Comments: < br >
 < TEXTAREA NAME=”territory_comments” ROWS=4 COLS=95 >
 {$contact- > territory_comments}
 < /TEXTAREA >
 < /td >
 < /tr >
 < /table >

 Add these new support functions to customer - contacts.php in order to read and save the Contact
information:

function persistContact (& $dbh, $emp_id) {
 $c = new Contact (
 array (“emp_id” = > $emp_id,
 “week_start” = > getCurrentStartWeek(),
 “shop_calls” = > $_REQUEST[“shop_calls”],
 “distributor_calls” = > $_REQUEST[“distributor_calls”],
 “engineer_calls” = > $_REQUEST[“engineer_calls”],
 “mileage” = > $_REQUEST[“mileage”],
 “territory_worked” = > $_REQUEST[“territory_worked”],
 “territory_comments” = > $_REQUEST[“territory_comments”]),
 $dbh);
 $c- > persist();
}
function gatherContact (& $dbh, $emp_id) {

Chapter 19: Building the Application

491

 $result = $dbh- > query (“select * from contact where
 emp_id = “.$emp_id.” and week_start =
 ‘”.getCurrentStartWeek().”’”);
 if (DB::isError($result)) return array();
 return new Contact ($result- > fetchRow());
}
$user = $session- > getUserObject();
// display
if ($_REQUEST[“action”] != “persist_contact”) {
 $smarty- > assign_by_ref (“user”, $user);
 $smarty- > assign_by_ref (“contact”, gatherContact(
 $session- > getDatabaseHandle(), $user- > id));
 $smarty- > assign_by_ref (“contactVisits”, gatherContactVisits(
 $session- > getDatabaseHandle(), $user- > id));
 $smarty- > assign(‘start_weeks’, getStartWeeks());
 $smarty- > assign(‘current_start_week’, getCurrentStartWeek());
 $smarty- > assign(“max_weekly_contacts”, $GLOBALS[“max-weekly-contacts”]);
 $smarty- > display(‘customer-contacts.tpl’);
 exit;
}
// persist contact visits
require_once (“lib/contact.phpm”);
persistContact ($session- > getDatabaseHandle(), $user- > id);
persistContactVisits ($session- > getDatabaseHandle(), $user- > id);

 Figure 19 - 7 shows the results of your hard work.

Figure 19-7: Adding per-week items to the Customer Contact Report

492

Part III: A Real-World Case Study

 The speed at which the last story was accomplished indicates that if you keep your code base clean by
not going into code debt, your forward momentum will not necessarily fall by the wayside.

 Strive for refactoring, which in a way is never complete. Some sections could still have a critical eye
applied to them, notably those with striking similarities to the support functions for Contact and
 ContactVisits . That the support functions exist at all (as opposed to having the objects take care of
everything themselves) is an indication of just how much greater consolidation can often be achieved
through the use of shared scope.

 Regardless, that is still something that could go in a different direction, and you have to remember that
in order for a particular refactoring to be successful, the resulting code should be easier to read and
understand. If you find yourself spending more time writing excessive support plumbing or a
framework, then take that as an indication that maybe you should stop for a moment. Although large
refactorings are sometimes needed, they should definitely be the exception.

 Travel Expense Report
 The outstanding road map that you have now is as follows:

 Travel Expense Report

 Story 2: Travel Expense Report, 7 points

 Story 3: Expense Report Comments, 2 points

 Story 10: Persisted Expense Report Cash Advance, 2 points

 Story 4: Expense Report as Spreadsheet, 4 points

 Travel Expense Services

 Story 5: Accountant Notification, 3 points

 Story 7: Sales Person Notification, 1 point

 Story 13: Expense Report Export, 3 points

 Outstanding stories

 Story 6: Sales Manager Notification, 3 points

 Story 8: Mail Room Notification, 2 points

 By its sheer number of points, the Travel Expense Report will not be a quick knockout.

 As shown previously in Figure 19 - 2 , the Travel Expense Report is pretty slim regarding details. Time to
get to work talking. From conversations with Wendy and Edwina, you learn that what they really want
is something that looks more like Figure 19 - 8 .

❑

❏

❏

❏

❏

❑

❏

❏

❏

❑

❏

❏

Chapter 19: Building the Application

493

 Although it takes the better part of the day to order and modify the categories (Lodging, Meals, and so
on), what you now have is a close approximation to the appearance of the original Widget World faxable
form. Of course, now that your clients realize that things can change, they just may — because even
though a certain amount of flexibility and unknowns plague just about any project, you ’ re going to roll
with the punches and not overengineer every “ just in case ” feature that comes to mind.

 One more thing: The XXX in “ Miles at XXX /mile ” heading is a dollar amount based on Federal tax law.
Thankfully, it is a constant, so you don ’ t need to track it for every state/province, and you need to deal
with only one country. However, the rate typically changes from year to year, so you need to record the
amount at the time of submission.

 The all - important cash advance also needs to be part of the calculation; and if the advance is enough, it
might spill over into money owed to the company, represented by “ Due Employee ” and its Boolean
counterpart “ Due Company. ”

 Ignoring for now the complexity, just start with the simple bits. The core of this sheet is a dollar amount
associated with a date and a descriptor.

 A quick scribble results in the following data item:

CREATE TABLE travel_expense_item (
 emp_id integer NOT NULL,
 expense_date date NOT NULL,
 description varchar(40) NOT NULL,
 amount decimal(9,2) NOT NULL);

Figure 19-8: Desired Travel Expense Report

494

Part III: A Real-World Case Study

 Add the weekly information that needs to be captured:

CREATE TABLE travel_expense_week (
 emp_id integer NOT NULL,
 week_start date NOT NULL,
 comments text,
 territory_worked varchar(60),
 cash_advance decimal(9,2),
 mileage_rate decimal(3,2) NOT NULL);

 As a technical note, you still need to add defaults, indexes, and so on to the database; and on the
business side, note that you ’ re tracking the cash_advance and mileage_rate . With each travel
expense submitted on a weekly basis, the weekly subtotals sections of the form can be easily calculated,
so storage of the subtotals is not required.

 Travel Expense Item
 Let ’ s get to work on the tests. The simple case is just validating the minimum required information, like this:

 function testValidTravelExpenseItem() {
 $tvi = new TravelExpenseItem (
 array (‘emp_id’ = > “1”,
 ‘expense_date’ = > “1980-01-01”,
 ‘description’ = > “one”,
 ‘amount’ = > “1.0”));
 $this- > assertEquals(true, $tvi- > isValid(), “valid expense”);
 }
 function testInvalidTravelExpenseItem() {
 $tvi = new TravelExpenseItem (
 array (‘emp_id’ = > “1”,
 ‘expense_date’ = > “”, // date required
 ‘description’ = > “one”,
 ‘amount’ = > “1.0”));
 $this- > assertEquals(false, $tvi- > isValid(), “valid expense”);
 }

 What else does it need to do? If given an array, it can populate itself, so the travel expense item needs to
persist itself accordingly. Add another test to the travel expense item:

 function testTravelExpenseItemPersistence() {
 $this- > _session- > getDatabaseHandle()- > query(“delete FROM
 travel_expense_item WHERE emp_id = 1 and expense_date
 = ‘1980-01-01’”); // remove multiples
 $tvi = new TravelExpenseItem (
 array (‘emp_id’ = > “1”,
 ‘expense_date’ = > “1980-01-01”,
 ‘description’ = > “one”,
 ‘amount’ = > “1.0”),
 $this- > _session- > getDatabaseHandle());
 $result = $this- > _session- > getDatabaseHandle()- > query(“select * FROM
 travel_expense_item WHERE emp_id = 1 and
 expense_date = ‘1980-01-01’”);
 $this- > assertEquals(0, $result- > numRows());
 $tvi- > persist();

Chapter 19: Building the Application

495

 $result = $this- > _session- > getDatabaseHandle()- > query(“select * FROM
 travel_expense_item WHERE emp_id = 1 and
 expense_date = ‘1980-01-01’”);
 $this- > assertEquals(1, $result- > numRows()); }

 Remember to connect to your testing database when running these tests. The last thing you want is to
accidentally torch production data with an errant DELETE statement.

 Stub out your travel expense item in the new file, lib/expense.phpm :

class TravelExpenseItem {
 public function isValid() { }

 public function persist() { }
}

 Ensure that the tests run (and fail), and then get to work satisfying them.

 Using ContactVisit as a template, it ’ s surprisingly easy:

class TravelExpenseItem extends PersistableObject {
 function __construct ($results, $dbh = null) {
 parent::__construct ($results, $dbh);
 }

 private function isEmpty($key) {
 if (array_key_exists($key, $this- > contentBase) == false) return true;
 if ($this- > contentBase[$key] == null) return true;
 if ($this- > contentBase[$key] == “”) return true;
 return false;
 }

 public function isValid() {
 if ($this- > isEmpty(“emp_id”) == true) return false;
 if ($this- > isEmpty(“expense_date”) == true) return false;
 if ($this- > isEmpty(“description”) == true) return false;
 if ($this- > isEmpty(“amount”) == true) return false;
 return true;
 }

 public function persist() {
 return $this- > persistWork (
 “travel_expense_item”,
 array (“emp_id”,
 “expense_date”,
 “description”,
 “amount”));
 }

 public function getSqlWhere() {
 return “ emp_id = “.$this- > emp_id.” and expense_date =
 ‘”.$this- > expense_date.”’ and description =
 ‘”.$this- > description.”’”;
 }
}

496

Part III: A Real-World Case Study

 Recall the definition of ContactVisit :

class ContactVisit extends PersistableObject {
 function __construct ($results, $dbh = null) {}
 private function isEmpty($key) {}
 public function isValid() {}
 public function persist() {}
}

 Of course, the function isEmpty() is now redundant between the two classes, which share a common
parent. What does that say to you? It screams “ move IsEmpty() up into PersistableObject ” ! Don ’ t
forget to make isEmpty() protected; otherwise, subclasses can ’ t call it.

 When you ’ re finished with that, ensure that the ContactVisit test continues to pass. The respective
classes should now look like this:

class PersistableObject {
 protected $contentBase = array();
 protected $dbh = null; // database handle
 protected $dispatchFunctions = array (“role” = > “getrole”);
 function __get ($key) {}
 function __construct ($results, $dbh = null) {}
 public function implodeQuoted (& $values, $delimiter) {}
 public function generateSqlInsert ($tableName, { & $metas, & $values) {}
 public function generateSqlUpdate ($tableName, { & $metas, & $values) {}
 public function generateSqlDelete ($tableName) {}
 public function getSqlWhere() {}
 public function isValid() {}
 protected function isEmpty($key) {}
 public function persistWork ($tablename, $meta) {} }
class ContactVisit extends PersistableObject {
 function __construct ($results, $dbh = null) {}
 public function isValid() {}
 public function persist() {}
}
class TravelExpenseItem extends PersistableObject {
 function __construct ($results, $dbh = null) {}
 public function isValid() {}
 public function persist() {}
 public function getSqlWhere() {}
}

 Now go eat a cookie before taking on the Travel Expense Week class.

 Travel Expense Week
 By now, you can easily knock out the simple test cases for travel expense week. Save these additional
methods into test.widgetsession.php :

 function testValidTravelExpenseWeek() {
 $tvi = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-01”,
 ‘comments’ = > “comment”,

Chapter 19: Building the Application

497

 ‘mileage_rate’ = > “0.31”,
 ‘territory_worked’ = > “Midwest”));
 $this- > assertEquals(true, $tvi- > isValid(), “valid expense”);
 }

 function testInvalidTravelExpenseWeek() {
 $tvi = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “”, // date required
 ‘comments’ = > “comment”,
 ‘mileage_rate’ = > “0.31”,
 ‘territory_worked’ = > “Midwest”));
 $this- > assertEquals(false, $tvi- > isValid(), “valid expense”);
 }

 function testTravelExpenseWeekPersistence() {
 $this- > _session- > getDatabaseHandle()- > query(“delete FROM
 travel_expense_week WHERE emp_id = 1 and week_start
 = ‘1980-01-01’”); // remove multiples
 $tvi = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-01”,
 ‘comments’ = > “comment”,
 ‘territory_worked’ = > “Midwest”,
 ‘mileage_rate’ = > “0.31”,
 ‘cash_advance’ = > “0”),
 $this- > _session- > getDatabaseHandle());
 $result = $this- > _session- > getDatabaseHandle()- > query(“select *
 FROM travel_expense_week WHERE emp_id = 1 and
 week_start = ‘1980-01-01’”);
 $this- > assertEquals(0, $result- > numRows(), “pre check”);
 $tvi- > persist();
 $result = $this- > _session- > getDatabaseHandle()- > query(“select *
 FROM travel_expense_week WHERE emp_id = 1 and
 week_start = ‘1980-01-01’”);
 $this- > assertEquals(1, $result- > numRows(), “persist”); }

 In addition, consider the fact that something must be in charge of the life cycle of all your
 TravelExpenseItem s. TravelExpenseWeek ? TraveExpenseItem ? Does one of those two options
sound as though it would make a good container?

 An (extremely explicit) test of TravelExpenseWeek as a container would look like the following:

 function testTravelExpenseWeekContainerRead() {
 // clear out the test database
 $this- > _session- > getDatabaseHandle()- > query(“delete FROM
 travel_expense_item WHERE emp_id = 1 and
 expense_date > = ‘1980-01-06’ and expense_date
 < = ‘2001-09-15’”);
 $dbh = $this- > _session- > getDatabaseHandle();
 // monday
 $item1 = new TravelExpenseItem (

498

Part III: A Real-World Case Study

 array (‘emp_id’ = > “1”, ‘expense_date’ = > “1980-01-06”,
 ‘description’ = > “lodging_and_hotel”, ‘amount’ = > “1.1”),
 $dbh);

 $item2 = new TravelExpenseItem (
 array (‘emp_id ’ = > “ 1 ” , ‘ expense_date ’ = > “ 1980 - 01 - 06 ” ,

 ‘description’ = > “meals_breakfast”, ‘amount’ = > “2.2”),

 $dbh);
 $item3 = new TravelExpenseItem (

 array (‘emp_id’ = > “1”, ‘expense_date’ = > “1980-01-06”,
 ‘description’ = > “misc_supplies”, ‘amount’ = > “3.3”),
 $dbh);

 // tuesday
 $item4 = new TravelExpenseItem (

 array (‘emp_id’ = > “1”, ‘expense_date’ = > “2001-09-10”,
 ‘description’ = > “lodging_and_hotel”, ‘amount’ = > “4.4”),
 $dbh);

 $item5 = new TravelExpenseItem (
 array (‘emp_id ’ = > “ 1 ” , ‘ expense_date ’ = > “ 2001 - 09 - 10 ” ,

 ‘description’ = > “meals_breakfast”, ‘amount’ = > “5.5”),
 $dbh);

 $item6 = new TravelExpenseItem (
 array (‘emp_id ’ = > “ 1 ” , ‘ expense_date ’ = > “ 2001 - 09 - 10 ” ,

 ‘description’ = > “misc_supplies”, ‘amount’ = > “6.6”),
 $dbh);

 // wednesday

 $item7 = new TravelExpenseItem (

 array (‘emp_id’ = > “1”, ‘expense_date’ = > “1980-01-01”,
 ‘description’ = > “lodging_and_hotel”, ‘amount’ = > “7.7”),
 $dbh);

 $item8 = new TravelExpenseItem (
 array (‘emp_id ’ = > “ 1 ” , ‘ expense_date ’ = > “ 1980 - 01 - 01 ” ,

 ‘description’ = > “meals_breakfast”, ‘amount’ = > “8.8”),
 $dbh);

 $item9 = new TravelExpenseItem (
 array (‘emp_id’ = > “1”, ‘expense_date’ = > “1980-01-01”,
 ‘description’ = > “misc_supplies”, ‘amount’ = > “9.9”),

 $dbh);

 The TravelExpenseItem s populate the first three days of the week, and each represents a different type
of item: meals_breakfast , misc_supplies , and lodging_and_hotel :

$item1- > persist();
$item2- > persist();
$item3- > persist();
$item4- > persist();
$item5- > persist();
$item6- > persist();
$item7- > persist();

Chapter 19: Building the Application

499

$item8- > persist();
$item9- > persist();
$week = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-06”),
 $this- > _session- > getDatabaseHandle());
$week- > readWeek();
// monday
$this- > assertEquals(1.1, (float) $week- > getExpenseAmount(0, ‘lodging_and_hotel’));
$this- > assertEquals(2.2, (float) $week- > getExpenseAmount(0, ‘meals_breakfast’));
$this- > assertEquals(3.3, (float) $week- > getExpenseAmount(0, ‘misc_supplies’));
// tuesday
$this- > assertEquals(4.4, (float) $week- > getExpenseAmount(1, ‘lodging_and_hotel’));
$this- > assertEquals(5.5, (float) $week- > getExpenseAmount(1, ‘meals_breakfast’));
$this- > assertEquals(6.6, (float) $week- > getExpenseAmount(1, ‘misc_supplies’));
// wednesday
$this- > assertEquals(7.7, (float) $week- > getExpenseAmount(2, ‘lodging_and_hotel’));
$this- > assertEquals(8.8, (float) $week- > getExpenseAmount(2, ‘meals_breakfast’));
$this- > assertEquals(9.9, (float) $week- > getExpenseAmount(2, ‘misc_supplies’)); }

 After the TravelExpenseItem s have been persisted, this test shows that the new TravelExpenseWeek
class will be able to retrieve a week of TraveExpenseItem s, given the employee ID and starting week.

 This is an important test in other respects, because here is where you are defining the interface of your
Web page. Recall that TravelExpenseItem is day - based, whereas the Web page is week - based,
necessitating TravelExpenseWeek . Thus, the capability to iterate over the TravelExpenseItems in a
weekly manner should be paramount.

 Note that because TravelExpenseWeek knows which day is the first of the week (for Americans, Sunday),
you don ’ t need to explicitly spell out your target day. Instead, you can use an offset. Use 0 for Sunday,
1 for Monday, and so on.

 The Spike
 Before continuing, consider how you ’ ll display what you need to show on the screen. Go back and
eyeball Figure 19 - 8 again. Note that something will have to take care of the subtotaling, not to mention
the order. Something must associate human names with what exists in the database.

 In addition, remember that “ something ” ultimately stops with you, and that anything that makes your
life easier can ’ t be a bad thing. Clearly, hard - coding the HTML will be a maintenance nightmare.

 To avoid a hard - coded HTML maintenance nightmare, consider using a data structure like the following,
which can be used to generate what you need to display, as well as map it to your data fields:

array(
 array(‘name’ = > ‘Lodging’, ‘code’ = > ‘lodging’, ‘data’ = >
 array(‘Lodging & amp; Hotel’,’Other’,’Tips’),
 ‘persist’ = > array(‘lodging_and_hotel’, ‘lodging_other,
 ‘lodging_tips’)),
 array(‘name’ = > ‘Meals’, ‘code’ = > ‘meals’, ‘data’ = >
 array(‘Breakfast’, ‘Lunch & amp; Snacks’,
 ‘Dinner’, ‘Tips’, ‘Entertainment’),

500

Part III: A Real-World Case Study

 ‘persist’ = > array(‘meals_breakfast’, ‘meals_lunch’,
 ‘meals_dinner’, ‘meals_tips’,
 ‘meals_entertainment’)),
 array(‘name’ = > ‘Transportation’, ‘code’ = > ‘trans’, ‘data’ = >
 array(‘Airfare’, ‘Auto Rental’, ‘Auto Maint./Gas’,
 ‘Local Transportation’, ‘Tolls/Parking’),
 ‘persist’ = > array (‘trans_airfare’,
 ‘trans_auto_rental’, ‘trans_auto_maint’, ‘trans_local’,
 ‘trans_tolls’, ‘trans_miles_traveled’)),
 array(‘name’ = > ‘Miscellaneous’, ‘code’ = > ‘misc’, ‘data’ = >
 array(‘Gifts’, ‘Telephone & amp; Fax’, ‘Supplies’,
 ‘Postage’, ‘Other’),
 ‘persist’ = > array(‘misc_gifts’,’misc_phone’,
 ‘misc_supplies’, ‘misc_postage’, ‘misc_other’)));

 The first level is an array of sections, which means that each section gets a subtotal and each section
contains line items.

 Each section has a data array (simply the human - viewable description), as well as its computerized
counterpart persist (which will presumably be the name of each item in the database). The code item
in the associated array exists in order to automate the creation of semi - meaningful JavaScript variables
that must be calculated per section (for example, one for Meals, Lodging, and Transportation). This data
structure will be some of the glue that holds the HTML, JavaScript math, database, and PHP objects
together; it ’ s your road map.

 More Travel Expense Week Tests
 Going from PHP ’ s Travel Expense form response to the database is an important step. This is where
you ’ ll be defining what you expect to receive from the page. Remember that you need a way to take the
entire response and easily create TravelExpenseItem s from that. Sounds like a good job for the
 TravelExpenseWeek container.

 Recall that the naming convention for determining the unique values of each individual cell is lodging_
sun_0 , which represents “ section ” + “ day ” + “ line item. ” Because there is a nearly infinite number of
ways to describe the same column/row, vertical/horizontal, spreadsheet - cell relationship, this naming
convention is quite adequate.

 Additionally, you can easily determine which horizontal row you happen to be working with as a result
of its section offset (the “ 0 ” in lodging_sun_0). Day and line item are different types for a reason: your
sanity. Manipulating data in different dimensions is hard enough; tracking which way against which one
is more difficult, and remembering what they are based on is asking for trouble. With all things being
equal, there is more semantic information contained with lodging_sun_0 than with lodging_0_0 .

 Here is the test for parsing the request:

function testTravelExpenseWeekContainerParseRequest() {

 $response = array (‘lodging_sun_0’ = > “1.1”,
 ‘meals_sun_0’ = > “2.2”,
 ‘misc_sun_2’ = > “3.3”,

Chapter 19: Building the Application

501

 ‘lodging_mon_0’ = > “4.4”,
 ‘meals_mon_0’ = > “5.5”,
 ‘misc_mon_2’ = > “6.6”,
 ‘lodging_tue_0’ = > “7.7”,
 ‘meals_tue_0’ = > “8.8”,
 ‘misc_tue_2’ = > “9.9”);

 $week = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-06”));
 $week- > parse($response);
 $this- > assertEquals(1.1, $week- > getExpenseAmount(0, ‘lodging_and_hotel’));
 $this- > assertEquals(2.2, $week- > getExpenseAmount(0, ‘meals_breakfast’));
 $this- > assertEquals(3.3, $week- > getExpenseAmount(0, ‘misc_supplies’));
 $this- > assertEquals(4.4, $week- > getExpenseAmount(1, ‘lodging_and_hotel’));
 $this- > assertEquals(5.5, $week- > getExpenseAmount(1, ‘meals_breakfast’));
 $this- > assertEquals(6.6, $week- > getExpenseAmount(1, ‘misc_supplies’));
 $this- > assertEquals(7.7, $week- > getExpenseAmount(2, ‘lodging_and_hotel’));
 $this- > assertEquals(8.8, $week- > getExpenseAmount(2, ‘meals_breakfast’));
 $this- > assertEquals(9.9, $week- > getExpenseAmount(2, ‘misc_supplies’)); }

 The $response array is simulating what you ’ ll receive from your form input, and remember that the
 $response values and the persist meta - values are reflected in your road - map data structure.

 Create one more test for persisting the container. It is very similar to the travel expense items test:

 function testTravelExpenseWeekContainerWrite() {
 $this- > _session- > getDatabaseHandle()- > query(“delete FROM
 travel_expense_item WHERE emp_id = 1 and
 expense_date > = ‘1980-01-06’ and expense_date
 < = ‘ 2001 - 09 - 15’ ”);

 $response = array (
 ‘lodging_sun_0’= > ”1.1”,’meals_sun_0’= > ”2.2”,’misc_sun_2’= > ”3.3”,
 ‘lodging_mon_0’= > ”4.4”,’meals_mon_0’= > ”5.5”,’misc_mon_2’= > ”6.6”,
 ‘lodging_tue_0’= > ”7.7”,’meals_tue_0’= > ”8.8”,’misc_tue_2’= > ”9.9”);
 $week = new TravelExpenseWeek (

 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-06”,
 ‘territory_worked’ = > “Midwest”,
 ‘comments’ = > “comment”,
 ‘cash_advance’ = > “0”,
 ‘mileage_rate’ = > “0.31”),
 $this- > _session- > getDatabaseHandle());
 $week- > parse($response);
 $this- > assertEquals(true, $week- > persist());
 $week = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-06”,
 ‘territory_worked’ = > “Midwest”,
 ‘comments’ = > “comment”,
 ‘cash_advance’ = > “0”,
 ‘mileage_rate’ = > “0.31”),

502

Part III: A Real-World Case Study

 $this- > _session- > getDatabaseHandle());
 $week- > readWeek();
 $this- > assertEquals(1.1, (float)
 $week- > getExpenseAmount(0, ‘lodging_and_hotel’));
 $this- > assertEquals(2.2, (float)
 $week- > getExpenseAmount(0, ‘meals_breakfast’));
 $this- > assertEquals(3.3, (float)
 $week- > getExpenseAmount(0, ‘misc_supplies’));
 $this- > assertEquals(4.4, (float)
 $week- > getExpenseAmount(1, ‘lodging_and_hotel’));
 $this- > assertEquals(5.5, (float)
 $week- > getExpenseAmount(1, ‘meals_breakfast’));
 $this- > assertEquals(6.6, (float)
 $week- > getExpenseAmount(1, ‘misc_supplies’));
 $this- > assertEquals(7.7, (float)
 $week- > getExpenseAmount(2, ‘lodging_and_hotel’));
 $this- > assertEquals(8.8, (float)
 $week- > getExpenseAmount(2, ‘meals_breakfast’));
 $this- > assertEquals(9.9, (float)
 $week- > getExpenseAmount(2, ‘misc_supplies’)); }

 In this test, to be added as an additional method into test.widgetsession.php , TravelExpenseWeek
parses the $response , persists the TravelExpenseItem s in $week - persist() , rereads them from the
database $week - readWeek() , and finally validates what was read.

 Note that these tests make heavy use of copy - and - paste programming. Keeping things tidy is a general
rule, so if a majority of the tests require the same setup, put them in the setup but don ’ t prematurely
refactor your tests. Your tests are typically the first place where changes will get made, so they should be
easy to read and modify.

 Satisfying the Travel Expense Week Tests
 Satisfying TravelExpenseWeek ’ s validity and persistence tests should be predictably easy by now:

class TravelExpenseWeek extends PersistableObject {
 public $items = array();

 function __construct ($results, $dbh = null) {
 parent::__construct ($results, $dbh);
 }

 public function isValid() {
 if ($this- > isEmpty(“emp_id”) == true) return false;
 if ($this- > isEmpty(“week_start”) == true) return false;
 if ($this- > isEmpty(“territory_worked”) == true) return false;
 if ($this- > isEmpty(“mileage_rate”) == true) return false;
 return true;
 }

 public function persist() {
 return $this- > persistWork (“travel_expense_week”,
 array (“emp_id”,

Chapter 19: Building the Application

503

 “week_start”,
 “comments”,
 “territory_worked”,
 “cash_advance”,
 “mileage_rate”));
 }

 public function getSqlWhere() {
 return “ emp_id = “.$this- > emp_id.” and week_start
 = ‘”.$this- > week_start.”’”;
 }

 public function parse(& $request) { }
 public function readWeek() { }
 public function getExpenseAmount($offset, $description) { }
}

 The functions parse , readWeek , and getExpenseAmount are required by the
 TravelExpenseWeekContainerParseRequest and TravelExpenseWeekContainerWrite tests; thus,
they are simply syntactic stubs.

 Satisfying the Parse Request Test

 The TravelExpenseWeekContainerParseRequest test may be a bit tricky because it involves data
manipulation. Your first order of business is to take care of the dependencies, which is part of the meta -
 array road map that you were thinking about earlier. Adding this function to the TravelExpenseWeek
class in lib/expense.phpm will take care of the job:

public function getExpensesMetaArray () {
 return array(
 array(‘name’ = > ‘Lodging’, ‘code’ = > ‘lodging’, ‘data’ = >
 array(‘Lodging & amp; Hotel’,’Other’,’Tips’), ‘persist’ = >
 array(‘lodging_and_hotel’, ‘lodging_laundry’,
 ‘lodging_tips’)),
 array(‘name’ = > ‘Meals’, ‘code’ = > ‘meals’, ‘data’ = >
 array(‘Breakfast’, ‘Lunch & amp; Snacks’,
 ‘Dinner’, ‘Tips’, ‘Entertainment’), ‘persist’ = >
 array(‘meals_breakfast’, ‘meals_lunch’,
 ‘meals_dinner’, ‘meals_tips’,
 ‘meals_entertainment’)),
 array(‘name’ = > ‘Transportation’, ‘code’ = > ‘trans’, ‘data’ = >
 array(‘Airfare’, ‘Auto Rental’, ‘Auto Maint./Gas’,
 ‘Local Transportation’,
 ‘Tolls/Parking’), ‘persist’ = >
 array (‘trans_airfare’, ‘trans_auto_rental’,
 ‘trans_auto_maint’, ‘trans_local’,
 ‘trans_tolls’, ‘trans_miles_traveled’)),
 array(‘name’ = > ‘Miscellaneous’, ‘code’ = > ‘misc’, ‘data’ = >
 array(‘Gifts’, ‘Telephone & amp; Fax’, ‘Supplies’,
 ‘Postage’, ‘Other’), ‘persist’ = >
 array(‘misc_gifts’,’misc_phone’,
 ‘misc_supplies’, ‘misc_postage’,
 ‘misc_other’)));
}

504

Part III: A Real-World Case Study

 Along with the meta - array, you also need a way to retrieve each TravelExpenseItem . Recall from your
 TravelExpenseWeekContainerParseRequest test that your tests require the
 TravelExpenseWeek - getExpenseAmount() function:

$this- > assertEquals(8.8, $week- > getExpenseAmount(2, ‘meals_breakfast’));

 For now, the function is simply implemented by iterating through TravelExpenseWeek -> item . Make a
note to yourself about the ugliness by adding this to the TravelExpenseWeek in lib/expensepace* . phpm :

/**
* todo: put into an associative array
*/
public function getExpenseAmount($offset, $description) {

 $targetDate = $this- > addDays($this- > week_start, $offset);
 foreach ($this- > items as $item) {

 if ($item- > expense_date == $targetDate & &
 $item- > description == $description) {
 return $item- > amount;
 }
 }
 return “”;
}

 Note that you ’ re calling an addDays() function with an offset to get the current string - based
representation of the date.

 Better make an addDays() method, and then a quick three - minute hack for adding the number of
seconds in a day (86400 is 60*60*24). TravelExpenseWeek now contains the following:

/**
 * todo: will this fail on daylight savings time?
 */
public function addDays($start, $days) {
 return date(“Y-m-d”, strtotime($start)+$days*86400);
}

 This may come with a catch, however. During the jump to and from Daylight Saving Time in America,
there is a difference of one hour ’ s worth of seconds for that particular day. How does PHP return the
day? Is it local time or GMT? You ’ d better figure it out, or in a mere six months you ’ ll be flipping burgers
at your local fast - food chain. For now, note the ugliness and continue satisfying your
 TravelExpenseWeekContainerParseRequest test.

 The killer function of the TravelExpenseWeek object is parsing the PHP ’ s travel expense form response
in order to create individual TravelExpenseItem s, or an associative array of the data.

 Recall that you are mapping the following data structure:

array(‘name’ = > ‘Lodging’, ‘code’ = > ‘lodging’, ‘data’ = >
 array(‘Lodging & amp; Hotel’,’Other’,’Tips’), ‘persist’ = >
 array(‘lodging_and_hotel’, ‘lodging_laundry’,
 ‘lodging_tips’))

Chapter 19: Building the Application

505

 In addition, the following naming convention is contained in PHP ’ s response object:

lodging_sun_0

After you’ve figured that out, it’s just a matter of creating TravelExpenseItems and storing them in the
TravelExpenseWeeks->items array. Add the parse function to TravelExpenseWeek in lib/
expense.phpm:

/**
 * This function bridges the gap between the day-based DB and the
 * week-based view
 */
public function getWeekArray() {
 return array (‘sun’, ‘mon’, ‘tue’, ‘wed’, ‘thr’, ‘fri’, ‘sat’);
}
public function parse (& $request) {

 // section loop
 foreach ($this- > getExpensesMetaArray() as $sectionlist) {
 // row loop
 for ($i=0; $i < count ($sectionlist[‘persist’]); $i++) {

 $daynum = 0;

 // day loop
 foreach ($this- > getWeekArray() as $day) {

 $index = $sectionlist[‘code’].”_”.$day.”_”.$i;
 if (array_key_exists($index, $request) and
 $request[$index] < > null and
 $request[$index] < > “ “) {

 // create new item and store in $this- > items
 array_push (
 $this- > items,

 new TravelExpenseItem (
 array (‘emp_id’ = > $this- > emp_id,
 ‘expense_date’ = >
 $this- > addDays($this- > week_start,
 $daynum),
 ‘description’ = >
 $sectionlist[‘persist’][$i],
 ‘amount’ = > (float) $request[$index]),
 $this- > dbh));
 }
 $daynum++;
 }
 }
 }
}

 Together, these five functions constitute the majority of the functionality implemented in
 TravelExpenseWeek . The class takes on the not so trivial task of modifying a Web - based data structure
with a database - centric one.

506

Part III: A Real-World Case Study

 Satisfying the Travel Expense Week Container Read and Write Tests

 Given the minimum amount of data, the employee ID, and the starting week, your test should populate
the TravelExpenseWeek with TravelExpenseItem s to and from the database. Recall that the test
roughly does the following:

$week = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-061980-01-06”,
 ‘territory_worked’ = > “Midwest”,
 ‘comments’ = > “comment”,
 ‘cash_advance’ = > “0”,
 ‘mileage_rate’ = > “0.31”),
 $this - > _session - > getDatabaseHandle());

$week- > readWeek();

 This should do the job nicely. Add the readWeek() function to TravelExpenseWeek in lib/expense.
phpm :

public function readWeek() {
 $sql = “select * from travel_expense_week where”;
 $sql .= “ emp_id = “.$this- > emp_id.” and “;
 $sql .= “ week_start = ‘”.$this- > week_start.”’”;
 $result = $this- > dbh- > query($sql);
 if (DB::isError($result) < > true and $result- > numRows() > 0) {
 $row = $result - > fetchRow();

 $this- > contentBase[‘comments’] = $row[‘comments’];
 $this- > contentBase[‘territory_worked’] = $row[‘territory_worked’];
 $this- > contentBase[‘cash_advance’] = $row[‘cash_advance’];
 $this- > contentBase[‘mileage_rate’] = $row[‘mileage_rate’];

 }
 $sql = “select * from travel_expense_item where”;
 $sql .= “ emp_id = “.$this- > emp_id.” and “;
 $sql .= “ expense_date > = ‘”.$this- > week_start.”’ and”;
 $sql .= “ expense_date < = ‘”.$this- > addDays($this- > week_start, 6).”’”;
 $this- > items = array();
 $result = $this- > dbh- > query($sql);
 if (DB::isError($result) or $result - > numRows() == 0) return;

 while ($row = $result- > fetchRow()) {
 array_push ($this- > items, new TravelExpenseItem ($row));
 }

}

 Note that there are really two halves to this. The first database lookup returns the state of the
 TravelExpenseWeek ; the second half returns the associated TravelExpenseItem s, adding them to
the TraveExpenseWeek -> items array.

 However, do you notice a subtle problem? Note how you ’ re lazily passing the entire $row to
 TravelExpenseItem in its constructor? Recall that the constructor of PersistableObject ,
(TravelExpenseItem ’ s parent) is as follows:

Chapter 19: Building the Application

507

function __construct ($results, $dbh = null) {
 $this- > dbh = $dbh;
 if ($results < > null) {
 $this- > contentBase = $results; // copy
 }
}

 Thus, does TravelExpenseItem blindly store whatever you give it, regardless of what data it is?
Hmmm, this is definitely wasteful, and although the database contains nothing that isn ’ t found in
the TravelExpenseItem , the object gets its behavior from PersistableObject , of which
 TravelExpenseWeek , Contact , and ContactVisit are all children. Passing any of those objects PHP ’ s
 $_REQUEST would result in a criminal waste of resources.

 To change PersistableObject ’ s default behavior from “ store everything ” to “ store what you expect to
find, ” take a step back and create a new test, one that tests the undesired behavior. Because
 TravelExpenseItem is simple, it ’ s an ideal candidate:

 function testIgnoreExtra() {
 $response = array (‘emp_id’ = > “1”,
 ‘expense_date’ = > “1980-01-01”,
 ‘description’ = > “one”,
 ‘ amount ’ = > “ 1.0 ” ,

 ‘extra’ = > “extra bits”);

 $tvi = new TravelExpenseItem($response);
 $this- > assertEquals(null, $tvi- > extra);
}

 Sure enough, this test fails. It also means that TravelExpenseWeek (which is expected to parse out
PHP ’ s $_RESPONSE object) will be hugely bloated if you do something silly such as pass in the response
during construction.

 One way to get around the problem is to know ahead of time what is required by the object in order to
ignore anything else. Therefore, rather than have the TravelExpenseItem - > persist() function look like

 public function persist() {
 return $this- > persistWork (
 “travel_expense_item”,
 array (“emp_id”,
 “expense_date”,
 “description”,
 “amount”));
 }

 the persist function would be made more concise by passing in some internal state:

 public function persist() { return $this- > persistWork (
 $this- > contentMetaTable,

 $this- > contentMetaOnly);
}

508

Part III: A Real-World Case Study

 Put it all together and you end up with the rewritten class. It ’ s not that different. Things are just moved
around a bit:

class TravelExpenseItem extends PersistableObject {
 protected $contentMetaTable = null;
 protected $contentMetaOnly = null;
 function __construct ($results, $dbh = null) {
 $this- > contentMetaTable = “travel_expense_item”;
 $this- > contentMetaOnly = array (“emp_id”,
 “expense_date”,
 “description”,
 “amount”);
 $content = array();
 foreach ($this- > contentMetaOnly as $key) {
 if (array_key_exists($key, $results))
 $content[$key] = $results[$key];
 }
 parent::__construct ($content, $dbh);
 }
 public function isValid() {
 if ($this- > isEmpty(“emp_id”) == true) return false;
 if ($this- > isEmpty(“expense_date”) == true) return false;
 if ($this- > isEmpty(“description”) == true) return false;
 if ($this- > isEmpty(“amount”) == true) return false;
 return true;
 }
 public function getSqlWhere() {
 return “ emp_id = “.$this- > emp_id.” and expense_date
 =’”.$this- > expense_date.”’ and description = ‘”.$this- > description.”’”;
 }
 public function persist() {

 return $this- > persistWork (
 $this- > contentMetaTable,
 $this- > contentMetaOnly);

 }
}

 In this case, you check whether what is being passed in via the constructor is what you ’ re looking for.
Repair the last remaining TravelExpenseWeek test and then refactor.

 The TravelExpenseWeek write takes significantly less work, considering that each
 TravelExpenseItem already knows how to persist itself. All you need to do is call the
 persist() function of each one.

 Simply add the small loop at the end of your persistence function of TravelExpenseWeek in lib/
expense.phpm :

 public function persist() {
 $this- > persistWork (“travel_expense_week”,
 array(“emp_id”,
 “week_start”,
 “comments”,
 “territory_worked”,

Chapter 19: Building the Application

509

 “cash_advance”,
 “ mileage_rate ”));

 // persist each item to the database
 foreach ($this- > items as $item) {
 $item- > persist();
 }
 return true;
}

 Congratulations! All your unit tests now pass. Now it ’ s time to add some remaining features, including a
quick refactoring.

 A Quick Refactoring

 Satisfying all of your unit tests is an important matter, because during the next refactoring they ’ ll tell you
if you have accidentally broken a seemingly unrelated section of code.

 Now that TravelExpenseItem and TravelExpenseWeek have more similar structures, but with
varying degrees of error checking, move that functionality up into the PersistableObject .

 Essentially, you want to add this to PersistableObject :

protected $contentMetaTable = null;
protected $contentMetaOnly = null;
public function persist() { return $this- > persistWork (
 $this- > contentMetaTable,
 $this- > contentMetaOnly);
}

 There is also the same loop in both constructors that can be moved up:

foreach ($this- > content as $key) {
 if (array_key_exists($key, $results))
 $this- > content[$key] = $results[$key];

}

 Here ’ s a snapshot of the resulting object:

class PersistableObject {
 protected $contentBase = array();

 protected $contentMetaTable = null;
 protected $contentMetaOnly = null;

 protected $dbh = null; // database handle
 protected $dispatchFunctions = array (“role” = > “getrole”);
 function __get ($key) {
 // content removed for brevity
 }

510

Part III: A Real-World Case Study

 function __construct ($results, $dbh = null) {
 $this- > dbh = $dbh;
 if ($this- > contentMetaOnly < > null) {
 foreach ($this- > contentMetaOnly as $key) {
 if (array_key_exists($key, $results)) {
 $this- > contentBase[$key] = $results[$key];
 }
 }

 } elseif ($results < > null) {
 $this- > contentBase = $results; // copy
 }
 }
 public function implodeQuoted (& $values, $delimiter) {
 // content removed for brevity
 }
 public function generateSqlInsert ($tableName, $metas, $values) {
 // content removed for brevity
 }
 public function generateSqlInsert ($tableName, $metas, $values) {
 // content removed for brevity
 }
 public function generateSqlUpdate ($tableName, $metas, $values) {
 // content removed for brevity
 }
 public function generateSqlDelete ($tableName) {
 // content removed for brevity
 }
 public function getSqlWhere() {
 // content removed for brevity
 }
 protected function isEmpty($key) {
 // content removed for brevity
 }
 public function isValid() {
 // content removed for brevity
 }
 public function persistWork ($tablename, $meta) {
 // content removed for brevity
 }

 public function persist() {
 return $this- > persistWork (

 $this- > contentMetaTable,
 $this- > contentMetaOnly);
 }
}

 The constructor is responsible for determining whether data is “ keepable. ” Also note that the behavior is
backwardly compatible because if the contentMetaOnly array is null, then PersistableObject
simply copies the $results into its contentBase .

Chapter 19: Building the Application

511

 Now your TravelExpenseItem can be squeezed down ever smaller:

class TravelExpenseItem extends PersistableObject {
 function __construct ($results, $dbh = null) {

 $this- > contentMetaTable = “travel_expense_item”;
 $this- > contentMetaOnly = array (“emp_id”,
 “expense_date”,
 “description”,
 “amount”);
 parent::__construct ($results, $dbh);
 }

 public function isValid() {
 if ($this- > isEmpty(“emp_id”) == true) return false;
 if ($this- > isEmpty(“expense_date”) == true) return false;
 if ($this- > isEmpty(“description”) == true) return false;
 if ($this- > isEmpty(“amount”) == true) return false;
 return true;
 }
 public function getSqlWhere() {
 return “ emp_id = “.$this- > emp_id.” and expense_date =
 ‘”.$this- > expense_date.”’ and description = ‘”.$this- > description.”’”;
 }
}

 Do you see how the TravelExpenseItem ’ s constructor sets up its PersistableObject state and then
passes the arguments up to PersistableObject ?

 Therefore, although you are charged with making an explicit call to the constructor, it gives you the
freedom to preliminarily set state in the parent object, PersistableObject .

 Now make the same modifications to TravelExpenseWeek :

class TravelExpenseWeek extends PersistableObject {
 public $items = array();

 function __construct ($results, $dbh = null) {

 $this- > contentMetaTable = “travel_expense_week”;
 $this- > contentMetaOnly = array (“emp_id”,

 “week_start”,
 “comments”,
 “territory_worked”,
 “cash_advance”,
 “mileage_rate”);
 parent::__construct ($results, $dbh);
 }

 public function isValid() {

 // content removed for brevity
 }

512

Part III: A Real-World Case Study

 public function persist() {
 if (parent::persist() == false) return false;
// persist each item to the database
 foreach ($this- > items as $item) {
 if ($item- > persist() == false) return false;
 }
 return true;
 }

 public function getSqlWhere() {
 return “ emp_id = “.$this- > emp_id.” and week_start =
 ‘”.$this- > week_start.”’”;
 }
 public function getExpensesMetaArray () {
 // content removed for brevity
 }
 public function getWeekArray() {
 // content removed for brevity
 }
 public function addDays($start, $days) {
 // content removed for brevity
 }
 public function parse (& $request) {
 // content removed for brevity
 }
 public function readWeek() {
 // content removed for brevity
 }
 public function getExpenseAmount($offset, $description) {
 // content removed for brevity
 }
}

 Note that TravelExpenseWeek overrides the PersistableObject -> persist() function. However, it
first calls PersistableObject -> persist() and then persists every TraveExpenseItem that it is
holding. Remember that because the logic behind an insert/update/delete is in PersistableObject ->
persistWork() , it continues to work, and all you need to do is remember to implement the
 getSqlWhere function in your concrete classes such as TravelExpenseWeek . The tests are still passing?
Good job, but not so fast, considering that a cash advance is not required (as shown in the validity test):

function testValidTravelExpenseWeek() {
 $tvi = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-01”,
 ‘comments’ = > “comment”,
 ‘mileage_rate’ = > “0.31”,
 ‘territory_worked’ = > “Midwest”));
 $this- > assertEquals(true, $tvi- > isValid(), “valid expense”);
}

Chapter 19: Building the Application

513

 However, every other test sets cash_advance to zero. What happens if you remove cash_advance
from the test? It breaks! This is because PersistableObject blindly creates SQL based on every field of
the database record.

 Modify the persistence test to reflect that neither cash_advance nor comments is required:

 function testTravelExpenseWeekPersistence() {
 $this- > _session- > getDatabaseHandle()- > query(“delete FROM
 travel_expense_week WHERE emp_id = 1 and
 week_start = ‘1980-01-01’”); // remove multiples
 $tvi = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-01”,
 ‘territory_worked’ = > “Midwest”,
 ‘mileage_rate’ = > “0.31”),
 $this- > _session- > getDatabaseHandle());
 $result = $this- > _session- > getDatabaseHandle()- > query(“select *
 FROM travel_expense_week WHERE emp_id = 1 and week_start
 = ‘1980-01-01’”);
 $this- > assertEquals(0, $result- > numRows(), “pre check”);
 $this- > assertEquals(true, $tvi- > persist(), “save”);
 $result = $this- > _session- > getDatabaseHandle()- > query(“select *
 FROM travel_expense_week WHERE emp_id = 1 and week_start
 = ‘1980-01-01’”);
 $this- > assertEquals(1, $result- > numRows(), “persisted ok”);
 $row = $result- > fetchRow();
 $this- > assertEquals(0.0, (float) $row[‘cash_advance’],
 “cash advance default”);
 }

 The default values of cash_advance are an easy fix, too. Just modify the constructor of
 TravelExpenseWeek to set the default of zero and an empty string:

class TravelExpenseWeek extends PersistableObject {
 function __construct ($results, $dbh = null) {
 $this- > contentMetaTable = “travel_expense_week”;
 $this- > contentMetaOnly = array (“emp_id”,
 “week_start”,
 “comments”,
 “territory_worked”,
 “cash_advance”,
 “mileage_rate”);
 $this- > contentBase[‘comments’] = “”;
 $this- > contentBase[‘cash_advance’] = “0.0”;
 parent::__construct ($results, $dbh);
 }

514

Part III: A Real-World Case Study

 The tests are again passing, which means that you ’ re done now, right? Doing a quick “ grep to - do ”
uncovers this nagging problem:

/**

* todo: will this fail on daylight savings time?
*/
public function addDays($start, $days) {
 return date(“Y-m-d”, strtotime($start)+$days*86400);
}

 Looking at it again, you decide there may indeed be an issue. Daylight Saving Time ends on the last
Sunday in October in most places in the United States, which means that the clocks are set back, and
there are more than 86,400 seconds during that day. Write up a test to confirm that it fails:

function testDaylightSavingTime() {
 $tvw = new TravelExpenseWeek (array());
 $this- > assertEquals(“2004-10-30”, $tvw- > addDays(“2004-10-29”, 1));
 $this- > assertEquals(“2004-10-31”, $tvw- > addDays(“2004-10-29”, 2));
 $this- > assertEquals(“2004-11-01”, $tvw- > addDays(“2004-10-29”, 3), “no DST”);
}

 Sure enough, there is a problem. Adding three days to October 29 should land in November, rather than
October 31, twice. Reading up on your functions, strtotime() can do the date math for you by
accepting date offsets. Recode the addDays() function of PersistableObject without the presumption
of seconds per day:

public function addDays($start, $days) {
 return date(“Y-m-d”, strtotime($start.” +”.$days.” days”));
}

 Because your remaining “ to - do ” of modifying the getExpenseAmount function is really an
optimization, it can wait until later. There is no need for pre - optimization, and it ’ s important that you
keep the momentum going.

 Although that was indeed a lot of work, you now have reasonably well - written, persistable objects
that are completely backwardly compatible. Your system is growing in stages, and you ’ ll update
 Contact and ContactVisit the next time you touch them. Now it ’ s time to turn to finish the current
task of the Travel Expense Report.

 The Finalized Travel Expense Report
 After a few hours of work, you have what is shown in Figure 19 - 9 .

Chapter 19: Building the Application

515

Figure 19-9: Finished Travel Expense form

Download at WoweBook.com

516

Part III: A Real-World Case Study

 It ’ s a first pass, so start with how to feed the Smarty template in the file travel - expenses.php , which
is the user ’ s landing point if coming in from the main menu:

 < ?php
require_once (“lib/common.php”);
require_once (“lib/expense.phpm”);
// is the user logged in?
if (!$session- > isLoggedIn()) {
 redirect (“index.php”);
}
$user = $session- > getUserObject();
$week = new TravelExpenseWeek (
 array (‘emp_id’ = > $user- > id,
 ‘week_start’ = > getCurrentStartWeek(),
 ‘territory_worked’ = > $_REQUEST[“territory_worked”],
 ‘comments’ = > $_REQUEST[“comments”],
 ‘cash_advance’ = > $_REQUEST[“cash_advance”],
 ‘mileage_rate’ = > $GLOBALS[“expense-mileage-travelrate”]),
 $session- > getDatabaseHandle());
// display

if ($_REQUEST[“action”] != “persist_expense”) {

 $week- > readWeek();
 $smarty- > assign_by_ref (“user”, $user);
 $smarty- > assign_by_ref (“week”, $week);
 $smarty- > assign(‘start_weeks’, getStartWeeks());
 $smarty- > assign(‘current_start_week’, getCurrentStartWeek());
 $smarty- > assign_by_ref (‘expenses’, $week- > getExpensesMetaArray());
 $smarty- > assign(‘travelrate’, $GLOBALS[“expense-mileage-travelrate”]);
 $smarty- > display(‘travel-expenses.tpl’);
 exit();
}

// gather and persist week

$week- > parse($_REQUEST);

$week- > persist();
print “saved, thanks”;
? >

 Being the user - accessible landing spot, this script has two modes of operation: one is displaying the
travel expenses by reading them from the database (readWeek), and the other is saving the form data
(persist) based on whether the action is set to persist_expense .

 As usual, your very interesting getExpensesMetaArray() is the cornerstone of the screen, and is
passed in as the Smarty variable expenses . Note that all heavyweight objects are passed to Smarty by
reference, so copies aren ’ t automatically created.

Chapter 19: Building the Application

517

 Now for the basic Smarty template that displays the travel expense page, which is in templates/
travel - expenses.tpl :

{include file=”header.tpl” title=”Widget World - Travel Expenses”}
{literal}
 < SCRIPT TYPE=”text/javascript” >
 < !-
function reloadCalc () {
 window.document.forms[0].week_start.value =
 window.document.forms[1].week_start.value // hidden form
 window.document.forms[0].submit(); // hidden form }
// - >
 < /SCRIPT >
{/literal}
 < h3 > Travel Expense Report < /h3 >
 < form method=”post” >
 < input type=”hidden” name=”action” value=”reload_expense” >
 < input type=”hidden” name=”week_start” value=”” >
 < /form >
 < form id=”calc” name=”calc” action=”travel-expenses.php” method=”post” >
 < table border=”0” width=”100%” >
 < tr >
 < td > < b > Employee Name: < /b > < /td >
 < td > {$user- > first_name} {$user- > last_name} < /td > < td > < b > Department: < /b > < /td >
 < td > {$user- > department} < /td >
 < /tr >
 < tr >
 < td > < b > Number: < /b > < /td >
 < td > {$user- > id} < /td > < td > < b > Start Week: < /b > < /td >
 < td > < SELECT NAME=”week_start” onchange=”reloadCalc()” > {html_options
 values=$start_weeks output=$start_weeks selected=$current_start_week}
 < /SELECT > < /td >
 < /tr >
 < tr >
 < td > < b > Territory Worked: < /b > < /td >
 < td colspan=3 > < input name=”territory_worked” size=20 maxsize=60 value=
 “{$week- > territory_worked}” > < /td >
 < /tr >
 < /table >
 < br > < br >

 The first form on the page is similar to that of the Customer Contact Report, in which you utilized a
special “ hidden ” form that was populated (by JavaScript) with the value for your starting week. The
form was then automatically submitted when a new week was selected.

 The start of the second form simply contains some of the basic information that you are collecting,
including the territory_worked .

518

Part III: A Real-World Case Study

 The next section begins the spreadsheet part of the display. Code is simply replicated between Sunday
and Saturday. Remember that this screen is your first attempt and you may have to change items; thus,
the neglect of a final “ week ” loop is understandable. For now, it ’ s just a basic input form without error -
 checking or spreadsheet - like activity:

 < table border=”0” >
 < tr > < td > < /td > < td > Sun < /td > < td > Mon < /td > < td > Tues < /td > < td > Wed < /td > < td > Thur < /td >
 < td > Fri < /td > < td > Sat < /td > < td > Total < /td > < /tr >
{section name=idx loop=$expenses}{strip}
 < tr > < td > < b > {$expenses[idx].name} < /b > < /td > < td > < /td > < td > < /td > < td > < /td > < td > < /td >
 < td > < /td > < td > < /td > < td > < /td > < td > < /td > < /tr >

 {section name=idx2 loop=$expenses[idx].data}{strip}
 {assign var=”p” value=$expenses[idx].persist[idx2]}

 < tr bgcolor=”{cycle values=”#eeeee, #dddddd”}” >
 < td > {$expenses[idx].data[idx2]} < /td >

 < td > < input name=”{$expenses[idx].code}_sun_{$smarty.section.idx2.index}”
type=”text” size=”7” maxsize=”17” value=”{$week- > getExpenseAmount(0, $p)}” > < /td >

 Remember that you ’ re building up HTML output that looks like this:

 < input name=”lodging_sun_0” type=”text” size=”7” maxsize=”17” value=”1.00” >

 The two main loops here iterate through your expense array:

return array(
 array(‘name’ = > ‘Lodging’, ‘code’ = > ‘lodging’, ‘data’ = >
 array(‘Lodging & amp; Hotel’,’Other’,’Tips’), ‘persist’ = >
 array(‘lodging_and_hotel’, ‘lodging_laundry’,
 ‘lodging_tips’))

 The Smarty variable $p is dynamically created as a convenience in order to ensure that the Smarty code
doesn ’ t get too unwieldy: getExpenseAmount(0, $p) is more readable than getExpenseAmount(0 ,
 $expenses[idx].persist[idx2]) . Finally, the last two lines representing Sunday are copied six more
times to represent each day of the week. They are (thankfully) not displayed:

 < td > < input readonly
 name=”{$expenses[idx].code}_week_sub_{$smarty.section.idx2.index}”
 type=”text” size=”7” maxsize=”17” >
 < /td >
 < /tr >
 {/strip}{/section}

 This works well, but there is always an exception. Your clients have requested that transportation
subtotal before accepting the “ number of miles traveled, ” which then totals that section.

 Smarty can handle its own conditionals, so put that in next; but the number of miles traveled is not in
your expenses meta - array, so it must be accounted for:

{if $expenses[idx].code == ‘trans’}
 < tr > < td > {$expenses[idx].name} Subtotal < /td >
 < td > < input readonly name=”{$expenses[idx].code}_sun_sub”
 type=”text” size=”7” maxsize=”17” > < /td >

Chapter 19: Building the Application

519

 Again, the code is duplicated six more times (not displayed) before the subtotal:

 < td > < input readonly name=”{$expenses[idx].code}_week_sub” type=
 “text” size=”7” maxsize=”17” > < /td > < /tr >
 < tr > < td > Nbr of miles traveled < /td >
 < td > < input name=”mitr_sun” type=”text” size=”7” maxsize=”17”
 value=”{$week- > getExpenseAmount(0,
 ‘trans_miles_traveled’)}” > < /td >

 The rest of the week is not shown, for brevity:

 < td > < input readonly name=”mitr_tot” type=”text” size=”7”
 maxsize=”17” > < /td > < /tr >
 < tr > < td > Miles at {$travelrate} / mile < /td > < td > < input readonly
 name=”mitot_sun” type=”text” size=”7” maxsize=”17” > < /td >

 Likewise the duplicated mileage (mitr s):

 < td > < input readonly name=”mitot_tot” type=”text” size=”7”
 maxsize=”17” > < /td > < /tr >
 < tr > < td > {$expenses[idx].name} Total < /td > < td > < input readonly
 name=”{$expenses[idx].code}_sun_sub2” type=”text” size=”7”
 maxsize=”17” > < /td >
 {else}
 < tr > < td > {$expenses[idx].name} Total < /td > < td > < input readonly
 name=”{$expenses[idx].code}_sun_sub” type=”text” size=”7”
 maxsize=”17” > < /td >

 This completes the transportation exception and continues with the standard processing. Essentially, it
enables you to avoid adding an extra line to the bottom of transportation for mileage.

 < td > < input readonly name=”{$expenses[idx].code}_week_sub” type=”text”
 size=”7” maxsize=”17” > < /td > < /tr >
 {/if}
{/strip}{/section}

 The rest of the screen represents the subtotals, amounts due, and weekly comments:

 < tr > < td > < /td > < td > < /td > < td > < /td > < td > < /td > < td > < /td >
 < td colspan=”3” > Subtotal < /td >
 < td >
 < input readonly name=”subtotal” type=”text” size=”7” maxsize=”17” >
 < /td >
 < /tr >
 < tr > < td > < /td > < td > < /td > < td > < /td > < td > < /td > < td > < /td >
 < td colspan=”3” > Less Cash Advance < /td >
 < td > < input name=”cash_advance” type=”text” size=”7”
 maxsize=”17” value=”{$week- > cash_advance}” > < /td >
 < /tr >
 < tr > < td > < /td > < td > < /td > < td > < /td > < td > < /td > < td > < /td >
 < td colspan=”3” > Due Employee < /td >
 < td > < input readonly name=”totaldueemployee” type=”text” size=”7”
 maxsize=”17” > < /td > < /tr >

520

Part III: A Real-World Case Study

 < tr > < td > < /td > < td > < /td > < td > < /td > < td > < /td > < td > < /td >
 < td colspan=”3” > Due Company < /td >
 < td > < input readonly name=”totalduecompany” type=”text” size=”7”
 maxsize=”17” > < /td > < /tr >
 < /table >
 < br > < br >
Comments: < br >
 < TEXTAREA NAME=”comments” COLS=80 ROWS=6 > {$week- > comments} < /TEXTAREA >
 < br > < br > < center >
 < input type=”submit” name=”submit” value=” Submit Report “ >
 < /center >
 < input type=”hidden” name=”action” value=”persist_expense” >
 < /form >
{include file=”footer.tpl”}

 Even though the screen lacks even basic error - checking or any spreadsheet - like features, you ’ re still at a
very pivotal point in the project. This screen, as is, could technically be used in production.

 Unadvisable, yes, but this is the point where you are delivering business value! Get this into the hands of
your clients and start getting their feedback.

 This big gulp has just taken care of Stories 2, 3, and 10.

 The Travel Expense Report As a Spreadsheet

 Your clients are enjoying the Travel Expense Report. They ’ re using it and giving you valuable feedback
regarding how, what, and why.

 Fortunately for you, the only additional functionality they want is to get it to act like a spreadsheet, so
what ’ s that going to take?

 JavaScript offers one event that you ’ re interested in: onkeyup . It can be applied to your input boxes in
order to recalculate on - the - fly when new information is entered.

 However, it turns out that simulating a spreadsheet is not as easy as it sounds. Here is the new
 template/ travel - expenses.tpl :

{include file=”header.tpl” title=”Widget World - Travel Expenses”}
{literal}
 < SCRIPT TYPE=”text/javascript” >
 < !- function subtotal(thisForm, totalcell, cellArray) {
 var subtot = 0;
 for (var i=0; i < cellArray.length; i++) {
 if(isNaN(thisForm[cellArray[i]].value))
 thisForm[totalcell].value = 0;
 else

 subtot = Math.round(subtot*100 +
 thisForm[cellArray[i]].value*100)/100;

 }
 thisForm[totalcell].value = subtot;
 return subtot;
}

Chapter 19: Building the Application

521

 Starting from the top, the JavaScript function subtotal() takes a form, which is a place to put the
answer and an array of numbers to add.

 Although JavaScript supports decimals, it doesn ’ t support arbitrary precision. Therefore, because you ’ d
like dollars down to the penny (as in $9.99), you must multiply everything by 100. Do the math, round
the result, and then divide by 100.

 Therefore, by adding 0.01 to 9.98, multiply everything by 100: 1.0 and 998.0. Do the addition: 999.0.
Round the result, 999, and divide by 100: 9.99. Yes, it looks as though it ’ ll be a pain.

 The next few functions deal with totaling up columns in each section (Lodging, Meals, Transportation,
and so on), vertically totaling each amount per day. Finally, daycalc() is called by each of the “ cells ” :

function subday (thisForm, totalcell, prefix, maxindex) {

 var cellArray = new Array (maxindex);
 for (var i=0; i < maxindex; i++) {
 cellArray[i] = thisForm[prefix+i].name;
 }

 return subtotal(thisForm, totalcell, cellArray);

}

function subweek (thisForm, totalcell, prefix, postfix) {

 return subtotal (thisForm, totalcell,
 new Array (prefix+’sun’+postfix, prefix+’mon’+postfix,
 prefix+’tue’+postfix, prefix+’wed’+postfix,
 prefix+’thr’+postfix, prefix+’fri’+postfix,
 prefix+’sat’+postfix));
}

function daycalc (thisForm, day, code, thisindex, maxindex) {
 subday (thisForm, code+”_”+day+”_sub”, code+”_”+day+”_”, maxindex);
 subweek(thisForm, code+”_week_sub_”+thisindex, code+”_”, ‘_’+thisindex);
 subday (thisForm, code+”_week_sub”, code+”_week_sub_”, maxindex);
 totalcalc (thisForm);

 return true;
}

 The function daycalc() is called from each cell that accepts user input in the HTML form in such a
manner:

onkeyup=“return daycalc(this.form, ‘sun’, ‘lodging’, ‘0’, 3)”

Remember that the screen is generated from your expense meta-array:

array(‘meals_breakfast’, ‘meals_lunch’,’meals_dinner’, ‘meals_tips’,
 ‘meals_entertainment’)

 However, JavaScript has no knowledge of PHP, or Smarty, or whatever else you ’ re using in the back end,
so you must be explicit and tell JavaScript which cell you are working with, as well as how many cells
need to be subtotaled. These, respectively, are the last two arguments in the daycalc() function call: ’ 0 ’
 is the current row and ’ 3 ’ signifies the maximum number of rows that need to be vertically subtotaled
in the subday function.

522

Part III: A Real-World Case Study

 The number of miles (an exception) must be calculated separately. The cells for the mileage input are
named mitr_sun , mitr_mon , and so on. Their subtotal (which is the number of miles multiplied by the
mileage rate) is represented by mitot_sun , mitot_mon , and so on. After the horizontal weekly totals are
calculated with subweek , the total mileage is updated based on the current vertical day. Finally, the
grand total of the transportation section is updated:

function micalc (thisForm, day, travelrate) {

 var totalcell = ‘mitot_’+day;
 var sourcecell = ‘mitr_’+day;
 // mileage input and mileage total
 thisForm[totalcell].value = Math.round(
 thisForm[sourcecell].value * 100 * travelrate)/100;

 subweek (thisForm, ‘mitr_tot’, ‘mitr_’, “);
 subweek (thisForm, ‘mitot_tot’, ‘mitot_’, “);

 // trans total by day
 thisForm[“trans_”+day+”_sub2”].value = Math.round(
 (thisForm[totalcell].value * 100) +
 (thisForm[“trans_”+day+”_sub”].value * 100))/100;
 // grand total of week
 subweek (thisForm, “trans_week_sub2”, “trans_”, “_sub2”);
 totalcalc (thisForm);
}

 Next, some basic error - checking:

function checkTransInput (thisForm, day) {
 if (thisForm[“trans_”+day+”_sub”].value > 0 & &
 thisForm[“mitr_”+day].value == “”) {
 alert(“Please enter your mileage for “+day);
 return false;
 } return true;
}
function checkInputs(thisForm) {
 if (checkTransInput (thisForm, “sun”) == false) { return false; }
 if (checkTransInput (thisForm, “mon”) == false) { return false; }
 if (checkTransInput (thisForm, “tue”) == false) { return false; }
 if (checkTransInput (thisForm, “wed”) == false) { return false; }
 if (checkTransInput (thisForm, “thr”) == false) { return false; }
 if (checkTransInput (thisForm, “fri”) == false) { return false; }
 if (checkTransInput (thisForm, “sat”) == false) { return false; }
 if (thisForm[“subtotal”].value == 0) { alert (“Please enter data.”);
 return false; } if (thisForm[“territory_worked”].value == “”) {
 alert (“Please enter your territory worked.”);
 return false; }
 return true;
}

Chapter 19: Building the Application

523

 Now comes the monster function totalcalc() , which ensures that the entire form is recalculated:

//
// No easy way to pass a php array to JS unless we generate it by hand.

//
function totalcalc (thisForm) {
 var sectionArray = new Array (‘lodging’, ‘meals’, ‘trans’, ‘misc’);
 var subtotal = 0;
 for (var i=0; i < sectionArray.length; i++) {
 subtotal = subtotal +
 Math.round(thisForm[sectionArray[i]+”_week_sub”].value*100)/100;
 }
 subtotal = subtotal + Math.round(thisForm[“mitot_tot”].value*100)/100;
 thisForm[“subtotal”].value = subtotal;
 var total = subtotal - Math.round(thisForm[“cash_advance”].value*100)/100;
 total = Math.round(total*100)/100;
 if (total > = 0) {
 thisForm[“totaldueemployee”].value = total;
 thisForm[“totalduecompany”].value = “”;
 } else {
 thisForm[“totaldueemployee”].value = “”;
 thisForm[“totalduecompany”].value = Math.round(total * 100)/100 *\q(-1);
 }
}

 In the event of an error, the recalculate() function will be attached to a Recalculate button. This
function “ touches ” every row and every column in order to cause the screen to be initially calculated.
Remember that columns are represented by days, and rows are the first layer of your expense meta -
 array. Although the recalculate function is not the epitome of good programming, it is easier to read
when it is laid out by brute force, rather than by relying on another layer of looping:

// don’t knock it; looping is less readable
function recalculate (thisForm, mileage) {
 daycalc(thisForm, ‘sun’, ‘lodging’, ‘0’, 3);

 Monday through Friday are removed for brevity:

 daycalc(thisForm, ‘sat’, ‘lodging’, ‘0’, 3);
 daycalc(thisForm, ‘sat’, ‘lodging’, ‘1’, 3);
 daycalc(thisForm, ‘sat’, ‘lodging’, ‘2’, 3);
 daycalc(thisForm, ‘sun’, ‘meals’, ‘0’, 5);

 Monday through Friday are removed for brevity:

 daycalc(thisForm, ‘sat’, ‘meals’, ‘0’, 5);
 daycalc(thisForm, ‘sat’, ‘meals’, ‘1’, 5);
 daycalc(thisForm, ‘sat’, ‘meals’, ‘2’, 5);
 daycalc(thisForm, ‘sat’, ‘meals’, ‘3’, 5);
 daycalc(thisForm, ‘sat’, ‘meals’, ‘4’, 5);
 daycalc(thisForm, ‘sun’, ‘trans’, ‘0’, 5);

524

Part III: A Real-World Case Study

 Monday through Friday are removed for brevity:

 daycalc(thisForm, ‘sat’, ‘trans’, ‘0’, 5);
 daycalc(thisForm, ‘sat’, ‘trans’, ‘1’, 5);
 daycalc(thisForm, ‘sat’, ‘trans’, ‘2’, 5);
 daycalc(thisForm, ‘sat’, ‘trans’, ‘3’, 5);
 daycalc(thisForm, ‘sat’, ‘trans’, ‘4’, 5);
 daycalc(thisForm, ‘sun’, ‘misc’, ‘0’, 5);

 Monday through Friday are removed for brevity:

 daycalc(thisForm, ‘sat’, ‘misc’, ‘0’, 5);
 daycalc(thisForm, ‘sat’, ‘misc’, ‘1’, 5);
 daycalc(thisForm, ‘sat’, ‘misc’, ‘2’, 5);
 daycalc(thisForm, ‘sat’, ‘misc’, ‘3’, 5);
 daycalc(thisForm, ‘sat’, ‘misc’, ‘4’, 5);
 micalc(thisForm, ‘sun’, mileage);

 Monday through Friday are removed for brevity:

 micalc(thisForm, ‘sat’, mileage);
 return (totalcalc(thisForm));
}
function reloadCalc () {
 window.document.forms[0].week_start.value =
 window.document.forms[1].week_start.value // hidden form
 window.document.forms[0].submit(); // hidden form }
// - >
 < /SCRIPT >
{/literal}

 Now that there is code to calculate the row and column totals, every cell must respond to the onkeyup
event by calling daycalc() . Modify the seven daily inputs in templates/travel - expenses.tpl :

 < input name= “ {$expenses[idx].code}_sun_{$smarty.section.idx2.index} ”

 onkeyup=”return daycalc(this.form, ‘sun’, ‘{$expenses[idx].code}’,
 ‘{$smarty.section.idx2.index}’, {$smarty.section.idx2.total})”
 type=”text” size=”7” maxsize=”17” value=”{$week- > getExpenseAmount(0, $p)}” >

 The mileage input functions also need to have their onkeyup function:

 < input name=”mitr_sun” onkeyup=”return micalc(this.form, ‘sun’,
{$travel_rate})” ...

 A Recalculate button should be added. It will aid in debugging the JavaScript in the event that
everything doesn ’ t work perfectly:

 < br > < br >
 < center >
 < input type=”button” value=” Recalculate “ onclick=”return recalculate
(this.form, {$travelrate})” >
 < /center >

Chapter 19: Building the Application

525

 < br > < br >
Comments: < br > < TEXTAREA NAME=”comments” COLS=80 ROWS=6 > {$week- > comments}
 < /TEXTAREA >
 < br > < br > < center >

 The main Submit button now checks for basic input errors by running checkInputs() from the
 onclick event:

 < input type=”submit” name=”submit” value=” Submit Report “ onclick=
 “return checkInputs(this.form);” >

 You ’ re almost done.

 There are just a few outstanding issues. For example, if the drop - down start week is changed, the form
will reload and recalculate itself, but, unfortunately, that event won ’ t be fired when the form initially
loads itself.

 You must ensure that the form runs your JavaScript recalculate() function when the form is loaded.
This is accomplished from the onload event of the < body > tag, but the < body > tag is defined in your
 header.tpl , so here is what you do. In your travel - expenses.php file, modify the display section:

// display
if ($_REQUEST[“action”] != “persist_expense”) {
 $week- > readWeek();
 $smarty- > assign_by_ref (“user”, $user);
 $smarty- > assign_by_ref (“week”, $week);
 $smarty- > assign(‘start_weeks’, getStartWeeks());
 $smarty- > assign(‘current_start_week’, getCurrentStartWeek());
 $smarty- > assign_by_ref (‘expenses’, $week- > getExpensesMetaArray());
 $smarty- > assign(‘travelrate’, $GLOBALS[“expense-mileage-
 travelrate”]);
 $smarty- > assign(‘formfunc’,
 “recalculate(window.document.forms[1],”.
 $GLOBALS[“expense-mileage-travelrate”].”)”);
 $smarty- > display(‘travel-expenses.tpl’);
 exit();
}

 You ’ re assigning a function to the variable formfunc . Now change the header.tpl so that it reads
accordingly:

 < !DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN” >
 < html >
 < head >
 < meta HTTP-EQUIV=”content-type” CONTENT=”text/html; charset=ISO-8859-1” >
 < title > {$title|default:”no title”} < /title >
 < /head >
 < body onload=”{$formfunc|default:””}” >
 < h1 > Widget World < /h1 >
 < hr > < p >

526

Part III: A Real-World Case Study

 The $formfunc Smarty variable holds the name of a JavaScript function that is executed when the
HTML form is loaded, $formfunc . The onload form property is set to $formfunc , or an empty string if
 $formfunc is not defined. This enables you to selectively recalculate your entire spreadsheet during the
loading process. By doing so, daycalc() must be concerned only with its column, row, and the totals,
rather than with recalculating every cell during every keystroke.

 Anything Else

 Feedback from your clients has indicated that the “ Number of Miles ” doesn ’ t appear to be persisted
correctly from the screen. Being the exception to your meta - array, it ’ s not taken care of in the
 parse() function.

 By now you should know the drill. Whip up a test:

 function testParsingNbrMiles() {
 $this- > _session- > getDatabaseHandle()- > query(“delete FROM
 travel_expense_item WHERE emp_id = 1 and
 expense_date > = ‘1980-01-06’ and expense_date
 < = ‘2001-09-15’”);
 $response = array (‘mitr_sun’ = > “1.1”,
 ‘mitr_mon’ = > “2.2”);
 $week = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-06”,
 ‘territory_worked’ = > “Midwest”,
 ‘comments’ = > “comment”,
 ‘cash_advance’ = > “0”,
 ‘mileage_rate’ = > “0.31”),
 $this- > _session- > getDatabaseHandle());
 $week- > parse($response);
 $this- > assertEquals(true, $week- > persist());
 $week = new TravelExpenseWeek (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-06”,
 ‘territory_worked’ = > “Midwest”,
 ‘comments’ = > “comment”,
 ‘cash_advance’ = > “0”,
 ‘mileage_rate’ = > “0.31”),
 $this- > _session- > getDatabaseHandle());
 $week- > readWeek();

 $this- > assertEquals(1.1, (float) $week- > getExpenseAmount(0,
 ‘trans_miles_traveled’));
 $this- > assertEquals(2.2, (float) $week- > getExpenseAmount(1,
 ‘trans_miles_traveled’)); }

 Make it succeed accordingly with changes to TravelExpenseWeek lib/expense.phpm :

 private function createByRequest ($description, $daynum,
 $index, & $request) {
 if (array_key_exists($index, $request) and
 $request[$index] < > null and

Chapter 19: Building the Application

527

 $request[$index] < > “”) {
 array_push (
 $this- > items,
 new TravelExpenseItem (
 array (‘emp_id’ = > $this- > emp_id,
 ‘expense_date’ = >
 $this- > addDays($this- > week_start, $daynum),
 ‘description’ = > $description,
 ‘amount’ = > (float) $request[$index]),
 $this- > dbh));
 }
 }

 /**
 * This function bridges the gap between the day-based DB and the
 * week-based view
 */
 public function parse(& $request) {
 foreach ($this- > getExpensesMetaArray() as $sectionlist) {
 for ($i=0; $i < count ($sectionlist[‘persist’]); $i++) {
 $daynum = 0;
 foreach ($this- > getWeekArray() as $day) {
 $index = $sectionlist[‘code’].”_”.$day.”_”.$i;
 $this- > createByRequest (
 $sectionlist[‘persist’][$i], $daynum,
 $index, $request);
 $daynum++;
 }
 }
 }
 // arg, mitr is an exception
 $daynum = 0;
 foreach ($this- > getWeekArray() as $day) {
 $this- > createByRequest (“trans_miles_traveled”, $daynum,
 “mitr_”.$day, $request);
 $daynum++;
 }
 }

 A new function, TravelExpenseWeek - createByRequest() , rids you of code duplication because it is
called during normal processing and for the mileage.

 All the tests pass, your clients are happy, the screen works. Now you ’ re done with Story 4: “ Expense
Report As a Spreadsheet, ” as shown in Figure 19 - 10 .

528

Part III: A Real-World Case Study

Figure 19-10: Travel Expense Report as a spreadsheet

Chapter 19: Building the Application

529

 Now, rather than “ simply working, ” you have a well - tested system and the beginning of a framework
that is capable of evolution.

 You ’ ve seen how PHP, JavaScript, and browsers do (and do not) interact, how each one is responsible for
its layers, and how to move information among all of them. Creating complex spreadsheet - like behavior,
although not easy, can be done with relatively little code.

 Where do you go from here? Just plod through the rest of the stories? Keep on reading, because there is
another important lesson to be learned.

 Mock Objects
 Sometimes during testing, you must interact with a deterministic object that, for various reasons, you do
not have access to in your testing environment. For example, consider the following:

 The real object is nondeterministic, such as a real - time stock or weather - feed.

 The real object is too slow for your test suites, such as an overloaded transactional production
database.

 You need to test exceptional situations, such as an intrusion alarm or systems outage.

 The real object does not exist. This can be anything from not having access to the required object
to necessary intra - object functionality.

 Essentially, a mock object is an object that feigns enough functionality or required functionality for you to
fully test your system.

 For example, if you wanted to test for session timeouts, errors, or just malicious cracking, you might
import mock - widgetsession.phpm , which consists of the following:

class MockWidgetSession extends WidgetSession {
 public function getUserObject() {
 return new WidgetUser(
 array (
 ‘id’ = > 1,
 ‘username’ = > ‘ed’,
 ‘md5_pw’ = > “827ccb0eea8a706c4c34a16891f84e7b”,
 ‘first_name’ = > “Ed”,
 ‘last_name’ = > “Lecky-Thompson”,
 ‘email’ = > “ed@lecky-thompson.com”,
 ‘role’ = > “s”,
 ‘department’ = > “sales”));
 }
}

 Coding details aside, this MockWidgetSession example would enable your testing environment to
simulate a login for whatever reason you require.

 Smarty can also be used to mock - up HTML screens. Other than displaying the HTML to the screen, you
can save the HTML in a variable, and do with it as you please.

❑

❑

❑

❑

530

Part III: A Real-World Case Study

 For example, Story 6 requires sales manager notification, so you merely need to send an e - mail to the
managers when the contacts are saved. Sounds pretty simple, but you ’ re faced with the issue of how
intensively you ’ d like to test, especially as they ’ d like the content of the e - mail to include the HTML from
the input screen.

 Getting the screen HTML is not an issue. Essentially, you must test the browser output, which is nice,
because up until now you haven ’ t been testing what the browser sees. For end - to - end completeness, the
following test will reference the HTML output using a regular expression:

 function testContactEmail () {
 $u = new WidgetUser(
 array (‘id’ = > 1,
 ‘username’ = > “ed”,
 ‘first_name’ = > “Ed”,
 ‘last_name’ = > “Lecky-Thompson”,
 ‘email’ = > “ed@lecky-thompson.com”,
 ‘role’ = > “s”,
 ‘department’ = > “sales”));
 $cv = new ContactVisit (
 array (‘emp_id’ = > “1”,
 ‘week_start’ = > “1980-01-01”,
 ‘company_name’ = > “test one”,
 ‘contact_name’ = > “Big One”,
 ‘city’ = > “Columbus”,
 ‘state’ = > “OH”,
 ‘accomplishments’ = > “phone call”,
 ‘followup’ = > “”,
 ‘literature_request’ = > “”));
 $c = new Contact (
 array (“emp_id” = > “1”,
 “week_start” = > “1980-01-01”,
 “shop_calls” = > 2,
 “distributor_calls” = > 3,
 “engineer_calls” = > 4,
 “mileage” = > 50,
 “territory_worked” = > “Central Ohio”,
 “territory_comments” = > “Buckeyes are great.”),
 $this- > _session- > getDatabaseHandle());

 list ($email,_$from, $subject, $message, $headers) =
 generateContactEmail($u, $c, array ($cv), false);

 // test screen capture, requires 7bit ascii encoding (read: none)

 $this- > assertEquals(1, preg_match (“/Employee Name..............Ed
 Lecky-Thompson/”, $message), “employee name”);
 $this- > assertEquals(1 preg_match(“/company_name_0.
 test one/”, $message),
 “ company name ”);

 $this- > assertEquals(1, preg_match (“/shop_calls..................
 2/”, $message),”shop calls”);
 $this- > assertEquals(1, preg_match (“/To: ed@lecky-thompson.com/”,
 $headers),”email”);

Chapter 19: Building the Application

531

 // test base64 encoding
 list ($email_from, $subject, $message, $headers) =
 generateContactEmail($u, $c, array ($cv));

 $this- > assertEquals(0, preg_match (“/Employee Name......
 Ed Lecky-Thompson/”, $message),
 “employee name”);

 $this- > assertEquals(1, preg_match (“/To: ed@lecky-thompson.com/”,
 $headers),”email”); }

 If you ’ re entering the preceding code by hand, be sure that you don ’ t line - break in the middle of the
regular expressions; they should be entered on one line.

 The generateContactEmail() function is designed to return what is required by the PHP
 mail() function: mail($email_address, $subject, $message, $headers); .

 In this example, you ’ re testing what the browser sees. Instead of testing 100 percent of the HTML output,
you ’ re ensuring that the form contains the information you expect. Thus, the simple regular expression of

“/Employee Name..............Ed Lecky-Thompson/”

 will perfectly match the following generated HTML:

 < tr > < td > < b > Employee Name: < /b > < /td > < td > Ed Lecky-Thompson < /td >
 < td > < b > Department: < /b > < /td > < td > sales < /td > < /tr >

 Because the base64 encoding is unreadable by humans, the tests of base64 encoding check only for the
existence of the e - mail address in the email header, and not the Employee Name because Employee Name
(being in the message and base64 - encoded) can ’ t be normally read.

 Here are the functions that might be placed in your lib/common - functions.phpm :

function mimeifyContent ($content, $mime_boundary,
 $filename, $flagBase64=true) {

 $message = “”;
 $message .= “ \r\n”;
 $message .= “-”.$mime_boundary.”\r\n”;
 $message .= “Content-Type: text/html;\r\n”;
 $message .= “ name=\””.$filename.”.html\”\r\n”;
 // default is 7bit ascii

 if ($flagBase64) {
 $message .= “Content-Transfer-Encoding: base64\r\n”;
 }

 $message .= “Content-Disposition: attachment;\r\n”;
 $message .= “ filename=\””.$filename.”.html\”\r\n”;
 $message .= “\r\n”;
 if ($flagBase64) { $message .= base64_encode($content);
 } else {
 $message .= $content;
 }

532

Part III: A Real-World Case Study

 $message .= “\r\n”;
 return ($message);
}

function generateContactEmail & $user, & $contact,

 $contactVisits, $flagBase64=true) {
 global $GLOBALS;
 require_once ($GLOBALS[“smarty-path”].’Smarty.class.php’);
 $smarty = new Smarty;
 $smarty- > assign_by_ref (“user”, $user);
 $smarty- > assign_by_ref (“contact”, $contact);
 $smarty- > assign_by_ref (“contactVisits”, $contactVisits);
 $smarty- > assign(‘start_weeks’, getStartWeeks());
 $smarty- > assign(‘current_start_week’, $contact- > week_start);
 $smarty - > assign(“ max_weekly_contacts ” , $GLOBALS[“ max - weekly - contacts ”]);

 $email_body = @$smarty- > fetch(‘customer-contacts.tpl’);

 $headers = “”;
 $headers .= “From: “.$GLOBALS[“email-from”].”\n”;
 $headers .= “To: “.$user- > email.”\n”;
 if (strlen ($GLOBALS[“email-contact-cc”]) > 0)
 $headers .= “Cc: “;
 $headers .= $GLOBALS[“email-contact-cc”];
 $headers .= “\n”;
 if (strlen ($GLOBALS[“email-contact-bcc”]) > 0)
 $headers .= “Bcc: “.$GLOBALS[“email-contact-bcc”].”\n”;
 $mime_boundary = “ < < < -==+X[“.md5(time()).”]”;
 $headers .= “MIME-Version: 1.0\r\n”;
 $headers .= “Content-Type: multipart/mixed;\r\n”;
 $headers .= “ boundary=\””.$mime_boundary.”\””;
 $message = “”;
 $message .= “This is a multi-part message in MIME format.\r\n”;
 $message .= “\r\n”;
 $message .= “-”.$mime_boundary.”\r\n”;
 $message .= “Content-Type: text/plain; charset=\”iso-8859-1\”\r\n”;
 $message .= “Content-Transfer-Encoding: 7bit\r\n”;
 $message .= “\r\n”;
 $message .= $GLOBALS[“email-contact-message”].”\n\n”;
 $nextEnding = “\r\n”;
 $message.=mimeifyContent($email_body,$mime_boundary,
 “customer-contact”, $flagBase64);
 $message.=”-”.$mime_boundary.””.$nextEnding;
 $subject = $user- > emp_id.” “.$user- > last_name.” : “.$user- > email_subject;
 return array ($user- > email, $subject, $message, $headers);
}

 Note two things here. One, you ’ re calling $smarty -> fetch() instead of $smarty -> display() . The
 fetch function places the HTML output into a variable, rather than to the screen, as does the display
function.

 Two, for technical reasons, it ’ s safer to base64 - encode HTML output if there is any chance of it using
non - 7 - bit ASCII (e.g., if you ’ re using Unicode or non - English characters). However, base64 - encoding the
HTML in the e - mail makes it practically untestable, which is why the $flagBase64 argument exists.

Chapter 19: Building the Application

533

 If this function contained the function to physically mail the e - mail instead of simply creating the
content, then you would most certainly create and utilize a mock object that simulated the e - mailing API
and didn ’ t base64 - encode the content.

 Summary
 With this chapter, the Widget World software development effort is concluding. You would be correct in
pointing out that not all the stories and features have been completed, but we have no desire to be
historical revisionists of this real - world example or to force you through another 100 redundant pages of
the same procedure. By now, you have the tools and know - how to complete it yourself.

 Testing is one aspect of software development that has historically been considered little more than
 “ busywork, ” but you ’ ve experienced how test - driven development can help you not only develop your
code, but also find bugs and continue to test even when you ’ re working on distant parts of the system.

 Refactoring is not just a technical term for “ code cleanup. ” Ideally, it shouldn ’ t even be considered a
distinct task from software development. Refactoring is simply a coding priority, much in the same way
that developing system objects is a coding priority, too. Plus, you ’ ve seen how constant refactoring can
help to develop a complex framework without the need for excessive analysis and unused features.

 These are just a few of the principles of extreme programming (XP), which is designed to reduce
complexity in order to sustain development by keeping your code base nimble and flexible. Although
not every project is a candidate for the complete methodology of XP, that does not mean that your
methodology, whether it ’ s spiral, waterfall, or RUP, cannot benefit from some of the practices such as
testing and constant refactoring. Additionally, because of a lack of peer programmers (for you, the
reader), as well as space and focus on code, many aspects of XP haven ’ t formally been examined, such as
planning for a release and measuring the project metrics. XP is quite a disciplined approach, and you
should learn more about it, because its strengths and rewards are solidly concerned with the subtleties of
software development as a team.

 Of course, no matter how methodical and diligent your approach during the build process, you can ’ t skip
the most important part of any project — quality assurance . That ’ s something you ’ ll meet in Chapter 20,
as you discover what steps you can take post - build to ensure that your project features the quality levels
your clients have a right to expect.

 Quality Assurance
and Testing

 The Widget World sales force automation toolkit site is looking pretty good. You ’ re on schedule
and on budget, and the client is, thus far, happy with the beta version running on your
development environment and staging server. Furthermore, by employing rigorous unit testing
throughout the build process in Chapter 19, you can be sure that the individual components that
comprise the application all function more or less correctly independently; hence, there shouldn ’ t
be any deep - rooted problems in the code itself.

 At this point, you might well be tempted to let your guard down. In fact, you have now reached
one of the most critical stages in the entire project. The application is more or less complete, and
the client is urging you to let them use it. You must resist, however.

 Quality assurance (QA) is a term you might be familiar with. Indeed, it is borrowed from
traditional manufacturing and engineering processes, and is the kind of procedure you expect to
be carried out on your new DVD player or luxury family sedan. Why would you not, therefore,
want to apply it to something as complex and crucial as your application?

 This chapter introduces you to the QA process in large - scale PHP projects. You ’ ll learn why
quality assurance is of great importance, and what it means in terms of your expectations and
those of your client. You ’ ll also learn about the kinds of testing you must do in order to be able to
confidently give your application a seal of approval, and how to get your team on board to help
you when things go wrong.

 Introduction to QA
 Somewhat understandably, expectations regarding the reliability of the Web and the Internet at
large are still pretty low among its everyday users. Chances are good that you ’ ve had a client or
two call you recently to say that their e - mail was down, and so they might not have received
anything you ’ ve sent. Maybe you ’ ve tried to order something online recently, only to be kicked off

Part III: A Real-World Case Study

536

while your credit card was being processed. Or maybe your friend ’ s ISP has been down for a couple of
days, and no one in tech support seems to be able to tell him when he ’ ll be back online again.

 Scenarios like this are all too common. What is truly shocking is that the parties involved typically shrug
their shoulders and accept it. Your clients didn ’ t sound surprised when they told you that e - mail was
down. You probably didn ’ t even curse under your breath when your online order went wrong. And your
friend likely shrugged his shoulders and got out his 3G data card.

 This is a phenomenon still more or less unique to the Internet. If you bought a new car and it stalled on
the highway just weeks later, you ’ d be pretty mad at your dealer. If you ordered a mocha latte before
work and your barista gave you a cappuccino, you ’ d be mad and insist on a new cup. And if your DVD
player died soon after purchase, you ’ d take it back.

 There are two reasons why people don ’ t get upset when the Internet doesn ’ t work right. First, most
people reason that there ’ s something innately complicated about the Internet, and that it must go wrong
as a result. This is a non sequitur, of course. Yes, the Internet is complicated, but so is your DVD player.
In practice, too, the underlying infrastructure (that is, the servers, routers, and so forth) of the Internet is
pretty much rock solid. It ’ s bad programmers who cause things to break with the bad code they write,
and the poor decisions they make when developing.

 The second and more crucial reason applies to those who have had previous experience with Internet
application developers. Frequently, their past experiences with these agencies and individuals have been
such that their expectations with present vendors have hit rock bottom. In fact, and unfortunately, there
are few other industries in which such an explosion of dangerously underskilled labor has occurred in
the past few years. This has manifested itself in both appalling freelance Web “ professionals ” (who can
barely produce valid XHTML, let alone high - quality back - end code), and some truly awful digital
agencies (that revel in producing self - indulgent “ award - winning ” creative work without so much as a
nod to how well it works under the hood). Excellence is the exception rather than the rule. In effect, there
are literally thousands of vendors who talk the talk, but don ’ t walk the walk.

 The more cynical inference from this observation is that because your client ’ s expectations will be low,
you should aim low, too, because they ’ re not likely to get mad at you if things go wrong. This approach,
however, is not only cynical, it is also not commercially sensible.

 Why You Should Aim High
 Aiming to have a high - quality product before handing over to the client is not just about keeping the
client happy. It ’ s about maintaining your own sanity, too.

 It is inevitable that your assembled system will (initially, at least) be functionally defective in some way.
This does not necessarily mean that it will malfunction in the traditional sense. It could be slow when
real - world data is applied, or have some unforeseen business logic error. A systematic approach to QA
prior to handover ensures the following:

 Developer time, and hence cost spent on resolving defects, is minimized through a thorough,
structured approach.

 The team ’ s timely transition onto other projects can be closely adhered to.

 Problems encountered during deployment can be isolated as being unrelated to the
application itself.

❑

❑

❑

Chapter 20: Quality Assurance and Testing

537

 Quite apart from that, however, compare the following two attitudes:

 “ The client ’ s expectations are low, therefore I can underdeliver without fear of reprisal. ”

 “ The client ’ s expectations are low, therefore when I overdeliver I will be seen to excel. ”

 It goes without saying that being seen to excel will quickly set you apart from the competition. The
client ’ s previous experience with other suppliers may have been lackluster, and the client ’ s expectations
may be low as a result, but keep in mind that client has not used those other suppliers again.

 Aiming high means striving for high quality. The difference between striving and achieving starts with
knowing what quality means in the first place.

 What Is Quality?
 There is some confusion over what constitutes quality in a software application. Let ’ s return to the
analogy of a family sedan. When automotive journalists review a high - quality car, they are not always
referring explicitly to reliability or performance per se, but rather to less tangible and quantifiable
factors, such as the following:

 The durability of the interior

 The use of expensive, solid materials (such as brushed chrome)

 Purely aesthetic touches (such as blue - illuminated readouts)

 The firm resounding noise made when the driver closes the door.

 Quality here is not so much a single deciding factor, or even anything positive. Rather, it is a function of
all the areas in which something could go wrong but doesn ’ t.

 This view is supported in the approach often taken when a car is reviewed or inspected for the first time
at a trade show. The repeated activation of the cup - holder mechanism, the pressing of switches, the
caressing of upholstery — these are the quick - and - dirty litmus tests used to assess quality. Yet, none of
these tests tells you anything about the car ’ s handling, gas mileage, reliability, or annual depreciation. So
why are they important?

 The truth of the matter is that, although you can ’ t judge a book by its cover, you can often judge a car by
its interior. A car with a smoothly ejecting cup holder; tactile, chrome - tipped switches; and seamless
mechanisms is almost certainly also going to enjoy superb reliability going forward. The highest - quality
brands boasting these exterior facets (such as BMW, Audi, or Mercedes) are all consistently rated among
the most reliable on the road, too.

 This same principle can be applied to your Web applications. Quality is not just about whether the site
stays up and does what the functional specification said it would do. It ’ s more about the little things;
and, inevitably, when the little things on the surface are right, the big things underneath are right, too.

 Enough about cars! What makes a Web application high quality, and how is it measured?

❑

❑

❑

❑

❑

❑

Part III: A Real-World Case Study

538

 Measurable and Quantifiable Quality
 Several core areas of quality must be assessed when conducting QA on your application. Inevitably, the
importance you apportion to each one depends very much on the nature of your product and its target
audience.

 Functional Compliance

 At the most simple and basic level, your application should provide functionality exactly as detailed in
your project ’ s original functional specification.

 This goes beyond simply ensuring that no PHP warnings or errors appear, of course. The behavior of
your application must be correct, under an exhaustive set of test conditions. This includes the following:

 When an Update button is pressed, the database is actually updated.

 When a welcome e - mail should be sent to a new user, the e - mail is sent and is correct.

 When a user conducts a search, the data returned is an accurate reflection of the database and
the search criteria specified.

 Such compliance may seem obvious, but often the most obvious points are overlooked in QA programs.

 Real - World Tolerance

 Real - world tolerance (RWT) means that your application should be able to cope with environments and
conditions closer to its real - world, live operation than those it may run under during development.

 This does not just refer to quantities of users or data on the system. It also refers to the requirement
that the system be able to cope properly when a user, for example, does not enter data in an expected
format. The correct behavior in such a situation should be, of course, to provide the user with an error
message. It is hugely important to simulate such conditions, because it is all but inevitable that not only
will users themselves do bad things from time to time, but that the data they supply from time to
time will be bad, too.

 Grace During Failure

 There is a temptation when developing to not account for every possible scenario. For example, certain
scenarios might seem unlikely. However, this temptation should be resisted. The only thing worse than
the failure of a user ’ s credit card to be processed successfully, for example, is failing to inform the user
that his or her credit card was not processed successfully.

 At any stage at which a failure could occur, however unlikely it may be, your application must cope
gracefully. Consider, for example, an unreachable database server. Clearly, this is an undesirable
situation, and the application will not function correctly when this occurs. With luck, it is a problem
that will be resolved correctly by your system administrators. However, if not accounted for, your
application may simply return zero search results on searches, or tell people their login is incorrect.
Both of these outcomes arise because your application does not account for the condition of the database
being completely inaccessible, and users will be severely misled as a result. Providing a simple “ Sorry,
the site is unavailable at present ” page offers an obvious and immediate workaround.

❑

❑

❑

Chapter 20: Quality Assurance and Testing

539

 Load Tolerance

 During functional testing, your application will be hit by a combined audience probably not much
bigger than your development team — probably less than a dozen simultaneously using the system. In
practice, of course, your audience will certainly be much bigger than this, with a requirement for 100,
1,000, maybe even 10,000 simultaneous users to be supported.

 You will know the actual figure or estimate from your technical specification, and will have drafted an
architecture to suit. What may have worked on paper will not necessary translate to the real world,
however. It is vital, of course, that it does.

 If the application ’ s response under heavy load is an unacceptable response time or, worse still, outright
failure, then clearly the client will not accept the product as satisfactory.

 Usability

 The latest buzzword in interface architecture these days is that of usability . Championed by leading
experts such as Jakob Nielsen (see his excellent Web site at www.useit.com), it refers to the inherent
intuitiveness and logic of a user interface. It can apply to not only the Web, but also traditional client -
 side software applications, and even the control panel of a washing machine.

 It is typically measured by the ease and speed with which a user new to the application can perform
certain tasks. These tasks are expressed as objectives, and no specific instructions on their completion
are issued. For example, users of a Web mail application might be asked to compose a new message to
 foo@example.com . However, they would not be guided to click the Compose button in the top - left
corner of the screen, or enter foo@example.com in the recipient box, and so forth.

 Observing the user ’ s effectiveness in carrying out these tasks is the cornerstone of usability testing,
discussed shortly.

 Veneer

 Just one step removed from usability is the veneer (or finish) of the product. Remember the earlier
analogy involving chrome switches and cup holders in the sedan? The veneer of your application is the
direct equivalent, and because it is the first real experience users will have of your application, it
provides a telling insight into the underlying quality of the application.

 What is meant by veneer? Consider the quick - and - dirty examples throughout this book, outside the
realm of the larger Widget World project. Each has been constructed to demonstrate a concept, with no
other purpose in mind. As a result, they ’ ve never looked or felt that great — a bit rough around the
edges, perhaps. That ’ s never really mattered, however, because they have merely been demonstrating a
technical concept. A finished product should never adapt this approach, of course.

 The chrome switches in the driver ’ s cabin are the properly rendered Previous and Next buttons on your
pagination. The cup holders ’ smooth eject mechanism is the manner in which the navigation refreshes
updates with each section of your application selected. This is the veneer (or finish) of your application,
and, although it is not a showstopper if poorly implemented, it can speak volumes about the overall
quality of your application.

 Many software architects and engineers are less gifted with designing the aesthetics of a user interface
than you might think. As part of your own project - management methodology, it is important to ensure

Part III: A Real-World Case Study

540

that an experienced senior designer with interface architecture skills is on hand to ensure that the polish
on your finished product stays well and truly intact.

 When a small change is requested late in the project, it is tempting to cut corners and allow a software
engineer to take ownership of the new feature. Do this only if you have a rock - solid style guide in place,
as discussed in Chapter 16. Otherwise, you may find your beautiful application blighted by the
appearance of a grey, rectangular Submit button on an otherwise lovely interface.

 Testing
 It goes without saying that the single most effective way to ensure that the core qualities alluded to
previously pervade your project and that is to test, test, and test some more.

 Testing can take many forms, however. Each of the previous qualities has one or more testing
methodologies associated with it. Let ’ s look at them in turn.

 Unit Testing
 The good news is that you ’ ve already done this at least once before — that is, you have if you followed
Chapter 13 in detail, where you would have encountered unit testing as part of the build of the Widget
World application.

 The concepts of unit programming and a testing framework were touched upon earlier in this book,
including the theory of why these are good practices to employ in large projects. In Chapter 13, you put
that theory into practice in building the application.

 Let ’ s recap briefly, however. Unit - driven programming involves constructing your application in neatly
packaged, distinct components that have an interface yielding human - predictable results from a given
set of a data. A testing framework is then constructed for each component that asserts a series of human -
 determined theoretical results based on a series of theoretical inputs, and then tests the validity of those
assertions by comparing those theoretical results against the actual results derived from the execution of
that component ’ s methods.

 These frameworks become black boxes that enable you to continuously test the functionality of your
components throughout their evolution. You can construct such frameworks, therefore, early in
your project, and regression - test your components as they evolve and become more sophisticated to
ensure that they still produce the results expected. Put crudely, you can test to ensure that your changes
have not broken something that used to work!

 Unit testing picks up coding errors. Such errors are typically oversights on the part of the
programmer. Unit testing does not pick up any other form of a problem; hence, it is only a part of the
testing required to ensure high levels of quality with respect to functional compliance.

 As an example, consider a Web mail application. You may have built a user class, a mailbox class, and a
message class. All three may pass your unit tests. However, consider the Reply button on a message
being viewed. It would instantiate a new message object and copy the sender property of the original
message object to the recipient object of the message object. This action may not be performed by any
specific method in any class, and hence may not be the subject of any unit test.

Chapter 20: Quality Assurance and Testing

541

 If the recipient of the e - mail is not set correctly when Reply is clicked, then this is very clearly a
functional error that must be resolved. It is not, however, one that a unit testing framework would pick
up in any three of the tests being performed. You can see, therefore, that unit testing is not the ultimate
test of functional compliance. In effect, it tests only the “ model ” in your model - view - controller (MVC)
design pattern.

 Functional Testing
 Functional testing is the other half of ensuring functional compliance quality on your project. It is
normally conducted with due deference to the original functional specification of the project.

 There are a number of possible approaches to formalizing functional testing. The most important rule to
follow is that it is, in fact, formalized in the first place. Merely having a developer perform a quick run -
 through of key functionality isn ’ t enough on a large - scale project.

 One approach to consider is to assemble a team of test personnel, ideally relatively intelligent
individuals typical of your target audience, and issue them formal paperwork for completion. Consider
assigning each test team member a specific area of the site to test.

 The Functional Test Paper

 Considering the Web mail example, you might devise a form that looks something like Table 20 - 1 . The
 “ Action ” and “ Expected Result ” columns should be completed by you in your role as project manager.
Your test team will complete the “ Actual Result ” column, which you can then use to score each test as
either a FAIL or a PASS.

Table 20-1: Functional T est Form for Web Mail Example

Action Expected Result Actual Result Score

Open the login page by
clicking the login link
on the navigation.

The login page is displayed, featuring
username and password text boxes, and the
Submit button.

Expected result PASS

Enter the login
joet1301f and the
password ixrsh0z1 and
click Login.

The form submits and the page reloads,
stating that your login is successful. After
five seconds, you are automatically
transferred to the home page.

Expected result PASS

Click the Inbox link in
the navigation.

You will be taken to your Inbox. You will see
a number of messages listed. For each
message, subject, date received, and sender
should be listed. The total number of pages
comprising this mailbox will be shown.
Previous and Next buttons will be visible if
more than one page exists

Expected result
except that no
Next button
displayed
despite showing
page 1 of 18

FAIL

Part III: A Real-World Case Study

542

 It is, of course, extremely important that any FAIL marks are followed up. As project manager, you
should assume a role whereby you first double - check any failures yourself. If any are found to be
genuine, they can be entered into a fault - management system, the likes of which are discussed later in
this chapter.

 The actions you place on each functional testing paper will, of course, be derived directly from the
functional specification in one form or another. Essentially, you are devising a user journey. Your test
team will need to follow the actions sequentially. For example, it is obviously important that any logins
take place before any activity dependent on the user being logged in. Advise your test users that if they
find themselves unable to execute subsequent actions because of a block failure, they should mark their
papers accordingly and move on.

 Functional Testing Considerations

 You must ensure that each branch of the user journey is covered in testing, at least to the extent that you
can be reasonably confident that the system is functionally correct. A branch occurs every time a decision
is made. For example, if logins to your system come in three flavors (say, a normal user, super user, and
administrator), you need to have three initial branches. If, for each of these logins, a user may choose one
of three mailboxes to view, then an additional three branches per initial branch will be created.

 It may be helpful to draw all the possible user journeys using a tree diagram of some sort, which you can
then translate into the previous testing paperwork.

 This method of functional testing is not infallible, but far more effective than simply asking the
development team to “ test thoroughly. ” The resulting paperwork also forms a sort of affidavit that can
be presented to the client as documented proof that the system has been thoroughly tested prior to
handover.

 Load Testing
 The general principle of load testing is to determine exactly what kind of extreme environmental
conditions your application can cope with before it falls over.

 The traditional belief is that it is sufficient to simply ascertain whether the application can support the
number of simultaneous users specified in the technical specification, and whether the response times
under such a usage level are within a reasonable limit.

 A more bullish approach is to keep turning up the amp until the speakers blow. Clients much prefer to
be told that “ your site can, under its present infrastructure, support 530 simultaneous users ” than simply
 “ yes, your site supports the 500 simultaneous users you need it to. ” Knowing that the system has
support for only 30 additional users may not be the news that clients want to hear, but it is better that the
client hears it sooner rather than later.

 The principles of load testing are detailed further in Appendix C, “ Performance Tuning PHP. ”

Chapter 20: Quality Assurance and Testing

543

 Usability Testing
 Cast your mind back to the sample functional testing worksheet shown in Table 20 - 1. You allocated tasks
to your testers such as “ Open the login page by clicking the login link on the navigation. ”

 A similar task in usability testing would be simply phrased “ Log in to the system. ” The purpose is quite
different, of course; hence, the very different phrasing. Usability testing does not concern itself with
whether things work. This is established during functional testing. Rather, it asks how effectively or
easily the user can perform the task in question.

 Perhaps uniquely in software testing, usability testing rarely involves questions put directly to the test
subjects. Instead, observation is the key.

 When instructed to, for example, “ Log in to the system, ” the user will be observed (either in person or
remotely). It is the user ’ s actions, or behavior, in achieving (or not achieving) the task required (which
are only in part quantifiable in figures) that are of interest.

 For example, you may want to attempt to answer the following questions:

 Where does the user physically look for the login link? Is it where you placed it or somewhere
else? (Note that the position of a user ’ s cursor on - screen is often a clue to where the user is
looking.)

 What sort of delay is there between when the login screen loads and the user starts typing his or
her username?

 Does the user visit any other pages in error prior to finding the login page?

 The answers to these questions will provide you with a good indication of the usability of your
application. Admittedly, it can be difficult to quantify such research into figures, however.

 Usability testing and the useful metrics it can supply is a huge topic in and of itself, and outside
the scope of this chapter. More information on the various approaches available can be found on the
excellent site www.useit.com , run by Jakob Nielsen.

 Fault Tracking
 The testing you carry out using the techniques previously described will inevitably lead to observations,
such as the following:

 Functional testing has shown that the recipient address is not correctly copied into the new
message when replying to an existing message.

 Load testing has shown that the system does not respond in a sufficiently timely manner to
requests made at 530 simultaneous sessions.

 Usability testing has shown that people expect the Previous and Next buttons in the Mailbox
view to be at the top of the page, not the bottom.

❑

❑

❑

❑

❑

❑

Part III: A Real-World Case Study

544

 These observations are relatively useless without the tabulation of corresponding action points. For the
issues outlined previously, you might raise action points as follows:

 Ensure that when replying to a message, the recipient is automatically set to be the sender of the
message being replied to.

 When 530 sessions are active, divert additional users to a “ service unavailable ” page explaining
that the server is not able to process their requests at this time.

 Move the Previous and Next buttons in the Mailbox view to the top of the page.

 These actions are all simple enough for a small project, but on a larger project you may have hundreds,
or even thousands, of action points (such as bugs that need fixing and tweaks for fine tuning). How do
you keep track?

 It ’ s certainly possible to use the well - known default solution of any office worker thrust without
warning into the world of project management — that of Microsoft Excel. It certainly gives you a quick -
 and - dirty mechanism for keeping track of project fault reports and their status, in the form of a color -
 coded table updated on a regular basis by all participating on the project.

 However, its limitations will soon become clear. No Web - based access means that users must be in the
same office where that spreadsheet resides on a local file server. No multiple - user access means that only
one user can update the spreadsheet at a time. An onus on those using it to check it and update it
frequently and regularly (with no prospect of notifications when issues requiring their attention become
prescient) means that issues often go unchecked, even when urgent.

 That ’ s where a purpose - built solution can provide an effective alternative.

 Effective Fault Management Using Mantis
 This section takes a look at a fault - management system known as Mantis, a free package currently
available from www.mantisbt.org .

 The purpose of Mantis is to enable you to effectively keep tabs on all faults and defects in your projects,
assign them to developers for resolution, and enable developers to pass comments on them where
appropriate.

 Mantis is a Web - based application written in PHP (what else?) that typically functions as an extranet.
Whether you choose to open it up for access to your clients is entirely up to you. When working with
smaller clients, this can often be beneficial because it enables them to feel part of the QA process. Mantis
supports multiple users, each with his or her own access levels and rights, so you can offer different
access to yourself and, say, your developers.

❑

❑

❑

Chapter 20: Quality Assurance and Testing

545

 Many other fault - management systems exist, of course. This discussion examines Mantis specifically
because it is freely available, easy to use, and written in PHP. This means that you could, in theory,
modify and extend it to better suit your needs if so required.

 Installing Mantis

 Download the Mantis installation archive from its Web site and unpack it in the usual manner:

tar -xzvf mantis-1.1.2.tar.gz

 This will create a directory called mantis - 1.1.2 containing all the source and configuration files for
Mantis. You should have a VirtualHost in Apache ’ s httpd.conf configuration file pointing to this
location as follows:

 < VirtualHost 192.168.168.2 >
 ServerAdmin you@example.com
 ServerName mantis.example.com
 CustomLog /home/production/logfile_mantis common
 ErrorLog /home/production/errlog_mantis
 DocumentRoot /home/production/public_html/mantis-1.1.12
 < /VirtualHost >

 If you are using a Web server other than Apache, you should set up a virtual server to support Mantis in
the manner in which you are accustomed.

 Configuring Mantis for the First Time

 Previous versions of Mantis have supported only MySQL. As you have read throughout this book, the
authors generally favor PostgreSQL because it provides a genuinely free, open source, and more feature -
 rich alternative, closer to its commercial enterprise counterparts such as Oracle, at the expense of some
loss of performance and, of course, wider support.

 Mercifully, in the more recent versions of Mantis, PostgreSQL has been equally well supported. Indeed,
it is the use of a database abstraction layer (the likes of which was advocated back in Chapter 6) that
has enabled the developers of Mantis to bow to popular demand and add support for PostgreSQL out
of the box.

 Open your Web browser and point it to the virtual host you set up in the previous section. You should
see a screen like the one shown in Figure 20 - 1 — a “ one time run ” installation screen. Note that the URL
in the browser window has been partially obscured for reasons of security.

Part III: A Real-World Case Study

546

 As you can see from Figure 20 - 1 , Mantis wants to know the details for your database. Before you
proceed, you must create an empty database in PostgreSQL, as well as a user (with a password) that
Mantis can use.

 From your shell, use the following syntax to do just that:

root@gdmsrv02:~# /usr/local/pgsql/bin/createuser -P mantis
Enter password for new role:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

Figure 20-1: Mantis installation

Chapter 20: Quality Assurance and Testing

547

 Don ’ t forget to make a note of the password you ’ ve chosen. Next, create the empty database as follows:

root@gdmsrv02:~# /usr/local/pgsql/bin/createdb mantis

 You can now point the Mantis installation screen (still open in your Web browser, it is hoped) at the
database you just made and click Install/Upgrade Database.

 The installation screen should tell you that all was successful, and provide a link for you to “ continue ” to
log in to Mantis for the first time.

 Logging in As Administrator

 Fire up your Web browser and point it at the virtual host you created earlier. You should see a login
screen similar to what is shown in Figure 20 - 2 . Again, the full URL has been blanked out for security.

Figure 20-2: Login message

Part III: A Real-World Case Study

548

 Now, log in as administrator . By default, the password has been set in the PostgreSQL database
generation script to be administrator .

 After you ’ ve logged in, you should first lock down your Mantis installation. The best way to do this is to
create another account, not named administrator , with a more secure password that you can use for
day - to - day administration. This is particularly important if you are able to access your Mantis
installation over the public Internet.

 You may also notice that your installation of Mantis implores you at login to delete the admin directory
from your installation. You should do just that. You won ’ t need that folder anymore, so either delete it or
remove it from your Web server ’ s document root entirely. Once it ’ s removed, the nagging message
disappears accordingly.

 Creating and Editing Users

 Everyone who will have access to Mantis (that is, yourself, your development team, and maybe your
client ’ s representatives) will require a user account.

 To create an account, click the Manage link when logged in as an administrator. “ Manage Users ” is
selected by default, and, accordingly, you will see a list of user accounts on the system. Creating a new
account is as simple as clicking Create New Account. Don ’ t forget to set the access level to an
appropriate level. Anyone whose only task is to report bugs or defects can be set as a reporter, whereas
you want your own account to be administrator.

 After you have created all the necessary user accounts (including at least one with administrative
privileges), you can completely remove the administrator account.

 Once a user is created, you can modify even more properties of that user ’ s account by clicking his or her
username. Figure 20 - 3 shows a typical user editing session in Mantis.

Chapter 20: Quality Assurance and Testing

549

Figure 20-3: Typical user editing session in Mantis

Part III: A Real-World Case Study

550

 Adding a User to a Project

 Crucially, you can use the Edit User screen not only to edit the user ’ s details, but also to add that user to
a project. By default, a user does not have access to any projects, which means that even if he or she has
reporter status, that user can ’ t report any bugs.

 To add the user you are editing to a project, select the project in question (if this is your first time using
Mantis, you won ’ t have any yet) and click Add. If a project is marked as public, you can skip this step
because all users will have access. This is very rarely desirable, especially if you have clients using the
system.

 Note that when creating an account, your new users will automatically be sent an e - mail message
containing their usernames and passwords, and the URL for accessing this installation of Mantis. If this
behavior is not desirable, you can disable it in the Mantis configuration file you were editing a few
moments ago.

 Creating New Projects

 There is no limit to the number of projects that Mantis can support.

 To create a new project, select the Manage Projects link toward the top of the screen. A similar view to
that shown in Manage Users will be shown, with all current projects displayed. To create a new project,
click Create New Project.

 Initially, you will be asked to specify a project name, status (which is an arbitrary flag for your own
reference), view status (which should be set to private for the reasons discussed previously), description,
and an upload file path. The upload file path is the place where any binary files (such as screenshots of
the bugs being replicated) attached to bugs lodged in the system will be stored. This must be writable by
the Web server, which you may need to effect by manually changing the permissions of that particular
folder on your server.

 Setting Up Project Bug Categories

 After you have created a new project, you can edit its finer details by clicking its name. The most
important detail you will want to set is the categories for the project. Each defect entered into the
system can be placed in a category, and you will want to define as many as you see fit. Figure 20 - 4 shows
a typical project being managed in this way, with bug categories being added to make the project ready
to use.

Chapter 20: Quality Assurance and Testing

551

 You may want to have categories similar to the following:

 Copy/text Change

 Design and Appearance

 Usability

 Functionality: Business Logic

❑

❑

❑

❑

Figure 20-4: Managing a typical project

Part III: A Real-World Case Study

552

 Functionality: Desirable (out of scope and chargeable)

 Functionality: Incorrect

 Functionality: Malfunction

 Functionality: Missing (but detailed in specification)

 Functionality: User Interface

 Project Management and Administration

 Database Schema

 Systems and Infrastructure

 After you have created a set of categories, you can easily reuse these on future projects by using the
Copy Categories From and Copy Categories To buttons judiciously. These can be found by editing
the categories on a project (select Manage Manage Projects) and then scrolling to the very bottom
of the list of the existing categories you are maintaining. You will probably find that a universal list of
categories similar to the preceding will serve you well in any future projects upon which you might
embark.

 With your project set up, you may need to select it whenever you log into Mantis in the future, especially
if you have more than one project on the system. The small drop - down list box in the top - right corner of
the screen enables you to flip among projects by name.

 Reporting Bugs

 Now that you have the project set up, you and your team can start entering bugs that were found. Be
sure to translate any faults into more specific tasks, rather than simply announce the problem. For
example, “ Move the pagination bar from the bottom to the top of the page, ” is more productive than
 “ The pagination bar is in the wrong place. ”

 To report a bug, simply select Report Bug from the main navigation.

 You must select a category for the bug. This list will be generated dynamically from the selection of
categories you entered earlier.

 Other information you need to enter includes the following:

 Reproducibility — If this is a fault, rather than a simple request, state how frequently the problem
can be reproduced. If this is a request for a new feature, select N/A, because there is nothing to
reproduce.

 Severity — This list is hard - coded into Mantis and relates to the impact the fault is having on the
project. Most of these are self - explanatory. Feature refers to a fault at the feature - level and
implies that a key feature is either missing or rendered completely unusable by the fault. Block
means that other testing is being held up as a result of this fault.

 Priority — This indicates a relative severity level for the fault to be attended to by the
development team.

 Summary — This is a brief, one - line summary of the fault or, if there is insufficient space, the area
in which the fault is developing (for example, “ Auto - completion of text fields when replying to
e - mails ”).

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Chapter 20: Quality Assurance and Testing

553

 Description — This provides further detail about the fault.

 Additional Information — This provides any additional points that may aid the developers in
resolving the problem.

 Upload file — If you wish to associate a binary file with this fault (for example, a screenshot
showing the fault in action), you can upload it here. It will be stored in your server in the
location you specified when you set up the project.

 Report Stay — If you check this box, you will be taken back to the “ report new bug ” screen when
the bug is successfully entered. This enables you to batch - enter bugs more easily.

 After you have entered a bug, you can view it under View Issues from the main navigation menu. One
key point worth noting is that the bug is not yet assigned to anyone. This is the next step.

 Assigning Bugs

 After bugs have been entered into the system, you will doubtlessly want to use your own Mantis login to
assign their resolution to one of your development team.

 Select the bug by its number from the list shown under View Issues, and you will see a drop - down list of
users next to the button named Assign To. Select the user to whom you wish to assign the bug (which
can be yourself) and click the button. The user lucky enough to be given the task of resolving this bug
will be sent an e - mail with a direct link to the bug.

 You can also bulk - assign bugs from the View Issues screen. This can be useful if you are working on a
small project and you want to assign all open bugs to a given user. Place a check mark next to the bugs
you want to assign, select Assign in the drop - down list box at the bottom of the list, and click Go. You
will be invited to select a user, and the checked bugs will then be assigned to that user in the same way.

 Annotating Bugs

 Your developers may take issue with a bug you have raised or, alternatively, want to add their own
questions or comments. They can do this by viewing the bug, entering text in the relevant text box, and
clicking Add Bugnote. The comment will be recorded against the bug, and a copy is sent to the person
who raised the bug in the first place. The bug raiser may then want to add his or her own comments (in
reply, if necessary), which will in turn be sent to the developer, and so on.

 A developer may also want to make use of the resolution status of the bug to indicate his or her progress
on the task at hand, or reaction to the bug overall. This includes such flags as “ not a bug, ” “ won ’ t fix, ”
 “ fixed, ” and so forth. Any changes in status also generate notification e - mails to the bug raiser.

 Resolving Bugs

 After a developer has fixed a bug, he or she simply marks it as resolved by clicking the Resolved button.
This changes both the resolution status and the overall status of the bug to “ resolved, ” firing e - mails to
the bug raiser in the process.

 If the project administrator agrees that the bug is resolved, he or she may set its overall status to
 “ closed. ” If he or she disagrees that it is resolved, it can be assigned again, and the resolution status is set
to “ reopened. ” The developer will be notified that the bug has been reopened.

❑

❑

❑

❑

Part III: A Real-World Case Study

554

 Both status flags are of particular use in the View Issues view, in which filters may be applied to see only
bugs of a specific status. Color - coding is used to indicate the status of bugs at a glance.

 Getting the Most out of Mantis
 In addition to being quite straightforward to get started with, Mantis is a hugely powerful package that
requires and deserves in - depth attention. A complete discussion of all its features and capabilities is
beyond the scope of this chapter, but the Mantis Web site at www.mantisbt.org offers detailed
instructions, including a useful FAQ.

 Summary
 This chapter introduced you to the basics of quality assurance (QA). You first learned what quality really
means in application development, and the six core concepts that constitute it.

 You then learned how many of those concepts can be tested in the real world to determine and measure
quality on any given project, and how best to record the results of those tests.

 Finally, you were introduced to Mantis, a powerful bug - tracking and fault - management tool. You
learned how to install and configure it, as well as how to use it on a daily basis for your own projects.

 By now, you should have a quality product, free from defects. In Chapter 21, you ’ ll learn how to devise
an effective deployment strategy for getting that product from your development and staging servers
onto a live environment.

 Deployment

 The Sales Force Automation toolkit is now not only fully complete in accordance with the agreed
specifications and blueprints, but also fully bug - free, thanks in no small part to some
thoroughgoing quality assurance (QA) and testing in Chapter 20 .

 The process of getting your application uploaded onto a production server might have seemed
simple enough when you first started out in Web development, but for a true professional, there is
(as always) a best practice to be followed. This best practice is not just posturing. It is vital to
ensuring effective version control and QA — two subjects touched upon elsewhere in this book.

 In this short chapter, you ’ ll learn about structuring a server environment for a development team
and managing the transition of source code between each server as you “ go live. ” You ’ ll also
examine how and when to apply each transition to match the immediate commercial objectives of
both your team and your client.

 Devising Development Environments
 When developing a large - scale PHP application, there is generally an inescapable requirement for
multiple servers or development environments to play their respective roles throughout the
development process.

 Of course, ultimately, your completed application (be it a public Web site, or a closed intranet
application) will reside on a server somewhere. This server may be in a dedicated data center or
simply in the server cupboard of the client company.

 This server is universally referred to as the production server or, if more than one server is
involved (as is often the case in high - traffic/high - availability sites, as discussed in Chapter 23), the
 production environment . It may not even have been purchased when you started the project. As a
result, a series of interim environments are required to provide the chronological stepping-stones
for the deployment of your application.

556

Part III: A Real-World Case Study

 The Studio Development Environment
 As project lead, you must equip your development team with a local development environment in
which to develop. This example assumes that your project is called Widgets. Your local development
server will probably sit on your internal network only, with a private IP address of 192.168.1.1 (or
similar); and it should not be exposed to the outside world, because the outside world will never need to
access it. You may also have devised an internal domain name — maybe mydevelopmentco.local —
 that resolves using only your own internal DNS servers.

 You may then establish a virtual server in Apache or your Web server of choice:

 http://dev.widgets.mydevelopmentco.local

 The corresponding entry in a UNIX/Linux installation of Apache ’ s httpd.conf would be as follows:

 < VirtualHost 192.168.1.1:80 >
 ServerName dev.widgets.mydevelopmentco.local
 ServerAdmin ed@example.com”
 CustomLog /home/widgets/logfile_wid common
 ErrorLog /home/widgets/errlog_wid
 DocumentRoot /home/widgets/public_html/dev/php
 < /VirtualHost >

 Obviously, you would amend the IP address, server name, e - mail addresses, and paths to match; and
configuration syntax in other Web servers would, of course, be subtly different.

 You also must expose the home directory of the user widgets to all of your development team, such that
they may easily modify the code using their chosen development environments. In a typical setup, they
may be using Windows workstations to modify code. In such a case, the use of Samba (www.samba.org)
is highly recommended to create a network drive letter from which they can access the source base and
amend it directly on the development server.

 Modifications that your team then makes to the source base will be visible only at the development URL
(http://dev.widgets.mydevelopmentco.local) and not on the live site.

 If you are using any form of version control methodology, as described in Appendix A, you must
provide virtual server instances for each of your developers, too — such as http://johndoe.dev
.widgets.mydevelopmentco.local . More detail on this setup and the role it plays in version control
is provided in Appendix A. In such a setup, the master development server mentioned previously still
exists, but it is a reflection of the source base as committed to the version control repository, rather than
any live in - progress development.

It can be time - consuming in larger development studio environments to have to
create DNS entries for every new project and, when using version control, every new
developer, too. If you are using just one physical server for all your projects, then
you can simplify this process by using a Wildcard DNS setup. This means that * .
mydevelopmentco.local will automatically resolve to 192.168.1.1. You can find
information on how to do this on the Web. Just search for “ Wildcard DNS.”

Chapter 21: Deployment

557

 The Studio Staging Environment
 As a development outfit, you will want a production server of your own — a place for you and your
team to host your own ratified, finalized code prior to dispatch to your customer.

 If you ’ re using version control, this will be a reflection of your repository, but not necessarily of the very
latest versions in all cases. Rather, it will be the latest versions of each file that have been approved for
submission to key project stakeholders for approval. In practice, this will represent the versions of each
file that have been “ tagged ” as release . You can find more information on tagging in Appendix A, where
version control is explored in more detail.

 The studio staging environment is generally for internal use only. It is of most use to project managers
who want to assess the true progress of a project, as well as for QA and testing, where modifications to
the live database cannot be risked.

 In the previous example, the studio staging environment might be named as follows:

 http://studiostaging.widgets.mydevelopmentco.local

 The corresponding Apache entry may read as follows:

 < VirtualHost 192.168.1.1:80 >
 ServerName dev.widgets.mydevelopmentco.local
 ServerAdmin ed@example.com
 CustomLog /home/widgets/logfile_wid - staging common
 ErrorLog /home/widgets/errlog_wid - staging
 DocumentRoot /home/widgets/public_html/staging/php
 < /VirtualHost >

 The Live Staging Environment
 The live staging environment provides a test bed for you to demonstrate new functionality to your
project stakeholders prior to release in the live production environment.

 The staging environment is typically hosted on the same server (or servers) as the production
environment, but with a subtly different URL. For example, if your live site were called http://www
.widgets.com , you might use http://staging.widgets.com for your live staging environment.

 A typical Apache configuration might read as follows:

 < VirtualHost 192.168.2.1:80 >
 ServerName staging.widgets.com
 ServerAdmin ed@example.com
 CustomLog /home/widgets/logfile_wid - staging common
 ErrorLog /home/widgets/errlog_wid - staging
 DocumentRoot /home/widgets/public_html/staging/php
 < /VirtualHost >

 Note the different IP address — indeed, a different subnet — compared with your development
server. It ’ s worth using different private address ranges for each cluster of servers for which you are
responsible. Because your live staging environment will likely reside in a data center and not on your

558

Part III: A Real-World Case Study

local network, a second subnet has been introduced: 192.168.2.x instead of 192.168.1.x. Keeping subnets
different enables you to configure virtual private network (VPN) access to your remote data center more
easily, should you ever wish to do so. It ’ s also a lot less confusing.

 If your live production environment uses multiple servers in a load - balanced configuration, you would
be wise to run your staging environment off a single server. After all, your staging environment is
unlikely to attract the kinds of loads that warrant the use of multiple servers.

 It may be prudent to protect your live staging environment with a username and password, because it is,
strictly speaking, publicly accessible. It would be potentially disastrous if a member of the general public
saw content that was, for example, subject to a press embargo. Imagine the fallout if people could check
up on what Apple was about unveil at their latest Worldwide Developer ’ s Conference (WWDC) just by
visiting http://staging.apple.com !

 However, avoid using an .htaccess file to accomplish this because that file risks being accidentally
replicated onto your production environment during deployment, which would expose your live
environment to that same password protection.

 Instead, you can add this layer of security directly into your Apache configuration file:

 < VirtualHost 192.168.2.1:80 >
 ServerName staging.widgets.com
 ServerAdmin ed@example.com
 CustomLog /home/widgets/logfile_wid - staging common
 ErrorLog /home/widgets/errlog_wid - staging
 DocumentRoot /home/widgets/public_html/staging/php
 < Directory /home/widgets/public_html/staging/php >
 AuthType Basic
 AuthName Staging
 AuthUserFile /home/widgets/.htpasswd
 Satisfy All
 Require valid - user
 < /Directory >
 < /VirtualHost >

 The .htpasswd file is created in the normal manner (that is, using /usr/local/apache/bin/
htpasswd).

 It ’ s important to keep the location of the .htpasswd file outside the directory structure of your Web site.
In this case, it ’ s three folders up under /home/widgets. This ensures that the password file can ’ t be
retrieved by a simple HTTP request from a malicious intruder.

 As an aside, it ’ s worth remembering that this kind of basic authentication (as it is known) is not exactly
industrial strength. If you have truly sensitive material on your live staging environment, you should
consider using the Apache directives Allow and Deny to restrict by IP address, too.

Chapter 21: Deployment

559

 The Live Production Environment
 Your live production environment provides the environment that the public sees — the live Web site
itself. This may not be the general public if this is a closed system, but it is nonetheless the place for fully
tested, fully approved, ratified code.

 A typical Apache configuration might read as follows:

 < VirtualHost 192.168.2.1:80 >
 ServerName www.widgets.com
 ServerAdmin ed@example.com
 CustomLog /home/widgets/logfile_wid - live common
 ErrorLog /home/widgets/errlog_wid - live
 DocumentRoot /home/widgets/public_html/live/php
 < /VirtualHost >

 Development Databases
 Assuming that your application is database - driven, you must make a conscious decision about what
instance of the database (that is, which physical server and which database on that server) should
be used for each of your environments.

 This is particularly pertinent considering that certain evolutions of code may require modifications to
database schema that, if made against a production database still being driven by an older release of
code, would surely cause errors.

 With this in mind, consider the following strategy:

 Individual development environments (if used) should employ a locally hosted database,
specific to that individual. For example, John Doe should use a database called
widgets - johndoe.

 The master development environment should employ a locally hosted database (perhaps simply
named widgets - dev), not specific to any individual developer, but reflecting the latest database
schema required to support the very latest versions from your version control platform.

 The studio staging environment should employ a locally hosted database (perhaps simply
named widgets - stg), not specific to any individual developer, but reflecting the latest database
schema required to support the latest release - tagged versions from your version control
platform.

 The live production environment should, naturally, use the live database server and the live
database.

 The live staging environment should also use the live database so that when it ’ s being used by
the client for testing and approval purposes, it provides an accurate reflection of how the live
environment will behave once the changes are deployed.

❑

❑

❑

❑

❑

560

Part III: A Real-World Case Study

 Of course, with at least four databases in existence at any one time, keeping track of necessary changes to
the database schema itself can be tricky.

 Version control software is of little use here. Yes, it is possible to maintain a dump of the database
structure in your repository, but simply retrieving this dump will not physically update the database
schema when it is downloaded. Simply dropping and recreating the database is an option, but this will
lose any test data stored therein. It is also difficult to use such a SQL “ dump ” file to determine
differences in database schema when you ’ re working on larger projects.

 The best approach, therefore, is one of good communications. Version control can play an important part
here. Create a folder called db - changes in your repository. Instructing your developers to add text files
containing a series of ALTER statements whenever they make changes to the database schema will mean
that any developer performing “ get latest versions ” will also receive a series of changes to make to his or
her own database.

 Such files can also be tagged as release so that those responsible for maintaining the master development
and studio staging environments can ensure that both databases are kept up - to - date to the appropriate
degree.

Telling your application which database to use can result in awkward switch
statements or, worse, hard - coded values that need changing by hand. There is
another way, however. You doubtlessly have a file called constants.phpm (or
similar) that dictates database IP address, database name, username, password, and
so forth. By adapting this to consult the $ _SERVER[“ HTTP_HOST “] property, the
database IP, name, username, and password can be conditionally and dynamically
determined, and the correct database selected automatically, depending on the
virtual server being used. That way, everyone can share the same constants file.

 The Deployment Workflow
 Simply having these development environments does not automatically facilitate best practice
deployment strategy. The workflow of source code is important, too.

 You may find the diagram shown in Figure 21 - 1 useful for illustrating the source code flow, from
deployment to live.

Chapter 21: Deployment

561

Start

Developers work
on code on their
own development

environments,
updating their

database schema
as and when

required

Code is committed
to version control

repository

Code is
automatically
deployed to

master
development
environment

(MDE)

Is all code ready?

Is all code ready?

Is all code ready?

Are MDE Database
Updates required?

Are SSE database
updates required?

Updates from
version control
repository are

applied

Updates from
version control
repository are

applied

Updates from
version control
repository are

applied

Project Manager
evaluates code on
MDE for readiness

Project Manager
evaluates code on
SSE for readiness

‘Release’ tagged code
deployed to Studio Staging

Environment (SSE)

Tag relevant
versions of code

for ‘release’

Code deployed to
Staging Live
Environment

(SLE)

CLIENT evaluates
code on SLE

DEPLOY SLE to Live
Production

Environment (LPE)

Are live database
updates required?

NoNoNo
No

Yes

Yes

Yes

Yes

NoNoNo

NoNoNo

Yes

Yes

No

No

 Figure 21 - 1: Source code flow

562

Part III: A Real-World Case Study

 Following is the crux of the process:

 1. Individual developers develop against their own development environment, localized to their
own database.

 2. This code is deployed to a master development environment. This may happen automatically
using a scheduled task, or be initiated by the project manager on a semi - regular basis. Any
changes that need to be made to the master environment ’ s database schema are also made at
this time.

 3. The code on the master development environment is tested, inspected, and approved by the
project manager or, preferably, the project ’ s lead architect. Certain files may be tagged as ready
for the studio staging environment and, hence, release.

 4. This code then makes its way either in full or in part to the studio staging environment, where it
undergoes a final review before submission to the client. The studio staging environment
database is also amended if required.

 5. The code is then deployed to the live staging environment, and the live database is amended to
support any schema changes. This is where the client approves or rejects the changes you have
made.

 6. Finally, the code makes its way from the live staging environment to the live production
environment. There is no need to change the database at this transition, because the same “ live ”
database is used both for the live staging environment and the live production environment.

 Let ’ s now look at the technology behind these transitions.

 Automated Version Control Repository Extraction
 Many larger projects use a technique called version control , which is a technique for ensuring that the
work done by different developers on a project does not conflict at any stage. It also keeps track of
changes made to code as and when they are made, in case something goes wrong during the
development process. Appendix A provides more information on version control.

 When employing version control on a project, you may find it necessary from time to time to automate
the retrieval of the latest versions from the repository. In the previous process, this is required for
collating the efforts of your development team to assemble the snapshot master development
environment.

 Using CVS

 Using the Open Source Concurrent Versions System (CVS) program, this can be accomplished using
syntax similar to the following. This syntax is for UNIX implementations of CVS. Using the Windows
CVS client, the process becomes a simple point and click.

 cvs - d :pserver:username@cvsserver:/path checkout - r tag module

 Here, module is the project name, username is a CVS username with access to that project, and
cvsserver is the CVS server ’ s hostname. Optionally, you can specify a tag. This may be useful if you
want to extract to your studio staging environment.

Chapter 21: Deployment

563

 The tag can be used by the project manager or lead architect to designate different versions of each file
on the project as part of a distinct release. For example, a latest stable release of your application might
consist of version 1.3 of one file, 1.5 of another, 1.4 of a third, and so on. By tagging each relevant version
with a tag such as lateststable, those wishing to retrieve a particular release of your application can
do so easily.

 Such a command may well be committed to your server ’ s crontab so that it runs on a scheduled basis.
For example, you may have two entries as follows:

 Every day at midnight, the contents of the repository (regardless of tag) are extracted to form the
master development environment.

 Every day at 3:00 A.M., the contents of the repository tagged release are extracted to form the
studio staging environment.

 Using Subversion

 Appendix A examines Subversion (sometimes known as SVN, for short) as a somewhat more usable and
practical alternative to CVS. In particular, Appendix A demonstrates how tunneling SVN over the SSH
protocol can enable the easy deployment of new SVN repositories at the drop of a hat, without worrying
about poking holes in firewalls and so forth.

 This approach allows for the easy checkout of a given code repository using syntax similar to the
following:

 $ svn checkout svn+ssh://ed@ssh.example.com/home/production/svn/widgets

 In this example, a project called widgets is checked out from a repository, the root of which is located at
/home/production/svn on the server located at ssh.example.com . The checkout is performed as user
ed. It stands to reason that this user must have file system Read access to the repository in question.

 Thankfully, the process of retrieving from a version control repository all those files with a given tag is
relatively straightforward.

 In Subversion, tags and branches are just copied paths in the repository tree. By convention, tags live
under /tags and branches live under /branches.

 $ svn copy svn+ssh://ed@hspux01.unix.example.com/home/production/svn/widgets/
 trunk svn+ssh://ed@hspux01.unix.example.com/home/production/svn/hss/
 widgets/release

 The previous syntax will create a tagged copy of your project based on the current trunk version. You
can then check it out just like any other repository directory:

 $ svn checkout svn+ssh://ed@ssh.example.com/home/production/svn/widgets/
 tags/release

 You can find more about branching and tagging in Subversion at http://svnbook.red - bean.com/
en/1.0/ch04s06.html .

❑

❑

564

Part III: A Real-World Case Study

 Using rsync
 It is not difficult to see that the most common deployment requirement is to upload the contents of
folder A on server B, onto folder C on server D.

 This is a simple operation in itself, but when the size of the source base of modern projects is taken into
account, the task of shifting hundreds of megabytes across the Internet just to deploy a small change can
rightly seem inefficient.

 This is where rsync comes in. The rsync utility is a Linux/Mac OS X/UNIX - only utility, although
recently a number of authors have attempted to produce Windows ports. It provides a means to copy the
contents of a given folder on a local server to another given folder on a remote server, while copying
only the files (or parts of files) that have changed. In other words, it synchronizes the two folders.

 However, this is usually a synchronization in only one direction: from A to B. Files that have changed on
A since the last deployment to B are copied, but anything that has changed on B in the meantime is not
copied back to A. This is not a problem, however, if the pattern of deployment discussed in this chapter
is followed rigorously.

 The most likely two occasions on which you would use rsync are as follows:

 For the deployment of the contents of the studio staging environment to the live staging
environment

 For the deployment of the contents of the live staging environment (after being approved) to the
live production environment

 rsync even works across two folders on the same server. Accordingly, even if your live production
environment is the same physical server as your live staging environment, you can still use it to make
your deployment. When copying from server to server, rsync makes use of the SSH (or, in a pinch, RSH)
protocol. Hence, the only firewall rule required in order to allow the copy to take place is for port 22 to
be opened for TCP traffic. There is an rsync - specific protocol, too, but unless for some reason you
cannot use SSH, you will not need to use it.

 Basic rsync Usage

 You will normally use rsync as part of a shell script. For example, you might create a script called
deploy - studio - staging - to - live - staging and another called deploy - live - staging - to - live -
 production. They all work in much the same way, however, and call rsync using syntax as follows:

rsync - avrz - e ssh /local/directory/ * username@remotehost:/remote/directory

 The relevant directives are as follows:

 The - a flag implements archive mode, which provides a useful prepackaged set of settings
suitable for the usage described earlier, including causing directory permissions and symbolic
links to be left intact when the transfer is initiated.

 The - v flag causes verbose output. You will see a detailed list of which files are, in fact, being
chosen to be copied.

❑

❑

❑

❑

Chapter 21: Deployment

565

 The - r flag causes the copy to take place recursively.

 The - z flag causes data being transferred to be compressed before transfer. On a same - server
copy, this should be omitted.

 The - e ssh directive tells rsync to use SSH to transfer files, rather than RSH.

 The source directory is specified as /local/directory/ * (the * simply signifying that all files
within that directory should be copied).

 The remote directory is specified as username@remotehost:/remote/directory, but
if you ’ re copying to another folder on the same server, the username@remotehost directive
should be omitted.

 Upon executing an rsync command, you may be prompted for a password. This is the login password
associated with the username on the remote server specified, as if you were SSH ’ ing into that server in
the normal fashion.

 Let ’ s look at some examples of this syntax at work.

 rsync Syntax Examples

 Let ’ s first look at how you might deploy the contents of your studio staging environment to your live
staging environment at your client ’ s data center. You would use the following syntax:

rsync - avrz - e ssh /home/widgets/staging/
 * widgets@staging.widgets.com:/home/widgets/staging

 If the client then approves the changes on the staging server, you can put them live. In this example,
suppose that you put live simply to another folder on the same server. You would use the following
syntax:

rsync - avr /home/widgets/staging/ * /home/widgets/live

 Note that now you omit the protocol directive, because this is a local - only synchronization. In addition,
you do not enable compression because you assume that the speed increase will be minimal.

 If your client ’ s live production server were a physically different server, you might use the following
syntax:

rsync - avrz - e ssh /home/widgets/staging/ * widgets@live:/home/widgets/live

 Alternatively, if your client used load balancing across three servers, you would have to execute the
deployment three times, once for each target server:

rsync - avrz - e ssh /home/widgets/staging/ * widgets@web01:/home/widgets/live
rsync - avrz - e ssh /home/widgets/staging/ * widgets@web02:/home/widgets/live
rsync - avrz - e ssh /home/widgets/staging/ * widgets@web03:/home/widgets/live

❑

❑

❑

❑

❑

566

Part III: A Real-World Case Study

 Keeping Servers in Sync with rsync
 If your live production environment does involve multiple Web servers, there ’ s another phenomenally
useful role for rsync, too. Many sites involve the use of server - writable /data folders. These are
containers for large binary files and other data that is perhaps not appropriate for a database such as
PostgreSQL or MySQL, or that may, in fact, have been generated as “ static assets ” out of a relational
database. (This is a technique advocated in Chapter 23 , which examines how best to support high - traffic
and high - availability Web sites.) A good example would be some variety of user - uploaded documents.
For example, a user may have uploaded a photograph for a “ my profile ” page.

 In setups with multiple live Web servers, a dilemma arises. How do you make newly uploaded data
accessible to all the Web servers in the cluster? One way is to use a centralized file server, much as a
centralized database server is used, perhaps exporting its contents via Network File System (NFS). This
can be very slow, however, and is additional overhead that must be considered.

 The alternative is to use rsync between the servers in the cluster on a very frequently scheduled basis,
so that when a new binary is uploaded, it is leaked into the other servers in the cluster within just a few
minutes (or even seconds).

 This approach can be accomplished quite effectively using rsync, but the keyboard password prompt
discussed previously could prove to be a barrier if you try to schedule any such commands — after all,
the cron scheduler can ’ t type passwords for you.

 Mercifully, there is a workaround. It is the use of what is known as passwordless SSH and involves the
placement of a key file on both client and server prior to connection. Because rsync depends on SSH in
an environment with passwordless SSH set up, rsync is also passwordless, hence the scheduling of such
tasks is made much easier.

 Setting up key - driven SSH is slightly challenging and outside the scope of this chapter, but detailed
information can be found on the Web. Check out the following excellent “ How To ” document for all the
configuration steps you ’ ll need:

http://www.cs.toronto.edu/~murray/compnotes/passwordless_ssh.html

 Note one caveat, however. If you do adopt this approach, ensure that your application is aware of the
fact that binary data may not necessarily be available in the minutes immediately following an upload.
For example, if you know that your cron job is set to run every five minutes, you should suppress the
display of any user profile photograph until five minutes after the upload has completed in favor of
displaying a “ photo coming soon ” message. After the five minutes have elapsed, you can be sure that
the photo exists on all the Web servers in the cluster, so you can safely attempt to display the photo
normally. To accomplish this, simply add a time_photo_uploaded property to the user ’ s database
record and measure the time elapsed.

 If, for some reason, you simply must allow instant access to such uploaded photographs, consider
implementing a system whereby the first time that photograph is requested on a Web server that does
not have the photograph (for example, web01), that Web server immediately initiates an rsync for that
file in isolation with other Web servers until it finds one that does (for example, web04) and then
displays the newly copied photograph to the user. This may sound long - winded, but in practice the
user will experience a very short delay while the file is copied; subsequent visitors requesting that
photograph from that Web server will be served it in the normal way.

Chapter 21: Deployment

567

 If you do adopt this approach, consider ensuring the uniqueness of filenames of uploaded data so that
if they are replaced with a new version, you won ’ t have some servers serving the old version and others
serving the new. For example, if your user profile photographs are named using the user ’ s ID from
the database table user (for example, /data/userpics/193913.JPG), then consider using a serially
numbered suffix, so that the filename becomes 193913_1.JPG, and the next version 193913_2.JPG, and
so forth. You would store which serial number was current against the user ’ s record in the database,
and, hence, display only the most recent version.

 A Word About FTP
 Before closing, it ’ s worth taking a quick look at the role of File Transfer Protocol (FTP). It ’ s almost
certainly something with which you ’ re pretty familiar already. It ’ s been around for years (longer than the
Web itself), and most of the $ 10 - a - month ISPs push it as the principle way to get files to your Web server.

 For enterprise or professional - grade development, however, it ’ s a nonstarter. As well as being well -
 known for the security holes found in FTP server software, and for the rigmarole of enabling the
necessary firewall support (FTP is unusual in that in “ active ” mode the server actually connects back into
your computer), it also has one major flaw: it ’ s unencrypted.

 What this means in practice is that any files you transfer to and from your servers via FTP are potentially
at risk of exposure to the outside world — to someone sniffing your wi - fi traffic, to a rogue employee at
your ISP, anyone. That code is your intellectual property. It ’ s confidential. Furthermore, letting other
people see your code puts you at greater risk of intrusion or attack in the future, as it will be known how
your application works under the hood.

 In short — don ’ t do it . Stick to rsync, which uses Secure Copy Protocol (SCP) or Secure FTP (SFTP). Both
of these protocols use SSH as the underlying transport mechanism, which is inherently secure and
encrypted. It ’ s not infallible (issues are discovered with SSH from time to time, too), but it ’ s a darn site
better than FTP.

 Summary
 In this brief chapter you learned about the principles of deployment in enterprise - level PHP applications,
including the effective structuring of development environments for your team, and managing the
transition of source code between each server using repository extraction and rsync.

 In Chapter 22 , you ’ ll meet some of the most common content management systems (CMSs) and content
management frameworks (CMFs) available for the PHP platform, both free and commercial. You ’ ll learn the
pros and cons of each, as well as how to make an informed and educated decision when recommending
or specifying a CMS/CMF for your own application.

Part IV

Pushing PHP
to Its Limits

Chapter 22: Content Management in the PHP World

Chapter 23: Handling High Traffi c and High Availability

Chapter 24: PHP Advocacy

Chapter 25: Your Career As a PHP Professional

 Content Management in the
PHP W orld

 Sooner or later, you will get a client who asks you about content management. Back at the turn of
the millennium, content management wasn ’ t very well understood, and many marketing
departments and business owners were unaware of the benefits of installing such a system.

 Today, it ’ s a different story. With the advent of blogs, wikis, and other publishing tools, content
management has gone mainstream, and everyone seems to have a good handle on why they ’ re so
beneficial. For one thing, business stakeholders immediately grasp the benefits of removing
bottlenecks, and of allowing the marketing and content teams to publish information when the
business needs it to be “ out there. ”

 In this chapter, you ’ ll get an overview of content management — what it is, why companies and
organizations benefit from having it, and why these systems are important. Next, you ’ ll get a brief
history of content management and a cook ’ s tour of a handful of open - source PHP systems.
Finally, the chapter wraps up with a developer ’ s checklist of requirements for content
management, just in case you want to write your own system.

 What Is Content Management?
 The textbook definition of content management (the one you ’ ll find at places like Wikipedia.org) is
 “ a set of processes and technologies that support the evolutionary life cycle of digital information. ”
That ’ s a pretty cut - and - dried definition, but it gets to the heart of the matter.

 When you survey content management from a much higher vantage point (the proverbial
“ 30,000 - foot view ”), it ’ s easy to pick out the peaks, valleys, slopes, marshes, and towns that
constitute the geographic realities of what the term implies.

Part IV: Pushing PHP to Its Limits

572

 In no particular order, content management concerns itself with the following:

 The people who create information published on the Web (that is, content) may be all cooped up
in one room or spread across the globe. They may report in to a single chain of command (a
marketing department) or be loosely affiliated as a group of volunteer contributors to a site.
They may create content in English or in dozens of languages.

 The content itself may be text, images, movies, rich Internet applications, or audio. Furthermore,
content might take any number of forms, such as PDF files, blog posts, forum discussions, white
papers, articles, and more.

 In the world of content management, content can be sliced and diced in a variety of ways. For
example, content items may be put into different categories. (These are topic categories, such as
content about hobbies, work, religion, politics, and so on.) They may be distinguished by file
type or storage medium (such as database, flat file, or XML). Content may also be categorized
by locality (that is, U.S. content may be different from U.K. content) and language. It may even
be grouped by audience profile (such as basic/beginner, intermediate, advanced wizard,
and so on).

 Certain workflow rules may be applied to content based on any number of factors. For example,
content in certain parts of the world may have to be vetted a certain way. Editors and publishers
may intrinsically trust certain contributors (such as the ones already on staff) over others (such
as freelancers they have never worked with before). Some groups might opt to always put
content through various levels of review (such as grammar/spelling/punctuation performed by
an editor, fact checking done by a fact checker, final review by a zone editor, final publication
by a site manager, and so on). Others might opt to trust the initial contributor to write acceptable
content.

 There ’ s also a certain set of rules applied to each piece of content after it has been published . For
example, it may be necessary to automatically review certain types of content (for example,
articles or white papers) every 90 days to ensure that it remains relevant and accurate. There ’ s
nothing worse than a “ best practices ” white paper that is woefully behind the curve of industry
practices.

 Going above and beyond the strict functional requirements of a content management system (CMS), you
run into a whole bunch of operational and strategic factors. For example, editors, authors, and publishers
of content rarely operate in a vacuum. They must publish their material for a certain audience.

 Having an audience and caring what they want necessitates audience analysis. Some organizations go
through incredibly rigorous sets of audience analysis tasks to figure out exactly what the audience
wants. This includes examining not only what topics are near and dear to their hearts, but also what
formats are acceptable, what frequency they find comfortable, and even the tone and slant of such
pieces. Other groups take a more heuristic approach, publishing things that they generally know their
audience will like because they themselves are members of that audience.

 Beyond audience analysis is the needs of the organization. It ’ s easy to forget, but the organization itself
(whether profit or nonprofit) and its business partners, vendors, and investors are also stakeholders in
the publishing venture. If the company (or its partners or investors, and so on) is trying to achieve a

❑

❑

❑

❑

❑

Chapter 22: Content Management in the PHP World

573

certain objective, then the content published by that organization should support that objective. There ’ s
nothing more awkward than a content strategy at odds with a business strategy.

 Regardless of strategic direction, most publishing ventures must comply with the overarching
organization ’ s policies. It wouldn ’ t do to have a Web site publish material that reveals internal corporate
secrets, for example. Imagine the pain and suffering that would befall an organization if its Web site
published slanderous, libelous, and otherwise offensive (that is, sexist, racist, or defamatory) content.
Even a one - person show, run by a passionate partisan for one position or outlook, would run into
eventual problems if all he or she did was publish inflammatory, accusatory pieces that defamed certain
individuals.

 From an operational standpoint, content deployed on a site via a CMS must be backed up and secured
from unlawful deletion. The servers and databases that are used to run the CMS must be maintained,
patched, and operated within their own parameters. Any software and operating systems (such as
Apache and PHP) must also be maintained, patched, and secured. Most of these functions are handled
by IT within an organization, or by an external SaaS (software as a service) or ASP vendor.

 To sum it all up, the concerns of content management go way beyond building or installing a CMS. In
fact, the technical aspects of content management pale in comparison to the nontechnical side of the
house. When considered within the larger bracket of strategic IT (such as general policies for computing
or data backups), it might represent only a small piece of an organization ’ s computing needs.

 However, you must remember something extremely important: A CMS is itself a technical response to an
organizational need . That need is very simple: How does the organization quickly, easily, and effectively
publish information? Once published, how does it maintain that information?

 In short, content management offers one overarching, primary benefit: It helps the organization keep up
with the marketplace in terms of information publishing. Once you have your head around that, the rest
falls into place.

 A Brief History of Content Management
 Although you could make an argument for content management that went as far back as the mainframe
days, this chapter focuses on Web content management, and, as such, the story of content management
begins in 1995 with InterLeaf and CNET.

 InterLeaf, already an innovative company that created desktop publishing systems, saw a need for
publishing information on the World Wide Web, and created Cyberleaf. Cyberleaf was different from
other editing products (such as HoTMetaL Pro and Vermeer FrontPage) in that it enabled users to
transform documents created in word processing applications into HTML. It also enabled users
to manage links between documents. In other words, it wasn ’ t just an editor, but a single - source
publishing system, with the Web as just one target (along with print and other interactive channels) for
published information.

Part IV: Pushing PHP to Its Limits

574

 At roughly the same time, CNET created a Web site run on an internal Web publishing system that it
later patented and branded as PRISM. Basically, PRISM was a tool that enabled even the most
technophobic user to easily create Web pages. CNET wanted to commercialize PRISM, but didn ’ t want to
be distracted from its core business, which was publishing content.

 Sometime in 1996, along came Ross Garber and Neil Webber, who had founded Vignette in Austin,
Texas, with the expressed goal of making Web publishing easier and more personalized. They had been
working on a large - scale content management workflow product called StoryBuilder when they teamed
up with CNET. They licensed PRISM, offered CNET a stake in the outcome, and transformed it into
StoryServer, which shipped in 1997.

 The result (built in Tool Command Language, or TCL) was a vastly superior product to the existing
CGI/Perl approach to building dynamic Web sites. Companies could buy the Vignette StoryServer
product (licenses were in the six - figure range) and build entire applications using the tools provided.

 Along the way, the content management space filled up very quickly. BroadVision, InterWoven,
Documentum, DynaBase, Future Tense, FileNet, Stellent, and hundreds of others were all actively
creating innovative products all centered on different aspects of content publishing: workflow engines,
caching technologies, syndication, personalization, and much more. Along with the major corporate
players were plenty of others, most notably Phil Greenspun, MIT professor and founder of Ars Digita,
who created AOLServer.

 Then came the dot - com crash, and the content management marketplace splintered into two major
groups, seemingly at opposite ends of the spectrum, with an incredible merger/acquisition frenzy
characterizing the marketplace.

 On one end were the huge players (the Vignettes, the IBMs, and so on) that played in the enterprise
space. Their systems usually involved “ Big Iron ” (with Oracle on the back end, deployment on a huge
server, a lot of redundant backups, and network operations infrastructure), a lot of consultants working
for long extended periods, and enormous budgets.

 On the other end of the spectrum were the open - source applications that began to evolve in the early
years of the new millennium. These systems were mostly browser - based systems that took advantage of
the LAMP (Linux, Apache, MySQL, PHP) stack. Some of these systems were commercial (such as
Mambo, which, by the way, also has an open - source branch) or open source (such as Joomla!, an offshoot
of Mambo), while others were offshoots of earlier systems from the late 1990s (such as TYPO3). The one
thing they had in common, though, was that they all stood in sharp contrast to the enterprise systems of
the previous era.

 For one thing, the new CMSs were either extremely affordable or free. Customers could spend their
money not on base software packages, but rather on customizing the front end, the workflow, and the
data back ends.

Chapter 22: Content Management in the PHP World

575

 Figure 22 - 1: A sample Drupal layout

 In addition, many of these smaller systems were keenly focused on making one group of users happy.
Drupal was originally created as message - board software, and then morphed into an open - source CMS,
with 1.4 million downloads from the drupal.org site in one calendar year (May 2007 to April 2008).
WordPress (which began as a blogging platform) incorporated much of the simpler content management
functionality. Joomla! was born when a whole group of Mambo developers jumped ship to build what
they felt was a system more true to the open - source movement.

 Examples of PHP CMSs
 Because this is a book on PHP, it ’ s appropriate to spend most of the focus of this chapter on PHP - based
CMSs. You ’ ll learn a little bit about four systems in this section. The first two you ’ ve probably heard
about, the other two maybe not. These systems were chosen not because they are exemplars in their
field, or because of their popularity, but because they each tackle content management in a different way.

 It is hoped that after this quick survey, you ’ ll be able to make good choices regarding system selection
(when the time comes) or even building your own system (if that ’ s your goal).

 Drupal
 Drupal is a Web content management framework. As shown in Figure 22 - 1 , it is modular in nature,
allowing almost unlimited customization. All content is stored in a database, usually MySQL. The
middleware and modules are all written in PHP.

Part IV: Pushing PHP to Its Limits

576

 Content in Drupal is stored in individual nodes. You might have a story node, such as an article, or a
blog node. Many different node types have been created by developers over the years, each with its own
set of rules, metadata, and so forth.

 Note that in Drupal, a node is called a node not because it is part of a network. Instead, think of a node
as a piece in a puzzle. Nodes can be part of a blog, an online help system, or a forum. Using the Content
Construction Kit, users can form their own nodes. At their most basic, all nodes have some universal
metadata associated with them, including the following (see Figure 22 - 2):

 Node ID

 Content type

 Title

 Body

 Creation date

 Body

 Author

❑

❑

❑

❑

❑

❑

❑

Figure 22-2: Creating content with Drupal

Chapter 22: Content Management in the PHP World

577

Figure 22-3: Managing content in Drupal

 Each node can have any number of relationships with other nodes. If you load a certain node (for
example, node 198393), then Drupal will present it to the user and grab all the other nodes associated
with it. That particular node, with that particular ID, may be a blog posting with a headline, text body,
and so forth, but it will also contain pointers to other nodes — for example, all the comments associated
with that blog post, and all the related blog posts listed in a sidebar.

 In Drupal, layouts are handled by themes . The default theme is a three - column layout, with the center
column acting as the “ content column ” and the sidebar columns providing navigation and contextual
links. Each column can contain blocks of information, such as the story being viewed, most recently
posted stories, most popular stories, and so on.

 Blocks of content may or may not be presented to a viewer, depending on the viewer ’ s role. If you ’ re
already logged in, for example, there ’ s no need to show the login block. Different menu items might
show up depending on your role, providing some level of personalization.

 Nodes can be organized into categories, which in Drupal is called a taxonomy . For example, you might
have a site organized into five major topic areas (products, services, about us, contact us, and customer
service) with subcategories under each (e.g., products product 1; services service 1; and so on).

 Figure 22 - 3 shows an example of available options when managing content.

Part IV: Pushing PHP to Its Limits

578

 Joomla!
 Joomla! came into being when a group of developers defected from Mambo over a disagreement about
how the open - source version of Mambo should be handled. Joomla! is the English spelling of the Swahili
word that means “ all together ” or “ as a whole. ”

 As shown in Figure 22 - 4 , with Joomla!, you work with articles. Articles can be any kind of content, from
Web page copy to blog posts, or whatever you need. Articles can also be assigned to categories and
sections. The major difference between a section and a category is simple: sections can contain numerous
categories, and categories can contain numerous articles.

Figure 22-4: Joomla!-powered site

Chapter 22: Content Management in the PHP World

579

 For example, you might have a section called Products, and others called Services, About Us, and
Contact. Within each of these sections, you might have categories for each product or service.

 Finally, each article can be assigned to a category. As shown in Figure 22 - 5 , each article has a title, a
status, a space for content, and other advanced features, such as “ Read more ” (which displays only
part of the article in the normal view) and “ Front page ” (which features the article on the home page of
the site).

Figure 22-5: Creating content with Joomla!

 As with most other systems, Joomla! allows you to create users, each with their specific login, password,
and associated privileges. Some users may be able to create and edit articles, while others may be limited
to contributing pieces, but not publishing them.

 Joomla! also enables the easy creation of Web links (or bookmarks) and news feeds to your site. Each of
these content types can be assigned to a particular category, making it very easy to display a unified set
of links and feeds for all articles in a given category.

Part IV: Pushing PHP to Its Limits

580

 Each category can also be assigned its own layout, with Joomla! giving you control over various
parameters (such as category order in menus, page titles, and more), as well as look and feel.

 Last but not least, Joomla! supports the addition of various modules, each of which usually focuses on a
specific task. For example, there are modules that show breadcrumb links, others that show archived
content or custom menus, and still others that syndicate content and show polls.

 Figure 22 - 6 shows the Joomla! Control Panel.

Figure 22-6: The Joomla! Control Panel

 ExpressionEngine
 ExpressionEngine is the CMS created and marketed by the folks at Ellis Lab, the same group that
brought CodeIgniter (a PHP MVC framework) to the market. Of all the major CMSs out there,
ExpressionEngine is the most Web 2.0 – like, offering many cutting - edge features and an enormous
amount of functionality for the price (around $99 for the personal license, $250 or so for the commercial
license, but the core system is free to developers). Figure 22 - 7 shows a Web site featuring
ExpressionEngine.

Chapter 22: Content Management in the PHP World

581

 Within the ExpressionEngine Control Panel (see Figure 22 - 8), you can manage CMS users, content, and
templates. Creating templates (see Figure 22 - 9) provides you with some fairly granular control over look
and feel. Each template can contain XHTML markup and expressions that are parsed by
ExpressionEngine (hence, the name of the product).

Figure 22-7: ExpressionEngine allows for beautiful Web sites

Part IV: Pushing PHP to Its Limits

582

Figure 22-8: Adding content in ExpressionEngine

Figure 22-9: ExpressionEngine templates

Chapter 22: Content Management in the PHP World

583

 These expressions can be as simple as adding a custom bit of text, or looping through blog posts in a
sidebar. For example, if you were to publish a list of books on your site, you could create custom fields
such as Author, ISBN, Title, Publish Year, and Language, all of which can be used by ExpressionEngine
in other parts of your site. For example, you could list all books by a certain author, or published in a
certain year. You could also designate a certain custom field as a drop - down list or date field, for
example.

 Furthermore, the way that templates work with the rest of your site is ingeniously simple. You can group
your templates in such a way that you create self - explanatory URL paths. For example, you can create a
template group called “ Services ” and place your services - related pages in that template.

 Frog CMS
 Frog CMS was born as phpRadiant, a PHP version of the popular Rails - based Radiant CMS. Its tagline is
 “ Content Management Simplified ” (see Figure 22 - 10), and anyone who uses it would have to agree. It
offers a very elegant user interface, a flexible templating engine, and the bare - bones tools needed for
user and asset (file) management (see Figure 22 - 11).

Figure 22-10: Home page of the Frog CMS site

Part IV: Pushing PHP to Its Limits

584

 Users can create snippets for their layouts (see Figure 22 - 12), each of which is a reusable piece of code
such as a header or a footer. Snippets can also be pure content, such as a list of links or a graphic. Frog
CMS also enables users to create content using a simplified HTML editor.

Figure 22-11: Managing pages in Frog CMS

Chapter 22: Content Management in the PHP World

585

 Last, but not least, you can add modules (usually plug - ins or themes) to Frog CMS, thereby extending it.
Core plug - ins include archival features, comments, file management, 404 custom page controls, and
SQLite. Already, the user community has created an entire library of plug - ins, including polls, download
management, newsletters, contact forms, and more.

 Building Your Own System
 One of the interesting things about the world of content management is that many organizations have
what may be called “ unique local requirements ” — in other words, they have such one - off needs
regarding the creation, publication, management, and syndication of content that no off - the - shelf
program (whether free or commercial) is appropriate. Nor will it do to modify any off - the - shelf system.

 Instead, a vast percentage of content management projects involve some healthy amount of do - it -
 yourself programming. If you ’ re participating in one of these ventures, here ’ s a roundup of requirements
that will make the short list on any project. Included in this roundup are some technical details to help
you clarify your thought process. It ’ s not comprehensive, but it ’ s a good start.

Figure 22-12: Managing snippets in Frog CMS

Part IV: Pushing PHP to Its Limits

586

 Content - Related Issues
 It always seems to be a shocking revelation to some developers, but the whole point of a content
management system is to manage content . This point is brought up only because most projects seem to
devolve into strange quagmires involving workflow engines and database caching.

 Content is king. Everything else is subservient to that statement. The beating heart of content is
the content type — which is just elementary shorthand for how content is structured and used. Most
people intuitively understand that a press release is somehow different from a blog post. They not only
have different component parts, but different uses and different audiences.

 To that end, you could push out a CMS that has a fixed set of content types:

 Web page

 Article

 Blog post

 Press release

 News feed

 Each of these may have its own particular set of data fields (such as title, byline, summary, publication
date, and so on). Alternatively, you could push out a system that allows users to define their own content
types.

 If you pick the former, which always appears to be the easier undertaking (after all, creating a dynamic
content construction system is a lot of work), then you must be prepared to live with the constant need
to create new content types and alter those that seemed like a good idea during development but have
now met the harsh sunlight of after - launch expectations, and have started to fade.

 If you pick the latter, and allow administrators to define their own content types, then you must ask
yourself how you define a content type. The answer to that question isn ’ t altogether obvious until you ’ ve
thought about it for a while, and no single answer is 100 percent correct. However, one bit of advice has
always led to good outcomes; define a content type as the confluence of two sets of criteria:

 What metadata is associated with the content type? (This would be the nouns and adjectives.)

 What behaviors are associated with the content type? (This would be the verbs and adverbs.)

 Once you have this mental framework in place, the noun/verb metaphor becomes a handy way to
express any content type.

 Let ’ s take a press release as a starting point. If you think about a press release ’ s morphology (that ’ s fancy
talk for “ the parts of it ”), you can easily translate those parts into metadata. Each press release has the
following components (as a rough start):

 Headline

 Subhead

 Date slug

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

Chapter 22: Content Management in the PHP World

587

 Summary

 Body

 Contact information

 Keywords/tags/categories

 Given enough time, you could discover a whole other group of metadata that may or may not be needed
by your organization ’ s PR group. Suffice it to say, you have enough to get started.

 Stopping the discovery at nouns, however, would give you an incomplete view of what a press release
is. Most organizations also need press releases to function in a certain way — in other words, a press
release also has behaviors associated with it. For example, each press release also has a launch window,
usually expressed as a date and time (often after the market closes). It also includes legal language bits
that make the regulatory folks happy (if they are present) or unhappy (if they are not).

 These “ verby ” parts of a press release are also embodied as metadata; but the main difference is
that the system must be aware of them and do something in response to what is stored there. For
example, the legal bits had better be present in order for the press release to be launched. A smart CMS
shouldn ’ t allow a press release to go live without alerting someone that the legal bits are missing or
incorrect. The same thing applies to the launch window — if the press release is categorized in a certain
way (for example, its contents are tagged as financial or market news), then the CMS shouldn ’ t allow
posting before market close.

 Once you ’ ve mapped out what ’ s needed for press releases, do the same for all the other possible content
types that the client needs now (and may need later). You ’ ll inevitably find a lot of similarities in both
nouns and verbs across all your content types. In fact, you ’ ll note that just about every piece has a
headline, a date, an author, keywords, content body, and so on. Some content types will have special
needs (such as events, which might also have a signup URL and a reminder widget). For that reason, you
should consider nonglobal metadata that can be added to individual types.

 Once you have your technical design down for content, you must decide which path you ’ ll take. If you
give your client hard - coded content types, then you ’ ll probably end up with different database tables for
each content type. If that ’ s the case, make it very easy to add new content types in the future. Here ’ s
where a good MVC design comes in, which gives you the capability to easily add a database table for,
say, calendar events, along with its model, admin controllers, and any views for CRUD (create, review,
update, and delete).

 If you go the other route, then you ’ ll probably end up with a centralized table that houses all of your
interchangeable blocks of content (a headline block, a byline block, a date block, a content body, and so
on), and then give users the capability to reuse, rename, and connect those blocks — in any way they
choose — into bigger blocks that are called content types .

 Don ’ t forget, though, that either way, you must devise some way to tell the CMS what ’ s important about
your metadata. In other words, if you hard - code the content types, you must have a way to tell the CMS
that no article can be posted without a headline, or a press release must follow certain workflow rules.
The same is true if you give administrators the freedom to devise their own content types.

❑

❑

❑

❑

Part IV: Pushing PHP to Its Limits

588

 Administrators and Privileges
 Speaking of administrators, you will have to account for them. There ’ s no way around it. Make the site ’ s
administrators happy, and you ’ ll have a happy team. The more they adopt your system, the more they
love working with it, the easier you make things for them, the better off you ’ ll be.

 If you have a small installation, with a small group of people (e.g., just one or two administrators), then
you probably won ’ t have to expend a lot of energy on managing users and setting up different privileges
for them. However, once you get past a certain number (e.g., five administrators) or if the administrators
are split into different time zones or geographies (and, certainly, continents or language groups), then
you most certainly have to deal with the complexities of privileges.

 There are two ways to handle privileges. One is to give the administrators interchangeable building
blocks, each of which represents a type of activity: creating content, updating content, reviewing (or
reading) only, deleting, publishing, archiving, and so on. There could even be a “ super administrator ”
activity that allows a user to administer other users, add new plug - ins, and so on.

 The super administrator could then create a new user in the system (and, of course, each user would
have a username, password, real name, e - mail address, phone number, and so on), and then assign
building blocks to create a privilege profile. To give the super administrators more granular control, you
could also give them building blocks that match up with different content types or sections of the site, as
well as activities.

 In effect, you could have a new user who has full access when it comes to working with press releases
(they are the head of PR, after all!), but only read - only access to articles or blog posts. Other users (such
as the CEO) could have read - only access to every single content type, but only create (not publish)
authority over a little corner of the blog.

 This kind of system is somewhat ingenious, but it requires a whole lot of work, and you ’ d better get
your building blocks right, or you ’ ll be coming back again and again to revise the setup.

 Another approach involves levels of access. The levels typically go something like this:

 Subscriber — This is a person who can log in to see items in read - only view only, or who gets
regular reports about what is going on. Think of a C - level executive or senior VP who wants to
know what is going on but shouldn ’ t be allowed within ten feet of a blog post.

 Contributor — This is a base - level content person who can create any content he or she wants,
edit anything he or she has written (as long as it is still in draft stage), but must then send it to a
higher power in order to see it published.

 Author — This is a trusted contributor who can write original material and publish it in certain
areas of the site.

 Editor — This is a staff person (typically) who can only edit and revise pieces written by authors
and contributors.

 Manager — This is a supervisory editor who can review anything, write new material, and
launch pieces throughout the site. The manager can also set rules for pulling items off the live
site, and for archiving material.

❑

❑

❑

❑

❑

Chapter 22: Content Management in the PHP World

589

 Administrator — This is usually someone who deals with installing new plug - ins, sets up
backups, sets up caching, and figures out the workflow rules and all the other background
minutiae. This person also has the right to create new content (and update that content), but
usually doesn ’ t just because he or she is too busy.

 This second approach is much easier to deal with from the development side, but it leads to some
oversimplistic effects on the operations side. For example, a manager might want to bring on a trusted
freelancer but have no choice but to give that person a contributor role because the author privileges are
just too far - reaching.

 Workflow
 At its simplest, a workflow defines the steps that a piece of content goes through between initial draft and
final deletion. In between are stages such as drafting, submitting for approval, legal review, publication,
archiving, and, eventually, oblivion.

 The heart of a good workflow system is good metadata. Most content types include a mandatory status
field, usually a drop - down with a limited set of options. Most administrator roles or privilege sets
include the capability to choose different subsets of the status markers — for example, if you are a
low - level contributor, you may only be able to have two status markers: draft and pending. You won ’ t be
able to make anything live, nor are you able to work on anything that is already live.

 Generally speaking, workflows can either be hard - coded into a CMS (easy on the developers, but
difficult on the operations staff) or made more flexible, such that content operations staff can define
paths for either different content types or different sections of the site (or some combination of the two).
For example, for an article, you may have three workflow steps (draft, approve, publish), but an
article for the products section of the site may have more approval steps. It may need to be checked
by a product manager, a subject matter expert (SME), and the editorial board.

 Furthermore, most workflow systems should have some kind of messaging capability. If an editor rejects
a draft from a contributor and sends it back to draft status, the editor should be able to send an e - mail to
the contributor, explaining why that decision was made.

 Alternatively, if you have a complex workflow setup, then you must take into account tracking both
parallel and sequential approvals. Most workflows are sequential (drafting, submittal, reviews, and then
on to publication); but in the previous example with the SME, product manager, and editorial review
board, you would probably want the SME and product manager to review simultaneously, and then pass
the material along to the editorial review board.

 One other note and then we ’ ll move on. Because workflows are often hard to visualize, the best
workflow systems are visual in nature. Either they allow the administrator to graphically add symbols to
the screen and pipe them together (much like a UML or process flow) or they use some kind of vertical
metaphor (in which the content drops through the pipeline following the rules in each step). Along the
way, each step is associated not only with the content item being worked on, but also any other affected
groups, such as a certain editor (or maybe the whole editorial group) or even other pieces of content that
need to be released at the same time (such as the press release about a product, the five product pages,
and the freebie download for that product).

❑

Part IV: Pushing PHP to Its Limits

590

 Either way, you must make it easy for an administrator to create and then maintain a workflow. It has to
be intuitive enough that you understand it at a glance, but powerful enough to do everything the team
needs vis - à - vis their workflows.

 Templates
 In the early days of content management, it seemed that every Web site run by a CMS was easily
identified because of its boxy look and feel. Nowadays, though, the CSS and XHTML wizards on the
front end have joined forces with the back - end developers to offer users impressive experiences.

 There are at least three ways to handle templates in your CMS.

 The quick - and - easy way is to hard - code your look and feel, adding whatever hooks you need in your
PHP front - end templates to pull in what you need from the database. For example, if you are working on
a template for a press release, you can pull in the headline, body, author byline, contact information,
legal bits, and the rest of it.

 The problem with this approach is pretty obvious. It ’ s easy on the developers (at first), but a misery
for the operations staff. If someone creates a new content type, you must create a new set of templates.
No matter how pretty and usable your templates are, this kind of thing can get pretty old.

 A second approach is to offer dynamic templates that the administrators control. Again, you can give
them the capability to create reusable blocks or snippets to create what they need in terms of sidebars,
headers, footers, and content blocks. Then, if you give your templates some smarts and insight into the
content types they ’ re supporting, you can enable the administrators to punch out any kind of content
they want, using metadata fields as they need them.

 For example, let ’ s say that you have a page layout system consisting of four major snippets:

 A header snippet, which includes not only the logo, but also the global navigation

 A footer snippet, which contains legal/copyright, and so on

 A sidebar snippet, for use on either the left or the right, which itself might contain other snippets

 A main content snippet, which holds a blog post, article, or whatever

 You could make it such that each of these snippets knew about the different content types and the
different fields associated with each type, and then use them interchangeably as needed. For example,
let ’ s say that you organized content types such that no matter what type is being used, it has a set of
universal metadata fields (such as byline, headline, body, date, and so on). You could easily come up
with a way to use parsed text in your templates and take advantage of that, as shown here:

 < h1 > [[:content_type:headline]] < /h1 >
 < p > by [[:content_type:byline]] < /p >
[[:content_type:body]]

 The :content_type: expression would be a generic rule that tells the template engine to apply this rule
to any content type — for example, because every single one would have a headline. The template
engine would be smart enough to deduce that anything between the [[and]] tags requires extra
processing before final delivery of HTML to the browser.

❑

❑

❑

❑

Chapter 22: Content Management in the PHP World

591

 Alternatively, if you wanted to create a dedicated template for a press release, for example, you could
take a more specific approach:

 < h1 > [[:content_type:headline type=’pr’]] < /h1 >
 < p > by [[:content_type:byline type=’pr’]] < /p >
[[:content_type:body type=’pr’]]

 The third approach involves using an open - source or commercial template system, of which many are
available. The most well known is probably Smarty, a fairly robust template engine that enables you to
separate your XHTML from your PHP. Your Smarty templates end up having tokens in them that relate
back to variables you set in your PHP. Consider the following example:

//this is your PHP
include(‘smarty.php’);
$smarty = new Smarty;
$smarty- > assign(‘nickname’, ‘myerman’);
$smarty- > assign(‘realname’, ‘Thomas Myer’);
$smarty- > assign(‘city’, ‘Austin, TX’);
$smarty- > display(‘user.tpl’);

//and here is user.tpl
 < html >
 < head > < title > User info for {$nickname|capitalize} < /title > < /head >
 < body >
 < h1 > User info for {$nickname|capitalize} < /h1 >
 < p > Real name: {$realname} < /p >
 < p > City: {$city} < /p >
 < /body >
 < /html >

 Notice two things about this example. First and foremost, any assignment made on the PHP side is easily
accessible in {$varname} format on the Smarty side, thus effectively simplifying this work for the front -
 end developer or designer who is usually terrified of back - end code. The second thing to notice is the
opportunity to add operators to different variables — the |capitalize on the end of $nickname
enables you to morph data for display as needed.

 As with most things in a developer ’ s life, discussions about template engines often descend into
religious discussions. In no way are you limited to Smarty (some developers hate it, others love it), so
pick the system that best suits your needs as a developer, the needs of the site designers, and the needs
of the site ’ s visitors.

 Summary
 In this chapter, you learned a little bit about content management systems (CMSs). You learned what a
content management system is, got a little history lesson, reviewed four exemplars of PHP - based
systems, and even got an overview of requirements, just in case you want to build your own.

 Chapter 23 provides some tips on handling high traffic and high availability.

 Handling High T raffic and
High Availability

 Chapter 22 introduced you to a few PHP - based content management systems (CMSs), platforms
that you may well try to incorporate in a large - scale or enterprise - grade Web application. All such
CMSs were particularly well - suited to larger or higher traffic sites, where the burden of manual
updates would be commercially impractical.

 Yet, building large sites has technical as well as commercial implications. Larger sites have two key
burdens not found when developing smaller projects: ensuring high availability (that is, a high
percentage of uptime when measured over a given period) and the ability to handle exceptionally
high levels of traffic without suffering adversely. The insurance techniques involved are often alien
to smaller sites, and yet they are surprisingly simple to achieve, especially given that they are not
necessarily PHP - specific.

 In this chapter, you ’ ll learn about those specialist techniques and how to incorporate them in the
architecture of your own applications. In so doing, you ’ ll prove to yourself once and for all that PHP is
perfectly suited for such large sites. In addition, you ’ ll sneak a look under the hood at the architecture
of some of the Web ’ s highest - traffic commercial sites, including Flickr and Facebook — both proudly
built in PHP.

 Understanding the Terms
 The terms high traffic and high availability mean different things to different people. Before going
any further, it ’ s worth cementing your understanding of what enterprise architects generally
consider them to mean.

Part IV: Pushing PHP to Its Limits

594

 High Availability
 The word “ availability ” refers to the normal function and operation of an application within acceptable
parameters. If the application is broadly usable (even if running a little slower than normal), then it is
considered to be available. Availability is generally measured as the percentage of a given period during
which the application is available.

 There ’ s a fascinating list of the downtime of the top 20 Web sites in 2007 at http://royal.pingdom
.com/?p=116 . The only site that manages 100.0 percent over the year is Yahoo!; Google manages an
impressive 99.995 percent, and even the Coldfusion - built MySpace manages 99.98 percent. Averaging the top
20 gives an uptime figure of 99.987 percent over the year — that ’ s just six minutes of downtime every month.

 Throughout this chapter, you ’ ll also see the word redundancy . In this context, redundancy means something
very specific — that is, introducing into architectures the ability to cope with unexpected failures by
providing failover onto identical backup equipment. It ’ s largely through the use of redundancy that the top
20 sites achieve the seemingly very high levels of availability that they do, even under high traffic.

 For the purposes of this chapter, high availability means an uptime of 99.75 percent over a year — perhaps
below the expectations of the top 20, but well in excess of a typical PHP Web site.

 High Traffic
 The metrics used to define “ high traffic ” can vary a little. The likes of Google, Flickr, and MySpace
receive literally tens of billions of page impressions per month. This is certainly “ high traffic, ” but what
about the Web site of a large corporation? While not B2C applications, sites such as unilever.com and
 deloitte.com still receive millions of page impressions per month. That ’ s nothing compared to the big
social networking Web sites, and yet still within the realms of what many Web developers would
consider “ high traffic. ”

 In practice, though, it ’ s all about perception and positioning. Consider a fast, mainstream, compact
automobile such as the MazdaSpeed3. Many would consider it a fast car; the name, the looks, the
branding — all point toward an emphasis on performance. And indeed, it ’ s no slouch: 0 – 60 mph in
5.9 seconds. But compare that to a Bugatti Veyron, which reaches the same speed in well under half the
same period of time, or a Formula One car, which can easily reach 140 mph in the same amount of time it
takes the Mazda to get to 60.

 The point is that all three would be considered fast by a layperson. The numbers back this up. The
average 0 – 60 mph time of all cars on the market today is about 13 seconds. Being very black and white
about it, you could argue, therefore, that anything under 13 seconds is “ fast, ” and anything above 13
seconds is “ slow. ”

 Applying the same rules to the Web, the average number of page impressions received on viable Web
sites (discounting closed sites, link farms, scams, and so forth) is around 100,000 per month — just 3,000
per day. That figure is low because of the sheer ubiquity of the Web. For every commercial Web - based
operation enjoying millions of hits, there are a thousand more enjoying just a few hundred, if that. It ’ s
not exactly what mathematicians would call a normal distribution.

Chapter 23: Handling High Traffi c and High Availability

595

 Another way to look at it is to say that any site for whose level of traffic is likely to require special attention
to hardware, software, or network architecture could well be considered “ high traffic. ” A site receiving
150,000 page impressions per month can easily be run from a single standard - spec server, probably using a
fairly mediocre connection to the Internet. Conversely, it ’ s at around about the 1 - million - page - impression -
 per - month mark that special considerations must be made for the hardware the site is running, the
connectivity it has to the Internet, and the manner in which the underlying code is built.

 Let ’ s use that as a meter in this chapter, then. Any site exceeding 1 million page impressions per month
will be considered a high traffic site.

 Platforms
 You should now understand what this chapter will represent as a site enjoying high traffic and requiring
high availability. Indeed, the two are usually inextricably linked. A high - traffic site is generally (although
not always) a commercial success for its financial backers, a success that is contingent on an ongoing
basis for that site ’ s high availability. Google site revenues for Q1 2008 were $3.40 billion — that ’ s $26,000
per minute. You can see the impact downtime could easily have on Google ’ s bottom line.

 Worse still, high availability is usually more difficult to achieve under high - traffic situations. The
relentless pounding of equipment under en masse HTTP requests quickly thickens any latent fault lines.

 Before considering some of the specific factors affecting availability under high traffic, it ’ s worth briefly
identifying and exploring the puzzle pieces that comprise an application ’ s platform . As you ’ ll see, it ’ s
about far more than just the choice of development language. Many of these components can play a role
in frustrating your goal of high availability.

 Exterior Network
 Any Web site or application accessible over the Internet must, by definition, enjoy some form of
connectivity to the outside world. In practice, only company intranets tend to fall outside this obvious
and apparent requirement. The exterior network refers to the trail of connections between the end user
and the internal network — usually from the user ’ s computer right through to the terminating router at
the equipment hosting the Web site.

 In general, enterprise - grade applications tend to be hosted on either co - located or managed servers. In a
co - located server scenario, the individual, company, or organization behind the site being hosted
provides and manages the server, and the Internet Service Provider (ISP) provides the space where it
may be placed. In the managed server environment, the ISP provides and manages the server, and the
entity behind the site simply uploads its application.

 In either case, however, the ISP is responsible for providing suitable connectivity to that server. It should be
 high bandwidth — in other words, a total bandwidth in megabits per second (Mbps) sufficient to
accommodate incoming traffic. It ’ s worth keeping in mind that a 10 Mbps connection may sound like a lot,
but that ’ s only enough to support five concurrent 2 - Mbps end - user connections. Mercifully, the intermittent
nature of HTTP means that five concurrent connections doesn ’ t equate to anything like five concurrent
users; it ’ s more like a hundred. You ’ ll meet the math behind these assumptions later in this chapter.

Part IV: Pushing PHP to Its Limits

596

 Remember, too, that some ISPs meter bandwidth, usually in lieu of providing a specific cap (known as a
 committed information rate, or CIR) on bandwidth. Commercially, it often makes more sense for the ISP to
sell bandwidth this way. Selling a CIR means keeping that much of their bandwidth permanently free at
all times, with no overselling. Instead, many will pool all their available bandwidth and sell it on a first -
 come, first - served basis, with a monthly limit on how much data may be transferred. This sometimes
works in a site ’ s favor, but sometimes not. It is rather the luck of the draw, dependent on how busy the
ISP is in general.

 Bandwidth these days is fairly cheap, but less so with quality bandwidth. One indicator of quality tends
to be latency (in layperson ’ s terms, ping time). In practice, this is often more important than bandwidth.
A well - architected Web site should arguably be more about content than flashy graphics or video. Look
at Facebook. It ’ s by and large plain text, and yet one of the most popular and celebrated sites on the
Internet because of its usability. That usability, however, can be adversely affected by poor latency, which
(in the context of HTTP) will manifest itself as the responsiveness of the site to a user ’ s activity. If it takes
half a second for a socket connection to a remote host to open, it doesn ’ t matter how fast that connection
can spit data back down to the connecting Web browser. The experience for the end user will be poor,
because the responsiveness of the server will be perceived to be poor.

 All of this boils down to the ISP, of course, but do keep in mind that in a co - located (as opposed to
managed server) environment, some ISPs are predisposed to shifting blame to customer equipment (that
is, disputing where in the connectivity chain the fault lies, perhaps claiming that a faulty customer
firewall or switch must be to blame). This can be easily proved or disproved as needed, of course, but it
does provide yet another hoop through which to jump when problems arise.

 It ’ s important, therefore, to keep the interior network as sound as possible, in order to eliminate it from
your line of inquiry when addressing connectivity speed and responsiveness issues.

 Interior Network
 The point at which the ISP hands off to your equipment is generally referred to as a handoff . How this is
presented depends on the nature of the service you have purchased from your ISP, but it is generally
provided in one of two fashions.

 In the simplest scenario, it is provided as a single Ethernet port, a range of addresses on the public
Internet, and a fixed gateway address within the same network subnet. You would typically connect
your firewall ’ s external interface directly to the Ethernet port in question and route traffic to the gateway
address given to you. Your firewall ’ s internal interface would then connect to a switch, which would, in
turn, provide connectivity to your servers.

 In a more complex environment, connectivity may be provided as a single gateway address and a range
of addresses on a different subnet. In such a scenario, the onus is on you to provide your own router, to
which you would bind the gateway address allocated to you. In turn, you would provide your own
firewall, with its external interface linked to the secondary interface of that router, which would listen on
all the addresses provided to you. Your firewall would then link its own internal interface into your
switch, into which your servers would connect in the usual way.

 Therefore, your interior network equipment must be capable of shifting the appropriate amount of
traffic. The burden depends on where it falls in the chain. A perimeter router handles all of your site ’ s
traffic, inbound and out. However, it may be configured to quench certain traffic it regards as

Chapter 23: Handling High Traffi c and High Availability

597

unroutable. As such, the burden on the firewall is usually slightly less than that of the perimeter router.
The firewall, too, will (in most circumstances) filter out large quantities of unwanted traffic, meaning
that the internal network switch needs to cope with slightly less traffic than the firewall. In a larger
architecture, two or more servers will doubtlessly be used to deliver content, so that individual traffic
burden on the network card will be lower still — although internal communication between servers (not
via the Internet) can easily push this up again.

 A medium - tier router can generally shift about 10 Mbps without any problems. You ’ d be wise, therefore,
to seek out a firewall that can handle about the same amount of traffic. Your switches will almost
certainly be 100 Mbps, but you should consider whether internal communication between servers is
likely. If your database server and application server are separate, then this will be the case, and
providing 1 gigabit per second (Gbps) switching with 1 Gbps network interface cards (NICs) will
provide optimum performance.

 Hardware
 Naturally, your application must run on something, and a typical arrangement for a high - availability/
high - traffic Web site will comprise, at a minimum, a separate Web/application server and database
server — that ’ s two physical boxes.

 In the early days of the Web, sophisticated hardware from the likes of Silicon Graphics, Inc. (SGI) and
Sun Microsystems pervaded enterprise architectures across the globe. This wasn ’ t an area of much
interest for Intel, whose CPUs were chiefly aimed at the desktop environment. These days, however,
server - grade chips based on x86 architecture are readily available — and cheap. In fact, they ’ re so cheap
compared to their competitors in other architectures that in 99 percent of applications, it ’ s more cost
effective to go the Intel route, even if that involves using twice as many physical boxes.

 There are two trends worth considering, however. Moore ’ s law indicates that processing power doubles
approximately every two years. As a result, an increasing number of enterprise architects are considering
the merits of virtualization. In such a configuration, one or more physical servers in a cluster provide one
or more virtual (or addressable) servers via software emulation.

 The benefits are numerous. The ability to scale an application ’ s hardware base up and down as traffic
and load dictates is the most obvious benefit, without the normal cost and lead time associations. A
degree of redundancy is also provided by distributing load across multiple physical servers; a single
point of failure is eliminated.

 A second trend (one championed chiefly by Google) is that of using commodity hardware (off - the - shelf,
nonspecialist boxes) to provide hosting. It may seem unusual, but consider the math. If 20 boxes costing
$500 each can provide the same level of redundancy and performance as 15 boxes costing $1,500 each,
it ’ s easy to see why the first option is more attractive. The main benefits of dedicated server hardware —
 resilience, reliability, and longevity — are negated by sheer volume and economy of scale.

 The use of virtualization to combine commodity servers into a single addressable environment provides,
in theory, the best of both worlds — although it is worth remembering that it is a relatively young
technology, and even in 2009 kinks are still being worked out.

Part IV: Pushing PHP to Its Limits

598

 Operating System
 Assuming modern application architectures depend largely on Intel - based hardware, the choices of
operating system are limited broadly to those that run on Intel architecture, and for which a broad range
of suitable application software is available (Web servers, database servers, application servers, and so
forth).

 Other than specialist and niche operating systems, the bulk of those available are divided chiefly into
Windows and a range of UNIX variants.

 On the Windows front, only the Windows Server range of operating systems is appropriate for use as a
Web server. Built on Microsoft ’ s NT architecture, Windows Server 2003 and 2008 use the same core
kernel as Microsoft ’ s desktop operating system equivalents (XP and Vista), but are optimized specifically
for a server role. In Windows Server 2008, a new feature known as Server Core removes the desktop -
 oriented Windows Explorer interface, providing a stripped - down, more UNIX - like approach.

 As for UNIX and UNIX - like operating systems, the choice is more varied. Of course, Linux is still by far
the most pervasive and popular UNIX operating system on Intel hardware, and with good cause.
Largely free (depending on distribution) and hugely well supported, it is an excellent “ all rounder ” —
 there ’ s little it isn ’ t good at. Having said that, Apple ’ s decision in 2005 to switch to Intel architecture
enables the Mac OS X to compete as a viable server operating system for PHP - based architectures.
(However, of course, buyers are restricted to purchasing genuine Apple hardware, which generally
means an XServe server appliance. These come at a price premium compared to similarly specified
generic server equipment from the likes of Dell and HP.)

 There are a few “ left field ” UNIX options, too. Sun has recently released OpenSolaris (available as open
source and free of charge), which is essentially Solaris, but with proprietary and closed - source
components removed or replaced. FreeBSD is still well supported and is arguably occasionally more
stable under load than Linux. OpenBSD has an excellent reputation for security and resilience.

 The choice between UNIX and Windows often comes down to personal preference; indeed, it is the
subject of numerous religious wars on blogs everywhere. Nonetheless, it ’ s difficult to argue with
the facts. As you ’ ll see later in this chapter, the vast majority of high - traffic sites (other than those owned
and operated by Microsoft itself) still use some variety of UNIX as their underpinnings — Google,
Yahoo!, Wikipedia, YouTube, Facebook, and the list goes on.

 Web Server
 The importance of choosing the right Web server cannot be understated. Every single request to your site
consists of a flurry of HTTP requests for pages and associated assets. Every one of those HTTP requests
will pass through the Web server ’ s hands. Choose the wrong one, and the entire site is at risk.

 The standard is still Apache. It runs on both UNIX and Windows, although, frankly, is fairly horrendous
when run on Windows. A market share of nearly 51 percent means it towers over its nearest rival,
Microsoft ’ s Internet Information Server (IIS), at around 35 percent as of this writing. It ’ s achieved that
position rather by default — by being free, well supported, and not particularly bad at any one thing.
Neither is it particularly good at any one thing; hence, it becomes the “ no thinking required ” choice.

Chapter 23: Handling High Traffi c and High Availability

599

 IIS has come a long way in recent years. Early releases were blighted with security problems. Just as
seriously, performance and resilience under load have been called into question in recent years. While
these deficiencies now have been largely addressed, one fact still remains: A given level of traffic under
IIS on Windows can only be supported with a beefier hardware infrastructure than that required with,
perhaps, Apache on UNIX.

 Looking elsewhere, certain specialist Web servers can play an important role:

 Squid (www.squid-cache.org/) provides front - end traffic management, caching, and load
distribution.

 lighttpd and thttpd are “ lightweight ” Web servers designed for serving only static assets such as
images, CSS stylesheets, and downloadable binaries.

 Kernel - level Web servers such as TUX and KHTTPD provide an even more lightweight solution
to the same problem, building the Web - serving capability directly into the operating system itself.

 As you ’ ll see later in this chapter, the choice of a Web server is often dependent on the choice of an overall
network infrastructure. In a larger setup, multiple servers can often run different Web servers and even
different operating systems, all chosen with the laudable goal of maximizing performance in mind.

 Application Server
 The concept of an application server is something not usually familiar to PHP developers. Because most
developers run PHP as part of the Web server (be it as a module, compiled in, or, rarely, as a CGI
module), the Web server and application server are perceived to be the same thing.

 This is, of course, not the case. An application server runs applications; a Web server serves Web pages.
The metaphor is aptly expressed in Java 2 Enterprise Edition (J2EE). An application server such as
Tomcat, JBoss, or BEA/Weblogic may well accept requests over HTTP, but it ’ s likely to be coupled with a
Web server on the front end trafficking requests through to it. Application servers generally support
advanced features not found in a Web server (such as resource pooling, diagnostics, and support for
advanced deployment techniques). As such, they are rightly considered “ overkill ” for serving up simple
Web pages and other assets.

 In the context of PHP, the phrase “ application server ” refers to the server that handles requests directly
into the PHP engine. For optimum performance, this is typically Apache with PHP statically “ compiled
in ” (rather than loaded as a module) such that a single executable serves the application. As shown later
in this chapter, the addition of a static assets server and a front - end caching server allows for the smarter
distribution of traffic, with each server playing to its strengths.

 Database
 As you might expect, the choice of underlying database has substantial performance implications in any
high - traffic PHP application. It ’ s expected that the bulk of HTTP requests for application pages will
invoke some sort of SQL query. As a result, the speed with which each HTTP request can be completed is
entirely dependent on the speed with which those SQL queries can be executed, and, if appropriate, data
returned.

❑

❑

❑

Part IV: Pushing PHP to Its Limits

600

 Much has been made in this book of the fact that well - architected PHP applications are database
agnostic, insomuch as abstraction layers such as PDO and SQL generation techniques like ORM provide
for a great degree of portability. Indeed, at low traffic levels, there is little to choose between databases.

 At high traffic levels, however, everything changes. Much is made of MySQL ’ s performance at running
 SELECT queries, but with an appropriate use of caching and page generation, the benefit this brings is
negated. Of far greater importance is the database ’ s performance in undertaking those transactions that
inherently cannot be cached or pre - generated — for example, actions such as user registration, searching,
and Web 2.0 functionality (e.g., instant messaging and post commenting).

 In addition, application scalability is generally dependent on the ability to “ add more of ” a particular
component. The database is no exception. With your choice of RDBMS, how simple is it to move from a
single database server to two, three, four, or more?

 That simplicity is governed by two features: clustering and replication. Clustering enables multiple
physical database servers to represent themselves as a single virtual database server to connecting
devices, thus distributing load in the process. Replication enables all those database servers to hold
identical data sets at all times, thus ensuring that whichever physical server is chosen for a given request,
the data returned is identical.

 Some RDBMSs are better suited to clustering and replication than others. While this book is a big
advocate of PostgreSQL, it is fair to say that its support for clustering and replication is entirely reliant
on third - party packages such as Slony - L and Continuent uni/cluster for PostgreSQL. MySQL is
somewhat better, but even its much vaunted MySQL Cluster platform is heavily caveated for enterprise
deployment.

 By contrast, Microsoft ’ s SQL Server and Oracle 11g support extensive clustering and replication out of
the box. For that reason, there is, sadly, a realistic expectation that for truly high - traffic applications it ’ s
still necessary to get the checkbook out.

 Software Architecture
 Finally, it ’ s worth considering a human factor — one that, unless given adequate attention, can easily
undo all the good work from following best practice across all of the issues previously discussed.

 It doesn ’ t matter how much money is spent on excellent server hardware, a first class ISP, carrier - grade
network equipment, and so forth, if the application is written poorly. A bad application is deeply
vulnerable to cracking under pressure.

 In Chapter 13 , you were introduced to the fundamentals of designing well - architected PHP applications —
 builds that will be reliable, secure, extensible, modular, and easy to maintain. But a well - architected
application will (more often that not) cope better under pressure, simply because it stops developers from
making the human errors that can lead to performance leaks.

 Perhaps just as important, the modular nature of well - architected applications means that when
performance bottlenecks are discovered, they are easier to track down, identify, and address.

Chapter 23: Handling High Traffi c and High Availability

601

 Impact Factors
 Having considered the core components of any Web application, it ’ s important for you to understand the
role each can play in producing adverse performance or poor availability at high levels of traffic.

 Remember that non - availability doesn ’ t just mean an application will be completely inaccessible. It can
also mean that some core piece of functionality is temporarily disabled. The metric defined at the
beginning of this chapter settled on 99.75 percent availability, but that means 99.75 percent of the time all
functionality is present and correct — not just some of it.

 Similarly, availability matters not one jot if performance isn ’ t up to scratch. A number of factors manifest
themselves as poor performance:

 Socket response time — This is the time taken between initiating a socket connection to the Web
server and that connection being achieved, once local network conditions have been subtracted.
A time of around 50 milliseconds (ms) is fine. With a local network latency of 20 ms, this means
a connection being opened within 70 ms of that request being made.

 HTTP latency — This is the time taken between the client issuing its HTTP request (be it GET ,
 POST , or something else) and the server starting to return data to the client, once network delays
have been isolated. Anything more than 100 ms is poor. That is, having issued a command such
as GET /index.php , the server should start to return data to the client (be it HTML or
something else) within 100 ms.

 Transfer rate — This is the rate (in bits, bytes, or kilobytes per second) at which data transfer can
be effected. With connections in the home easily reaching 8 Mbps as of this writing, it ’ s
increasingly important that your infrastructure can support a decent transfer rate, especially on
larger files such as the binary assets that frequently comprise Flash movies and video (around 2
Mbps at a minimum).

 As a rule of thumb, therefore, if under high traffic your application can ’ t respond to socket connections
in under 50 ms, respond to HTTP requests within 100 ms, or shift data at at least 2 Mbps, then it ’ s not up
to scratch.

 With that in mind, what factors can impact availability under load?

 Server Load
 Every server supporting your application is under load . As a rule, the more traffic, the more load. A Web
server, application server, and database server will all suffer an increasing burden on their natural
resources (memory, CPU, and disk) as traffic levels (in terms of page impressions) increase.

 The capability of a computer to carry out more than one operation at a time (multitasking and threading ,
in technical terms) is something of a myth. Each CPU can only carry out one instruction at a time. Each
hard disk can only read or write to one part of the disk at a time. But smoke and mirrors provided by
hardware controllers and the operating system itself allow for the illusion of multitasking.

 This illusion is, in fact, a simple round - robin. If two tasks are competing for CPU time, the CPU
alternates between the two with each clock cycle, although not necessarily on a 50/50 basis. Disks and
memory generally work the same way. Requests not currently being serviced are effectively held in a
queue. As load increases, that queue gets bigger, and so does the wait to get to the front of the line.

❑

❑

❑

Part IV: Pushing PHP to Its Limits

602

 Under heavy load, therefore, tasks take longer to complete, because each server must service a larger
number of tasks. Hence, a smaller percentage of the resources are devoted to each task. Depending on
which server is the guilty party, load can manifest itself in different ways. An overloaded Web server
could provide poor socket response time, whereas an overloaded database or application server could
impact HTTP latency. Only an extraordinarily overloaded server would ever run slow enough to impact
transfer rate, however. After all, network transfer rates are many orders of magnitude smaller than
internal bus transfer rates.

 Database servers are often the biggest culprit, here. In a typical PHP application, a single hit may be no
great shakes to the Web server, which has to respond to only a single HTTP request. It may be a slightly
bigger deal to the application server, which must run the necessary PHP code. But it is a huge deal to the
database server, which may have to execute tens of hundreds of queries.

 For that reason, the database server is usually the first to fall over. Later in this chapter, you ’ ll meet some
appropriate mitigation techniques.

 Component Failure
 Of course, innumerable physical components in an application ’ s infrastructure can fail — routers,
switches, network cards, network cables, motherboards, power supplies, hard drives, memory chips,
CPUs, and more.

 Should your application ’ s architecture ever feature a single point of failure, then the failure of any one
component can result in immediate downtime. Thankfully, across virtually every possible point of
failure, there is a mitigation strategy.

 Only one physical component features mechanical moving parts: the hard disk. For that reason, it is only
the hard disk that has a fixed lifetime, a lifetime that is inversely proportional to traffic levels. That said,
modern hard disks (even under intense load) last for years.

 Network Load
 Most of your internal network infrastructure will be capable of throughput speeds far in excess of your
external Internet connection. Even a cheap - commodity Ethernet switch can achieve 100 Mbps. You
probably won ’ t have anything close to that from your ISP.

 However, latency is another matter. The speed with which connections can be opened and closed
declines as load on Ethernet devices (switches, routers, and network cards) increases. High traffic can
therefore result in excessive latency, diminishing the user experience.

 Network Failure
 No matter how expensive your ISP, the occasional outage is hard to avoid. If your ISP ’ s core router goes
kaput, then no traffic can get to your site, and no traffic can get out. In other words, your site is down —
 as simple as that.

 It ’ s hard to mitigate this when using a traditional ISP, and indeed the majority of downtime suffered by
high - profile Web sites is caused by ISP failure, rather than anything more sinister or sophisticated.

Chapter 23: Handling High Traffi c and High Availability

603

 Mitigation Techniques
 All of the previous discussion seems fairly terrifying at first glance — a whole catalogue of things that
can go wrong when your Web site comes under load, all of which can contribute toward non - availability
or subpar performance.

 Mercifully, there is a whole host of strategies that can be deployed to all but guarantee uptime. The 100
percent achieved by Yahoo! over a year is probably a fluke, but the 99.75 percent mooted earlier in this
chapter is certainly achievable, as you ’ ll see.

 Load Balancing
 For a small - scale Web site serving, perhaps, only a few thousand page impressions per day, a single -
 server configuration is common. In such a scenario, the Web site ’ s host name (perhaps www.example.com)
will resolve in DNS to a single public IP address on the Internet. That IP is then bound, either directly to
a server or, more usually, to a firewall, which passes traffic onto the server, having filtered it first. That
server will run a suitable operating system, Web serving software, a database platform, and an
application language. The most common setups are Linux, Apache, MySQL, and PHP, sometimes
referred to as LAMP, for short.

 In a load - balanced environment, two or more servers are set up to share the burden of HTTP requests
arising from traffic to the site. In this way, more traffic than can be successfully served by just one server
can be handled by the site.

 It is not quite a straight line graph, however. It is very easy to balance Web servers, but as you ’ ll see later,
database servers, switches, and the like are more difficult to double up.

 Load balancing is traditionally accomplished in two ways: through DNS or using a hardware appliance
load balancer.

 DNS Load Balancing

 Using DNS, it is possible to distribute traffic across two servers by pointing a single hostname (such as
 www.example.com) to not one IP address, but two or more. In the DNS zone file, a suitable entry would
look like this:

$ORIGIN example.com.
www IN A 10.0.0.1
www IN A 10.0.0.2
www IN A 10.0.0.3

 Each access attempt to your site will result in a DNS lookup against the hostname. Which of the IP
addresses associated with that hostname is returned by the name server will be random. As a result, the
server that ultimately receives the HTTP traffic associated with the request to access the site will also be
random. In theory, if you have two server IP addresses associated with the DNS entry, then each should
receive 50 percent of the traffic.

Part IV: Pushing PHP to Its Limits

604

 This does have the desired effect of distributing traffic and is certainly inexpensive, but there are a few
drawbacks, to say the least. First and foremost, having to assign multiple public IP addresses to a single
hostname is wasteful. Authorities that issue IP addresses (especially in the now vastly oversubscribed
IPv4 address space) are clamping down on frivolous requests, with most new orders requiring proof of
need in very intimate terms. This may not be an issue with a mere two servers, but if your site scales to
eight or more, you may well run into trouble.

 Another more subtle issue exists, too. DNS lookups are almost always cached — at a minimum for the
lifetime of the browser visit to the site. This means that all of the traffic associated with a single session
(which, taking into account the existence of the underlying HTML, CSS, JavaScript, imagery, and other
external assets, can run to 30 or so requests) will generally hit the same Web server. Hence, a lengthy 10 -
 minute site session could result in 500 HTTP requests, all hitting one server. However, a quick 30 - second
visit from another visitor could consist of only 50. In such a scenario, you can count two site visits, but
certainly not 50/50 traffic distribution between the two. Over the course of several hundred visits, the
disparity may become more pronounced.

 You must also beware of ISPs that use their own DNS caches. In this case, the DNS servers offered to end
users are, in fact, DNS caching appliances. They will perform lookups perhaps only once in a four - or
five - day period, and then cache the result. This is, strictly speaking, in violation of what are known as
 time - to - live (TTL) edicts defined in DNS zone files, which often prohibit caching beyond just a few
minutes. However, given the sheer volume of DNS requests that must be processed by ISPs on a given
day, you can understand why they break the rules.

 Breaking the rules yields dividends for the ISP. Far less traffic needs to go “ off network ” in order to fulfill
basic user DNS requests; but DNS load balancing can be broken as a result. A particular host is resolved
to a particular IP address, and that single IP address is cached by the ISP. This, therefore, is the sole IP
address that is offered to ISP end users until the cache entry “ expires. ” Load balancing for anyone using
this ISP simply won ’ t happen.

 There ’ s a logistical issue, too. Servers fail from time to time. DNS load balancing doesn ’ t take account of
this, because the DNS zone file doesn ’ t “ know ” which servers are dead and which are live. Taking this to
another level of sophistication, servers get “ ill. ” Some will be under higher load than others, and
therefore should arguably receive less of the traffic for the Web site.

 Hardware Load Balancing

 All of these issues can be addressed by using hardware load balancing — a more enterprise - grade
approach, with an enterprise price tag to match. In such a scenario, a dedicated device known as a load
balancer acts as a sentry for all traffic hitting your Web site. It redirects individual HTTP requests on a
case - by - case basis to two or more Web servers. This occurs most commonly on a simple “ round - robin ”
basis, but also sometimes takes into account factors such as server availability, server load, and request
type — perhaps directing requests for images to an asset server (discussed later), but requests for PHP
scripts to a dedicated application server.

 Enterprise load balancers themselves can be doubled up or clustered, with load shared using a
proprietary protocol, connectors, and cable, sometimes called a heartbeat link. This provides redundancy
should a load balancer fail and can allow exceptionally high traffic sites to share load over multiple
balancing devices.

Chapter 23: Handling High Traffi c and High Availability

605

 Such an enterprise - grade kit does not come cheaply — $30,000 or more for a dedicated device. That cost
isn ’ t usually hardware — load balancers are more often than not simply commodity server PCs — but
actually the licensing cost for the software and operating system run on that box. These high costs mean
that some architects look closely at rolling their own. Squid (http://wiki.squid-cache.org/
SquidFaq/ReverseProxy) provides a basic subset of load - balancing functionality and, in practice, will
probably be adequate for most readers. Those seeking a commercial solution would be well advised to
check out F5 at www.f5.com .

 Geographic Balancing
 There ’ s no doubt that distributing load among servers is a great way of making optimal use of the
hardware you have, as well as making it easy to scale up later, simply by adding another server to the mix.

 However, as Web sites become more globalized in nature, so, too, does the spread of connecting hosts.
A global site can expect traffic from all four corners of the world. As you might expect, the further traffic
has to travel, the slower the user experience. A user in Australia connecting to a server in the United
Kingdom, for example, must experience traffic making a 20,000 - mile round - trip — not exactly nippy.

 The obvious solution is to position servers at all four corners of the globe, such that users are never far
from a server hosting the content they want. A true global site may well have servers in Los Angeles,
New York, London, Tokyo, Sydney, Mumbai, and Shanghai. Such a setup keeps the total number of
 “ hops ” down to an absolute minimum for 99 percent of traffic.

 Assuming all users will use the same address (say, www.example.com) to access the site, how will the
traffic get to the server nearest to them? It ’ s a fairly easy task to map a remote user ’ s IP address back to
an approximate geographic location. Numerous databases (some of them free) provide developers with
a simple resource to achieve such resolution. A good example is MaxMind GeoIP (www.maxmind.com);
but given such a database, there are a couple of possible approaches to get initial traffic to the right
server.

 The easiest approach is to accept traffic on www in the standard manner, but to then immediately redirect
the user to a host specific to them (and geographically nearby). For example, a user from London may
access your site at http://www.example.com , but then be immediately directed back to http://
london.example.com .

 While this works well enough, there are a few things to keep in mind:

 First and foremost, that initial request to www is still traveling an appreciable distance, so
performance can still be affected.

 Second, you ’ re making it tougher for search engines to index your site. Core content under hosts
other than www isn ’ t a great idea.

 Third, there ’ s a risk with people sending links to one another. If a user in London sends a link to
a user in Tokyo, it ’ s unlikely the recipient will think of adjusting the URL accordingly.

 There is a solution: geographic load balancing, whereby DNS is used to distribute load according to the
user ’ s location. When a lookup is made for the initial record (www.example.com), that is typically made
against the DNS server of the user ’ s ISP. Thankfully, that user ’ s ISP is generally located in the same
country as the user. Therefore, when that DNS server forwards the request to the name server(s) used by

❑

❑

❑

Part IV: Pushing PHP to Its Limits

606

the Web site ’ s domain (that is, example.com), that name server is able to issue a dynamic response based
on the remote IP address. As such, the IP address to which www.example.com resolves varies according
to the remote user ’ s location. Traffic from the very first request, therefore, hits the right server.

 There is a challenge in either approach, though — that of keeping content in sync. Assuming users
located around the world should get the same content, those servers must constantly replicate against
one another. On the code and static content front, this can be accomplished easily enough using
scheduled tasks and synchronization software such as rsync . Databases, of course, are more
complicated. This is touched upon later in this chapter.

 NIC Teaming
 In the laudable quest to eliminate single points of failure, the potential for network equipment to fail is
often overlooked. If a server must listen and respond on a single IP address, what is the use of having
two network cards, two switches, and two firewalls?

 By using NIC teaming (sometimes known as link aggregation), two physical network cards can share a
single IP address. In so doing, the two cards can share load. Should one fail, a degree of redundancy is
provided. Don ’ t forget, too, that network cables can fail. Such a strategy should mitigate this, too.

 In general, each network card links into its own switch so that the switch does not become a single point
of failure. Because switches are aware only of hardware addresses (and not of logical addresses), no
special configuration is required at the switch level. The two must simply be kept separate and not
interconnected. On the server, however, the operating system must be configured to support NIC
teaming. Sometimes a BIOS change is required, too. See http://en.wikipedia.org/wiki/Link_
aggregation for some useful further reading.

 Balancing routers and firewalls is trickier. Generally speaking, a heartbeat connection is required to
allow one to “ lie in state ” as a hot standby while another is active. Should the active device die, the
standby device can kick in automatically. The manner in which is this achieved varies from device to
device and manufacturer to manufacturer. In most circumstances, your ISP should be able to help you.

 Disk Fault Tolerance
 Hard disks today are considerably more reliable than they used to be. In typical usage, and under typical
levels of traffic, most Small Computer System Interface (SCSI), Serial Attached SCSI (SAS), and Serial
Advanced Technology Attachment (SATA) disks will last for five years or more — far longer than the
typical life span of the server itself.

 Disks do fail from time to time, however; and if your Web application is dependent on a single disk,
you ’ re asking for trouble. Not only will failure result in downtime, but manually restoring that lost data
from backup (assuming you have backups) can be a major hassle. Remember from earlier in this chapter
you learned that Google loses $26,000 of revenue per minute of downtime. That helps keep things in
perspective.

Chapter 23: Handling High Traffi c and High Availability

607

 The solution is a Redundant Array of Independent Disks (RAID). In such a scenario, multiple physical
hard disks are combined to form a single virtual container. The operating system sees just one disk, and
the RAID controller takes care of getting data to and from the right disk when required.

 Depending on the setup, this can provide numerous advantages. In one of the most common
configurations, RAID 5, a stripe and mirror approach means that multiple hard disks provide greater
opportunities for high capacities, and that any one disk can fail completely with no disruption to the
server, and no loss of data. You can rig up the controller to notify you in such a scenario by e - mail or
even perhaps Short Message Service (SMS) text message. All you need do is obtain a new disk, remove
the old one, and insert the new one. The RAID controller does the rest, gradually bringing the new disk
 “ up to speed ” and back online once it is synchronized.

 RAID also brings performance benefits. Data is often spread all over a disk ’ s physical platters. If your
virtual disk is tasked with reading data from two disparate places in quick succession, then rather than
require the disk head to “ jump ” between the two locations, two physical disks can be charged with
delivering each block of data. Hence, the time taken to perform that head jump is eliminated. It might
not seem like much, but under heavy traffic it can make a huge difference.

 Truly using RAID to your advantage requires being a little smarter than simply declaring “ RAID 5
throughout. ” RAID 5, while providing excellent read speeds, is poor at writing, so it may not be a
suitable choice for disks tasked with frequent writes.

 By mixing and matching different RAID levels across different disks, optimal performance can be
achieved. For example, you may decide to place your operating system boot partition on a single RAID 1
mirror of two disks, providing redundancy and excellent speed, but no incremental capacity. You may
then decide to place your swap volume on a single disk with no RAID at all, given that failure of that
disk is unlikely to affect anything vital. Application data may sit on another three disks, which may
comprise a RAID 5 volume.

 Refer to http://en.wikipedia.org/wiki/Standard_RAID_levels for help choosing the RAID
levels right for you. Remember that different servers will doubtlessly perform different roles. Web/
application servers should never store variable data; hence, the emphasis should be on performance,
rather than redundancy. Database servers need to be both fast and redundant, so RAID 5 or RAID 6 is a
better bet.

 Monitoring and notification is of huge importance. In the event that a disk has failed (or is failing), it ’ s
important to replace it promptly. Putting in place software that can notify you by e - mail should a disk go
momentarily offline can provide an early warning system that it is about to fail. You can then reorder
and replace without delay. After all, a degraded RAID array is arguably no better than no RAID at all.

 Power Redundancy
 Most servers feature two power supplies and two power supply connectors, generally IEC60320/C14
type (see http://en.wikipedia.org/wiki/IEC_connector). You should always connect both where
possible, while keeping in mind that this may (depending on the manufacturer) double your server ’ s
power draw. With this setup, should one power supply fail, the server will continue to function.

Download at WoweBook.com

Part IV: Pushing PHP to Its Limits

608

 Again, you should ensure that whatever utilities at the operating - system level are available to monitor
power supplies are installed and set up to notify you should a power supply fail, or voltages start to fall
outside of acceptable tolerances (which can indicate an imminent failure).

 Ensure, too, that your ISP ’ s data center provides an adequate power supply to your kit. This means
power backed up with a regulated uninterrupted power supply (UPS), which should provide short - term
cover against spikes and brownouts. Behind that, though, should sit diesel generators that can provide a
day or more worth of power in the event of a longer - term outage.

 Be careful, though, because as energy prices around the globe rise, ISPs are getting stricter about power.
More often than not, it is difficult to fill a 42U rack with servers whose power requirements can actually
be fulfilled within the limits your ISP sets per rack. Take care, here. If you place too much of a draw on
the rack, then you may find you simply trip a fuse — and bang goes your whole rack.

 Multi - segment Topologies
 In a typical high - traffic setup, multiple servers will be used as Web servers, database servers, application
servers, and asset servers. As shown in Figure 23 - 1 , in a basic multi - server setup, these servers will
generally sit on the same single Ethernet segment . This means there is a physical link between all the
servers, and all can freely communicate with one another.

 There is nothing wrong with this setup, strictly speaking, but consider the nature of the servers behind
your firewall. Do they really all need access to one another? Similarly, does traffic from the Internet ever
need to reach them? If the answer to either question is no, then you may want to consider placing servers
on separate Ethernet segments, as shown in Figure 23 - 2 .

Ethernet Segment

Perimeter

Router (Gateway)
Firewall

The Internet

Switch

Figure 23-1: Traditional Ethernet segmentation

Chapter 23: Handling High Traffi c and High Availability

609

 In a dual Ethernet setup, two of the servers in the setup have dual NICs. One NIC connects them into the
 “ outside segment ” (which has access to the firewall and, by definition, the Internet), and the second
(which has a separate IP address on a different subnet) connects them to the “ inside segment ” (which
does not).

 The benefit of such a setup is that it physically precludes communications between servers that do not
need to communicate. Typically, database servers would be set up on the “ inside segment, ” meaning that
it is physically impossible to access database servers from the outside world, regardless of firewall rules.
Security is tightened up by implication. There ’ s no need to worry about getting a firewall rule wrong,
because there is no rule to get wrong. However, through that secondary NIC, the Web servers can still
speak to the database servers, and vice versa.

 Another big advantage is speed. There ’ s a dedicated link between the Web server and the database
server, meaning the communications don ’ t have to compete for bandwidth with general Web traffic.

 You can take this to yet another tier of segmentation, should you want to do so. If you separate out Web
servers, application servers, and database servers, each can sit on its own Ethernet segment. Only the
Web servers are publicly accessible to the outside world and sit on an outside segment, and they pass
HTTP requests to application servers on a middle segment. Those application servers, in turn, access
databases sitting on an internal segment, as shown in Figure 23 - 3 .

Inside Segment

Switch

Outside Segment

Perimeter

Router (Gateway)
Firewall

The Internet

Switch

Figure 23-2: Dual Ethernet segmentation

Part IV: Pushing PHP to Its Limits

610

 This takes the level of isolation even further. The only devices with access to the Internet are the Web
servers on the outside segment.

 There is one “ gotcha ” here, though. Your application servers may well need access to the Internet in
order to send e - mails and call external Web services. In the preceding schema, they have none and can
only talk to database and Web servers. This can be mitigated by providing an HTTP proxy and mail
server on the outside segment. Your application servers can then make use of these when they wish.

 Database Clustering and Replication
 You learned earlier in this chapter that it ’ s relatively easy to load balance between Web servers using
hardware load balancers, or even multiple DNS records.

 In so doing, you can spread traffic among multiple servers, thereby eliminating a single point of failure.
Should one Web server die, the other can pick up the strain, albeit at reduced performance for end users.

Middle Segment

Switch

Switch

Outside Segment

Perimeter

Router (Gateway)
Firewall

The Internet

Inside Segment

DB Server DB Server

App Server App Server

Web Server Web Server

Switch

Figure 23-3: Three-tier Ethernet segmentation

Chapter 23: Handling High Traffi c and High Availability

611

 Doing the same with database servers is trickier, though. Queries that start with SELECT are easy — you
can distribute them using exactly the same kind of methodology used to distribute HTTP traffic among
Web servers. But any query that changes data (chiefly UPDATE , DELETE , INSERT , and so forth) must go to
 all servers; otherwise, servers will become out of sync.

 In addition, should a database server go offline for a few hours, when it comes back, it must be brought
back up to date before it ’ s allowed back into the pool; otherwise, its data may be out of sync with its
cousins.

 All this and more is achieved with a technique known as clustering and replication . The term clustering
refers to the ability to pool several database servers as a single unit, such that connecting applications
need only be aware of the cluster, and not the database servers that comprise it. Through clustering, fault
tolerance is achieved (in that any one server failing will not affect the availability and integrity of the
database), as well as load balancing (in that load is shared, generally evenly, among servers).

 By contrast, replication refers simply to the act of two disparate database servers keeping part or all of
their databases in sync with one another. As you might expect, you can have replication without
clustering — but you can ’ t have clustering without replication.

 How you achieve either (or both) is very much dependent on the choice of an RDBMS. This is an area
where MySQL still isn ’ t that hot. While the newly released MySQL Cluster does provide clustering in the
traditional sense of the word, it has significant limitations — chief among which is its memory
requirements, as well as the capability for a node to recover automatically upon failure. MySQL
replication has been available for many years now, but it does not provide load balancing in its own
right. Your code has to pick up the slack. It ’ s also asynchronous, meaning there ’ s a built - in delay
between changes to databases propagating to peers.

 PostgreSQL has recently stormed ahead on this front, after years of very poor support. The likes of
pgpool - II support connection pooling, load balancing, replication, and even parallel query processing,
meaning that the burden of complex queries can be divided among participating databases. At a
commercial level, uni/cluster for PostgreSQL provides virtually turnkey operation.

 As you might expect, the two commercial heavyweights — Oracle and MS SQL Server — support both
clustering and replication out of the box.

 One final thought on this. Database clustering and replication isn ’ t a silver bullet — and more often than
not, it can be avoided. The use of caching, code generation, and asset serving means that traffic to your
database server can be kept to an absolute minimum, and the real - term impact of the database going
offline minimized, too.

 Traffic Calculus
 The phrase “ traffic calculus ” has sprung up in recent years. It refers to a branch of mathematics
dedicated to the understanding of the shape of Web site traffic.

 For example, consider a new Web site being launched for a television channel. The CEO of the network
may tell you to expect 10 million page impressions per month. It ’ s reasonable to assume that this traffic
is likely to be distributed fairly evenly throughout the calendar month (that is, there ’ s nothing to suggest
that week one should have higher traffic than week two, or vice versa). Doing the basic math first, you
can determine, therefore, that each week your Web site can expect around 2.3 million page impressions.

Part IV: Pushing PHP to Its Limits

612

 You might assume (based on either educated guesses or data available elsewhere) that 40 percent of the
site ’ s traffic is likely to occur on the weekend, and 60 percent during the week. This indicates a bias
toward the weekend. You can, therefore, infer that your busiest day in terms of traffic is likely to be
either a Saturday or a Sunday. If each will receive traffic in equal measure, you can assume that on a
Saturday or Sunday your site will receive around 461,000 page impressions.

 Over the course of a day, though, that traffic is unlikely to be constant. You could use a working theory
that 60 percent of the daily traffic is likely to be between 3 P.M. and 6 P.M., since the Web site supports a
daily television show that airs at 3 P.M. and finishes at 4 P.M. That means in that three - hour window, the
site is likely to receive 60 percent of its daily page impressions, or 276,000 impressions.

 You might further hypothesize that in the three - hour slot, 3 P.M. to 4 P.M. is likely to account for 20
percent of that block of peak traffic, 4 P.M. to 5 P.M. (the hour immediately after) 50 percent, and 5 P.M. to
6 P.M. the remaining 30 percent. Your peak hour is therefore 4 P.M. to 5 P.M., when you can expect around
138,000 page impressions.

 Using calculus, you might assume that over that hour, the page impressions are likely to be distributed
approximately according to the normal distribution, with a peak at five minutes past the hour. By
plotting a graph showing a normal distribution, with a mean of five minutes, you can experiment with
different values of standard deviation and Y scalar until you find a shape that “ fits ” your projected
traffic. This is neatly illustrated in Figure 23 - 4 .

3000

2500

2000

P
a
g
e
 I
m

p
re

s
s
io

n
s

1500

1000

500

0
1 4 7 10 13 16 19 22 25 28 31

Minutes Past Hour

34 37 40 43 46 49 52 55 58

Traffic

Figure 23-4: Traffic during peak hour

 As a normal distribution, the gradient (dy/dx) of the curve will equal zero at the mean point, which has
already been stipulated as being five minutes past the hour. Therefore, by calculating the y - value of the
curve where x is equal to 5, the peak traffic per minute page impressions can be calculated: approximately
2,800 page impressions per minute. This is backed up by a quick visual check of the graph.

 If a page impression consists of one HTTP request for the page, followed by around 20 for images, CSS,
JavaScript, and other assets, with a total combined “ weight ” of 100 KB, you may, therefore, assume a
peak transfer of 280,000 KB in that minute. This equates to 37 Mbps. In terms of HTTP requests, if each
page impression consists of 21 HTTP requests, you ’ ll need to be able to handle a throughput of 980
HTTP requests per second.

Chapter 23: Handling High Traffi c and High Availability

613

 In this exercise, therefore, you ’ ve been able to work out your “ worst - case scenario ” in terms of
bandwidth and requests per second for your hypothetical Web site.

 How you use this data is up to you. You could, for example, use your peak Mbps figure in the course of
your contractual negotiations with your ISP — perhaps asking for a 10 Mbps connection with the ability
to “ burst ” to 100 Mbps when needed without financial penalty.

 You might also seek to ensure that your entire infrastructure is capable of handling the peak of 1,000
HTTP requests per second, perhaps using load - testing software such as LoadRunner to achieve this, or
even rolling your own test scripts to simulate load.

 Either way, you have used a simple mathematical exercise to take a commercial objective — page
impressions per month — and map it to a real technical requirement. Sure, you ’ ve used assumptions to
get there, but businesses use assumptions all the time. At least there ’ s some logic behind the
infrastructure you ’ re specifying.

 Caching
 PHP is fast and lightweight, and properly architected PHP applications run quickly with only fairly
modest hardware behind them. Nonetheless, wherever you can save weight, you should, and page
caching enables you to do just that, by executing code only when you really need to.

 By using some variety of caching, each request to your Web application is inspected carefully, and, if
possible, delivered to the client without executing the underlying code in full — indeed, sometimes not
executing it at all. As a result, the burden on your application server — and perhaps on your database
server — is decreased. This is achieved by caching output (that is, storing a copy of it) upon the first request.

 Generally speaking, the requested URL, HTTP GET , and POST parameters, as well as cookies are
inspected. The combination of the four provides a sort of “ unique key. ” Should an identical request
(based on those four parameters) have been generated in the recent past, content will be retrieved from
the cache and sent to the end user; if not, the code will be executed as normal, but the output captured
and stored in the cache. The word “ recent ” is almost always defined using a cache expiry constant;
something around the two - hour mark is common.

 Caching can take place at many points. PHP itself can execute caching. You can easily rig up your code
to inspect input parameters by serializing $_POST , $_GET , $_COOKIES , and $_SERVER[“ REQUEST_URI ”]
into a unique key using the md5() function. You can equally easily capture output buffer contents using
 ob_get_contents() . In so doing, you can use simple conditional statements to determine whether or
not to proceed with the execution of your script, or whether to serve up content from the cache.

 You can also cache at the point of access to the database. You could easily create a wrapper around PDO
to, for example, inspect SELECT queries as they are made, and, if an identical query has been made in the
past few hours, intercept the call to the database and instead return a cached response retrieved from
memory or disk.

 It ’ s also not uncommon to use dedicated caching code at the point of request, particularly when
combined with load balancing. In such a scenario, the load - balancing appliance determines when to
forward a user ’ s request to (one of) the Web server(s). It may simply serve up content from the cache,
particularly in the case of HTTP GET requests.

Part IV: Pushing PHP to Its Limits

614

 Whatever technique you use for caching, there are potential pitfalls. When deploying new content, it
may be frustrating for your content authors if the content is not visible for several hours until the cache
has expired. Hence, you may need to provide a manual mechanism to “ flush ” or otherwise reset the
cache to bring forward the visibility of new content. In addition, should you be using caching in a load -
 balanced environment with multiple servers, you must ensure that their caches are in sync at all times;
otherwise, users may not receive a consistent reflection of content from request to request.

 These pitfalls aside, caching provides an excellent way to maximize the power of your infrastructure.
A good rule of thumb is if you don ’ t really need to run the PHP code, or you don ’ t really need to hit the
database, then don ’ t.

 Content Generation
 In a similar vein to caching, the concept of content generation takes account of the fact that plain old Web
servers are exceptionally good at serving up static content — that is, files read straight off the hard disk
with absolutely no processing whatsoever.

 In such a scenario, pages on your Web application are (wherever possible) generated in advance into
static .html files and associated imagery. Consider the alternative: a complex PHP script that uses the
database to dynamically build the page with each and every request. If that page isn ’ t changing much
from hour to hour, it makes sense to generate it “ offline ” and save the results to disk. That way, users
don ’ t have to wait while the page regenerates. A database can still be used, of course. The difference is
that the database will be accessed only by the script that rebuilds the pages. User requests won ’ t go
anywhere near the database — they ’ ll get static HTML.

 This technique is used to great effect on the BBC news Web site, http://news.bbc.co.uk/ , which gets
hundreds of million hits a day. Almost everything you see is statically generated using PERL scripts —
 simple PERL CGI scripts used to provide dynamic functionality only when it ’ s needed . It ’ s not exactly high
tech, but it certainly copes with the traffic, even during major world news events such as 9/11.

 During your development cycle, you may encounter pages on your Web application that are “ nearly
static ” — that is, they are consistent from request to request apart from some small, dynamic area.
Maybe there is a news ticker on the bottom right - hand corner of the page, or there ’ s a small login
lozenge stating “ you ’ re not logged in ” or “ currently logged in as Ed, ” or similar. That whole page could
be generated statically were it not for that tiny dynamic area.

 You have a couple of options here, should you wish to stick to your guns and go the code - generation
route. The first is to use IFRAMEs or JavaScript. In such a scenario, the HTML sent to the client is
identical, but the client is instructed to request a piece of JavaScript or a separate IFRAME that will
always be dynamically generated. There is still server burden in generating these pieces of content, but it
is far less than would be involved in generating the whole page. This does have implications for search
engine visibility and accessibility, however, as search engines and screen readers are generally incapable
of reading JavaScript and will usually ignore IFRAMEs, assuming they are advertising.

 The second option is to use server - side includes (SSIs), which is a simple “ tag ” in the generated HTML
that tells the server when to bring in an external resource. Contrary to popular belief, it ’ s perfectly
possible to use SSIs to bring in a piece of PHP to generate that dynamic segment. For example, consider
how you would include a piece of HTML using SSIs as follows:

 < !--#include virtual=”header.html” -- >

Chapter 23: Handling High Traffi c and High Availability

615

 You could instead include a piece of PHP as shown here:

 < !--#include virtual=”loginstatus.php” -- >

 Keep in mind that this code will be executed server side and not called by the client browser, and as such
won ’ t be privy to any cookies passed in the original HTTP request.

 Asset Servers
 One simple way to improve the performance of your Web site ’ s infrastructure is to use a dedicated asset
server to serve up pieces of content that are inherently static (that is, they need never be passed through
PHP or any other dynamic content - generation engine). When coding your HTML, you simply point
your < img > tags and so forth to your asset server, rather than www .

 Examples of content that are essentially static include images, CSS stylesheets, JavaScript files, Adobe
Flash movies, and simple .html files. As none of these would ever include PHP, why would you deliver
them through a server equipped with PHP?

 Admittedly, Web servers such as Apache are smart enough not to invoke PHP except when necessary,
but Apache is far from the greatest Web server to use to serve up such content in the first place. It ’ s a big
piece of code, and far from streamlined — it does a lot of stuff you don ’ t need. For that reason, you may
wish to run something else on your asset server — maybe Boa, lighttpd, or thttpd (Google any of them).
If you ’ re really focused on squeezing every last drop out of your infrastructure, what about something
like the TUX Web server? Built directly into the linux kernel, it enables you to build an entire server that
does nothing but serve static Web pages — very quickly, indeed.

 Content Delivery Networks
 A content delivery network (CDN) is one of the more expensive tools in the performance tuner ’ s arsenal,
but it is also one of the most effective. In practice, CDNs are provided by third - party companies that
agree to host large pieces of frequently requested static content on your behalf (typically images, audio,
video, and binary downloads) and deliver them directly to end users. This enables you to concentrate on
hosting your core infrastructure.

 In practice, CDNs are simply niche ISPs that employ many of the techniques explored earlier in this
chapter, including geographic load balancing, hardware load balancing, and static asset servers; but by
building an infrastructure in bulk, they are effectively conducting aggregated buying, and as such are
often able to offer large - scale delivery at a far lower cost than those attempting to do it themselves on a
smaller scale. They also have effectively “ infinite capacity. ” As your site gets bigger, you simply pay more.

 For large - scale deployments, CDNs make sense, but do your sums first.

 Real - World Examples
 In closing, it pays to take a look at how a couple of the highest traffic Web sites in the world cope. These
sites enjoy traffic probably beyond even the wildest dreams of most readers ’ own projects (or those of
their employers), but nonetheless are notable in demonstrating best practices — and using PHP to boot.

Part IV: Pushing PHP to Its Limits

616

 Flickr
 Flickr (www.flickr.com) is operated by Yahoo! and is the most successful photo - sharing Web site in the
world. It serves tens of millions of users across hundreds of countries and serves more than 2 billion
images. In addition to being a popular destination in its own right, it is frequently used by bloggers and
other contributors to Web 2.0 experiences as a hosting engine for their own photos, thus saving on
potentially expensive bandwidth bills. To this day, Flickr remains (largely) free of charge to use, and that
is undoubtedly part of its appeal and popularity.

 Database Configuration

 Flickr uses a MySQL replication (as opposed to clustering) solution. In this environment, there is a single
master database that is “ authoritative. ” When in doubt, the master is always right . It uses MySQL
replication to replicate asynchronously to a number of slave databases, which carry identical copies of
that master database at all times.

 A custom-designed hardware load balancer directs traffic between the various database servers. All
 SELECT traffic goes to one of several slaves; UPDATE , INSERT , and DELETE traffic goes exclusively to the
master. This way, there is no need for PHP code to require any kind of special adaptation to route
database traffic accordingly.

 There is a slight “ slave lag, ” however — the time between when the master is updated and that master
replicates to all of its slaves. Because the slaves are used exclusively for all SELECT queries, there is a
small chance that the chosen slave won ’ t quite be “ in sync. ” This can have odd effects for Flickr users,
such as when uploading a new photo to an album, and it momentarily disappears from view.

 Web/Application Servers

 As you might expect, there are literally hundreds of servers powering Flickr at the front end. No load
balancing is performed in DNS — geographic or otherwise. Resolve www.flickr.com anywhere in the
world, and you ’ ll get a single, unique IP address.

 In fact, Flickr makes use of front - end caching using Squid. Wherever possible, this caches static content,
meaning it is delivered to the end user without ever resorting to consulting the application (PHP) server,
or database (MySQL) server.

 The stats speak for themselves. Flickr serves up nearly 3,000 images per second, of which 80 percent come
from the cache. This keeps the vast majority of traffic completely away from the Web and MySQL servers.

 Further Reading

 You can find more details about how Flickr handles its ever - growing levels of traffic at www.ludicorp
.com/flickr/zend-talk.ppt .

 Wikipedia
 Still independently owned, Wikipedia is a free, multi - lingual, Web - based encyclopedia with content
exclusively contributed and maintained by members of the general public. Despite having spawned
countless copies (or “ forks ”), Wikipedia remains the original — and the most popular. It attracts 638 million
annual visitors, who read more than 10 million articles in more than 250 languages, and its traffic continues
to grow on a daily basis. As of this writing, it receives between 20,000 and 45,000 requests every second.

Chapter 23: Handling High Traffi c and High Availability

617

 Wiki Software

 Wikipedia is based on MediaWiki, a free and open - source wiki platform that delivers a sort of
lightweight content management platform for delivering wiki content. The MediaWiki platform is
written in PHP, and it can make use of any number of corresponding database platforms. Wikipedia,
however, chooses MySQL.

 Geographic Load Balancing

 As touched upon earlier in this chapter, as a global site, Wikipedia makes use of geographic load
balancing. In so doing, the DNS resolution of each of its hosts (en.wikipedia.org , fr.wikipedia.
org , and so forth) is dependent on the geographic location of the client computer performing the DNS
resolution. In London, for example, en.wikipedia.org (the English edition) resolves to 91.198.174.2. In
Houston, Texas, it resolves to 208.80.152.2.

 The servers at both IP addresses serve up exactly the same content, but both are at quite geographically
disparate locations. In this manner, the “ trace ” to the Web server is kept to a minimum — that is, the
number of routers and gateways through which traffic must pass to get from the user ’ s Internet
connection to the server is kept to a minimum.

 Static File Server

 Wikipedia makes excellent use of lighttpd, a lightweight, no - frills database server perfect for serving up
static assets such as images and CSS stylesheets. In particular, thumbnail images (as opposed to their
full - size variants) are delivered in this way.

 In fact, the installation of lighttpd used by Wikipedia is a little more sophisticated than most. It is
configured such that if a thumbnail image cannot be found, then the request can be passed to the
application server cluster for real - time generation. This enables it to act as more of a content cache than a
simple dumb asset server, able to intelligently route requests according to need.

 Linux Virtual Server (LVS)

 Load balancing in the Wikipedia environment is provided by Linux Virtual Server (LVS). This enables
the resources of many physical servers to be pooled, balanced, and exposed to the outside world as a
single virtual server.

 This has many advantages over traditional load balancing. It is protocol independent, does not require
any software - level support, is kernel level for speed, and can also provide no - single - point - of - failure
redundancy.

 See www.linuxvirtualserver.org/ for more information. In particular, http://kb.linuxvirtual
server.org/wiki/Load_balancing has details on its role in providing load balancing.

 memcached

 Finally, not touched upon earlier in this chapter is memcached. Natively supported in PHP
(see http://uk.php.net/manual/en/intro.memcache.php for more information), it provides
distributed memory caching that enables the results of “ expensive ” application operations to be cached
in memory.

Part IV: Pushing PHP to Its Limits

618

 Because memory is almost always faster than, for example, reading from a disk, calling a Web service, or
talking to a database server, great speed advantages can be enjoyed and, by extrapolation, a higher load
supported.

 In the case of Wikipedia, pools of dedicated servers actually function as dedicated caches with large
quantities of RAM. There is, therefore, a slight burden in establishing a connection to the cache server in
order to lodge or retrieve cached values, so certain heuristics are followed when deciding whether or not
to use the cache.

 In Wikipedia ’ s case, there is a pool of around 30 servers with 2GB of RAM each — that ’ s more than 60GB
worth of caching of textual values.

 Further Reading

 For further (fairly dense) reading on Wikipedia ’ s infrastructure, visit http://dammit.lt/uc/
workbook2007.pdf .

 Summary
 In this chapter, you were finally exposed to the cold, harsh reality of PHP in the enterprise — that is, the
need for high application availability under high traffic.

 Initially, you explored what these mythical (but oft - used) phrases actually mean and learned about some
cold, hard metrics for both. With this in mind, you looked at the architectural factors that affect
availability under load, and the relative importance of each. You then explored in some detail an
encyclopedia of approaches that can mitigate the risk created by these fault lines.

 Finally, you took a look under the hood at two popular Web sites — Flickr and Wikipedia — and learned
how they employ some of those mitigation strategies to great effect, and hence cope with enormous
volumes of traffic with ease.

 In Chapter 24 , you ’ ll be forced to ask yourself some pointed questions about whether PHP is actually the
right choice for your application in the first place. In so doing, you ’ ll learn some great advocacy
techniques — as well as when it ’ s appropriate to look elsewhere.

 PHP Advocacy

 Obviously, you don ’ t set out to write an entire book on a particular programming language
without believing that it is the best approach to Web application development. However, PHP
suffers from some reputation problems, especially among certain groups of application developers
who believe that the simple syntax, weakly typed variables, and lack of a large, complex
application server environment relegates PHP to having utility only in very simple applications,
and for beginning programmers who lack knowledge of other environments.

 It is true that the very low barrier to entry for anyone who wants to build a Web application means
that a lot of PHP - based Web sites are poorly built, with gaping security holes, an impenetrable
mishmash of business logic and HTML markup, and major performance issues. However, the
simplicity of the PHP platform and its accessibility are also major advantages, and the low barrier
to entry is something to be celebrated, not denigrated.

 Books like this (and other excellent printed and online PHP resources) should encourage
beginning developers to increase their knowledge of software development and the craftsmanship
of their product. For experienced developers, who are accustomed to working in other
environments, these resources should encourage giving PHP a second look and considering it for
their next project.

 This chapter provides some justification for why PHP is the best programming language selection
for even enterprise - class application development. It also provides some counterarguments to
those who insist that other platforms have a claim to greater legitimacy.

 Low Overhead
 One of the most infuriating things about running a Java - based Web application is the amount of
setup, installation, configuration, and performance tuning that must take place just to get even the
simplest application up and running. After installing Java, a Web server, a J2EE application server,
a connector to enable the Web server to talk to the application server, Ant (or other build manager),
creating XML files to configure the build manager, compiling the application, packing it up into

Part IV: Pushing PHP to Its Limits

620

deployment files (WAR or EAR packages), deploying to the application server, adjusting application
configuration files, adjusting the application server configuration files, and then rebooting the
application server, you can then find out whether or not the code is working properly.

 Ugh!

 The simplicity of the PHP environment (that is, just a Web server and the PHP module) makes it very
easy to get a PHP application up and running. Unless your application requires some custom modules
or other esoterica (which is unusual), there ’ s generally only a small configuration file for the application,
usually containing things such as the database connection string and other simple details, and the
application is ready to run. Most UNIX platforms (including Mac OS X) now ship with Apache and PHP
already installed.

 In many applications, you might need cron jobs to run periodically, for which you usually use
a command - line application or script. Whereas the basic command - line syntax for running a Java
command - line application (and, to a slightly lesser extent, a Python or Ruby application) can be
labyrinthine and not at all obvious, PHP command - line applications are generally invoked with only
one parameter: the name of the script to be run. Whereas applications have been architected using a
clean MVC paradigm, being able to interact with the application from the command line generally only
involves a new controller and some new views. While this is true of any well - written application, the
simplicity of the invocation in PHP makes this a much more palatable proposition than in other
environments.

 Whether you are running from the command line or from the Web server, the simplicity of invoking any
PHP application is greatly enhanced by the common install locations for systemwide libraries. Compiled
modules written in C have a designated install location, and PHP - based extensions installed by PEAR go
into a common directory. Unlike the system employed by Perl (which involves many such common
folders, all with version - specific names), the PHP structure is incredibly easy to understand and
discover, generally by looking at the output of phpinfo() . The convoluted classpath of Java (and
occasionally Python) does not factor into the configuration of a PHP application.

 When new extensions must be installed, there are two very simple approaches to installing them on the
Web server: PEAR and PECL. PEAR is the system of utility libraries that are written in PHP, and PECL
includes those that are written in C as PHP extensions. The documentation for both repositories is
excellent, and available from their respective Web sites (http://pecl.php.net and http://pear.
php.net). While these take their cues from the CPAN repository for Perl, they are far simpler to access,
and the documentation is far easier to read. No such repository exists in a meaningful way for .NET
or Java.

 The preferred practice is to compile new extensions from source, and this is the preference of this book ’ s
authors. Many other developers are quite satisfied using their operating system ’ s package manager to
add new functionality to PHP. For example, in a Red Hat/Fedora environment, if you should need the
PostgreSQL module for PHP, it can be as simple as typing the following from the command line as root:

#yum install php-pgsql

 The near ubiquity of PHP means that the maintainers of the various GNU/Linux distributions ensure
that the PHP modules are well - tested and simple to install.

Chapter 24: PHP Advocacy

621

 Linguistic Simplicity
 PHP ’ s syntax was influenced by a number of popular programming languages, such as Perl, C, and even
ASP. As a result, it has the benefit of those languages ’ older heritage and has been able to incorporate the
most useful parts of their syntax and discard those features that were confusing and unnecessary.

 Weakly Typed Languages
 The primary advantage of strongly typed programming languages such as Java and C# is that some
programming errors will be caught by the compiler prior to application deployment, which can catch
some bugs that might be otherwise difficult to track down. However, this is done at the expense of the
programmer ’ s time spent ensuring that variables are assigned the right type to begin with, and then
casting values from one form to another when converting data structures. Like Perl, Python, and Ruby,
PHP enables the developer to determine how the data will be used at run - time. This allows for automatic
type casting, reuse of variables to hold different types of information at various points in the execution,
and generally simpler code.

 This feature can, of course, be misused; but there is a primary difference between the philosophies of
strongly typed and weakly typed programming languages: The latter trusts the developer to know what
he or she is doing. The following is arguably sloppy, but perfectly valid in PHP:

$words = array(‘Hello’, ‘World’);
$words = join(‘ ‘, $words);

 Having to create another variable to hold the string representation of the joined array would probably be
better practice, but in a strongly typed language such as Java or C#, you must take the time to declare
and instantiate the objects to hold the two different values. Likewise, the following is perfectly valid and
unambiguous PHP code:

$a = 6;
$b = “42”;
$c = $a + $b; //48
$d = $a . $b; //”642”

 Note the advantage here over other weakly typed languages for which the addition operator and the
concatenation operator are the same (Perl, JavaScript, and so on). When setting the value of $c , PHP
automatically casts the string “ 42 ” to its numeric equivalent, 42. When concatenating the two variables
to get $d , the 6 is cast to “ 6 ” . In those languages that overload the operator for the different data types,
the value of $c would be ambiguous.

 Reduced Punctuation
 Languages such as Perl use different sigils to identify variable types (for example, $foo is a scalar, @bar
is an array, and %baz is a hash, while $baz is, confusingly, a reference to %baz). A common complaint
with such languages is that converting values between the various forms and keeping track of which
sigil to use (and when) is enormously time - consuming and a common source of error.

 Further adding to the confusion is Ruby ’ s use of those same sigils to indicate variable scope. PHP
simplifies all of this by using one syntax for its variables: $myvar .

Part IV: Pushing PHP to Its Limits

622

 In general, the PHP developer errs on the side of introducing fewer punctuation symbols to the
language, eschewing the shortcut variables of Perl (for example, $_ , $?) and the stranger string operators
(such as qq) found in Perl and others.

 To create an array in PHP, you simply use array() . This is intuitive and does not require remembering
whether the array operators are [] , () , or {} or something else, as is commonly the case in a number of
programming languages. This means that everything must be a bit more explicit, and perhaps occupies
more lines of code, but because professional programmers are concerned with the readability of their
software to others, this is an advantage, especially as it does not require additional programmer time to
implement.

 Commonly Understood Syntax
 For all of its faults, the C - style syntax of semicolons and braces is well understood and common to a
huge variety of programming languages. While the alternative syntaxes found in languages such as
Python and Visual Basic are more accessible to new programmers, the rest of us are quite comfortable in
a world where whitespace is insignificant, and statements end in a semicolon. Comfort, though not
necessarily exciting, is productive.

 Anyone with any prior programming experience can very quickly pick up the basic syntax of PHP and
understand immediately how to handle basic operations. All operators are simple, one - unit punctuation
marks (e.g., assignment is =, concatenation is .), and functions are constructed with the keyword
 function , with no need to declare them separately, as in C. While many appreciate the simplicity of a
visually uncluttered language such as Python, it is a different approach to syntax than what many of us
are used to. Programming languages such as Ruby that support multiple programming paradigms (such
as functional programming) alongside the imperative programming style of PHP can lead not only to
syntactic confusion, but also confusion regarding the intent of a piece of code.

 Cross - Platform Support
 Like many of the other languages discussed in this section, PHP is supported on nearly every commonly
used operating system. Java, with its “ write once, run anywhere ” philosophy, supports this concept at
the level of the language; but this promise starts to rapidly degrade once the various application server
environments are brought into the picture. Very often, applications created to run on JBoss don ’ t work
properly, or aren ’ t deployed in the same way, as an application written for, say, WebLogic. The
complexities of these two environments are such that write - once may work for the application logic
(sometimes), but vast amounts of container - specific configuration information must be created for each
deployment. This also assumes that the application is written for, and compiled against, Sun ’ s version
of Java.

 It is worth mentioning that there is some fragmentation in the implementation of Java with competing
JVMs from Microsoft (largely ignored), Apple, and a version more compatible with the open - source
licenses from the people at the GNU project. All of these implementations are slightly different.

 PHP has a single implementation, with a full free and open - source software license, a very active
developer community, and no signs of forks happening anytime soon. The promise of “ write once, run
anywhere ” is realized in the PHP project and, it ’ s worth mentioning, in Python, Ruby, Perl, and several
others.

Chapter 24: PHP Advocacy

623

 Because PHP only needs a simple plug - in into the Web server to work, with no additional server
processes or daemons required to support it, it is readily adaptable to any Web server environment, and
SAPI modules exist for nearly any conceivable Web server software you might want to use.

 Deployment of a PHP application is usually a trivial matter of uploading some files to the Web server
and then performing any application - specific configuration (such as editing the database connection
string). There is no complicated deployment of WAR files with server rebooting, and complex XML files
dozens of lines long to set up the execution environment. For many installations, the default php.ini
file included with the source code distribution is nearly (and often completely) correct for the platform
on which it is deployed. Moreover, unless new extensions must be added to PHP, this configuration is
very often never touched after the initial install.

 To deploy a PHP application to the production Web servers, you can use an FTP client to copy files.
However, a far better way is to use a Subversion client (or CVS) to deploy from a particular branch of the
source code repository. (Appendix A provides a discussion on source code management systems and
Subversion.) Because PHP is an interpreted language, there are no compiled, machine - specific binaries to
deploy. In addition, unlike J2EE applications, the code is distributed as plain text, rather than ZIP files
(which is what WAR and EAR files actually are), facilitating simple and fast incremental updates to only
those files that have changed since the last deployment.

 One huge advantage over complex GUI application servers such as IIS is the capability to edit the plain -
 text configuration files remotely using vi or emacs through an SSH session. Because it is easy to tunnel
SSH connections from one machine to another, it is also a simple matter to configure a secure connection
to the Web server for administrative purposes. Securely connecting to a Windows Remote Desktop
connection to administer security, application settings, user accounts, and other details usually involves
a messy process of connecting to a VPN, remoting into a machine in a DMZ, and, from there, connecting
to the actual Web server machine, where everything is done through a bandwidth - and memory -
 hogging GUI.

 .NET applications (which are themselves often not simple to deploy) are a “ write once, run on one ”
operating system application environment. Despite the promise of Microsoft ’ s common language run -
 time and the progress being made by the open - source Mono project, .NET development is still very
dependent on the Microsoft application server environment. Though this book doesn ’ t necessarily
advocate PHP applications on a Window server running IIS, at least a few applications (especially those
with utility across several of the clients of this book ’ s authors) have been quite successfully deployed on
UNIX and Windows machines (using MySQL and MSSQL databases, respectively) with almost no
modification to the application source, other than some minor changes to the SQL queries.

 For .NET development, there ’ s basically only one programming environment to use, which is
Microsoft ’ s admittedly quite excellent Visual Studio. However, being tied to one environment for
software development is stifling, and the massive overhead of MSVS means that you are limited to
doing .NET development on fairly robust hardware, to which you may not always have access. With an
SSH client and a copy of emacs , you can remotely develop a PHP application from even the most basic
computer. For local development, you can essentially run any operating system you like and use any text
editor or integrated development environment (IDE) that you like. (See Appendix B for a discussion of
some of the better PHP IDEs that are available.)

Part IV: Pushing PHP to Its Limits

624

 Ubiquity
 PHP ’ s ubiquity and longevity are other reasons that it appears at the top of any list of possible languages
to be considered when creating a new application. Because you know that nearly every ISP will support
it, and that it will work on any environment you might need to deploy to (including IIS on Windows),
you know that you won ’ t need to worry about system support, unlike Java, Python, and Ruby, which are
generally not widely supported, even if support for the latter two is growing.

 Though Python and Ruby have some support from some very influential users, it remains to be seen
how much longevity they will enjoy — especially Ruby, which currently has a trend - of - the - week aura
about it, despite being a very capable and robust language. While Ruby on Rails has inspired many
programmers to create some innovative applications, the Ruby language itself remains relatively
obscure, and the Rails project has scant corporate support.

 Python, conversely, has been around for a while, and is widely used at Google (among other
heavyweights in the Web world). However, support for Python remains scant at major ISPs and
corporate data centers. While that might start to change in the years to come, it remains a specialist
application development environment.

 The quality of the documentation and the ease by which it is accessed (just go to http://php.net/
[function_name] to get the documentation on any function) make learning PHP a snap. While there is
abundant documentation on Python, it is not so easily accessed, and the Ruby documentation still has a
way to go. The length of time that PHP has been widely used also means there is an abundance of
excellent tutorials and how - to examples on nearly any conceivable programming task. With Python and
Ruby fairly new to the scene, the available resources for those languages are not so vast. The
documentation for Java is abundant and well - constructed, but the complexity of application
development for that platform offsets its utility. The official .NET documentation from Microsoft is
middling in quality, though that development community has a very active group of tutorial writers.

 Power
 It has been said about PHP that while it may work well for your cousin ’ s blog, it ’ s not ready for
enterprise - class software development; but just ask any company to show that it is running more
processor - intensive, storage - intensive, security - conscious, or mission - critical applications than
Wikipedia, Facebook, Yahoo!, and, yes, WordPress, along with countless other Web sites that see far more
traffic in an hour than most corporate applications see in a month.

 Having said that, it is very, very easy to write really bad applications using PHP. It is really, really
difficult to write any application for a full - blown J2EE environment. Where you have excellent software
developers, carefully thinking through the software architecture (and planning the execution against
established business logic), PHP provides the formalized language and execution environment to create
the most robust applications. Where you have inexperienced software developers using amateurish
techniques and poor project management, every application will be bad, regardless of the programming
language.

 Earlier releases of PHP were fairly blamed for the lack of object - oriented support (fixed in PHP 5), the
lack of namespaces (fixed in PHP 5.3), and bad application design decisions (such as the presence of
 register_globals in php.ini). PHP 5 has now been out for nearly five years, and has proven itself as

Chapter 24: PHP Advocacy

625

both a capable language and a robust execution environment. With the default inclusion in PHP 6 of the
Advanced PHP Cache (APC), an opcode caching extension covered briefly in Appendix C, you can
realize a large performance gain on top of the optimizations to the PHP run - time released in this version.

 This discussion has not mentioned some alternative languages, such as ColdFusion, which remains
popular in some circles. It is excluded here because it is rapidly waning in popularity, has little support
among professional software developers, and is a platform - limited, fairly expensive, and poor -
 performing environment. Also excluded are some of the higher - level application libraries, such as
Struts and Tiles for an MVC implementation in Java, or Catalyst for Perl. The enormous complexity of
these systems is laughable in comparison to a PHP - based solution such as Smarty, or the preferred
templating system of PHP itself.

 Summary
 This chapter should have provided some indication of why PHP has the enduring popularity it has, and
why the authors of this book are enthusiastic advocates of it. It is hoped that readers who may have
decided (as a result of now long - outdated objections) that PHP is “ not yet ready for prime time ” will
reexamine the language and run - time environment, and check out the software architecture of the many
great open - source applications written in PHP that are currently serving millions of visitors a day
(Wikipedia and WordPress would be great places to start). In addition, consider whether your day is
more productive writing XML configuration files for an application server, or writing the business logic
for your actual application in PHP.

 Now that you ’ re armed with all the information about why PHP is such a fantastic application
development platform, Chapter 25 offers some ideas about how to achieve a successful career using it.

 Your Career As a PHP
Professional

 If you somehow managed to make it this far without touching a computer, please refer to at least a
few of the previous 24 chapters. We humans tend to learn best by physically doing what we have
learned. Go back and pick up a chapter (or two) that piques your interest, and feel free to
experiment with the code. The adage “ You get out of it what you put into it ” applies here.

 This should ring true even if you ’ ve scrupulously read every paragraph and run every application.
After all, you ’ re sure to have experienced a thought that starts with, “ What happens if . . . ? ” Don ’ t
know the answer? Can ’ t find it in the documentation? Experiment. There is no shame in breaking
code by exploring boundaries, and by now your PHP skills should be up to a critical point. You
can dig yourself out of any hole that you ’ ve managed to get yourself into.

 This is an important distinction. Digging yourself out of a hole by using your technical skills,
leveraging unit tests, and pondering the “ hows ” and “ whys ” means that your education can
continue and, it is hoped, extend itself beyond the technical realm. The ability to determine the
likely causes of a problem, and then to develop a short list of likely best solutions (a skill medical
doctors call “ differential diagnosis ”), is a critically important part of your development as a
professional technologist. It is a skill that comes only from experience and making a few mistakes
along the way.

 Motivation
 Regardless of why you ’ ve purchased this book, the work involved to get here is certainly
nontrivial, and you deserve a pat on the back. Getting here probably involved sacrificing at least
some time that you would rather have spent playing video games, attending social gatherings,
interacting with your family, or just getting enough sleep.

628

Part IV: Pushing PHP to Its Limits

 You should now be able to appreciate some of the features and ubiquity of PHP. Go out and apply what
you ’ ve learned, using baby steps if need be, but apply the lessons you ’ ve learned. Install PHPUnit.
Cruise through the PEAR archives, and don ’ t just install and run third - party PHP applications, but look
at them, read through the source code, figure out what they ’ re doing, and fix them if need be.
(Remember that these are open - source libraries; contributions back to the project, especially those that
resolve problems, are generally appreciated and sought.)

 Even though your skill set may be both deep and wide, you really never stop learning. Contrary to the
belief that Wrox is attempting to torture you, every chapter exists for a reason, and none is purely
academic. PHP professionals (in the field) have created this book, and everything that was presented to
you is used in a professional environment.

 That also means that everything has a history. Neither this book nor PHP 6 was created out of the ether,
so these functions and practices are worth further exploration. Entire books (even entire companies,
and some sub - industries) support the concepts that have been presented to you. Continue reading,
because some great resources are coming right up.

 Your Career As a Developer
 Assuming that you are serious about being a professional software developer (as opposed to being
merely someone who gets paid to write code), you should make a conscious effort to further your skills.
The shelf life of technical skills is growing ever shorter, and no effort you put forth to keep up - to - date
regarding trends and developments can be considered wasted.

 How should you spend your precious time? You can ’ t possibly learn everything about everything, and
well - rounded technical individuals are considered quite valuable commodities.

 More Than Web Development Skills
 PHP is more than the details of session management, file downloads, and configuration variables. PHP
is a language that grows and changes over time to suit the needs of developers like you who need to
have it done by yesterday.

 Although the design and implementation of PHP is geared toward Web site development, PHP can be
used for more than interacting with a browser. Consider what you can do with a tool that is capable of
running seamlessly across Windows and Linux, as well as communicating with file systems and nearly
every popular database. What else can you do with it? How about the following:

 Translate databases

 Process XML

 Gather RSS/Atom feeds

 Test forms/sites from alternative Web development technologies

 Use Perl - like text processing

 Run generic utilities

❑

❑

❑

❑

❑

❑

Chapter 25: Your Career As a PHP Professional

629

 Even if you don ’ t create Web sites every day, you can still find opportunities to leverage your
hard - earned and valuable PHP skills.

 Soft Skills
 Yes, these are also known as the dreaded “ people skills. ” Even PHP geeks must interact with real, live,
actual humans from time to time, even if they are other PHP geeks.

 Oddly, these abilities are not thought of as standard technical skills, even though most professional
software developers spend a significant amount of time interacting with clients and co - workers,
gathering functional requirements, determining business logic, coordinating development efforts, and
doing postmortem evaluations of work completed. Let ’ s face it, out of the box, most programmers
generally do not possess the most effective social skills.

 Time invested in enhancing your nontechnical technical skills goes far. Go out of your way to solicit from
co - workers and clients feedback on your communications skills, personality traits, and presentation
abilities. As a gross overgeneralization, software developers tend to have high intellectual ability, but
also tend to have an astounding lack of social awareness, compounded with arrogance.

 Your clients and co - workers are not of lesser intellect because they know nothing about technology.
(They may be idiots for others reasons, but lack of technical knowledge does not equate to lack of
intelligence.) Be sensitive to the fact that technology intimidates most non - technologists. This may be
partially because of its complexity, but it may also be attributable to years of experience in dealing with
obnoxious technologists who go out of their way to belittle those who lack any knowledge of computer
science, and overwhelm them with arcane jargon in an attempt to “ explain ” a problem. Don ’ t be that
obnoxious person. Knowing how to effectively communicate complex topics to non - technologists is a
skill that the authors of this book have spent time developing, and one we leverage every day to win and
retain clients.

 Instead of taking the approach that you are being “ bothered ” or “ distracted ” by those who ask
questions, instead consider the situation as a teaching opportunity. It actually is an opportunity. The
better your clients and co - workers understand what goes in to the creation of an application, the better
an appreciation they will have for why various tasks take a certain amount of time, and what sorts of
activities are nontrivial.

 The goal of this education is not to equip account executives or graphics designers with the knowledge
of architecting a database, but rather to help them understand the nature of the various activities that are
required to get certain kinds of applications launched.

 As an example, the authors of this book regularly hold formal, planned seminars for clients and
co - workers, but even more regularly take a little time during the business day to fully explain our
answers to certain questions. Both the formal and informal education immensely improves the
relationship between clients and co - workers, and helps to ensure that developers are consulted during
those phases of the project where their input is essential, and left out of meetings where their time would
be wasted. Properly educating everyone makes everyone ’ s life easier.

630

Part IV: Pushing PHP to Its Limits

 Academic Skills
 The art and science of what we do is continuously evolving. Professional software developers
understand that a continuing computer science education is essential to professional development,
personal growth, and gains in productivity and application stability. Most of us take some amount of
time every day (even if it ’ s only for a hour) to browse the literature, monitor key mailing lists, and keep
abreast of industry news and trends (and, no, spending an hour making smarmy comments on Slashdot
doesn ’ t count toward a better understanding of your profession). In addition to the abundant online
resources and regularly published literature, there are a few classics that should be read, reread, and
fully internalized.

 A full understanding of what design patterns are, how to implement some of the most common ones in
PHP and other programming languages, and learning how to use a design pattern approach to thinking
about software architecture almost necessarily results in better overall application design, and better
reusability of objects. Design Patterns: Elements of Reusable Object - Oriented Software by Erich Gamma,
Richard Helm, Ralph Johnson, and John M. Vlissides (often collectively referred to as the “ Gang of
Four, ” or “ GoF ” (Addison - Wesley, 1994)) is a classic; and comes in easy - to - swallow chapters, presented
in a carefully typeset, beautifully presented tome (it even has a fancy - pants ribbon for marking your
page). Learning just one per week will make half a year fly by in no time.

 One way of gaining a richer understanding of how PHP works is to spend some time analyzing and
understanding the source code for PHP itself, which is written in C. This is especially useful if you ’ re
going to attempt any low - level performance tuning. With Writing Compilers and Interpreters by Ronald
Mak (Wiley, 1996), knowing how PHP and similar languages do their magic goes a long way when the
going gets tough.

 Refactoring: Improving the Design of Existing Code by Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts (Addison - Wesley, 1999) examines the techniques for achieving well - written
concise code. Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process by Scott
Ambler and Ron Jeffries (Wiley, 2002) goes into detail regarding the integration of agile development
practices and standard modeling techniques.

 Community Skills
 PHP exists because it was developed as a community effort. Scores of developers have been involved in
the process, if only in the capacity of testing. Another incredibly important contribution one could make
to the project of developing the language itself is testing and documentation writing. One of the reasons
PHP has succeeded as well as it has is because of the quality and quantity of documentation available;
but if you want to contribute to the development of the source code for PHP, one of the PEAR or PECL
libraries, or any other open - source project, it ’ s important to understand the culture of those who make
up the core of the development effort.

 The day will arrive when you find a PHP utility or application that must be repaired, or you might
discover someone who might offer a patch for something that you wrote. Either way, a dose of humility
goes a great distance in the political process, and this is no exception.

 Actively contributing to community projects such as PEAR increases your personal PHP skills, and the
value of the effort is multiplied by the time saved by similar developers using your tools. Even if you ’ re

Chapter 25: Your Career As a PHP Professional

631

not as technically astute as the project may initially require, the act of creating a “ How - To ” or developer -
 targeted tutorial is often a great help in learning a new technology. Unfortunately, good documentation
is often lacking in the best of projects.

 Summary
 The technical concepts presented in this book are considered best practices, and you should be prepared
to know what they are. As a software developer, you ’ ll most certainly be presented with both good and
bad examples of MVCs, refactorings, UML, design patterns, and collections.

 Therefore, utilizing your new skills is as important as learning them in the first place. Try to leverage
what you know in other areas and be on the constant lookout for interesting tools, development
techniques, designs, and projects.

 After all, you do share planet Earth with us, the authors, who welcome any help in creating a place
where poorly written software is not shockingly easy to find.

 Remember, then, young Jedi: “ Always in motion is the future ” (Yoda).

Part V

Appendixes

Appendix A: Version Control

Appendix B: PHP IDEs

Appendix C: Performance Tuning PHP

Appendix D: Best Practice PHP Installation

 Version Control

 Many programmers dread big projects, often for a whole host of reasons. However, one particular
aspect of big projects can sometimes seem more unappealing than any other: code organization.
Six or seven software developers, two software architects, a lead architect, and client - side
developers all working on the same project often represent a recipe for disaster.

 Mercifully, code organization on big projects has been made much easier in recent years with the
advent of readily available, easy - to - use, cross - platform version - control software.

 This appendix examines the basic principles of version control, and discusses how to organize a
version - control strategy for your project. You ’ ll also learn how these principles are applied in two
of the most popular version - control software applications, and how to choose which (if either) best
suits your project.

 Principles of Version Control
 The purpose of version control is twofold. The first is to avoid the version conflicts in development
that can arise when multiple programmers work on the same set of project files. The second is to
automatically journal changes to key files on a project, which creates a historical record of changes
to the code and enables the capability to revert to previous versions.

 By requiring programmers to check out a file from a central repository when they wish to work on
it, a version - control platform can keep a record of who is working on which files, and at what
times. Depending on the approach taken, this method can either wholly exclude other developers
from working on that file at the same time, or allow other developers to also work on the file and
then merge their changes when the file is checked back in again.

 Journaling of files in a project involves the retention of previous versions of each file. Whenever a
file is checked in to a repository, the version - control platform marks it as current so that anyone
retrieving that file from the repository does retrieve that latest version by default. However, a copy
is taken of the file in its previous state. Not only does this enable the project administrator or lead

636

Part V: Appendixes

architect to roll back a file should a new version prove problematic, it also enables the changes between
versions to be easily listed, which, from a project management perspective, is a major boon.

 All version - control systems use some variety of a repository for storing a copy (usually verbatim on disk,
but sometimes as part of a more complex, and often proprietary, database format) of the file and
directory structure of the project. How this repository is accessed varies from system to system. A typical
topology is examined later in this appendix.

 Concurrent Versus Exclusive Versioning
 Version - control platforms differ immensely in their implementations of the principles discussed earlier,
especially with respect to how a file is checked out.

 In any version - control platform, when a programmer checks out a file, the latest version of that file is
retrieved from the central repository, and the user ’ s local version is replaced with that latest version.

 However, in a platform employing exclusive versioning , a lock is then placed on that file with immediate
effect. While the file is checked out, other developers may still retrieve the latest version of that file, but they
themselves will not be able to check it out to work on it. This exclusive versioning is usually enforced by
marking the developer ’ s local copy of the file as read - only. Of course, this is only notional enforcement, and
does require the developer ’ s cooperation to work well in practice. The lock is removed after the developer
working on it checks in the file in question. The repository is then updated to reflect the latest version.

 Concurrent versioning adopts quite a different approach. The acts of retrieving the latest version of a file
and checking it out to work on are combined so that they are essentially one and the same. In other
words, in order to work on a file, all a developer must do is ensure that he or she has the latest version of
that file and then start working on it. When each developer has finished making changes to the file, he or
she will check it in. This is where the magic happens. If a second developer checks out a file after another
developer checked it out, and is attempting to check it in after the first developer has checked in a
changed version, the two newly submitted versions will be merged.

 A Concurrent Versioning Example

 To make things a little clearer, consider the following example. This is an imaginary file called
 helloworld.php that prints “ Hello World ” in the Web browser. Note that line numbers have been
included. Of course, these would not be included in the code as it is saved.

1: < ?php
2: $strToPrint = “Hello World”;
3: ? >
4: < html >
5: < body >
6: < ?php echo $strToPrint; ? >
7: < br / > < br / >
8: < /body >
9: < /html >

 You can call this snippet of code version 1.0 of the file.

 Suppose that Jane Doe and John Doe are both working on the project. John works out of New York and
Jane works out of Los Angeles.

637

Appendix A: Version Control

 A meeting has been called with the client. They wish to change the code of this particular file so that
instead of printing “ Hello World ” it prints “ Goodbye World. ” John Doe ’ s manager has given John the
task of modifying the code to reflect this requirement.

 In that meeting, the client also requested that a horizontal rule be drawn underneath the printed text.
Jane Doe ’ s manager has given her the task of modifying the code to include that extra line.

 In an exclusive versioning setup, it would be impossible for John and Jane to make their changes at the
same time. John would have to check out the file, make the change, and check it in again. Jane could then
check out the file, make her change, and check it in again.

 In a concurrent versioning setup, no such requirement exists. Say that at 12:00 P.M. (Eastern Time) John
does a checkout to get the latest version of the file, currently version 1.0. He starts working on making
his change. At 12:01 P.M. (Eastern Time), Jane does a checkout as well, also to get the latest version of the
file. This is still version 1.0; John hasn ’ t checked anything in yet. Jane starts to work on her change.

 At 12:05 P.M., John is done. The code works fine, so he decides to check in his work. He does so, and the
repository saves his newly submitted version as the latest version — version 1.1. Version 1.1. now looks
like this:

1: < ?
2: $strToPrint = “Goodbye World”;
3: ? >
4: < html >
5: < body >
6: < ?php echo $strToPrint; ? >
7: < br / > < br / >
8: < /body >
9: < /html >

 At 12:09 P.M., Jane is done, too. The code works fine for her, so she now wants to check in her work. Her
code now looks like this:

1: < ?
2: $strToPrint = “Hello World”;
3: ? >
4: < html >
5: < body >
6: < ?=$strToPrint? >
7: < br / > < br / >
8: < hr / >
9: < /body >
10: < /html >

 When she checks in, the repository notices that she is checking in a changed edition of version 1.0 — not 1.1,
which is now the latest. Her attempt to commit the file will result in an error message indicating that she
must first fetch the latest version from the repository and merge it with her changes before she can commit.

 The repository now must merge the changes made by John between version 1.0 and 1.1 with the changes
made by Jane between 1.0 and her new proposed version.

638

Part V: Appendixes

 The repository determines that the change John made was to change line 2 from

2: $strToPrint = “Hello World”;

 to this:

2: $strToPrint = “Goodbye World”;

 The repository also determines that the change Jane made was to insert the following after line 7:

8: < hr / >

 The repository then simply takes the last version (1.0) and systematically applies both John ’ s and Jane ’ s
changes. The merged code now looks like this:

1: < ?
2: $strToPrint = “Goodbye World”;
3: ? >
4: < html >
5: < body >
6: < ?=$strToPrint? >
7: < br / > < br / >
8: < hr / >
9: < /body >
10: < /html >

 As you can see, both developers ’ changes have been successfully included. The repository now labels
this version 1.2, and any subsequent requests for the latest version will yield this version. While both
developers are informed of the merge, the software is completely confident that the merge can be made
without disruption to Jane ’ s changes, and she need not manually intervene in the merge process.

 Concurrent Versioning Conflicts

 In some scenarios, two or more developers working on the same version of a file make changes that are
not compatible with each other — in other words, a conflict occurs.

 Suppose that a further client meeting takes place and two additional requests are made: to include the
time of day when saying goodbye to the world, and to include the date. The project manager assigns
John the task of implementing the time - of - day requirement, and assigns Jane the task of implementing
the date requirement.

 John checks out version 1.2 and amends it to read as follows:

1: < ?
2: $strTime = time(“H:i:s”);
3: $strToPrint = “Goodbye World, it’s $strTime”;
4: ? >
5: < html >
6: < body >
7: < ?php echo $strToPrint; ? >
8: < br / > < br / >
9: < hr / >
10: < /body >
11: < /html >

639

Appendix A: Version Control

 Jane also checks out version 1.2 and amends it to read as follows:

1: < ?
2: $strTime = time(“Y-m-d”);
3: $strToPrint = “Goodbye World, it’s $strDate”;
4: ? >
5: < html >
6: < body >
7: < ?php echo $strToPrint; ? >
8: < br / > < br / >
9: < hr / >
10: < /body >
11: < /html >

 The first check - in (whoever gets there first) will cause a version 1.3 to be created. Can you anticipate
what will happen when the slower of the two developers checks his or her code in? A new line has been
inserted in each case and an existing line modified. Although the version - control platform may well be
able to combine the two new lines (by simply incorporating both), it will not know how to combine the
changes made to the single line (line 3 in both cases). As PHP developers, you can see the resolution that
is required — it ’ s common sense:

3: $strToPrint = “Goodbye World, it’s $strTime on $strDate”;

 The version - control platform, however, isn ’ t quite as clever as the humans in question, so it raises an
error informing the user of the conflict. It is then up to the developer whose most recent check - in attempt
has caused the conflict to resolve it. In practice, the version - control system will create a temporary new
version, 1.4, which contains details of the conflict. This temporary version will not be issued until the
conflict is resolved and that version is made live. The last developer to check in the file will be notified of
the conflict by the version - control platform, and invited to edit the temporary version to resolve the
conflict. It is the responsibility of the latter of the two developers checking in to resolve the conflict,
because the version - control platform views that developer as having caused the conflict.

 The temporary version 1.4 created by the repository might look something like this:

1: < ?
2: $strTime = time(“Y-m-d”);
 < < < < < < < helloworld.php
3: $strToPrint = “Goodbye World, it’s $strTime”;
=======
3: $strToPrint = “Goodbye World, it’s $strDate”;
 > > > > > > > 1.3
4: ? >
5: < html >
6: < body >
7: < ?php echo $strToPrint; ? >
8: < br / > < br / >
9: < hr / >
10: < /body >
11: < /html >

 You can see the markup that the version - control platform has introduced to show the two different
alternatives for line 3.

640

Part V: Appendixes

 The previous example is a very simple conflict to resolve. The conflict markup is removed and the line in
question is modified to incorporate both developers ’ changes into the finished version, which is then
activated in the repository.

 Obviously, in more realistic examples, the resolution of conflicts can occasionally be tedious and time -
 consuming. However, the productivity gains made by enabling more than one developer to edit a file at
the same time usually far exceed any time wasted resolving conflicts. This is the double - edged sword of
concurrent versioning. It is useful for two developers to concurrently work on the same file, but they
must be prepared to take the responsibility for resolving conflicts when they arise.

 Making the Choice

 In practice, concurrent versioning is usually the better solution. As strongly encouraged throughout this
book, you should divide your project into multiple components and express each of those components
as a single file to conform to best practices (which helps to eliminate the amount of work being done by
more than one developer on the same file). However, there are generally several files (e.g., the main
controller classes in an MVC application) that need to be touched frequently by the developers. Using a
system with an efficient merge capability enables maximum productivity.

 The previous example is obviously exceedingly trivial, but there are plenty of scenarios in which more
than one user might make a minor change like that to the same file. For example, one of the developers
in charge of writing the model classes might notice that the exception handling written by another
developer displays an error message indicating a grammatical problem. A series of e - mails could be
exchanged about the problem, a trouble ticket opened up in the defect - tracking application, and the QA
team dispatched to confirm the problem has been resolved; or the model classes developer could just go
into the view and fix the mistake.

 Having said all that, it is worth pointing out that the principles of concurrent versioning seem to suggest
that developers can co - participate in a development project without ever communicating via actual human
language. Effective communication and project management is essential to ensuring the success of any
project, especially when more than one developer is involved. The source code control system is not a tool
for facilitating communication. It is no surprise that concurrent versioning applications such as Concurrent
Versioning System (CVS) and Subversion (SVN) are used so frequently in open - source development, which
involves thousands of developers, many of whom have never even met, but all of whom are working on the
same project; but it is important to realize that mailing lists, e - mail threads, actual voice communications,
and the occasional face - to - face meeting are what truly enable those projects to be successful.

 The alternative is exclusive versioning, which prohibits two developers from working on the same file at
the same time. After a file is checked out, it is physically locked from other developers until such a time
as the first developer checks it back in. Accordingly, it is not possible for check - in conflicts to arise, as
described previously.

 Of course, exclusive versioning has its downsides, too, even if your project is designed to prevent any
chance of two people ever needing to work on a file at the same time. One particular bugbear that crops
up frequently is the “ on vacation ” issue. That is, a developer goes on vacation and accidentally leaves a
file checked out, which another developer now needs to work on. Sure, you could go into that
developer ’ s workstation and check it in, but what if it ’ s a work in progress that isn ’ t ready? Or what if
you work in London and that developer works in Los Angeles? If you undo checkout, you risk losing
changes that, for all you know, may be 90 percent complete! This is, naturally, a procedural issue as much
as anything else, and having suitable policies in place for your development team can avoid this scenario.

641

Appendix A: Version Control

 The choice is very much up to you. The merging of content is only possible with plain - text sources such
as PHP and HTML code. A very binary - heavy application such as a large Flash project with a small PHP
back end may be a better candidate for exclusive versioning, whereas a more complex, backend - heavy
project that is a PHP and HTML application is always a candidate for a concurrent versioning system. In
most contexts, you should choose concurrent versioning.

 Version Control Topology
 Very shortly you ’ ll be introduced to a few software packages that provide a version - control platform. Before
that, it ’ s worth understanding a bit better how a version - control topology works in a real - world setup.

 A topology like this will normally apply, regardless of the software you decide to use, and irrespective of
whether you opt for concurrent or exclusive versioning for your project. Consider Figure A - 1 , in which
John, Jane, and David are all developers working on the same project — project foo . Each developer has
a workstation for his or her use only.

Network

John’s Workstation Jane’s Workstation David’s Workstation

John Jane David

Development Server Repository Server

Development Staging
Server

Virtual Servers

Figure A-1: Version control topology

642

Part V: Appendixes

 Obviously, they do not run PHP on each of their workstations, so they all share a powerful central
development server. Each developer has his or her own instance of a virtual server representing that
developer ’ s own copy of project foo , based on source code stored in his or her own home directory on
the development server.

 For example, John uses http://john.projectfoo.example.com , which points to source held in his
own home directory on the development server (in /home/jon/public_html/projectfoo). Similar
setups exist for each developer working on the project.

 There is also a staging server that is used by the lead architect as a base for testing and examining the
latest version of the project, and possibly for internal demonstrations. An external staging server likely is
maintained off - site for external client demonstrations.

 When John, Jane, and David want to work on the code for the project, they work on the copies of code in
their own home directories, to which nobody else has access. These home directories reside on the server,
so they use Samba (see www.samba.org for more information) to map a network drive on their
workstation to the home directory on the server. They then edit files in their own copy of the project
directly. This is their working area. No project files are ever stored on their own workstation, but because
the files are exposed through the network drive, developers edit them on the workstation as though they
were local.

 However, John, Jane, and David must use version - control software on this project. This means that
whenever they wish to work on a file, they must perform a check - out action using the version - control
software running on their workstation (for the purposes of this example, assume it ’ s Microsoft Visual
SourceSafe, which is described shortly). The check - out process downloads the latest version of the file in
question from the repository server to the home directory on the development server. This copy of the
file is set to writable so that the developer may freely work on it. If John, Jane, or David forgets to check
out a file before opening it in their IDE of choice, they will find that it is set to read - only, and that they
are unable to save their changes. While the file is checked out, no one else may check it out to work on it.

 When they have finished working on the file, they simply check in the file, which records the latest
version in the repository. Others who check out the file in the future will then be presented with the
latest version, which incorporates the changes just made. The process is similar should one of them wish
to add a new file to the repository — a quick press of the Add File button and the file is incorporated
permanently.

 Because John, Jane, and David are working on the project simultaneously, they need to periodically
perform a “ get latest versions ” operation. This means that the latest versions of all files from the
repository will be copied to their local copy in their home directory on the development server, even if
they have no intention of ever checking out those files. This is an important practice for two reasons. It
may be necessary to have some extra functionality that someone has recently added to the project to
make some other component you wish to work on function correctly. In addition, this practice enables
developers to quickly see what their colleagues have been working on and, if necessary, point out any
errors or provide constructive criticism.

 Now and again, Paul, the lead architect, may choose to perform a “ get latest versions ” into a directory
(not his own) on the server marked as staging. This provides him with a snapshot of the project as it
currently exists in the repository so that he, too, may provide constructive criticism of his team ’ s work.

643

Appendix A: Version Control

 With another version - control package, minor variations in this topology and process may exist. For
example, with CVS, the developers would be unlikely to use any client software on their workstation.
Rather, they would simply create some kind of terminal connection (such as an SSH connection) to the
development server, and run the CVS client directly on the server.

 It is worth pointing out that the exact role of the repository server varies, too. CVS supports a genuine
client/server protocol for the exchange of data, called pserver . Visual SourceSafe, however, simply uses a
shared data volume on a network drive. As a result, a separate physical repository server may not be
necessary, and the development server could quite easily double up in a repository role.

 Version Control Software
 You can find numerous software applications for handling version control. In this short section, you ’ ll
explore three of them, examine the pros and cons, and see how they implement the common
functionality and principles of version control.

 There isn ’ t enough space in this appendix to go into much detail regarding the setup, installation, and
maintenance of each one. Plenty of documentation exists on the Web detailing the ins and outs of each,
but this section should at least enable you to make an informed choice regarding which version - control
platform is most appropriate for your project.

 Microsoft Visual SourceSafe
 SourceSafe has been around for a long time, and now comes bundled with copies of Visual Studio
.NET. It may seem an unusual package to use in a PHP environment, but for those more comfortable
with the Microsoft development environments, it is definitely worth a look.

 Although it isn ’ t free, its Windows - based client is easy to use. PHP development folk never shy away
from a challenge, but there is little point expending energy on figuring out how to use your version -
 control client when you could be using it to figure out a neat way to approach an algorithm or object
model. SourceSafe is so straightforward to use, you can do just that.

 Conversely, SourceSafe uses shared disk space, rather than a proper client/server protocol, for its
repository. This has the usual problems associated with shared Access databases, and, accordingly, can
be horrifyingly slow to use on larger files with many revisions. It also suffers from difficulty creating and
restoring backups; and it has a few irritating facets that largely boil down to differences between
Windows and UNIX (such as filename case sensitivity).

 SourceSafe uses solely exclusive versioning — that is, when a file is checked out, no one else may check
it out. As with many packages that use exclusive versioning, this is enforced using the read - only
attribute of the local copy of the file. Because this is a Windows - based client, developers will almost
certainly be checking out to a network drive. Strictly speaking, this is slightly inefficient. The
workstation is acting as a conduit for the downloaded data rather unnecessarily.

 SourceSafe stores its database in a completely arbitrary format, so you can ’ t use its repository storage
area as a form of automatic staging server. There is a fairly comprehensive command - line syntax,
however, which you could use to build automated scripts for downloading latest versions for a staging
server. Such a script, of course, would need to run from a Windows environment, because there is no
UNIX client of any description.

644

Part V: Appendixes

 This alternative is well worth a look, but keep in mind that the licensing costs may be prohibitive for
small projects. You need to pay only for copies of SourceSafe, however. Because it relies on shared disk
space, there is no server as such, and you could even use a network drive presented by Samba running
on Linux.

 CVS
 Concurrent Versioning System (CVS), as the name suggests, is one of the better - known examples of a
version - control platform that implements concurrent versioning for developer check - outs. CVS has the
great advantage of being released under the GNU Public License, which means that it is essentially free
to download and use.

 It stores its repository in a folder largely mirroring the real directory structure of the project in question,
and uses small tag lines in files, hidden files in directories, and minor filename concatenations to store
auxiliary data in addition to the latest versions of the files themselves. This starkly contrasts with the
manner in which SourceSafe stores its files.

 CVS clients can connect to CVS in one of two ways: by simply looking at the repository directly (if it
resides on the local machine), or by connecting using the pserver protocol. It would, in theory, be
possible to share a network drive (a la SourceSafe) to allow the former connection method, but using the
pserver protocol is by far the best way to implement CVS over a client/server environment.

 CVS is generally run under UNIX, and typically on the same machine on which the local copies of the
files reside. In the previous topology example, CVS was run by each user via a shell connection to
the development server. For the more UNIX - savvy, this is probably the preferred route. For the not so
UNIX savvy, a SourceSafe - like Windows client called WinCVS exists that replicates most of the UNIX
client ’ s own functionality.

 Resolving conflicts in CVS is usually relatively straightforward. CVS takes the merger as far as it
possibly can, and then presents the user with a new version, annotated to demonstrate the conflict. The
user then modifies this new version to resolve the conflict, saves it, and recommits it. CVS then stores
this as the latest version. Difficulties do, of course, arise when the conflict is more serious.

 CVS can be a good choice, but its concurrent versioning may not be to everyone ’ s taste (for the reasons
outlined earlier in this appendix). Consider carefully whether this is appropriate for the project, and
whether its presence could encourage poor working practices among your developers.

 Subversion
 The successor to CVS is the increasingly popular application, preferred by the authors of this book,
called Subversion (SVN). Subversion is an attempt to preserve all the things that are great about CVS
and to replace all the things that aren ’ t so great. It provides both direct file - system access to the
repository where that is useful, but also has an excellent Apache module that enables access to remote
users through WebDAV over HTTP. This method does not require any additional ports to be opened in
the firewall, or additional daemons to be running on the server, and provides a far more robust
permissions system than pserver under CVS. Backup - and - restore is a simple operation, and an entire
repository can be exported as a plain text file and migrated to a new server fairly painlessly.

645

Appendix A: Version Control

 Like CVS, SVN is a concurrent versioning system and is accessible through both command - line and GUI
interfaces. For those developing on Windows, the TortoiseSVN extension to Windows Explorer is
incredibly simple to use, and incorporates all of the SVN functionality into the Windows Explorer
context menu. Similar plug - ins (though less robust at the time of this writing) are available for the Mac
OS X Finder.

 Other Minor Contenders
 A number of other commercial source code control systems are commonly found in large software
development shops, including Perforce, BitKeeper, Git (used to manage the Linux kernel), Bazaar, and
Microsoft ’ s Team Foundation Server. Some of these use architectures that are seemingly only effective for
large open - source applications; others have licensing restrictions and high costs. You should explore the
options further and give some of these other applications a try.

 Advanced Version Control Techniques
 There ’ s a lot more to version control than there is space to cover it in this appendix. As with so much in
PHP, the topic can constitute a book in its own right. There are a few interesting techniques, however,
that you may wish to employ in your chosen version - control environment.

 Branching
 Branching involves the divergence of a single project into two parallel projects. This is an immensely
useful technique for code reuse. Suppose that you are developing two content - management systems for
two different clients, systems that are virtually identical in functionality — the only differences are minor
or aesthetic in nature. Obviously, you will want to reuse code from one in the other, but doing so has a
pitfall. If you make a major change in the first project, you will want that change to propagate to your
second project. Conversely, any changes you make in the second project, you will probably not want to
propagate upward to your first project, because these changes represent customizations.

 Branching is the solution. By branching the first project to form a second, your version - control software
will automatically propagate any changes made to the first project into the second project as (and when)
they happen, while retaining changes made in the second project as customizations unique to that
project.

 Branching can also be used to maintain two different directions for a project. For example, you may want
to have one set of developers work on a maintenance release of your product, while another set works
on the next big major release. Branching enables you to take a snapshot of your product in time, and
then branch off into two distinct development paths, safe in the knowledge that any major changes in
the pre - branch product will be propagated into both paths.

 Tagging
 Not to be confused with the tags CVS places in individual files as mnemonics for its own use, tagging
involves applying an arbitrary attribute to a given version of each file to create release versions.

646

Part V: Appendixes

 For example, you may want to create a beta version of your project. This involves more or less every file
in your project being packaged together, but you may want to use different versions of each file — version
1.3 of this file, version 1.5 of that file, and so on. By tagging the right version of each file, you can easily
tell your version - control software to deliver a particular version on demand. Individual developers can
move tags as (and when) they feel confident; that way, whenever you request a particular version (be it
beta, release candidate 1, or whatever), you can be sure that you are getting the latest stable version.

 Comments
 One frequently overlooked facility of all version - control systems is the application of comments at check -
 in. When checking in a file, the developer will be asked to supply a comment. It is a good idea to ensure
that your developers take advantage of this facility and supply a brief description, even if it is something
as simple as “ fixed bug 21301. ” When viewing the history of a particular file, this information can be
immensely useful.

 Binary Files
 Care should always be taken when adding binary files (such as images) to a repository. Although it is
generally a good idea to keep the entire project in one place, many version - control packages are extremely
inefficient when handling binary files, and can slow to a crawl when faced with a few dozen JPEGs.

 Consider whether there is a third way. For example, consider all those .GIF files containing page titles.
Could a single PHP script replace them, one that uses imagefttext to render a caption when required?
Such an “ outside the box ” approach can be of critical importance, because binary files represent only one
example of when version control can prove inappropriate or cumbersome (not to mention the
productivity gains in having PHP make all those title graphics, rather than a production graphic
designer or, worse yet, you).

 Summary
 In this appendix, you encountered the principles and methodology of version control and its usefulness
in larger projects. You learned about the difference between concurrent and exclusive versioning. You
looked briefly at the topology of a typical version - control infrastructure, and examined how this
infrastructure is implemented in a number of popular version - control packages. Finally, you learned
some of the more advanced techniques possible with version control, and how they could be useful with
your own projects.

 PHP IDEs

 Using their favorite editor, many developers still tend to program PHP and develop their own
preferred methods of debugging their code; but with millions of developers using PHP, it remains
a bit of a mystery why integrated development environments (IDEs) are not as widely used as, say,
Visual Studio .NET is for ASP .NET. This may be because many people still don ’ t view PHP 6 as a
full - fledged programming language in its own right. (Of course, the authors hope that based on
what you have seen in this book you believe otherwise.)

 At any rate, PHP 6 is a full - fledged programming language, and IDEs for it do exist. If you haven ’ t
been developing using an IDE that supports PHP 6, this appendix is for you. A host of useful
features packed into the IDEs might make the investment worthwhile to you. One of the biggest
uses, of course, is the sophisticated debugging facilities that most IDEs provide.

 Although this appendix doesn ’ t provide a fully comprehensive rundown of each IDE out there, it
will give you an idea of what you can expect from some of the main ones, and an idea of what else
is available. For the most part, you should be able to get a deeper understanding of the
functionality of each of the IDEs from their documentation. This appendix first takes a detailed
look at Zend Studio, because this is the largest PHP - centric IDE on the market. Following this,
alternatives such as Komodo are briefly explored.

 Choosing an IDE
 The aim of an IDE is to give you (the developer) all the support and help you could possibly need
to develop robust applications efficiently and accurately. The number of different ways to do this
varies wildly from product to product, but there is one thing that you should look for in all of
them. As with any software you use, one of the first things to decide before forever developing in
one environment is whether that environment benefits you. In other words, does the IDE make it
easier for you to develop your applications? If so, then it stands to reason that you should be using
that product as your development environment of choice. Simple as that.

 However, simplifying the argument to whether you think the IDE of your choice is performing its
job ignores one important fact you should bear in mind. As would be true with any other software,

648

Part V: Appendixes

it may take some time to fully utilize the power inherent in these IDEs, so it is worth investing the hours
finding your way around them. To that end, the following few sections should give you an idea of what
to expect.

 Zend Studio
 Zend ’ s offering should arguably be your first stop when looking for an IDE — assuming that you are
willing to fork out the $399 or so that it will set you back. Of course, before purchasing anything, you
should really take a close look at it, and you can download a free trial version from www.zend.
com/en/products/studio .

 As of this writing, the current release version of Zend Studio is 6.1, which does not yet include full
support for PHP 6, but is expected to once PHP 6 is officially released. It is available for the Windows,
Linux, and Mac OS X platforms, and is based on Eclipse. Other Eclipse - based IDEs include Adobe Flex,
and the two integrate tightly to create a compelling platform for creating rich Internet applications using
Flex and PHP.

 If you are not familiar with IDEs, they can appear a little daunting at first. Keep in mind that they are here
to help, not to confuse things. In this case, Zend Studio (ZS) is more than an IDE; it also provides you with
features apart from the development environment, including code profiling, integration with JavaScript
libraries, SCM integration, and much more. For the purposes of this appendix, we ’ ll concentrate mainly
on the tools that enable you to manage and develop your code. With that in mind, the first screen you are
presented with in ZS is much like the one shown in Figure B - 1 (showing a sample project).

 Figure B - 1: Sample project in Zend Studio

649

Appendix B: PHP IDEs

 Plenty of documentation covers all the functionality in ZS, so it is not necessary to cover everything
exhaustively here. Instead, let ’ s zero in on the most important features in order to give you a broad idea of
what ZS is all about. After playing around with ZS, you can decide whether or not you want to adopt it.

 Managing Projects

 At the top left of Figure B - 1 , you will notice the PHP Explorer window. This shows a list of all projects in
this workspace. You can think of the workspace as the primary repository of your various projects; in
most scenarios, you will only need one workspace on your computer. Within the workspace are one or
more projects. Each ZS project corresponds to one of your actual projects. Note that a project need not be
physically stored as a child of the folder that contains the workspace.

 The MyProject window enables you to navigate any given project you are working on and perform
various actions, such as adding and removing files from a particular project. It is probably prudent to
mention that the Project menu item on the Zend Development Environment (ZDE) main menu enables
you to create, open, save, and close projects, and edit project properties, such as deployment destination.

 You use the projects to define a common working environment for files. For example, you may want to
have a specific debugging setup while working on a new site for a client. Placing the site ’ s files into a
project enables you to do this in an efficient manner.

Figure B-2: Code-completion pop-up

 Editing Code

 Obviously, you would expect certain editing capabilities to be included with a full IDE like this, and ZS
certainly has some neat features. The editing window is the large, central one shown in Figure B - 1 , and
it contains a host of tools designed to make coding easier. One of the major features is code completion,
which is available for both PHP and HTML. This enables you to display pop - ups of function parameters,
declared functions, keywords, and constants. Figure B - 2 shows an example of the pop - up displayed
when you begin typing in a PHP 6 array function.

 As with most aspects of this IDE, code completion is configurable, and you can check out the options by
choosing Tools Preferences PHP Code Assist.

 The Preferences window provides you with many other configurable settings, such as editing and
debugging options.

 ZS also provides you with code - indentation options. You can choose to indent your code either manually
(as you type) or all at one time — a nice feature that makes life a bit easier. If you view the PHP Editor
section of the Preferences dialog, you will see a list of all the available editing features. One of the more
useful ones is the matching braces feature, shown in action in Figure B - 3 .

650

Part V: Appendixes

Figure B-4: Code-completion templates

Figure B-3: Braces matching

 Placing the cursor immediately before the beginning elements or immediately after the closing elements
causes the editor to highlight the matching element. A useful trick here is to press Ctrl+Shift+P to jump
between matching elements to avoid tiresome scrolling. See the Navigate Go To menu for more
navigation shortcuts.

 Templates are also available to help speed up otherwise repetitive tasks. Several are provided, but you
can also add your own or modify the ones that are included. To view the available templates, select the
Template tab of the Preferences window. Each template has a given key that denotes its specific template.
For example, Figure B - 4 shows the results of typing my into the Editor window.

 The top four options are all templates that come with the IDE. If you click one of them, the template code
assigned to that key is automatically added to the Editor window. Figure B - 5 shows the results of
clicking the second option.

Figure B-5: Result of selecting an

option template

 Many other useful editing features are available, ranging from HTML tag shortcuts to syntax error
highlighting. The only way to really learn your way around these is to play with them. The help files do
a good job of outlining all the IDE ’ s features, so use this to find your way around. Let ’ s move on and
look at another useful feature of the ZS.

 Inspecting Code

 Looking back to Figure B - 1 , the pane on the bottom left is called Outline. This comes with three options:
Outline, PHP Project Outline, and PHP Functions. The first option gives you a collapsible list of all the
elements of the file with focus in the editor window. You can use this for navigation if you want.
Double - clicking any of the elements listed in the Outline window will take the cursor directly to that
piece of code in the source file.

651

Appendix B: PHP IDEs

 You can look at the code from one level up by clicking the Project tab. This gives you an overview of
everything in the current project. It works pretty much like the File window in that you can click any file
or displayed element of that file in the Project window and it will be opened for editing in the main
window.

 The final option, PHP Functions, gives you a list of all the PHP functions and their syntax. If you want to
know a little more than just a function ’ s usage, you can highlight the function in the Outline window
and press F1 to view a slightly more in - depth information file that pops up in a browser window.
Incidentally, this also works for PHP functions within your editor window — simply highlight the
function you wish to learn about and press F1.

 Debugging with the ZDE

 For the sake of brevity, let ’ s assume that you have everything running on one machine so that you can
debug your applications locally. It is possible to set up a multiuser debugging environment by installing
the Zend Platform product on a central, nonlocal server, and you should consult the documentation for
more information about this.

 One of the biggest advantages you can derive from using IDEs is making use of the innovative
debugging features they provide. Plowing through error log files is one way to do it, but that can be
quite clumsy in comparison to the more sophisticated methods available. The internal debugger has a
list of features designed to help you keep tabs on exactly what is happening in your code. Specifically, its
main function is to provide you with the following:

 Program flow monitoring

 A debug window

 A debug messages window

 Output rendering

 Let ’ s look at these in some detail.

 One of the first things with which you need to familiarize yourself is how to go about debugging your
code. ZS provides several methods for moving from place to place. Some involve setting breakpoints;
others simply trace the flow of the program step by step. Click Run Debug. When prompted to switch
to the PHP Debug Perspective, click Yes. A perspective in Eclipse and in ZS is another set of UI elements
customized for a particular task — in this case, debugging.

 As shown in Figure B - 6 , a set of arrows can be used for stepping over and moving between breakpoints,
or simply running your code.

❑

❑

❑

❑

Figure B-6: Arrows in the Debug window

652

Part V: Appendixes

 After you have the hang of stepping over your code or following a script ’ s execution, you can use these
to find out valuable information about the state of your code. The Debug pane, located by default in the
upper - left corner of the ZS PHP Debug Perspective, provides you with five options to monitor and
manage your project ’ s debugging. From here, you can view the value of variables, the position of
watches, the stack trace, the position of breakpoints, and the buffer. All of these may come in handy,
depending on what it is you are trying to determine about your code.

 For example, let ’ s say you have stepped over the execution of a very simple PHP script in order to
demonstrate how the Variables tab shows you information about all the variables associated with your
code (including the global ones). This is shown in Figure B - 7 .

Figure B-7: The Variables tab

 If you look at the editor window after invoking the debugger, you will see the first line in the execution of
your application highlighted. This is because, at present, the debugger is stopped at this point in the
script ’ s execution. The values you see in the Variables pane are the values at this particular point in
the program ’ s execution. If you already know the piece of code you want to inspect, you can forgo
stepping over all the code line by line and place the cursor on the line you want the debugger to go to.
Click Run Run to Line (or press Ctrl+R) to run the application until it reaches that line of code.

 Tracing the execution stack is also a useful way of determining where you are in your code. The Debug
pane enables you to view where you are in the program ’ s stack. This can be helpful because if one part
of your code calls a function, the program ’ s execution leaves the current place to go off and run the
called function. If the function itself makes use of other functions, then the program ’ s execution heads off
again to go execute those. Being able to determine exactly where you are in all this is where the stack
tracing capability of the debugger comes in.

 Figure B - 8 shows an example of the Debug pane being used to track a simple script that is in the middle
of executing a method in a class, invoked from the index.php file.

653

Appendix B: PHP IDEs

 Rather than step in, over, and around various areas of code, sometimes we just want the application to
run until it gets to a certain point in the source code. To get the debugger to stop where you want, you
must set breakpoints . Breakpoints are simply delimiters that tell the debugger to freeze execution as is so
that you can look over whatever you need to.

 In Figure B - 9 , a breakpoint has been set on line 33 by clicking the area to the left of the line number in the
editor window. This causes the selected line to be indicated with a dot in the margin, which shows this is
now a set breakpoint. Clicking the Breakpoint tab in the PHP Debugger Perspective will verify this for you.

Figure B-8: Viewing the stack in the Debug tab

Figure B-9: Setting a breakpoint

 With that done, two things are left to mention. The first is the Console pane, which is located (by default)
in the bottom - left corner of the window. It displays notices, warnings, and errors that crop up during the
debugging of your scripts. Double - clicking the messages in the Console pane enables you to locate their
source quite easily by sending the cursor to them in the editor window.

 Finally, ZS also renders your script ’ s output in the Debug Output pane. This pops up on the right side of
the ZS window as soon as your script creates any output. Use this to keep an eye on whether your
scripts are creating the correct headers and HTML output. The rendered HTML can be seen in the
Browser Output tab.

654

Part V: Appendixes

 Zend provides still other debugging facilities. For example, using remote debugging, you can actually
debug your application as it works on the site. This has several advantages, as you can track your
application working with input as it would normally. This is often quite difficult to do otherwise.
Furthermore, the output from the Debug pane is displayed in the browser. This all requires Zend Server
to be running on the Web server. (The details of such an installation are beyond the scope of this book.)

 With all the debugging and editing functionality provided, you are encouraged to download a demo
copy and play around with it. You never know — you might find that this is the answer to your
programming dreams. Before completing this whirlwind tour of Zend ’ s development offering, several
other important tools should get a mention.

 More Zend Tools

 Zend also provides a profiler (click Run Profile to enter the PHP Profile Perspective) to help analyze
the performance of applications. This profiler can be used to determine how to improve an application ’ s
performance by identifying problem areas. Several tabs provide you with different types of information,
ranging from pie charts (showing the amounts of time consumed by scripts), tables, and diagrams
(displaying statistics for various functions to a call trace to monitor the linear consumption of time from
call to call).

 In addition, Zend can integrate with CVS and SVN version control, so you should consult the documentation
to see how to get this up and running. (Appendix A provides more detail about CVS and SVN.)

 Finally, there is also Zend Guard, which enables you to distribute PHP applications using obfuscated
code, which prevents others from being able to easily understand the application logic — thus making it
possible to distribute closed - source applications without concerns for piracy. For most applications, for
which the developers are the only individuals handling the source code, and for anything released to
the public under an open - source license, Zend Guard is unnecessary; but if you are planning to sell the
application for installation on customers ’ Web servers, a product like this may be of interest if you ’ re
concerned about protecting your intellectual property. Zend Guard also includes implementations for a
number of licensing schemes.

 Komodo
 You can download a trial version of Active State ’ s Komodo from its Web site (www.activestate.com/
Products/Komodo/). The professional version (used for commercial purposes) will set you back $295, so
it is certainly a good idea to give the demo version a try before buying. Historically, it has been available
for both Linux and Windows, but as of the latest release (4.4) it is now also available on Mac OS X.

 Komodo is a highly regarded IDE that supports a number of open - source programming languages
(though it is, itself, closed - source commercial software), as opposed to being PHP - specific. It supports
(among other things) Perl, Python, Ruby, Tcl, HTML, CSS, JavaScript, and XML. As of this writing,
however, the PHP 6 debugger extension is not yet available, so debug support in Komodo is restricted to
earlier versions. You should consult the Komodo Web site for any updates about this.

 Managing Projects

 Komodo provides you with a Project Manager that can be used to perform a large number of actions. By
default, it appears down the left side of the IDE window, and project - related functionality can be
accessed through the Project main menu item. Among other things, you can do the following:

655

Appendix B: PHP IDEs

 Create and open projects

 Add files and folders

 Add commands, templates, URLs, Web services, and dialog boxes

 Organize, save, and close projects

 Additionally, you can access pop - up context menus by right - clicking the project members. Which context
menu you get depends on the type of element you have chosen.

 Editing Code

 Komodo ’ s code editor has some interesting features, as well as the more standard ones such as coloring
and indentation. For example, code folding is provided to collapse sections of code, enabling you to look
at abstracted (or skeleton) versions of your code to get an overview of what is happening. Figure B - 10
shows the editor window with collapsed code.

❑

❑

❑

❑

Figure B-11: Call tip for a user-defined function

Figure B-10: Editor with collapsed code

 The editor also provides auto - complete functionality for PHP — specifically, for classes, functions, and
variables. Classes in the current and included files are displayed when the word new is typed in, and
class methods are displayed when the - > operator is used. Similarly, all user - defined functions and PHP
functions are displayed after four matching characters are typed in.

 Another nice feature of the editor is tips that tell you what parameters you can use with a function. These
display after you have typed in the opening brace for a given function — either user - defined or PHP.
Figure B - 11 shows the call tip for a user - defined function.

 There are plenty of other features in the editor, but most of them are pretty intuitive to use and need not
be covered here in any detail. They include the following:

 Most Recently Used List

 Detect Changed Files

❑

❑

656

Part V: Appendixes

 Preview in Browser

 Background Syntax Checking

 Code Commenting

 Debugging with Komodo

 Komodo ’ s debugger is not examined in too much detail here because the PHP 6 extension has not yet
been released. There are some configuration requirements in order to get Komodo ’ s PHP debugger
working, and you should consult the documentation for instructions. Apart from this, Komodo provides
you with a full - fledged debugger, which includes the following:

 Breakpoint control

 Stepping

 Watching variables

 Viewing the call stack

 Sending input

 Adding command - line arguments

 Of course, Komodo comes with a host of other tools to supplement its editor and debugger. Let ’ s take a
quick look.

 More Komodo Tools

 Because Komodo enables a host of items to be added to projects (such as shortcuts, folders, files,
commands, and templates), it also provides a toolbox in which to store all these items for easy access.
You can work with the toolbox through either the tab in the right pane or the Toolbox main menu item.
Figure B - 12 shows the sample items available in the toolbox. In this case, the snippet was added to the
code window simply by double - clicking it.

❑

❑

❑

❑

❑

❑

❑

❑

❑

Figure B-12: Items in the Komodo toolbox

657

Appendix B: PHP IDEs

 Komodo can also be integrated with CVS, SVN, and Perforce. To get this up and running, you click Edit
 Preferences Source Code Control from the main menu and then configure your source code control tool
of choice.

 Again, you should download the demo version to play around with Komodo. One caveat in terms of
cost here is that you might find that you are paying extra for functionality that is not really useful to you.
For example, some tools included with Komodo are specifically for Perl (such as the Perl Dev Kit). This
adds to the development costs of Komodo without providing much value to PHP project management,
but it may be of use to you if you routinely develop in other languages.

 Other IDEs and Editors
 A host of other development environments is available for the professional PHP developer. Some are
more useful than others, depending on how you want to use them. For example, PHPEdit (for Windows)
offers a bunch of useful editing tools, as well as a debugger. It is available for download free of charge at
 www.phpedit.com . Here, very briefly, are some of its main features:

 Syntax highlighting

 Code Hint, Code Insight

 Integrated PHP debugger

 Help Generator

 Customizable shortcuts

 More than 100 scriptable commands

 Keyboard templates

 To - do report generator

 QuickMarks

 Plug - ins

 Here are some other IDEs and editors you may also want to take a look at:

 PHPEclipse (www.phpeclipse.de)

 EditPlus (www.editplus.com)

 NuSpherePHPEd (www.nusphere.com)

 PHPCode (www.phpide.de)

 Of course, simply because this discussion hasn ’ t covered all the options available doesn ’ t mean that they
aren ’ t worth looking at. For example, NuSphere ’ s PHPEd provides a ton of advanced features, such as
code completion, debugging, profiling, and deployment facilities, among other things. As an IDE, it has
received some acclaim, and is well worth investigating.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

658

Part V: Appendixes

 Summary
 This appendix on integrated development environments (IDEs) has given you an idea of what ’ s out
there and what you might expect from an IDE with support for PHP. You have learned about the
Zend Studio environment as a PHP - specific platform, and Komodo as an open - source environment with
support for PHP 6.

 Discovering the advantages offered by using an IDE is a rewarding process, as your productivity should
increase from using one. Because purchasing a development tool like the aforementioned IDEs
represents an investment, you should spend some time looking at the features of each one carefully
before you choose.

 Performance Tuning PHP

 Properly configured, the performance of a well - crafted PHP application can hold its own against
any other application environment (such as Java, ASP.NET, Ruby on Rails, and so on)

 There are two types of performance to be considered: performance of the programmer, and
performance of the application execution. The rest of this book provides a framework for
increasing the former. This appendix deals with increasing the latter. Whether you are interested in
squeezing the best performance out of a perfectly crafted application of your own design or trying
to save a poorly written application written by another party without spending money on new
hardware, many of the tricks in this chapter will be of use.

 In this appendix, you ’ ll learn to identify the different types of performance bottlenecks, and how
to track down their cause. After that, you ’ ll look at how to design and code for optimum efficiency
and speed, as well as how to retroactively repair bad code you ’ ve been unfortunate enough to
inherit.

 Introduction to Performance Problems
 Typically, the first time you ’ ll hear about an application running slowly is from a user.
Unfortunately, users are rarely particularly useful in this respect. The cry of “ this thing is so slow ”
across the office tells you virtually nothing. It ’ s important, therefore, to do a little digging.

 Types of Performance Bottlenecks
 Let ’ s go back to basics for a minute, and look at the structure of an HTTP GET or POST request.
When the user ’ s Web browser makes a request, it makes a socket connection to the Web server,
usually on port 80; for SSL connections, port 443. This is a blocking activity in the Web browser,
so - called because the browser cannot do anything else until the connection is successfully made. In
practice, however, most modern Web browsers allow the user to cancel while the connection
attempt is being made, and on faster connections, the connection is made in literally fractions of a

660

Part V: Appendixes

second; but if the server is heavily loaded, the connection may take a while to establish. If this is the case,
it points to other applications or processes on that server slowing things down (not necessarily the
application in question).

 After achieving the connection, the Web browser does not wait for any response because the HTTP
protocol does not dictate that there should be any. Immediately, it sends a very small request packet,
usually not more than a few bytes in size. This request contains (among other data) the document that the
Web browser requires, and any GET or POST parameters the user has offered as part of the request.

 This request is, in itself, small. The time between the socket connection being established and the request
being sent to the Web server is likely to be minimal.

 The time between when the Web server has received the request and when it starts to return data is
known as the processing time for your script. In most cases, PHP will not attempt to send any output
to the Web browser until the entire script has finished executing, unless the volume of your output
exceeds the value of output_buffering in php.ini . This means that the processing time is roughly
equal to the time between when PHP starts executing your script and the time it finishes executing. This
is the most likely place for a delay.

 The time between when data starts to be returned to the Web browser and when that data is finished
transferring is the delivery time, and it is not likely to be related to PHP in any way. The amount of time
it takes for this data to be transferred is much more likely to be tied to network performance, either at the
server side (e.g., an overloaded connection) or the client side (e.g., a horrifyingly slow modem). Unless
your page weight exceeds 55 KB (which is generally regarded as the limit for sensible Web pages), this is
unlikely to be a cause of delays.

 The easiest way to identify where a performance bottleneck is occurring is to use a manual tool, rather
than a bona fide Web browser, to make the HTTP request, and then analyze the results yourself.

 Differentiating Between Different Types of Bottleneck

 Suppose you want to analyze where poor performance might be occurring in requests for the page
 /example.php , on the server www.example.com , with GET parameter foo equaling bar . This is, of
course, equivalent to http://www.example.com/example.php?foo=bar . Start a console session and
use telnet as follows:

ed@host: $ telnet www.example.com 80
Trying 192.168.1.2...
Connected to www.example.com
Escape character is ‘^]’.
GET /example.php?foo=bar HTTP/1.1
Host: www.example.com

 A typical response from the server might look like this:

 < HTML >
 < BODY >
 Hello, World!
 < /BODY >
 < /HTML >

661

Appendix C: Performance Tuning PHP

 In Windows, the same approach applies — start a command prompt and use telnet in exactly the same
manner.

 To get real - world output, of course, you need to substitute the hostname and URL for real - world
examples. Press Enter where you see a blank line, and enter spaces exactly as shown. You may find it
easier to write it all out in Notepad and paste it into telnet.

 Have a stopwatch handy when you do this. Observe where the delay lies, and infer as follows:

 A delay between pressing Enter and observing Trying 192.168.1.2 indicates a delay in
resolving the IP address of the server against a name server. This is unusual. It could indicate
unresponsive name servers, either those you are using yourself (typically those of your own ISP)
or those serving the domain of the server in question (typically the ISP hosting the server). Why
this unresponsiveness exists is outside the scope of this book, but you can at least reassure yourself
PHP is not to blame. To a real - world user, this delay would be experienced only once, when first
accessing the site, because most Web browsers (and, indeed, operating systems) cache the
results of name server lookups.

 A delay between the Trying , . . . line and the Connected line indicates that the server itself took
a while to successfully respond to your requests to connect. A delay here is massively damaging,
because a page with several images could easily consist of 20 or 30 HTTP requests. If each one
has a delay attached, the page could appear dramatically sluggish even if script execution time
is markedly quick. Unfortunately, the delay could exist in one of two places: Either in the
network to/from the server, or in the server ’ s capability to respond to connections in a timely
manner. The latter could be caused by server load, which could in turn be caused by poorly
optimized PHP (not necessarily this script) or other processes bringing the server to its knees.
A quick check of memory and CPU utilization on the server can reveal the truth here. If it ’ s the
former, then troubleshooting it is outside the scope of this book. If it ’ s the latter, then you should
try to track down which script is causing the problem; and if it ’ s PHP, apply the same methods
shown here to that script.

 A delay between pressing Enter twice after having entered your HTTP request and seeing the
HTML of your response almost certainly indicates poor performance at processing time. This
can be validated and verified by adding watches in code.

 Assuming that the delay can be traced to script processing time, you can now determine what in the
script is causing the delay (or delays).

 Understanding the Anatomy of a PHP Request
 Forgetting the wider edicts on good PHP architecture for just a moment, remember that PHP is a
scripting language. Its scripts have a start, a middle, and an end, just like any scripting language. Indeed,
at the most basic, simplified level, the pattern of execution of any PHP script looks something like the
following:

1. For a request to index.php , open index.php and perform a lexical analysis of its contents (and
the contents of any files included or required by index.php). This means interpreting $x = $y
+ 2 into something like this:

VARIABLE “x” EQUALS VARIABLE “y” PLUS 2

❑

❑

❑

662

Part V: Appendixes

2. Next, parse the lexical representation of the string to create actual executable instructions. This
.includes ensuring that the variables $x and $y are valid, that the addition operator can be
performed on $y and a constant integer, and then constructing the actual execution instructions,
in the form of bytecode.

3. Pass the bytecode to the PHP virtual machine, and execute the instructions contained therein.
This involves the following:

a. Read input parameters, be they GET , POST , or COOKIE .

b. Use those input parameters to make decisions, consulting external data sources in the
process.

c. Produce output and send to Apache/IIS for transmission to the requesting client.

 Opcode Caching

 One of the single biggest performance lags in a large PHP application (aside from those caused by bad
application design) happens during the lexing/parsing step, which happens on every file included in the
request, and is repeated for each request to that file(s), even though the source code hasn ’ t changed. You
can avoid having to repeat these two steps for each request, by using something called an operations code
cache , or opcode cache, for short.

 Opcode caching applications preserve the output of the parsing step, the actual instructions to the PHP
VM, and save them, typically in memory, to be used on subsequent requests to the same source code
files. In a large application containing thousands of lines of PHP code, this can boost performance quite
dramatically. Moreover, in PHP 6, one of the best opcode caches is included with the distribution and is
enabled (though not turned on) by default. Alternative PHP Cache (APC) has long been available
through PECL as an optional (though highly recommended) PHP module. However, its utility,
performance, configuration flexibility, and simplicity have promoted it to a first - class citizen in the PHP
source code base, and it is now included with the PHP 6 source code.

 To enable APC, set apc.enabled = 1 in your php.ini file. You will need to configure a few other
parameters, such as how much memory should be allocated for the cache, what type of caching should
be used, and any filters to exclude files from being cached. The available documentation on APC is
reasonably good. A Google search should turn up a lot of useful material on how to properly configure
APC. For the basic documentation, see www.php.net/manual/en/book.apc.php .

 Other Sources of Performance Problems

 The remaining source of performance issues (once the lexing/parsing step has been eliminated, where
possible) comes down to application design and systems engineering.

 These delays will boil down to one of three things:

 Poor algorithms — Inefficient code resulting in high execution time

 Poor hardware — The code is not unreasonable, but the hardware it ’ s running on is elderly or
overworked.

 External bottlenecks — A database causing holdups

❑

❑

❑

663

Appendix C: Performance Tuning PHP

 Hardware is rarely the problem. Except in extreme cases (such as intense usage of Gd for graphics
rendering, intense number crunching, or large reporting applications), the overhead imposed by PHP
itself does not require significant system resources.

 Tracking Down the Bottleneck
 There are straightforward steps to resolving each different variety of identifiable bottleneck, as discussed
in the remainder of this appendix. However, your first task is to determine where the bottleneck can be
found and into which of the three categories described previously it falls.

 Database Queries

 The easiest offenders to track down are slow database queries. Almost all enterprise - class PHP
applications depend on a database of some kind. This book has heavily advocated PostgreSQL, but
many applications (particularly those you will encounter that are written by third parties) will make use
of the more popular MySQL.

 You must eliminate database bottlenecks before attempting to optimize code. Because most code is
dependent on the database in some respect (even if only for the supply of data), looking at code before
its data source is optimized is not time well spent.

 The simplest way to determine whether database bottlenecks exist in a script is to temporarily adapt
your database interaction code to add a timer method.

 Consider the query method of your abstraction layer for PostgreSQL. By adding error log stamps before
and after each query, you can show how long each query took and easily produce an analyzable log for
your page. The following excerpt shows an example, demonstrating how you might measure the time
taken to perform a query in the database abstraction layer by sandwiching the execute query statement
as follows:

$intTimeNow = microtime();
$q_handle = pg_exec($this- > link_ident, $sql);
$intTimeTaken = microtime() - $intTimeNow;
error_log(“DEBUG: QUERY: $sql\n”);
error_log(“DEBUG: TIME TAKEN: $intTimeTaken\n”);

 This will yield error log output similar to the following:

 [Sun May 16 22:10:19 2004] [error] DEBUG: QUERY: SELECT id,logged_in,user_id FROM
 “user_sessions” WHERE session_id=’98ce552be0a2ea6b6f69fbebcd14997c’ AND
 user_agent=’Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)’ AND
 ip_address=’192.168.4.3’
[Sun May 16 22:10:19 2004] [error] DEBUG: TIME TAKEN: 0.003752

 Executing a typical PHP script with your database abstraction layer doctored as shown in the preceding
example will then yield a series of DEBUG: QUERY xx and DEBUG: TIME TAKEN statements as shown.

 The pattern of queries will be easier to analyze if you can ensure that no other warnings, error messages,
or code - initiated debug statements are writing to the error log, and that the analysis of the time being
taken by your query has exclusivity for now.

664

Part V: Appendixes

 You should easily be able to spot the slow performers. In typical setups, anything lasting more than half
a second should raise a red flag. Also note the sum total of the duration of queries for a page. Anything
totaling more than three seconds is considered incredibly bad form and will drive your users nuts.

 Algorithms

 After any database bottlenecks have been addressed, you may safely look at the code itself. PHP is very
fast, so algorithmic holdups are certainly less likely to be a factor than poor database performance.

 However, by seeding your script with timestamp output similar to that used in tracking down database
problems, you can determine where bottlenecks might lie.

 You cannot do this in one fell swoop, for obvious reasons. The burden is on you to place “ start the clock ”
and “ stop the clock ” statements at either side of blocks of code you feel might be troublesome. If you do
find one, you can always drill down and add more start/stop statements within that block of code
to find the precise culprit. Don ’ t be afraid to output variable values in your error_log statement, too —
 such as providing a clue as to progress in for loops.

 This approach can be automated to some extent by using a package such as APD, the Advanced PHP
Debugger (http://pecl.php.net/package/apd), though for smaller applications and those built in a
 “ best practices ” modular fashion, its immense functionality may well prove to be overkill.

 Progress between steps should be nearly instantaneous in PHP, as long as an external data source is not
involved. Delays of more than fractions of a second between logical blocks point to serious problems in
your code.

 Patching for Performance
 Now that you know what ’ s to blame and where it is, you can concentrate on patching your code to
improve performance. Mercifully, there is one thing of which you can be certain: You won ’ t be the only
PHP developer who ’ s ever encountered bottlenecks like yours. As a result, there are some tried - and -
 tested techniques you can follow to try to patch them.

 Fixing Database Holdups
 Earlier, you saw how to identify which queries were holding up execution of your script. Why a query is
running badly could be a result of any number of factors. Optimizing SQL statements is a massive topic,
and there simply isn ’ t the space to go into much detail here. You can find numerous excellent volumes
on PostgreSQL, MySQL, and other databases that deal with query optimization. However, the following
points are worth bearing in mind:

 Primary keys that are numbers will always be faster as a primary index than primary keys that
are alphanumeric, even if there are unique alphanumeric values that would ordinarily be an
obvious candidate for primary key. In general, an “ id ” column is what is required.

 Ensure that columns and, perhaps more important, combinations of columns by which you will
filter or order in SELECT statements have corresponding indices defined.

❑

❑

665

Appendix C: Performance Tuning PHP

 Scheduled scripts to clean up tables (using, for example, the VACUUM statement in PostgreSQL)
whose contents are updated frequently may well prove to be sound investments.

 Never use SELECT * . If you know the names of the columns you want, specify them. This will
improve performance.

 Subselects are easier to put together than INNER or OUTER joins, but nowhere near as efficient.
Avoid them if possible (this will also, as a side effect, increase RDBMS portability). If you
suspect that subselects may be slowing down your application, try replacing them with either
 INNER or OUTER joins as appropriate. Consult the documentation of your preferred flavor of
database for more information.

 Most tips such as the preceding increase speed by only fractions of a second but this really is a case of
every little bit helping, especially when you are dealing with pages with a large number of queries.

 Don ’ t forget that you will almost certainly need to look outside the PHP script itself to track down the
offending SQL query, particularly if you are following the best practice principles described in this book.
If you have devised an object model that is heavily dependent on a database back end, you may find that
performance tweaks in queries used in that model have unexpected performance gains elsewhere. By the
same token, however, when changes are being made to such high - level classes, care should be taken to
thoroughly test all components that depend on them to ensure that functionality and behavior remain
consistent with expectations.

 Fixing Code Holdups
 Ultimately, the same principles that apply to optimizing database queries apply here. It ’ s not good
enough to know simply which block of code is causing a holdup; you need to work out which PHP
statement is being slow and under what circumstances.

 Logic Errors

 However, sometimes simple errors in application logic are to blame. In such cases, the application does
function as expected, so ordinary QA techniques have not registered a bug, but some human error in the
code has caused performance to be adversely affected. These are the easiest to fix.

 Consider the following example:

switch ($i) {
 case 0:
 array_pop($arMediumArray);
 break;
 case 1:
 array_reverse($arAnotherHugeArray);
 case 2:
 $arHugeArray = array_unique($arHugeArray);
 break;
};

 As you can probably spot, this code is missing a break statement under the case where $i is equal to 1.
This means that the case where $i is equal to 2 will also be executed when $i is equal to 1. In that case, it
is only necessary to reverse $arAnotherHugeArray . However, $arHugeArray is also being made
unique, as a side effect. It is quite possible that $arHugeArray will never be used again after this switch

❑

❑

❑

666

Part V: Appendixes

statement should $i equal 1, so this method being erroneously called may not cause a malfunction
per se. What it likely does, however, is double the execution time for the block. Adding the break
statement stops the redundant method call and speeds execution as a result.

 The methods alluded to previously should still allow you to track down such problems. By printing the
execution time for the entire block, and the execution time for the statements you think should be getting
executed, you will often see a discrepancy between the two. Although this discrepancy may be the result
of any number of problems, it is entirely possible that a logic error is to blame. Accordingly, it is
worthwhile to check for such problems, particularly when using prone constructs such as the switch
statement, before getting too far with query optimization and other more intense performance tuning.

 Bottleneck Avoidance

 At all other times, judicious use of the techniques met earlier should enable you to narrow your
bottleneck down to a single offender, or at least a collection of offenders.

 The most common methods built into PHP (which can be very slow for one reason or another) include the
following:

 Any method that relies on an external source for data. This appendix has looked at databases as
a bottleneck separately, but consider, for example, disk access to a busy disk or network drive,
HTTP and FTP requests, IP address resolution, and communication with other objects via Web
services protocols such as SOAP and XML - RPC.

 Memory - intensive methods may have no problems when called in isolation, but when fighting
for physical memory with other instances of the script, and forced to use virtual memory (that
is, disk) as a result, such methods can grind to a halt. Typically, anything related to the built - in
graphics library Gd is likely to be an offender, especially when working with large images.
Consider whether implementing caching techniques, or performing offline generation using
scheduled tasks, is feasible.

 Anything involving sockets is heavily dependent on network performance. Again, an approach
whereby socket conversations are made offline and the user is advised as to his or her status
when a request is made, rather than initiating a socket conversation as a direct consequence of a
request being made, is a better approach. Consider, therefore, maintaining an e - mail queue
database table, which is processed every five minutes, and inserting into that queue from within
your script instead of sending mail directly from within a script.

 Exercise extreme caution when using shared network drives (over NFS, in particular) as sources
for large binary files. For example, a community Web site may allow users to upload a JPEG
photograph of themselves for use in their profiles. In a multiple - server environment, this JPEG
needs to be accessible by all Web servers. It makes sense to use disk-based file storage rather
than the database (databases are still awful at storing binary data), but shared network disk
protocols are notoriously slow. Instead, consider replicating binary data across each server using
rsync or similar tools. A sync script might run as a background process every five minutes,
redistributing data between servers, so a local copy is always available within five minutes of
the initial upload.

 There are many more examples of methods that can cause bottlenecks. The PHP online documentation
often refers to potential performance problems in its entries for particular methods and classes.

❑

❑

❑

❑

667

Appendix C: Performance Tuning PHP

 When you ’ re relying on PEAR classes, it is also worth checking that your server is installed with the
latest supported versions. As with all distributed components, bugs do crop up, so ensure that you have
the latest versions to rule out any performance problems that might arise from those bugs.

 Testing
 Any changes you make to your code or SQL queries as a result of the discoveries discussed previously
need to be tested thoroughly. Ensure that you apply the same basic first principles of QA discussed in
Chapter 20 when testing the scripts and components you have changed, just as you would when testing
the application as a whole.

 This includes testing not just the input parameters and usage scenarios you used while making your
changes, but all conceivable parameters and scenarios for which it is conceivably possible that
your changes could have an impact. Err on the side of overtesting rather than undertesting.

 If you have made changes on a development environment, rather than a live environment, try to snatch
a copy of your live database or data store and test locally. If this is not possible, try to set up a virtual
server in Apache (or your preferred Web server) to use as a temporary staging environment, using your
new code base against the live database, but running distinctly from the live environment.

 Either way, be sure that when you go live, you are confident not only that your changes will have the desired
effect in improving performance, but also that they will not adversely affect functionality in any way.

 Preemptive Avoidance
 Everything discussed so far refers to fixing an existing application. This is all well and good, but these ad
hoc solutions rely on having the end users of your product point out the poor performance they are
experiencing, which can have quite serious commercial ramifications.

 A more productive (as well as professional) approach is to design with performance in mind from the
outset. This is, of course, a whole book in its own right. Generally speaking, the principles set out in this
book have had performance as a priority, so it is hoped that none of them will adversely affect your
application if used appropriately and with reasonable volumes of data. It is in your own architecture that
you need to be careful.

 Tips for High - Performance Architecture
 Here are a few useful tips you can employ when architecting your application, which should help to
ensure fast, efficient design from the outset:

 Get the hardware right — The fastest PHP in the world will still run like molasses on the wrong
hardware. Serving Web pages is relatively simple, so put your weaker hardware to work as
Apache workhorses. Keep the big guns for running databases. In addition, try to equip all
servers with high - performance SCSI disks in a RAID configuration where possible.

 Use caching at the lowest level possible — If some of your more intensive scripts are repeatedly
producing the same output, should you really hit the database every time? True, the database
will cache the responses to queries at some level, but if the HTML remains the same each time,

❑

❑

668

Part V: Appendixes

why not cache the HTML itself? Various third - party caching packages of variable quality are
available in PECL, but you can easily write your own using the serialization of GET , POST , and
 COOKIE parameters passed to your script. By comparing that serialization to those made on
previous requests, you can determine the “ uniqueness ” of each request. Requests that are
identical to those made previously can be satisfied using cached data, rather than having to hit
the database again.

 Perform unpredictable processes offline — If a process in one of your scripts is dependent on some
unpredictable third party, strongly consider taking it offline. The most obvious example is
processing credit cards through a payment service provider. If you must have real - time
authorization (for example, if customers can purchase access to online content), then use a
simple, automatically refreshing page that diverts to a success page after the database has been
updated to indicate authorization. Assign an external script (run as a scheduled task, even if
once every 60 seconds) the task of batch - processing requests to authorize cards, and update the
database to reflect the successful authorization, or otherwise, of those requests.

 Use databases judiciously — Not all data must be stored using a database. For example, a content -
 management system that stores its content in XML may be better off storing that data on disk,
rather than in a database. Databases are not efficient for storing large chunks of text.

 Optimize database queries — Learn what does and doesn ’ t run quickly in your particular flavor of
database, and err toward the quicker techniques. PostgreSQL, for example, is noticeably slow
when handling subselects, and INNER joins are likely to prove a more efficient choice. In
addition, ensure that all necessary indices are in place and, equally important, remove any
unnecessary indices, because these will actually slow down the database.

 Load test — Load test individual components using realistic traffic levels and data sets to ensure
that real - world performance will match performance at development time. This is addressed in
more detail shortly.

 Load Testing
 Functional testing is an important part of QA, but load testing is of equal importance in ensuring the
overall quality of your finished project.

 In a nutshell, load testing entails simulating a number of simultaneous connections to the Web server,
and carrying out typical user flow scenarios in each case. At the same time, you should measure the
performance of the scripts as load increases, as well as the overall impact on the server as a whole.

 A table of data can then be produced that, properly analyzed, can advise that, at a given number of
simultaneous users, response time will be n . Of course, n will obviously tend toward infinity as the
number of simultaneous users increases, but at what point does it reach an unacceptable value and,
hence, what is the maximum number of simultaneous users that can be supported on the setup in
question?

 Excellent packages such as ApacheBench (http://codeflux.com/ab/) can simulate the very simplest
of scenarios, but more sophisticated commercial software such as LoadRunner can recreate more realistic
scenarios by randomly deviating the interval between the requests of each user, and requesting
randomly altering sequences of pages to more realistically match the behavior of a real human user.

❑

❑

❑

❑

669

Appendix C: Performance Tuning PHP

 When load testing, endeavor to use another server (or, ideally, servers) to act as clients connecting to the
live Web server(s). This ensures that the load test software itself is not a burden on your Web server. In
addition, always try to use the live server running in a staging mode or, if not feasible, an accurate
recreation of the live environment and configuration on another server, to ensure that the results are
representative.

 It can often be helpful to present the results of your tests (assuming that they are positive) in a
nontechnical manner to your client. It will help the client plan for future expansion against his or her
own commercial or operational objectives.

 Summary
 In this appendix, you learned how to spot the different types of bottlenecks that may occur in your code,
how to pinpoint them one by one, and how to quickly amend them.

 You also learned how to avoid performance bottlenecks in the first place by avoiding some common
pitfalls of software and systems architecture, and leveraging opcode caching software to avoid
unnecessary lexing/parsing.

 Finally, you were introduced to load testing and some of the factors that must be considered when it is
carried out on your own projects.

 Best Practice PHP
Installation

 These days, it seems anyone can handle a simple installation. Even your mom and dad could
probably handle popping the latest version of Windows on their PC.

 The exception to this rule seems to be server applications such as PHP. Although the PHP Web site
and supplied documentation do touch on how to get it up and running, they never really go as far
as explaining exactly that. Having a usable installation is quite a different matter and requires
some inside knowledge.

 This appendix examines the ins and outs of getting PHP properly set up in a configuration best
suited to the kind of enterprise development detailed in this book. You ’ ll learn about the
differences between PHP on Windows and PHP on UNIX, and discover which is better suited for
enterprise development.

 Introduction to PHP Installation
 PHP is an application language. It is not a server in its own right, or a piece of software in the
traditional sense. Nor is it a compiler such as Pascal or C++. It must be installed — wrapped, if
you like — in a Web server. With this in mind, for every installation of PHP, you need some kind of
Web server, such as Apache.

 The phrase “ installing PHP, ” therefore, is perhaps not quite accurate. The phrase “ installing PHP
and Apache ” would be better, but that omits the fact that PHP is heavily dependent on third - party
libraries and applications for any of its more sophisticated functionality.

 To make things worse, most applications that this book introduces you to, as well as anything
useful you ’ ll write yourself, require some kind of a back - end database. This book advocates
PostgreSQL over MySQL, but they are much the same in practice.

672

Part V: Appendixes

 In fact, the actual steps for a PHP installation look something more like this:

 1. Install and configure the various external libraries.

 2. Install and configure your database platform.

 3. Install and configure your Web server.

 4. Install and configure PHP.

 As you can see, it ’ s far from child ’ s play. To make matters a lot worse, the exact manner in which the
preceding steps are accomplished varies, depending on your chosen operating system (UNIX or
Windows), your chosen Web server (Apache, IIS, Zeus, etc.) and your chosen database platform
(MySQL, PostgreSQL, MS SQL Server, Oracle, IBM DB2, Informix).

 Presenting the lowdown on every possible permutation in this appendix would not only affect the
number of trees required to produce this book, it would be madness, because there ’ s a very convincing
argument for one particular combination over any others.

 The Winning Platform
 To be clear about something, this book is not about operating system wars. Those of you interested in the
great Windows versus UNIX debate can find literally thousands of pages of well - considered, informed
dialogue among the ever - rational and well - spoken denizens of Slashdot (www.slashdot.org).

 However, we do proffer the following bold statement: “ Windows is bad at being an Internet application
server, just as UNIX is bad at being a workstation operating system. ”

 This is somewhat of a sweeping generalization, and there are exceptions to the rule, but tens of
thousands of ISPs and big businesses in the United States alone can ’ t be wrong. Although Windows is
frequently found in the corporate environment as an Exchange server or domain controller, it is UNIX
that hosts Web sites and DNS, and routes mail at the SMTP level across the whole of the Internet.
Similarly, although there are those who choose to use Linux with X window managers such as
Enlightenment, Gnome, and KDE on their laptops, they represent a minority. Most people recognize that
Windows excels on the desktop, while UNIX excels as a server environment.

 We are acutely aware of the fact that UNIX is a trademarked name, and refers to a specific operating
system that is not the GNU/Linux distribution that most of us use on a daily basis. What we mean by
using the commonly known appellation UNIX is a POSIX - compliant operating system, such as the
various GNU/Linux distributions, FreeBSD, OpenBSD, Solaris, and so on, sometimes collectively
referred to as *nix systems. However, *nix isn ’ t readily pronounceable and GNU/Linux, FreeBSD,
OpenBSD, Solaris, and so on, is a lot to type. Therefore, we have chosen to use UNIX.

 The reasons for this distinction are really quite simple. The Windows interface is optimized for the
desktop because it has undergone year after year of development with GUI desktop applications as a
primary focus. Many thousands of hours have gone into researching and evolving the Windows user
interface to make it intuitive and efficient. It ’ s not perfect, but it is better than what is offered by its UNIX
counterparts.

673

Appendix D: Best Practice PHP Installation

 As of this writing, Microsoft ’ s Internet Information Services (IIS) is the default and most popular choice
for hosting Web sites on the Windows platform. Although it is vastly better than it used to be, IIS still
suffers from an ongoing discovery of major and widely publicized security flaws on a fairly regular
basis, as well as often being regarded as unstable and unreliable by systems administrators. In addition,
the massive overhead of the Windows environment means that dedicated Windows servers on the
Internet still carry enormous amounts of unnecessary baggage. A server with 2GB of RAM could easily
have 512MB chewed up by the operating system and its various services, with only 64MB of that being
used to actually power the Web server running on it.

 In contrast to that, most production UNIX servers are running no GUI at all, which enables them to
devote more system resources to applications, with less taken up by the operating system. Admittedly,
it ’ s not quite as easy to configure, but it ’ s infinitely quicker, more stable and reliable, and a greater
 “ respecter ” of resources.

 You can probably see where this is going. There is an argument for using IIS/Windows - based Web
servers for ASP - based Web sites, of course, because ASP.NET on UNIX (which does exist) is incredibly
difficult to get working successfully; but this is a PHP book, and it is fair to say that PHP on Windows is
every bit as bad an idea as is ASP.NET on UNIX.

 There may be legitimate exceptions — for example, you are developing an intranet platform for a client
whose setup is entirely Windows - based, and he or she insists you deploy onto the existing Windows -
 based environment. With this in mind, you can find notes at the end of this appendix to help you deal
with the differences. This will be the exception, however, not the rule. The vast majority of Web sites are
hosted on a machine (or cluster of machines) operated by a hosting company whose choice of operating
system, Web server, and programming language is limited to some predefined configurations; for PHP,
this will almost always be GNU/Linux and Apache.

 With that in mind, this book assumes that your PHP installation is on UNIX, not Windows. This
assumption is applied uniformly throughout, and is evident in all the examples demonstrated, without
exception. PHP on UNIX is the choice of the professional, and this is a professional ’ s book.

 Don ’ t panic. This does not mean that you need to use UNIX yourself. Indeed, Appendix B (which
examines various development environments such as Zend Studio) suggests that Windows is the best
platform to use on your desktop, and indeed it is. The development server you will use, which could be
situated just a couple of inches away from your own PC, needs to run UNIX — but your workstation
won ’ t. There are also a number of excellent virtualization options available today that enable a
reasonably powerful workstation to quite happily run UNIX as a virtual server with a Windows or Mac
OS host operating system. This is an option the authors of this book have used quite successfully.

 The Winning Web Server
 By choosing the operating system at this stage, you have a number of options regarding which Web
server software to use on UNIX: Apache, lighttpd, Zeus, and others.

 There are two main manners in which PHP can be compiled and installed: as a CGI executable or as an
integral part of the Web server (known as a SAPI module). The latter option is a great deal faster and can
handle many more concurrent connections. A CGI binary requires an instance of the PHP interpreter to
load with every single HTTP request, which is very inefficient. All the previous options stated support

674

Part V: Appendixes

PHP as a SAPI module. The authors do not recommend that any production or development
environment run PHP as a CGI module.

 Although all the preceding options are perfectly valid, so prevalent is the Apache server that it is
practically unavoidable. It is running fully half of the Web sites in existence. Recall from earlier in this
appendix that the ISPs to whom you will be deploying will almost certainly be running Apache in
preference to any of the other alternatives. You will make your life considerably easier if you stick to
Apache.

 It ’ s a good choice in its own right. Apache has proven to be stable, secure, and very well supported; it is
also being further developed on an ongoing basis. As an open - source application, it is free of charge, and
free of commercial license encumbrance.

 With all this in mind, the instructions in this section relate to getting PHP up and running on Apache on
UNIX. Thankfully, the Web server in use, in contrast to the operating system, doesn ’ t really affect PHP
syntax at all, so the examples in this book, although they may be specific to UNIX, aren ’ t specific to any
particular Web server.

 The Winning Database
 Although you ’ ve restricted your PHP/Web server to the UNIX platform, there ’ s nothing to stop your
database server from being a completely different physical machine. In fact, many of the more high -
 traffic sites and applications you build will almost certainly require a separate database server — in
some cases, two or three.

 With this in mind, therefore, the doors are flung wide open. You have to choose between PostgreSQL,
MySQL, SQLite, Oracle, Informix, DB2, Microsoft SQL Server, SAP DB, and many more.

 Indeed, all the aforementioned options would be excellent choices. They are all highly accomplished and
frequently updated. Because database servers are not exposed to the Internet, any security flaws
discovered are of little importance. As long as a proper firewall is in place, they are all as secure as one
another.

 There are minor discrepancies in their notional reliability, but in all honesty, for every champion of, say,
SQL Server, there is also a champion of MySQL, Oracle, DB2, and so on.

 They ’ re all fast, too. Any real difference in performance is often related to how you have structured your
database, rather than the database server itself.

 With this in mind, you might struggle to choose. So have we, but this book encourages the use of
PostgreSQL for a number of reasons:

 You probably want to stick to free software as much as possible, because Apache and PHP are
both free to download and use. PostgreSQL is, too, so it passes the first test.

 PostgreSQL is about as close to industry standard heavyweights such as Oracle as you can get
without actually being Oracle. Its syntax is largely ANSI compliant, meaning that porting an
application away from PostgreSQL to another database is a relatively straightforward job.

❑

❑

675

Appendix D: Best Practice PHP Installation

 The rich environment for writing stored procedures and functions far surpasses the limited
environment offered by MySQL 5, and supports standard programming languages such as Perl
and even PHP itself for writing stored procedures, unlike the proprietary languages used by
SQL Server and Oracle; and the vast array of libraries for more complex functions such as
Geographic Information Services makes it far superior to many of the other alternatives for
enterprise - class database services.

 It ’ s great all around. In addition to being free and standards - compliant, it ’ s also extremely fast,
extremely stable, and pretty easy to set up and install. It ’ s also very well supported by PHP,
which is a huge bonus, given the topic of this book.

 The Installation Itself
 Now that you understand the background, it ’ s time to start the installation. The following assumes that
you have a working UNIX machine, installed and ready to go.

 If you don ’ t already have a UNIX machine and want a good place to start, GNU/Linux is the ideal
UNIX - based operating system for PC - based hardware. Just make sure to tell it to install all the
developer utilities during installation, because you ’ ll need these to get PHP up and running.

 This installation assumes that your UNIX machine is networked, has a private IP address assigned, and
can be pinged from your workstation (and your workstation from it). It is also assumed that you are
familiar with basic UNIX commands and utilities.

 If all this looks good to you, then you can get started. Log in to your UNIX machine as root (or become
 root from a normal user account using su), and you can begin.

 Downloading and Installing PostgreSQL
 Because your development environment is for your own use only, you don ’ t need to worry about
putting PostgreSQL on a separate machine. You can use the same machine to run Apache, PHP, and your
database without any real performance implications.

Mac OS X users have it easy, and need not follow this section. Instead, download the wizard-driven
installer from http://www.postgresql.org/download/macosx which will install, configure and start
PostgreSQL for you with virtually no intervention required.

 Ensure that you get the complete archive of PostgreSQL from www.postgresql.org and that you
download the source code — not any binaries. You ’ ll compile it yourself for maximum speed and
resilience. The filename of your downloaded file will look something like postgresql - 8.3.3.tar.gz .
To find the URL, go to www.postgresql.org , click Downloads, and find the link for the source code.

 You can download the file using Lynx or FTP if you must, but the authors ’ preferred route is wget :

wget ftp://ftp.postgresql.org/pub/latest/postgresql-8.3.3.tar.gz

 After you ’ ve downloaded it, unpack PostgreSQL in the normal way:

tar -xzvf postgresql-8.3.3.tar.gz

❑

❑

676

Part V: Appendixes

 This will create a directory called postgresql - 8.3.3 that contains the source files for PostgreSQL.
Change into that directory:

cd postgresql-8.3.3

 Run the configure script to generate a Makefile appropriate to your particular UNIX environment:

./configure

 With luck, you won ’ t see any errors and you ’ ll get a string of checks passed, with the last line reading as
follows or similarly:

config.status: linking ./src/makefiles/Makefile.linux to src/Makefile.port

 If this all looks good, you can start the compilation process by simply typing the following:

make

 It may take quite a while for PostgreSQL to compile, so go have a cup of coffee at this point. When you
return, PostgreSQL should have compiled without incident (it is hoped), and you can install it as follows:

make install

 Strictly speaking, PostgreSQL is now installed, but a certain amount of configuration is still required.
You must create the user account under which the daemon will run, set permissions on the data
directory so that user owns it, and then initialize the data directory. Follow these steps to get your
database working directory set up (where all your data will be stored):

adduser postgres
mkdir /usr/local/pgsql/data
chown postgres /usr/local/pgsql/data
su - postgres
/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

 You ’ re almost ready to start the PostgreSQL daemon (server) now. One final step: You have to tell
PostgreSQL from where to allow connections. Normally, this will just be from the same server or, in a
pinch, from other machines on the same network.

 Suppose that your server ’ s IP address in this case is 192.168.1.1 and you want to allow access from that
IP address only. Edit the file /usr/local/pgsql/data/pg_hba.conf using your favorite editor,
adding this line to the very bottom of the file:

Host all all 192.168.1.1 255.255.255.255 trust

 Save the file and quit the editor. You can now start PostgreSQL using the following syntax:

su - postgres
/usr/local/pgsql/bin/postmaster -i -D /usr/local/pgsql/data &

677

Appendix D: Best Practice PHP Installation

 The first line is very important. The postmaster process must run as your new postgres user and not as
 root or whomever you may have been logged in as. The - i directive when starting is important too,
because it tells PostgreSQL to allow TCP/IP connections — something it disallows by default.

 That ’ s it. You can create a database as follows, again as the user postgres :

/usr/local/pgsql/bin/createdb databasename

 Now you can manipulate it using the PostgreSQL console as follows:

/usr/local/pgsql/bin/psql databasename

 Finally, you can create new users as follows:

/usr/local/pgsql/bin/createuser username

 This concludes your crash course in PostgreSQL installation. There are plenty of variations in the
process, depending on your operating system and functional requirements. More advanced setups and
further details on the required libraries are covered in the PostgreSQL documentation.

 Installing the Various Support Libraries
 In an ideal world, you could now press on and install PHP and Apache. Unfortunately, life is unfair, and
you ’ ll need to install a few support libraries for PHP.

 PHP 6 has drastically reduced the number of external libraries needed to get the core functionality up
and running. The major GNU/Linux distributions have also become much better at handling binary
distributions of these libraries, and, for the first time, the authors now recommend installing the few
needed libraries from the binary distributions. Install the following using your favorite package manager
(such as yum , apt - get , and so on):

 libicu

 libicu - devel

 These two libraries contain the code for the International Components for Unicode, which provide some
of the software infrastructure that supports the new Unicode support in PHP 6. Which additional
libraries you need (if any) depends on exactly what functionality you require.

 With libicu installed, you ’ re ready to get onto PHP and Apache themselves.

 Installing PHP and Apache
 PHP and Apache must be installed in tandem, so they are covered in one section here. It will become
clear exactly why very shortly.

Mac OS X users can once again bail out at this step, and download and install MAMP from http://www
.mamp.info/en/index.php. It will create a working PHP 6 installation for you using a simple ‘wizard’
process. Once done, you’ll find you have an installation of PHP at http://localhost:8080.

❑

❑

678

Part V: Appendixes

 First, download the latest versions of Apache and PHP from their respective Web sites —
httpd.apache.org and www.php.net .

 The two files you ’ ll download will be named something like httpd - 2.2.9.tar.gz and
 php - 6.0.0.tar.gz . Uncompress them in the normal manner.

tar -xzvf httpd-2.2.9.tar.gz
tar -xzvf php-6.0.0.tar.gz

 The first step is to do an initial configure on Apache. Change into the Apache directory (probably
 httpd - 2.2.9) and run the configure script with the default parameters, and then compile and install:

./configure
make & & make install

 When it ’ s done, go ahead and configure PHP. Change back out of the Apache directory and into the PHP
directory:

cd ..
cd php-6.0.0

 You now configure PHP using a remarkably simple configure statement, compared to the requirements
of previous versions of PHP:

./configure -with-aspx2=/usr/local/apache/bin/aspx -with-pgsql --with-pdo-pgsql

 Note that if you installed Apache to a different prefix, or used one of the – enable - layout options, you
will need to amend the – with - aspx2 directive to point to the installation location of the aspx
executable.

 It may well take a few minutes to configure, but assuming that you ’ ve followed this appendix correctly
up until now, you shouldn ’ t receive any error messages, and everything should configure okay.

 You can then build PHP:

make
make install

 Note that the make may well take a few minutes, depending on the hardware and load of your server.
The make install probably won ’ t take long at all. If it fails, you may need to retrace your steps. In
particular, confirm that all the support packages mentioned in the previous section have been configured
correctly.

 The PHP compile and install process creates a module in your Apache modules directory; you can now
configure and install Apache to make use of that module. You must tell the Apache configuration file
how to handle the .php extension. Modify the file /usr/local/apache/conf/httpd.conf (again,
depending on your configure parameters, this path can vary, but this is the default) and add the
following lines:

AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

679

Appendix D: Best Practice PHP Installation

 These lines can be added virtually anywhere, but should be placed near all the other AddType and
 AddHandler directives in the file in order to keep things clean. Note that PHP should already have
edited this file to add the following line:

LoadModule php6_module lib/apache/libphp6.so

 Confirm that the preceding line is already in your httpd.conf file. If not, add it.

 Testing Your Installation
 All that remains is to test your installation. Start Apache using the following syntax:

/usr/local/apache/bin/apachectl start

 Now create a file in /usr/local/apache/htdocs called test.php containing the following code:

 < ?php
phpinfo();
? >

 Save it and, in your workstation ’ s Web browser, point it to the IP address of your UNIX machine,
followed by /phpinfo.php . For example, if your server is 192.168.1.1, point it to
 http://192.168.1.1/phpinfo.php . You should see a screen showing the full details of your PHP
installation.

 If so, congratulations. Your PHP installation has been successful! You will probably want to create virtual
server entries for each project that you work on, however. Much more information on this can be found
in Chapter 21 .

 When Windows Is Needed
 Scenarios do crop up for which you will simply have to use Windows. The most classic example is for
the installation of a closed system onto a large company ’ s IT infrastructure, which is already Windows -
 based, and management has resolutely refused to install a UNIX server.

 With some adaptation, the examples in this book will all still work just fine. The following pointers may
help you transfer your PHP from UNIX to Windows.

 Changing Paths
 Don ’ t forget that paths on Windows look very different from paths on UNIX. References to paths
such as /data/res/1230.jpg on disk need to be changed to a Windows equivalent, such as
 C:\ data\res\1230.jpg .

 PHP is kind and allows you to keep the slashes oblique (/). If you avoid drive letters by using relative
paths, you may be able to keep your application more portable.

680

Part V: Appendixes

 External Libraries
 Because Windows does not come with a built - in and highly pervasive C/C++ compiler in the same way
UNIX does, PHP does not require a myriad of external libraries to work under Windows. Instead, PHP
supplies with its Windows installations a huge set of precompiled DLLs for the various extensions
discussed in this appendix. Note that these DLLs are only supplied with the ZIP distribution of the
Windows binaries. You should not install PHP on Windows using the .msi installer.

 To enable such extensions, ensure that the PHP extensions directory is in the system PATH (such as C:\
php\ext), ensure that the extension_dir directive is set properly in php.ini (it is not , by default, set
to a useful value for a Windows installation), and restart your Web server. You should find that the
relevant functionality becomes available to PHP right away.

 Using PEAR
 Using the PEAR repository to install library packages in Windows is a little different from how it is
accomplished under UNIX. Before you can use PEAR, you must set it up using the following bundled
script:

C:\php\PEAR > ..\php go-pear.php
Welcome to go-pear!
Go-pear will install the ‘pear’ command and all the files needed by
it. This command is your tool for PEAR installation and maintenance.

 This script will ask you various questions about proxy servers and so forth, but creates a single pear
command as a batch file, which you can then use in exactly the same manner as its UNIX counterpart.

 Summary
 In this appendix, you learned the key reasons why this book has opted for UNIX, Apache, and
PostgreSQL in its examples, and why you might want to consider doing the same in your own PHP
enterprise development.

 You then learned the fundamental steps involved in setting up a working, practical installation of
Apache, PHP, and PostgreSQL on a UNIX platform from start to finish.

 Finally, you learned some of the key differences between PHP on Windows and UNIX, and how to
circumnavigate them effectively in your own development.

Index

In
d
e
x

A
_a flag, rsync, 564

abstract class diagram, observer pattern,

84–86

abstract classes

designing widgets to descend from, 88

indicating inheritance from, 38

interfaces vs., 77

in PHP 6, 29

when to use in class diagram, 77

abstract methods

DataBoundObject class, 181

defining in parent class to implement in child,

174, 181

implementing all interface, 26

implementing in subclasses, 26

AbstractInstrument class, 77–81

academic skills, of PHP professional, 630

accessor methods

DataBoundObject class, 183

overview of, 10–11

prototyping business objects, 160

account manager, choosing, 411

activation, UML sequence diagrams, 45

activity diagrams, UML, 42–44, 190

actors, use case diagrams, 33–35

AddConstraint() method, 329

_addFunction method, SoapServer, 229

addItem() method, Collection class,

105–107, 109

addObserver() method, Observable

interface, 86, 87–88

addRecord() method, Observable interface,

88

administrator

CMS building, 588–589

login to Mantis as, 547–548

Advanced PHP Debugger (APD), 664

agenda, identifying project, 395

aggregates, UML class diagrams, 39

agile development methodologies, 426

Agile Modeling: Effective Practices for eXtreme

Programming and the Unified Process

(Ambler and Jeffries), 630

algorithms

performance bottlenecks in, 664

performance problems, 662

Alternative PHP Cache (APC), 662

ampersand (&), 81

annotating bugs, Mantis, 553

Apache Web server

choosing for PHP installation, 674

configuration in live staging environment, 557,

558

configuration in studio staging environment,

557

handling PHP high traffic/high availability,

598–599

installing PHP and, 677–679

testing installation, 679

Ulysses only compatible with, 362

APC (Alternative PHP Cache), 662

APD (Advanced PHP Debugger), 664

app log, 209

application architecture

MVC. See MVC (model-view-controller) design

pattern

overview of, 305–306

true templating, 333–342

unit testing. See unit testing

application frameworks

application structure, 356

database abstraction, 359

deployment considerations, 379–380

development environments for. See

development environments

example application. See Ulysses

form persistence, 358

object relation mapping, 358–359

overview of, 355–356

Prado, 377–378

Index

682

application frameworks (continued)

separation of code and display logic, 356–357

summary, 380

URL rewriting, 357

use case scenario, 359–361

utility classes, 359

validation, 357

Zend Framework, 378–379

application servers, 599, 616

application structure

frameworks providing, 356

Ulysses framework, 376

architecture, high-performance, 667

archive mode, rsync, 564

$arRelationMap member variable, 170

arrows, Zend Studio Debug window, 651

ASP-based Web sites, Web servers for, 673

asset servers

hardware load balancing and, 604

improving infrastructure performance, 615

associations, class diagrams, 37–38

associative arrays (hashes), Smarty, 337

attribute types, class diagrams, 36

authentication

HTTP, 277

sessions and. See sessions and authentication

SMS code-sending as, 250

author, CMS building, 588

automated version control, repository extraction.

See also version control

overview of, 562

using CVS, 562–563

using subversion, 563

availability, in PHP. See high traffic/high

availability

B
backup requirements, 434

bandwidth

calculating CIR, 437

calculating monthly transfer, 438

high, 595

base64 encoding, 531–533

BaseCamp, 428

basic authentication, live staging, 558

beginTransaction() method, PDO, 142–143

bi-directional navigability, 37

binary files, version control and, 646

bindColumn() method, PDOStatement, 147

binding element, WSDL, 236

bindParam() method, PDO, 140–141

bindValue() method, PDO, 141

bitwise logic, MVC mini toolkit constants,

312–314

black box

creating test suite for your class, 345

unit testing with, 540

blank servlets, 366

bleeding servers, 424

blind recipients, 260, 262

bookmarks, 280

Boolean flags, 170

bottlenecks, performance

methods causing, 666–667

tracking down, 663–664

types of, 659–661

branching, version control technique, 645

breakpoints, Zend debugging, 653

brief, formal project

budget, 401–403

business requirements, 398–399

commercial terms, 403–404

future plans, 404

look and feel, 404–405

overview of, 397–398

scope, 399–400

summary, 405–406

support, 405

technology, 405

timelines, 400–401

when to say no, 408–409

broadcast e-mail providers, 274

budget

business requirements, 434

receiving formal brief of, 401–403

bugs, in Mantis, 550–554

build process, 424

builder pattern

considerations, 100

Director, 99–100

implementation of, 97–99

overview of, 96–97

building application

cleaning up, 475–482

finalized Travel Expense Report, 514–529

finishing iteration, 483–492

mock objects, 529–533

application frameworks (continued)

683

In
d
e
x

starting project. See starting project, building

application

starting the work. See starting work, building

application

summary, 533

Travel Expense Report, 492–514

bulk e-mails, 274

business analysis, object modeling, 344

business objects

adding data binding, 160–162

constructing working version of, 166–168

design, 157

lazy instantiation for, 173

limitations of, 172

meeting requirements, 166–169

overview of, 156–157

property monitoring, 173

prototyping, 158–160

relation mapping, 162

reusability, 173

in Ulysses, 363–365

understanding, 169–171

utility classes vs., 343

business requirements

benefits of OOP, 4

determining, 433–434

formal brief of, 398–399

C
caching

high-performance and, 667–668

to maximize infrastructure power, 613–614

_call method, SoapClient, 228

call_user_func(), callbacks, 111–115

callbacks, 110–115

implementing, 113–115

overview of, 110–111

using call_user_func, 111–113

capturing output, Smarty, 342

carbon copy (Cc:) recipients, e-mail, 260–262,

267

career

as a PHP professional. See PHP, professional

career in

as professional software developer, 628–631

carrier-neutral data centers, 436–437

carrier-specific data centers, 436–437

case diagrams, 76

case sensitivity

PHP variable and member names, 162

templates, 367

case study

building application. See building application

deployment. See deployment

project management. See project management

project overview. See project overview

project planning. See project planning

systems architecture. See systems architecture

categories

content management, 572

sections vs., 578–579

categories, project bug, 550–554

Cc: (carbon copy) recipients, e-mail, 260–262,

267

CDNs (content delivery networks), 615

cellular phones. See SMS (Short Message

Service) text messaging

CGI binary, installing PHP as, 673–674

change management, 428–429

CIR (committed information rate)

bandwidth and, 596

calculating, 437

class diagrams, UML

builder pattern, 97

composite pattern, 76, 82

decorator pattern, 90

designing event-driven solution, 191

implementation of, 39–42

modeling domain, 35–37

observer pattern, 83

relationships, 37–39

using Collection class, 119–120

class hierarchy, communications

Communication class, 255–259

EmailRecipient class, 253–255

overview of, 251

Recipient class, 252–253

class keyword, 7

class type hints, 86

class.Dispatcher.php, 192–193

classes

adding methods to, 6

adding properties to, 8–10

benefits of OOP, 4

constructing objects with, 6–7

contact manager application, 50–51

creating, 7–8

classes

684

classes (continued)

defined, 5

MVC design pattern model, 306–307

MVC in Web applications, 308

MVC mini toolkit, defining constants for,

312–314

overview of, 6

PHP lacking predefined, 132–133

types of, 155–157

unit testing, 344–346

class.Event_Handler.php, 194

class.Handler_Edit.php, 195

class.Handler_View.php, 194–195

cleaning up application

code debt, 475–476

refactoring code, 476–482

client

bugs reported by, 429–430

disputes from differences in interpretation, 429

gathering requirements from, 32

project team role of, 414

specification changes after sign-off, 429

client-side developers, choosing, 412

close() function, 291

clustering, 600, 610–611

CMS (content management system)

definition of, 571–573

Drupal, 575–577

ExpressionEngine, 580–583

Frog CMS, 583–585

history of, 573–575

Joomla!, 578–580

overview of, 575

CMS (content management system), building own

administrators and privileges, 588–589

content-related issues, 586–587

overview of, 585

templates, 590–591

workflow, 589–590

CNET, history of, 574

code

collapsed, 655

debt, 475

extreme programming, 427

fixing holdups in, 665–666

frameworks separating display logic and,

356–357

reuse, 4, 16, 173

Ulysses framework, 376

unit testing picking up errors in, 540

code completion, Zend, 649

code duplication, ORM limitations, 172

code editors

CMS, 588

Komodo, 655–656

Zend IDE, 649–650

code folding, Komodo, 655

collapsed code, 655

Collection class. See collections

collections

Collection class basics, 106–109

Collection class design, 105

Collection class improvements, 125–126

Collection class purposes, 103–104

implementing lazy instantiation. See lazy

instantiation

storing recipients using, 256–257

summary, 126

using Collection class, 108–109, 119–125

co-located servers, hosting PHP applications,

595

comments, version control, 646

commercial terms, receiving brief of, 403–404

commit() method, PDO, 142–143

committals, PDO, 142–143

committed information rate (CIR)

bandwidth and, 596

calculating, 437

commodity hardware, hosting, 597

Communication class

EmailCommunication class, 259

getting e-mail message across, 267

overview of, 255–256, 257–259

SMS text messaging, 270

storing recipients using collections, 256–257

TemplatedEmailCommunication class,

268–270

community skills, PHP professionals, 630–631

Component class, composite pattern, 77

component diagrams, UML, 47–48

component failure, 602

components, spiral process, 417–418

Composite objects, composite pattern, 77

composite pattern, 76–83

considerations, 82–83

implementation of, 78–82

overview of, 76–77

composites, UML class diagrams, 38–39, 53–55

concrete constructor, LoggerBackend

class, 213

classes (continued)

685

In
d
e
x

concurrent versioning

choosing, 640–641

conflicts, 638–640

example of, 636–638

exclusive vs., 636

Concurrent Versioning System (CVS)

version control software, 644

Zend integration with, 654

conditionals, Smarty, 337–338

connection strings

parsing, 210

redesigning Logger class to use, 210–213

connectivity

PHP database, 128–129

physical environment and, 436–439

systems architecture, 432

testing PDO, 136

using persistent connections, 147–148

Console pane, Zend, 653

constants

MVC mini toolkit, 312–314

PDO, 143

Constraint class, 323–324

ConstraintFailure class, 323–324

_construct()function, 11–12, 29

constructors

creating contact manager, 57

DataBoundObject class, 181–182

emailing users, 261–262

HTTPSession class, 301

implementing business objects, 170–171

inheritance using, 19–20

instantiating objects with, 11–12

contact manager, creating

contact type classes, 58–62

DataManager class, 62–63

description of, 49–50

Entity, Individual and Organization

classes, 64–71

PropertyObject class, 56–58

UML diagrams for, 50–56

content

in content management, 572

maximizing infrastructure power with, 614–615

types of, 586–587

content delivery networks (CDNs), 615

content management. See CMS (content

management system)

contributor, CMS building, 588

controller, MVC design pattern

file naming conventions, 310

introducing, 306

overview of, 307–308

search.php, MVC mini toolkit, 324–326

searchresults.php, MVC mini toolkit,

327–329

Web applications, 308

controls

adding to page in Ulysses, 367–371

Prado Framework, 378

cookies

defined, 280

discovery of valid sessions, 283–284

session perpetuation using, 280–281

using supplemental keys, 283

CREATE DATABASE message, 128–129

Create New Project, Mantis, 550

creative specification design plan, 422

cross-platform support, PHP, 622–623

CRUD acronym, business objects, 161–162,

166–168

Customer Contact Report application

cleaning up application, 475–483

finishing iteration, 483–492

release planning, 450–451

starting project. See starting project, building

application

starting the work. See starting work, building

application

CVS (Concurrent Versioning System)

version control software, 644

version control using, 562–563

Zend integration with, 654

D
data binding, business objects, 160–162

data centers, 436

data sources, limitations of PDO, 151

database

choosing type for PHP installation,

674–675

clustering and replication, 610–611

connecting PHP session management to,

290–292

connectivity, 128–132

creating for data binding, 160–161

database support, 128

development, 559–560

fixing holdups in, 664–665

database

686

database (continued)

Flickr configuration, 616

functions specific to, 147

high-performance architecture tips, 668

limitations of ORM, 172

logging to tables, 215–219

maintaining job queue to hold e-mails, 271–272

PDO specific functions, 147

performance bottlenecks in queries, 663–664

for PHP application platforms, 599–600

PostgreSQL, 128–129

problem with PHP and, 132–133

servers, 434

session performance, 303

using wrapper classes, 133–134

database abstraction

framework for, 359

overview of, 134–136

in Ulysses framework, 377

using ORM for. See ORM (Object Relation

Mapping)

database source name (DSN), 137, 148

DataBoundObject class

benefits, 184–185

code, 175–178

design, 174

example implementation, 178–180

framework for, 358

overview of, 173

understanding how it works, 180–184

DataManager class

creating contact manager, 62–63

indicating in class diagrams, UML, 52–55

updating UML diagrams, 64

DataSource object

decorator pattern, 92

observer pattern, 87–89

date_default_timezone_set() function,

Logger class, 207

daycalc() function, 524–526

db_changes folder, 560

db_connect() function, 194

DEBUG function, 220–221

Debug Output pane, Zend, 653

Debug window, Zend, 651

Debugger class, 219–222

debugging. See also logging; testing

creating mechanism for, 219–222

with Komodo, 656

MVC design pattern and, 306

testing phase plan, 424–425

with ZDE, 651–654

debugPrint() function, 220–222

decision points, UML activity diagrams, 44

Decorator class, 90, 93–95

decorator pattern

considerations, 94–95

implementation of, 92

overview of, 89–91

using, 93–94

dedicated data centers, 436

dedicated load balancing, 435–436

definitions element, WSDL, 233–234

delivery time, 660

dependencies, UML component/deployment

diagrams, 48

deployment

application frameworks, 379–380

devising development environments, 555–560

overview of, 555

source code workflow. See source code

workflow, deployment

summary, 567

deployment diagrams, UML, 47–48

design

case study development approach, 388

extreme programming, 426

implementing business objects, 157

design patterns

builder pattern, 96–100

composite pattern, 76–83

decorator pattern, 89–95

facade pattern, 95–96

MVC. See MVC (model-view-controller) design

pattern

observer pattern, 83–89

overview of, 75

reactor pattern, 199

summary, 100–101

Design Patterns: Elements of Reusable Object-

Oriented Software (Gamma, Helm Johnson

and Vlissides), 630

design process, 422–423

destroy() function, 291

destroying objects, 12–15

_destruct()function, 12, 14, 29

destructor, business objects, 171–172

developer, career as. See professional software

developer

development database, 559–560

database (continued)

687

In
d
e
x

development environments

development databases, 559–560

live production environment, 559

live staging environment, 557–558

overview of, 555

simplicity in PHP, 619–620

studio development environment, 556

studio staging environment, 557

development servers, version control, 642

dictionary attacks, 282

digital signatures, 273

Director class, 97–98

disk fault tolerance, mitigation with, 606–607

Dispatcher class

class.Dispatcher.php, 193

designing event-driven solution, 189–191

event-driven programming considerations,

198–199

display logic

frameworks separating code and, 356–357

Ulysses framework, 376

$displayHash, 325, 326, 329

displaySmartyPage() function, 481–482

DKIM (Domain Keys Identified Mail), 273–274

DLLs, 680

DNS load balancing, 435, 603–604

domain experts, project management,

395–396

Domain Keys Identified Mail (DKIM), 273–274

domains, 157

defined, 32

modeling in class diagrams, 35–37

draw() method, decorator pattern, 89–90, 91–92

drop-downs, forcing submits with, 483

Drupal

creating content with, 576

managing content with, 577

sample layout, 575

DSN (database source name), 137, 148

dual Ethernet segmentation, 609

dwell time, calculating CIR, 437

E
_e ssh directive, rsync, 565

eCircle, 274

editing code

Komodo, 655–656

Zend IDE, 649–650

ellipses (. . .), 37

e-mail

broadcast providers, 274

notification through, 248–249

recipients, 251

worms, 284

EmailCommunication class

building test version, 259–263

getting message across, 263–268

overview of, 259

using MIME, 270

using templates, 268–270

emailing users

blocking activity, 271–272

building test version, 259–263

deliverability, 272–274

getting message across, 263–268

overview of, 259

use of templates, 268–270

using MIME, 270

EmailRecipient class, 253–255

EmailRecipientCommunication class, 259

encapsulation

changes in PHP6, 29

defined, 6

overview of, 27–28

Entity class

creating contact manager, 52–55, 59

developing, 65–71

environments, development. See development

environments

errorCode() method, PDO, 143–145

errors, handling PDO, 143–145

errors log, 209

escape, 141

Ethernet segments, 608–610

event-driven programming

designing, 189–191

implementing, 192–195

overview of, 187

pausing for thought, 198–199

security, 196–198

summary, 199

understanding events, 187–188

events, 187–188

exception handling, SOAP client, 239–240

exceptional notifications, 248

exclusive versioning, 636, 640–641

exists()method, 108

expectations, setting during pitch, 409

expiration times, sessions, 285

expiration times, sessions

688

exponential sequence, 312

ExpressionEngine

adding content in, 581–582

template functions, 582–583

Web site features, 580–581

extends keyword, inheritance, 16, 17

extension, PHP as, 128

extensions directory, 680

exterior networks, PHP, 595–596

external data sources, performance tuning, 666

extreme programming. See XP (extreme

programming)

Extreme Programming Explained: Embrace Change,

Second Edition (Addison-Wesley, 2004),

387, 426

F
facade pattern, 95–96

Facebook, latency and, 596

false start, project history, 396

fault tracking, QA, 543–544

faultcode property, SoapFault client,

239–240

faultstring property, SoapFault client,

239–240

fax

e-mail-to-fax gateways, 271

recipients, 251

fclose() method, Logger class, 202

feature creep, 399

feature sets, and PDO, 150–151

fetch() method, PDOStatement class, 139

fetchall() method, PDOStatement class,

139

file logging

example file system layout, 202–203

simple, 201–202

using Logger class, 203–208

File Transfer Protocol (FTP), warning, 567

files, splitting in MVC, 309

finishing iteration, building application, 483–492

firewall, hardware requirements, 436

Flickr, 616

fopen() method, Logger class, 202

forks, UML activity diagrams, 44

form persistence, frameworks, 358, 376

framework usability, unit testing, 351

frameworks. See application frameworks

Frog CMS

content management simplification, 583

managing pages, 584

snippets, 584–585

front controller, Zend Framework, 379

FTP (File Transfer Protocol), warning, 567

functional compliance quality, 538, 541–542

functional specification, 420–421

functional test form, 541

functional testing

considerations, 542

functional test form, 541–542

overview of, 541

plan, 424

unit testing reducing burden of, 352

usability testing vs., 543

future plans, formal brief of, 404

fwrite() method, Logger class, 202

G
GANTT chart, 409

gc() function, 292

Gd (graphics library), 666

generalization, UML class diagrams, 38, 52–54

generateSqlDelete() function, 487

generateSqlUpdate() function, 487

geographic load balancing, 605–606, 617

GET requests, HTTP

how it works, 276–278

performance bottlenecks, 659–661

as stateless, 275

Ulysses framework, 366

GetAccessor() method, 160, 183

getConnection() function, 62–63

getDescription()method, 81–82

_getFunctions method, SoapClient, 228,

229, 230

getInstance() method, Logger class, 205–

206, 210–213

getItem() method, Collection class,

105–109

_getLastRequest method, SoapClient, 228

_getLastResponse method, SoapClient, 228

getSessionIdentifier() method,

HTTPSession class, 302

getSqlWhere() method, 487–489

getStartDateOffset() method, 473

getStringRepresentation() method, 252,

254–255

_getTypes method, SoapClient, 228

exponential sequence

689

In
d
e
x

getUserID() function, HTTPSession class,

302

getUserObject() function, HTTPSession

class, 302

GNU/Linux, 672, 675

good session practice, 199

grace during failure, QA, 538

graceful degradation, 143

graphics library (Gd), 666

H
hackers, 281–285

_handle method, SoapServer, 229

handle_the_event() function, 193–194

handled_event() method

class.Dispatcher.php, 193

class.Event_Handler.php, 194

class.Handler_Edit.php, 195

class.Handler_View.php, 194–195

interface.Handled.php, 193

handlers

class.Dispatcher.php, 193

class.Event_Handler.php, 194

class.Handler_Edit.php, 195

class.Handler_View.php, 194–195

designing event-driven solution, 189–191

event-driven programming considerations,

198–199

interface.Handled.php, 193

handoff, defined, 596–597

handover process, 425

hardware

determining requirements, 434–436

high-performance tips, 667

load balancing as mitigation technique,

604–605

performance problems, 662–663

for PHP application platforms, 597

hashes, Smarty, 337

heartbeat link, 604

high bandwidth, 595

high traffic/high availability

Flickr, 616

high availability, 594

high traffic, 594–595

impact factors. See impact factors

mitigation techniques. See mitigation

techniques

overview of, 593, 615

platforms. See platforms

real-world examples, 615–618

summary, 618

understanding the terms, 593–595

Wikipedia, 616–618

high-quality product, QA, 536

history of project, 396–397

hosting

business requirements, 433

systems architecture, 432

HOSTS file, 283–284

HTML, search.phtml, 326–327

HTTP latency, 601

HTTP requests

blocking activity, 271

how it works, 276–278

overview of, 275

sessions and, 277–278

HTTPSession class

database schema, 292–293

how it works, 300–302

HTTPSession.phpm code, 293–297

overview of, 292

performance considerations, 302–303

summary, 304

testing, 297–300

HTTPSession.phpm code, 297–300

I
$ID member variable, 170

IDEs (integrated development environments)

choosing, 647–648

Komodo, 654–657

other types of editors and, 657

summary, 658

Zend Studio, 648–654

IIS (Internet Information Services), hosting on

Windows with, 673

impact factors, 601–602

impress() function, HTTPSession class,

301–302

include, use case diagrams, 34–35

index.php, 478

Individual class, 51–53, 68–71

information architects, choosing, 412

information architecture design plan,

422–423

infrastructure, business requirements, 433

infrastructure, business requirements

690

inheritance

class diagrams for, 38, 52–55

defined, 5

overriding methods, 20–23

overview of, 15–20

preserving parent’s functionality, 23–24

understanding, 24–25

initialization, of objects, 11–12

inline method, refactoring, 482

INNER joins, database holdups, 665

input, processing, and output (IPO) model, 308

INSERT statements, database connectivity, 131

installation, Mantis, 545–547

installation, PHP

choosing database, 674–675

choosing Web server, 673–674

downloading and installing PostgreSQL, 675–677

installing PHP and Apache, 677–679

installing support libraries, 677

steps for, 671–672

summary, 680

testing installation, 679

with UNIX servers, 672–673

when Windows is needed, 679–680

installation, PHPUnit, 347

installation, Smarty, 334–335

instantiation

lazy. See lazy instantiation

of objects, 6–7

singleton, 149

Instrument interface

implementation of, 39–41

indicating associations, 37–38

indicating composites, 38–39

using composite pattern. See composite pattern

integrated development environments. See IDEs

(integrated development environments)

interface.Handled.php, 193

interfaces

class diagrams indicating, 38, 77

component/deployment diagrams indicating, 48

creating Recipient interface, 252–253

defined, 6

designing event-driven solution, 191

designing for classes, 344–345

implementing event-driven solution, 193

overview of, 25–27

interior network, application platforms, 596–597

InterLeaf, 573

internal member variables

defined, 10

encapsulation and, 28

overview of, 25–27

Internet Information Services (IIS), hosting on

Windows with, 673

interviewing client, requirements gathering, 32

introduction, pitch, 409

investment summary, pitch, 409

IP addresses, good session practice, 286

IPO (input, processing, and output) model, 308

is_callable() function, 115

isEmpty() function, 496

isLoggedIn() function, 302

isset() method, 172

isValid() method, 252, 255

iterations

building. See building application

release planning, 450–451

J
Java, support for, 624

joins

OUTER joins, and database holdups, 665

UML activity diagrams, 44

Joomla!

control panel, 580

creating content with, 579

Joomla!-powered site, 578

journaling of files, 635–636

junk mail

broadcast e-mail providers and, 274

Domain Keys Identified Mail and, 273–274

limiting deliverability of, 271–272

Sender ID and, 273

SPF records and, 273

K
KeyInUseException class, 107–109

keys() function, 108

Komodo

editing code, 655–656

managing projects, 654–655

overview of, 654

L
languages, weakly typed in PHP, 621

large objects, PDO, 146–147

lastInsertID() method, business objects, 171

inheritance

691

In
d
e
x

latency (ping time), bandwidth and, 596

lazy instantiation

callbacks, 110–115

defined, 104

implementing, 109–110

implementing business objects, 173

setLoadCallback method of Collection

class, 115–119

lead architect

choosing, 411–412

managing build process, 424

producing ten point plan, 423

libicu, support libraries, 677

libicu-devel, support libraries, 677

libraries

external, PHP not requiring in Windows, 680

implementing SOAP in PHP 6, 227

installing support, 677

lifeline, UML sequence diagrams, 45

lighttpd Web server, 599

linear arrays, Smarty, 336

linguistic simplicity, PHP, 621–622

link aggregation (NIC teaming), 606

Linux Virtual Server (LVS), 617

Listener interface, observer pattern, 83–86,

88–89

live production environment, 559

live staging environment, 557–558

Load() method, DataBoundObject class,

181–182

load balancer, 604

load balancing

dedicated, 435–436

DNS-based, 435, 603–604

hardware, 604–605

overview of, 603

software-based, 435

load testing

high-performance architecture using, 668–669

for quality assurance, 542

testing phase plan, 424–425

load tolerance, QA, 539

LoadRunner, 425

LOBs (large objects), 146–147

lodging_sun_0, 500–501

log out, 478–479

Logger class

extending, 208–209

LoggerBackend class, 213

logging to database table, 215–219

overview of, 203–208

parsing connection string, 210

redesigning to use connection string, 210–213

subclassing LoggerBackend class, 213–215

LoggerBackend class

logging to database table, 215–219

overview of, 213

redesigning to use connection string, 212–213

subclassing, 213–215

logging. See also debugging

to database table, 215–219

example file system layout, 202–203

Logger class, 203–208

LoggerBackend class, 213

overview of, 208–209

parsing connection string, 210

redesigning Logger class to use connection

string, 210–213

simple file, 201–202

subclassing LoggerBackend class,

213–215

login

cleaning up application, 477–479

configuring Mantis, 547–548

creating screen, 460–464

database connectivity in PHP, 130

good session practice, 286

in usability testing, 543

logMessage() method

Logger class, 202–203, 206–208

LoggerBackend class, 213

look and feel, formal brief of, 404–405

LVS (Linux Virtual Server), 617

M
mail() function, 250

maintenance management, 433, 439

manageBackends() function, Logger class,

213

managed servers, hosting PHP applications, 595

managing projects. See project management

Mantis, 544–554

annotating bugs, 553

assigning bugs, 553

creating and editing users, 548–549

creating new projects, 550

getting the most out of, 553–554

logging in as administrator, 547–548

overview of, 544–547

reporting bugs, 552–553

Mantis

692

Mantis (continued)

resolving bugs, 553–554

setting up project bug categories, 550–552

MarkForDeletion() method, business

objects, 171

MDB2, PEAR repository, 133–134

MediaWiki, 617

member variables

implementing business objects, 170

internal, 10

protecting access to, 10–11

Request class, 312–314

memcached server, 303, 617–618

memory

performance tuning and, 666

session performance and, 303

message elements, WSDL, 235–236

messages, e-mail, 250, 263–268

methods

accessor. See accessor methods

adding, 8

adding to classes, 6

Collection class, 106–108

overriding, 20–23

request object, 320–322

Microsoft Project, 428

Microsoft Visual SourceSafe, 643–644

Microsoft Windows

operating systems for, 598

transferring PHP from UNIX to, 679–680

using UNIX Web servers vs., 672–673

milestones, establishing, 400–401

MIME, for HTML e-mail, 270

mitigation techniques

asset servers, 615

caching, 613–614

content delivery networks, 615

content generation, 614–615

database clustering and replication,

610–611

disk fault tolerance, 606–607

geographic balancing, 605–606

load balancing, 603–605

multi-segment topologies, 608–610

NIC teaming, 606

overview of, 603

power redundancy, 607–608

traffic calculus, 611–613

mock objects, building applications, 529–533

mod_rewrite support, Apache, 362

model, MVC design pattern, 306–308, 310

modeling domain, software design for, 35–37

model-view-controller. See MVC (model-view-

controller) design pattern

modularity, OOP, 4–5

monthly transfer, calculating, 438

MS SQL Server, 128

multidimensional arrays, Smarty, 340–341

multi-segment topologies, Ethernet, 608–610

multitasking, illusion of, 601–602

MVC (model-view-controller) design pattern

controllers, 307–308

model, 306–307

overview of, 306

in PHP, 309–311

view, 307

in Web applications, 308

Zend Framework as traditional, 378–379

MVC (model-view-controller) design pattern, mini

toolkit

constants, 312–314

Constraint class, 322–324

overview of, 311–312

PRG, 331–332

Request class, 314–322

search.php, 324–326

search.phtml, 326–327

searchresults.php, 327–329

searchresults.phtml, 330

trying it, 330–331

MyProject window, Zend, 649

MySQL

calling stored procedure in, 148

database clustering and replication, 611

Flickr use of, 616

php.net reference site for, 128

N
naming conventions

cookies, 281

database fields, 57

determining unique values of individual cells,

500–501

MVC design pattern for files, 309–310

PHP variable and member names, 162

native templating

overview of, 310

pitfalls of, 333–334

recapping, 333

Mantis (continued)

693

In
d
e
x

true templating vs., 334

when to use Smarty vs., 342

navigability, association lines and, 37–38

Net_SMTP package, 263–268

networks

high traffic/high availability and, 602

physical environment and connectivity, 437

planning systems architecture, 433

NIC teaming (link aggregation), 606

nix systems, 672

nodes

in Drupal, 576–577

UML component/deployment diagrams, 47–48

notification, 248–249

notifyObservers() method, Observable

interface, 88

NuSOAP, 227

O
object composition, 75

object diagrams, 81

object overloading, 160

Object Relation Mapping. See ORM (Object

Relation Mapping)

objectives, setting during pitch, 409

object-oriented programming. See OOP (object-

oriented programming)

objects

adding methods to, 8

adding properties to, 8–10

creating classes, 7–8

creating contact manager. See contact manager,

creating

defined, 5

destroying, 12–15

initializing, 11–12

overview of, 6–7

protecting access to member variables, 10–11

system, 71–73

$objPDO member variable, 170

Observable interface, observer pattern, 83,

87–89

Observer interface, observer pattern, 83–86,

88–89

observer pattern

connecting Observer and Observable,

88–89

considerations, 89

DataSource, 87–88

overview of, 83

widgets, 84–86

Once and Only Once refactoring, 479–481

online references

BaseCamp, 428

broadcast e-mail providers, 274

Domain Keys Identified Mail, 274

eFax, 271

enabling PHP support, 136

extreme programming, 428

libraries implementing SOAP in PHP 6, 227

LoadRunner, 425

Mantis, 424, 544

memcached server, 303

MIME, 270

PDO documentation, 151

PHP supported drivers, 137

php.net reference site, 128

PMI (Project Management Institute), 416

PostgreSQL source code, 675

Prado, 377–378

Sender ID, 273

Smarty, 334, 342

SoapClient and SoapServer functions, 227

SPF records, 273

SQL injection attacks, 141

Ulysses, 361

WSDL, 233

Zend Framework, 379, 648

on-site customers

case study development approach, 388

XP, 426

on-site exploitation, 284

OOP (object-oriented programming)

classes, 6

encapsulation, 27–28

inheritance. See inheritance

interfaces, 25–27

objects. See objects

overview of, 5–6

PHP 6 changes to, 29–30

summary, 30

understanding, 3–5

opcode caching, 662

open() function, 291

operating system, choosing for PHP installation,

672–673

operating systems, PHP application platforms, 598

operations, class diagrams, 36

Oracle, 128

Oracle

694

Organization class, 52–53, 68–71

ORM (Object Relation Mapping)

business objects and. See business objects

DataBoundObject class. See

DataBoundObject class

as framework, 358–359

overview of, 155

summary, 185

types of classes, 155–157

in Ulysses framework, 377

OUTER joins, and database holdups, 665

Outline window, Zend, 651

output, capturing Smarty, 341

overhead, and PHP, 619–620

overriding methods, of parent class, 20–23

overtime, XP and, 427

P
page map design plan, 422–423

pages, Prado Framework, 378

parent class

overriding methods of, 20–23

preserving functionality of, 23–24

parent::[function name], 23

parse() method, email output, 269

parse request test, satisfying, 503–505

parse_url() function, 210, 212

parsing, connection strings, 210

passwordless SSH, 566–567

passwords

cleaning up application, 477

good session practice, 286

how HTTP works, 277–278

Mantis login as administrator, 547–548

validation of, 249

patches, performance

fixing code holdups, 665–667

fixing database holdups, 664–665

testing, 667

paths, transferring PHP from UNIX to Windows,

679–680

Pattern-Oriented Software Architecture, Volume 2,

Patterns for Concurrent and Networked

Objects (Wiley, 2000), 199

PDFs, creating pitch documents as, 410

PDO (PHP Data Objects)

constants, 143

database abstraction, 134–136

database-specific functions, 147

defined, 135

enabling PHP support, 135–136

executing queries, 138

as framework for database abstraction, 359

handling errors, 143–145

large objects, 146–147

limitations of, 150–151

overview of, 127

PDO class, 137

PDOStatement class, 139

persistent connections, 147–148

PHP and databases, 128–134

prepared statements, 139–141

session performance and, 302–303

singleton instantiation, 149

stored procedures, 148–149

summary, 152

transactions and committals, 142–143

write-only statements, 141–142

PDO class

constants, 143

database-specific functions, 147

executing queries, 138

handling errors, 143–144

overview of, 137

PDOStatement class, 139

prepared statements, 139–141

transactions and committals, 142–143

write-only statements, 141–142

PDOFactory, Ulysses framework, 375

PDOStatement class

database-specific functions, 147

handling errors, 143–144

overview of, 139

querying database, 138

PEAR, handling MIME with, 270

PEAR repository, 680

PEAR::SOAP, 227

perfect-engineering time unit, 444

performance

HTTPSession class and, 302–303

limitations of basic PHP sessions, 290

prepared statements and, 141

performance tuning PHP

anatomy of PHP requests, 661–663

patching, 664–667

preemptive avoidance and, 667–669

tracking down bottlenecks, 663–664

types of performance bottlenecks, 659–661

permissions, Smarty installation, 335

Organization class

695

In
d
e
x

persistence, Ulysses framework, 372–373

persistent connections, PDO, 147–148

PHP

content management. See CMS (content

management system)

cross-platform support, 622–623

linguistic simplicity, 620–622

low overhead, 619–620

MVC in, 309–311

overview of, 619

power, 624–625

summary, 625

ubiquity, 624

Zend Functions, 651

.php (controllers)

MVC rules, 310

search.php, 324–325

searchresults.php, 327–329

PHP, professional career in

motivation, 627–628

overview of, 627

software developer, 628–630

PHP Data Objects. See PDO (PHP Data Objects)

.phpm (classes), MVC rules, 310

PHPUnit

customer contact tests, 465–467

installing, 347

introduction to, 346–347

test-driven development using, 425

unit testing, 346–350

writing tests, building application, 453–460

.phtml (templates)

MVC rules, 310–311

search.phtml, 325–327

searchresults.phtml, 330

physical environment, and connectivity, 436–439

physical intrusion, and session security, 283–284

pitch

functional specification using, 420

vs. quotes, 406

vs. specifications, 406–407

structuring, 409–410

when to go extra mile, 408

when to say no, 408–409

who to involve, 407

platforms

application servers, 599

databases, 599–600

exterior network, 595–596

hardware, 597

interior network, 596–597

operating systems, 598

overview of, 595

software architecture, 600

Web server, 598–599

PMI (Project Management Institute), 415

polymorphism, 5

portType element, WSDL, 236

POST requests, HTTP

how it works, 276–278

as stateless, 275

types of performance bottlenecks, 659–661

Ulysses framework, 366

PostgreSQL database

calling stored procedure in, 148

configuring Mantis for first time, 545–546

connecting and disconnecting via PDO, 136

connecting PHP session management to,

290–292

connectivity in PHP, 128–132

database clustering and replication, 611

destroying objects, 13–15

downloading and installing, 675–677

HTTPSession class, 292

overview of, 12–13

PHP and, 128–129

php.net reference site, 128

reasons to choose, 674–675

schema, 292–293

post-redirect-get (PRG) design pattern,

331–332

power, of PHP, 624–625

power redundancy, 607–608

Prado Framework, 377–378

Preferences window, Zend, 649

prepare() method, PDO, 140

prepare() method, PDOStatement

class, 139

prepared statements, PDO, 139–141

prerequisites, project management, 397

PRG (post-redirect-get) design pattern, 331–332

primary keys, fixing database holdups, 664

primary recipients, e-mail, 260–262, 267

printArray() method, debugging, 221–222

privacy issues, cookies, 281

private member variables

encapsulation and, 28

HTTPSession class, 300

overview of, 11

privileges, building CMS, 588–589

privileges, building CMS

696

process

build phase, 424

choosing in project planning, 415–416

design phase, 422–423

handover, 425

making decision on, 419

overview of, 419

specification phase, 419–421

spiral, 417–418

testing phase, 424–425

waterfall, 416–417

processing time, scripts, 660

production environment, 555

production server, 555

professional software developer

academic skills, 630

community skills, 630–631

more than web development skills, 628–629

overview of, 628

soft skills, 629

summary, 631

profiler, Zend, 654

programming methodology, 424–426

project management

anticipated project prerequisites, 397

choosing team, 410–414

in CMS building, 588

constructing pitch, 406–410

history of project, 396

Komodo, 654–655

overview of, 393–394

who project is for, 394–396

why project is happening, 394

Zend IDE, 649

Project Management Institute (PMI), 415

project management, receiving formal brief

budget, 401–403

business requirements, 398–399

commercial terms, 403–404

future plans, 404

look and feel, 404–405

overview of, 397–398

scope, 399–400

summary, 405–406

support, 405

technology, 405

timelines, 400–401

project manager, 410–411

project overview

development approach, 387–391

overview of, 383–384

summary, 392

Widget World, background of, 384–386

Widget World landscape, 386–387

project planning

build phase, 424

build process methodologies, 425–428

change management, 428–430

choosing process, 415–416

design phase, 422–423

handover, 425

making decision, 419

overview of, 419

specification phase, 419–421

spiral process, 417–418

summary, 428–430

testing phase, 424–425

waterfall process, 416–417

Project tab, Zend, 651

properties

adding to classes, 8–10

of classes, 6

monitoring, 173

using accessor methods for, 11

PropertyObject class

contact type classes, 58–62

creating contact manager, 56–58

updating UML diagrams, 64

protected member variables

creating contact manager, 57

DataBoundObject class, 181

encapsulation and, 28

overview of, 11

prototyping, business objects, 158–160

pserver, 643

public members

encapsulation and, 28

member variables or methods, 11

punctuation, reduced in PHP, 621–622

Python, support for, 624

Q
QA (quality assurance)

introduction to, 535–536

measurable and quantifiable quality, 538–540

quality defined, 537

testing. See testing

with unit testing frameworks, 351–352

why you should aim high, 536–537

process

697

In
d
e
x

queries

executing using PDO objects, 138

fixing holdups, 664–665

high-performance architecture tips, 668

limitations of ORM, 172

performance bottlenecks in, 663–664

syntax limitations of PDO, 150

quotes, vs. pitches, 406

R
_r flag, rsync, 565

rack space, 438

RAID (Redundant Array of Independent

Disks), 607

reactor, 189

reactor pattern, 199

read() function, 291

realizations, class diagrams, 38

real-world tolerance (RWT), QA, 538

recalculate() function, 523, 525

Recipient class, 252–253

Recipient interface, 252–255

recipients. See also emailing users

comparison of, 251

defined, 250

EmailRecipient class, 253–255

Recipient class, 252–253

storing using collections, 256–257

redraw() function, observer pattern, 89

redundancy, 433

Redundant Array of Independent Disks (RAID), 607

re-estimating, starting work, 474–475, 594

Refactoring (Fowler), 481–482

refactoring code

case study development approach, 388

in extreme programming, 426

finishing iteration, 483–492

overview of, 476–482

Travel Expense Report application, 509–514

Refactoring: Improving the Design of Existing

Code (Fowler, Beck, Brant, Opdyke and

Roberts), 630

references, book. See also online references

design patterns, 199

extreme programming, 387, 426

refactoring code, 481–482

understanding XML, 226

register() method, Logger class, 210–213

regression testing, 351, 418

relation mapping, 162

relationship, UML class diagrams, 37–39, 52–55

releases, 387, 450–451

remote debugging, Zend, 654

removeItem() method, Collection class,

105–109

replication

databases and, 600

defined, 611

Report Bug, Mantis, 552–553

Representational State Transfer. See REST

(Representational State Transfer)

Request class, MVC, 314–322

Request element, WSDL, 234–235

requests, PHP

anatomy of, 661–663

SOAP extension, 237–239

requirements

implementing business objects, 166–169

UML gathering phase, 31–33

resilience, systems architecture, 433

responses, PHP6 SOAP extension, 237–239

REST (Representational State Transfer)

implementing client, 244–245

making server, 245–246

overview of, 243

PHP 6 and, 244

reusability, 4, 16, 173

roles, project

client, 414

identifying, 395

manipulating to advantage, 395–396

team doubled up on, 413

rollback() method, PDO, 142–143

round-robin load balancing method, 436

rsync
basic usage, 564–565

for keeping servers in sync, 566–567

syntax examples, 565

version control using, 564

Ruby, support for, 624

run-time configuration, Smarty, 340

RWT (real-world tolerance), QA, 538

S
SAPI module, installing PHP as, 673–674

Save() method

business objects, 171

DataBoundObject class, 182

Save() method

698

scheduled_email table, 272

scope

of cookies, 283–284

receiving formal brief of, 399–400

screen, creating, 399, 470–471

search.php, 324–326, 339–340

search.phtml, 326–327, 339–340

searchresults.php, 327–329

searchresults.phtml, 330

sections, categories vs., 578–579

secure_handler() method, 196–197

security

business requirements, 434

event-driven programming, 196–198

planning systems architecture, 433

session, 281–285, 290

SELECT query, ORM, 172, 173

SELECT statements, 171, 664

SELECT*, avoiding, 665

send() method, e-mail, 261, 263

Sender ID, 273

Sender Policy Framework (SPF) records, 273

senior designers, choosing, 413

sequence diagrams, UML, 44–46

sequential sequence, 312

server load, 601–602

$_SERVER[“HTTP_HOST”] property, 560

servers

determining hardware requirements, 434

physical location of, 436–439

planning systems architecture, 432

rack space considerations, 438

server-side includes (SSIs), 614–615

servlets

session IDs, 378

Ulysses framework, 366–372

session IDs

overview of, 278

session security and, 281–285

storing in cookies, 280–281

URL rewriting using, 279–280

session timeouts

creating table to calculate, 292

good session practice, 285

overview of, 278

session_read_method(), 301

session_set_save_handler() method,

291, 292, 301

session_start() method, 288–289, 291

session-based load balancing method, 436

sessions

basic, 288–290

calculating CIR, 437

calculating monthly transfer, 438

definition of, 275, 278

good practices, 285–287

how HTTP works, 276–278

overview of, 275

perpetuating with cookies, 280–281

perpetuating with URL rewriting, 279–280

security, 281–285

sessions and authentication

connecting PHP session management to

database, 290–292

creating Authentication class, 290

database schema, 292–293

good session practice, 287

how HTTPSession class works, 300–302

HTTPSession.phpm code, 293–297

performance considerations, 302–303

putting it all together, 304

summary, 304

testing HTTPSession class, 297–300

using HTTPSession class, 292

_set() overload method, 302

SetAccessor() method, 160, 183

_setClass method, SoapServer, 229

setLoadCallback method, Collection

class, 115–119

_setPersistence method, SoapServer, 229

shared network drives, 666

Short Message Service. See SMS (Short

Message Service) text messaging

silent mode, PDO, 143

Simple Object Access Protocol. See SOAP

(Simple Object Access Protocol)

simplicity, of PHP, 619–622

singleton pattern, 149, 205

sizeof() function, 108

small releases, XP, 426

Smarty

associative arrays in, 337

capturing output, 342

conditionals in, 337–338

finalized Travel Expense Report, 516–520

functions, 341–342

further reading, 342

installing, 334–335

linear arrays in, 336

mocking up HTML screens with, 529–532

scheduled_email table

699

In
d
e
x

multidimensional arrays, 340–341

other templates, 342

producing template-driven email output,

268–270

rewriting search.php with, 338–339

run-time configuration, 340

smartytest.php, 335

smartytest.tpl, 336

traditional templating vs., 342

true templating with, 334

variable modifiers, 341

smartytest.php, 335

smartytest.tpl, 336

SMS (Short Message Service) text messaging

overview of, 270

recipients, 251

using as authentication, 250

SMTP servers, 271

snippets

CMS templates and, 590

Frog CMS management of, 584–585

SOAP (Simple Object Access Protocol)

making server, 240–243

overview of, 226

PHP 6 and, 226–227

PHP 6 extension for, 227–230

SMS text messaging interface via, 270

SOAP (Simple Object Access Protocol), making

client

exception handling in, 239–240

overview of, 230–232

request and response envelopes, 237–239

WSDL document, 232–237

soap_functions.php, 230

SoapClient functions, 227, 228

SoapFault object, 229, 239–240

SoapHeader object, 229

SoapParam object, 230

SoapServer function, 227, 228–229

SoapVar object, 229

sockets

performance tuning, 666

response time, 601

soft skills, of PHP professionals, 629

software. See also professional software

developer

architecture design plan, 423

choosing architects and engineers, 412

importance of architecture, 600

load balancing based on, 435

version control, 643–645

Wikipedia (MediaWiki), 617

software developer. See professional software

developer

source code repository, 477

source code workflow, deployment

automated version control, 562–565

diagram, 561

overview of, 560–562

SourceSafe, 643–644

spam

broadcast e-mail providers and, 274

Domain Keys Identified Mail and, 273–274

limiting deliverability of, 271–272

Sender ID and, 273

SPF records and, 273

specification phase, processes, 419–421

specifications

bugs reported by client, 429

changes after sign-off, 429

disputes arising from differences in

interpretation, 429

pitch vs., 406–407

revising, 428–429

speed, and basic PHP sessions, 290

SPF (Sender Policy Framework) records, 273

spike

starting project, 448–449

Travel Expense Report, 499–500

spiral process

choosing, 417–418

making decision on, 419

technical specification, 421

spreadsheet, 520–526

SQL injection attacks, 141

Squid Web server, 599, 605

SSIs (server-side includes), 614–615

staging server, 642

starting points, UML activity diagrams, 42

starting project, building application

collecting stories about new system, 442–444

estimation tips, 449–450

overview of, 441–442

refining estimations, 448

release planning, 450–451

the spike, 448–449

story weight estimation, 444–447

starting work, building application

creating login screen, 460–464

creating screen, 470–471

starting work, building application

700

starting work, building application (continued)

customer contact requirements, 464–465

customer contact tests, 465–467

feeding beast, 471–474

next story, 464

outlining details of a story, 451–452

PHPUnit, 453–460

re-estimating, 474–475

satisfying tests, 467–469

writing tests, 452–453

state, 6

state diagrams, UML, 46–47

stateless protocol, HTTP as, 248, 275

static file server, Wikipedia, 617

static methods, 63, 113

storage requirements, 434, 437

stored procedures, PDO, 148–149

stories

estimating effort required to implement,

444–447

estimation tips, 449–450

outlining details of, 451–452

release planning, 450–451

spike, 448–449

starting project by documenting, 442–444

strftime() function, Logger class, 206–207

strings, Logger class, 207

strip function, Smarty, 341

studio artists, 413

studio development environment, 556

studio staging environment, 557

StudleyCaps, 162

style guide design plan, 422

subclasses, LoggerBackend class, 213–215

submits, forcing, 483

subscriber, CMS, 588

subselects, fixing database holdups, 665

Subversion. See SVN (Subversion)

supplemental keys, session security, 283

support

after-production, 405

cross-platform, 622–623

SVN (Subversion)

version control software, 644–645

version control using, 563

Zend integration with, 654

swimlanes, UML activity diagrams, 44

syntax, commonly understood, 622

systems architecture

business requirements, 433–434

definition of, 431

hardware requirements, 434–436

importance of, 432

maintenance management, 439

physical environment and connectivity, 436–439

summary, 439

T
tables, database

logging to, 215–219

maintaining job queue to hold e-mails, 271–272

session authentication and, 292–293

tagging

in studio staging environments, 557

version control technique, 645–646

taxonomy, organizing nodes, 577

team, project

account manager, 411

client-side developers, 412

doubling up of roles, 413

information architects, 412

lead architect, 411–412

project manager, 410–411

senior designers, 413

software architects and engineers, 412

studio artists, 413

working practices, 413

technical specification, 421–422

technology

case study project overview, 391

receiving formal brief of, 405

TemplatedEmailCommunication class,

268–270

templates. See also true templating

CMS building, 590–591

ExpressionEngine, 582–583

MVC design pattern view, 307

native PHP, 310

producing email output with, 268–270

search.phtml, MVC mini toolkit, 326–327

searchresults.phtml, MVC mini toolkit, 330

Zend Framework, 379

Zend IDE, 650

ten-point plan, 423

test case class, 345

test cases, PHPUnit, 347–350

test suite

PHPUnit testing, 350

unit testing, 345

starting work, building application (continued)

701

In
d
e
x

TestConstraints() method, 329

test-driven development, 425–426

testing

case study development approach, 388

customer contact, 465–467

extreme programming, 426

fault tracking, 543–544

functional testing, 541–542

HTTPSession class, 297–300

load testing, 542

performance tuning, 667

PHP installation, 679

satisfying, 467–469

Travel Expense Report application. See Travel

Expense Report

unit testing. See unit testing

usability testing, 543

using Mantis. See Mantis

waterfall process vs. spiral, 418

writing, building application, 452–453

testing phase, 424–425

text message

notification, 249

recipients, 251

validation, 250

themes, Drupal, 577

thin clients, implementing, 274

threading, 601–602

three-tier Ethernet segmentation, 609–610

thttpd Web servers, 599

timelines, receiving formal brief of, 400–401

timestamps, 206–208, 282

time-to-live (TTL) edicts, 604

timezones, PHP, 207

toolbox, Komodo, 656

topology, version control, 641–643

traffic

determining business requirements, 433

PHP and. See high traffic/high availability

Website, 611–613

transactions, PDO, 142–143

transfer rate, 601

transitions, UML activity diagrams, 42

Travel Expense Report

more travel expense week tests, 500–502

overview of, 492–494

release planning, 450

satisfying travel expense week tests, 502–514

the spike, 499–500

travel expense item, 494–496

travel expense week, 496–499

Travel Expense Report, finalized

anything else, 526–529

overview of, 514–520

as spreadsheet, 520–526

triggered e-mails, providers for, 274

true templating

advanced Smarty, 340–342

defined, 327

installing Smarty, 334–335

native PHP templating, 333

with Smarty templates, 334

using Smarty, 335–340

when to use traditional vs. Smarty, 342

try...catch blocks

exception handling in SOAP client, 240

handling errors in PDO, 144–145

wrapping method calls in collections, 124–126

TTL (time-to-live) edicts, 604

U
ubiquity, of PHP, 624

Ulysses

business objects, 364–365

comparing Prado Framework to, 377–378

as favorite framework, 377

heading home, 374

installing, 361–363

introduction to, 361

persistence, 372–373

processing user input, 371–372

quick check, 374

quick summary, 375–377

saving input, 374–375

servlets, 366–371

setting up, 363–364

validation, 373–374

what needs to be done, 432–433

working with, 363

UML (Unified Markup Language)

activity diagrams, 42–44

class diagrams. See class diagrams, UML

component and deployment diagrams, 47–48

creating contact manager application, 50–56

designing Collection class, 105–106

inheritance using, 16–17

requirements gathering phase of, 31–32

sequence diagrams, 44–46

state diagrams, 46–47

UML (Unifi ed Markup Language)

702

UML (Unified Markup Language) (continued)

summary, 48

updating, 64

use case diagrams, 33–35

unidirectional navigability, 37–38

Unified Markup Language. See UML (Unified

Markup Language)

Uniform Resource Locators (URLs), and REST,

243–246

unit testing

case study development approach, 391

creating test suite for class, 345

designing interface of class, 344–345

in extreme programming, 426

overview of, 343–344

for quality assurance, 540–541

reasons for using, 351–352

test-driven development using, 426

Travel Expense Report application. See Travel

Expense Report

using PHPUnit, 346–350

writing implementation of your class, 346

UNIX servers

choosing, 673–674

defined, 672

excellence as server environment, 672–673

installing PHP on, 673

operating systems for, 598

transferring PHP to Windows from, 679–680

updates

designing widgets, 84–86

implementing business objects, 162, 167–168

observer pattern, 83

URL rewriting

frameworks as mechanism for, 357

session perpetuation using, 279–280

in Ulysses framework, 376

URLs (Uniform Resource Locators), and REST,

243–246

usability of product, QA, 539

usability testing, 543

use case diagrams, 33–35

use cases

application framework scenario, 359–361

sequence diagrams tied to, 44

user agent consistency, 286

user communications

blocking activity, 271

broadcast e-mail providers, 274

as class hierarchy, 251–258

deliverability, 272–273

domain keys and DKIM, 273–274

e-mailing your users. See emailing users

email-to-fax gateways, 271

maintaining job queue, 271–272

reasons for, 247–250

Sender ID, 273

SMS text messaging, 270

SPF records, 273

types of, 250–251

usernames, 277–278, 286

users, Mantis, 548–550

utility classes

business objects vs., 343

frameworks providing, 359

overview of, 156

in Ulysses framework, 377

V
_v flag, rsync, 564

validation

frameworks providing, 357, 358

Ulysses framework and, 373–374, 376

user communication through, 249–250

variable modifiers, Smarty, 341

variables, 287

veneer of product, QA, 539–540

version control

advanced techniques, 645–646

automated. See automated version control,

repository extraction

deployment for PHP frameworks, 379–380

FTP and, 567

keeping servers in sync, 566–567

maintaining in build phase, 424

overview of, 635

principles of, 635–641

software, 643–645

topology, 641–643

using rsync, 564–567

Zend integration with, 654

view, MVC design pattern

file naming conventions, 310

introducing, 306

overview of, 307–308

in Web applications, 308

View Issues screen, Mantis, 553

virtualization, 597

visibility, member variables, 11, 28

UML (Unifi ed Markup Language) (continued)

703

In
d
e
x

W
waterfall approach

choosing, 416–417

extreme programming vs., 391

overview of, 389–391

Web applications, MVC in, 308

Web development skills, PHP professionals,

628–629

Web servers

for application platforms, 598–599

determining, 434

Flickr, 616

keeping in sync, 566–567

load, 601–602

load balancing, 603–605

PHP installation using, 673–674

Web Service Description Language. See WSDL

(Web Service Description Language)

Web services

overview of, 225–226

REST, 243–246

SOAP. See SOAP (Simple Object Access Protocol)

Widget object

connecting to Observable DataSource,

88–89

designing in observer pattern, 84–86

implementing decorator pattern, 89–91

Widget World software development case study

background of, 384–386

building application. See building application

deployment. See deployment

financial layer, 386

political layer, 386

project management. See project management

project overview. See project overview

project planning. See project planning

systems architecture. See systems architecture

technical layer, 386

WW-SFAT requirements, 387

your role in, 387

Wikipedia, 616–618

Wildcard DNS setups, 556

Windows. See Microsoft Windows

wireframes, information architecture design,

422–423

workflow, in content management, 572,

589–590

working practices, project team, 413

worms, 284

wrapper classes, 133–134

write() function, 291

write-only statements, PDO, 141–142

Writing Compilers and Interpreters (Mak), 630

WSDL (Web Service Description Language)

enhancing SOAP application, 227

making SOAP client, 230–231

making SOAP server, 240–243

SOAP making use of, 226

SoapClient functions, 228

understanding use of in SOAP, 232–237

WW-SFAT manager, 384–385, 387

X
XML

REST using, 244

SOAP using, 226

XP (extreme programming)

case study development using, 387–391

defined, 426

understanding, 426–427

when to use, 428

Z
_z flag, rsync, 565

Zend (Zend Studio)

debugging with ZDE, 651–654

editing code, 649–650

inspecting code, 650–651

managing projects, 649

more tools, 654

overview of, 648–649

Zend Framework, 378–379

Zend Guard, 654

Zend (Zend Studio)

Now you can access more than 200 complete Wrox books

online, wherever you happen to be! Every diagram, description,

screen capture, and code sample is available with your

subscription to the Wrox Reference Library. For answers when

and where you need them, go to wrox.books24x7.com and

subscribe today!

Download at WoweBook.com

Professional

PHP6

 Enhance Your Knowledge
Advance Your Career

Leveraging Drupal
978-0-470-41087-5

This book is for Drupal users of all levels of expertise who are

looking to put together a sophisticated web application.

Professional PHP6
978-0-470-39509-7

This book is for PHP developers who are interested in expanding

and leveraging their development skills by taking advantage of the

features of the sixth major release. A solid understanding of the

basics of PHP application development is essential.

Professional Joomla!
978-0-470-13394-1

This book is for web developers, hobbyists, web designers,

bloggers, corporate content creators, and support specialists who

are looking to build a more robust web site. Basic skills in the area

of PHP programming are necessary.

Beginning PHP6, Apache, MySQL Web Development
978-0-470-39114-3

This book is for the PHP beginners who have some experience with

web site development concepts and a basic working knowledge of

HTML and CSS.

Beginning Joomla!
978-0-470-43853-4

This book is for anyone interested using Joomla! to build a web site.

WROX.com
Interact

Wrox Online Library

Wrox Blox

Chapters on Demand

Join the Community

Browse

Contact Us.
wrox-partnerwithus@wrox.com

Professional

PHP6

www.wrox.com

$49.99 USA

$59.99 CAN

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers,

developers, and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They

provide examples, practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

Recommended

Computer Book

Categories

Internet

Web Page Design

ISBN: 978-0-470-39509-7

Each new version of PHP proves to be easily accessible and requires only a

small learning curve. In no time at all, you can put together a simple yet dynamic

Web site. This book goes beyond just showing you how to create a quick and

uncomplicated site; it helps you deliver better quality software in a shorter

amount of time using PHP6.

To put your working knowledge of PHP to use, the authors dive right in with the

recent launch of version 6, while highlighting the differences between PHP6 and

earlier versions. You’ll begin with the fundamentals of professional development

and a review of basic object oriented programming (OOP) concepts, before

moving on to more advanced development techniques. You’ll eventually put all

that you’ve learned into practice and build an application from the ground up

using a model-view controller (MVC) framework. Ultimately, you’ll discover how

to unleash the power of PHP6 and push it to its limits.

What you will learn from this book
● How to use the tools that are available with PHP6, such as namespaces,

collections, iterators, and more

● The roles of databases in enterprise applications development

● How to approach common software development challenges by using

various PHP6 techniques

● The importance of quality assurance (QA) and testing, and how to approach

it on projects of varying scales

● How to construct high traffic or high availability using PHP6 sites that resemble

sites like Flickr® and Facebook™

● How to use PHP-driven content management systems and content

management frameworks Enhance Your Knowledge
Advance Your Career

Who this book is for
This book is for PHP developers who are interested in expanding and leveraging their development skills by taking advantage of the

features of the sixth major release. A solid understanding of the basics of PHP application development is essential.

PH
P6

PHP6

Wrox Programmer to Programmer TM

	Home Page

