
THE EXPERT’S VOICE® IN JAVA™ TECHNOLOGY

Karthik Gurumurthy

Pro

Wicket
Explore this leading open source, lightweight,

component-based POJO web development framework

Includes
Spring and Ajax

Includes
Spring and Ajax

www.allitebooks.com

http://www.allitebooks.org

Karthik Gurumurthy

Pro Wicket

www.allitebooks.com

http://www.allitebooks.org

Pro Wicket

Copyright © 2006 by Karthik Gurumurthy

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,

electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-722-4

ISBN-10: 1-59059-722-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication data is available upon request.

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence

of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the US

and other countries.

Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written without endorsement

from Sun Microsystems, Inc.

Lead Editor: Steve Anglin

Technical Reviewers: David Heffelfinger, Igor Vaynberg

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft,

Jim Sumser, Keir Thomas, Matt Wade

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc

Copy Editor: Ami Knox

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor: Dina Quan

Proofreader: Lori Bring

Indexers: Toma Mulligan, Carol Burbo

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,

New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,

CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution

has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-

rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

www.allitebooks.com

http://www.allitebooks.org

To Amma and Appa for everything!

And to my wonderful wife, Gayathri

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents at a Glance

About the Author . xiii

About the Technical Reviewers . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 Wicket: The First Steps . 1

■CHAPTER 2 Validation with Wicket . 35

■CHAPTER 3 Developing a Simple Application . 67

■CHAPTER 4 Providing a Common Layout to Wicket Pages 117

■CHAPTER 5 Integration with Other Frameworks . 143

■CHAPTER 6 Localization Support . 177

■CHAPTER 7 Custom Wicket Components and Wicket Extensions 199

■CHAPTER 8 Wicket and Ajax . 235

■CHAPTER 9 Additional Wicket Topics . 267

■INDEX . 293

v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

About the Author . xiii

About the Technical Reviewers . xv

Acknowledgments . xvii

Introduction . xix

■CHAPTER 1 Wicket: The First Steps . 1

What Is Wicket? . 1

Obtaining and Setting Up Wicket . 1

Eclipse Development Environment Setup Using Quick Start 2

Running the Application . 3

How to Alter the Jetty Configuration . 3

The web.xml for Wicket Web Development . 4

Developing a Simple Sign-in Application . 5

Wicket Models . 6

What Happened on Form Submit? . 12

How Does PropertyModel Work? . 15

How to Specify a CompoundPropertyModel for a Page 16

Development vs. Deployment Mode . 22

Displaying the Welcome Page . 25

Adding a Link to the Welcome Page . 28

Adding Basic Authentication to the Login Page . 32

Summary . 33

■CHAPTER 2 Validation with Wicket . 35

Providing User Feedback . 35

More Validation . 39

Using Wicket Validators . 42

Writing Custom Converters . 46

Globally Registering a Converter . 52

Registering String Converters Globally . 54

vii

www.allitebooks.com

http://www.allitebooks.org

How Wicket’s FormValidator Works . 56

How to Set Session-Level Feedback Messages . 60

Changing Feedback Display . 61

How the ListView Components Work . 62

Summary . 64

■CHAPTER 3 Developing a Simple Application . 67

Securing Wicket Pages . 67

Nice Wicket URLs and Mounted Pages . 67

Accessing Wicket Application Session . 70

Developing an Online Bookstore . 74

Where to Store Global Objects? . 77

Books on Display at the Online Bookstore . 78

How IDataProvider Allows for Pagination of Data 79

What Is AbstractDetachableModel? . 81

What Is LoadableDetachableModel? . 84

Wicket Pages and User Threads . 91

Using Wicket Behaviors to Add HTML Attributes

to the Table Rows . 96

Implementing the Checkout Page . 99

Implementing the Remove Book Functionality 107

Checkout Confirmation . 110

IAuthorizationStrategy and Conditional Component Instantiation 112

Summary . 115

■CHAPTER 4 Providing a Common Layout to Wicket Pages 117

Adding “Books,” “Promotions,” and “Articles” Links

to the Bookstore Application . 117

Providing a Common Layout . 122

Getting the Pages to Display Corresponding Titles 125

Separating Navigation Links and the Associated Page Content

Through Border Components . 127

Disabling Links to the Page Currently Being Displayed 135

Employing wicket:link to Generate Links . 135

Borders Are Not Just About Boxes . 137

Summary . 142

■CONTENTSviii

www.allitebooks.com

http://www.allitebooks.org

■CHAPTER 5 Integration with Other Frameworks . 143

Wicket and Velocity . 143

Wicket and FreeMarker . 148

The Spring Framework . 149

Difficulties in Spring Integration . 150

Wicket Is an Unmanaged Framework . 150

DI Issue Due to Wicket Model and Component Serialization 151

Accessing the Spring ApplicationContext Through

the WebApplication Class . 152

Configuring Injection Through an IComponentInstantiationListener

Implementation . 158

Specifying Target Field for Dependency Injection 159

Specifying Spring Dependency Through Java 5 Annotation 160

Spring Integration Through Commons Attributes 164

How Wicket Integrates with EJB 3 . 164

A Quick EJB 3 Entity Bean Refresher . 165

Choosing an EJB3 Implementation . 165

Defining the persistence.xml . 167

How Spring 2.0 Further Simplifies EJB 3 Programming 172

Summary . 176

■CHAPTER 6 Localization Support . 177

Localization Through the <wicket:message> Tag 177

Sources for Localized Messages and Their Search Order 179

How to Switch the Locale Programmatically . 183

How to Localize Validation and Error Messages . 186

Putting Wicket’s StringResourceModel to Work 191

Locale-Specific Validation . 193

Support for Skinning and Variation in Addition

to Locale-Specific Resources . 196

Loading Messages from a Database . 197

Summary . 198

■CONTENTS ix

www.allitebooks.com

http://www.allitebooks.org

■CONTENTSx

■CHAPTER 7 Custom Wicket Components and Wicket Extensions . . . 199

Wicket Component Hierarchy . 199

Improving the PagingNavigator Component’s Look and Feel 200

Customizing the DropDownChoice Component 204

Other Variations of the urlFor() Method . 208

Getting the Online Bookstore to Use the Wicket-Extensions

DataTable Component . 209

Enabling Sortable Columns on the DataTable 210

Wicket Fragments . 214

Incorporating a Tabbed Panel in the Online Bookstore Application 216

Applying a Style Sheet to the Tabbed Panel . 219

Packaging Wicket Components into Libraries . 221

Displaying Appropriate Tab Titles . 224

Restricting the Categories of Books Being Displayed Through

Wicket’s Palette Component . 225

Adding Page Header Contributions Using the

TextTemplateHeaderContributor Component . 229

Summary . 234

■CHAPTER 8 Wicket and Ajax . 235

Ajax Form Validation . 235

Behaviors in Wicket . 237

Keeping the FeedbackPanel and Ajax Validation in Sync 240

Building a Custom FormComponentFeedbackBorder That

Works Well with Ajax . 241

Using Wicket’s AjaxTabbedPanel for the Bookstore Panel 244

Updating the HTML Title Element Through Ajax . 244

Ajax Autocompletion . 246

Providing Custom IAutoCompleteRenderer Implementations 249

Partially Rendering a Page in Response to an Ajax Request 253

How to Let Users Know That Wicket Ajax Behavior Is at Work 256

Putting AjaxCheckBox to Work . 260

Degradable Ajax . 261

Handling Ajax Success and Failure Events Through

AjaxCallDecorator . 262

Summary . 265

■CHAPTER 9 Additional Wicket Topics . 267

Wicket Unit Testing . 267

What Are Mock Objects? . 267

Unit Testing Wicket Pages Using WicketTester 268

Unit Testing Wicket Pages Using FormTester 271

Testing Page Navigation . 273

Testing Wicket Behaviors . 276

A Sneak Peek into Wicket 2.0 . 278

Taking Advantage of Java 5 Features . 278

Wicket 2.0 Constructor Refactor . 279

Wicket 2.0 Converter Specification . 287

Summary . 291

■INDEX . 293

■CONTENTS xi

About the Author

■KARTHIK GURUMURTHY has been associated with the IT industry for more

than six years now and has employed several open-source libraries to

address business problems. Karthik’s involvement with open source also

includes contribution to a popular open-source project: XDoclet2. He

has been having a great time with Wicket since day one of adoption and

would like to let others know how Wicket succeeds in bringing back the

fun that has been missing in the Java web development space. He also

contributed to the Wicket project through the Wicket-Spring integration

module using Jakarta Commons attributes and testing out the beta releases and reporting any

bugs in the process.

xiii

About the Technical
Reviewers

■DAVID HEFFELFINGER has been developing software professionally since 1995, and he has

been using Java as his primary programming language since 1996. He has worked on many

large-scale projects for several clients including Freddie Mac, Fannie Mae, and the US Depart-

ment of Defense. He has a master’s degree in software engineering from Southern Methodist

University. David is editor in chief of Ensode.net (http://www.ensode.net), a web site about

Java, Linux, and other technology topics.

■IGOR VAYNBERG is a senior software engineer at TeachScape, Inc., residing

in Sacramento, California. His liking for computers was sparked when

he received a Sinclair Z80 for his birthday at the age of ten. Since then he

has worked with companies both large and small building modular mul-

titiered web applications. Igor’s main interest is finding ways to simplify

development of complex user interfaces for the web tier. Igor is a com-

mitter for the Wicket framework, the aim of which is to simplify the

programming model as well as reintroduce OOP to the web UI tier. In

his AFK time, Igor enjoys spending time with his beautiful wife and children. You can reach

him at igor.vaynberg@gmail.com.

xv

Acknowledgments

Authoring a book, like any other project, is a team effort. I’m indebted to everyone who was

involved in this project. First and foremost, I would like to thank Steve Anglin at Apress for

providing me with the opportunity to write this book. Ami Knox deserves special mention for

her stupendous work during the copy editing process and so does Senior Project Manager

Kylie Johnston for coordinating the efforts. My heartfelt thanks to Laura Esterman and all

others who were involved during the production.

My utmost thanks to the reviewers David Heffelfinger and Wicket developer Igor Vaynberg

for their invaluable inputs. Anybody who is a part of the Wicket mailing list knows what Igor

means to the Wicket community. I can say without any hesitation that this book would not

exist without Igor’s encouragement and expert advice. Thank you Igor! Many thanks to all the

core Wicket developers for creating, maintaining, and adding new features to this wonderful

framework and for patiently answering all the questions thrown at you on the mailing list.

I always used to wonder why authors make it a point to thank their better half on finish-

ing a book. Now I know! Gayathri, your belief in this project never ceases to amaze me despite

your vastly different “management” background. It’s probably your faith and unflinching sup-

port that kept me afloat through the pain and joy of the book writing process. I would also like

to thank my in-laws and other well-wishers.

And then I’m really not sure how I can express my gratitude to the two souls who not only

brought me into this world, but also taught me, in addition to other things, that perseverance

can go a long way in realizing your dreams. I’m indebted to you forever—Amma and Appa!

xvii

Introduction

Welcome to Wicket, an open source, lightweight, component-based Java web framework

that brings the Java Swing event-based programming model to web development. Component-

based web frameworks are being touted as the future of Java web development, and Wicket is

easily one of the leading implementations in this area. Wicket strives for a clean separation of

the roles of HTML page designer and Java developer by supporting plain-vanilla HTML tem-

plates that can be mocked up, previewed, and later revised using standard WYSIWYG HTML

design tools.

Wicket counters the statelessness of HTTP by providing stateful components, thereby

improving productivity. If you are looking to hone your object-oriented programming skills,

Wicket fits like a glove in that respect as well, since it has an architecture and rich component

suite that encourages clean object-oriented design.

Pro Wicket aims to get you up and running quickly with this framework. You will learn

how to configure Wicket and then gradually gain exposure to the “Wicket way” of addressing

web development requirements. You will learn about important techniques of working with

Wicket through simple examples. People have come to expect a few things from a modern

web framework—Spring Framework integration and baked-in Ajax support are probably at

the top of that list. I have taken care to address these aspects of Wicket in the book. You will

learn to integrate Wicket and EJB 3 API using the services of Spring 2.0, for example. Also

included is a separate chapter dedicated to Wicket’s integration with Ajax.

I have been having a great time with Wicket since day one of my adoption of this tech-

nology. I wrote this book to let you know how Wicket, in addition to being a robust web

application framework, succeeds in bringing back the fun that has been missing in the Java

web development space.

Who This Book Is For
This book is for anyone who wants to learn how to develop J2EE-based web applications

using Wicket. This book assumes that the reader understands the Java language constructs

and its APIs and has a basic knowledge of HTML and CSS. The book does not assume any

prior knowledge of the Wicket framework. Even though Wicket does not require Java 5, a basic

understanding of the Java 5 Annotation feature would also help in understanding some of the

nifty framework features. That said, there are a couple of chapters that deal with Wicket’s inte-

gration with other frameworks and technologies like Spring, Velocity, Ajax, and EJB 3. A quick

introduction to these topics has been included in the related chapters. If that does not suffice,

you could easily acquire the required familiarity with the aforementioned subjects by reading

xix

www.allitebooks.com

http://www.allitebooks.org

some basic introductory articles that are available on the Internet. References are provided as

appropriate throughout the book.

If you are curious how Wicket stacks up against other component-based web develop-

ment frameworks, this book will certainly help you determine that.

This book should also serve as a good guide to understanding the Wicket way of address-

ing various aspects of J2EE web development.

How This Book Is Structured
Pro Wicket gradually builds upon the concepts and examples introduced in preceding chap-

ters, and therefore, in order to derive the most out of this book, it is better read cover to cover.

Use this chapter outline for a quick overview of what you will find inside.

• Chapter 1, “Wicket: The First Steps,” helps you to quickly get started with Wicket devel-

opment. You will develop your first web page using Wicket and then build a few more to

get introduced to some of the core Wicket concepts like Wicket models.

• Chapter 2, “Validation with Wicket,” shows how you can apply Wicket’s built-in valida-

tion support to your application pages. Here you will also learn about Wicket’s

converters.

• Chapter 3, “Developing a Simple Application,” introduces several important Wicket

concepts like the global application object, session, etc., through development of a

simple application. You cannot afford to skip this, as all the remaining chapters use

the sample application that you will be developing in this chapter. It discusses several

important concepts central to Wicket such as behaviors, different flavors of Wicket

models, and support for authorization and authentication.

• Chapter 4, “Providing a Common Layout to Wicket Pages,” goes into details of the page

layout support in Wicket. In this chapter, you will learn to use Wicket’s Border compo-

nents and markup inheritance to provide a consistent layout to your application pages.

• Chapter 5, “Integration with Other Frameworks,” first discusses how Wicket integrates

with view technologies like Velocity and FreeMarker. Then it deals with a topic I’m sure

you must be really curious about: Wicket’s integration with the Spring Framework. Such

a chapter cannot be complete without a discussion on EJB 3—you will learn how to

specifically integrate Hibernate’s EJB 3 implementation with Wicket using Spring 2.0.

• Chapter 6, “Localization Support,” outlines and explains Wicket’s support for localiza-

tion. Localized text can be specified in resources external to the pages, and this chapter

also explains the search mechanism employed by Wicket when looking for localized

content. You will also learn about a couple of model classes that offer help with

localization.

• Chapter 7, “Custom Wicket Components and Wicket Extensions,” introduces readers to

an area where Wicket really shines—writing custom components. You will also put to

use some of the existing Wicket-Extensions components in this chapter.

■INTRODUCTIONxx

• Chapter 8, “Wicket and Ajax,” discusses Wicket’s integration with Ajax. You will learn

that, to a great extent, you could Ajax-ify Wicket web applications without writing a sin-

gle line of JavaScript code. Wicket models Ajax support through a concept of behaviors,

and you will be introduced to several flavors of built-in Ajax behavior in this chapter.

• Chapter 9, “Additional Wicket Topics,” starts off with a discussion on Wicket’s built-in

support for unit testing. Next, you will get a sneak peek into the features that will be

part of the next version of Wicket that is currently under development.

Prerequisites
This book does not assume any prior knowledge of Wicket. The book covers Wicket integration

with frameworks like Spring, EJB 3, Velocity, and FreeMarker. A basic introduction to these

third-party libraries and appropriate references are included as necessary. The book also

includes a chapter on Wicket’s support for Ajax. A basic idea of Ajax is enough to understand

the chapter, as Wicket abstracts most of the JavaScript code from the users of the framework.

The required third-party libraries are also packaged along with the source code to make it

easier for you to play around with the examples. A basic knowledge of the Java 5 Annotation

feature would help you in understanding a couple of nifty Wicket features.

Downloading the Code
The source code for this book is available to readers at http://www.apress.com in the Source

Code section. Please feel free to visit the Apress web site and download all the code there. You

can also check for errata and find related titles from Apress.

Contacting the Author
Karthik Gurumurthy can be contacted at karthik.guru@gmail.com. The author also maintains

a blog at http://www.jroller.com/page/karthikg.

■INTRODUCTION xxi

Wicket: The First Steps

In this chapter, after a quick introduction to Wicket, you will learn to obtain and set up the

requisite software for Wicket-based web development. Then you will learn to develop inter-

active web pages using Wicket. Along the way, you will be introduced to some key Wicket

concepts.

What Is Wicket?
Wicket is a component-oriented Java web application framework. It’s very different from

action-/request-based frameworks like Struts, WebWork, or Spring MVC where form submis-

sion ultimately translates to a single action. In Wicket, a user action typically triggers an event

on one of the form components, which in turn responds to the event through strongly typed

event listeners. Some of the other frameworks that fall in this category are Tapestry, JSF, and

ASP.NET. Essentially, frameworks like Struts gave birth to a concept of web-MVC that com-

prises coarse-grained actions—in contrast to the fine-grained actions we developers are so

used to when programming desktop applications. Component-oriented frameworks such as

Wicket bring this more familiar programming experience to the Web.

Obtaining and Setting Up Wicket
Wicket relies on the Java servlet specification and accordingly requires a servlet container that

implements the specification (servlet specification 2.3 and above) in order to run Wicket-based

web applications. Jetty (http://jetty.mortbay.org) is a popular, open-source implementation

of the servlet specification and is a good fit for developing Wicket applications.

The Wicket core classes have minimal dependencies on external libraries. But download-

ing the jar files and setting up a development environment on your own does require some

time. In order to get you quickly started, Wicket provides for a “Quick Start” project. The

details can be found here: http://wicket.sourceforge.net/wicket-quickstart/. Download

the latest project files through the “Download” link provided on the page. Having obtained the

project file, extract it to a folder on the file system. Rename the folder to which you extracted

the distribution to your required project name. As you can see in Figure 1-1, I’ve renamed the

directory on my system to Beginning Wicket.

1

C H A P T E R 1

Figure 1-1. Extract the contents of the Wicket Quick Start distribution to a file system folder.

Setting up Wicket Quick Start to work with an IDE like Eclipse is quite straightforward.

It is assumed that you have Eclipse (3.0 and above) and Java (1.4 and above) installed on your

machine.

Eclipse Development Environment Setup Using

Quick Start
The steps for setting up Eclipse with Wicket Quick Start are as follows:

1. Copy the files eclipse-classpath.xml and .project over to the project folder that you

just created. These files are available in the directory src\main\resources under your

project folder.

2. Create an Eclipse Java project, specifying you want it created from an existing source

with the directory pointing to the one that you created earlier (the Beginning Wicket

folder in this example, as shown in Figure 1-2). Accept the default values for other

options and click Finish. This is all you require to start working with Wicket.

CHAPTER 1 ■ WICKET: THE F IRST STEPS2

Figure 1-2. An Eclipse Java project pointing to the folder previously created

Running the Application

The Quick Start application ships with an embedded Jetty server. You can start the server by

right-clicking the src/main/java directory in the project and selecting the menu commands

Run as ➤ Java application. If Eclipse prompts you for a main class, browse to the class named

Start. This is all that is needed to kick-start Wicket development.

You can access your first Wicket application by pointing the browser to http://

localhost:8081/quickstart.

How to Alter the Jetty Configuration

The Jetty configuration file is located in the project directory src/main/resources/

jetty-config.xml.

Notice from the file that Jetty, by default, is configured to start on port 8081. If you want to

override the default Jetty settings, this is the file you need to be editing. Next, you will change

the default web application context from quickstart to wicket, as demonstrated in Listing 1-1.

You will also change the default port from 8081 to 8080.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 3

Listing 1-1. The Modified jetty-config.xml

<!--rest snipped for clarity -->

<Call name="addListener">

<Arg>

<New class="org.mortbay.http.SocketListener">

<Set name="Port"><SystemProperty name="jetty.port" default="8081"/></Set>

<!--rest snipped for clarity -->

<Call name="addWebApplication">

<Arg>/wicket</Arg>

<Arg>src/webapp</Arg>

</Call>

After making the modifications in Listing 1-1, restart Jetty. Now the application should be

accessible through the URL http://localhost:8080/wicket.

For more information on Jetty configuration files, refer to the document available at

http://jetty.mortbay.org/jetty/tut/XmlConfiguration.html.

The web.xml for Wicket Web Development

You will find the src/webapp/WEB-INF folder already has a fully functioning web.xml entry. But

that corresponds to the default Quick Start application. Since for the purposes of this walk-

through you will develop a Wicket application from scratch, replace the existing web.xml

content with the one shown in Listing 1-2. This registers the Wicket servlet and maps it to

the /helloworld URL pattern.

Listing 1-2. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD

Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<display-name>Wicket Shop</display-name>

<servlet>

<servlet-name>HelloWorldApplication</servlet-name>

<servlet-class>wicket.protocol.http.WicketServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>HelloWorldApplication</servlet-name>

<url-pattern>/helloworld/*</url-pattern>

</servlet-mapping>

</web-app>

The URL to access the application would be http://localhost:8080/wicket/helloworld.

CHAPTER 1 ■ WICKET: THE F IRST STEPS4

Now that you are done with initial configuration, you’ll develop a simple application that

emulates a basic login use case.

Developing a Simple Sign-in Application
The sign-in application requires a login page that allows you to enter your credentials and

then log in. Listing 1-3 represents the template file for one such page.

Listing 1-3. Login.html

<html>

<title>Hello World</title>

<body>

<form wicket:id="loginForm">

User Name <input type="text" wicket:id="userId"/>

Password <input type="password" wicket:id="password"/>
<hr>

<input type="submit" value="Login"/>

</form>

</body>

</html>

Figure 1-3 shows how this looks in the browser.

Figure 1-3. Login page when previewed on the browser

Double-click the file, and it will open in your favorite browser. Depending upon where

you come from (JSP-based frameworks/Tapestry), it could come as a surprise to be able to

open your template in a browser and see it render just fine. It must have been a dream some-

time back with JSP-based frameworks, but luckily, it’s a reality with Wicket. You would be

forced to start a web server at minimum when using a JSP-based framework/JSF for that mat-

ter. Note that the template has a few instances of a Wicket-specific attribute named wicket:id

interspersed here and there (ignored by the browser), but otherwise it is plain vanilla HTML.

Wicket mandates that every HTML template be backed by a corresponding Page class of

the same name. This tells you that you need to have Login.java. This is often referred to as a

page-centric approach to web development. Tapestry falls under the same category as well.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 5

The HTML template needs to be in the same package as the corresponding Page class.

An internal Wicket component that is entrusted with the job of locating the HTML markup

corresponding to a Page looks for the markup in the same place as the Page class. Wicket

allows you to easily customize this default behavior though. All user pages typically extend

Wicket’s WebPage—a subclass of Wicket’s Page class. There needs to be a one-to-one correspon-

dence between the HTML elements with a wicket:id attribute and the Page components. The

HTML template could in fact be termed as a view with the actual component hierarchy being

described in the Page class. Wicket components need to be supplied with an id parameter and

an IModel implementation during construction (some exceptions will be discussed in the sec-

tion “How to Specify a CompoundPropertyModel for a Page.” The component’s id value must

match the wicket:id attribute value of the template’s corresponding HTML element. Essen-

tially, if the template contains an HTML text element with a wicket:id value of name, then the

corresponding wicket’s TextField instance with an id of name needs to be added to the Page

class. Wicket supplies components that correspond to basic HTML elements concerned with

user interaction. Examples of such elements are HTML input fields of type text, HTML select,

HTML link, etc. The corresponding Wicket components would be TextField, DropDownChoice,

and Link, respectively.

Wicket Models
Components are closely tied to another important Wicket concept called models. In Wicket,

a model (an object implementing the IModel interface) acts as the source of data for a

component. It needs to be specified when constructing the component (doing a new); some

exceptions will be discussed in the section “How to Specify a CompoundPropertyModel for a

Page” later. Actually, IModel is a bit of a misnomer: it helps to think about Wicket’s IModel hier-

archy as model locators. These classes exist to help the components locate your actual model

object; i.e., they act as another level of indirection between Wicket components and the

“actual” model object. This indirection is of great help when the actual object is not available

at the time of component construction and instead needs to be retrieved from somewhere

else at runtime. Wicket extracts the value from the model while rendering the corresponding

component and sets its value when the containing HTML form is submitted. This is the

essence of the Wicket way of doing things. You need to inform a Wicket component of the

object it is to read and update.

Wicket could also be classified as an event-driven framework. Wicket HTML components

register themselves as listeners (defined through several Wicket listener interfaces) for

requests originating from the client browser. For example, Wicket’s Form component registers

itself as an IFormSubmitListener, while a DropDownChoice implements the IOnChangeListener

interface. When a client activity results in some kind of request on a component, Wicket calls

the corresponding listener method. For example, on an HTML page submit, a Form compo-

nent’s onSubmit() method gets called, while a change in a drop-down selection results in a call

to DropDownChoice.onSelectionChanged. (Actually, whether a change in a drop-down selection

should result in a server-side event or not is configurable. We will discuss this in Chapter 3.)

If you want to do something meaningful during Form submit, then you need to override

that onSubmit() method in your class. On the click of the Login button, the code in Listing 1-4

prints the user name and the password that was entered.

CHAPTER 1 ■ WICKET: THE F IRST STEPS6

Listing 1-4. Login.java

package com.apress.wicketbook.forms;

import wicket.markup.html.WebPage;

import wicket.markup.html.form.Form;

import wicket.markup.html.form.PasswordTextField;

import wicket.markup.html.form.TextField;

public class Login extends WebPage {

/**

* Login page constituents are the same as Login.html except that

* it is made up of equivalent Wicket components

*/

private TextField userIdField;

private PasswordTextField passField;

private Form form;

public Login(){

/**

* The first parameter to all Wicket component constructors is

* the same as the ID that is used in the template

*/

userIdField = new TextField("userId", new Model(""));

passField = new PasswordTextField("password",new Model(""));

/* Make sure that password field shows up during page re-render **/

passField.setResetPassword(false);

form = new LoginForm("loginForm");

form.add(userIdField);

form.add(passField);

add(form);

}

// Define your LoginForm and override onSubmit

class LoginForm extends Form {

public LoginForm(String id) {

super(id);

}

CHAPTER 1 ■ WICKET: THE F IRST STEPS 7

www.allitebooks.com

http://www.allitebooks.org

@Override

public void onSubmit() {

String userId = Login.this.getUserId();

String password = Login.this.getPassword();

System.out.println("You entered User id "+ userId +

" and Password " + password);

}

}

/** Helper methods to retrieve the userId and the password **/

protected String getUserId() {

return userIdField.getModelObjectAsString();

}

protected String getPassword() {

return passField.getModelObjectAsString();

}

}

All Wicket pages extend the WebPage class. There is a one-to-one correspondence between

the HTML widgets with a wicket:id attribute and the Page components. The HTML template

could in fact be termed a view with the actual component hierarchy being described in the

Page class. Wicket components need to be supplied with an id parameter and an IModel

implementation during construction (some exceptions will be discussed in the section “How

to Specify a CompoundPropertyModel for a Page”). The model object acts as the source of

data for the component. The component’s id value must match the wicket:id attribute of the

template’s corresponding HTML component. Essentially, if the wicket:id of an HTML text ele-

ment is name, the corresponding Wicket’s TextField class with an ID of name needs to be added

to the Page class. When a page is requested, Wicket knows the HTML template it maps to (it

looks for a template whose name is the same as the Page class with an .html extension in a

folder location that mimics the Page class package). During the page render phase, Wicket

does the following:

1. It kicks off the page rendering process by calling the Page.render() method.

2. The Page locates the corresponding markup template and begins iterating over the

HTML tags, converting them into an internal Java representation in the process.

3. If a tag without wicket:id is found, it is rendered as is.

4. If a tag with wicket:id is found, the corresponding Wicket component in the Page is

located, and the rendering is delegated to the component.

5. The Page instance is then stored in an internal store called PageMap. Wicket maintains

one PageMap per user session.

CHAPTER 1 ■ WICKET: THE F IRST STEPS8

The following illustrates this HTML widgets–Page components correspondence:

Login.html <=> Login.java

<html> <=> wicket.markup.html.WebPage

| |

|_<form wicket:id="loginForm"> <=> |_ LoginForm("loginForm")

| |

|_ <input type="text" <=> |_ TextField("userId")

| wicket:id="userId"/> |

| |

|_ <input type="password" <=> |_ PasswordTextField("password")

wicket:id="password"/>

EXPLICIT COMPONENT HIERARCHY SPECIFICATION

In Wicket, the component hierarchy is specified explicitly through Java code—which allows you to modular-

ize code and reuse components via all the standard abstraction features of a modern object-oriented

language. This is quite different from other frameworks like Tapestry, wherein the page components are typi-

cally specified in an XML page specification file listing the components used in the page. (Tapestry 4 makes

even this page specification optional.)

It’s always good to have the application pages extend from a base page class. One of the

reasons to do so is that functionality common to all actions can be placed in the base class.

Let’s define an AppBasePage that all pages will extend, as shown in Listing 1-5. It currently does

nothing. Set AppBasePage as Login page’s superclass.

Listing 1-5. AppBasePage.java

public class AppBasePage extends WebPage {

public AppBasePage(){

super();

}

}

You can liken Wicket development to Swing development. A Swing application will typi-

cally have a main class that kicks off the application. Wicket also has one. A class that extends

WebApplication informs Wicket of the home page that users first see when they access the

application. The Application class may specify other Wicket page classes that have special

meaning to an application (e.g., error display pages). The Application class in Listing 1-6

identifies the home page.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 9

Listing 1-6. HelloWorldApplication.java

package com.apress.wicketbook.forms;

import wicket.protocol.http.WebApplication;

public class HelloWorldApplication extends WebApplication {

public HelloWorldApplication(){}

public Class getHomePage(){

return Login.class;

}

}

Now that you are done registering the web application main class, start Tomcat and see

whether the application starts up:

Jetty/Eclipse Console on Startup

wicket.WicketRuntimeException: servlet init param [applicationClassName]

is missing. If you are trying to use your own

implementation of IWebApplicationFactory and get this message then the

servlet init param [applicationFactoryClassName] is missing

at wicket.protocol.http.ContextParamWebApplicationFactory.createApplication

(ContextParamWebApplicationFactory.java:44)

at wicket.protocol.http.WicketServlet.init(WicketServlet.java:269)

at javax.servlet.GenericServlet.init(GenericServlet.java:168)

The Eclipse console seems to suggest otherwise and for a good reason. The stack trace

seems to reveal that a Wicket class named ContextParamWebApplicationFactory failed to

create the WebApplication class in the first place! Note that the factory class implements the

IWebApplicationFactory interface.

SPECIFYING IWEBAPPLICATIONFACTORY IMPLEMENTATION

WicketServlet expects to be supplied with an IWebApplicationFactory implementation in

order to delegate the responsibility of creating the WebApplication class. A factory implementation

could be specified as a servlet initialization parameter in web.xml against the key application➥

FactoryClassName. In the absence of such an entry, WicketServlet uses ContextParamWeb➥

ApplicationFactory by default. As the name suggests, this class looks up a servlet context parameter

to determine the WebApplication class name. The expected web.xml param-name in this case is

applicationClassName. ContextParamWebApplicationFactory works perfectly for majority of

the cases. But there is at least one scenario that requires a different implementation be specified, and we

will discuss that in Chapter 5.

CHAPTER 1 ■ WICKET: THE F IRST STEPS10

Let’s specify this important piece of information in the web.xml file as an initial parameter

to WicketServlet. Listing 1-7 presents the modified web.xml.

Listing 1-7. web.xml Modified to Specify the Application Class Name

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.

//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<display-name>Wicket Shop</display-name>

<servlet>

<servlet-name>HelloWorldApplication</servlet-name>

<servlet-class>wicket.protocol.http.WicketServlet</servlet-class>

<!-- HelloWorldApplication is the WebApplication class -->

<init-param>

<param-name>applicationClassName</param-name>

<param-value>com.apress.wicketbook.forms.HelloWorldApplication

</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>HelloWorldApplication</servlet-name>

<url-pattern>/helloworld/*</url-pattern>

</servlet-mapping>

</web-app>

Now start Tomcat and verify that things are OK:

Jetty/Eclipse Console After Specifying the applicationClassName Parameter

01:49:29.140 INFO

[main] wicket.protocol.http.WicketServlet

.init(WicketServlet.java:280)

>13> WicketServlet

loaded application HelloWorldApplication via

wicket.protocol.http.ContextParamWebApplicationFactory

factory

01:49:29.140 INFO [main] wicket.Application.configure

(Application.java:326) >17>

You are in DEVELOPMENT mode

CHAPTER 1 ■ WICKET: THE F IRST STEPS 11

INFO - Container - Started WebApplicationContext[/wicket,/wicket]

INFO - SocketListener - Started SocketListener on 0.0.0.0:7000

INFO - Container - Started org.mortbay.jetty.Server@1c0ec97

Congratulations! Your first Wicket web application is up and running!

Enter the URL http://localhost:8080/wicket/helloworld in your browser and the login

page should show up. Since you have already informed Wicket that the login page is your

home page, it will render it by default.

Just to make sure that you aren’t celebrating too soon, enter wicket-user as both user

name and password on the login page and click Login. You should see the login and the pass-

word you typed in getting printed to the console.

But how did Wicket manage to get to the correct Page class instance to the Form compo-

nent and then invoke the onSubmit() listener method? You will find out next.

What Happened on Form Submit?
Right-click the login page and select View Source. The actual HTML rendered on the browser

looks like this:

<html>

<title>Hello World</title>

<head>

<script type="text/javascript"

src="/wicket/helloworld/resources/wicket.markup.html.

WebPage/cookies.js;

jsessionid=15o9ti4t9rn59"></script>

<script type="text/javascript">

var pagemapcookie = getWicketCookie('pm-null/wicketHelloWorldApplication');

if(!pagemapcookie && pagemapcookie != '1')

{setWicketCookie('pm-null/wicketHelloWorldApplication',1);}

else {document.location.href = '/wicket/helloworld;

jsessionid=15o9ti4t9rn59?wicket:bookmarkablePage=wicket-

0:com.apress.wicketbook.forms.Login';}

</script>

</head>

<body onUnLoad="deleteWicketCookie('pm-null/wicketHelloWorldApplication');">

<form action="/wicket/helloworld;jsessionid=15o9ti4t9rn59?wicket:interface=:0:

loginForm::IFormSubmitListener" wicket:id="loginForm" method="post"

id="loginForm">

CHAPTER 1 ■ WICKET: THE F IRST STEPS12

<input type="hidden" name="loginForm:hf:0" id="loginForm:hf:0"/>

User Name <input value="" type="text" wicket:id="userId" name="userId"/>

Password <input value="" type="password" wicket:id="password"

name="password"/>
<hr>

<input type="submit" value="Login"/>

</form>

</body>

</html>

The Form’s action value is of interest:

• /wicket/helloworld: This ensures the request makes it to the WicketServlet. (Ignore

the jsessionid for now.) Then Wicket takes over.

• wicket:interface: See the last entry in this list.

• :0: In the PageMap, this looks for a page instance with ID 0. This is the Login page

instance that got instantiated on first access to the Page.

• :loginForm: In the Page in question, find the component with ID loginForm.

• ::IFormSubmitListener: Invoke the callback method specified in the

IFormSubmitListener interface (specified by wicket:interface) on that component.

loginForm is a Form instance that indeed implements the IFormSubmitListener interface.

Hence this results in a call to the Form.onFormSubmitted() method. onFormSubmitted, in addi-

tion to other things, does the following:

1. It converts the request parameters to the appropriate type as indicated by the backing

model. We will take a detailed look at Wicket converters in Chapter 2.

2. It validates the Form components that in turn validate its child components.

3. When the child components are found to be valid, it pushes the data from request into

the component model.

4. Finally, it calls onSubmit().

Thus, by the time your onSubmit() is called, Wicket makes sure that the model object cor-

responding to all the nested form components are appropriately updated, and that is when

you print out the updated model values. For now, ignore the component validation step. You

will get a detailed look at Wicket’s validation support in the next chapter.

This is often referred to as a postback mechanism, in which the page that renders a form

or view also handles user interactions with the rendered screen.

Depending upon your preference, you might not like the fact that Wicket’s components

are being held as instance variables in the Login class. (In fact, keeping references to compo-

nents just to get to their request values is considered an antipattern in Wicket. It was used only

to demonstrate one of the several ways of handling input data in Wicket.) Wouldn’t it be good

if you could just have the user name and password strings as instance variables and somehow

get Wicket to update those variables on form submit? Let’s quickly see how that can be

achieved through Wicket’s PropertyModel, as Listing 1-8 demonstrates.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 13

Listing 1-8. Login.java

import wicket.markup.html.WebPage;

import wicket.markup.html.form.Form;

import wicket.markup.html.form.PasswordTextField;

import wicket.markup.html.form.TextField;

import wicket.model.PropertyModel;

public class Login extends AppBasePage {

private String userId;

private String password;

public Login(){

TextField userIdField = new TextField("userId",

new PropertyModel(this,"userId"));

PasswordTextField passField = new PasswordTextField("password",

new PropertyModel(this, "password"));

Form form = new LoginForm("loginForm");

form.add(userIdField);

form.add(passField);

add(form);

}

class LoginForm extends Form {

public LoginForm(String id) {

super(id);

}

@Override

public void onSubmit() {

String userId = getUserId();

String password = getPassword();

System.out.println("You entered User id "+ userId +

" and Password " + password);

}

}

public String getUserId() {

return userId;

}

CHAPTER 1 ■ WICKET: THE F IRST STEPS14

public String getPassword() {

return password

}

public void setUserId(String userId) {

this.userId = userId;

}

public void setPassword(String password) {

this.password= password;

}

}

Make the preceding change to Login.java, access the login page, enter values for the User

Name and Password fields, and click Login. You should see the same effect as earlier. Some

radical changes have been made to the code though that require some explanation.

This time around, note that you don’t retain Wicket components as the properties of the

page. You have string variables to capture the form inputs instead. But there is something else

that demands attention; take a look at Listing 1-9.

Listing 1-9. Login Constructor

TextField userIdField = new TextField("userId", new PropertyModel(this,"userId"));

You still specify the ID of the component as userId (first argument to the TextField com-

ponent) as earlier. But instead of a model object, you supply another implementation of

Wicket’s IModel interface—PropertyModel.

How Does PropertyModel Work?

When you include new PropertyModel(this,"userId"), you inform the TextField component

that it needs to use the Login instance (this) as its model (source of data) and that it should

access the property userId of the Login instance for rendering and setting purposes. Wicket

employs a mechanism that is very similar to the OGNL expression language (http://

www.ognl.org). OGNL expects the presence of getProperty and setProperty methods for

expression evaluation, and so does Wicket’s implementation. For example, you can access

subproperties via reflection using a dotted path notation, which means the property expres-

sion loginForm.userId is equivalent to calling getLoginForm().getUserId() on the given

model object (loginForm). Also, loginForm.userId=<something> translates to getLoginForm().

setUserId(something). (loginForm is an instance of the Login class). In fact, prior to the 1.2

release, Wicket used to employ the services of OGNL, until it was discovered that the latter

resulted in limiting Wicket’s performance to a considerable extent and was subsequently

replaced with an internal implementation.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 15

USING PAGE PROPERTIES AS MODELS

Tapestry encourages maintaining Page properties as shown previously. People coming to Wicket from Tapes-

try will probably follow this approach.

I like this page-centric approach, but then I like cricket (http://www.cricinfo.com), too. I

guess it’s a good idea to let you know of some of the “modeling” options that I’m aware of, as I

believe that the user is the best judge in such circumstances. Wicket allows you to model your

model object as a plain Java object, also known as POJO. (POJO actually stands for Plain Old

Java Object.) You can specify a POJO as the backing model for the entire page. Such a model

is referred to as a CompoundPropertyModel in Wicket. A Wicket Page class is derived from the

Component class and models are applicable to all components. Let’s develop another page that

allows one to specify personal user details to demonstrate that.

How to Specify a CompoundPropertyModel

for a Page
Figure 1-4 shows another not-so-good-looking page that allows the user to enter his or her

profile. Remember, the majority of us are Java developers who don’t understand HTML! We

will leave the job of beautifying the template to the people who do it best—HTML designers.

Therein lies the beauty of Wicket. Its design encourages a clean separation of roles of the

designer and the back-end developer with a very minimal overlap.

Figure 1-4 shows a simple page that captures user-related information.

Figure 1-4. UserProfilePage for capturing user-related information

CHAPTER 1 ■ WICKET: THE F IRST STEPS16

See Listing 1-10 for the corresponding HTML template code.

Listing 1-10. UserProfilePage.html

<html>

<title>User Profile</title>

<body>

<form wicket:id="userProfile">

User Name <input type="text" wicket:id="name"/>

Address<input type="text" wicket:id="address"/>

City <input type="text" wicket:id="city"/>

Country <select wicket:id="country">

<!--The markup here is for preview purposes only. Wicket

replaces this with actual data when rendering the page -->

<option>India</option>

<option>USA</option>

<option>UK</option>

</select>

Pin <input type="text" wicket:id="pin"/>

<hr/>

<input type="submit" value="Save"/>

</form>

</body>

</html>

In this case, the POJO UserProfile class (see Listing 1-11) has been designed to hold onto

the information supplied in the HTML template.

Listing 1-11. UserProfile.java

package com.apress.wicketbook.common;

import java.io.Serializable;

public class UserProfile implements Serializable {

private String name;

private String address;

private String city;

private String country;

private int pin;

public String getAddress() {

return address;

}

CHAPTER 1 ■ WICKET: THE F IRST STEPS 17

www.allitebooks.com

http://www.allitebooks.org

public void setAddress(String address) {

this.address = address;

}

public String getCity() {

return city;

}

public void setCity(String city) {

this.city = city;

}

public String getCountry() {

return country;

}

public void setCountry(String country) {

this.country = country;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

/*

* You can return an int!

*/

public int getPin() {

return pin;

}

public void setPin(int pin) {

this.pin = pin;

}

/* Returns a friendly representation of the UserProfile object */

CHAPTER 1 ■ WICKET: THE F IRST STEPS18

public String toString(){

String result = " Mr " + getName();

result+= "\n resides at " + getAddress();

result+= "\n in the city " + getCity();

result+= "\n having Pin Code " + getPin();

result+= "\n in the country " + getCountry();

return result;

}

private static final long serialVersionUID = 1L;

}

There is a one-to-one mapping between the HTML page wicket:id attributes and the

properties of the UserProfile Java bean. The Wicket components corresponding to the HTML

elements identified by wicket:id need not map to the same model class. It’s been designed that

way in this example in order to demonstrate the workings of one of the Wicket’s model classes.

You also aren’t required to create a new POJO for every Wicket page. You can reuse one if it

already exists. For example, information like a user profile is stored in the back-end repository

store and is typically modeled in Java through Data Transfer Objects (DTOs). If you already

have a DTO that maps to the information captured in the UserProfilePage template, you

could use that as the backing model class for the page, for instance. (Please refer to http://

www.corej2eepatterns.com/Patterns2ndEd/TransferObject.htm if you need more information

on DTOs.) Wicket, being a component-oriented framework, encourages very high levels of

reuse.

You just specified the UserProfile model class, but you need the corresponding Page

class, too (see Listing 1-12).

Listing 1-12. UserProfilePage.java

import java.util.Arrays;

import wicket.markup.html.WebPage;

import wicket.markup.html.form.DropDownChoice;

import wicket.markup.html.form.Form;

import wicket.markup.html.form.TextField;

import wicket.model.CompoundPropertyModel;

import com.wicketdev.app.model.UserProfile;

public class UserProfilePage extends AppBasePage{

public UserProfilePage() {

UserProfile userProfile = new UserProfile();

CompoundPropertyModel userProfileModel = new CompoundPropertyModel(userProfile);

CHAPTER 1 ■ WICKET: THE F IRST STEPS 19

Form form = new UserProfileForm("userProfile",userProfileModel);

add(form);

TextField userNameComp = new TextField("name");

TextField addressComp = new TextField("address");

TextField cityComp = new TextField("city");

/*

* Corresponding to HTML Select, we have a DropDownChoice component in Wicket.

* The constructor passes in the component ID "country" (that maps to wicket:id

* in the HTML template) as usual and along with it a list for the

* DropDownChoice component to render

*/

DropDownChoice countriesComp = new DropDownChoice("country",

Arrays.asList(new String[] {"India", "US", "UK" }));

TextField pinComp = new TextField("pin");

form.add(userNameComp);

form.add(addressComp);

form.add(cityComp);

form.add(countriesComp);

form.add(pinComp);

}

class UserProfileForm extends Form {

// PropertyModel is an IModel implementation

public UserProfileForm (String id,IModel model) {

super(id,model);

}

@Override

public void onSubmit() {

/* Print the contents of its own model object */

System.out.println(getModelObject());

}

}

}

Note that none of the Wicket components are associated with a model! The question

“Where would it source its data from while rendering or update the data back on submit?”

still remains unaddressed. The answer lies in the UserProfilePage constructor:

CHAPTER 1 ■ WICKET: THE F IRST STEPS20

public class UserProfilePage....{

/** Content omitted for clarity **/

public UserProfilePage(){

/* Create an instance of the UserProfile class */

UserProfile userProfile = new UserProfile();

/*

* Configure that as the model in a CompoundPropertyModel object.

* You will see next that it allows you

* to share the same model object between parent and its child components.

*/

CompoundPropertyModel userProfileModel = new CompoundPropertyModel(userProfile);

/*

* Register the CompoundPropertyModel instance with the parent component,

* Form in this case, for the children to inherit from. So all the

* remaining components will then use the UserProfile instance

* as its model, using OGNL like 'setters' and 'getters'

*/

Form form = new UserProfileForm("userProfile",userProfileModel);

//...

/*

* The following code ensures that rest of the components are Form's

* children, enabling them to share Form's model.

*/

form.add(userNameComp);

form.add(addressComp);

form.add(cityComp);

form.add(countriesComp);

form.add(pinComp);

//...

}

Wicket’s CompoundPropertyModel allows you to use each component’s ID as a property-path

expression to the parent component’s model. Notice that the form’s text field components do

not have a model associated with them. When a component does not have a model, it will try

to search up its hierarchy to find any parent’s model that implements the ICompoundModel

interface, and it will use the first one it finds, along with its own component ID to identify its

model. Actually, the CompoundPropertyModel can be set up in such a way that it uses the com-

ponent ID as a property expression to identify its model.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 21

You do not have to worry about this now. We will take a look at some concrete examples in

later chapters that will make it clear.

So in essence every child component added to the form will use part of the form’s

CompoundPropertyModel as its own because the containing Form object is the first component

in the upwards hierarchy whose model implements ICompoundModel.

Fill in the form values and click Save. You should see something similar to the following

on the Eclipse console:

Eclipse Console Displaying the Input Values

02:09:47.265 INFO [ModificationWatcher Task]

wicket.markup.MarkupCache$1.onChange(MarkupCache.java:309) >

06> Remove markup from cache:

file:/D:/software/lab/eclipse-workspace/WicketRevealedSource/

context/WEB-INF/classes/com/apress/wicketbook/forms/UserProfilePage.html

Mr Karthik

resides at Brooke Fields

in the city Bangalore

having Pin Code 569900

in the country India

02:09:50.546 INFO [SocketListener0-1]

wicket.markup.MarkupCache.loadMarkupAndWatchForChanges

(MarkupCache.java:319) >

Struts users can probably relate to this way of using models as they are somewhat similar

to Struts ActionForms. For JSF users, it should suffice to say that it’s not too different from a

JSF-managed bean. Using distinct POJOs as model objects probably makes it easier to move

things around while refactoring. The good thing is that Wicket doesn’t dictate anything and

will work like a charm irrespective of which “modeling” option you choose.

Development vs. Deployment Mode
Modify the label User Name to User Name1 in Login.html and refresh the page; you will notice

the template now displays User Name1. Essentially, any change to the template is reflected in

the subsequent page access. Wicket checks for any changes to a template file and loads the

new one if it indeed has been modified. This is of great help during the development phase.

But you probably wouldn’t be looking for this default “feature” when deploying in production,

as it may lead to the application performing slowly. Wicket easily allows you to change this

behavior through the wicket.Application.configure("deployment") method (see Listing 1-13).

Note that the default value is development.

CHAPTER 1 ■ WICKET: THE F IRST STEPS22

Listing 1-13. HelloWorldApplication.java

import wicket.protocol.http.WebApplication;

import wicket..Application;

public class HelloWorldApplication extends WebApplication {

public HelloWorldApplication() {

configure(Application.DEVELOPMENT);

}

public Class getHomePage() {

return Login.class;

}

}

This looks more like a configuration parameter, and hence you should specify it as one in

web.xml. The WebApplication class that you configured in web.xml allows access to wicket.

protocol.http.WicketServlet (see Listing 1-14).

Listing 1-14. web.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc

.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<display-name>Wicket Shop</display-name>

<servlet>

<servlet-name>HelloWorldApplication</servlet-name>

<servlet-class>wicket.protocol.http.WicketServlet</servlet-class>

<init-param>

<param-name>applicationClassName</param-name>

<param-value>com.wicketdev.app.HelloWorldApplication</param-value>

</init-param>

<init-param>

<param-name>configuration</param-name>

<param-value>development</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>HelloWorldApplication</servlet-name>

<url-pattern>/helloworld/*</url-pattern>

</servlet-mapping>

</web-app>

CHAPTER 1 ■ WICKET: THE F IRST STEPS 23

Now that you are done specifying the init-param, the only thing you are left with is

accessing the same and setting it on Wicket’s ApplicationSettings object. Change the

HelloWorldApplication class like this:

public class HelloWorldApplication extends WebApplication {

public HelloWorldApplication(){

String deploymentMode = getWicketServlet().getInitParameter("configuration");

configure(deploymentMode);

}

public Class getHomePage() {

return Login.class;

}

}

Alas, Wicket doesn’t seem to be too happy with the modifications that you made:

02:13:31.046 INFO [main] wicket.Application.configure

(Application.java:326) >17> You are in DEVELOPMENT mode

java.lang.IllegalStateException: wicketServlet is not

set yet. Any code in your Application object that uses

the wicketServlet instance should be put in the init()

method instead of your constructor

at wicket.protocol.http.WebApplication.getWicketServlet(

WebApplication.java:169) at

com.apress.wicketbook.forms.HelloWorldApplication.<init>(

HelloWorldApplication.java:8){note}

But you’ve got to appreciate the fact that it informs you of the corrective action that it

expects you to take (see Listing 1-15).

Listing 1-15. HelloWorldApplication.java

public class HelloWorldApplication extends WebApplication {

public void init(){

String deploymentMode =

getWicketServlet().getInitParameter(

Application.CONFIGURATION);

configure(deploymentMode);

}

CHAPTER 1 ■ WICKET: THE F IRST STEPS24

public HelloWorldApplication(){}

public Class getHomePage() {

return Login.class;

}

}

Actually, you are not required to set the deployment mode in the init as in Listing 1-15.

Just setting the servlet initialization parameter against the key configuration should be suffi-

cient. Wicket takes care of setting the deployment mode internally.

SPECIFYING THE CONFIGURATION PARAMETER

Wicket looks for the presence of a system property called wicket.configuration first. If it doesn’t find

one, it looks for the value corresponding to a servlet initialization parameter named configuration. In the

absence of the preceding settings, it looks for an identical servlet context parameter setting. If none of the

preceding listed lookups succeed, Wicket configures the application in development mode by default. Note

that the value for configuration has to be either development or deployment identified by fields

wicket.Application.DEVELOPMENT and wicket.Application.DEPLOYMENT, respectively.

Instead of refreshing the same page on every request, you’ll next provide a personalized

greeting in the form of a Welcome page once the user has logged in.

Displaying the Welcome Page
Listing 1-16 represents a simple Welcome page that has a placeholder for displaying a person-

alized greeting.

Listing 1-16. Welcome.html

<html>

<title>Welcome to Wicket Application</title>

<body>

Welcome To Wicket Mr Message goes here

</body>

</html>

Welcome.html has a span tag marked as a Wicket component. This corresponds to Wicket’s

Label component. The Welcome page provides a personalized greeting to the user and accord-

ingly accepts the userId/name as the label content (see Listing 1-17).

CHAPTER 1 ■ WICKET: THE F IRST STEPS 25

Listing 1-17. Welcome.java

import wicket.markup.html.WebPage;

import wicket.markup.html.basic.Label;

public class Welcome extends WebPage {

private String userId;

public Welcome(){

add(new Label("message",new PropertyModel(this,"userId")));

}

public String getUserId() {

return userId;

}

public void setUserId(String userId) {

this.userId = userId;

}

}

Rendering a different page in response to the user input is as simple as setting it as the

response page as shown in Listing 1-18.

Listing 1-18. Login.java

public class Login extends WebPage {

//..

public Login(){

form = new LoginForm("loginForm");

//..

}

class LoginForm extends Form {

public LoginForm(String id) {

super(id);

}

@Override

public void onSubmit() {

String userId = Login.this.getUserId();

String password = Login.this.getPassword();

/* Instantiate the result page and set it as the response page */

CHAPTER 1 ■ WICKET: THE F IRST STEPS26

Welcome welcomePage = new Welcome();

welcomePage.setUserId(userId);

setResponsePage(welcomePage);

}

}

}

You can directly access the Welcome page by typing the URL on the browser and passing

in the value for userId as a page parameter. The only change required would be that the

Welcome constructor needs to be modified to accept the page parameter being passed into it.

You will add another constructor that accepts an argument of type PageParameters (see

Listing 1-19).

Listing 1-19. Welcome Page That Accepts PageParameters in the Constructor

import wicket.PageParameters;

public class Welcome extends WebPage {

//..

public Welcome(){

//..

}

public Welcome(PageParameters params){

this();

/*

* PageParameters class has methods to get to the parameter value

* when supplied with the key.

*/

setUserid(params.getString("userId"));

}

//..

}

and the URL to access the same would be http://localhost:7000/wicket/helloworld?wicket:

bookmarkablePage=:com.apress.wicketbook.forms.Welcome&userId=wicket.

Currently, you don’t have any authentication built into your application and therefore any

user ID/password combination is acceptable. Go ahead and enter the values and click the

Login button. This will take you to a primitive-looking Welcome page, shown in Figure 1-5,

that displays a personalized greeting. If you are looking to navigate to the other sample pages

developed sometime back, one option is to access them directly by typing in the URL on the

browser, and the other could be to get to them through HTML links. Let’s try getting the latter

to work.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 27

www.allitebooks.com

http://www.allitebooks.org

Figure 1-5. Accessing the Welcome page through the URL passing in PageParameters

BOOKMARKABLE PAGE

You must be curious about the parameter bookmarkablePage in the URL. Actually, there is nothing

special that makes the page bookmarkable. Any page is considered bookmarkable if it has a public default

constructor and/ or a public constructor with a PageParameters argument. A bookmarkable page URL

can be cached by the browser and can be used to access the page at a later point in time, while a non-

bookmarkable page cannot be accessed this way. A non-bookmarkable page URL makes sense only in the

context it was generated. If the page wants to be bookmarkable and accept parameters off the URL, it needs

to implement the Page(PageParameters params) constructor.

Adding a Link to the Welcome Page
Add a link named “Login” that is intended to take you back to the Login page, as shown in

Listing 1-20. (Normally, there is no reason why somebody would want to do this, but this will

let you quickly cover some ground with Wicket development.)

Listing 1-20. Welcome.html

<html>

<title>Welcome to Wicket Application</title>

<body>

Welcome To Wicket Mr Message goes here

User Profile

Login
</body>

</html>

Now you will see how a click on an HTML link translates to an onClick event on the corre-

sponding server-side component.

CHAPTER 1 ■ WICKET: THE F IRST STEPS28

Modify the Page class in order to accommodate the links and set the target page in the

onClick method of wicket’s Link class (see Listing 1-21).

Listing 1-21. Welcome.java

import wicket.markup.html.link.Link;

class Welcome ..

public Welcome(){

//..

//..

Link linkToUserProfile = new Link("linkToUserProfile"){

public void onClick(){

// Set the response page

setResponsePage(UserProfilePage.class);

}

};

Link linkToLogin = new Link("linkToLogin"){

public void onClick(){

setResponsePage(Login.class);

}

};

// Don't forget to add them to the Form

form.add(linkToUserProfile);

form.add(linkToLogin);

}

}

PAGE INSTANCE CACHING

After the page is rendered, it is put into a PageMap. The PageMap instance lives in session and keeps the

last n pages (this number is configurable through Wicket’s ApplicationSettings object). When a form is

submitted, the page is brought back from PageMap and the form handler is executed on it. The PageMap

uses a Least Recently Used (LRU) algorithm by default to evict pages—to reduce space taken up in session.

You can configure Wicket with your own implementation of the eviction strategy. Wicket specifies the strategy

through the interface wicket.session.pagemap.IPageMapEvictionStrategy. You can configure

your implementation by invoking getSessionSettings().setPageMapEvictionStrategy

(yourPageMapEvicationStrategyInstance) in the WebApplication.init() method. This could

prove to be extremely crucial when tuning Wicket to suit your application needs.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 29

Go back to the login page, enter values for user ID and password, and click the Login but-

ton. You should see something like what appears in Figure 1-6.

Figure 1-6. Welcome page with links to other pages

The rendered URL for the “Login” link looks like this:

<a href="/wicket/helloworld?wicket:interface=:0:form:linkToLogin::

ILinkListener" wicket:id="linkToLogin">Login

This URL has a reference to a particular page instance in the PageMap (denoted by param-

eter :0) at this point in time and hence is not bookmarkable. You will see later how you can

have bookmarkable links that can be cached in the browser for use at a later point in time.

Click the “Login” link and you should be taken to the login screen again (see Figure 1-7).

Figure 1-7. Clicking the “Login” link displays the login page with blank fields.

The User Name and Password fields turn out to be blank. This was because you specified

the response page class—Login.class—on onClick. Wicket accordingly created a new

instance of the Login page and rendered that on the browser. Since the Login constructor

initializes the TextField and PasswordTextField widgets to empty strings, the corresponding

HTML widgets turn out blank on the browser. Note that you could have passed the original

Login page instance to the Welcome page and specified that as the argument to

setResponsePage on onClick. That way you would have gotten back the “original” Login

page with the user input intact. This scenario is indicated in Listing 1-22.

CHAPTER 1 ■ WICKET: THE F IRST STEPS30

Listing 1-22. Welcome Page Modified to Accept the Previous Page During Construction

public class Welcome extends WebPage {

String userId;

Page prevPage;

public Welcome(String userId, Page prevPage){

this.userId;

this.prevPage = prevPage;

//..

}

Link linkToLogin = new Link("linkToLogin"){

public void onClick(){

setResponsePage(prevPage==null?new Login():prevPage);

}

};

}

Listing 1-23 shows the modifications needed to the Login page.

Listing 1-23. Login Page Modified to Pass Itself As the Argument

public class Login extends WebPage {

//..

class LoginForm extends Form {

public LoginForm(String id) {

super(id);

}

@Override

public void onSubmit() {

String userId = getUserId();

String password = getPassword();

/* Instantiate the result page and set it as the response page */

Welcome welcomePage = new Welcome(userId,Login.this);

setResponsePage(welcomePage);

}

}

}

Now click the “Login” link, and it should take you back to the login page with the previ-

ously entered input intact.

This tells us that Wicket is an unmanaged framework. You can instantiate pages or com-

ponents anywhere in the application, and the framework doesn’t restrict you in any fashion. It

is in fact a widely followed practice when developing applications with Wicket. In this respect,

it’s quite different from managed frameworks, like Tapestry, which don’t allow you to instanti-

ate pages at any arbitrary point in your code.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 31

In this example, you set out to develop a login use case, and not having an authentication

feature, however trivial it may be, just doesn’t cut it. Let’s quickly put one in place.

Adding Basic Authentication to the Login Page
Let’s add a basic authentication mechanism to the login page (see Listing 1-24). For now, you

will support “wicket”/“wicket” as the only valid user ID/password combination.

Listing 1-24. Login.java

public class Login extends WebPage

//..

public Login() {

Form form = new LoginForm("loginForm");

//...

}

class LoginForm extends Form {

public LoginForm(String id) {

super(id);

}

@Override

public void onSubmit() {

String password = getPassword();

String userId = getUserId();

if (authenticate(userId,password)){

Welcome welcomePage = new Welcome();

welcomePage.setUserId(userId);

setResponsePage(welcomePage);

}else{

System.out.println("The user id/ password

combination is incorrect!\n");

}

}

}

public final boolean authenticate(final String username,

final String password){

if ("wicket".equalsIgnoreCase(username) &&

"wicket".equalsIgnoreCase(password))

return true;

else

return false;

}

}

CHAPTER 1 ■ WICKET: THE F IRST STEPS32

If you supply an invalid user ID/password combination, you will not see the Welcome

page in response. Since you didn’t specify a response page for this scenario, Wicket will redis-

play the current page, i.e., the login page instead (via postback mechanism). One glaring issue

with this example is that the user doesn’t really get to know what actually went wrong, as the

failed login information is logged to the console. Relax—you will find out how to address this

and much more by the end of the next chapter.

Summary
In this chapter, you learned how to set up Wicket, Eclipse, and the Jetty Launcher Plug-in for

Wicket-based web development. You also learned that Wicket Form and TextField components

help in user interaction. Every HTML widget has an equivalent Wicket component. These com-

ponents, in turn, rely on the model object to get and set data during template rendering and

submission. You learned to use two of Wicket’s IModel implementations—PropertyModel and

CompoundPropertyModel. You also saw that there are various ways of configuring the model

objects and briefly explored the “Tapestry way” and “Struts/JSF way” of writing model objects.

The Form component’s onSubmit() method should be overridden to process user inputs.

Wicket caches pages in a PageMap for a given session and follows the LRU algorithm to evict

pages from the cache. Wicket allows you to configure a custom implementation of the page-

eviction strategy as well. Later, you learned that the Component.setResponsePage method can

be used to direct the user to a different page after page submit. You also used Wicket’s Link

component, which maps to an HTML link, to direct users to a different page. Through the

Welcome page that has links, you also learned that Wicket is an unmanaged framework that

allows you to instantiate pages or components anywhere in the application, and this frame-

work doesn’t restrict you in any fashion.

CHAPTER 1 ■ WICKET: THE F IRST STEPS 33

Validation with Wicket

Validating input data assumes prime importance in a web application, as invalid data is

undesirable in any kind of system. It’s essential for a web framework to have some kind of

built-in validation support for the developers to rely on; examples might be ease of configura-

tion of field validation, feedback on what has gone wrong, ease of configuration of error

messages, etc., and luckily Wicket has a lot to offer on this front. In this chapter, you will learn

how to provide user feedback and set up form field validations in Wicket. You will also learn to

use some of the built-in validators that ship with Wicket. Data validation and type conversion

are somewhat related to each other. We will take a look at some of the existing Wicket type

converters, and to get a feel for the Wicket Converter API, I will show you how to develop a

type converter of your own. It’s quite possible that you might want to customize the feedback

message display. This requires a little bit of insight into the way Wicket handles feedback mes-

sages, and later you will build your own feedback component using Wicket’s built-in ListView

component.

Providing User Feedback
Let’s revisit the login page to which you added some basic authentication feature. Enter a user

name/password combination different from “wicket”/“wicket” and click Login. You will see

that the same page is returned to you, as it fails the security check. What is missing here is

some form of feedback to the user indicating what has actually gone wrong. We will look at

the Wicket way of resolving this issue.

Wicket has a FeedbackPanel component that can display all types of messages associated

with components nested within a page, and it knows how to render them in a predefined

HTML format. Messages are typically attached to a component. (They are actually stored

somewhere else, and we will take a look at this shortly.) You specifically need access to mes-

sages of type error. Let’s add the component to the template first (see Listing 2-1).

Listing 2-1. Login.html

<html>

<title>Sample Wicket Application</title>

<body>

35

C H A P T E R 2

<!-- Added a span to display feedback -->

Feedback messages will be here

<form wicket:id="loginForm">

User Name <input type="text" wicket:id="userId"/>

Password<input type="password" wicket:id="password"/>

<hr>

<input type="submit" value="Login"/>

</form>

</body>

</html>

If you are developing an application that targets an international audience, it makes sense

to localize the error messages. Wicket ships with a Localizer class that has methods to retrieve

locale-specific messages. At present, you are just interested in externalizing the error mes-

sages so that they can be changed without requiring modifications to the Java code, and

Localizer is the component that lets you retrieve the message.

The modified Login page that reflects the changes that we just discussed is shown in

Listing 2-2.

Listing 2-2. Login.java

// Other imports

import wicket.markup.html.panel.FeedbackPanel;

public class Login extends WebPage

//...

public Login() {

// Create the panel that will display feedback messages

FeedbackPanel feedback = new FeedbackPanel("feedback");

Form form = new LoginForm("loginForm");

//...

// Add the FeedbackPanel to the page

add(feedback);

add(form);

};

class LoginForm extends Form {

public LoginForm(String id) {

super(id);

}

CHAPTER 2 ■ VALIDATION WITH WICKET36

@Override

public void onSubmit() {

String userId = Login.this.getUserId();

String password = Login.this.getPassword();

if (authenticate(userId, password)) {

Welcome welcomePage = new Welcome();

welcomePage.setUserId(userId);

setResponsePage(welcomePage);

} else {

String errMsg = getLocalizer().getString(

"login.errors.invalidCredentials ", Login.this,

"Unable to sign you in");

// Register this error message with the form component.

error(errMsg);

}

}

}

}

Everything about the code snippet in Listing 2-2 should be quite familiar except probably

for this:

String errMsg = getLocalizer().getString(

"login.errors.invalidCredentials", Login.this,

"Unable to sign you in");

In general, all Wicket components can access the Localizer class through the

getLocalizer() method. This method call instructs Wicket’s Localizer class to look for a

message mapped to the key "login.errors.invalidCredentials" in a properties file having

the same name as the second argument to the method call—Login.this. Since you haven’t

specified a locale-specific message yet, the default value—“Unable to sign you in”—is used

on entering an invalid user name/password combination as input (see Figure 2-1).

Figure 2-1. Feedback error message on supplying invalid credentials

CHAPTER 2 ■ VALIDATION WITH WICKET 37

www.allitebooks.com

http://www.allitebooks.org

In order to provide locale-specific messages, you need a way for the application to find

the messages specific to a given locale. In Java, this is typically done through the java.util.

PropertyResourceBundle class. These properties files should contain a set of key=value pairs,

mapping the keys you want to use to look up the texts to find the correct text for that locale.

Java’s ResourceBundle support typically takes into consideration the locale information

when looking for resource bundles, while Wicket supports a concept of style and variation

in addition to locale. We will discuss this in greater detail in Chapter 6. In this case, since the

Localizer will look for a properties file having the same name as the Page class in the same

location by convention, create a file Login.properties in the same folder location as the

Page class with the content shown in Listing 2-3.

Listing 2-3. Login.properties

login.errors.invalidCredentials =Try wicket/wicket as the

user name/password combination

Refresh the page. On entering invalid credentials, you will notice that the error message is

being retrieved from the properties files instead, as shown in Figure 2-2. If the preceding key is

not found in Login.properties, Wicket will look for the message in other files as well, but the

message search order is the topic of another chapter (specifically, Chapter 6).

Figure 2-2. Sourcing the feedback message from Login.properties

Localizer will display the default message “Unable to sign you in” in the absence of the

key "login.errors.invalidCredentials" in the Login.properties file. Had you used the other

overloaded Localizer.getString(String key, Component comp) method (which doesn’t

accept the default value), and if the key were not to be found in the properties file, the frame-

work would have thrown a MissingResourceException.

CHAPTER 2 ■ VALIDATION WITH WICKET38

If you find this default behavior a little too extreme for your taste, you can turn it off

through a getExceptionSettings().setThrowExceptionOnMissingResource(false) call in your

WebApplication class.

Now check whether this setting makes any difference to the way Wicket handles missing

resources.

String errmsg = getLocalizer().getString("login.errors.invalidCredentials ", this);

In Login.properties, comment out the entry by placing a # in front of the entry to simu-

late absence of a resource key.

login.errors.invalidCredentials =Try wicket/wicket as the user

name/password combination

Click your browser’s Refresh button, and you should see the message that appears in

Figure 2-3.

Figure 2-3. A warning message is displayed in the absence of the message key in the properties

file, depending upon the exception settings.

Now that you have some idea of how page validation works in Wicket, let’s delve deeper

into the validation framework.

More Validation
Next you will revisit the UserProfilePage that you developed in the first chapter. Let’s add the

FeedbackPanel component to the Page, as shown in Listing 2-4. Earlier, on form submission,

you were printing the model object to the console, which probably doesn’t make much sense

in a web application. So this time you’ll add it as an “info” message to the page. As discussed

earlier, the FeedbackPanel component will display the “info” message as well.

CHAPTER 2 ■ VALIDATION WITH WICKET 39

Listing 2-4. UserProfilePage with an Attached Feedback Component

public class UserProfilePage extends...

public UserProfilePage(){

// Add the FeedbackPanel to the Page for displaying error messages

add(new FeedbackPanel("feedback"));

//...

}

class UserProfileForm extends Form {

public UserProfileForm(String id, IModel model) {

super(id, model);

}

public void onSubmit() {

// Add the String representation of UserProfile object as

// an "info" message to the page so that the FeedbackPanel

// can display it

info(getModelObjectAsString());

}

}

}

After incorporating the preceding modifications, click Save without entering any input

values. You should see something like the message in Figure 2-4.

Figure 2-4. The UserProfilePage allows “blank” input values in the absence of a validation check.

CHAPTER 2 ■ VALIDATION WITH WICKET40

This of course is unacceptable. This page begs for some kind of field-level validation to be

put in place before the Form.onSubmit() method is called. For now, assume that User Name

and Pin input fields are required. Additionally, the PIN needs to be in the range 0–5000.

Now let’s modify UserProfilePage to accommodate the preceding validation as shown in

Listing 2-5. You can use Wicket’s Base component’s method, error(), to log validation error

messages.

Listing 2-5. UserProfilePage with Validation

public class UserProfilePage extendsBasePage

//..

class UserProfileForm extends Form {

public UserProfileForm(String id, IModel model) {

super(id, model);

}

public void onSubmit() {

UserProfile up = (UserProfile) getModelObject();

// Retrieve the values from the model object and signal an error

int pin = up.getPin();

String name = up.getName();

// For now let's not worry about localization

if (name == null) {

error("User Name is a required field");

}

int minPinVal = 0;

int maxPinVal = 5000;

if (pin < minPinVal || pin > maxPinVal) {

error("Please enter pin in the range "

+ Integer.toString(minPinVal) + " - "

+ Integer.toString(maxPinVal));

}

}

}

}

As shown in Figure 2-5, the result is as you expect.

CHAPTER 2 ■ VALIDATION WITH WICKET 41

Figure 2-5. Validation error messages on leaving input fields blank

Even though you managed to incorporate field-level validation in your application, it still

doesn’t look right—it would have been better if validation had kicked in before the execution

of business logic (onSubmit() in this case); in other words, why even get to the “submit”

process when you know up front that certain kinds of inputs are unacceptable?

Wicket offers some help here, and we will discuss that next.

Using Wicket Validators
While handling the request cycle, the Form validates all the contained FormComponents by call-

ing the validator registered with each component. It does this by traversing the component

tree and calling validate() on each component. If any of the components fails this validation,

the page processing doesn’t proceed further, and the response is returned to the user with the

error messages intact. Note that Wicket does call validate() on the subsequent components,

even if a component featured ahead in the page hierarchy has failed validation, accumulating

the error messages on the way. This behavior makes sense—it’s better to inform the user up

front of all the invalid inputs instead of waiting for him or her to correct them one by one after

each submit. They are then typically displayed by the FeedbackPanel component that we dis-

cussed earlier.

Validation in Wicket is specified through the IValidator interface. Since you can attach

any number of IValidator interface implementations to a Wicket component through the

component’s overloaded add() method, Wicket developers have made sure that they can be

chained as well. The business logic dictates that you do the following:

• Make sure that the Wicket components corresponding to the fields User Name and Pin

are marked as required fields.

• Attach a NumberValidator to ensure that the entered PIN value is within the acceptable

range.

CHAPTER 2 ■ VALIDATION WITH WICKET42

These business rules translate to Java code as shown in Listing 2-6.

Listing 2-6. UserProfilePage.java

import wicket.markup.html.form.validation.NumberValidator;

import wicket.markup.html.panel.FeedbackPanel;

public class UserProfilePage extends AppBasePage{

public UserProfilePage() {

UserProfile userProfile = new UserProfile();

CompoundPropertyModel userProfileModel = new CompoundPropertyModel(userProfile);

Form form = new UserProfileForm("userProfile",userProfileModel);

// Add the FeedbackPanel to the Page for displaying error messages

add(new FeedbackPanel("feedback"));

add(form);

TextField userNameComp = new TextField("name");

// Mark the Name field as required

userNameComp.setRequired(true);

TextField addressComp = new TextField("address");

TextField cityComp = new TextField("city");

DropDownChoice countriesComp = new DropDownChoice("country",

Arrays.asList(new String[] {"India", "US", "UK" }));

TextField pinComp = new TextField("pin");

// Pin is a required field.

pinComp.setRequired(true);

// Validators are thread-safe. It is OK to link the same

// validator instance with multiple components.

pinComp.add(NumberValidator.range(1000,5000));

// NumberValidator deprecates IntegerValdiator, and it

// needs to be told the type against which it needs to be validated.

pinComp.setType(int.class);

CHAPTER 2 ■ VALIDATION WITH WICKET 43

form.add(userNameComp);

form.add(addressComp);

form.add(cityComp);

form.add(countriesComp);

form.add(pinComp);

}

class UserProfileForm extends Form{

public void onSubmit() {

info(getModelObjectAsString());

}

}

}

The error message will be retrieved using the Localizer for the Form component. The

Localizer looks for the error message in a string resource bundle (properties file) associated

with the page in which this validator is contained. Actually, it searches up the component

hierarchy for the key and then in properties files named after the WebApplication subclass and

then Application.properties. (Do not worry about the message search algorithm for now.

Chapter 6 is dedicated to it.) The key that is used to get the validator messages can be located

by either consulting the Javadoc of the validator class or looking at the default Application.

properties, which contains localized messages for all validators. You might also want to dis-

play the localized name for the Form component that failed the validation check. This can be

specified in the properties file as well. In this case, Wicket expects the following pattern:

<form-name/id>.<component-name/id>

Actually you could just specify component-id (more on this in Chapter 6). But then you

could have more than one component with the same ID falling under a different hierarchy in

the Page. Wicket does not prevent you from doing this. By including the form-id as well, you

could ensure to a certain extent that the key identifies the component uniquely.

Accordingly, you will need the entries shown in Listing 2-7 in the file.

Listing 2-7. UserProfilePage.properties

userProfile.name= Name

userProfile.pin = Pin

RequiredValidator=${label} is a required field

NumberValidator.range=Please enter ${label} in the range ${minimum} - ${maximum}

If you don’t want to specify the component labels in a properties file, you could instead do

it in the Java code as well:

TextField userNameComp = new TextField("name");

// Set the component Label here

userNameComp.setLabel(new Model("Name"));

but the label can no longer be internationalized. Well, you could internationalize it by query-

ing the Localizer to fetch it from a properties file. Instead, you are better off storing it in the

CHAPTER 2 ■ VALIDATION WITH WICKET44

properties file itself. If you don’t do either of these things, Wicket will use the component-id as

its Label by default, which might not be easy on your eyes.

Wicket also allows you to include certain predefined variables in validation message text.

They will be substituted at runtime. In the properties file shown in Listing 2-7, minimum and

maximum are examples of predefined variables. Wicket will automatically populate it depending

upon the range you specify in the Java representation of the Page class. Some of the other

available variables for interpolation are as follows:

Variable Description

${input} The user’s input.

${name} The name of the component.

${label} The label of the component; either comes from FormComponent.labelModel or
resource key <form-id>.<form-component-id> in that order, but specific validator
subclasses may add more values.

Actually, having the page properties file as in Listing 2-7 for declaring error messages is

not a must. Wicket will default to the Application.properties file that it ships with if it does

not find the error message keys in other properties files based on its search algorithm.

Listing 2-8 shows the content of the default Application.properties file.

Listing 2-8. wicket.Application.properties

RequiredValidator=field '${label}' is required.

TypeValidator='${input}' is not a valid ${type}.

NumberValidator.range=${input} must be between ${minimum} and ${maximum}.

NumberValidator.minimum='${input}' must be greater than ${minimum}.

NumberValidator.maximum='${input}' must be smaller than ${maximum}.

StringValidator.range='${input}' must be between ${minimum} and ${maximum} chars.

StringValidator.minimum='${input}' must be at least ${mimimum} chars.

StringValidator.maximum='${input}' must be at most ${maximum} chars.

DateValidator.range='${input}' must be between ${minimum} and ${maximum}.

DateValidator.minimum='${input}' must be greater than ${minimum}.

DateValidator.maximum='${input}' must be smaller than ${maximum}.

PatternValidator='${input}' does not match pattern '${pattern}'

EmailAddressPatternValidator='${input}' is not a valid email address.

EqualInputValidator='${input0}' from ${label0} and '${input1}'

from ${label1} must be equal.

EqualPasswordInputValidator=${label0} and ${label1} must be equal.

null=Choose One

nullValid=

CHAPTER 2 ■ VALIDATION WITH WICKET 45

You can override these messages in your page.properties file only if you aren’t fine with

the default ones. Note that you can override the messages specified in Application.properties

in your WebApplication subclass properties file. But remember that it will be applicable glob-

ally to all the pages.

There is something else that requires your attention. HTTP request parameters are plain

Strings. In spite of that, Wicket automatically converts the request input value to the appro-

priate model object type. (The field UserProfile.pin is of type int and still had its value set

correctly on form submit.) This works as long as the value that needs to be set on the model

object is of a primitive type like int, float, or java.util.Date. Wicket has default converters

that handle such conversions. But this conversion will not happen automatically if you have a

custom model object type. They can be easily handled through custom Wicket converters,

which are discussed next.

Writing Custom Converters
One of Wicket’s greatest strengths lies in its ability to shield the developer from the intricacies

of the underlying HTTP protocol. It acts as a translation layer between HTTP request parame-

ters and your model class, and the way it does this is through converters.

Wicket accesses the converters through a factory class and makes it centrally available

through Wicket’s ApplicationSettings class.

Wicket’s built-in converters are good enough to handle a majority of the requirements.

But there are always situations when built-in components aren’t sufficient. You might have an

“HTML request parameter to custom class” mapping requirement that isn’t quite straightfor-

ward. In this section, you will learn to build a custom converter that does just that.

As an exercise, try adding an input field to accept a phone number as a part of the user

profile. Correspondingly, add another TextField component to the UserProfilePage class and

map it to the phoneNumber property in the model class (UserProfile.java).

Let’s start by defining a class that represents a phone number first, as shown in Listing 2-9.

Assume that the user will enter the phone number in the following format:

[prefix]-[area code]-[number]

That is, [xxx]-[xxx]-[xxxx], all numeric: for example, 123-456-7890.

Listing 2-9. PhoneNumber.java

public class PhoneNumber implements Serializable{

private String areaCode;

private String prefix;

private String number;

public PhoneNumber(String code, String number, String prefix) {

this.areaCode = code;

this.number = number;

this.prefix = prefix;

}

CHAPTER 2 ■ VALIDATION WITH WICKET46

public String getAreaCode() {

return areaCode;

}

public String getNumber() {

return number;

}

public String getPrefix() {

return prefix;

}

}

Add a text field to the HTML template (see Listing 2-10).

Listing 2-10. UserProfilePage.html

<html>

<title>User Profile</title>

<body>

<form wicket:id="userProfile">

User Name <input type="text" wicket:id="name"/>

Address<input type="text" wicket:id="address"/>

City <input type="text" wicket:id="city"/>

Country <select wicket:id="country">

<option>Country-1</option>

<option>Country-2</option>

<option>Country-3</option>

</select>

Pin <input type="text" wicket:id="pin"/>

Phone <input type="text" wicket:id="phoneNumber"/>

<hr/>

<input type="submit" value="Save"/>

</form>

</body>

</html>

All converters are supposed to implement the IConverter interface. It has a single

method:

public Object convert(Object value, Class c)

Argument Description

value Argument passed in (HTML string when updating the underlying model OR the
model object when rendering)

c The class the value needs to be converted to (e.g., c might be PhoneNumber during
form submit and String.class when rendering)

CHAPTER 2 ■ VALIDATION WITH WICKET 47

www.allitebooks.com

http://www.allitebooks.org

Listing 2-11 shows one of the ways of implementing the custom converter:

PhoneNumberConverter.

Listing 2-11. UserProfilePage.PhoneNumberConverter

public class UserProfilePage extends AppBasePage{

//...

//...

public static class PhoneNumberConverter implements IConverter{

private Locale locale;

// This is the method that the framework calls

public Object convert(Object value, Class c) {

if (value == null){

return null;

}

// If the target type for conversion is String,

// convert the PhoneNumber to the form xxx-xxx-xxxx

if (c == String.class){

PhoneNumber phoneNumber = (PhoneNumber) value;

return

phoneNumber.getPrefix() + "-" +

phoneNumber.getAreaCode() + "-" +

phoneNumber.getNumber();

}

// Assume for now that the input is of the form xxx-xxx-xxxx

String numericString = stripExtraChars((String)value);

String areaCode = numericString.substring(0,3);

String prefix = numericString.substring(3,6);

String number = numericString.substring(6);

UserProfile.PhoneNumber phoneNumber =

new UserProfile.PhoneNumber(areaCode, prefix, number);

return phoneNumber;

}

// Removes all nonnumeric characters from the input.

// If supplied with 123-456-7890, it returns 1234567890.

CHAPTER 2 ■ VALIDATION WITH WICKET48

private String stripExtraChars(String input) {

return input.replaceAll("[^0-9]", "");

}

// Currently you are not doing locale-specific parsing

public void setLocale(Locale locale) {

this.locale = locale;

}

public Locale getLocale() {

return this.locale;

}

}

Now that you have seen the meaty part, the only thing left is to let the component know

of this Converter class. All components allow you to specify the custom converter through the

getConverter() method. So you just override it to return your custom converter class.

Note that the target type (PhoneNumber.class) to which you want the input converted

must be specified when constructing the TextField component corresponding to the phone

number (see Listing 2-12). If this is not specified, Wicket will not call the custom converter.

Listing 2-12. UserProfilePage.java

public class UserProfilePage extends AppBasePage{

public UserProfilePage (){

//..

TextField phoneComp = new TextField("phoneNumber",PhoneNumber.class){

public IConverter getConverter() {

return new PhoneNumberConverter();

}

};

form.add(phoneComp);

//..

//..

}

}

By implementing a custom converter, you ensure that the phone numbers are interpreted

correctly. But what if the user does not enter the phone number in the required format,

inputting something like “abc-xyz-rst” instead? You need to make sure that by the time actual

conversion happens, the input has been run through a thorough validation check. You could

employ some parsing logic to make sure that it indeed is in the required format. But that

CHAPTER 2 ■ VALIDATION WITH WICKET 49

would seem like an old-fashioned way of doing things, especially when Java ships with regular

expression support in the form of a java.util.regex package. java.util.regex.Pattern

accepts a pattern string that is used to match against the user input. If the supplied user input

does not match the pattern, the PhoneNumberConverter registers it as an error with the Page.

You just need to throw a ConversionException to ensure this (see Listing 2-13). (Internally it

does the same thing as the validation logic you created on your own, except that Wicket does

not call the Form’s onSubmit() method on validation failure—a feature you really want to

include.)

Listing 2-13. Specifying a “Regex” Pattern to Match Phone Numbers

import wicket.util.convert.ConversionException;

public static class PhoneNumberConverter implements IConverter{

static Pattern pattern = Pattern.compile("\\d{3}-\\d{3}-\\d{4}");

// This is the method that the framework calls

public Object convert(Object value, Class c) {

//

// Assume for now that the input is of the form xxx-xxx-xxxx

// Check if the user input matches the required phone nummber

// pattern.

// A pattern that matches a string comprising of 3 digits followed

// by a '-' separator, followed by 3 digits again, followed by a

//'-' separator and 4 digits after that.

if (!pattern.matcher((String) value).matches()) {

// If the pattern does not match, throw ConversionException

throw new ConversionException("Supplied value " + value

+ " does not match the pattern " + pattern.toString(),

value, locale);

} //..

}

If a component is associated with a type during creation, and if the type conversion fails

during form submit, Wicket looks for the error message against the key TypeValdiator.

<Type Class name>. Now update UserProfilePage.properties to reflect the feedback that

the user gets to see in case of invalid input:

TypeValidator.PhoneNumber=${label} must be all numeric

the form xxx-xxx-xxxx (Eg 123-456-7890).${input} does not conform to the format

Figure 2-6 shows the result of invalid user input.

CHAPTER 2 ■ VALIDATION WITH WICKET50

Figure 2-6. Phone number conversion error when input format is illegal

The ability to associate a custom converter implementation with a TextField is really use-

ful. But there could be cases where you might be accepting input of the type phone number in

multiple pages. Associating each of those TextField components with the custom converter

could quickly become tedious. A couple of solutions exist to this problem. You can define a

custom PhoneInputField that registers the custom converter and extends Wicket’s TextField

component. You can avoid the redundant process of registering the converter with the

TextField by using PhoneInputField instead (see Listing 2-14).

Listing 2-14. PhoneInputField.java

public class PhoneInputField extends TextField{

public PhoneInputField(String id, Model model){

super(id,model,PhoneNumber.class);

}

public PhoneInputField(String id){

super(id,PhoneNumber.class);

}

public IConverter getConverter() {

return new PhoneNumberConverter();

}

}

CHAPTER 2 ■ VALIDATION WITH WICKET 51

And in the page class:

public class UserProfilePage extends WebPage{

public UserProfilePage(){

//..

//..

add(new PhoneInputField("phoneNumber"));

}

}

A similar effect can be achieved by registering the converter globally, and Wicket will

make sure that it calls this converter whenever it encounters a component that specifies

PhoneNumber as its underlying model object type. In the next section, you will learn how to

make a converter globally available.

Globally Registering a Converter
Wicket accesses the converters through a factory class and makes them centrally available

through Wicket’s ApplicationSettings class. Wicket has quite a few globally available

built-in converters, and it allows you to register one through well-defined abstractions. The

IConverterFactory implementation, as the name suggests, acts as a factory for an IConverter

implementation. Wicket uses the built-in Converter class as the default IConverter implemen-

tation. This class in turn maintains a set of ITypeConverter implementations that handle

conversion for a given type. When registering your converter, you need to make sure that the

existing converter behavior remains unaltered, and luckily the default Converter class allows

you to register custom ITypeConverter implementations.

The PhoneNumberConverter in Listing 2-15 implements ITypeConverter through

AbstractConverter. It does the same thing as the earlier version except that it adapts to

the ITypeConverter specifications.

Listing 2-15. PhoneNumberConverter.java

import javax.util.regex.Pattern;

public static class PhoneNumberConverter extends AbstractConverter {

Pattern pattern = Pattern.compile("\\d{3}-\\d{3}-\\d{4}");

/**

* The singleton instance for a phone number converter

*/

CHAPTER 2 ■ VALIDATION WITH WICKET52

public static final ITypeConverter INSTANCE = new PhoneNumberConverter();

@Override

protected Class getTargetType() {

return UserProfile.PhoneNumber.class;

}

public Object convert(Object value, Locale locale) {

// Before converting the value, make sure that it matches the pattern.

// If it doesn't, Wicket expects you to throw the built-in

// runtime exception - ConversionException.

if (!pattern.matcher((String) value).matches()) {

throw newConversionException("Supplied value " + value

+ " does not match the pattern " + pattern.toString(),

value, locale);

}

String numericString = stripExtraChars((String) value);

String areaCode = numericString.substring(0, 3);

String prefix = numericString.substring(3, 6);

String number = numericString.substring(6);

UserProfile.PhoneNumber phoneNumber = new UserProfile.PhoneNumber(

areaCode, prefix, number);

return phoneNumber;

}

private String stripExtraChars(String input) {

return input.replaceAll("[^0-9]", "");

}

}

Define a custom converter that registers the PhoneNumberConverter with the default con-

verter (see Listing 2-16).

Listing 2-16. CustomConverter.java

class CustomConverter extends Converter {

CustomConverter(Locale locale) {

super();

setLocale(locale);

// Register the custom ITypeConverter. Now it will be globally available.

set(PhoneNumber.class,PhoneNumberConverter.INSTANCE);

}

}

CHAPTER 2 ■ VALIDATION WITH WICKET 53

And then register the custom converter as shown in Listing 2-17.

Listing 2-17. ValidationApplication.java

class ValidationApplication.java extends WebApplication{

public void init() {

super.init();

getApplicationSettings().setConverterFactory(new IConverterFactory() {

public IConverter newConverter(final Locale locale) {

return new CustomConverter(locale);

}

});

//..

}

}

Henceforth, you can use Wicket’s TextField component even when accepting input of

type phone number as follows:

form.add(new TextField("phoneNumber",PhoneNumber.class))

Note that you just have to specify the type of the underlying model. You don’t have to

explicitly specify the converter. Wicket will determine that based on the type specified in the

constructor.

Registering String Converters Globally
If you play around with the input field that accepts a phone number, you would observe

something really strange. Every time you enter a phone number in a valid format, you would

see something like what appears in Figure 2-7.

Figure 2-7. Phone field incorrectly displaying the fully qualified class name of PhoneNumber

instead of the user input

CHAPTER 2 ■ VALIDATION WITH WICKET54

The text that is displayed in the input field after refresh is actually the fully qualified name

of the PhoneNumber class. Wicket defaults to this behavior since it doesn’t know that the phone

number needs to be displayed in the format xxx-xxx-xxxx. Wicket actually does a two-way

conversion: once when converting HTTP parameters to the “backing model” type and then

when the model object needs to be displayed on the browser.

So even though you took care of the first case, you really didn’t address the next.

PhoneNumberToStringConverter class solves this problem (see Listings 2-18 and 2-19).

Listing 2-18. A Custom Converter for Obtaining the String Representation of PhoneNumber

package com.apress.wicketbook.validation;

import java.util.Locale;

import com.apress.wicketbook.common.PhoneNumber;

import wicket.util.convert.converters.AbstractConverter;

public class PhoneNumberToStringConverter extends AbstractConverter {

public static ITypeConverter INSTANCE = new PhoneNumberToStringConverter();

@Override

protected Class getTargetType() {

return String.class;

}

public Object convert(Object value, Locale locale) {

if (value == null) return null;

PhoneNumber phoneNumber = (PhoneNumber) value;

return phoneNumber.getPrefix() + "-" + phoneNumber.getAreaCode() + "-"

+ phoneNumber.getNumber();

}

}

Listing 2-19. Registering Both PhoneNumberConverter and PhoneNumberToStringConverter

with Wicket

class CustomConverter extends Converter {

CustomConverter(Locale locale) {

super();

setLocale(locale);

// Register the custom ITypeConverter. Now it will be globally available.

set(PhoneNumber.class,PhoneNumberConverter.INSTANCE);

// Get the converter Wicket uses to convert model objects to String.

StringConverter sConverter = (StringConverter) get(String.class);

// Register the custom ITypeConverter to convert PhoneNumber to its String

// representation.

sConverter.set(PhoneNumber.class, PhoneNumberToStringConverter.INSTANCE);

}

}

CHAPTER 2 ■ VALIDATION WITH WICKET 55

If you are finding all of the preceding a little discomforting for your taste, you can get

away from all the complexity of developing a PhoneNumberToStringConverter by just overriding

the java.lang.Object’s toString() method in PhoneNumber that returns the string that you

want displayed on the browser:

public class PhoneNumber implements Serializable{

//..

public String toString(){

return getPrefix() + "-" + getAreaCode() + "-"

+ getNumber();

}

}

In the absence of a string converter for a type, Wicket calls the model object’s toString()

method as a last resort. The fully qualified PhoneNumber class name that was getting displayed

earlier should not come across as a surprise given this behavior.

How Wicket’s FormValidator Works
In the previous sections, you saw quite a few of the validators that ship with Wicket. While

being extremely useful, it’s important to note that they work at a field level and do not satisfy

validation requirements at a global or form level. A Wicket Form is essentially composed of

FormComponents, and even though the individual FormComponents might have passed the vali-

dation checks (depending upon the configured validators), you might still want to validate the

Form in its entirety. You might want to make sure that all components together satisfy some

global validation requirement. Let’s look at an example to illustrate this.

When you sign up for a Yahoo! e-mail account, you are required to input the password in

two distinct password fields. In addition to being mandatory fields, you are also required to

make sure that the inputs are identical. Figure 2-8 shows one such trivial registration page.

Figure 2-8. A simple account signup page

Listing 2-20 shows the underlying template for this simple signup page.

CHAPTER 2 ■ VALIDATION WITH WICKET56

Listing 2-20. A Signup Page

<html>

<title>Create Account</title>

<body>

[feedback panel]

<form wicket:id="createAccountForm">

User Name <input type="text" wicket:id="userId"/>

Password <input type="password" wicket:id="password"/>

Confirm Password <input type="password" wicket:id="confirmPassword"/>

<hr>

<input type="submit" value="Login"/>

</form>

</body>

</html>

You know that the user needs to supply values for all the FormComponents (hence they

need to be marked “required”). Once the TextField components pass the preceding

validation check, you need to make sure the inputs for the PassWordTextFields password

and confirmPassword are identical. Wicket guarantees this behavior through the wicket.

markup.html.form.validation.IFormValidator interface. You are required to specify

the FormComponents that need to pass the validation checks before Wicket calls the

IFormValidator.validate() method. You do this through the IFormValidator.

getDependentFormComponents() method (see Listing 2-21).

Listing 2-21. Wicket’s IFormValidator Interface

package wicket.markup.html.form.validation;

import wicket.markup.html.form.Form;

import wicket.markup.html.form.FormComponent;

public interface IFormValidator{

/**

* @return array of FormComponents that this validator depends on

*/

FormComponent[] getDependentFormComponents();

/**

* This method is run if all components returned by

* getDependentFormComponents()} are valid.

*/

void validate(Form form);

}

CHAPTER 2 ■ VALIDATION WITH WICKET 57

You can create your own implementations by extending the helper wicket.markup.

html.form.validation.AbstractFormValidator class. In this case specifically, you really don’t

have to do anything special, as Wicket’s EqualPasswordInputValidator addresses your require-

ment. It takes the PasswordTextField components whose input you want compared and

throws a validation error if it doesn’t find them to be equal. Let’s employ this validator in the

CreateAccount page class, shown in Listing 2-22.

Listing 2-22. The CreateAccount Page Class with FormValidator

package com.apress.wicketbook.validation;

import wicket.markup.html.form.validation.EqualPasswordInputValidator;

// Other imports

public class CreateAccount extends WebPage {

private String userId;

private String password;

private String confirmPassword;

public CreateAccount() {

FeedbackPanel feedback = new FeedbackPanel("feedback");

Form form = new CreateAccountForm("createAccountForm");

form.add(new TextField("userId", new PropertyModel(this,

"userId")).setRequired(true));

PasswordTextField password = (PasswordTextField)new

PasswordTextField("password",

new PropertyModel(this, "password"));

password.setResetPassword(false);

form.add(password);

PasswordTextField confirmPassword = (PasswordTextField)new

PasswordTextField("confirmPassword",

new PropertyModel(this, "confirmPassword")).setRequired(true);

confirmPassword.setResetPassword(false);

form.add(confirmPassword);

form.add(new EqualPasswordInputValidator(password, confirmPassword));

add(form);

add(feedback);

}

public String getUserId() {

return userId;

}

public String getPassword() {

return password;

}

CHAPTER 2 ■ VALIDATION WITH WICKET58

class CreateAccountForm extends Form {

public CreateAccountForm(String id) {

super(id);

}

}

public void setPassword(String password) {

this.password = password;

}

public void setUserId(String userId) {

this.userId = userId;

}

public String getConfirmPassword() {

return confirmPassword;

}

public void setConfirmPassword(String confirmPassword) {

this.confirmPassword = confirmPassword;

}

}

If you input different values for the Password and Confirm Password fields, you should

see an error message as shown in Figure 2-9.

Figure 2-9. EqualPasswordInputValidator validation failure on entering different values for the

Password and Confirm Password fields

The error message specified in the Application.properties file (see Listing 2-8) is being

used. Of course, you can override the message at different levels as discussed earlier.

CHAPTER 2 ■ VALIDATION WITH WICKET 59

How to Set Session-Level Feedback Messages
You already know that feedback messages can be associated with a Page. But there is another

way of specifying feedback messages as well: you can associate them with the Session.

Note that Session-level feedback messages are cleaned up once they are rendered. In that

sense, the messages do not last the entire session, in case your thoughts wandered in that

direction. Let’s look at an example that demonstrates how Session-level messages are

specified.

package com.apress.wicketbook.validation;

public class Login extends WebPage{

//..

class LoginForm extends Form {

//..

@Override

public void onSubmit() {

if (authenticate(userId, password)) {

Session.get().info("You have logged in successfully");

Welcome welcomePage = new Welcome(userId);

setResponsePage(welcomePage);

}else{

//..

}

}

}

You need to add the FeedbackPanel in the Welcome page:

public class Welcome extends WebPage{

public Welcome(){

add(new FeedbackPanel());

//..

}

}

On entering “wicket”/“wicket” as the user name/password combination, you would see

the message that appears in Figure 2-10.

Figure 2-10. Session-level feedback message display on successful login

CHAPTER 2 ■ VALIDATION WITH WICKET60

Note that the FeedbackPanel combines both Page- and Session-level messages by default

for display.

Now that you have seen different ways of associating feedback messages, in the upcoming

section you will learn how to change the manner in which they are being displayed. The feed-

back error messages are currently being displayed one by one through HTML elements

by Wicket’s FeedbackPanel component. As you might have noticed, the page template just car-

ries a element, and you could substitute the FeedbackPanel with something else, too.

We’ll explore this next.

Changing Feedback Display
FeedbackPanel sources the feedback messages from the Page it is attached to, and they are rep-

resented by a class with the same name—FeedbackMessages. Getting to that object is as simple

as calling pageInstance.getFeedbackMessages(). FeedbackMessages acts as a container for

messages logged at any level, namely debug, info, error, warn. You can access messages speci-

fied at a particular log level in the form of a list (java.util.List) by supplying a filter of the

type IFeedbackMessageFilter to FeedbackMessages. The filter implementation specifies the

kind of messages to display; ErrorLevelFeedbackMessageFilter is one such filter that accepts

the log level at which you want to filter the messages. There is a ContainerFeedbackMessage➥

Filter that can get you messages logged at the specified component level. Let’s try displaying

the messages in a tabular format with the message description and the associated log levels

(in addition to error(), note that Wicket’s Component class provides other log methods like

debug(), info(), etc.). Wicket makes it easy to work with such lists by providing Loop and

ListView components. In this exercise, you will use the ListView component. Before that, set

up the feedback panel template for the modified display style. It needs to display the message

and its log level inside an HTML table (see Listing 2-23).

Listing 2-23. UserProfilePage.html Modified for Feedback Message Display

<html>

<head>

<title>User Profile</title>

</head>

<body>

<table border="1">

<tr wicket:id="feedback">

<td>Message goes here</td>

<td>Message log level</td>

</tr>

</table>

<!-- everything beyond this remains unchanged -->

<form wicket:id="userProfile">

CHAPTER 2 ■ VALIDATION WITH WICKET 61

How the ListView Components Work
Your requirement is to render a list of messages. As shown in Listing 2-23, an HTML table ele-

ment is used to render these messages, with each message represented within a <tr> (table

row) element. Each <tr> in turn holds on to the actual feedback message and the associated

level. Wicket models this requirement through a ListView component. When constructing the

ListView component, you are required to supply the list of objects that you want to iterate

through and render. In this case, it happens to be a list of FeedbackMessages.

The ListView component creates a basic WebMarkupContainer called ListItem for every

item in the list. This frees you from the responsibility of creating one by yourself. You could

treat ListItem as the component corresponding to the <tr> element. But the ListItem still

does not know about the child components that it needs to render. However, you are aware of

the components you want rendered within the <tr> element—they are the elements

that carry the wicket:ids message and level. ListView allows you to specify this information

through the callback method ListView.populateItem(ListItem listItem), passing in the

enclosing WebMarkupContainer (ListItem) that it created on your behalf. This allows you to

add the Label components to the ListItem.

But for the Label to render any meaningful information, it needs to be supplied with a

backing model object. The model object has to be one of the FeedbackMessage objects con-

tained within the list so that the label can use that to extract the information it wants

displayed. So it relies on the ListView component to supply that information. Before calling

populateItem, ListView configures the ListItem component with an item from the original list

as its model object. In this case, it will be a FeedbackMessage object from a FeedbackMessages

list. As you would expect, this object can be accessed within the populateItem method through

the ListItem.getModelObject() method call. You can then use this object to supply the model

information to other components nested within the enclosing ListView component.

It’s perfectly normal for a Wicket newbie to forget to add the components to the ListItem.

Remember that ListItem represents the outer markup container (<tr>), and so in order to

respect the template hierarchy, you have to add the contained components to the ListItem.

This is Wicket’s ListView way of working. In fact, all Wicket “repeater” components like Loop

work in a similar manner.

You now know that the ListView component accepts a list and renders the list as per

instructions. But you have a problem—you do not directly populate the message list instance

as such (the Page does), and you do not have access to the list at the time of the ListView com-

ponent construction (errors result because of incorrect user input, which is likely to happen at

a later point in time). What you do have access to is the “list source” through FeedbackMessages.

Remember that this is not a list, whereas ListView expects some form of a list to iterate

through. You shall instead configure the ListView with a Wicket model that returns the list

when accessed. You will see more examples that make use of this additional level of indirec-

tion offered by Wicket models in later chapters as well. You need to ensure that when the

ListView component is called upon to render data, it pulls the actual list of messages from

the FeedbackMessages class, which in turn is accessible to all components through the

enclosing Page.

CHAPTER 2 ■ VALIDATION WITH WICKET62

import wicket.model.AbstractReadOnlyModel;

IModel messagesModel=new AbstractReadOnlyModel() {

// Wicket calls this method to get the actual "model object"

// at runtime

Object getObject(Component component) {

return component.getPage().getFeedbackMessages(new

ErrorLevelFeedabackMessageFilter(FeedbackMessage.ERROR));

}

};

Just to reiterate what we discussed earlier—ListView renders the list supplied to it by call-

ing the populateItem() method, supplying the ListItem for every item in the List.

ListItem should contain the data for one round of iteration—i.e., a <tr> element in this

case. It still doesn’t have data for the message and level span child elements though. So you

will add the corresponding component (a Label corresponding to a span in this case) to the

object in the populateItem method. ListView makes sure that each of the list constituents is

set as the model for the corresponding ListItem.

ListView feedback = new ListView("feedback",messagesModel){

public void populateItem(ListItem listItem){

// Access the item from the the FeedbackMessages list that

// you supplied earlier.

FeedbackMessage message = (FeedbackMessage)item.getModelObject();

listItem.add(new Label("message",new

PropertyModel(message,"message")));

listItem.add(new Label("level",new PropertyModel(message,"level")));

}

};

add(feedback);

On leaving the input fields blank and clicking the Save button, you should see the error mes-

sages being displayed in a format shown in Figure 2-11.

CHAPTER 2 ■ VALIDATION WITH WICKET 63

Figure 2-11. Changing the feedback message display format using the ListView component

The display style doesn’t look intuitive, but you now know how Wicket handles feedback

and the inner workings of the ListView component.

Summary
Input validation is very significant to all web applications, and you saw that Wicket has a nice

subframework dedicated just for that. User feedback is typically provided using Wicket’s

FeedbackPanel component. All components allow you to associate an error with them through

the error() method, which takes a string error message as an argument. These errors are

ultimately accumulated by the encompassing Page class and are finally displayed by the

FeedbackPanel component. In fact, you also have the option of associating feedback

messages with a Wicket session.

You also saw that wicket.Localizer encapsulates all of the localization-related function-

ality in a way that can be accessed by all areas of the framework in a consistent manner.

All localized messages can be specified in a properties file whose name is the same as the

Page class. By default, Wicket looks for Page_Class_Name.properties and, depending upon

the locale, looks for the properties file named accordingly. For example, the locale for

Page_Class_Name_fr.properties is French. In the absence of such a properties file, Wicket will

use the default properties file Page_Class_Name.properties. If the page.properties file or the

message key is missing, Wicket looks up Application.properties. Application.properties

acts as a repository of all globally accessible messages.

CHAPTER 2 ■ VALIDATION WITH WICKET64

You learned how to put Wicket’s built-in validators, namely RequiredValidator and

NumberValidator, to use. Wicket does not call the form processing logic (e.g., onSubmit() in the

case of the chapter example) if any of the validators signal failure. It displays the same page

again instead, retaining the invalid inputs that caused the error in the first place. You also

learned that you could validate multiple FormComponents at the same time by implementing

Wicket’s IFormValidator interface. Wicket ships some default IFormValidator implementa-

tions like the EqualPasswordInputValidator class

You also learned that Wicket converters act as bridges between HTTP parameters and

the model classes. Even though the built-in converters are sufficient for majority of cases, I

showed you a case where a custom converter was required. I walked you through the creation

of one such converter—PhoneNumberConverter. Toward the end, you put the ListView compo-

nent to use in order to render data in a tabular format.

CHAPTER 2 ■ VALIDATION WITH WICKET 65

Developing a Simple
Application

In this chapter, you will first learn about the Wicket way of handling Session. You will also

learn to configure “nice” URLs for accessing Wicket pages. You will then see how to develop

a shopping cart application that will provide you with ample opportunities to explore key

Wicket areas. There’s a lot of ground to cover, and it’s extremely important that you under-

stand the concepts explained in this chapter. The sample application that you will develop

will also serve as the base for the rest of the chapters to follow.

Securing Wicket Pages
Just as a recap, let’s make sure that the pages you developed in the last couple of chapters

show up just fine. This should serve as a general-purpose template for the URL to access the

pages you developed in the last chapter:

http://<host>:<port>/webapp_context/wicket_servlet_mapping?

wicket:bookmarkablePage=fully_qualfied_name of the_page_class

The URL to access the login page, for example, looks like this:

http://localhost:8080/helloworld/app?wicket:bookmarkablePage=:com.apress.wicketbook.

forms.Login

Even though it’s somewhat clear that Wicket manages to decode the preceding URL based

on the specified package name, the URL still has a cryptic feel to it. Wicket provides a nice way

of overriding this though, and we shall discuss that next.

Nice Wicket URLs and Mounted Pages
In order to enable “nice” URLs for your application, you need to configure a few things in your

application’s init() method, as shown in Listing 3-1. For example, if you want to access the

Login and UserProfilePage through a URL pattern such as /login and /userprofile, you need

to instruct Wicket to map calls to Login and UserProfilePage pages to the paths /login and

/userprofile, respectively.

67

C H A P T E R 3

Listing 3-1. HelloWorldApplication Configured for Nice URLs

// Imports same as earlier

public class HelloWorldApplication extends WebApplication {

public void init(){

// Map Login page to the path /login and

// UserProfilePage to /userprofile.

mountBookmarkablePage("/login", Login.class);

mountBookmarkablePage("/userprofile", UserProfilePage.class);

}

}

Now you just need to enter the URL http://localhost:8080/helloworld/app/login to

access the login page. Depending upon the number of pages in your application, registering

them as shown previously through repeated calls to WebApplication.mountBookmarkablePage()

could become tedious. Most programmers are lazy when it comes to such things, and Wicket

recognizes this: if you have “packaged” your pages such that the URLs are mapped the way

you want, and if you are fine with addressing pages by their class name, you can use the code

in Listing 3-2 in your application class.

Listing 3-2. Nice URLs Configured for All Pages Within a Package

import wicket.util.lang.PackageName;

public class HelloWorldApplication extends WebApplication {

public void init() {

super.init();

// All pages that reside in the same package as the

// the home page - the Login class can be addressed through the

// URL /pages/PageClassName.

mount("/pages", PackageName.forPackage(Login.class.getPackage()));

}

public Class getHomePage(){

return com.apress.wicketbook.forms.Login.class;

}

}

Now you can enter the various URLs to access the different pages:

• http://localhost:8080/helloworld/app/pages/Login to access the login page.

• http://localhost:8080/helloworld/app/pages/UserProfilePage to access the user

profile page.

• http://localhost:8080/helloworld/app/pages/Welcome/userId/Igor to access the

Welcome page, passing in the page parameter corresponding to userId. Of course, for

this to work, the Welcome page should have a constructor that accepts page parame-

ters, and you did accommodate this requirement in the first chapter.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION68

All of the pages should render just fine, but the worrying aspect is that none of them are

secured. You did accommodate a trivial authentication mechanism in the login page toward

the end of the first chapter, but you didn’t bother to pass on this context to other pages. Let’s

fix that problem this time around to avoid any security breaches. This context is typically

passed on to other pages through a web or user session. HTTP by nature is a stateless protocol.

Session enables you to establish that state and track a user activity over multiple web pages. A

session is defined as a series of related browser requests that come from the same client dur-

ing a certain time period. During every page access, you need to make sure that user is logged

in. Let’s get all pages to check for the presence of a valid User object in the session, its presence

indicating a valid user session and its absence indicating otherwise. You also need to redirect

the user to the login page on illegal access.

The User object needs to be stored in the session first. You already have a login screen and

authentication routine in place. Once the user provides valid credentials, you’ll store the infor-

mation in the user session in the form of a User object.

The class in Listing 3-3 represents a logged-in user.

Listing 3-3. User.java

public class User implements Serializable {

private String userId;

public User(String userId){

if (userId == null || user.trim().length() == 0)

throw new IllegalArgumentException("A user needs to have an associated Id");

this.userId = userId;

}

public String getUserId() {

return userId;

}

}

You would be required to change the Login page as shown in Listing 3-4.

Listing 3-4. Login.java

public class Login...

//...

public Login() {

Form form = new Form("loginForm") {

public void onSubmit() {

String password = Login.this.getPassword();

String userId = Login.this.getUserId();

if (authenticate(userId,password)){

User loggedInUser = new User(userId);

// Somehow access the session object and store the loggedInUser

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 69

// Set Welcome page as response as earlier.

Welcome welcomePage = new Welcome();

welcomePage.setUserId(userId);

setResponsePage(welcomePage);

}

}

};

//..

}

Before we move on to bigger things, there is a basic question that hasn’t been addressed

yet: how do you access session in Wicket? We will discuss that next.

Accessing Wicket Application Session
A quick look at the Wicket API Javadocs reveals that there are a couple of session-related

classes—an abstract Session class and its concrete implementation, WebSession. All Wicket

components and therefore Pages have access to the current user session through the

getSession() method. It’s probably a good idea to retrieve the Session and set the User object

on it. Even though you have access to the Wicket Session object from a Page, it hides the

underlying javax.servlet.http.HttpSession from the developers and, more significantly, it

blocks access to the HttpSession.setAttribute() method by specifying the access specifier

as “protected” in the base class. This is quite different from other frameworks that allow you

uninhibited access to HttpSession. Since storing the User object directly in HttpSession is not

an option, the only way to implement this is by having a custom Session class that extends

from Wicket’s WebSession class and then storing the User object as a session attribute. You can

have a getter/setter combination to access it. The WebSession along with the instance variables

stored within it end up in the HttpSession.

A browser request is first intercepted by the WicketServlet (more specifically the servlet’s

doGet method) that in turn asks the configured WebApplication for an ISessionFactory imple-

mentation. ISessionFactory, as the name suggests, is entrusted with the job of returning a

Wicket Session or more specifically its subclass—WebSession. Let’s provide both the imple-

mentations—a class that extends WebSession and allows you to set/retrieve the User object

(see Listing 3-5).

Listing 3-5. HelloWorldSession.java

public class HelloWorldSession extends WebSession {

private User user;

/** WebSession needs a reference to the Application class. **/

public HelloWorldSession(WebApplication application){

super(application);

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION70

public void setUser(User user){

this.user = user;

}

public User getUser(){

return this.user;

}

// A helper to determine whether the user is logged in

public boolean isUserLoggedIn(){

return (user != null);

}

}

Listing 3-6 shows an ISessionFactory that returns the newly instituted Session class.

Listing 3-6. HelloWorldApplication.java

public class HelloWorldApplication extends WebApplication {

//..

public ISessionFactory getSessionFactory(){

return new ISessionFactory(){

public Session newSession(){

return new HelloWorldSession(HelloWorldApplication.this);

}

};

}

}

Note that if you don’t return your own ISessionFactory implementation, Wicket will use

WebSession as its Session class instead. Now that you know how to access the Session class,

let’s get the Login page to store the User object in the session after authentication, as shown

in Listing 3-7.

Listing 3-7. Login.java

public class Login extends WebPage

...

...

public Login() {

Form form = new Form("loginForm") {

public void onSubmit() {

String password = Login.this.getPassword();

String userId = Login.this.getUserId();

if (authenticate(userId,password)){

User loggedInUser = new User(userId);

// Components can access the Session through getSession().

HelloWorldSession session = (HelloWorldSession)getSession();

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 71

session.setUser(loggedInUser);

Welcome welcomePage = new Welcome();

welcomePage.setUserId(userId);

setResponsePage(welcomePage);

}

}

};

public final boolean authenticate(final String username, final String password){

if ("wicket".equalsIgnoreCase(username) &&

"wicket".equalsIgnoreCase(password))

return true;

else

return false;

}

}

By forcing developers to extend WebSession to accommodate application-specific state

management, Wicket encourages an interaction that involves strongly typed objects. In other

frameworks like Struts, you could get away with setting any arbitrary object in HttpSession

(through setAttribute calls), sometimes polluting the session on the way. HTTP is a stateless

protocol, and Wicket takes it on by providing stateful components, thereby alleviating devel-

oper pain considerably. Note that you definitely can access HttpSession through the protected

setAttribute() method in your custom WebSession. But then remember that Wicket is already

managing the page state for you—the page along with the nested components and associated

models are held in a PageMap that is in turn stored in the HttpSession. Make sure that you have

a really compelling reason to expose HttpSession.setAttribute() in case you choose to.

Once the preceding change is incorporated, the check for the presence of a user-session

object and subsequent redirect to the login page needs to be added as a part of the page con-

struction process. Since the routine that does the preceding needs to be called during every

page construction, let’s move the code some place common—SecuredBasePage (see Listing 3-8).

You can get other application pages to extend it. Don’t use this as the base class for the Login

page, though, for obvious reasons.

Listing 3-8. SecuredBasePage Checking for the Presence of a Valid User Session

public abstract class SecuredBasePage extends WebPage {

public AppBasePage() {

super();

verifyAccess();

}

protected void verifyAccess(){

// Redirect to Login page on invalid access.

if (!isUserLoggedIn()){

throw new

RestartResponseAtInterceptPageException(Login.class);

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION72

}

}

protected boolean isUserLoggedIn(){

return ((HelloWorldSession)getSession()).isUserLoggedIn();

}

}

WHAT IS SO SPECIAL ABOUT RESTARTRESPONSEATINTERCEPTPAGEEXCEPTION?

Throwing RestartResponseAtInterceptPageException (interceptPage) tells Wicket that the

current request has been intercepted and that there is every chance that the user might be redirected to

the current page once the user gets past the intercept page (on successful login). Accordingly, Wicket

stores the current request in the PageMap before redirecting the request to the intercept page. The intercept

page can later revive the request that was originally made, by calling continueToOriginalDestination()

(see Listing 3-9). You might be required to build your own logic if setResponsePage() were to be used

instead.

Listing 3-9. Login.LoginForm Can Continue to the Original Destination

class Login extends ..

//..

class LoginForm extends Form {

public LoginForm(String id) {

super(id);

}

public void onSubmit() {

String userId = Login.this.getUserId();

String password = Login.this.getPassword();

if (authenticate(userId, password)) {

User loggedInUser = new User(userId);

HelloWorldSession session = (HelloWorldSession) getSession();

session.setUser(loggedInUser);

// Continue to original request if present. Else display

// Welcome page.

if (!continueToOriginalDestination()) {

Welcome welcomePage = new Welcome();

welcomePage.setUserId(userId);

setResponsePage(welcomePage);

}

}

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 73

}

//..

}

Now that you have familiarized yourself with some Wicket concepts, let’s put them to

practical use by developing a shopping cart application for an online bookstore. (A shopping

cart application was chosen here so that we need not spend too much time discussing the

problem domain. It allows you to concentrate on honing your Wicket application develop-

ment skills.)

Developing an Online Bookstore
In the following sections, you will develop an online bookstore that allows you to perform

basic operations like browse books based on selected category, add books to the shopping

cart, and complete the subsequent book checkout. First things first. You need a class to

represent the Book entity (see Listing 3-10).

Listing 3-10. Book.java

import java.io.Serializable;

public class Book implements Serializable {

// Internal counter to determine book ID

private static int counter;

private int id;

private String title;

private String author;

private float price;

private String publisher;

private String category;

public Book(String author, String category, String title, float price,

String publisher) {

super();

// Generate internal book ID.

id = ++counter;

this.author = author;

this.category = category;

this.title = title;

this.price = price;

this.publisher = publisher;

}

// Define Java bean style getters for all the properties.

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION74

Define a helper class that holds onto and allows you to query the book (in-memory) data-

base as shown in Listing 3-11.

Listing 3-11. BookDao.java

public class BookDao implements Serializable {

/* Some publishers */

private static String APRESS = "Apress";

private static String MANNING = "Manning";

private static String OREILLY = "Oreilly";

/* Some categories */

private static String CATEGORY_J2EE = "J2EE";

private static String CATEGORY_SCRIPTING = "Scripting";

private static String CATEGORY_ALL = "All";

private List books = new ArrayList();

private String[] categories = new String[] { CATEGORY_J2EE,

CATEGORY_SCRIPTING, CATEGORY_ALL };

// Add a few books to the book database.

public BookDao() {

addBook(new Book("Rob Harrop", CATEGORY_J2EE, "Pro Spring", 30.00f,

APRESS));

addBook(new Book("Damian Conway", CATEGORY_SCRIPTING,

"Object Oriented Perl", 40.00f, MANNING));

addBook(new Book("Ted Husted", CATEGORY_J2EE, "Struts In Action",

40.00f, MANNING));

addBook(new Book("Alex Martelli", CATEGORY_SCRIPTING,

"Python in a Nutshell", 35.00f, OREILLY));

addBook(new Book("Alex Martelli", CATEGORY_SCRIPTING,

"Python Cookbook", 35.00f, OREILLY));

}

public void addBook(Book book) {

books.add(book);

}

/** Retrieve a book given its ID. **/

public Book getBook(int id) {

for (int i = 0; i < books.size(); i++) {

Book book = (Book) books.get(i);

if (book.getId() == id) {

return book;

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 75

}

throw new RuntimeException("Book with id " + id + " not found ");

}

/* Get the number of books belonging to a category. */

public int getBookCount(String category){

if (CATEGORY_ALL.equals(category)){

return findAllBooks().size();

}

int count=0;

for (int i = 0; i < books.size(); i++) {

Book book = (Book) books.get(i);

if (book.getCategory().equals(category)) {

count++;

}

}

return count;

}

/** Get books that belong to a particular category. **/

public List findBooksForCategory(String category) {

if (CATEGORY_ALL.equals(category)) {

return findAllBooks();

}

List result = new ArrayList();

for (int i = 0; i < books.size(); i++) {

Book book = (Book) books.get(i);

if (book.getCategory().equals(category)) {

result.add(book);

}

}

return result;

}

public List findAllBooks() {

return books;

}

/* Get the supported book categories. */

public List getSupportedCategories() {

return Arrays.asList(categories);

}

/* You will see why you need this later. */

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION76

public List getBooksForCategory(String category,int start,int count) {

return findBooksForCategory(category).subList(start,start+count);

}

}

The next step would be to define the required WebApplication class. Also, the BookDao

class, which lets you access the data store, needs to be accessible globally, and you shouldn’t

really be needing more than one instance of this class.

Where to Store Global Objects?
If you have global objects that are not tied to any particular session, it’s a good idea to tie them

to your application-specific WebApplication class. Only one instance of WebApplication exists

for a deployed Wicket application and could very well function as a registry for global objects.

Instantiating BookDao within the WebApplication’s constructor will ensure that only one

instance of the former exists (see Listing 3-12).

Listing 3-12. BookStoreApplication.java

public class BookStoreApplication extends WebApplication implements Serializable{

private BookDao bookDao;

public BookStoreApplication(){

// Instantiate the only instance of BookDao.

bookDao = new BookDao();

}

public BookDao getBookDao(){

return bookDao;

}

public ISessionFactory getSessionFactory(){

return new ISessionFactory(){

public Session newSession(){

return new BookStoreSession(BookStoreApplication.this);

}

};

}

public Class getHomePage() {

return ViewBooks.class;

}

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 77

Books on Display at the Online Bookstore
Essentially the Browse Books screen, shown in Figure 3-1, allows you to browse books belong-

ing to a particular category and select books that need to go into the shopping cart. This isn’t

too bad to start with. The underlying markup is shown in Listing 3-13.

Figure 3-1. The page that allows you to browse books when previewed on a browser

Listing 3-13. ViewBooks.html

<html>

<head><title>Browse Books</title></head>

<body>

<form name="viewBookForm" wicket:id="bookForm">

<table>

<tr>

<td>Categories</td>

<td>

<!-- The corresponding Wicket component is

wicket.markup.html.form.DropDownChoice.

The "select" content will be replaced at

runtime -->

<select wicket:id="categories">

<option>category-1</option>

<option>category-2</option>

<option>category-3</option>

</select>

</td>

</table>

<table cellspacing="0" class="dataview" border="1">

<tr>

<th align="center">Title</th>

<th align="center">Author</th>

<th align="center">Publisher</th>

<th align="center">Price</th>

</tr>

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION78

<!-- This data will be dynamically generated -->

<tr wicket:id="books">

<td>[title]</td>

<td>[author] </td>

<td>[publisher]</td>

<td align="right">[price]</td>

<td align="right"><input type="checkbox" wicket:id="selected" /></td>

</tr>

<tr>

<td><input type="submit" value="Add to Cart" wicket:id="addToCart"/></td>

</tr>

</table>

</form>

</body>

</html>

The template indicates that the books need to be listed in a tabular format. You used

Wicket’s ListView component for displaying tabular data earlier (refer to Chapter 2). But one

of the issues with the ListView component is that it expects the entire “list” of data to be

available up front. Actually, it has another constructor that doesn’t necessarily need a List at

the time of construction, as you discovered in Chapter 2. You could still use the ListView com-

ponent as long as the amount of data that needs to be displayed is minimal. But imagine

fetching data all at once from a database table that has a large amount of data. ListView does

not offer an elegant solution for such real-world situations. Wicket ships components that

address such a requirement through the Wicket-Extensions subproject. The core framework

concentrates on working with default Java constructs, while the extensions focus on adapting

Wicket components for commonly used real-world situations.

You will make use of one such extension component called DataView—a close cousin of

ListView, but superior to the latter in many ways. One of the nice improvements over its pred-

ecessor is that it works with an implementation of Wicket’s IDataProvider interface that in

turn takes into consideration the fact that not all information can be displayed at once and

allows for pagination of data.

How IDataProvider Allows for Pagination of Data

All Wicket-Extensions “repeater” components like DataView work with an IDataProvider

implementation. The IDataProvider interface allows the implementers to return an

iterator over a subset of data. The components like DataView in turn specify that subset

(data bounds) and keep track of the paging for you. In order to manage paging, these

components also need to know the total number of data rows they are dealing with. The

method IDataProvider.size() exists just for that.

Since IDataProvider works with the standard java.util.Iterator, it integrates well with

any kind of data store or persistence frameworks like Hibernate, IBatis, or EJB 3. Listing 3-14

shows one such implementation that works with the BookDao in Listing 3-10.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 79

Listing 3-14. BookDataProvider.java—An IDataProvider Implementation

import wicket.extensions.markup.html.repeater.data.IDataProvider;

public class BookDataProvider implements IDataProvider{

// Holds on to the current user-selected category

//('ALL'/'J2EE'/'Scripting')

private String category;

public BookDataProvider(String category){

this.category = category;

}

// By default display all books.

public BookDataProvider(){

this(BookDao.CATEGORY_ALL);

}

/** @see Iterator IDataProvider.iterator(

final int first, final int count) **/

// The data for the "current" page

public Iterator iterator(final int first, final int count){

return getBookDao().getBooksForCategory(

category,first,count).iterator();

}

/** @see int IDataProvider.size() **/

// This is required to determine the total number of

// Pages the DataView or an equivalent "repeater"

// component is working with.

public int size(){

return getBookDao().getBookCount(category);

}

/** @see IModel IDataProvider.model(Object object) **/

public IModel model(Object object){

// You will see shortly what you need to be

// returning from this method.

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION80

// The BookDao has to be looked up when required.

private BookDao getBookDao(){

return ((BookStoreApplication)Application.get())

.getBookDao();

}

public String getCategory() {

return category;

}

public void setCategory(String category) {

this.category = category;

}

}

Note that BookDataProvider simply delegates the method calls to the BookDao instance to

implement all data store–related logic, and it’s pretty obvious too. This might tempt you to

hold onto the BookDao object as an instance variable instead of doing repeated lookups in

the getBookDao() method. Even though there isn’t anything wrong with that in pure object-

oriented (OO) terms, it might turn out to be extremely dangerous in a Wicket scenario.

You know that Wicket stores the component along with its model in the Session, and the

last thing you would want is to hog the server memory by storing heavy objects that might, in

the worst-case scenario, crash the system. There is also the Wicket Session replication that

you have to deal with in a clustered environment. An object that abstracts and encapsulates

all access to the persistence store is called a Data Access Object (DAO). The BookDao that

you developed is one such example. You can refer to http://corej2eepatterns.com/

Patterns2ndEd/DataAccessObject.htm for more information on DAOs. Depending upon

your implementation, storing references to DAOs as instance variables in a Wicket model

or IDataProvider implementation, for that matter, might result in the entire object graph get-

ting serialized—a situation that you should avoid at any cost. A static lookup mechanism as

shown in Listing 3-14 pretty much takes care of this issue.

But this is just one aspect of the problem: remember that the list returned by the

IDataProvider.iterator() method is also pushed into the session. However, the good thing is

that the interface specifies another method, model(), to let you address this problem as well!

The method essentially is a callback that allows the interface implementer to wrap each of the

objects retrieved from the iterator() with another lightweight model. The objective is to keep

the memory footprint to a minimum (and you have already looked at one way of achieving

this through static lookups), and you will see how this objective is met in the next section.

What Is AbstractDetachableModel?

The Wicket’s model class, which by now you are familiar with, wraps a Serializable model

object that you supply on construction. These objects are stored in the Session along with the

related component and the containing Page class, thereby resulting in some form of increased

memory consumption. Also, these model objects are serialized during replication in a clus-

tered environment. If you think that your model objects are heavy and you don’t want to

store them in the Session and replicate them, you need to be looking at one of Wicket’s

wicket.model.IDetachable implementations.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 81

A detachable model in Wicket is a model that can get rid of a large portion of its state to

reduce the amount of memory it takes up and to make it cheaper to serialize when replicating

it in a clustered environment. When an object is in the detached state, it contains only

some very minimal nontransient state such as an object ID that can be used to reconstitute

the object from a persistent data store. When a detached object is attached, some logic in the

object uses this minimal state to reconstruct the full state of the object. This typically involves

restoring fields from persistent storage using a database persistence technology such as JDO

or EJB 3, or in this case through the BookDao class.

All model classes in Wicket that are detachable extend the base class wicket.model.

AbstractDetachableModel, which encapsulates the logic for attaching and detaching models.

The onAttach() abstract method will be called at the first access to the model within a request

and, if the model was attached earlier, onDetach() will be called at the end of the request.

In effect, attachment and detachment are only done when they are actually needed.

To make implementation of detachable models easy, AbstractDetachableModel provides

some basic inheritable logic for attaching and detaching models (see Listing 3-15). You are

expected to provide implementation for the methods marked @Override.

Listing 3-15. A Lightweight DetachableBookModel Class

package com.apress.wicketbook.shop.model;

// Other imports

import wicket.model.AbstractReadOnlyDetachableModel;

public class DetachableBookModel extends AbstractReadOnlyDetachableModel {

// Required minimal information to look up the book later

private final int id;

// Adds "transient" modifier to prevent serialization

private transient Book book;

public DetachableBookModel(Book book) {

this(book.getId());

this.book = book;

}

public DetachableBookModel(int id) {

if (id == 0) {

throw new IllegalArgumentException();

}

this.id = id;

}

/**

* Returns null to indicate there is no nested model

*/

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION82

@Override

public IModel getNestedModel() {

return null;

}

/**

* Uses the DAO to load the required Book object when the

* model is attached to the request

*/

@Override

protected void onAttach() {

book = getBookDao().getBook(id);

}

/**

* Clear the reference to the contact when the model is

* detached.

*/

@Override

protected void onDetach() {

book = null;

}

/**

* Called after onAttach to return the detachable object.

* @param component

* The component asking for the object

* @return The detachable object.

*/

@Override

protected Object onGetObject(Component component) {

return book;

}

private BookDao getBookDao() {

return ((BookStoreApplication) Application.get()).getBookDao();

}

}

Now that you have the detachable Book model in place, return it from the

BookDataProvider.model() method that you didn’t implement earlier, as shown in

Listing 3-16.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 83

Listing 3-16. Use the DetachableBookModel Class to Wrap the Object Returned by the DAO

public class BookDataProvider implements IDataProvider{

//..

/** @see IModel IDataProvider.model(Object object) **/

// This method will be called for every Book object

// returned by the iterator() method.

public IModel model(Object object){

return new DetachableBookModel((Book)object);

}

}

What Is LoadableDetachableModel?

Wicket’s AbstractReadOnlyDetachableModel, although very powerful, requires you to know

quite a bit about the inner workings of Wicket’s request cycle to put it to use. You would proba-

bly concur that the DetachableBookModel class you developed in the preceding section is a

little code heavy. Luckily, the built-in wicket.model.LoadableDetachableModel abstracts out

the knowledge of Wicket’s request cycle and allows you to concentrate on the “load-mode

object-on-demand” feature that you are particularly interested in. It expresses this through

its abstract load() method (see Listing 3-17).

Listing 3-17. A Simpler LoadableDetachableModel Class That Makes Working with Detachable

Objects a Breeze

public class LoadableBookModel extends LoadableDetachableModel {

private final int id;

public LoadableBookModel(Book book) {

this(book,book.getId());

}

public LoadableBookModel(Book book, int id) {

// The book instance passed to the LoadableDetachableModel

// constructor is marked as a transient object. This

// takes care of the serialization issue.

super(book);

if (id == 0) {

throw new IllegalArgumentException();

}

this.id = id;

}

private BookDao getBookDao() {

return ((BookStoreApplication) Application.get()).getBookDao();

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION84

// You are expected to return the model object.

@Override

protected Object load() {

return getBookDao().getBook(id);

}

}

The new model class is a lot simpler to code and is more compact compared to

DetachableBookModel. You could now use LoadableBookModel in place of DetachableBookModel

in BookDataProvider.

By now, it should be quite obvious that detachable models could prove to be life-savers in

real-world applications. You now know about at least one area that you need to be looking at

if your application memory consumption crosses acceptable limits. That said, Wicket actively

discourages premature optimization but at the same time provides for all the required hooks

to keep it running smoothly under stressful conditions.

Now that you have learned some important Wicket tips, it’s time that you address other

common use cases related to the fictitious online bookstore.

WICKET SERIALIZATION AND THE LOG4J SETTING

When a new Page is constructed, Wicket pushes the Page instance to the PageMap that is pushed to the

HTTP session. If you add the entry log4j.logger.wicket.protocol.http.HttpSessionStoree=➥

DEBUG to the log4j.properties file, Wicket will try to serialize the Page and the associated components

and models at the time it pushes the Page to the session. Remember that the serialization process would

kick in eventually during replication. Simulating this behavior up front during development could help you iron

out the java.io.NotSerializableException that could occur in production. Wicket would inform you

of the classes that are not serializable during the development phase itself.

How to Display Books Belonging to a Category When the User Selection Changes

When the user switches to a different category (J2EE, Scripting, etc.) from the one being cur-

rently displayed, the underlying table data needs to refresh to display books belonging to the

changed category. But a DropDownChoice component, when rendered as an HTML select drop-

down, does not trigger a server-side event by default when the selection is changed by the

user. DropDownChoice implements Wicket’s IOnChangeListener, which in turn maps to such

events. You can get Wicket to trigger the IOnChangeListener by returning a boolean value, true,

from DropDownChoice.wantOnSelectionChangedNotifications().

As you might have guessed by now, this method returns false by default. Also keep in

mind that you need to make sure that the DropDownChoice is a child of a Form component to get

this behavior working.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 85

The Page class corresponding to ViewBooks.html is shown in Listing 3-18.

Listing 3-18. ViewBooks.java

import wicket.extensions.markup.html.repeater.data.DataView;

import wicket.extensions.markup.html.repeater.refreshing.Item;

import wicket.markup.html.form.DropDownChoice;

public class ViewBooks extends WebPage {

// Fetches the supported categories from the BookDao that is registered

// with the BookStoreApplication. Note that a Page (in fact all Wicket

// components) has access to the

// application object through getApplication().

public List getBookCategories(){

BookStoreApplication application = (BookStoreApplication) getApplication();

return application.getBookDao().getSupportedCategories();

}

public ViewBooks() {

final Form form = new Form("bookForm");

final BookDataProvider dataProvider = new BookDataProvider();

DropDownChoice categories = new CategoryDropDownChoice("categories",

new PropertyModel(dataProvider, "category"),

getBookCategories(),books);

// The drop-down should show a valid value selected.

categories.setNullValid(false);

final DataView books = new BookDataView("books", dataProvider);

form.add(categories);

form.add(books);

form.add(new Button("addToCart") {

public void onSubmit() {

System.out.println("Need to implement add to cart!!");

}

});

add(form);

}

// DataView class for tabular data display.

// It works similarly to the ListView component discussed in

// Chapter 2.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION86

class BookDataView extends DataView{

public BookDataView(String id, IDataProvider dataProvider) {

super(id, dataProvider);

}

// DataView calls this method for populating the table rows.

// Refer to Chapter 2 for a detailed discussion on

// this callback method.

protected void populateItem(final Item item) {

Book book = (Book) item.getModelObject();

// Use the Book object as the compound model for the

// DataView components. The enclosed components can use

// the Book object as their own model class.

item.setModel(new CompoundPropertyModel(book));

item.add(new Label("title"));

item.add(new Label("author"));

item.add(new Label("publisher"));

item.add(new Label("price"));

// For now return a blank model just to get it to render.

item.add(new CheckBox("selected",new Model("")));

}

}

// A DropDownChoice that represents the displayed categories

class CategoryDropDownChoice extends DropDownChoice{

DataView bookDataView;

public CategoryDropDownChoice(String id, IModel model, List

displayData,DataView bookDataView) {

super(id,model,displayData);

this.bookDataView = bookDataView;

}

// Indicate that you want a server-side notification

// when the user changes the drop-down selection.

public boolean wantOnSelectionChangedNotifications() {

return true;

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 87

public void onSelectionChanged(java.lang.Object newSelection) {

/*

* Note that you are not required to explicitly update the category -

* dataProvider.setCategory(newSelection.toString());

*

* BookDataProvider's category field is set as the model

* for DropdownChoice and hence will be automatically updated

* when the form submits. But the DataView model that displays the

* books belonging to a particular category needs to reset

* its current page. You do that through the following method call.

*/

bookDataView.setCurrentPage(0);

}

}

}

If you view the generated HTML source, you will find that the HTML select drop-down

has its onChange JavaScript event set up for form submit (see Figure 3-2).

Figure 3-2. The Wicket-enabled page that fetches book-related data from the server

Adding Pagination to the ViewBooks Page

Even though the books are being listed just fine, there are still too many items per page, and

this could only get worse as the number of books in the back-end store increases. Maybe you

could do with a little bit of a paging feature built into the application. Adding pagination to

DataView is quite trivial, as you will soon find out. You just need to inform the DataView com-

ponent about the number of items you want displayed per page and then add to the form a

paging navigator that knows the DataView to which it is attached (see Listing 3-19).

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION88

Listing 3-19. ViewBooks.java

import wicket.markup.html.navigation.paging.PagingNavigator;

...

public class ViewBooks extends WebPage

public ViewBooks(){

//..

/* As the method call indicates,

* this will ensure that only two items are displayed per page.

*/

books.setItemsPerPage(2);

/* But a navigator needs to be associated with

* the DataView to achieve paging.

*/

form.add(new PagingNavigator("navigator", books));

}

}

And of course you need to specify the place holder for the navigator in the template (see

Listing 3-20).

Listing 3-20. ViewBooks.html

<!-- Rest of the content snipped for clarity -->

[dataview navigator]

<table cellspacing="0" class="dataview" border="1">

<tr>

<!-- Rest of the content snipped for clarity -->

Figure 3-3 shows the resulting changes to the ViewBooks page. Now you can easily navi-

gate through the pages by clicking the paging links.

Figure 3-3. ViewBooks page with a paging navigator component

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 89

There is still an issue with the check boxes that has not been addressed yet. Now

that all the table elements are sourcing their data from the Book model (note the use of

CompoundPropertyModel), you need to get the check box also to do the same (see Listing 3-21).

Listing 3-21. ViewBooks.java

public class ViewBooks extends WebPage

//..

class BookDataView extends DataView{

//..

protected void populateItem(final Item item) {

// Rest of the code is same as Listing 3-18

item.add(new CheckBox("selected"));

}

}

}

Add a boolean attribute to Book.java that obeys the Java bean coding conventions (see

Listing 3-22).

Listing 3-22. Add a boolean Attribute to Identify Whether a User Has Selected a Book

class Book{

//..

private boolean selected;

public void setSelected(boolean selected){

this.selected = selected;

}

public boolean isSelected(){

return selected;

}

}

Now refresh the page, wait for the modifications to take effect, and try selecting a few

books. Try navigating across pages and selecting books from other pages as well. If you repeat

this process a couple of times, you will notice that your selections are not being retained as

you travel back and forth by clicking the navigator links. On viewing the generated HTML, you

will find that the paging links are just that—HTML links—and they do not result in a form sub-

mit, and hence the updates are not propagated to the check box model. What you need is a

link that results in form submission (more importantly model update), and not surprisingly,

Wicket provides one through the SubmitLink component.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION90

But this also means that you will be required to roll out your own navigator scheme that

works with SubmitLink, and this involves some effort. The crux of the problem is that the

check box is unable to maintain its state—checked/otherwise—during navigation. One solu-

tion could be to update the underlying model whenever the user checks/unchecks the check

box. The default CheckBox component behavior is the same as that of the DropDownChoice com-

ponent when the user selection changes—i.e., they both do not propagate the event to the

server-side component. Luckily, the Wicket way of providing this behavior is also the same—

you are expected to return true by overriding the CheckBox.wantOnSelectionChanged➥

Notifications() method (see Listing 3-23). Live with this solution for now; you will have

the opportunity to improve upon it in later chapters.

Listing 3-23. Add a Custom Check Box That Actively Reacts to User Selections

public class ViewBooks extends WebPage

//..

class BookDataView extends DataView{

//..

protected void populateItem(final Item item) {

// Rest of the code is same as Listing 3-18

item.add(new MyCheckBox("selected"));

}

// A custom CheckBox that will result in Form submit

// when checked/unchecked

class MyCheckBox extends CheckBox{

public MyCheckBox(String id) {

super(id);

}

protected boolean wantOnSelectionChangedNotifications() {

return true;

}

}

}

}

After accommodating these changes, the page should render fine, but you still need to

verify whether the check box model update problem has been taken care of. Test the links and

it should work fine now. Not too bad, given that you had to make minimal modifications to the

existing components to get the job done!

Wicket Pages and User Threads

If you think that you are done, then try this—select a book from the first page, move over to

the second, and navigate back to the first. Now open another browser and you will see a

screen similar to the one marked User Session 2 in Figure 3-4.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 91

Something seems to be going wrong here. Accessing the page in a different browser is

equivalent to a new user session (depending upon the browser you use), and for some strange

reason the two user sessions are seeing identical selections! This tells you that associating the

state of the check box (whether it has been selected or not) with the Book model is not an

option. A Book object is a shared resource that is visible across sessions.

WICKET PAGES AND THREAD SAFETY

Wicket maintains a PageMap instance per user session. Wicket stores the Page, the contained components,

and models in this PageMap. Wicket ensures that access to the Page class is thread-safe. This allows you to

program without worrying about ConcurrentModificationException when iterating through lists in a

Page, for example, in Wicket. Of course, it is assumed that the List instance is not shared globally.

In that respect, Wicket Pages are very different from, say, Struts Action classes that are not inherently

thread-safe. It is also quite different from the pooled Tapestry pages. Even though Tapestry pages are thread-

safe, there is every possibility that you might be working with Page instance variables that actually belong to

a prior request unless you take care of it explicitly. Essentially, Wicket’s innate ability to maintain state per

page per user session is its biggest differentiator. Thread-safe Wicket Pages and components are side

effects of this.

You will try a novel way of putting models to work in order to fix this problem. Incorporate

the modifications shown in Listing 3-24 to the Page.

Listing 3-24. ViewBooks.java

public class ViewBooks extends WebPage{

/* Rest of the content same as previous version */

// Holds on to the current user selection

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION92

Figure 3-4. Issues with sharing data across sessions

private List booksMarkedForCheckout = new ArrayList();

private class CheckBoxModel implements IModel, Serializable {

// Book ID the model represents

private final Integer bookId;

public CheckBoxModel(int bookId) {

this.bookId = new Integer(bookId);

}

public IModel getNestedModel() {

return null;

}

/*

* Wicket calls this method when rendering the check box.

* CheckBox needs to show up selected if the

* corresponding book has already been selected.

*/

public Object getObject(Component component) {

return isBookAlreadyMarkedForCheckout();

}

private Boolean isBookAlreadyMarkedForCheckout() {

if (booksMarkedForCheckout.contains(bookId))

return Boolean.TRUE;

else

return Boolean.FALSE;

}

/*

* Wicket calls this method when pushing the

* user selection back to the model. If the user has

* selected a book, the method adds it to the back-end store

* after making sure that it has not been selected before.

* If the user has unchecked the check box, the method

* removes it from the back-end store if present.

*/

public void setObject(Component component, Object object) {

boolean selected = ((Boolean) object).booleanValue();

boolean previouslySelected =

isBookAlreadyMarkedForCheckout().booleanValue();

if (selected) {

if (!previouslySelected) {

booksMarkedForCheckout.add(bookId);

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 93

}

} else {

if (previouslySelected) {

booksMarkedForCheckout.remove(bookId);

}

}

}

public void detach() {}

}

//..

class BookDataView extends DataView{

//..

protected void populateItem(final Item item) {

// Rest of the code is same as Listing 3-18.

// Use the newly instituted CheckBoxModel.

item.add(new MyCheckBox("selected",

new CheckBoxModel(book.getId())));

}

// MyCheckBox that accepts a model

class MyCheckBox extends CheckBox{

public MyCheckBox(String id,IModel model){

super(id, model);

}

protected boolean wantOnSelectionChangedNotifications() {

return true;

}

}

}

//..

}

You already know that the Page class, along with its constituent components and models,

is held in a PageMap that in turn is held in the user session. That’s the reason why the instance

variable booksMarkedForCheckout will reflect the current user selection every time there is a

Form submit (only as long as you refrain from creating a new instance of the Page class, of

course). It’s good to be reminded once in a while how Wicket counters the statelessness of

HTTP transparently to the user. It’s probably time to relax now that you have handled all the

glaring issues. Let’s perform a sanity check to make sure that it’s all fine. Try to do so by per-

forming the following steps:

1. Start a fresh session. It will display books belonging to all categories by default.

2. Select a book from the first page.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION94

3. Change the category in the drop-down to Scripting. Now DataView will display the

books belonging to that category.

4. Change the category back to ALL.

Guess we celebrated too soon, as Figure 3-5 illustrates.

Figure 3-5. User selection not being retained across page navigation

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 95

It’s probably a little discouraging to note that you lost your initial selection again. Isn’t

Wicket supposed to update form component models during Form submission? Didn’t you

make sure that when you changed the category, it resulted in form submission? Then why

didn’t the check box model get updated? Well, as it turns out, what you want here is a behavior

Wicket developers intentionally got away from because users didn’t want it. Wicket just calls

DropDownChoice.onSelectionChanged when the user changes the selection, avoiding Form com-

ponent model update in the process. But all is not lost; you can still programmatically push

updates to the model. Wicket doesn’t when you change the DropDownChoice category, but you

sure can.

Form exposes a method that updates the underlying models (In fact, Form.process() does

more than just update the models. It validates the input, among other things.) In the case of

this example, it’s about calling this method when the drop-down choice selection changes.

Incorporate the changes in Listing 3-25, and that should fix the problem.

Listing 3-25. ViewBooks.java

public class ViewBooks extends WebPage

//..

// Modify the existing DropDownChoice to invoke the form-processing code

// on onSelectionChanged.

class CategoryDropDownChoice extends DropDownChoice{

//

public void onSelectionChanged(java.lang.Object newSelection) {

// When selection changes, update the Form component model.

getForm().process();

bookDataView.setCurrentPage(0);

}

}

//..

}

Using Wicket Behaviors to Add HTML Attributes to the

Table Rows

Wicket allows you to modify or add attributes to HTML elements on the fly through the

wicket.AttributeModifier class. But before you put that to use, it’s of utmost importance that

you understand the concept of behaviors in Wicket. Wicket models behaviors through the

wicket.behavior.IBehavior interface. Components can exhibit different behaviors, and they

can be associated with the component at runtime (by simply calling wicket.Component.add

(IBehavior)). In addition to other tasks, a behavior gets an opportunity to modify the compo-

nent tag attributes through the IBehavior.onComponentTag() method. Say you want to add an

HTML attribute called class to the rows to indicate whether they are even or odd. Listing 3-26

demonstrates how you would do it.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION96

Listing 3-26. Existing BooksDataView.java Modified to Add HTML Attributes to Table Rows

import wicket.AttributeModifier;

import wicket.model.AbstractReadOnlyModel;

class BookDataView extends DataView{

//..

protected void populateItem(final Item item) {

// Rest of the code is same as the BookDataView class in

// Listing 3-24.

// Add an attribute modifier to toggle the class attribute value between

// "even" and "odd". The argument "true" tells the behavior to overwrite

// an existing "class" attribute value.

item.add(new AttributeModifier("class", true, new AbstractReadOnlyModel(){

// You used this earlier as well with CheckBox model.

// It is through this method that Wicket adds a level of indirection

// when fetching the "actual" model object.

public Object getObject(Component component){

return (item.getIndex() % 2 == 1) ? "even" : "odd";

}

}));

}

//..

}

The piece of code that adds the AttributeModifier requires some explanation. This is

what it specifies: add an attribute named class to the HTML <tr> element if it already

doesn’t exist (indicated through argument true) and use the AbstractReadOnlyModel to

retrieve the value for the attribute. Return even/odd based on the index of the current

element. AbstractReadOnlyModel, as the name suggests, is read-only. Invoking setObject()

on it would result in a runtime exception getting thrown.

If you find the use of AbstractReadOnlyModel a little confusing, you could also use the

wicket.behavior.SimpleAttributeModifier class to achieve a similar effect:

String classAttr = (item.getIndex() % 2 == 1) ? "even" : "odd";

item.add(new SimpleAttributeModifier("class",classAttr));

While rendering, the attribute value essentially toggles between even and odd, depending

upon the index. You could encapsulate this behavior into something reusable as well. The

Wicket extension’s OddEvenItem class does just that. You saw earlier that Wicket’s Item repre-

sents one entire row of the DataView class. OddEvenItem extends Item and sets the class

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 97

attribute of each row to even or odd based on its index in the data provider. But how do you let

DataView know that it needs to use OddEvenItem in place of Item? Wicket solves this problem

by allowing you to specify the Item object through a factory method. The factory method

returns an Item instance by default for every iteration. You just need to override it to return

the OddEvenItem instead. Quite a few components that ship with Wicket extensions follow

this pattern.

Listing 3-27 shows how it’s done.

Listing 3-27. Returning an Item Subclass Through the Factory Method

import wicket.extensions.markup.html.repeater.refreshing.OddEvenItem;

class BookDataView extends DataView{

//..

protected void populateItem(final Item item) {

protected void populateItem(final Item item) {

// Rest of the code is same as the BookDataView class in

// Listing 3-24.

}

@Override

protected Item newItem(final String id, int index, final IModel model){

return new OddEvenItem(id, index, model);

}

//

}

One important thing to remember here is that OddEvenItem works on a Java-based list

index, i.e., it bases its decision on the fact that the index of the first element (in the data

provider) is 0 and hence even. Accordingly, the second element in the list will result in the

class attribute being set to odd, and so on. So you need to specify your CSS style accordingly.

Modify ViewBooks.html and add inline CSS tags through the <style></style> element as

shown in Listing 3-28.

Listing 3-28. ViewBooks.html Modified with CSS Tags

<html>

<head><title>Browse Books</title></head>

<style>

tr.even{

background-color: #ffebcd;

}

tr.odd{

background-color: #ffa;

}

</style>

<body>

<!-- Rest snipped as there are no modifications -->

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION98

Figure 3-6 shows the results of your changes to ViewBooks.html.

Figure 3-6. DataView rows acquiring different CSS styles based on their index in the List instance

Now that you have selected the books you are interested in, the next logical step for you

would obviously be to add the books to the shopping cart and subsequently check out. Cur-

rently the onSubmit() implementation of the Add to Cart button just prints out a string to the

console. Before you redirect the user to the Checkout page, you need to get the Checkout page

working first. Once you have the checkout functionality in place, onSubmit() just needs to

invoke that page.

Implementing the Checkout Page

Figure 3-7 shows the template you will use to begin with.

Figure 3-7. The Checkout page preview

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 99

Listing 3-29 presents the HTML that produces the output shown in Figure 3-7.

Listing 3-29. Checkout.html

<html>

<head><title>Checkout Books</title></head>

<body>

<form name="checkoutForm" wicket:id="checkoutForm">

<table cellspacing="0" border="1">

<tr>

<th align="center">Title</th>

<th align="center">Author</th>

<th align="center">Price</th>

<th align="center">Quantity</th>

</tr>

<tr wicket:id="checkoutBooks">

<td>Python</td>

<td>Martelli </td>

<td align="right">44</td>

<td align="right"><input type="text" value="1" size="4"

wicket:id="quantity"/></td>

</tr>

<tr>

<td colspan="6">Total :44$</td>

</tr>

<!-- Add the buttons that you want displayed -->

<tr>

<td></td>

<td><input type="submit" value="Recalculate" wicket:id="recalculate"/></td>

<td><input type="submit" value="Checkout" wicket:id="checkOut"/></td>

</tr>

</table>

</form>

</body>

</html>

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION100

Figure 3-8 demonstrates how the user is likely to use the recalculate functionality.

Figure 3-8. The functioning of the Recalculate button

A user is likely to buy more than one copy of a book, and you need an attribute in the

model to store this information (quantity bought). You saw in the previous exercise that stor-

ing this attribute in the shared Book object is not an option. Let’s create a view helper object

that allows you to store this information. Note that CheckoutBook, shown in Listing 3-30, does

not duplicate the attributes of the Book class. Instead, it allows access to the contained Book

object.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 101

Listing 3-30. CheckoutBook.java

import java.io.Serializable;

public class CheckoutBook implements Serializable {

private Book book;

// Set book quantity to 1 by default

private int quantity=1;

public CheckoutBook(Book book){

this.book = book;

}

public Book getBook(){

return book;

}

public void setQuantity(int quantity){

this.quantity = quantity;

}

public int getQuantity(){

return quantity;

}

/* Returns the price depending upon the quantity entered */

public float getTotalPrice(){

return getBook().getPrice() * getQuantity();

}

/*

* This class is just an extension of the book object.

* Hence delegate the following method implementation to

* the original book object.

*/

public boolean equals(Object obj){

return book.equals(obj);

}

public int hashCode(){

return book.hashCode();

}

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION102

Let’s have a java representation of the shopping cart as well. The Cart class, shown in

Listing 3-31, has methods that allow you to add new books to the cart or query the cart for

the existence of a book. Purely from the point of view of economics, it also allows the user to

figure out the amount of money he or she owes the bookstore before proceeding with the

checkout.

Listing 3-31. Cart.java

public class Cart implements Serializable {

private List checkoutBooks;

public Cart(){

checkoutBooks = new ArrayList();

}

public void addToCart(CheckoutBook book){

if (!checkoutBooks.contains(book)){

checkoutBooks.add(book);

}

}

public boolean containsBook(int bookId){

for(int i=0; i < checkoutBooks.size(); i++){

if ((((CheckoutBook)checkoutBooks.get(i)).getBook().getId())== bookId){

return true;

}

}

return false;

}

public List getCheckoutBooks(){

return checkoutBooks;

}

/*

* Computes the total price of the books in the cart

*/

public float getTotalPrice(){

float totalPrice = 0;

for(int i=0; i < checkoutBooks.size(); i++){

totalPrice += ((CheckoutBook)checkoutBooks.get(i)).getTotalPrice();

}

return totalPrice;

}

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 103

The user is very likely to add or remove books from the cart during the user session.

Hence the cart needs to be made available throughout the entire duration the user is active

on the bookstore site. As you might have guessed, the best place for the cart to reside would

be in the user session (see Listing 3-32).

Listing 3-32. BookStoreSession.java

public class BookStoreSession extends WebSession {

private Cart cart;

public BookStoreSession(WebApplication application){

super(application);

}

/* Some users might not be interesting in buying a book.

* Maybe they are interested in reading a book review, for example.

* So create the cart on demand and not by default.

*/

public Cart getCart(){

if (cart == null)

cart = new Cart();

return cart;

}

}

Now that you have the cart and other related infrastructure in place, implement the

Checkout page, as shown in Listing 3-33.

Listing 3-33. Checkout.java

import wicket.extensions.markup.html.repeater.data.ListDataProvider;

public class Checkout extends WebPage {

private Cart cart;

// You might get to this page from another link. So you need a

// default constructor as well.

public Checkout() {

this(Collections.EMPTY_LIST);

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION104

public Checkout(List checkoutBooksIds) {

addBooksToCart(checkoutBooksIds);

cart = ((BookStoreSession)getSession()).getCart();

Form checkoutForm = new Form("checkoutForm");

final DataView books = new DataView("checkoutBooks", new ListDataProvider(

cart.getCheckoutBooks())) {

protected void populateItem(final Item item) {

CheckoutBook cBook = (CheckoutBook) item.getModelObject();

final CompoundPropertyModel model = new CompoundPropertyModel(cBook);

// Model is set at parent level, and child components will look it up.

item.setModel(model);

// Evaluates model to cBook.getBook().getTitle()

item.add(new Label("book.title"));

// Evaluates model to cBook.getBook().getAuthor()

item.add(new Label("book.author"));

// Evaluates model to cBook.getBook().getPrice()

item.add(new Label("book.price"));

// Evaluates to cBook.getQuantity() & cBook.setQuantity()

item.add(new TextField("quantity"));

}

};

checkoutForm.add(books);

// Get the cart to determine the total price.

checkoutForm.add(new Label("priceTotal",new

PropertyModel(this.cart,"totalPrice")));

/* The book quantity is tied to the CheckoutBook that is present

* in the cart. The "total price" is also tied to the cart through

* the use of the PropertyModel class. Hence the new price

* calculation is automatically taken care of. So "recalculate"

* comes for free!

*/

checkoutForm.add(new Button("recalculate"){

public void onSubmit(){

}

});

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 105

checkoutForm.add(new Button("checkOut"){

public void onSubmit(){

}

});

add(checkoutForm);

}

private void addBooksToCart(List booksMarkedForCheckout) {

BookDao bookDao = ((BookStoreApplication) getApplication())

.getBookDao();

Cart cart = getCart();

for (Iterator iter = booksMarkedForCheckout.iterator(); iter.hasNext();) {

int bookId = ((Integer) iter.next()).intValue();

if (!cart.containsBook(bookId)) {

Book book = bookDao.getBook(bookId);

cart.addToCart(new CheckoutBook(book));

}

}

}

}

You know that CompoundPropertyModel allows child components to use the parent’s

model. But this example demonstrates that you can use the component ID as the property-

path expression to evaluate a child component’s model as well. This allows you to avoid

duplication of Book attributes in the CheckoutBook class. Also note that you could afford to

leave the onSubmit() implementation of the Recalculate button blank by virtue of having set

the cart as the PropertyModel for displaying the total cost of the books.

We all are prone to mood swings, and therefore there is every chance that the user might

choose to either remove a few books from the cart or, worse, empty the cart. Adding these

functionalities is trivial. But before we proceed further, make sure that you are directing the

user to the Checkout page from the ViewBooks page.

class ViewBooks extends WebPage{

public ViewBooks(){

//..

form.add(new Button("addToCart") {

public void onSubmit() {

// Set the response as the Checkout page passing in the books selected

// by the user.

setResponsePage(new Checkout(ViewBooks.this.booksMarkedForCheckout));

}

});

}

//..

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION106

Maintaining a Layered Page Hierarchy

As you develop the sample application, you will notice that there is a commonly occurring

pattern in the code:

BookDao bookDao = ((BookStoreApplication) getApplication())

.getBookDao();

Cart cart = ((BookStoreSession)getSession()).getCart();

These typically have to do with the repeated look-up of your WebApplication and

WebSession objects. It’s important to realize that such functionality could be layered into a nice

Page hierarchy. You could have a BaseApplicationPage along the following lines, for example:

Class BaseApplicationPage extends WebPage{

// Subclasses can then simply call this method to

// get to the WebApplication class.

BookStoreApplication getBookStoreApplication(){

return ((BookStoreApplication) getApplication());

}

// Subclasses can then simply call this method to

// get to the Cart, for example.

Cart getCart(){

return ((BookStoreSession)getSession()).getCart();

}

}

You could then get all the application Pages to extend BaseApplicationPage and access the

WebApplication and WebSession classes through the superclass methods that you just defined.

Implementing the Remove Book Functionality

Figure 3-9 shows how the Checkout page looks after adding the remove book and empty cart

functionality.

Figure 3-9. Adding the remove book and empty cart functionality to the page

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 107

Listing 3-34 shows the code behind the added functionality.

Listing 3-34. Adding a Remove Button and a Check Box to Select the Book You Want Removed

from the Cart

<-- Rest of the code snipped for clarity -->

<tr wicket:id="checkoutBooks">

<td>Python</td>

<td>Martelli </td>

<td align="right">44</td>

<td align="right"><input type="text" value="1" size="4"

wicket:id="quantity"/></td>

<!- Added check box for marking a book for removal -->

<td align="right"><input type="checkbox" wicket:id="markedForRemoval"/></td>

</tr>

<-- Rest of the code snipped for clarity -->

<!--Add the buttons that you want displayed -->

<tr>

<td></td>

<td><input type="submit" value="Recalculate" wicket:id="recalculate"/></td>

<td><input type="submit" value="Checkout" wicket:id="checkOut"/></td>

<td><input type="submit" value="Remove" wicket:id="removeBooks"/></td>

</tr>

In order to support these functionalities, some changes would be required to some of the

classes as follows.

Add an attribute to CheckoutBook to maintain the state of selection of the book in the cart,

as shown in Listing 3-35.

Listing 3-35. CheckoutBook.java

class CheckoutBook implements Serializable{

//..

private boolean markedForRemoval;

public boolean isMarkedForRemoval() {

return markedForRemoval;

}

public void setMarkedForRemoval(boolean markedForRemoval) {

this.markedForRemoval = markedForRemoval;

}

//..

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION108

Add the server-side components corresponding to the new button you added to the

Checkout template. You require a CheckBox component as well to retain the selection of books

marked for removal (see Listing 3-36).

Listing 3-36. Checkout.java

class Checkout..{

//..

public Checkout(){

//...

final DataView books =

new DataView("checkoutBooks", new ListDataProvider(

cart.getCheckoutBooks())) {

protected void populateItem(final Item item) {

CheckoutBook cBook = (CheckoutBook) item.getModelObject();

//...

item.add(new TextField("quantity"));

/* CheckoutBook is the model. */

item.add(new CheckBox("markedForRemoval"));

}

};

checkoutForm.add(new Button("removeBooks"){

// When asked to remove the books, remove them from the cart.

public void onSubmit(){

Cart cart = ((BookStoreSession)getSession()).getCart();

for(Iterator iter = cart.getCheckoutBooks().iterator();

iter.hasNext();){

CheckoutBook book = (CheckoutBook) iter.next();

if(book.isMarkedForRemoval()){

iter.remove();

}

}

}

});

}

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 109

Checkout Confirmation
Now the only thing that remains is to request the user’s billing information and subsequently

confirm the purchase. You will not develop these screens now, although you can probably do

them as an exercise. But for the sake of completeness, implement the Confirmation page,

shown in Listing 3-37.

Listing 3-37. Confirmation.html

<html>

<head>

<title>Book Purchase Confirmation</title>

</head>

<body>

Following books have been shipped to your shipping address

<table border="1">

<th>Title</th><th>Quantity</th><th>Price</th>

<tr wicket:id="booksBought">

<td>Pro Spring</td>

<td>1</td>

<td>1</td>

</tr>

</table>

Total Price : $80

</body>

</html>

As shown in Listing 3-38, the Page class just retrieves the books from the session and pres-

ents a read-only view using the ListView component.

Listing 3-38. Confirmation.java

public class Confirmation extends WebPage {

public Confirmation() {

add(new ListView("booksBought", getCart().getCheckoutBooks()) {

protected void populateItem(ListItem item) {

CheckoutBook book = (CheckoutBook) item.getModelObject();

item.setModel(new CompoundPropertyModel(book));

item.add(new Label("book.title"));

item.add(new Label("quantity"));

item.add(new Label("totalPrice"));

}

});

add(new Label("totalPrice", new PropertyModel(getCart(),"totalPrice")));

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION110

private Cart getCart() {

return ((BookStoreSession) getSession()).getCart();

}

}

Of course, this page needs to be invoked from the Checkout page, as shown in

Listing 3-39.

Listing 3-39. Displaying the Confirmation Page When the Checkout Button Is Clicked

public class Checkout extends WebPage{

//..

public Checkout(){

//..

checkoutForm.add(new Button("checkOut") {

public void onSubmit() {

setResponsePage(new Confirmation());

}

});

}

One interesting thing here is that until the process of checking books out, the user doesn’t

really have to be logged in to the system. Yes, you are maintaining a shopping cart for the user,

but you really don’t require sensitive information like a credit card number until you reach the

billing stage. Assuming that the billing-related information like credit card number and billing

address have been captured during user account creation, you can get to that information by

just asking the user to sign into the system just before confirmation. Essentially access to the

Confirmation page needs to be secure.

One way to incorporate this could be to employ some check in the Confirmation page

constructor and redirect the user to the login page if the current session didn’t have a valid

user attached to it. This will work in this scenario, as this is the only page that needs to be

secure. Imagine a system with a number of such secured pages; adding this check to every

page could quickly become tedious. It also encourages the “copy-paste” style of programming

that ultimately leads to defective and unmaintainable code.

One solution could be to alter the code structure, keeping the functionality intact. This is

commonly referred to as code refactoring in the programming world. Martin Fowler, one of the

leading proponents of this “art,” maintains a catalog of commonly employed refactorings.

After consulting the catalog, it shouldn’t be too difficult to infer that “Pull-Up Method” refac-

toring could be employed here. You could move the code that does the authentication to a

superclass and get all pages that require a secure access to extend it. This is a nice, albeit old

fashioned, way of doing things, in this case specifically since Wicket has already thought out a

comprehensive solution.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 111

IAuthorizationStrategy and Conditional

Component Instantiation
Wicket recognizes that you might want to perform custom processing during component

instantiation as discussed in the last section and supports it at its core by allowing you to

register IComponentInstantiationListener implementations. These listeners are typically reg-

istered with the Application class. The listeners then receive messages through the callback

method, onInstantiation(Component component), when Wicket components are instantiated.

That’s not all. When Wicket runs into an unauthorized access or unauthorized

component instantiation, it also allows you to decide the future course of action through

the IUnauthorizedComponentInstantiationListener interface. Wicket consults the

IAuthorizationStrategy implementation that you provide to determine unauthorized

component instantiations.

Wicket’s Application class registers a component instantiation listener by default

that uses the registered authorization strategy to check component instantiations. On an

authorized access, it calls the registered IUnauthorizedComponentInstantiationListener

implementation’s onUnauthorizedInstantiation(Component component) method.

Essentially you need the following:

• An IAuthorizationStrategy

• An IUnauthorizedComponentInstantiationListener implementation

Before providing the preceding implementations, you need a way to identify a page that

needs to be accessed securely. You could get the pages that require authentication to imple-

ment a marker interface, or better, get them to use a class-level annotation.

In this case, any page that carries the SecuredWicketPage marker annotation shown in

Listing 3-40 is automatically considered secured.

Listing 3-40. SecuredWicketPage.java

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

// The annotation should be available for runtime introspection and

// should be specified at the class level.

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.TYPE)

public @interface SecuredWicketPage {

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION112

We haven’t looked at Wicket’s IAuthorizationStrategy contract yet. Here it is, presented

in Listing 3-41.

Listing 3-41. IAuthorizationStrategy.java

public interface IAuthorizationStrategy{

/**

* Checks whether an instance of the given component class may be created.

*/

boolean isInstantiationAuthorized(Class componentClass);

boolean isActionAuthorized(Component component, Action action);

}

Wicket’s AbstractPageAuthorizationStrategy is an IAuthorizationStrategy implementa-

tion. It’s basically a helper class that checks whether the current request is authorized to

instantiate the requested page. It does this by delegating the authorization check to the

derived classes through the isPageAuthorized method. Note that you also implement the

IUnauthorizedComponentInstantiationListener interface by redirecting the user to the

SignOnPage on unauthorized access (see Listing 3-42).

Listing 3-42. StoreAuthorizationStrategy

import wicket.RestartResponseAtInterceptPageException;

import wicket.Session;

import wicket.authorization.IUnauthorizedComponentInstantiationListener;

import wicket.authorization.strategies.page.AbstractPageAuthorizationStrategy;

public class StoreAuthorizationStrategy extends

AbstractPageAuthorizationStrategy implements

IUnauthorizedComponentInstantiationListener {

public StoreAuthorizationStrategy() {

}

/**

* @see wicket.authorization.strategies.page.AbstractPageAuthorizationStrategy#

isPageAuthorized(java.lang.Class)

* If a page has the specified annotation, check for authorization.

*/

protected boolean isPageAuthorized(final Class pageClass) {

if (pageClass.isAnnotationPresent(SecuredWicketPage.class)) {

return isAuthorized();

}

// Allow construction by default

return true;

}

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 113

/**

* Gets whether the current user/session is authorized to instantiate a page

* class that contains the tagging annotation passed to the constructor.

*

* @return True if the instantiation should be allowed to proceed, false if

* the user should be directed to the application's sign-in page.

*/

protected boolean isAuthorized() {

BookStoreSession session = ((BookStoreSession) Session.get());

return session == null ? false : session.isUserLoggedIn();

}

/**

* On unauthorized access, you redirect the user to the SignOnPage.

*/

public void onUnauthorizedInstantiation(Component component) {

if (component instanceof Page) {

throw new RestartResponseAtInterceptPageException(SignOnPage.class);

}

}

}

You need to register your IAuthorizationStrategy and IUnauthorizedComponent➥

InstantiationListener with the security settings. This can be done in the init method

of your Application class as indicated in Listing 3-43.

Listing 3-43. Registering the IAuthorizationStrategy Implementation with the WebApplication

Subclass

public class BookStoreApplication extends WebApplication

//..

public void init(){

StoreAuthorizationStrategy storeAuthStrategy = new StoreAuthorizationStrategy();

getSecuritySettings().setAuthorizationStrategy(storeAuthStrategy);

getSecuritySettings().setUnauthorizedComponentInstantiationListener(

storeAuthStrategy);

}

//..

}

Let’s quickly look at a typical request cycle flow. When a user requests a page:

1. Wicket invokes the default component instantiation listener (in addition to others).

2. The listener in turn asks the registered authorization strategy (StoreAuthorization➥

Strategy in this case) if it’s okay to instantiate the component (Page in this case).

3. StoreAuthorizationStrategy in turn verifies whether the page is marked secured.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION114

4. If the Page carries the SecuredWicketPage annotation, it checks whether a valid User

object is associated with the session. (Note that you do allow unrestricted access to

“normal” pages.)

5. If the user session is found to be valid, it allows the current thread to access (or instan-

tiate) the page, and the default request processing cycle executes.

6. But if a User object is not bound to the session, it disallows instantiation of the secured

page.

7. Wicket, on realizing this, calls upon the registered IUnauthorizedComponent➥

InstantiationListener(StoreAuthorizationStrategy) to perform its job.

8. The IUnauthorizedComponentInstantiationListener then redirects the user to the

SignOnPage.

Summary
We managed to cover lot of ground in this chapter. You first learned to configure nice Wicket

URLs through the Application.init() method. Then you saw how Wicket tries to hide the

underlying HttpSession in order to encourage a strongly typed interaction with Wicket

Session. You later developed a shopping cart application that allowed you to explore quite

a few Wicket components like DataView, DropDownChoice, and CheckBox. You saw that

DropDownChoice and CheckBox do not by default result in a server-side notification when the

user changes the selection on the client. You enabled this behavior though by getting the

method wantOnSelectionChangedNotifications to return true. Wicket allows you to add or

modify arbitrary attributes to the HTML elements through the wicket.AttributeModifier

class, and you used that to apply alternating styles to the table rows generated by the DataView

component. You also learned some nice ways of putting Wicket’s model to use. Understanding

the AbstractDetachableModel and IDataProvider interface is extremely crucial to working

with Wicket in real-world scenarios. Wicket allows for configurable authorization strategies

through its IAuthorizationStrategy interface. Finally, you saw a detailed implementation of

Wicket’s IAuthorizationStrategy and conditional component instantiation concept.

CHAPTER 3 ■ DEVELOPING A SIMPLE APPLICATION 115

Providing a Common Layout to
Wicket Pages

A web site is typically composed of a number of constituent pages. A common requirement

is that the pages should carry a consistent look and feel and need to be laid out in a consistent

manner, which allows for a smooth user experience. Wicket supports this requirement

through markup inheritance and Border components, thereby providing a functionality similar

to Apache Tiles or SiteMesh. You will learn about these two features in this chapter.

Adding “Books,” “Promotions,” and “Articles”

Links to the Bookstore Application
You have made a considerable amount of progress since you started, and apparently so has

the fictional bookstore of the examples! Of late, the bookstore has been doing such good

business that you have been asked by the investors to overhaul its web site. As a step in that

direction, let’s offer some form of book promotion and a page that provides links to technology-

related articles for the benefit of your customers. Since it should be easy for the users to

navigate across pages, the only requirement is that the links must be available at all times.

Accordingly, all pages would be required to carry the links to other pages in their template.

Figure 4-1 shows how this should look.

117

C H A P T E R 4

Figure 4-1. Online bookstore pages with links to other application pages

Refer to Listings 4-1 and 4-2 for the Book Promotions template and the corresponding

Page class, respectively.

Listing 4-1. Book Promotions Page with Links to Other Pages

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>Book Promotions</title>

</head>

<body>

<table width="100%">

<tr>

<td>

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES118

Books

Promotions

Articles

</td>

<td>

<!-- Page content starts here -->

Don't miss the super deals on the books in the J2EE category

<!-- Page content ends here -->

</td>

</tr>

</table>

</body>

</html>

Listing 4-2. The Corresponding Page Class

import wicket.markup.html.link.BookmarkablePageLink;

public class BookPromotions extends WebPage {

public BookPromotions(){

addLinksToOtherPages();

}

protected void addLinksToOtherPages(){

add(new BookmarkablePageLink("linkToBooks", ViewBooks.class));

add(new BookmarkablePageLink("linkToPromotions", BookPromotions.class));

add(new BookmarkablePageLink("linkToArticles", Articles.class));

}

}

Wicket ships with several flavors of links, and BookmarkablePageLink happens to be one

of them. It is used to represent a stable link to pages within the Wicket application that can be

cached in a web browser and used at a later time. As the name suggests, bookmarkable links

to pages can be bookmarked or added to a list of favorite links.

The Articles page also needs to carry the links (see Listing 4-3).

Listing 4-3. A Page for Displaying Links to Interesting Articles Along with Page Links

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>Articles</title>

</head>

<body>

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 119

<table width="100%">

<tr>

<td>

Books

Promotions

Articles

</td>

<td>

<!-- Page content starts here -->

Check out the following interesting articles on Wicket

<li wicket:id="articles">

Javalobby Wicket Article

<!-- Page content ends here -->

</td>

</tr>

</table>

</body>

</html>

Note that you could have used hard-coded link references (via tags) only if

you knew of a fixed set of links up front. Typically, links are stored in a persistence store for

later dynamic retrieval. So you need to have a Wicket component that does just that.

In this case, the POJO (POJO stands for plain old Java object) ArticleLink holds onto the

link-related information—the display text and the actual link to the article. Wicket models

these links to destinations outside of Wicket through the class ExternalLink. If you don’t prefer

to display the external link in the same window as the Articles page, you can also get Wicket to

open the external link in a pop-up window as follows. Wicket has a PopupSettings class that

allows you to specify the pop-up settings through flags as shown in Listing 4-4.

Listing 4-4. The Articles Page Class

import wicket.markup.html.link.BookmarkablePageLink;

import wicket.markup.html.link.ExternalLink;

import wicket.markup.html.list.ListItem;

import wicket.markup.html.list.ListView;

import wicket.markup.html.link.PopupSettings;

public class Articles extends WebPage {

public Articles(){

addLinksToOtherPages();

add(new ListView("articles",fetchArticlesFromStore()){

private static final long serialVersionUID = 1L;

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES120

protected void populateItem(ListItem item){

// Initialize PopupSettings.

PopupSettings popupSettings = new PopupSettings(

PopupSettings.RESIZABLE

| PopupSettings.SCROLLBARS

| PopupSettings.LOCATION_BAR

| PopupSettings.TOOL_BAR

| PopupSettings.MENU_BAR

| PopupSettings.STATUS_BAR);

ArticleLink link = (ArticleLink)item.getModelObject();

// Configure the ExternalLink with the PopupSettings.

item.add(new ExternalLink("webPageLink",link.getHref()).

setPopupSettings(popupSettings));

item.add(new Label("display", link.getDisplay()));

}

});

}

protected void addLinksToOtherPages(){

add(new BookmarkablePageLink("linkToBooks", ViewBooks.class));

add(new BookmarkablePageLink("linkToPromotions", BookPromotions.class));

add(new BookmarkablePageLink("linkToArticles", Articles.class));

}

// Links are typically fetched from some repository store

// like Database. For now, return an in-memory list.

private List fetchArticlesFromStore(){

return Arrays.asList(

new ArticleLink[]{

new ArticleLink("Javalobby Wicket Article",

"http://www.javalobby.org/java/forums/t60786.html"),

new ArticleLink("Why Somebody Loves Wicket",

"http://weblogs.java.net/blog/gfx/archive/2005/08/get_to_love_web.html")

}

);

}

// Holds onto the link's href and display

class ArticleLink{

private String display;

private String href;

public ArticleLink(String display, String href){

this.display = display;

this.href = href;

}

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 121

public String getDisplay() {

return display;

}

public String getHref() {

return href;

}

private static final long serialVersionUID = 1L;

}

}

Repeat the preceding steps for the ViewBooks page as well (see Listing 4-5).

Listing 4-5. ViewBooks Page Modified Similarly to Accommodate Page Links

public class ViewBooks extends..

//..

public ViewBooks(){

addLinksToOtherPages();

//..

}

protected void addLinksToOtherPages(){

add(new BookmarkablePageLink("linkToBooks", ViewBooks.class));

add(new BookmarkablePageLink("linkToPromotions", BookPromotions.class));

add(new BookmarkablePageLink("linkToArticles", Articles.class));

}

}

The preceding changes are good enough to achieve what you set out for. But it’s probably

not too difficult to infer that there are quite a few places in the code that could do away with

the duplication. For example, in the HTML markup of all the pages, only the content demar-

cated by the following XML comments is actually unique to a page:

<!-- Page content starts here -->

<!-- Page content ends here -->

The rest of the content is the same for all the pages. The routine that adds the links to the

pages is also found in every page.

Providing a Common Layout
It’s probably a good idea to store the repeating markup someplace common, as shown in

Listing 4-6. Call it BookShopTemplatePage.html.

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES122

Listing 4-6. BookShopTemplatePage.html with the Markup Common to All Pages

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>No Title</title>

</head>

<body>

<table width="100%">

<tr>

<td>

Books

Promotions

Articles

</td>

<td>

<!-- This part of the markup, indicated by <wicket:child/>

will be contributed by the page inheriting

this template. -->

<wicket:child/>

</td>

</tr>

</table>

</body>

</html>

The tag <wicket:child/> is of prime importance here. The tag indicates that while render-

ing, it will be replaced by the content of another markup file that is likely to extend from the

current one. Like any other Wicket template, this one needs to have a Page class of its own, too.

Note that you have taken care of the code duplication as a result of having the links in all the

pages (see Listing 4-7).

Listing 4-7. BookShopTemplatePage.java Representing the Common Template

import wicket.markup.html.link.BookmarkablePageLink;

public abstract class BookShopTemplatePage extends WebPage {

public BookShopTemplatePage(){

addLinksToOtherPages();

}

protected void addLinksToOtherPages() {

add(new BookmarkablePageLink("linkToBooks", ViewBooks.class));

add(new BookmarkablePageLink("linkToPromotions", BookPromotions.class));

add(new BookmarkablePageLink("linkToArticles", Articles.class));

}

}

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 123

Even though there isn’t anything abstract about the class, it is still marked as abstract just

to convey the intent that the template/page is not to be used stand-alone. It is meant to be

extended by other concrete pages, and it specifies just the common page layout. Now that you

have extracted the markup common to all the pages, modify the respective templates as indi-

cated in Listings 4-8 and 4-9.

Listing 4-8. Book Promotions Page Extracted into a Container of Its Own

<?xml version="1.0" encoding="UTF-8"?>

<wicket:extend>

<!-- child content -->

Don't miss super deals on the books in the J2EE category

<!-- End child content -->

</wicket:extend>

Listing 4-9. Modified Articles.html

<?xml version="1.0" encoding="UTF-8"?>

<wicket:extend>

<!-- child content -->

Check out the following interesting articles on Wicket

<li wicket:id="articles">

Javalobby Wicket Article

<!-- child content -->

</wicket:extend>

Note that in all the templates, you now just retain content unique to those particular

pages. Also of importance is the fact that the content unique to those pages is specified within

Wicket’s <wicket:extend> tag. This is to let Wicket know that when it renders this page, it is

supposed to replace the <wicket:child/> element of the base template with the markup

placed within the <wicket:extend> tag.

Modify the page classes Articles, BookPromotions, and ViewBooks to extend BookShop➥

TemplatePage. You can remove the call to the method addLinksToOtherPages as well.

In case your template editor insists that the pages need to be enclosed within <html><body>,

</body></html> tags, you can include them around the <wicket:extend> tag for the sake of

completeness. Wicket will ignore anything that doesn’t fall within the <wicket:extend> tag.

Essentially, having something like what appears in Listing 4-10 should keep Wicket and the

template editor happy.

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES124

Listing 4-10. Articles.html As an HTML Document

<?xml version="1.0" encoding="UTF-8"?>

<html>

<body>

<wicket:extend>

<!-- Child content -->

Check out the following interesting articles on Wicket

<li wicket:id="articles">

Javalobby Wicket Article

<!-- Child content -->

</wicket:extend>

</body>

</html>

Make sure that the changes in Listing 4-10 have actually not altered the user experience.

Click the page links and verify the HTML page title that shows up on the browser. It dis-

plays “No Title” for all the pages. Well, the BookShopTemplatePage has no way of determining

the page it is currently displaying. It’s pretty easy to fix this though, and you will see how next.

Getting the Pages to Display Corresponding Titles
Modify the static <title> to a dynamic one by attaching a wicket:id attribute, as shown in

Listing 4-11.

Listing 4-11. BookShopTemplate.html Modified for Dynamic Title Rendering

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title wicket:id="pageTitle">No Title</title>

</head>

<body>

<!- REST SNIPPED -->

This obviously requires a corresponding Wicket component to be added to the Page class.

The PropertyModel linked to the component needs to source the title text from somewhere.

BookShopTemplatePage doesn’t know where it’s going to come from. The onus rests on the class

that is likely to extend it. So make the intent clear by marking the “title getter” abstract, as in

Listing 4-12.

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 125

Listing 4-12. BookShopTemplatePage.java

public abstract class BookShopTemplatePage extends WebPage {

public BookShopTemplatePage (){

add(new Label("pageTitle",new PropertyModel(this,"pageTitle")));

addLinksToOtherPages();

}

protected void addLinksToOtherPages() {

//..

}

// To be overridden by "child" templates

public abstract String getPageTitle();

}

Provide an implementation of the abstract method in all the concrete pages, as shown in

Listings 4-13, 4-14, and 4-15.

Listing 4-13. BookPromotions.java

public class BookPromotions extends BookShopTemplatePage {

//..

public String getPageTitle() {

return "Book Promotions";

}

}

Listing 4-14. Articles.java

public class Articles extends BookShopTemplatePage {

//..

public String getPageTitle() {

return "Articles";

}

}

Listing 4-15. ViewBooks.java

public class ViewBooks extends BookShopTemplatePage{

//..

//..

public String getPageTitle() {

return "Books";

}

}

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES126

The page titles should show up fine now. The same technique can be used for any ele-

ment that needs to be different between the related pages. Note that the markup inheritance

shown in the example is just one level deep: all application pages extend the common

BookShopTemplatePage. You could have a deeper hierarchy depending upon the specific needs

of the application being developed and still get markup inheritance to work. Also note that

BookShopTemplatePage is like any other Wicket page. The base page could be composed of any

number and type of Wicket components like Panels and Borders. We will look at Wicket’s

Border component now and defer the discussion on Panels to Chapter 7, which covers custom

Wicket components.

Separating Navigation Links and the Associated

Page Content Through Border Components
In a nutshell, Wicket has two types of components—one that can have an associated markup

template and another that can’t. Wicket’s Panel, Border, and Page are components that belong

to the former category. This will be discussed in detail in Chapter 7. For now, let’s concentrate

on Wicket’s Border components.

Quoting from the wicket.markup.html.border.Border Javadoc:

A border component has associated markup which is drawn and determines placement

of any markup and/or components nested within the border component. The portion of

the border’s associated markup file which is to be used in rendering the border is

denoted by a <wicket:border> tag. The children of the border component instance are

then inserted into this markup, replacing the first <wicket:body> tag in the border’s

associated markup.

If this isn’t quite clear to you, it would probably help to look at an example. What

Listings 4-16 and 4-17 show is a Page with a Label.

Listing 4-16. MyPage.html

<html>

<body>

Label content goes here

</body>

</html>

Listing 4-17. MyPage.java

import wicket.markup.html.basic.Label;

public class MyPage extends WebPage{

public MyPage(){

add(new Label("label", new Model(" Wicket Rocks 8-) ");

}

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 127

The page would render as shown in Figure 4-2.

Figure 4-2. A simple page with a label

Now let’s say you want to draw a box around the text and render it in a yellow back-

ground. Listing 4-18 shows how you could probably do this.

Listing 4-18. MyPage.html with the Text Inside a Box

<html>

<body>

<table width = "0%" border = "1" cellspacing = "0"

cellpadding = "1" bgcolor = "yellow">

<tr>

<td width = "100%" valign = "top">

Label content goes here

</td>

</tr>

</table>

</body>

</html>

Figure 4-3 illustrates how MyPage.html should now display in your browser (except the

gray will appear yellow on your screen).

Figure 4-3. The same page with the label highlighted

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES128

Now imagine that you are required to draw such boxes around several labels that occur

within the same page or for that matter labels that occur across pages. Wicket allows you to

model them as Border components so that you don’t have to be copying the same layout around

other labels. The actual Border markup needs to be specified within the <wicket:border> tag in

its template, as shown in Listing 4-19 (remember, Wicket Border components have their own

associated markup template).

Listing 4-19. MyBorder.html

<wicket:border>

<table width = "0%" border = "1" cellspacing = "0"

cellpadding = "1" bgcolor = "yellow">

<tr>

<td width = "100%" valign = "top">

<wicket:body/>

</td>

</tr>

</table>

</wicket:border>

A corresponding Border class doesn’t do much at the moment (see Listing 4-20). But

Borders could themselves carry Wicket components similar to a Wicket Page.

Listing 4-20. MyBorder.java

import wicket.markup.html.border.Border;

public class MyBorder extends Border{

public MyBorder(String id){

super(id);

}

}

Now remove the markup that adds the box from MyPage.html and add a span element to

accommodate the contents of MyBorder.html instead as shown in Listing 4-21.

Listing 4-21. MyPage.html with a Border Component

<html>

<body>

Label content goes here

</body>

</html>

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 129

Listing 4-22 shows the modified Page class.

Listing 4-22. MyPage.java with a Border Component

import wicket.markup.html.border.Border;

public class MyPage extends WebPage {

public MyPage(){

Border border = new MyBorder("myborder")

add(border);

border.add(new Label("label",

new Model(" Wicket Rocks 8-) ")));

}

}

In other words, the body of the "myborder" component (i.e., the span with a wicket:id

"label") is substituted into the MyBorder’s associated markup at the position indicated by

the <wicket:body> tag. Now that you understand a little about Wicket Borders, let’s explore

another Wicket component—BoxBorder. wicket.markup.html.border.BoxBorder is a subclass

of the Border component.

Now let’s say you want to separate the navigation links and the associated page content

through some kind of demarcation. Wicket has a BoxBorder class that does just that. It draws a

thin black line around its child components (see Listing 4-23).

Listing 4-23. BookShopTemplate.html Modified to Accommodate Borders

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title wicket:id="pageTitle">No Title</title>

</head>

<body>

<table width="100%">

<tr height="100%">

<td valign="top" height="100px">

<!-- Place the BoxBorder component around links -->

Books

Promotions

Articles

</td>

<td valign="top" height="100px">

<!-- Place the BoxBorder component around the page being displayed -->

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES130

<wicket:child/>

</td>

</tr>

</table>

</body>

</html>

Earlier the application page links were being added to the Page directly. Now they have to

be added to the enclosing BoxBorder in accordance with the template hierarchy. Accordingly,

the Page class needs some modification, as shown in Listing 4-24.

Listing 4-24. BookShopTemplate.java

import wicket.markup.html.border.BoxBorder;

//..

public abstract class BookShopTemplate extends WebPage {

public BookShopTemplate(){

add(new Label("pageTitle", new PropertyModel(this, "pageTitle")));

Border pageLinksBorder = null;

add(pageLinksBorder = new BoxBorder("pageLinksBorder"));

// Add the links to the 'pageLinksBorder' BoxBorder

addLinksToOtherPages(pageLinksBorder);

// Add the Border components

add(new BoxBorder("pageBorder"));

}

protected void addLinksToOtherPages(MarkupContainer container) {

container.add(new BookmarkablePageLink("linkToBooks", ViewBooks.class));

container.add(new BookmarkablePageLink("linkToPromotions",

BookPromotions.class));

container.add(new BookmarkablePageLink("linkToArticles", Articles.class));

}

}

Now try accessing the ViewBooks page. It should result in the error shown in here:

ViewBooks Page Error on Rendering After Adding the BoxBorder Component

02:27:21.890 ERROR! [SocketListener0-1]

wicket.RequestCycle.step(RequestCycle.java:993) >19> Unable to find

component with id 'bookForm' in [MarkupContainer [Component id =

_extend, page = com.apress.wicketbook.layout.ViewBooks, path =

0:pageBorder:_child:_extend.MarkupInheritanceResolver$

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 131

TransparentWebMarkupContainer, isVisible = true, isVersioned

= true]]. This means that you declared wicket:id=bookForm in your

smarkup, but that you either did not add the component to your page

at all, or that the hierarchy does not match.

It should not be too difficult to reason this out if you observe that the <wicket:child> tag

is enclosed within the "pageBorder" component. This also means that the templates that

extend from BookShopTemplate need to have their components fall under the "pageBorder"

Border component in the page hierarchy. You can no longer add the child template compo-

nents to the parent page; you need to be adding them to the parent template’s Border

component instead. This introduces a certain amount of ambiguity in the child template Page

class, as it mandates that the Page content be always wrapped using a Border. If you decide to

remove the parent page’s Border component later, you will be forced to change pages that

inherit from it. Relax—Wicket, as always, has a simple solution. You still get to retain the child

templates as they are if you make the existing "pageBorder" component transparent by calling

setTransparentResolver(true), as shown in Listing 4-25. This setting allows you to add the

components to the pageBorder component’s parent. Wicket will take care of the rest, even

though the page hierarchy doesn’t exactly match that of the template. Even if you remove the

parent’s Border component later, the child templates will still continue to work properly. This

setting is recursive, in that it also allows you to have transparent borders embedded inside

other transparent borders.

Listing 4-25. The Base Template Page with Transparent Borders

import wicket.markup.html.border.BoxBorder;

//..

public abstract class BookShopTemplate extends WebPage {

public BookShopTemplate(){

add(new Label("pageTitle", new PropertyModel(this, "pageTitle")));

// Let's also make the 'pageLinksBorder' transparent.

add(new BoxBorder("pageLinksBorder").setTransparentResolver(true));

// Now you aren't required to add the links to the Border.

// The links can be added to the Page class as was the case

// earlier.

addLinksToOtherPages();

// Add the Border components.

add(new BoxBorder("pageBorder").setTransparentResolver(true));

}

//..

}

On the browser, this renders as shown in Figure 4-4.

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES132

Figure 4-4. The improved online bookstore application home page with BoxBorder

If you are interested, you can take a look at the BoxBorder HTML template file that drew

those lines around the page content (the Wicket distribution comes with the source code).

Say you don’t like the way BoxBorder renders, and you want to make an attempt at rolling

out your own by attaching a CSS to the Page. Create a folder called style under your context

folder and make a style sheet named style.css with the content shown in Listing 4-26. You

can decide the name and the location of the style sheet; Wicket doesn’t dictate anything. It

should be accessible from the Wicket pages, however.

Listing 4-26. style.css

.borderedBlock {

background: #DEDEDE;

color: gray;

font-weight: bold;

border: solid #E9601A;

border-width: thin;

padding: 2px 2px 2px 6px;

margin: 2px;

}

Note that the style can be specified inline as well within the <style>, </style> tags. When

applied to an HTML widget, this style draws a border around that widget with the preceding

attributes.

Modify the BookShopTemplate layout as you see in Listing 4-27.

Listing 4-27. BookShopTemplate.html with CSS

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title wicket:id="pageTitle">No Title</title>

<link rel="stylesheet" type="text/css" href="style/style.css"/>

</head>

<body>

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 133

<table width="100%">

<tr>

<td class="borderedBlock">

<table>

<tr>

<td>Books</td>

<td><a href="#"

wicket:id="linkToPromotions">Promotions</td>

<td>Articles</td>

</tr>

</table>

</td>

</tr>

<tr>

<td valign="top" colspan="3" class="borderedBlock">

<wicket:child/>

</td>

</tr>

</table>

</body>

</html>

Since you have your own style sheet, remove the references to BoxBorder from the

BookShopTemplate class. Now the pages will have an improved look and feel (see Figure 4-5).

Figure 4-5. The online bookstore application home page with CSS-styled border

Note that you didn’t have to change the markup in the application pages. This is the

advantage of having a common layout specified external to the application pages.

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES134

Disabling Links to the Page Currently Being

Displayed
Currently, irrespective of the page that the user is viewing, the link to that very page shows

up in an enabled state. If you want the links to show up disabled in such cases, call

setAutoEnable(true) on the link class. The fact that the method returns the reference to

the link also helps (you can chain your methods calls, as shown in Listing 4-28).

Listing 4-28. BookShopTemplate Modified to Autodisable Links

class BookShopTemplate..

//..

protected void addLinksToOtherPages() {

add(new BookmarkablePageLink("linkToBooks",

ViewBooks.class).setAutoEnable(true));

add(new BookmarkablePageLink("linkToPromotions",

BookPromotions.class).setAutoEnable(true));

add(new BookmarkablePageLink("linkToArticles",

Articles.class).setAutoEnable(true));

}

}

Figure 4-6 shows how the links would show up with the “Promotions” link clicked. Note

that other than the “Promotions” link, all other links show up in an enabled state.

Figure 4-6. The online bookstore home page with automatically enabled links

Employing wicket:link to Generate Links
As if the preceding code weren’t simple enough, Wicket allows you to generate links through

the wicket:link (see Listing 4-29). Why would you use wicket:link for the same purpose?

Well, as it turns out, you get all of the link functionality for free.

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 135

Listing 4-29. Links Represented Through wicket:link

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title wicket:id="pageTitle">No Title</title>

<style>

.borderedBlock {

background: #DEDEDE;

color: gray;

font-weight: bold;

border: solid #E9601A;

border-width: thin;

padding: 2px 2px 2px 6px;

margin: 2px;

}

</style>

</head>

<body>

<table width="100%">

<tr>

<td class="borderedBlock">

<table>

<tr>

<wicket:link>

<td>

Books

</td>

<td>

Promotions

</td>

<td>

Articles

</td>

</wicket:link/>

</tr>

</table>

</td>

</tr>

<tr>

<td valign="top" colspan="3" class="borderedBlock">

<wicket:child/>

</td>

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES136

</tr>

</table>

</body>

</html>

As a result, BookShopTemplate would be reduced to the code in Listing 4-30.

Listing 4-30. The Base Template Page with Link Components Removed

public abstract class BookShopTemplate extends WebPage {

// Note that you don't need addLinksToOtherPages anymore.

public BookShopTemplatePage (){

add(new Label("pageTitle",new PropertyModel(this,"pageTitle")));

}

public abstract String getPageTitle();

}

There is a caveat to using <wicket:link>: although it’s great for linking to pages that are

in the same package as or in a subpackage of the page whose markup contains wicket:link,

if you want to link to pages outside the package, then <wicket:link> will not work. In that

respect, wicket:link is not a silver bullet.

Borders Are Not Just About Boxes
If the previous examples seem to suggest that Borders are only good at drawing boxes around

components, let’s quickly put that misconception to rest by looking at another example. You

will see how to develop a collapsible border component that decorates the markup, to be

expanded or collapsed based on user interaction. You will use a JavaScript function that will

toggle the display style of the component it is decorating. You will also add a little style to

the border component to aid better display (see Listing 4-31). Also note the usage of the

<wicket:head> tag to specify this CollapsibleBorder component’s contribution to the final

HTML <head> element when the Page is rendered.

Listing 4-31. A Template That Models a Collapsible Border

<wicket:head>

<style>

.header {color:#729ac2; cursor:pointer; font-weight:bold; border-top:1px solid

#300;}

.collapsibleBorder {display:none;}

</style>

<script>

// The JavaScript function that toggles the visibility of the div element

// encloses the markup that it is decorating.

function toggle(collapsibleBorderId) {

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 137

var styleObj = document.getElementById(collapsibleBorderId).style;

styleObj.display = (styleObj.display == 'block')? 'none': 'block';

}

</script>

</wicket:head>

<wicket:border>

<div>

<!-- This holds on to the header text -->

<div class="header" wicket:id="header">+

</div>

<!-- The collapsible border -->

<div wicket:id="collapsibleBorder" class="collapsibleBorder">

<wicket:body/>

</div>

</div>

</wicket:border>

Let’s look at the corresponding Border component. Note that the Border component can

be used multiple times in the same page. So it wouldn’t be prudent to associate an ID with the

div identified by the Wicket ID header up front. Wicket can assign a unique ID to the element

at runtime, and you should make use of that ability in this case. This also means that you

have to defer the call to the JavaScript toggle function until runtime. How do you bind the

JavaScript method call to the element at runtime? Wicket invokes certain callback functions

that allow you to modify the markup during render phase. We will look at them in greater

detail in Chapter 7. For now, it should suffice to know that Wicket calls the Component.

onComponentTag(ComponentTag) method, passing in the Java representation of the tag—

wicket.markup.ComponentTag—while rendering the template. You will bind the JavaScript

function in the callback method (see Listing 4-32).

Listing 4-32. The Java Representation of the Collapsible Border

package com.apress.wicketbook.layout;

import wicket.markup.ComponentTag;

import wicket.markup.html.WebMarkupContainer;

import wicket.markup.html.basic.Label;

import wicket.markup.html.border.Border;

import wicket.model.PropertyModel;

public abstract class CollapsibleBorder extends Border {

public CollapsibleBorder(String id) {

super(id);

WebMarkupContainer collapsibleBorder = new

WebMarkupContainer("collapsibleBorder");

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES138

// It's essential that the div outputs its

// "id" for the JavaScript to toggle its

// display property at runtime.

collapsibleBorder.setOutputMarkupId(true);

WebMarkupContainer header = new Header("header", collapsibleBorder);

add(header);

add(collapsibleBorder);

// The text to identify

header.add(new Label("headerText", new PropertyModel(this,"header")));

}

public abstract String getHeader();

private class Header extends WebMarkupContainer {

// The CollapsibleBorder element reference is required in order

// to determine its "id" at runtime.

WebMarkupContainer collapsibleBorder;

public Header(String id, WebMarkupContainer collapsibleBorder) {

super(id);

this.collapsibleBorder = collapsibleBorder;

}

protected void onComponentTag(ComponentTag tag) {

String collapsibleBorderId = collapsibleBorder.getMarkupId();

// This will add an attribute "onclick" that might show up as follows:

//< <div class="header" wicket:id="header"

//onclick="toggle('border_collapsibleBorder')">

tag.put("onclick", "toggle('" + collapsibleBorderId + "')");

}

}

}

Now let’s look at a sample page that uses the preceding Border component (see

Listing 4-33). The page essentially has a search panel that allows you to enter the search

criteria and another that displays the search results. For now, the search results are hard-

coded. This example was incorporated just to give you a feel of one of the ways of designing

and using a Border component.

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 139

Listing 4-33. A Search Page That Uses the Collapsible Border Component

<html>

<head><title>Employee Search</title></head>

<body>

<!-- A span to accommodate the Border -->

<input type="text"/><input type="submit" value="Search"/>

<!-- A span to accommodate the Border -->

<table border="1">

<tr>

<th>Employee</th>

<th>Department</th>

</tr>

<tr><td>Tom</td><td>Finance</td></tr>

<tr><td>Chris</td><td>IT</td></tr>

<tr><td>John</td><td>Marketing</td></tr>

</table>

</body>

</html>

Figure 4-7 shows how the template described in the Listing 4-33 renders on the browser.

Figure 4-7. The Employee Search screen with a collapsed border

On clicking the + symbol, the Employee Search and the Employee Search Results panels

are expanded, as you see in Figure 4-8.

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES140

Figure 4-8. The Employee Search screen with the border expanded

Refer to Listing 4-34 for the corresponding Page class.

Listing 4-34. A Page That Uses the Collapsible Border Component

package com.apress.wicketbook.layout;

import wicket.markup.html.WebPage;

public class CollapsibleLinksPage extends WebPage {

public CollapsibleLinksPage() {

add(new CollapsibleBorder("search") {

// Specify the header for the search panel.

public String getHeader() {

return "Employee Search";

}

});

add(new CollapsibleBorder("searchResults") {

// Specify the header for the search results panel.

public String getHeader() {

return "Employee Search Results";

}

});

}

}

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES 141

Summary
In this chapter, you learned how Wicket extends the concept of inheritance supported by

object-oriented languages to template markup as well. Wicket encourages the use of markup

inheritance to provide a common layout and consistent look and feel to the application pages.

You also learned that components can also be decorated using Wicket’s Border class. Note

that you could use Wicket’s Border component as well in place of markup inheritance. But the

latter is easier to work with when it comes to providing a common layout. You also were intro-

duced to some flavors of Link components supported by Wicket. Toward the end, just so you

would have an idea of what Wicket Border components are capable of, you were shown a way

of creating a collapsible Border component.

CHAPTER 4 ■ PROVIDING A COMMON LAYOUT TO WICKET PAGES142

Integration with Other
Frameworks

Up to this point, I have shown you how Wicket handles various aspects of web development.

It’s quite self-sufficient that way, and it ships with all the bells and whistles to tackle enterprise

Java web development requirements. That said, it’s just a web framework, and there will

always be a need to integrate with other frameworks that excel in a particular area that Wicket

doesn’t really address and is probably not even designed for. Wicket nevertheless ships with

quite a few integration modules that give you access to features available in other frameworks.

Accordingly, we will look at Wicket’s integration with templating technologies like FreeMarker

and Velocity. You will see how trivial it is to embed a Velocity or a FreeMarker template in a

Wicket Page. The past couple of years have witnessed the meteoric rise of one particular J2EE

application framework—Spring. In this chapter, you will see how the difference in the design

ideology of Wicket and Spring makes the integration difficult. Having some insight into the

integration problems, you will then be exposed to the Wicket way of getting past these hur-

dles. The discussion that follows assumes that you have some form of familiarity with the

frameworks just listed.

Wicket and Velocity
Velocity is a Java-based templating engine that can be used as an alternative to other templat-

ing technologies, like JSPs. A Velocity template typically consists of static markup interspersed

with some dynamic code that is evaluated at runtime. The template needs to be supplied with

a context object known as VelocityContext (as is typically the case).

While Wicket works with plain-vanilla HTML templates, it integrates with Velocity at a

certain level through the Wicket-Velocity subproject. You can directly embed the Velocity

template in a Wicket page through the wicket.contrib.markup.html.velocity.VelocityPanel

component. It is just a MarkupContainer that accepts the location of the Velocity template

expressed through one of several implementations of wicket.util.resource.IString➥

ResourceStream. You will learn how to use one such implementation, wicket.util.resource.

UrlResourceStream, which allows you to specify the Velocity template location through the

java.net.URL class.

VelocityPanel also needs to be configured with the context (a map) required by the

Velocity template. Let’s look at an example to clarify things a little more.

143

C H A P T E R 5

OBTAINING THE SOURCE

Wicket and all its associated projects employ Maven in order to build a distributable artifact. The Velocity and

FreeMarker integration modules, for example, can be found here—http://svn.sourceforge.net/

viewcvs.cgi/wicket-stuff/trunk/. The Wicket-Spring integration module that we will be looking

at later is available for download here—http://sourceforge.net/project/showfiles.

php?group_id=119783&package_id=182494.

In order to get you started quickly, the book source code ships with the required jar files bundled along

with it.

The Velocity Framework is available for download at http://jakarta.apache.org/velocity/,

while the FreeMarker library can be downloaded from http://freemarker.org/. But you really don’t

have to be downloading their respective jars if you were building using Maven.

The Velocity template to display the books in a tabular format is shown in Listing 5-1. It

just expects to be supplied with a list of Book objects. A Velocity template generally sources its

data from the Velocity context in the form of a Map. Essentially, you need to supply a map

model that maps the list of Book objects to the key bookList.

Listing 5-1. Velocity Template for Displaying Book Details

<table border="1">

<tr>

<th>Title</th>

<th>Author</th>

<th>Publisher</th>

<th>Price</th>

</th>

#foreach ($book in $bookList)

<tr>

<td>$book.title</td>

<td>$book.author</td>

<td>$book.publisher</td>

<td>$book.price</td>

</tr>

#end

</table>

Let’s have a Wicket Page that displays the books for a selected book category using the

same example as the one in Chapter 3 (see Listing 5-2). This example also demonstrates how

you can mix and match Wicket and Velocity components in the same Wicket template.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS144

Listing 5-2. Books.html

<html>

<head><title>Browse Books</title></head>

<body>

<form name="viewBookForm" wicket:id="viewBookForm">

<table>

<tr>

<td>Categories</td>

<td>

<select wicket:id="categories">

<option>J2EE</option>

<option>ASP.NET</option>

<option>Scripting</option>

</select>

</td>

</tr>

</table>

Velocity Panel goes here

</form>

</body>

</html>

The VelocityPanel needs a model to fetch the data for populating the VelocityContext.

Since the data is dependent on the selected book category, you need a model that determines

the model object lazily. You also know that a model allows you to do just that through its

IModel.getObject(Component component) method. So let’s create one. Also, note the usage of

Wicket’s MicroMap class in Listing 5-3. It is an implementation of the java.util.Map interface,

which can only hold a single object. This is particularly useful to control memory usage in

Wicket and particularly makes sense in this case.

Listing 5-3. VelocityPanel Model

import wicket.util.collections.MicroMap;

class BookDetailsModel extends Model {

/* Since the category that is selected isn't known until runtime, you

* need to make use of the indirection introduced by the model. The

* component will call this method on the model every time it needs

* access to the underlying "model object."

*/

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 145

public Object getObject(Component comp) {

Map data = new MicroMap();

// Fetch the books belonging to the selected book category.

data.put("bookList", getBookDao().findBooksForCategory(

getCategory()));

return data;

}

public BookDao getBookDao() {

BookStoreApplication application =

(BookStoreApplication) getApplication();

return application.getBookDao();

}

}

Now that you have the VelocityPanel model in place, let’s put it to work in the Page class

corresponding to the template, as shown in Listing 5-4.

Listing 5-4. The Page Class Corresponding to the Books Template

import wicket.util.resource.UrlResourceStream;

import wicket.contrib.markup.html.velocity.VelocityPanel;

import com.apress.wicketbook.shop.model.BookDao;

import wicket.util.resource.IStringResourceStream;

public class Books extends WebPage{

// By default books belonging to ALL categories will be displayed.

private String category = BookDao.CATEGORY_ALL;

class BookDetailsModel extends Model{

//..

}

public Books() {

Form form = new Form("viewBookForm");

BookDetailsModel bookDetailsModel = new BookDetailsModel();

// The DropDownChoice model is mapped to the Page property

// ("category") and is directly accessed by

// the VelocityPanel model. Therefore, nothing special

// needs to be done in DropDownChoice.onSelectionChanged().

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS146

DropDownChoice categories = new CategoryDropDownChoice("categories",

new PropertyModel(bookDetailsModel, "category"),

getBookCategories());

form.add(categories);

// Read the velocity template in the form of a stream first.

IStringResourceStream velocityTemplateStream =

new UrlResourceStream(getClass().getResource("BookDetails.vm"));

// Initialize VelocityPanel with the stream and the model.

VelocityPanel bookDetailsPanel = new VelocityPanel("bookDetails",

velocityTemplateStream, bookDetailsModel);

form.add(bookDetailsPanel);

bookDetailsPanel.setThrowVelocityExceptions(true);

add(form);

}

public String getCategory() {

return category;

}

public void setCategory(String category) {

this.category = category;

}

public List getBookCategories() {

BookStoreApplication application = (BookStoreApplication)

getApplication();

return application.getBookDao().getSupportedCategories();

}

class CategoryDropDownChoice extends DropDownChoice {

public CategoryDropDownChoice(String id, IModel model,

List choices) {

super(id, model, choices);

}

// You would require a server-side notification when

// the book category is changed.

public boolean wantOnSelectionChangedNotifications() {

return true;

}

}

}

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 147

The page should render as shown in Figure 5-1 on the browser.

Figure 5-1. A page that uses a Velocity template to list all the available books

The VelocityPanel essentially gets the Velocity framework library to process the Velocity

template based on the data passed to it through the BookDetailsModel. Then it just replaces

the tag body content identified by the wicket:id bookDetails with the one generated by

Velocity. That pretty much sums up Wicket’s integration with Velocity. Note that next we will

look at how Wicket integrates with Velocity’s close cousin—FreeMarker.

Wicket and FreeMarker
FreeMarker is another templating engine along the lines of Velocity, albeit more powerful.

On the surface it also requires a template similar to Velocity that abides by FTL (FreeMarker

Templating Language) and a context for the template to render dynamic data. We looked at

the Velocity template BookDetails.vm earlier. Listing 5-5 shows the FreeMarker equivalent.

Listing 5-5. FreeMarker Template for Displaying Book Details—BookDetails.ftl

<table border="1">

<tr>

<th>Title</th>

<th>Author</th>

<th>Publisher</th>

<th>Price</th>

</th>

<#list bookList as book>

<tr>

<td>${book.title}</td>

<td>${book.author}</td>

<td>${book.publisher}</td>

<td>${book.price}</td>

</tr>

</#list>

</table>

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS148

Since wicket.contrib.markup.html.freemarker.FreeMarkerPanel mimics the

VelocityPanel API specifications to quite an extent, you are not required to make any

sweeping changes to the existing Books page to make it work with the FreeMarker

template. The BookDetailsModel, for example, still makes lot of sense. Listing 5-6

presents the code.

Listing 5-6. Books.java Modified to Work with a FreeMarker Template

import wicket.contrib.markup.html.freemarker.FreeMarkerPanel;

public class Books extends WebPage{

//..

public Books(){

IStringResourceStream freemarkerPanelStream =

new UrlResourceStream(getClass().getResource("BookDetails.ftl"));

FreeMarkerPanel bookDetailsPanel = new FreeMarkerPanel("bookDetails",

freemarkerPanelStream, bookDetailsModel);

bookDetailsPanel.setThrowFreeMarkerExceptions(true);

form.add(bookDetailsPanel);

}

//..

}

This concludes the section on Wicket-FreeMarker integration. Note that neither Velocity

nor FreeMarker support Wicket URLs or Form components. They are just there for the sake of

presentation. This integration module makes sense, for example, if you already have a prede-

fined Velocity or FreeMarker template stored in a database.

Let’s move on to discuss Wicket’s integration with the Spring Framework.

The Spring Framework
The Spring Framework is founded on the principles of inversion of control (IoC). It builds a

powerful programming model around POJO (Plain Old Java Object) beans through its aspect-

oriented features. It is also known as a dependency injection (DI) container. Spring is basically

an object factory at its heart—an advanced one at that. An excellent Spring reference is avail-

able if you are looking for in-depth treatment of Spring: Pro Spring by Rob Harrop (Apress,

2005). Spring documentation is a very good source of information on this topic and can be

found here: http://static.springframework.org/spring/docs/1.2.x/reference/index.html.

You can also refer to Martin Fowler’s article on IoC and DI in general here: http://

martinfowler.com/articles/injection.html. Here, I will restrict this discussion to Spring’s

integration with Wicket.

If you want Wicket Pages to take advantage of Spring’s nifty DI capabilities, they need

to integrate with Spring well. But there are some difficulties in this, and we will explore

them next.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 149

Difficulties in Spring Integration
The two main reasons that make Wicket-Spring integration difficult are as follows:

• Wicket is an unmanaged framework.

• Wicket components and models are often serialized.

Let’s take a closer look at these obstacles to Wicket-Spring integrations.

Wicket Is an Unmanaged Framework

As just mentioned, one difficulty in making Wicket and Spring work together stems from the

fact that Wicket is an unmanaged framework. There are lots of managed frameworks out there.

Spring is one such framework, and it offers tremendous capabilities through dependency

injection. Maven is another, and it doesn’t expect a detailed build script, unlike Ant, in order

to build your project. But all good things come at a cost—Maven expects you to organize your

folder structure in a particular way, and as for Spring, it takes away your ability to instantiate

or “do a new” on objects.

It would be appropriate to look at Struts-Spring integration at this point, as this would

help you appreciate the Wicket-Spring integration issue better. In the case of Struts, Action

classes are where all the “action” takes place. The framework expects you to extend the

built-in Action class by overriding the execute method. What it doesn’t allow you to do is

instantiate your Action classes. This ability still rests with the framework. In other words,

Struts RequestProcessor manages the Action classes for you. There is a central point in

the framework where it “does a new” in your stead. The Spring equivalent would be the

ApplicationContext class. The user never instantiates the bean. The context hands it over

to the user on request. The context takes care of all the other details as well.

Spring seems to be a natural fit with such managed frameworks. Struts allows you to con-

figure a different RequestProcessor if required, and Spring takes advantage of it by providing

one. It overrides the processActionCreate() hook method to return an Action class instance

configured in a Spring context, thereby conferring DI capabilities on them. Simply because

you can swap one implementation for the other at the point an initialization needs to be done

and the fact that there is only one place where you need to do it makes the implementation

trivial. Contrary to this, Wicket allows you to instantiate a Page class at any point in the appli-

cation, making it almost impossible to use a Spring-ified Page class transparently to the user.

Earlier, you saw two main reasons that make Wicket-Spring integration difficult. You now have

some idea of the first one. Let’s look at the other.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS150

MANAGED AND UNMANAGED FRAMEWORKS

Managed frameworks are those that manage the life cycle of your objects—they instantiate them, destroy

them, and thereby handle the object life cycle on your behalf. In order to manage your objects, the Frame-

work somehow has to wrap them. Therefore, the preferred model is to work with interfaces and not objects

because interfaces can be easily wrapped with proxies. Such a model makes sense for larger objects like

services—but very little sense for small objects like components. Also, since the instantiation is taken care of

for you, you have very little control over the constructor, so the objects are usually beans. Constructors have

very important properties such as atomicity, and all this is lost in a managed framework when you need to

pass in different parameters to the constructor at different times. In an unmanaged framework, you are in

charge of the object’s life cycle and therefore in control of instantiation.

DI Issue Due to Wicket Model and Component Serialization

Wicket keeps its tree of components in an ISessionStore implementation. It turns out to

be an HTTP session by default. But there is nothing that stops you from storing the session

information in a database or a file, for example. You are just required to provide a custom

ISessionStore implementation. In a clustered environment, session data needs to be repli-

cated across the cluster. This is done by serializing objects in a cluster node’s session and

deserializing them on another cluster node’s session. Dependencies are normally held as

instance variables in a Page. This presents a problem for dependency injection because it is

not desirable to serialize the dependency; dependencies often have references to other

dependencies in the container, and so if one is serialized, it will probably serialize a few others

and can possibly cascade to serializing the entire container. Even if the cascading is not a

problem and the dependency is serialized, when it deserializes, it will no longer be part of the

container—it will be a stand-alone clone. This is also undesirable. Also, a singleton ceases to

remain one after deserialization unless handled with care.

This amply demonstrates the integration issue in regards to component serialization. As

with most cases, Wicket introduces another level of indirection to solve this problem: injecting

an instance of a dynamic proxy into the Page that in turn directs all the calls invoked on it on

to the original Spring object. The injected proxy requires a minimal memory footprint and

contains just enough information to locate the dependency from the context. This is espe-

cially required to keep the serialization impact to a minimum. Wicket employs the dynamic

byte code enhancement capabilities of CGLIB library when proxying a class.

Wicket proposes two distinct approaches to integration with Spring:

• Integration through the framework’s global SpringWebApplication class

• Integration using the @SpringBean Java 5 annotation and the AnnotSpringWebApplication

class

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 151

Accessing the Spring ApplicationContext Through

the WebApplication Class
You know that Wicket applications have a global application object that is a subclass of

Wicket’s WebApplication class. This global application object is created only once per applica-

tion and is never serialized (since it contains no user-specific data and thus remains the

same across all nodes in the cluster). These qualities make it a good candidate to act as a

service locator for the rest of the application. A Spring ApplicationContext is one such

global object factory. If Wicket’s WebApplication class were to be made aware of the Spring

ApplicationContext, this would enable Page classes to access services configured within

Spring. Also, Spring makes its ApplicationContext available to all those beans that implement

the ApplicationContextAware interface, only if they are configured within Spring itself. If this

indeed were the case, how to let WicketServlet know that it needs to pull the WebApplication

from within Spring? As is often the case, most problems in computer science are indeed

solved by having another level of indirection.

Recall from the discussion in Chapter 1 that WicketServet looks for an IWebApplication➥

Factory implementation first under the context param-name applicationFactoryClassName.

The Wicket-Spring module provides such a factory, wicket.spring.SpringWebApplication➥

Factory, that, instead of creating an instance of WebApplication, pulls it out of the Spring

application context. Wicket keeps the instance of the application object in a Threadlocal

variable and provides various helper methods in components to get to it, so that it is easy to

retrieve dependencies in Wicket components. When adopting this approach, the dependen-

cies are not held as instance variables in the Page that requires access to them. The Page

instead does a lookup on the WebApplication class to resolve the dependencies.

The web.xml needs to register Spring’s ContextLoaderListener listener class, which also

needs to know the location of the Spring application context configuration file (see Listing 5-7).

ContextLoaderListener then initializes the Spring ApplicationContext, passing in the configu-

ration file content. This is the default Spring set up for initializing the ApplicationContext.

Listing 5-7. web.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

<display-name>wicket-spring-examples</display-name>

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS152

<!-- Spring's ContextLoader will look for Spring xml files specified here -->

<!--

Spring by default looks for a file named applicationContext.xml under the

WEB-INF folder.

This default configuration is therefore commented.

<context-param>

<param-name>contextConfigLocation</param-name>

<param-value>/WEB-INF/applicationContext.xml</param-value>

</context-param>

-->

<!--

Spring ships with this listener that loads the above

applicationContext.xml and binds it

to the servlet context that is later used by SpringWebApplicationFactory

to look up SpringWebApplication.

-->

<listener>

<listener-class>

org.springframework.web.context.ContextLoaderListener

</listener-class>

</listener>

<servlet>

<servlet-name>BookStoreApplication</servlet-name>

<servlet-class>wicket.protocol.http.WicketServlet</servlet-class>

<init-param>

<param-name>applicationFactoryClassName</param-name>

<param-value>wicket.spring.SpringWebApplicationFactory</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>BookStoreApplication</servlet-name>

<url-pattern>/integration/*</url-pattern>

</servlet-mapping>

</web-app>

Figure 5-2 depicts the sequence of events just discussed.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 153

Figure 5-2. How Wicket configures itself with a WebApplication configured within a

Spring context

“Programming to an interface” is always a good thing. It allows you to swap the under-

lying interface implementation transparently to the clients of the interface. The fact that it

facilitates test-driven development is all the more reason that you religiously follow it (wher-

ever applicable). This is one of the underlying principles of working with Spring. Currently you

have a BookDao that maintains an in-memory list of books. So let’s decouple the implementa-

tion from the interface specification so that later you can swap it for an implementation that

works with a database, for example (see Listing 5-8). Even though you started off with the

implementation first, a quick look at the refactoring catalog (http://refactoring.com/

catalog/index.html) tells you that applying the extract interface refactoring should get you

the interface specification you are looking for. Most of the IDEs support this refactoring

method. This is what you are likely to end up with if you accept the default behavior—i.e.,

all methods in the implementation class will show up in the “extracted” interface.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS154

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 155

Listing 5-8. IBookDao

package com.apress.wicketbook.shop.model;

import java.util.List;

public interface IBookDao {

// Move the constants to the interface so that

// it will be visible to all the DAOs.

/* Some Publishers */

public static String APRESS = "Apress";

public static String MANNING = "Manning";

public static String OREILLY = "Oreilly";

/* Some categories */

public static String CATEGORY_J2EE = "J2EE";

public static String CATEGORY_SCRIPTING = "Scripting";

public static String CATEGORY_ALL = "All";

public static String[] categories = new String[] {

CATEGORY_J2EE, CATEGORY_SCRIPTING, CATEGORY_ALL };

public void addBook(Book book);

public Book getBook(int id);

public List getBooksForCategory(String category, int start, int count);

public int getBookCount(String category);

public List findBooksForCategory(String category);

public List findAllBooks();

public List getAllCategories();

public List getSupportedCategories();

}

Accordingly, you will get the Page class to program to IBookDao instead of BookDao, as

shown in Listing 5-9.

Listing 5-9. Books.java

public class Books extends WebPage {

class BookDetailsModel extends Model {

public Object getObject(Component comp) {

Map data = new HashMap();

data.put("bookList", getBookDao().findBooksForCategory(

getCategory()));

return data;

}

public IBookDao getBookDao() {

BookStoreApplication application = (BookStoreApplication)

getApplication();

return application.getBookDao();

}

} //..

}

The custom application class needs to extend wicket.spring.SpringWebApplication

provided by Wicket (see Listing 5-10).

Listing 5-10. Spring-ified BookStoreApplication Class

package com.apress.wicketbook.integration;

import wicket.spring.SpringWebApplication;

import com.apress.wicketbook.shop.model.IBookDao;

public class BookStoreApplication extends SpringWebApplication {

// This dependency will be resolved by Spring during instantiation.

private IBookDao bookDao;

// Use Spring's setter injection technique to have the dependency resolved.

public void setBookDao(IBookDao bookDao){

this.bookDao = bookDao;

}

public IBookDao getBookDao(){

return bookDao;

}

//

}

Since you want the BookStoreApplication class to be “Spring-aware,” you need to config-

ure it within the Spring configuration file. Note that the you can specify any value for the id

attribute identifying the WebApplication. Wicket’s SpringWebApplicationFactory class looks for

a bean of type WebApplication in Spring’s ApplicationContext, shown in Listing 5-11, and uses

that as the application-specific WebApplication class. If more than one WebApplication class is

found in the ApplicationContext, it will result in a runtime error.

Listing 5-11. applicationContext.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS156

<beans>

<bean id="bookDao" class="com.apress.wicketbook.shop.model.BookDao"/>

<!-- setup wicket application -->

<bean id="wicketApplication"

class="com.apress.wicketbook.integration.BookStoreApplication">

<property name="bookDao" ref="bookDao"/>

</bean>

</beans>

Spring looks for the XML configuration file by the name applicationContext.xml by

default under the context/WEB-INF folder.

The location and name of the application context file is immaterial as long as you let the

ContextLoaderListener know where to find it. In fact, you could specify more than one appli-

cation context file as well. But discussing that is beyond the scope of this book. For now, save

your applicationContext.xml in the context/WEB-INF folder.

CUSTOM APPLICATION CLUTTER

One disadvantage of treating the Application class as a global registry is that the CustomApplication

class is likely to get cluttered with getters and setters as the number of service objects that the Page

depends upon increases.

Note that access to Spring’s ApplicationContext is just one method call away: SpringWeb➥

Application.internalGetApplicationContext(). You have access to the ApplicationContext as

SpringWebApplication implements Spring’s ApplicationContextAware interface. If you intend

to use this context class, you wouldn’t be required to specify the IBookDao dependency in your

Page class. You can directly pull it out of the ApplicationContext as shown in Listing 5-12.

Listing 5-12. BookStoreApplication Accessing BookDao Through Spring’s ApplicationContext

import org.springframework.context.ApplicationContext;

public class BookStoreApplication extends SpringWebApplication {

public IBookDao getBookDao(){

ApplicationContext springApplicationContext =

getSpringApplicationContext();

return (IBookDao)springApplicationContext.getBean("bookDao");

}

public ApplicationContext getSpringApplicationContext(){

return internalGetApplicationContext();

}

}

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 157

One advantage of this is that depending upon the way the BookDao class is configured

in the Spring context file (singleton or prototype), you can return a different instance of the

BookDao class for every method call. Note that if you were to specify the BookStoreApplication’s

IBookDao dependency in the Spring context file, you will, by virtue of the fact that there is

only one instance of the WebApplication class per web application, end up with a singleton

instance of the BookDao class.

Even though the preceding solution works well, the Page class still needs to “pull” data

from the WebApplication class. Hence this falls under the category of dependency lookup

rather than dependency injection—i.e., the control still remains uninverted. Luckily, this is not

so much of a problem, as Wicket ships an IoC solution for Spring integration, and we shall dis-

cuss that next.

Configuring Injection Through an

IComponentInstantiationListener Implementation
For enabling IoC on the Page, you need a way by which you can resolve the dependencies

without doing an explicit lookup. You also need to make sure that the fields that need

their dependencies resolved are pointing to valid Spring bean references before the Page

constructor executes. That way their services can be employed by other components when

constructing the Page. Wicket’s IComponentInstantiationListener has been specifically

designed to support such custom processing during component instantiation. An

IComponentInstantiationListener implementation when registered with Wicket’s Application

class gets called whenever a component is instantiated. (In Chapter 3, you saw how Wicket

addresses the component authorization/authentication centrally though the same interface.)

Wicket supplies an implementation, wicket.injection.ComponentInjector, that resolves

dependencies during component construction. This of course needs to be registered with

the Wicket’s Application class.

In practice, you don’t need to be doing all this. It’s automatically taken care of as long as

your Application class extends the appropriate WebApplication subclass that ships with

Wicket—wicket.spring.injection.annot.AnnotSpringWebApplication.

LIGHTWEIGHT MODEL AND PAGE

Irrespective of whether you use Spring with Wicket or not, it’s still a good Wicket programming practice to

keep Page and Wicket model classes as lightweight as possible.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS158

WICKET-SPRING INTEGRATION THROUGH AOP

Employing aspect-oriented programming (AOP) implementations like AspectJ to intercept the new operator is

also a possible solution for the Spring-Wicket integration problem. But it appears that the Wicket developers

have steered clearly away from introducing another framework to address this problem. Also, Spring 2.0 is

likely to ship with the ability to dependency inject domain objects created using the new operator. It remains

to be seen how Wicket can benefit from this feature. AspectJ In Action by Ramnivas Laddad (Manning, 2003)

is an excellent source to learn about AOP in general and AspectJ in particular.

The ComponentInjector makes use of the wicket.injection.Injector subclass to do the

actual DI. It first introspects all the fields of a component (which is a Page in this case) and

then looks up the Spring ApplicationContext, asking for the object that maps to the field

name or the type, and if found, sets it as the value for the field. It does this through Java

reflection.

Specifying Target Field for Dependency Injection
If you notice, there is still an issue with the preceding Injector implementation. It has no way

of knowing the fields that actually require dependency injection. What is required is an ability

to specify which fields are interested in having their dependencies resolved through the

Injector. Essentially, what you need is a way to specify meta information about the field itself.

Injector can then infer from the meta information whether the field requires DI and move

from there. Java 5 made a giant leap in that regard by providing annotations—a way to specify

metadata on top of your code. What you need here is an annotation that needs to be retained

in the Java class file for runtime introspection and something that can be supported on a Java

instance variable. Wicket’s wicket.spring.injection.annot.SpringBean annotation satisfies all

of the preceding requirements (see Listing 5-13).

Listing 5-13. SpringBean.java

package wicket.spring.injection.annot;

import java.lang.annotation.Documented;

import java.lang.annotation.ElementType;

import java.lang.annotation.Retention;

import java.lang.annotation.RetentionPolicy;

import java.lang.annotation.Target;

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 159

@Retention(RetentionPolicy.RUNTIME)

@Target({/* ElementType.METHOD, */ElementType.FIELD})

@Documented

public @interface SpringBean {

/**

* Optional attribute for specifying the name of the bean.

* If not specified,the bean will be looked up by the type

* of the field with the annotation.

*

* @return name attr

*/

String name() default "";

}

Injector now knows that only those fields that carry @SpringBean need to be dependency

injected.

You could configure Injector with any kind of object factory. The Wicket-Spring module

provides nice abstractions to achieve a good level of loose coupling. Today you have imple-

mentation to support Spring integration. You can contribute one for HiveMind, for example.

(HiveMind is another IoC container like Spring and is available for download here: http://

jakarta.apache.org/hivemind/.)

DI AND FIELD INITIALIZATION

Never set the field that requires dependency injection explicitly to null. Note that the dependency injection

happens from within the base class (wicket.Component) constructor (IComponentInstantiation➥

Listeners are called within the wicket.Component class constructor.) In Java, a derived class is initial-

ized after the super class initialization is complete. If the derived class’s instance variables are explicitly

initialized to null, all the work done by ComponentInjector will boil down to nothing since the former’s

initialization process will kick in after ComponentInjector is done with its work. This will result in the

references being set back to null.

Specifying Spring Dependency Through Java 5

Annotation
If you like the DI method that we discussed earlier, you need to be doing the following:

• Extend your application class from Wicket-Spring’s AnnotSpringWebApplication class.

This class takes care of configuring Wicket’s AnnotSpringInjector, which injects class

based on annotation. It also makes sure that wicket.injection.ComponentInjector is

registered as an IComponentInstantiationListener.

• Annotate the fields that require DI with the wicket.spring.injection.annot.

SpringBean annotation.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS160

• Configure SpringWebApplicationFactory as the Application factory class in web.xml.

• Configure your AnnotSpringWebApplication subclass in applicationContext.xml.

@SpringBean annotation accepts an optional attribute for specifying the name of the bean

as identified in Spring’s XML configuration or ApplicationContext. If not specified, the bean

will be looked up based on the Java type of the field with the annotation (see Listing 5-14).

Listing 5-14. AnnotBookStoreApplication Setup for Spring Annotations

package com.apress.wicketbook.integration;

import wicket.spring.injection.annot.AnnotSpringWebApplication;

public class AnnotBookStoreApplication extends AnnotSpringWebApplication{

public ISessionFactory getSessionFactory() {

return new ISessionFactory() {

public Session newSession() {

return new BookStoreSession(AnnotBookStoreApplication.this);

}

};

}

public Class getHomePage() {

// You will be developing this class next.

return BooksWithDI.class;

}

}

Now that you have the WebApplication class ready, you just need to specify the

@SpringBean annotation on the fields that require DI. Rest assured that by the time the Page is

instantiated, all dependencies will have been wired up. Since dependency injection happens

before the Page constructor actually executes, you can access the Spring-annotated instance

variable safely within the Page.

Listing 5-15 presents the modified Books page with Spring-annotated variables. Note that

you need not look up the BookStoreApplication class any longer to access the DAO object. It

automatically gets injected for you. Note that the class presented in Listing 5-15 and the tem-

plate (see Listing 5-16) is same as the ViewBooks class that you developed in Chapter 3. The

significant difference lies in the way BookDataProvider accesses the DAO. Earlier, it was doing

a static look up from the ThreadLocal variable:

public class BookDataProvider implements IDataProvider{

//..,

private BookDao getBookDao(){

return ((BookStoreApplication)Application.get()).getBookDao();

}

//..

}

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 161

Listing 5-15. BookWithDI.java—A Page That Carries @SpringBean Annotations

import wicket.spring.injection.annot.SpringBean;

public class BooksWithDI extends WebPage {

private String category = BookDao.CATEGORY_ALL;

// Get IBookDao injected from Spring Application context.

@SpringBean private IBookDao bookDao;

// @SpringBean private IBookDao bookDao = null; -> Avoid this by all means!

//..

public BooksWithDI() {

Form form = new Form("viewBookForm");

// Pass the reference of the injected Spring Object.

IDataProvider dataProvider = new BookDataProvider(bookDao);

form.add(new BookDataView("books",dataProvider));

// Directly look up categories using bookDao.

DropDownChoice categories = new CategoryDropDownChoice("categories",

new PropertyModel(this, "category"), bookDao.getAllCategories());

form.add(categories);

//..

}

class BookDataView extends DataView{

public BookDataView(String id,

IDataProvider dataProvider) {

super(id, dataProvider);

}

protected void populateItem(final Item item) {

Book book = (Book) item.getModelObject();

item.setModel(new CompoundPropertyModel(book));

item.add(new Label("title"));

item.add(new Label("author"));

item.add(new Label("publisher"));

item.add(new Label("price"));

}

}

// Note that the helper method getBookCategories() is not needed any longer.

}

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS162

Listing 5-16. BookWithDI.html

<html>

<head>

<title>Browse Books</title>

</head>

<body>

<form name="viewBookForm" wicket:id="viewBookForm">

<table>

<tr>

<td>Categories</td>

<td>

<select wicket:id="categories">

<option>J2EE</option>

<option>ASP.NET</option>

<option>Scripting</option>

</select>

</td>

</tr>

</table>

<table border="1">

<!-- The column headers have been ignored -->

<tr wicket:id="books">

<td>[Book Title]</td>

<td>[Book Author]</td>

<td>[Book Publisher]</td>

<td>[Book Price]</td>

</tr>

</table>

</form>

</body>

</html>

You can do something along the lines of Listing 5-17 instead. It is important that the DAO

passed to the data provider be a proxy from Wicket-Spring integration module when used in

production environment. This is necessary to avoid the issue that could arise out of Wicket

model and component serialization that we discussed earlier. The proxy obtained from

Wicket’s Injector only serializes information it needs to locate the DAO when it is deserialized

instead of serializing the DAO itself.

Listing 5-17. BookDataProvider Directly Storing a Reference to the DAO

public class BookDataProvider implements IDataProvider{

private String category;

// Make sure that this points to a Proxy as returned from

// Wicket's Injector.

private IBookDao bookDao;

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 163

public BookDataProvider(IBookDao bookDao,String category){

this.category = category;

this.bookDao = bookDao;

}

public BookDataProvider(IBookDao bookDao){

this(bookDao,BookDao.CATEGORY_ALL);

}

//..

}

Spring Integration Through Commons Attributes
You saw how succinct Wicket-Spring integration through Java 5 annotation is. But not every

project under the sun gets to use Java 5 as the base platform. It might still be using a Java ver-

sion that shipped prior to Java 5. In order to please everyone, Wicket now has support for

Spring integration through Commons Attributes as long as one doesn’t mind the “attribute

compilation” step required by the Jakarta utility. Instead of specifying @wicket.spring.

injection.annot.SpringBean Java 5 annotation as suggested in the previous section, you

need to annotate the field with the @@wicket.spring.injection.cattr.SpringBean Commons

Attribute as a Javadoc-like tag (see Listing 5-18).

Listing 5-18. BooksWithDI.java When Used in Conjunction with Commons Attributes

public class BooksWithDI extends WebPage {

/**

* @@wicket.spring.injection.cattr.SpringBean("bookDao")

*/

private IBookDao bookDao;

//..

}

This time around, your Application class needs to extend the wicket.spring.injection.

cattr.CommonsAttributeSpringWebApplication class though. One of the primary reasons you

program to the IBookDao interface is that it allows you to switch the DAO implementation in a

transparent fashion.

The BookDao class that you looked at just holds onto the book references in memory. Let’s

consider a persistent solution instead.

How Wicket Integrates with EJB 3
In this section, you will look at one of the ways of integrating an enterprise-level persistence

solution like EJB 3 with Wicket. Hibernate is used as the EJB 3 implementation in the

examples.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS164

A Quick EJB 3 Entity Bean Refresher

EJB3 entity beans are just plain POJOs that represent persistent domain entities. “User,” “Sales

Order,” and “Catalog Item” are typical examples of concepts that make up a domain model

and are prime candidates to be persisted to a back-end store. Typically, the bean attributes

map to the columns of the table, and this mapping is expressed through Java 5 annotations.

These annotations in turn are defined by the EJB 3 Java Persistence Architecture (JPA) specifi-

cations. An XML descriptor file could also be used to specify the “bean attribute to database

column” mapping information. You can use the XML descriptor entries to override the anno-

tations specified in the bean class as well. The backing EJB implementation then generates the

appropriate database SQL queries based on the information you specify using annotations.

The container runs these queries transparently to the client in response to the calls executed

on the bean. You just deal with the POJOs and class associations while the container takes care

of the interactions with the back-end store. For a thorough discussion on JPA, you could refer

to Pro EJB 3: Java Persistence API by Mike Keith and Merrick Schincariol (Apress, 2006).

Choosing an EJB3 Implementation

JPA is after all a specification, and to actually see it working, you require an implementation.

At the time of writing this book, Hibernate 3 was one of the more popular implementations

of JPA, and thus it is used in this chapter. The EJB 3 support is available as three separate

downloads:

1. Hibernate Core

2. Hibernate Annotations

3. Hibernate EntityManager

These libraries are available for download at http://hibernate.org. At the time of

writing this chapter, the Hibernate–EJB 3 release was not final. The following versions were

known to support EJB JPA—Hibernate-3.2.0.cr2, Hibernate-annotations-3.2.0.CR1, and

Hibernate-entitymanager-3.2.0.CR1. You would require all the jar files that come with each

of these libraries.

If Eclipse is your IDE of choice, then it would be a good idea to define a User_Library vari-

able to add all the required Hibernate jar files to the web application classpath.

Now that you understand what an EJB 3 entity bean is and have downloaded an imple-

mentation as well, the next logical step would be to actually code the bean class.

Listing 5-19 represents the Book entity that you have been using throughout. It uses the

following JPA annotations:

Annotation Description

@Entity A class-level annotation to mark a class as an EJB 3 entity bean

@Table Annotation to provide the backing database table information

@Basic Simplest type of mapping to database column

@Column Annotation for providing the table column name and column constraints

@Id Primary key that uniquely identifies the entity

@GeneratedValue Annotation for specifying the generation strategies for values of primary keys

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 165

There is a very high probability that you will use a database as the persistence store for

the majority of the applications that you develop. The EJB 3 container will then generate the

required Entity bean-to-database mapping, the SQL queries to manage the actual persistence

to the back end, etc., based on the Java 5 annotations that you specify on the POJO. Note that

not all annotations in the Listing 5-19 have to be necessarily supplied. The underlying JPA

implementation is very likely to provide for “intelligent defaults” in the absence of certain

annotations.

Listing 5-19. Book Bean Converted to EJB 3 Entity Bean Using annotationspackagecom.

apress.wicketbook.shop.model;

import java.io.Serializable;

/** EJB3 imports **/

import javax.persistence.Basic;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name="Book")

public class Book implements Serializable {

@Id

@GeneratedValue(strategy=GenerationType.AUTO)

protected int id;

@Basic

@Column(name="TITLE", nullable=false,updatable=false)

protected String title;

@Basic

@Column(name="AUTHOR", nullable=false,updatable=false)

protected String author;

@Basic

@Column(name="PRICE", nullable=false,updatable=true)

protected float price;

@Basic

@Column(name="PUBLISHER", nullable=false,updatable=false)

protected String publisher;

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS166

@Basic

@Column(name="CATEGORY", nullable=false,updatable=false)

protected String category;

public Book(){ }

/** The rest is the same as the Book class you developed in Chapter 3 **/

//..

}

This is not all; you still have to provide a little more information before you can have a

fully functioning EJB 3 entity bean. JPA defines an EntityManager interface that manages

entities within a persistence context. The set of entities that can be managed by a given

EntityManager instance is defined by a persistence unit. A persistence unit defines the set

of all classes that are related or grouped by the application, and that must be colocated in

their mapping to a single database.

A persistence.xml file defines a persistence unit. It may be used to specify managed per-

sistence classes included in the persistence unit, object/relational mapping information for

those classes, and other configuration information for the persistence unit and for the entity

manager(s) and entity manager factory for the persistence unit. The persistence.xml file is

usually located in the META-INF directory of the root of the persistence unit.

Defining the persistence.xml

The persistence.xml in Listing 5-20 does the following:

1. Identifies the persistence unit as "wicketPersistenceManager".

2. Specifies the transaction setting as Local Transaction. You might want to switch to a

JTA implementation when running in a J2EE container.

3. Identifies the entity bean by specifying the fully qualified class name.

4. Configures Hibernate to work with HSQLDB.

Listing 5-20. persistence.xml As Required by EJB 3 Specification

<persistence>

<persistence-unit name="wicketPersistenceManager" transaction-

type="RESOURCE_LOCAL">

<!--the bean that needs to be persisted -->

<class>com.apress.wicketbook.shop.model.Book</class>

<!--

Vendor specific properties goes here. You will use Hibernate3 EJB3

implementation with HSQL Db configured

-->

<properties>

<property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>

<property name=

"hibernate.connection.driver_class"value="org.hsqldb.jdbcDriver"/>

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 167

<property name="hibernate.connection.username" value="sa"/>

<property name="hibernate.connection.password" value=""/>

<property name="hibernate.connection.url" value="jdbc:hsqldb:."/>

<property name="hibernate.max_fetch_depth" value="3"/>

<property name="hibernate.hbm2ddl.auto" value="create-drop"/>

<property name="hibernate.show_sql">true</property>

<property name="hibernate.jdbc.batch_size" value="0"/>

</properties>

</persistence-unit>

</persistence>

Make sure that you place persistence.xml in the src/META-INF folder. The information

specified in Listing 5-20 is enough to get a minimalistic Hibernate EJB 3 configuration up and

running. You could term the EntityManager class as the gateway to the interaction with the

entity. In addition to several other features, it has methods to persist, find, and delete entities

from the persistence store. The example in Listing 5-21 also makes use of EJB Query Language

(EJBQL), which is quite similar to standard SQL. EJBQL works on entities, associations, and

properties instead of database tables and columns.

Listing 5-21. IBookDao Implementation Using Hibernate 3

package com.apress.wicketbook.integration;

import java.util.Arrays;

import java.util.List;

// EJB 3 imports

import javax.persistence.EntityManager;

import javax.persistence.EntityManagerFactory;

import javax.persistence.EntityTransaction;

import javax.persistence.Query;

import com.apress.wicketbook.shop.model.Book;

import com.apress.wicketbook.shop.model.IBookDao;

public class HibernateBookDao implements IBookDao {

private EntityManagerFactory entityManagerFactory;

public HibernateBookDao(EntityManagerFactory entityManagerFactory) {

this.entityManagerFactory = entityManagerFactory;

addBook(new Book("Rob Harrop", CATEGORY_J2EE, "Pro Spring", 30.00f,

APRESS));

addBook(new Book("Damian Conway", CATEGORY_SCRIPTING,

"Object Oriented Perl", 40.00f, MANNING));

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS168

addBook(new Book("Alex Martelli", CATEGORY_SCRIPTING,

"Python in a Nutshell", 35.00f, OREILLY));

addBook(new Book("Alex Martelli", CATEGORY_SCRIPTING,

"Python Cookbook", 35.00f, OREILLY));

}

private EntityManager getEntityManager() {

return getEntityManagerFactory().createEntityManager();

}

public void addBook(final Book book) {

EntityManager manager = getEntityManager();

EntityTransaction trans = manager.getTransaction();

try{

trans.begin();

manager.persist(book);

trans.commit();

}catch(Exception e){

trans.rollback();

}finally{

manager.clear();

manager.close();

}

}

public Book getBook(final int id) {

EntityManager manager = getEntityManager();

try {

return manager.find(Book.class, new Integer(id));

} finally {

manager.close();

}

}

public List getBooksForCategory(String category, int start, int count) {

EntityManager manager = getEntityManager();

try {

Query query = manager.createQuery(

" select book from Book book where book.category=?1")

.setParameter(1, category).setFirstResult(start).setMaxResults(count);

return query.getResultList();

} finally {

manager.close();

}

}

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 169

public int getBookCount(String category) {

EntityManager manager = getEntityManager();

try {

Query query = manager

.createQuery("select count(*) from Book where category = ?1");

query.setParameter(1, category);

return ((Integer) query.getSingleResult()).intValue();

} finally {

manager.close();

}

}

public List findBooksForCategory(String category) {

EntityManager manager = getEntityManager();

if (CATEGORY_ALL.equals(category)){

return findAllBooks();

}

try {

Query query = manager

.createQuery("select book from Book as book where book.category = ?1");

query.setParameter(1, category);

return query.getResultList();

} finally {

manager.close();

}

}

public List findAllBooks() {

EntityManager manager = getEntityManager();

try {

return manager.createQuery("select book from Book as book")

.getResultList();

} finally {

manager.close();

}

}

public List getAllCategories() {

return null;

}

public List getSupportedCategories() {

return Arrays.asList(categories);

}

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS170

public List getSearchResult(String bookNameStartsWith) {

EntityManager manager = getEntityManager();

try {

String strQuery = " select book from Book as book where book.title like ?1% ";

Query query = getEntityManager().createQuery(strQuery);

query.setParameter(1, bookNameStartsWith);

return query.getResultList();

} finally {

manager.close();

}

}

public EntityManagerFactory getEntityManagerFactory() {

return entityManagerFactory;

}

}

Note that the EntityManagerFactory interface is used by the application to obtain an

application-managed entity manager and needs to be injected as well. Listing 5-22 shows

how this can be done. Only one instance of EntityManagerFactory should exist per applica-

tion. Spring’s ObjectFactory class allows us to do just that. When Spring notices that a bean

depends on an ObjectFactory and not a bean reference directly, it calls the ObjectFactory.

getObject() method to fetch the actual bean reference. Refer to Listing 5-23 for one such

implementation.

Listing 5-22. EntityManageFactoryObjectFactory That Returns the EntityManagerFactory

Implementation

package com.apress.wicketbook.integration;

import javax.persistence.EntityManagerFactory;

import javax.persistence.Persistence;

import org.springframework.beans.BeansException;

import org.springframework.beans.factory.BeanCreationException;

import org.springframework.beans.factory.ObjectFactory;

public class EntityManageFactoryObjectFactory implements ObjectFactory {

private EntityManagerFactory entityManagerFactory;

public Object getObject() throws BeansException {

/*

* Only one instance of EntityManagerFactory should exist per

* application

*/

if (entityManagerFactory != null)

return entityManagerFactory;

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 171

try {

entityManagerFactory = Persistence

.createEntityManagerFactory("wicketPersistenceManager");

return entityManagerFactory;

} catch (Throwable ex) {

throw new BeanCreationException(

"Error creating EntityManagerFactory ", ex);

}

}

}

Listing 5-23. applicationContext.xml for IBookDao Implementation Using Spring 1.2 and EJB 3

Based on Hibernate

<beans>

<bean id="Ej3BookDao"

class="com.apress.wicketbook.integration.HibernateBookDao">

<!--HibernateBookDao specifies its dependency on an ObjectFactory

implementation -->

<constructor-arg><ref bean="entityManagerFactoryObjectFactory"/> ➥

</constructor-arg>

</bean>

<!-- setup wicket application -->

<bean id="wicketApplication"

class="com.apress.wicketbook.integration.AnnotBookStoreApplication"/>

<bean id="entityManageFactoryObjectFactory"

class="com.apress.wicketbook.integration.EntityManageFactoryObjectFactory"/>

</beans>

How Spring 2.0 Further Simplifies EJB 3

Programming
Even though programming to the EJB 3 persistence API (also known as Java Persistence Archi-

tecture, or JPA) is way simpler compared to its 2.1 counterpart, it is still tedious to be repeating

the redundant code that deals with EntityManager lookup, query creation, and subsequent

cleanup. Listing 5-21 demonstrates this problem. At the time of writing this chapter, Spring 2.0

M5 had built-in support for JPA. As is the case with Spring, the EJB 3 support doesn’t mean

that Spring 2.0 ships with a JPA implementation. It instead provides support through its

library classes like JpaTemplate, JpaCallback, and JpaDaoSupport.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS172

For more information on Spring 2.0’s JPA support, refer to the info at this URL: http://

static.springframework.org/spring/docs/2.0.x/reference/orm.html#orm-jpa.

Spring also has a JpaDaoSupport class that your DAO can subclass. This class has lots of

helper methods that give you access to the persistent store. It allows access to the JpaTemplate

class through the getJpaTemplate() method. This way you can still perform operations that

require access to the EntityManager, for example (see Listing 5-24).

Listing 5-24. IBookDao Implementation Using Spring 2.0 and EJB 3 Based on Hibernate

package com.apress.wicketbook.integration;

// Other imports

// Spring 2.0 imports

import org.springframework.orm.jpa.JpaCallback;

import org.springframework.orm.jpa.support.JpaDaoSupport;

public class Spring2EJB3BookDao extends JpaDaoSupport implements IBookDao{

public void addBook(final Book book) {

getJpaTemplate().persist(book);

}

public Book getBook(final int id) {

return getJpaTemplate().find(Book.class, new Integer(id));

}

public List getBooksForCategory(final String category, final int start,

final int count) {

return (List) getJpaTemplate().execute(

new JpaCallback() {

public Object doInJpa(EntityManager manager)

throws PersistenceException {

Query query = manager.createQuery(

" select book from Book book where book.category=?1")

.setParameter(1, category).setFirstResult(start)

.setMaxResults(count);

return query.getResultList();

}

}

);

}

public int getBookCount(final String category) {

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 173

Integer count = (Integer)getJpaTemplate().execute(new JpaCallback() {

public Object doInJpa(EntityManager manager)

throws PersistenceException {

Query query = manager

.createQuery("select count(*) from Book where category = ?1");

query.setParameter(1, category);

return query.getSingleResult();

}

});

return count.intValue();

}

public List findBooksForCategory(String category) {

return getJpaTemplate().find(

"select book from Book as book where book.category = ?1",

category);

}

public List findAllBooks() {

return getJpaTemplate().find("select book from Book as book");

}

// Other method implementations are not shown here but are available in the book's

// source code.

/*

* Concrete subclasses can override this for custom initialization behavior.

* Gets called after population of this instance's bean properties by Spring's

* JpaDaoSupport class. In this case, the Dao initialization routine goes here.

*

*/

protected void initDao(){

addBook(new Book("Rob Harrop", CATEGORY_J2EE, "Pro Spring", 30.00f,

APRESS));

addBook(new Book("Damian Conway", CATEGORY_SCRIPTING,

"Object Oriented Perl", 40.00f, MANNING));

addBook(new Book("Ted Husted", CATEGORY_J2EE, "Struts In Action",

40.00f, MANNING));

addBook(new Book("Alex Martelli", CATEGORY_SCRIPTING,

"Python in a Nutshell", 35.00f, OREILLY));

addBook(new Book("Larry Wall", CATEGORY_SCRIPTING, "Programming Perl",

35.00f, OREILLY));

addBook(new Book("Alex Martelli", CATEGORY_SCRIPTING,

"Python Cookbook", 35.00f, OREILLY));

}

}

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS174

But you need to configure the JpaDaoSupport class with an EntityManagerFactory

instance, however. This is a classic case for using Spring dependency injection. Accordingly,

you need to declare the EntityManageFactory and then wire it into JpaDaoSupport through the

Spring configuration file (see Listing 5-25).

Listing 5-25. Spring applicationContext.xml Configured with Spring2Hibernate3BookDao

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"

"http://www.springframework.org/dtd/spring-beans.dtd">

<beans>

<!-- Declare the EJB3-compliant Dao -->

<bean id="Ej3Spring2BookDao"

class="com.apress.wicketbook.integration.Spring2Hibernate3BookDao">

<!-- Spring's JpaDaoSupport needs a reference to the

EntityManagerFactory -->

<property name="entityManagerFactory" ref="entityManagerFactory"/>

</bean>

<!-- LocalEntityManagerFactoryBean will look for the presence of

META-INF/persistence.xml in classpath by default -->

<bean id="entityManagerFactory"

class="org.springframework.orm.jpa.LocalEntityManagerFactoryBean">

<!-- The persistence unit to look for in the persistence.xml. Remember you named

it 'wicketPersistenceManager' -->

<property name="persistenceUnitName" value="wicketPersistenceManager"/>

</bean>

<!-- Set up Wicket application -->

<bean id="annotWicketApplication"

class="com.apress.wicketbook.integration.AnnotBookStoreApplication"/>

</beans>

You will notice that the Page injection errors out on container restart! But this shouldn’t

get you worried. Wicket’s Spring injector, by default, looks for a bean based on the Java type of

the field that carries the @SpringBean annotation. If more than one implementation is found

in the Spring’s ApplicationContext for a given type, Wicket-Spring throws an error to the same

effect. So it’s very reassuring that Wicket’s Spring injector actually detects the conflict and

reports the error. Now there are couple of solutions to address this trivial problem: you can

either remove the reference to the BookDao bean from the Spring configuration file or supply

the bean ID Ej3Spring2BookDao to the @SpringBean annotation explicitly. Listing 5-26 shows

how this can be done.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS 175

Listing 5-26. persistence.xml As Required by the EJB 3 Specification

package com.apress.wicketbook.integration;

public class BooksWithDI extends WebPage {

@SpringBean(name="Ej3Spring2BookDao") private IBookDao bookDao;

Summary
In this chapter, we looked at how Wicket integrates with other frameworks, namely Velocity,

FreeMarker, and Spring. We looked at Velocity and FreeMarker integration through

VelocityPanel and FreemarkerPanel, respectively. Then we discussed the all-important

integration with the popular J2EE application framework Spring. You learned the difficulties

in making them work together.

You saw that Wicket’s integration with Spring through the SpringWebApplication class

amounts to dependency pull, and that it also provides for a nonintrusive, consistent IoC solu-

tion through the use of the AnnotSpringWebApplication class and SpringBean annotation. Then

you looked at Spring–EJB 3 integration using Hibernate 3. You also had a sneak peek at EJB 3

support built into Spring 2.0 through the JpaDaoSupport and JpaTemplate classes.

Note that Wicket integrates well with frameworks other than the ones listed in this chapter.

The ones discussed here should serve as a good starting point for understanding others.

CHAPTER 5 ■ INTEGRATION WITH OTHER FRAMEWORKS176

Localization Support

Internationalization is a vast topic on its own, and this chapter doesn’t attempt to explain

all aspects of internationalizing a web application. It instead focuses on Wicket’s support for

internationalization. Wicket allows you to externalize locale-specific messages and also pro-

vides for flexible formatting of messages through the powerful StringResourceModel class. You

could specify messages at different levels in the component hierarchy, thereby enabling you to

override messages intelligently. We shall discuss these and more in the following sections.

Localization Through the <wicket:message> Tag
By working through the following examples, you will first make an attempt at localizing the

labels on the UserProfilePage: name, address, etc. Wicket allows you to achieve this by adding

a level of indirection through the <wicket:message> tag. You can specify the <wicket:message>

tag instead of hard-coding the label. More importantly, you are required to specify a key

whose value will be looked up from the locale-specific properties file. Listing 6-1 shows the

first attempt at localizing the UserProfilePage.

Listing 6-1. Internationalized UserProfilePage with All Labels Replaced by the

<wicket:message> Tag

<head>

<!-- Internationalized page title -->

<title><wicket:message key="page.title"></wicket:message></title>

</head>

<body>

<!-- Internationalized page labels -->

<form wicket:id="userProfile">

<wicket:message key="name"></wicket:message>

<input type="text" wicket:id="name"/>

<wicket:message key="address"></wicket:message>

<input type="text" wicket:id="address"/>

<wicket:message key="city"></wicket:message>

<input type="text" wicket:id="city"/>

<wicket:message key="country"></wicket:message>

177

C H A P T E R 6

<select wicket:id="country">

<option>Country-1</option>

<option>Country-2</option>

<option>Country-3</option>

</select>

<wicket:message key="pin"></wicket:message>

<input type="text" wicket:id="pin"/>

<wicket:message key="phoneNumber"></wicket:message>

<input type="text" wicket:id="phoneNumber"/>

Note that you can use the shortcut

<wicket:message key="name"/>

for

<wicket:message key="name"></wicket:message>

In order to provide locale-specific messages, you need a way for the application to

find the messages specific to a given locale. In Java, such messages are typically specified

through the java.util.PropertyResourceBundle class. PropertyResourceBundle is a concrete

subclass of java.util.ResourceBundle that manages resources for a locale using a set of static

strings from a property file. These properties files should contain a set of key=value pairs,

mapping the keys you want to use to look up the text to the correct text for that locale. Java’s

ResourceBundle support typically takes into consideration the locale information when look-

ing for resource bundles, while Wicket supports a concept of style and variation in addition

to locale. We shall discuss this in detail in the section “Support for Skinning and Variation in

Addition to Locale-Specific Resources.”

The next thing you need to do is to make sure that the locale-specific properties file

has all the wicket:message keys that you specified in the Page along with the corresponding

locale-specific messages. The label or the display text will be picked up from the default

UserProfilePage.properties file if the locale is en_US, as shown in Listing 6-2. The messages

could also be specified in a properties file corresponding to a component containing the

tag in the hierarchy, that is, UserProfileForm. You would be required to call this file

UserProfilePage$UserProfileForm.properties though, as the Form component is an inner

class. We will discuss the message search order in the upcoming section. For now, specify

the messages in the page properties file.

Listing 6-2. UserProfilePage.properties

page.title= User Profile

name= Name

address= Address

pin = Pin

city = City

country = Country

phoneNumber = Phone Number

CHAPTER 6 ■ LOCALIZATION SUPPORT178

And it will get picked up from UserProfilePage_es.properties if the locale is switched to

Spanish (identified by es), as shown in Listing 6-3.

Listing 6-3. UserProfilePage_es.properties

page.title=perfil de usuario

name= Nombre Del Usuario

address= Dirección

pin = Número de identificación

city = Ciudad

country = País

phoneNumber = Teléfono

Likewise, Wicket will look for UserProfilePage_fr.properties for French and

UserProfilePage_de.properties for German, and so on. Remember that Wicket will default

to the body of the <wicket:message> tag if the key is not found.

Having a good understanding of the way Wicket searches for the localized message is key

to developing internationalized web applications with Wicket. As mentioned previously, we

will discuss the search order next.

Sources for Localized Messages and Their

Search Order
In Wicket, the process of searching for locale-specific messages is delegated to the Localizer

class. The Localizer searches for the resource files (or properties files) based on the compo-

nent that is passed in. You can specify message texts at different levels, with more specific texts

taking precedence over more general ones.

Wicket tags in a template are typically resolved using several wicket.markup.resolver.

IComponentResolver implementations. This resolving process usually involves mapping the

element’s wicket:id to the corresponding Wicket component, in addition to other things.

<wicket:message> tags, for example, are resolved using the WicketMessageResolver class. When

the Localizer looks for a message text, it searches for a resource bundle based on a class or

object given to it. In this case, WicketMessageResolver typically passes in the Wicket compo-

nent class within which the <wicket:message> tag is contained. For example, when searching

for the message key name, the class UserProfileForm is passed to the Localizer.

When supplied with a component or a class, the Localizer first builds the search order.

It’s always the enclosing Page first, and from there on Wicket traverses the Page component

tree until it reaches the component you passed in. All child components that it encounters

along the way are added to the search path. Then it starts looking for the message based on

the mechanism described next. Remember that once the message is found, Wicket halts the

search process.

CHAPTER 6 ■ LOCALIZATION SUPPORT 179

Let’s consider a Page hierarchy that looks like this:

Page (wicket:id = page_id,class=UserProfilePage) extends BasePage

|

|__Form (wicket:id = form_id,class = UserProfileForm)

|

|__Panel (wicket:id = panel_id,class=UserProfilePanel)

|

|__Label (wicket:id = label_id, class = Label)

|

|__TextField (wicket:id = text_id, class = TextField)

This process looks for a properties resource file with the same name and package as the

class passed in. It also searches based on the superclass of the class passed in. So you have

the ability to specify messages not only at the parent component level, but also at the compo-

nent superclass level. Note that Wicket will pass the appropriate class to the Localizer when

required (You can also pass the class to the Localizer when explicitly looking for a locale-

specific message). For example, you saw in Chapter 2 that validation messages typically need

the component label for display. When Wicket looks up label text corresponding to the Label

component (label_id), it would search for the messages in the following order, passing in the

class to the Localizer as indicated and moving to the next level if a message is not found:

1. Page (UserProfilePage)

2. BasePage

3. Form (UserProfileForm)

4. Panel (UserProfilePanel)

5. WebApplication (LocalizationApplication.properties) and then Application.

properties

Here’s a more detailed look at the preceding sequence:

1. Page (UserProfilePage):

a. Look for the message mapped to the key component ID (label_id) in the

UserProfilePage.properties file.

b. If not found, construct the search path from Page to the label relative to the Page

(as you would traverse a tree), with each component ID in the search path sepa-

rated by a dot (.). This evaluates to form_id.panel_id.label_id. Look for a message

mapped to this key.

2. BasePage: If the preceding search doesn’t yield a result, check with the parent class of

the UserProfilePage (note that the parent component is different from the parent

class), BasePage.properties if present. This allows you to define the default messages

at the BasePage level that all your application pages are likely to extend. Then you can

override those messages in specific Pages as needed. If the message is still not found,

move on to the next component in the search path—UserProfileForm.

CHAPTER 6 ■ LOCALIZATION SUPPORT180

3. Form (UserProfileForm):

a. Look for the message mapped to the key component ID (label_id) in the

UserProfileForm.properties file. This is a common search step that is executed

by default on all resource files. (Note that if UserProfileForm is modeled as an

inner class within UserProfilePage, as is usually the case, Wicket will look for a

resource file named UserProfilePage$UserProfileForm.properties. This is consis-

tent with the way Java represents inner class files.)

b. If not found, construct the search path from Form to the label relative to Form (as

you would traverse a tree) with each component ID in the search path separated

by a dot (.). This evaluates to panel_id.label_id. Look for a message mapped to

this key. If the message still isn’t found, move on to the next component in the

search path—UserProfilePanel.

4. Panel (UserProfilePanel):

a. Look for the message mapped to the key component ID (label_id) in the

UserProfilePanel.properties file.

b. If not found, construct the search path from Form to the label relative to Form (as

you would traverse a tree), with each component ID in the search path separated

by a dot (.). This evaluates to label_id. Now this has already been taken care of in

the earlier step, and hence would not be executed. If the message text still isn’t

found, Wicket searches the Application class hierarchy.

5. Look for label_id in the properties file named after your WebApplication subclass

(LocalizationApplication.properties) and if even this search turns out to be futile,

look for the same key under the default Application.properties that ships with

Wicket. It is highly unlikely that the search for a page label in Application.properties

will succeed.

If all of the preceding steps fail, Wicket will use the label_id as the Label by default.

Although the search order just listed is very intuitive, it deserves a second look. Let’s take

the example of the UserProfilePage hierarchy explained earlier. Wicket is all about compo-

nents, and there is every possibility that the UserProfilePanel was identified as a reusable

component even before UserProfilePage was developed. The component developer would

have no idea of the other components that are likely to use it later. This could also mean that

the localized messages required by the Panel were decided before it could actually be used by

the Page. If the Page were to specify different labels for the components contained within the

Panel, the only way they could take effect is through the reverse lookup order as employed by

Wicket. This allows you to override the Panel labels without actually modifying the Panel

properties itself.

This is the case as far as searching for labels is concerned. Wicket does something very

similar when searching for validator keys as well. The key that is used to get the validator mes-

sages can be located by either consulting the Javadoc of the validator class (an IValidator

implementation) or the default Application.properties file that contains localized messages

for all validators.

CHAPTER 6 ■ LOCALIZATION SUPPORT 181

Let’s consider the same Page hierarchy as shown earlier. If the TextField component fails

the required validation check, Wicket will start looking for the error message that it needs to

display as a part of feedback.

The search order for a validator (RequiredValidator in this case) attached to a component

(text_id) remains the same:

1. Page (UserProfilePage)

2. BasePage

3. Form (UserProfileForm)

4. Panel (UserProfilePanel)

5. WebApplication (LocalizationApplication)

It’s the key that differs from the earlier case.

Following is a detailed look at the validator search order just given:

1. Page (UserProfilePage):

a. In UserProfilePage.properties, look for the key text_id.RequiredValidator.

b. If not found, look for form_id.panel_id.text_id.RequiredValidator.

c. If not found, look for the key RequiredValidator.

2. BasePage: If the preceding search doesn’t yield a result, check with the parent class

of the UserProfilePage, BasePage.properties if present. If still not found, search in

UserProfilePage$UserProfileForm.properties.

3. Form (UserProfileForm):

a. In UserProfilePage$UserProfileForm.properties, look for the key

text_id.RequiredValidator.

b. If not found, look for panel_id.label_id.RequiredValidator.

c. If not found, look for the key RequiredValidator.

d. If not found, UserProfilePanel.properties is the resource file where the search

steps will be executed.

4. Panel (UserProfilePanel):

a. In UserProfilePanel.properties, look for the key text_id.RequiredValidator.

b. If not found, look for the key RequiredValidator.

c. If not found, the next place to look through is the Application hierarchy.

5. Look for the message corresponding to the key text_id.RequiredValidator in the

properties file named after your WebApplication subclass (LocalizationApplication.

properties). The other place to look for the message would be RequiredValidator if

the preceding fails.

CHAPTER 6 ■ LOCALIZATION SUPPORT182

If all of the preceding turns out to be futile, Wicket looks for same set of keys under the

default Application.properties file.

How to Switch the Locale Programmatically
Now that you have some insight into Wicket’s way of locating localized messages, let’s revisit

the example that you saw at the beginning of the chapter: internationalizing UserProfilePage.

You already have required <wicket:message> tags and the labels in Spanish; what you

need is a way to programmatically switch the locale to verify that the <wicket:message> tag

indeed works as advertised. Well, you could change the browser settings to specify the

preferred language. But for now, you will see how locale can be programmatically changed in

Wicket. You will include HTML radio buttons to help you switch the locale easily, as shown in

Listing 6-4.

Listing 6-4. UserProfilePage.html Modeled Using Radio Buttons

<!-- Continuing from the earlier code snippet -->

<hr/>

<input type="radio">English</input>

<input type="radio">Spanish</input>

<input type="submit" value="Save"/>

</form>

</body>

</html>

Note that since you want the locale changed on the selection of a radio button, you need

to set up the corresponding Wicket component RadioChoice for a server-side form submit by

returning true from the RadioChoice.wantOnSelectionChangedNotifications() method. In

that respect, the wicket.markup.html.form.RadioChoice component works similarly to the

DropDownChoice and CheckBox components that we looked at in Chapter 3. RadioChoice is

configured with the PropertyModel that updates the session with the selected locale (see

Listing 6-5).

Listing 6-5. UserProfilePage.java

import java.util.Locale;

public class UserProfilePage extends WebPage {

/** Relevant locales wrapped in a list. */

private static final List LOCALES = Arrays.asList(new Locale[] {

Locale.ENGLISH, new Locale("es") });

CHAPTER 6 ■ LOCALIZATION SUPPORT 183

/* Set the locale on the session based on user selection. */

public void setLocale(Locale locale) {

if (locale != null) {

getSession().setLocale(locale);

}

}

// RadioChoice when rendering the radio buttons adds a line break after

// each button.

// Since you don't need one, you will set it to blank

public UserProfilePage() {

//..in addition to already existing code.

form.add(new LocaleRadioChoice("locale", new PropertyModel(this,

"locale"), LOCALES).setSuffix(""));

//..

}

class LocaleRadioChoice extends RadioChoice {

public LocaleRadioChoice(String id, IModel model, List choices) {

super(id, model, choices, new LocaleChoiceRenderer());

}

protected boolean wantOnSelectionChangedNotifications() {

return true;

}

}

private final class LocaleChoiceRenderer extends ChoiceRenderer {

public LocaleChoiceRenderer() { }

/**

* @see wicket.markup.html.form.IChoiceRenderer#getDisplayValue(Object)

*/

public Object getDisplayValue(Object object) {

Locale locale = (Locale) object;

String display = locale.getDisplayName(getLocale());

return display;

}

}

}

CHAPTER 6 ■ LOCALIZATION SUPPORT184

When you bring up the page in a browser and click the radio button labeled Spanish, you

should see something like what appears in Figure 6-1.

Figure 6-1. UserProfilePage with locale set to Spanish

Even though the Spanish version of the page renders fine, there is still a problem with the

page title. Wicket does not remove the <wicket> tags associated with a template by default

while rendering. So the localized title text shows up along with the associated <wicket:message>

tag. You need to tweak the markup settings to tell Wicket that it needs to strip the Wicket tags

when rendering. You typically specify this in the WebApplication class as shown in Listing 6-6.

Listing 6-6. LocalizationApplication Set Up to Strip Wicket Tags When Rendering the Page

public class LocalizationApplication extends WebApplication {

//..

public void init() {

super.init();

//..

// Strip Wicket tags when rendering. This will ensure that the page title

// renders correctly.

getMarkupSettings().setStripWicketTags(true);

}

//..

}

Incorporate the preceding changes and restart the servlet container, and the HTML page

title should show up fine. Actually, all is not well with the page. Enter -1 for the PIN and the

value abc for the phone number and click Save, as shown in Figure 6-2.

CHAPTER 6 ■ LOCALIZATION SUPPORT 185

Figure 6-2. The Validator message display is inconsistent with the current user locale.

Now where did the validation message come from? Wicket picked it up from the

default Application.properties. Actually, Wicket looks for a locale-specific properties file

(Application_es.properties), and since you don’t have one yet for the Spanish locale, it

ended up picking the default file. In fact, before looking for Application_es.properties,

Wicket looks for a UserProfilePage_es.properties file as well.

If you remember, in Chapter 2, you got the converter to display a different error message

on entering an ill-formed phone number. Since you needed a message unique to the

TypeValidator that you used on your page, you specified the error message in a page-specific

properties file. You need to do the same in this example by adding the following line to the

UserProfilePage.properties:

TypeValidator.PhoneNumber=${label} must be all numeric in the form xxx-xxx-xxxx

(e.g., 123-456-7890).${input} does not conform to the format

This also reminds you that validation messages need to be localized as well. We will

address that issue in the next section.

How to Localize Validation and Error Messages
When using the <wicket:message> tag, you are required to maintain the key=value pairs in the

locale-specific properties. This is probably OK for a simple page, like the UserProfilePage, that

doesn’t have too many labels that need to be localized. But with larger pages with lot of con-

tent to internationalize, the level of indirection offered by the message tag in the form of a

key=value mapping in a properties file is probably not worth it. You are better off having

locale-specific pages that have the localized text directly embedded in it. Wicket by default

looks for a locale-specific template when rendering. For example, if the locale happens to be

German, it will look for UserProfilePage_de.html, and switching the locale to Spanish in the

CHAPTER 6 ■ LOCALIZATION SUPPORT186

UserProfilePage should result in Wicket displaying UserProfilePage_es.html if present. It will

default to UserProfilePage.html if the Spanish version of the page is not found. But there is

a big drawback associated with this approach too: all locale-specific templates need to be

constantly updated throughout the development process, else the template and the corre-

sponding Page class might go out of sync.

The Spanish version of UserProfilePage is shown in Listing 6-7. You already know how the

English equivalent looks.

Listing 6-7. Spanish Version of UserProfilePage, UserProfilePage_es.html

<html>

<head>

<title>perfil de usuario</title>

</head>

<body>

<form wicket:id="userProfile">

Nombre Del Usuario <input type="text" wicket:id="name"/>

Dirección <input type="text" wicket:id="address"/>

Ciudad <input type="text" wicket:id="city"/>

País <select wicket:id="country">

<option>India</option>

<option>USA</option>

<option>UK</option>

</select>

Número de identificación <input type="text" wicket:id="pin"/>

Teléfono <input type="text" wicket:id="phoneNumber"/>

<hr/>

<input type="submit" value="Save"/>

<input type="radio">inglés</input>

<input type="radio">español</input>

<hr/>

</form>

</body>

</html>

You may be thinking that you can safely get rid of the data in the form of key=value pairs

from UserProfilePage.properties, but this isn’t really the case: you still need to retain the

labels for the components that have validators attached to them. The validation messages will

display the wicket:id of the component by default when displaying the validation messages in

the absence of the labels. With the labels out of your way, let’s look at validation error mes-

sages (see Listing 6-8).

CHAPTER 6 ■ LOCALIZATION SUPPORT 187

Listing 6-8. UserProfilePage_es.properties

userProfile.name= Nombre Del Usuario

userProfile.pin = Número de identificación

userProfile.phoneNumber = Teléfono

RequiredValidator=${label} es un campo requerido

NumberValidator.range=Entre por favor ${label} en la gama ${minimum} - ${maximum}

TypeValidator.PhoneNumber=${label} debe conformarse con el formato xxx-xxx-xxxx

(e.g., 123-456-7890).${input} no se conforma con el formato

Figure 6-3 shows the resulting page.

Figure 6-3. Validation error messages in Spanish

The error messages corresponding to RequiredValidator and NumberValidator are quite

generic (the one corresponding to TypeValidator is not) and accordingly should be stored

someplace common so that all pages corresponding to the locale in question can access them

centrally. As discussed earlier, you could specify them in a locale-specific (Spanish in this case)

Application_es.properties file. In fact, you can contribute your locale-specific Application_*.

properties file to the Wicket core if it doesn’t already ship with one. In Chapter 2, you took a

look at all the messages configured in the default Application.properties. If you want to

override any of these default messages and make them available to the entire application, you

can specify them in a properties file named after your WebApplication class. For example,

you could have LocalizationApplication.properties located in the same package as the

LocalizationApplication class. Of course, you can have similar locale-specific properties

files as well.

Localization is not just about having a locale-specific properties file. It in fact requires

quite a bit of planning in advance. Even a simple page like UserProfilePage, for example, has a

problem that was overlooked: it has to do with the way the user country is being represented.

Currently, you are storing the locale-specific name of a country in the UserProfile bean, and

the moment you switch the locale, you would observe that the country field display reflects an

CHAPTER 6 ■ LOCALIZATION SUPPORT188

altogether different locale (United States, for example, might show up as Estados Unidos). So

it’s in your best interest that you store the ISO code of the country instead and then change the

display per the user locale (see Listings 6-9 and 6-10).

Listing 6-9. Storing the ISO Code of the Country to Localize the Display

package com.apress.wicketbook.localization;

public class UserProfile implements Serializable,Cloneable {

// Store the ISO code of the country so that you can switch country display

// per locale.

private Locale country;

// Define corresponding getters and setters.

}

Listing 6-10. Displaying Country Names per Locale

private final class CountryRenderer extends ChoiceRenderer {

/**

* Constructor

*/

public CountryRenderer() {

}

/**

* @see wicket.markup.html.form.IChoiceRenderer#getDisplayValue(Object)

*/

public Object getDisplayValue(Object object) {

Locale locale = (Locale) object;

String display = locale.getDisplayCountry(getLocale());

return display;

}

/**

* @see wicket.markup.html.form.IChoiceRenderer#getIdValue(Object,int)

* Store Locale ISO code of the country

*/

public String getIdValue(Object object, int index) {

return object.toString();

}

}

If you want to see what implementing CountryRenderer.getIdValue() actually brings you,

enter valid values on the UserProfilePage for a given locale (make sure you select a country

though) and click Save. On refresh, right-click, select View Source, and you should see some-

thing similar to Listing 6-11.

CHAPTER 6 ■ LOCALIZATION SUPPORT 189

Listing 6-11. On Selecting View Source

<!-- Rest snipped for clarity -->

Country<select name="country">

<option value="en_US">United States</option>

<!-- I had chosen Spain as my place of residence. "es_ES" is what gets stored in

UserProfile -->

<option selected="selected" value="es_ES">Spain</option>

<option value="en_GB">United Kingdom</option>

<option value="hi_IN">India</option>

</select>

<!-- Rest snipped for clarity -->

You would see the same for the HTML select value attribute irrespective of the locale you

are in.

Click the Save button after filling in all the required details. Assuming that the page passes

all the validation checks, it refreshes with a message in plain English that informs you of

everything you typed in. This is OK if the locale is en_US, for example. But displaying this mes-

sage even with locale set to Spanish is probably not acceptable. The obvious way to localize

this message would be to place it against a key in a locale-specific properties file, as shown in

Listing 6-12.

Listing 6-12. Default Display Message in UserProfilePage.properties

user.message= Mr ${name} lives in the city of ${city} and

can be reached at ${phoneNumber} in ${country}

Note that the user.message has placeholders for information that needs to filled in

dynamically. You will use the wicket.Localizer class to fill in values at runtime. Wicket’s

Localizer has helper methods to determine locale-specific messages and also accepts a

model (see Listing 6-13) that can help in determining the values for the placeholders in the

messages as indicated previously. Wicket just looks for Java bean–like getters when filling up

the values. For example, on encountering ${city} in the message, Wicket will call the model

object’s getCity() method: it translates to UserProfile.getCity() in this case.

Listing 6-13. Localizer Class Accepting a Model to Perform Variable Substitution

package com.apress.wicketbook.localization;

import wicket.Localizer;

class UserProfilePage extends WebPage{

class UserProfileForm extends Form {

CHAPTER 6 ■ LOCALIZATION SUPPORT190

public UserProfileForm(String id, IModel model) {

super(id, model);

}

public void onSubmit() {

UserProfile usrProf = (UserProfile)getModelObject();

// All Wicket components can access the Localizer class

// through the getLocalizer() method.

Localizer localizer = getLocalizer();

String infoMessage = localizer.getString("user.message",this,

new Model(usrProf));

info(infoMessage);

}

}

}

Just to ensure consistency, let’s have a Spanish translation for the message as well, as

shown in Listing 6-14.

Listing 6-14. Spanish Version of the Message in UserProfilePage_es.properties

user.message=Senor ${name} reside en la ciudad ${city} y puede ser alcanzado en

${phoneNumber} en el país ${country}

Putting Wicket’s StringResourceModel to Work

On entering the values for the fields and clicking Save, you should see a message like the one

in Figure 6-4.

Figure 6-4. The country needs to be displayed in a readable format.

CHAPTER 6 ■ LOCALIZATION SUPPORT 191

The Localizer did substitute the values correctly from the supplied model object consist-

ing of the UserProfile instance. But then the country translation just isn’t easy on the eyes.

Not many people can figure out that “hi_IN” actually represents India. What you need here is

the ability to do a little bit of processing in addition to plain value substitution.

One way of fixing this issue is by using another of Wicket’s powerful model classes—

wicket.model.StringResourceModel. It combines the flexible Wicket resource loading

mechanism with property expressions, property models, and standard Java MessageFormat

substitutions (see Listing 6-15).

Listing 6-15. Localization Through Wicket’s StringResourceModel

class UserProfileForm extends Form {

//..

public void onSubmit() {

Locale currLocale = getLocale();

UserProfile up = (UserProfile) getModelObject();

// Get the country representation in accordance with

// the current locale.

String displayCountry =

up.getCountry()==null?"":up.getCountry().getDisplayCountry(

currLocale);

String infoMessage = new StringResourceModel("user.message", this,

new Model(up), new Object[] {displayCountry}).getString();

info(infoMessage);

}

//..

}

Before formatting, the message looks like this:

user.message= Mr ${name} lives in the city of ${city} and can be reached

at ${phoneNumber} in {0}

StringResourceModel will first perform property substitutions on the preceding string

using the supplied model object (UserProfile) and will then substitute parameters if any

(specifically in this case, the displayCountry value will be substituted for {0}). Entering the

same values as earlier in the UserProfile page and clicking Save should result in a correctly

formatted message being displayed as shown in Figure 6-5.

CHAPTER 6 ■ LOCALIZATION SUPPORT192

Figure 6-5. Wicket’s StringResouceModel class at work

Wicket has a model class that represents a localized resource string—wicket.model.

ResourceModel. This is a lightweight version of the StringResourceModel. It lacks the ability to

perform parameter substitutions, but is easier to use. The reason you need this model is

because you haven’t localized the Save button display yet. You need to add a wicket:id attrib-

ute to the button in the template:

<input type="submit" wicket:id="save" value="Save"/>

and in the Page class specify the ResourceModel along with the Button component:

form.add(new Button("save",new ResourceModel("userProfile.save"));

You need to specify the localized message in the properties file (UserProfilePage.

properties, for example):

userProfile.save = Save

The equivalent Spanish translation in UserProfilePage_es.properties is

userProfile.save = Grabar

Locale-Specific Validation
In addition to localizing web pages and validation error messages, there might be a need for

tailoring the actual validation to a specific locale as well. Currency validation, for example,

falls under this category. Let’s consider the US dollar. US currency requires commas to sepa-

rate dollar values and a period to demarcate cents (i.e., 123,456.78), whereas in the European

Union, periods are used to separate Euro currency amounts along with a comma to demarcate

cents (i.e., 123.456,78).

CHAPTER 6 ■ LOCALIZATION SUPPORT 193

Internationalization is the process of tailoring content to a specific locale or region. In the

validator’s case, it means tailoring validation error messages to a specific locale and/or tailor-

ing actual validation routines to a specific locale. This way, the US and Spanish versions of a

web site can have their own language-specific validation error messages. Similarly, interna-

tionalization enables the US and Spanish versions of a web site to validate entries in monetary

fields differently. Refer to Listing 6-16 for a localized CurrencyValdiator class.

Listing 6-16. Localized CurrencyValidator

package com.apress.wicketbook.localization;

import java.io.Serializable;

import java.util.HashMap;

import java.util.Locale;

import java.util.Map;

import java.util.regex.Pattern;

import wicket.markup.html.form.validation.IValidator;

import wicket.markup.html.form.validation.PatternValidator;

public class CurrencyValidator implements Serializable {

/* Maintain a mapping of locale to currency pattern. */

private static final Map localeCurrencyPatternMap = new HashMap();

static {

localeCurrencyPatternMap.put(Locale.US, Pattern

.compile("^\\d{1,3}(,?\\d{3})*\\.?(\\d{1,2})?"));

localeCurrencyPatternMap.put(new Locale("es"), Pattern

.compile("^\\d{1,3}(\\.?\\d{3})*,?(\\d{1,2})?"));

}

/* When requested for a CurrencyValidator, return

* a PatternValidator for the locale-specific pattern.

*/

public static IValidator forLocale(Locale locale) {

Pattern pattern = (Pattern) localeCurrencyPatternMap.get(locale);

return new PatternValidator(pattern);

}

}

In order to verify that the CurrencyValidator works, add an attribute to the UserProfile

bean that represents salary (see Listing 6-17).

CHAPTER 6 ■ LOCALIZATION SUPPORT194

Listing 6-17. UserProfile Bean Modified to Reflect User’s Salary

package com.apress.wicketbook.localization;

public class UserProfile implements Serializable{

//..in addition to other things, handle salary as well.

private double salary;

//..

public double getSalary() {

return salary;

}

public void setSalary(double salary) {

this.salary = salary;

}

//..

}

Add an input field to the page template and modify the Page class as shown in Listing 6-18.

Listing 6-18. UserProfile Bean with the Component to Represent Salary with the

CurrencyValidator Attached

public class UserProfilePage extends WebPage{

public UserProfilePage(){

//..

TextField txtAmount = new TextField("salary");

// Associate the CurrencyValidator with the locale.

txtAmount.add(CurrencyValidator.forLocale(getLocale()));

form.add(txtAmount);

//..

}

}

Wicket associates a new session with a user on first access. It also sets the locale informa-

tion on the session depending upon the request parameters, which in turn depend on the user

browser setting. This happens at the time of Session object creation. All browsers provide a

way for changing the browser language settings. In case of Internet Explorer (IE), you can do

the following to change the preferred language setting to Spanish: select Tools ➤ Internet

Options, and on the General tab, click the Languages button. Click the Add button and select

Spanish (International). Then click the Move Up button so that Spanish becomes your pre-

ferred language setting. When a request for a page from the browser originates with this

setting, Wicket will initialize the session locale setting to Spanish and look for a Spanish

version of the page henceforth.

CHAPTER 6 ■ LOCALIZATION SUPPORT 195

In Internet Explorer, opening a new browser is equivalent to starting a new session. So the

language setting will immediately kick in when opening a new browser. This is not the case

with Firefox browser, for example. So let’s provide a way to invalidate the session programmat-

ically (see Listing 6-19).

Listing 6-19. Adding the “Invalidate Session” Link to UserProfilePage.html

<!-- Rest snipped for clarity -->

<input type="submit" value="Save"/>

</form>

Invalidate Session

<!-- Rest snipped for clarity -->

On clicking the “Invalidate Session” link, invalidate the session as demonstrated in

Listing 6-20.

Listing 6-20. Programmatic Session Invalidation

public class UserProfilePage extends WebPage{

//..

public UserProfilePage(){

add(new Link("link"){

@Override

public void onClick() {

getSession().invalidate();

}

});

}

//..

}

Now you don’t require the radio buttons that you used earlier to programmatically switch

locales for testing. You could just click the link that invalidates the session and then modify the

browser language setting to switch the locale.

Support for Skinning and Variation in Addition to

Locale-Specific Resources
Wicket ResourceBundles are different from the usual Java resource bundles, as the latter have

no support for style and variation in addition to locale. Wicket pages can be skinned by setting

the style attribute in the user’s session. Styles are intended to give a particular look to a com-

ponent or resource that is independent of its locale. For example, a style might be a set of

resources, including images and markup files, that gives the design the look of, say, an ocean

to the user. Wicket expects the resources names be suffixed with ocean in this case.

There is also a variation attribute that is additive to the style attribute. Whereas styles

are session (user) specific, variations are component specific. For example, if the style is

ocean and the variation is NorthSea, the resources are given the names suffixed with

CHAPTER 6 ■ LOCALIZATION SUPPORT196

NorthSea_ocean. If no style attribute has been set, the variation takes the place of the style

in the resource name. If the style is set, the variation and "" are prepended to the style

name, which is then returned by getStyle().

As mentioned previously, Java resource bundles do not take into consideration style

and variation as supported by Wicket. So Wicket’s localization support is not based on Java

resource bundles in that respect. But Wicket does default to Java resource bundle–like

behavior in the absence of a style or a variation attribute.

We discussed the resource lookup order in the last section. Remember that in the pres-

ence of style and variation attributes on the session and component respectively, the resource

matches will be attempted in the following order (this assumes the user session has been con-

figured with a style named ocean):

1. <path>_style_locale.properties (e.g., UserProfilePage_ocean_es.properties)

2. <path>_locale.properties (e.g., UserProfilePage_es.properties)

3. <path>_style.properties (e.g., UserProfilePage_ocean.properties)

4. <path>.properties (e.g., UserProfilePage.properties)

Loading Messages from a Database
Wicket manages the resource lookup through a wicket.settings.IResourceSettings imple-

mentation. wicket.settings.Settings is the default implementation. It maintains a chain

of IStringResourceLoader instances that are searched in order to obtain string resources

used during localization. By default, the chain is set up to first search for resources against

a particular component (e.g., Page) and then against the application. Wicket provides this

functionality by using wicket.resource.loader.ComponentStringResourceLoader and

wicket.resource.loader.wicket.resource.loader.ClassStringResourceLoader, respectively

in that order. The latter is configured to look up messages against the Application class.

These components search for a properties file by default (see Listing 6-21).

Listing 6-21. IStringResourceLoader for Loading of Resource Strings for an Application

public interface IStringResourceLoader{

String loadStringResource(Class clazz, String key, Locale locale, String style);

}

So if you need to pull localized strings from a database, you have to embed the database

lookup logic in the loadStringResource method, as shown in Listing 6-22.

Listing 6-22. DatabaseResourceLoader for Loading Message Strings from a Database

public class DatabaseResourceLoader implements IStringResourceLoader{

String loadStringResource(Class clazz, String key, Locale locale, String style){

// Lookup database

}

}

CHAPTER 6 ■ LOCALIZATION SUPPORT 197

Then you need to let the Settings class know that you would like to use Database➥

ResourceLoader for searching localized messages, as you see in Listing 6-23.

Listing 6-23. WebApplication Modified to Register the DatabaseResourceLoader with the

Settings Object

public class LocalizationApplication extends WebApplication {

//..

public void init() {

super.init();

getResourceSettings().addStringResourceLoader(new DatabaseResourceLoader());

}

//..

}

Remember that this setting overrides the default Wicket settings. So you can add other

available IStringResourceLoader implementations as well. The order in which you add them

to the Resource settings is also the order in which Wicket looks up resources.

Summary
Internationalization is a vast topic. In this chapter, we specifically looked at the localization

support built into Wicket. You saw how to use <wicket:message> tags to externalize localized

messages first. Then we discussed the case where it makes sense to maintain locale-specific

pages.

We then looked at the Wicket way of searching localized messages, the search order being

key to developing internationalized web applications. Having covered that, I also showed

you that Wicket’s StringResourceModel allows for powerful message formatting capabilities.

Messages are not the only items that need to be localized. Even validators might need to take

locale information into consideration.

The chapter concluded by looking at the abstraction built by Wicket over resources and

also discussed how you could have your own IStringResourceLoader implementations,

and how you could get Wicket to use those implementations by registering them in your

WebApplication subclass.

CHAPTER 6 ■ LOCALIZATION SUPPORT198

Custom Wicket Components
and Wicket Extensions

All the pages that you have developed until now have been composed of Wicket core com-

ponents, or Wicket-Extensions subproject components, or a combination of both. In fact, when

you started off, the first thing you did was to write a component: the Login page is a Wicket

Page that in turn is a Wicket component. Components like DataView and PagingNavigator

have a lot of functionality built into them, and you could put them to use with very little effort

(i.e., lines of code) on your part. The less code you have to maintain, the fewer the bugs and

the higher the productivity. In this chapter, you will see how you can extend components

that ship with the core of Wicket and its extensions. Later, you will see how you can build

and distribute your own. Wicket specifies the types of components you can define through

a component class hierarchy. Before we proceed further, let’s take a look at this hierarchy.

Wicket Component Hierarchy
wicket.Component sits right at the top of the Wicket component hierarchy. Its immediate sub-

class—wicket.MarkupContainer—allows you to have components nested within itself. But it

does not have a markup template of its own. Its markup is contained (inline) within the page

or component that actually uses it. Wicket’s Panel components, on the other hand, have an

associated markup template file. Wicket clearly distinguishes between components that have

their own markup and those that don’t by modeling them as two distinct classes within its

component hierarchy. Essentially, wicket.MarkupContainer and its subclass wicket.markup.

html.WebMarkupContainer represent components whose markup is inline. On the other hand,

wicket.markup.html.WebMarkupContainerWithAssociatedMarkup and more specifically its sub-

class, wicket.markup.html.panel.Panel, model reusable components that hold markup and

other components and have a markup template of their own. You are likely to use Panels

extensively when you start developing your custom components. Wicket’s Border component

is also a special type of WebMarkupContainerWithAssociatedMarkup and ships with its own

markup. Figure 7-1 summarizes Wicket’s component hierarchy.

199

C H A P T E R 7

This concludes a quick-fire introduction to Wicket component hierarchy, which will

become more clear as you extend or develop custom components. As a starting point, let’s

customize a component that you used earlier—PagingNavigator.

Improving the PagingNavigator Component’s

Look and Feel
In Chapter 3, you used Wicket’s PagingNavigator component when displaying books in the

example online bookstore application. Here you’ll develop a customized navigator that

provides information about the total number of items that is likely to be retrieved by the

IDataProvider implementation and the relative position of the items (being displayed at a

given point in time) in the list.

First, you need to get hold of the existing PagingNavigator template. Download the Wicket

source distribution and extract the PagingNavigator template, which is reproduced here for

your convenience:

<html xmlns:wicket>

<body>

<wicket:panel>

<a wicket:id="first"><< <a wicket:id="prev"><

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS200

Figure 7-1. The Wicket Component hierarchy. Note that this class diagram does not represent the entire

built-in component hierarchy. Only the significant components have been included.

<a wicket:id="pageLink" href="#">5

<a wicket:id="next">> <a wicket:id="last">>>

</wicket:panel>

</body>

</html>

Now change this template as shown in Listing 7-1.

Listing 7-1. CustomPagingNavigator.html

<html xmlns:wicket>

<body>

<wicket:panel>

<!-- Added a label to display the user friendly message -->

a headline above the navigator

<!-- Modified link text -->

[<a wicket:id="first">First/<a wicket:id="prev">Prev]

<a wicket:id="pageLink" href="#">5

<!-- Modified link text -->

[<a wicket:id="next">Next/<a wicket:id="last">Last]

</wicket:panel>

</body>

</html>

You will create a custom navigator class whose name is the same as the template, as

required by Wicket (see Listing 7-2). The custom navigator just needs to add the ability to

configure headline text to the existing PagingNavigator component. The “headline” compo-

nent is a typical example of a component of type WebComponent. It really doesn’t have a

template of its own. The PagingNavigator within which the “headline” component is con-

tained has an associated markup and is in fact a Panel component.

Listing 7-2. CustomPagingNavigator.java

package com.apress.wicketbook.components;

import wicket.extensions.markup.html.repeater.data.DataView;

import wicket.markup.ComponentTag;

import wicket.markup.MarkupStream;

import wicket.markup.html.WebComponent;

import wicket.markup.html.navigation.paging.PagingNavigator;

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 201

public class CustomPagingNavigator extends PagingNavigator {

public CustomPagingNavigator(String id, DataView dataView) {

super(id, dataView);

add(new HeadLine("headline", dataView));

}

class HeadLine extends WebComponent {

private DataView dataView;

public HeadLine(String id, DataView dataView) {

super(id);

this.dataView = dataView;

}

// Wicket callback method - explained after the code snippet.

protected void onComponentTagBody(final MarkupStream markupStream,

final ComponentTag openTag) {

String text = getHeadlineText();

replaceComponentTagBody(markupStream, openTag, text);

}

// Custom text providing more information about the items being displayed,

// etc.

public String getHeadlineText() {

int firstListItem = dataView.getCurrentPage()

* dataView.getItemsPerPage();

StringBuffer buf = new StringBuffer();

// Construct the display string.

buf.append(String.valueOf(dataView.getRowCount())).append(

" items found, displaying ").append(

String.valueOf(firstListItem + 1)).append(" to ").append(

String.valueOf(firstListItem

+ Math.min(dataView.getItemsPerPage(), dataView

.getRowCount()))).append(".");

return buf.toString();

}

}

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS202

The CustomPagingNavigator has quite a few interesting things going on in it. During the

render phase, Wicket calls Component.onComponentTag() on the contained components,

passing in the Java representation of the tag—ComponentTag. Typically, additional attributes

can be added or the existing ones can be modified in the callback method. Note that even

though you are allowed to add or modify a tag attribute, Wicket doesn’t permit you to remove

an existing tag attribute. This is an important stipulation because graphic designers may be

setting attributes on component tags that affect visual presentation. It’s not just components

that are allowed to add or modify the tag attributes. Wicket’s IBehavior implementations also

get an opportunity to add or modify component tag attributes through a similar onComponentTag

callback method. Wicket’s SimpleAttributeModifier, which you used in Chapter 3 to add tag

attributes to HTML table rows, does exactly that through the onComponentTag(Component

component,ComponentTag tag) callback method. If a tag allows for its body (text or component)

to be specified, it calls onComponentTagBody() as well later where you can control what needs

to go into the tag body.

For example, the following will result in onComponentTag and onComponentTagBody being

called:

Body goes here

whereas this next example will result in only onComponentTag being called, as the latter does

not allow for the tag body to be specified:

Wicket’s Label component, for example, replaces the tag body with the string representation

of the associated model object, and it does so through Component.replaceComponentTagBody().

In your custom navigator, the body (“a headline above the navigator”) of the label

a headline above the navigator

is replaced with the text returned at runtime by MyPagingNavigator.getHeadlineText().

As you can see in Figure 7-2, the custom navigator now has a look and feel that is more

informative.

Figure 7-2. The Browse Books display page configured with a custom PagingNavigator

component

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 203

Note that you could have used the Label component with the PropertyModel instead of

the HeadLine component:

import wicket.markup.html.basic.Label;

public class CustomPagingNavigator extends PagingNavigator {

DataView dataView;

public CustomPagingNavigator(String id, DataView dataView) {

super(id, dataView);

this.dataView = dataView;

add(new Label("headline",new PropertyModel(this,"headlineText"));

}

//..

}

A WebComponent was used in Listing 7-2 to demonstrate the significant onComponentTagBody

render-time callback method.

Now this has been neat, but it’s probably time to move on to another component that you

can customize to suit your needs—Wicket’s DropDownChoice. In fact, you’ve already seen how

to make changes to this particular component in Chapter 3. To recap: the default behavior of

the DropDownChoice component is not to update the form component models when the user

selection changes. To get this component to update the form, you called Form.process() in the

DropDownChoice.onSelectionChanged method. If there are other Pages in a project that expect

this kind of customized behavior from DropDownChoice, instead of resorting to copy-and-paste

programming it’s probably a good idea to create a customized component out of it and

encourage reuse.

Customizing the DropDownChoice Component

The main objective of your customized DropDownChoice component is to make sure that a

form component’s models are updated when the user selection changes. You can do this in a

“selection change listener” method that Wicket will invoke when user selection changes. First,

you’ll specify that method through an interface.

Note that all such listener interfaces must extend Wicket’s IRequestListener (see

Listing 7-3). This interface is a marker interface, and you can expect Wicket to complain at

runtime if you don’t extend it. Wicket mandates that all callback interfaces have exactly one

method, and that method must return void and take no parameters.

Listing 7-3. A Custom Listener for Drop-Down Selection Changes

package com.apress.wicketbook.components;

import wicket.IRequestListener;

import wicket.RequestListenerInterface;

public interface MyOnChangeListener extends IRequestListener {

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS204

public static final RequestListenerInterface INTERFACE =

new RequestListenerInterface(MyOnChangeListener.class);

// Expect Wicket to call this method when user selection changes.

void userSelectionChanged();

}

Before you build your component, access the ViewBooks page on the browser, right click,

and select View Source. The code on your screen should look like Listing 7-4.

Listing 7-4. DropDown onchange Script Generated by Wicket

<html>

<!- Rest of the source snipped for clarity -->

<form action="/wicket/store?wicket:interface=:1:tabs:panel

:bookForm::IFormSubmitListener" wicket:id="bookForm"

name="viewBookForm" method="post" id="tabs:panel:bookForm">

<input type="hidden" name="tabs:panel:bookForm:hf:0"

id="tabs:panel:bookForm:hf:0"/>

<table>

<tr>

<td>Categories</td>

<td>

<select wicket:id="categories" onchange="

document.getElementById(

'tabs:panel:bookForm:hf:0').value=

'/wicket/store?wicket:interface=:1:tabs:panel:bookForm

:categories::IOnChangeListener';

document.getElementById('tabs:panel:bookForm').submit();"

name="categories">

<option value="0">J2EE</option>

<option value="1">Scripting</option>

<option value="2">ASP.NET</option>

<option value="3">Design Patterns</option>

<option selected="selected" value="4">All</option>

</select>

</td>

</tr>

</table>

<!- Rest of the source snipped for clarity -->

The HTML select element with the ID categories is of interest. Note the JavaScript

event, onchange, that encodes the information needed by Wicket’s RequestCycle to invoke

IOnChangeListener on DropDownChoice. As you see here, it basically describes the path to

navigate to the component and the interface method to invoke:

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 205

'/wicket/store?wicket:interface=:1:tabs:panel:bookForm:categories::

IOnChangeListener'

Also note that returning true from DropDown.wantOnSelectionChangedNotifications()

results in document.getElementById('tabs:panel:bookForm').submit(); being generated by

Wicket on the onchange event (which results in the form submit).

The DropDownChoice component generated this code, and your custom component will

have to do this too. Even though all components are nested within a Page, it’s probably unfair

to expect the component developer to traverse all the way up to the Page to figure out the URL

path to navigate to itself. Luckily, Wicket instead places that responsibility on the Page class

and provides a helper method, Component.urlFor(), to determine the URL. The Form compo-

nent also ships with a helper method that generates the accompanying JavaScript code. Now

it’s all about setting an attribute (onchange) and the corresponding JavaScript that needs to

trigger on encountering that event on the HTML select widget. Wicket provides you with that

opportunity through the onComponentTag callback method when it runs into the <select

wicket:id="categories"> markup in the markup stream, passing in the ComponentTag—the

Java representation of the HTML tag. Listing 7-5 shows the partial implementation of the

custom DropDownChoice component that you will develop.

Listing 7-5. Custom DropDownChoice Component’s onComponentTag Implementation

public class FormSubmittingDropDownChoice extends DropDownChoice{

//..

protected void onComponentTag(final ComponentTag tag){

// Invoke the default behavior.

super.onComponentTag(tag);

// URL that points to this component's MyOnChangeListener method.

// This call falls on the base component class, which in turn calls

// the Component class method discussed earlier, passing itself

// as the reference.

final String url = urlFor(MyOnChangeListener.INTERFACE).toString();

Form form = getForm();

tag.put("onchange", form.getJsForInterfaceUrl(url));

// Print it out just in case you are curious.

System.out.println("URL for our listener " + url);

System.out.println("Javascript code for our URL " +

form.getJsForInterfaceUrl(url));

}

Now Wicket will call MyOnChangeListener.useSelectionChanged when the user changes the

drop-down selection. You need to process the Form component so that it ends up updating

the model.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS206

public void userSelectionChanged() {

// Access the parent form and process it.

// It will validate and update the model.

getForm().process();

// Call onSelectionChanged.

onSelectionChanged(getModelObject());

}

Essentially, your custom component, FormSubmittingDropDownChoice, extends

DropDownChoice and adds the custom behavior required by your project. Listing 7-6 is

just a complete version of this custom component.

Listing 7-6. FormSubmittingDropDownChoice.java

package com.apress.wicketbook.components;

import java.util.List;

import wicket.markup.ComponentTag;

import wicket.markup.html.form.DropDownChoice;

import wicket.markup.html.form.Form;

import wicket.model.IModel;

public class FormSubmittingDropDownChoice extends DropDownChoice

implements MyOnChangeListener{

public FormSubmittingDropDownChoice(String id, IModel model, List choices) {

super(id, model, choices);

}

public void userSelectionChanged() {

getForm().process();

onSelectionChanged(getModelObject());

}

protected void onComponentTag(final ComponentTag tag){

super.onComponentTag(tag);

// URL that points to this component's IOnChangeListener method

final String url = urlFor(listenerInterface).toString();

Form form = getForm();

tag.put("onChange", form.getJsForInterfaceUrl(url));

System.out.println("URL for our listener " + url);

System.out.println("Javascript code for our URL " +

form.getJsForInterfaceUrl(url));

}

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 207

Now you can modify the code for the ViewBooks page, as shown in Listing 7-7, to use the

preceding component in place of DropDownChoice. Note that this also enables you to directly

work with Wicket’s Form instead of MyForm.

Listing 7-7. ViewBooks.java

import com.apress.wicketbook.components.FormSubmittingDropDownChoice;

public class ViewBooks..

public ViewBooks(){

// Note that you don't need MyForm now.

Form form = new Form("bookForm");

// Rest is the same.

// Instead of DropDownChoice you need the following.

FormSubmittingDropDownChoice categories = new

FormSubmittingDropDownChoice("categories",

new PropertyModel(dataProvider, "category"),

getBookCategories()) {

public void onSelectionChanged(Object newSelection){

books.setCurrentPage(0);

}

};

form.add(categories);

//..

}

}

Actually, there was no need to define a custom listener, but you did so here only to give

you some idea of the inner workings of Wicket. There should never be a need to define your

own custom listener interfaces when working with Wicket.

Everything that you did in the method userSelectionChanged() could have instead been

done in the DropDownChoice.onSelectionChanged() method and by returning true from the

DropDownChoice.wantOnSelectionChangedNotifications() method.

Other Variations of the urlFor() Method

Earlier, you used the Component.urlFor(RequestListenerInterface) to generate the URL to

access the custom listener that you developed. While we are on this topic, let’s look at other

variations of this method, as some might come in handy when developing custom components.

Component.urlFor(PageMap pageMap, java.lang.Class pageClass,

PageParameters parameters)

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS208

This method can be used to return a bookmarkable URL that references a given Page class

using a given set of page parameters. Since the URL that is returned contains all the informa-

tion necessary to instantiate and render the page, it can be stored in a user’s browser as a

stable bookmark. It is also used internally by Wicket’s BookmarkableLink component to gener-

ate the required URL to access the page.

Component.urlFor(ResourceReference resourceReference)

This method returns a URL that references a shared resource through the provided

resource reference. You will see later in this chapter that many Wicket components have their

own CSS style sheet and/or JavaScript files. They are normally packaged along with the com-

ponent in the form of jar files. The component template refers to them in their HTML <head>

section. The preceding method provides you with the URL to refer to those packaged

resources from within the template.

In the upcoming text, we will look at some components that ship with the Wicket-

Extensions subproject. Of these, there are a couple of alternatives to components that you

used in the ViewBooks page. For example, you could replace DataView with the wicket.

extensions.markup.html.repeater.data.table.DataTable component. We will discuss

Wicket-Extension’s DataTable component in the next section.

Getting the Online Bookstore to Use the Wicket-

Extensions DataTable Component
The DataTable component, as the name suggests, is used to display tabular data. It also intro-

duces the concept of toolbars, which can be used to display sortable column headers, paging

information, filter controls, and other information. DataTable also provides its own markup

for the associated HTML table. Since the component generates the HTML table by itself, it

allows you to specify the table header information in the form of a list. This could be useful in

scenarios where the headers are retrieved dynamically from a database, for example.

wicket.extensions.markup.html.repeater.data.table.IColumn and its implementation

wicket.extensions.markup.html.repeater.data.table.PropertyColumn represent a column in

the table. You need to supply the column header information along with the Wicket property

expression (same as that used by PropertyModel) that is evaluated against the current row’s

model object to determine the table cell’s value.

It is also important to note that DataTable works with wicket.extensions.markup.html.

repeater.util.SortableDataProvider instead of the IDataProvider that you are so familiar

with by now. SortableDataProvider, while implementing the IDataProvider interface, keeps

the sort information inside the data provider implementation because it makes that informa-

tion easy to access within the data provider. So you really aren’t required to change your

IDataProvider implementation except that the BookDataProvider now needs to inherit from

SortableDataProvider and use the sort information if applicable (see Listing 7-8). Sorting on

a column can be specified when creating a PropertyColumn as you will see shortly.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 209

Listing 7-8. BookDataProvider.java Modified to Extend Wicket’s SortableDataProvider

import wicket.extensions.markup.html.repeater.util.SortParam;

import wicket.extensions.markup.html.repeater.util.SortableDataProvider;

public class BookDataProvider extends SortableDataProvider{

// Rest of the code remains unchanged.

public Iterator iterator(final int first, final int count){

// SortableDataProvider tells you which column was actually clicked and

// whether the data needs to be displayed in an ascending manner or otherwise.

SortParam sortParam = getSort();

// Use this information. Incorporating sorting in the application is

// left as an exercise to the user.

// Whether you need to retrieve in ascending or descending fashion

boolean isAscending = sortParam.isAscending();

// Information regarding the column header that was clicked for sorting

String column = sortParam.getProperty();

// You might want to modify this to incorporate sorting as an exercise.

return bookDao.getBooksForCategory(category,first,count).iterator();

}

}

Enabling Sortable Columns on the DataTable

Remember that DataTable specifies the HTML table structure in its template. As long as the

data you want displayed in the table cells is plain text, PropertyColumn works like a charm.

But in this case, one of the columns happens to include a check box to remember the user

selection. The DataView component that you used earlier knew about it because you explicitly

specified the check box in the template. However, there is no way for DataTable to know about

this information. This is a tricky problem that you are faced with, but Wicket has an acceptable

solution: a Wicket Panel component can wrap any other component and will render it as is.

So the solution is to wrap the component you want rendered in a Panel and supply the Panel

in turn to the DataTable’s HTML cells through an AbstractColumn implementation (see

Listing 7-9). In this case, the CheckBox component is wrapped by the Panel represented

by the inner class BookSelectionPanel. Since this would result in an inner class file,

ViewBooks$BookSelectionPanel, the panel template also needs to be named similarly:

ViewBooks$BookSelectionPanel.html.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS210

Listing 7-9. Supplying the DataTable Columns Through IColumn Implementations

import wicket.extensions.markup.html.repeater.data.table.AbstractColumn;

import wicket.extensions.markup.html.repeater.data.table.IColumn;

import wicket.extensions.markup.html.repeater.data.table.PropertyColumn;

import wicket.extensions.markup.html.repeater.refreshing.Item;

public class ViewBooks extends WebPage{

//..

// A helper method that constructs the columns required by the

// DataTable component.

protected IColumn[] getColumnsForTable() {

List columns = new ArrayList();

// Create a column with header "Title", make it sortable, and

// pass the property "title" to the SortableDataProvider and

// use "title" as the property expression against the current row's model

// object.The model object is the actual row from the BookDao (i.e., a Book

// instance).

columns.add(new PropertyColumn(new Model("Title"), "title","title"));

// Create a column with header "Author" and

// use "author" as the property expression against the current row's model

// object.

columns.add(new PropertyColumn(new Model("Author"), "author"));

columns.add(new PropertyColumn(new Model("Publisher"),

"publisher","publisher"));

columns.add(new PropertyColumn(new Model("Price"), "price","price"));

// Special handling of the check box through the AbstractColumn class

columns.add(new AbstractColumn(new Model("")) {

// DataTable will call this method when rendering the table cell,

// passing in the ID used in the template, the IModel, and Item.

public void populateItem(Item cellItem, String componentId,

IModel rowModel) {

// rowModel represents the data from the database for each row

// so the model object (not the model!) is the Book object from the

// database. Set it as the model.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 211

setModel(rowModel);

// Access the model object again to retrieve the Book instance.

Book book = (Book)getModelObject();

// Add the component to Item as in DataView.

cellItem.add(new BookSelectionPanel(componentId, book));

}

});

return (IColumn[]) columns.toArray(new IColumn[0]);

}

//..

//..

}

The custom panel template that wraps a check box element is shown in Listing 7-10.

Listing 7-10. ViewBooks$BookSelectionPanel.html Encloses the Check Box

<!-- A pair of <wicket:panel> tags are used to demarcate the

panel markup -->

<wicket:panel>

<input type="checkbox" wicket:id="selected"/>

</wicket:panel>

As you would expect, you are just required to add Wicket’s CheckBox component to the

Panel (see Listing 7-11).

Listing 7-11. ViewBooks.BookSelectionPanel Wraps the CheckBox Component

public class BookSelectionPanel extends Panel {

public BookSelectionPanel(String id, Book book) {

super(id);

add(new CheckBox("selected", new CheckBoxModel(book.getId())) {

protected boolean wantOnSelectionChangedNotifications() {

return true;

}

});

}

}

Configure the DataTable as shown in Listing 7-12.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS212

Listing 7-12. ViewBooks Modified to Use DataTable

import wicket.extensions.markup.html.repeater.data.table.HeadersToolbar;

import wicket.extensions.markup.html.repeater.data.table.NavigationToolbar

public class ViewBooks..

//..

public ViewBooks(){

final DataTable books = new DataTable("books",

getColumnsForTable(),dataProvider,4);

// Adds the default navigation toolbar

books.addTopToolbar(new NavigationToolbar(books));

// Adds the column headers with sorting enabled through links

books.addTopToolbar(new HeadersToolbar(books,dataProvider));

}

}

Remember, you added an AttributeModifier to DataView component rows in Chapter 3.

The AttributeModifier was configured to add the class attribute to the <tr> element and

initialize it to the values odd or even. The DataTable does not add the class attribute to the

HTML table rows, but it does provide factory methods to create the Item component that rep-

resents the HTML row (<tr>) on the server side. You may choose to return the Item with a

AttributeModifier attached to it as shown in Listing 7-13.

Listing 7-13. Customized DataTable

class CustomDataTable extends DataTable{

public CustomDataTable(String id, IColumn[] columns,

IDataProvider dataProvider, int rowsPerPage) {

super(id, columns, dataProvider, rowsPerPage);

}

// Item represents a table row (<tr>). Add the class attribute using the

// factory method provided specifically for such custom processing.

protected Item newRowItem(final String id, int index, final IModel model){

Item item = new Item(id, index, model);

item.add(new AttributeModifier("class",true,

new Model(index%2==0?"odd":"even")));

return item;

}

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 213

If that seems like a lot of code, you can use DefaultDataTable instead. All of the code in

Listing 7-13 translates to the following when using DefaultDataTable:

public class ViewBooks..

//..

public ViewBooks(){

final DataTable books = new DefaultDataTable("books",getColumnsForTable(),

dataProvider, 4);

}

}

The Page should render just fine now, but depending upon your preference, you might not

want to define a Panel just to act as a placeholder for an HTML check box (ViewBooks$Book➥

SelectionPanel.html).

Let’s see if there is a way by which you can do away with this Panel. Note that a Panel with

a check box can serve as a reusable component by itself.

Wicket Fragments
You just saw that when working with a DataTable, for example, it is a bit awkward to maintain

tiny pieces of markup in plenty of Panel markup files. A Wicket Fragment component provides

a means to maintain the Panel’s tiny piece of markup in the parent component’s markup file.

Add a Fragment markup as shown in Listing 7-14 toward the end of the ViewBooks.html

template. It looks exactly like the ViewBooks$BookSelectionPanel.html except that instead of

being enclosed within a pair of <wicket:panel>,</wicket:panel> tags, it now needs to be

enclosed within a <wicket:fragment> tag and needs to be assigned a wicket:id attribute as

you would when using a Panel in a Page.

Listing 7-14. The Fragment to Include Toward the End of ViewBooks.html

<wicket:fragment wicket:id="checkBoxFrag">

<input type="checkbox" wicket:id="selected"/>

</wicket:fragment>

Corresponding to this markup, you need an equivalent to Wicket’s wicket.markup.

html.panel.Fragment component. Note that it looks exactly like the BookSelectionPanel inner

class that you wrote earlier. The Fragment needs to know its ID, like any other Wicket compo-

nent, and the markupId it will be replacing in the parent Page. It also needs to be told the

MarkupContainer that actually contains its markup—ViewBooks in this case (see Listing 7-15).

Listing 7-15. Defining a Fragment Equivalent for a BookSelectionPanel

import wicket.markup.html.panel.Fragment;

class ViewBooks extends WebPage{

//..

public class BookSelectionFragment extends Fragment {

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS214

// The markupProvider is crucial. It identifies the component

// whose markup contains the Fragment's markup.

public BookSelectionFragment(String id, String markupId,

MarkupContainer markupProvider, Book book) {

super(id, markupId, markupProvider);

add(new CheckBox("selected", new CheckBoxModel(book.getId())) {

protected boolean wantOnSelectionChangedNotifications() {

return true;

}

});

}

}

//..

Refer to Listing 7-16 to understand how the BookSelectionFragment replaces the

BookSelectionPanel in the DataTable component.

Listing 7-16. Replacing BookSelectionPanel with BookSelectionFragment

class ViewBooks extends WebPage{

//..

protected IColumn[] getColumnsForTable() {

//..

columns.add(new AbstractColumn(new Model("")) {

public void populateItem(Item cellItem, String componentId,IModel rowModel) {

final Book book = (Book) rowModel.getObject(null);

// The following Fragment will replace the markup with wicket:id

// componentId, while its own markup ID is

// "checkBoxFrag". Also, the Fragment markup

// can be found within the ViewBooks page itself.

Fragment frag = new BookSelectionFragment(componentId,

"checkBoxFrag", ViewBooks.this, book);

cellItem.add(frag);

}

});

}

//..

}

Note that the same Fragment can be used in several places throughout the Page if required.

It provides a nice way to encapsulate a commonly occurring markup in a Page or other com-

ponent. Note that in the current scenario, the markup wasn’t generic enough and was hence

modeled as a Fragment. It would have ended up as a Panel otherwise. (You would have mod-

eled it as a Panel if it were to be included in several other pages.)

Next, we will look at another useful Wicket extension component—TabbedPanel.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 215

Incorporating a Tabbed Panel in the Online

Bookstore Application
The TabbedPanel component represents a panel with tabs. These tabs in turn point to different

content panels, and the tabs are used to switch between these panels. The template in itself is

quite simple, as you can see in Listing 7-17.

Listing 7-17. TabbedPanel.html

<wicket:panel>

<div class="tab-row">

<li wicket:id="tabs">

<!-- The Tab link and display text -->

[[tab title]]

</div>

<!-- Currently active panel falls here -->

[panel]

</wicket:panel>

The TabbedPanel component uses Wicket’s Loop component to render the tab display text

and Link that activates a given tab. In turn, it expects you to configure the component with a

list of wicket.extensions.markup.html.tabs.AbstractTab implementations. The AbstractTab

implementations are the server-side representations of the tabs that you see on the browser.

Also note that all tab panels have the same ID, panel! How does Wicket accommodate different

panels with the same ID? At any given point in time, only one Panel can be active or visible.

Wicket allows for this effect by replacing an existing Panel with another Panel with the same

ID. It does it through MarkupContainer.replace(Component child). This feature demonstrates

Wicket’s excellent support for dynamic templates. Let’s modify the online bookstore applica-

tion home page to link to its pages/panels through a TabbedPanel component. The page that

holds the tabs just has a div element to hold onto the tabbed panel as shown in Listing 7-18.

Listing 7-18. BookShopTabbedPanelPage.html

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>Bookstore</title>

</head>

<body>

<div wicket:id="tabs" class="tabpanel1">[e-Bookstore tabbed panel will be

here]</div>

</body>

</html>

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS216

Listing 7-19 presents the corresponding Page class.

Listing 7-19. BookShopTabbedPanelPage

import wicket.extensions.markup.html.tabs.AbstractTab;

import wicket.extensions.markup.html.tabs.TabbedPanel;

public class BookShopTabbedPanelPage extends WebPage {

public BookShopTabbedPanelPage() {

configureTabs();

}

// A helper method that configures the tabs

protected void configureTabs() {

// Create a list of ITab objects used to feed the tabbed panel.

final List tabs = new ArrayList();

// The model here represents the tab text.

// Add Books tab and get it to return the appropriate

// Panel as well. You will be developing the Panels

// referenced here next.

tabs.add(new AbstractTab(new Model("Books")) {

public Panel getPanel(String panelId) {

return new ViewBooksPanel(panelId);

}

});

// Add Promotions tab as well.

tabs.add(new AbstractTab(new Model("Promotions")) {

public Panel getPanel(String panelId) {

return new BookPromotionsPanel(panelId);

}

});

// Add Articles tab as well.

tabs.add(new AbstractTab(new Model("Articles")) {

public Panel getPanel(String panelId) {

return new ArticlesPanel(panelId);

}

});

// Configure the TabbedPanel component with the tabs.

final TabbedPanel panel = new TabbedPanel("tabs", tabs);

add(panel);

}

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 217

The Wicket-Extensions TabbedPanel component requires Panels, and you have Pages at

your disposal. There is currently no easy way of adapting a Wicket Page to a Panel yet. This is

not so much of a problem though. You just have to modify the pages to extend wicket.markup.

html.panel.Panel instead of Wicket’s WebPage and have a constructor that accepts the compo-

nent ID (see Listing 7-20).

Listing 7-20. BookPromotionsPanel.java Is Now a Panel

import wicket.markup.html.panel.Panel;

public class BookPromotionsPanel extends Panel {

private static final long serialVersionUID = 1L;

public BookPromotionsPanel(String id) {

super(id);

}

}

The template now needs to identify itself as a Wicket Panel by enclosing the content

within <wicket:panel> start and end tags, as shown in Listing 7-21. The other Page templates

and classes need to be modified similarly.

Listing 7-21. BookPromotionsPanel.html

<wicket:panel>

<!-- Child content -->

Don't miss the super deals on the books in the J2EE category

<!-- End child content -->

</wicket:panel>

The source code for the examples used in the book is available for download from the

Apress web site (http://www.apress.com). The code for other panels aren’t reproduced here to

conserve space. However, Figure 7-3 shows how it renders on the browser.

Figure 7-3. TabbedPanel when used without a style sheet

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS218

Well, the generated HTML is nowhere close to being a tabbed panel (it is just links with

text), but you did expect this after having looked at the TabbedPanel template in its current

form, didn’t you?

Applying a Style Sheet to the Tabbed Panel
As you just saw, the TabbedPanel in its primitive form simply renders a link with text on the

browser. On the server side, it swaps the appropriate panel depending upon the link you click.

If you really want to have a nice-looking tab, you need to apply your own style sheet on top of

the template. For now, use one of the styles specified in this article—http://www.alistapart.

com/articles/slidingdoors/. It requires a few images (refer to the source code for these

images). You will apply the style sheet shown in Listing 7-22.

Listing 7-22. panel.css Style Sheet for Displaying the Panel

table.palette { border:0; }

table.palette td.header { font-weight: bold; font-size: 12pt;

background-color: #eef7ff; padding: 2px;

border-top: 1px solid #729ac2;

border-bottom: 1px solid #729ac2;

}

table.palette td.pane { width: 100px; text-align: center; }

table.palette td.pane select { width: 200px; }

table.palette td.buttons { text-align: center; padding-left: 10px; padding-right:

10px; }

table.palette td.buttons button { width: 40px; height: 40px; }

div.tabpanel div.tab-row{

float:left;

width:100%;

background:#DAE0D2 url("bg.gif") repeat-x bottom;

line-height:normal;

}

div.tabpanel div.tab-row ul {

margin:0;

padding:10px 10px 0;

list-style:none;

}

div.tabpanel div.tab-row li {

float:left;

background:url("left.gif") no-repeat left top;

margin:0;

padding:0 0 0 9px;

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 219

div.tabpanel div.tab-row a {

display:block;

background:url("right.gif") no-repeat right top;

padding:5px 15px 4px 6px;

text-decoration:none;

font-weight:bold;

color:#765;

white-space:nowrap;

}

div.tabpanel div.tab-row a:hover {

color:#333;

}

div.tabpanel div.tab-row li.selected {

background-image:url("lefton.gif");

}

div.tabpanel div.tab-row li.selected a {

background-image:url("righton.gif");

color:#333;

padding-bottom:5px;

}

Since the Wicket-Extensions TabbedPanel does not have a reference to a style sheet, you

need to ensure that you attach it. The images and the style sheet could be copied over to the

context root or some folder relative to it, and you could have BookShopTabbedPanelPage refer-

ence it. For now, copy over the images and the style sheet to the context root of the web

application. Then modify the BookShopTabbedPanelPage to refer to the style sheet, as in

Listing 7-23.

Listing 7-23. BookShopTabbedPanelPage.html with a Reference to panel.css

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

<title>Bookstore</title>

<!-- Since the style sheet is located at the context root, this will work.

If the CSS is stored in the folder <context-root>/styles, href

points to 'styles/panel.css' -->

<link rel="stylesheet" type="text/css" href="panel.css"/>

</head>

<body>

<div wicket:id="tabs" class="tabpanel">[e-Bookstore tabbed panel will be here]</div>

</body>

</html>

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS220

Figure 7-4 shows the improved TabbedPanel appearance after applying the style sheet

(refer back to Listing 7-22).

Figure 7-4. TabbedPanel when used in conjunction with a Cascading Style Sheet

If this style in conjunction with the TabbedPanel were to be used in another application,

you would again be required to copy over the style sheet and images to the context root of the

new web application. This doesn’t sound too convenient. So let’s address this problem in the

next section.

Packaging Wicket Components into Libraries
As discussed in the previous section, the style sheet belongs to the TabbedPanel and not the

BookShopTabbedPanelPage that uses the component. So you need a way to get the TabbedPanel

to refer to the images and the style sheet. But then you don’t have access to the TabbedPanel

component source code, as it comes packaged with Wicket-Extensions. Well, you sure can

get to the source, Wicket being a pure open-source project. But then modifying component

source code to accommodate a custom feature probably doesn’t seem too object oriented.

One option could be to extend the existing TabbedPanel and package the images and the style

sheet along with it (see Listing 7-24).

Listing 7-24. CustomTabbedPanel Component Package Structure

+com

+apress

+wicketbook

+components

- CustomTabbedPanel.class

- panel.css

- bg.gif

- left.gif

- lefton.gif

- right.gif

- righton.gif

The images, the style sheet, and JavaScript files if present are typically referred to as

packaged resources.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 221

Wicket applications by design are session heavy. So in order to get the framework to scale,

it is very likely such applications will be deployed in a cluster. Every server on a cluster is

termed a node. In clustered applications, a request might be served by any node in the cluster.

Let’s say you access a page that has a link to a packaged resource on node A. Now the URL

for the resource gets forwarded to node B, but node B doesn’t have the resource registered yet

because maybe the Page class hasn’t been loaded and so its static block hasn’t run yet. So the

initializer is a place for you to register all those resources. You will use IInitializer as shown

in Listing 7-25.

Listing 7-25. CustomTabbedPanel

package com.apress.wicketbook.components;

import java.util.List;

import java.util.regex.Pattern;

import wicket.Application;

import wicket.AttributeModifier;

import wicket.IInitializer;

import wicket.behavior.HeaderContributor;

import wicket.extensions.markup.html.tabs.TabbedPanel;

import wicket.markup.html.PackageResource;

import wicket.model.Model;

public class CustomTabbedPanel extends TabbedPanel {

public final static class ComponentInitializer implements IInitializer {

/**

* @see wicket.IInitializer#init(wicket.Application)

*/

public void init(Application application) {

// Register all .js, .css, and .gif files as shared resources. This allows

// you to specify a Java regex pattern to capture all images, .css files,

// etc.

PackageResource.bind(application, CustomTabbedPanel.class, Pattern

.compile(".*\\.css|.*\\.gif"));

}

}

public CustomTabbedPanel(String id, List tabs) {

super(id, tabs);

// Add a reference to the panel CSS.

add(HeaderContributor.forCss(CustomTabbedPanel.class, "panel.css"));

// You shall identify the div that holds the panel through the class

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS222

// "tabpanel".

// This is necessary because your style sheet uses it.

add(new AttributeModifier("class", true, new Model("tabpanel")));

}

}

Now every component might have such IInitializer implementations. What you need is

a way to get all of them to execute when the application starts up. Wicket’s way of achieving

the same is by having another IInitializer implementation that calls each of these in turn

(see Listing 7-26).

Listing 7-26. Initializer

package com.apress.wicketbook.components;

import wicket.Application;

import wicket.IInitializer;

/**

* Initializer for your custom components

*/

public class Initializer implements IInitializer {

/**

* @see wicket.IInitializer#init(wicket.Application)

*/

public void init(Application application) {

// Call the component initializers.

new CustomTabbedPanel.ComponentInitializer().init(application);

}

}

But then Wicket needs to know about the Initializer in Listing 7-26 in the first place

so that it can call it during application initialization. The way you do this is by having a

wicket.properties file with the entry in Listing 7-27. Wicket looks for all properties files

named wicket.properties available in the class path and invokes the init method on startup.

Listing 7-27. wicket.properties

initializer=com.apress.wicketbook.components.Initializer

Now you just need to package all of the preceding in a jar file. Accessing the

CustomTabbedPanel component is just about dropping the resulting jar file into the

<Context>/WEB-INF/lib folder of the target application.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 223

Displaying Appropriate Tab Titles
Clicking a tab should result in the appropriate HTML title being displayed on the page. Since

the title needs to dynamically evaluated, add a wicket:id attribute to it as shown in Listing 7-28.

Listing 7-28. Replacing the Static BookShopTemplatePanelPage.html Title with a Dynamic One

<-- Replace <title>Bookstore</title> with -->

<title wicket:id="title">Title goes here</title>

The newly added element can be modeled as a Label on the Wicket side. The

TabbedPanel knows the tab that is being displayed at a given point in time, and the tab in turn

knows its title. The Label can then be configured with a model that returns the tab title (see

Listing 7-29).

Listing 7-29. TabTitleModel

package com.apress.wicketbook.extensions;

public class BookShopTabbedPanelPage extends WebPage {

//..

protected void configureTabs() {

final List tabs = new ArrayList();

//..

final TabbedPanel panel = new TabbedPanel();

// A model that retrieves the currently clicked tab

// and determines its title.

class TabTitleModel extends Model{

public Object getObject(Component comp){

return

((ITab)tabs.get(panel.getSelectedTab()))

.getTitle()

.getObject(null);

}

}

add(new Label("title", new TabTitleModel()));

}

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS224

Restricting the Categories of Books Being

Displayed Through Wicket’s Palette Component
You might have noticed that you haven’t designed any screen related to the administration of

the bookstore. You don’t have screens that allow you to add new books to the database, for

example. You might want to sell books belonging to certain categories only. Currently there is

no way for you to specify that filter. So now you’ll try developing a screen that allows you to do

just that. The BookDao class requires some modifications to accommodate this new require-

ment though (see Listing 7-30).

Listing 7-30. BookDao Modified to Accommodate Display Filter

public class BookDao implements Serializable{

//..

List displayFilter;

// Maintain copies of "all" and "select" categories.

private void init(String[] cats) {

categories = new ArrayList();

for (int i = 0; i < cats.length; i++) {

categories.add(cats[i]);

}

displayFilter = (List)((ArrayList)categories).clone();

}

public BookDao() {

init(new String[] { CATEGORY_J2EE, CATEGORY_SCRIPTING,

CATEGORY_ASP_NET, CATEGORY_DP, CATEGORY_ALL });

//..

}

// For now, you will not allow empty filters.

public void setDisplayFilter(List displayFilter) {

if (displayFilter != null && !displayFilter.isEmpty()) {

if (displayFilter.contains(CATEGORY_ALL)) {

displayFilter = categories;

} else {

this.displayFilter = displayFilter;

}

}

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 225

// Add a method to fetch all categories.

public List getAllCategories() {

return categories;

}

// Modify this previously existing method to return the filtered values.

public List getSupportedCategories() {

return displayFilter;

}

}

If the web site administrator were to specify this filter, he or she would need to be able to

view all the available categories and at the same time select the categories that he or she wants

displayed on the ViewBooks page. Designing such a component requires some effort. Luckily,

Wicket-Extensions gives it away free under the Apache 2.0 license.

Quoting from the Javadoc of wicket.extensions.markup.html.form.palette.Palette

component:

Palette is a component that allows the user to easily select and order multiple items by

moving them from one select box into another.

Well, looks like this is what you need at the moment. Build the Panel that will host this

component for you, as shown in Listing 7-31.

Listing 7-31. AdminPanel.html

<wicket:panel>

<form wicket:id="form">

<!-- A placeholder for the palette -->

<input type="submit"/>

</form>

</wicket:panel>

Before you actually use the Palette, take a quick look at Listing 7-32, which shows what it

takes to construct one.

Listing 7-32. Palette Constructor Contract

public class Palette extends Panel{

public Palette(java.lang.String id,

wicket.model.IModel model,

wicket.model.IModel choicesModel,

wicket.markup.html.form.IChoiceRenderer choiceRenderer,

int rows,

boolean allowOrder)

}

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS226

Here’s a brief explanation of the parameters in Listing 7-32:

Argument Description

id Component ID

model Model representing collection of user’s selections

choicesModel Model representing collection of all available choices

choiceRenderer Renderer used to render choices

rows Number of choices to be visible on the screen with out scrolling

allowOrder Argument that allows user to move selections up and down

Except for IChoiceRenderer (identified by the choiceRenderer parameter), the constructor

parameters are fairly self-explanatory. So let’s take a closer look at what IChoiceRenderer is all

about.

Some of the HTML elements such as drop-down lists, multiple choice lists, etc., display or

work on a list of values. For an item in such a list, the display value on the browser might not

be used as the identifier, or ID, on the server side. wicket.markup.html.form.IChoiceRender

separates the ID values used for internal representation from display values, which are the

values shown to the user of components that use this renderer. Now that you are equipped

with the information to configure a Wicket Palette, let’s put together a functional AdminPanel

(see Listing 7-33).

Listing 7-33. AdminPanel.java

package com.apress.wicketbook.extensions;

import wicket.extensions.markup.html.form.palette.Palette;

import wicket.markup.html.form.Form;

import wicket.markup.html.form.IChoiceRenderer;

import wicket.markup.html.panel.Panel;

import com.apress.wicketbook.shop.app.BookStoreApplication;

import com.apress.wicketbook.shop.model.BookDao;

public class AdminPanel extends Panel {

// A helper to retrieve BookDao

protected BookDao getBookDao() {

return ((BookStoreApplication) getApplication()).getBookDao();

}

public AdminPanel(String id) {

super(id);

configurePalette();

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 227

protected void configurePalette() {

// This will be displayed in the Available choices section

// of the palette.

List categories = getBookDao().getAllCategories();

// The user selection will be displayed here.

List displayFilter = getBookDao().getSupportedCategories();

IChoiceRenderer renderer = new CustomChoiceRenderer();

final Palette palette = new Palette("palette", new Model(

(Serializable) displayFilter), new Model(

(Serializable) categories), renderer, 10, true);

Form form = new PaletteForm("form", palette);

form.add(palette);

add(form);

}

// The server-side representation of categories is a list of String objects, and

// they are unique in the online bookstore application. So use those as the

// display and ID.

class CustomChoiceRenderer implements IChoiceRenderer {

// For a given item in the list, use the String representation for display.

public Object getDisplayValue(Object object) {

return object.toString();

}

// For a given item in the list, use the String representation for the ID

// as well.

public String getIdValue(Object object, int index) {

return object.toString();

}

}

class PaletteForm extends Form {

private Palette palette;

public PaletteForm(String id, Palette palette) {

super(id);

this.palette = palette;

}

// On submit, set the selected values as the

// display filter for categories.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS228

public void onSubmit() {

List displayFilter = new ArrayList();

for (Iterator iter = palette.getSelectedChoices();

iter.hasNext();) {

displayFilter.add(iter.next());

}

getBookDao().setDisplayFilter(displayFilter);

}

}

}

Figure 7-5 shows how the Palette renders on the browser.

Figure 7-5. AdminPanel configured with a Palette for selecting book categories being displayed

After selecting the categories you want displayed, click the submit button. On form sub-

mission, you ask for the selected choices from the palette, which are the categories that need

to be displayed when a user clicks the “Books” link.

Before this chapter concludes, let’s take a look at another Wicket-Extensions compo-

nent—TextTemplateHeaderContributor.

Adding Page Header Contributions Using the

TextTemplateHeaderContributor Component
Consider the JavaScript function shown in Listing 7-34. It basically displays a pop-up that

returns a boolean value of true or false depending upon whether you click OK or Cancel

when prompted. This is the behavior of the built-in JavaScript function confirm.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 229

Listing 7-34. A JavaScript Function That Allows You to Pop Up a Confirmation Message When

Invoked

function confirmDelete(){

return confirm("Delete yes/no?");

}

Consider a page that has two buttons as shown in Listing 7-35 that attaches the

confirmDelete() functionality to the onclick event. Note that the message displayed in the

pop-up box (as specified by the argument to the confirm function) turns out to be the same

for the two buttons. It is highly unlikely that you would want the same message displayed on

clicking two different buttons, as they are likely to result in different actions being performed

on the server side.

Listing 7-35. TestDeleteButton.html, Which Uses Buttons with Hard-Coded References to the

JavaScript Function confirm

<html>

<body>

<form wicket:id="form">

<input type="submit" value="Delete1" wicket:id="delete1"

onclick="return confirmDelete()"/>

<input type="submit" value="Delete2" wicket:id="delete2"

onclick="return confirmDelete()"/>

</form>

</body>

</html>

Typically, such JavaScript functions are maintained external to the page that uses them in

a .js file (call it confirmdelete.js in this example). Say you have a requirement whereby you

don’t want to be hard-coding the onclick button event in the template. What you want here is

the ability to add the onclick attribute to the corresponding server-side Button component

dynamically. You know that you can add attributes to a Component through the onComponentTag

callback method. But it will probably be more elegant and “Wicket-like” if you can get a cus-

tom IBehavior to do the same and then attach the behavior to the component. Let’s give this

custom behavior a name—ConfirmDeleteBehavior (you will be developing it subsequently).

Even though you can bind the JavaScript confirmDelete function to the onclick event

using ConfirmDeleteBehavior, you still are left with a few unaddressed issues:

• You still haven’t found a way to include the confirmdelete.js file in your template.

Well, you can hard-code the reference to the file in the <head> section of the template.

But a more elegant solution would be to get ConfirmDeleteBehavior to include the

contents of the .js file in the template at runtime—wicket.extensions.util.resource.

TextTemplateHeaderContributor enables a Component or a IBehavior to contribute the

contents of the given template (the JavaScript template in this case).

• The JavaScript function still does not provide a way to configure the confirmation mes-

sage dynamically—Wicket allows you to specify a wicket.extensions.util.resource.

TextTemplate that can do variable interpolation to address this problem.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS230

• Even if you manage to address the preceding concerns, you still have an issue with

attaching the custom IBehavior implementation to more than one Button component

on the Page: you will end up with the same function, confirmDelete, being included

more than once in the rendered template, resulting in a conflict. This can be best

avoided by allowing ConfirmDeleteBehavior to generate a unique JavaScript function

name at runtime.

Listing 7-36 shows the JavaScript confirmdelete.js file that has variables whose values

will be determined at runtime. (jsfunc will eventually be replaced with the function name and

msg will be substituted with a display message at runtime.)

Listing 7-36. confirmdelete.js, Which Allows You to Configure the Function Name and the

Message at Runtime

function ${jsfunc}(){

return confirm("${msg}");

}

Refer to Listing 7-37 for the ConfirmDeleteBehavior class. Detailed explanation is inline.

Listing 7-37. ConfirmDeleteBehavior.java

package com.apress.wicketbook.layout;

// Other imports

import wicket.behavior.AbstractBehavior;

import wicket.extensions.util.resource.TextTemplateHeaderContributor;

import wicket.markup.ComponentTag;

import wicket.model.AbstractReadOnlyModel;

import wicket.model.IModel;

import wicket.util.collections.MicroMap;

public class ConfirmDeleteBehavior extends AbstractBehavior {

Component component;

// Bind the JS call to the onclick event.

public void onComponentTag(Component component, ComponentTag tag) {

tag.put("onclick","return "+getJSFuncName()+"()");

}

// TextTemplateHeaderContributor evaluates the template

// with interpolation variables based on the supplied

// context, which is a Java map.

// It is quite similar to VelocityContext, for example.

IModel variables = new AbstractReadOnlyModel() {

private Map variables;

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 231

public Object getObject(Component component) {

if (variables == null) {

this.variables = new MicroMap();

variables.put("jsfunc", getJSFuncName());

variables.put("msg", getJSMessage());

}

return variables;

}

};

// This method is called after the behavior is associated

// with the component through the Component.add(IBehavior)

// method call. You will need to determine the component

// markup ID later, as you will find out.

public void bind(Component component){

this.component = component;

// It is absolutely essential that you output

// component markup ID, as it will be used later

// to determine the JavaScript function name uniquely.

component.setOutputMarkupId(true);

// TextTemplateHeaderContributor accepts the class

// to be used for retrieving the classloader for

// loading the packaged template. Since you specify

// ConfirmDeleteBehavior as the class, you need to make

// sure that you keep the confirmdelete.js file in the same

// package folder structure as ConfirmDeleteBehavior.

component.add(TextTemplateHeaderContributor.forJavaScript(getClass(),

"confirmdelete.js", variables));

}

// Allow subclasses to specify the

// custom display message.

protected String getJSMessage(){

return "Delete Yes/No?";

}

// Use the Markup ID to provide a unique name

// for the JavaScript function.

private final String getJSFuncName(){

return "confirmDelete"+component.getMarkupId();

}

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS232

Now is the time to put the ConfirmDeleteBehavior to test. Listing 7-38 shows the template

that uses the button, while Figure 7-6 shows what the page looks like on the browser.

Listing 7-38. TestDeleteButton.html, Which Uses a Button Configured with

ConfirmDeleteBehavior

<html>

<body>

Feedback goes here

<form wicket:id="form">

<input type="submit" wicket:id="deleteButton1"

value="Default Delete"/>

<input type="submit" wicket:id="deleteButton2"

value="Custom Delete"/>

</form>

</body>

</html>

Figure 7-6. A page that uses buttons configured with ConfirmDeleteBehavior

Listing 7-39 presents the Page class corresponding to the template shown in Listing 7-38.

Note that the deleteButton2 component specifies the message it wants displayed on the

browser when you click the button.

Listing 7-39. TestDeleteButton.java Page Class

package com.apress.wicketbook.layout;

// Other imports

import com.apress.wicketbook.layout.ConfirmDeleteBehavior

public class TestDeleteButton extends WebPage {

public TestDeleteButton(){

add(new FeedbackPanel("feedback"));

Form form = new Form("form");

Button deleteButton1 = new Button("deleteButton1"){

public void onSubmit(){

info(" You clicked deleteButton1 ");

}

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS 233

};

deleteButton1.add(new ConfirmDeleteBehavior());

form.add(deleteButton1);

Button deleteButton2 = new Button("deleteButton2"){

public void onSubmit(){

info(" You clicked deleteButton2 ");

}

};

deleteButton2.add(new ConfirmDeleteBehavior(){

// Override the client-side JavaScript alert

// message.

public String getJSMessage(){

return "You clicked Custom Delete Button!!";

}

});

form.add(deleteButton2);

add(form);

}

}

Figure 7-7 shows what you will eventually see on the screen upon clicking the buttons

present on the TestDeleteButton.html page.

Figure 7-7. The pop-up boxes that show up when clicking the Default Delete and Custom Delete

buttons

Summary
In this chapter, we looked at the Wicket component hierarchy. Essentially, it consists of com-

ponents that do not have a template associated with them and others that do. Wicket’s Panel

and Border components are examples of the latter. You learned how to use Wicket-Extensions

components like DataTable, TabbedPanel, and Palette. Wicket components—custom or other-

wise—can be distributed in the form of a simple jar file. But if they have references to other

web-related artifacts like images, style sheets, and JavaScript files, they need to be bound to

the Application object at startup so that references remain valid even in clustered deployment

scenarios. Finally, you learned about the TextTemplateHeaderContributor class, which allows

you to contribute contents of the given template interpolated with the provided map of

variables.

CHAPTER 7 ■ CUSTOM WICKET COMPONENTS AND WICKET EXTENSIONS234

Wicket and Ajax

It probably wouldn’t be too way off the mark to say that Ajax (Asynchronous JavaScript and

XML) is the most talked about technology these days in the web arena. Being a web frame-

work, Wicket’s support for Ajax should therefore not come as a surprise. Ajax is essentially a

combination of client-side JavaScript, CSS, HTML DOM, and browser XmlHttpRequest imple-

mentation working together to provide highly responsive web applications or rich Internet

applications. Wicket supports Ajax at its core through several built-in Ajax-enabled compo-

nents. So much so that you could Ajax-enable your pages without writing a single line of

JavaScript processing code. In the following sections, you will try Ajax-ifying a few pages that

you have already developed.

Ajax Form Validation
We looked at Wicket’s server-side validation support in Chapter 2. On form submit, the server-

side validation kicks in as Wicket traverses through all the Form components, executing the

attached validators on component input and in the process accumulating error messages if

any. The FeedbackPanel, if attached, displays the messages previously accumulated.

Let’s revisit the UserProfilePage server-side validation that you put in place in Chapter 2.

On validation failure, the FeedbackPanel renders each error message within the HTML

element. For a change, you will try a different way of error reporting. You will enclose the com-

ponents that need to be validated within Wicket’s wicket.markup.html.form.validation.

FormComponentFeedbackBorder this time around, as shown in Listing 8-1. This Border compo-

nent renders a little red asterisk beside the component that fails validation. For more details

on Wicket Border components in general, refer to Chapter 4.

Listing 8-1. UserProfilePage Modified to Accomodate the FormComponentFeedbackBorder

Component

package com.apress.wicketbook.ajax;

import wicket.markup.html.form.validation.FormComponentFeedbackBorder;

public class UserProfilePage extends WebPage{

235

C H A P T E R 8

public UserProfilePage(){

//..

final FeedbackPanel panel = new FeedbackPanel("feedback");

TextField userNameComp = new TextField("name");

TextField pinComp = new TextField("pin");

TextField phoneComp = new TextField("phoneNumber");

//..

final FormComponentFeedbackBorder nameBorder = addWithBorder(form,

userNameComp, "nameBorder");

final FormComponentFeedbackBorder pinBorder = addWithBorder(form,

pinComp, "pinBorder");

final FormComponentFeedbackBorder phoneBorder = addWithBorder(form,

phoneComp, "phoneBorder");

//..

}

// A helper to add Border to the FormComponent

Border addWithBorder(Form form,FormComponent component,String borderId){

FormComponentFeedbackBorder border = new FormComponentFeedbackBorder(borderId);

border.add(component);

form.add(border);

return border;

}

This would mandate some changes to the template as well, as shown in Listing 8-2.

Listing 8-2. UserProfilePage.html Modified to Accomodate Placeholder for

FormComponentFeedbackBorder

<!-- Rest of the page stays the same -->

<!-- Only the following components now have a span for the surrounding border -->

User Name

<input type="text" wicket:id="name"/>

Pin <input type="text" wicket:id="pin"/>

Phone <input type="text"

wicket:id="phoneNumber"/>

Figure 8-1 shows what happens on leaving the User Name field blank, entering a value

of -1 for Pin, and clicking the Save button.

CHAPTER 8 ■ WICKET AND AJAX236

Figure 8-1. Validation feedback through the FormComponentFeedbackBorder component

Reporting validation errors after HTML form submit is good enough. One issue with this

approach is that the user gets the feedback only after clicking the Save button.

A better user experience would mean providing feedback without resorting to a browser

refresh—the way it works in desktop applications. Ajax enables just that by allowing you to

query server-side validators that in turn are triggered by client-side JavaScript events. This doesn’t

require a browser refresh either. The browser’s implementation of XmlHttpRequestObject

allows you to communicate with the server asynchronously through standard URLs. It also

gives you access to the response sent by the server in the form of plain text or XML. The client-

side JavaScript then needs to make sense of the response sent back by the server and use

HTML DOM APIs to manipulate the page content dynamically. You could, for example, pro-

vide feedback after the user has entered a value for the HTML form element and has moved

the focus to another field. It essentially boils down to providing feedback on the onblur

JavaScript event of the element. On the onblur event, you need to fire an Ajax request that

passes in the user input, validate the input and construct the response on the server, pass it

back to the browser, and finally re-render the component with the new content. Since this

chapter is specifically about how Wicket and Ajax work together, for more information on

Ajax, you could consult Foundations of Ajax by Ryan Asleson and Nathaniel T. Schutta (Apress,

2005). Before we delve further into Wicket’s support for Ajax, let’s discuss another concept

that’s central to Wicket’s Ajax support—behaviors.

Behaviors in Wicket
Wicket encompasses a concept of behaviors that is represented by the wicket.behavior.

IBehavior interface. Components can exhibit different behaviors, and they can be associated

with the component at runtime by simply calling wicket.Component.add(IBehavior). Among

other things, a behavior also gets an opportunity to modify the component tag attributes

through the IBehavior.onComponentTag() method. wicket.behavior.AttributeBehavior,

which you used in Chapter 3 to add CSS style attributes to HTML elements, in fact does just

that. You could term the ability to respond to an Ajax request as a behavior exhibited by the

CHAPTER 8 ■ WICKET AND AJAX 237

component, and as you might have guessed, Wicket models it as one. Wicket is about compo-

nents responding to browser events through listeners. Similarly, Wicket behaviors respond to

browser Ajax requests through the wicket.behavior.IBehaviorListener interface.

As is the case with most Wicket listener implementations, wicket.ajax.AbstractDefault➥

AjaxBehavior implements IBehaviorListener.onRequest, does its internal processing, and

finally calls AjaxBehavior.respond(), passing in wicket.ajax.AjaxRequestTarget to fetch the

actual content that needs to be sent back to the browser in response to the Ajax request. A

component added to the AjaxRequestTarget object becomes the target of Ajax response.

AjaxRequestTarget takes on the onus of creating and sending the Ajax response to the client.

Wicket ships with quite a few commonly required Ajax behavior implementations, and

AjaxFormComponentUpdatingBehavior is one of them. AjaxFormComponentUpdatingBehavior,

when added to a component, takes care of the following:

• It generates the JavaScript call that needs to execute on the occurrence of the specified

client-side JavaScript event (e.g., onblur).

• It also ties the event-handling routine for the appropriate event on the corresponding

client-side HTML element (attaching the JavaScript call generated in the preceding step

to the JavaScript event onblur, for example). Note that this occurs when the compo-

nents are rendered for the first time.

• On the Wicket side (server side) of things, when the Ajax call is actually triggered from

the browser as a result of some user action, it updates and validates the component

against the input that was passed in through the Ajax call.

• It then gives you a chance to decide the next steps by calling the onUpdate template

method, passing in the AjaxRequestTarget object.

Components added to the AjaxRequestTarget become the target of Ajax response.

AjaxRequestTarget will render only those components (also known as partial rendering),

and the built-in JavaScript infrastructure will make sure that it re-renders the components

by initializing HTML’s outerHTML property. Note that you can add as many components as

you like to AjaxRequestTarget, and Wicket will render them in response. In this case, you

need to add the FeedbackPanel and the FormComponentFeedbackBorder components to the

AjaxRequestTarget so that they can provide the correct feedback to the user after validation.

Wicket employs standard HTML DOM APIs to update client-side content using Ajax

response from the server. In order to identify the HTML elements correctly, Wicket relies on

the HTML element id attribute being correctly populated for all those elements that are the

targets of Ajax response. You are not required to provide unique IDs for the elements your-

self—this could be error prone. Wicket will take care of this as long as you specify the following

on the component during instantiation:

component.setOutputMarkupId(true);

Components that are targets of Ajax response need to emit the id attribute when render-

ing for the first time (see Listing 8-3). This is because the built-in JavaScript code looks up the

element by its id during Ajax re-render. It’s obvious that the look up would fail in the absence

of this attribute. This setting is mandatory, and Wicket will throw exceptions at runtime if the

setting is not in place already.

CHAPTER 8 ■ WICKET AND AJAX238

Listing 8-3. UserProfilePage with Ajax-ified Validation

package com.apress.wicketbook.ajax;

import wicket.markup.html.form.validation.FormComponentFeedbackBorder;

public class UserProfilePage extends WebPage{

public UserProfilePage(){

//..

feedback.setOutputMarkupId(true);

addAjaxBehaviorToComponent(userNameComp,nameBorder,feedback);

addAjaxBehaviorToComponent(pinComp,pinBorder,feedback);

addAjaxBehaviorToComponent(phoneComp,phoneBorder,feedback);

//..

}

// Component whose input needs to be validated should be

// configured with AjaxFormComponentUpdatingBehavior.

void addAjaxBehaviorToComponent(FormComponent formComponent,

final FormComponentFeedbackBorder border,final FeedbackPanel feedback){

formComponent.add(new AjaxFormComponentUpdatingBehavior("onblur"){

// You want the FeedbackPanel and the FormComponentFeedbackBorder

// to update themselves based on the Ajax validation result.

// Accordingly, you need to add them to the AjaxRequestTarget.

@Override

protected void onUpdate(AjaxRequestTarget target) {

target.addComponent(feedback);

target.addComponent(border);

}

}

);

}

Border addWithBorder(Form form,FormComponent component,String borderId){

FormComponentFeedbackBorder border = new FormComponentFeedbackBorder(borderId);

// Get the border components to emit value for id.

border.setOutputMarkupId(true);

border.add(component);

form.add(border);

return border;

}

}

Leave the name field blank and press Tab, which should result in something like what you

see in Figure 8-2 being displayed on the browser.

CHAPTER 8 ■ WICKET AND AJAX 239

Figure 8-2. Form field validation through Ajax

Click the “WICKET AJAX DEBUG” link to pop up a window that displays the actual Ajax

response that was received from the server. This is extremely useful when working in debug

mode. If an Exception occurs during partial render, the debug window would display that

Exception. You can switch off the Ajax debug mode as shown in Listing 8-4.

Listing 8-4. Changing Ajax Debug Settings in the WebApplication Class

pubic class BookStoreApplication extends WebApplication{

//..

public void init(){

getAjaxSettings().setAjaxDebugModeEnabled(false);

}

//..

}

Actually, if the deployment is set to “production,” the Ajax debug window will not

show up.

If you test the Ajax-ified UserProfilePage, you will notice that the Feedback component

display is not in sync with the validation state of the Form component. We will address this

issue next.

Keeping the FeedbackPanel and Ajax Validation

in Sync
Feedback messages are cleaned up upon a new request (an Ajax request in this case). So

adding the FeedbackPanel as an Ajax target as shown earlier will not work, as the panel lacks

an insight into the other component’s input at that point in time. Wicket needs to be aware of

inputs of all the Form components to be able to provide the correct feedback. The best solution

CHAPTER 8 ■ WICKET AND AJAX240

to this problem is to use Wicket’s wicket.ajax.form.AjaxFormValidatingBehavior class, which

makes working with such things a breeze. It takes care of the following:

• Adding AjaxFormValidatingBehavior to all the container Form components when asked

to (you will see how in a while)

• Submitting the HTML form in its entirety with all its contents (elements identified

through wicket:id) as an Ajax request on a specified client-side JavaScript event (onblur,

onkeyup, etc.)

• Adding all the Feedback components (those that implement Wicket’s IFeedback inter-

face) to the AjaxRequestTarget on submit

The following line of code is all that you need to add:

AjaxFormValidatingBehavior.addToAllFormComponents(form, "onkeyup",

wicket.util.time.Duration.seconds(3));

Note that Wicket’s Duration class provides a nice, readable way of specifying time instead

of passing in the number of milliseconds as is the norm with Java APIs. Actually, the preceding

call does a little more than what we just discussed. Instead of waiting for the user to move the

focus to another field, you provide feedback while the user is typing with a configured delay

(3 seconds in this case). It is not desirable to have an Ajax call made every time the user types,

so this feature allows you to throttle that call to a desirable delay, such as once every 3 seconds

This gives you a near real-time ability to provide feedback without overloading the server.

Remove all references to AjaxFormComponentUpdatingBehavior in the code though. Since

the entire form is submitted as a part of an Ajax request (also known as form serialization)

and validated, the Feedback component will have complete information on the validation

state of all the components and hence will always reflect the correct picture. Actually, with the

preceding changes, you will notice that you have only managed to render the FeedbackPanel

correctly. You must be wondering how the FeedbackPanel managed to update itself on Ajax

request—actually AjaxFormValidatingBehavior makes sure that it adds all implementations of

Wicket’s IFeedback interface (FeedbackPanel is one example) within the supplied Form compo-

nent to the AjaxRequestTarget. FormComponentFeedbackBorder still has a problem in that it is

not ready for Ajax-ification yet. So you will roll out your own.

Building a Custom FormComponentFeedbackBorder

That Works Well with Ajax
The template shown in Listing 8-5 is similar to that of Wicket’s FormComponentFeedbackBorder

component. But there is a significant difference—FormComponentFeedbackBorder renders a

little red asterisk beside the component only when the validation fails. So when the page is

displayed for the first time, the span marked errorIndicator will not render on the browser as

there are no validation failures. But then the current Wicket-Ajax setup expects the compo-

nent to exist beforehand so that it can replace its outerHTML later during a subsequent Ajax

call. You will fix this issue in your component by rendering the errorIndicator span uncondi-

tionally but at the same time making sure that the rendering of the little red asterisk is

evaluated at runtime.

CHAPTER 8 ■ WICKET AND AJAX 241

Listing 8-5. A Custom FormComponentFeedbackBorder That Works Well with Ajax

<html xmlns:wicket>

<body>

<wicket:border>

<!-- errorText component will be rendered conditionally -->

<wicket:body/>

</wicket:border>

</body>

</html>

Listing 8-6 shows the corresponding Border class.

Listing 8-6. The Corresponding Java Component Class

Package com.apress.wicketbook.ajax;

import wicket.AttributeModifier;

import wicket.feedback.ContainerFeedbackMessageFilter;

import wicket.feedback.IFeedback;

import wicket.feedback.IFeedbackMessageFilter;

import wicket.markup.html.WebMarkupContainer;

import wicket.markup.html.basic.Label;

import wicket.markup.html.border.Border;

import wicket.model.IModel;

import wicket.model.Model;

/**

* A border component similar to FormComponentFeedbackBorder

* except that the errorIndicator span is displayed at all times so that

* it is always available. The error text (*) and the error style

* are rendered only when there is an error associated with the component.

*/

public class AjaxResponsiveFormComponentFeedbackBorder extends Border implements

IFeedback {

private boolean visible;

/**

* Error indicator that will be shown whenever there is an error-level

* message for the collecting component.

*/

private final class ErrorIndicator extends WebMarkupContainer {

CHAPTER 8 ■ WICKET AND AJAX242

public ErrorIndicator(String id) {

super(id);

add(new ErrorTextLabel("errorText", new Model("*")));

add(new ErrorStyleAttributeModifier("style", true,

new Model("color:red;")));

}

// An error style whose visiblity is determined by the presence

// of feedback error messages.

class ErrorStyleAttributeModifier extends AttributeModifier {

public ErrorStyleAttributeModifier(String attribute,

boolean addAttributeIfNotPresent, IModel replaceModel) {

super(attribute, addAttributeIfNotPresent, replaceModel);

}

public boolean isVisible() {

return visible;

}

}

// An error text label whose visibility is determined by the presence

// of feedback error messages.

class ErrorTextLabel extends Label {

public ErrorTextLabel(String id, IModel model) {

super(id, model);

}

public boolean isVisible() {

return visible;

}

}

}

public AjaxResponsiveFormComponentFeedbackBorder(final String id) {

super(id);

add(new ErrorIndicator("errorIndicator"));

}

CHAPTER 8 ■ WICKET AND AJAX 243

// The ContainerFeedbackMessageFilter is used to filter out

// feedback messages belonging to this component.

protected IFeedbackMessageFilter getMessagesFilter() {

return new ContainerFeedbackMessageFilter(this);

}

/* This method will be called on the component during

* Ajax render so that it gets a chance to determine the

* presence of error messages.

*/

public void updateFeedback() {

visible = getPage().getFeedbackMessages().messages(

getMessagesFilter()).size() != 0;

}

}

Let’s use AjaxResponsiveFormComponentFeedbackBorder in place of FormComponent➥

FeedbackBorder in this example. This should ensure that the Ajax validation goes through

smoothly.

You started out with the mission of enabling Ajax on some of the pages that you devel-

oped earlier. The TabbedPanel that you used in your bookstore application also has an Ajax

counterpart: wicket.extensions.ajax.markup.html.tabs.AjaxTabbedPanel. You will see how

you can put this component to use next.

Using Wicket’s AjaxTabbedPanel for the

Bookstore Panel
AjaxTabbedPanel, just like its non-Ajax counterpart TabbedPanel, uses links on the tabs. But

the Ajax-ified version updates the display panel in place instead. The Link components are

in fact of the type wicket.ajax.markup.html.AjaxFallbackLink. So if you have the “WICKET

AJAX DEBUG” link enabled, you will notice that every time you click a link, the Ajax response

contains the markup for the entire Panel that needs to be replaced or rendered. Then, as

usual, the JavaScript routine replaces the existing markup with the new one based on the id

attribute.

This time around, you won’t package AjaxTabbedPanel as a reusable component along

with the CSS and images though, as you learned how to do in Chapter 7. Instead, you will copy

the style sheet and images to the web application’s context root directory and access them

directly from within your page.

Updating the HTML Title Element Through Ajax
Wicket-Ajax updates the HTML element based on the value of the attribute id. It essentially

sets the outerHTML property of the element to the Ajax response received from the server. In

this case, you are faced with updating the page title based on the selected panel. You can add

CHAPTER 8 ■ WICKET AND AJAX244

the Label component to the AjaxRequestTarget. But unfortunately, HTML DOM does not

support updating the <title> element based on the id attribute nor does the <title> element

have a property by the name outerHTML. Essentially, Wicket-Ajax’s way of updating the HTML

element is not of any help in this specific case. Luckily, AjaxRequestTarget.addJavascript

allows you to add arbitrary JavaScript code that will be sent as an Ajax response to the server.

The JavaScript code will then be executed on the client. Browsers allow you to change the page

title through the document.title call. You shall add the same to the AjaxRequestTarget on the

server side (see Listing 8-7).

Listing 8-7. BookShopTabbedPanelPage Modified to Use AjaxTabbedPanel

package com.apress.wicketbook.ajax;

import wicket.extensions.ajax.markup.html.tabs.AjaxTabbedPanel;

public class BookShopTabbedPanelPage extends WebPage {

// Code content same as com.apress.wicketbook.extensions.BookShopTabbedPanelPage

protected void configureTabs() {

// Code content same as

// com.apress.wicketbook.extensions.BookShopTabbedPanelPage

panel = new MyAjaxTabbedPanel("tabs", tabs);

}

class MyAjaxTabbedPanel extends AjaxTabbedPanel{

public MyAjaxTabbedPanel(String id, List tabs) {

super(id, tabs);

}

/* @see AjaxTabbedPanel.onAjaxUpdate(AjaxRequestTarget target) */

protected void onAjaxUpdate(AjaxRequestTarget target){

// This call will be executed on the client side. It will alter the page

// title depending upon the link that is clicked.

target.addJavascript("document.title='"

+label.getModelObjectAsString()+"'");

}

}

}

Wicket’s Ajax support has been designed in such a way that more often that not, Ajax-

ifying a Wicket page is just about either adding a predefined Ajax behavior to the existing com-

ponents or replacing a non-Ajax component with its Ajax equivalent. Let’s move on and look

at something very interesting: Wicket’s support for Ajax autocompletion.

CHAPTER 8 ■ WICKET AND AJAX 245

Ajax Autocompletion
Autocompletion involves the program predicting a word or phrase that the user wants to type

in without the user actually typing it in completely. How Wicket nicely hides this behind an

interface is something that we will discuss next. Let’s have a page with a text input field as

shown in Listing 8-8. You’ll maintain an in-memory list of email addresses and provide an

autocompletion feature for completing such an address when the user starts typing in one.

Listing 8-8. AutoCompleteEmail—A Template with a Text Field That Provides Autocompletion

<html>

<head>

<style>

div.wicket-aa {

font-family: "Lucida Grande","Lucida Sans Unicode",Tahoma,Verdana;

font-size: 12px;

background-color: white;

border-width: 1px;

border-color: #cccccc;

border-style: solid;

padding: 2px;

margin: 1px 0 0 0;

text-align:left;

}

div.wicket-aa ul { list-style:none; padding: 2px; margin:0; }

div.wicket-aa ul li.selected { background-color: #FFFF00; padding: 2px: margin:0; }

</style>

</head>

<body>

<form wicket:id="form">

Email : <input type="text" wicket:id="email" size="40"/>

</form>

</body>

</html>

Autocompletion could also be defined as behavior exhibited by a TextField component

and is in fact modeled as one—AutoCompleteBehavior. The string input that you actually type

in is sent in an asynchronous fashion to the server, and the response is rendered without a

browser refresh using Ajax. As you would expect, AutoCompleteBehavior is a wicket.behavior.

AbstractAjaxBehavior subclass. You are just expected to implement the following method and

return the matching results:

Iterator AutoCompleteBehavior.getChoices(String input);

You will use a class to represent an email address since it will allow you to associate other

attributes with an email ID (see Listing 8-9).

CHAPTER 8 ■ WICKET AND AJAX246

Listing 8-9. A Class That Represents an Email Address

// A class that represents the email address.

// You return a list of email String objects in AutoCompleteBehavior.getChoices().

class Email {

String email;

Email(String email) {

this.email = email;

}

// StringAutoCompleteRenderer calls this when rendering.

public String toString(){

return email;

}

}

Listing 8-10 presents the page that uses a TextField component configured with

AutoCompleteBehavior.

Listing 8-10. Text Field Configured with AutoCompleteBehavior

import wicket.extensions.ajax.markup.html.autocomplete.AutoCompleteBehavior;

import wicket.extensions.ajax.markup.html.autocomplete.StringAutoCompleteRenderer;

public class AutoCompleteEmail extends WebPage {

// An in-memory list of email addresses

private List emailAddresses = Arrays.asList(new Email[] {

new Email("aaron@some-company.com"),

new Email("amit@developers.net"),

new Email("akshay@dev.com"),

new Email("bob@developers.net"),

new Email("abc@hello.com"),

new Email("best@developer.com"),

new Email("craig@yourcompany.com"),

new Email("chris@broadnetworks.com")});

public AutoCompleteEmail() {

Form form = new Form("form");

TextField txtEmail = new TextField("email", new Model());

/* Adding autocomplete behavior to the TextField component.

*

*/

CHAPTER 8 ■ WICKET AND AJAX 247

txtEmail.add(new AutoCompleteBehavior(

new StringAutoCompleteRenderer()) {

/** Return the results that match the input supplied by the user.

* In a real-world application, you might run a search against the database.

* In this case, you shall use an in-memory representation. Just check if

* the email starts with the input that was typed in and return it.

*/

@Override

protected Iterator getChoices(String input) {

List completions = new ArrayList();

Iterator iter = emailAddresses.iterator();

while (iter.hasNext()) {

String email = ((Email) iter.next()).email;

if (email.startsWith(input)) {

completions.add(email);

}

}

return completions.iterator();

}

});

form.add(txtEmail);

add(form);

}

}

This autocomplete behavior appears as shown in Figure 8-3.

Figure 8-3. Email address autocompletion at work

To test this, type a in the text field, and you should see all the email addresses that start

with the letter a getting listed.

CHAPTER 8 ■ WICKET AND AJAX248

Providing Custom IAutoCompleteRenderer

Implementations
In some cases, you might want to change the way information is rendered on autocompletion.

The previous example used Wicket’s StringAutoAssistRenderer class, which just renders

the string representation (toString()) of the object. Wicket has always been about bringing

OO to Java web development, and therefore it shouldn’t come as a surprise that it abstracts

the rendering behavior behind an IAutoCompleteRenderer interface. It also provides an

AbstractAutoCompleteRenderer class that does most of the work (like generating the HTML/

JavaScript that is required to provide the autocompletion effect) while allowing you to specify

your own rendering mechanism.

Here, you’ll cook up a use case that allows you to experiment with this feature. It’s quite

likely that a user might maintain two sets of email addresses—personal and official. There

might be cases where said user might want to send certain emails to the personal ID while

addressing others to the official ID. Listing 8-11 shows how you can provide that information

as well in the text field.

Listing 8-11. AutoCompleteEmail.html—A Page to Demonstrate a Custom

IAutoCompleteRenderer Implementation

<html>

<head>

<style>

div.wicket-aa {

font-family: "Lucida Grande","Lucida Sans Unicode",Tahoma,Verdana;

font-size: 12px;

background-color: white;

border-width: 1px;

border-color: #cccccc;

border-style: solid;

padding: 2px;

margin: 1px 0 0 0;

text-align:left;

}

div.wicket-aa ul { list-style:none; padding: 2px; margin:0; }

div.wicket-aa ul li.selected { background-color: #FFFF00; padding: 2px: margin:0; }

</style>

</head>

<body>

<form wicket:id="form">

Email :<input type="text" wicket:id="email" size="40"/>

<!-- Add a text field that does autocompletion and provides more info -->

Informative Email : <input type="text" wicket:id="emailInfo" size="40"/>

</form>

</body>

</html>

CHAPTER 8 ■ WICKET AND AJAX 249

Now modify the Email class to carry that information, as shown in Listing 8-12.

Listing 8-12. Email Class That Distinguishes Between “Official” and “Personal” Email Addresses

class Email {

String email;

boolean isPersonal;

Email(String email, boolean isPersonal) {

this.email = email;

this.isPersonal = isPersonal;

}

// Will use this to provide more info

String getEmailInfo(){

return isPersonal?"Personal Email":"Official Email";

}

public String toString(){

return email;

}

}

And modify the Page class as you see in Listing 8-13.

Listing 8-13. AutoCompleteEmail Page with a Custom Renderer

import java.util.ArrayList;

import java.util.Arrays;

import java.util.Iterator;

import java.util.List;

// Other imports

import wicket.Response;

import wicket.extensions.ajax.markup.html.autocomplete.AbstractAutoCompleteRenderer;

import wicket.extensions.ajax.markup.html.autocomplete.AutoCompleteTextField;

import wicket.extensions.ajax.markup.html.autocomplete.IAutoCompleteRenderer;

public class AutoCompleteEmail extends WebPage {

private List emailAddresses = Arrays.asList(new Email[] {

new Email("aaron@some-company.com", true),

new Email("amit@developers.net", false),

new Email("akshay@dev.com", false),

new Email("bob@developers.net", false),

new Email("abc@hello.com", true),

new Email("best@developer.com", true),

new Email("craig@yourcompany.com", false),

new Email("chris@broadnetworks.com", true) });

CHAPTER 8 ■ WICKET AND AJAX250

public AutoCompleteEmail() {

Form form = new Form("form");

// Refer to Listing 8-9 for TextField with AutoCompleteBehavior attached.

form.add(txtEmail);

// Define the custom renderer. In addition to the email, you also render

// additional information.

IAutoCompleteRenderer informativeRenderer = new AbstractAutoCompleteRenderer() {

@Override

protected void renderChoices(Object object, Response r) {

String val = ((Email) object).email;

r.write("<div style='float:left; color:red; '>");

r.write(val);

r.write("</div><div style='text-align:right; width:100%;'>");

r.write("" + ((Email) object).getEmailInfo());

r.write("</div>");

}

// AbstractAutoAssistRenderer calls this method to get the actual

// value that will show up on

// selection. StringAutoAssistRenderer, which you use for the

// "txtEmail" component, overrides

// this method by returning a "String"

// representation of the object (does a toString()). Since

// you add email instances (see getChoices() below), the "object"

// param in this case is of type "Email".

protected String getTextValue(Object object) {

return ((Email) object).email;

}

};

/*

* The TextField component "txtEmail" has Ajax behavior added to it.

* You also have the option of "committing" to an implementation up front:

* You directly program to an Ajax-ified text field here, passing in the

* custom renderer.

*/

TextField txtEmailInfo = new AutoCompleteTextField("emailInfo",

new Model(), informativeRenderer) {

CHAPTER 8 ■ WICKET AND AJAX 251

@Override

protected Iterator getChoices(String input) {

List completions = new ArrayList();

Iterator iter = emailAddresses.iterator();

while (iter.hasNext()) {

Email emailObj = (Email) iter.next();

// Check for the email "String" but add Email objects!

if (emailObj.email.startsWith(input)) {

completions.add(emailObj);

}

}

return completions.iterator();

} };

form.add(txtEmailInfo);

add(form);

}

}

You should see something like what appears in Figure 8-4 on the browser when you type a

in the second input text field.

Figure 8-4. The custom AutoComplete renderer on display

Next you will see how you can trigger an Ajax request based on a client-side event on one

component and “Ajax-render” a different component in response.

CHAPTER 8 ■ WICKET AND AJAX252

Partially Rendering a Page in Response to

an Ajax Request
Next, you will modify the UserProfilePage.html that you developed in Chapter 1 to accept the

state in which the user resides. It’s quite clear that you really cannot populate the state drop-

down list box until the user selects the country he or she resides in. An obvious way to handle

this would be to set the state drop-down content in the onSelectionChanged event of the

country drop-down (see Listing 8-14).

Listing 8-14. UserProfilePage.html Modified to Accept State-/County-Related Information

<html>

<title>User Profile</title>

<!-- Rest of the markup same as earlier -->

<!-- Add the markup to accept state after the country drop-down -->

Country <select wicket:id="country">

<option>India</option>

<option>USA</option>

<option>UK</option>

</select>

State/County <select wicket:id="state">

<option>California</option>

<option>Michigan</option>

</select>

<!-- Rest of the markup same as earlier -->

But now that you are armed with Ajax, you could do with a more responsive user inter-

face. Instead of doing a server round-trip, you could refresh the state drop-down list through

Ajax. This way the user will not even experience the flicker that results with a page submit and

subsequent refresh. Go ahead and maintain a country-state mapping as well in the page for

quick lookup, as shown in Listing 8-15.

Listing 8-15. UserProfilePage Modified to Refresh the State Drop-Down List Through Ajax

public class UserProfilePage1 extends WebPage {

private Map countryToStateMap = new HashMap();

// Maintain a map of the country to its states/counties.

private void initStates() {

countryToStateMap.put("India", new String[] { "Maharashtra",

"Tamilnadu", "Sikkim", "Kashmir", "Karnataka" });

countryToStateMap.put("US", new String[] {"California","Texas",

"Washington", "Michigan"});

countryToStateMap.put("UK", new String[] {"Lancashire",

"Middlesex","Yorkshire","Sussex"});

}

CHAPTER 8 ■ WICKET AND AJAX 253

public UserProfilePage() {

// Initialize the country-state mapping -->

initStates();

//..

// The state choices that need to be displayed are determined by the

// chosen country.

// Remember, IModel serves as an ideal data locator in this case.

// Only at runtime do you discover the

// states that need to be displayed in response.

IModel statechoices = new AbstractReadOnlyModel(){

// Wicket calls this method when it tries to look

// for the model object for displaying the states.

// This is the indirection introduced by the Wicket's models.

public Object getObject(Component component){

String[] models = (String[])

countryToStateMap.get(userProfile.getCountry());

if (models == null){

return Collections.EMPTY_LIST;

}

return Arrays.asList(models);

}

};

final DropDownChoice stateComp = new DropDownChoice("state",statechoices);

DropDownChoice countriesComp = new DropDownChoice("country",

Arrays.asList(new String[] {"India", "US", "UK" })){

protected boolean wantOnSelectionChangedNotifications(){

// Returning true from here would result in a page submit when

// selection changes in the drop-down. You instead want to respond

// to an Ajax call. So return false.

return false;

}

};

// Add an Ajax component updating behavior to the country drop-down.

// Pass in the JavaScript event ("onchange") that needs to trigger this

// request.

CHAPTER 8 ■ WICKET AND AJAX254

countriesComp.add(new AjaxFormComponentUpdatingBehavior("onchange") {

protected void onUpdate(AjaxRequestTarget target) {

// Supply the component that you want to re-render.

target.addComponent(stateComp);

}

});

//..

form.add(stateComp);

}

The sample response shown in Listing 8-16 clearly tells you how Wicket wraps the Ajax

response. All components that need to be re-rendered are wrapped in a <component> element

along with the id attribute that identifies them. As you would have guessed, the built-in

JavaScript then just looks up the HTML element corresponding to the id attribute and

replaces its content (outerHTML property) with the one wrapped within the <component> tag

(see Listing 8-16).

Listing 8-16. Sample Ajax Response for Partial Rendering

<?xml version="1.0" encoding="UTF-8"?>

<ajax-response>

<component id="stateMarkup">

<![CDATA[

<select wicket:id="state" name="stateMarkup:state" id="state">

<option selected="selected" value="">Choose One</option>

<option value="0">State-1</option>

<option value="1">State-2</option>

<option value="2">State-3</option>

<option value="3">State-4</option>

</select>

]]>

</component>

</ajax-response>

On selecting US from the Country drop-down list, you should see the State drop-down list

getting populated through Ajax (see Figure 8-5).

CHAPTER 8 ■ WICKET AND AJAX 255

Figure 8-5. Refreshing the state drop-down based on the selected country through Ajax

You must have noticed in the examples that you have seen up to now that most built-in

Ajax behaviors like AjaxFormComponentUpdatingBehavior allow you to specify any JavaScript

event that triggers the Ajax call. One of the biggest advantages of modeling Ajax support as

behaviors that can be added to components is that it results in fewer core classes. Supporting

specialized Ajax-enabled components could have resulted in a potential class-hierarchy

“explosion.”

How to Let Users Know That Wicket Ajax Behavior

Is at Work
Conventional web requests result in a page refresh, and typically browsers have some form of

indicator to display the response status. As a result, the user is aware of the fact that the server

is still in the process of rendering the response. Unfortunately, this is not the case with Ajax.

Since Ajax is inherently an asynchronous communication mechanism between the browser

and the server, it provides no visual feedback on the response status. Coupled with the fact

that the browser does not supply any help in this regard, you see that the onus of showing

the progress lies solely with the developers. Wicket recognizes this and provides a means of

giving feedback as a part of the basic Ajax infrastructure through the wicket.ajax.IAjax➥

IndicatorAware interface.

This interface makes it trivial to use status indicators for Ajax requests. It can be imple-

mented by a component that has an Ajax behavior attached to it or by the Ajax behavior itself.

Under such circumstances, Wicket automatically adds the JavaScript code that will show a

markup element pointed to by the IAjaxIndicatorAware.getAjaxIndicatorMarkupId() markup

ID attribute when the Ajax request begins, and hides it when the Ajax requests succeeds or fails.

CHAPTER 8 ■ WICKET AND AJAX256

If both a component and a behavior implement this interface, the component will take prece-

dence. You need to add a placeholder for the “busy” indicator image first (see Listing 8-17).

Listing 8-17. A Placeholder for the Indicator Image That Is Initially Invisible on the

UserProfilePage

State/County

<select wicket:id="state">

<option>California</option>

<option>Michigan</option>

</select>

<!-- You will specify the image URL on the server side -->

The Page class accordingly requires a component to populate the value for the src

attribute, as shown in Listing 8-18.

Listing 8-18. A WebmarkupContainer That Refers to the Built-in Indicator Image As a

Packaged Resource

import wicket.ajax.AbstractDefaultAjaxBehavior;

public class UserProfilePage1 extends WebPage {

public UserProfilePage1(){

//..

final WebMarkupContainer imgContainer =new

WebMarkupContainer("indicatorImg"){

public void onComponentTag(ComponentTag tag){

super.onComponentTag(tag);

// AbstractDefaultAjaxBehavior.INDICATOR is a package reference to the

// default indicator.gif (refer to Chapter 7 for discussion on

// package references.

tag.put("src",urlFor(AbstractDefaultAjaxBehavior.INDICATOR));

}

};

imgContainer.setOutputMarkupId(true);

form.add(imgContainer);

//..

}

}

If you require Ajax indicators in multiple pages, you would be required to repeat this code

snippet a number of times. Wicket is all about components, so package this piece of code into

something reusable (see Listing 8-19).

CHAPTER 8 ■ WICKET AND AJAX 257

Listing 8-19. An Image Indicator Component

package com.apress.wicketbook.ajax;

import wicket.ajax.AbstractDefaultAjaxBehavior;

import wicket.markup.ComponentTag;

import wicket.markup.html.WebMarkupContainer;

public class AjaxIndicator extends WebMarkupContainer {

public AjaxIndicator(String id) {

super(id);

setOutputMarkupId(true);

}

public void onComponentTag(ComponentTag tag){

super.onComponentTag(tag);

tag.put("src",urlFor(AbstractDefaultAjaxBehavior.INDICATOR));

}

}

Now you are just required to do this:

public class UserProfilePage1 extends WebPage{

public UserProfilePage1(){

//..

// You are just required to add the AjaxIndicator.

final AjaxIndicator imgContainer =

new AjaxIndicator("indicatorImg");

form.add(imgContainer);

//..

}

}

Even though you managed to add the image component to the page, the behavior or

the component is still not aware of it. Wicket’s Ajax infrastructure, especially the built-in

JavaScript library, can be made aware of the image by getting the component or the Ajax

behavior attached to it to implement the wicket.ajax.IAjaxIndicatorAware interface (see

Listing 8-20). The interface just looks for the markup ID of the image component so that, as

discussed earlier, it can hide or show it during the Ajax request life cycle.

CHAPTER 8 ■ WICKET AND AJAX258

Listing 8-20. A Behavior to Introduce an Artificial Delay in Ajax Response to See the Image

Indicator at Work

public class UserProfilePage extends WebPage{

public UserProfilePage(){

//..

final AjaxIndicator imgContainer =

new AjaxIndicator("indicatorImg");

form.add(imgContainer);

class CountryDDAjaxBehavior extends AjaxFormComponentUpdatingBehavior

implements IAjaxIndicatorAware{

CountryDDAjaxBehavior(){

super("onchange");

}

protected void onUpdate(AjaxRequestTarget target) {

// Sleep for 5 seconds just to make sure that

// the busy indicator works as it is supposed to.

// You would obviously not want this (Thread.sleep)

// piece of code in production.

try{

Thread.sleep(5000);

}catch (InterruptedException ignore){

}

// Add the Ajax target component as earlier.

target.addComponent(stateComp);

}

/** Return indicator's markup ID**/

public String getAjaxIndicatorMarkupId() {

return imgContainer.getMarkupId();

}

}

}

//..

}

countriesComp.add(new CountryDDAjaxBehavior());

CHAPTER 8 ■ WICKET AND AJAX 259

Figure 8-6 shows how the indicator appears on screen.

Figure 8-6. The Ajax indicator lets users know that Ajax is at work.

Finally, let’s see how you can improve the responsiveness of the page that displays the

books in the online bookstore application by using an Ajax-enabled CheckBox component.

Putting AjaxCheckBox to Work
In Chapter 3, you used check boxes to record the books chosen by the user. You even managed

to retain the state of the check boxes while the user navigates across DataView pages or swaps

categories. But then the action (checking a check box) always resulted in a server-side trip to

store the state, which isn’t too easy on the eyes. You could get the component to relay its state

to the server asynchronously through Ajax. In fact, Ajax-ifying this behavior is as simple as

swapping the existing Wicket CheckBox with its Ajax counterpart—wicket.ajax.markup.html.

form.AjaxCheckBox.

The AjaxCheckBox component “is-a” Wicket CheckBox with AjaxFormComponentUpdating➥

Behavior attached to it for the onchange JavaScript event. The component has a template

method, onUpdate(AjaxRequestTarget target), where you get to do your custom processing

on an Ajax call. But the CheckBox model is automatically updated (by virtue of being config-

ured with AjaxFormComponentUpdatingBehavior) and hence you just need to have a “no op”

implementation as shown in Listing 8-21.

Listing 8-21. BookSelectionPanel Configured with a Check Box That Updates Itself on Ajax

Request

package com.apress.wicketbook.ajax;

import wicket.ajax.markup.html.form.AjaxCheckBox;

public class ViewBooksPanel extends Panel {

// Everything else remains the same.

public class BookSelectionPanel extends Panel {

CHAPTER 8 ■ WICKET AND AJAX260

public BookSelectionPanel(String id, Book book) {

super(id);

add(new AjaxCheckBox("selected", new CheckBoxModel(book.getId())) {

// This is the template method.

protected void onUpdate(AjaxRequestTarget target) {

}

});

}

}

//

}

This concludes your adventure tour of Wicket’s Ajax capabilities (for more information

on built-in Ajax support, consult the Wicket Javadoc). Even though you managed to improve

the responsiveness of some of the pages through Ajax, there is one disturbing pattern in the

server-side code that you cannot afford to ignore: components have been coded under the

assumption that all browsers have Ajax and/or JavaScript support enabled. This really might

not be the case with certain browsers, thereby causing the application to malfunction. In the

next section, we will discuss this extreme scenario and how Wicket allows you to tackle this

problem.

Degradable Ajax

In practice, designing web applications that work only with Ajax or JavaScipt enabled on the

browser is not advisable. Care needs to be taken that application pages degrade to a normal

request on the nonavailability of Ajax or JavaScript support. Wicket’s wicket.ajax.markup.

html.AjaxFallbackLink component is one such example. Earlier, you ended up using the

AjaxFallbackLink component in the example that deals with AjaxTabbedPanel (refer back to

Listing 8-7). However, in the absence of browser support for JavaScript, AjaxFallbackLink

calls onAjaxUpdate, passing in a “null” AjaxRequestTarget reference. So you just need to incor-

porate the check before adding the JavaScript code (see Listing 8-22).

Listing 8-22. Incorporating the Check to Accommodate Degradable Ajax Behavior

protected void onAjaxUpdate(AjaxRequestTarget target){

if(target != null)

target.addJavascript("document.title='"

+label.getModelObjectAsString()+"'");

}

You can easily verify the fallback behavior by disabling JavaScript support in your

browser. Upon doing that, AjaxTabbedPanel will gracefully degrade to a normal request,

and AjaxFallbackLinks will continue to work as normal links.

CHAPTER 8 ■ WICKET AND AJAX 261

Handling Ajax Success and Failure Events Through

AjaxCallDecorator

Like any other request, Ajax request processing might result in success or failure. Based on

this status, you might want to trigger certain client-side events. Wicket provides hooks to tie

your custom JavaScript processing code into the built-in JavaScript infrastructure. It does this

through the wicket.ajax.IAjaxCallDecorator interface. Listing 8-23 shows how the interface

specification looks.

Listing 8-23. Wicket’s IAjaxCallDecorator Interface, Which Allows You to Decorate the Ajax

Success and/or Failure Script

package wicket.ajax;

public interface IAjaxCallDecorator extends Serializable {

/**

* Name of the JavaScript variable that will be true if an Ajax call was made,

* false otherwise. This variable is available in the after script only.

*/

public static final String WICKET_CALL_RESULT_VAR = "wcall";

/** Decorates the script that performs the Ajax call **/

CharSequence decorateScript(CharSequence script);

/** Decorates the onSuccess handler script **/

CharSequence decorateOnSuccessScript(CharSequence script);

/** Decorates the onFailure handler script **/

CharSequence decorateOnFailureScript(CharSequence script);

}

As you can see, this interface allows you to decorate a Wicket-generated JavaScript

that performs Ajax callback. All Wicket Ajax behaviors extend the wicket.ajaxAbstract➥

DefaultAjaxBehavior class. This class has a hook method, getAjaxCallDecorator(), to fetch

your IAjaxCallDecorator. You can override this method in your behavior class to return your

IAjaxCallDecorator implementation.

Let’s look at an example that demonstrates the decorator script usage. You saw in the

last section that Wicket’s AjaxFallbackLink degrades to a normal request in the absence of

browser support for Ajax or JavaScript. Now, you’ll develop a DropDownChoice component that

is configured for the Ajax request by default through the onchange event. But in addition to

this, you’ll get the component to retry the normal request if the Ajax request fails for some

reason, like the browser’s XmlHttpRequest object not being available (see Listing 8-24).

CHAPTER 8 ■ WICKET AND AJAX262

Listing 8-24. An Example to Demonstrate IAjaxCallDecorator

import java.util.List;

import wicket.WicketRuntimeException;

import wicket.ajax.AjaxRequestTarget;

import wicket.ajax.IAjaxCallDecorator;

import wicket.ajax.calldecorator.AjaxPostprocessingCallDecorator;

import wicket.ajax.form.AjaxFormComponentUpdatingBehavior;

import wicket.markup.ComponentTag;

import wicket.markup.html.form.DropDownChoice;

public class AjaxFallbackDropDown extends DropDownChoice {

public AjaxFallbackDropDown(String id, List choices) {

super(id, choices);

setOutputMarkupId(true);

add(new DropDownAjaxUpdatingBehavior());

}

private class DropDownAjaxUpdatingBehavior extends

AjaxFormComponentUpdatingBehavior {

// The original onchange script added by the

// component. It may or may not be preset depending upon

// the return value of wantOnSelectionChangedNotifications().

String prevScript;

DropDownAjaxUpdatingBehavior() {

// Ajax call configured for onchange event.

super("onchange");

}

// onUpdate call the onSelectionChanged method passing in the

// AjaxRequestTarget.

protected void onUpdate(AjaxRequestTarget target) {

DropDownChoice dropDownChoice =

(DropDownChoice)getFormComponent();

// At the time of writing, the Wicket code

// had the "access specifier" specified as "protected"

// for this method. Nevertheless, you could modify the

// source and change it to "public". The fact that

// Wicket uses Maven for its build is of great help here.

CHAPTER 8 ■ WICKET AND AJAX 263

dropDownChoice.onSelectionChanged(target);

}

// Since the above method internally calls

// onSelectionChanged, make sure that the behavior

// is being bound to a DropDownChoice.

protected void onBind() {

super.onBind();

if (!(getComponent() instanceof DropDownChoice)) {

throw new WicketRuntimeException(

"Behavior "

+ getClass().getName()

+ " can only be added to an isntance of a DropDownChoice");

}

}

// Retrieve the original onchange script added by the component

// if present.

protected void onComponentTag(final ComponentTag tag) {

if (tag.getAttributes().containsKey("onchange")) {

this.prevScript = tag.getAttributes().get("onchange")

.toString();

} else {

prevScript = null;

}

// Get the AjaxFormComponentUpdatingBehavior

// to add its onchange event script.

super.onComponentTag(tag);

}

protected IAjaxCallDecorator getAjaxCallDecorator() {

return new AjaxPostprocessingCallDecorator(null) {

// On Ajax failure, execute the original onchange script added

// by the component. This would trigger the normal

// request.

public CharSequence postDecorateOnFailureScript(

CharSequence script) {

if (prevScript != null)

return script + ";" + prevScript;

else

return script + "";

}

};

}

}

}

CHAPTER 8 ■ WICKET AND AJAX264

How do you make sure that the preceding code actually works in a non-Ajax setting? One

option could be to use a browser with no built-in Ajax support. Note that you need JavaScript

support enabled for the onchange event to trigger when the user selection changes. The easier

approach to testing this component would be to programmatically throw a RuntimeException

on Ajax request:

private class DropDownAjaxUpdatingBehavior extends

AjaxFormComponentUpdatingBehavior {

//..

protected void onUpdate(AjaxRequestTarget target) {

throw new WicketRuntimeException(

"Exception when handling DropDown Ajax request");

}

//..

}

You could test this behavior by having a basic template with HTML <form> and <select>

elements. In the Page class, make sure that you use AjaxFallbackDropDown in place of the

DropDownChoice component and have DropDownChoice.wantOnSelectionChangeNotifications()

return true.

This pretty much covers the significant features that constitute Wicket’s support for Ajax

at its core. Wicket integrates with several Ajax-dedicated frameworks like DOJO (http://

www.dojotoolkit.org/), Script.aculo.us (http://script.aculo.us/), etc. Wicket-DOJO

integration, for example, can be downloaded from http://wicket-stuff.sourceforge.net/

wicket-contrib-dojo/index.html. It should be noted that projects belonging to Wicket-

Contrib and Wicket-Stuff are maintained by the Wicket community and are not part of the

core framework. That said, the subprojects also seem to be well supported as of now.

Summary
Ajax is about bringing the kind of responsiveness demonstrated by desktop applications to

web pages.

You saw how a FormComponentFeedbackBorder renders a little red asterisk beside a compo-

nent that it decorates when the latter fails the validation check. You also learned that Wicket

models a component’s ability to respond to Ajax requests as a behavior. Then you saw how

form validation can be Ajax-ified, and you even developed a version of FormComponent➥

FeedbackBorder that responds to an Ajax request in a correct fashion. You saw how to

Ajax-ify a few pages that you developed earlier to explore Wicket’s built-in Ajax components.

AjaxFormComponentUpdatingBehavior, AjaxFormValidatingBehavior, AjaxTabbedPanel, auto-

completion, and AjaxCheckBox are some of Wicket’s Ajax components discussed briefly in

this chapter. We briefly discussed Wicket’s support for degradable Ajax components and

also looked at a way to indicate the Ajax request progress indicator through Wicket’s

IAjaxIndicatorAware interface.

CHAPTER 8 ■ WICKET AND AJAX 265

Additional Wicket Topics

In this chapter, you will learn about Wicket’s support for unit testing and later look at some of

the significant changes you can expect in Wicket 2.0, which will be the next Wicket release and

is currently under development.

Wicket Unit Testing
Code refactoring and unit testing are considered to be the two main constituents of the test-

driven development (TDD) methodology. TDD advocates that unit tests be written before

code. In this section, we will discuss unit testing support built into Wicket. Unit tests can be

classified in several ways, two of which are as in-container tests and out-of-container tests. As

the names indicate, the former needs the container (J2EE servlet container, for example) to be

up and running for the tests to execute, while the latter imitates the behavior of the classes or

the container it collaborates with. This allows you to just concentrate on unit testing the com-

ponents you are interested in. The mock object framework meanwhile makes sure that the

framework and surrounding environment objects that your classes collaborate with will

behave as configured even when running outside a J2EE servlet container. Running tests out-

side a container also results in obvious productivity gains, as you aren’t required to rely on

frequent container restarts, and so on. Wicket’s unit testing framework is based on a set of

mock objects that allow you to test your Wicket-based web application outside a servlet con-

tainer. You will familiarize yourself with this small subframework in the coming sections.

What Are Mock Objects?

You know that classes and objects are at the heart of any system developed using object-

oriented design concepts. For the system to do anything meaningful, the objects that com-

prise the system need to collaborate. Mock objects (or mocks for short) are used for testing a

portion of code logic in isolation from the rest of the code. In unit tests, mocks replace the

objects with which your methods usually collaborate, thus offering a layer of isolation. They

are empty shells that provide methods to let the tests control the behavior of all the business

methods of the faked class. Your code can call methods on the mock object, which will

deliver results as set up by your tests. For more discussions on mock objects, refer to

http://www.mockobjects.com.

This section assumes that you have some idea of the benefits offered by TDD; the focus

will solely be on arming you with the knowledge of Wicket’s support for unit testing, which in

turn will help you practice TDD effectively. There are several excellent texts that extol the

267

C H A P T E R 9

virtues of being “test driven.” To understand the philosophy of this approach, you might want

to refer to Kent Beck’s Test-Driven Development: By Example (Addison-Wesley, 2002) and

Extreme Programming Explained (Addison-Wesley, 2004).

Unit Testing Wicket Pages Using WicketTester

JUnit is the de facto standard for writing unit tests in the Java world. Although it doesn’t do a

lot of heavy lifting by itself to enable you to write Wicket-specific unit tests, what it does do

is provide an infrastructure and a defined test life cycle that simplifies writing tests, allows

grouping of tests, and the like. More importantly, it provides an extensible framework that has

led to a plethora of JUnit extension frameworks in turn. Refer to http://www.junit.org for

more information on the framework.

Wicket’s wicket.util.tester.WicketTester class makes testing Wicket applications really

easy. It has several helper methods that allow you to simulate page rendering, click links, and

check for the presence of error messages, components, etc. in the Page. It provides many of

these utilities as assertXXX() methods that make use of JUnit’s org.junit.Assert class inter-

nally to check for assertions.

WicketTester subclasses wicket.protocol.http.MockWebApplication, which in turn

extends WebApplication. To see these methods in action, I’ll walk you through writing unit

tests for the pages that you developed earlier. The login page that you developed in the first

chapter and then later improved upon in Chapter 2 is a good place to start.

Most popular IDEs (e.g., Eclipse, IntelliJ IDEA, NetBeans) come bundled with some kind

of built-in support for running JUnit tests. This section does not aim to discuss JUnit in

extreme detail, as other books and online articles cover it well; the goal is just to familiarize

you with the unit testing support built into Wicket.

Unit Testing the Login Page

The first thing that you need to ensure is that the Login page renders fine without any errors.

The method testLoginPageRender (see Listing 9-1) does exactly that. Successful execution of

this test will ensure that the template and Page hierarchy matches. It’s quite normal to place

the JUnit tests and the classes that are being tested in the same package but under a different

root folder. Maven by default expects the project Java source files under the src/java directory

and the tests under the src/test directory. This ensures that test cases do not get mixed up

with the actual source classes (which allows for physical separation of the two, but gives the

tests package-level access to the actual source class). If you are looking for a thorough discus-

sion on JUnit and its extensions, JUnit Recipes by J. B. Rainsberger (Manning Publications,

2004) could well serve as an excellent reference.

Listing 9-1. A Test Case That Ensures the Login Page Renders Fine

package com.apress.wicketbook.validation;

import wicket.util.tester.WicketTester;

// Your unit test class should extend TestCase.

import junit.framework.TestCase;

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS268

public class LoginTest extends TestCase {

private WicketTester tester;

// If you have data that needs to be initialized before test

// execution, you should place it in this method. The JUnit

// framework will call this method just before executing the test.

// It acts like a constructor.

public void setUp() {

// You need an instance of WicketTester per test.

tester = new WicketTester();

}

public void testLoginPageRender() {

tester.startPage(Login.class);

// Just to ensure that the request has not been

// intercepted or redirected

tester.assertRenderedPage(Login.class);

// A page might render with an error message.

// If the Login page does have an associated error message, the following

// method will result in a failed assertion.

tester.assertNoErrorMessage();

}

}

For running a test under Eclipse, you are just required to select the test that you are inter-

ested in running, right-click, and select Run As ➤ JUnit Test. As you would expect, Eclipse will

launch it as a JUnit test and display the results (see Figure 9-1 and Figure 9-2).

Figure 9-1. Tests as seen in Eclipse Package Explorer

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 269

Figure 9-2. The “famous” JUnit green bar (shown here as a gray bar on the right) that indicates

successful execution of the test

Unit tests are typically run as a part of automated builds. Popular build frameworks like

Ant and Maven have plug-ins that allow you to automate such tasks with relative ease.

Now that the JUnit green bar flashes, make sure that the rendered page indeed has the

necessary components. Again, WicketTester has methods that allow you to verify just that.

WicketTester.assertComponent() needs to be supplied with the path to traverse to the compo-

nent and the type of the component that it should expect to find at that location. The path to

the component, as shown in Listing 9-2, should be relative to the page that contains it.

Listing 9-2. A Test Case to Ensure the Page Has the Components You Expect

class LoginTest extends TestCase{

//..

public void testLoginPageComponents() {

tester.startPage(Login.class);

tester.assertNoErrorMessage();

tester.assertComponent("loginForm:userId", TextField.class);

tester.assertComponent("loginForm:password", TextField.class);

}

}

Note that you could verify that the page labels are rendering correctly as well through

WicketTester.assertLabel(). This would ensure you have a working set of tests that cover the

login page render process. However, you have none that cover the primary login use case. Let’s

address that next.

But before doing so, you could probably do with a little refactoring: the code that tests

that the page renders fine is common to all tests. It’s the first set of steps that has to necessarily

pass before you execute others. So you could move it to someplace common (see Listing 9-3).

Listing 9-3. Moving the Commonly Occurring Code to the setUp Method

public class LoginTest extends TestCase {

private WicketTester tester;

public void setUp() {

tester = new WicketTester();

tester.startPage(Login.class);

tester.assertRenderedPage(Login.class);

tester.assertNoErrorMessage();

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS270

}

//..

}

Now you can remove this repeating piece of code from all tests. This way the rest of the

tests would look leaner and be succinct.

Unit Testing Wicket Pages Using FormTester

If you remember, you had designed the login use case in such a way that if you enter a user

name/password combination different from “wicket”/“wicket” and then click Login, you

would see the same page getting rendered again with an error message. Since WicketTester

does not have any such support for submitting forms, you need to use another Wicket class

that aids out-of-container testing: wicket.util.tester.FormTester. In addition to aiding with

form submission, FormTester also allows you to set input values for the FormComponents con-

tained within the Form. The “failed login” use case discussed previously could be represented

as a JUnit test case, as shown in Listing 9-4.

Listing 9-4. A Test Case That Tests the “Failed Login” Use Case

import wicket.util.tester.FormTester

public class LoginTest extends TestCase {

private WicketTester tester;

public void testInvalidLogin() {

// Create the form tester object, mapping to its wicket:id.

FormTester form = tester.newFormTester("loginForm");

// Set the parameters for each component in the form.

// Notice that the name is relative to the form - so it's "userId",

// not "loginForm:userId" as in assertComponent.

form.setValue("userId", "WrongUserId");

form.setValue("password", "WrongPassword");

// Submit the form once the input values have been

// filled in.

form.submit();

// Make sure that it does re-render the Login page

tester.assertRenderedPage(Login.class);

// and that an error message to that effect is displayed.

tester.assertErrorMessages(new String[] {

"Try wicket/wicket as the user name/password combination" });

}

}

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 271

Note that when using the FormTester to identify the component, you are required to

specify the component path relative to the Form and not the Page. It also has a setter method,

setValue(), that allows you to input the values for the components programmatically as you

would if you were inputting values through the browser.

This time around, you are expecting the login page to display the error as a result of

the failed login. You can use WicketTester.assertErrorMessages() for this. You learned in

Chapter 2 that a Page stores the error messages associated with all the contained components.

This method compares the array of input error messages against the list of messages of type

error associated with a Page. This test ensures that you have captured the failed login use case.

Let’s look at the use case that covers a successful login (see Listing 9-5).

Listing 9-5. A Test Case to Verify the Positive Login Path

public void testValidLogin() {

// Create the form tester object, mapping to its wicket:id.

FormTester form = tester.newFormTester("loginForm");

form.setValue("userId", "wicket");

form.setValue("password", "wicket");

form.submit();

// On a valid login, the Welcome page is rendered in response

tester.assertRenderedPage(Welcome.class);

// with a success message.

tester.assertInfoMessages(new String[] {

"You have logged in successfully" });

}

Note that FormTester.assertInfoMessages() works similarly to assertErrorMessages()

except that the former works on messages of type info. With a little rearrangement, you can

also make sure that the Welcome page renders the links to the UserProfilePage and Login

pages and the welcome message label (see Listing 9-6).

Listing 9-6. Test Case to Verify That the Links on the UserProfilePage Render Fine

package com.apress.wicketbook.validation;

// Other imports

public class WelcomeTest extends TestCase {

private WicketTester tester;

public void setUp() {

tester = new WicketTester();

tester.startPage(Login.class);

FormTester form = tester.newFormTester("loginForm");

form.setValue("userId", getValidUser());

form.setValue("password", getValidPassword());

form.submit();

tester.assertRenderedPage(Welcome.class);

}

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS272

private String getValidUser(){

return "wicket";

}

private String getValidPassword(){

return "wicket";

}

// Verify that the rendered Welcome page contains the Link

// components and the welcome message.

public void testWelcomePageRender(){

tester.assertLabel("form:message",getValidUser());

tester.assertComponent("form:linkToUserProfile",Link.class);

tester.assertComponent("form:linkToLogin",Link.class);

}

}

The Welcome page has nothing but a couple of page links, but it does provide you with an

opportunity to understand how link navigability can be tested.

Testing Page Navigation

WicketTester has a method, clickLink, that emulates a click action on a link, just as the name

suggests. Employ this method to ensure that the link to the UserProfilePage works, as shown

in Listing 9-7.

Listing 9-7. A Test to Ensure the Proper Functioning of Links on the UserProfilePage

public void testUserProfileLink(){

tester.assertComponent("form:linkToUserProfile",Link.class);

// Click the UserProfilePage link.

tester.clickLink("form:linkToUserProfile");

// If everything is OK, you should see the page rendered.

tester.assertRenderedPage(UserProfilePage.class);

}

An Issue with WicketTester Being Used As the WebApplication Subclass

Now that you’ve made sure that the UserProfilePage renders fine, it’s also a good time to verify

that the page submission works as well. Listing 9-8 shows you how.

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 273

Listing 9-8. A Test to Ensure the UserProfilePage Submits Successfully

public void testUserProfileDataSubmit() {

FormTester form = application.newFormTester("userProfile");

// Setting Form component values requires the component ID and

// the value that needs to be set.

form.setValue("name", (String) getUserProfileFormValues().get("name"));

form.setValue("city", (String) getUserProfileFormValues().get("city"));

form.setValue("pin", (String) getUserProfileFormValues().get("pin"));

form.setValue("phoneNumber", (String) getUserProfileFormValues().get(

"phoneNumber"));

// DropDownChoice, RadioGroup components are treated a little

// differently when setting form values.

form.select("country", getSelectedCountryIndex());

form.submit();

application.assertNoErrorMessage();

}

// A DropDownChoice component needs to specify the list index

// it's interested in.

private int getSelectedCountryIndex() {

return 1;

}

// A helper that supplies the form inputs

private Map formValues;

if (formValues == null) {

formValues = new HashMap();

formValues.put("name", "Tom");

formValues.put("city", "Dallas");

formValues.put("country", (String) UserProfilePage.COUNTRIES

.get(getSelectedCountryIndex()));

formValues.put("phoneNumber", "123-456-7890");

formValues.put("pin", "4556");

}

return formValues;

}

On running the test, you will notice that the phone number doesn’t get converted cor-

rectly, thereby resulting in the unit test failure. It’s not too difficult to explain this behavior

though: WicketTester is an Application subclass and is also configured as the Application

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS274

class for the mock environment. The custom PhoneNumberConverter is registered with the

actual WebApplication subclass: ValidationApplication. Since WicketTester is not aware of

this converter, it causes the test case to fail. Unfortunately, the only way to have this converter

registered with WicketTester is to duplicate the existing ValidationApplication code in a class

that extends WicketTester instead (see Listing 9-9).

Listing 9-9. A WicketTester Subclass That Mimics the Original WebApplication Subclass

package com.apress.wicketbook.validation;

import wicket.util.tester.WicketTester;

import com.apress.wicketbook.validation.CustomConverter;

// Other imports

public class ValidationWicketTester extends WicketTester {

public void init() {

super.init();

getApplicationSettings().setConverterFactory(new IConverterFactory() {

public IConverter newConverter(final Locale locale) {

return new CustomConverter(locale);

}

});

}

}

Even though this is a definite source of discomfort, you should still be able to live with

it, as you would have only one Wicket WebApplication subclass per deployed application.

Accordingly, you would be required to duplicate the code in a WicketTester subclass only once

for unit testing purposes. It should also be heartening to know that Wicket developers are very

likely to remove this limitation in the next Wicket release. Use ValidationWicketTester instead

in the setUp method when instantiating the WicketTester reference, and the JUnit green bar

will show up when running the test using Eclipse IDE, for example. In this test, you supplied

the values to the FormComponents in the expected format and made sure that form submit goes

through fine.

What you didn’t bother to verify was whether the model objects are getting updated

correctly. You cannot afford to ignore this because you would be using the model objects to

communicate with the layers beneath the web framework. In the next section, you will learn

to accomplish this as well using the FormTester component.

How to Make Sure Form Input Gets Correctly Set on the Model Objects

The server-side business components typically work with the data from Wicket’s model

objects. Even though you managed to test the form submit using Wicket’s FormTester, you still

don’t have a test in place that verifies that the correct backing model object was updated as a

result of form submit. Listing 9-10 shows one such unit test.

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 275

Listing 9-10. A WicketTester Subclass That Mimics the Original WebApplication Subclass

public void testUserProfileModelUpdate() {

FormTester formTester = application.newFormTester("userProfile");

formTester.setValue("name", (String) getUserProfileFormValues().get("name"));

formTester.setValue("city", (String) getUserProfileFormValues().get("city"));

formTester.setValue("pin", (String) getUserProfileFormValues().get("pin"));

formTester.setValue("phoneNumber", (String) getUserProfileFormValues().get(

"phoneNumber"));

formTester.select("country", getSelectedCountryIndex());

formTester.submit();

application.assertNoErrorMessage();

// Verify whether the model objects were updated in the correct fashion.

for (Iterator iter = formValues.keySet().iterator(); iter.hasNext();) {

String element = (String) iter.next();

String expected = (String) getUserProfileFormValues().get(element);

// Use the FormTester to fetch the model object.

String actual = form.getComponent(element).getModelObjectAsString();

assertEquals(expected, actual);

}

}

Testing Wicket Behaviors

Testing behaviors that contribute to the existing markup can get tricky. For example, the

com.apress.wicketbook.layout.ConfirmDeleteBehavior that you developed in the Chapter 7

adds the client-side onclick event to the button that carries this behavior. In addition to this,

it also contributes the JavaScript event handler function to the <head> section of the page. Let’s

look at one of the ways of testing such use cases in Wicket. As a first step in that direction, you

have to develop a sample page that puts these behaviors to work (see Listings 9-11 and 9-12).

Listing 9-11. A Template with Two Submit Buttons

<html>

<body>

<form wicket:id="form">

<input type="submit" wicket:id="deleteButton1"/>

<input type="submit" wicket:id="deleteButton2"/>

</form>

</body>

</html>

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS276

Listing 9-12. The Page Class with Buttons Configured with ConfirmDeleteBehavior

package com.apress.wicketbook.layout

public class ConfirmDeleteBehaviorTestPage extends WebPage {

public ConfirmDeleteBehaviorTestPage(){

Form form = new Form("form");

add(form);

form.add(new TextField("name",new PropertyModel(this,"name")));

Button deleteButtton1 = new Button("deleteButton1");

// Configures the button "btn" with default behavior

deleteButton1.add(new ConfirmDeleteBehavior());

form.add(deleteButtton1);

Button deleteButton2 = new Button("deleteButton2");

// Overrides the JavaScript message that will be displayed when the user

// clicks the button

deleteButton2.add(new ConfirmDeleteBehavior(){

public String getJSMessage(){

return "Delete records?";

}

});

form.add(deleteButtton2);

}

}

The presence of the system property wicket.replace.expected.results tells the

WicketTestCase.executeTest() method to replace the content of the expected HTML file with

the string representation of the generated Page class (see Listing 9-13). Use this property only

when running the test for the very first time. From then on, you would be using the generated

file (the one that’s expected) as the reference file. The expected HTML file will be generated in

the same package as the TestCase subclass—com.apress.wicketbook.layout.ConfirmDelete➥

BehaviorTest in this case. Note that in case there is a mismatch between the expected and the

actual HTML output, so the test would fail and you would get to see the actual difference in

the content of the two files that resulted in the error. Note that such tests are fragile—you need

to make sure that you regenerate ConfirmDeleteBehaviorTestPage-expected.html when you

change the layout and/or the component usage in the ConfirmDeleteBehaviorTest.

Listing 9-13. A Test Case That Compares the Generated File Against the Expected File

package com.apress.wicketbook.layout;

import wicket.WicketTestCase;

public class ConfirmDeleteBehaviorTest extends WicketTestCase {

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 277

public ConfirmDeleteBehaviorTest(String name) {

super(name);

}

public void testDeleteBehaviorPresence() throws Exception {

// Set the system property for the first time.

System.setProperty("wicket.replace.expected.results", "arbitrary value");

// executeTest is defined in WicketTestCase.

executeTest(ConfirmDeleteBehaviorTestPage.class,

"ConfirmDeleteBehaviorTestPage-expected.html");

}

}

A Sneak Peek into Wicket 2.0
Wicket developers are currently working on the 2.0 release of the product. Wicket 2.0, like any

other product release, is expected to improve upon the previous versions. Significantly, Wicket

adopts Java 5 at its core in its 2.0 release. There are quite a few improvements such as the con-

structor refactor and Converter API changes, and you get a look at them in more detail in the

subsequent sections.

HOW TO OBTAIN AND BUILD WICKET 2.0

Some of the significant Wicket 2.0 features discussed in the upcoming text are based on the Wicket 2.0

Subversion repository trunk code base as of the day this chapter was being written. The features discussed

here are not likely to change by the time a stable version of Wicket 2.0 is released. Wicket employs Maven

2.0 in order to build a distributable artifact. So building a Wicket release on your own just boils down to

obtaining the source code from Wicket’s Subversion repository and running the mvn -Dmaven.test.

skip=true install command on the command line. Maven 2.0 is available for download here:

http://maven.apache.org/maven2. Wicket 2. 0 requires Java 5 to be installed.

Taking Advantage of Java 5 Features

In Java 5, a feature called covariant returns allows a subclass to override a superclass method

and narrow the return type of the method. Although this sounds like a reasonable thing to do,

Java versions prior to Java 5 don’t allow you to do that. You can use this feature as shown in

Listing 9-14, for example.

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS278

Listing 9-14. Using Java 5 Covariance to Return the WebSession Subclass

import wicket.Session;

import wicket.markup.html.WebPage;

public class BasePage<T> extends WebPage<T> {

// Illegal in Java versions < 5

@Override

public ValidationAppSession getSession() {

return (ValidationAppSession)Session.get();

}

}

All application pages can then extend BasePage and access the ValidationAppSession

class without an explicit cast. Note that this is not possible in Wicket 1.2 for another reason

besides the fact that you might be employing Java 1.4: wicket.Session.getSession() is final

in Wicket 1.2. If you are in the habit of reading the session off of the ThreadLocal variable, you

can have something along the lines of Listing 9-15.

Listing 9-15. Using Java5 Covariance to Return the WebSession Subclass

public final class ValidationAppSession extends WebSession{

public static ValidationAppSession get(){

return (ValidationAppSession)Session.get();

}

//..

}

This is even better. You don't need the BasePage (see Listing 9-14) to narrow the return

type of getSession(). Your application pages can directly read it off the ThreadLocal without

doing an explicit cast.

Wicket 2.0 Constructor Refactor

Until Wicket 1.2, you were required to build the component tree on the server by adding the

child component to its parent by using the Component.add() method, as shown in Listing 9-16.

Listing 9-16. The Wicket 1.2 Way of Associating Parent and Child Components

public class UserProfilePage extends WebPage{

public UserProfilePage(){

Form form = new UserProfileForm("userProfileForm");

// userName TextField is a child component of Form.

form.add(new TextField("userName"));

// Page ("this") is Form component's parent.

this.add(form);

}

}

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 279

This way of associating the child component with its parent has been removed in favor of

passing in the parent using the component’s constructor. So instead of using Component.add()

to build the component hierarchy, you need to pass in the correct parent to reflect the hierar-

chy, as demonstrated in Listing 9-17.

Listing 9-17. Specifying the Parent Component During the Construction of the Child Component,

As Wicket 2.0 Requires

public class UserProfilePage extends WebPage{

public UserProfilePage(){

// The argument "this" indicates the Page is the

// Form's parent.

Form form = new UserProfileForm(this,"userProfileForm");

new TextField(form,"userName");

}

}

This ensures that when you add a child component to its parent, the component tree con-

sisting of the parent component to the enclosing Page is already set up. This allows for a few

interesting capabilities:

• Better error reporting: In Wicket, the Page component hierarchy has to match the corre-

sponding template hierarchy. In Wicket versions prior to 2.0, hierarchy mismatch, if

any, is detected during the page render phase, which occurs after the component con-

struction phase. But in Wicket 2.0 onward, it will be detected during component

construction time , thereby resulting in the error being reported earlier. It also allows

Wicket to do precise error reporting. This means that you would get an exception that

points you to the line in your code that caused the mismatch.

• Availability of template markup attributes during component construction: Wicket 1.2

allows you to access the component markup attributes through the Component.

onComponentTag(ComponentTag tag) callback. Alternatively, you also saw how Wicket

allows you to attach behaviors to components, which in turn gives you access to the

markup attributes through the IBehavior.onComponentTag() callback. Essentially, there

was never an option to access the markup attributes during component construction

in Wicket 1.2. But the constructor change incorporated as a part of Wicket 2.0 allows

you to access markup attributes from within your constructor. So instead of attaching

a wicket.IBehavior implementation as in Listing 9-18, you include the code in

Listing 9-19 in the component constructor.

Listing 9-18. The Wicket 1.2 Way of Adding/Modifying Markup Attributes

aWicketComponent.add(new SimpleAttributeModifier("class","error")

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS280

Listing 9-19. The Wicket 2.0 Way of Adding/Modifying Markup Attributes

public class WicketComponent extends Panel{

public WicketComponent(MarkupContainer container,String id, IModel model){

getMarkupAttributes().put("class","error")

}

}

We will further delve into this feature so that you have a good understanding of what it

actually buys you in the section “Availability of Markup Attributes at the Time of Component

Construction.” Now is the time to actually get a feel for the Wicket 2.0 programming style. I’m

sure by now you must be really curious to know how a Page developed in the next release of

Wicket will look like. To demonstrate, Listing 9-20 shows how the UserProfilePage that you

developed in Chapter 1 looks in a Wicket 2.0 environment.

Listing 9-20. A Wicket 2.0–Compliant UserProfilePage Class

public class UserProfilePage<T> extends BasePage<T> {

public static final List<String> COUNTRIES = Arrays.asList(new String[] {

"India", "US", "UK" });

public UserProfilePage() {

UserProfile userProfile = new UserProfile();

CompoundPropertyModel<UserProfile> userProfileModel =

new CompoundPropertyModel<UserProfile>(userProfile);

// Note that the Form specifies "this" (the Page) as its Parent.

UserProfileForm form = new UserProfileForm(this, "userProfile",

userProfileModel);

new FeedbackPanel(this, "feedback");

}

class UserProfileForm extends Form<UserProfile> {

public UserProfileForm(MarkupContainer parent, String id,

IModel<UserProfile> model) {

super(parent, id, model);

// Form is the parent of the name TextField component.

new TextField(this, "name").setRequired(true);

new TextField(this, "address");

new TextField(this, "city");

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 281

// The DropDownChoice is configured to work with instances of String as

// model objects.

new DropDownChoice<String>(this, "country", COUNTRIES);

new TextField(this, "pin", int.class).add(

NumberValidator.range(0, 5000)).setRequired(true);

new TextField<PhoneNumber>(this, "phoneNumber", PhoneNumber.class);

}

public void onSubmit() {

info(getModelObjectAsString());

}

}

}

Notice how the components specify their parent during construction. It’s also worth

noting that Wicket 2.0 employs Java generics extensively in order to make the models more

readable.

You already know that you can access markup attributes during component creation. In

the next section, you’ll see an example that demonstrates the flexibility that this feature offers.

Availability of Markup Attributes at the Time of Component Construction

Consider a Panel that supports a high level of configuration in its design and that expects

these design-time parameters to be specified at construction time so that it can render

accordingly on the browser based on the configuration parameters you supply (see Listing 9-21).

Prior to Wicket 2.0, you would be required to specify these parameters through Java code. But

since these parameters are specific to the presentation layer and control the visual appear-

ance of the component, it’s better that they be specified in the template rather than in the Page

class. This allows the HTML designer to specify some design parameters. But it’s important to

remember that this feature goes against Wicket’s doctrine of keeping the template information

to a minimum and managing the rest through plain Java code.

Listing 9-21. A Panel That Allows Design-Time Parameter Configuration

package com.apress.wicketbook.validation;

// Usual imports

import com.apress.wicketbook.validation.DesignTimeAttributeHandler;

public class ConfigurablePanel extends Panel {

// Configuration parameters of type int and String

private String foo;

private int bar;

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS282

// A PhoneNumber as a design-time attribute really doesn't make sense

// in the real world!

// It is used here only to demonstrate a Wicket feature.

private PhoneNumber phoneNumber;

public ConfigurablePanel(MarkupContainer parent,String id,

IModel model){

super(parent,id,model);

// Look up the attributes and configure the Panel.

setFoo(getMarkupAttributes().get("wicket_rocks:foo");

setBar(Integer.parseInt(getMarkupAttributes().get("wicket_rocks:bar"));

setPhoneNumber(new PhoneNumberConverter().convertToObject(

getMarkupAttributes().get("wicket_rocks:phoneNumber"));

}

public int getBar() {

return bar;

}

public void setBar(int bar) {

this.bar = bar;

}

public String getFoo() {

return foo;

}

public void setFoo(String foo) {

this.foo = foo;

}

public PhoneNumber getPhoneNumber() {

return phoneNumber;

}

public void setPhoneNumber(PhoneNumber phoneNumber) {

this.phoneNumber = phoneNumber;

}

}

Listing 9-22 demonstrates the way you would specify the configuration parameter in the

template.

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 283

Listing 9-22. A Page That Uses and Configures the Configurable Panel at Design Time

<html>

<form wicket:id="form">

<span wicket:id="configurablePanel" wicket_rocks:foo="Wicket"

wicket_rocks:bar="2" wicket_rocks:phoneNumber="123-122-1233">

</form>

</html>

When constructing the Page, you need to make sure that you map all wicket_rocks:xxx

attribute values to the ones specified in the Page class. If you require a similar ability for

another component of yours, you would again be required to repeat the code that extracts the

attributes and calls the setters. So let’s try to bundle this behavior into something reusable.

What you need is a utility that extracts all markup attributes from the template for a given

component and, after making sure that those attributes are applicable to the component,

invoke the corresponding setters on the component. You add a wicket_rocks prefix just to dif-

ferentiate the attributes you are interested in from the normal ones (wicket:id for example),

something similar to a namespace in XML. For configuring the values on the component, you

can use Wicket’s wicket.util.lang.PropertyResolver class. This class will take care of initializ-

ing the design-time parameters as long as it’s supplied with an object (the component itself),

an expression (the component attribute) to look for, and the corresponding value (specified

in the template as markup attributes) that needs to be set (see Listing 9-23).

Listing 9-23. A DesignTimeAttributeHandler Class to Extract and Configure Design-Time

Attributes Automatically

package com.apress.wicketbook.validation;

import wicket.Component;

import wicket.Session;

import wicket.WicketRuntimeException;

import wicket.util.lang.PropertyResolver;

import wicket.util.lang.PropertyResolverConverter;

import wicket.util.value.IValueMap;

public class DesignTimeAttributeHandler implements Serializable {

/**

* The attribute separator that separates the prefix and the

* attribute name, e.g., wicket_rocks:foo="12" where "wicket_rocks" is the prefix,

* "foo" is the attribute name, and ":" is the separator.

*/

public static String ATTRIBUTE_SEPARATOR = ":";

/*

* @param attributePrefix

* The application-specific namespace to distinguish

* design-time parameters.

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS284

* @param component

* The component whose design-time parameters

* need to be set.

*/

public static void handle(String attributePrefix,Component component){

// Extract markup attributes from the template for a given component.

IValueMap markupAttributesMap = component.getMarkupAttributes();

PropertyResolverConverter prc = new PropertyResolverConverter(

Session.get(), Session.get().getLocale());

// Iterate through all the attributes and process only those that the

// component might be interested in.

for (Iterator iter = markupAttributesMap.keySet().iterator();

iter.hasNext();) {

String expression = (String) iter.next();

String[] splitExpression = expression.split(ATTRIBUTE_SEPARATOR);

// Ensure that the attribute prefix specified in the template is the same

// as the one passed to this class.

if (splitExpression == null ||

splitExpression.length != 2 ||

!(attributePrefix.equals(splitExpression[0]))){

continue;

}

String value = markupAttributesMap.getString(expression);

// The attribute value

String actualExpression = splitExpression[1];

try {

// Invoke Wicket's built-in class to set the values.

PropertyResolver.setValue(actualExpression, component,

value, prc);

} catch (WicketRuntimeException ignore) {

// If the attribute name is specified incorrectly, signal it as a

// warning.

component.warn(ignore.getMessage());

}

}

}

}

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 285

It’s worth noting that PropertyResolver takes care of the required conversion as well when

setting the values on the component. When adding the Panel to the Page hierarchy, make sure

that you supply the attribute prefix—wicket_rocks in this case (see Listing 9-24).

Listing 9-24. Specifying the Template Attribute Prefix When Creating the Component

class MyPage extends Page{

public MyPage(){

Form form = new Form(this,"form");

new ConfigurablePanel(form,id,new Model(),"wicket_rocks");

}

}

You need to modify the Panel for accommodating the DesignTimeAttributeHandler as

shown in Listing 9-25.

Listing 9-25. Removing the Explicit Calls to the Setters and Instead Using the

DesignTimeAttributeHandler Class

public class ConfigurablePanel extends Panel {

// Rest of the content is the same.

public ConfigurablePanel(MarkupContainer parent,String id,

IModel model){

super(parent,id,model);

/* You don't need these now!

setFoo(getMarkupAttributes().get("wicket_rocks:foo");

setBar(Integer.parseInt(getMarkupAttributes().get("wicket_rocks:bar"));

setPhoneNumber(new PhoneNumberConverter().convertToObject(

getMarkupAttributes().get("wicket_rocks:phoneNumber"));

*/

}

public ConfigurablePanel(MarkupContainer parent,String id,

IModel model,String designtimeAttributePrefix){

this(parent,id,model);

// Get DesignTimeAttributeHandler to set all the attributes.

DesignTimeAttributeHandler.handle(designtimeAttributePrefix,this);

}

// Rest of the content is the same.

}

Hopefully the preceding sections have given you a good insight into the things that are

coming in Wicket 2.0. However, any discussion on Wicket 2.0 features would be incomplete

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS286

without looking at the revamped Converter API specifications. You will learn about the new

converter design in the next section.

Wicket 2.0 Converter Specification

In Chapter 2, you looked at a custom converter for converting an HTTP string to a phone

number class representation and vice versa. Then you also registered the converter with

Wicket through the WebApplication subclass. But the process turned out to be quite tedious,

as Wicket’s 1.2 converter design isn’t really that intuitive. As we discussed in Chapter 2, a con-

verter’s responsibility is to act as a translation layer between HTTP request string parameters

and your model class. The Wicket 2.0 Converter API specification gets it right through the

IConverter interface, which looks like what you see in Listing 9-26.

Listing 9-26. Wicket 2.0 IConverter Interface Specification

public interface IConverter extends Serializable{

/**

* Converts the given string value to class c.

* @param value - The string value to convert.

* @param locale - The locale used to convert the value.

* @return - The converted value.

*/

Object convertToObject(String value, Locale locale);

/**

* Converts the given value to a string.

* @param value - The value to convert.

* @param locale - Current locale.

* @return - The converted string value.

*/

String convertToString(Object value, Locale locale);

}

The IConverter intent is quite clear now: it includes a method to convert the supplied

HTTP string parameter to the appropriate model class and another one to perform the con-

version the other way around. Of course, nothing is better than looking at an example that

demonstrates the design change. Try adapting the existing PhoneNumberConverter to the new

interface, as shown in Listing 9-27. Note that Wicket’s AbstractConverter acts as the base class

for all converters and implements the IConverter interface.

Listing 9-27. Adapting PhoneNumberConverter to Wicket 2.0

import java.util.Locale;

import java.util.regex.Pattern;

import wicket.util.convert.converters.AbstractConverter;

import com.apress.wicketbook.common.PhoneNumber;

public class PhoneNumberConverter extends AbstractConverter {

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 287

static Pattern pattern = Pattern.compile("\\d{3}-\\d{3}-\\d{4}");

private String stripExtraChars(String input) {

return input.replaceAll("[^0-9]", "");

}

/**

* @see wicket.util.convert.ICoverter# convertToObject(String value,

* Locale locale)

*/

public Object convertToObject(String value, Locale locale) {

// Before converting the value, make sure that it matches the pattern.

if (!pattern.matcher((String) value).matches()) {

throw newConversionException("Supplied value " + value

+ " does not match the pattern " + pattern.toString(),

value, locale);

}

String numericString = stripExtraChars((String) value);

String areaCode = numericString.substring(0, 3);

String prefix = numericString.substring(3, 6);

String number = numericString.substring(6);

PhoneNumber phoneNumber = new PhoneNumber(areaCode, prefix, number);

return phoneNumber;

}

@Override

protected Class getTargetType() {

return PhoneNumber.class;

}

/**

* @see wicket.util.convert.ICoverter#convertToString(Object value,

* Locale locale)

*/

@Override

public String convertToString(Object value, Locale locale) {

if (value == null) {

return null;

}

PhoneNumber phoneNumber = (PhoneNumber) value;

return phoneNumber.getPrefix() + "-" + phoneNumber.getAreaCode() + "-"

+ phoneNumber.getNumber();

}

}

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS288

Now the only thing that remains is registering this converter with Wicket. A safe way to

do this would be to wrap the existing ICoverterLocatorFactory so that you don’t end up over-

writing the previously existing converters inadvertently. An IConverterLocatorFactory is a

factory that creates and configures instances of IConverter. So let’s define our Custom➥

ConverterLocatorFactory, which wraps the ICoverterLocatorFactory (a typo seems to have

crept into the Converter-related class names in the current Wicket 2.0 code base and is likely

to be fixed in the subsequent release) supplied to it, as shown in Listing 9-28.

Listing 9-28. A Custom IConverterLocatorFactory That Wraps the Existing Implementation

import wicket.ICoverterLocator;

import wicket.util.convert.ICoverterLocatorFactory;

public class CustomConverterLocatorFactory implements ICoverterLocatorFactory {

// Previously existing ICoverterLocatorFactory

ICoverterLocatorFactory old;

public CustomConverterLocatorFactory(ICoverterLocatorFactory old){

this.old = old;

}

/**

* @see wicket.util.convert.ICoverterLocatorFactory#newConverterSupplier()

*/

// IConverterLocator is discussed in the text that follows.

public ICoverterLocator newConverterSupplier() {

return new CustomConverterLocator(old.newConverterSupplier());

}

}

An IConverterLocator could be thought of as a repository of converters for supported

types. Essentially the onus of returning the correct wicket.IConverter for a supplied type

rests with the IConverterLocator implementation. Wicket will call upon this class to fetch the

IConverter to do the conversion from the string-based HTTP request parameters to the

underlying model type and vice versa when rendering a component on the browser. In the

implementation shown in Listing 9-29, you check whether the custom converter can handle

the type conversion and delegate it to the “wrapped” IConverter otherwise.

Listing 9-29. A Custom IConverterLocator That Wraps the Previously Existing ConverterLocator

import wicket.util.convert.IConverter;

import wicket.ICoverterLocator;

// Other imports

public class CustomConverterLocator implements ICoverterLocator {

/** Maps classes to ITypeConverters. */

private final Map<Class, IConverter> classToConverter =

new HashMap<Class, IConverter>();

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 289

/** Previously existing IConverterLocator **/

ICoverterLocator old;

public CustomConverterLocator(ICoverterLocator old) {

this.old = old;

// Set up the custom converter.

set(PhoneNumber.class, new PhoneNumberConverter());

}

// Check if you can handle the conversion, else delegate it to the

// wrapped IConverterLocator instance.

public IConverter getConverter(Class type) {

if (classToConverter.containsKey(type)) {

return classToConverter.get(type);

} else {

return old.getConverter(type);

}

}

protected void set(Class type, IConverter converter) {

classToConverter.put(type, converter);

}

}

There is one final configuration setting that is required—registering CustomConverter➥

LocatorFactory with Wicket’s Application class, and Listing 9-30 shows how it’s done.

Listing 9-30. Registering the New IConverterLocatorFactory with WebApplication

import wicket.util.convert.ICoverterLocatorFactory;

public class ValidationApplication extends WebApplication {

public void init() {

super.init();

// Retrieve the existing IConverterLocatorFactory

ICoverterLocatorFactory old = getApplicationSettings()

.getConverterSupplierFactory();

// and register the custom implementation, passing in the

// previously existing implementation.

getApplicationSettings().setConverterSupplierFactory(

new CustomConverterLocatorFactory(old));

}

//..

}

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS290

Changes to the Model API for Added Flexibility

In Wicket 1.2, the IModel.setObject() and IModel.getObject() methods have the component

instance passed in as an argument. Most newcomers to Wicket find it to be a little strange to

override this method in their model implementation. Wicket 2.0 removes this additional com-

ponent argument, making it easier to understand when overriding these methods. So make

sure that you modify the method signatures accordingly when overriding these methods in

your custom model class (see Listing 9-31).

Listing 9-31. Differences in the Signature of Wicket 1.2 and 2.0 Model Classes

// Wicket 1.2 MyCustomModel

import wicket.model.Model;

Class MyCustomModel extends Model{

public Object getObject(Component component){

return <Some_Model_Object>;

}

}

// Wicket 2.0 MyCustomModel

import wicket.model.Model;

Class MyCustomModel extends Model{

public Object getObject(){

return <Some_Model_Object>;

}

}

Summary
Wicket supports out-of-the-container testing by supplying a set of framework-specific mock

objects. WicketTester and FormTester are the classes you need to be looking at when writing

unit tests for Wicket Pages and components (Panels). WicketTester has assertXXX() methods

that allow you to verify the presence of components, error messages, page navigation through

links, and so on. FormTester is of great help when dealing with FormComponents values, simulat-

ing form submit action and later verifying that the backing model objects got updated in the

desired manner. We also discussed the drawbacks of the current Wicket unit testing frame-

work. You were then introduced to some of the features of Wicket 2.0, such as constructor

changes, access to markup attributes at the time of component construction, revamped

converter design, and changes introduced in Wicket 2.0’s Model API.

CHAPTER 9 ■ ADDITIONAL WICKET TOPICS 291

A
AbstractColumn implementation, 210

AbstractConverter, 52

AbstractConverter class, 287

AbstractDefaultAjaxBehavior, 238, 262

AbstractDetachableModel, in online bookstore

application, 82

AbstractPageAuthorizationStrategy, 113

AbstractReadOnlyModel, 97

AbstractReadOnlyDetachableModel, 84

AbstractTab implementations, 216

action-/request-based frameworks, 1

add() method, 42

addLinksToOtherPages, 124

Ajax

adding arbitrary JavaScript code, 245

advantages of built-in behaviors, 256

autocompletion, 246

communicating asynchronously with a server,

237

configuring the delay for an Ajax call, 241

creating an image indicator component, 257

definition of, 235

firing an Ajax request, 237

form serialization, 241

handling Ajax success and failure events, 262

HTML DOM APIs, 237–238, 245

nonavailability of Ajax or JavaScript browser

support, 261

onAjaxUpdate, 261

outerHTMLproperty, 238, 244, 255

partial rendering, 238

providing an autocompletion feature, 246

providing feedback without a browser refresh,

237

providing status indicators for Ajax requests,

256

querying server-side validators, 237

refreshing the state drop-down list, 253

rendering a page in response to an Ajax request,

253

rendering the errorIndicator span

unconditionally, 241

switching on/off Ajax debug mode, 240

throwing a RuntimeException on an Ajax

request, 265

updating the HTML <title> element, 244

Ajax behaviors

advantages of built-in, 256

implementations supported, 238

AjaxBehavior.respond() method, 238

AjaxCheckBox component, 260

AjaxFallbackLink component, 261

AjaxFormComponentUpdatingBehavior, 238, 241

AjaxFormValidatingBehavior class, 241

AjaxRequestTarget, 238, 241, 245, 261

AjaxTabbedPanel, 244

annotations, 159. See also JPA annotations, table of

@SpringBean, 159–161, 175

AnnotSpringInjector, 160

AnnotSpringWebApplication class, 160

Ant, 270

AOP. See aspect-oriented programming (AOP)

Apache 2.0 license, 226

AppBasePage.java, defining, 9

Application class, 9, 158

Application.properties file, 181

default contents of, 45

localized messages for validators, 44

overriding the messages in, 46, 59

ApplicationSettings class converter, 46, 52

ApplicationSettings object, 24

ArticleLink, 120

Articles.html, code example, 125

ArticlesPage class, code example, 120-122

ASP.NET, 1

aspect-oriented programming (AOP), 159

AspectJ, 159

Assert class, 268

assertErrorMessages() method, 272

assertInfoMessages() method, FormsTester class,

272

assertXXX() methods, 268

AttributeBehavior, Ajax, 237

AttributeModifier, 213

AutoCompleteBehavior, Ajax, 246–247

automated builds, 270

Index

293

B
Base component, error() method, 41

base page class, 9

Base Template page with transparent borders,

code example, 132

BaseApplicationPage, 107

behaviors

associating behaviors with components at

runtime, 96

components and, 237

modifying component tag attributes, 237

testing, 276

Wicket and, 237

Book objects, code example for templatefor

displaying, 144

Book Promotions page, code example, 118–119

BookDataProvider.model() method, 83

BookDetailsModel, code example, 149

BookmarkablePageLink, 119

booksMarkedForCheckout instance variable, 94

BookShopTabbedPanelPage component, 220

BookShopTemplatePage.html, code example,

122–123

bookstore application. See online bookstore

application

Border class, 129

Border components, 127, 199, 235

adding a box border, code example, 130–131

associated markup templates and, 127, 129

calling setTransparentResolver(true), 132

creating a boxed label, code example, 128

developing a collapsible border component,

137–141

making a pageBorder component transparent,

132

multiple uses of in the same page, 138

resolving ambiguities in the child template Page

class, 132

using CSS to change how BoxBorder renders,

133–134

<wicket:body> tag, 130

<wicket:border> tag, 129

<wicket:head> tag, 137

BoxBorder class, 130

Button component, 231

C
CheckBox component, 91, 183

ClassStringResourceLoader, 197

clickLink() method, 273

clustered applications, 222

code refactoring, 111

CollapsibleBorder component, 137

Component class, 16

Component.add() method, 279

Component.setOutputMarkupId(true) method,

138

component-id, 44

ComponentInjector implementation, 158–159

Component.onComponentTag(Component-Tag)

method, 138

component-oriented frameworks, 1

components

associated markup templates and, 127

associating behaviors with at runtime, 96

associating parent and child, 279

encapsulating markup within, 215

HTML widgets and, 33

id parameter, 6, 8

informing about an object, 6

models and, 6

packaging into libraries, 221

resolving dependencies during construction,

158

using IInitializer to register resources, 222

validation state of, 241

wrapping in a Wicket Panel, 210

ComponentStringResourceLoader, 197

CompoundPropertyModel, 16, 106

ICompoundModel interface, 21–22

specifying for a page, 16

using the component ID as a property

expression, 21

wicket.Application.configure() method, 22

ConcurrentModificationException, 92

constructor refactor in Wicket 2.0, 279

constructors, 151

ContainerFeedbackMessageFilter, 61

ConversionException, throwing, 50

Converter class, 52

converters

accessing through a factory class, 46

built-in vs. custom, 46

defining a phone number class, 46

globally available built-in converters, 52

handling an illegal input format, 51

operation of, 46

overriding the toString() method, 56

registering converters globally, 52, 54

running input through a validation check, 49

specifying a custom converter, 49

specifying a java.util.regex.Pattern, 50

specifying a target type for conversion, 49

■INDEX294

covariant returns in Java 5, 278

CustomConverterLocatorFactory, registering with

the Application class, 290

CustomPagingNavigator, 203

D
Data Access Object (DAO), 81

Data Transfer Objects (DTOs), 19

DatabaseResourceLoader, for searching for

localized messages, 198

DataTable component, 209–210

DataView component

adding pagination to, 88

IDataProvider interface and, 79

DefaultDataTable, using, 214

dependency injection (DI), 149–151, 159–160

field initialization and, 160

Page constructor execution and, 161

dependency lookup, 158

detecting hierarchy mismatch, 280

DOJO integration with Wicket, 265

DropDownChoice component, 6, 85, 91, 183, 204,

262, 265

Duration class, 241

E
Eclipse, 165

running a JUnit test, 269, 275

setting up with Wicket Quick Start, 2

EJB 3

defining the persistence.xml file, 167

EJB Query Language (EJBQL), 168

entity beans and persistent domain entities, 165

EntityManager interface, 167

EntityManagerFactory interface, 171

Hibernate 3, 165

Hibernate Annotations, 165

Hibernate Core, 165

Hibernate EntityManager, 165

Hibernate, use of, 164

IBookDao implementation using Hibernate 3,

168–171

integration with Wicket, 164

Java 5 annotations and, 165

Java Persistence Architecture (JPA), 165–166,

172

mapping bean attributes to database columns,

165

persistence unit, definition of, 167

persistence.xml file, code example, 167

SQL queries, 165

using a database as the persistence store, 166

EqualPasswordInputValidator, code example, 58

error messages

component accessing of, 35

entering invalid login credentials, 38

externalizing, 36

failed validation and accumulating error

messages, 42

FeedbackPanel component and, 42

localizing, 36

MissingResourceException, 38

retrieving using the Localizer class, 36

string resource bundle (properties file), 38, 44

error() method, Base component, 41

event listeners, 1

ExternalLink, 120

F
feedback. See user feedback

Feedback component, 241

FeedbackMessages class, 61–62

FeedbackPanel component, 235, 241

adding as an Ajax target, 240

adding to user feedback, 35, 39, 60

and error messages, 42

Form component, 6, 12–13, 33, 44, 85, 178, 206,

235, 240

FormComponentFeedbackBorder, building a

custom, 241

Form submit, 6

rendered HTML, code example, 12–13

reporting validation errors after HTML form

submit, 237

form-id, 44

FormComponentFeedbackBorder

customizing to work with Ajax, 241

validation feedback and, 235

FormSubmittingDropDownChoice, code example,

207

FormTester class

assertInfoMessages() method, 272

form submission and, 271

setting input values for FormComponents, 271

setValue() method, 272

specifying the component path relative to the

Form, 272

Fragment component, 214–215

frameworks, managed and unmanaged, 151

FreeMarker

BookDetailsModel, code example, 149

definition of, 148

download site, 144

■INDEX 295

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

similarity of the FreeMarkerPanel and

VelocityPanel APIs, 149

template for displaying book details, code

example, 148

Wicket URLs and Form components as

unsupported, 149

FreeMarker library, download site, 144

FreeMarker Templating Language (FTL), 148

G
getConverter() method, 49

H
Hibernate, 79

IBookDao implementation using Hibernate 3,

168–171

use of, 164

Hibernate Annotations, 165

Hibernate Core, 165

Hibernate EntityManager, 165

HiveMind, download site, 160

HTML

creating an Item component to represent an

HTML row, 213

element id attribute, 238

HTML template, considered as a view, 8

HTML template and Page class, 5

HTML widgets and Page components, 9, 33

modifying or adding attributes to HTML

elements, 96

registering HTML components as listeners, 6

reporting validation errors after HTML form

submit, 237

<title> element, updating through Ajax, 244

HTML DOM APIs, 237–238, 245

HTTP, as a stateless protocol, 69

I
IAjaxCallDecorator interface, 262

IAjaxIndicatorAware interface, 256, 258

IBatis, 79

IBehavior

implementations, 203, 237

interface, 237

IBehavior.onComponentTag() method, 96, 237

IChoiceRenderer, 227

IColumn and Property column, Wicket-Extensions

subproject, 209

IComponentInstantiationListener, 158, 160

registering implementations, 112

IComponentResolver implementations, 179

ICompoundModel interface,

CompoundPropertyModel, 16

IConverter interface, 287

implementing, 47

IConverterFactory implementation, 52

IConverterLocator, 289

id parameter, 6, 8

IFormSubmitListener component, 6, 13

IInitializer, using to register resources, 222

IModel implementation, 6, 8

IModel.setObject() and IModel.getObject()

methods, 291

init() method, configuring, 67

Injector, 163

input validation

account sign-up page, code example, 56

add() method, 42

attaching a NumberValidator, 42

Base component, error() method, 41

calling the validate() method on components,

42

comparing and validating two password fields,

56

entering invalid login credentials, 38

EqualPasswordInputValidator, code example,

58

examining validation error messages, 187

handling of missing resources, 39

IFormValidator interface, 57

IValidator interface, 42

leaving input fields blank, 40

localized messages for validators, 44

Localizer class and default message display, 38

logging validation error messages, 41

predefined variables in validation message text,

45

reporting validation errors after HTML form

submit, 237

tailoring validation error messages or routines

to a specific locale, 194

validating a Form in its entirety, 56

validation errors and

FormComponentFeedbackBorder, 235

internationalization, definition of, 194

Internet Explorer (IE), changing the language

setting, 195

inversion of control (IoC), 149, 158

IonChangeListener component, 6

IResourceSettings implementation, 197

ISessionStore implementation, 151

ITypeConverter, implementations, 52

■INDEX296

IUnauthorizedComponentInstantiation-Listener

interface, 112

IValidator interface, 42

J
Jakarta utility, 164

Java 1.4 and above, 2

Java 5

annotations, 159

covariant returns, 278

Java generics, 282

Wicket 2.0 and, 278

Java Persistence Architecture (JPA), 165–166, 172

Java servlet specification, 1

JavaScript, 235

attaching confirmDelete() to an onclick event,

230–231

generating a unique function name at runtime,

231

.js file and externally maintained functions, 230

nonavailability of JavaScript browser support,

261

onblur event, 237

onchange event, 205–206, 260, 262

onclick event, 276

onSelectionChanged event, 253

java.util map interface, 145

Jetty

Java servlet specification, 1

modifying jetty-config.xml, 3

JPA annotations, table of, 165

JSF, 1, 22

JUnit

failed login use case, 271

IDE support for, 268

obtaining further information on, 268

JUnit test, running in Eclipse, 269, 275

L
Label component, 25, 203–204

Least Recently Used (LRU) algorithm, 29, 33

Link class, 29

Link components, 6, 33, 244

addLinksToOtherPages, 124

ArticleLink, 120

BookmarkablePageLink, 119

calling setAutoEnable(true) on the link class,

135

enabled and disabled links, 135

ExternalLink, 120

generating links through wicket:link, 135

hard-coded vs. dynamically retrieved, 120

links, enabled and disabled, 135

ListItem WebMarkupContainer, 62

ListView component, 61–62, 64, 110

disadvantages of, 79

localization

adding the <wicket:message> tag, 177

changing the language setting in Internet

Explorer (IE), 195

contributing a locale-specific properties file to

the Wicket core, 188

default Application.properties file, 181

examining validation error messages, 187

internationalization, definition of, 194

internationalizing the UserProfilePage, 183

invalidating a Firefox session programmatically,

196

keeping a locale-specific template in sync with

its Page class, 187

locale as en_US, 178

localized CurrencyValdiator class, code

example, 194

localizing messages through the

StringResourceModel class, 192

localizing the UserProfilePage, 177

localizing validation and error messages, 186

Page hierarchy and message search order, 179

properties file and the keys for

<wicket:message>, 178

PropertyResourceBundle class, 178

removing unneeded Wicket tags when page

rendering, 185

ResourceBundle class, 178

search order for messages, 180–181

specifying localized messages in the page

properties file, 177–178

storing the ISO country code in the UserProfile

bean, 189

switching the locale programmatically, 183

tailoring validation error messages or routines

to a specific locale, 194

UserProfilePage.properties file, 178

using locale-specific templates, 186

using ResourceModel to represent a localized

resource string, 193

using the wicket.Localizer class to fill in

placeholder values at runtime, 190

validating entries in monetary fields, 194

validator search order, 182

Localizer class

and local-specific messages, 179

retrieving locale-specific messages, 36

■INDEX 297

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

LoadableDetachableModel class, code example,

84–85

Login constructor, 30

Login page

adding a Welcome page link to, 28

adding Welcome page basic authentication to,

32

getting the Login page to store the

authenticated User object, 71

sign-in application, template file for Login

page, 5

writing unit tests for, 268

Login.java, code example, 6–8, 32

Login.properties file, creating, 38

Loop component, 61, 216

M
MarkupContainer, 214

MarkupContainer.replace(Component child), 216

markup inheritance

BookShopTemplatePage.html, code example,

122–123

common page layout template, code example,

123

dynamic title rendering, 125–127

modifying the static <title> to a dynamic one,

125

<wicket:child/> tag, 123–124, 132

<wicket:extend> tag, 124

markup templates, components and, 127

Maven, 268, 270

as a managed framework, 150

Maven 2.0 download site, 278

using to build a distributable artifact, 144

memory usage, in Wicket, 81, 145

MicroMap class, 145

MissingResourcesException, 38

mock objects, 267

MockWebApplication class, 268

model() method, 81

models

attaching and detaching, 82

components and, 6

definition of detachable, 82

using detachable in applications, 85

O
object life cycle, 151

ObjectFactory class, Spring Framework, 171

OGNL expression language, 15

onAjaxUpdate, 261

onAttach() and onDetach() methods, 82

onClick() method, for Welcome page, 29

onComponentTag() method, 203, 206, 230

onComponentTagBody() method, 203

onFormSubmitted() method, functions of, 13

online bookstore application

adding a CheckBox component, 109

adding the Cart class, 103

adding the remove-book and empty-cart

functionality, 107

associating the check box state with the Book

model, 90

attaching and detaching models, 82

avoiding duplication of Book attributes, 106

Book object as visible across sessions, 92

building the AdminPanel, code example, 227

calling the Form.process() method, 96

code refactoring, 111

common page layout template, code example,

123

confirming the purchase, 110

creating a class to represent the Book entity, 74

creating a view helper object that stores book

quantity, 101

creating the Browse Books screen, 78–79

customizing the PagingNavigator component,

200

detachable Book model, 83

determining unauthorized component

instantiations, 112

directing the user to the Checkout page, 106

displaying books in a user-selected category,

85–88

DropDownChoice component, 85

dynamic title rendering, 125–127

filtering books by category, 225

Form submission, 96

Fragment component, 214

hard-coded vs. dynamically retrieved link

references, 120

IDataProvider implementation, 200

IDataProvider interface and data pagination,

79–81

implementing the Checkout page, code

example, 104–106

implementing the Confirmation page, 110

instantiating BookDao within the

WebApplication’s constructor, 77

isPageAuthorized() method, 113

IUnauthorizedComponentInstantiationListener

interface, 112

maintaining a layered page hierarchy, 107

■INDEX298

maintaining the book-selection state in the

cart, 108

maintaining the check box state during

navigation, 91

modifying BookDao to add a display filter, 225

modifying the static <title> to a dynamic one,

125

modifying ViewBooks.html with CSS tags, 98

onAttach() and onDetach() methods, 82

overview of a typical request cycle flow, 114–115

performing custom processing during

component instantiation, 112

placing the shopping cart in the user session,

104

propagating updates to the check box model, 90

providing an IAuthorizationStrategy, 112

providing an IUnauthorizedComponent-

InstantiationListener implementation,

112

querying the book (in-memory) database,

75–77

redirecting unauthorized users to the

SignOnPage, 113

registering IComponentInstantiationListener

implementations, 112

requesting the user’s billing information, 110

SecuredWicketPage marker annotation, 112

securing access to the Confirmation page, 111

SubmitLink component, 90

user selection not retained across page

navigation, 96

using an Ajax-enabled CheckBox component,

260

using WebApplication as a registry for global

objects, 77

ViewBooks page, code example, 122

wantOnSelectionChangedNotifications()

method, 91

Wicket pages and user threads, 91

onSubmit() method, 12–13

overriding, 6

onUpdate() template method, 238

outerHTML property, 238, 244, 255

P
Page class, 5–6, 8, 12, 16

for Books template, code example, 146–147

Page components, 6, 8, 127

HTML widgets and Page components, 9, 33

storing error messages for contained

components, 272

page render phase, 8

page.properties file, overriding the messages in, 46

Page.renderer() method, 8

PageMap, 72, 73

caching pages in, 8, 29, 33

PagingNavigator component

adding a headline (Panel) component, 201

creating a custom navigator class, 201

customizing its look and feel, 200

CustomPagingNavigator, 203

PagingNavigator template, code example, 200

PageParameters, Welcome page, 27

Palette component, 226

Palette constructor parameters, 226

Panel components, 127

associated markup template, 199

persistence unit, definition of, 167

PhoneNumber, obtaining string implementation

of, 55

PhoneNumberConverter

code example, 48–49

registering, 53

PhoneNumberToStringConverter class, 55

POJO (Plain Old Java Object) beans, 149, 165

PopupSettings, code example, 120–122

PropertyModel, code example, 13–15

PropertyResolver class, 284, 286

Q
Quick Start application

downloading, 1

embedded Jetty server, 3

modifying the Jetty configuration file (jetty-

config.xml), 3

setting up with Eclipse, 2

R
RadioChoice component, 183

refactoring catalog, Spring Framework, 154

ResourceBundle class, 178

ResourceBundles, support for style and variation,

196

S
SecuredBase page, 72

SecuredWicketPageMarker annotation, 112

Serializable Model object, 81

session

accessing HttpSession through the

setAttribute() method, 72

accessing Wicket application session, 70

checking for a valid User object, 69

continueToOriginalDestination(), 73

■INDEX 299

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

definition of, 69

getSession() method, 70

getting the Login page to store the

authenticated User object, 71

HttpSession, 70

ISessionFactory, 70–71

passing on a context through a web or user

session, 69

redirecting a request to the intercept page, 73

SecuredBasePage, 72

Serializable model object, 81

Session class, 70

storing session credentials in a User object, 69

using WicketServlet to intercept a browser

request, 70

WebSession class, 70, 72

setAttribute() method, accessing HttpSession

through, 72

setValue() method, FormTester class, 272

sign-in application, template file for Login page, 5

SimpleAttributeModifier, 203

SortableDataProvider, 209

Spring 2.0

EntityManageFactory, 175

JPA support, 173

JpaDaoSupport class, 173, 175

JpaTemplate class, 173

Spring Framework

AnnotSpringWebApplication class, 151,

160–161

ApplicationContext, 150, 152, 156–157, 159, 161

applicationContext.xml configuration file, 157,

161

ApplicationContextAware interface, 152

applying the extract interface refactoring, 154

BookStoreApplication class, code example, 156

ContextLoaderListener class, 152

dependency injection (DI), 149–150, 161

documentation on, 149

IBookDao, code example, 154

initializing the ApplicationContext, code

example, 152–153

instantiating objects, 150

inversion of control (IoC), 149

as a managed framework, 150

POJO (Plain Old Java Object) beans, 149, 165

refactoring catalog, 154

replicating session data across a cluster, 151

@SpringBean annotation, 151, 159, 161, 175

Struts-Spring integration, 150

swapping an underlying interface

implementation, 154

Wicket-Spring integration difficulties, 150–151

Spring integration, through CommonsAttributes,

164

SpringWebApplication class, 151, 161

SpringWebApplicationFactory class, 156, 161

StringAutoAssistRenderer class, 249

Struts, 1, 72

Action classes, as not inherently thread-safe, 92

Action classes, instantiating, 150

ActionForms, 22

configuring a different RequestProcessor, 150

RequestProcessor, 150

Struts-Spring integration, 150

SubmitLink component, 90

Subversion repository, obtaining source code from

Wicket’s, 278

T
TabbedPanel component, 216, 219, 244

Tapestry, 1, 5, 9, 16, 31

templates

associated markup templates and Border

components, 127, 129

common page layout template, code example,

123

embedding a Velocity template in a Wicket

page, 143

FreeMarker Templating Language (FTL), 148

HTML template and Page class, 5

HTML template, considered as a view, 8

inline markup vs. having a markup template,

199

keeping a locale-specific template in sync with

its Page class, 187

Page class for the Books template, code

example, 146–147

PagingNavigator template, code example, 200

Panel components, associated markup

template, 199

resolving ambiguities in the child template Page

class, 132

resolving Wicket tags in a template, 179

sign-in application, template file for Login

page, 5

template for displaying Book objects, code

example, 144

using locale-specific templates, 186

Velocity and, 143

■INDEX300

test-driven development (TDD) methodology,

154, 267

TextField component, 6, 33, 246, 247

associating a custom converter with, 51

TextTemplateHeaderContributor component,

using, 229–230

<title> element, updating through Ajax, 244

U
unit testing

Assert class, 268

automated builds and, 270

duplicating the code in a WicketTester subclass,

275

emulating a click action on a link, 273

failed login use case, 271

IDE support for running JUnit tests, 268

in-container tests, 267

keeping source and test files separate, 268

mock objects, 267

MockWebApplication class, 268

moving common test code to the setUp()

method, 270

out-of-container tests, 267

running the testLoginPageRender() method,

268

test-driven development (TDD) methodology,

267

testing link navigability, 272

verifying that model objects are correctly

updated, 275

verifying that page labels render correctly, 270

verifying that the UserProfilePage submits

successfully, 273

WicketTester and Application classes, 274

writing unit tests for the Login page, 268

urlFor() method, 206, 208

user feedback

adding the FeedbackPanel component for, 35,

39, 60

changing feedback display, 61

combining both Page- and Session-level

messages, 61

implementing the IFeedbackMessageFilter, 61

message descriptions and associated log levels,

61

populateItem() method, 63

providing feedback error messages, 36

rendering a list of messages, 62

setting Session-level feedback messages, 60

string resource bundle (properties file), 38, 44

using a ListView component, 62, 64

UserProfile model class, 19

UserProfile.java, CompoundPropertyModel code

example, 17–19

UserProfilePage

internationalizing, 183

localizing, 177

modified, 235

modifying, 41

UserProfilePage constructor

code example, 20–21

UserProfilePage.html, CompoundPropertyModel

code example, 17

UserProfilePage.java, CompoundPropertyModel

code example, 19–20

UserSelectionChanged() method, 208

V
validation. See input validation

ValidationWicketTester, 275

Velocity

BookDetailsModel, 148

definition of, 143

embedding a Velocity template in a Wicket

page, 143

mixing and matching Wicket and Velocity

components, 144

templates in, 143

Wicket URLs and Form components

unsupported, 149

Velocity Framework, download site, 144

VelocityContext object, 143

VelocityContext, populating, 145

VelocityPanel component, configuring with a map,

143

VelocityPanel model, code example, 145–146

ViewBooks page, code example, 122

W
web development, page-centric approach to, 5

web-MVC, 1

WebApplication class, 10, 152

WebComponent, 201, 204

WebPage class, 6, 8

WebWork, 1

web.xml, 4, 152, 161

modifying to specify the applicationClassName,

11–12

WebApplication class, code example, 23

Welcome page

accessing, 27

adding basic authentication to the Login page,

32

■INDEX 301

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

bookmarkable vs. non-bookmarkable page

URLs, 28

creating the Welcome.html page, 25

passing the userId as a page parameter, 27

setting a different response page, 26–27

User Name and Password fields, 30

Welcome constructor, 27

Welcome.java, code example, 25

Wicket

absence of a style or a variation attribute, 197

access to the Page class as thread-safe, 92

accessing a page through a specific URL

pattern, 67

accessing application session, 70

accessing markup attributes during component

construction, 280

accessing subproperties via reflection, 15

adding a wicket:id attribute to a title, 224

adding or modifying a tag attribute, 203

addressing pages by their class name, 68

advantages of built-in Ajax behaviors, 256

Ajax requests, 237

Ajax support and, 235

antipattern, 13

assigning a unique ID to an element at runtime,

138

associating behaviors with components at

runtime, 96

associating parent and child components, 279

attaching and detaching models, 82

behaviors in, 237

BookWithDI.java, code example, 162

browser Ajax requests and behaviors, 238

building the AdminPanel, code example, 227

clustered applications, 222

code refactoring, 111

compared to Swing development, 9

component hierarchy, 9

components responding to browser events

through listeners, 238

configuring the BookStoreApplication class, 156

configuring the delay for an Ajax call, 241

controlling memory usage in, 145

converter, function of, 287

core classes, 1

creating an image indicator component, 257

customizing an IAutoCompleteRenderer

implementation, 249

definition of, 1

detachable model, definition of, 82

detecting hierarchy mismatch, 280

determining unauthorized component

instantiations, 112

development vs. deployment mode, 22–25

embedding database lookup logic in the

loadStringResource() method, 197

enabled and disabled links, 135

enabling “nice” URLs for an application, 67

enabling IOC on the Page, 158

as an event-driven framework, 6

examining validation error messages, 187

extending the IRequestListener interface, 204

extending the WebApplication subclass, 158

FeedbackPanel, 235, 241

form serialization, 241

FormComponentFeedbackBorder and

validation feedback, 235

generating links through wicket:link, 135

getSession() method, 70, 279

handling Ajax success and failure events, 262

handling of missing resources, 39

implementing the IAjaxIndicatorAware

interface, 258

in-container tests, 267

informing a component about an object, 6

instantiating a Page class, 150

instantiating pages or components, 31

integration problems with Spring, 143, 150–151

integration with DOJO, 265

integration with EJB 3, 164

integration with other templating technologies,

143

invoking callback functions, 138

keeping memory footprint to a minimum, 81

keeping the FeedbackPanel and Ajax validation

in sync, 240

localizing validation and error messages, 186

maintaining a PageMap instance per user

session, 92

maintaining state per page per user session, 92

marker interfaces, 204

mixing and matching Wicket and Velocity

components, 144

model and component serialization, 151, 163

modified Books page with Spring-annotated

variables, 161

modifying or adding attributes to HTML

elements, 96

nonavailability of Ajax or JavaScript browser

support, 261

nonremoval of an existing tag attribute, 203

not defining custom listener interfaces, 208

out-of-container tests, 267

■INDEX302

outerHTML property, 238, 244, 255

packaging Wicket components into libraries,

221

Page hierarchy and message search order, 179

Page injection errors, 175

page-centric approach to web development, 5

partial rendering, 238

passing on a context through a web or user

session, 69

populating the HTML element id attribute, 238

postback mechanism, 13, 33

producing a test case for comparing generated

and expected files, 277

programming to the IBookDao interface, 164

providing a common layout, 122

providing stateful components, 72

providing status indicators for Ajax requests,

256

pulling localized strings from a database, 197

registering the web application main class, 9–10

relationship of FormComponents to Form, 56

removing unneeded Wicket tags when page

rendering, 185

rendering a page in response to an Ajax request,

253

repeater components, 62

replacing the web.xml content, 4

reporting validation errors after form submit,

237

resolving dependencies during component

construction, 158

resolving field dependencies through the

Injector, 159

resolving <wicket:message> tags using the

WicketMessageResolver class, 179

resolving Wicket tags in a template, 179

restoring fields from persistent storage, 82

retrieving dependencies in Wicket components,

152

returning a bookmarkable URL for a Page class,

209

returning an Item subclass through the factory

method, 98

search order for messages, 180–181

server-side components and Wicket’s model

objects, 275

setting the style attribute to skin Wicket pages,

196

specifying meta information about a field, 159

storing repeating markup, 122

storing the component and its model in the

Session, 81

storing the ISO country code in the UserProfile

bean, 189

strongly typed objects in, 72

style attributes as session-specific, 196

style, definition of, 196

switching on/off Ajax debug mode, 240

switching the locale programmatically, 183

template file changes, 22

test-driven development (TDD) methodology,

267

testing Wicket behaviors, 276

throwing a RuntimeException on an Ajax

request, 265

treating the Application class as a global

registry, 157

triggering the IOnChangeListener, 85

understanding behaviors in, 96

as an unmanaged framework, 31, 150

using detachable models in applications, 85

using IInitializer to register resources, 222

using locale-specific templates, 186

using the wicket.Localizer class to fill in

placeholder values at runtime, 190

validator search order, 182

variation attributes as component-specific, 196

Velocity and, 143

wicket.AttributeModifier class, 96

wicket.behavior.IBehavior interface, 96

wicket.properties file, 223

<wicket:body> tag, 130

<wicket:border> tag, 129

<wicket:child/> tag, 123–124, 132

<wicket:extend> tag, 124

<wicket:fragment> tag, 214

<wicket:head> tag, 137

<wicket:message> tag, 177–179

<wicket:panel> tag, 218

wicket:id attribute, 5–6, 8, 19, 125

Wicket 2.0

accessing markup attributes during component

construction, 280

adapting PhoneNumberConverter, 287

adding a child component to its parent, 280

adding a wicket_rocks attribute prefix, 284, 286

configuring design-time parameters in a Panel,

code example, 282–283

constructor refactor, 279

Converter API specification, 287

detecting hierarchy mismatch, 280

extracting and configuring design-time

attributes automatically, 284–285

improved error reporting, 280

■INDEX 303

Fin
d
 it faster at h

ttp
://su

p
e
rin

d
e
x.a

p
re

ss.co
m

/

Java 5 features and, 278

passing in the parent using the component’s

constructor, 280

signature differences in Wicket 1.2 and 2.0

model classes, 291

use of Java generics, 282

UserProfilePage class, code example, 281–282

Wicket component hierarchy

inline markup vs. having a markup template,

199

MarkupContainer, 199

WebMarkupContainer, 199

wicket.Component, 199

wicket.Application.configure() method,

CompoundPropertyModel, 22

Wicket-Extensions subproject, 79

adapting a Wicket Page to a Panel, 218

adding a wicket:id attribute to a title, 224

attaching a custom IBehavior

(ConfirmDeleteBehavior) to a

component, 230

building the AdminPanel, code example, 227

configuring a function name and message at

runtime, 231

creating an Item component to represent an

HTML row, 213

encapsulating markup in a component, 215

enclosing content within <wicket:panel> tags,

218

including the confirmdelete.js file in the

template, 230

packaging Wicket components into libraries,

221

replacing BookSelectionPanel with

BookSelectionFragment, 215

replacing Panels with the same ID, 216

toolbars, uses of, 209

wicket.properties file, 223

<wicket:fragment> tag, 214

wrapping the CheckBox component in a Panel,

210

wicket.Component.add(IBehavior), 237

wicket:link

generating links through, 135

inability to link to pages outside the package,

137

Wicket pages, securing, 67

Wicket Panel, wrapping components in, 210

Wicket Quick Start, setting up Eclipse with, 2

Wicket-Spring integration module, download site,

144

Wicket-Velocity subproject, 143

WicketServlet, 152

WicketTestCase.executeTest() method, 277

WicketTester class, 268

Application class and, 274

Assert class, 268

assertComponent() method, 270

assertErrorMessages() method, 272

assertLabel() method, 270

assertXXX() methods, 268

clickLink() method, 273

emulating a click action on a link, 273

lack of support for submitting forms, 271

MockWebApplication class, 268

ValidationWicketTester, 275

verifying that the UserProfilePage submits

successfully, 273

X
XmlHttpRequest implementation, 235, 262

XmlHttpRequestObject, 237

■INDEX304

	Pro Wicket
	Table of Content
	Chapter 1 Wicket: The First Steps
	Chapter 2 Validation with Wicket
	Chapter 3 Developing a Simple Application
	Chapter 4 Providing a Common Layout to Wicket Pages
	Chapter 5 Integration with Other Frameworks
	Chapter 6 Localization Support
	Chapter 7 Custom Wicket Components and Wicket Extensions
	Chapter 8 Wicket and Ajax
	Chapter 9 Additional Wicket Topics
	Index

